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Foreword: CERME10 in lovely Dublin 
Susanne Prediger1, Viviane Durand-Guerrier2
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2Montpellier, France, viviane.durand-guerrier@univ-montp2.fr 

Since its beginnings in 1998, ERME, the European Society for Research in Mathematics Education 
was dedicated to supporting the so-called “three C’s”: communication, cooperation, and collaboration 
among researchers in Europe and beyond. The major occasion for the ERME spirit to come to life is 
the biannual congress, CERME. In this year, the 10th congress of ERME, CERME10, took place in 
Dublin from February 1st to February 5th, 2017.  

The congress took place in Dublin in Croke Park, the stadium that is home of the Irish national sports 
of Gaelic football and hurling. Although the conference was bigger than ever, the 774 participants 
felt few compared to the 80 000 people who fit into the stadium on large sporting and other occasions. 
However, our local chair, Thérèse Dooley, her co-chair Maurice OReilly and all their colleagues did 
a fantastic job in making us feel at home and not lost in the huge venue. Their hospitality and 
engagement were praised by all participants.  

The program of the congress was organized by the International Program Committee, chaired by 
Ghislaine Gueudet and the vice-chair Andreas Eichler in a very well structured, transparent and highly 
efficient way. Under their guidance, the IPC developed a substantial program with two very 
interesting plenaries, one presented by Elena Nardi (entitled “From Advanced mathematical thinking 
to university mathematics education: A story of emancipation and enrichment”) and the other by 
Lieven Verschaffel (entitled “Towards a more comprehensive model of children’s number sense”). 
In a panel on “Solid findings in mathematics education: What are they and what are they good for?” 
this ‘hot’ topic was discussed from different perspectives. Marianna Bosch, Tommy Dreyfus, 
Caterina Primi, and Gerry Shiel made up the panel. All of the plenary activities contributed 
substantially to the success of the conference. 

However, the core and the heart of each CERME are the seven sessions in the Thematic Working 
Groups, which offer the main place for the spirit of inclusion realized in communication and 
cooperation. The 23 Thematic Working Groups were organized by 84 group leaders, an impressive 
number of people who invest their energy and time in the success of the congress. Several external 
conference organizers expressed their surprise that during the sessions, nobody was wandering around 
in the corridors. Of course not, we said, they are communicating and cooperating! And we become 
aware again that this intensity of work is specific, and perhaps even unique, to CERME.  

Most of the CERME group leaders have taken this responsibility for several years and have 
established a long-term collaboration with substantial academic outcomes. This group of people 
engaged in the enormous effort of managing the process of quality development for 474 submitted 
papers and 94 posters, numbers much larger than ever before.  

CERME is not only getter larger from congress to congress, but also increasingly international. The 
774 participants came from 29 Europeans countries and 23 Non-European countries. The top ten 



countries in terms of numbers of participants were Germany (127), United Kingdom (60), Norway 
(55), France (47), Italy (47), Ireland (41), Spain (39), Sweden (38), Israel (32), and the US (30). 
Austria, Belgium, Croatia, Cyprus, Czech Republic, Denmark, Faroe Islands, Finland, Greece, 
Hungary, Iceland, Kosovo, Malta, Netherlands, Poland, Portugal, Russia, Slovakia, Switzerland, 
Turkey, and Ukraine were included in the European countries. Among the non-European countries 
were Algeria, Argentina, Australia, Bangladesh, Brazil, Cameroon, Canada, Chile, Hong Kong, 
Kenya, Iran, Japan, Lebanon, Malawi, Mexico, New Zealand, Nigeria, Singapore, South Africa, 
Thailand, and Tunisia. It must be the specific style of the congress and the ERME spirit which attracts 
so many people from all over the world! 

With the increasing numbers and diversity, the challenge of compiling proceedings is getting more 
and more complex. We thank the chairs who served as editors for this complex process and for 
finalizing it so quickly. 

Such a huge and complex congress as CERME could not be conducted without the engagement of 
more than 15% of all participants (including TWG leaders, IPC members, LOC members and ERME 
board members). We thank everybody who has contributed to the ongoing work behind the scenes 
which allowed the congress to be a real success. Specific thanks go to Ghislaine Gueudet, Andreas 
Eichler, Thérèse Dooley and Maurice OReilly for their hard work with a wonderful outcome.  

We encourage interested researchers to meet us at the next CERME that will take place from February 
5th to February 10th 2019, in Utrecht (the Netherlands). 

 

Susanne Prediger, ERME President since February 2017 

Viviane Durand-Guerrier, ERME President until February 2017 
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About CERME10   
The Tenth Congress of European Research in Mathematics Education (CERME 10) took place in 
Dublin (Ireland) from 1st to 5th February 2017. Ghislaine Gueudet (France) was the chair of the 
International Programme Committee (IPC) which comprised Thérèse Dooley (Ireland, chair of the 
local Programme Committee), Andreas Eichler (Germany, co-chair), Marianna Bosch (Spain), 
Markku Hannula (Finland), Jeremy Hodgen (UK), Konrad Krainer (Austria), Despina Potari 
(Greece), Kirsti Rø (Norway), Cristina Sabena (Italy), Michiel Veldhuis (Netherland), Nad’a 
Vondrová (Czech Republic). Thérèse Dooley and Maurice OReilly were chair and co-chair 
respectively of the Local Organizing Committee (LOC). 

CERME10 hosted 23 Thematic Working Groups, listed in the table below. The TWGs 21, 22, 23 and 
24 were new groups, created following a call launched just after CERME9, and a selection process 
involving the CERME10 IPC and the ERME board. They all have been very successful, and will be 
part of CERME11 in February 2019. TWG7 (Mathematical potential, creativity and talent) has 
unfortunately been cancelled, due to a lack of contributions; while TWG14 has been split in two for 
the conference, because of the large number of papers received.  

TWG Leader 

TWG1: Argumentation and proof Gabriel Stylianides (UK) 

TWG2: Arithmetic and number systems Elisabeth Rathgeb-Schnierer (Germany) 

TWG3: Algebraic thinking Reinhard Oldenburg (Germany) 

TWG4: Geometry Joris Mithalal (France)  

TWG5: Probability and statistics education Corinne Hahn (France) 

TWG6: Applications and modelling Susana Carreira (Portugal) 

TWG8: Affect and mathematical thinking Pietro Di Martino (Italy) 

TWG9: Mathematics and language Núria Planas (Spain) 

TWG10: Diversity and mathematics education: Social, 
cultural and political challenges 

Lisa Björklund Boistrup (Sweden) 

TWG11: Comparative studies in mathematics education Paul Andrews (Sweden) 

TWG12: History in mathematics education Renaud Chorlay (France ) 



 

TWG13: Early years mathematics Ingvald Erfjord (Norway) 

TWG14a: University mathematics education Alejandro Gonzalez Martin (Canada) 

TWG 14b: University mathematics education Irene Biza (United Kingdom) 

TWG15: Teaching mathematics with resources and 
technology 

Alison Clark-Wilson (UK) 

TWG16: Students’ learning mathematics with resources 
and technology 

Hans-Georg Weigand (Germany) 

TWG17: Theoretical perspectives and approaches in 
mathematics education research 

Angelika Bikner Ahsbahs (Germany) 

TWG18: Mathematics teacher education and 
professional development 

Stefan Zehetmeier (Austria) 

TWG19: Mathematics teacher and classroom practices Charalampos Sakonidis (Greece) 

TWG20: Mathematics teacher knowledge, beliefs and 
identity 

Miguel Ribeiro  

TWG21: Assessment in mathematics education Paola Iannone (UK) 

TWG22: Curricular resources and task design in 
mathematics education 

Birgit Pepin (The Netherlands) 

TWG23: Implementation of research findings in 
mathematics education 

Uffe Thomas Jankvist (Denmark) 

TWG24: Representations in mathematics teaching and 
learning 

Elisabetta Robotti (Italy) 

 
 
Editorial information  
These proceedings are available as a complete volume online on the ERME website and each 
individual text is also available on the HAL open archive, where it can be found through keywords, 
title or author name. This has been the practice since CERME9, to increase the visibility of the huge 
work done in CERME conferences.  

This volume begins with texts corresponding to the three plenary activities of CERME10: the 
presentation by Elena Nardi on University Mathematics Education; that by Lieven Verschaffel on 
Early Mathematics; and the panel on Solid Findings in Mathematics Education, chaired by Marianna 
Bosch and involving Tommy Dreyfus, Catarina Primi and Gerry Shiel.  

After the plenaries, the reader will find 23 chapters corresponding to the work done in the TWGs of 
CERME10 (we remind the reader that TWG7 has been cancelled; moreover, TWG14 was split in two 
for the conference, but all the papers are in the same section in these proceedings).   

These chapters follow a similar structure: they start with an introduction; then the long contributions 
(8-page papers) are presented – in alphabetical order by first author’s name – and finally the short 



 

contributions (2 pages). However, TWG17 has chosen a different order, corresponding to subthemes 
in the group.  

There are two kinds of introductions to the TWGs, according to the team’s choice: short introductions 
(4 pages) presenting the contributions; or long introductions (8 pages), which propose, in addition, an 
analysis of the current research on the theme of the TWG, and perspectives for the future. TWGs 6, 
14, 15, 16, 17, 19 and 23 have chosen this form of long introduction.  

The publication of these proceedings is the result of a collaborative work, involving CERME10 IPC, 
the TWG leaders and co-leaders, and the LOC co-chair. We warmly thank all these people for their 
involvement, and hope that this volume will contribute to the development of mathematics education 
research in Europe and beyond.  

 



Statistical overview of CERME10 
Maurice OReilly  

Dublin, Ireland, maurice.oreilly@dcu.ie 

CERME evolves over time, and so it is of interest to gather and present some quantitative data on the 
number of participants and on the scientific output at CERME10. The table opposite shows the 
number of submissions to these proceedings (excluding the TWG introductions and the plenary 
papers) along with other submissions that were made online by December 2016 but were not included 
here. The numbers of long and short contributions are noted. Of course, each TWG had more 
participants than the number of submissions, since (i) many papers had several authors and (ii) there 
were other participants who did not submit. The entries in the table are explained in its footnotes.  

The data for the table comes from two sources: the submissions made online (to the CERME10 
website) by mid-December 2016, and the registration and attendance database for the congress. The 
final column shows the 768 (distinct) participants at CERME10, allocating each to exactly one TWG. 
Although over 80 participants were active in more than one TWG, care was taken to ensure that no 
participant was included more than once (by fine-tuning the ‘Additional authors’ column 
appropriately). This was facilitated by taking into account the TWG explicitly chosen by each 
participant at registration. The foreword states that there were 774 participants; this figure includes 
the six presenters at the plenary sessions. 

Of the 565 submissions made in advance of CERME – comprising 466 (long) papers and 99 posters 
(or short contributions) – the attrition by the time these proceedings have been edited was only 
20 (about 3.5%). This low figure underscores the observation mentioned in the foreword that 
“nobody was wandering in the corridors”. Contributions to the proceedings as a proportion of the 
total number of participants was 0.71 (= 545/768), this figure varying from 0.56 (for TWG2) to 0.82 
(for TWG16). Another indicator of the intensity of the work at CERME is the low number of 
participants (84) who did not contribute papers – although they did contribute to the lively 
discussion! This was 10.9% of the total number of participants, with extremes ranging from 
3.0% (for TWG10) to 20.0% (for TWG24). Yet another perspective on the hard work 
undertaken in the context of the congress is illustrated by the number (453) of ‘long’ papers as a 
proportion of all contributions: 83% overall, with a minimum of 71% (for TWG14) and an 
impressive maximum of 100% (for TWG2). 

It has already been noted (in the foreword) that participants at CERME10 were drawn from 
52 countries. It is part of the ‘CERME spirit’ to support academics who would normally have 
limited access to CERME (either from underrepresented or economically weak countries). This 
is made possible through the Graham Littler Fund which draws from those who can afford, in 
support of those who cannot. For CERME10, 46 participants were awarded grants totaling €21 
100 (€12 300 for registration and €8 800 for travel and accommodation). 

It is hoped that the data provided on these two pages helps quantify important aspects of CERME10, 
putting the scientific output in perspective. 



TWG Submissions Contributions to the Proceedings Additional Additional Total number of 
to Proceedings Online only Long Short authors participants participants in each TWG 

1 28 0 27 1 12 6 46 
2 14 2 14 0 5 4 25 
3 19 2 16 3 2 5 28 
4 20 0 15 5 4 2 26 
5 25 1 21 4 3 2 31 
6 22 2 18 4 6 5 35 
8 25 1 23 2 3 3 32 
9 26 1 22 4 6 2 35 
10 26 1 19 7 5 1 33 
11 13 0 10 3 4 1 18 
12 18 0 16 2 5 2 25 
13 20 0 15 5 7 3 30 
14 58 5 41 17 13 11 87 
15 25 0 19 6 6 4 35 
16 27 0 20 7 1 5 33 
17 16 2 12 4 2 3 23 
18 31 0 28 3 4 5 40 
19 23 0 22 1 5 5 33 
20 28 2 25 3 8 3 41 
21 25 1 23 2 7 3 36 
22 23 0 17 6 7 2 32 
23 15 0 14 1 2 2 19 
24 18 0 16 2 2 5 25 

 Total 545 20 453 92 119 84 768 
Submissions were made online by mid-December 2016, most of which are published in these proceedings (as either long or short contributions). 
In each TWG, the number of submissions is augmented by ‘Additional authors’ indicating the number of participants at CERME10 who contributed to (long or 
short) papers. The ‘Additional participants’ attended CERME10 but were not authors of these papers. 
The ‘Total number of participants in each TWG’ is then the sum of all the submissions along with the additional authors and participants. 



 

 



 

 

From advanced mathematical thinking to university mathematics 
education: A story of emancipation and enrichment 

Elena Nardi 

University of East Anglia, UK, e.nardi@uea.ac.uk 
 

Between CERME1 and CERME9 there have been approximately two hundred and fifty papers with 
their focus directly, or a little less so, on the teaching and learning of mathematics at university 
level, starting from about a dozen in CERME1 and rising to several dozens in CERME9. ERME 
recognised the increasing significance of this emerging field with the launch of Working Group 14 
(Advanced Mathematical Thinking) in CERME4 in 2005 which evolved into Thematic Working 
Group 14 (University Mathematics Education) in CERME7 in 2011. In this lecture, I draw on my 
experience as researcher in this field, and as participant in both groups (and inaugural leader of 
the latter), to identify epistemological – theoretical, substantive and methodological – trends in the 
transition from the one to the other. I aim that the story I tell is one of gradual emancipation from a 
relatively limited initial focus on cognitive aspects of the student learning experience in university 
mathematics to the grander vista of issues – also inclusive of pedagogical, institutional, affective 
and social issues – that studies presented at CERME nowadays address. I also aim that the story I 
tell is one of enrichment as the depth and diversity of said vista has been accomplished also through 
thoughtful appropriation of results from those earlier studies. 

Keywords: University mathematics education, developmental / cognitive and sociocultural 
approaches to the teaching and learning of mathematics. 

Introduction  
In tandem with ERME, the area of research that is the focus of this plenary, University Mathematics 
Education research, has also been evolving rapidly in the last twenty years or so. Here I focus on 
some of the milestones of this evolutionary journey, with the particular emphasis that I promised in 
the above title and abstract. Before proceeding to these though, here is a bit of a pre-amble: Figure 1 
presents a still from a scene in the film A Serious Man (2009) directed by Ethan and Joel Coen. 

 

Fig.1. Still taken from A Serious Man (2009): https://www.youtube.com/watch?v=7iggyFPls4w  



 

 

This is a typical imagining in popular culture of how mathematics teaching looks like at university. I 
will not go much further with a discourse analysis of what the still (or the scene, or the film itself) 
may convey. In what I see as some contrast, Figure 2 presents a sequence of images, taken from the 
publicity materials of my own institution’s department of mathematics.  

  

Fig. 2. Still taken from UEA promotional video: https://www.youtube.com/watch?v=gRzVX8c1be4  

The students and the lecturer in these images work together, they are not physically too far from 
each other and there is a range of resources – from chalk to digital – present. The sequence 
illustrates how institutions may wish to present the kind of learning experience that potential 
incomers into a department of mathematics are likely to be offered.  

To me, there is a clear contrast between the movie still from A Serious Man and these two images 
from the UEA promotional video. It is a contrast between a widespread perception of university 
mathematics lectures as the ultimate form of transmissive pedagogies – with all the repercussions of 
alienation and distancing these pedagogies may entail – and the aspiration (institutional but not 
only) for a more approachable, more inclusive and more engaging learning experience in university 
mathematics that is tailored to individual student needs.  

As university lecturers today – in mathematics and in other disciplines – we lecture. But we also do 
much more: we coordinate seminars, we conduct individual or small group tutorials, we run 
workshops and drop-in clinics, we supervise dissertations, we advise students on academic and on 
pastoral matters and we assess students in a variety of ways (all the way from closed-book 
examinations to mini-projects and oral presentations).  Our professional worlds are far from 
monotonous. In fact, they require us to be quite versatile. 

I see as of little surprise, and rather pleasing, that the 
versatility of our jobs is being reflected in the diversity 
of University Mathematics Education research that is 
now presented at CERME. This diversity of focus – 
but also theoretical perspective and methodology – is 
to me a sign of richness. In fact, here I have taken the 
liberty of endorsing a metaphor, which originates in 
currently dominant theories of evolution and 
conservation (Figure 3). These theories equate species 
diversity with resilience. The story I tell here relies 
somewhat on whether this is a convincing metaphor. 

 

Fig. 3. Image from: 
https://conservationbytes.com/2014/01/08/m

ore-species-more-resilience/  



 

 

I tell this story in five parts: The “early years”, CERME 1, 2, 3; The AMT years, CERME 4, 5, 6; 
The UME years, CERME 7, 8, 9; CERME10, the split1…; and, Taking stock / What next / Coming 
soon… Before starting, I need to post a health warning though: that a lecture of this kind errs on the 
side of being impressionistic – and of course quite personal2 too. I thank you in advance for your 
tolerance. 
 
My own trajectory in CERME – and outside – mirrors some of the milestones and trends that this 
plenary aims to map out. I was present in 1999 at CERME1, in Osnabrueck, assisting with the 
coordination of Group 5, Mathematical thinking and learning as cognitive processes. To those more 
familiar with the increasingly sociocultural and discursive take that my work has been taking over 
the years, this commitment to Group 5 may sound a little surprising. It is not. I start Part I with an 
anecdote on exactly this. 
 

Part I: The “early years”, CERME 1, 2, 3; UME research evidenced in several 
TWG groups 
My 1996 doctorate’s title (Nardi, 1996) is The novice mathematician’s encounter with mathematical 
abstraction: Tensions in concept image construction and formalization. The statement of intentions 
in this doctorate are clear: 
 

Mathematics is defined as an abstract way of thinking. Abstraction ranks among the least 
accessible mental activities. In [the UK educational context where the study took place], the 
encounter with mathematical abstraction is the crucial step of the transition from informal 
school mathematics to the formalism of university mathematics. This transition is 
characterised by cognitive tensions. This study aimed at the identification and exploration of 
the tensions in the novice mathematician's encounter with mathematical abstraction. (Nardi, 
1996: Abstract) 

 
However, the study’s stated theoretical perspective is a little more perplexing. It is declared as 
“consisting of cognitive and sociocultural theories on learning”. And, the two key parts of findings 
in the final chapter promise an account of the novice mathematician's encounter with mathematical 
abstraction “as a personal meaning-construction process and as an enculturation process” (ibid.). 

It is quite easy, in hindsight, to be skeptical about the risky eclecticism of the approach – some may 
see this as standing on a fence, or, even, as pick-and-mix nonsense. But, I keep reminding myself 
that the study started in 1992 and was completed in 1996. It was therefore conducted at a time when 

                                                 
1 Continuing with the biology inspired metaphors, I use the word “split” deliberately. Cell splitting is the process of 
subdividing a congested cell into smaller cells. Cell splitting or division is associated with reproduction and the creation 
of an entire new organism. This process is typically seen as increasing many of the capacities of a cellular system. In 
fact, in Parts III and IV, I aim to show the inevitability of cell splitting, emanating from the substantive, theoretical, and 
methodological diversity of UME research presented in CERME these days. It is in these parts that the main point of 
this lecture, signposted in the abstract by the words emancipation and enrichment, will, I hope, come through. 
2 I also need to thank at this juncture two overlapping groups of colleagues: my CERME 7, 8 and 9 TWG14 co-leaders 
and my co-authors of the 20-year anniversary ERME book in which UME research has been allocated a chapter 
(Winsløw et al., in press). Since 2010, when the UME TWG group was formed – for its first appearance in CERME7, in 
2011 – these colleagues, have become what I like to call my academic family of friends. 
 



 

 

the various shades of constructivism that form its theoretical backbones were then taking shape 
themselves. To signpost this a little more emphatically, allow me the gentle reminder that the 
seminal paper Constructivist, emergent and sociocultural perspectives in the context of 
developmental research (Cobb & Yackel, 1996) – a paper and a programme more broadly that 
impacted upon our debate around the co-determinants of mathematical learning in immense ways – 
appeared in Educational Psychologist in 1996, the year that my doctorate was completed. I often use 
this excuse when the slightly embarrassing thought comes to me that my study wanted to have its 
cake and eat it too! 

So, here are some recollections from the early years, and, to start with, CERME1, that I see as 
pertinent for today: UME papers can be found in several groups but mostly in TWG1 (Nature and 
content of mathematics and its relation to teaching and learning) and TWG5 (Mathematical 
thinking and learning as cognitive processes). There is a pronounced epistemological focus on 
several papers – Grenier and Payan (1999) is one example – and there is a strong tendency in the 
few papers present to give a prominent position to the mathematical context and content of, for 
example, proposed course designs. Belousova and Byelyavtseva’s (1999) paper on course design in 
Numerical Methods comes to mind; as do the Cabri designs for Linear Algebra put forward by 
Tommy Dreyfus, Joel Hillel and Anna Sierpinska (1999). There is also a tendency to consider this 
mathematical content regardless of whether this is present in school or university mathematics: there 
are, for example, propositions in this first CERME about using CAS (Computer Algebra Systems) 
for teaching functions; or, courseware for the teaching of Geometry from across school to 
university, and all the way to Differential Geometry. 

There are two contributions to CERME1 though which, for me, stand out even more than those I 
sampled in my last comments. Both pre-empt the publication of two volumes that proved influential 
in the following years, in different, yet distinct ways. One is Leone Burton’s (1999) preliminary 
analyses of interviewed mathematicians’ epistemological perspectives which culminated in her 
monograph (Burton, 2004), Mathematicians as Enquirers. The other is Jean-Luc Dorier’s paper 
(with Aline Robert, Jacqueline Robinet and Marc Rogalski, 1999) that sets the scene for the volume 
On the teaching of linear algebra (Dorier et al., 2000).  

Both papers foreshadow – and I daresay contributed towards shaping – trends in UME research that 
became prominent in the years that followed. Burton’s work signals a broadening of the UME 
church to include in its focus the university teacher (most other work at the time concerns the 
student or the mathematics alone). Dorier’s work, and that of his colleagues, signals the still then 
not so imminent end of what I see as a shortcoming of UME research that is still present today, 
albeit to a lesser extent: the perception of research into university mathematics teaching practice as 
an a-theoretical aside of well-intended practitioners who are unaware of the epistemological and 
methodological underpinnings of mathematics education as an academic discipline. This work is 
distinct for its robust theoretical grounds and for its keen eye for intervention design, trial and 
evaluation – in a nutshell, for its systematic character. In this sense, of scope and ambition, it shares 
some common ground with another, powerful at the time – and still today –programme: that of 
APOS which originated in the USA and which was at the time also pushing the boundaries of work 
in UME beyond elementary Calculus and into Abstract Algebra. 



 

 

Continuing with my observing trends that were to become influential in later years, within TWG5 
(Mathematical thinking and learning as cognitive processes), which I mentioned earlier and which I 
assisted coordinating under the leadership of Inge Schwank, there are two themes that made an 
appearance – timidly and managing to occupy a small portion of the discussions only: the role of 
motivation in cognition (I see here inklings of evidence on the burgeoning importance of research 
on affect) and the emerging importance of theories of situated cognition.á An observation that 
stands out from these discussions was made in the paper by Pier Luigi Ferrari (1999): in advanced 
mathematical thinking, wrote Pier Luigi at the time, some learner behaviours cannot be accounted 
for simply in terms of semantics. His paper presented an argument that brings the role of language – 
ordinary and mathematical – and of communicational structures to the fore. 

CERME2 and CERME3 are the two CERMEs that I missed. Nonetheless, returning to the 
proceedings after all these years, there are several papers presented in CERME2 and a couple of 
dozen papers in CERME3 that can be found across several Working Groups and contain implicit 
references to advanced mathematics, often as extensions of what is typically found in the school 
syllabus that each paper revolves around.  

In CERME2 these papers are mostly found in Working Group 5 (Mathematical thinking and 
learning as cognitive processes) and Working Group 1 (Creating experience for structural 
thinking). Mathematical thinking (including a growing focus on proof and proving) is at the heart of 
these papers which are only implicitly and only occasionally concerned with the institutional, 
curricular and pedagogical context of university level Mathematics Education. There is concern in 
these papers with internal mental structures. Naďa Stehlíková and Darina Jirotková’s paper (2001) 
is a good example: it focuses explicitly on processes of building an inner mathematical structure, 
which the authors abbreviate as IMS and which they acknowledge as hard to observe. They then 
resort to introspective, self-reporting accounts of mathematical thinking. John Mason’s (1998) 
“researching from the inside” features largely as a theoretical influence on the paper. Naďa 
Stehlíková will carry on in this strand of work also in CERME3. 

These works concern the learning of mathematics often at the cusp of the transition from school to 
(what is in many places) university mathematics. One example of this trend is Bettina Pedemonte’s 
(2001) study of cognitive unity, or break, in the context of constructing mathematical arguments and 
proofs. Another is the paper by Baruch Schwarz, Rina Hershkowitz, and Tommy Dreyfus (2001) 
which presents a perspective on abstraction as always occurring in context and which focuses on 
three epistemic actions (Recognising, Building-With and Constructing, RBC). Its theoretical close 
relatives are an eclectic mix and include elements of Activity Theory (Alexei Nikolaevich Leontiev) 
and the construct of situated abstraction per Richard Noss and Celia Hoyles (1996).  

In tandem with abstraction, there are two studies of mathematical intuition that I would like to close 
my reference to CERME2 with. One (Tsamir, 2001) regards infinite sets and another (Chartier, 
2001) regards geometrical intuition as a stepping stone to the study of Linear Algebra. Both refer 
extensively – and in some sense stand on the solid shoulders of – the essential work on 
mathematical intuition by Ephraim Fischbein. The analysis in (Chartier, 2001) is also embedded in 
curricular and pedagogical aspects of the experiences of the post-graduate students who are its focus 
and draws out of the students’ responses the kinds of geometrical intuition – helpful and less helpful 



 

 

– they bring into their practice of Linear Algebra. Those links between mathematical encounters of 
the students in earlier and later phases of their studies will be a focus for Ghislaine Gueudet (then 
Chartier) also in CERME3.  

Transitions, for example from Algebra to Analysis – as in the work also in CERME2 by Michela 
Maschietto (2001), even though technically concerning secondary school – is a theme that features 
strongly in CERME ever after. I note though that both Gueudet and Maschietto had their CERME2 
work presented in Working Group 7 (Metaphors and Images) and that  Maschietto’s paper has an 
explicit focus on the concept of limit. This is a mathematical topic which, to this day, is a flagship 
topic for much UME research. In CERME3, for example, there are five papers with this focus, with 
three of the studies carried out in a computational environment. Again, UME research can be found 
interspersed in five (on my count) Working Groups: 1. Metaphors and images (including embodied 
cognition); 3. Building structures in mathematical knowledge; 4. Argumentation and proof; 6. 
Algebraic thinking; 7. Geometrical thinking. Colleagues such as Uri Leron, Ted Eisenberg, Cécile 
Ouvrier-Buffet contribute investigations that can be seen as closely relevant to those of us doing 
research in a university mathematics education context. However, these are works pitched beyond 
the context of the investigations at their heart. Participants are often called “subjects” and it is 
sometimes several pages into the papers that the reader learns whether these participants are school 
pupils, university undergraduates or pre-service teachers. This is a particularly evident tendency in 
the more explicitly psychologically-oriented works in Working Group 3 (Building structures in 
mathematical knowledge) and a little less pronounced in those in the rapidly growing Working 
Group 4 (Argumentation and proof) which had more than a dozen papers in it. 

A clear exception to this rule is a paper that was not presented in any of the working groups I listed 
above: it was presented and discussed in Thematic Group 8 (Social interactions in mathematical 
learning situations) and, to me, it has an incredibly modern, up to date feel to it. It embodies several 
of the characteristics that were to become more salient in much later CERMEs. The paper is by 
Andreas Andersson (2003, later Ryve) and it involves observations of engineering students as they 
interact during mathematical activity. It also deploys the then just-emerging tools from the work of 
Anna Sfard and her colleagues (e.g. 2002). The tools are used to record patterns in participants’ 
communication (preoccupational analysis for social aspects of the communication and focal 
analysis for patterns in the mathematical content of the communication). Both the explicit focus on 
a group of university students (and actually non-mathematics specialists) and the discursive tools 
deployed in the data analysis render the paper – retrospectively – a solid foreshadower of things to 
come, in CERME and elsewhere. 

Part II: The AMT years, CERME 4, 5, 6 
The quality and quantity of work I sampled so far from the first three CERMEs resulted in the 
recognition by ERME of the increasing significance of research in this area. Group 14 (Advanced 
Mathematical Thinking) was launched in CERME4 in 2005 with Joanna Mamona-Downs, Maria 
Meehan and John Monaghan as its inaugural leaders and attracted twelve papers.  

There is a clear trend emerging from the bulk of these twelve papers: many of these works focus 
squarely on the students and their habits or preferences in mathematical thinking. The perspective is 



 

 

largely developmental and dualist. Several papers explore perceived differences between the 
intuitive and the abstract, the procedural and the conceptual, processes and objects. The prevailing 
theoretical constructs are Richard Skemp’s instrumental and relational understanding (1976), 
Shlomo Vinner and David Tall’s concept image – concept definition (1981), Eddie Gray and David 
Tall’s procepts (1994), APOS theory (Dubinsky, 1991) and Anna Sfard’s theory of reification and 
process – object duality (1991).  

These dualities prevail in the analysis in many of the papers – especially in studies that concern the 
mathematical topics of Calculus and Analysis, and proof and proving. Matthew Inglis and Adrian 
Simpson (2005) capture this well in their paper about dual process theory: intuition, 
formalism/abstraction. Students in these analyses – which have a strong developmental / cognitive 
flavour – appear frequently not at ease with the latter (formalism) and uncertain about the validity of 
the former (intuition). But, we are now well into the 2000s and the broader field is moving briskly 
towards what Steve Lerman (2000) had labelled a “social turn”. (A note here: I find myself agreeing 
more though with the later labelling, by Eva Jablonka and Christer Bergsten (2010), of “social 
brand”, and Lerman’s own acknowledgment in the same volume that plurality is not a problem per 
se in mathematics education.) While attending CERME4, I was also preparing a review (Nardi, 
2005) of Carolyn Kieran’s, Ellice Forman’s and Anna Sfard’s 2002 volume Learning Discourse: 
discursive approaches to research in mathematics education. There was a palpable sense in the 
CERME4 sessions that this extended and accentuated tendency to use developmental/cognitive 
frameworks, rather than exploring connections between students’ learning behaviours and the 
institutional, pedagogical and curricular context in which these behaviours manifest themselves, 
was leaving much more to desire from the presented analyses.  

The paper by Erhan Bingolbali and John Monaghan (2005) on the impact of departmental settings 
for engineering and mathematics undergraduates’ engagement with the notion of derivative, 
expressed this desire very well. The paper had a good go at exploring the dialectic between 
departmental setting, lecturers’ teaching and student ‘positioning’. Even better was the 2008 ESM 
paper by these authors, poignantly entitled Concept image revisited.  

The paper that Paola Iannone and I presented at CERME4 (2005) also expresses, in a rudimentary 
form, this desire for more substantial exploration of the dialectic relationship between lecturers’ and 
students’ ways of communicating mathematically in writing and in speaking. We used the term 
“genre speech” (Bakhtin, 1986). The paper draws on the larger data pool that three years later 
became Amongst Mathematicians (Nardi, 2008) and has – a little over-ambitiously I admit – a 
multiple purpose. To explore the “genre speeches” of university mathematics is one. The other one 
is to bring to the fore an example of a “co-learning partnership” between university mathematics 
lecturers and mathematics education researchers. I note that “co-learning partnership” is a term that 
I had become familiar with from the work of my doctoral supervisor and research collaborator 
Barbara Jaworski (2003), who is also to be credited for introducing me to CERME in the first place! 
The rapprochement between the communities of university mathematicians and mathematics 
education researchers became a staple theme in much of the work that I became involved with in the 
years that followed – and it is one of the defining characteristics of the work that the UME group 
has showcased and also nurtured. More on this follows later. 



 

 

Joanna Mamona-Downs continued to lead the AMT group in CERME5 too and the group grew 
bigger – about 50% bigger! But was it also healthier? I recall vividly the vibrancy of the sessions 
and also the fact that substantial findings were shared. Two strands made an impression on me at the 
time: the emerging strand of studies on students' generation of examples, non-examples and counter 
examples – for example by Maria Meehan (2007) – also emerging out of the then freshly published 
work in this area by Anne Watson and John Mason (2005). I also recall an emerging focus on 
studies that explore the easing of the transition from school to university – for example, in terms of 
the mathematical reasoning required. Matthew Inglis and  Adrian Simpson (2007) at the time 
brought to our attention differences between 'vernacular logic' and 'mathematical logic' and belief 
biases in reasoning.  

Closer to the focus that my work was gearing towards at the time, I also recall Winsløw and Møller 
Madsen’s (2007) adaptation of ATD, the anthropological theory of the didactic, and their 
examination of the relationship between mathematicians' research activities and their teaching 
practices. Paola Iannone and I (2007) continued to report analyses from our interview study with 
university mathematicians: this time we chose to report a slice of our data that concerned the 
interplay between syntactic and semantic knowledge in proof production (Weber & Alcock, 2004).  

With Lara Alcock, and also Matthew Inglis and Rina Zazkis, I was delighted to act as helper to 
Joanna Mamona-Downs and to observe the many elements of continuity from CERME4 – but also 
the elements of what I, to this day, see as evidence of healthy controversy. Mamona-Downs (2007), 
in her synopsis of the group’s work captures this well. Here she lists the pertinent questions we were 
asked to engage with:  

(1) Is the perceived discontinuity between secondary and tertiary mathematics due to institutional 
and pedagogical practices, or is it caused by factors concerning the character of University 
Mathematics that demand new habits of behavior in reasoning? (2) What ways are there to ease the 
transition? (3) If AMT is taken as thinking skills needed for Advanced Mathematics, how are they 
beyond those required at school? (4) What commonalties or differences in mental processes are 
there in the two levels? (p.2228) 

She then notes that our group discussion was:  

“rather diffused and mostly sidestepped the questions despite their fundamental significance. It was 
dominated by the view of some that the research field of AMT has largely changed its main focus 
from cognitive-based studies starting in the early nineteen eighties, to the tendencies found 
nowadays based more on societal and affect factors that make the long established work 'obsolete'. 
Others countered strongly this position on the basis of the existence of different scientific 
'paradigms', in the sense of Kuhn, and on much of the actual output of recent educational research. 
Opinions were often put in a partisan spirit. […] A discussion was raised concerning the possibility 
that some tasks accessible to school students might pose the same kinds of problems in their 
resolution for undergraduates, and so it could be claimed that these tasks might be considered within 
the scope of AMT.” (p.2228) 

No consensus was found possible in the group at CERME5 as this quotation from Mamona-Downs 
suggests: 



 

 

“Several participants declared that the two interpretations are complementary and that there was no 
compelling reason not to retain the traditional name 'Advanced Mathematical Thinking' as an 
umbrella term [while there were] a few participants who felt that the themes stated in the program 
were mostly steered towards cognitive factors.” (p.2228-9) 

And, I recall, for example, the paper from Corine Castela (2007) offering evidence and taking a 
clear stance that this persistent focus on cognitive approaches may not be the most inclusive – or 
fertile – way forward for the group.  

This tendency to question whether UME research was appropriately congregating under the AMT 
umbrella continued in CERME6. The AMT group maintained its size and also, as the group leaders 
(Roza Leikin, Claire Cazes, Joanna Mamona-Dawns, Paul Vanderlind) observe in their notes on the 
proceedings (2009), attracted papers firmly focused on the latter of the two ways of interpreting 
AMT (advanced thinking in mathematics, A-MT or thinking about advanced mathematics, AM-T). 
As I was reporting a study about prospective and practising teachers’ perspectives on proof, I 
attended the proof group on that occasion. So I missed the wealth of findings in the CERME6 AMT 
papers on conceptual attainment, approaches to proof and proving, problem solving, instructional 
approaches and processes of abstraction. It is fair to say though that UME research was gaining even 
more critical mass with about twenty five papers across six groups!  

One of these is Barbara Jaworski’s (2009) paper which proposes the exploration of university 
mathematics teaching practice through a sociocultural perspective that embroiders elements of 
Activity Theory and the Communities of Practice Theory. There will be a stream of papers thereafter 
in CERME with a focus on the practices and perspectives of the university mathematics teacher.  

My own work in this period, a part of it also with Barbara Jaworski, illustrates this focus rather 
emphatically. In a nutshell, I would describe my research programme dating from 1990s to the mid-
2000s as as shifting from studies of university mathematics students’ learning of particular 
mathematical topics (as outlined earlier: Nardi, 1996; 2000) to a progressively growing focus on 
university mathematics teachers’ perspectives/practices in mathematics and mathematics 
teaching (Nardi, Jaworski & Hegedus 2005; Nardi, 2008). These two sets of work illustrate the shift 
of my focus progressively towards university mathematics teachers’ pedagogical and 
epistemological perspectives. UMTP (University Mathermatics Teaching Project) resulted in the 4-
level Spectrum of Pedagogical Awareness (Nardi et al., 2005). Amongst Mathematicians: Teaching 
and learning mathematics at University Level (Nardi, 2008) was published in 2008, following a 
gestation period of several years that had started also in CERME with the presentations, with Paola 
Iannone, that I mentioned earlier.  

Amongst Mathematicians (Nardi, 2008) tells the story of a co-learning partnership that illustrated 
research between mathematics educators and mathematicians with these five key characteristics: 
collaborative, mathematically focussed, context-specific, non-prescriptive and non-deficit as 
possible. In addition to reporting university mathematicians’ pedagogical and epistemological 
perspectives, the book served a broader purpose too. It is written in the rather unconventional format 
of a dialogue between two fictional, yet data grounded characters – M, mathematician, and RME, 
researcher in mathematics education – and is intended as reflection on the perceived benefits, 



 

 

obstacles and desires of the relationship between the two. Such conversations were of course not 
new. For example, Anna Sfard (1998) reported her discussion with Shimshon A. Amitsur, in the 
form of a dialogue and a range of authors from a variety of national and institutional contexts, 
including Michèle Artigue and Gerry Goldin, were writing at the time about this relationship. A 
common observation in these accounts was about its fragility. Research which consolidates and 
propels the rapprochement between the communities of mathematicians and mathematics educators 
remains a focus of my work today (e.g. Nardi, 2016) and it is fair to say that CERME, in the mid-
2000s provided one of the first fora for kickstarting this work.  

Let me conclude my reflections on what I labelled as “the AMT” years with a brief reference to a set 
of works that somehow foreshadow developments within the UME community in CERME: in the 
Modelling TWG, Berta Barquero, Marianna Bosch and Josep Gascón (2009) offered an ATD 
account of the institutional constraints hampering the teaching of mathematical modelling at 
university level. They coin the term “applicationism”, an epistemological perspective which 
proposes a strict separation between mathematics and other disciplines (especially the natural 
sciences) and sees mathematical tools as built to be applied to solve problems in other disciplines – 
with this application not causing any change in the discipline of mathematics or for the discipline in 
which the application is made. As UME research is rapidly growing in the area of teaching 
mathematics to non-mathematicians, works such as this, in CERME6 and earlier, now acquire 
added significance. 

Part III: The UME years, CERME 7, 8, 9 
The proposal to the ERME board for the launch of TWG14: University Mathematics Education was 
born out of two main sources. First was my reading and writing at the time: While writing Amongst 
Mathematicians, my search across the literature was broad. In fact, as Michèle Artigue (2016) has 
noted in her INDRUM2016 plenary, there is a synthesis feel to the book. A more explicit, deliberate 
synthesis of hitherto developments in research into the teaching and learning of university 
mathematics that was the chapter that Artigue (Artigue, Batanero & Kent, 2007) co-authored with 
Carmen Batanero and Philip Kent for the second NCTM Handbook. Secondly, at PME, in  Morelia 
(Nardi & Iannone, 2008) and in Thessaloniki (Nardi et al,, 2009) , two Working Sessions / 
Discussion Groups that I had co-ordinated with colleagues many of whom ended up co-leading the 
UME TWG in CERME, had attracted many colleagues and had generated vital, urgent discussions. 

I recall that this sensation of vibrancy and urgency was not universally shared outside the bubble of 
researchers in this area. I recall that when we proposed the launch of the group, we were gently 
reminded by members of the board that we would need to attract at least eight papers to make the 
new group viable! I recall that we – the inaugural co-leaders of TWG14 – were nudging each other 
that, if each one of us submitted a paper, we would only need to find three more to be able to launch 
the group! We were of course wrong.  

I need to make two brief notes at this juncture: first, that the account of the group’s work since 2011 
borrows heavily from the collectively authored texts in the CERME7, 8 and 9 proceedings (Nardi et 
al., 2011; 2013; 2015); second, that, given the volume of work presented at these conferences, I will 



 

 

from now on stay largely away from extensive exemplification from specific papers. I will instead 
focus on the themes that mark the “emancipation” and “enrichment” themes promised in the title. 

Our rationale for a UME TWG ((Nardi et al., 2011) was in a nutshell as follows. 

Research on university level mathematics education is a relatively young field, which embraces an 
increasingly wider range of theoretical approaches (e.g. cognitive/developmental, socio-cultural, 
anthropological and discursive) and methods/methodologies (e.g. quantitative, qualitative and 
narrative). Variation also characterises research in this area with regard to at least two further issues:  

 the role of the participants, students and university teachers, in the research – from ‘just’ 
subjects of the research to fully-fledged co-researchers; and,  

 the degree of intervention involved in the research – from external, non-interventionist 
research, to developmental/action research in which researchers identify problems and 
devise, implement and evaluate reforms of practice (Artigue et al, 2007).  

2011 marked the 20th anniversary of the publication of Advanced Mathematical Thinking edited by 
David Tall (1991). This is a volume that is often heralded as a first signal of the emergence of this 
new area of research. A few years later, a second signal was given by the 1998 ICMI study that 
resulted in The teaching and learning of mathematics at university level, edited by Derek Holton 
(2001). In the meantime, Advanced Mathematical Thinking (AMT) groups ran both in previous 
CERME and PME conferences; sessions exclusively on university mathematics education have 
been part of the EMF ('Espace Mathématique Francophone) conferences since 2006; the RUME, 
UMT and Delta conferences emerged in the USA, the UK and South Africa respectively; the 
International Conferences on the Teaching of Mathematics at University Level were launched in 
1998; etc. The UME TWG emerged out of the above developments and out of the realisation that 
this is a distinct area of mathematics education research.  

The distinctiveness of UME research can be attributed to several characteristics.  

Firstly, the classic distinction between ‘teacher’ and ‘researcher’ does not always apply in UME as 
researchers in mathematics education in this area are often university-level teachers of mathematics 
themselves. In particular, there is a growing group of mathematicians specializing in research on 
mathematics education at university level, where expertise and experience in advanced mathematics 
is really an asset (if not a necessity). Secondly, mathematics education theories and research 
methods find new uses, and adaptations, at the university level. These adaptations are often quite 
radical as the post-compulsory educational context is different in many ways – including the 
voluntary presence of students, the important role of mathematics as a service subject, the 
predominance of lecturing to large numbers of students, the absence of national programmes for 
university education, the required shift to the distinctly different practices of university 
mathematics, to mention but a few. In this sense, UME is a distinct area of mathematics education 
research, not merely a mirror of mathematics education research at a more advanced educational 
level. Finally, in recent years, research in this area has been growing in different parts of the world. 
TWG14 is one forum where evidence of this growing research activity from Europe and beyond has 
been accumulating. 



 

 

Across CERME7, 8 and 9, the WG14 Calls for Papers invited contributions from as wide a range of 
research topics as possible. Here is, for example, the list from CERME9: the teaching and learning 
of advanced topics; mathematical reasoning and proof; transition issues “at the entrance” to 
university mathematics, or beyond; challenges for, and novel approaches to, teaching (including the 
teaching of students in non-mathematics degrees); the role of ICT tools (e.g. CAS) and other 
resources (e.g. textbooks, books and other materials); assessment; the preparation and training of 
university mathematics teachers; collaborative research between university mathematics teachers 
and researchers in mathematics education; and, theoretical approaches to UME research. 

We opted for widening participation as much as possible, both in terms of the substantive, 
methodological and theoretical takes of the proposed papers but also in terms of the disciplinary 
background and experience of the proposers. The 21, 29 and 45 (31 long 14 short) papers accepted 
for publication in the respective proceedings met those terms. 

Across the WG14 discussions, certain themes and questions emerged as crucial. These included: 
exploring whether UME needs to generate new theories or adapt already existing ones; attending to 
issues of both theory and practice; acknowledging that research on teaching and learning in higher 
education develops also outside mathematics education, and benefiting from these developments; 
working towards the generation of new theories while valuing already accumulated knowledge in 
the field; etc. One oft-repeated observation was that, beyond staple references to classic constructs 
from the AMT years, several works presented in TWG14 employ (often in tandem with the above) 
approaches such as the Anthropological Theory of the Didactic (Chevallard, 1999) and discursive 
approaches, such as Anna Sfard’s (2008) theory of commognition. 

In CERME7 (Nardi, et al., 2011), we noted that an area of growth has certainly been studies that 
examine the different role of mathematics in courses towards a mathematics degree, courses for pre-
service teachers, as a ‘service’ subject (physics, biology, economics etc.). While a substantial 
number of papers remains in the increasingly well-trodden area of students’ perceptions of specific 
mathematical concepts (again calculus prevails in these), a focus on university teachers and teaching 
is also emerging, if often a little timidly, and diplomatically, resulting in descriptive, openly non-
judgemental studies. In conjunction with those studies, a genre of collaborative studies, with 
mathematicians engaged as co-researchers, also seems to be on the rise. We signal the emerging 
trends in the CERME7 papers as: Transitions; Affect; Teacher practices; Mathematical topics. 

In CERME8 (Nardi et al., 2013), we noted the appearance of new mathematical topics: infinite 
series and abstract algebra. We also noted that some of these papers are written by research 
mathematicians, using a mathematical, epistemological, or historical analysis, and drawing on their 
teaching experience. Others present research that makes use of different theoretical frameworks, and 
methodological tools, to analyse students’ difficulties with these specific topics, to better understand 
the teaching of a specific topic and the consequences of this teaching, or to formulate propositions 
for the design of teaching to overcome these difficulties. The range of approaches vary from 
developmental ones (such as concept image – concept definition), to models for abstraction (such as 



 

 

the RBC model), to analysis of discourse (theory of commognition) and the consideration of 
institutional matters (anthropological theory of the didactic)3.  

After CERME8, the team – in collaboration with TWG14 participants and others – worked towards 
a Research in Mathematics Education Special Issue on Institutional, sociocultural and discursive 
approaches to research in university mathematics education which focused on research that is 
conducted in the spirit of the following theoretical frameworks: Anthropological Theory of the 
Didactic, Theory of Didactic Situations, Instrumental and Documentational Approaches, 
Communities of Practice and Inquiry and Theory of Commognition. As we noted in the Editorial of 
the RME Special Issue (Nardi et al., 2014), there is a clear surge of sociocultural and discursive 
approaches – and the number of papers using ATD and TDS is also remarkable. An emerging focus 
seems to be also on systematic investigations of innovative course design and implementation and 
there is certainly a rise in the number of studies that examine the teaching and learning of 
mathematics in the context of disciplines other than mathematics, such as engineering and 
economics. Furthermore, this time we welcomed more colleagues from outside Europe and also 
noted the rise in the number of papers on assessment and examination4.  

In CERME9 (Nardi et al., 2015), there was a notable shift in terms of numbers of papers (two to 
one) in favour of the second of our two umbrella themes: Teaching and learning of specific topics in 
university mathematics; Teachers’ and students’ practices at university level. The breadth of topics 
covered especially in the latter is also telling: curriculum and assessment; innovative course design 
in UME; student approaches to study; relating research mathematicians’ practices to student 
practices; views and practices of mathematics lecturers; and, methodological and theoretical 
contributions to UME research. 

In CERME9 we also observed the further strengthening, maturity and increasingly more robust 
theorizing of studies into teaching practices. And, we also noticed in several papers the establishing 
of promising liaisons across different theoretical perspectives such as a discursive take on 
mathematical knowledge for teaching or an anthropological take on documentational approaches.     

The critical – and growing – mass and quality of the work presented at CERME9 TWG14 led to the 
launch of an ERME Topic Conference, INDRUM2016, a conference of the newly established 
International Network for Didactic Research in University Mathematics (Montpellier, March 31 – 
April 2, 2016)5. The conference attracted more than 80 submissions and more than 100 participants. 
INDRUM2018 is currently in preparation. 

                                                 
3 By the way, we closed our CERME8 text for the proceedings with a Concluding note on rigour and quality of UME 
research. While there is no space here to elaborate, I invite the reader to what I see as pertinent observations from the 
TWG14 team about these issues in CERME at large. 
4 In CERME10 there is a new TWG on assessment that spans across educational levels led by former TWG14 co-leader 
Paola Iannone.   
5 I chaired this conference with the tireless Carl Winsløw. Its launch and its 2016 success (Montpellier, France) relied 
heavily on the sterling work of ERME president Viviane Durand-Guerrier and the commitment of Thomas Hausberger. 



 

 

Part IV: CERME10, the split… 
There were 47 UME papers and 16 UME posters accepted for presentation and discussion in 
CERME10. Their presentation and discussion was in two isomorphic groups: TWG14A and 
TWG14B. From CERME11, it is expected that papers may be invited for two, also thematically 
distinct, groups – and the debate on possible configurations for this dominated some of the 
discussions at the conference. One way forward that I personally favour is for a grouping by the 
following distinction: studies that concern the transition to university studies of mathematics and  
the transition from university studies into the (various forms of) workplace; and, studies that 
concern the teaching and learning of mathematics while at university. The challenge of debating the 
numerous configurations of how the (new) group(s) can be (re)defined is certainly non-negligible.  
Isn’t this a most wonderful place to find ourselves though, having to manage the now critical mass 
and quality of UME research present in CERME? 

Part V: Taking stock / What next / Coming soon… 
As I am drawing to a close, I would like to ask the question: what did we want to achieve with the 
establishment of TWG14? Have we achieved these objectives? Are we going to? For example: did 
we manage to encourage fledgling topics in UME research? Have we planted the seed for new ones? 

In the sprawling vista of works that I aimed to sample in this lecture – and I am fully aware of the 
wafer thin way in which I have done so – I have aimed to identify trends in UME research (overall, 
in CERME, in my own work) that signify the benefits (the richness!) of opening up, of widening 
our substantive, theoretical and methodological horizons (the what, the how and the why of our 
research). Most of my examples have aimed to illustrate the benefits that emancipation from an 
individualistic, narrowly psychological, cognitive perspective has brought to UME research. 

There are still though foci that have not yet merited our sufficient attention. One such research focus 
that seems to me to be not within the radar of current works is UME research is on more advanced 
topics in mathematics – and by that, I mean mathematics that is typically taught beyond the first two 
years of university studies. 

On a less deficit tone, I am generally satisfied that we have come a long way but I also acknowledge 
that there is an even longer way to go. It is fair to say that, within the various UME communities 
around the world, we have gone (or are still going) through what I would like to label as a 
dismissive phase: that all so-called traditional pedagogies are “bad”, lecturing in particular. I am 
observing – but I am also asking that we do so even better – that we become more nuanced and 
embracing of possibility. We are starting, for example, to recognise that lecturing can serve some 
purposes rather well; that it can be complemented by formats more tailored to the serving of 
students’ individual needs; that there are interactive lecture formats that give participants the buzz 
of community belonging and building and prepare students for the less cocooned, less protected 
world of work where interaction, team work and communication are key. We are finding out that 
not all interaction and all the time is good per se and that there are particular types of communal 
engagement with mathematics that work better than others. TWG14 papers have been offering the 
evidence base for these claims, steadily and cumulatively. In a way, I find the choice made by the 



 

 

mathematics department in my institution (see earlier snip in Figure 2) to include in its promotional 
materials images of lectures and also to close its promotional video 
(https://www.youtube.com/watch?v=gRzVX8c1be4) with a close-up of white chalk on a blackboard 
(Figure 4) somewhat refreshing.  We are perhaps starting after all to embrace diversity in the ways 
that the students need to experience mathematics! 

I believe the answers to the questions with which I started this section are reservedly optimistic and 
affirmative. In Part II, I showed an outline of my own research programme over the years and I am 
pleased to be able to say that most of the items there – and what followed these – have emerged out 
of collaborations with colleagues in CERME, including research plans for the immediate future. 

CERME has indeed been a platform where I am trialling new topics for research. My CERME8 
paper (Nardi, 2013) offers analyses of the challenges of teaching a graduate course on mathematics 
education to students with a variety of backgrounds, including bachelor degrees in pure 
mathematics, and native languages other than the language of instruction. The paper also outlines 
key didactic techniques and principles to cope with these challenges. It finally morphed into the 
more substantial analyses present in a paper included in the inaugural issue of IJRUME (Nardi, 
2015) which examined ways to facilitating paradigm shifts in the supervision of mathematics 
graduates upon entry into mathematics education. 

CERME has also been a platform where I have trialled new approaches to analysing data. In fact, I 
credit CERME for allowing me the creative space to have a go – and converse  about – discursive, 
particularly commognitive, approaches to the analyses of my data. My CERME7 paper (Nardi, 
2011) outlined interviewed mathematicians’ perspectives on their newly arriving students’ 
verbalisation skills; and, observed that discourse on verbalisation in mathematics tends to be risk-
averse and not as explicit in teaching as necessary. At CERME9, Bill Barton and I (Nardi & Barton, 
2015) presented a commognitive analysis of a “low lecture” episode (student-led inquiry oriented 
discussion on open-ended problems) to illustrate crucial steps of student enculturation into 
mathematical ways of acting and communicating, including a shift away from the lecturer’s 
‘ultimate substantiator’ role. Finally, both the papers I am involved in as co-author in CERME10 
(Virman & Nardi, 2017; Thoma & Nardi, 2017) present commognitive analyses in contexts that said 
analyses are now just about starting to appear (teaching mathematics to non-mathematicians; 
analyses of closed-book examination tasks and student/lecturers’ assessment discourses). 

Returning to the anecdote that I started with, a somewhat self-deprecating recollection of the 
theoretical ambivalence of my doctoral work, I see my own research programme as an illustration of 
the richness emanating from the emancipation, from what I now see as a narrow, individualistic 
perspective in my earlier work. To me there is nothing vacantly rhetorical about the three Cs in the 
CERME spirit: COMMUNICATION, COOPERATION, COLLABORATION. The growth of my 
research programme through each one of these is to me unshakeable evidence of the pragmatic 
strength of these three words. In TWG14 these words have taken shape as specific actions. Here are 
two: (1) Certainly, we have assisted with the arrival of several new researchers in this field, some of 
whom are currently co-leaders; many have used the reviewing process as a stepping stone for their 
writing (from poster to conference paper then to completing theses and journal papers). (2) We have 
engaged practitioners of university mathematics teaching who now see themselves also as UME 



researchers. To do so, we deploy the reviewing process and the discussions at the conference to 
convey the rigour that is required for UME research (in terms of engaging with theory, prior 
research and methodology) and to bridge the epistemological differences between the academic 
disciplines of mathematics and education.  

I invite the reader to the collections of papers published in the TWG14 sections of the Proceedings, 
the 2014 Research in Mathematics Education Special Issue that followed CERME8, the 
proceedings of the 2016 INDRUM conference and the imminent (publication expected in 2018) 
International Journal for Research in Undergraduate Mathematics Education Special Issue that is 
following INDRUM2016 as testimonials of the growth and diversity I have tried to map here. And 
there is more to come: INDRUM2018 will be hosted by MatRIC at the University of Agder 
(Kristiansand, Norway) in April 2018 and its Scientific Committee aims to follow it up with a state-
of-the-art volume soon after. And, of course, there is the UME chapter (Winsløw et al., in press) in 
the ERME 20th Anniversary Book that we aim to celebrate in CERME11, in 2019. The promise of 
UME research on the global scene is further corroborated by the healthy growth of the RUME and 
DELTA conferences, and the respective group within EMF. In closing, I return to the words of 
Michèle Artigue whose thoughtful INDRUM2016 plenary (Artigue, 2016) triggered the focus of the 
synthesis and analysis presented here: 

 “The emergence of the [UME] field was […] characterized by the domination of cognitive 
and constructivist perspectives. I consider as a strength of our field the fact that we have 
succeeded in emancipating ourselves from these perspectives, whose limitations are evident, 
but also the fact evidenced by the consideration of most research publications, that this 
emancipation went along a reconstruction of their main outcomes, thus making possible 
some form of incorporation of these outcomes in the new paradigms.” 

Michèle Artigue, from Mathematics education research at university level: Achievements and 
challenges, INDRUM2016 plenary lecture (p.19) 
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Young children’s early mathematical competencies: Analysis and 
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In this paper we take a critical look at the state-of-the-art in the research domain of early 

mathematical development and education. We start with a brief review of the influential and 

successful (neuro)cognitive research in this domain - which is heavily focused on the development 

and teaching of children’s (non-symbolic and symbolic) magnitude representation and strongly 

dominated by the theory of an approximate number system (ANS). We confront and complement this 

(neuro)cognitive approach with various other lines of research that may help to provide a more 

comprehensive picture of the development and stimulation of children’s early mathematical 

competence and how it relates to their later mathematical proficiency at school.  

Keywords: Early mathematics, approximate number system, number concepts, mathematical 

patterns and structures, preschool education. 

Introduction 

The past 10-15 years have witnessed the emergence of a remarkably productive and highly 

influential line of research on children’s early numerical magnitude representation, its development, 

its relation to school mathematics, and its assessment and stimulation (Torbeyns, Gilmore & 

Verschaffel,, 2015). 

The starting point of this line of research - which has its origins in cognitive (neuro)psychology -, is 

the idea that young children, like many other species, are equipped with some foundational innate 

core systems to process quantities. This “starter’s kit” is thought to involve (a) an “object tracking 

system” that has a limit of three or four objects and is thought to underlie “subitizing” (= to 

immediate and accurate estimate of one to four objects without serial enumeration), and (b) an 

“analogue number system” – for the internal representation of numerical magnitudes as Gaussian 

distributions of activation on a “mental number line” with increasingly imprecise representations for 

increasing magnitudes (Dehaene, 2011) - allowing them to compare non-symbolic quantities that 

are too numerous to enumerate exactly or to perform some very basic approximate arithmetic on 

these quantities (Andrews & Sayers, 2015; Butterworth, 2015).  

With these foundational core number sense systems, these magnitudes are represented non-verbally 

and non-symbolically, but, over development and through early (mathematics) education, verbal and 

symbolic representations are gradually mapped onto these foundational representations, to evolve 

into a more elaborated system for number sense (Torbeyns et al., 2015). 

People’s numerical magnitude representations are commonly assessed via magnitude comparison 

and/or number line estimation tasks, of which there exist both non-symbolic and symbolic versions 

(Butterworth, 2015; Andrews & Sayers, 2015; Torbeyns et al., 2015). Examples are shown in Figure 

1. 



 

 

    

Figure 1: Example of a non-symbolic magnitude comparison and a symbolic number line estimation 

task 

During the past decade, several research teams have set up correlational, cross-sectional and 

longitudinal studies to determine the contribution of children’s numerical magnitude understanding 

- sometimes in combination with other specific early numerical competencies (such as subitizing, 

counting or numeral recognition) - to their concurrent and/or later overall mathematical 

achievement or to specific parts of it such as mental arithmetic or algebra (see, e.g., Bailey, Geary, 

& Siegler, 2014; De Smedt, Verschaffel, & Ghesquière, 2009; Jordan, Glutting, & Ramineni, 2010; 

Nguyen, Watts, Duncan, Clements, et al., 2016; Reeve, Reynolds, Humberstone, & Butterworth, 

2012). These studies have demonstrated that children’s numerical magnitude understanding is 

positively related to their concurrent and future mathematics achievement in general or in particular 

subdomains of mathematics.  

Two recent meta-analyses have yielded a good overview of the outcomes of this research on the 

association between various measures of children’s numerical magnitude understanding and their 

concurrent and future mathematics achievement. Schneider, Beeres, Coban, Merz, et al. (2017) 

performed a meta-analysis on the research about the association between performance on the 

magnitude comparison task and measures of mathematical competence. Their literature search 

yielded 45 articles reporting 284 effect sizes found with 17,201 participants. The results support the 

view that magnitude processing is reliably associated with mathematical competence as measured at 

least up to the end of the elementary-school years and by a wide range of mathematical tasks, 

measures and subdomains. Furthermore, the effect size was significantly higher for the symbolic 

than for the non-symbolic magnitude comparison task and decreased very slightly with age. So - the 

authors conclude - symbolic magnitude processing might be a more eligible candidate than non-

symbolic magnitude processing to be targeted by diagnostic screening instruments and interventions 

for school-aged children and for adults. The association was also higher for mathematical 

competences that rely more heavily on the processing of magnitudes (i.e., early mathematical 

abilities and mental arithmetic ) than for others (i.e., more general curriculum-based tests). 

Schneider, Merz, Stricke, De Smedt, et al. (submitted) performed a similar meta-analysis for the 

association between people’s score on the other main task to assess numerical magnitude processing 

skills, namely the number line estimation task, and mathematical competence. Using exactly the 



 

 

same analytic procedure, and working with a set of 37 studies, they found that the correlations with 

mathematic competence - both in general and for particular parts of the curriculum - were 

significantly higher for number line estimation than for symbolic magnitude comparison or for non-

symbolic magnitude comparison. Whereas the correlations did not substantially increase with age 

for comparison, an increase with age was found for number line estimation, which suggests that 

different underlying cognitive systems and processes are involved in magnitude comparison vs. 

number line estimation. 

Furthermore, researchers working within this research tradition have tried to stimulate children’s 

mathematical skills with (game-based) intervention programs that were (primarily or exclusively) 

aimed at enhancing their numerical magnitude understanding before or at the beginning of formal 

instruction in number and arithmetic in elementary school. While some intervention studies have 

resulted in positive effects (e.g., Kucian, Grond, Rotzer, Henzi, et al., 2011; Ramani & Siegler, 

2011; Wilson, Dehaene, Dubois, & Fayol, 2009), the overall results are mixed (Torbeyns et al., 

2015). 

Being well aware of the prominence of this line of research in the international research of early 

mathematics education, the IPC of the 23rd ICMI study on “Whole number arithmetic” invited one 

of the leading scholars in that line of research, namely Brian Butterworth, as a plenary speaker of 

the conference, which took place in June 2015 in Macau, China. In his plenary lecture Butterworth 

(2015) presented a very informative overview of this cognitive (neuro)scientific line research, and 

strongly defended this research in the working groups and panels wherein he participated. However, 

at that conference, it also became clear that the dominant picture of early mathematical competences 

and education in current mainstream (neuro)cognitive research is dangerously narrow. In the present 

paper, we will try to broaden that picture in multiple ways. In doing so, we will partly rely on recent 

and current work done in our own research group, but also on the work of many colleagues who 

have been active in the field of early mathematics education during the past decade(s). 

The ordinal and measurement aspect of number 

A first important feature of the line of research summarized above is its focus on the cardinal aspect 

of number, or, to state it differently, its neglect of other constituent aspects of number, particularly 

its (1) ordinal and (2) measurement aspect. Hereafter we discuss these two neglected aspects. 

The distinction between the ordinal and cardinal aspect of number knowledge is well known. 

Whereas cardinality refers to the capacity to link number symbols to collections, e.g., to know that 

four or 4 is the correct representation to denote a group of four objects, ordinality refers to the 

capacity to place number words and numerals in sequence; for example, to know that 4 comes 

before 5 and after 3 in the sequence of natural numbers. Given the wide recognition of the 

importance of ordinality for the constitution of number since Piaget (1952) developed his theory of 

children’s concept of number, it is remarkable that, until recently, the ordinality aspect of number 

seems largely neglected in the above mainstream cognitive neuroscientific conceptualization, 

assessment and instruction of early numerical abilities. 

Interestingly, recent neuroscientific evidence shows that accessing ordinal information from 

numerical symbols (e.g., decide whether three numbers are in order of size) relies on a different 



 

 

network of brain regions and shows qualitatively different behavioral patterns when compared to the 

cardinal processing of magnitudes or numerical symbols or to the ordinal processing of perceptual 

magnitudes (Lyons & Beilock, 2011, 2013). And, how well a child is able to reason about ordinal 

relations between number symbols has been found to be one of the strongest predictors of 

mathematical skill such as mental arithmetic (Lyons, Price, Vaessen, Blomert, & Ansari, 2014) – 

much stronger, by the end of the first grade of elementary school, than non-symbolic or symbolic 

cardinal processing as measured by the numerical magnitude comparison task. So, the idea that 

emerges from this recent neuroscientific research is that children’s sense of ordinality of number 

symbols may be distinct from their sense of cardinality and, in terms of developing skills needed for 

success in mathematics, that ordinality may even be the more significant one (Sinclair & Coles, 

2015, see also Vogel, Remark, & Ansari, 2015).  

This line of research pointing to the importance of ordinality also led math educators to criticize the 

mainstream neuroscientific view on how children’s early number sense may be stimulated. The 

latter view suggests that working on linking symbols to sets of objects may reinforce the very way 

of thinking that young children need to overcome to become successful in school mathematics. But 

this is the current practice in many countries, where the emphasis in early mathematics education is 

firmly on linking number symbols to collections of objects - whether this is done through subitizing 

or counting. Based on the above theoretical and empirical arguments, Sinclair and Coles (2015, p. 

253) asserted that this emphasis on cardinal awareness in learning number is misplaced and argued 

that what young children above all need is “support to work with symbols in their relationship to 

other symbols”. This plea for paying more attention to the importance of ordinality has led these 

authors to the design of an innovative iPad app, TouchCounts (Sinclair & Jackiw, 2011) wherein the 

way numerosities are built, labeled and manipulated does not primarily require sense of cardinality 

but rather ordinality. 

The cardinal emphasis on number knowledge has also been attacked from another, more radical, 

perspective. In his plenary address at the ICMI23 conference, Bass (2015) described an approach to 

developing concepts of number using the notion of quantity measurement. This approach is not 

new, of course, and is quite well-known among mathematics educators (see e.g., Brousseau, 

Brousseau, & Warfield, 2004), even though it has, to the best of our knowledge, hardly led to actual 

and wide-scale implementation in national curricula.  

It has been articulated most prominently by Davydov (1990), a Soviet psychologist and educator, 

who developed, together with his colleagues, in the 1960s and 1970s, a curriculum for number and 

arithmetic based on this measurement approach. This curriculum delayed the introduction of 

number instruction until late in the first grade. Early lessons rather concentrated on “pre-numerical” 

material: properties of objects such as color, shape, and size, and then quantities such as length, 

volume, area, mass, and amount of discrete objects, but without yet using number to enumerate 

“how many”. So, in this approach number is not intrinsically attached to a quantity; rather it arises 

from measuring one quantity by another, taken to be the “unit:” How “much” (or many) of the unit 

is needed to constitute the given quantity?  

The discrete (counting) context in which whole numbers are typically developed in most approaches 

to early and elementary mathematics education is characterized by the use of the single-object set as 



 

 

the unit, so that the very concept of the unit, and its possible variability, is rarely subject to 

conscious consideration. According to Bass (2015, p. 11), “this choice is so natural, and often taken 

for granted, that the concept of a chosen unit of measurement need not enter explicit discussion. If 

number is first developed exclusively in this discrete context, then fractions, introduced later, might 

appear to be, conceptually, a new and more complex species of number quite separate from whole 

numbers. This might make it difficult to see how the two kinds of numbers eventually coherently 

inhabit the same real number line. Indeed, this integration entails seeing the placement of whole 

numbers on the number line from the point of view (not of discrete counting, but) of continuous 

linear measure.” (see also Behr, Harel, Post, & Lesh, 1992, for a similar argument coming from the 

research literature on rational numbers).  

According to Bass (2015), this measurement approach has a lot of advantages over the counting 

based approach, especially if one takes a broader long-time mathematics educational perspective. 

First, it is a way of providing coherent connections in the development of rational numbers. A 

second advantage is that it makes the geometric number line continuum present from the start of the 

school curriculum as a useful mathematical object and concept. Third, the approach provides 

opportunities for some early algebraic thinking. 

The above analysis suggests that it is important to balance cardinal, ordinal and measurement 

aspects of number in early mathematics education. This requires some serious reflection on the 

ingrained ways in which cardinality is now privileged in early mathematics education as well as 

further creative explorations of how the two other elements of ordinality and measurement can be 

mobilized to promote the development of a broad and balanced number concept. 

Arithmetic reasoning skills 

It is apparent that the mainstream analysis of early mathematics-related competences has capitalized 

on measures that emphasize children’s numerical competences, i.e., their subitizing skills, counting 

skills, the ability to compare numerical magnitudes, and the ability to position numerical 

magnitudes on an empty number line. While such measures provided empirical evidence for the 

multi-componential nature and importance of young children’s early numerical competences for 

future mathematical development, they reflect also in another way a restricted view on children’s 

early mathematical competences.  

Starting from Piaget’s (1952) logical operations framework, there is a recent renewed research 

attention to children’s early arithmetic reasoning skills, such as their understanding of the additive 

composition of number or their additive and multiplicative reasoning skills, as well as to their 

importance for later mathematical learning at school (e.g., Clements & Sarama, 2011; Nunes, 

Bryant, Barros, & Sylva, 2012; Robinson, 2016).  

As documented in her extensive review of this research, Robinson (2016) points out that the 

research on children’s conceptual understanding of these arithmetic concepts is heavily focused on 

additive concepts, that is, concepts involving the operations of addition and/or subtraction. Various 

principles including the additive composition of number but also the arithmetical properties such as 

the commutativity, the associativity, the addition-subtraction inverse, and the addition-subtraction 

complement principle have been intensively studied, sometimes also in relation to children’s actual 



 

 

use of these principles in their mental arithmetic (Baroody, Torbeyns, & Verschaffel, 2009; 

Verschaffel, Bryant, & Torbeyns, 2012). Quite a number of these studies already involve young 

children at or even before the age of 6-7 years old. 

Similar multiplication and division principles have also been investigated, however, to a much 

lesser extent and with a more restricted developmental range, from late middle childhood to 

adulthood (Larsson, 2016; Robinson, 2016), which is not surprising given that, for most children, 

these operations are typically not yet formally introduced in the first grades of elementary school.  

Only a few of these studies have explicitly addressed the question of how young children’s 

emergent understanding of these additive and multiplicative principles is predictively related to their 

(later) achievement in school mathematics, in similar ways as has been done for the numerical 

aspects of early mathematical competence reviewed in the previous section. The limited available 

evidence from these few studies suggests that early mathematical reasoning of this sort makes a 

separate and specific contribution to achievement in school mathematics, even up to several years 

later (Nunes, Bryant, Evans, Bell, et al., 2007; Nunes et al., 2012).  

As an illustration, we refer to the study of Nunes et al. (2012), which used data collected in the 

context of the Avon Longitudinal Study of Parents and Children (ALSPAC) involving about 4000 

pupils, to assess whether arithmetic reasoning makes an independent contribution, besides 

calculation skills, to the longitudinal prediction of mathematical achievement over five years. 

Arithmetic reasoning was assessed at the start of children’s elementary education (i.e., at 7 years) 

using a test that included three types of items: additive reasoning about quantities, additive 

reasoning about relations, and multiplicative reasoning items (see examples in Figure 2).  

 

Figure 2: Examples of items from Nunes et al.’s (2012) arithmetic reasoning test 

The outcome measures of mathematical achievement were standardized assessments designed to 

measure school standards by the end of elementary school. Hierarchical regression analyses were 

used to assess the independence and specificity of the contribution of arithmetic reasoning vs. 

arithmetic skill to the prediction of achievement in mathematics, science, and English at the end of 

elementary school, using age, intelligence, and working memory as controls in these analyses. 

Arithmetic reasoning and skill made independent contributions to the prediction of mathematical 

achievement, but arithmetic reasoning was by far the stronger predictor of the two. These 



 

 

predictions were also specific, in so far that these measures were more strongly related to 

mathematics than to science or English.  

In sum, according to Nunes et al. (2012), their findings provide a clear justification for making a 

distinction between arithmetic reasoning and numerical, counting and calculation skills. The 

implication for diagnosis and intervention in early mathematics education is that arithmetic 

reasoning should receive a greater emphasis from the early years in primary school on. 

Understanding patterns and structures 

In another attempt to identify and explain common underlying early bases of mathematical 

development and its stimulation, other researchers have looked at mathematical patterns and 

structures (Lüken, 2012; Mulligan & Mitchelmore, 2009; Mulligan, Mitchelmore, & Stephanou, 

2015; Rittle-Johnson, Fyfe, Loehr, & Miller, 2015)  

In what can be considered as one of the most enduring, systematic and influential research programs 

in this respect, based on a series of related studies with diverse samples of 4- to 8-year-olds, 

Mulligan and colleagues have identified and described a new construct, Awareness of Mathematical 

Pattern and Structure (AMPS) (Mulligan & Mitchelmore, 2009; Mulligan et al. 2015), that has been 

shown to be related to children’s later mathematics achievement in school. 

Mathematical pattern involves any predictable regularity involving number, space, or measure such 

as number sequences and geometrical patterns, whereas structure refers to the way in which the 

various elements are organized and related, such as iterating a single ‘unit of repeat’ (Mulligan & 

Mitchelmore, 2009). AMPS involves structural thinking based on recognizing similarities, 

differences and relationships, and also a deep awareness of how relationships and structures are 

connected.  

An interview-based assessment instrument was developed and validated, the Pattern and Structure 

Assessment - Early Mathematics (PASA) (Mulligan et al., 2015). The PASA yields an overall 

AMPS score as well as scores on five individual structures: sequences, shape and alignment, equal 

spacing, structured counting, and partitioning. Some examples of tasks are sequences that have to be 

extended (e.g., a sequence of colored pearls on a string or a series of triangular dot configurations of 

increasing size) or structured counting tasks (e.g., counting by two’s, counting the number of cells 

in a partly covered rectangular pattern). Based on the child’s response, which may include drawn 

representations and verbal explanations of patterns and relationships, five broad levels of structural 

development were identified and described: pre-structural, emergent, partial, structural, and 

advanced structural (Mulligan & Mitchelmore, 2015). Validation studies indicated that high levels 

of AMPS were correlated with high performance on standardized achievement tests in mathematics 

with young students (Mulligan et al., 2015).  

In alignment with the assessment of AMPS, an innovative, challenging alternative learning 

program, the Pattern and Structure Mathematics Awareness Program (PASMAP) was developed 

and evaluated longitudinally in the kindergarten (= the first year of formal schooling in Australia). 

This study first showed that kindergartners are capable of representing, symbolizing and 

generalizing mathematical patterns and relationships, albeit at an emergent level (Mulligan, 



 

 

Mitchelmore, English, & Crevensten, 2013). The study also tracked and described children’s 

individual profiles of mathematical development and these analyses showed that core underlying 

mathematical concepts are based on AMPS, and that some children develop these more readily and 

in more complex ways than others. Finally, this study also involved an attempt to provide an 

empirical evaluation part involving 316 kindergartners from two schools with and two schools 

without the PASMAP program. Highly significant differences on PASA scores were found for 

PASMAP children in comparison to children from the control schools, also for those children 

labeled as low ability, both at the posttest and the retention test, when children had already moved to 

Grade 1. On the other hand, there was no significant impact of PASMAP on improving children’s 

mathematical achievement as measured by a general mathematics achievement test.  

Other researchers have also performed analyses of (1) elementary school children’s perceptions and 

understandings of patterns and structures, providing nice descriptions and accounts of young 

children’s abilities and difficulties with respect to various mathematical patterns and structures 

tasks, (2) the predictive value of their mastery of pattern and structure for their later mathematical, 

i.e. algebraic proficiency, and (3) how instruction on patterns and structures can not only transfer to 

similar and other patterns and structures, but also to other mathematical domains such as ratios, and 

mathematics achievement in general (for an overview, see Rittle-Johnson, Fyfe, Loehr, & Miller, 

2015). 

Of course, the idea that patterns and structures play an important role in the learning of 

mathematics, and should play an important role in its teaching, is not new (Orton, 1999). After all, 

is the definition of “mathematics as a science of patterns” (Müller, Selter, & Wittmann, 2012) not 

one of our favorite definitions of what mathematics is all about? The critically new element in the 

research of the work of Mulligan and associates is that they give it such a prominent role in their 

diagnostic and teaching materials for early mathematics. In doing so, they contribute to broadening 

the picture of what (early) mathematics is all about – a picture that is largely undervalued in current 

early and elementary school mathematics with its strong focus on learning about numbers and 

arithmetic facts and procedures. 

Spontaneous focusing tendencies 

The studies and views on the early development of children’s mathematical competence reviewed 

so far typically take a purely “ability” perspective. In doing so, they neglect other aspects of young 

children’s early mathematical competence, such as their attention to or feeling for, numerical 

magnitudes, mathematical relations, or mathematical patterns and structures. During the past 

decade, researchers have started to explore children’s spontaneous tendency to focus on numerosity 

(SFON), its development, its cultivation, and its predictive relation to children’s later mathematical 

achievement (Hannula & Lehtinen, 2005). To a lesser extent, similar attempts have been done for 

quantitative relations (SFOR) and, even much less, mathematical patterns and structures (SFOPS). 

These SFON, SFOR or SFOPS tendencies are not about what children think and do when they are 

guided to the mathematical elements, relations or patterns in the situation, but what they 

spontaneously focus on in informal everyday situations. SFON assessment instruments must 

therefore capture whether children spontaneously use their available number recognition or 



 

 

quantitative or mathematical reasoning and patterning skills in situations where they are not 

explicitly guided or instructed to do so. So, the instruments used to assess these spontaneous 

focusing tendencies must meet several strict methodological criteria (Hannula & Lehtinen, 2005). 

As far as SFON is concerned, the most frequently used task so far is the Elsi Bird Imitation task, 

wherein the child is instructed to imitate the experimenter’s play behavior with toys, i.e., feeding 

berries into the beak of a toy parrot. A SFON score is given on an item as soon as the child is 

observed doing or saying something that shows that he or she has spontaneously attended to the 

quantitative aspect of the situation. Meanwhile several other SFON tasks have been developed, such 

as the Picture Description task, with cartoon pictures displaying both non-numerical and numerical 

information and the request to tell what is in the picture. If the child spontaneously refers to the 

exact numerosities - correct or not – in his or her verbal descriptions of the pictures, (s)he gets a 

SFON score (for an overview and critical discussion of SFON measures, see Rathé, Torbeyns, 

Hannula-Sormunen, De Smedt, & Verschaffel, 2016). 

Observations of children’s activities in SFON assessment indicated that already at the age of 3-4 

years children can be spontaneously engaged in mathematically relevant practices in their everyday 

environments (Hannula & Lehtinen, 2005). This research also revealed great inter-individual 

differences in children’s tendency to spontaneously focus on number. It further showed that 

children’s SFON at the age of 5 or 6 is a unique and strong predictor of later development of 

mathematical skills even up to the end of elementary school. The hypothetical explanation for these 

findings is that children who spontaneously focus on the numerical aspects of their environment in 

everyday situations get much more practice of magnitude recognition, number comparison, 

combining of numbers, etc. than children who only do this when explicitly instructed by parents or 

teachers. SFON may support the development of numerical skills and more elaborated numerical 

skills may further strengthen the SFON tendency. However, convincing direct empirical evidence 

for this explanatory mechanism is still scarce (Rathé, Torbeyns, Hannula-Sormunen, & Verschaffel, 

2016). 

In many everyday activities exact numerosity is not the only mathematically relevant aspect that can 

be focused on. In young children’s daily life there are many opportunities to focus on more complex 

quantitative aspects, such as quantitative relations. Children can also recognize and use 

mathematical or quantitative relations without explicit guidance to do so. Based on a series of 

studies, McMullen, Hannula, and Lehtinen (2013, 2014) proposed that there is a similar tendency to 

focus on quantitative relations as SFON, which indicates that instead of mere numerosity children 

and school pupils can also focus spontaneously on quantitative relations (SFOR). McMullen and 

colleagues (McMullen, Hannula-Sormunen, Laakkonen & Lehtinen, 2016; McMullen, Hannula-

Sormunen, & Lehtinen, 2013; McMullen, Hannula-Sormunen, & Lehtinen, 2014). designed the 

Teleportation Task to measure SFOR. This task involves a cover story telling that a set of supplies 

containing three sets of objects was sent from earth through space with a teleportation machine. 

However, when doing so, the objects are transformed. Children are asked, first, to describe the 

transformation in their own words in as many ways as possible, and, second, to draw what they 

expect to happen with a different numerosity of the same objects. When describing or drawing the 

transformation, learners can pay attention to the various non-mathematical changes (e.g., in terms of 



 

 

the colors or shapes of the objects), but also to the quantitative relation between the original and 

final numerosity of the three sets. The results of the longitudinal study of McMullen, Hannula-

Sormunen, Laakkonen, and Lehtinen (2016) showed that there were substantial individual 

differences in students’ SFOR tendencies,. It also revealed that SFOR tendency had a unique 

predictive relationship with rational number conceptual development in late primary school students 

during the 2-year follow-up period.  

Interestingly, in their conceptualization of AMPS, Mulligan and Mitchelmore (2009) also tend to go 

beyond the pure ability aspect of early mathematical competence, by stating that AMPS may consist 

of “two interdependent components: one cognitive (knowledge of structure) and one meta-

cognitive, i.e., “spontaneous” (a tendency to seek and analyze patterns)” (p. 39). According to these 

authors, both are likely to be general features of how children perceive and react to their 

environment. However, neither in their assessment nor in their intervention materials, they have 

already tried to specifically and explicitly address this spontaneous focusing aspect.  

Early mathematics and executive functions 

In the previous sections, we have discussed various kinds of domain-specific competences that all 

have been claimed, and in many cases been shown, to be predictively related to general 

mathematical competence or to knowledge and/or skill in specific subdomains of the mathematics 

curriculum. However, it is a well-established research finding that formal mathematics achievement 

is also influenced by domain-general processes, such as sustained attention, inhibitory control, 

cognitive flexibility, working memory capacity, and - even more generally - intelligence (Bull & 

Scerif, 2001; De Smedt, Janssen, et al., 2009; Friso-van den Bos et al., 2013; LeFevre et al., 2010; 

Peng, Namkung, Barnes, & Sun, 2016).). While most of that research evidence comes from research 

with older participants, there is increasing evidence on the importance of executive functions in 

early mathematical thinking and learning too. 

In one line of research, authors have analyzed the relative importance of general executive skills as 

compared to the role of domain-specific early numerical competences in predicting concurrent and 

later mathematical development. For instance, in a longitudinal study wherein we followed children 

during the first grades of elementary school, we were able to show that working memory at the start 

of primary education was predictively related to individual differences in mathematics achievement 

six months later in Grade 1 and one year later in Grade 2 (De Smedt, Janssen, et al., 2009). 

Interestingly, overviewing the research, Bailey et al. (2014), concluded that the contribution of 

domain-specific factors, such as children’s early numerical competences to their later mathematical 

development is relatively small compared to these more stable domain-general factors, such as 

intelligence and working memory.  

The relation between these executive functions and mathematical performance may also be more 

specific in nature. Research has revealed specific relations between certain executive functions, 

such as inhibition or working memory, on the one hand, and specific mathematical competences, 

such as mental arithmetic or word problem solving, on the other hand. Robinson and Dubé (2013), 

for instance, investigated the role of inhibition in children’s use of the inversion and associativity 

shortcuts on mental addition and subtraction (e.g., 6 + 23 – 23 = ?). Children who demonstrated the 



 

 

highest use of conceptually-based shortcuts also scored highest on the Stop-Signal task, a standard 

measure of inhibitory abilities. This finding suggests that these children were able to inhibit their 

tendency to routinely solve problems from left-to-right and thereby process all of the presented 

numbers before executing the clever shortcut strategy. 

So far, we have discussed the role of executive functions in children’s performance on relatively 

complex mathematical tasks. However, to make the picture about the role of executive functions 

even more complicated, these executive functions are also assumed to play a critical function in the 

early mathematical tasks, such as the magnitude comparison task, the SFON tasks, the mathematical 

reasoning tasks, and the patterns and structures tasks discussed above. Take, for instance, the non-

symbolic magnitude comparison task used to assess the approximate number system (ANS) and 

which lies at the basis of this whole line of research that has led to the pivotal role of the precision 

of children’s early ANS representations in early mathematics diagnosis and intervention (see 

Section 1). In this task it is important to ensure that participants are basing their judgements on the 

numerosity of the visual arrays, rather than possible visual cues such as the size of the dots, or the 

area that the dot arrays cover. As Gilmore, et al. (2013) have argued, in an attempt to control for this 

possible confound, researchers introduce an inhibitory control aspect to the task, as for half of the 

items with which the child is confronted inconsistent visual cues must be inhibited to indicate the 

correct set. But if the non-symbolic comparison task is, in part at least, a measure of inhibitory 

control, then it is perhaps unsurprising that it is predictive of school-level mathematics achievement, 

but for other reasons than claimed by the advocates of this task. 

Starting from the above research documenting in various ways the involvement of executive 

functions in mathematical thinking and learning, researchers have also asked the question about the 

possibility and efficacy of enhancing mathematical thinking and learning through training of these 

executive skills. At least for working memory, a recent meta-analysis by Schwaighofer, Fischer, and 

Bühner (2015) led to the general conclusion that attempts to improve working memory only 

improved performance on working memory tests but failed to improve mathematics achievement.  

So, while there is increasing research evidence that, from a very young age on, an association 

between mathematics and executive functions exists, this complex and multi-aspectual association 

and its implications for early mathematics education and assessment is not well understood yet. 

Numerous questions remain (Robinson, 2016; Van Dooren & Inglis, 2015). As (early) mathematics 

educators we are traditionally not so much interested in these general executive functions. However, 

for various reasons related to theory, diagnosis and intervention, it may be unwise to neglect them. 

The role of parents and early caregivers during the preschool years 

As amply shown in the previous sections, before the start of formal mathematics education - 

typically at the age of 5-6, children already begin their initial explorations into everyday 

mathematics at home, progressively developing and refining their mathematical knowledge and 

skills as well as their mathematics-related orientations, beliefs, and affects. However, there is wide 

variation - linked in part to socio-economic status (SES) and culture - in the kinds of early 

mathematical learning experiences children have at home and the ways in which they are stimulated 

and helped by their parents. Further, in many cultures, the majority of young children spend 



 

 

significant time in non-parental care, including family childcare and organized preschool education 

(DREME, 2016). Arguably, the quantity and quality of mathematics learning stimulation in these 

various settings also vary enormously, impacting children’s mathematical development. For evident 

reasons, mainstream cognitive (neuro)psychological research on early numerical competences has 

paid little or no attention to these informal mathematical learning environments. But also within the 

mathematics education research community this topic is “under-studied”. Indeed, we know 

relatively little about the role of parents and early caregivers during the preschool years when 

compared, on the one hand, to the development and stimulation of children’s emergent literacy, and, 

on the other hand, to mathematics education in the higher educational levels. Fortunately, the last 

few years have witnessed an increased research interest. 

First, several researchers have aimed for an understanding of children’s preschool experiences at 

home and of how these experiences affect their early mathematical development. For instance, 

starting from the well-documented finding that children’s early numerical competence before the 

start of formal schooling is highly predictive of their acquisition of mathematics in (the first grades 

of) elementary school, several authors have pleaded for a better understanding of children’s 

preschool experiences at home. In a well-known study by Lefevre, Skwarchuk, et al. (2009), the 

mathematical skills of + 150 Canadian children in Kindergarten, Grade 1, and Grade 2 were 

correlated with the frequency with which parents reported informal activities that have quantitative 

components such as board and card games, shopping, or cooking on a questionnaire. The results 

support claims about the importance of home experiences in children’s acquisition of mathematics, 

given that effect sizes were consistent with those obtained in research relating home literacy 

experiences to children’s vocabulary skills. In a more recent and more sophisticated study, 

Susperreguy and Davis-Kean (2016) analyzed the relation between the amount of mathematical 

input that preschool children hear from their mothers in their homes and their early mathematics 

ability one year later. Forty mother–child dyads recorded their naturalistic exchanges in their homes 

using an enhanced audio-recording device. Results from a sample of naturalistic interactions during 

mealtimes indicated that all mothers involved their children in a variety of mathematics exchanges, 

although there were differences in the amount of input children received. Moreover, being exposed 

to more instances of mathematics talk was positively related to children’s early mathematical ability 

one year after the recordings, even after control for maternal education, self-regulation, and recorded 

minutes. Finally, starting from the well-documented finding that early numerical competences 

amongst children vary widely and from the belief that a better understanding of the sources of this 

variation may help to reduce SES-related differences in mathematics skills, Ramani, Rowe, Eason, 

and Leech (2015) examined two sources of this variation in low SES families: (1) caregiver reports 

of number-related experiences at home, and (2) caregivers’ and children’s talk related to math 

during a dyadic interaction elicited by the researchers. Frequency of engaging in number-related 

activities at home predicted children’s foundational number skills, while caregivers’ talk during the 

interaction about more advanced number concepts for preschoolers, such as cardinality and ordinal 

relations, predicted children’s advanced number skills that build on these foundational concepts. So, 

these findings suggest that the quantity and quality of number-related experiences that occur at 

home contribute to the variability found in low-income preschoolers’ numerical knowledge. 



 

 

Complementary to these ascertaining studies, several intervention studies reported positive effects 

on children’s early numerical and later mathematics performance at school. Again, we can give only 

a few examples. In a series of high-impact studies with children from low-income backgrounds, 

who were found to lag behind their peers from middle-income backgrounds already before the 

children enter school, Siegler and Ramani (2008) found that playing a research-based designed 

numerical board game for only a couple of hours already eliminated the differences in the two 

commonly used measures of understanding of numerical magnitudes, namely numerical magnitude 

comparison and number line estimation. Moreover, in a subsequent study (Siegler & Ramani, 2009), 

children who had played the number board game also performed better in a subsequent training on 

arithmetic problems. Thus, playing number board games was found to increase not only 

preschoolers’ numerical knowledge but also to help them learn their school arithmetic. Van den 

Heuvel-Panhuizen, Elia, and Robitzsch (2016) report on a very recent field experiment with a 

pretest–posttest control group design, which investigated the potential of reading picture books to 

kindergarten children for supporting their mathematical understanding. During three months, the 

children from nine experimental classes were read picture books. Data analysis revealed that, when 

controlled for relevant covariates, the picture book reading programme had a positive effect on 

kindergartners’ mathematics performance as measured by a test containing items on number, 

measurement and geometry. Finally, we refer to one of the best known research-based early 

mathematics programs, namely the Building Blocks (BB) program of Clements and Sarama (2011). 

This program, which is organized into five major strands: (numeric, geometric, measuring, 

patterning, and classifying and data analyzing), consists of daily lessons where children are 

encouraged to extend and mathematize their daily experiences through sequenced activities, games, 

and the use of technology. The daily lessons are organized in whole group activities, small group 

activities, free-choice learning centers, and reflection time. The program is complemented with a 

parallel in-service teacher training program. Studies on the effectiveness of the BB intervention 

program (Clements & Sarama, 2007, 2011) demonstrated that 3- and 4-year-olds who received the 

BB intervention program developed stronger mathematical abilities than children in the control 

group, with effects lasting up to the end of first grade. Bojorque (2017) recently successfully 

implemented the BB program in the Ecuadorian context, with significant effects on the quality of 

the kindergarten teachers’ pedagogical actions as well as on children’s progression both on a 

standard mathematics achievement test based on the national K3 curriculum and on their SFON. 

The findings emerging from all these observational, correlational, and intervention studies are very 

informative for the design of educational environments and activities aimed at increasing young 

children’s mathematics learning - far beyond the rather narrowly oriented (computer) games aimed 

at stimulating children numerical magnitude representations that have been derived from the 

cognitive neuroscientific line of research. But still a lot of work needs to be done to further advance 

knowledge on effective ways to increase parents’ and professionals’ engagement in preschoolers’ 

mathematics learning, particularly in children growing up in poverty and/or in contexts of 

unfavorable immigration. 



 

 

Preschool to elementary school transition 

As explained in the previous sections, a large number of factors in the young child and in its home 

and caretaking environment have a strong impact on the ease with which (s)he will take the step to 

formal mathematics education at the age of 5-6 (depending on the country or culture) and profit 

from the elementary school mathematics curriculum. However, the child’s mathematical 

development and achievement will evidently also be significantly affected by the quality of the 

transition from preschool to elementary school (see also Gueudet, Bosch, diSessa, Kwon, & 

Verschaffel, 2016).  

Interestingly, researchers working on this theme typically take a much broader theoretical stance 

than the cognitive (neuro)scientific researchers who look for the elements in children’s domain-

specific and domain-general competences that are predictively related with success in school 

mathematics. Their inspiration comes from socio-cultural, sociological, anthropological, and critical 

mathematical theories (Dockett, Petriwskyj, & Perry, 2014; Perry, McDonald, & Gervasoni, 2015). 

The transition from prior-to-school to school mathematics is primarily conceived by these 

researchers as a set of processes whereby individuals “cross borders” or undergo a “rite of passage” 

from one cultural c.q. educational context or community to another and, in doing so, also change 

their role in these contexts or communities. Dockett et al. (2014, p. 3) provide the following 

summation of this approach: “While there is no universally accepted definition of transition, there is 

acceptance that transition is a multifaceted phenomenon involving a range of interactions and 

processes over time, experienced in different ways by different people in different contexts. In very 

general terms, the outcome of a positive transition is a sense of belonging in the new setting.” There 

is growing research evidence that developing practices that promote effective transitions, and that 

strive for giving agency of all involved and rely on the “Funds of Knowledge” available in 

children’s home and local environments, results in positive effects - although most of this research 

is more qualitative and descriptive in nature and thus not primarily interested in following strict 

experimental designs and providing “hard” statistical data. A nice overview of this broader 

transition perspective is provided by Perry et al. (2015). 

In an interesting newly funded project, Andrews and Sayers have begun to examine how two 

systems, England and Sweden, facilitate the early mathematical competences, and more specifically 

their foundational number sense (FoNS) (Andrews & Sayers, 2015), of children starting in Grade 1. 

Currently the project team is comparing the FoNS opportunities found in commonly used textbooks 

in the two countries (Löwenhielm, Marschall, Sayers, & Andrews, 2017a). Simultaneously the team 

has been interviewing first grade teachers in the two countries about their role as well as their 

perceptions of their pupils’ parents’ roles in the development of children’s FoNS-related 

competence. Initial analyses (Löwenhielm, Marschall, Sayers, & Andrews, 2017b) have identified 

both similarities and considerable differences in the relationship between the school and home 

environment between the two countries.   

It is a general complaint among stakeholders of early mathematics education that mathematics 

learning in preschool is often disconnected from the first grades of elementary school. This 

disconnect, which is particularly relevant for lower SES and immigrant children, can lead to 



 

 

children experiencing uneven instructional practices, which can compromise their mathematical 

development in elementary school. So, policy makers, curriculum developers, teacher trainers, etc. 

should work toward creating greater alignment of and coherence between preschool and elementary 

school mathematics education, using research-based insights and recommendations. Unfortunately, 

there is still limited research on the impact of these policies and practices on the learning 

experiences and learning outcomes of children moving from preschool through the early elementary 

grades. 

Professional development of caregivers and teachers 

In the previous section, we emphasized the importance of a high-quality mathematical learning 

environment in the preschool years, the first years of elementary school, and the transition between 

the two. Evidently, this requires highly professional (mathematics) teachers, i.e., “teachers who 

know the content, who understand children’s thinking, who know how to engage in pedagogical 

practices that support learning, and who see themselves as capable math teachers” (DREME, 2016, 

p. 4).  

At the same time, many teachers and caregivers in the early care and education field may not be 

adequately equipped to provide appropriate math-related experiences and instruction to these young 

children. Research suggests that many practitioners working with preschool, kindergarten and early 

grade children (1) are themselves not competent in mathematics, (2) have important shortcomings in 

the pedagogical content knowledge, particularly with respect to the components of the early math 

curriculum beyond counting, number, and simple addition and subtraction, and/or (3) do not see 

themselves as competent in mathematics (see e.g., Lee, 2010). And, even if practitioners are 

mathematically capable and do view themselves as such, they may still hold pedagogical 

reservations against teaching mathematics to young children, believing that early childhood 

programs should focus primarily on social emotional and literacy goals (Platas, 2008).  

While these problems have shown to be partly due to these professionals’ restricted mathematical 

talents and negative earning histories in elementary and secondary education, research also indicates 

that the nature of the pre-service and in-service training they received does not greatly help to 

overcome these problems. As DREME (2016, p. 4) argues: “Professional teacher preparation 

programs rarely address how to identify the wide range of informal mathematical understandings 

that young children bring with them to the classroom, or how to translate these into intentional, 

individualized math experiences for children with diverse backgrounds and needs.” Indeed, surveys 

of early childhood education degree programs (e.g., Maxwell, Lim, & Early, 2006) reveal that early 

education practitioners are exposed rarely to high-quality pre-service or in-service courses that 

address children’s mathematical development, or the pedagogical content knowledge necessary for 

supporting it.  

We emphasize that the above analysis is largely based on critical reflections upon the situation in 

the US. So, the situation may be better in other places in the world, although there are good reasons 

to restrain from being too optimistic, because the above observations about early math teachers’ 

professional knowledge and beliefs and previous educational histories seem to hold, at least to some 

extent, for many other countries too.  



 

 

To support the training of prospective and practicing early childhood teachers, there is a need of 

creating and implementing research-based modules for professional development that can be used in 

a variety of pre-service and in-service settings (DREME, 2016). The way forward for research is to 

attempt to figure out what are the key levers of professional development that might effect 

significant change in the quality of early math education and its learning outcomes. Given the 

above-mentioned depiction of the complex and multi-sided nature of caregivers’ and early math 

teacher’s professional knowledge base, it seems reasonable to expect the greatest effect from 

modules that do not focus on one single aspect of professionalism but work on the development of 

early math related knowledge, skills and beliefs, and that convey the idea that early mathematics is 

more than teaching young children some basic number knowledge and counting skills.  

Conclusion  

Inspired by developments in the field of neuroscience (e.g., Butterworth, 2015), the past two 

decades have witnessed the emergence of a very productive and highly influential line of 

(neuro)cognitive research on children’s early number sense, its development, and its relation to 

school mathematics. Cross-sectional and longitudinal studies have demonstrated that various core 

elements of children’s early mathematical ability - especially their numerical magnitude 

understanding, their subitizing and counting skills, and their ability to transcode a number from one 

representation to another - are positively related to concurrent and future mathematics achievement 

(Torbeyns et al., 2015).  

However, other research, most of which is situated in other scientific circles and relying on other 

theoretical and methodological perspectives, has yielded increasing evidence for uniquely 

significant relations of mathematical achievement also with (1) young children’s understanding of 

ordinal and measurement aspects of number, (2) their abilities related to mathematical relations, 

patterns and structures, and (3) their tendency to spontaneously attend to numerosities and to 

mathematical relations, patterns, and structures in their environment, and has confirmed the 

important role of domain general executive functions. 

Moreover, researchers have started to explore and analyze the rich variety of early mathematical 

learning environments at home, in preschool and kindergarten settings, as well as the coherence 

between these informal learning settings and the first years of elementary school mathematics, with 

special attention to the professional quality of the early caregivers and teachers. Also, they started to 

set up various kinds of intervention studies aimed at the improvement of the quality of these 

environments and of the professionals operating in these environments. These studies have yielded 

evidence on the short- and long-term benefits of such attempts to provide high-quality early 

mathematics education in preschool settings and in the transition from preschool to elementary 

school. 

While the small-scale, short-term and focused experimental intervention programs derived from the 

(neuro)cognitive research on early numeracy have their value in enhancing our theoretical insight 

into numerical cognition and learning, practitioners active in the field of early mathematics 

education may profit more from the studies describing the design, implementation, and evaluation 

of large-scale and more broadly conceived intervention programs that combine and balance several 



 

 

of the elements that have been found to be foundational for future mathematics learning (see 

Sections 2-6) and that also integrate aspects of teacher development, working with parents, and 

community building (see Sections 7-9), with the Building Blocks program of Clements and Sarama 

(2007) and the Pattern and Structure Mathematics Awareness Program of Mulligan et al. (2013) as 

the most visible and successful examples. Still, as math educators, we should continue to follow, 

with an open but critical mind, the cognitive neuroscientific research on mathematical cognition 

and, equally important, also try to have an impact on their research agenda (De Smedt et al., 2011). 

As a result of all this research, there is a lot of practically useful new knowledge, techniques and 

resources to promote young children’s math learning. Still there remains much to learn about how to 

optimally enhance math learning at home and at school in the preschool years and about how to help 

teachers to be well prepared for delivering high-quality instruction to those young children, 

particularly the weaker ones. In this respect, we should applaud - and may-be also strive for an 

European counterpart – of the recent initiative called the DREME Network in the US, which is 

aimed at developing new researchers and enticing current elementary math education, child 

development, and policy researchers to expand their work to include young children’s mathematical 

learning.  
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This paper presents the contributions of the participants at the CERME10 panel, as well as some of 
the questions raised during the discussion. Our main aim is to examine the notion of solid finding in 
mathematics education, the theoretical and methodological assumptions underlying their 
establishing and the degree of agreement (and disagreement) they provoke. We will consider their 
possible utilities and weaknesses, even jeopardies, taking into account two different standpoints: 
how solid findings are identified and what kind of common ground they rely upon; what are solid 
findings for, how can they be useful and what could be their risks or adverse effects. The panellists 
will adopt different perspectives on the topic, focusing on the specific selection of solid findings 
proposed by the Committee on Education of the European Mathematical Society, approaching the 
problem of the methodologies and use of psychometric models; questioning the use of evidence in 
policy development and curriculum evaluation. 
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Solid findings in mathematics education: A necessary discussion 
Marianna Bosch 

Proposing to collectively discuss on ‘solid findings’ in mathematics education at CERME10 was 
certainly motivated by the initiative of the Education Committee of the European Mathematical 
Society (EMS) to start publishing a series of articles on ‘Solid findings in mathematical education’ 
in 2011 (http://www.euro-math-soc.eu/ems_education/education_homepage.html). This can be 
interpreted as an audacious attempt to establish a stable account of our young discipline, which 
otherwise might appear as made of too diverse principles, approaches and perspectives. It is thus 
supposed to facilitate the approach by people from the outside, especially mathematicians and 
teachers, by giving more visibility of the type of questions approached and the results obtained. 
Inside the discipline, it also appears as an effort to organise and elaborate a provisional common 
hard core (in the sense of Lakatos) of sound and relevant knowledge, without denying the 
provisional and dynamic nature of the considered findings.  



 

 

Taking the EMS project and its products as initial motivation, the aim of the panel is to examine the 
notion of solid finding, the theoretical and methodological assumptions underlying studies on solid 
findings and the degree of agreement (and disagreement) they might provoke. We propose to 
consider the possible utilities and weaknesses, even jeopardies, of the reports on solid findings, 
taking into account two different standpoints: (1) how solid findings are identified and what kind of 
common ground they rely upon; (2) the purpose of solid findings, their potential utility, and also 
their possible risks or adverse effects.  

The aim of the panel was thus to open a debate on controversial questions like: 

(1) What is a solid finding in Mathematics Education?  What criteria are used to select them? 
Who decides whether a finding is solid or not? Are solid findings linked to specific 
methodologies, theories or approaches? Can they be contested and how? What kind of 
evidence is required? Is it the same kind of evidence for the different ‘findings’?  

(2) What is the purpose of identifying solid findings? What are they for? How can they be 
useful? Are they necessary for teacher education? Could they help to give more visibility to 
our field and to negotiate with educational decision makers? Can there be a risk of 
disseminating false ‘weak’ solid results instead of disseminating the persistent questions 
addressed from research in mathematics education – which do not always coincide with those 
raised by the actors of the educational system (teachers, students, parents, decision makers, 
etc.)? 

During the discussion among the participants at the panel session, the question of the diversity of 
theoretical perspectives was raised on various occasions. It is clear that solid findings are always 
anchored in a given research approach or paradigm (a set of close theories sharing the main 
theoretical principles or assumptions). Agreement on solid findings thus supposes agreement on 
these main assumptions too. This does not seem to be – at the moment – the historical situation of 
the research community in mathematics education, where a diversity of approaches coexists without 
a common shared ground. Not only the type of results provided by these approaches are different, 
but mainly the type of research questions asked, the methodologies used, and even the empirical 
units of analysis considered. If solid findings are presented without mentioning the approaches 
where they have been produced, we run the risk of interpreting solid findings as if they came from 
an a-theoretical perspective (or from a fully shared one), which is in fact a way of giving 
preponderance to the already dominant approaches in detriment of the less disseminated ones.  

Other questions related the issue of solid findings to the problem of the dissemination of results. If 
solid findings should be closely contextualised within a given theoretical framework – or research 
perspective –, how to make them accessible to people not knowledgeable of the framework? To 
what extent, and under what conditions, could solid findings be extended to include frameworks? 
The question varies of course if we think about disseminating research outcomes outside the field, 
or about highlighting what are seen as important milestone in the evolution of the field, for instance 
to build the basis for productive debates.  

Furthermore, participants also indicated that it is important to avoid not only taking the theoretical 
‘load’ of solid findings for granted, but also to pay attention to the values they implicitly carry on, 
for instance, about the purpose of education, the purpose of research on mathematics education or 



 

 

about the corresponding specific epistemology or conception of science. For instance, the choice of 
the term ‘finding’ seems related to a somewhat naturalistic perspective – the scientific discovery of 
a pre-existent reality –, while other options such as ‘claims’, ‘proposals’ or ‘questionings’ (in the 
double sense of raising questions and questioning the status quo) would entail other connotations.  
In this sense, maybe the dimension of problematizing can also be a possible direction to work with.  

In fact, one of the questions from the audience addressed the issue of the relationships between 
solid findings, persistent phenomena and educational problems: Are solid findings restricted to 
phenomena that persist? Is it also possible to have a solid finding that eliminates a problem? In 
other terms, because advancing research also modifies our ways of problematizing reality, solid 
findings can also make some problems appear as simple difficulties that can be overcome, or as 
consequences of other factors to be approached. In the other sense, a solid finding can also consist 
in the awareness that a problem has not solution – at least in the framework where it is formulated.  

The establishment of solid findings as such was also referred to by some participants. Some of them 
wondered if it is possible to identify some steps to help establish solid findings and build upon them 
more systematically. Others asked about efficient ways of guaranteeing cumulative research efforts, 
such as the replicability of the solid findings, which was proposed as a possible research avenue to 
pursue. One should not see naivety in this kind of demands – as if we were asking for ‘recipes’ –, 
but on the contrary, interpret them in terms of a reflection on the research methodologies followed 
(in terms of validity, truthfulness, reproducibility, etc.) and the level of exigence put on them. To 
enrich the debate, some participants provided related materials or counterexamples to this kind of 
reflexion, such as the U. S. webpage “What Works in Education” (http://ies.ed.gov/ncee/wwc/) or 
the special issue of the International Journal of Research & Method in Education (2016) Is the 
Educational ‘What Works’ Agenda Working? Critical Methodological Developments, including a 
paper on review procedures to optimise reviews’ impact and uptake (Green, Taylor, Buckley, & 
Hean, 2016). 

The three contributions that form the core of this paper address some of the issues raised from very 
diverse – and complementary – perspectives. Tommy Dreyfus, a member of the Education 
Committee of the EMS and co-author of some of the ‘solid findings’ articles, provides a very 
interesting account of two moments of reflection of our community around the issue of ‘results’ or 
‘findings’ in mathematics education, and their related projects. He also presents two examples of 
‘solid findings’, showing the criteria used to identify them and also some of the limitations of the 
efforts made. He argues for a collective effort toward the products of more systematic reviews on 
different topics or approaches, as a way to increase the impact of research outside the field but, also, 
to “establish and organize mathematics education as scientific discipline and to determine where we 
come from, where we are and where we might go as a research community”. From a completely 
different side, Caterina Primi, an expert in the field of quantitative educational research, addresses 
the methodology problem – measurement tools to support rigorous research designs – for findings 
to be ‘solid’ or, in statistical terms, ‘robust’, ‘reliable’ and ‘unbiased’. Even if the example taken 
and the questions raised are only related to quantitative methods – where statistical tools are more 
commonly applied –, the reader can do the mental exercise of transposing them to qualitative as 
well as theoretical studies to see how demanding the research work to make knowledge develop can 
be. Finally, Gerry Shiel, National (Ireland) Project Manager for the OECD PISA 2015 Study, 



tackles what can be called the ‘impact issue’ of educational research, considering the PISA
phenomenon, which is maybe the source of the most practical and political pressures nowadays in 
almost all countries. The relationships between ‘solid finding’ and evidence-based decision making
provides a rich paradigmatic example and reminds us how intricate is the situation, especially when 
raw data is proposed without any protection from the procedure followed to generate it and the 
theoretical framework, including political ideologies, that underlies its generation.

To end this introduction, let me quote the British sociologist Martin Hammersley (2011) who, in his 
book on methodology, notes how extremely demanding it is to achieve the ‘threshold of likely 
validity required by academic work’ (p. 8). After presenting ‘dedication’, a ‘heightened sense of 
methodological awareness’ and ‘objectivity’ as important virtues for the researcher, the author 
recalls that, besides these individual virtues: 

[The] collective character of enquiry places additional obligations on researchers, as regards how 
they present their work, how they respond to criticism and how they treat the work of colleagues. 
In large part, what is required is that academic research takes place within an enclave that is 
protected from the practical considerations that are paramount elsewhere. […] In other words, 
academic discussion must be protected from political and practical demands, so that the 
consequentiality of proposing, challenging, or even just examining particular ideas or lines of 
investigation is minimised. […] [While] the ‘findings’ of particular studies should be made 
public within research communities, they should not be disseminated to lay audiences. What 
should be communicated to those audiences, via literature reviews and textbooks accounts, is the 
knowledge that has come to be more or less generally agreed to be sound within the relevant 
research community, through assessment of multiple studies. (Hammersley, 2011, p. 10) 

I am not sure if the field of mathematics education has already reached a sufficient level of 
development to agree on what can be globally accepted as sound and relevant knowledge, and thus 
to identify, elaborate and disseminate ‘solid findings’ to lay audiences. However, I am certain that
the community of research in mathematics education is mature enough to initiate a productive 
debate on this, as a way to make different research perspectives interact in a productive way. The 
effort of gathering, summarising, organising, and discussing the research produced about certain big 
questions or issues – as the one undertaken by the EMS Educational Committee –  appears 
nowadays as an endeavour that cannot be postponed. 

What are solid findings in mathematics education?
Tommy Dreyfus 

Relying on earlier studies by an ICMI Study and the Education Committee of the EMS, the question 
what the term ‘solid finding’ might mean with respect to mathematics education is discussed and 
criteria are proposed. Examples are provided for solid findings that mathematics education 
research has produced. 
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tackles what can be called the ‘impact issue’ of educational research, considering the PISA 
phenomenon, which is maybe the source of the most practical and political pressures nowadays in 
almost all countries. The relationships between ‘solid finding’ and evidence-based decision making 
provides a rich paradigmatic example and reminds us how intricate is the situation, especially when 
raw data is proposed without any protection from the procedure followed to generate it and the 
theoretical framework, including political ideologies, that underlies its generation.    

To end this introduction, let me quote the British sociologist Martin Hammersley (2011) who, in his 
book on methodology, notes how extremely demanding it is to achieve the ‘threshold of likely 
validity required by academic work’ (p. 8). After presenting ‘dedication’, a ‘heightened sense of 
methodological awareness’ and ‘objectivity’ as important virtues for the researcher, the author 
recalls that, besides these individual virtues:  

[The] collective character of enquiry places additional obligations on researchers, as regards how 
they present their work, how they respond to criticism and how they treat the work of colleagues. 
In large part, what is required is that academic research takes place within an enclave that is 
protected from the practical considerations that are paramount elsewhere. […] In other words, 
academic discussion must be protected from political and practical demands, so that the 
consequentiality of proposing, challenging, or even just examining particular ideas or lines of 
investigation is minimised. […] [While] the ‘findings’ of particular studies should be made 
public within research communities, they should not be disseminated to lay audiences. What 
should be communicated to those audiences, via literature reviews and textbooks accounts, is the 
knowledge that has come to be more or less generally agreed to be sound within the relevant 
research community, through assessment of multiple studies. (Hammersley, 2011, p. 10) 

I am not sure if the field of mathematics education has already reached a sufficient level of 
development to agree on what can be globally accepted as sound and relevant knowledge, and thus 
to identify, elaborate and disseminate ‘solid findings’ to lay audiences. However, I am certain that 
the community of research in mathematics education is mature enough to initiate a productive 
debate on this, as a way to make different research perspectives interact in a productive way. The 
effort of gathering, summarising, organising, and discussing the research produced about certain big 
questions or issues – as the one undertaken by the EMS Educational Committee –  appears 
nowadays as an endeavour that cannot be postponed. 

  



Introduction 
Mathematics education as a research community has grown over the past approximately 50 years: 
ERME, The European Society for Research in Mathematics Education is approaching its 20th

anniversary in 2018 – CERME1, the first conference took place in Osnabrück, Germany, in August, 
1998. PME, the International Group for the Psychology of Mathematics Education has held its 40th

annual conference in 2016 - the first one took place in 1977 in Utrecht, The Netherlands. JRME, the 
Journal for Research in Mathematics Education, is now producing its 48th annual volume, and 
ESM, Educational Studies in Mathematics is currently in its 50th year of publication since Volume 1 
appeared in 1968. One of the characteristics of research results in (mathematics) education is that 
they depend on the context in which the research has been designed and carried out. Nevertheless, 
after 50 years, one would expect the community to be able to make statements that go beyond “it 
depends on the context and the learning environment”, which is often implicit in the results of even 
high quality research articles. Review articles could be expected to remedy this situation to some 
extent but few review articles are published in the domain.  

What are the results of research in mathematics education – ICMI Study 8 
The question whether we, as a research community, have obtained results with a certain scope, 
range or breadth of validity and what these results are, has been approached at least twice, once in 
the framework of the study conference of ICMI Study 8 in 1996 (ICMI stands for the International 
Commission on Mathematical Instruction), and a second time in the framework of the Education 
Committee of the European Mathematical Society (EMS) in 2011.  

The task assigned by ICMI to the Study 8 program committee was to discuss what is research in 
mathematics education and what are its results. The title of the book published two years later as 
outcome of the study is Mathematics Education as a Research Domain: A Search for Identity
(Sierpinska & Kilpatrick, 1998). Maybe significantly, the word ‘results’ has disappeared in the 
process. Nevertheless, one of the working groups at the study conference dealt with results (Dreyfus 
& Becker, 1998). One of the questions the working group dealt with was what counts as result; the 
term ‘solid’ did not appear. Rather, ‘result’ was interpreted as ‘significant result’. 

Working group members agreed that without a question, there can only be facts but no results. 
Results are more than data: They are based on data collected with questions in mind that have been 
asked within a theoretical framework, and consist of findings interpreted in that theoretical 
framework. Effects alone (e.g., statistical differences in achievements between different groups) are 
not results. In mathematics education, we need to explain the differences, not only show them. We 
need to identify the variables of the didactic situation in order to combine the different facts into a 
coherent network of reasons, which informs the circular process of understanding the learning of 
mathematics and thus improving its teaching. Hence, results are often theoretical as well as 
experimental. Many of our theoretical frameworks are mathematics-specific (e.g., process, object, 
procept), and therefore our research questions and results are often domain-specific. 

Context was seen as relevant with respect to theory as well as beyond: mathematical context 
(contents, concepts, symbols, representations and epistemological status), the community, the 
educational system, among others. Results might be tied not only to the theoretical framework but 
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What are solid findings in mathematics education? 
Tommy Dreyfus 

 

Relying on earlier studies by an ICMI Study and the Education Committee of the EMS, the question 
what the term ‘solid finding’ might mean with respect to mathematics education is discussed and 
criteria are proposed. Examples are provided for solid findings that mathematics education 
research has produced. 

Introduction 
Mathematics education as a research community has grown over the past approximately 50 years: 
ERME, The European Society for Research in Mathematics Education is approaching its 20th 
anniversary in 2018 – CERME1, the first conference took place in Osnabrück, Germany, in August, 
1998. PME, the International Group for the Psychology of Mathematics Education has held its 40th 
annual conference in 2016 - the first one took place in 1977 in Utrecht, The Netherlands. JRME, the 
Journal for Research in Mathematics Education, is now producing its 48th annual volume, and 
ESM, Educational Studies in Mathematics is currently in its 50th year of publication since Volume 1 
appeared in 1968. One of the characteristics of research results in (mathematics) education is that 
they depend on the context in which the research has been designed and carried out. Nevertheless, 
after 50 years, one would expect the community to be able to make statements that go beyond “it 
depends on the context and the learning environment”, which is often implicit in the results of even 
high quality research articles. Review articles could be expected to remedy this situation to some 
extent but few review articles are published in the domain.  

What are the results of research in mathematics education – ICMI Study 8 
The question whether we, as a research community, have obtained results with a certain scope, 
range or breadth of validity and what these results are, has been approached at least twice, once in 
the framework of the study conference of ICMI Study 8 in 1996 (ICMI stands for the International 
Commission on Mathematical Instruction), and a second time in the framework of the Education 
Committee of the European Mathematical Society (EMS) in 2011.  

The task assigned by ICMI to the Study 8 program committee was to discuss what is research in 
mathematics education and what are its results. The title of the book published two years later as 
outcome of the study is Mathematics Education as a Research Domain: A Search for Identity 
(Sierpinska & Kilpatrick, 1998). Maybe significantly, the word ‘results’ has disappeared in the 
process. Nevertheless, one of the working groups at the study conference dealt with results (Dreyfus 
& Becker, 1998). One of the questions the working group dealt with was what counts as result; the 
term ‘solid’ did not appear. Rather, ‘result’ was interpreted as ‘significant result’.  

Working group members agreed that without a question, there can only be facts but no results. 
Results are more than data: They are based on data collected with questions in mind that have been 
asked within a theoretical framework, and consist of findings interpreted in that theoretical 
framework. Effects alone (e.g., statistical differences in achievements between different groups) are 
not results. In mathematics education, we need to explain the differences, not only show them. We 



also to the institution that asked the question. It is not the result itself, but the conditions under 
which it was obtained, that make it significant.  

The contextual nature of results implies that results are neither universal nor eternal, that their 
validity is situated in space and time, and that we have to be careful when trying to generalize. The 
validity of a result depends on the interpretation within a theory, and the theory might change with 
time and place, with mathematical content, learning environment, and so on. Hence results are 
permanent but their relevance might be ephemeral.  

Characterising solid findings 
It is on this background that the members of the Education Committee (EC) of the European 
Mathematical Society (EMS) asked themselves what solid findings mathematics education has 
produced. While the question was motivated by the intention of the committee to present 
mathematics education to mathematicians, in particular to EMS members, with an interest in 
mathematics education, committee members were well aware that the exercise of identifying solid 
findings contributes to establishing and organizing mathematics education as scientific discipline 
and to determining where we come from, where we are and where me might go as a research 
community. 

Of course, the first, and possibly most difficult task of the EC was to discuss, agree and explain 
what they meant by ‘solid findings’. A major difficulty in defining what it means that a result it 
solid is the context dependence, mentioned above. A second and related difficulty is complexity. As
we know well, things are more complex than one might think; we know, for example that the 
mathematics taught and learned in parallel classes with a similar population according to the same 
curriculum may be quite different (e.g., Even & Kvatinsky, 2010; Pinto, 2013). A third, and of 
course also related difficulty is that much of the research in mathematics education is qualitative. 
Since qualitative empirical research cannot be repeated in a strict sense, reproducibility is replaced 
by the question how close the results are that one obtains in similar contexts; and the answer to this 
question of course depends on the metric used to measure closeness. This lack of reproducibility 
may appear as a serious drawback of mathematics education’s claim to be a scientific discipline;
however, reproducibility has recently been shown to be very low even in many hard sciences such 
as physics, chemistry and engineering (Baker, 2016).

Aware of these difficulties and with the ICMI 8 study characterization of (significant) results as 
background, the EC has observed that results with the potential of being considered solid usually do 
not stand alone but have emerged from a line of research consisting of a larger set of related studies.
Solid findings are typically yielded by such a line of studies. Next, the EC has built on three 
properties of research quality proposed by Schoenfeld (2007 – see there for a much more detailed 
discussion): trustworthiness, generality and importance. Each of these contributes to the solidity of 
research results. A characterisation adapted to the purposes of the EC was agreed upon and 
published in the Newsletter of the EMS (Education Committee of the European Mathematical 
Society, 2011a). I summarize this characterization here, adapting and supplementing it for the
purposes of the present CERME panel.
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need to identify the variables of the didactic situation in order to combine the different facts into a 
coherent network of reasons, which informs the circular process of understanding the learning of 
mathematics and thus improving its teaching. Hence, results are often theoretical as well as 
experimental. Many of our theoretical frameworks are mathematics-specific (e.g., process, object, 
procept), and therefore our research questions and results are often domain-specific. 

Context was seen as relevant with respect to theory as well as beyond: mathematical context 
(contents, concepts, symbols, representations and epistemological status), the community, the 
educational system, among others. Results might be tied not only to the theoretical framework but 
also to the institution that asked the question. It is not the result itself, but the conditions under 
which it was obtained, that make it significant.  

The contextual nature of results implies that results are neither universal nor eternal, that their 
validity is situated in space and time, and that we have to be careful when trying to generalize. The 
validity of a result depends on the interpretation within a theory, and the theory might change with 
time and place, with mathematical content, learning environment, and so on. Hence results are 
permanent but their relevance might be ephemeral.  

Characterising solid findings 
It is on this background that the members of the Education Committee (EC) of the European 
Mathematical Society (EMS) asked themselves what solid findings mathematics education has 
produced. While the question was motivated by the intention of the committee to present 
mathematics education to mathematicians, in particular to EMS members, with an interest in 
mathematics education, committee members were well aware that the exercise of identifying solid 
findings contributes to establishing and organizing mathematics education as scientific discipline 
and to determining where we come from, where we are and where me might go as a research 
community. 

Of course, the first, and possibly most difficult task of the EC was to discuss, agree and explain 
what they meant by ‘solid findings’. A major difficulty in defining what it means that a result it 
solid is the context dependence, mentioned above. A second and related difficulty is complexity. As 
we know well, things are more complex than one might think; we know, for example that the 
mathematics taught and learned in parallel classes with a similar population according to the same 
curriculum may be quite different (e.g., Even & Kvatinsky, 2010; Pinto, 2013). A third, and of 
course also related difficulty is that much of the research in mathematics education is qualitative. 
Since qualitative empirical research cannot be repeated in a strict sense, reproducibility is replaced 
by the question how close the results are that one obtains in similar contexts; and the answer to this 
question of course depends on the metric used to measure closeness. This lack of reproducibility 
may appear as a serious drawback of mathematics education’s claim to be a scientific discipline; 
however, reproducibility has recently been shown to be very low even in many hard sciences such 
as physics, chemistry and engineering (Baker, 2016). 

Aware of these difficulties and with the ICMI 8 study characterization of (significant) results as 
background, the EC has observed that results with the potential of being considered solid usually do 
not stand alone but have emerged from a line of research consisting of a larger set of related studies. 



Trustworthiness includes the explanatory power of research, its rigor and specificity, and whether it 
makes use of multiple sources of evidence. However, a study may be trustworthy but trivial, in 
terms of generality or importance. 

Generality (or scope) refers to the question: What is the scope or generality of a research result? 
How widely does this finding, this idea, or this theory apply across content domains, learning 
contexts, cultures, etc.? For example, did researchers, in different countries and school systems 
obtain comparable or related empirical results? Do theoretical constructs turn out to be useful 
beyond the bounds of the individual studies in which they were developed?  

Trustworthiness and generality together are expected to impart some predictive power to a result. A 
result that has no predictive power cannot be considered solid. On the other hand, the difficulties 
mentioned above, such as context dependence, will usually limit this predictive power. If a result is 
used to predict an outcome in a new context, and the prediction failed, a trustworthy explanation of 
the failure may in fact increase the solidity of the result. 

Importance addresses the question: Does it matter? What is the (actual or potential) contribution of 
the research to theory and practice. Of course, importance is to a large extent a value judgment. As 
in any other field of study, beliefs about what is essential and what is peripheral are not static but 
change over decades, reflecting trends both within and beyond the discipline. Hence recognition of 
the significance of the result by experts contributes essentially to the solidity of a result.

The term ‘solid’ may remind the reader of the term ‘robust’ often used in related situations. 
‘Robust’ often has a technical meaning that refers to a finding having been repeatedly observed or 
confirmed in many studies reporting the same or similar results leading to the same (general) 
conclusions (see Primi, below). The term solid has been chosen intentionally, to refer to results 
rather than findings, and imply that robustness in the technical sense is not possible, nor maybe 
desirable, in mathematics education. 

While robustness can be defined and hence (dis-)proved, solidity cannot. The above is a 
characterization or description – not a definition. Hence, solidity cannot be proved but it can 
definitely be argued by on the basis of the above criteria of significance, trustworthiness, generality 
and adaptability to context.  

Examples 
The second major task of the EC with respect to solid findings was to provide a variety of examples 
of findings that are solid according to the EC’s characterization. While the selection of the examples 
to be presented was somewhat eclectic and partly determined by EC members who were willing to 
write about a topic, the EC as a whole discussed and approved the proposed topics; the EC also 
revised every draft several times. As result a sequence of brief articles has been published 
presenting a rather representative selection including solid findings about cognition and about 
affect, about teaching and about learning, about elementary school and about university, about 
specific mathematical contents and about cross domain issues such as the use of technology, and 
maybe most importantly about theoretical and about empirical results. Most of the issues of the 
EMS newsletter from Issue 82 (December 2011) to Issue 95 (March 2015) present such a solid 
finding.  
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Solid findings are typically yielded by such a line of studies. Next, the EC has built on three 
properties of research quality proposed by Schoenfeld (2007 – see there for a much more detailed 
discussion): trustworthiness, generality and importance. Each of these contributes to the solidity of 
research results. A characterisation adapted to the purposes of the EC was agreed upon and 
published in the Newsletter of the EMS (Education Committee of the European Mathematical 
Society, 2011a). I summarize this characterization here, adapting and supplementing it for the 
purposes of the present CERME panel. 

Trustworthiness includes the explanatory power of research, its rigor and specificity, and whether it 
makes use of multiple sources of evidence. However, a study may be trustworthy but trivial, in 
terms of generality or importance.  

Generality (or scope) refers to the question: What is the scope or generality of a research result? 
How widely does this finding, this idea, or this theory apply across content domains, learning 
contexts, cultures, etc.? For example, did researchers, in different countries and school systems 
obtain comparable or related empirical results? Do theoretical constructs turn out to be useful 
beyond the bounds of the individual studies in which they were developed?  

Trustworthiness and generality together are expected to impart some predictive power to a result. A 
result that has no predictive power cannot be considered solid. On the other hand, the difficulties 
mentioned above, such as context dependence, will usually limit this predictive power. If a result is 
used to predict an outcome in a new context, and the prediction failed, a trustworthy explanation of 
the failure may in fact increase the solidity of the result.  

Importance addresses the question: Does it matter? What is the (actual or potential) contribution of 
the research to theory and practice. Of course, importance is to a large extent a value judgment. As 
in any other field of study, beliefs about what is essential and what is peripheral are not static but 
change over decades, reflecting trends both within and beyond the discipline. Hence recognition of 
the significance of the result by experts contributes essentially to the solidity of a result.  

The term ‘solid’ may remind the reader of the term ‘robust’ often used in related situations. 
‘Robust’ often has a technical meaning that refers to a finding having been repeatedly observed or 
confirmed in many studies reporting the same or similar results leading to the same (general) 
conclusions (see Primi, below). The term solid has been chosen intentionally, to refer to results 
rather than findings, and imply that robustness in the technical sense is not possible, nor maybe 
desirable, in mathematics education.  

While robustness can be defined and hence (dis-)proved, solidity cannot. The above is a 
characterization or description – not a definition. Hence, solidity cannot be proved but it can 
definitely be argued by on the basis of the above criteria of significance, trustworthiness, generality 
and adaptability to context.  

Examples 
The second major task of the EC with respect to solid findings was to provide a variety of examples 
of findings that are solid according to the EC’s characterization. While the selection of the examples 
to be presented was somewhat eclectic and partly determined by EC members who were willing to 
write about a topic, the EC as a whole discussed and approved the proposed topics; the EC also 



Here, I briefly present two of these, one reason for my choice again being personal preference and 
the other representativeness, at least in the empirical – theoretical dimension. 

Do theorems admit exceptions?  

Empirical studies on students’ conceptions of proof have found that many students provide 
examples when asked to prove a universal statement. Universality refers to the fact that a 
mathematical claim is considered true only if it is true in all admissible cases without exception. A 
student who seeks to prove a universal claim by showing that it holds in some cases is said to have 
an empirical proof scheme. The same student is also likely to expect that a statement, even if it has 
been ‘proved’, may still admit exceptions. There is considerable evidence that many mathematics 
students, and some mathematics teachers, rely on validation by means of one or several examples to 
support general statements. The majority of students who begin studying mathematics in high 
school have empirical proof schemes, and many students continue to act according to empirical 
proof schemes for many years, sometimes into their college years.  

While the issue of empirical proof schemes has already been mentioned by Polya (1945), Bell 
(1976) may have been the first to report an empirical study about students’ proof schemes. 
Following Fischbein’s (1982) seminal investigation on universality, the issue has been re-examined 
many times, usually with similar results. For example, findings by Sowder and Harel (2003) 
indicate the appearance of empirical proof schemes among university mathematics graduates. 

The phenomenon of empirical proof schemes is general in the sense that it has been found in many 
cultures, countries, school systems, and age groups. It is persistent in the sense that many students 
continue to do so even after explicit instruction about the nature of mathematical proof. However, it 
is also complex. For example, the London proof study (Healy and Hoyles, 2000) showed that even 
for relatively simple and familiar questions, 14-15 years old high-attaining students’ most popular 
approach was empirical verification but that many students correctly incorporated some deductive 
reasoning into their proofs and most valued general and explanatory arguments.  

How can this pervasive phenomenon be explained? The notion of a “universally valid statement” is 
not as obvious as it might seem to mathematicians. Mathematical thought concerning proof is 
different from thought in all other domains of knowledge, including the sciences, as well as 
everyday experience. In everyday life, the “exception that confirms the rule” is pertinent. Students, 
in particular young children, have little experience with mathematics as a wonderful world with its 
own objects and rules. According to Fischbein (1982), the concept of formal proof is completely 
outside mainstream thinking, and we require students to acquire a new, non-natural basis of belief 
when we ask them to prove. These explanations contribute to the trustworthiness of the findings on 
empirical proof schemes. 

In summary, the studies on empirical proof schemes, only a few of which have been referred to 
here, firmly establish the solidity of the phenomenon of empirical proof schemes. (For a more 
detailed exposition, see Education Committee of the European Mathematical Society, 2011b.)

Concept images in students' mathematical reasoning 

Vinner and Hershkowitz (1980) were the first ones to point out that students’ geometrical thinking 
is frequently based on prototypes rather than on definitions. They have shown, for example, that 
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revised every draft several times. As result a sequence of brief articles has been published 
presenting a rather representative selection including solid findings about cognition and about 
affect, about teaching and about learning, about elementary school and about university, about 
specific mathematical contents and about cross domain issues such as the use of technology, and 
maybe most importantly about theoretical and about empirical results. Most of the issues of the 
EMS newsletter from Issue 82 (December 2011) to Issue 95 (March 2015) present such a solid 
finding.  

Here, I briefly present two of these, one reason for my choice again being personal preference and 
the other representativeness, at least in the empirical – theoretical dimension.  

Do theorems admit exceptions?  

Empirical studies on students’ conceptions of proof have found that many students provide 
examples when asked to prove a universal statement. Universality refers to the fact that a 
mathematical claim is considered true only if it is true in all admissible cases without exception. A 
student who seeks to prove a universal claim by showing that it holds in some cases is said to have 
an empirical proof scheme. The same student is also likely to expect that a statement, even if it has 
been ‘proved’, may still admit exceptions. There is considerable evidence that many mathematics 
students, and some mathematics teachers, rely on validation by means of one or several examples to 
support general statements. The majority of students who begin studying mathematics in high 
school have empirical proof schemes, and many students continue to act according to empirical 
proof schemes for many years, sometimes into their college years.  

While the issue of empirical proof schemes has already been mentioned by Polya (1945), Bell 
(1976) may have been the first to report an empirical study about students’ proof schemes. 
Following Fischbein’s (1982) seminal investigation on universality, the issue has been re-examined 
many times, usually with similar results. For example, findings by Sowder and Harel (2003) 
indicate the appearance of empirical proof schemes among university mathematics graduates. 

The phenomenon of empirical proof schemes is general in the sense that it has been found in many 
cultures, countries, school systems, and age groups. It is persistent in the sense that many students 
continue to do so even after explicit instruction about the nature of mathematical proof. However, it 
is also complex. For example, the London proof study (Healy and Hoyles, 2000) showed that even 
for relatively simple and familiar questions, 14-15 years old high-attaining students’ most popular 
approach was empirical verification but that many students correctly incorporated some deductive 
reasoning into their proofs and most valued general and explanatory arguments.  

How can this pervasive phenomenon be explained? The notion of a “universally valid statement” is 
not as obvious as it might seem to mathematicians. Mathematical thought concerning proof is 
different from thought in all other domains of knowledge, including the sciences, as well as 
everyday experience. In everyday life, the “exception that confirms the rule” is pertinent. Students, 
in particular young children, have little experience with mathematics as a wonderful world with its 
own objects and rules. According to Fischbein (1982), the concept of formal proof is completely 
outside mainstream thinking, and we require students to acquire a new, non-natural basis of belief 



junior high school students tend to think that the altitude has to reach the base (rather than its 
extension). Hence, they draw the altitude inside the triangle, even in a triangle with an obtuse base 
angle. Students' prototype altitude is one that is inside the triangle. This is so, even if the students 
know and can recite the (general) definition of altitude in a triangle.  

Authors from many countries have reported, over the past 35 years, analogous patterns in students' 
reasoning in other areas of mathematics, even among talented students in elementary school, high 
school and college. For example, and in spite of ‘knowing’ the appropriate definitions, students tend 
to act according to rules such as multiplication makes bigger, inflection points have horizontal 
tangents, definite integrals must be positive, and sequences are monotonous.  

A commonality in these and parallel studies is that students do not base their reasoning on the 
definition of the concepts under consideration (even though they are often aware of these definitions 
and can recite and explain them) but rather on what Tall and Vinner (1981) have called their 
concept image: "the total cognitive structure that is associated with the concept, which includes all 
the mental pictures and associated properties and processes" (p. 152). A student’s concept image 
need not be globally coherent and may have aspects which are at variance with the formal concept 
definition.

The notion of a student’s concept image is complex since it is influenced by all of this student’s 
experiences associated with the concept. These include examples, problems the student has solved, 
prototypes the student may have met substantially more often than non-prototypical examples, and 
different representations of the concept including visual, algebraic and numerical ones. Images may
deeply influence concept formation. As a consequence, the concept image is personal and 
continuously changing through the student’s mathematical experiences.  

How can this pervasive phenomenon be explained? While it is not possible to introduce a concept 
without giving examples, particular instances of the concept never suffice to fully determine the 
concept. As a consequence, specific elements of the examples, even if not pertinent to the 
mathematical definition of the concept, become for the student key elements characterizing the 
concept. And even if at the stage a concept is introduced a teacher might make an effort to present a 
rather varied set of examples, as the concept is being used over the coming months or years, some 
of these properties tend to be reinforced because they appear much more frequently than others that 
may recede. Examples abound, and the height of a triangle being vertical in the sense explained 
above is a typical one. Students may see many triangles in which the altitude is inside the triangle, 
and few in which it is not. They might consider these few cases as exceptions (Lakatos might say 
monsters). This explanation contributes to the trustworthiness of the findings on empirical proof 
schemes.

In summary, a solid finding of mathematics education research, supported by dozens of studies in 
many difference contexts, is that students' mathematical reasoning is frequently based on their 
concept images rather than on a mathematical concept definition. A more detailed exposition of this 
solid finding has been published elsewhere (Dreyfus, on behalf of the EC of the EMS, 2014).
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when we ask them to prove. These explanations contribute to the trustworthiness of the findings on 
empirical proof schemes.  

In summary, the studies on empirical proof schemes, only a few of which have been referred to 
here, firmly establish the solidity of the phenomenon of empirical proof schemes. (For a more 
detailed exposition, see Education Committee of the European Mathematical Society, 2011b.) 

Concept images in students' mathematical reasoning 

Vinner and Hershkowitz (1980) were the first ones to point out that students’ geometrical thinking 
is frequently based on prototypes rather than on definitions. They have shown, for example, that 
junior high school students tend to think that the altitude has to reach the base (rather than its 
extension). Hence, they draw the altitude inside the triangle, even in a triangle with an obtuse base 
angle. Students' prototype altitude is one that is inside the triangle. This is so, even if the students 
know and can recite the (general) definition of altitude in a triangle.  

Authors from many countries have reported, over the past 35 years, analogous patterns in students' 
reasoning in other areas of mathematics, even among talented students in elementary school, high 
school and college. For example, and in spite of ‘knowing’ the appropriate definitions, students tend 
to act according to rules such as multiplication makes bigger, inflection points have horizontal 
tangents, definite integrals must be positive, and sequences are monotonous.  

A commonality in these and parallel studies is that students do not base their reasoning on the 
definition of the concepts under consideration (even though they are often aware of these definitions 
and can recite and explain them) but rather on what Tall and Vinner (1981) have called their 
concept image: "the total cognitive structure that is associated with the concept, which includes all 
the mental pictures and associated properties and processes" (p. 152). A student’s concept image 
need not be globally coherent and may have aspects which are at variance with the formal concept 
definition. 

The notion of a student’s concept image is complex since it is influenced by all of this student’s 
experiences associated with the concept. These include examples, problems the student has solved, 
prototypes the student may have met substantially more often than non-prototypical examples, and 
different representations of the concept including visual, algebraic and numerical ones. Images may 
deeply influence concept formation. As a consequence, the concept image is personal and 
continuously changing through the student’s mathematical experiences.  

How can this pervasive phenomenon be explained? While it is not possible to introduce a concept 
without giving examples, particular instances of the concept never suffice to fully determine the 
concept. As a consequence, specific elements of the examples, even if not pertinent to the 
mathematical definition of the concept, become for the student key elements characterizing the 
concept. And even if at the stage a concept is introduced a teacher might make an effort to present a 
rather varied set of examples, as the concept is being used over the coming months or years, some 
of these properties tend to be reinforced because they appear much more frequently than others that 
may recede. Examples abound, and the height of a triangle being vertical in the sense explained 
above is a typical one. Students may see many triangles in which the altitude is inside the triangle, 
and few in which it is not. They might consider these few cases as exceptions (Lakatos might say 



Conclusion 
The list is of solid findings presented by the EC of the EMS is, of course, not exhaustive but limited 
by the time of service of the committee and the people who served on it. I would like to encourage 
CERME members (and other researchers) to write and publish articles about solid findings they are 
aware of and consider important. This might have the desirable effect of producing a type of article 
lacking almost completely from our literature – review articles. Let me make just one suggestion:
Work to raise the awareness of issues and of research on teaching and learning among university 
lecturers and tutors is necessary; it usually improves students’ attitudes but effects on learning are 
limited. Research in at least four countries (USA, Germany, England, Finland) has shown that work 
with students has more potential for large scale effects. It seems to me that a suitable review article 
might not only inform many mathematics educators of an important line of research but might have 
a considerable effect on university teaching centres, an effect that a single study report could (and 
should) never have.  

In conclusion, the researchers and teams referred to above have shown that mathematics education 
has, over the past 50 years, produced theoretical and empirical results that are solid in the sense that 
they have explanatory and predictive power, that they can be applied in contexts beyond those 
involved previous studies, and that they are recognised as important contributions that have 
significantly influenced the research field, for example by providing a theoretical lens that allows to 
see an observed phenomenon differently from how it was seen before.  
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Solid findings in mathematics education:  

A psychometric approach  
Caterina Primi  

 

The foundation of all rigorous research designs is the use of measurement tools that are 
psychometrically sound. The purpose of this paper is to present the scales’ proprieties such as 
reliability, validity, and invariance that are fundamental prerequisite for assuring the integrity of 
study findings. Providing examples of how to assess the psychometric properties of tools used in 
mathematics research may be helpful for future researches in this topic.  

 

In the document prepared by the Education Committee of the European Mathematics Society 
(2011), the description of “solid findings” includes an aspect of “robustness”. That means that 
findings in the research on mathematics learning and teaching should be repeatedly observed or 
confirmed in many studies reporting the same or similar results leading to the same (general) 
conclusions. To achieve this goal rigorous research designs and measurement tools that are 
psychometrically sound are needed. Starting from these premises I will try to identify the 
contribution of psychometrics to solid findings in mathematics education.  

Measurement  
In many educational measurement situations, the variables of interest such as ability, beliefs, 
attitudes, and anxiety are not directly observable. As such, they are latent variables or traits. 
Indeed, they are easily described but they cannot be measured directly, as can height or weight for 
example, since these variables are concepts rather than physical dimensions.  

To give an example of a measurement process, imagine that a researcher is interested in measuring 
mathematics anxiety (MA). Mathematical anxiety is commonly defined as an adverse emotional 
reaction to math or the prospect of doing math (Hembree, 1990). It is a state of nervousness and 
discomfort brought upon by the presentation of mathematical problems and may impede 
mathematics performance irrespective of true ability (Ashcraft, 2002; Ashcraft & Moore, 2009). 
The negative consequences of mathematical anxiety are well-documented (Morsanyi et al, 2017). 
Students with high levels of mathematical anxiety might underperform in important test situations, 
they tend to hold negative attitudes towards mathematics, and they are likely to opt out of elective 
mathematics courses, which also affects their career opportunities. Over the last decade there has 
been more interest in understanding how and when MA develops (Dowker, Sarkar, & Looiet, 2016; 
Harari, Vukovic, & Bailey, 2013; Jameson, 2013; Ramirez, Gunderson, Levine, & Beilock, 2013), 
investigating the incidence of MA, and its effects on primary school samples (e.g. Galla & Wood, 
2012; Karasel, Ayda, & Tezer, 2010; Wu, Barth, Amin, Malcarne, & Menon, 2012), as well as its 
consequent influence on math achievement (Wu et al., 2012). Given the widespread prevalence of 
MA and its detrimental long-term impact on academic performance and professional development, 
it is important to measure this construct in a valid and reliable way. 



 

 

From a measurement prospective it is not possible to directly observe MA. Following the latent trait 
theory (Lord & Novich, 1968), we can measure something that cannot be observed only by 
inference from what can be observed. Thus, while the trait itself is not observable, its interaction 
with the environment produces, at the surface level, observable indicators which can be used to 
infer the level or degree of the latent trait. Considering MA, although we cannot observe our latent 
variable, its existence may be inferred from behavioural manifestations or manifest variables (for 
example, as feeling tense, fearful and apprehensive about mathematics). These manifestations make 
it possible to measure MA asking, for example, a series of questions (the items of the instruments) 
that describe each manifestation (for example, “I feel nervous when I use numbers”). Indeed, a 
measurement instrument can be constructed using these items with the purpose of assessing the 
unobservable trait. 

However, the primary goal of educational measurement is to determine the level of the latent trait 
that a person possesses. In general, scaling is the process of establishing the correspondence 
between the observations and the latent variable. Several mathematical approaches have been 
developed in order to define how to measure a latent trait through item responses, assuming that the 
latent trait is continuous. These approaches include Classic Test Theory (CTT) and the more recent 
Item Response Theory (IRT).  

Traits, indicators, and their relationships can be represented graphically. Figure 1 represents the 
measurement structure of the Abbreviated Math Anxiety Scale (AMAS; Hopko, Mahadevan, Bare, 
& Hunt, 2003). This is a two-factor measure of MA that is considered a parsimonious, reliable, and 
valid scale. The two factors are Learning Math Anxiety, which relates to anxiety about the process 
of learning, and Math Evaluation Anxiety, which is more closely related to testing situations. The 
AMAS is one of the most commonly used measure of MA in college and high school students (for a 
review, see Eden et al., 2013). The scale has been translated into several languages, and it has been 
found to be a valid and reliable measure in a variety of populations (Polish version: Cipora, 
Szczygiel, Willmes, & Nuerk, 2015; Italian version: Primi, Busdraghi, Tomasetto, Morsanyi, & 
Chiesi, 2014; Persian version: Vahedi & Farrokhi, 2011). Recently, it has also been adapted for 
children between the ages of 8 to 11 (Italian version: Caviola et al. 2017), and 8 to 13 (English 
version: Carey et al. 2017). 

Looking at the details of Figure 1, the ovals represent latent, unobserved variables, specifically, 
Learning Math Anxiety and Math Evaluation Anxiety. The squares represent the observed variables 
(items); five for Learning Anxiety (e.g., listening to a lecture in a math class), and four for Math 
Evaluation Anxiety (e.g., thinking about an upcoming math test one day before). The relations 
between items and the latent traits are represented with arrows that indicate that the traits cause the 
corresponding indicators. In Figure 1, the error components that we have to take into account in the 
measurement process are also represented. Any observed score has two parts: The true score part 
and the error part. Intuitively, we control for the error and we estimate the true score by taking 
several measures and averaging them. We assume that averaging several measures results in a better 
estimate of the true score. These ideas are formalized in the concept of reliability. We use multiple 
indicators or items to better measure the trait. This way, we can have more information and reduce 
the error components, that is, we can maximize the reliability or precision of the measurement tool.  



 

 

Moreover, verifying the relationships among indicators and the corresponding traits, through a 
confirmative procedure, such as a confirmatory factor analysis (CFA), we can verify that the 
measurement tool truly captures the underlying trait, attesting the validity of the measurement tool 
(Zumbo, 2009). Indeed, obtaining evidence of validity is part of the measurement process. 

 

Figure 1: Model of the Abbreviated Math Anxiety Scale (AMAS) 

 

Invariance  
Measurement validity also implies that the meaning of the construct and its operationalization is the 
same in different social and cultural contexts. Testing the invariance of the test concerns the extent 
to which the psychometric properties of the test generalize across groups or conditions. Therefore, 
measurement invariance is a prerequisite of the evaluation of substantive hypotheses regarding 
differences between contexts and groups. 

If the research question is, for example, about assessing gender differences in MA, and our test 
shows that female students have higher math anxiety scores than male students, we would be 
tempted to interpret test scores in terms of the trait that they are intended to reflect, i.e., that females 
have greater MA than males. However, it is possible that the test scores do not purely reflect the 
latent trait, i.e. MA in each group. That is, it is possible that the test is biased in some way. 

Bias is used as a general term to represent the lack of correspondence between measures applied to 
different groups (Van de Vijver & Tanzer, 2004). There are different kinds of bias, for example 
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construct bias, when the meaning of the studied trait varies among groups; item bias, when the 
meaning of the item content is different in certain groups, or method bias, when the characteristics 
of instruments induce measurement errors for particular groups of respondents.  

These biases violate the assumption of measurement invariance, which holds that measurement 
properties should not be affected by group membership (Zumbo, 2009). In other words, the 
observed scores should depend only on the latent construct, and not on group membership. An 
observed score is said to invariantly measure the construct if it is affected by the true level of the 
trait in a specific person, rather than by group membership or context (Meredith, 1993). This means 
that people belonging to different groups, but with the same level of a trait, are usually expected to 
display similar response patterns on items that measure the same construct. Thus, when studying 
test invariance, we determine whether the tool functions equivalently in different groups, that is, we 
test the absence of biases in the measurement process.  

A well-known method to assess invariance is multiple group confirmatory factor analysis 
(MGCFA) in which the theoretical model is compared to the observed structure in two samples. 
Testing measurement invariance involves a step-by-step procedure in which nested models are 
organized in a hierarchal ordering. Specifically, the following invariance models are tested. The 
configural one, which refers to testing whether an instrument exhibits the same structure (Do the 
groups show the same general factor structure? Same number of factors? Same conceptual 
definition of latent constructs?). The next model, the metric one, tests whether the items function 
equally across groups. If this invariance is established, the groups can be said to have the same unit 
of measurement. The final model, the residual one, tests if measurement errors are the same across 
groups, which means that the scale is be equally reliable in both groups. 

Applying this method, we tested the equivalence of the AMAS across male and female Italian 
students (Primi et al., 2015). With regard to the measurement issue, given that the assessment of 
MA relies on self-report measures, it is important to note that females are more willing to report 
their feelings of anxiety than males (e.g., Goetz, Bieg, Lüdtke, Pekrun, & Hall, 2013). This finding 
highlights the importance of employing measures of MA which are invariant across genders. That 
is, there is a need to test if the items measure the same construct when administered to male and 
female respondents, controlling for the differences in true group means. Indeed, to compare groups 
of individuals with regard to MA, one must be sure that the values that quantify the construct are on 
the same measurement scale. 

The issue of measurement invariance has received considerable attention also in cross-cultural 
research because people from different cultures might have different understanding of the same 
questions included in an instrument (Milfont & Fischer, 2010). Indeed, testing invariance is of 
particular concern when using a translated version of a survey instrument, and it is a necessary 
prerequisite for the translated instrument to be used in cross-cultural research (e.g., Baumgartner & 
Steenkamp, 1998). 

For this reason, we tested the invariance of the Italian version of the Statistical Anxiety Scale (SAS) 
developed by Vigil-Colet, Lorenzo-Seva, and Condon (2008). Learning statistics is often associated 
with statistics anxiety, defined as “extensive worry, intrusive thoughts, mental disorganization, 
tension, and physiological arousal [. . .] when exposed to statistics content, problems, instructional 



situations, or evaluative contexts” (Zeidner, 1991, p. 319). In the original validation study, Vigil-
Colet et al. (2008) analyzed the internal structure of the SAS using exploratory factor analysis. The 
results attested a three-factor structure: Examination Anxiety (referring to the anxiety involved when 
taking a statistics class or test), Interpretation Anxiety (referring to the anxiety experienced when 
students are making a decision about or interpreting statistical data), and Fear for Asking for Help 
(referring to the anxiety experienced when asking a fellow student or a teacher for help in 
understanding specific contents). The primary aim of our work was to confirm this factorial 
structure of the Italian version using CFA. As confirmation of the same base factor model was not a 
sufficient condition to establish the equivalence of the Spanish and Italian versions of the SAS, we 
tested the invariance of the factor model’s parameters between the Italian sample and a comparison 
Spanish sample. Since the results indicated a substantial equivalence of the Italian and Spanish 
versions of the SAS, we can use the translated instrument in cross-cultural research, we can make 
meaningful comparisons between Italian and Spanish students’ statistics anxiety, and we can 
develop intervention strategies to enhance students’ achievement across Spanish and Italian 
educational frameworks.  

To sum up, if measurement tools are not “invariant”, instruments do not measure the same trait 
across the different groups or contexts, results are not comparable, and inferences about differences 
are misleading. As a consequence, methods for investigating biases should be implemented when 
new measures are created, when existing measures are adapted to new contexts or for different 
populations, or when existing measures are translated. 
Conclusion 
The foundation of all rigorous research designs is the use of measurement tools that are 
psychometrically sound. Confirmation of the validity and reliability of tools is a prerequisite for 
assuring the integrity of study findings. 

In empirical research, comparisons are often made between distinct population groups, including 
groups from different cultures, genders, or that speak different languages. These analyses implicitly 
assume that the measurement of these outcome variables is equivalent across groups, although this 
assumption often remains untested. Measurement invariance can be tested and it is important to 
make sure that the variables used in the analysis are indeed comparable across groups. 

In conclusion, testing the psychometric properties of tools, such as measurement invariance might 
help in increasing the robustness of findings across various groups and contexts. 



Can the outcomes of PISA 2015 contribute to evidence-based decision making in 
mathematics education? 

Gerry Shiel 

Drawing on data from the OECD’s Programme for International Assessment (PISA), which 
assesses mathematical literacy and other domains among 15-year olds in over 70 countries every 
three years, this paper explores the extent to which PISA outcomes in 2015 can be described as 
‘solid’ and hence contribute to evidence-based decision making. It identifies aspects of PISA that 
render its findings ‘solid’, but also points to pitfalls that arise in interpreting PISA outcomes 
related to achievement. The paper concludes by examining how PISA can contribute to thinking 
about the nature of evidence-based findings in mathematics education.  

Introduction 
A key feature of the educational landscape since 2000 has been the Programme for International 
Student Assessment (PISA), a study sponsored by the Paris-based Organisation for Economic 
Cooperation and Development (OECD) that assesses performance in mathematics, reading literacy 
and science among 15-year olds in over 70 countries every three years. In addition to administering 
tests to students, PISA administers questionnaires to students, their parents and their school 
principals. The student questionnaire asks about students’ socioeconomic status, their attitudes 
towards mathematics and other subjects, and their instructional experiences. This paper looks at 
performance outcomes in the two most recent PISA cycles – 2012, when mathematics was a major 
assessment domain, and 2015, when mathematics was a minor domain, and PISA moved from a 
paper-based to computer-based testing in most participating countries.  

Interest in the extent to which PISA provides ‘solid’ or ‘evidence-based’ findings arises because of 
the strong impact that PISA has on policy making in many participating countries. In Ireland, for 
example, a significant drop in performance in mathematics and reading literacy in PISA 2009 led to 
the implementation of a National Strategy to Improve Literacy and Numeracy 2011-2020 (DES, 
2011). The strategy set out a series of measures designed to improve performance, including plans 
to enhance initial teacher education, curriculum and assessment. In parallel with the Strategy, 
revised curricula in mathematics at post-primary level have been rolled out in a phased basis since 
2010 in an initiative known as ‘Project Maths’. This involves a strong focus on developing 
students’ conceptual understanding in mathematics, and on applying mathematical knowledge in 
solving problems in context using a range of methods. Ní Shuilleabháin (2013) described Project 
Maths as ‘a philosophical shift in Irish post-primary classrooms from a highly didactic approach 
with relatively little emphasis on problem solving towards a dialogic, investigative problem-focused 
approach to teaching and learning mathematics’ (p. 23).  

A key feature of the National Strategy is the inclusion of national targets for performance in PISA 
mathematics. In an interim review of the Strategy (DES, 2017), there are targets of 10.5% of 
students achieving below proficiency level 2 by 2020, and 12.0% achieving levels 5-6. The first of 
these is quite an ambitious relative to current performance (15% performed below Level 2 in 2015), 
while the second is more modest (11% performed at Levels 5-6 in 2015).  



Efforts to ensure that PISA findings are solid 
The procedures around the development of PISA survey instruments, including the mathematics 
test, are designed to ensure that findings can be relied on and used by participating countries to 
enhance teaching and learning, and raise performance standards. The development of the PISA 
mathematics test and scale encompasses the following:  

 An assessment framework is developed and published at the outset of each PISA cycle (e.g.,
OECD, 2013). The framework provides a definition of mathematical literacy in PISA, and
outlines the content areas (mathematical content categories) and processes to be assessed,
the contexts in which items are to be embedded and the item formats to be used. Items are
then developed in a way that ensures that all elements of the framework are adequately
addressed. The assessment framework is a key source of evidence to support the validity of
the PISA tests.

 Items based on the framework are submitted by countries, or are developed by the
consortium charged by the OECD with implementing PISA. Items are vetted by countries
for cultural and linguistic appropriateness and suitable items are forwarded for field trialling.

 The PISA field trial is conducted on a sample of 15-year olds in each participating country,
and the performance of items is assessed within and between countries. The outcomes of
both classical item analysis and item response theory scaling are taken into account in
determining the suitability of items. These items, along with any trend items not field-
trialled, are then used to compile test forms for the main study.

 Considerable effort goes into ensuring that items are scored accurately, using scoring guides
prepared by the PISA consortium. Many items are marked by two or four scorers, and real-
time indices of inter-rater reliability are used to guide the quality of scoring.

 The PISA main study is implemented. Quality control is a key aspect of the Main Study, as
countries are held accountable to quality standards (see below).

 Performance on PISA is scaled using Item Response Theory models and links with
performance on earlier rounds are established.

 A document, PISA Technical Standards (e.g., OECD, 2014), is issued in each cycle to guide 
countries in ensuring that their samples, response rates, security procedures, translation and coding 
practices are of a sufficiently high standard that their data warrants inclusion in international 
reports. For example, the 2015 Technical Standards indicate that response rates of 85% at school 
level and 80% at the student level are required. The achieved samples of countries failing to meet 
these criteria are examined in detail for potential bias. In some cases, countries have not been 
included in international reports because of low response rates (e.g., the Netherlands in 2000, and 
the UK in 2003).  

At the end of each PISA cycle, a technical report is prepared by the PISA consortium and is issued 
by the OECD (e.g., OECD, 2017). It details the procedures used in each aspect of the 
implementation of PISA, including sample design, field operations, quality control, survey 
weighting, scaling, proficiency scale construction, and coding reliability.  



 

 

The consortium charged with implementing PISA establishes expert groups for mathematics, 
science and reading literacy, and there is also a Technical Advisory Group, which advises the 
Consortium on its use of scaling and other procedures, and a Questionnaire Expert Group. These 
groups act as a further check on the quality of the PISA instruments and outcomes.  

Hence, PISA has taken several precautions to ensure the quality and solidity of its findings. 
Notwithstanding the fact that PISA assesses the mathematics that students require for life after they 
leave school (or mathematical literacy) and for future study, rather than mathematics based on 
school curricula, the steps taken to ensure that findings are solid are extensive.  

The introduction of computer-based assessment as a threat to the solidity of 
PISA findings  
Prior to 2015, PISA implemented computer-based testing in subsets of countries on an optional 
basis. In 2012, for example, mathematics was assessed on paper in all 65 participating countries, 
and on computer on an experimental basis in a subsample of 32 countries. In 2015, however, there 
was a shift to computer-based assessment in most participating countries, with 56 of 73 countries, 
including all 34 OECD member countries, administering PISA in this format. The remaining 
countries administered PISA on paper.  

The transition to computer-based testing in PISA presented some significant challenges for the 
OECD. A key component of PISA is the availability of trend data – that is, performance from one 
PISA cycle to the next must be placed on the same underlying scale so that average performance 
and performance across proficiency levels in each country and on average across OECD countries 
can be tracked from cycle to cycle. The task facing the OECD and its contractors1 was to establish 
the feasibility of linking performance on the 2015 computer-based tests to scales based on 
performance on paper-based tests in earlier cycles. This was further complicated by a requirement 
to continue to provide trend data for countries that administered PISA in paper-based form in 2015.  

There were several ways in which the transition to computer-based testing could have been 
managed, given the imperative to maintain trends. For example, all students (or equivalent samples 
of students) taking PISA 2015 could have been given paper-based and computer-based tests. Then 
trends could have been established with reference to performance on the paper-based measures and 
new computer-based scales could have been devised, based on the computer-based items, and used 
for trend analysis in the future. This would have eliminated any concerns about mode effects (an 
advantage or disadvantage arising from implementing PISA on computer).  

The approach taken by the OECD and its contractors was to make adjustments in 2015 based on 
how the same items performed on paper and on computer in the PISA 2015 Field Trial, which took 
place in all participating countries in spring or autumn 2014. In the case of mathematics, which was 
a minor domain, items used in earlier PISA cycles (i.e., trend items) were transferred from paper to 
computer, and equivalent representative samples of students from each country took the paper- and 
computer-based tests. Hence, the purpose of the mode study was to ascertain whether tasks or items 
                                                 
1 The lead contractor in PISA 2015 was the Educational Testing Service in the US. The lead contractor in all earlier 
cycles of PISA was the Australian Council for Educational Research.  



presented in one mode (i.e., paper) functioned differently when presented in another mode (i.e., 
computer) and vice versa. For the purpose of analysis, items were pooled across countries, as 
individual countries did not have sufficiently large samples of students to allow for reliable 
comparisons of individual items across modes, or for an analysis of item-by-country interactions. 
Where item parameters were judged to be ‘strongly invariant’ (that is, similar on paper and 
computer), item parameters were constrained to be the same in the 2015 Main Study (OECD, 2017). 
In the course of the Field Trial analysis, a subset of items showed mode effects. To account for 
these effects in the Main Survey, different item parameters were estimated for paired paper- and 
computer-based items. According to the OECD (2017, Chp. 7, p. 53), ‘this established an invariance 
model that assumes scalar or strong invariance for the majority of items and metric invariance for a 
minority of items for which difficulty differences were detected’. A correlation of .95 was found 
between paper-based and computer-based item parameters for mathematics in the Field Trial, 
further supporting a link between performance on computer-based tests in 2015 and paper-based 
tests in earlier cycles, as well as between computer- and paper-based tests administered in 2015.  

The PISA 2015 Field Trial yielded other interesting findings that applied to mathematics as well as 
other domains. For example, across countries, students taking the Field Trial tests on computer had 
significantly fewer omitted responses than students taking the paper versions. Furthermore, there 
were fewer effects of cluster positon on performance when tests were administered on computer 
(that is, items administered by computer were more likely to perform in the same way regardless of 
whether they appeared early or late in the test). However, as Jerrim et al. (in press) note, while the 
Field Trial did not yield large differences across modes for male and female students, no analyses 
were conducted to examine potential interactions with variables such as ethnicity or socioeconomic 
status. They also questioned the representativeness of the samples used in the Field Trial, which, in 
some countries, could be described as convenience samples. They viewed this as weakening the 
external validity of the results, given the implications for the adjustments made within Main Study 
scaling to enhance cross-mode comparability.  

Overall performance on PISA 2015 mathematics 
The PISA main study took place in all participating countries in 2015. The OECD issued two 
volumes of findings in December 2016 that included country mean scores in mathematics, and 
comparisons with performance in earlier cycles. The mean score of students in Ireland in 2015 was 
503.7 (OECD, 2016). This was significantly above the average across OECD countries (490.2), and 
was about the same as in 2012 (501.5), 2006 (501.5) and 2003 (502.8). Indeed, the only year in 
which average performance moved outside the 501-504 range was in 2009 (487.1).  

While the mean mathematics score of students in Ireland was stable in the transition to computer-
based assessment, a number of countries saw large declines in performance between 2012 and 2015. 
These included Korea (down 29.7 score points, though still well above Ireland at 517.4), Chinese 
Taipei (17.5), Hong Kong (13.3), Poland (13 points), and the Netherlands (10.7 points). On the 
other hand, a small number of countries experienced increases in achievement, including Sweden 
(15.7 points), Norway (12.4), the Russian Federation (11.9), and Denmark (11.1).  

It is noteworthy, however, that Norway, Denmark and the Russian Federation were among the 
countries with the highest use of computers by students in mathematics classes in PISA 2012 for 



purposes such as entering data on a spreadsheet, drawing a graph of a function, constructing 
geometric figures, re-writing algebraic expressions and solving equations (OECD, 2015). In 
contrast, Korea, Hong-Kong China and Ireland were among the countries with the lowest usage of 
ICTs by students in mathematics classes.  

The fact that Ireland’s overall performance on PISA 2015 is similar to 2012 can be interpreted in a 
number of ways:  

 It suggests that students in Ireland are equally adept as solving mathematical problems in
paper and computer-based formats; indeed, this would suggest that the mode of assessment
does not matter, at least for students in Ireland.

 It suggests that students in Ireland improved in their mathematics between 2012 and 2015,
but this improvement was largely hidden because of the transition to computer-based
testing.

The second of these seems the most likely. PISA 2015 was the first PISA cycle in which all 
students in Ireland’s sample had studied under the Project Maths syllabus. This interpretation is 
consistent with a finding that students in initial Project Maths schools (24 schools that had 
implemented Project Maths first) outperformed students in non-initial schools in PISA 2012 
mathematics (see Merriman et al. 2013), though the difference was relatively small (4 score points) 
and not statistically significant.  

A further relevant finding relates the optional computer-based assessment of mathematics 
administered as part of PISA 2012. In that assessment, students in Ireland had a mean score that 
was not significantly different from the corresponding OECD average score, despite achieving a 
mean score on paper-based mathematics that was significantly above the corresponding OECD 
average in the same year (Perkins et al., 2013). Hence, performance on PISA 2015 can be 
interpreted as being indicative of a possible improvement.  

Interestingly, the OECD has continued to hold the positon that mode effects in PISA 2015 
mathematics were small and did not impact on the performance of participating countries (OECD, 
2016, 2017). Implicit in this is the view that performance on computer-based assessment in 2015 
can be linked back to performance on paper-based assessment in earlier PISA cycles.  

Other threats to the solidity of PISA 2015 findings 
The transition to computer-based assessment in PISA is clearly one threat to the validity of scores 
reported by the OECD for PISA 2015 mathematics. However, there were several other changes to 
PISA 2015 which could also impact on the interpretation of outcomes, and hence the solidity of 
PISA findings. The changes – several of which occurred because a new consortium was contracted 
by the OECD to gather and analyse PISA data – include:  

 Changes in the assessment design – the design of PISA 2015 was modified to reduce or
eliminate differences in construct coverage for major and minor assessment domains for test
takers. In practice, this meant that fewer students took mathematics in PISA 2015, compared
with earlier cycles, but more mathematics items were included in the assessment, thereby
allowing for broader construct coverage.



 Changes in the calibration sample – prior to 2015, item difficulty in PISA was estimated
using the responses of students in the most recent cycle (e.g., in 2012, this comprised data
from students who took PISA in 2009). Moreover, the calibration sample in earlier cycles
comprised a random sample of 500 students per participating country. In 2015, item
parameters were re-estimated using all students in all participating countries in the previous
four PISA cycles. This change was implemented to reduce the uncertainty around estimates
of the item parameters used in calibration.

 Changes to the scaling model – in earlier PISA cycles, a one-parameter Item Response
Theory (IRT) model (with adjustment for partial credit) was used to scale performance. In
2015, item functions based on a two-parameter logistic IRT model for dichotomous data,
and a generalized partial-credit model for polytomous data were used in scaling data in the
case of new items, while functions based on a one-parameter model were used (as
previously) with trend items. Unlike its predecessor, the new approach does not give equal
weighting to all items when constructing a score, but assigns optimal weights to tasks based
on their capacity to distinguish between high- and low-achieving students.

 Changes in the treatment of differential item functioning across countries – where items
performed unexpectedly differently across countries, the calibration in 2015 allowed for a
number of country-by-cycle-specific item parameters. In previous cycles, items that showed
differential item functioning (e.g., because of differences across languages) were dropped
from scaling. The change in 2015 was intended to reduce the dependency of country
rankings on the selection of items included in the assessment (for a country) and hence
improve fairness (OECD, 2016).

 Changes in the treatment of not-reached items – in PISA 2015, not-reached items
(unanswered items at the end of a section, such as at the end of the first and second hour of
testing) were treated as not administered when estimating proficiency (i.e., scoring student
responses), whereas in previous PISA cycles they were treated as incorrect. A reason for this
change was to eliminate the opportunity for countries and test takers to randomly guess
answers to multiple-choice questions at the end of a section of the test. As in previous
cycles, not-reached items were treated as not administered when computing item parameters
(i.e., during scaling).

The OECD (2016) acknowledges that improvements to the PISA test design and to scaling in PISA 
2015 can be expected to result in reductions in link error (the error associated with particular sets of 
items used in a particular cycle) between 2015 and future cycles. However, it also acknowledges 
that the changes described above may result in increased link error between PISA 2015 and earlier 
cycles, as past cycles used a different design (paper-based assessment) and used different scaling 
procedures. Furthermore, the OECD (2016) acknowledges that the change in the treatment of not-
reached items could result in higher scores than would have been estimated in earlier PISA cycles 
for countries with many unanswered items.  



Conclusion 
The problem in terms of interpreting trend scores is that any of the changes implemented by the 
OECD and their contractors in relation to the design and scaling of PISA in 2015 could have 
impacted on the scale scores achieved by students. Interpretation becomes even more difficult when 
multiple changes are implemented, as these may interact with one another in complex ways. The 
OECD has sought to address this in a limited way by rescaling data from earlier PISA cycles using 
the methods implemented in 2015. Thus, in the case of Ireland, performance on PISA mathematics 
changed by +2 score points between 2012 and 2015 (see above), but, the change was 6.0 score 
points when newer scaling methods were applied to the 2012 mathematics data. On average across 
OECD countries, the impact of changes to scaling procedures was also reported to be small (a 
published drop of 3.7 score points between 2012 and 2015, and a drop of 2.5 score points following 
rescaling of the 2012 data) (OECD, 2016). For most countries, differences arising from re-scaling 
are within the error margins of the original difference scores reported by the OECD.  

While the readjustment of scores from PISA 2012 using the new scaling procedures implemented in 
2015 may go some way towards reassuring users that PISA outcomes are comparable over time, the 
sheer number of changes implemented in PISA 2015, including the change to computer-based 
testing, indicates that particular care should be exercised in interpreting PISA 2015 data.  

Efforts to improve the design and scaling of PISA 2015 also contain some lessons for efforts to 
generate solid data in mathematics education. On the one hand, solid findings can be obtained by 
implementing the same testing procedures and methodologies on multiple occasions (e.g., pre- and 
post-intervention). In the words of Beaton (1990), ‘when measuring change, do not change the 
measure’ (p. 165). On the other hand, at least in the case of longitudinal, multi-year surveys such as 
PISA, there is an ongoing need to build innovation into all aspects of the project to maintain 
relevance and deliver more robust measures for the future. One clear danger is that, when 
mathematics becomes a major assessment domain in PISA 2012, the construct measured will also 
change, as new items specifically designed to take advantage of the affordances computers, will be 
introduced for the first time.  
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Introduction 
The role and importance assigned to argumentation and proof in the last decades has led to an 
enormous variety of approaches to research in this area. The 27 papers and 1 poster presented in the 
Thematic Working Group (TWG) “argumentation and proof” come from 18 countries across 4 
different continents, and offer a wide spectrum of perspectives. These contributions intertwine 
educational issues with explicit references to mathematical, logical, historical, philosophical, 
epistemological, psychological, curricular, anthropological and sociological issues. 

Taking into account this diversity, the contributions were presented and discussed in working sessions 
organized under the following 7 themes: (1) assessments issues of argumentation and proof; (2) 
theoretical and philosophical issues of argumentation and proof; (3) argumentation and proof in 
textbooks; (4) tools for analyzing argumentation and proof; (5) intervention studies on argumentation 
and proof; (6) argumentation and proof at the university mathematics level; and (7) task design in 
argumentation and proof. Since the themes are intertwined, each paper could be assigned to multiple 
themes. Therefore, the assignment of papers to themes was guided by a “best fit” approach as well as 
practical considerations. We will briefly discuss each theme separately.  

Assessment issues of argumentation and proof 

This theme included three papers, related to issues of assessment in the area of argumentation and 
proof: Kónya and Kovács’ paper focused on development of inductive reasoning of prospective 
teachers by analyzing their problem-solving processes on a carefully selected problem. Hemmi, Julin 
and Pörn’s paper investigated teachers’ perspectives on the possibility of using students’ common 
misconceptions, identified in prior research, as a starting point for activities that develop students’ 
understanding and skills in proof. Demiray and Bostan’s paper investigated pre-service middle school 
mathematics teachers’ interpretations of statements regarding proof by contrapositive and the reasons 
for their incorrect interpretations. The discussion of the three papers in the TWG raised several 
important issues, such as:   

The influence of sociocultural context should be considered in assessment findings. 

Alternative variations of task design should be considered in the interpretation of students’ 
performances. 

Adopting a more positive model. Should researchers aim to identify students’ competencies rather 
than misconceptions?  



Theoretical and philosophical issues of argumentation and proof  
The two papers in this theme addressed implications of Habermas’ rationality theory. Conner’s paper 
discussed how Habermas’ rationality can be used to analyse how teachers support argumentation 
processes in their classrooms. Boero’s paper showed the added value of analyzing individual 
student’s thinking processes while attempting to prove a statement. The discussion of the papers 
raised several points, including the following:  

What is the added value of applying Habermas’ rationality to a particular kind of analysis, and what 
would be lost if it was not used?  

The difficulty of applying the categories of Habermas’ rationality to coding data and, in particular, 
the difficulty in distinguishing between teleological rationality and epistemological rationality.  

Argumentation and proof in textbooks 

The five papers presented in this theme were grouped based on their relation to argumentation and 
proof in textbooks. Žalská’s paper described how different types of arguments enacted in one 
classroom were influenced by the textbook, the teacher beliefs, and the students. Wong’s paper 
presented an examination of geometry chapters in a prominent Hong Kong textbook series and 
illustrated the limited opportunities for students to engage in the process of generalizing and providing 
proofs. Cousin and Miyakawa’s paper described the evolution of proof in Japanese geometry 
textbooks and the role of the specificity of Japanese language on that process. Mesnil’s paper 
described a reference for studying and teaching logic in France, while Bergwall engaged the TWG in 
analysis and discussion of reasoning-and-proving opportunities in Finish and Swedish textbooks on 
primitive functions. The discussion addressed several important topics, such as:  

The role of language and linguistics in introducing, teaching, and writing proofs; and how the goal 
of teaching proof is articulated in a curriculum, represented in textbooks, and enacted in classrooms.  

The role of mathematical logic in the teaching and learning of proving.  

Definitions in research frameworks. Caution is required in the interpretation of the findings from 
different studies which operationalized certain terms in different ways.  

The need for specialized analytical frameworks when examining argumentation and proof 
opportunities in textbook tasks versus textbook expositions.  

Tools for analyzing argumentation and proof 

The five papers in this theme concerned different tools for analyzing argumentation and proof. 
Ruwisch’s paper concerned a one-dimensional model to rate reasoning competences at the primary 
level, considering both mathematical reasoning and its linguistic realization. With the same goal to 
better understand primary students’ reasoning characteristics, Koleza, Metaxas and Poli used a 
simplified model of Toulmin’s argumentation, drawing also on argumentation schemes described by 
Walton. The paper by Mata-Pereira and da Ponte aimed to understand how application of design 
principles regarding tasks and teacher actions can help provide students with opportunities to justify, 
and presented a framework that accounts for the level of complexity in students’ justifications. In a 
longitudinal study, Fahse explored secondary school students’ ways of argumentation on tasks 
concerning division by zero. He identified three different types of student argumentation and showed 



how these relate to students’ age.  Focusing on teachers’ competencies, Chua’s paper presented a 
theoretical framework that classifies justification tasks by their nature, purpose and the expected 
element to be provided in the justifications. The discussion of the five papers raised some deep issues, 
including the following:  

The validity versus utility of theoretical frameworks in argumentation and proof. The utility of a 
framework depends on how well it is designed to address a particular goal. 

Multi-dimensional models of proof. Researchers should acknowledge the complexity of proof and 
specify the aspect(s) of proving that they are focusing on.  

Language and argumentation. Investigating relations between language and argumentation requires 
clarifying what we mean by “mathematical language”.  

Classroom culture should be considered in interpretations of research findings.  

Intervention studies on argumentation and proof 

The five papers in this theme related to implementing proving activities in school mathematics 
classrooms. Reid and Vallejo Vargas’ paper describes an intervention where 3rd graders learn division 
through “proof-based teaching” by developing a shared toolbox of justification principles. The study 
showed that 3rd graders are capable of reasoning deductively from premises when explaining their 
thinking. The paper by Soldano and Arzarello described students using game activities in Dynamic 
Geometry Environments (DGEs) to discover geometric properties of the mutual relationship between 
two circles. The authors found that games helped students to communicate their claims, formulate 
and check conjectures, and explain their thinking. Siopi and Koleza’s paper focused on students’ use 
of a specific tool, a pantograph, to explore geometrical properties of parallelograms. The paper by 
Pericleous and Pratt examined how a teacher helped students to foreground mathematical 
argumentation as they investigated geometrical properties within a DGE. Finally, Buchbinder 
reported on a study on professional development sessions where teachers became familiar with 
‘proof-task prototypes’, applied them in their teaching, and reflected on this application. These 
activities helped teachers to involve proof-oriented activities in their ordinary mathematics 
classrooms. The discussion included the following issues: 

What was the contribution of particular tools to students’ learning?  

Students’ investigations within DGEs and the ambiguity of the expression ‘play with the software’. 

The need for structured support for teachers to implement proving activities.  

Argumentation and proof at the university mathematics level 

The five papers in this theme were concerned with teaching and learning of proof at the university 
level. Yan, Mason and Hanna’s paper suggests an exploratory teaching style to promote the learning 
of proof, and describes specific pedagogical strategies. Selden and Selden’s paper discusses 
theoretical perspectives for proof construction and its teaching. They suggest including psychological 
aspects of proving to these perspectives, and how these aspects should be considered in teaching and 
future research. Moutsios-Rentzos and Kalozoumi-Paizi’s paper also considers psychological aspects 
by describing affective and cognitive experiences of a mathematics undergraduate student while 
producing a proof under exam-conditions. The innovative methodology of their study is to examine 



students’ facially expressed emotions during proving activities, as a way to study and influence 
students’ attitudes towards proof. Gabel and Dreyfus’ paper describes an attempt to analyze rhetorical 
aspects of proof presentation. They use Perelman's “New Rhetoric” as a framework to identify ways 
to analyze and increase the effectiveness of teachers’ argumentation in mathematics classrooms. 
Azrou’s paper suggests that students’ lack of meta-knowledge about proof, such as features of 
mathematical proof and how a proof should be organized, influences their competence to write 
mathematical proofs. The discussions of these papers raised the following issues: 

Phenomena (as behavioural issues) that have not been previously considered by psychologists or 
mathematics educators may play a role in students’ difficulties to construct proofs.  

The role of emotions and feelings in proof construction.  

Task design in argumentation and proof 

Although many papers touched on issues of task design, this was the main topic of the two papers in 
this theme. Komatsu and Jones’s paper explores how task design can facilitate students’ engagement 
with the mathematical activity of proofs and refutations in the context of a DGE. Hein and Prediger’s 
paper explored the role of task design and scaffolding to foster students’ learning of deductive 
reasoning, making explicit the logical structures and unpacking their verbal representations in 
geometry. The discussion included the following issues: 

Proving something in a particular case: how can we help students see the generality of the proof?  

The notion of scaffolding. How can we make explicit to students the logical structure of proving? 

The special place of geometry in teaching, learning and researching of argumentation and proving.  

Conclusions 
We think that the TWG on argumentation and proof has offered the participants the richness of 
diversity in this research domain and the opportunity of fruitful discussions. At the last session of the 
TWG, the participants engaged in a discussion to identify areas in which they would like, and hope, 
to see more research in future CERMEs. The following areas were identified: 

The teaching of proof and argumentation in both school and university settings, including in teacher 
education. The study of the classroom implementation of tasks rich in argumentation and proof 
opportunities, scaffolding and responding to unexpected student responses.  

Issues of language in argumentation and proof. This also includes representations, structure, oral and 
written language, rhetoric and logic.  

Aesthetics of proof and ways in which students of all levels of education can improve their attitudes, 
emotions, and beliefs about proof.  

The identification of these areas is aimed at describing the state of the art of the field, without 
suggesting prioritizing certain areas of research. The TWG is committed to representing the diversity 
of perspectives and research areas on argumentation and proof in future CERMEs. 
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We deal in this paper with a particular difficulty with proof and proving at the undergraduate level, 
which concerns knowledge about proof at a meta-level. Some undergraduate students’ difficulties 
or mistakes observed in their proof texts have been related to lack of that meta-knowledge. In order 
to test this hypothesis, interviews with a sample of students have been performed. Relationships 
with the didactic contract have been discussed. 

Keywords: Proof, meta-knowledge, theorem, undergraduate students.  

Introduction  
Most mathematics teaching at all school levels is concentrated on teaching content; at the university 
level, students learn about functions, differential equations, matrices and integrals, by manipulating 
definitions and theorems. In order to assimilate the content, students are asked to solve problems 
and prove statements. The difficulties of students with proof have been largely investigated in 
research (Moore, 1994; Epp, 2003; Selden & Selden 2007; Harel & Sowder, 1998); some of these 
difficulties are related with the fact that students do not know mathematics at the meta-level, 
particularly as it concerns proof (Morselli, 2007; Hemmi, 2008). Several students do not see clearly 
the difference between a definition and a theorem, the difference between an example and a counter 
example. Knowledge about proof at the meta-level is neither presented in textbooks nor in courses 
of specific mathematical disciplines, but it makes one of the most important differences between 
mathematicians and students. In this paper, we will consider in particular the meta-knowledge about 
proof (MKP), such as the knowledge of the notion of proof and the rules related to how a proof 
must be organized. Many researchers acknowledge the fact that high school and university students 

do not understand what is meant by “proof” and “proving” (e.g. Schoenfeld 1989, Harel & Sowder 

1998). “To most undergraduates, convincing their teacher (and thereby earning satisfactory grades) 
is typically the most important reason for constructing a proof” (Weber, 2004, p. 429) and 
“unfortunately, many students believe that they either know how to solve a problem (prove a 
theorem) or they don't, and thus, if they don’t make progress within a few minutes, they give up” 
(Selden & Selden 2007, p. 96); students often believe that non-deductive arguments constitute a 
proof, or “an argument is a proof if it is presented by or approved by an established authority, such 
as a teacher or a famous mathematician” (Weber, 2003, p. 3); other different interpretations and 
conceptions of students regarding proof are described in Harel & Sowder (1998) and in Recio & 

Godino (2001). Meta-knowledge about proof is used implicitly by mathematicians when they 

construct proofs, “what may be assumed contextually and what needs to be explicitly proved, using 

logical deduction and previously established results, is highly non-trivial and, I would suggest, is 

implicit rather than explicit in the minds of most mathematicians” (Tall, 2002, p. 3). Our focus in 

this paper will be on the lack of MKP and what it might cause as difficulties to students when 

constructing proofs. The present study is developed using a past empirical study with 
undergraduates that consisted of investigating students’ difficulties by analyzing their proof texts 



 
 

responding to different tests (Azrou, 2015). We would like to examine if the following hypothesis is 
supported by an interview analysis: Is lack of MKP one of the reasons behind the messy proof 
texts? Moreover, we would like to answer the following question: Why students do not develop 
MKP? 

Theoretical framework  
We choose the definition of proof stated by Durand-Guerrier et al. in (Durand-Guerrier, Boero, 
Douek, Epp, Tanguay, 2012), inspired from the Vergnaud’s conceptual fields (Vergnaud, 1990). 
According to Vergnaud, a concept (in our case proof) is learnt by acquiring three components: the 
set of different representations (oral, written, formal, etc), the situations of reference (proof in 
geometry, in algebra, in calculus, etc.) and the operatory invariants (related to the logical structure 
of proof: legitimated inference rules, status of hypotheses, thesis, axioms, etc). Mastering the MKP 
is mastering the concept of proof according to Vergnaud, as it was stated by Durand-Guerrier et al. 
(2012).  

We are interested in comparing MKP that students acquire with how they have been presented 
proofs and how they have been taught MKP by their teachers. As we consider the relationship with 
the teaching regarding proof and proving, we will be referring to the didactic contract (Brousseau, 
1988) that is defined as a set of rules framing the mathematical practices of teachers and students 
under the constraints of the teacher-students institutional relationships. Most of these rules 
regarding how, why and what teachers do mathematically (and students should learn to do) are 
implicit and thereby not declared by teachers, who often suppose that students would assimilate 
them over time and practice. Often, teachers use some particular intentions and rules with the proofs 

exposed to students, without being aware of and without feeling the importance of explaining them; 

consequently, sometimes students are misguided to make correct proofs. Let us take the example of 

proof writing: ‘the processes used by mathematicians are often rough and informal, but students 

typically see proofs in their final forms, and rarely witness the process of creating a “rough draft”, 

as a result, students often do not know where to begin when writing their own proofs’ (Moore, R. 

C., 1994). We will examine what kind of MKP students learn from their teachers and how they 
manifest it.  

Methods  
We are more interested in examining in students’ proof texts their MKP considering the three 
components of the definition of Durand-Guerrier et al. (2012); students’ behaviors will be checked 
regarding definitions and other used mathematical statements (mathematical argument), regarding 
their modes of reasoning and argumentation and how they expressed them and presented them. 
Especially, how lack of MKP is manifested through students’ proof texts and their interviews. A 
test composed of open questions (to which the proof cannot be procedural but rather syntactic or 
semantic (Weber, 2004)) have been submitted to 98 undergraduates during their third academic 
year, for a complex analysis course in a high level school of engineers in Algeria. The written 
language is French, but often, Arabic dialect is used, along with French, in the oral form. The 
analysis of students’ proof texts indicates that one of the difficulties behind writing messy and 
disorganized proof texts to open questions was lack of MKP (Azrou, 2015). To receive further 
evidence for our findings, interviews were performed with a sample of students. We have chosen 



 
 

fourteen students to interview whose proof texts contained well-organized, less organized and very 
disorganized proof texts. Our aim was to investigate, by analyzing students’ words, whether they 
master the concept of proof at a conscious level, in other words if they have a mastery of its 
operatory invariants (Vergnaud, 1990).  

A-priori analysis of the test 
The test contained three questions, but in scope of this paper we can only include the first question.  

1- Is it possible to find a holomorphic function that admits 0 as a simple pole such that Residue of f 
at 0 is 0 (Res (f, 0) =0)?  

By designing such questions, we aimed at ascertaining if students were able to construct the proof, 
based on known definitions and theorems, in a clear argumentation form by providing their own 
way of expressing the answering to the question. The question is about the possibility of having (P

Q) and its negation (P and ) at the same time, which results in a contradiction and thus it is 
impossible. Logically speaking: the fact that the residue at a point is not 0 is a direct consequence of 
that point being a simple pole for the function. We have chosen to refer to the point 0 to simplify 
the formula. There was no doubt that students knew all these concepts because they had used them 
many times before, but always when performing direct calculations and procedures. However no 
request of identifying and exploring the links between concepts had been made, especially in a 
written form.   

A preliminary analysis of students’ proof texts 

We have observed in students’ proof texts, among others, the following behaviors related to the 
concept of proof:  

- Lack of justifications: students do not know when the justification is necessary and when it is not; 
they might give a justification for an obvious fact and miss to justify a non-obvious statement. 

- Students turn around confusing the hypothesis and the thesis (forwards and backwards between 
the premise and the result). 

- An example is given instead of a justification to prove that the statement is true. 

- Incomplete mathematical statements and/or formulas. 

- Missing details that make holes in the proof. 

- Lack of organization of proof steps. 

- Disconnection between statements. 

- Writing the proof text like a draft or a sketch. 

Examples of students’ proof texts 

The following excerpts show some of the difficulties cited before; the language used is French. 
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Proof text 1  

 

In this proof, the student responds by saying that such function does not exist and gives an example 
of a function that does not verify the conditions given by the statement. Clearly, the existence of a 
function that does not verify the conditions does not tell why these conditions cannot go together. 
This student considers that giving such example is the proof of the inexistence of functions 
verifying the two conditions. 

Proof text 2  

 

The student does not provide an answer to the question, the proof is a series of statements; each one 
derived from the previous one by an implication, but without any justification; moreover the last 
three ones are similar but incorrect, they present the simple pole definition, but the limit should be 
not 0.  

Interviews 

Based on the analysis of students’ written productions, in the wider investigation this study belongs 
to, we have conducted interviews to address our previous questions, but also to receive more 
information about students’ points of view. We will present only the questions of the interviews that 
deal with MKP about proof. The main interview contained three questions, each with three or four 
sub-questions. 

Q1- If your answer would have been addressed to another teacher, would you have written it the 
same way?  

a- What is important, to a teacher, to see in a student response to questions like this one? 

b- Do you think another teacher, not familiar with the course, would have understood the answer? 

c- How can the teacher know if the answer is right or not? 

d- If the question has been proposed in homework, would you have presented it in a different way? 

Q3- If a rigorous mathematician would have answered to this question, how would he presented his 
answer? 

a- What is the difference from your answer text and those we find in mathematics books?  



 
 

b- After this time, looking again to your answer, is there something you would add or change in 
yours answer or would you keep it as it is? 

Results of interviews 

Q1: Four students said ‘yes’, while the rest (ten) said ‘no’. They intended their responses to be 
given especially to their own teacher, so they made their responses intentionally focusing on what is 
important to the teacher which is, according to them, their reasoning and showing that they got the 
idea of the process and understood enough the concept at stake in order to get the credit or a part of 
it. ‘I know that my teacher will understand it even if it’s not complete’. 

Q1.a: All students responded that the teacher would check in a proof whether a student got the 
whole idea of the solution or not: ‘the teacher would see always the method’; ‘the reasoning’; ‘the 
process of the proof’.  

Q1.b: Half of the students said ‘yes’ and the others said ‘no’: ‘no, because we are used to respond 
to get the credit, so we address the response to our teacher’.  

Q1.c: All of them responded mentioning the reasoning of the student (method, the logic in his 
response, whether it is convincing, if there is no contradiction): ‘the teacher would follow the 
reasoning of the student to find out if his understanding is clear or not about the concept’.  

Q1.d: Twelve students answered ‘no’ and only two students said ‘yes’. They would keep the idea or 
the method the same but make better the organization or the presentation: ‘I would have changed 
the way I wrote, … the organization’; ’I would have given more details’. 

Q3: Two students (good ones) said ‘the same’; one didn’t answer clearly, six said with more details 
and/or better organization; two said with better reasoning and three said with more symbols: ‘a 
mathematician would have another goal, mine is to give the response and get the credit’; ‘he would 
use only symbols till getting the final result, you see, I wrote a lot of comments’.  

Q3.a: Twelve students said that they would contain more symbols and less comments; with an 
academic rigorous style: ‘it’s different’; ‘my answer is addressed to the teacher while mathematics 
books are addressed to all’; ‘with more symbols and less comments’. 
Q3.b: Four students among fourteen answered by keeping their text as they are. Five said they 
would improve the organization, three said they would add more details and two said they would 
make the explanation better: ‘I might keep the idea, but I will give more details’; ‘I would write it 
better’.  
  



 
 

Data analysis  
Analysis of the written texts  

Different students’ weaknesses emerge from the analysis of students’ written texts (difficulty of 
communication, lack of justification, using incomplete mathematical statements (or formulas) and 
lack of organization of the proof); the last three are of particular interest for MKP. Failing to give 
justification may be caused by the didactic contract supposing that the teacher would not mind it, by 
a lack of concept mastery or by a lack of meta-knowledge about proof. Mathematical statements are 
given incomplete because students might suppose that they are clear for the teacher, or because they 
are not well mastered by them or not important to be given complete in a proof text, which is related 
to MKP. The lack of organization of the statements displayed by students might be originated in 
didactic contract, in lack of concepts mastery, but also in lack of MKP. 

Results of interviews analysis  

The answers to Q1, Q1.b and Q1.c. confirm that students, when writing their proof texts, intend to 
address it particularly to their own teacher. The answers to Q1.d show that students are aware of 
their unclear text and possible missing details. According to them, they have to focus on two 
important points that have the same objective: how to get the most part of the credit and show to 
their teacher that they understood the concept at stake by presenting the main idea or the method of 
the proof; because they believe that the teacher will focus on that. This shapes their meta-
knowledge about proof writing. Most answers to the third question and to Q3.a support more details 
would be given by a rigorous mathematician and mathematics textbooks, students mention that the 
organization would be better in both cases than theirs – but they reveal how their conception about 
proofs in mathematics concerns superficial aspects when they say that proofs in textbooks contain 
more symbols and less comments and words in comparison with their proofs and do not mention the 
structure of the proof. Answers to question Q3.b confirm that students are aware that their proof 
texts need improvement – but it must be related to previous consideration about superficial aspects. 

Conclusion  
Students’ texts and interviews offered strong evidence for students’ lack of MKP and its influence 
on proof writing. Students have many situations of reference for proofs at their disposal but do not 
master the operatory invariants of the proof concept and the form of the proof texts as conscious 
objects. Findings suggest particularly that the influence of the didactic contract is strong. Teachers 
generally write proofs in a direct linear way, making unfolding the steps till the conclusion. 
Students learn to do the same: when they first set some ideas about how to solve a problem, they 
write their first exploratory draft as a final text because they were never shown how to go further to 
the written proof text. Here, the didactic contract works against to the development of MKP because 
the contractual knowledge substitutes the knowledge about the concept of proof. An important 
element emerged in the interviews, which is the intention of the students to write the proof text only 
for their teachers, which supports our hypothesis of lack of MKP. Students acknowledge that their 
texts miss details, but do not see that these missing details would make the organization of the 
different parts of the proof clearer. This shows that the MKP and the didactical contract are strongly 
related. When students compare their texts with mathematicians’ or textbooks’ proofs, they only 
point out to symbols and comments, they do not see that in these perfect proofs, the statements are 



 
 

linked through a deductive process from the hypothesis to the proof end, the proof text is organized, 
not only in its form, but also in the structure; avoiding holes, disconnections and missing 
justifications. This is evidence of students’ superficial perception of proof texts, which indicates 
lack of mastery of proof structure and representation as a concept, which is related to lack at the 
operatory invariants level. As MKP is also built up through language, we hypothesize that students’ 
weak mastery of French language, especially in the oral form, which should be translated to the 
written form, might have contributed to their unclear written texts.  

Let us examine now why students are not able to develop their MKP; it seems that they are stuck in 
a constant perception of proof that does not help them to overcome their difficulties, if not causing 
some of them, and as long as there are not alternative ways of presenting proofs, they will hold on 
it. “Students need to understand that proofs are not generally conceived of in the order they are 
written” (Selden & Selden, 2007, p. 114) and that “successful reasoning can be carried out both by 

relying on the logic and formal structures of syntactic reasoning, and by relying on the informal 

representations of mathematical objects of semantic reasoning” (CadwalladderOlsker, 2011, p. 48). 

Changing or adjusting the didactic contract may favor students’ autonomy to understand and make 
proofs; university teachers often mistakenly think that undergraduates understand what a proof is 
and how to make proofs by following the standard presented proofs. In fact, “while a traditional 
definition-theorem-proof style of lecture presentation may convey the content in the most efficient 
way, there are other ways of presenting proofs that may enable students to gain more insight” 
(Selden & Selden, 2010, p. 411). Teachers should provide samples of proof construction instead of 
final products, to be clear about what do they expect from students when they are asked to prove 
and to provide an opportunity to learn how to make proofs. “In general, professors should avoid 
“dumbing down” their assessments by asking routine questions that can be answered by mimicking. 
One needs to modify the “didactic contract” in order to achieve this; otherwise, questions requiring 
genuine problem solving and proving will be considered “unfair” ” (Selden & Selden, 2010, p.414). 
We support that “university teachers should consider including a good deal of student-student and 
teacher-student interaction regarding students’ proof attempts, as opposed to just presenting their 
own or textbook’s proofs” (cf. Selden & Selden, 2007, p. 114). Finally, in order to gain control, 
students need to master meta-knowledge about proof; “the difficulty of students to reach a structural 

axiomatic proof scheme suggests that a capstone course including some attention to meta-

mathematics as a topic might be of value to mathematics majors” (Harel and Sowder, 1998, p. 280).  
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Conceptualizing reasoning-and-proving opportunities in textbook 
expositions: Cases from secondary calculus 
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Several recent textbook studies focus on opportunities to learn reasoning-and-proving. They typically 
investigate the extent to which justifications are general proofs and what opportunities exist for 
learning important elements of mathematical reasoning. In this paper, I discuss how a particular 
analytical framework for this might be refined. Based on an in-depth analysis of certain textbook 
passages in upper secondary calculus textbooks, I make an account for analytical issues encountered 
during this process and identify aspects of reasoning-and-proving in textbooks that might be missed 
unless the framework is refined. Among them there are characterizations of generality, use of 
different representations, logical and mathematical structure, and ordering of material and student 
activities. Finally, implications beyond textbook research are discussed. 

Keywords: Reasoning-and-proving, mathematics textbook, upper secondary calculus. 

Introduction and background 
Almost two decades ago, Hanna and de Bruyn (1999) pointed out that textbook research with specific 
focus on reasoning and proving was rare. Even though a number of papers with such a focus have 
been published in prominent journals since then, the field is still young. While the ultimate goal is to 
come up with well-founded prescriptions for textbook design, research is still striving to describe the 
current state of the art for reasoning-and-proving in textbooks (Stylianides, 2014).  

Several studies have focused on (potential) opportunities to learn reasoning-and-proving (RP). 
Textbooks from different stages in mathematics education, from different educational contexts, and 
from different content areas have been studied (e.g., Davis, Smith, Roy, & Bilgic, 2014; Nordström 
& Löfwall, 2006; Otten, Gilbertson, Males, & Clark, 2014; Stacey & Vincent, 2009; Stylianides, 
2009; Thompson, Senk, & Johnson, 2012). They typically include one or several of the following 
aspects of RP: generality (are statements justified with proofs or specific cases?), elements of proof-
related reasoning (are students asked to make and investigate conjectures, find and correct errors, 
design counter examples?), proof methods (direct, indirect, by contradiction), purposes of proof 
(conviction, verification, discovery etc.), levels of formalism, and mathematical structure.  

The variety of analytical frameworks developed for textbook studies can make it difficult to compare 
findings. However, some researchers have purposefully chosen to use frameworks and methods 
developed by others. For instance, the framework by Thompson et al. (2012) has been used with 
slight modification by Otten et al. (2014) and Bergwall and Hemmi (2017), and it was the basis for 
Bergwall (2015). Their framework is similar to the one developed by Stylianides (2009), which also 
has been used by Davis et al. (2014). While this simplifies comparison of findings, there is a risk that 
certain aspects of RP always are missed in the analysis. The purpose of this paper is to examine such 
potential aspects in relation to the framework by Thompson et al. (2012) and to contribute to a more 
refined conceptualization of opportunities to learn RP in mathematics textbooks. 



 

 

 

Theory and analytical framework 
Mathematics textbooks are widely used in classrooms around the world and are important links 
between national curricula and student learning (e.g., Stein, Remillard, & Smith, 2007). Tasks and 
expository sections, as they appear in a textbook, are potential sources for opportunities to learn RP. 
The concept of RP goes beyond formal proof and includes proving elements such as developing, 
outlining, or correcting an argument; deriving a formula; making or testing a conjecture; and 
providing a counterexample.  

In this paper, I will focus on opportunities to learn RP through justifications in expository sections. I 
will use the framework and analytical procedure by Thompson et al. (2012). They employ a four item 
framework for justifications: A general proof is named a general justification (G); a deductive 
justification based on a generic case is named a specific justification (S); if the authors explicitly ask 
the student to provide a rationale it is referred to as justification left to student (L); and otherwise 
there is no justification (N). As in Bergwall and Hemmi (2017), I include all non-proof arguments in 
the S-category. 

Stylianides (2009) uses a more refined framework with a separate category for specific justifications 
that are not generic. Otten et al. (2014) made modifications to the framework by Thompson et al. 
(2012) and distinguish between specific and general statements. They also have additional categories 
for justifications that only outline the general proof and for justifications that can be found in past or 
future lessons. We have adopted Thompson et al. (2012)’s methodology for the present and other 
studies (Bergwall, 2015; Bergwall & Hemmi, 2017). It has been put forward that mathematics 
education research needs more of cumulative research (Lesh & Sriraman, 2010) and we want to 
compare with – and build on – Thompson et al.’s extensive results on US upper secondary textbooks. 

Textbook sample and analytical procedure 
Cases for the present paper are chosen from the two most commonly used textbooks in Sweden and 
the only Finnish textbook available in Swedish (for Finland’s Swedish speaking minority): 
Alfredsson, Bråting, Erixon, and Heikne (2012); Szabo, Larson, Viklund, Dufåker, and Marklund 
(2012); and Kontkanen, Lehtonen, Luosto, Savolainen, and Lillhonga (2008). I refer to them as SW1, 
SW2, and FI1 respectively. 

In Bergwall and Hemmi (2017), we report our findings from an analysis of all expository sections 
and students’ tasks on integral calculus in these textbooks (and others). In that study, we identified 
all mathematical statements presented as results and categorized their justifications using the 
framework described above. Like Thompson et al. (2012), we also checked if there were opportunities 
for the students to conjecture the result, how the statements were labeled, and what proving methods 
were used. Like researchers always do during such processes, we encountered a number of analytical 
difficulties. In the present paper, I will focus on these difficulties and on other issues that became 
apparent when the textbooks were compared to each other. I consider them a relevant base for 
discussing the development of frameworks for RP opportunities.  

An upper secondary textbook cannot present a general theory for integral calculus. Thus its authors 
face the problem of what kind of justifications to include. This makes this topic relevant when 
examining frameworks for opportunities to learn RP. I will illustrate my findings with an analysis of 
the sections where students first encounter the definition of primitive function, the statement of the 



 

 

 

representation formula 𝐹(𝑥) + 𝐶 for all primitive functions to 𝐹’, and the justification of this result. 
This particular choice was made since it includes a complete definition-theorem-proof chain for a 
central concept and a non-trivial result. Furthermore, the textbooks present this particular content 
quite differently. 

Analysis and results  
The analysis and results are presented as follows. I give a condensed description of how each textbook 
treats primitive functions, following the chronology of that textbook. This description will include all 
details needed to: (1) make an analysis according to the Thompson et al. (2012) framework, (2) 
describe analytical difficulties, and (3) make my points about the need to further develop the 
framework. Aside from the textbook’s definition, justification and statement, I describe material 
placed immediately before, after, and in between them if such exists. This is followed by my analysis 
and description of analytical difficulties and other issues. Finally, I make a short summary of aspects 
of RP opportunities that could be better incorporated in the framework.  

For easier reference, the descriptions of the justifications are presented as numbered lists. Note that 
the representation formula can be expressed as an equivalence. Therefor the (trivial) statement that 
𝐹(𝑥) + 𝐶 is a primitive function to 𝐹′(𝑥) will be referred to as ‘the sufficiency’, while the (non-
trivial) statement that all primitive functions have this form is referred to as ‘the necessity’.  

SW1 (Alfredsson et al., 2012, pp. 173-174) 

Before. There is one exercise where the student, based on graphical representations, shall identify 
which function has a certain derivative, and another where the student shall draw two different graphs 
with the same derivative. This is followed by a short note that it now is time to turn the problem of 
finding the derivative around.   

Definition. The following text is framed and labelled ‘Primitive function’: “A function 𝐹 is called a 
primitive function to 𝑓 if 𝐹′(𝑥) = 𝑓(𝑥).” 

In between. The authors write about three questions that need to be answered: How to find one 
primitive function, all primitive functions, and the primitive function satisfying a certain condition? 

Justification.  

1. 𝑥2 and 𝑥2 + 5 are presented as examples of functions with derivative 2𝑥 and the reader is told 
that “whatever constant 𝐶 we add to 𝑥2 we get a primitive function to 𝑓(𝑥) = 2𝑥”.  

2. There are plots of the graphs to 𝑥2 + 1, 𝑥2, 𝑥2 − 1 and 𝑥2 − 2, and the authors write: 
“Obviously, graphs to functions with the same derivative must for every 𝑥-value have the 
same slope. Hence the graphs have the same form, they are only translated in the 𝑦-direction”. 

3. The authors continue: “This means that if 𝑓(𝑥) = 2𝑥 then every function 𝐹(𝑥) = 𝑥2 + 𝐶, 
where 𝐶 is a constant, is a primitive function to 𝑓(𝑥)”.  

4. The authors ask if there are other functions with derivative 2𝑥 and immediately answer that it 
can be proven that there are no such functions. 

Statement. The following text is framed and labelled ‘Summary’: “If 𝐹(𝑥) is a primitive function to 
𝑓(𝑥) then 𝐹(𝑥) + 𝐶, where 𝐶 is a constant, denotes all primitive functions to 𝑓(𝑥)". 



 

 

 

After. There are two worked examples illustrating how primitive functions are determined, a table 
with some elementary primitive functions and then a student exercise set.  

Analysis. (1) provides two specific cases for the sufficiency (𝑥2 and 𝑥2 + 5), and it is said in words 
(without explanation) that any additive constant works. The necessity is touched upon in (2). This 
might be meant as an intuitive argument. But it is merely a formulation in words of the statement 
itself with no further warrants for the conclusion. The authors also chose to return to the sufficiency 
in (3) before they return to the necessity in (4), but once again without any argument. This means that 
in relation to the framework by Thompson et al. (2012) the sufficiency is justified with a specific case 
(S) and that there is no justification (N) for the necessity. 

Analytical difficulties. The first difficulty was to decide if this justification should be counted as one 
or two. In Bergwall and Hemmi (2017), we chose the second alternative. However, if the unit of 
analysis is the justification of the statement as it is formulated in the textbook one could also choose 
the first. Then there are at least two alternatives: the justification receives the code N (since there are 
not justifications for both directions) or the code S (since there is a specific case justification for at 
least one direction). 

The second difficulty was whether (2) should be counted as an intuitive justification of the necessity 
and receive the code S instead of N, since it seems to have a convincing purpose. 

Other issues. Even a specific case such as 𝑥2 + 𝐶 has some generality to it: the identity (𝑥2 + 𝐶)′ =

2𝑥 holds for all 𝑥. This indicates that when dealing with functions there is room for a more nuanced 
way of describing justifications than the categories G and S admit. Also, if the textbook statement 
had been that 𝑥2 + 𝐶 denotes all primitive functions to 2𝑥, then the justification offered for the 
sufficiency is a general proof.  

Summary. The analytical framework/method should be developed to better account for opportunities 
to learn: the difference between an equivalence and an implication and how such are justified; the 
roles of different kinds of non-proof justifications, such as intuitive arguments based on visual 
impressions from a drawing of an “arbitrary” case; and that justifications can be specific in different 
ways when statements include several kinds of variables (dependent and independent), and that 
whether a justification is general or not also depends on how general the statement is. 

SW2 (Szabo et al., 2012, pp. 154-155) 

Before. The authors demonstrate how velocity can be obtained by differentiating the distance function 
and then state that the opposite problem can be solved by asking which function has a certain 
derivative. In the margin there is a table with some elementary derivatives.  

Definition. The following text is framed and labelled ‘Primitive function’: “A function 𝐹 is a primitive 
function to 𝑓 if 𝐹’(𝑥) = 𝑓(𝑥).” 

Justification. 

1. 𝑥2, 𝑥2 + 5, and 𝑥2 − 4 are given as examples of functions with derivative 2𝑥 and in the 
margin it is emphasised that the derivative of a constant term is 0. 

2. The authors write: “You can add and subtract any constant to a primitive function without 
altering its derivative. Thus a given function has an infinite number of primitive functions”. 



 

 

 

Statement. The following text is framed and labelled ‘All primitive functions’: “If 𝐹′(𝑥) = 𝑓(𝑥) then 
𝐹(𝑥) + 𝐶, where 𝐶 is a constant, gives all primitive functions to 𝑓(𝑥).” 

After. There are two worked examples illustrating how primitive functions are determined followed 
by a student exercise set. 

Analysis. The sufficiency is justified with three specific functions in (1). That any constant 𝐶 can be 
added/subtracted is explained in (2). However, it is not clear if the first sentence cited in (2) refers to 
a primitive function to any function or to a primitive function to 2𝑥. In the former case, the argument 
could have been expressed symbolically as (𝐹(𝑥) + 𝐶)′ = 𝐹′(𝑥), which most teachers and 
mathematicians would have accepted as a proof. In the latter case, the sufficiency is only justified 
with a specific case. Concerning the necessity, there is neither a justification nor a remark that there 
is something more to prove. Summing up, this means that there is an ambivalence concerning the 
sufficiency ((S) or (G)) and that there is no justification (N) for the necessity. 

Analytical difficulties. The question arises whether (2) is a general proof or not. There are two issues 
here: The use of words instead of algebraic symbols, and clarity in what the authors refer to. 

Other issues. When comparing SW1 and SW2, we see at least three differences even though the 
classifications of the justifications are the same. First, SW1 discusses the necessity and states that it 
can be shown that there are no other primitive functions, which SW2 does not. But neither textbook 
clearly expresses the representation formula as an equivalence. Second, SW1 uses graphic 
representations and describes the meaning of the statement in terms of slope and form which SW2 
does not. Third, SW2 is less vague in its labelling and formulations. While SW1 labels the statement 
“summary” and expresses that 𝐹(𝑥) + 𝐶 “denotes” all primitive functions, SW2 uses the label “All 
primitive functions” and expresses that 𝐹(𝑥) + 𝐶 “gives” all primitive functions. 

Summary. The analytical framework/method should be developed to better account for opportunities 
to learn: what needs to be justified, what has been left out of a certain justification, or if a justification 
is a proof or not; the role of different forms of representations; and the structure of mathematics, i.e. 
what part of a mathematics text that is a definition, a statement, and a proof, and what their different 
roles are. 

FI1 (Kontkanen et al., 2008, pp. 7-8) 

Definition. The following text is framed and labelled ‘Primitive function’: “Assume that the functions 
𝑓 and 𝐹 are defined in the open interval 𝐼. The function 𝐹 is a primitive function to 𝑓 for every 𝑥 ∈ 𝐼, 
if 𝐹′(𝑥) = 𝑓(𝑥).”  

In between. In worked examples, the authors demonstrate how one checks if a certain function is a 
primitive function to another given function. In one of these examples, it turns out that two different 
functions can be primitive functions to the same function. However, the algebraic descriptions of 
these functions are not such that it is obvious that they only differ by an additive constant. 

Statement. The following text is framed and labelled “theorem”: “Assume that 𝐹0 is a primitive 
function to 𝑓. Then all functions of the type 𝐹(𝑥) = 𝐹0 (𝑥) + 𝐶 are primitive functions to 𝑓. The 
function 𝑓 has no other primitive functions.” 

Justification. The justification is labelled “proof” and divided in two steps. First the sufficiency is 
justified by differentiation of 𝐹(𝑥) = 𝐹0 (𝑥) + 𝐶. Then the necessity is justified using the fact that if 



 

 

 

a derivative is 0 everywhere the function is constant. For this fact, there is a reference to a theory 
section at the end of the book.  

After. It is pointed out and illustrated in a diagram that the additive constant 𝐶 corresponds to a vertical 
translation of the graph. The notation ∫ 𝑓(𝑥)𝑑𝑥 is introduced. This is followed by three worked 
examples on calculation of primitive functions and a set of student exercises.  

Analysis. The sufficiency and the necessity are both justified with general proofs (G).  

Analytical difficulties: There are none that have not been mentioned so far.  

Other issues: In FI1 it is clear that the statement contains two parts even though it is not formulated 
as an equivalence. The justification is labelled proof (SW1 and SW2 have no labels on their 
justifications). The justification comes after the statement (not before as in the Swedish books). There 
is a graphical interpretation of the statement but it is put after the proof (not before as in SW1) and it 
seems to have the purpose of illustrating the meaning of the statement (and not to justify it as in SW1). 
FI1 is the only textbook that emphasizes that being a primitive function actually is a global property 
(i.e. that 𝐹’(𝑥) = 𝑓(𝑥) should hold for all 𝑥 in an interval). However, as in SW1 and SW2 the 
definition is phrased using the word ‘if’ even though it should be interpreted as ‘if and only if’. 

SW1 and SW2 have activities and/or worked examples before the definition which together with their 
justifications give the student an opportunity to discover and conjecture the statement. In FI1 the 
section starts with the definition. The indefinite integral notation is used throughout FI1 but is 
completely avoided in SW1 and SW2. 

Summary. The analytical framework/method should be developed to better account for opportunities 
to learn: mathematical formalism, detail and notation; different purposes with different forms of 
representation; the conjecturing as well as the verifying nature of mathematical work; and the 
importance of clear definitions. 

Discussion 
When opportunities to learn RP are studied in textbooks there are several aspects to take into account 
and there is always a risk that important aspects are left out. The examples mentioned above illustrate 
a number of such aspects identified when a specific analytical framework was applied to a few 
textbook passages on primitive functions. Here I chose to discuss the importance of four such aspects 
of RP and their relevance in a refined framework for RP.  

The first aspect is generality and relates to opportunities to learn what makes a justification a proof. 
Students’ difficulties with understanding the difference between a general proof and an example are 
well-established (e.g., Harel & Sowder, 2007). However, justifications can have different levels of 
generality, or ‘scope of variation’, which opens up for sub-categories of non-proof justifications (e.g., 
Bergwall, 2015). Also, a justification must be judged in relation to the statement’s formulation and 
the level of detail in relevant definitions. Thus an analysis of textbook justifications should include 
an analysis of statements (which Otten et al. (2014) do) and definitions. 

The second aspect concerns forms of representation and relates to opportunities to learn how proofs 
are communicated. Sometimes a justification is better expressed in words but often algebraic symbols 
bring more precision and detail to the argument. Graphical representations may be used to illustrate 



 

 

 

meaning as well as the idea behind an argument. Frameworks should take the use of different forms 
of representation and their roles and purposes into account.  

The third aspect is structure and relates to opportunities to learn the role of proof in mathematical 
theory. Here I include the logical structure of individual definitions, statements and justifications as 
well as the overall structure of the mathematical theory, with its definitions, theorems and proofs, and 
the connections between them. To some extent this is captured in an analysis of labeling (as in 
Thompson et al. (2012)) and references to other lessons (as in Otten et al. (2014)).  

The fourth aspect is about ordering of the material, including student exercises and worked examples, 
and relates to opportunities to learn different purposes of proof, and to how justifications can serve 
different educational purposes. Student investigations, specific cases and intuitive arguments placed 
before a statements can emphasize the creative and conjecturing side of mathematical work, while 
formal general proofs placed after the statement can emphasize the verifying and organizing side. 

All four aspects have one thing in common. They concern proofs and justifications as objects and not 
only as processes (e.g., Sfard, 1991). To analyze if textbooks offer opportunities to understand proofs 
and justifications as objects, the analytical frameworks and methods need to focus on opportunities 
to learn object properties of proofs and justifications. Generality, forms of representation, structure, 
and ordering are examples of such properties.  

Finally, development of frameworks and methods that better capture important aspects of RP are of 
importance not only for textbook analysts and textbook authors. Similar frameworks can be used for 
analyzing lecture scripts and teaching episodes. Hence they can also aid teachers when they plan their 
lectures and teaching elements. A detailed framework risks being of limited analytical use but is an 
important contribution when conceptualizing opportunities to learn RP. 
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Cognitive unity of theorems, theories and related rationalities 
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The construct of cognitive unity of theorems was introduced twenty years ago to identify suitable 
conditions for students’ “smooth” approach to proving. In this paper the Habermas’ construct of 
rationality, adapted to mathematics education in previous research, is used to identify some factors 
in the activation of cognitive unity of theorems. In particular, I consider the dependence of 
cognitive unity on the specific rationality (e.g. analytic geometry rationality, or synthetic geometry 
rationality) according to which a conjecturing and proving problem is dealt with. The analysis of 
some examples will provide evidence for it, together with hints for further research. 

Keywords: Theorems, conjecturing and proving, cognitive unity, proving as rational behavior. 

Introduction 
“Cognitive unity of theorems” (CUTHE) is a construct introduced in Garuti, Boero, Lemut & 
Mariotti (1996) to account for a phenomenon detected in a grade 8 (13-years-old students) 
classroom engaged in a conjecturing and proving activity, concerning a theorem of space geometry 
contextualized and verbally expressed in terms of Sun rays (instead of straight lines) and Sun 
shadows (instead of shapes projected on a plane according to parallel projection rules). The 
conjecturing task (see Garuti et al, 1996) may be shortly reported this way: “Is it possible that the 
Sun shadows of two non-parallel sticks are parallel on the ground? If yes, under which 
conditions?”. After comparison and standard re-phrasing (“if… then…”) of their conjectures, 
students were asked to validate their statements by “general reasoning”. We observed that, while 
trying to validate their conjectures, several students resumed some pieces of personal reasoning 
(e.g. ways of looking at the Sun rays and the Sun shadows) developed during the production of the 
conjecture and the search for reasons for its validity, and arranged them in a deductive chain of 
statements. The ways of looking at the Sun rays and the space relationships had been different for 
different students; those ways corresponded to the different ways of proving the theorem by them. 
After having found other theorems (in geometry, and in elementary arithmetic) for which students 
behaved in a similar way, we defined “cognitive unity of theorem” (CUTHE) what happens for 
some theorems when:  

during the production of the conjecture, the student progressively works out his/her statement 
through an intensive argumentative activity functionally intermingled with the justification of the 
plausibility of his/her choices. During the subsequent statement-proving stage, the student links 
up with this process in a coherent way, organizing some of the previously produced arguments 
according to a logical chain (Garuti, Boero, & Lemut, 1998, p. 345). 

The CUTHE construct was also extended to the case of the relationships between the exploratory 
phase of proving a theorem, and the subsequent construction of a proof for that theorem (Garuti et 
al., 1998): indeed, the exploratory phase of proving shares some common aspects with conjecturing 
(as re-construction of the meaning, and appropriation, of a statement; and identification of elements 
for its validity). The construct of cognitive unity resulted in various research developments. 
Pedemonte (2007, 2008) performed studies in which (given a theorem for which CUTHE is 
accessible to students) the mechanism of arranging arguments produced in the exploratory phase 



does not result in a proof for some students, due to their difficulty of re-arranging inductive or 
abductive arguments into deductive arguments. These difficulties are not likely to emerge in 
algebraic conjecturing and proving (Pedemonte, 2008), while they frequently emerge in the case of 
plane geometry (Pedemonte, 2007). Leung and Lopez Real (2003) investigated CUTHE in the case 
of computer-based learning environments, which change the nature of students’ exploration and 
make CUTHE difficult to activate, finding out ways of activating it in the new situation. Fujita, 
Jones and Kunimune (2010) studied conditions under which CUTHE may be activated in the field 
of synthetic geometry: they “analyze the circumstances when students unite, or not, their conjecture 
production and proof construction”; the potential of geometrical constructions for the activation of 
CUTHE was explored. The quoted studies suggest the opportunity of investigating the conditions 
for the activation of CUTHE for a given theorem. Boero et al. (1998) started a discussion on it, 
taking into account both the student (her skills, her knowledge and expertise in a given field of 
mathematics) and the field of mathematics in which a given statement is dealt with. Douek (1998) 
analyzed the individual variety of exploration strategies and their effects on conjecturing and 
proving; at present (personal communication) she is further deepening the idea of subject-relativity 
of CUTHE, together with the relationships between the quality of student’s exploration (including 
its semiotic features) and the construction of the proof. In this paper I will try to identify some 
aspects of the relativity of CUTHE referred to a given system of discursive practices that concern 
the truth of statements, the ways of producing and validating them, and the ways of communicating 
with others - i.e. a “rationality”, according to Habermas (1998).  

Theoretical assumptions 
Mathematical theory 

It is possible to define a mathematical theory (shortly, a theory) by its characteristic components: 
primitive notions, and definitions related to them; postulates; inference rules to get true statements 
from the postulates and other statements proved as true. ‘Characteristic components’ depend on the 
historical period and, in a given historical period, on epistemological assumptions that may be 
different, according to different fields of mathematics. The case of Euclidean geometry before and 
after Hilbert’s Grundlagen der geometrie is a well-known paradigmatic example of historical 
change in the ways of considering the requirements of a mathematical theory.  In this paper, we will 
consider the following theories: Synthetic geometry (in particular, Euclidean geometry); Analytic 
geometry (including the algebraic treatment of conic sections); Elementary, verbal-semantic 
number theory (evidence for truth and inference rules rely on properties of the concept of number 
and its representations); Elementary, algebraic-formal number theory (evidence for truth of 
statements comes from the interpretation of an algebraic expression derived, through suitable 
syntactic transformations, from the algebraic expression which represents the problem situation). 

Theorem 

Mariotti (2001) defines a theorem as a statement and its proof with reference to a theory (and 
related inference rules). The definition results in the possibility of considering different theorems 
with the same statement (in particular, when different proofs referring to different theories are 
available). The definition encompasses theorems related to various kinds of theories and related 
inference rules: Euclid’s as well as Hilbert’s geometry; analytic geometry; graph theory, with its 



reference to visual objects; 19th-century probability theory as well as Kolmogorov’s axiomatic 
theory, etc.; and the different ways of considering proof since the Greeks, including verbal-semantic 
proofs (like in Euclid) and modern algebraic-formal proofs of arithmetic statements. 

CUTHE and Habermas’ rationality  

In this paper we are interested in CUTHE, one possible aspect of the conjecturing and proving 
process, in order to identify for which theorems (in Mariotti’s sense) it may be easily activated, thus 
we need a comprehensive frame to deal with the process of proving and its relationships with the 
product (proof) to be built up in a given theory. Habermas (1998, pp. 310–317) deals with the 
complexity of discursive practices according to three interrelated components, concerning: 
knowledge at play, and the answer to “why is it true” questions in a given cultural context 
(epistemic rationality); action and its goals, and strategies to achieve them, to be evaluated 
(teleological rationality); communication and related, intentional choices in a given social context 
on a given subject (communicative rationality). In Boero & Planas (2014) a detailed elaboration of 
the reasons for adapting Habermas’ construct to mathematics education is presented, with 
references to how it has been used in different studies. In the case of proof and proving, according 
to Mariotti’s definition of theorem, the adaptation of the Habermas’ construct concerns: 

 criteria for validity of inferences and truth of statements within a theory, and their dependence 
on historical periods, mathematical domains, and institutions and cultures. Inferences may rely 
on visual evidence, or conceptual meaning, or syntactic transformations, etc.;  

 problem solving strategies that may be adopted to reach the goal of proving, along with their 
effectiveness; strategies may use analogies, abduction, and so on. Strategies and exploration are 
not constrained within the border of the reference theory;  

 the choice and use of appropriate communication means for proof in a given context,  

together with the relationships among them, taking into account the goal of the proving process — a 
proof, conforming to requirements specified for the first and the third components. The expression 
‘rationality frame’ will be used to put into evidence the system of epistemic constraints, strategies 
and forms of communication, which works as reference for proving and proof in a given theory. 

Examples  
Moving to the school, the role of the following examples is to provide evidence for the hypothesis 
that CUTHE depends, for the same statement, on the specific rationality frame in which a 
conjecturing and proving problem is dealt with by the student; and also to provide elements for 
further investigation. The examples will include some excerpts from students’ think aloud solving 
processes. Italic is for written texts. (…) is for omitted sentences.  … is for a pause in oral speech. 

Example 1 

The same conjecturing and proving problem was proposed in grades VIII and IX: “Consider all the 
products of three consecutive natural numbers. What is their GCD? Prove that it is their GCD”. S-A 
is a grade VIII (13-years-old) student not yet familiar with the use of letters to prove:  

Student S-A:   1·2·3=6           2·3·4=24          3·4·5= 60         10·11·12=1320;  it is evident that 6 
is the GCD of the first three products, because it is the greatest divisor of the first 
product and a divisor of the other products. Is it a divisor of 1320? … Yes, 1320 is 



an even number divisible by 3 because the sum of its digits is a multiple of 3. 
Then 6 might be the divisor of all the other products too. But why? Probably, by 
looking at these four products, all the products are even… But why? OK, one 
factor is always even! Even numbers go two by two, thus among three numbers 
one number … one number at least is even, and they may be two, like in the case 
of 2·3·4. Look at, three is there! And a multiple of three is in the last product! 
Why?  In the case of 2, multiples go two by two … In the case of 3, numbers go 
three by three. That is the reason! Now I try to write down the general reasoning: 
The greatest common divisor is 6 because every product is divisible by 6 because 
every three consecutive numbers contain one even number (multiple of 2) and one 
multiple of 3, because multiples of 2 go two by two, and multiples of 3 go three by 
three (The teacher writes the following question: Why greatest?) (after a while) 
Because the first product is divisible by 6, and no greater divisor is there.  

S-A resumes the examples, which conjecturing was based on, to identify general reasons for the 
truth of the conjecture. The intention of proving is related to the emerging conjecture, through “But 
why?” self-posed questions of epistemic relevance. A narrow intertwining between epistemic, 
teleological and communicative components of rationality allows the student to move continuously 
from exploration to the production of the conjecture, to proof construction by exploiting relevant 
elements got during the exploration, and then to proof writing. We may consider S-A’s solution as 
an example of CUTHE in the rationality frame of verbal-semantic elementary theory of numbers.  

S-B is a grade IX student who tries to solve the problem after some classroom work (about 10 
hours) on the use of letters to prove in an algebraic way. Note that he would be free (according to 
the didactic contract) to choose another way of solving the problem, as other schoolmates do:  

Student S-B:  (n+1)(n+2)(n+3)=(n2+2n+n+2)(n+3)=(n2+3n+2)(n+3)=n3+3n2+2n+3n2+9n+6 
=n3+6n2+11n+6. I do not see anything. But if I consider, for instance, 2·3·4=24  
3·4·5= 60   5·6·7=210   I see that… Yes, I see that 6 is always a divisor, because I 
see it as 2·3, as one half of 3·4, as 6 in the products. The same for 13·14·15. (…) 
24 is also divisible by 12, and by 8, but 60 is not divisible by 8, but it is divisible 
by 12. Let us see 210: (…) not divisible by 12, thus 6 is the only remained 
candidate! With algebra: n3+6n2+11n+6=6(n2+1)+n(n2+11). I do not see 
anything. Perhaps it is not true! 16·17·18 (…) not a good counter-example! 
Because 18 is divisible by 6. 21·22·23= (the student uses his cellular phone to 
make calculations; the product is divisible by 6). Perhaps it is easier by 
considering: (n-1)n(n+1)=n(n2-1).… I see nothing! I am not able to prove it!  

S-B tries to solve the conjecturing and proving problem in the rationality frame of elementary 
algebraic theory of numbers; the difficulty to produce a conjecture in that frame is overcome by 
moving to the rationality frame of verbal-semantic theory, where afterwards he will also try to 
dispel a doubt on the truth of the conjecture by considering a further, more elaborated example. 
Differently from S-A, no effort is addressed to find general numerical regularities that might be 
exploited to build up a verbal-semantic proof. In terms of rational behavior, this is an example of 
lack of connection between two different strategies (teleological aspect): to produce the conjecture 
and afterwards to provide some empirical evidence for it; and to produce a general reasoning for 



proving. As a consequence, CUTHE does not work in the rationality frame where it could have 
been activated (verbal-semantic theory). The same happened with the other students who tried to 
build up an algebraic - formal proof.  Note that an algebraic - formal validation of the statement 
may be performed either in combinatorics, or in modular arithmetic. Some schoolmates get the 
conjecture in the rationality frame of verbal-semantic theory of numbers, then they consider the 
products (n+1)(n+2)(n+3) or (n-1)n(n+1) and realize that in these products one number is divisible 
by three and at least one number is divisible by two; thus proving still relies on semantic 
considerations related to the number line and the positions of multiples of 2 and 3 in it, like in the 
case of S-A. The algebraic expression of the product is only a device to favor the transition to a 
general reasoning. CUTHE works thanks to the intention of finding general regularities and a proof 
in the same rationality frame of verbal-semantic theory, where the conjecture had been produced. 

Example 2 

A conjecturing and proving problem was proposed by the same teacher in grade XI, in three parallel 
classes, as an individual task: “Among the triangles with a given side and the same perimeter, find 
the triangle with the greatest area”. Those classes were familiar with conjecturing and proving in 
number theory (both in a verbal-semantic way and in an algebraic way), and in Euclidean geometry.  

The first class at that moment was familiar only with proving in plane Euclidean geometry; 
according to the conjecturing style of Euclidean geometry, some students (one third of that class) 
got the conjecture (the solution of the problem is the isosceles triangle) by considering that, after 
drawing some triangles, an isosceles triangle looks as the “widest” one (students say: “the fattest”) 
among the drawn triangles (but three students got the conjecture of a right-angled triangle with the 
same considerations); a few students got the conjecture through a “limit & symmetry” consideration 
related to the fact that, when the triangle becomes strongly asymmetric, the surface within it 
becomes very “small”, if we want to keep the same perimeter. During the discussion on the 
produced conjectures, after disproving (through measures) the conjecture concerning the right 
angled triangle, some students proposed to consider another triangle with the same height of the 
isosceles triangle (thus with the same area), and to try to prove that its perimeter is longer than in 
the case of the isosceles triangle. But a rigorous proof is not easy to build up, and in fact no student 
built it up, in spite of a long time spent for it in the classroom, by working in small groups (and then 
at home as well!); a relatively easy proof needs an auxiliary construction and the use of related 
theorems. The exploration to get the conjecture only suggests a first step of a proving process, and 
does not provide the ingredients to build up the proof: CUTHE does not work. 

The second class had already met conic sections in synthetic geometry (they knew that an ellipse is 
the locus of points whose sum of distances from two given points is constant, and its basic 
properties concerning symmetry, axes, etc.). In this class, the conjecture was produced in a similar 
way as in the first class; but one fourth of students, thanks to the drawings of some triangles with 
approximately the same perimeter, arrived also to make a link with the ellipse in synthetic 
geometry. Students shared what had been discovered; then (by working in small groups) four 
groups out of six were able to solve the proving problem by considering the properties of an ellipse 
in synthetic geometry. The exploration provided students with a visual link with the ellipse in 
synthetic geometry, thus bridging conjecturing with proving – even if proving did not rely on the 



considerations (“fatness” of triangles) that has generated the conjecture (and thus CUTHE did not 
work). Here is an excerpt from S-C’s think aloud process:                                                                           

Student S-C:  (…)  Now I have a reasonable conjecture. How to prove it? (student C draws three 
more triangles, with the same side in common with the four previously drawn 
triangles, and approximately the same perimeter). It is even more evident that the 
isosceles triangle has the largest area. But it seems to me that all those triangles 
have something in common. Their free edges are …Yes! I understand: the same 
perimeter means that the free edges are on an ellipse. Thus I may try to see if I 
succeed to build the proof by using the ellipse.  (…) 

The third class had already constructed, under the teacher’s guide, the equations of a circumference 
and a parabola by translating into algebraic equations the characteristic conditions of those 
geometric loci. They had not yet met the equation of an ellipse, or the notion of an ellipse in 
synthetic geometry. The teacher suggested to use algebra to solve the problem. Student S-D is a 
representative of those students (about one third of the class) who succeeded in finding the 
conjecture and proving it. S-D draws three triangles with (approximately) the same perimeter: 

Student S-D:  I must maximize an expression for the area of the triangle, when x changes: 

 
The maximum is when x=0. Perhaps this is the solution! But I have not 
considered the condition a+c=K. And what I found is … it is obvious: x=0 means 
the rectangle triangle. Obvious: in that case the side of length a is vertical, 
namely, maximum height of the triangle. But that side has always the same length. 
But in this problem a is related to c. I should find how to take the condition a+c=K 
into account. Perhaps it should be good to compare two expressions for the height 
of the triangle, perhaps… in order to get the area depending only on b and K. 

 
Good! Given K and b, the area depends only on x (algebraic calculations follow) 

 
Now it works: I see the equation of a parabola; … if x=b/2 I get the the vertex of 
the parabola, it means the maximum… the maximum of the area. (S-D draws an 
isosceles triangle) OK, it looks fine: the isosceles triangle looks as the widest one! 



We may observe how (as it usually happens in analytic geometry) conjecturing and proving are 
dealt with at the same time, thus CUTHE works. Exploration is driven by the goal to be attained 
through algebra, thus the initial figures are not exploited to get a conjecture. The first trial is 
abandoned after interpretation of the algebraic result, the second one develops and brings to the 
conclusion.  Epistemic control works on formalization, choice of syntactic transformations, and 
interpretation of results (see Morselli & Boero, 2011, pp. 455–456).  

Conclusion and discussion 
The aim of this paper was to elaborate the idea of cognitive unity of theorems (CUTHE) by relating 
it to the rationality frame available to (or chosen by) students to solve a conjecturing and proving 
problem. Through the examples (particularly Example 1, S-A and also Example 2, S-D) we have 
seen how the same statement may be produced in a particular rationality frame and then proved in 
the same rationality frame by exploiting some elements produced during the conjecturing phase, in 
a continuous process where the intention to achieve the conjecture and ascertain why it is true 
drives the attention of the student to relevant aspects of the problem situation, useful to build up the 
proof.  While the same statement of Example 1 resists S-B’s effort of proving it in another 
rationality frame. The same for the statement of Example 2 in the frame of Euclidean geometry. 

This paper brings some elements of novelty in the field of research, which deals with the 
relationships between the exploratory phase of conjecturing and proving (or of proving a given 
statement), and the phase of proof construction. Through the use of the rationality construct, the 
hypothesis of dependence of activation of CUTHE on the theory chosen as reference for 
conjecturing and proving, already briefly presented in Garuti et al (1998), is further elaborated, with 
a counterpart in some examples from classroom activities. The rationality perspective provides a 
lens to compare (and distinguish between) different rationalities in mathematics, with different 
opportunities to validate the same statement by activating CUTHE. The chosen examples 
(particularly in the case of S-B if compared with S-A and with some S-B’s schoolmates) also 
suggest to move to a deeper consideration of the relationships between the student’s intention (i.e. 
the teleological component of her rational behavior) and the production of those elements, which 
might be arranged in a deductive chain in order to get a proof. Another, possible research 
development (related to Douek’s present work) concerns a connection with what is called “semantic 
proof production” in Weber (2005, p. 356–357): in his reported example the student produces a 
visual-graphic representation of the sequence (an)=(1,0,1,0,1, …) and a horizontal band, which 
‘shows’ that the sequence is not convergent to a limit; that “informal representation” suggests and 
guides “the formal inferences that (she) would draw”. CUTHE does not work: elements produced 
during the exploration are not resumed as steps of the construction of the proof in the rationality 
frame of formal Calculus. But those elements allow to bridge the exploration of the proving 
situation with the construction of a proof in terms of the teleological component of rationality, with 
some analogy with the case of S-C (in Example 2); both cases suggest to widen the idea of CUTHE 
by including that kind of productive relationships between exploration and proof construction. 
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Supporting classroom implementation of proof-oriented tasks: Lessons 
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This paper reports on a professional development (PD) which aimed to support secondary teachers 
in incorporating argumentation and proof-oriented tasks in their classrooms. The teachers 
interacted with researcher-developed models of proving tasks in a variety of ways, including 
modifying the tasks to their classrooms contexts, implementing the tasks, sharing and reflecting on 
the experiences. In the process of modifying proof-oriented tasks by teachers some of the original 
researcher-intended goals were lost, while other unexpected affordances emerged. This raises 
important questions regarding modes of teacher-researcher collaborations around proof-oriented 
classroom interventions, and their potential effectiveness.   

Keywords: Reasoning and proof, professional development, instructional activities, classroom 
interventions.   

Introduction 
As the body of knowledge on reasoning and proof grows, the focus of mathematics education 
research has shifted from examining individual students’ conceptions of proof and theorizing about 
potential causes of students’ difficulties with proof towards designing classroom interventions that 
aim to remediate these difficulties and provide instructional support for students and teachers in 
classrooms (Stylianides & Stylianides, 2016). In this process teachers play a critical role, as they are 
responsible for establishing learning environments in their classrooms. In line with the wide 
recognition of the importance of argumentation and proving to students’ mathematical experiences 
(e.g., Reid & Kipping, 2010) teachers are expected to implement tasks that promote reasoning, and 
have students construct and critique mathematical arguments (CCSS, 2010).  

While many teachers agree, in principle, with this vision of mathematics classrooms, they often find 
them challenging to implement and maintain over time (Brodie, 2010). Moreover, only a limited 
number of professional development (PD) settings explicitly focus on argumentation and proving in 
connection to classroom practices (Brodie, 2010). Hence there is a need to expand the theoretical 
and practical knowledge of successful strategies for supporting teachers in this area.  

This paper reports on an experimental model of a PD intended to support teachers in incorporating 
argumentation and proving in their classrooms. The following sections describe theoretical grounds 
underlying a special feature of the PD: teachers modifying researcher-designed proof tasks for 
implication in their classrooms. I illustrate two such modified tasks and analyze them in terms of 
affordances for students’ learning, and their (mis)alignment with the original designer’s intentions. I 
close by discussing some implications for supporting teachers’ implementation of proof-oriented 
classroom activities.   



Theoretical framework 
Supporting change in teacher practices: the emphasis on argumentation and proving 

Research has identified key features of PD settings that have shown to be successful in supporting 
change in teachers’ practices. Among them are: focus on content and pedagogical knowledge, active 
learning experiences, establishing strong connections to teachers’ own classroom contexts, and 
providing ongoing support for teachers (Copur-Gencturk & Papakonstantinou, 2015). These general 
features can be adapted to provide targeted support for teaching argumentation and proving, for 
example, by emphasizing mathematical knowledge for teaching proof (MKT-P).  

Building on Stylianides’s (2011) notion of “comprehensive knowledge package for teaching proof”, 
Buchbinder et al. (2016) suggest that MKT-P includes 4 types of knowledge. Two types are related 
to pedagogical content knowledge: (a) knowledge about students’ conceptions of proof, and (b) 
knowledge of pedagogical practices for supporting students’ development of correct conceptions of 
proof. The other two types of MKT-P involve subject matter knowledge: (c) robust knowledge of 
mathematical content involved in a given task, and (d) meta-mathematical knowledge of proof, such 
as argument validity, logical connections, types of proof, and the role of examples in proving. These 
four types of knowledge were addressed in the design of the PD reported in this study. In addition, 
the PD activities established strong connections to teachers’ own classrooms by providing practical 
tools for teachers to develop and implement proof-oriented instructional tasks in their classrooms. 

Task design 

Choosing, adapting and designing mathematical tasks is one of the cornerstones of a teacher’s work.  
With textbooks providing only limited opportunities for students to engage in argumentation and 
proving (Thompson et al., 2012) teachers have been encouraged to treat textbooks’ tasks as a 
starting point for planning instruction: to modify tasks to increase their cognitive demand or develop 
their own tasks (Stein et al., 2000). Since PD efforts in this area have seldom specifically targeted 
argumentation and proving tasks, the knowledge on teachers developing and implementing such 
tasks has been limited. Adding to this concern, Stylianides and Stylianides (2016) argue that it is 
unrealistic to expect individual teachers to design their own instructional activities that successfully 
target persisting difficulties with proving. On the other hand, Kim (2016) has found that teachers 
regularly tend to omit, replace or substitute instructional activities, even when working with reform-
based, research informed curricula, which often compromises the original designer intentions.   

This dilemma can be addressed by fostering close collaboration between researcher-designer and the 
teacher (Cobb et al., 2003). While the researcher-designer brings in strong theoretical and empirical 
knowledge related to proving, the teacher has an intimate knowledge of specific instructional and 
institutional context. This partnership model was realized in this study by providing teachers with 
researcher-developed prototypes of proving tasks to modify and implement in their classrooms.  

Proof-task prototypes 

Six prototypes of proving tasks were developed by the author of this paper in a study of secondary 
students’ conceptions of proof. The tasks, which can be used as diagnostic tools and as instructional 
activities (Buchbinder & Zaslavsky, 2013), were developed in generic form, so they could be 
adjusted for a variety of mathematical topics, while maintaining the original structure and goals, 



such as recognizing the limitation of examples for proving general claims, or understanding the role 
of counterexamples. In the context of the PD reported herein, teachers received at least one content 
specific version of each type of task, and a generic template highlighting task structure. Figure 1 
shows an algebraic version of the task True-or-false; and Figure 2 shows its generic version1. 

True or False? For each statement below decide whether it is true or false and justify your answer.  

1) Every three numbers a, b, c satisfy the equation: 
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4)  There exist four numbers a, b, c, d that satisfy: 
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2) The (positive) difference between the squares of 
any two consecutive natural numbers is equal to 
their sum. 

5) There exists a number 1a  that satisfies the 

equation: 
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3) Every two numbers n, m satisfy the equation:  

mnnm 
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111  

6) There exist three distinct positive integers  a, b, 

c  that satisfy 
b
a

cb
ca




  

Figure 1:  Algebraic version of the task True-or-False 

The task True-or-false targets multiple aspects of proving and refuting. It requires distinguishing 
between universal and existential statements, and recognition that the type of statement affects the 
role of examples in proving or disproving it. To successfully complete the task, students need to 
construct general proofs, construct appropriate counterexamples to disprove false universal 
statements, and come up with supporting examples to prove existential statements.  

 
 
Statement 

Type of 
statement: 

U / E 

Truth 
value:  
T / F 

“Always-Sometimes-Never” Type of justification 
required True for all 

values 
Ture for some 

values 
True for 
no values 

1)  U F    Refutation by a 
counterexample 

2)  U T    General proof 

3)  U F    Refutation by a 
counterexample 

4)  E T    Proof by a supporting 
example 

5)  E T    Proof by a supporting 
example 

6)  E F    General refutation 

Figure 2:  The structure of the task True-or-False 

The task Always-Sometimes-Never, builds on the task True-or-false by asking whether the 
propositions of the statements in the latter task are true for all, some, or no values of relevant 
variables. This often requires construction of additional arguments, e.g., although statement #3 in 
Figure 1 can be refuted by a single counterexample, one must construct a general argument to show 
that no values of variables satisfy the statement. Sequencing these tasks allows to contrast quantified 

                                                 
1 For complete presentation of all 6 types of task prototypes see Buchbinder & Zaslavsky (2013). 



statements, which are either true or false, with non-quantified propositions, which truth-value 
depends on the value of a particular variable. Creating a combination of statements to addresses all 
these aspects of proving is a complex undertaking, which could be supported by using a generic 
version of the task (Figure 2). The goal of this study was to explore the potential of using generic 
task prototypes to support the work of mathematics teachers with respect to incorporating 
argumentation and proving in their classrooms.     

Methods 

Participants. The study was conducted with 5 secondary teachers, all female, all from different 
schools in a Northeastern area in the United States. Their teaching experience varied greatly from 5 
to over 30 years. Since the PD was advertised as explicitly devoted to classroom implementation of 
argumentation and proving tasks, all participating teachers were motivated to introduce such tasks 
in their teaching, but sought to gain practical skills in this area. Hence, the PD aimed to reinforce 
already existing teachers’ motivation, provide ongoing professional support, and foster teachers’ 
sense of self-efficacy as they transformed their practices.  

The setting. The PD consisted of 9, two-hour long weekly meetings which took place on the 
campus of a state university in the Fall of 2015. During the sessions teachers interacted with the 6 
types of researcher-developed proof tasks in several ways: they experienced the tasks as learners, 
examined samples of student work pertaining to these tasks, and analyzed opportunities to learn 
about argumentation and proving embedded in the tasks. This was done by comparing teachers’ 
own experiences and student work with the generic task prototype to examine the extent that the 
designer-intended goals have been realized. Throughout the PD teachers were encouraged to try out 
at least two types of tasks in their classrooms and share their experiences with others.  

Modes of Inquiry and Data Sources. All PD sessions were videotaped. Each teacher submitted the 
tasks they had created or modified for their classrooms, sample student work and a two-page report 
on the task implementation e.g., the mathematical topic, the number of students, and the modes of 
work: group, individual, whole class, or combined. Teachers were also asked to describe what kinds 
of learning opportunities they think their tasks afforded, and what challenges they encountered as 
they created and implemented the tasks. The teachers also completed a short survey assessing the 
perceived effect of the PD on their classroom practices.  

Results and discussion 

Perceived obstacles for classroom implementation  

Although all participating teachers expressed their commitment and motivation to incorporate 
proof-oriented tasks in their teaching, they also frequently shared concerns about feasibility of such 
shifts in their practices. Their concerns included whether incorporating proof-oriented tasks would 
compromise curriculum “coverage”, or would take out from the time originally allotted to test 
preparation; whether students would be willing to take social risks associated with sharing 
mathematical arguments in public, and to critique the arguments of others; and whether students be 
willing to engage in proof-oriented tasks that vary in form and content from what they are used to. 
These types of concerns reflect teachers’ professional obligations towards the institution of 
schooling and towards individual students’ social and emotional needs (Herbst & Chazan, 2011).  



Of the total 11 proof tasks created by the teachers, 2 were of their own design and 9 were 
modifications of one of the researcher-designed task types: Is this a coincidence?, True-or-false? 
and Always-Sometimes-Never. The tasks addressed a variety of mathematical topics in algebra, 
geometry, number and operation, and logical reasoning. The modes of implementation involved: 
enrichment activities, practice, exam review, or introducing a new topic. In the following I focus on 
one teacher, Alison (a pseudonym), to illustrate how she had modified two tasks to fit her classroom 
context. These tasks were chosen because they stood out as one of the most creative modifications 
to the researcher-designed task prototypes that occurred within this group of teachers.       

Alison’s modification of the tasks True-or-false? and Always-Sometimes-Never 

Alison has more than 20 years of teaching experience and is well-respected in her school. Similar to 
other teachers she joined the PD with mixed feelings: committed to provide students with proving 
experiences but sharing the abovementioned concerns. Alison was inspired to create two proof tasks 
when her students performed poorly on a particular item on an algebra test: a word problem about 
money invested and interest earned in two bank accounts. The students found it challenging to set 
up an equation to represent the total amount of money split between the two accounts, using a single 
variable. Alison used students’ test responses to create a sequence of tasks: Always-Sometimes-
Never (Figure 3) and a follow-up True-or-false task (Figure 4).  

 
Figure 2:  Six out of 8 items from Alison’s task Always- Sometimes-Never 



 
Figure 3:  Two out of 6 items from Alison’s task True-or-false? 

Alison’s goals in developing this sequence of tasks were to confront students with both correct and 
erroneous charts for setting an equation representing the money split between the two accounts, and 
have students analyze, validate or critique the equation setups. In the Always-Sometimes-Never task 
students were to determine whether the equation setups are true for all, some, or no values of x, 
where x is the amount of money in one account. In the True-or-false task the same setups were 
accompanied by conditional statements. Students were to determine whether each equation is 
algebraically correct, and whether it can be applied to the given word problem. The tasks were 
implemented with 74 students (4 classes). Students worked in groups of 3 or 4 on the Always-
Sometimes-Never task in class, and then completed the True-or-false task at home. 

Opportunities gained and lost through task modification 

The design on Alison’s tasks reflects the way she balanced her professional obligations. By using 
students’ test responses as a content of the tasks Alison minimized social anxiety associated with 
presenting and critiquing mathematical arguments. She also addressed her curriculum goals while 
engaging students in proof-oriented tasks. The mathematical affordances of Alison’s tasks 
encompass many of the original designer intentions. For example, the task Always-Sometimes-Never 
provided students with opportunities to reason through a variety of correct and incorrect equation 
setups, and evaluate whether they can be true for all, some or no values of the variable. The use of 
precise mathematical language echoes the goals of the original design. The two tasks build on each 
other, with True-or-false task emphasizing evaluation of conditional (if not quantified) statements. 
The tasks reflected additional learning goals Alison had for the students: to distinguish between 
equations that are mathematically correct but are inappropriate in the context of the problem. 
Further distinctions could be made between equations that do not account for an implicit problem 
requirement: the investment in either account cannot be $0 (equations D, E & F); and equations that 
do not account for the explicit requirement: the total interest earned must be $4900, meaning that 



equal sums of money cannot be invested in two accounts2 (equation A). These distinctions came up 
in students’ written responses to the tasks. Alison was very satisfied with students’ interactions with 
the tasks, and indicated that next year she plans to use them to introduce the topic of solving word 
problems, rather than a test review.  

Despite the important affordances of Alison’s task, many of the original proof-oriented goals of the 
tasks, such as the limitation of examples for proving general claims, the distinctions between 
quantified and non-quantified, universal and existential statements, were not realized in the tasks  
setup. Potentially, Alison’s tasks could be used to highlight other issues related to proving, which 
although not intended by researcher design, arise naturally in the context of her tasks. Justifications 
for dismissing solutions A, D, E and F (Figure 1) bare resemblance to arguments by contradiction – 
a proposed equation, assumed as correct, is rejected because it contradicts one of the problem 
constraints. Such interpretation could pave a way to discuss proof by contradiction in algebra class.   

Conclusions 
This paper described an exploratory study that tested a PD model which aimed to support secondary 
teachers’ implementation of argumentation and proving tasks in their classrooms. The researcher-
designed tasks served as prototypes after which teachers could model their own tasks. The generic 
versions of the same tasks provided additional support for teachers by outlining the structure of the 
tasks and highlighting specific proof-related goals. By using researcher-designed tasks as a starting 
point for creating their own tasks, teachers became critical partners in designing classroom 
interventions to promote students’ engagement with proving. As teachers collaboratively explored, 
modified and shared experiences of classroom implementation of their tasks, they negotiated a new 
understanding of what it means to engage students in argumentation and proving. In the post-PD 
survey, all participating teachers reported increased confidence in their ability to incorporate 
argumentation and proving tasks in their teaching. One teacher, called here Jenifer, wrote:  

The [PD] classes gave me great ideas to take back to my classroom, to look at proofs very 
differently than what I had always thought of as a proof. Proofs do not need to be the static, two 
column proofs from my school experience. They can take a couple of minutes or they could be 
something to wrestle with for a majority of the block. I liked that the activities were easily 
manipulated to fit a specific time frame or wanted outcome.  

The study also revealed challenges associated with supporting teachers in developing proof-oriented 
tasks. Alison’s tasks show that although she created powerful opportunities for students to engage 
with argumentation, some of the original researcher-intended goals, specifically related to proving, 
seem to have been lost. The available data sources do not provide sufficient information as to which 
aspects of proving were explicitly addressed in class, or whether they were completely 
overshadowed by discussions of the algebraic content. Hence, future studies should involve 
classroom observations. Finally, the results of this study concur with those suggesting that changing 
teacher practices is a gradual process which requires structured support (Brodie, 2010) to help 
teachers to develop a view of proof-oriented classroom activities as means to balance their 
professional obligations and enhance students’ mathematical learning.    

                                                 
2 Investing $25,000 at 6% in one account and $25,000 at 11% in another account would yield a total interest of $4,250. 
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The large corpus of research on mathematical reasoning and justification in the mathematics 
education literature has yielded a wide range of tasks that require a mathematical argument to be 
established. This paper presents the DIVINE framework that classifies justification tasks by their 
nature and purpose as well as the expected element to be provided in the justifications. The 
framework is then used as a theoretical basis for appraising justifications produced by mathematics 
teachers.  

Keywords: Mathematical justification, classification framework, teacher competency. 

Introduction 
Mathematical reasoning plays a crucial role in mathematics learning at all grade levels. It is a useful 
tool for exploring, discovering and understanding new mathematical concepts, for applying 
mathematical ideas and procedures flexibly to other situations, and for reconstructing previous 
knowledge in order to generate new arguments (Ball & Bass, 2003). To probe into the mathematical 
reasoning of students, another tool is needed to make such reasoning visible – justification. With the 
emphasis in schools worldwide on developing a broad set of competencies that are believed to be an 
imperative for success in the workplaces in the 21st century, greater demands are therefore being 
placed on students to reason and justify in the learning of mathematics. 

Mathematical reasoning and communication are two key process skills in the framework of the 
Singapore school mathematics curriculum (Ministry of Education (Singapore), 2012) that have been 
advocated for a long time. The notion of communication refers to the ability of using mathematical 
language to articulate mathematical ideas and arguments precisely, concisely and logically (Ministry 
of Education (Singapore), 2012). In this sense, mathematical justification is considered part of 
communication. But very little is known about the justification ability of Singapore mathematics 
teachers and students at the secondary level. I am thus interested to find out more about it and 
commenced the investigation with a survey of the various justification tasks that secondary school 
students had been tested in the national examinations over the past ten years. The survey has found 
that the justification tasks are of varied nature and can be classified into different categories.  

This paper seeks to address the following questions: What are the different types of justification 
tasks given to secondary school students? How might justifications for the different types of tasks 
qualify as acceptable? What elements should be present in an acceptable justification? It presents a 
theoretical framework for classifying mathematical justification tasks and discusses the expectation 
required in each type of tasks. The structure of this paper broadly follows these strands of work: (a) 
a perspective of what justification encompasses, (b) a view of justification tasks and the elements 
expected in the justifications, and (c) a discussion of justifications produced by Singapore 
mathematics teachers. 



 

 

Theoretical framework 
Justification According to Simon and Blume (1996), mathematical justification involves 
“establishing validity [and] developing an argument that builds from the community’s taken-as-
shared knowledge” (p. 28). The notion of justification as a means of determining and explaining the 
truth of a mathematical conjecture or assertion resonates strongly with many other researchers. For 
instance, it is consistent with Balacheff’s (1988) perception of justification as “the basis of the 
validation of the conjecture” (p. 225) – a view also supported by Huang (2005) as well. To Harel 
and Sowder (2007), justification for validation serves two different roles: to ascertain the truth of a 
conjecture, and to persuade others that the conjecture is true. Even these two roles have slightly 
dissimilar intention. In Ellis’ (2007) view, ascertaining the truth is meant to remove one’s own 
doubts whereas persuading is one’s attempt to remove others’ doubts. As the discussion reveals, 
expressing justification for the purpose of ascertaining truth is a cognitive process whilst convincing 
others of the truth is a social process.   

The notion of justification focuses traditionally on the notion of proof from the primary to the high 
school and university levels in the research literature (see e.g., Jones, 2010; Stylianides, 2007). Thus 
proof is viewed as a type of justification in this regard. So I think the definitions of proof available 
in the literature can help to deepen our understanding of mathematical justification. A prime 
example that stands out is Stylianides' (2007) definition of proof as a mathematical argument made 
up of a connected sequence of assertions for or against a mathematical claim. This definition echoes 
Hanna’s (1989) definition of proof as “an argument needed to validate a statement” (p. 20) and is 
considered by far the most comprehensive meaning of proof. 

Mathematical justification encompasses a broad range of arguments besides proof. The types of 
arguments that students are expected to produce depend on at least two factors: the cognitive 
abilities of students and the nature of the task. For primary and secondary school students, 
particularly those in the lower secondary grades, a justification does not need to measure up to a 
formal proof. This is because providing a theoretical argument for a mathematical result is 
sometimes not required in the light of their cognitive level until they reach higher level of study 
(Hoyles & Healy, 1999). This is illustrated by the justification task on algebra asking lower 
secondary school students to explain why  is an odd number for any positive integer . This 
task presents a mathematical claim (i.e.,  is an odd number for any positive integer ) and 
requires the students to provide supporting evidence to show why the claim is true. In short, the 
nature of such a task is to validate the claim. Therefore a reasoned argument within the conceptual 
reach of the students of this grade level could take the form as follows: with  being any positive 
integer, forming two groups of , which can be expressed as  in notation, thus generates an even 
number, therefore subtracting one from it will result in an odd number. This justification simply 
uses everyday language rather than formal mathematical language, and does not draw on any 
theorems as in a typical theoretical argument.  

Clearly not all justification tasks require a theoretical argument. Some lend themselves well to 
experiential justification, which is mainly supported by specific examples and illustrations. 
Consider asking students to justify why the rule  is true for any positive integers a, 
m and n. The students can rely on intuitive reasoning using several concrete numerical examples in 
the justification. This mode of argument may be rejected as an adequate and valid justification of 



 

 

the rule because it does not cover all cases of the variables a, m and n. Although such an 
experiential justification does not involve any theorems and somewhat lacks mathematical 
sophistication, it does convey to some extent student understanding of why the mathematical claim 
is true, albeit a far less formal argument than a typical mathematical deductive proof (Becker & 
Rivera, 2009). But it is such justification that is valued because it “explains rather than simply 
convinces” (Lannin, 2005, p. 235). 

Aside from presenting an explanation for or against a mathematical claim, a justification can also 
take the form of an elaboration of how a mathematical result is obtained, as pointed out by Becker 
and Rivera (2009). Consider, for instance, the topic of pattern generalisation. Becker and Rivera 
(2009) and Stylianides (2015) had asked students to justify how they established their general rules 
for figural patterns. The nature of this type of justification task expects the students to illuminate 
clearly the method used in rule construction. Like the validation task described previously, the 
justification for the elaboration task can also be articulated in two different modes: written as in 
paper-and-pencil tests and verbalised as in face-to-face interviews. Both modes were evident in 
Stylianides’ (2015) study. 

Justification tasks Different types of justification tasks are gleaned from the literature on 
mathematical reasoning, proof and argumentation. Justification tasks require individuals to make 
mathematical arguments, a process which is integral to mathematics learning in order for the 
individuals to make sense of the mathematical concepts and procedures, and learn mathematics with 
understanding. Additionally, these tasks provide insight into their thinking and reasoning as well. 
Justification tasks can be classified into what I call elaboration, validation and making decision 
tasks. 

Elaboration justification tasks are very popular in the literature and have been widely used in 
research studies by many researchers, including Becker and Rivera (2009), Lannin (2005) and 
Stylianides (2015). Such tasks (for e.g., Pizza Sharing in Lannin (2005)) require individuals to 
elaborate the approach that was used to obtain a mathematical result. Validation justification tasks 
are questions that seek arguments to support or refute a mathematical claim. This kind of tasks (for 
e.g., Mr. Right Triangle in Chua (2016)) is used to gain insight into how individuals reason about a 
mathematical claim. Making decision justification tasks offer options for a mathematical situation 
and individuals have to exercise decision-making power to pick one of the options so as to answer 
the question. The geometry test item from the study by Küchemann and Hoyles (2006) is a case in 
point. 

Apart from the three types of justification tasks discussed thus far, there is one more type which is 
seemingly less common in research studies but popular in the Singapore national examinations for 
secondary school students. Consider the algebra task in Figure 1 that requires individuals to make 
sense of the given context and then infer the significance of the positive solution of the quadratic 
equation from the context. Such a task exemplifies what I call an inference justification task. It is 
normally set in a real-world context and seeks an interpretation of a mathematical result. 



 

 

 

A stone was thrown from the top of a vertical tower. Its position during the flight is represented by 
the equation , where  metres is the height of the stone above the ground and  
metres is its horizontal distance from the tower. 

Explain what the positive solution of the equation  represents. 
Figure 1: Inference task on algebra 

In summary, this sub-section has highlighted four distinct types of justification tasks. All these tasks 
share a common objective, which is to elicit from someone a mathematical argument for a 
mathematical claim or result. As they vary in nature from one type to another, the essential elements 
to be expected in the argument for each type of task are therefore also not the same. In the next 
section, I introduce the DIVINE framework that classifies justification tasks by nature and purpose 
as well as the expected element to be provided in the justifications, and describe its usefulness. 
DIVINE is the acronym of the four types of justification tasks: making Decision, Inference, 
ValIdatioN, and Elaboration. 

The DIVINE framework 
The conceptualisation and development of the DIVINE framework in Table 1 was informed by the 
literature on mathematical proof, reasoning and justification in the field of mathematics education, 
by analysis of justifications produced by students and mathematics teachers that I had encountered 
in the course of my teaching in recent years, and by my own disciplinary knowledge. It describes the 
nature and purpose of the justification tasks, and the expected element to be provided by individuals 
in their attempt to produce a correct justification. 

 Nature of 
justification tasks 

Purpose of 
justification tasks 

Expected element in the justification 
 

Making Decision 
 
 

Explain whether… 
Explain which… 

a decision about the mathematical claim with evidence to support 
or refute the claim 
 

Inference Explain what… the meaning of the mathematical result, with the key words in the 
task addressed 
 

Validation Explain why… a reason or evidence to support or refute the mathematical claim 
 

Elaboration Explain how… a clear description of the method or strategy used to obtain the 
mathematical result 
 

Table 1: The DIVINE framework 
The term nature can be described as the cognitive process that an individual undertakes when doing 
the justification task. The nature of the tasks places slightly different demands on thinking and 
reasoning. Making decision, inference, validation and elaboration are the four kinds of cognitive 
processes that have been identified in this paper. The purpose of a justification task refers to the 
reason for making the mathematical argument. Finally, the expected element is used to refer to the 
details that an individual is supposed to provide in order to give a correct justification. 



 

 

It should be pointed out that although the expected element in a justification indicates what needs to 
be given for a particular type of justification task, the resulting justification may not necessarily be 
accepted as correct. For the justification to be judged as correct, I think it is imperative to also 
examine three other elements of a mathematical argument: the mathematics presented, the clarity in 
the argument and what Stylianides (2007) termed as the modes of argumentation. The mathematics 
presented refers to the mathematical concepts and procedures used in the justification, including the 
definitions and theorems that are used, the calculation that is shown and so on. The clarity in the 
argument means presenting the argument in a clear, easy-to-follow, and unambiguous way. The 
mode of argumentation concerns how a justification is developed. In other words, the form of the 
justification (such as a logical deduction, a proof by contradiction, exposition) has to be taken into 
consideration. A brief discussion of the potentiality of the DIVINE framework will now follow. 

Usefulness of the framework  Recognising whether a mathematical justification is correct is a vital 
task for teachers because they often have to evaluate the validity of students’ justifications. But as 
Chua (2016) had noted, this task is fraught with difficulties as the teachers might not be clear about 
the rigour of justification. They may accept justifications as correct even when certain elements are 
missing. Teachers therefore need guidance in teaching justification. So the DIVINE framework 
shows them what essential elements to look out for so that they know whether certain details are 
still lacking in the justification. Teachers can also discuss the three components of the framework 
for the various types of justification tasks with the students to enrich their learning and appreciation 
of justification. In this way, students can develop a deeper understanding of constructing 
mathematical justification and become more confident in doing it. This pedagogical approach is 
particularly useful for those students who do not already have the justifying skill and struggle with 
justification. Additionally, for those who get stuck when attempting a justification task, the 
framework offers a structure for them to rely on and get unstuck instead of seeking immediate help 
from their mathematics teachers.  

In the remaining sections, examples of justifications by both pre-service and in-service mathematics 
teachers will be discussed to demonstrate the rigour of the DIVINE framework as it currently stands. 
The pre-service teachers were Year 2 undergraduates undergoing their first course in mathematics 
pedagogy to prepare them to teach secondary school mathematics. The course content covers 
problem solving, learning theories and teaching strategies for a range of mathematics topics, 
including arithmetic, algebra, probability and statistics. The in-service teachers were from the same 
secondary school who attended my professional development workshop. A vast majority of them 
have taught mathematics for at least 5 years. The justifications were collected from the various 
classwork given to the teachers in my lessons. The names of the teachers are changed to protect 
their privacy. The discussion focuses specifically on making decision, inference and validation types 
of justification tasks. No elaboration task will be illustrated because the teachers were not given 
such tasks to do in my lessons.  

Making Decision task: The justifications of Angel, Betty and Carl  
The number pattern item in Figure 2 was given to the pre-service mathematics teachers. Before 
administering this item, the teachers had learnt the various generalising strategies for deriving the 



 

 

general rule for both numerical and figural patterns, but not how to deal with justification tasks. 
This item was therefore given to see how they would handle and justify a making decision task.    

The first four terms of a sequence are 5, 9, 13 and 17. 

(a) Find an expression, in terms of n, for the nth term of the sequence. 

(b) Explain whether 207 is a term in the sequence. 

Figure 2: Making decision task on number pattern 

Part (a) was answered correctly by all the teachers. They established  as the general rule of 
the sequence. However, the responses for part (b) were more varied, and the justifications produced 
by Angel, Betty and Carl are described below. 

Angel began with the supposition  and then solved the equation to obtain n = 51.5. 
He concluded: Since n has to be a positive integer, then 207 is not a term. Betty worked out the 
difference between 207 and the first term 5 to get 202. Then she wrote: No. All terms in the 
sequence are divisible by 4 after being subtracted by 5. 202 is not divisible by 4. For Carl, he started 
with the same supposition as Angel and found the value of n. He then stated: n must be a whole 
number for the given number to be a term in the sequence. The justifications of Angel and Betty, 
but not that of Carl, were considered fully correct. Their justifications contain all the vital elements 
for a making decision task: that is, a conclusion supported by evidence. Carl’s justification is 
missing the conclusion, thus judged as partially correct. In all the three examples, the justifications 
are logical and easy to follow, and the mathematics is correct. Carl’s case is a perfect example to 
illustrate the importance of the DIVINE framework. If he had known about the essential elements 
that he had to show in his justification, he would have constructed a complete and correct 
justification. 

Inference task: The justifications of David and Eve 
The algebra item in Figure 1 was administered to the in-service mathematics teachers. The item 
tested them on their understanding of the significance of the positive solution of the quadratic 
equation in the given context. I expected the teachers to explain what the following three parts mean 
in the context: (i) y = 0, which in this context means that the stone has hit the ground, (ii) positive, 
which represents the forward direction of the throw, and (iii) the numerical value of the solution, 
which refers to the horizontal distance from the tower. However, expecting all three parts was too 
demanding, so a reasonable justification should address at least (i) and (iii). The mathematics 
teachers were told to construct the justification that would get them the best mark because they were 
experienced in-service teachers. The justifications of David and Eve are illustrated below. 

David: x metres is the distance of the stone from the tower, when y = 0 (at ground level). 

                           Eve: when y = 0, height above ground = 0,  stone is lying on ground. 

David and Eve showed evidence of their attempt to explain the meaning of the positive solution. 
David’s argument was regarded as correct because he justified (i) and (iii) correctly. For Eve, her 
justification was not deemed correct since she justified only (i). Her case again underscores the 
importance of knowing the critical elements that are needed in the justification, thus manifesting the 
usefulness of the DIVINE framework.   



 

 

Validation task: The justifications of Faith and George  
A geometry item involving a triangle with all three sides provided (15 cm, 8 cm and 17 cm) was 
given to the same group of in-service mathematics teachers mentioned above. They had to justify 
why the angle opposite the 17-cm side is a right angle. Figure 3 presents the justifications of Faith 
and George. 

Faith established the condition  by separately working out the values of  and 
, and noticing that both values were equal (see Figure 3a). Subsequently, she inferred 

that angle ABC is a right angle. The mode of argumentation is correct, the justification is logical and 
easy to understand, but there is a mathematical flaw. The correct warrant to use should be the 
converse of Pythagoras’ theorem and not Pythagoras’ theorem. On the other hand, the mode of 
argumentation of George’s justification (see Figure 3b) was wrong because he began with the wrong 
supposition by assuming angle ABC is a right angle, which was what he had to prove. So Faith’s 
justification was judged as partially correct whereas George’s justification was wrong. 

 

 

 

 

 

 

 

 

  (a)  Faith              (b)  George 

Figure 3: Teachers’ justifications for Validation task on geometry 

What’s next and conclusion 
The DIVINE framework introduced in this paper is still emerging and will need further testing and 
refinement. For instance, it remains to be seen whether the framework can be put into use with 
student justifications and justification tasks in other mathematical topics. Furthermore, how do 
mathematics teachers judge what qualifies as a correct justification? What elements do they expect 
to see in the justifications? How would their judgement differ from peers and mathematics experts? 
Such evidence is needed to make the DIVINE framework more robust. 
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In this paper, I argue that Habermas’ components of epistemic, teleologic, and communicative 
rationality provide insight into the differences in teachers’ support for collective argumentation. I 
examine the teacher’s supportive actions in two different classrooms. In their interactions with 
students, the teachers emphasize different components of rationality. I suggest that teachers may act 
in ways to support students’ development of components of rationality by asking different kinds of 
questions and raise the question of whether it is useful to consider the components separately.  

Keywords: Argumentation, proof, geometry, teaching. 

Introduction 
It is generally accepted that argumentation and proof are crucial to the study of mathematics. 
Argumentation has been shown to be particularly important to the learning of mathematics through 
social interaction. Numerous examples in the mathematics education literature have unpacked aspects 
of arguments in elementary and secondary classrooms (e.g., Krummheuer, 1995; Pedemonte, 2007); 
these cases have focused on the learning of mathematics through participation in argumentation, the 
similarity of argumentation to the structure of proof, the analysis of proof as argument, and the role 
of the teacher within argumentation. Recent research has examined “successful” argumentation 
within classroom discussions (Boero, 2011), argumentation that does not meet expectations (Cramer, 
2015), and different aspects of rationality with respect to argumentation (Boero & Planas, 2014).  

This paper explores the differences in collective argumentation that can be observed in classrooms. 
It addresses a temptation to characterize the argumentation in one classroom as productive and that 
in the other as problematic and suggests an explanation for the teacher’s actions in each case can be 
found in Habermas’ (1998) constructs of rationality as described by Boero (2006).  

Background 
In this paper, we explore the teacher’s role in argumentation through the combined lenses of our 
interpretation of Toulmin’s (1958/2003) description of arguments in multiple fields, our framework 
for teacher support of collective argumentation (Conner, Singletary, Smith, Wagner, & Francisco, 
2014), and Boero’s (2006) description of Habermas’ (1998) components of rationality.  

Habermas’ (1998) components of rationality have been applied to argumentation in several ways. 
Boero (2006) analyzed a seventh grade student’s argument (and the reactions of teachers to the 
argument) using three interrelated components introduced by Habermas: epistemic, teleologic, and 
communicative rationality. Boero gave the following explanation of these components. 

 Epistemic rationality is related to the fact that we know something only when we know why the 
statements about it are true or false…the crucial requirement is that the person has elaborated an 
evaluation of propositions as true and is able to use them in a purposeful way and to account for 
their validity. The teleologic rationality is related to the intentional character of the activity, and 
to the awareness in choosing suitable tools to perform the activity…The communicative rationality 



is related to communication practices in a community whose members can establish 
communication amongst them…rational means that the subject has the intention of reaching the 
interlocutor in order that he/she can share the content of communication, with an adequate and 
conscious choice of tools to make it possible. (p. 189–190) 

Boero concluded that the student acted in a rational way, using all three components of rationality, 
while the teachers’ behavior did not meet these criteria for rationality.  

Recently, multiple researchers have taken up Habermas’ components of rationality to examine a range 
of issues with argumentation (see Boero & Planas, 2014). Within Boero and Planas’ (2014) research 
forum report, Douek introduced the construct of rational questioning, suggesting that teachers can 
ask students questions in order to “organize the mathematical discussion according to the three 
components of rationality” (p. 1-210). The teacher plays an essential role in organizing and supporting 
argumentation in classrooms. In this, Habermas’ construct of communicative rationality is key, but 
the teacher can also influence the teleologic and epistemic rationality of the classroom community. 

We follow Krummheuer (1995) in adapting Toulmin’s (1958/2003) description of argumentation to 
collective argumentation in mathematics classrooms. We define collective argumentation broadly as 
any instance in which students or teachers make a mathematical claim and support it with evidence. 
Our adaptation of Toulmin’s diagrams (see Figure 1) includes the use of color (line style) to denote 
the contributor(s) of components of an argument and the addition of contributions and actions of the 
teacher that prompt or respond to parts of arguments (teacher support).  

 
Figure 1: Adaptation of Toulmin’s (1958/2003) Diagram for an Argument 

Our framework for teacher support of collective argumentation includes three main kinds of 
supportive actions: direct contributions of argument components, questions, and other supportive 
actions such as gestures or diagrams (Conner et al., 2014). We defined a teacher’s support for 
collective argumentation as any teacher move that prompted or responded to an argument component. 
We used Toulmin’s (1958/2003) model to classify the direct contributions of argument components, 
and we used an inductive approach to develop categories of questions and other meaningful 
supportive actions the teacher used. More details about the development of the framework are 
available in Conner et al. (2014). 

Methods 
The analyses in this paper are based on data collected from a project that investigated the beliefs and 
argumentation practices of a cohort of secondary prospective teachers in the southeastern United 
States. In particular, the data for this paper include video recordings, field notes, and other artifacts 



from two days selected from a unit of instruction in each of two student teachers’ (Ms. Bell and Ms. 
Carr, all names are pseudonyms) classrooms. These days were selected as representative of the variety 
of instructional moves observed in each teacher’s instruction. We diagrammed every episode of 
argumentation from these days of instruction and categorized every supportive action of the teacher 
that we identified. We used Habermas’ (1998) components of rationality to examine the actions of 
the teacher within our framework categories.  

Episodes from two classrooms 
The episodes presented and diagrammed below capture essential qualities of the instruction in each 
teacher’s classroom. For each teacher, we present an excerpt of an episode of argumentation, our 
interpretation as captured by a partial diagram, and a summary of the teacher’s support for 
argumentation in the class. We then examine the teacher’s (and students’) actions using Habermas’ 
(1998) components of rationality and argue that the teacher’s actions with respect to argumentation 
reflect her teleologic rationality. That is, we examine the teacher’s supportive actions as tools to infer 
her goals for students’ learning and contributions to class and her classroom norms. 

Ms. Carr’s Class 

This episode occurred when Ms. Carr and her students were at the beginning of a unit on congruence. 
The students had not yet learned any of the triangle congruence theorems. Thus they were proving 
figures congruent by their definition of congruence, which required all corresponding sides and all 
corresponding angles to be congruent. Ms. Carr posed the problem in Figure 2 to her class; the 
students and she worked together to mark relevant parts of the figure, and when we enter the 
discussion, they had modified the figure as shown. (They had extended segments BC, AB, and CD, 
and they marked angle ABE and angle DCE as angles of interest.) 

 
Figure 2: Initial Problem in Ms. Carr’s Class and Modification 

541 Ms. Carr:  Okay. So, what I have marked up here in green, we said are what? What is 
their special relationship? 

543 Alice:  They are alternate interior angles. 
544 Ms. Carr:  They are alternate interior. Ok. So, let's write that down. ABE, let's call it, and 

angle, what is it? Angle DCE…[writes ABE       DCE on board, leaving 
space between the two angles] [unrelated conversation/interruption] 
Now, I left some space in there. What symbol needs to go, what do we know 
about these?  

 549 Students:  {congruent} {congruence} 
 550 Ms. Carr:  Awesome. They are congruent. Why do we know that? 
 551 Cameron:  Because they are alternate interior angles. 

AB @ CD
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 552 Ms. Carr:  Alternate interior angles theorem [writes by alt. int. angles thm. on board] 
Figure 3 shows the diagram of this excerpt of an argument. Notice that three parts of the argument 
were contributed by students with a significant amount of support from the teacher. Ms. Carr asked a 
question that prompted each of the argument components, pointed at or wrote something on the board 
for each of them, and restated or affirmed each part as well.  

  
Figure 3: Diagram of First Excerpt of Argument in Ms. Carr’s Class 

 
Figure 4: Diagram of Second Excerpt of Argument in Ms. Carr’s Class 

A little more than five minutes later, Ms. Carr and her students had compiled all of the information 
about the figure into congruence statements. They ended the proof construction by verifying that they 
had three pairs of congruent segments and three pairs of congruent angles, warranting the claim that 
the triangles were congruent with the definition of congruent triangles. In the diagram for this excerpt 
of argument (Figure 4) we see that the teacher contributed the final claim, the teacher and students 
jointly contributed the data, and a student contributed the warrant. Ms. Carr prompted both the data 
and warrant, and she supported each of these components with actions such as repeating, pointing, 
and writing on the board. 

Ms. Carr supported her students in making arguments by contributing many argument components, 
including approximately one-half of the warrants in her class. In addition, she prompted most 
argument component by asking questions (primarily factual answer and elaboration questions, 



Conner, et al., 2014), and she provided additional support for these argument components using other 
several kinds of supportive actions (including focusing, evaluating, informing, and repeating actions, 
Conner, et al., 2014). The importance of Ms. Carr’s choices in supporting her students’ arguments 
becomes clear as we reference Habermas’ (1998) components of rationality. Ms. Carr asked several 
questions (line 541, lines 547–548) that requested a factual answer and then asked for elaboration by 
asking the students to justify that answer in line 550. In this interchange we see an assumption by Ms. 
Carr of her students’ epistemic rationality. She invited them to participate in the argument and 
indicated by her questions that they should have reasons for their statements. This may be an instance 
of Douek’s rational questioning, as described in Boero and Planas (2014), although Douek’s rational 
questioning seems to presuppose all three aspects of rationality. Ms. Carr seemed to focus on 
epistemic rationality for her students, while Ms. Carr’s own statements and actions indicate a focus 
on communicative rationality for herself. She repeated or restated (and often wrote the statement on 
the board) all of the student-contributed components of the arguments. If we consider the teleological 
rationality of Ms. Carr’s actions, they appear to be very goal-directed. Her goal was student 
understanding of concepts and procedures. In search of that goal, her goal or focus for students was 
on epistemic rationality. She intended to make sure that they knew the reasons for the statements that 
were made. Across the class periods, this was evidenced by her many questions prompting argument 
components as well as her pervasive prompting and providing of warrants for arguments. 

Ms. Bell’s Class 

In Ms. Bell’s class, the excerpt exemplifying her instruction involved a task in which students had 
measured the interior angles of several polygons. Students were asked to find a formula for the sum 
of the interior angles of an n-sided polygon. The brief snippet of class we examine occurred when a 
student was presenting his group’s work at the end of class. Prior to this excerpt, a student 
representing a different group presented a solution. Martin, the student in this episode, asked to 
present his solution because his group found the solution in a different way from the first student.  

1444 Martin:  All right. I had the chart. This is the sides of the figure. That would be the 
sum of the interior angles.  

…   [Martin talks as he constructs a chart containing numbers of sides and 
corresponding sums of interior angles for polygons with three to eight sides] 

1456 Martin: And then it changes by 180 degrees each time.  
1458 Ms. Bell:  So Martin, the fact that it changes by the same number each time, when you're 

going up by one side, tells you what?  
1460 Martin:  That it has--that that's the slope. 
1461 Ms. Bell:  That's the slope. Which means it's? Karin, you said it earlier. What does that 

mean when it's? 
1463 Martin:  Linear. 
1464 Ms. Bell:  Linear. It's linear, right? If it changes the same amount each time, when you're 

going up by 1, it's going to be a linear function. 
1466 Martin:  So I did f(s) = 180s 
1467 Ms. Bell:  What is that 180? 
1468 Martin:  It's the slope. But that doesn't work out right, because 180 times 3 is like 
1470 Ms. Bell:  540 



1471 Martin:  [writes 180 x 3 = 540] 540. But then I just subtracted 180 from 540 and it 
equals 360. Yeah. So, subtract 360. [Writes f(s) = 180s - 360] 

1475 Ms. Bell:  So same thing; he got it a different way. When he got to the 540--so he got 
this 540 out when he plugging in 3 for his s, and he got 540. We wanted to 
get 180 when we plug in a 3. So he said, 'how am I going to get from 540 to 
180?' So he found the difference between them and subtracted from this 
product. Do y’all see that? 

1482 Martin:   It works with all of them too. 
Figure 5 shows the diagram of this argument. In this argument, Martin (the student) contributed all 
of the components except one warrant. Ms. Bell prompted three of the components with questions, 
and she supported five of the components by restating or rephrasing Martin’s contributions. In 
general, Ms. Bell asked questions of multiple kinds to prompt argument components, and she 
contributed some components of arguments, but only about one-eighth of the contributed warrants. 
Students in Ms. Bell’s class seemed to contribute more autonomously to arguments, as evidenced by 
components that were neither prompted by nor responded to by Ms. Bell.  

 
Figure 5: Diagram of Argument from Ms. Bell’s Class 

We see evidence of Ms. Bell’s teleologic rationality (Habermas, 1998) in her actions and questions 
in support of her goal of engaging students in doing mathematics. Ms. Bell modeled actions related 
to all three components of rationality, and she seemed to encourage all three components of rationality 
in her students. Ms. Bell’s actions show a strong emphasis on developing her students’ 
communicative rationality, not only in her communication with her students (see line 1475 in which 
she restates the student’s argument), but in her encouragement of her student to communicate his 
ideas more clearly (e.g., line 1458) and in the student’s instinctive actions and statements (e.g., lines 
1444 and following in which he explained the entries in the chart he drew on the board), which 
illustrate norms established in this class. Several times after the student gave a claim and warrant, 
Ms. Bell seemed to slow down the presentation to make sure it was clear to others, enhancing their 
understanding of communicative rationality. But instead of giving all the information herself, she 



asked the student to do so (line 1467). She seemed to be balancing engaging in acts of communicative 
rationality herself and encouraging her student to do so. In addition, Ms. Bell assumed epistemic 
rationality in her student and encouraged him to express it (line 1458). The beginning and end of the 
episode evidence a classroom norm regarding goal-directed behavior and use of appropriate tools 
(lines 1444–1455; line 1482). The student indicated by his final statement that he had intentionally 
completed his goal of finding, expressing, and justifying the formula for the sum of the interior angles 
of a polygon, showing the teacher’s encouragement of behavior exhibiting teleologic rationality. This 
episode illustrates a teacher’s use of rational questioning, bringing the students’ voices into the 
discussion and encouraging their implementation and understanding of all three components of 
rationality (Douek in Boero & Planas, 2014). 

Discussion  

The argumentation we observed in the two classes was very different. One classroom was 
characterized by a focus on students’ epistemic rationality and the teacher’s communicative 
rationality. The argumentation in this class seemed to be both somewhat shallow and more formal 
and proof-like. The other classroom was characterized by a more balanced focus on students’ 
epistemic, communicative, and even teleologic rationality, and we saw the argumentation in this class 
as somewhat informal but characterized by student autonomy. The second classroom also illustrated 
some intentionality and awareness of components of rationality (although not with those words) in 
the interactions, as Douek suggested was necessary (Boero & Planas, 2014). The teachers also used 
different kinds of tasks in their classrooms. The choice of tasks in each classroom may also be related 
to the teachers’ intentions with respect to the components of rationality; more research is necessary 
to examine this question. 

Differences were observed in the kinds of questions each teacher asked. Ms. Bell asked a wide range 
of questions, while Ms. Carr asked primarily factual answer and elaboration questions. Perhaps the 
kinds of questions teachers ask may indicate their focus on a particular component of rationality. It is 
an open question as to the significance of these components of rationality in a mathematics class, but 
if we want to encourage students to view mathematics as rational and to act in rational ways when 
engaging in the study of mathematics, then it seems that it would be helpful for teachers to act in 
ways that encourage all components of rationality at appropriate points (as Douek suggested, to 
engage in rational questioning, Boero & Planas, 2014). As Boero (2006) suggested, teachers can 
model the components of rationality for their students at appropriate times. Perhaps introducing these 
components of rationality to teachers could provoke a wider focus. Examining the kinds of questions 
teachers ask in conjunction with their argumentation shows promise for revealing which components 
of rationality are privileged in their classes. And these components of rationality provide a useful 
explanatory mechanism for the differences in support for argumentation observed in classrooms. 
Future research will have to examine how important it is for a teacher to engender all components of 
rationality and whether it is possible or productive to address each component separately. 
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This study discusses the evolution of mathematical proofs in Japanese junior high school geometry 
textbooks and the conditions and constraints that have shaped them. We analyse the evolution of 
these proofs from their inception in the Meiji era (1868–1912) to the present. The results imply that 
features of the Japanese language affected the evolution of proof form in Japan and shaped the use of 
proofs in Japan as written, but not oral, justification for mathematical statements. 
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Introduction 
Proving mathematical statements is a very important part of mathematics. However, there were no 
proofs in the texts of wasan, the traditional mathematics dominant until the mid-19th century in Japan. 
In wasan, following Chinese tradition, Japanese mathematicians concentrated on elaborating 
procedures to solve problems rather than proving statements. As one consequence of the educational 
reforms that accompanied the opening and modernization of the country in the Meiji era (1868–1912), 
axiomatic Euclidean geometry with mathematical proof was adopted in secondary school 
mathematics. 

Today, Japanese students learn mathematical proof in junior high school, and often face difficulties 
doing so (MEXT, 2009; Kunimune et al., 2009), as do students in other countries (see Mariotti, 2006; 
Hanna & De Villiers, 2012). These difficulties vary by country, for two reasons linked to the cultural 
and social dimensions of teaching. The first involves what is taught; one recent study compared 
France and Japan and showed that proof to be taught, specifically what constitutes a proof and the 
functions of proofs, is different between the countries (Miyakawa, 2017). The second reason relates 
to how students employ and understand justification and argumentation in their daily life, which 
affect how they approach mathematical proof in the classroom and which differ across cultures 
(Sekiguchi & Miyazaki, 2000). 

The Anthropological Theory of the Didactic (ATD) posits that knowledge taught/learnt in a given 
institution (here, the Japanese educational system and culture) is shaped by a process of ‘didactic 
transposition’ reflecting the conditions and constraints specific to that institution (Chevallard, 1991; 
Bosch & Gascón, 2006). In this paper, we study the didactic transposition of proofs in Japan and the 
effects of the cultural and social dimension. We expect that this will help us better understand the 
nature of these difficulties and will show the needs for studying this dimension of proof-and-proving 
in different countries to improve teaching and learning everywhere. 

Methodology 
We adopted ATD to frame our research question and determine what should be investigated so as to 
better understand the cultural and social dimension of proof. The research question we focused on is 
as follows: What cultural and social conditions and constraints shape the nature of proof to be taught 
today in Japan? To identify these conditions and constraints, we conducted a historical study of the 



evolution of the proof in Japanese junior high school geometry textbooks from its first appearance 
during the Meiji era to the present. 

From out of the many textbooks published since the Meiji era in Japan we selected those that were 
widely used, to construct a representative corpus. Textbooks from the Meiji and Taishō (1912–1926) 
eras were more important than later ones, since proofs in geometry first appeared in Japan during 
these periods and since the way they were presented and taught changed more than in later periods. 
For the Meiji period, we identified major textbooks by consulting prior research (Neoi, 1997; Tanaka 
& Uegaki, 2015); however, for the Taishō era and up to the Second World War, we had no statistics 
on the use of textbooks, and so we selected textbooks that remain relatively well known today and 
that have been the topic of historical studies (Nagasaki, 1992). For the post-war era, we selected one 
or two textbooks that were widely used from the period following each successive reform of the 
national curriculum. The current system of selection of textbooks was firmly established by 1965 
(Nakamura, 1997, p. 90) and the market share of each textbook series is known thereafter. From that 
point to the present, the most widely used textbooks have been those published by Keirinkan and by 
Tōkyō Shoseki. 

The process of analysis we followed had three steps. First, we determined the role of the proofs in the 
geometry teaching approaches employed by the textbooks: Did the textbooks reflect a general 
strategy concerning proof learning? If yes, what was it? Were proofs important in geometry learning? 
Second, for each textbook, we analysed the forms (including intermediate steps) of sample proofs 
(worked examples) related to parallelograms, which were found in most of the textbooks, for overall 
formatting or organization, use of symbols, and formulation of properties (theorems, definitions, 
axioms, etc.) and statements. We use the terms paragraph and semi-paragraph to reflect the extent of 
sentences versus symbols in a proof, with paragraphs being all written language and semi-paragraphs 
a mix of words and symbols. Third, we looked at the authors’ comments on the proof or on proof 
learning. 

Below, we first describe the proofs one finds in Japanese mathematics textbooks today, and then 
show what they evolved from and how. However, as this work is currently only at a preliminary stage, 
our analysis remains general on the evolution of proof form in Japan. 

Proof in Japanese mathematics textbooks today 
Nowadays, the term ‘proof’ is introduced in Japanese junior high school mathematics, specifically in 
grade 8 geometry. Figure 1 shows a sample proof taken from a grade 8 textbook from Keirinkan, 
proving a property of parallelograms: ‘Two pairs of opposite sides in a parallelogram are equal’. The 
figure provides an image of the proof with our own translation; the translation is quite literal, to 
maintain data integrity. One may first note the use of mathematical symbols for equality, parallelism, 
triangles, and angles. Statements (not properties) used as conditions or deduced as conclusions in a 
deductive step are written all in symbols (e.g. BAC = DCA). Deduced statements are given 
separately from other statements and properties, and some are numbered for use in later steps. In 
contrast, properties used in deductive steps, such as the condition for congruent triangles, are given as 
written Japanese phrases, without symbols—not in if-then form as in French mathematics textbooks 
(Miyakawa, 2017). The proof presented here thus represents the semi-paragraph type, with a mix of 
natural sentences and symbols; below, we consider the origin and history of such proofs. 



 

(Our translation) Draw the diagonal AC. 
In ABC and CDA, 
since the alternate-interior angles of parallel 
lines are equal, 
from AB // DC, 

BAC = DCA … (1) 
from AD // BC, 

BCA = DAC … (2) 
And, since AC is common, 

AC = CA     … (3) 
From (1), (2), and (3), a pair of sides and the 
angles of both sides are equal, 

ABC  CDA 
since corresponding sides of congruent figures 
are respectively equal, 

AB = CD, BC = DA 

Figure 1. A sample present-day proof from a Keirinkan textbook (Okamoto et al., 2016, p. 133) 

Proofs in geometry textbooks from the Meiji era to the present 
Before the Meiji era—that is, before the modernization of Japan—geometry teaching was based on 
wasan, and centred on problem-solving: questions about the measurement of geometric figures were 
asked, and procedures (sometimes employing algebraic or analytic tools) were applied to acquire the 
correct answer. Although some wasan mathematicians questioned the accuracy of the results yielded 
by this method, proofs were not used in mathematical texts until the mid-19th century, at the 
beginning of the modernization movement began (for a general view of the evolution of Japanese 
mathematics and its teaching, see Ueno, 2012, and Baba et al., 2012). 

With the Decree on Education (Gakusei, 1872), the Japanese government abandoned wasan teaching 
and imposed learning of Western-style knowledge and teaching methods (for example, one-on-one 
teaching was replaced with lecture-type classes in groups). Western textbooks were translated to 
provide teaching materials for schools of this new type, and the first geometry proofs in Japanese 
appeared in this context. Since proofs were new to Japan, no convention and no stipulation in the 
curriculum constrained how they were written or formatted, and the forms used by Western authors 
and their Japanese translators varied widely. The situation can be quite confusing. For example, in the 
Japanese translation of an American version of Legendre’s textbook (Nakamura, 1873), proofs were 
written in paragraph form only, whereas in translations of other American textbooks (Miyagawa, 
1876; Shibata, 1879), symbolic expressions were also mobilized. This situation, and the fact that no 
author-translators provided any remarks on proofs or reasoning in geometry and sometimes even 
removed remarks on the nature of mathematical statements that had been present in the original 
textbooks (see Cousin, 2013) betrays the lack of importance attached by Meiji-era scholars and 
authorities to proof learning; it also may have occurred partly because of the need for rapid translation 
of textbooks to meet new requirements, which led translators to focus on developing a basic 
vocabulary for the new geometry in Japanese and producing textbooks understandable enough for use. 
We also encountered textbooks from this period in which some functions of proofs were obscured 
compared to the original source: for example, while the axiomatic systematization function of proofs 
is emphasized in Davies (1870), the abridged Japanese version of this textbook (Nakamura, 1873) 
does not preserve this emphasis (see Cousin, 2013). 



During the 1880s, Tanaka Naonori (1853–?) compiled works by English, American, and French 
authors as well as Chinese and Jesuit translators to produce a series of textbooks that were adopted 
widely in Japanese junior high schools (see Cousin, 2013, pp. 277–282). Tanaka was better trained in 
Western mathematics than the 1870s author-translators and had teaching experience as well. His 
proofs used few formulas and provided exposition (the part of the proof where the hypothesis is 
expressed using specific names for the elements considered in the proposition) and determination (the 
conclusion expressed using these names) using only symbolic expressions. Moreover, unlike 
previous authors, Tanaka gave after each statement a reference number corresponding to the property 
he used to justify it, highlighting the need for systematic justification of every statement in a proof. 
He was also the first Japanese author to discuss the nature of proof per se, explain its role in geometry 
(see Cousin, 2013, pp. 305–310), describe inductive and deductive ways of proving, and emphasize 
that we ‘prove the propositions thanks to the axioms, the postulates and the propositions that already 
have been proven’ (Tanaka, 1882, p. 15). 

In the late 1880s, the publication of textbooks by Kikuchi Dairoku (1855–1917) marked a new stage 
in Japanese geometry textbook production, and Kikuchi fixed a new Japanese mathematical language 
and proof form that would remain for decades, as his textbooks were used until the beginning of the 
Taishō era. In his view, it was important to create a Japanese mathematical language that unified oral 
and written expression so that geometry proofs could be written in paragraph form, without relying on 
symbols. Moreover, like Tanaka, he highlighted the systematic aspect of proof by putting on the 
right-hand side the number of properties used in each deductive step (Figure 2). Kikuchi was clearly 
influenced by his education in England, where the aim of geometry teaching was to cultivate young 
spirits to reasoning: ‘Wherever Mathematics has formed a part of a Liberal Education, as a discipline 
of the Reason, Geometry has been the branch of mathematics principally employed for this purpose. 
[…] For Geometry really consists entirely of manifest examples of perfect reasoning: the reasoning 
being expressed in words which convince the mind, in virtue of the special forms and relations to 
which they directly refer’ (Whewell, 1845, p. 29). Kikuchi provided extensive explanation of 

 

 

(Our translation) 
Let ABCD be a parallelogram and AC be its diagonal; 
Then (1) AC divides it into two completely equal triangles; 
(2) AB is equal to DC, BC is equal to AD; 
(3) The angle ABC is equal to the angle CDA, the angle BCD is equal 
to the angle DAB. 
     Because the line AC intersects with the parallel lines AB and CD, 
alternate-interior angles BAC and ACD are equal; I, 7. 
And because the line AC intersects with the parallel lines BC and 
AD, the alternate-interior angles BCA and CAD are equal;   I, 7.  
Now, in the two triangles ABC and CDA, two pairs of angles are 
respectively equals, and the side AC between them is common to 
both figures. 
So (1) the two triangles are completely equals;  I, 10. 
(2) AB is equal to CD, and BC is equal to DA; 
(3) The angle ABC is equal to the angle CDA: and because the angle 
BCD is the sum of the angles BCA and ACD, it is equal to the sum of 
the angles CAD and BAD, which is the angle DAB. 

Figure 2. A sample proof from Kikuchi’s textbook (Kikuchi, 1889, pp. 53–54) 



geometric reasoning, and paid particular attention to the language used and the organization of 
geometric properties; in doing so, he tried to highlight the importance of the systematization and 
justification functions of proofs. 

However, the form of Kikuchi’s proofs (Figure 2) soon came in for criticism by his contemporaries, 
for being difficult to teach. Nagasawa Kamenosuke (1861–1927), in his own textbook, criticized the 
paragraph form of Kikuchi’s proofs in strong terms: ‘Writing proofs of theorems with sentences in a 
complete and perfect manner is the vice of those who agree with the Euclid movement that came from 
England’ (Nagasawa, 1896, pp. 3–4). Nagasawa instead wrote proofs in a semi-paragraph form very 
different from Kikuchi’s, especially in terms of the use of symbols, as seen in Figure 3. In particular, 
Nagasawa put more importance on the proof as a written form, and in fact his proofs cannot be used 
for oral justification due to certain features of the Japanese language and the use of symbols. For 
example, the statement ‘AB || DC’ would usually be read or spoken aloud in Japanese as ‘AB hēkō 
DC’ (‘AB parallel DC’). However, this is just a pronunciation of each symbol in succession and not a 
grammatically sound phrase; to be grammatical, it should instead be pronounced as ‘AB wa DC ni 
hēkō’ (‘AB is parallel to DC’), whose shortened version would be ‘AB DC ||’, as an adjective with a 
be-verb should always be placed at the end of a phrase in Japanese. Beginning around the end of the 
Meiji era, proofs written in semi-paragraphs appeared in many Japanese geometry textbooks (e.g. 
Nagasawa, 1896; Kuroda, 1917), even Kikuchi’s (Kikuchi, 1916), and Kikuchi’s goal of a language 
that unified oral and written expression was abandoned. 

 

(Our translation) 
Theorem 28. Two pairs of opposite sides of a parallelogram are equal 
to each other, and its diagonal divides it into two equal parts. 
[Exposition] In ABCD, AB = DC, AD = BC, and ABC = CDA. 
[Proof] Connect A and C,  
in such a case, AB || DC   [Hypothesis] 
and because AC intersects with these two parallel lines, 
  alt. int. BAC = alt. int. ACD. [Theorem 22] 
And because  AD || BC   [Hypothesis] 
  alt. int. BCA = alt. int. DAC,  [Theorem 22] 
so   in ABC, CDA, 
  BAC = DCA, 
  BCA = DAC, 
  the side AC is common, 
            ABC  CDA,    [Theorem 7] 
So,  AB = DC, 
  AD = BC, 
  ABC = CDA. 

Figure 3. A sample proof from Nagasawa’s textbook (Nagasawa, 1896, p. 53) 

Moreover, until the end of the 19th century, although various ways of writing proofs were seen, all 
textbooks nevertheless followed a classic pattern in the teaching of geometry: theorems and problems 
were stated one after the other and, beginning in the 1880s, statements in proofs were justified with 
the reference number of the relevant property. Beginning in the Taishō era, however, the ‘practical’ 
approach, meaning one that tried to be more related to ordinary life, gained more and more success, 
influenced by the work of Treutlein (e.g. 1911), and Japanese authors distanced themselves from the 
classic pattern. For example, in the first quarter of Kuroda’s textbook (1917), measuring instruments 
were presented and geometric matters were treated without theorems or proofs, while in the latter 



part, several practical questions were asked. This evolution of geometry teaching also had an 
influence on proof form. In Kikuchi (1889), all the statements were expressed without using symbols 
and the justifications were expressed only by presenting reference numbers for properties (Figure 2), 
whereas in Yamamoto (1943), new statements were expressed with symbols and the justifications 
were expressed using literal expressions, without using numbers to refer to properties. Under this 
practical approach, the systematic aspect of justification in geometry came to be less emphasized. 

With the 1942 curriculum reform, the national curricula explicitly adopted this practical approach. 
The general axiomatic system became less and less explicit in the textbooks, and more and more 
problems appeared that were related to everyday life. For instance, no proofs at all appeared in 1947’s 
Secondary Mathematics (Chūtō sūgaku), published by the national Ministry of Education 
(Monbushō, 1947). Nevertheless, between 1949 and 1955, proofs gradually reappeared in geometry 
textbooks. 

Since the 1960s, proofs have been introduced beginning in the 8th grade; however, although the 
concepts used in geometry teaching in Japan have not changed much in this period, proof form has 
continued to change, a little. For example, in Kodaira et al. (1974), in the New Math period, 
properties were always given on the right hand-side, in brackets, and symbols were frequently used 
(more than in any previous or later textbooks). Later, in Kodaira et al. (1986), the same authors 
returned to a strategy similar to that observed in the 1940s but also to that used today: symbols were 
used to express statements in the proofs, but natural language sentences were used to express the 
properties justifying these statements. 

Discussion and conclusion 
The proofs in Japanese mathematics textbooks take the forms they do as a result of the process of 
didactic transposition, which involves their exposure to different conditions and constraints that 
affect their nature as proofs. For instance, this study on the evolution of proofs in geometry education 
in Japan has shown that one factor that significantly affected proof form was certain features of the 
Japanese language. As mentioned above, Kikuchi tried to develop a Japanese mathematical language 
unifying oral and written expression, in order to help train students in rigorous logical thinking, 
adopting the approach of structuring proofs in paragraph form as part of this project; however, our 
study has shown that Kikuchi’s paragraph-form proofs disappeared, as they were viewed as too hard 
to teach. It was replaced by the semi-paragraph form, which is still used for proofs in Japan today. 
One consequence is that the distance between the forms of the written proof and the oral justification 
is still bigger in Japanese education than in English or French, and statements written with symbols 
cannot be directly used in the oral justification. This leads us to think that Japanese students may 
experience a proof as a particular written object (like an algebraic equation), a formalism with little 
relationship to ‘actual’ oral justification or argumentation. As such a distinction implies, it will be 
useful to investigate the distance between written proofs and oral justifications across countries, 
which will help us benefit more fully from existing research results on argumentation and 
mathematical proofs. 
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The purposes of this study are to investigate pre-service middle school mathematics teachers’ 
interpretations of logical equivalence in proof by contrapositive and the reasons for their incorrect 
interpretations. Data analysis indicated that pre-service middle school mathematics teachers were 
considerably unsuccessful in interpreting logical equivalence of statements. Lack of knowledge 
related to indirect proof methods, accepting a true statement as false, suggesting to apply direct proof 
instead of selecting given choices, and thinking contrapositive statements as unrelated could be 
regarded as the reasons for their incorrect interpretations. 

Keywords: Contrapositive, logical equivalence, pre-service middle school mathematics teachers. 

Introduction 
Proof does not have simple roles in mathematics and mathematics education; it is a fundamental 
component and includes different forms and methods (Jones, 1997). A review of the literature 
indicated that there are limited number of studies focusing on particular proof methods (Antonini & 
Mariotti, 2008; Baccaglini-Frank, Antonini, Leung, & Mariotti, 2013; Bedros, 2003; Stylianides, 
Stylianides, & Philippou, 2004). According to Stylianides, Stylianides and Philippou (2004), the least 
attention has been given to proof by contrapositive compared to other proof methods such as 
mathematical induction, proof by contradiction, and direct proof. Thus, in this study the focus is given 
to proof by contrapositive. According to Bedros (2003), proof by contrapositive is a method of 
indirect reasoning. Since a conditional statement p⇒q and its contrapositive q'⇒p' are logically 
equivalent, in order to prove a given statement p⇒q, the statement q'⇒p' can be proved by using 
direct proof (Bloch, 2000). In other words, when a statement is proved, its contrapositive is also 
proved (Antonini, 2004). This study focused on the logical equivalence of contrapositive statements, 
which is the key idea of proof by contrapositive method.  

According to Baştürk (2010), students have difficulty in deciding which proof method to use and in 
applying the selected method. Moreover, students have many more difficulties in indirect proof 
methods rather than direct proof methods (Antonini & Mariotti, 2008). For example, Dickerson 
(2008) commented that undergraduate and graduate students have difficulty in understanding the 
language and logic of indirect proof methods. In the study by Stylianides, Stylianides and Philippou 
(2004), it was stated that some undergraduate students had difficulty in understanding logical 
equivalence in contrapositive and used incorrect equivalences such as p⇒q≡p'⇒q' in their 
explanations. Similarly, many students could not distinguish proof by contradiction from proof by 
contrapositive (Goetting, 1995).  

As seen, indirect proofs such as proof by contrapositive have the potential to reveal many difficulties 
that students possess in relation to proof (Bedros, 2003). Teachers’ knowledge of proof plays an 
important role in developing students’ understanding in proof. For instance, when mathematics 



teachers present various proof methods in the class, it helps students to enhance their logical thinking 
and proof abilities (Altıparmak & Öziş, 2005). Therefore, mathematics teachers should have 
necessary knowledge and experience concerning different proof methods. Since pre-service middle 
school mathematics teachers are future teachers, their interpretations related to the logic of particular 
proof methods such as proof by contrapositive are important to investigate. Thus, to examine pre-
service middle school mathematics teachers’ interpretation of logical equivalence in proof by 
contrapositive and the reasons for their incorrect interpretations were determined as the purposes of 
the present study. Moreover, in the teacher education program, pre-service teachers take various 
mathematics courses and their ability in interpreting proof related concepts might depend on these 
mathematics courses since some of which place more importance on proof. In relation to this, how 
pre-service teachers’ success levels differ by year level in the program was also investigated. By 
considering these purposes, the research questions were stated as follows: 

1. To what extent are Turkish pre-service middle school mathematics teachers successful in 
interpreting logical equivalence in proof by contrapositive, and how does their success differ by year 
level? 

2. What are the reasons for Turkish pre-service middle school mathematics teachers’ incorrect 
interpretations? 

Method 
Since data were collected at just one point in time from a selected sample in order to describe certain 
characteristics of the population by asking questions (Fraenkel & Wallen, 2005), this study was 
designed as a cross-sectional survey. Using convenience sampling methods, the sample for this study 
was determined as 115 pre-service middle school mathematics teachers attending a state university 
in Ankara, Turkey. In terms of their year level, 19 were freshmen (16.5%), 25 were sophomores 
(21.7%), 39 were juniors (33.9%), and 32 were seniors (27.8%). 

In Turkey, the middle school mathematics teacher education programs offer mathematics courses 
such as Calculus, Algebra; mathematics education courses involving Methods of Teaching 
Mathematics, Practicum; education courses such as Classroom Management; general courses 
involving Academic Oral Presentation Skills, and elective courses. The first two years of the program 
mainly consist of mathematics courses while the last two years put more emphasis on education, 
mathematics education, and elective courses. 

This study was conducted as part of a larger study focusing on pre-service middle school mathematics 
teachers’ interpretation of the logic behind proof methods. In this study, the answers given by pre-
service teachers to three questions related to the logical equivalence of contrapositive statements were 
analyzed. These questions were prepared by reviewing the related literature (Knuth, 1999; Saeed, 
1996). In more detail, Question 1 (Q1) and Question 2 (Q2) were prepared by the researchers by 
considering the format of the multiple choice questions in the study undertaken by Knuth (1999). The 
students were asked to select the correct statement that can be used to start to prove the given 
statement and explain their answers. The correct choice involves the proposition q'⇒p' as the starting 
point to prove the proposition p⇒q which is known as proof by contrapositive. The other choices 
were not appropriate to start any proof. The correct choices were identified as (d) for Q1 and (c) for 
Q2. Questions 1 and 2 are presented below.  



 
Figure 1: Question 1 and Question 2 

Question 3 (Q3) was adapted from the study of Saeed (1996) and involves a discussion about the 
proofs of two contrapositive statements. In the question, the participants were asked to select the 
person they agreed with and explain the reasons for their choice. The students’ answers were accepted 
as incorrect if they agreed with Pınar and correct if they agreed with Ahmet. 

 
Figure 2: Question 3 

To investigate the research questions, descriptive statistics and item-based analysis were conducted. 
Firstly, pre-service middle school mathematics teachers’ interpretations of logical equivalence in 
proof by contrapositive were analyzed based on the rubric given in Table 1. Then, the reasons for 
their incorrect interpretations were examined qualitatively by generating themes. 

 Answer types in Q1 and Q2 Answer types in Q3 
 No answer No answer 

Incorrect 
answer  

Incorrect choice was marked, no explanation was 
stated 

Agreed with no one or both of them    
Agreed with Pınar, no explanation was stated 
Agree with Pınar, explanation was stated Incorrect choice was marked, explanation was stated 

Correct 
answer 

Correct choice was marked, no explanation was stated Agreed with Ahmet, no explanation was stated 
Correct choice was marked, explanation was given 
but not referring to the logical equivalence 

Agreed with Ahmet, explanation was given but 
not referring to the logical equivalence 

Correct choice was marked, explanation was given 
referring to the logical equivalence 

Agreed with Ahmet, explanation was given 
referring to the logical equivalence 

Table 1: Rubric for questions 



Findings  
In order to investigate the first research question, pre-service middle school mathematics teachers’ 
answers to Q1 and Q2 were analyzed. The results of 115 pre-service middle school mathematics 
teachers’ answers are presented in Table 2. 

Answer types Question 1  Question 2 
No answer 4 (3.5%) 4 (3.5%) 

Incorrect 
answer 

Incorrect choice was marked, no 
explanation was stated 12 (10.4%) 

50 (43.4%) 
12 (10.4%) 

55 (47.8%) 
Incorrect choice was marked, 
explanation was stated 38 (33.0%) 43 (37.4%) 

Correct 
answer 

Correct choice was marked, no 
explanation was stated 43 (37.4%) 

61 (53.1%) 

33 (28.7%) 

56 (48.7%) 

Correct choice was marked, explanation 
was given but not referring to the logical 
equivalence  

7 (6.1%) 9 (7.8%) 

Correct choice was marked, explanation 
was given referring to the logical 
equivalence  

11 (9.6%) 14 (12.2%) 

Table 2: Frequencies of the answers to Q1 and Q2 

Table 2 shows that 4 students (3.5%) did not answer to Q1 and Q2. When the answers of the students 
to Q1 were investigated, it was seen that 50 students (43.4%) answered incorrectly and 61 students 
(53.1%) selected the correct choice. In addition, 43 students (37.4%) marked the correct choice 
without stating their reasons and the answers of 7 students (6.1%) were correct but their explanations 
were not related to logical equivalence. The remaining 11 students (9.6%) answered correctly by 
providing an explanation based on logical equivalence of contrapositive statements. In terms of year 
level in the program, freshmen (73.7%) had the highest percentage of correct answers and seniors 
(40.6%) had the lowest percentage of correct answers in Q1. As an example of a correct answer with 
an explanation referring to logical equivalence, Participant 52 stated as follows:  

p: mn=100  p':mn≠100  p⇒q ≡ p'˅q ≡ q˅p' ≡ q'⇒p'   
q: m≤10 ˅ n≤10 q': m>10 ˄ n>10  
q'⇒p' (If m>10 and n>10, then mn≠100) (Participant 52, junior) 

The analysis of the answers to Q2 showed that 55 students (47.8%) answered incorrectly whereas 56 
students (48.7%) answered correctly. Thirty-three students (28.7%) marked the correct choice in the 
question but did not substantiate their ideas. Moreover, 9 students (7.8%) answered correctly without 
referring to contrapositive statements, and 14 students (12.2%) answered correctly by referring to the 
logical equivalence of contrapositive statements. While sophomores (64.0%) had the highest 
percentage of correct answers, freshmen (36.8%) and seniors (37.4%) had the lowest percentages of 
correct answers in Q2. To illustrate, Participant 97 answered correctly and explained by referring to 
logical equivalence in proof by contrapositive. 

p: ac≤bc   q: c≤0    
Then, proof by contrapositive, p⇒q ≡ p'˅q ≡ q˅p' ≡ q'⇒p' (Participant 97, senior) 

Since Q3 has a different rubric from the multiple choice questions, pre-service middle school 
mathematics teachers’ answers to Q3 are presented in Table 3. 



Answer types Question 3 
No answer 4 (3.5%)  
Agreed with no one or both of them    3 (2.6%)  

Incorrect 
answer 

Agreed with Pınar, no explanation was stated  16 (13.9%) 
75 (65.2%) 

Agree with Pınar, explanation was stated 59 (51.3%) 

Correct 
answer 

Agreed with Ahmet, no explanation was stated 5 (4.3%) 

33 (28.7%) 
Agreed with Ahmet, explanation was given but not referring to the logical 
equivalence 24 (20.9%) 

Agreed with Ahmet, explanation was given referring to the logical 
equivalence   4 (3.5%) 

Table 3: Frequencies of the answers to Q3 

According to Table 3, 4 students (3.5%) did not answer Q3. The answers of 3 students (2.6%) showed 
that they agreed with neither Pınar nor Ahmet but did not explain their rationale. Moreover, 75 
students (65.2%) agreed with Pınar, which is accepted as incorrect answer and 33 students (28.7%) 
agreed with Ahmet, which is accepted as correct answer. Five students (4.3%) agreed with Ahmet 
without giving any explanation, 21 students (20.9%) agreed with Ahmet and explained without 
referring to logical equivalence, and 4 students (3.5%) explained their agreement with Ahmet by 
referring to logical equivalence of contrapositive statements. Moreover, juniors (38.4%) had the 
highest percentage of correct answers and sophomores (4.0%) had the lowest percentage of correct 
answers to Q3. An example of a correct answer, Participant 52 agreed with Ahmet and her explanation 
was related to logical equivalence used in proof by contrapositive. 

p: n is even  q: n2 is even   
p⇒q was proved   
p⇒q ≡ p'˅q ≡ q˅p' ≡ q'⇒p'   
Thus, if n2 is odd then n is odd. Therefore, Ahmet is right. (Participant 52, junior) 

For the second research question, pre-service middle school mathematics teachers’ explanations for 
their incorrect answers were analyzed. As presented in Tables 2 and 3, 50 students (43.4%) answered 
Q1 incorrectly and 38 of them (33.0%) gave explanations for their answers. Fifty-five students 
(47.8%) answered Q2 incorrectly, of whom 43 (37.4%) explained their answer. Lastly, 75 students 
(65.2%) answered Q3 incorrectly and 59 of them (51.3%) suggested explanations for their answers. 
Table 4 shows the reasons behind the students’ incorrect interpretations grouped under four 
categories. 

Reasons  Q1 Q2 Q3 
R1 Lack of knowledge related to indirect proof methods 30 (26.1%)  35 (30.4%) - 
R2 Accepting a true statement as false 5 (4.3%) - - 
R3 Suggesting to apply direct proof instead of selecting given choices 3 (2.6%) 8 (7.0%) - 
R4 Thinking that contrapositive statements are unrelated - - 59 (51.3%) 
Total  38 (33.0%) 43 (37.4%) 59 (51.3%) 

Table 4: Reasons for students’ incorrect interpretations 

The first reason for the incorrect interpretations is students’ lack of knowledge related to indirect 
proof methods. As a result of this inadequacy, students thought that one of the choices in the question 
was related to contradiction or contrapositive; however, this choice was not related to these methods. 



For example, in Q2, Participant 7 selected one of the incorrect choices and explained it as an 
assumption for contradiction.  

To prove by contradiction, we have to prove the converse situation. The choice b can be used in 
this situation. (Participant 7, freshman) 

The second reason behind students’ incorrect interpretations is that they accepted the given statement 
as false even though it was true and tried to find counterexamples to refute it. For instance, in Q1, 
Participant 114 could not see that the given statement was true.  

The given statement ‘Assume that m and n are positive integers. If mn=100, then m≤10 or n≤10.’ 
is not true. 
As counterexamples, m=12 and n=12 can be used. 
Then, mn=12.12=144≠100 
Therefore, ‘if mn=100 then m≤10 and n≤10’ is a true statement. (Participant 114, senior) 

The third reason is that students mentioned using direct proof instead of selecting one of the given 
choices. For instance, the answer of Participant 106 to Q1 is given below:  

Firstly, we can assume that mn=100; we can try to deduce m≤10 or n≤10. We cannot start with 
the sentences given above. (Participant 106, senior) 

The last reason for incorrect interpretations is that students thought that there was no relation between 
the given contrapositive statements A and B. For example, in Q3, Participant 30 cited that statements 
A and B were different. 

Because the statements are different, one of them starts with an even number and the other one 
starts with an odd number. The proof of statement A can’t be the same with the proof of statement 
B. (Participant 30, sophomore) 

Discussion  
According to the results of pre-service middle school mathematics teachers’ answers to questions, it 
was found that nearly half of the sample answered Q1 and Q2 correctly and almost one third answered 
Q3 correctly. In other words, students’ achievement levels in interpreting logical equivalence in proof 
by contrapositive were found to be considerably low. The findings revealed that freshmen had the 
highest achievement level for Q1, sophomores had the highest achievement level for Q2, and juniors 
had the highest achievement level for Q3. Although seniors were expected to have been the most 
successful group by considering the number of mathematics courses they took in the program, they 
were not the most successful in terms of all questions. This result might stem from the fact that seniors 
did not take any mathematics course in their last year of the program. Therefore, seniors might not 
remember the details of the logical equivalence used in proof by contrapositive. To avoid this 
situation, teacher educators could offer elective courses related to logic and proof to enhance 
prospective teachers’ reasoning skills.  

Four reasons for the incorrect interpretations were detected from three questions. The first reason is 
preservice teachers’ lack of knowledge related to indirect proof methods. This finding is consistent 
with the results of Atwood (2001), who stated that students had difficulty in using the words converse, 
contrapositive, contradiction, and counterexample, and that they might use them interchangeably, 
which is not correct. Moreover, in the case that where students generally memorize proof methods 



instead of understanding the structure of the proof might cause them to have difficulty in related proof 
methods. Therefore, the participants in this study might use proof by contrapositive and proof by 
contradiction inaccurately and interchangeably. The second reason why students answer incorrectly 
is accepting a true statement as false and trying to find counterexamples based on this idea. Some of 
the terms and signs involved in the given statement in Q1 such as ‘or’ and ‘≤’ might cause students 
to misunderstand the statement. Thus, students might have had trouble in deciding whether the given 
statement was true or false and evaluate it as false. The third reason is that students suggested proving 
the given statement with direct proof instead of selecting one of the given choices in the question. 
This situation may result from the fact that the majority of the proofs in the textbooks are given as 
direct proofs (Atwood, 2001). Therefore, students may have a tendency to use direct proofs since they 
are more familiar with this method. The last reason is that students thought that statements A and B 
given in Q3 were unrelated. In this study, students might fail to see the relation between proofs of 
given two contrapositive statements. Therefore, they might think that statement A which involves 
p⇒q and statement B which involves q'⇒p' should be proven separately.  

In mathematics teacher education programs, proof should be considered as an important theme. Thus, 
the content or place of mathematics courses in teacher education programs might be revised and 
developed in order to enhance preservice teachers’ understanding of reasoning, proof, and logical 
rules behind proof methods. For example, mathematics courses might be taught by paying attention 
to logical rules behind proof methods. This study pointed out the importance of having knowledge of 
logical rules in reading and interpreting a given proof statement or conducting proof by using 
particular proof methods. Moreover, similar findings related to the interpretation of logical 
equivalence used in proof by contrapositive might be achieved with pre-service mathematics teachers 
in different countries. Therefore, to compare and to gain a global perspective about pre-service 
mathematics teachers’ understanding of logical rules behind proof methods, cross-cultural studies 
could be conducted. Based on the findings of such studies, teacher educators might develop strategies 
to overcome pre-service mathematics teachers’ current difficulties in logic and proof by considering 
the characteristics of their teacher education programs. 

The results of the study are limited to the data collected with three questions. For further studies, pre-
service middle school mathematics teachers’ interpretations of logical equivalence used in proof by 
contrapositive might be investigated by using alternative questions in various formats. An 
investigation of the effect of pre-service mathematics teachers’ knowledge of logic on their ability to 
prove might also be undertaken. Moreover, to analyze the answers of the pre-service mathematics 
teachers and to determine the reasons for their incorrect interpretations regarding logic in-depth, 
follow-up interviews might be conducted in future studies.  
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Issues of a quasi-longitudinal study on different types of 
argumentation in the context of division by zero 
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Institute of Mathematics, University of Koblenz-Landau, Campus Landau; fahse@uni-landau.de 

In this study we explore students’ ways of argumentation concerning division by zero. The answers 
of 365 students of four different grade levels in a German secondary school were analyzed on the 
basis of written texts of the students explaining their results of 7:0. Applying qualitative content 
analysis (Mayring, 2000), we were able to distinguish three different types of argumentation. The 
relative frequencies of these different types vary with the increasing age of the students: rich 
argumentations stagnate, apodictic references to an authority increase.  

Keywords: Argumentation, reasoning, communication model, division by zero. 

Motivation and interest of research 
Argumentation, besides for instance modelling and problem-solving, is one of the main issues 
especially characterizing mathematical education. The aim to develop argumentative abilities in 
mathematics has been reinforced by German authorities since 2003. Consequential, there is a need 
to measure progress in this field on the level of learning groups and educational systems. Tests like 
PISA and other test series claim to perform this measuring (OECD 2015, p. 32), even though they 
are subject to partly strong criticism (e.g., Jahnke & Meyerhöfer, 2007). The tasks used in these 
tests, pretending to measure argumentative skills, necessarily are very restricted in regard to content 
and time on task, compared to a creative argumentation process performed in classroom. 
Furthermore, the dichotomous focus on right or wrong does not seem to be suited for an observation 
on argumentation. 

The notion of “probe” in educational research 

The idea of the main study is to use a so called “educational probe” (Ger. “Sonde”). This can be best 
described by an analogy: Car insurances ask if the car is parked in a garage. If so, the insurance fee 
is reduced. This is not done due to causal inference, but for statistical reasons (information from the 
insurance company HUK-Coburg, Coburg, by telephone, 2011): there is a robust (negative) 
correlation between parking in a garage and the probability of an accident. A “probe” for detecting 
abilities is a small bundle of easily carried out measurements, observing the patterns of reactions of 
learners to some standardized impulse together with an established correlation of those patterns to 
the intended ability of the learning group.  

It is an open question if educational probes exist. As a first step, we try to find candidates for a 
“probe” on the ability of argumentation; in a second step, we have to validate these probes. A 
variety of measurements can be taken into account (e. g. videography), but here we concentrate 
simply on tasks given as impulses and evaluate written texts, thereby e. g. ignoring any social 
interaction. Several groups of tasks, all roughly of the form “Give your opinion and justify it”, were 
given to the same students. In this article we consider only the task concerning division by zero (in 
short: “7:0=? Justify your opinion.”). This special task was included in the study because of the 



 

 

variety of possible justifications discussed in the literature (Knifong & Burton, 1980) and observed 
in classroom practice (author’s experiences with eight classes of 6th graders). 

Basic assumptions and research questions 

Argumentative abilities are considered to be of general importance beyond mathematics. Therefore, 
this study does definitely not focus on proving, and argumentation is not considered as a preliminary 
step to establish a proof. This decision was a consequence of both, the observed argumentations of 
the students and a certain communication model which has shown to be compatible with the data.  

Furthermore, argumentative and mathematical abilities are considered as different constructs. 
Therefore, the correctness of the solution of the problem cannot be a primary criterion to discern 
different types of argumentations. Mistakes have to be tolerated, “misconceptions” can be of a 
distinct rationality (Prediger, Gravemeijer, & Confrey, 2015, p. 881). This pedagogical view is 
supplemented by a historic mathematical fact: It is not true that division by zero is not possible or 
not to define. E. g. the inversion (holomorphic extension of 1/z) on the Riemann Sphere is a 
continuous function which imposes 1/0=∞. 

On first sight, one can wonder if short written answers to tasks really make a difference compared to 
the testing in PISA. The described preponderant disregard of “correctness” of the given result and 
the completely different evaluation by a qualitative content analysis (QIA, see below) are 
characteristics of this study, distinguishing it from PISA. The resulting category system is developed 
by an approach which is in a first step “grounded”, that is, constructed without reference to other 
theories. This methodical choice was taken because the interest of this study lies in the opportunity 
to compare our findings to other category systems found in the literature. However, in order to 
narrow the scope of this article we have to make two limitations: First, we will not report on a 
comparison between different category systems. Second, neither the analysis of misconceptions of 
division by zero nor suggestions for classroom practice are points of interest here, but presented in 
Fahse (2014). 

Taking the hypothesis that the ability of deploying argumentation develops over time, an 
appropriate probe should provide different results for different ages of the learners. The research 
questions in this mainly descriptive study are:  

 What types of mathematical argumentation can be found?  

 Does the percentage of these types differ from grade level to grade level?  

Theoretical background 
In this section we concentrate on literature about types of argumentation and leave aside that on 
divisions by zero with the following exception: In congruence with our study, Tsamir and Sheffer 
(2000) analyze argumentation in regard to division by zero. They distinguish between concrete and 
formal (algebraic) arguments, and favor the formal ones (Tsamir & Sheffer, 2000, p. 94). In contrast 
Fahse’s (2014, p. 24) empirical examples show that the use of concrete models of division can give 
insight into the problematics of division by zero, even if a “wrong” result is given (different from 
“division is impossible”, caveat see above). Therefore, in our system, the distinctions of Tsamir & 
Sheffer can only be considered as subcategories, not as main categories. 



 

 

Different classifications of argumentation schemes without reference to any special mathematical 
topic can be found in the literature. Argumentation can be set in contrast to proof (Duval, 1991), or 
these phenomena can be treated in regard to their mutual relationship. The latter can e.g. be done by 
analyzing the process that leads to a proof, wherein argumentation is conceived “as a process of 
producing a conjecture and constructing its proof” (Boero, Douek, Morselli, & Pedemonte, 2010, p. 
183). Following Pedemonte (2007), argumentations are based on a system of conceptions and 
related to conjectures either as “structurant” or as “constructive” argumentation. Furthermore, an 
argumentation can be abductive, inductive, or deductive (Pedemonte, 2007). These characteristics 
could be applied to our data, but since our study does not focus on proof they do not adequately 
describe the variety of justifications found in our study.  

Harel & Sowder (1998) use the term “proof schemes” which refers to “what the person offers to 
convince others” (p. 275). This fits well into the model of argumentation given below. Their way of 
classification scheme (externally conviction, empirical, and analytical proof schemes as 
superordinate categories; “analytical” is changed into “deductive” in Harel, 2008, p. 491) will be 
compared to the findings of our study in another article. 

Communication models and specification of concepts 

Since essentially different (Brunner 2014, p. 231) definitions exist of the notions argumentation, 
reasoning (regarded here as synonymous to justification, if referring to one fixed claim), proving 
and explaining we have to specify these terms. They are not conceived with regard to proof, but to 
the argumentations notated by the tested students. 

Our study uses a model of argumentation that is based on communication theories (Bühler, 1934; 
Kopperschmidt, 1980, following Habermas (1984)). The sender and receiver refer to a knowledge 
(and communication) basis assumed to be shared. The objects of justifications are statements that 
have different grades of plausibility for the two interlocutors. The act of justification performed by 
the sender is an attempt to augment this grade, conceived as an ordinal structure, on the receiver's 
side. Therefore, this concept of argumentation is genuinely dialogic. Nevertheless, the receiver can 
also be an internal entity within the sender, or a universal audience.  

In the following, short definitions of the principal terms used in this article are given. The 
discussion and the comparison of these definitions to those found in the literature go beyond the 
scope of this article. But for reasons of practicability we suggest to accept these definitions in the 
frame of this article despite a lacking consensus in the wider scientific community (Brunner 2014, p. 
231).  

Argumentation is conceived as a generic term (Bezold, 2009), including the process of finding 
hypotheses, and checking common bases of knowledge and communication. Reasoning or 
justification is a communicative reaction to a questioning of a statement. The aim of reasoning is to 
increase the degree of the receiver’s acceptance (his attributed epistemic value) of the statement by 
relating the statement under discussion to the basis of knowledge and communication assumed to be 
shared (Kopperschmidt, 1980, p. 73). Proof is a sequence of argumentative steps relying on an 
accepted basis of statements approaching the ideal of a complete logical chain of deductive steps 
(Duval, 1991). A proof can be a justification, but does not necessarily be one. Explanation (of 
“why”, not “how” or “how to do”) is an addressee-oriented justification by the sender with the aim 



 

 

of creating an “understanding”, which in turn is conceived as a fitting to the (possibly 
accommodated or enlarged) factual knowledge of the addressee (Kiel, 1999, p. 72; Hanna, 2016, 
“pedagogical explanations”, p. 2). 

Justifications can attempt to explain, but also aim to refer to reliable sources. Furthermore, in this 
framework, a mathematical proof is only one method of justification and not necessarily effective, 
depending on the mathematical ability of the sender and receiver. E. g. an algebraic transformation 
7:0 = x |∙0  → 7 = 0 performed by a student does not really convince another student if their 
interpretation of the variable x is uncertain and the concept of equivalence transformation is known, 
but insufficiently familiar. 

The study 
The analysis of the data is not fully completed yet, but we can report first results on selected parts of 
the study. We asked the students to give the result of the division 7:0 and to “justify [their] opinion 
in a way that someone who doesn't know the answer is able to understand [the result]” 
(Unabbreviated original task, translated from German). The written answers of a group of N=365 
students in grade 7, 9, 11, 13 were analyzed. In regard to the relative abundance of argumentation 
types we report data from a subgroup of N=300 pupils which did not take part in interventional 
courses. These were N=73, 86, 78, 63 students in the four grades resp.. In this convenience sample 
all students were of the same secondary school (“Gymnasium”), and all students of the four chosen 
grades were tested (absence of students < 5%, no denial). 

Method of analysis 
First we applied a qualitative content analysis (QCA, Mayring, 2000) with inductive category 
development. Therefore, we analyzed the student’s written justifications in several steps. The first 
step was to classify the texts only by similarity without any recourse to theory. In the next steps we 
aggregated items with an increasing level of abstraction (“feedback loops”) leading to the different 
types of argumentation described in our coding manual. To ensure reliability this manual was used 
to perform a separate “deductive category application” (Mayring, 2000, sec. 4.2) by a pair of 
university students in a second step (Interrater Reliability κ=.967, N=365).  

Results - Three different types of argumentation 
We found three types of argumentation: rich, pseudo-factual, and apodictic. A summary is given in 
Table 1. All examples of student justifications have been translated from German.  

Rich justifications 

In this category the content and the way of reasoning are essentially reasonable (see below) even if 
the results might be wrong, or the justification is partly false or incomplete. The statement of 
justification is connected to a domain which is relatively complex. Therefore, operations (e.g. 
changing the mode of representation, calculations) are more likely to be found.  

“Essentially reasonable” means that with the same idea a correct argumentation is possible. “7 : 0 = 
7. So, if you have 7 apples and you divide them among 0 persons, you still have 7 apples.” The 
usage of a model for division in the warrant (Toulmin, 1958) can be regarded as an operation in 



 

 

which the representation of division is changed from the “algebraic view” to “partitive distribution”. 
This latter domain is sufficiently complex: it is simply not possible to distribute 7 apples to nobody. 
The mistake in the original quote, disregarded for the type of argumentation, can be interpreted in 
the following way: the result of the division does not show what is left, but how much each person 
gets. Beside partitive interpretation using concrete objects, measurement interpretations of the 
division: “0 fits infinitely often into 7”, and algebraic calculations are typical examples of rich 
arguments. 

 
Table 1: Characterization of justification types 

Pseudo-factual justifications 

Mathematical warrants (Toulmin, 1958) are quoted, but these are profoundly incorrect, e.g. if the 
link to a domain of the common knowledge basis is not reliable (one student used the analogy of 
70=1 - not an appropriate domain (power calculations), and weakly linked by analogy). In others, the 
cited domain has no sufficient structure, e.g. when including “invented” calculation rules (“all 
calculations with 0 produce 0 as result”), or making statements about the nature of the task or 
objects (“there's nothing to calculate”, “0 has no significance”). Because of the lack of rich structure 
in the used domains only few other acts or operations besides generalizations and analogies can be 
found. Other texts seem to imitate the logical and symbolic structure of a mathematical justification, 
or use invented terms.  

Apodictic justifications 

Mathematical warrants are not used, but rather references to authorities like the teacher, the 
calculator, the textbook, or the world-wide-web given instead. A simple tautological repetition of a 
statement is interpreted as a reference to one's own ultimate knowledge and thus seen as an authority 
in the sense of: “That's how it is, I know it.” Sometimes it is even stated that no justification is 
necessary. This shows a utilitarian understanding of mathematics, which can be convenient, e.g. for 
engineers in the course of their everyday work. Because there is no need for mathematical warrants, 
there are no domains and consequently no operations found. Typical examples: “[...] There is 
nothing to explain, that's the way it is”, or “The rule says you cannot divide by zero. You just have 
to learn and remember it.” This type seems to be very close to the authoritative type of Harel & 



 

 

Sowder (1998). Precautionary it was given a different name, to be able to compare thoroughly the 
two types. 

Quantitative results 

Looking at the increasing grade level of the students, the relative abundances of the used 
argumentation types accordingly develop as follows: 1) Rich argumentations remain at slightly less 
than 40%. 2) Pseudo-factual argumentation is reduced to almost a half. 3) Apodictic argumentation 
almost doubles. There are very few justifications that can be seen as an algebraic proof: Only 4% 
use multiplication as the inverse of division. Note that the percentages in Figure 1 add up to more 
than 100% because each text can show more than one type of argumentation. The observed 
decrease, resp. increase was significant. 
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Figure 1: Relative abundance of types with increasing grade and inference-statistical characteristics 
of the relative abundance of the different types when applying a linear model of increase 

Discussion 
The classification of justifications into different types presented in this study might be useful for the 
teacher’s practice. They offer a framework for the moderation of class discussions. At first sight, 
there is no valuation concerning the different types. Proof increases the logical value, non-proof 
justifications try to augment the epistemic value of the statement (Harel, 2007, p. 497). In our model 
(Table 1), we add the informational value, conceived as the reliability of the source, which is 
increased by apodictic argumentation. This can be important for non-mathematicians, e. g. in the 
realm of engineering. Also in school, an algebraic argumentation (close to proof) by another student 
can be considered hard to trust. However, the aim of school education and the standards of 
mathematical education favor rich argumentations. For the practice of teaching it is recommended 
that apodictic justifications should not be discredited right away, but first discussed: They may be 
valuable for practical needs (unexamined statements as “black boxes”), but do not initiate an 
understanding. In contrast, pseudo-factual justifications should be criticized, even though at this 
point it is an open research question if this argumentation type can be considered a preliminary stage 



 

 

of rich argumentation practice. As shown in an example in Fahse and Linnemann (2015), pseudo-
factual justifications can be very appreciated by fellow students, because they seem to be 
particularly “mathematical” at first sight. In some cases, they do not increase any value of the 
statement, but try to augment the acceptance of the justification by similarity to genuine 
mathematical justifications. With the help of our classification, such misleading contributions could 
be more clearly discerned, both in discussions and written texts. Therefore, it might even be helpful 
to inform the students of these types (for first experiences, see Fahse & Linnemann, 2015). For 
teachers, these types could be useful for diagnostic purposes: to gain insight into the individual 
development of argumentation skills and to foster these abilities.  

Taking the special task on division by zero as an educational probe seems to be promising: In all 
considered grades all three types occurred and were not marginalized. The different grades (and also 
the 16 different learning groups) showed significantly different distributions of types (not reported 
here). What is more, there are clear tendencies: The stagnation of the abundance of rich 
argumentations and the increasing of apodictic ones. One might think that this is caused by the 
increasing distance (mental and in time) of the students to this topic (taught in 5th grade). The 
following observations, though, question this interpretation: Even in 7th grade, the majority of the 
students does not remember the lessons on this topic, but refer to primary school. Similar questions 
are topics taught in grade 9 (square-root of negative numbers) and grade 10 (70, log(0)). 
Nevertheless, the use of algebra in the answers is rare. More likely, the increase of apodictic 
reasoning is caused by continuous repetition of the mere algebraic rule without any explanation, and 
perhaps by a neglect of argumentation as an educational objective. This last hypothesis will persist 
only if the used probe (division by zero) can be validated as a probe for argumentation ability in 
general. This will be a topic of future research in our investigations.  
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The notion of flow of a proof encapsulates mathematical, didactical and contextual aspects of proof 
presentation, related to the lecturer’s choices regarding the presentation. We explore the 
relationship between mathematics teaching and rhetoric, suggesting Perelman’s New Rhetoric 
(PNR) as theoretical framework to assess different rhetorical aspects of the flow of a proof. In this 
paper we relate particularly to the establishment of a shared basis of agreement between the 
lecturer and the students, and to potential fallacies in this basis. We present examples of analysis of 
the basis of agreement from a lesson in Number Theory, at the beginning undergraduate level. 

Keywords: Proof teaching, flow of proof, Perelman’s New Rhetoric, mathematical argumentation.  

Theoretical background 
Mathematics and Rhetoric - "Can two walk together, except they be agreed?" 

Mathematics “possesses not only truth, but supreme beauty – a beauty cold and austere, like that of 
sculpture, without appeal to any part of our weaker nature…” (Russell, 1917, p. 60) and is 
“independent of us and our thoughts” (ibid, p. 69). This perception of mathematics seems to stand in 
drastic contrast to rhetoric, the ancient art of persuasion, which over the centuries became mostly 
related to the study of the ostentatious and artificial aspects of discourse. Yet, over the last few 
decades, scholars have begun to discuss the mathematics- rhetoric separation and its consequences.   

A pioneering effort of associating mathematics and rhetoric was made by Davis and Hersh (1987) 
who argued “that mathematics is not really the antithesis of rhetoric, but rather that rhetoric may 
sometimes be mathematical, and that mathematics may sometimes be rhetorical” (p. 54). Davis and 
Hersh challenged the opinion that mathematics establishes truth “by a unique mode of 
argumentation, which consists of passing from hypothesis to conclusion by…small logical steps…”, 
and claimed that “mathematical proof has its rhetorical moments and its rhetorical elements" (ibid, 
pp. 59–60). They illustrated this by phrases that a college mathematics lecturer may use while 
presenting a proof (in addition to the expected logical transformations), such as: “It is easy to show 
…”, “… simple computation, which I leave to the student, will verify that…”; they identified these 
phrases as rhetorical means in the service of proof. They acknowledged that the use of such phrases 
may be related to context, but rejected the myth that behind each theorem stands a flawless, logical 
proof. For them ‘proof’ is an amalgam of formality, of convincing arguments and of appeals to 
imagination and intuition.  

Another example is the ‘rhetoric of the sciences’ movement, which studies the stylistic forms used 
by scientists in scientific texts (mathematics included), to persuade others that their claims are valid. 
So, as in the other sciences, the rhetoric of mathematics plays an essential role in maintaining its 
epistemological claims (Ernest, 1999). Ernest relates to another aspect of rhetoric in mathematics, 
namely the importance of persuasion for mathematics instruction.   



 

Reyes (2014) asserts that it should be in the interest of rhetorical scholars to explore mathematics 
discourse, as it is the basis of techno-science. He analyses conceptual mathematical metaphors as an 
example for a mode of analysis of mathematics whose roots lie in rhetorical studies. Elsewhere, 
Reyes studies the rhetorical process during the invention of mathematics, and explores the 
introduction of infinitesimals by Newton and Leibniz as an example of the role of mathematical 
rhetoric in mathematical invention, in addition to its role in communicating the mathematics.  

In conclusion, inquiry into relations between rhetoric and mathematics is growing in extent and 
richness. An increasing number of scholars explore the possibilities offered by the use of rhetorical 
concepts and ideas to gain better understanding of mathematics and mathematical education. Instead 
of viewing mathematics as a ‘perfected, austere’ product, they re-connect it to its ‘human features’, 
that in addition to formal logic utilizes persuasive argumentation and exploits rhetorical means. 

Argumentation theory and ‘The New Rhetoric’ 

Aberdein (2016) rejects the common thesis that mathematical reasoning is fundamentally different 
from everyday reasoning and that formal logic adequately models the practice of mathematical 
reasoning. Research in mathematical education uses argumentation theory to address aspects of 
mathematical argumentation other than formal logic, and for that purpose frequently uses Toulmin’s 
model that permits schematic analysis of formal proofs as well as of arguments classified as 
deductively invalid.  Toulmin’s model has been shown to be an efficient framework to discuss local 
arguments as well as global argumentation structures (e.g. Knipping & Reid, 2013) and Inglis, 
Mejia-Ramos and Simpson (2007) claim that implementing Toulmin’s full model (including 
rebuttals and qualifiers) should be used for this purpose. However, Toulmin’s model has been 
criticized for not relating to the effect of the arguments on the audience, and for denigrating rhetoric 
in argumentation (Olbrechts-Tyteca, cited in Frank, 2004). 

In 1958, Perelman and Olbrechts-Tyteca published ‘The New Rhetoric’ (PNR, translated in 1969), 
an argumentation theory based on the notion that argumentation aimed at justification of choices, 
decisions, and actions, is a rational activity complementing formal argument. PNR studies 
techniques used by an arguer to increase audience adherence to the arguer’s theses and conditions 
that allow argumentation to begin and develop. PNR asserts that reducing an argument to its formal 
aspects undermines the rhetoric features that support its meaning; it recognizes the distance between 
dialectic and rhetoric but creates an alignment between them. This complex view at times produced 
an inherent ambiguity in definitions of some concepts. However, PNR adds meaningful layers of 
analysis beyond the analysis of argument structure and type achieved by using Toulmin’s model. 

PNR describes the ‘threads that make the cloth of the argument’: the starting points that establish a 
shared basis of agreement, the scope and organization of arguments, ways of creating presence to 
arguments, and different argumentation techniques. The audience plays a pivotal role in PNR since 
each ‘thread’, or aspect, is tied to what the arguer believes will deeply persuade the audience. This 
means that argumentation techniques should be adjusted to the audience’s frame of reference, its 
previous knowledge, experiences, expectations, opinions and norms. So arguers construct 
arguments that they consider persuading for a particular audiences or convincing by a ‘universal 
audience’ (an arguer construct consisting of all reasonable humans) (van Eemeren et al., 2014). 



 

In our study, we wish to analyze rhetorical aspects of proof presentation, in a scenario of a lecturer 
presenting a mathematical proof to a class of students. We use PNR as a theoretical framework as it 
incorporates aspects of rhetoric, argumentation and lecturer-classroom relations. Elsewhere (Gabel 
and Dreyfus, 2017), we demonstrate an analysis of other PNR aspects: scope and organization of the 
argumentation, and presence of proof elements. In this paper we address a different aspect: 
establishing a shared basis of agreement with the audience.  

PNR’s basis of agreement and its adaptation to proof teaching 

According to PNR, argumentation can be successful if it advances from premises already accepted 
by the audience, i.e. the arguer established a shared basis of agreement with the audience. These 
premises are classified as follows: (1) Premises relating to the real: premises where the arguer 
claims recognition or acknowledgement of the universal audience. Those include: Facts, truths and 
presumptions. (2) Premises relating to the preferable: premises that have to do with the preferences 
of a particular audience. Those include: Values, value hierarchies and loci of preferable. 

Facts and truths are statements already agreed to by the universal audience; they are considered to 
require no further justification. Truths stand for connections between facts. Presumptions are 
opinions or statements about what is the usual course of events which need not be proved, although 
adherence to them can be reinforced, and it is expected that at some point they will be confirmed. 
Values relate to the preference of one particular audience as opposed to another. They function as 
guidelines in making choices of the arguer (even though not all would accept them as good reasons). 
Values are normally arranged in value hierarchies, which are very important since different 
audiences may possess the same set of values arranged in different hierarchies. Values and value 
hierarchies generally remain implicit, but the arguer cannot simply ignore them. Loci of the 
preferable (aka commonplaces, Topoi) are premises used to justify values or hierarchies and express 
the preferences of a particular audience (e.g. quantity, quality, essence) (van Eemeren et al., 2014).  

We have adapted PNR’s classification of premises to the context of our study (analyzing proof 
presentation in class) as described in Table 1. We do not include in the table the loci of the 
preferable since they are highly abstract mental constructs which did not need adaptation. 

 Adaptation to proof teaching 

Premises 
relating to 
the real 

Facts  Axioms, definitions, givens, previously consolidated symbols/results 
Truths Lemmas, theorems, newly established symbols/results 

Presumptions 
Statements or opinions about what previous knowledge to use, for 
example: mathematical techniques, proving methods, past theorems. 

Premises 
relating to 
the 
preferable 

Values 
The preference or adaptability to a particular audience of a certain 
proving method or technique as opposed to another.  

Hierarchies 
of values 

The hierarchies of values will affect audience preferences for 
choosing notation, proving method or mathematical technique.  

Table 1: Adapting PNR types of premises to a proof teaching context 

According to Perelman and Olbrechts-Tyteca, lack of agreement concerning the basis of agreement 
may occur at one or more of the following three levels: 



 

a)  Status of premises: e.g. if the arguer advances something as a fact but the audience wants to 
see it proven or if the arguer assumes a value hierarchy not accepted by the audience;  

b)  Choice of premises: e.g. if the arguer uses facts that the audience does not consider relevant 
to the argument or would have preferred not to see mentioned; 

c)  Verbal presentation of premises: e.g. if the arguer is presenting certain facts (acknowledged 
as relevant by the audience) in words which have connotations unacceptable to the audience.  

The ability of creating a shared basis of agreement with the audience is crucial to the success of 
argumentation. Arguers should therefore carefully consider the status they ascribe to premises, the 
selection of premises, and the wording of explicit premises (van Eemeren et al., 2014). Examine, for 
example, two possible values related to proof teaching: (1) Certainty: every argument in the proof 
should be proved formally or at least justified; (2) Pedagogy: parts pf the proof should be left for the 
students. A lecturer may choose to leave parts of the proof as homework because her/his value 
hierarchy places (2) over (1). However, if the students have an opposite value hierarchy, this implies 
that the lecturer had a fallacy in the shared basis of agreement at the level of the status of his value 
hierarchy, which might consequently weaken students’ persuasion. 

The study – description and methods 
Our research concerns the notion of ‘The flow of a proof’ (Gabel and Dreyfus, 2017) which 
encapsulates various aspects of the proof presentation. The flow is an outcome of the choices made 
by the lecturer regarding presentation of: (i) the logical structure of the proof (arranging the proof of 
the theorem into claims, which are proved in a specific order); (ii) informal features and 
considerations of the proof and proving process (e.g. examples, intuitions), and (iii) mathematical 
and instructional contextual factors. One aim of the research was to analyze global and local aspects 
the flow of the proof, in particular to examine rhetorical aspects of the proof presentation.  

The research took place in a Number Theory course, given by the same lecturer to prospective 
mathematics teachers in two consecutive years. Each year, three lessons including the same suitable 
proofs (length, richness) were observed and audio-recorded. The three proofs were unrelated to each 
other. After each lesson students answered a questionnaire relating to cognitive and affective 
aspects; also, a reflective interview with the lecturer and individual interviews with students were 
conducted. The post-lesson interviews conducted with the lecturer in Year 1 were analyzed and 
interpreted, and a list of the lecturer’s general considerations regarding proof teaching was 
produced. In this paper we relate to the second lesson in each year, in which the following theorem 
related to linear Diophantine equations ax+by=d , ,x y Z was formulated and proved:  

Theorem: The greatest common divisor (gcd) of two integers ,a b , at least one of which is not 0, 
equals the smallest natural number of the form ma nb , where ,m n  are integers: 
gcd( , ) min{ 0 : , }a b ma nb m n Z    . 

The full proof of this theorem requires the use of previously proven results. In the next section we 
present a partial analysis of the shared basis of agreement, demonstrating the different types of 
lecturer premises (in the PNR sense) reflected in the proof presentation, consider potential fallacies 
in these premises and demonstrate the lecturer’s attempt to fix these fallacies. 



 

Examples of analysis of the basis of agreement 
All post lesson interviews conducted with the lecturer in Year 1 were analyzed and interpreted as 
two sets of lecturer considerations (Gabel and Dreyfus, 2017). One of the sets contains general 
considerations for proof teaching. In the current paper we relate to three of these general 
considerations: (a) A proof should be mathematically complete and exact; (b) Some of the proof 
elements should be left for students to prove by themselves; and (c) Proof structure should be clear. 
One aspect of the clarity of proof structure was exhibited when the lecturer referred to the myth 
about Ariadne’s thread: “I use… Ariadne’s thread many times since mathematical proofs are built in 
such a way that you need to find the tip of the thread and just follow it…” We relate to these 
lecturer considerations as values that affect the lecturer’s choice and status of premises. 

Our examples stem from the last part of the proof as presented by the lecturer, and we will address 
lecturer premises as reflected in his arguments. In Year 1, just after proving that d  is a divisor of a , 
leaving the (almost identical) proof that d  is a divisor of b  to the students, the lecturer said:  

Lecturer: The same way we showed that d  is a divisor of a  it follows that d  is a divisor of 
b , so d  is a common divisor of ,a b . Now, it can’t be smaller than the gcd, yes? 
Because once I write the equation ax by d  then…like we said in the beginning 
of the lesson, we said that this d must be divisible by gcd( , )a b … so it can’t be 
smaller then gcd( , )a b and that means it is equal to gcd( , )a b . 

 
 
 
 

 
Figure 1: Toulmin’s scheme representation of 1st explanation  

The argumentation in this excerpt is represented by the Toulmin’s scheme in Figure 1. We suggest a 
possible interpretation of the lecturer’s explicit and implicit premises reflected in this explanation. 
For the lecturer this argumentation requires very little justification (if any) and he presents it as a 
chain of facts (D1, C1, D2 and possibly C2) that does not need to be discussed, and whose 
connection results in the conclusion (C4) in a self-evident way. The lecturer implicit presumption is 
that in order to prove that gcd( , )d a b  one needs to show two inequalities: 
( gcd( , )d a b and gcd( , )) gcd( , )d a b d a b   ; he believes that this presumption does not need to 
be made explicit and that he and the students share this presumption. As for the values reflected in 
this explanation and their hierarchy, since the lecturer chose to leave some of the proof (that d|b) to 
the students, in this case the pedagogical value of leaving some of the proof elements for students 
was placed above the value regrading proof completeness. In addition, we recognize another 
implicit value: for the lecturer the ‘tip of Ariadne’s thread’ here is to realize that d is a common 
divisor of a,b from which the rest of the proof just unfolds.   

However, the students had difficulties following this first explanation and asked the lecturer to 
repeat it. A possible reason for this difficulty is that the premises that the lecturer considered as facts 
were not considered as facts by the students and required further justification. For example, the 
students probably needed an explicit justification for the argument “if d is a common divisor of a,b 

C2: d cannot be smaller than gcd(a,b)   D2: ax+by=d x,y integers  

 D1: d|a and d|b   
 

W: We showed before that d is divisible by gcd(a,b) 
 
 

 C4: d = gcd(a,b) 
C1: d is a common divisor of a,b 



 

then gcd( , )d a b ”. Moreover, the lecturer’s implicit presumption regarding the natural proving 
technique (the two inequalities) is not necessarily clear and natural to the students. In PNR 
language, there was a lack of agreement about the status and choice of the lecturer’s premises, 
which caused a fallacy in establishing a shared basis of agreement. So, following the students’ 
request, the lecturer instantly explained again the argument in Year 1 lesson as follows: 

Lecturer: We said that d , as a minimal element of this set [{ 0 : , }ma nb m n Z   ], is 
of the form a  integer+b integer. Now the first thing I have shown today is that in 
such a situation, actually this is a result of theorem 1 that we have used before,… 
it follows that d must be divisible by gcd( , )a b , yes? Once I can write a number 
as a linear combination of two numbers ,a b , with integer multipliers ,m n , this 
d must be divisible by gcd( , )a b . On one hand it must be divisible bygcd( , )a b ; 
on the other hand…it is a divisor of ,a b . It can’t be smaller then gcd( , )a b  so it 
can only be equal to it. Because gcd( , )a b is the greatest common divisor, yes? 
And that finishes the proof… d  is a common divisor of ,a b  that also has to be 
divisible by gcd( , )a b  so we conclude that gcd( , )d a b …  

 
 
 
 
 
 
 
 

 

Figure 2: Toulmin’s scheme representation of 2nd explanation 

The argumentation in this excerpt is represented by Toulmin’s scheme in Figure 2. In the second 
explanation the lecturer added some justification (W1, B1, W3) to the conclusions C1, C2 and C3; 
we interpret they were not presented as facts but rather as truths, i.e. the lecturer changed the status 
of the premises to establish a stronger basis of agreement with the students. However, his 
presumption still remained implicit – a point which we will revisit shortly. 

Before the lesson in Year 2 the lecturer was informed by the researcher about some student 
difficulties that were found in the post lesson students’ questionnaires of Year 1; in particular, the 
questionnaires reflected that the last part of the proof, where combining the inequalities 

gcd( , )d a b and gcd( , )d a b leads to the equality gcd( , )d a b was not trivial to the students. For 
lack of space we will concentrate on demonstrating the change in the lecturer’s presumptions and 
his value hierarchy between Years 1 and 2. The lecturer took the reported students’ difficulty into 
account and during the lesson in Year 2, just before the last part of the proof he explained: 

Lecturer: Here we are doing something similar to what we already had in the past, when we 
wanted to prove that two numbers are equal… 

Student: We assume that they are unequal… 

 C3: d cannot be bigger than gcd(a,b) 
 

W1: Theorem 1 (previous lessons) 
 

 W3: gcd(a,b) is the greatest of all common divisors of a,b 
 

 C4:  
 d = gcd(a,b) 

C1: gcd(a,b)|d  
 

 C2: d cannot be smaller than gcd(a,b) 
 

B1: d=ma+nb, m,n integers 
 

D1: d is a linear 
combination of a,b 
 

D2: d|a and d|b  



 

Lecturer:  No, we should prove two inequalities, right? Or refute two inequalities, right? I 
remind you, we already used it: when we wanted to show that two numbers are 
equal then we need to show that it is impossible that a  is smaller than b … it is 
impossible that a  is bigger than b , or in other words … to show that a  is not 
smaller than b is actually showing that a b , and instead of showing that a  is not 
bigger than b we’ll show that a b . If I want to show that a b , I need to show 
that a b , i.e. not smaller than b , and that a b , meaning that a  is not bigger 
than b . Once I will show these two inequalities I am done, I’ve shown that a b .  

Here, the lecturer consciously makes his presumption explicit to the students, justifies the choice of 
this presumption and makes it relevant. By explicating his presumption the lecturer also caused a 
change of value hierarchies: he enhanced the clarity of the proof structure, making it more explicit 
before going into the details of the proof. Indeed, the lecturer also explicitly declared:   

Lecturer:  It remains to prove the other inequality: gcd( , )a b d . In fact, I will show you that 
this… minimum of the set, d, is a divisor of a,b… and this will end the story… 

So before formally proving that d is a divisor of a,b, the lecturer spread out his proving plan, 
identifying “the tip of Ariadne’s thread” and explained exactly why this “will end the story”.  

We conclude this short example by stressing that while Toulmin’s model enables the presentation 
and analysis of the argumentation structure, PNR complements it by relating to other argumentation 
qualities, such as the adaptability to the intended audience. The fallacies that have been mentioned 
in the example were related to the status and choice of premises.  

Concluding remarks 
Weber and Mejia-Ramos (2014) demonstrated that mathematics students and mathematicians have 
different perceptions regrading students’ responsibilities when reading a mathematical proof: the 
students believe that reading a good proof is quite a passive process, one in which they are not 
expected to construct justifications, diagrams or sub-proofs by themselves, and they may simply 
follow each and every step. Mathematicians believe the opposite. This tension between the students’ 
and their teachers’ beliefs supports our interpretation regarding the different value hierarchies that 
the lecturer and the students have. But beyond the identification of the difference, we argue that 
PNR has the potential to explain the consequences of that difference on the effectiveness of 
argumentation; in other words, PNR provides a suitable framework to identify ways to increase 
argumentation effectiveness, for instance by referring to the shared basis of agreement.  

Moreover, PNR relates to other rhetorical and dialectical aspects of argumentation. Some of these 
aspects (scope and organization and presence) have been studied in Gabel and Dreyfus (2017); 
others, namely argumentation techniques and the manner by which PNR complements the use of 
Toulmin’s scheme, need further study. One advantage of PNR is that because of its theoretical 
scope, all these aspects can be studied within a single unifying theoretical framework.  

Although Perelman perceived PNR as a complement of formal logic and focused on disputes in 
which values play a part (van Eemeren et al., 2014), we argue that PNR can be adapted to be a 
productive theoretical framework in the context of proof teaching, particularly the flow of a proof: 
firstly, Perelman was much inspired by formal logic (mainly the work of Frege), and secondly, the 



 

context of argumentation in the mathematics classroom resembles PNR’s context of persuading an 
audience. Thus PNR is a comprehensive argumentation theory that can broaden and enrich 
researchers’ perspectives regarding different aspects of mathematics classroom argumentation.  
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Major obstacles for students learning formal reasoning are the lack of transparency of the logical 
structure of formal deductions, their theoretical status, and their verbal representation. For fostering 
students’ learning of formal reasoning, making explicit the logical structures and unpacking their 
verbal representations is therefore necessary. In the design research project presented, a teaching-
learning arrangement of angle theorems was designed in which given if-then-statements were to be 
connected with formal deductions based on the design principle of structural scaffolding. A case study 
of a pair of 9th graders investigated students’ pathways towards becoming aware of and using the 
logical structures and exemplifies the functioning of structural scaffolding.  

Keywords: Formal proof, logical structure, verbal representation, structural scaffolding.  

Introduction 
Formal reasoning, the logical deduction of new theorems from other theorems, has been shown to be 
a huge challenge for many students at both secondary and tertiary level. Empirical research studies 
have identified different reasons for these difficulties (Harel & Sowder, 1998). The design research 
project presented here focuses on one major obstacle, namely understanding the logical structure of 
deductions and deductive theory development, which is rarely explicit in mathematics classrooms 
(Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2011). For this obstacle to be overcome, 
researchers have suggested that it is important to make the logical structures of deductions and their 
verbal representations explicit (Durand-Guerrier et al., 2011).  

This design research study follows this general suggestion. It draws upon the design principle of 
structural scaffolding (following general ideas of scaffolding, cf. Lajoie, 2005). It pursues two main 
research questions: (1) How can a teaching and learning arrangement be developed to make logical 
structures of deductive reasoning explicit? (2) Which typical pathways towards formal reasoning can 
be initiated by such a teaching-learning arrangement, and which obstacles appear along the 
pathways? The first two sections present the theoretical background and the methodological 
framework. The design outcome (a teaching-learning arrangement based on structural scaffolding) 
and a case study of two students in 9th grade on their pathway is presented afterwards.  

Theoretical background: Approaching logical structures by structural scaffolding  
Formal reasoning is crucial in mathematics, not only for convincing one self and others of the truth 
of theorems or for explaining connections, but mainly for building (at least locally) deductive theories 
(de Villiers, 1990). Even if, for example, students immediately are convinced of the truth of angle 
theorems, deducing them from each other encourages students to organize them in a logical and 
deductive sequence and give insights in mathematical evidence instead of empirical (cf. Fig. 1).  

 
 



 

 

 

 

 

 

Figure 1: Locally deductive theory of angle theorems  

Missing learning opportunities for formal deductions. In school mathematics, in contrast, most 
reasoning activities do not refer to formal deductive reasoning but to semantical reasoning where the 
epistemic value is prioritized over the validity of a statement (Duval, 1991). Formal deductions are 
presented mostly in a ready-made form (Harel & Sowder, 1998). This does not allow students access 
to awareness of how to compose an argumentation using logical structure. Although composing the 
deductions is only the last step of proving (Boero, 1999), it is still necessary to offer learning 
opportunities for this last step, e.g. by linearly ordering all elements and formulating their logical 
relations in written forms (Russek, 1998). 

Logical structure of formal deduction and everyday argumentations. Everyday argumentations have 
often been described by the argumentative structure of data, warrant, and claim (Toulmin, 1958). 
While in everyday argumentation the warrant may be omitted and only made explicit when an 
opponent raises doubts (Rapanta, Garcia-Mila, & Gilabert, 2013), it is crucial in formal reasoning 
and has a theoretical rather than semantic status (Duval, 1991). That means that the existence of 
mathematical theorems and their statements, which are not characteristics of reality, are of relevance. 
Thus, the range of possible warrants must be made explicit in mathematics (Douek, 1999). Also, the 
status of preconditions in if-then-statements differ: in most everyday argumentations, if-then-
statements are only formulated when the conditions are satisfied (Nunes, Schliemann, & Carraher, 
1993, p. 130ff). In mathematics, in contrast, if-then-statements are hypothetical, so the validity of the 
preconditions always have to be checked before applying an if-then-statement as an argument.  

Making explicit logical structures for students. Due to these differences, many researchers have 
suggested explicating the logical structures of formal reasoning in the learning process (Durand-
Guerrier et al., 2011). Cho and Jonassen (2002) used Toulmin’s (1958) argumentation scheme for 
this purpose for college students in non-mathematical contexts, and we will extend this approach for 
9th graders in a geometrical context by including the check of preconditions. 

Structural scaffolding as a design principle. Explicating alone is not enough. For students to become 
acquainted with the logical structure, and to produce it in their own deductions, this study draws on 
the design principle of scaffolding. Scaffolding is characterized as enabling learners to realize 
supported activities before they can conduct them independently (Wood, Bruner, & Ross, 1976). 
Initially only applied to one-to-one interaction for language learning, the idea of scaffolding has 
increasingly been elaborated into a design principle for materials and computer tools, whole-class 
contexts, for open geometrical proofs (Miyazaki, Fujita, & Jones, 2017), and other learning contents 
(e.g. Lajoie, 2005).  

Methodology of the design research study 
Design research as methodological framework. Because the study has the dual aim of designing a 
teaching-learning arrangement (here: on the logical structure of formal reasoning with the design 
principle of scaffolding) and developing an empirically grounded local theory of students’ learning 



 

 

pathways, we chose the methodological framework of design research with a focus on learning 
processes (Gravemeijer & Cobb, 2006). The concrete model of Topic-Specific Didactical Design 
Research (cf. Prediger & Zwetzschler, 2013) relies on the iterative and intertwined interplay of four 
working areas: (a) specifying and structuring learning contents; (b) developing the design of the 
teaching-learning arrangement, (c) conducting and analyzing design experiments; and (d) (further) 
developing local theories on teaching and learning processes.  

Design experiments for data collection. Design experiments are the methodological core of design 
research studies (Gravemeijer & Cobb, 2006). For this project, 3 design experiment cycles were 
conducted with 20 ninth and tenth graders (age 14-16 years) in total. The case study reported here 
stems from Cycle 3 in which design experiments in laboratory settings were conducted and 
videotaped with 5 pairs of students, comprising two sessions of 60 minutes each (in total about 600 
minutes video material). The students were familiar with the geometrical topic of angle theorems. 
The empirical part of this paper focuses on the case study of two female students, Katja and Emilia, 
from grade 9 and the first author as design experiment leader (in the following called tutor).  

Methods for qualitative data analysis. The transcript of the video was analyzed with respect to 
students’ development of explicating elements of the logical structure (using the analytic scheme of 
data, warrant, claim, cf. Krummheuer, 1995) and to how students articulate relations between these 
elements (linguistic analysis, not presented here). This makes it possible to investigate the functioning 
of the scaffolding tool and typical pathways and obstacles.  

Design Outcome: Teaching-learning arrangement with structural scaffolding 
Mathematical topic. Within the iterative design experiment cycles, a teaching-learning arrangement 
was developed for the mathematical topic of angle sets. This topic was chosen because the if-then-
statements and the set of possible warrants are well 
limited in this field and locally organized (cf. Fig. 1).  

Structural scaffolding. For structural scaffolding, we use 
materialized argumentation structure forms on paper as 
depicted in Fig. 2. In addition to Toulmin’s (1958) argu-
mentation structure, the materialized structure also makes 
explicit why the preconditions of the if-then-statements 
(named arguments) are satisfied. Every theorem that is 
already proven is offered as warrant for the next step of 
formal reasoning. Working with this materialized 
structural scaffold in each step allows the students to 
make explicit their often implicit ideas. In the following, 
the boxes (from above to below) are named data box, 
condition check box, argument box, and conclusion box. 

Learning trajectory for introducing the structural 
scaffold. The intended learning trajectory starts by activating students’ previous knowledge on angle 
sets in cases of determining angles for concrete constellations (“Find  if °…”). When first 
asked to prove the general vertically opposite angle theorem, students’ initial argumentative resources 
often include the critical feature, but are limited mostly by their semantic nature (“because 

Figure 2: Materialized argumentation 
structure forms as structural scaffolds 

and have the same 

supplementary angle  

If two lines intersect, then the mea-
sures of the two resulting supple-
mentary angles add up to 180°. 

Task: Show that the two angles are equal if 
they are vertical like in the drawing 

Next step: Deducing algebraically that  =  



 

 

supplementary angle”). Starting from these initial reasoning resources, the tutor introduces the 
structural scaffold by explaining the new practice of formal reasoning as making explicit all aspects 
implicitly contained in the students’ brief argumentation. The condition check box for checking if the 
precondition of the if-then-statement is satisfied had to be introduced after the first design experiment 
cycle in order to clarify the theoretical and hypothetical status of if-then-statements in mathematics. 
The structural scaffold serves different roles along the learning trajectory, (I) as a visualizer for the 
extended structure; (II) as a working tool for the students to check the completeness of their explicit 
reasoning; and (III) as a framework for writing down the proof. In our design experiment, after 120 
minutes, the students write proofs with deductive chains of reasoning, even though they do not yet 
find deductive chains for more complex proofs on their own.  

Empirical insights into Katja’s and Emilia’s pathways to formal reasoning  
Katja and Emilia start their learning pathway in the way described above. Figure 2 shows the product 
of the phase of jointly introducing the structural scaffold ending with Sequence 1.  

Sequence 1: Reasoning determined by empiricism instead of validity of statements  

When asked to prove that α and β are equal, Emilia and Katja offer a typical 
initial, semantic three-word answer “vertically opposite angles” (unprinted 
Turn 339), assuming that classifying the type of relation between the two 
angles is enough. Becoming aware that they are supposed to prove the 
vertically opposite angle theorem by using arguments like the argument of 
supplementary angles (cf. Fig 2) and the calculating argument (“If there are 
angle measures, then it is possible to calculate with them like numbers.”), 
they start by naming the angles γ and δ (Figure 3). Then they discuss the 
necessary conditions and conclusions. 

362 Emilia:  […] And now we could say actually that α plus 𝛾 results in 180 degrees. 
363 Tutor: Mmm. 
364 Emilia: Also like here [points to conclusion box of the last task with α + 120° = 180°] 
365 Tutor: Yes. 
366 Katja: Yes. 
367 Emilia: And that, uh. 
368 Katja: γ plus β 
369 Emilia: Yes, so actually this can be – Yes, precisely – But we have no concrete numbers 

[points to the conclusion box previous task] – and then we can go on – so, I don’t 
know, whether we can do this in such small steps, because we have no numbers at 
all, but then we could say, α plus γ equals 120, umm, 180 degrees. And β plus δ 
equals 120, umm, 180 degree 

370 Tutor: Mmm. 
371 Katja: And…  
372 Emilia: And accordingly  
373 Katja: γ plus β – plus δ and then  
374 Emilia: yes, okay, but actually, actually we need only one, don’t we? Then it is just 

unnecessary, this angle. [points to the angle δ] – So I would say… 

Figure 3: Marking 
angles as first step 



 

 

375 Katja: … we have to – this with [6 sec break] yes, α plus γ 180 degree, then 180 degrees 
minus β 

376 Emilia: No, so I would easily write  
377 Katja:  [“unintelligible”] 
378 Emilia: α plus γ 180 degree and β plus γ 180 degree. 
379 Tutor: Yes. 
380 Emilia: And then, if, a system of equations could be created. 

When asked to explain in more detail, the students offer details of steps of their calculation (“α plus 
γ equals 120, umm, 180 degrees”, Turn 369), but do not explicate the warrants for these relations 
(here the argument of supplementary angles). In this way, they find out that they do not need the angle 
Interestingly, they formulate steps of action or calculation instead of general relations, and 
consequently, these steps are combined temporarily (“and then” in Turn 373) instead of logically.  

Sequence 2: Filling the argumentation structure form without verbalizing the connections 

When filling in the materialized argumentation structure form (Fig. 2), the students discuss whether 
they need δ and organize their process:  

403 Emilia: Well then – eh, I would say – I know, I think, that here [points to the argument 
box], we first write that the supplementary-argument is our argument. Then we 
think which has to be there [hints to the condition-check box] 

404 Katja: [writes “supplementary angle” in the argument box, 21 sec break] Yes, that here  
405 Emilia: Ah, I wanted to write that 
406 Katja: … that we γ here 
407 Emilia: Yes, that α and β have the same supplementary angle. 
408 Katja: [3 sec break] Where? 
409 Emilia: Here [hints a finger at the condition check box] 
410 Katja: [writes in the condition check box: α and β have the same supplementary angle γ] 
[…] [Discussion with the tutor, if the second angle δ is necessary] 
417 Emilia: Yes, okay. – Umm, then I would now write here, umm, - α plus γ equals 120 degrees 

and β plus γ equal 120, umm, 180 degrees. Why do I always say 120? Yes, 
418 Katja: [writes both equations in the conclusion box, cf. Fig .2] 

The students succeed in filling in the argumentation structure form mostly without help from the tutor. 
In particular, they correctly identify all elements of the logical structure, first choosing the argument 
and then checking whether its precondition is satisfied (Turn 403). After filling in the form, they 
condense the proven theorem as a new argument to be used for further proofs (in non-printed Turns 
452-471): “Argument of vertically opposite angles: If two lines cross each other, then the opposite 
angles are equal. (They are called vertically opposite angles.)”. This illustrates how the scaffold 
supports them to produce a complete argumentation and to understand the logical structure. However, 
it is remarkable that they still do not use any logical connectors to relate the different elements to each 
other. The language is rather deictic (“here”, “there” in Turns 403, 404, 409, 417), but the logical 
relation between the elements is not verbalized by the students. To give an expert model of how the 
connections could be expressed, the tutor finally intervenes as follows: 



 

 

474 Tutor:  […] Also this condition of point of intersection was considered, so that we have 
two times two supplementary angles. Here as condition, and because we have 
supplementary angles, we could use the supplementary-argument that says that a 
pair of supplementary angles add up to 180 degrees. Therefore, it can be used for 
our supplementary angles and umm, here two times two were regarded, this means 
we have two times this equation with, umm, our angles. […]  

Sequence 3: Mastering formal reasoning 

After determining a specific alternate interior angle, 
the next task for Emilia and Katja is to prove the gen-
eral alternate interior angle theorem (Fig. 4). For 
constructing their formal argumentation structure, 
the students are given the equality argument (If δ = μ 
and μ = π, then δ = π. (transitivity)) and the corres-
ponding angle argument (which can only be derived 
from the parallel axiom and is hence left unproved 
for the students, cf. Fig. 1). Again, the students 
successfully construct a complete argumentation 
structure supported by the structural scaffold of the 
form. Based on an enriched sketch, they deduce the 
theorem in three steps (cf. Fig. 5): In Step 1, the use 
the vertically opposite angle for deriving that  =  
In Step 2, they use the corresponding angle argument 
for deriving  = . For deriving that  = , they use 
the equality argument and produce the last chain of 
reasoning in Step 3. 

The written text produced by Katja for this last step 
shows what she has learned (cf. Fig 6). Katja’s text 
provides at least situational evidence that she has grasped the logical structure of formal reasoning 
and can express some of the logical connections. In contrast to the beginning of the students’ learning 
pathway, she makes explicit the warrant (“the equality argument says that”) and the conditions of its 
application (“Now, we know that  and β have the same measure and α and β.”). For expressing the 
logical connections, she adopts elements of a language offered by the tutor in Turn 747 (“the 
supplementary-argument that says”). She also expresses the deduction from the argument to the 
conclusion: “from this we can conclude”. However, the order of aspects is still the order of discovery, 
not yet the strict order of formal reasoning as the conditions are again guaranteed after using the 
argument.  

Figure 4: Alternate interior angle theorem 

 
Give reasons for the following theorem: If the 
lines g and h are parallel and line a crosses 
them, then the angles a and g have the same 
measure.  
 

Figure 5: Katja’s and Emilia’s three 
steps of formal proof for the 
alternate angle theorem 



 

 

 
Figure 6: Katja’s verbalization of the third step of reasoning 

Looking back to Sequence 1 – Sequence 3 

In total, these three sequences from the students’ learning process provide insights into the students’ 
pathway from their everyday argumentative resources towards formal reasoning, their induction into 
mathematical proof as a cultural practice. The structural scaffold strongly supports comprehending 
of the logical structure, the designated Function (I). The students also capture the norm that the 
practice of formal reasoning is characterized by making explicit every element in the logical structure 
(every box must be filled, Function II). However, the scaffold alone does not sufficiently support the 
process of talking about the logical structures, as visible in Sequence 2. Hence, the structural scaffold 
had to be complemented by language scaffolds (in this case oral expert modelling offered by the 
tutor). The written product from Sequence 3, finally, shows that the students can adopt the language 
scaffolds for communicating about the formal deductions.  

Discussion and outlook 
The case study of Katja and Emilia gives a first indication for the potential efficacy of the structural 
scaffolding. Other pairs of the 10 students in Design Experiment Cycle 3 also succeeded in mastering 
formal reasoning, supported by the scaffold. Filling the boxes serves as prompts for identifying every 
single aspect of the logical structure (data, warrant, and conclusion) and the satisfaction of 
preconditions of argumentations. The specific strength of the materialized structure form is that it not 
only makes the logical structure visible, but also permits students to complete the form in non-linear 
order. Based on this structural scaffold, the students’ written texts are mostly produced in linear, 
deductive order. As with any provided format, it can be done non-generatively, passively, locally 
filling each box but not attending to what role the boxes play in formatting the reasoning. However, 
not only Katja and Emilia but also other students we observed benefited from the scaffolding as they 
learnt to distinguish between preconditions, if-then-statements and conclusions. The scaffold suppor-
ted the students to express the relations between the elements of the logical structure verbally and to 
reflect amongst other things about the generality of the statements or which characteristics of the 
sketches are important. These features are crucial to increase awareness of formal reasoning.  

Of course, the study still has methodological limitations which have to be overcome in later cycles or 
future research. Limitations concern the sample size (2 students presented, 10 in total) which is not 
yet representative. So far, the teaching-learning arrangement is focused on one specific topic, the 
angle theorems, which need to be extended to other topics in future research in order to gain evidence 
of the overall claim of efficacy. The most important limitation in view for the next cycle of the 
presented project concerns the language: we intend to identify the phrases and syntactic structures 
which appear to be necessary for students to realize the need to articulate the logical connections 

“Now we know, that γ and β have the same measure 
and α and β. The equality-argument says, that if the 
first angle has the same measure as a second and 
this has the same measure as a third, that the first 
and the third have the same measure. Here the first 
is γ, the second β and the third α. From this we can 
conclude that γ has the same measure as α.” 



 

 

between the elements in the argumentation. This will provide support for the students on the linguistic 
level as well as on the logical-structural level. 
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The issue of students’ misconceptions in mathematics and how to prevent and deal with them in 
teaching has been a major concern of mathematics educators since at least four decades. At the 
same time our knowledge about the processes of developing understanding and skills in proof and 
argumentation from early school years has increased. We argue, that there are connections 
between these two areas of studies important to make explicit for teachers. In this paper, we first 
elaborate the relation between the research on students’ misconceptions and the ideas of 
developmental proof. Then we present the relevant results of an empirical study about how 
mathematics teachers in the field interpret this relation. Our conclusion is that there are important 
connections between these two research fields that are not always visible for teachers.  

Keywords: Misconceptions, developmental proof, teacher education, MKT. 

Background 
Teachers’ knowledge about students’ misconceptions in mathematics and how to deal with them has 
been pointed out as an important part of teachers’ mathematical knowledge for teaching (MKT) 
(e.g., Hill, Rowan & Ball, 2005). Knowledge about them has also been raised as an important part 
of educative curriculum materials and many of these provide information about common student 
misconceptions and suggestions on how to address them (Cengiz, Kline & Grant, 2011). At the 
same time a growing number of research articles have raised the importance of enhancing students’ 
skills and understanding of proof and proving and research has shown that it is possible and 
beneficial to start to develop students’ proof-related competences during early school grades (e.g. 
Hanna & De Villiers, 2009; Hemmi, Lepik & Viholainen, 2013). This knowledge can also be 
considered a part of MKT, and in line with knowledge of students’ misconceptions close to what 
Shulman calls pedagogical content knowledge. Research shows that teachers who have strong 
knowledge in different areas of MKT are more able to create opportunities for extending student 
thinking (e.g. Hill et al. 2008). This is especially important to consider in teacher education and 
teacher professional development. Yet, the relationship between specific aspects of MKT still 
remains unclear (cf. Cengiz et al., 2011). This study contributes to the field by investigating the 
relation between two particular research areas, namely the knowledge about students’ 
misconceptions on the one hand and the development of understanding of and skills connected to 
proof and proving. More specifically, we do not consider students’ misconceptions in a deficit (cf. 
Jaworski, 2001) manner but investigate how we could use them to enhance students’ understanding 
of proof and vice versa. The following questions are in the focus of this study: 

1) What kind of connections can be found between the research field concerning students’ 
misconceptions and the development of students’ knowledge and skills with respect of 
proof? 

2) How do teachers relate to students’ misconceptions, proof and the relation between them?   



 

 

First, we offer an analysis about the connections related to the first research question. Then, we 
briefly describe the methodology of the empirical study focusing on upper secondary school 
teachers’ conceptions about these areas. Finally, we report the results of the empirical study and 
discuss them in the light of the connections found in the theoretical section.  

Misconceptions in mathematics related to developmental proof 
Hanna and de Villiers (2008) introduced the idea of developmental proof as something that should 
grow in sophistication in action, perception and language as the learner matures towards more 
coherent conceptions. We have earlier concretized the idea of developmental proof by identifying in 
research literature and school curricula proof-related competences that could be developed through 
the school grades from 1 to 12 (Hemmi et al., 2013). These competences address besides the 
development of argumentation and proving, the meta-level knowledge about proof, such as the 
character of mathematical definitions, methods of proofs, logical and formal aspects that often 
remain invisible for students (cf. Hemmi, 2008) as well as investigations with validation of either 
students’ own or others’ reasoning and results. For a comprehensive description see Hemmi et al. 
(2013).  

Research on misconceptions and how to prevent and deal with them has roots in cognitive research 
and constructivism. For example, some researchers claim that students find it difficult to give up 
their misconceptions as they have actively constructed them (e.g. Egodawatte, 2011). Further, 
research on misconceptions is often concentrated within a certain topic in mathematics or science. 
One of the earlier ideas about reasons for misconceptions is that of Fischbein (1994). He defines 
three basic components in mathematical practice: the formal, the algorithmic and the intuitive. 
According to Fischbein, the intuitive knowledge is often experienced as self-evident and may not be 
problematized or deeply justified in school mathematics and therefore may conflict with the 
mathematical, logically proved “truths”. Scholars agree that the main function of proof in school is 
to offer explanations (e.g. Hanna & de Villiers, 2009). Yet, the explanations offered in early school 
years for operations of natural numbers do not always explain properties of operations when 
operating in other domains. For example, the concept of multiplication is often explained as 
repeated addition, in order to reveal connections between arithmetic operations. Yet, this 
explanation leads to an intuitive conception that multiplication always results to a bigger number 
than the one you multiply (cf. Fischbein, 1994). When students start to operate with rational 
numbers this intuitive belief could be made visible and be challenged by investigations, 
explanations and justifications developed by the classroom community. The transition from the 
domain of integers to the domain of rational numbers could offer a fruitful platform for 
developmental proof concerning some logical aspects of reasoning connected to universal 
statements’ truth-values in different domains (see e.g. Durand-Guerrier, 2003). Hence, we argue that 
besides prevention of future misconceptions in mathematics, this kind of testing and challenging of 
intuitive rules could also develop students’ understanding of proof in mathematics and the other 
way around. 

Another example about misconceptions that can be connected to intuitive rules is “over 
generalizing”, often involving improper use of analogical reasoning, for example in connection to 
ratio between area of a figure and volume of a figure (see, for example, Tirosh & Stavy, 1999; 



 

 

Chick & Baker, 2005). These kinds of misconceptions also offer excellent possibilities for students’ 
investigations and proofs where students could for example develop their understanding of 
differences between analogical and deductive reasoning. Indeed, new approaches to proof using 
students’ investigations have been developed and tested in order to enhance students’ skills and 
appreciation of proof as an important part of doing mathematics (e.g. Heinze & Reiss, 2004). These 
studies often advocate investigative approaches covering the whole process of proving, starting 
from the first experiments to generate an idea for a hypothesis up to the final step of writing down 
the complete proof. We think, that beside this, it is also beneficial to conduct continuously smaller 
investigations about truth-values of various statements, for example connected to algebraic laws. 
Scholars agree that several identified student misconceptions are due to students’ difficulties in 
algebra. The idea of developmental proof has parallels with ideas about children’s development 
from an understanding of arithmetic to algebra (cf. Hemmi et al., 2013). For example, the generality 
of reasoning is an important component in investigations and proving where the move from 
concrete and specific to general is needed when justifying the conjectures made on the basis of the 
observations of regularities.  

Application of rules to situation where the rule is not valid is still another type of misconceptions 
found in the literature (e.g. Fischbein, 1994; Egodawatte, 2011). As an example consider the 
following typical misconception in simplifications of expressions (Egodawatte, 2011): 

(1) (2 + x)/x = 2        (2) (12 ∙ 2x)/2 = 6x 

The rule applied in the first example is valid for rational expressions with only multiplication in the 
numerator, but not with addition, while the rule applied in the second example is valid for rational 
expressions with addition in the numerator. Typical misconceptions also concern the use of the 
distributive law in situations where it is not valid (e.g. Fischbein, 1994). These kinds of 
misconception could be regularly used as an object for investigations in order to enhance students’ 
understanding of treatment of algebraic expressions and derivation of rules. Explanation in 
mathematics often refers to making mathematical connections explicit. Kuchemann and Hoyles 
(2009) emphasize the importance of the mathematics instruction to move from a computational 
view of mathematics to a view that conceives mathematics as a field of intricately related structures 
in order to develop students’ proving competences. Seeing connections and mathematical structures 
is also an important proof-related competence connected to developmental proof (Hemmi et al., 
2013).  Still another kind of misconception identified in the literature is connected to mathematical 
definitions. For example, several researchers present similar ideas about students who often operate 
as if all functions were linear (Tirosh & Stavy 1999). This is connected to development of 
understanding the role and character of definition in mathematics, also identified as an important 
aspect of developmental proof (Hemmi et al., 2013). 

Scholars have also attempted to explain why some misconceptions are developed and how to deal 
with them to change them (e.g. Tirosh & Stavy, 1999). There are significant connections between 
the suggestions offered to deal with students’ misconceptions and the developmental proof, for 
example, the understanding of counter example, critical thinking, and argumentation with peers. 
Several studies show that erroneous conceptions are so stable because they might be correct in some 
instances. Scholars state that teachers should encourage students to critically evaluate their solutions 
and develop a skeptical approach to their intuitive rules. Balacheff (2010) points out that proving is 



 

 

the most visible part of validation and something that cannot be separated from the ongoing 
controlling activity involved in solving problems or achieving tasks. Scholars also advocate the use 
of common misunderstandings for planning of effective sequences of instruction by both using 
situations where the intuitive rule is valid and where it is not valid in order to create cognitive 
conflict. Creating cognitive conflict by using a counter example is not always fruitful if students do 
not understand the role and the logic of counter example in mathematics. Here the development of 
students’ understanding of the role of counter example in mathematics is important and connected 
to developmental proof. Interestingly, the idea of creating cognitive conflict has also been used to 
change students’ misconception concerning the use of specific examples in validation of 
mathematical statements and the promotion of students’ feeling for the need of proof (Stylianides & 
Stylianides, 2009).  

The empirical study 
In Finland, proof was an important part of upper secondary school mathematics in the 1970s during 
a period of ‘New Math’ reforms but since then its importance has decreased significantly. Yet, the 
Finnish steering document for the compulsory school curriculum (2004) addresses a number of 
proof-related topics (Hemmi et al., 2013) and although the word proof is not mentioned in upper 
secondary curriculum, in textbooks for the advanced course, proof and deductive reasoning is an 
important part of the contents (Bergwall & Hemmi, 2017). There are two programs in upper 
secondary school mathematics in Finland. The basic course is for students who study humanities 
and social sciences while the advanced course is for those students who want to study mathematics, 
science and computer sciences at the university. 

The empirical study was conducted with Swedish speaking1 upper secondary school (about the age 
of 16-19) mathematics teachers in Finland (Julin, 2016). The aim of the entire study was to 
investigate teachers’ knowledge, experiences and views of students’ misconceptions and the role of 
proof in mathematics and in teaching. A questionnaire comprised mostly closed statements and 
questions that were developed from items in literature. For example were teachers asked to judge 
how often they had experienced seven common misconceptions and how they usually reacted to 
them when encountered them in their teaching (see Figure 1). Concerning their reactions teachers 
could choose from five methods applied from Chick and Baker’s (2005) study: counter example, re-
explain the procedure, re-explain the concept, cognitive conflict, and probe student thinking. These 
methods were shortly described in the questionnaire. The items in the questionnaire also addressed 
proof in mathematics and in teaching and finally the relation between misconceptions and proof. As 
a complement to the quantitative part we also posed an open question: “Explain shortly why you 
use/do not use proof in your teaching”, and finally there was a possibility for the teachers to freely 
write their own thoughts about these issues.  

The electronic questionnaire was sent to all mathematics teachers working in the Swedish speaking 
upper secondary schools in Finland, in all 90, and of them 36 teachers responded to the 
questionnaire. Both the gender and age distribution were representative for the whole group and the 
responding teachers’ teaching experience varied from 1 to 40 years. All teachers responding to the 
                                                 
1 About 5 % of the Finnish population has Swedish as a mother tongue.  



 

 

questionnaire were certificated mathematics teachers. The responses to the quantitative part of the 
study were analyzed using descriptive statistics and the open questions were analyzed inductively.  

Teachers’ relation to misconceptions and proof 
Most teachers (97 %) state they recognize the common misconceptions in their own teaching and all 
of them consider the knowledge about misconceptions relevant for their work. Almost 70 % of the 
teachers state that they know how to deal with these misconceptions.  

 

Figure 1: Methods used by teachers when encountering misconceptions 

Further, over one half of the teachers who state that they do not know how to deal with students’ 
misconceptions had less than 10 years of teaching experience and 36 % of them wanted to learn 
more. The methods teachers would choose to deal with students’ misconceptions varied depending 
on the character of them. The use of a counter example and cognitive conflict are related and were 
dominating among the methods that the teachers preferred (Figure 1). The least popular method was 
the probing students thinking. Yet, it seems to be usual for the teachers to use the analysis of the 
steps in the reasoning when sorting out the situation and then utilize the other methods. Some 
teachers suggested that a teacher should focus on common misconceptions already when presenting 
the theory of a new topic and explain why that is not true in order to create a cognitive conflict from 
the beginning.  

One can let students work pairwise and judge the correctness of different solutions and ask them 
to justify their judgments. Surprisingly, students are insecure and experience these tasks as 



 

 

difficult. I have tested this with both students taking the advanced course and students studying 
the basic course in mathematics. This is really instructive for both a teacher and students.  (All of 
my examples were authentic student solutions.) 

Most of the teachers stated that they used their knowledge about the common misconceptions when 
they designed their teaching and chose tasks. Yet, peer instructions (students discuss and argue 
about the correctness of different solutions) was utilized (sometimes /more often) only by 25 % of 
the teachers (Figure 2).  

 

Figure 2: Teachers’ use of misconceptions 

Mathematics is a cumulative subject. Elementary school has a great responsibility. Unfortunately 
the textbooks I have seen are quite bad. Students cannot see the structure because of all details. 
Mathematics is not only using of Pythagorean theorem or calculation of percent that students do 
without understanding. It is a logical structure. 

All the teachers consider proof as more or less important for mathematics as science and they 
present (sometimes or more often) proofs for students studying the advanced program in 
mathematics. They also agree that proof somehow contributes to the teaching of mathematics. Yet, 
only 2 teachers present proofs for students studying the basic program, one of them states that 
“proof gives often a greater broadness than ‘learning by heart’” and if students learn to prove the 
formulas then they also can modify them so that they can solve a broader spectrum of tasks. Another 
view of the role of proof in school mathematics is shown by a teacher who states: “Proofs are good 
and beautiful but in the upper secondary school reality teaching is far away from building teaching 
around proving”. About 30% of the teachers seldom let their students work with proof and proving 
by themselves. Concerning the teachers’ views of the connections between students’ 



 

 

misconceptions and proof, most of them are not convinced that proof and proving would have a 
positive effect on students’ misconceptions. Only 9 teachers agree with the statement “Proof and 
proving can help to change students’ misconceptions” and 8 teachers agree with the statement “If 
students learned proving, their incorrect steps of reasoning would diminish.” 

Concluding remarks 
The paper focuses on the relation between research on students’ misconceptions and developmental 
proof. The elaboration of the research literature on students’ misconception from the perspective of 
proof reveals several important connections between the ideas and results of the two research fields. 
However, the empirical study shows that these connections are not clear for teachers. For example, 
we find it significant that the teachers in our study most often use counter examples or cognitive 
conflict that are closely related to developmental proof as a method for changing students’ 
misconceptions but at the same time only about 25 % of them consider proof and proving as 
beneficial to prevent and change students’ misconceptions. We also recognize different views of 
proof in school mathematics among the teachers that may have crucial consequences for students’ 
possibilities to develop their understanding and skills in proof and proving and therefore also using 
students’ misconceptions as a starting point for this and vice versa. The idea of developmental proof 
is probably not in focus in mathematics teacher education. Furthermore, it is possible that teacher 
educators focus on both students’ misconception and proof but because of the different research 
traditions the connections and the possibilities of these connections between these areas may not 
become clear for student teachers. More studies are needed to investigate teachers’ views of proof in 
relation to their views of these connections in the teaching of mathematics. 
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There is a significant corpus of studies indicating that children even from the age of primary school 
are capable of providing convenient arguments and that the cultivation of this ability fosters 
learning significantly. Based on these assumptions, the present paper examines the forms of the 
arguments that students of primary and middle school use to support their answers. In particular, 
this study was divided in seven independent activities, where students of a fifth and an eighth grade 
class had to complete mathematical tasks and support with arguments how they concluded to their 
answers. We used the simplified Toulmin’s argumentation scheme and subsequently, enriched our 
findings with the argumentation scheme perspective, in order to gain a better understanding of 
student’s reasoning characteristics.  

Keywords: Toulmin, argumentation, scheme.  

Introduction 
Basic aim of the new teaching methods, starting from the new curriculum in mathematics, which 
was published by the National Council of Teachers of Mathematics in 1989, is to reinforce 
reflective thinking and shift from ‘learn mathematics’ to ‘do mathematics’. According to Dewey 
(1903), children learn effectively through inquiry-based processes, which require from students not 
only to solve mathematical activities, but also to express their thinking, state their opinion and 
finally, compare their statements with their classmates’. Thereupon, it can be stated that reasoning 
organises students’ ideas, builds strong conceptual connections and fosters mathematical thinking 
(Dewey, 1903). Following these assumptions, the cultivation of proper language skills plays a 
significant role in this thinking process, as it allows students to express accurately their thoughts by 
forming arguments. Halliday (1993) uses the phrase ‘interpersonal gateway’ to refer to the power of 
language as interactive tool in the communication between students and teachers. Regarding our 
study, we adopted Toulmin’s argumentation model in order to explore the reasoning ability of 
primary and secondary students. Toulmin’s model was first used by Krummheuer (1995) in the field 
of teaching mathematics. According to the latter, claims, data and warrants are not predetermined, 
but are constructed through the process of classroom discourse and interaction. Toulmin’s model 
can describe the structure of an argument by specifying its components, but it cannot characterize 
the quality of the particular argument. Therefore, at a second analytical level, we enhanced our 
analysis by using argumentation scheme theory, used as in Metaxas, Potari, & Zachariades, (2009). 

Theoretical background 
According to Schwarz et al. (2003) constructing knowledge is the process of composing evidence in 
such a way, that the selected claim is supported by provided evidence and further supported related 
to other co-existing beliefs. Moreover, a plethora of studies have established that argumentation 



plays a crucial role in the development of knowledge and scientific reasoning. The same holds in the 
field of education, either as a means to learn (argue to learn) or as a goal of instruction (learn to 
argue). Schwarz (2009) describes “learning to argue” as the acquisition of general skills such as 
justifying, challenging, counterchallenging, or conceding, whereas “arguing to learn” refers to the 
fulfillment of a certain goal through argumentation in a specific educational framework. In other 
words, the first path uses argumentation as a goal, while the second one as a tool that contributes to 
the learning process. In order to analyse students’ argumentation we employed the classical 
Toulmin’s model and subsequently, the recently developed, argumentation scheme approach. 

Toulmin’s theory 

Argument structure has been used several times as a tool of analysing public discourse regarding 
mathematics and their teaching. A significant number of these analysis have been conducted by 
using Toulmin’s theory. Toulmin (1958) has claimed that the traditional formal logical analysis of 
arguments is not rich enough to include parts of common arguments such as qualified conclusions, 
response to other arguments and inferences.  He proposed a model for the layout of arguments that 
consists of six basic parts, each of which plays a different role in an argument (Metaxas, Potari and 
Zachariades, 2016). The first one to apply Toulmin’s model in mathematics education was 
Krummheuer (1995). Since then, some researchers have focused on the analysis of mathematical 
arguments of students, including usage of proof in general (Yackel 2002), number skills (Evens & 
Houssart 2004), geometry (Pedemonte, 2007) and algebra (Pedemonte 2008). By studying the 
argument components a student is using when talking about a solution in mathematics, we could 
have some indication about his/her understanding and generally, his/her perception about 
mathematics.  

Argumentation schemes 

Toulmin’s model describes the structure of an argument giving its components, but it does not 
reveal much about the quality of the particular argument.  However, the content of the Warrant and 
the Backing in an argument should be considered in the evaluation process of an argument. For this 
reason, we combined Toulmin’s model with the tool of argumentation schemes to analyse the 
quality of the Warrant and the Backing. For example, a Warrant that is based on the authority of a 
source (teacher has said so...) is fundamentally different to a Warrant that is based on a 
mathematical relation or to an intuitive remark. Standard accounts of argumentation schemes 
describe them as the representation of different types of plausible arguments that, when successfully 
deployed, create presumptions in favor of their conclusions (Metaxas, Potari and Zachariades, 
2016). Argumentation schemes have been assigned a role in the analytical reconstruction of an 
argument, as well as its evaluation. In reconstruction, these schemes can be used to identify and 
categorise certain patterns of reasoning, contributing to the identification of implicit claims of the 
arguer. Moreover, a set of critical questions are associated with each argumentation scheme to be 
used in the evaluation of arguments and their correspondence with each category (Walton, Reed & 
Macagno 2008). Another significant aspect of argumentation schemes is that the evaluation of the 
argument is directly associated to the dialogue as a whole, rather than evaluating it independently 
and isolated from the context that is being constructed. Consequently, every argument will be 
evaluated via the critical questions, in the context of the dialogue of which it is a part of. Thus, 
critical questions are a kind of evaluative points, providing a list of individually necessary 



conditions for the success of particular schematic arguments. For instance, an argument can be 
characterized as weak if it fails to answer appropriate critical questions that have been or might be 
asked in a dialogue (Walton, 2006). In addition, an argumentation scheme could inform us about the 
quality of a warrant or a backing as a form of an argument (Metaxas, Potari and Zachariades, 2016).  

The structure of the course  

The theoretical underpinnings for looking at the classroom discourse was the theory of symbolic 
interactionism. Individuals are seen to develop personal meanings as they participate in the ongoing 
negotiation of classroom norms (Cobb, 1999). The centrality given to the process of interpretation 
in interaction is one of its main principles (Blumer 1969). While individuals are interacting with 
each other, they have to interpret what the other one is doing or is about to do. Each person’s actions 
are formed, in part, as he/she changes, abandons, retains, or revises his/her plans based on the others 
actions (Cobb, 1999). Moreover, the group discussions can provide participants with learning 
opportunities by turning their implicit supporting arguments into explicit. In addition, the objects of 
debate can result in a change of their status and engage them at a higher level of mathematical 
reasoning. The very act of argumentation could produce learning on the part of the arguer (Jermann 
and Dillenbourg, 2003). In our study, the materials used to trigger the discussion were tasks, which 
were based on topics that research and experience have highlighted as important.  

Data analysis  
In order to study the ability of elementary students to reason in mathematics, we implemented a 
series of activities, where the students of a fifth and an eighth grade classroom in Greece were asked 
to solve mathematical exercises and in addition, to provide with written arguments why they believe 
their answers were correct. Having analyzed all the written answers following the methodology of 
previous studies (McNeill, 2011), we drew the conclusion that students of that age have the ability 
to form arguments in order to support their solutions. More specifically, 66% of the students who 
provided some kind of argumentation, used to some extend the simplified Toulmin’s argumentation 
scheme, which is consisted of three parts; claim, data and warrant. Although not all answers had all 
three essential parts, they could be adjusted to Toulmin’s pattern arguments. Toulmin’s model 
allows students to reason in a completed way, which presents the hypothesis, the explanation and 
the solving process. Subsequently, the arguments that followed Toulmin’s model were analyzed 
according to their structure following the analysis of other relevant studies (Evagorou and Osborne, 
2013) that have taken place in the past and adopted the modified version of Toulmin’s 
Argumentation Pattern (Erduran et al., 2004). Out of the 66% that is mentioned above, nearly half 
of the students (Table 1) included all three essential parts, that is they were able to state their 
opinion (claim), provide all the necessary support (data) and finally, connect them in a sufficient 
way (warrant). This completed structure is followed by the students who managed to include the 
claim and the data to their answers, but weren’t able to provide effective warrant (33.4%). Finally, a 
little less than 20% wrote only their opinion, without justifying or explaining how the concluded to 
this claim. There is a similar pattern in secondary school students, where there is only a slight 
differentiation around 2-3% in the first two columns. 

 



Reasoning forms of Toulmin’s Model 

 Claim – Data - Warrant Claim – Data  Claim    

Primary school 47.6% 33.4% 19%  

Secondary school 45.2% 36.2% 18.6%  

Table 1: Reasoning structure of Toulmin’s Model 

The following table presents an example of each category, taken from an activity that students had 
to form the biggest decimal number by throwing a dice and placing the digit in a suitable place. 

Claim only I have to place the numbers with greater 
value in tenths etc. 

Claim-Data If I get 6, I’ll place it in tenths because 6 
is the biggest number I can get. If I get 
1, I’ll place it in thousands because is 
the smallest number I can get. 

Claim-Data-Warrant In order to win the game I have to make 
the biggest number. I need to place the 
bigger numbers in the integer part and 
the smaller ones in the decimal part. So, 
the best thing I can do is to place the 
numbers from the biggest to the 
smallest. 

Table 2: Excerpts from each category 

Having completed the primary data analysis, we studied the produced arguments using the 
argumentation scheme theory, which helped us gain insight regarding the quality of the 
argumentation used. 

Discussion 
Having analyzed the data and in correlation with previous related studies, it can be clearly said that 
elementary students can form arguments in order to justify their mathematical thinking and that the 
most common way to state their reasoning is by using Toulmin’s Argumentation Pattern (TAP). 
However, students of that age do not recognize the significant role of proof and therefore, they don’t 
understand that justification of their thinking is essential. Even though they solved the exercises 
correctly and they presented the important data, they don’t define clearly the connection between 
data and claim, which according to TAP is known as warrant. This deficiency must not be 
understood as lack of students’ ability, as in many of their answers and especially when is asked by 
the teacher they expand their reasoning and include the semantic warrant. The obvious implication 
that follows the existence of a correct claim and a written data could be the reason the students don’t 
regard as necessary to include a warrant in their answers. Consequently, this identification and 
evaluation of the missing premises or conclusions could be greatly enhanced by the employment of 



the argumentation scheme theory (Walton, Reed & Macagno, 2008), where most of the arguments 
are considered forms of plausible reasoning that do not fit into the traditional deductive and 
inductive argument forms. In this case, a further analysis is needed in order to evaluate the content 
of the argument accurately. For example, the absence of the warrant or backing is due to people’s 
belief that these are automatically entailed from the data given and there is no need for further 
justification. This deficient form of argumentation can be enriched and expanded in order for an 
argument to acquire the desirable structure. Likewise, short answers that were given by the students 
and were characterized by lack of structure, were in fact complete, if the essential parts that were 
considered obvious and were implied, are included so as to form a complete argument. Below there 
are given two examples of arguments that were at first deficient, but after expanding them, they 
transformed in complete arguments according to TAP. The first example is taken from an activity, 
where students had to form the biggest possible decimal number, using the digits that were given 
after rolling a dice six times. 

Student: I will win by putting the number to the correct places. For example, if I get number 1 I 
will place it in the thousandths. 

The above argument is considered short and deficient. However, it is clear that the student has 
understood the procedure in order to form the biggest number, but still prefers not to include all the 
essential information to his answer, as he believes that it is obvious. He argues by employing an 
argumentation scheme of illustration, which nevertheless remains without support. Nonetheless, 
after the teacher’s claim, the student added the hidden parts in order to transform his deficient 
answer to a complete argument. We give a reconstruction of the argument: 

Student: I will win by putting the number to the correct places [claim]. I have to place the      
small numbers in the decimals’ places (tenths, hundredths, thousandths) and the bigger ones in 
the integer part of the number (tens, hundreds, thousands), because decimals have smaller 
value than integers [warrant]. For example, if I get number 1 I will place it in the thousandths 
[claim], because number 1 is the smallest I can get and thousandths have the lower possible 
value compared to the other places [warrant]. 

In analyzing student’s elaboration of his argument, we can either consider the second argument as a 
continuation of the first one, in the sense of using the previous claim as the data of the second 
argument, or we could interpret the whole second syllogism as a backing of the first one. In any 
case, the scheme employed in the second argument is, again, a scheme from illustration but now 
connected to the previous scheme from established rule (I have to place …integers). As a result, 
regarding the quality of the schemes employed, the student actually elaborates his reasoning by 
using an established rule, which again is supported by a scheme from illustration. 

The second example is taken from an activity, where students were asked to estimate the product of 
a decimals’ multiplication without making the transaction, by simply observing the factors. 

Student: I have to consider what the multiplication does; if it makes the number bigger or 
smaller. 

The above claim contains the perception that multiplication can either grow or reduce the value of 
its factors. Even though he misses many essential parts, if the claim is expanded, we can take an 
efficient answer. A reconstruction of the above statement could be the following: 



Student: Multiplication can either increase or decrease the value of its factors [claim], so I have 
to consider what this transaction will do. If one of the factors is smaller than zero, then the 
product will decrease. If the factors are integers, then it depends on their value [data]. So, when 
comparing two products, the bigger will be the one that contains the bigger factors [warrant].  

 

Table 3 - Analysis of student's extended argument 

Again, taking into consideration the schemes employed, we could note the presence of a scheme 
from (positive) consequences (Walton, Reed & Macagno, 2008). The (implied) fact that in order to 
answer the posed question, we should consider the effect of the multiplication on the magnitude of 
the numbers, is a scheme from consequences. The explanation that follows is the elaboration of the 
scheme; the consequences in each case. The student explains in a more abstract (mathematical) way 
his reasoning, which is in a clear contrast to the previous excerpt (where the invocation of an 
illustration was employed).    

Our thesis is that elementary students are capable of forming arguments and reasoning in 
mathematics, but one of the main characteristics of that age is the short way they express their 
arguments and therefore the absence of basic parts. The deficient character that defines most of the 
arguments can lead to the conclusion that all students reason according to TAP, but the structure is 
incomplete, as some parts are considered obvious and children believe are excessive. Additionally, 
another interesting point is the insignificant difference between the two grades, especially if 
considered that students from the seventh grade start using and structuring their first proofs. 
Nevertheless, by taking into account the types of the syllogisms employed, in the sense of 
argumentation schemes, we could shed a bit more light into the quality of arguments used. In the 
primary school case, students used mainly schemes from illustration and from consequences, which 
probably is due to the students’ inadequate exposure to mathematical thinking or argumentation 
structuring in general. On the other hand, the eighth grade students employed more schemes from 
rules to cases, which accounts to their better understanding of the structure and function of a proof. 
As a result, although the Toulmin model is indicative of the structure of the arguments students use, 
it is not enough to discern the difference of the quality of their arguments. This could be easily 
overruled by using argumentation schemes. Finally, it should be noted that justification and 
correctness should be distinguished in the analysis of an argument. For example, a premise that is 



based on an authoritative opinion or is justified by intuition or a meme could be turn out to be false. 
Consequently, representational tools as the argumentation schemes that could exhibit the implicit 
structures of arguments can enhance the reconstruction and comprehension of the syllogism. In 
further studies it would be interesting to examine ways that will cultivate the argumentative way of 
thinking and grow the ability to express completed arguments that contain all essential parts. 
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Although the mathematical activity of proofs and refutations is widely recognised as significant in 
school mathematics, much remains under-explored about ways of facilitating such activity in the 
classroom. In this paper, we address this issue by focusing on task design in dynamic geometry 
environments. In particular, we formulate three principles for the task design and use these to develop 
classroom tasks. We analyse a task-based interview with a triad of upper secondary school students 
to show how the designed tasks stimulated their activity of proofs and refutations. 

Keywords: Proof, refutation, counterexample, task design, dynamic geometry environment. 

Introduction 
The mathematical activity of proofs and refutations described by Lakatos (1976) is significant in 
school mathematics because it enables students to experience authentic mathematical practice 
(Lampert, 1992). Although several researchers have described student behaviour with Lakatos’ 
terminology (Komatsu, 2016; Larsen & Zandieh, 2008), few studies have examined ways of 
purposefully introducing such activity into classrooms (Komatsu, Tsujiyama, Sakamaki, & Koike, 
2014; Komatsu, 2017; Larsen & Zandieh, 2008). Given the importance of mathematical tasks for 
student learning (Kieran, Doorman, & Ohtani, 2015), this study aims at developing task design 
principles and actual tasks for realising proofs and refutations. 

To achieve this purpose, we specifically focus on dynamic geometry environments (DGEs). Research 
has shown the capability of dynamic geometry software (DGS) for enhancing proof-related activities 
such as making conjectures and subsequently constructing proofs. In particular, some studies have 
shown how using DGS enabled students to discover the refutations of their conjectures and proofs 
and cope with these refutations (Healy & Hoyles, 2001; Olivero & Robutti, 2007). The successful 
use of DGS in previous research was accompanied by carefully-designed tasks (Hanna, 2000). 
Nevertheless, how the tasks were designed was often not clarified explicitly, and task design in DGEs 
remains understudied (Sinclair et al., 2016). 

To address these issues, the study reported in this paper focuses on the following research question: 
What principles can underpin the design of DGE tasks that facilitate student activity of proofs and 
refutations? 

The meaning of proofs and refutations 
Based on Lakatos (1976), we conceptualise the meaning of proofs and refutations as depicted in 
Figure 1. Students make conjectures (or are provided with statements), and then attempt to prove 
them. In this, they are confronted with refutations of the conjectures/statements or proofs, and refine 
them by addressing the refutations (Komatsu, 2016). 



 
Figure 1: The conceptualisation of proofs and refutations 

As there is insufficient space to explain Figure 1 fully, here we clarify only two points. First, we take 
the meaning of proof in a broad sense such that a deductive proof may be valid only for a subset of 
all cases considered in a conjecture and statement. Second, although the word refutation is sometimes 
used only for conjectures and statements, not for proofs, this study utilises refutation for 
conjectures/statements and for proofs. These two points are epistemologically consistent with 
Lakatos’ view of mathematics. In Proofs and Refutations (Lakatos, 1976), he dealt with deductive 
proofs that were only partially valid. He also argued that proof was inextricably linked to refutations 
(Reid, Knipping, & Crosby, 2008) and coined the term local counterexamples to denote the 
refutations of proofs.  

Task design principles 
To design tasks for fostering the student activity of proofs and refutations, we develop principles for 
the task design from three aspects. First, Hanna (1995) pointed out that Lakatos’ (1976) story rested 
on the topic of polyhedra, where it was relatively easy to suggest counterexamples. This confirms 
that it is necessary to create tasks intentionally where counterexamples can be produced. Because it 
is the ambiguous meaning of polyhedra that made counterexamples possible in Lakatos’ research, it 
is essential to develop tasks whose conditions are purposefully ambiguous so that counterexamples 
can be proposed. In fact, we previously demonstrated that specific tasks that include hidden 
conditions, namely proof problems with diagrams, are useful for introducing proofs and refutations 
into secondary school geometry (Komatsu, et al., 2014; Komatsu, 2017). 

Second, research indicates that students encounter difficulties in producing proper counterexamples 
(Hoyles & Küchemann, 2002). Thus, it is important to prepare tools that foster student production of 
counterexamples. DGS could play the role of such tools in geometry education because the main 
advantage of DGS is that students can easily transform diagrams by dragging (Arzarello, Olivero, 
Paola, & Robutti, 2002) and thus the students have access to various diagrams. From research on 
dragging modalities and measuring modalities in DGEs (Arzarello et al., 2002; Olivero & Robutti, 
2007), the following are relevant to refutations of conjectures and proofs: dragging test, validation 
measuring, and proof measuring. 

Third, several studies have reported that when students encounter counterexamples, some of them 
refuse to accept the counterexamples and do not try to revise their conjectures (e.g. Balacheff, 1991). 
For resolving this problem, we capitalise on the potential of contradictions, because if contradictions 
are appropriately induced, confusion generated by the contradictions can be beneficial for learning 
(D’Mello, Lehman, Pekrun, & Graesser, 2014). To trigger contradictions, it is likely helpful to 
combine tasks intentionally (rather than use a single task) where students can recognise contradictions 



between their solutions to tasks and their thinking in subsequent tasks (Hadas, Hershkowitz, & 
Schwarz, 2000; Prusak, Hershkowitz, & Schwarz, 2012). 

In summary, we formulate the following principles of task design for fostering the student activity of 
proofs and refutations: 1) Using tasks whose conditions are purposefully ambiguous and thus allow 
the occurrence of counterexamples; 2) Providing tools that enhance the production of 
counterexamples; and 3) Increasing students’ recognition of contradictions that facilitates them to 
revise conjectures/statements and/or proofs. 

Methods 
Participants 

This paper analyses a task-based interview in which a triad of students, Kakeru, Sakura, and Yuka 
(pseudonyms), voluntarily participated. They were 11th graders (aged 16–17 years old) in an upper 
secondary school in Japan. According to their mathematics teacher, their mathematical capabilities 
were above average. The first author conducted the interview. The DGE was GeoGebra. Because the 
students had no experience with DGS, four hours was devoted, prior to the interview, to teaching the 
students the basic functions (e.g. basic construction, dragging, and measuring) of the DGE. The 
students had learnt geometric proofs using the conditions for congruent triangles and those for similar 
triangles. They were familiar with the inscribed angle theorem, the inscribed quadrilateral theorem, 
and the alternate segment theorem, all of which are related to tasks used in the interview.  

Tasks 

Q1. (1) As shown in the diagram given, there are four points A, B, C, and D 
on circle O. Draw lines AC and BD, and let point P be the intersection point 
of the lines. What relationship holds between ∆PAB and ∆PDC? Write your 
conjecture. (2) Prove your conjecture. 

Q2. Construct the diagram shown in Q1 with DGS. Move points A, B, C, and 
D on circle O to examine the following questions. (1) Is your conjecture in 
Q1 always true? (2) Is your proof in Q1 always valid? 

 

Figure 2: Tasks used in the interview 

The tasks used in the interview are shown in Figure 2. We developed them according to the 
aforementioned design principles. Q1 is relevant to the first principle that involves ambiguous 
conditions. The condition of Q1 is vague because there is no reference to the locations of points A, 
B, C, and D in the problem sentences. If the locations are changed, refutations of the proof constructed 
in Q1 can be discovered, as shown below. The second principle corresponds to Q2, where students 
are invited to construct the given diagram with DGS and produce various diagrams by dragging. The 
third principle is related to the combination of Q1 and Q2. It is, of course, possible for Q1 to stipulate 
the use of DGS to produce various diagrams for making a conjecture before proving. However, we 
designed Q1 and Q2 in the way set out in Figure 2 because we expected that proof construction in Q1 
could increase students’ conviction in their conjecture and proof. This design could lead to students’ 
recognition of a contradiction between their conviction and the subsequent refutations in Q2. 



Data collection and analysis 

The three students were asked to solve task Q1 collaboratively with paper and pencil and task Q2 
with DGS on a desktop computer. The task-based interview lasted for approximately 35 minutes in 
total. It was video-recorded and the audio transcribed. We used two cameras for the recording, one 
placed to video the students and the other placed to record the screen of the computer. The worksheets 
the students completed, and the DGS file the students made, were collected. We analysed these data 
by focusing on what type of diagram the students produced and how they dealt with the diagrams. 

Results 
Conjecture, proof, and types of diagrams the students produced 

Immediately after student Kakeru read the problem sentences in Q1, Sakura conjectured “similar?”. 
The students then wrote the following proof on their worksheet: 

In ∆PAB and ∆PDC, 

From the vertical angles, ∠APB = ∠DPC … (1) 

From arc BC, since inscribed angles are equal, ∠PAB = ∠PDC … (2) 

From (1) and (2), since two pairs of angles are equal, ∆PAB ~ ∆PDC 

After that, the students worked on Q2. As they worked, they produced and examined the six types of 
diagrams shown in Figure 3. In Figure 3a, triangle PAB (or likewise triangle PDC) is not constructed, 
while both triangles are not constructed in Figures 3b and 3c. Point P is located outside circle O in 
Figures 3d and 3e. In the type of diagram shown in Figure 3f, the students regarded points A and C 
(or likewise with points B and D) to be coincident and considered line AC (or likewise BD) to be a 
tangent to circle O. 

 
Figure 3: Types of diagrams the students produced 

In the following, we report the cases regarding Figures 3e and 3f because the students devoted more 
efforts to these types than to the other types. 

Case where point P is outside the circle 

At the beginning of Q2, the students produced the type shown in Figure 3e: 

116 Kakeru: Is the conjecture in Q1, similarity, always true? [Reading the problem 
sentence.] 

117 Sakura: Not similar. 
118 Yuka: In this case, … impossible. 
119 Kakeru: The intersection point is outside the circle. 



Here, Sakura and Yuna recognised a contradiction because although they proved their conjecture in 
Q1, they considered the type of Figure 3e to be a counterexample to their conjecture (lines 117 and 
118). Kakeru then responded to their judgement: 

132 Kakeru: We can say that they are similar. 
133 Sakura: Why? We can’t say that. 
134 Kakeru: Because. 
135 Sakura: Wait. Because. 
138 Kakeru: PAB and PDC. These are similar. This and this [angle P] are common and 

equal. Then, because [quadrilateral ABDC is] a quadrilateral that is inscribed 
to the circle. 

139 Sakura: That one. 
140 Kakeru: This [angle PAB] and this [angle PDC] are equal. 

A dispute between the students can be seen in this dialogue, where Kakeru argued that their conjecture 
was still true (line 132), whereas Sakura objected to his argument (lines 133 and 135). To respond to 
Sakura’s objection, particularly for showing the congruence of angles PAB and PDC, Kakeru 
proposed using the inscribed quadrilateral theorem (lines 138 and 140): an interior angle is equivalent 
to the exterior angle of the opposite angle. Sakura agreed with his thinking (line 139), and, thus, they 
were able to resolve the dispute by proving the similarity of the triangles in the type of Figure 3e. 

Case where a line is a tangent to the circle 

After producing the diagram type shown in Figure 3e, the students examined the type shown in Figure 
3f (note that, strictly speaking, this type is different from the original problem where line AC cannot 
be drawn if points A and C coincide.) When encountering this type, Kakeru was convinced that their 
conjecture would be still true, and proposed using the alternate segment theorem to prove the 
conjecture. Nevertheless, when he started explaining his idea to Sakura and Yuka, he had a doubt as 
to why line AP can be considered as a tangent. The students struggled to resolve this doubt. During 
their struggle, as the students mentioned only once that the type of Figure 3f might be a 
counterexample to their conjecture, they consistently anticipated that their conjecture would be true 
in this type. Eventually, they judged that line AP was the tangent by measuring the degree of angle 
PAO and finding that it was almost 90 degrees. The subsequent student interaction was as follows: 

357 Kakeru: If we consider this as a tangent, we can use the theorem about the angle 
formed by a tangent and a chord. 

358 Sakura: I see. 
359 Kakeru: We can show the similarity. 
360 Sakura: This (angle DCP) and this (angle PBA) and P. 

This dialogue shows that the students were able to prove their conjecture in the type of Figure 3f with 
the alternate segment theorem. 

Examination of the initial proof 

The students concluded their activity without considering Q2(2), so the interviewer questioned them 
as follows: “Please read again the sentences in Q2 carefully. When you say it does not hold, do you 
mean your conjecture is false, or your proof is invalid?” When addressing this question, the students 
noticed that the reasons in their initial proof were not applicable to the diagrams that they produced. 



In other words, they regarded these diagrams as local counterexamples to their proof in the sense of 
Lakatos’ (1976) terminology. For example, the following is their discussion about Figure 3e: 

456 Sakura: We wrote, “From arc BC, since inscribed angles are equal, ∠PAB = ∠PDC”. 
457 Kakeru: PAB and PDC. This [the initial proof] is for this case [shown in Figure 2]. 
458 Sakura: This [the last line in the proof] is valid, but the sentences [the second and third 

lines in the proof] are not valid, right? 
461 Kakeru: This [the initial proof] is only for this [Figure 2]. 
462 Yuka: If so, this proof … 
463 Sakura: Is not always valid, right? 

After that, the students pointed out that it was sufficient to revise the reasons in their initial proof by 
replacing the equality of vertical angles and the inscribed angle theorem with the identity of the angles 
and the inscribed quadrilateral theorem, respectively. They also examined and revised the initial proof 
in the type of Figure 3f in a similar way, with the alternate segment theorem. 

Discussion and conclusion 
The students in the interview were able to engage in mathematical activity of proofs and refutations 
depicted in Figure 1. After making and proving a conjecture, they produced diagrams to scrutinise 
whether their conjecture was always true. Although they initially judged the type of diagram in Figure 
3e to be a counterexample to their conjecture, they modified their judgement by proving that their 
conjecture was still true in this type. This proof was constructed without looking back at their initial 
proof and revising it. However, after the interviewer’s intervention asking them to consider Q2(2), 
the students recognised that their initial proof was not applicable to the types of diagrams in Figures 
3e and 3f, and revised the proof for these types. 

The three design principles and the tasks developed based on the principles were generally helpful 
for fostering the students’ activity. Based on the first principle, we used the proof problem whose 
condition regarding the locations of points A, B, C, and D is ambiguous (Figure 2). This task enabled 
the students to produce the six types of diagrams that had the potential to refute their conjecture and 
proof (Figure 3). 

With regard to the second principle, DGS in general and its dragging function in particular (Arzarello 
et al., 2002), were highly useful for producing such a variety of diagrams. In our earlier research, 
many students in a lower secondary school encountered difficulties in drawing diagrams that refuted 
their proofs in paper-and-pencil environments (Komatsu, Ishikawa, & Narazaki, 2016). Although the 
tasks used in that study were more difficult than those in this study, without DGS it would likely be 
challenging for the three students in this study to produce various diagrams different from Figure 2. 

The combination of Q1 and Q2 based on the third principle played a role in stimulating the subsequent 
students’ activity. In the case where point P was outside circle O, Sakura and Yuka felt a contradiction 
between the truth of their conjecture that was proved in Q1 and the refutation in Q2 where they judged 
the type of Figure 3e to be a counterexample to their conjecture. This contradiction triggered the 
dispute with Kakeru, where Sakura and Yuka’s judgement was revised through Kakeru’s proof 
showing that their conjecture was still true. In the subsequent case where a line was a tangent to circle 
O (Figure 3f), the students did not seem to perceive such a contradiction. This was likely related to 
the students’ earlier experience, where they could show that the type of Figure 3e, which was initially 



regarded as a counterexample, did not refute their conjecture. This experience would constitute a 
source of their conviction in the truth of their conjecture as regards the type of Figure 3f. If the 
students encountered this type prior to the type of Figure 3e, they would think that it might refute 
their conjecture, and would perceive a contradiction between their conjecture and the refutation. 

This study has limitations as it is based on a case with one set of tasks. It is necessary to develop other 
tasks based on the design principles of this study and conduct further empirical studies, including 
studies in real classroom settings, to inspect the values of the principles and tasks. Another interesting 
future issue is to examine whether the design principles of this study are applicable to content areas 
other than geometry (for example, number theory). The design principles are not conceptually 
restricted to geometry education; the ‘tools’ mentioned in the second design principle are not only 
DGS tools. This issue is worth addressing in order to extend the opportunity to introduce proofs and 
refutations from geometry into other topics in the mathematics curriculum. 
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The Hungarian curriculum for mathematics teachers’ training specializes in a problem-solving 
Seminar aimed at teaching heuristic strategies. This fact motivated our research focusing on 
problem-solving competency of teacher trainees. In this study we deal with some aspects of inductive 
reasoning. We summarize the results of a diagnostic survey. We chose a closed problem which could 
be solved through inductive reasoning, and analyzed problem solving process of 94 students. Our 
primary interest was how students apply general phases of inductive reasoning, if they use it at all; 
that is, how they conclude general statements after pattern recognition, and whether they close it 
deductively or not. 

Keywords: Problem solving, inductive reasoning, proof and proving, rational errors. 

Introduction 
In the midst of a long-term discussion on the role of metacognition and teaching heuristic strategies 
in order to enhance mathematical problem solving skills (Schoenfeld, 1985; Cai, 2010), the new 
Hungarian curriculum for mathematics teachers’ training1 explicitly specializes such a course. We 
think that there is no final rule concerning this polemics; moreover there is no comprehensive research 
focused on this student group in Hungary in this respect. One of the antecedent studies, the PhD 
dissertation (Pintér, 2012) focused solely on primary teacher trainees. Motivated by these facts we 
have begun a research to map the status quo in Hungary, with the aim to give didactical consequences 
and finding ways of teaching heuristic strategies, general problem solving skills effectively. 

According to Polya (1954), heuristic reasoning is based on induction or analogy. In this study we 
focus on inductive reasoning process only. Csapo (1997) supports the proposition that inductive 
reasoning and skills of proof develop during broad age range (Grade 1-11). We therefore assume that 
problem solving skills, especially proper utilization of inductive reasoning strategy develop after 
entering higher education, and should be subject to development. 

Inductive reasoning and inductive problem-solving strategy 
The word “induction” means a scientific procedure starting from experience. In inductive reasoning, 
one makes a series of observations and infers a new claim based on them. The mathematics education 
offers the possibility of learning the way of inductive reasoning beside the deductive one. Within the 
process of inductive reasoning Polya (1954) distinguishes stages such as observation of particular 
cases, formulating a conjecture (generalization), testing the conjecture with other particular cases. 
Haverty, Koedinger, Klahr, & Alibali (2000) identify the “function finding task” as the 
“representative of inductive reasoning” and use this term in a narrower sense as we use it, thinking 

                                                 
1 This curriculum was introduced in 2013. 



  

only on open problems and determine three basic inductive activity such as data gathering, pattern 
finding and hypothesis generation. Yeo and Yeap (2009) make the difference between inductive 
observation and inductive reasoning clearer. If students observe a pattern when specialising, the 
pattern is only a conjecture and they call it ‘inductive observation’. But if students use the underlying 
mathematical structure to argue that the observed pattern will always continue, this can be called 
‘inductive reasoning’. Motivated by these approaches we describe inductive reasoning with five 
phases. (1) Observation of particular cases including looking for possible pattern as well. (2) 
Following the observed pattern, i.e. applying it for other cases. It often happens without formulation 
of a general statement. (3) Formulating a general conjecture. (4) Testing it by other particular cases. 
The result of the inductive reasoning is a general statement, but the mathematical problem solving 
process requires its deductive closure (5). The form of deductive closure could be either a rigorous 
proof or justification using the underlying mathematical structure (Mason, Burton, & Stacey, 2010). 
Moreover, Rivera (2013) uses the term of empirical structural argument, as a type of justification. 
Empirical structural argument means that one uses the steps of a logical deductive proof with concrete 
numbers or objects instead of variables. This process is closely related to the phenomenon of generic 
example (Stylianides, 2009) and transformational proof-scheme (Harel & Sowder, 2007). Thus, we 
look not only for the clues of the formal proof but the clues of empirical structural argument too while 
investigating Phase 5. 

Haverty et al. (2000) argue, in accordance with other studies, that the detection of patterns is crucial 
to inductive reasoning. In patterning activity there is a difference between near generalization, a 
description of a pattern allowing one to determine the next term in a sequence, and far generalization, 
the construction of a general rule or a far stage in the pattern (Rivera, 2013). Solving the problem we 
investigated in this research requires mainly the near generalization activity; the formulation of a 
general rule could be useful, but is not necessary. 

We identified in many cases that a mental manipulation process led to the inductive observations. 
The same phenomenon was detected by Simon (1996) who defined the concept of transformational 
reasoning, which is rather a dynamic process. Transformational reasoning visualizes the 
transformation of a mathematical situation and the results of that transformation. The conjecture is 
drawn from the result of the mental manipulation. 

Besides inductive strategy, some other strategies may work for many closed mathematical problems. 
As Ben-Zeev (1996) pointed out, the schema-based thinking could be a useful way for organizing 
mathematical experiences. Using a schema – the knowledge structure for a particular class of concepts 
– in a proper way can predict the solution of the problem. However, schematic reasoning often lead 
to rational errors when applied rigidly or without understanding the context. The term rational error 
“refers to process where student first induces an incorrect rule and then proceeds to follow it 
“correctly” in a logical consistent manner” (Ben-Zeev, 1996, p. 65). 

In this current study our main focus is on the way of problem solving of our teacher trainees with 
special interest in inductive reasoning. Thus, we have formulated the following research questions. 

Q1 Whether they use inductive arguments during the problem solving process or not? 
Q2 If not, what are the frequent types of their reasoning? 
Q3 What are the characteristics and the typical errors of their inductive reasoning process? 



  

In order to answer these questions we constructed a problem which may be solved in different ways, 
among others using inductive strategy. 

The problem 
In Figure 1 𝐴𝐶1 = 𝐶1𝐵1 = 𝐵1𝐶2 = 𝐶2𝐵2 = 𝐵2𝐶3 = 𝐶3𝐵3. 

1. If 𝛼 = 15°, find 𝛽. 
2. How many isosceles triangles can be drawn following the algorithm presented in the figure? 
3. For some 𝛼, we can draw exactly 9 isosceles triangles. Find 𝛼. 

 

Figure 1: The initial problem 

The first question requires only minimal geometrical knowledge; moreover, the completion is the 
only cognitive operation needed, where by completion we mean finishing arithmetic operations in 
this context. The second question tests whether the student could follow the algorithm given by the 
figure. Our hypothesis was that the third question should be a mathematical problem for our students. 
Since the solution is completely determined by the underlying geometrical structure, this problem is 
suitable for examination Phases 1-5 of inductive reasoning.  

A possible strategy is based on two steps. (1) The 𝑛th isosceles triangle has angles with measure 𝑛𝛼 
on its base. (2) If we can draw the 9th triangle, then 9𝛼 < 90°; moreover, we cannot draw the 10th 
triangle, thus 10𝛼 ≥ 90°. It means 9° ≤ 𝛼 < 10°. 

Our primary interest was in Step (1). If the student uses this general statement, how he or she 
concludes it. This “general approach”, i.e. when we use a general 𝑛 in the solution instead of a 
concrete number of triangles, may appear in all parts of the solution; however it is not necessary for 
this particular problem. The reason is that only near generalization is involved here, i.e. direct 
methods (drawing, counting, and determining all the angles) could be effective (Rivera, 2013). 

We highlight here only one more question: how students deal with the last possible triangle? We 
briefly refer to this question as “condition for halt”. 

Dimensions and methodology of the research 
In academic year 2015/16 we investigated the solution of the problem described above with 
involvement of 94 students, including 49 prospective primary school teachers and 45 prospective 
secondary and upper secondary school Mathematics teachers. Solving of the problem does not require 
advanced mathematical knowledge and skills. Thus, we do not distinguish between these two groups 
in our research. The base group consists of 83 students (S01-S83 in the transcripts). In this group we 
investigated students’ written elaborations. The interview with 11 other students completed the frame 
of this research (S84-S94). During the interviews we followed students’ activities and made sound 
records. Students were asked to say out loud what they are thinking of when solving the problem. We 
corrected numerical errors immediately; otherwise we did not put guiding questions. 



  

Results: Students’ activity during problem solving 
Overview 

Analysis of students’ performance handling the third question represents the overall problem solving 
process well. We identified two classes of solutions (Figure 2). Concrete solution class means that 
student deals with 9 triangles only and sticks to the text verbatim. Because the third question is a near 
generalization of the previous one, this plan is acceptable. By general solution class we mean, that 
solution works for arbitrary number of triangles. Some students used more than one strategy. 18 
students didn’t show up any strategy, 5 of them ignored the problem, and 13 students could only 
compute the angle of the 5th triangle.  

 

Figure 2: Strategies and activities with number of students following the particular strategy 

Reverse strategy 

By reverse strategy we mean here that student’s starting point is the final configuration with 9 
triangles. This is a successful approach, where the student investigates the figure with 9 and 10 
isosceles triangles and computes all the necessary angles directly, with or without showing signs of 
pattern recognition. We encounter this approach in 2 interviews, but nobody completed the third 
question using this strategy in the base group.  

Trial and error approach 

Trial and error strategy is characterized by repeated, varied attempts which can be continued until 
success. Although this approach appeared 33 times, in most cases it played certain role in the 
inductive reasoning. 10 students applying this strategy did not show inductive or any other strategies; 
however, in 4 cases the activity was controlled with the (unproven) hypothesis that 𝑛(𝛼) is a 
decreasing function, where 𝑛 is the number of isosceles triangles. One student in the interviewed 
group followed this pattern. Her view demonstrates that trial and error could be a rational activity 
even for this problem. After reading the text, her first and immediate reaction was applying trial and 
error method. After two trials with angle measure 10 and 5 the interviewer interrupted her: 

Interviewer: Do you think that the solution is an integer? 

S86: Certainly. 

Interviewer: Why? 

S86: I don’t know… It is a nice problem and the solution should be a ‘nice’ integer. 

Interviewer: [He gave a hint that 𝛼 ∈ ℝ.] In what cases is trial and error effective? 



  

S86: When we have small number of cases to check. [She gave up.] 

The transcript points out the role of student’s belief in the problem solving process (Schoenfeld, 
1985). Theoretically she knows that her effort is hopeless, but her belief in ‘nice’ solution overwrites 
this knowledge. In this context the false trial and error strategy is a rational error here in the sense of 
Ben-Zeev (1996), because if 𝛼 is an integer then we have finite number of integers to check. We 
detected 24 students with belief that the solution is an integer but in some cases with sign of 
uncertainty, e.g.  “If we reject the condition that 𝛼 is an integer, then we have infinite possibilities” 
(S37). 

Schematic reasoning, false scheme 

Schematic reasoning is the process of reasoning by which new information is interpreted according 
to a particular schema. In our problem the number of isosceles triangles is 𝑛(𝛼) = ⌈

90

𝛼
⌉ − 1, where 𝛼 

is the given angle. This function, to be more precise, some approximate idea of 𝑛(𝛼) appeared in 
students’ responses. First of all, 𝑛(𝛼) is a decreasing function, and 15 students referred to this 
property properly or erroneously (i.e. in strict form) without proof or explanation. The following 
transcript demonstrates the typical usage of this observation. Previously this student settled that for 
𝛼 = 9° there are 9 triangles. “If 𝛼 < 9°, then the number of isosceles triangles is more than 9” (S10). 
We presume that the transformation reasoning (Simon, 1996) is behind this recognition. Some 
students showed explicit evidence of transformational reasoning. We encountered sentences like the 
following transcript 5 times in the base group. “If we decrease the angle, then we get more triangles” 
(S03). Students’ observations are the result of the mental transformation of the angle. 

In some cases it invoked the scheme of inverse proportionality or the misconception of strictly 
decreasing 𝑛(𝛼) function. Two false solutions with inverse proportionality scheme appeared in our 
experiment and caused a rational error. Two other students referred to inverse proportionality, but 
later revised the idea. 

Other false scheme was the direct proportionality scheme. Perhaps the following interpretation of the 
problem invokes it. “In case of 15° we have 5 triangles, how much is the angle if we have 9 triangles?” 
This is a common pattern in elementary word problems. Transcriptions of data demonstrated in Figure 
3 strengthen this presumption. Data from the second question is not necessary to answer the third 
question, but students who applied the direct proportionality scheme connected data in this way. S13 
misprinted the angle and used 30 instead of 15. S36 revised her outcome. S08 finds 𝑥 by the ‘proper’ 
way: 5𝑥 = 9 ∙ 15. He just began the division (the tick between digits 3 and 5 indicates this), but 
presumably rejects the result which he found too big and finishes the calculation “forcing” a more 
reasonable result. Direct proportionality appeared 5 times, but 1 student revised this solution.  

 

Figure 3: Direct proportionality (left: S13, center: S36, right: S08) 



  

Looking for a general solution using inductive strategy 

We consider that the inductive strategy appears if a student reaches at least the first phase of the 
inductive reasoning process i.e. at least observes particular cases and looks for a possible pattern. 
Half of the students in this research (47 people from 94) used or tried to use this problem solving 
strategy. (Some of them used other strategies too.) Eight students stopped at the first stage because 
of the possible lack of near generalization ability. In the second phase (near generalization) the others 
determined the 9th and the 10th angle in the sequence in a way that they skipped some members and 
tried to transfer the “condition for halt” observed before. In our problem we didn’t ask to formulate a 
general statement; however 11 students made it (far generalization, Phase 3). The statements were 
expressed either by symbols or by words, like S85 told “Thus the length of one step is equal to the 
opener.” [The difference between the base angles in two consecutive triangles is equal to the given 
angle.]2 

We wondered whether the students feel the need of testing their conjecture by other particular cases 
or not (Phase 4). The following transcript represents this phenomenon well. After calculating 𝛼, 2𝛼, 
and 3𝛼 S88 said: “I’m sure the result will be something similar. 𝛽 equals probably 5𝛼, but I will 
compute it.” 13 solutions contained test of the near/far generalized conjecture. 

Concerning Phase 5 (deductive closure) we confronted with the dilemma of “proving or not”. The 
near generalization feature of the problem probably caused the fact that no one has felt the necessity 
of proving of the observed and applied conjecture. The following transcript represents a typical 
attitude during the interviews: 

Interviewer: Why are you sure that the 9th angle equals 9𝛼?” 

S93: Because it was clearly visible, and I felt that it will work always in the same way. 

The clue of empirical structural argument (Figure 4) appeared only in 5 works. Previously S88 
determined the 5th angle without any skipping, after that she skipped to the 9th angle directly. 

Here the recursive counting procedure confirms that the measure of the angle increases by α. 

 

Figure 4: Empirical structural argument of S88 

Four students were able to make a correct deductive closure of the inductive reasoning by 
mathematical induction proof after the interviewer asked them to prove their conjecture. One of them 
said “I can prove if you wish.” (S93) 

                                                 
2 Rephrased by the authors 



  

Typical error during inductive reasoning: spurious abstraction from irrelevant feature 

Solving the first and second problem, students have some previous experience in the third problem. 
In 18 solutions we found that they abstracted a false rule from a previous experience, what is more, 
from one particular case. We highlighted only a few examples here. In the third part of the problem 
2 students used the same difference (i.e. 15) for the arithmetic sequence of base angles as in the first 
part of the problem. In 2 cases the starting point was that the measure of base angles of the last 
possible triangle always equals 75. The most frequent spurious abstraction concerns the “condition 
for halt” (12 students). In Figure 1 ∡𝐴𝐶3𝐵3 = 90° causes the halt. Generally this condition is 
∡𝐴𝐶𝑛𝐵𝑛 ≤ 90° (for the smallest 𝑛), but these students kept the equality instead of inequality. The 
following transcript is a typical answer to the third question: “90/10 = 9, because in this way the 
tenth triangle would have two right angles” (S16). 

Findings and interpretation of results 
The students involved in this research dealt with the presented problem in many different ways, and 
we detected many different solution strategies. Thus, we conclude that the chosen problem was an 
appropriate instrument to answer our research question in particular and to make some conclusions 
in general. We have summarized our findings for research questions as follows. 

Q1 50% of the students used inductive arguments during their problem solving process. 
Q2 In the other cases the most frequent type of their reasoning was trial and error strategy. Other 

strategies appeared, namely schematic, and reverse as well. Furthermore, we found that lot of 
students (19% in this research) did not go beyond the computational activity; they did not have 
any other idea. Yeo and Yeap (2009) describe the same phenomenon for weaker students. 

Q3 We found an uncertainty in inductive reasoning: students formulated conjecture from a few 
particular cases; moreover, they did not confirm it and 95% of students did not make any form 
of deductive justification. They often abstracted a false rule from a previous experience, what is 
more, from one particular case. Students relied on their intuitions without doubt; and this 
behavior calls for rigid schemes. They often mixed or changed these strategies without any result. 

Possible explanations of these findings are complex. First of all, our students are not familiar with 
heuristic strategies, especially with strategy for determining patterns. The recognized pattern which 
described the relation between the angles and the number of triangles was a plausible one in their 
mind instead of a definite pattern in situation with well-defined mathematical structure. Moreover, 
the common misconception appears in the interviews that particular examples prove a general 
statement. With respect to the function concept we conclude that it is not deep enough, students have 
difficulty with step function. In many cases our students had in mind natural numbers instead of real 
numbers, as possible values of an angle, which suggests that their number concept is very simple 
and/or their belief in “nice whole number” solution is very strong. 
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The aim of this paper is to understand how a proposed set of design principles regarding tasks and 
teacher actions provide students with opportunities to justify. We see justification as a reasoning 
process that relies on mathematical concepts, properties, procedures, ideas, and, in some 
situations, particular cases. The teaching intervention, part of a design-based research, is carried 
out in a grade 7 class of an experienced teacher in nine lessons about linear equations. Data is 
gathered by classroom observations (video and audio recorded) and a researcher logbook. Data 
analysis takes into account a set of design principles and a framework regarding students’ 
justifications. The results show that paths of teacher’s actions that rely on the design principles 
enable students to present rather complete justifications based on logical coherence and on 
mathematical aspects of the situation. 

Keywords: Reasoning skills, teaching practices, teacher-student interaction. 

Introduction 
Developing students’ mathematical reasoning is an important aim of teaching and learning 
mathematics. Students’ engagement in reasoning processes allows them to move from using 
procedures with little or no understanding towards envisioning mathematics as a logical, 
interrelated, and coherent subject. We consider reasoning as making justified inferences (Brousseau 
& Gibel, 2005), using processes as formulating questions and solving strategies, formulating and 
testing generalizations and other conjectures, and justifying them. In this paper, we focus on 
justification as a central reasoning process. Enhancing students’ mathematical reasoning in the 
classroom requires the set-up of challenging learning environments that go much beyond proposing 
students to solve exercises using well-known procedures. In order to better understand how teachers 
may foster students’ mathematical reasoning, we conduct a design-based research (Cobb, Jackson, 
& Dunlap, 2016) that relies on whole class mathematical discussions triggered by exploratory tasks 
as privileged moments to promote students’ mathematical reasoning. In this paper, we aim to 
understand how a set of design principles regarding tasks and teacher actions that focus on 
justification might promote students’ justifications during whole class discussions. 

Students’ justifications 
In the classroom, justifying, particularly justifying conjectures and generalizations, is a reasoning 
process that rarely emerges spontaneously. Often, students accept conclusions such as conjectures 
and generalizations without feeling the need to test or justify those (Henriques, 2010). In many 
situations, students focus mostly on what is familiar or on ideas that they superficially recall, paying 
little or no attention to the mathematical properties or concepts implicated (Lithner, 2000, 2008). 
However, justifying is a reasoning process central to mathematics learning, as it allows students to 
connect mathematical ideas, concepts, and objects, to present arguments to support statements and 
conjectures, to solve problems and to develop new mathematical ideas (Brodie, 2010). We consider 



justifying as a reasoning process and as the way to prove statements by relying on concepts, 
properties, procedures, and mathematical ideas and, in some situations, on particular examples. 

Justifications in the classroom can occur at different levels regarding formality and complexity. 
Brousseau and Gibel (2005) propose three different levels regarding the formality of a justification: 
Level A – Justification that is not formally presented, but that might be associated with the student’s 
actions as a model of his/her action; Level B – A formal but incomplete justification with inferences 
based only implicitly in elements of the situation or on what is considered to be shared knowledge; 
Level C – A formal justification based on a sequence of related inferences, with explicit reference to 
the situation or to what is considered to be shared knowledge. The concept of formal justification 
referred in these three levels is not necessarily the same as a formal justification in mathematics 
related to a mathematical proof, but rather to what is considered to be formal in a specific situation, 
namely accordingly to the grade level and the knowledge of students. However, as students advance 
through their schooling, formal justifications should be increasingly more formal from a 
mathematical standpoint, being sometimes equivalent to proofs or to significant parts of proofs. 
Drawing upon the classifications of Lannin (2005) and Carraher, Martinez and Schliemann (2008), 
it is possible to consider six levels of complexity: Level 0 – no justification, when the answers do 
not include a justification; Level 1 – Appeal to external authority, when the justification refers to 
other individual or reference material; Level 2 – Empirical evidence, when the justification is based 
in particular examples; Level 3 – Logical coherence, when justification is based on logic; Level 4 – 
Generic example, when the justification is deductive, but stated in relation to a particular situation; 
Level 5 – Deductive justification, when the validity of the justification is based on a deductive 
argument that is independent from the particular cases or examples. At all these levels, a 
justification presented by a student may be correct, partially correct, or incorrect. Thus, it is 
important that the students understand what validates a justification and reject justifications based 
on authority, perception and common sense (Lannin, Ellis, & Elliot, 2011).  

Tasks and teacher actions to enhance justification 
Students learn to reason by “reasoning and by analyzing the achieved reasoning processes” (Ponte & 
Sousa, 2010, p. 32). Therefore, to enhance justification processes it is necessary to provide 
situations in which students have the possibility to justify their answers. As such, in mathematics 
teaching and learning, and particularly to enhance students’ mathematical reasoning, a central aspect 
is the design of suitable tasks. It is important to understand the nature of those tasks, the ways 
students engage in them, and the interactions that may emerge (Brodie, 2010). 

Several studies refer that problem solving and exploratory tasks have potential to develop students’ 
mathematical reasoning (e.g., Francisco & Maher, 2011; Henriques, 2010). However, it is not 
necessary or even appropriate that all tasks involve questions at a high challenging level (Brodie, 
2010). Such challenge may be infeasible due to time constraints and may lead to students’ 
demotivation and loss of interest. Moreover, while designing a task, its structure and level of 
challenge should be considered according to the students to whom it is going to be proposed. In 
addition, we note that, just by themselves, exploratory tasks and problems, are not sufficient to 
foster students’ mathematical reasoning. Teacher actions emerge as equally central to provide 
situations that promote students’ mathematical reasoning. Regarding teacher actions to enhance 



justifications, Bell (2011) highlights that the teacher should help students to make sense of 
justifications, ask for alternative justifications, emphasize what validates a justification, and focus 
on the explanation of “why”. Also, it is important that the teacher encourages the students to share 
their ideas and various versions of their reasoning, seeking to consider students’ incorrect or partial 
contributions and to broaden their valid contributions (Brodie, 2010). 

Methodology: Design, participants, data analysis 
This paper originates from a broader research study that aims to develop a local theory about 
enhancing students’ mathematical reasoning in the classroom, following a design-based research 
(Cobb et al., 2016). In order to do so, we established several design principles (Cobb et al., 2016), 
i.e., heuristics that structure the intervention, based on the research literature and on a previous cycle 
of experimentation focusing on tasks and teacher actions to enhance students’ mathematical 
reasoning. Four of these principles specifically focus on justification. One principle refers to task 
design and states that tasks must include questions that ask for a justification of answers or of 
solving processes. The other three principles concern teacher actions and indicate that the teacher 
must promote situations that prompt students to (a) justify and present alternative justifications; (b) 
identify valid and invalid justifications, indicating why; and (c) share ideas, namely by accepting 
and valuing incorrect or partial contributions, deconstructing, supplementing, or clarifying them. 

This is the third cycle of design, after a first cycle that took place in lessons about sequences and a 
second cycle in lessons about linear equations. This third cycle took place in a public school in a 
grade 7 class with 27 students (12-13 years old), throughout nine lessons about linear equations. A 
detailed plan of each lesson was prepared considering tasks specifically designed to promote 
students’ mathematical reasoning and considering possible teacher actions. Each lesson plan was 
proposed by the first author and discussed in detail with the teacher, who made all the amendments 
and adjustments that she felt necessary considering the class characteristics and the available 
resources. The participating teacher was selected because of her experience and her availability to 
consider changes on her practice. All participants in this study are volunteers, provided an informed 
consent, and their names are fictitious. 

Data analysis is centered on the design principles regarding tasks and teacher’s actions and also on 
students’ justifications. The episode that we present is from lesson eight that aimed to lead students 
to be able to relate equations and functions. This lesson was directly observed and video and audio 
recorded and notes were made in a researcher’s logbook. 

An episode about equations 
Task and context 

The episode presented in this paper focuses on the first part of the task proposed in lesson eight of 
the nine lessons that constitute the linear equations unit. This segment of the task (Figure 1) aims to 
lead students to establish a procedure to figure out the intersection point of two functions. Earlier in 
the school year, the students learned about algebraic and geometric representations of linear 
functions, with no participation from the researchers. 

 



Frances received a plant as a gift and she registered its growth. Simon thought it was a really nice idea 
and, on the same day, bought a plant and also registered its growth. The functions that follow 
represent the height of both plants on their first days with the students: 
  Frances’ plant: f(x)=0.4x  Simon’s plant: s(x)=0.2x+2.2 
1. Represent graphically the functions f and s. 
2. Based on the previous representations, indicate on which day the plants have the same height. 
3. Consider the comment: “Graphs are not necessary to know on which day the plants have the same height. 
Knowing the functions that represent the height of each plant is enough to find out when they are equal”. What 
would be the other approach to figure out the day when the plants have the same height? Justify your answer. 

Figure 1: Proposed task about functions and equations 

In the first two questions of this task, the students can support their answers by using GeoGebra app, 
as this particular school has iPads available by request. This was not the first time that the students 
used either the tablets or GeoGebra. Taking into account the design principle regarding task design, 
question 3 asks for a justification. 

Justifying based on knowledge about functions 

At the beginning of the lesson, the teacher asks a student to read the questions to the class and 
clarifies the aims of the task and the tools to use. Then, students work autonomously, in pairs, for a 
couple of minutes. After inserting the algebraic expressions of the functions in GeoGebra, some of 
them state that the plants have the same height on the 11th day. The teacher begins the whole class 
discussion by asking for a justification to that answer: 

Teacher:  How do you know that it is on the 11th day? (Several students raise their hands in 
order to answer.) Isa. 

Isa:  Because, if we check, both straight lines intersect in 11. 

The teacher’s invitation to justify (principle (a)) led Isa to justify her answer to question 2 based on 
her previous knowledge about functions. This justification is incomplete regarding referencing “in 
11”, however, it refers to elements of the situation, namely, the graph representations of both 
functions and the intersection point. Thus, Isa presents a generic justification regarding the available 
data (level 4 justification). 

Aiming to complete Isa’s answer (principle (c)), the teacher revoices this student’s answer leading 
to a more accurate justification:  

Teacher:  In 11... 

Isa:  In point 11. 

Teacher:  In point 11? 

Gabriel:  Abscissa. 

Teacher:  In the point with abscissa 11.  

By referring to parts of students’ answers, the teacher implicitly identifies what is invalidating the 
justification (principle (b)), and based on the students’ answers, the teacher highlights what 
completes the justification (principles (b) and (c)). 



After validating Isa’s answer, the teacher decides to go further on justifying, asking for another 
justification (principle (a)): 

Teacher:  Why am I looking at the intersection in x-axis . . . For the value in x-axis? 

Isa:  Because x[-axis] is the axis of objects... 

Teacher:  Yes… And how do I know if I am looking for an object or looking for an image? 

Isa’s justification relies on mathematical concepts (level 3 justification), however, her statement is 
not sufficient to provide a justification in this specific situation as it does not relate to the context of 
the problem. Once again, the teacher validates a partial contribution from Isa and encourages the 
students to complete that contribution (principles (b) and (c)). Another student tries to justify, but he 
does not add any information to what Isa has already said. Then, Gabriel participates in the 
discussion:  

Gabriel:  I think it is because the height is in… In... I just forgot the name. 

Teacher:  The axis… 

Gabriel:  The ordinate, the ordinate axis, and the days are in the abscissa [axis]. 

At this point of the discussion, Gabriel adds some relevant information to the justification, by 
relating objects and images of these functions to the context of the situation (level 4 justification). 
Despite this relevant relation, the required justification is still incomplete, and so the teacher 
continues on encouraging students to justify (principle (c)): 

Teacher: And how do I know that days, in this particular case, are objects and heights are 
images? 

Gabriel: Because there is… I forgot it… 

Leonardo: Why it is that way, isn’t it? Let me reason the other way around… If the height 
would be there [in x-axis]… 

As the students struggle to address the teacher’s question without being able to justify (level 0 
justification), the teacher gives some more information in order to complete the justification 
(principle (c)): 

Teacher: What do the functions s and f represent? 

Several students: Height. 

Teacher:  Plant’s height, right? Depending on what? 

Several students: Time. 

Teacher: The time that elapses, in days. OK, very well. 

This information provided by the teacher leads the students to easily identify dependent and 
independent variables, thus completing the required justification (level 4 justification). 

Both this and the previous justifications in this segment rely on students’ prior knowledge about 
functions and emerge during the whole class discussion supported by the teacher’s actions based on 
the defined design principles. 



Justifying based on knowledge about equations 

Right after discussing question 2, the teacher introduces question 3. At this point, a student 
immediately proposes a strategy to solve this question. This leads the students to engage in a new 
segment of whole class discussion, without having time to work autonomously on this question: 

Teacher:  Now, pay attention to question 3, because… (Santiago raises his hand). Tell me. 

Santiago: So teacher, we have that thing that was G.C.D. (M.D.C. in Portuguese), I believe 
it was… Multiple (regarding the M in M.D.C)… 

As the teacher allows Santiago to intervene, he brings to the discussion a strategy based on a 
mathematical concept that was not expected in this situation. Despite seeming a senseless idea, the 
teacher lets him go on with his explanation (principle (c)): 

Teacher:  Greatest common divisor? 

Santiago: Yes, something like that. Can’t we use it to answer to when do they intersect? . . . 
I can’t recall it, but wasn’t there something in common? Doing each number and 
then… 

By allowing Santiago to justify it is possible to understand that, despite incorrect, the student’s 
justification relies on an idea with some logical coherence (level 3 justification). Thus, both in 
G.C.D. and in intersecting functions one is trying to find “something in common”, as he refers. At 
this point, the teacher poses more questions in order to deconstruct the misconceptions about 
G.C.D. which leads the other students to identify Santiago’s strategy as not fitting to this situation. 

After clarifying that, Clara presents her strategy: 

Clara: We can use an equation (referring to 0.4x=0.2x+2.2), and the number that we get 
is the day they have [the same height]. 

. . . 

Teacher: What are you expecting as a solution of this equation? 

Several students: 11. 

Teacher: 11. So, confirm that. 

Evoking the information obtained in the previous questions, the teacher supports Clara’s strategy to 
solve this equation and, by asking to confirm the result, she prompts the students to justify 
(principle (a)) that 11 is the solution of the mentioned equation. Students do this in autonomous 
work, and then Daniel intervenes: 

Daniel:  Teacher, it isn’t. 

Teacher:  It isn’t? So, solve the equation over there (on the board). 

As Daniel solves the equation on the board, the teacher realizes that he has just missed an x in one 
of the steps and, by following his solving process (principles (b) and (c)), the justification based on 
procedures is properly achieved (level 4 justification). 

In this segment of the discussion, justifications, either valid or invalid, are based on knowledge 
about mathematical concepts. These justifications emerge when teacher’s actions rely mostly on 



encouraging students to share ideas and completing those ideas. 

Conclusion 
All the situations in the episode that we analyze were prompted by the proposed task. This task, 
focused on making sense of the relationships between equations and functions, provides an 
opportunity for students to develop a procedure to find where two functions intersect. This 
underscores the idea that collective activity in whole class discussions enable students to share, 
debate and clarify their reasoning and, in particular, their justifications (Galbrait, 1995). 

This study shows that, if particular teacher action paths that rely on the design principles are 
followed, justifications are likely to emerge in whole class discussions. In this episode, when the 
principle regarding asking for a justification is enacted, the students present justifications. These 
justifications are based on previous knowledge about mathematical concepts or ideas or on known 
mathematical procedures. Thus, those are justifications based on logic or deductive justifications 
stated in relation to a particular situation. However, these justifications are often incomplete and 
sometimes incorrect, and, as it has been seen in previous research (Galbrait, 1995), the use of 
available information about a certain mathematical concept or idea is not always adequate given the 
definitions or assumptions of the task. When the justification is incomplete, the teacher tends to 
encourage the students to complete the justification, validating or invalidating their statements only 
implicitly. Depending on her appraisal of the support that the students need to mobilize their 
knowledge, the teacher provides them with more or less information. By relying on these principles, 
the complete justification emerges from the whole class discussion. When an invalid justification is 
at stake, and according to the defined principles, the teacher values students’ contributions and 
keeps on encouraging them to present their ideas, leading them to present justifications based on 
logical coherence or on mathematical procedures. In these situations, where a student’s justification 
is incorrect, teacher’s actions strive either to abandon that justification and to focus on an alternative 
justification or, if possible, to adjust it to its correctness. 

In this particular episode, students’ justifications, despite sometimes incomplete or invalid, tend to 
be reasonably formal as they are based on mathematical aspects of the situation. Also, in the context 
of a whole class mathematical discussion based on the design principles, those justifications emerge 
often as justifications in a logical coherence level and, as students continue to add information, 
those justifications became generic example justifications. As this episode illustrates, in order to 
provide students with opportunities to move in-between levels of justification, it is not enough to 
ask students to justify and validate their justifications, but also to accept and value partial and 
incorrect justifications. Thus, the presented paths are likely to provide promising environments to 
develop students’ justifying abilities, hence to be better prepared to deal with mathematical proof 
later in their schooling. 

Acknowledgment 

This study is supported by FCT – Fundação para a Ciência e Tecnologia through a grant to Joana 
Mata-Pereira (SFRH/BD/94928/2013). 

References 

Bell, C. (2011). Proofs without words: A visual application of reasoning and proof. Mathematics 



Teacher, 104(9), 690–695. 

Brodie, K. (2010). Teaching mathematical reasoning in secondary school classrooms. 
doi:10.1007/978-0-387-09742-8 

Brousseau, G., & Gibel, P. (2005). Didactical handling of students’ reasoning processes in problem 
solving situations. Educational Studies in Mathematics, 59, 13–58. doi:10.1007/s10649-005-
2532-y 

Carraher, D., Martinez, M., & Schliemann, A. (2008). Early algebra and mathematical 
generalization. ZDM, 40, 3–22. 

Cobb, P., Jackson, K., & Dunlap, C. (2016). Design research: An analysis and critique. In L. D. 
English & D. Kirshner (Eds.) Handbook of international research in mathematics education 
(Third edition, pp. 481–503). New York, NY: Routledge. 

Francisco, J. M., & Maher, C. A. (2011). Teachers attending to students’ mathematical reasoning: 
lessons from an after-school research program. Journal of Mathematics Teacher Education, 
14(1), 49–66. doi:10.1007/s10857-010-9144-x 

Galbrait, P. (1995). Mathematics as reasoning. The Mathematics Teacher, 88(5), 412–417. 

Henriques, A. C. (2010). O pensamento matemático avançado e a aprendizagem da análise 
numérica num contexto de actividades de investigação (Doctoral thesis) Universidade de Lisboa, 
Portugal. Retrieved from http://hdl.handle.net/10451/2465. 

Lannin, J. (2005). Generalization and justification: The challenge of introducing algebraic reasoning 
through patterning activities. Mathematical Thinking and Learning, 7(3), 231–258. 

Lannin, J., Ellis A. B., & Elliot, R. (2011). Developing essential understanding of mathematics 
reasoning for teaching mathematics in prekindergarten-grade 8. Reston, VA: NCTM. 

Lithner, J. (2000). Mathematical reasoning on task solving. Educational Studies in Mathematics, 41, 
165–190. 

Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational Studies 
in Mathematics, 67, 255–276. 

Ponte, J. P., & Sousa, H. (2010). Uma oportunidade de mudança na Matemática no ensino básico. In 
Associação de Professores de Matemática (APM) (Ed.), O professor e o programa de 
Matemática do Ensino Básico (pp. 11–41). Lisboa, Portugal: APM. 



A reference for studying the teaching of logic 
Zoé Mesnil 

Université Paris Est Créteil, Laboratoire de Didactique André Revuz, France; zoe.mesnil@u-pec.fr 

This paper presents a work developed in my thesis on the teaching of logic in high school in France. 
The current official instructions specify that teachers don’t have to make a mathematical logic course, 
but have to help their students develop a relevant use of some notions of logic as tools. Therefore, I 
point out in this paper that in order to take this constraint into account in the study of didactic 
transposition process, it is relevant to describe it from a reference knowledge for logic, but that such 
knowledge has never been established by the mathematics community. In order to offer such a 
reference, I base myself on a double epistemological and didactical study in which I favor the links 
between logic and language. I will also explain the choices made for this reference and its use as a 
methodological tool through the example of quantifiers. 

Keywords: Logic, teaching, didactic transposition, quantifiers. 

Introduction 
In France, mathematics syllabuses for high school (students between 15 and 18) mention explicit 
goals concerning certain notions of logic. For example, they recommend that “students [be] trained 
on examples to wisely use the universal and existential quantifiers (the symbols ∀ , ∃  are not required) 
and to identify the implicit quantifications in some propositions, particularly in conditional 
propositions”. These current recommendations come after twenty years during which the logic was 
excluded from syllabuses. This exclusion itself is a reaction to the too abstract and formal aspect of 
modern mathematics (taught in France between 1969 and 1981) for which mathematical logic and set 
theory were basic elements. They strongly highlight the logical notions as tools and even show 
distrust against their feature as objects. This distrust can be interpreted as a resistant mark of turning 
down modern mathematics. The syllabuses specify that “the concepts and methods of the 
mathematical logic should not be subject of specific courses but must naturally take place in all 
chapters of the syllabus”. I described more precisely the characteristics of the conditions and 
constraints due to these official instructions in a contribution to CERME 8 (Mesnil, 2013): teaching 
goals are ill-defined and subjected to strong constraints. Moreover, mathematics teachers do not share 
a common reference for interpreting these syllabuses. Indeed, mathematical logic is not part of the 
domains necessarily studied by a mathematics student, bringing a diversity of teachers’ knowledge, 
that is usually not filled during their training in which teaching of logic is often only superficially and 
quickly addressed. 

In this contribution, I would like to pursue this issue of a reference for the teaching of logic. In my 
thesis, I studied the teaching of logic in high school as the result of a didactic transposition process, 
and I'll explain first why the nature of mathematicians’ logical knowledge requires thinking this 
transposition not from a mathematical knowledge like mathematical logic, but from a reference 
knowledge, nonexistent for the moment in the mathematical community (Mesnil, 2014). Secondly, I 
will justify the choice I made then to construct a methodological tool to conduct the analysis of 
syllabuses and textbooks. This tool is a reference in which the notions of logic are presented from 
three points of view that root them deeply in mathematics, in mathematical activity, and in the 



classroom. I will conclude by illustrating the choices I made for this reference, and its use through 
the example of quantifiers. 

The need for a reference 
During the didactic transposition process (Chevallard, 1985), a mathematical object is identified in a 
body of knowledge (in French, savoir savant), and a first succession of adaptations will make it able 
to become an object of teaching in a particular institution. It is then identified by mathematics teachers 
in the knowledge to be taught (in French, savoir à enseigner) and is subjected to a second succession 
of adaptations to become a taught object. 

But except in some university courses, teaching logic does not mean teaching mathematical logic, but 
the logic at work in mathematical activity, which supports mathematicians’ expression and reasoning. 
We can consider that mathematicians have a logical knowledge, which may be the subject of a 
didactic transposition process, but this knowledge is more visible in practices than in treaties. 
Mathematical logic can be perceived as a description of the principles of this logic. It was then 
explicitly taught during the time of modern mathematics, in France and elsewhere, but these 
experiments showed that this teaching, conducted formally and isolated, did not help pupils to express 
themselves and to reason (Adda, 1988). Several researchers in mathematics education now agree that 
such teaching should be explicitly linked together with mathematical activity in which the logic is 
omnipresent (see for example Epp, 2003; Durand-Guerrier, 2005). However, there are few research 
studies on the effect of teaching logic on reasoning and expression capacities, which is still an open 
issue. 

 Thus, to take into account this particular nature of the logical knowledge and its connection to 
mathematics, and to appropriately study the didactic transposition process of this knowledge, I 
propose to describe this transposition not from a mathematical knowledge, but from a reference 
knowledge. I take this notion from Rogalski and Samurçay (1994) who thus characterize a knowledge 
produced by practices, but decontextualized from situations where knowledge is apparent into action. 
These authors state that it is necessary that this reference knowledge can “be expressed with its 
concepts, its methods, its systems of representation and its language” (ibid, p. 46). However, 
concerning notions of logic, such a reference knowledge does not appear in that there is no corpus 
collecting the logical knowledge necessary to mathematical activity and about which everyone agree 
the choices of concepts which are featured and of their representation. 

I then conducted a study to answer the following research question: what kind of reference knowledge 
would be epistemologically and didactically relevant to the logic teaching? This study allowed me to 
construct a reference, which I then used to analyze the knowledge to be taught in high school in 
France. I call this analysis tool the reference, and not reference knowledge, because the production 
of a knowledge falls under a long and collective process. 

The importance of language for reasoning, and its links with logic 
The study of various logical systems across the ages allowed me to identify invariants and differences 
in the role assigned to logic and in the ways that are given to it to fulfil it. The study of didactic studies 
shows how issues relating to the teaching of logic meet the concerns and choices of these logicians. 



All these logical systems are built from a work on language. The concept of proposition is primordial 
in them all. Aristotle describes it in terms of subject-copula-predicate, and it was not until Frege at 
the end of the XIXe century that this analysis was to be replaced by an analysis in terms of function 
and argument allowing two things essential for mathematical language: on one hand to consider 
predicates with several arguments, on the other hand to pull out the act of quantification from the 
proposition by making it expressed by quantifiers which act on variables. Predicate logic that is then 
born is able to model mathematical propositions. From a didactic perspective, several research studies 
have shown many examples of situations in which the predicate logic is a relevant reference for 
didactic analysis which allows to highlight the importance of issues on quantification (Durand-
Guerrier, 2005). 

The current language of mathematicians is inspired by Frege's formalism, but it isn’t a strict use of a 
formal language. Focusing particularly on problems of language in mathematics teaching, Laborde 
(1982) showed that there is a particular use of language in mathematics, due to the interaction of the 
two codes of symbolic writing and natural language. This interaction allows mathematicians to use 
reformulations useful for conceptualization. Teachers are familiar with the particular features of 
mathematicians’ language, but they can cause difficulties for students who “discover together the 
concepts and the way we talk about them” (Hache, 2015, p.28). 

The common goal of the studied logical systems is to ensure the validity of reasoning, with a 
preliminary work on language. But for the authors of The Logic of Port Royal1, logic above all needs 
to be trained and the formalization of reasoning is seen as an obstacle to the use of intuition, whereas 
for Leibniz and Frege on the contrary, logic must provide a system of signs in which reasoning can 
be expressed, and this formal expression guaranteeing its infallibility. Gandit (2004) denounces the 
excessive place taken by the formal aspect in the beginning of proof learning. But being careful about 
formalization at the time of the discovery of deductive reasoning does not mean that it cannot 
subsequently help those who begins to have a good practice of it. Thus, in higher education, Selden 
and Selden (1995) suggest presenting theorems and definitions in an informal formulation, which 
allows intuitive understanding, and in a formal language, which allows linking structure of the 
statements and structure of its proof. 

Organization of the reference 
In the reference I proposed, I decided to give a broad place to language. Entering into logic by the 
language is consistent with the epistemological study, granting it an important place is consistent with 
didactic studies. Of course, in the same way as it is done in the studied logic systems, especially in a 
didactic perspective, the study of notions of logic as components of mathematical language has to be 
articulated with their use in reasoning. 

Finally, these epistemological and didactic studies led me to propose a reference in which the 
presentation of logical concepts combines three approaches: 

                                                 
1 Name of a famous french treatise, which original title is « La logique ou l’art de penser », written in 1662 by A. Arnauld 
and P. Nicole, who were very influenced by Descarte’s method. 



 The mathematical logic. It is a recent branch of mathematics that can be considered as a result 
of what has been sought by different logical systems creators since Greek antiquity. 
Mathematical logic seems so particularly suitable as a formal reference to describe the logic 
at work in mathematics. 

 The study of the language practices of mathematicians. In this way, the presentation of the 
logical concepts is rooted in mathematical activity taking into account how they are expressed 
in mathematical discourse, using predicate logic to uncover some complex and sometimes 
ambiguous formulations that are yet a part of the language practices of mathematicians, 
widely imported in the mathematics classroom. 

 The research in mathematics education. In this way, the presentation of the logical concepts 
is rooted in mathematics classroom, taking into account the difficulties that the complexity of 
these notions can bring for students. 

In this reference, the components of mathematical language are shown, beginning with the primordial 
notions of proposition and variable. Then for the connectives AND and OR, implication, negation, 
quantifiers, I have consistently adopted the three approaches mentioned2. Although the focus is on 
the language, reasoning is of course not absent from the reference. A difficulty for pupils and students 
is to distinguish, in a text of a proof, mathematical propositions concerning mathematical objects, and 
parts of the text which allow to follow the progression of reasoning, such as variable introductions, 
or justification of an inference. The confusion between implication and deduction falls under this type 
of difficulty. 

The example of quantifiers in the reference 
As announced, the reference contains first a presentation of logical concepts from mathematical logic. 
Predicate logic uses two quantifiers: applied to a variable x, and from a proposition P, the universal 
quantifier allows to obtain the proposition ∀x P, and the existential quantifier allows to obtain the 
proposition ∃x P (description of the syntactic aspect of the quantifiers: they operate on a variable 
and a proposition to build a new proposition). 

Let E be a set in which the variable x can take values. The proposition ∀x P[x] is true3 when for any 
element a of E, the proposition P[a] is true. The proposition ∃x P[x] is true when there is at least one 
element a of E such that P[a] is true (description of the semantic aspect of quantifiers: truth conditions 
of a quantified proposition). Quantifiers have an important effect on the variables: a variable that is 
in the scope of a quantifier is a dummy variable in the quantified proposition, and this proposition 
does not give information on the object designated by the variable, but on the set in which it can take 
its values. 

Some important results on quantified propositions may be established by a semantic way, using the 
sense, as well known equivalence between NOT(∀x P[x]) and ∃x NOT(P[x]), or the fact that if ∃y 
                                                 
2 For each of these themes I have summarized the mathematical content, the language related issues, and research findings 
on student difficulties. 
3 This semantic characterization can be described as “naive” because I do not strictly define what “being true” means. 
But of course, this characterization may be more rigorous with the notion of satisfaction of a formula in a model introduced 
by A. Tarski. 



∀x P[x,y]  is true, then ∀x ∃y P[x,y] is true. These results are then used in syntactic manipulations, 
independent of the sense, in the same way we manipulate algebraic equalities. 

In mathematical language, the quantifiers are a way to express the quantification, but there are many 
others. We can see this through some examples of mathematical propositions4: 

1) Le carré d’un nombre réel est positif (The square of a real number is positive) 
2) Le carré d’un nombre réel est toujours positif (The square of a real number is always positive) 
3) Tous les réels ont un carré positif (The square of any real number is positive 
4) Tout réel x est tel que x2 est positif (Any real number x is so that x2 is positive) 
5) Pour tout réel x, x2 est un réel positif (For all real number x, x2 is a positive real number) 
6) ∀x∈ℝ, x2≥0 

They are several formulations of the same property, but universal quantification is expressed very 
differently. In proposition (1), quantification is implicit, implied by the word un (translated with a). 
We frequently use the indefinite article un to mark a universal quantification, in everyday language 
as in mathematics. But un is also sometimes used to mark an existential quantification, which is 
obviously confusing! Sometimes, the two usages coexist in the same proposition, such as in “un réel 
positif possède une racine carrée” (“any positive real number has a square root”, in English, the first 
un is rather translated with any and the second une is rather translated with a, and there is no 
confusion). In proposition (2), the adverb toujours (always) is used to explicitly mark this universal 
quantification, as the word tous (any) in proposition (3). Propositions (4) to (6) are distinct from the 
first by the use of a variable. Furthermore, one can identify in each of these propositions an expression 
which express the quantification (here universal quantification) and which has the property that it can 
be separated from the proposition “x2 is positive” (or equivalent formulation). Such expression works 
as quantifiers of mathematical logic, and I therefore also calls them quantifier. 

Finally, we saw that in the language practices of mathematicians, quantification can be implicit or 
explicit, and in the second case, possibly marked by a quantifier which is an expression observing 
syntactic rules of use. Propositions (4) and (5) may seem closer to propositions (1) to (3) as they are 
formulated “with words” contrary to the proposition (6) which only uses mathematical symbols, and 
that may seems much more formal. I would like to stress that such a vision hide formalization still 
existing in these propositions, in the sense of a shaping according to certain rules, even if that 
formalization is not accompanied by a symbolization. 

I will conclude by mentioning some of the difficulties of high school students or senior students in 
related to the use of quantifiers. First, the implicit quantifications are not always perceived by 
students. The case of the universal quantification associated with the implications and the formulation 
if ... then ... is highlighted for a long time (Durand-Guerrier, 1999). Quantification is often 
encapsulated in stiffened structures (for example, “un is as big as we want by taking n big enough”) 
that the expert mathematician knows how to reformulate by explaining the quantifications, but these 
reformulations in more formal language tend to disappear from the language used in high school, and 

                                                 
4 I give the examples in French first because I will explain some difficulties linked to the word un which is used in this 
language in different meanings, and which is translated in English with one, with a, with the… Commentaries following 
the examples refer to the French expression. 



are a source of difficulty when students meet them in higher education. Another difficulty concerns 
the failure to take the order of quantifiers into account when there is an alternation. We know that 
students have rather an interpretation for all... there exists... even though they are facing a proposition 
there exists... for all... (Dubinsky & Yiparaki, 2000). Furthermore, Chellougui (2004) showed student 
difficulties with the use of an existential proposition. In a proof text, there is generally a confusion 
between the affirmation of the existence of an element checking a property, and the act which consist 
to consider it and give it a name. Likewise, mathematicians do not get trapped by the “dependence 
rule” in the statements for all... there exists...  and identify easily this error in a student production. 
However, they do not necessarily explain this error to the students by linking it to formal rules of 
manipulation of variables and quantifiers (Durand-Guerrier & Arsac, 2005). 

Examples of the treatment of quantifiers in school textbooks 
The reference I have developed allows an analysis of resources available to teachers highlighting 
sensitive issues that need to be paid attention to. I will then conclude with an analysis of two extracts 
from school textbooks. 

The reintroduction of logical concepts in the syllabuses had an effect on the textbooks: those 
published in 2010 for the first class of high-school (15 years old students) all contained passages 
identified as speaking of these concepts. Nine textbooks out of ten have chosen to dedicate a few 
pages (between one page and nine pages) to notions of logic, usually located at the beginning or at 
the end of the textbook (only one textbook does it in a disseminated way). Moreover, they all contain 
exercises with a stamp “logic” (from ten to fifty-four exercises in the studied textbooks). 

In the eight textbooks that deal with quantifiers, the letters are introduced by examples. Seven of the 
eight textbooks give only examples of true quantified proposition, and this choice eliminate the 
syntactic aspect of quantifiers: quantifiers are used only to affirm something, there isn’t the idea of a 
proposition built with a quantifier that one could wonder whether it is true or false. 

The textbook Indice gives the example of the proposition “le carré d’un réel est positif” (“the square 
of a real number is positive”) and states that “cette proposition est vraie quel que soit le nombre réel” 
(“this statement is true for all real numbers”). The authors of this textbook probably want to 
emphasize on the various possible meanings of the word un, but do not offer at the same time an 
example of the meaning as existential quantification. Moreover, to know that the meaning of un in 
this proposition is a universal quantification, it is necessary… to know that the universal proposition 
is true! Mathematical knowledge is therefore needed to decide between the two possible meanings of 
the word un, which calls for caution when using this word in a context where student knowledge is 
potentially fragile. Let’s go back now on the comment “this statement is true for all real numbers”. It 
makes no sense to say that the proposition “the square of a real number is positive”, which is 
equivalent to “for all real x, the square of x is positive” is true for all real numbers, since the variable 
x is dummy in this proposition. The proposition referred to in this commentary is not the quantified 
one, but the not quantified proposition “the square of x is positive”. Finally, there is a confusion 
between the use of “quel que soit” (“for all”) to simply mark the universal quantification, and its use 
to assure that this universal proposition is true. 

Now let’s look at an example of exercise, taken from the textbook Repères, but it is an exercise that 
is found in many textbooks. Students must “complete the sentences (for example “… real number 



x… f(x)>0”) using either for all… we have… or there exists… such that…” from the graphical 
representation of the function f. Note first that the application is not explicitly to complete so that 
sentences are true! Furthermore, the instruction "complete using either… or…” suggests that each 
time only one of the both quantifiers is correct. Yet, when the proposition “for all x P[x]” is true, the 
proposition “there exists x such that P[x]” is also true, so when it is possible to complete with the 
universal quantifier, it is also possible to complete with the existential quantifier. In everyday 
language, we respect the principle of maximum information, according to which we give to our 
interlocutor all information in our possession. So, if I say “on my holidays, it rained some days”, I 
say in the same time that it did not rain every day. The practice of this principle leads us in this 
exercise to complete naturally with the universal quantifier when possible. However, the notion of 
truth of a proposition will be contradicted by saying that using the existential quantifier is a mistake, 
because in mathematics, when the proposition “for all x P[x]” is true, it is not “more true” than the 
proposition “there exists x such that P[x]”. Some students, however, adopt this position, and we can 
doubt position of the authors of the teacher's textbook who offers as a correction only the universal 
quantifier when it is possible. 

Conclusion 
I presented in this paper a methodological tool, a reference to study the teaching of logic. It is of 
course to be completed, to be improved, both from an epistemological and from a didactic point of 
view. Important work remains in particular on the concept of proposition, generally not made explicit 
in teaching, and on the notion of variable (didactic of algebra is very concerned about the status of 
the letters, but it seems to me that a logical point of view on the concept of variable, such as taking 
in Epp, 2011, or as I suggested in Mesnil, 2014, is more unusual), especially to identify students 
difficulties with these concepts that can be related to their epistemological complexity, or their use in 
the classroom. 

Moreover, I have used for the moment this reference to analyze the syllabuses and textbooks, and a 
training for teachers who offers a similar approach of notions of logic. But it could also be used to 
study the practices of teachers, students’ activity and conceptions. It would be particularly interesting 
to compare the effect of knowledge in mathematical logic that teachers have or have not. 
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In this paper, we investigate the cognitive and affective task-specific experiences of Odysseus, a 
mathematics undergraduate, as he attempts to answer to an exam-type proving question: the 
convergent-bounded question. The concurrent investigation of Odysseus proving strategies and his 
basic emotions appears to help in gaining deeper understanding about his proving experience. 

Keywords: Proof, proving strategies, emotions, examinations, thinking styles. 

Cognitive and affective aspects of proving 
The notion of proof lies at the heart of modern mathematics (Thurston, 1994) and of mathematics 
education research (Furinghetti & Morselli, 2009; Reid & Knipping, 2010). In this paper, we focus 
on the cognitive and affective task-specific proving experiences (drawing upon Moutsios-Rentzos, 
2015). Researchers have identified different proving strategies that the students employ when facing 
with a proving task (Weber, 2005), while others have investigated the type of the argument utilised 
in a proof (Inglis & Mejia-Ramos, 2008). Considering the affective aspects of proving, famous 
mathematicians stress the pleasure that a proof brings (for example, G. H. Hardy; Hoffman, 1998), 
which is in contrast with the reality as pictured by mathematics undergraduates (Rodd, 2002) and 
with the gloomy in-class mathematics experience, with 16-year old students reporting that “I hate 
mathematics and I would rather die” (Brown, Brown & Bibby, 2008, p. 10). 

Emotions “give information about progress, or ability to progress, relative to goal states and anti-
goal states” (Skemp, 1979, p. 18) set by an individual. The pleasure that derives from our dealing 
with a task is linked with our concentrating our cognitive efforts to solve it (Changeux & Connes, 
1998). It is argued that research should attempt to co-consider cognitive and affective aspects of a 
proving experience (Furinghetti & Morselli, 2009). Moreover, we draw upon the idea that a theory 
may act as a meaningful attractor (Moutsios-Rentzos, 2015) of the different methodological-
theoretical perspectives investigating a phenomenon. Furthermore, since the assessment process is 
strongly linked with the learning outcome of any educational system (Boud & Falchikov, 2007), we 
focused on the exam-type proving questions that all mathematics undergraduates undertake. 
Considering that being successful in exams is a highly goal-oriented activity, we adopt a theory 
developed for such experiences which also addresses both cognitive and affective aspects: Skemp’s 
(1979) theory of social survival and internal consistency. Consequently, we address the question: 
What are the affective and cognitive task-specific experiences of a mathematics undergraduate as 
he attempts to produce an exam-acceptable answers in an exam-type proving question? 

Theoretical – methodological approach 
Skemp (1979) theorised that the learners survive both socially and internally. They survive socially 
by meeting the socially accepted, (usually externally) set criteria of a task (for example, exams), 
whilst they survive internally in the sense of achieving consistency within their internal reality (for 



example, by satisfying their inner need for being creative or for identifying and following the rules), 
which crucially includes both cognitive and affective aspects. Hence, considering that producing 
exam-acceptable answers is essentially a goal-oriented activity, Skemp’s theory is employed to give 
meaning to both aspects of the investigated phenomenon: proving strategies and basic emotions.  

The students’ proving strategies refer to the students’ answering a proving question, rather than 
reflecting upon an answer. The A-B-Δ proving strategy classification scheme (Moutsios-Rentzos, 
2009) was utilised to identify the students’ qualitatively different proving strategies when they deal 
with exam-type questions. At the crux of the scheme lies the potential tension between proving to 
oneself and proving to others (respectively, ascertaining and persuading; Harel & Sowder, 1998). 
The scheme has been developed explicitly for exam-type proving questions (see Moutsios-Rentzos 
& Simpson, 2011), corresponding to well-known classifications, such as Weber’s (2005) syntactic–
semantic–procedural proof constructions, or the deep–surface–achieving/strategic approaches 
(Zhang, Sternberg & Rayner, 2012). Five strategies are identified organised in three types. In the α-
type strategies (A & ΔΑ), the students demonstrate a need to first investigate whether the given 
statement makes sense. Once an ascertaining argument has been chosen, a persuading argument is 
employed, thus potentially separating ascertaining from persuading. In an A (alpha) strategy, the 
ascertaining argument is appropriately ‘mathematised’ to serve as a persuading argument, whereas 
in a ΔΑ (delta-alpha) strategy persuading appears to constitute a completely new process. In the β-
type (B & ΔB), the students immediately commence the persuading process, without pondering 
whether the given statement is meaningful to them or not. In a B (beta) strategy, the students 
attempt to recall either the proof of the statement or a proof that may serve as a template for proving 
the given statement, whilst in a ΔB (delta-beta) strategy, the students concentrate their efforts on 
producing symbolic mathematical expressions to construct an exam acceptable proof. Finally, in a 
δ-type (ΔΔ; delta-delta), the focus is on producing a proof that would get the maximum grade in 
exams, through symbolic mathematical expressions based on a variety of means (including, 
theorems, images and examples). The students may investigate whether the given statement makes 
sense, but only for their facilitating their mathematical expressions producing pursuit. 

In this study, emotions refer to a state of alertness that mobilises the human body with respect to a 
stimulus, including psychological and neurophysiological effects (Oatley & Jenkins, 1996). These 
emotions are clearly differentiated from the mentally processed, socially situated, affective reactions 
towards a proving situation (Hannula, 2012). Ekman identifies seven evolutionally derived basic 
emotions that are universally manifested in the humans’ facial expressions (Ekman & Friesen, 
1978): sadness, anger, contempt, fear, happiness, disgust, surprise. Thus, we attempt to map the 
reflexive affective exam-type proving experiences. Certain combinations of micro-movements of 
the facial muscles are linked with specific basic emotions as described in the ‘Emotional Facial 
Action Coding System’ (EMFACS; Ekman, Irwin & Rosenberg, 1994). Considering emotions and 
conviction, a positive affective state is linked with more superficial and/or authority-based 
judgements, whilst a negative/neutral affective state is linked with more thorough judgements, 
reducing the effect of authority (Oatley & Jenkins, 1996). Nevertheless, these studies mainly refer to 
judgements, rather than to multifaceted mental productions such as proof. 

Overall, in this study, we discuss the proving cognitive and affective experiences of a mathematics 
undergraduate, Odysseus, as he deals with the exam-type proving question “Let a sequence (an)ℝ, 



nℕ. Prove that if (an) is convergent, then (an) is bounded” (‘convergent-bounded’). In Moutsios-
Rentzos (2009), it was posited that the students’ general thinking preferences reveal aspects of their 
inner realities, thus affecting their initial strategy choices. Their back-up strategy choices indicate 
that the ineffectiveness of the initial attack lead them to re-evaluate the given situation and to 
choose a strategy that more appropriately fits with this new experience of the situation. In Moutsios-
Rentzos and Kalozoumi-Paizi (2014), a small part of those data (of Odysseus) was subjected to 
additional analyses to illustrate the advantages of the synchronous mapping of cognitive and 
affective experiences as he dealt with six proving questions. In this study, we concentrate on only 
one task that Odysseus dealt with to elaborate on his affective-cognitive task-specific experiences. 

Odysseus proving experience of the ‘convergent-bounded’ question 
Odysseus’ proving strategies were identified through video-recorded clinical interviews (in the 
sense of Ginsburg, 1981), in which he was asked to produce an exam-appropriate proof and to think 
aloud during that process. Since the focus was on the choice of means, Odysseus would be provided 
with any mathematical information (including definitions, figures) he would need (in line with 
Weber, 2001). During the think aloud process, his emotions were identified through the video-taped 
proof productions by an EMFACS trained and certified researcher. Following Ekman, all the 
emotions and emotional blends (more than one emotion in a single instance) were interpreted within 
the context they occurred. Finally, the Odysseus’ perceived internal and external reality is reported 
(by identifying his mathematics attainment, thinking dispositions and understanding of exam-
acceptable answer) to gain deeper understanding of the findings. 

Odysseus’ experienced realities: thinking styles and exam views 

Odysseus was an above average attaining, 2nd-year student, attending a 4-year BSc-equivalent 
degree in Mathematics in a Greek University. Considering Odysseus’ broader experienced internal 
or social realities, his thinking styles profile (i.e. his broad thinking dispositions; Sternberg, 1999) 
was identified as ‘ground breaking’ (expected to prefer creative, original and non-prioritised 
thinking; Moutsios-Rentzos, 2015). Considering his views about exams and exam-acceptable 
answers, Odysseus concentrated mainly on the peripheral aspects of their answer: the amount of 
information, the language used, the structure of the solution, and the aesthetics of the presented 
proof. Considering ‘amount of information’, he wondered: “Hmm ... this is one of my greatest 
problems when I write down a solution ... should I ... Do I have to prove this? […] and when I know 
something and it doesn’t have a name whether I should describe it ...”. Considering ‘language’ and 
‘structure’, Odysseus noted that an exam-type proof should be axiomatically based, written 
symbolically in a linear form, since a proof presented this way was considered to affect positively 
his grade. Furthermore, he was particularly concerned about the ‘aesthetics’ of the presented proof, 
stressing: “Presentation is very important ... that is why I use draft first [...] If I had more time, I 
would spend 10 or 15 minutes on figuring out how exactly I would present it ”. 

Odysseus’ Alpha (A) proving strategy to the convergent-bounded question 

In the following excerpt, Odysseus employs an Alpha strategy to deal with the ‘convergent-
bounded’ question. He reads the question and then he tries to produce a ‘draft’ solution. Odysseus 
tries to ‘reconstruct’ the definition, ‘giving meaning’ (Pinto, 1998) to his concept image.  



Odysseus: I’ll ‘create’ it ... I usually don’t remember the formulas ... I ‘create’ them ... but ...  

Researcher: Do you want me to tell you the definition? 

Odysseus: Err ... in exams, if this [the interview] is a simulation [of exams] ... I would not 
remember it [the definition] ... I would try to ‘create’ it ... 

Moreover, Odysseus draws upon his concept image to generate hypotheses and to validate these 
hypotheses. He conceptualises convergence as something ‘constraining’, evident both in his verbal 
and non-verbal communication, which suggests the meaningful interplay between concept image 
and concept definition (typical of an Alpha strategy).  

Odysseus: ... well these ε and n0 must have a relationship ... for every ε I should be able to 
find a n0 ... not the way I have put it ... [many gestures].  

Researcher: Do you say that based on your memory? Or ...? 

Odysseus: No! I don’t say that based on my memory, I say it ‘logically’ ... I mean ... I say for 
every n>n0 there exists ε>0 so that |an-an0|<ε … this is what I have written ... [He 
makes gestures as he talks that ‘show’ what he talks about.] … But this should be 
true for everything ... the ε ... there is a an infinite number of ε that are suitable 
...this is true ... therefore I need something more ‘constraining’ ... therefore this 
[the writings] does not describe convergence, because convergence is something 
that is constraining ... it converges [gestures] to a specific number... 

Furthermore, Odysseus’ images are not pictorial, but ‘fuzzy’ and he likes to call them ‘thoughts’. 

Researcher: Do you have a specific ‘image’ in your mind? 

Odysseus: No, I don’t have it as a picture. I have it as ... I would call it ‘thought’... 

Once Odysseus is satisfied with the definitions of the mathematical notions included in the 
statement he is asked to prove, he focuses on proving it (see Figure 1, definition). For Odysseus, it 
is crucial that the statement that he wants to prove is what he terms as ‘logical’; that it makes sense. 
He needs to be convinced that the statement makes sense, before he tries “to solve it”.  

Odysseus: Convergent ... belongs to ℝ ... ok ... it begins from an a0 and it goes to something 
else [Gestures] ... therefore ... logically ... if it is let’s say in a straight line ... it 
would be from here ... here there would be something that ‘blocks’ it ... unless it 
goes up and down ... but since it converges somewhere it will reach somewhere 
that ... it might follow a different route that might go like this or like that ... I don’t 
mind ... it will reach here ... the route has an end ... and therefore ... it is ‘logical’ 
that it is bounded ... and so we will try to solve it. 

In this process, Odysseus draws upon his concept image, which is evident from his gestures and 
figures: the straight line (‘a’, Figure 1) that denotes the real numbers and the boundaries he draws 
(on the left and right of this line; ‘b’, Figure 1); the curved lines (‘c’, Figure 1) denote the potential 
‘routes’ the sequence might follow from ‘ao’ (the first term of an) to ‘a’ (the limit of an). 
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Figure 1: Odysseus’ ‘draft’ definition (I) and answer (II) 

Odysseus builds on the above to ‘solve’ the question. He looks at the definition of the convergent 
sequence, expands the inequality using the property of the absolute value, reaches a double 
inequality and stops to explain his rationale: 

Odysseus: […] Until n0 it is a finite set ... so it would have to be a finite segment [He shows 
it on the curved lines] ... from λ to κ [gestures] ... and after that [n0] we have 
shown that they are all under a+ε for every ε I have chosen, right? ... so we have a 
big boundary that reaches to n0 and after that all will be bounded somewhere else 
... they could be here [he shows segments with his hands] ... or there ... or inside 
.... so let this be η and this be ζ [Figure 1] and we will have that the minimum ... 
it’s not still a proof... we will have that the minimum of μ and ζ … no value will 
be below this [minimum] ... where μ is the minimum of ai, i from 1 to n0 ... and M 
is the maximum of ai ... from these two [μ and ζ] it will be the minimum value ... 
it cannot be less than this... similarly for the maximum ... now what I have to do is 
to write this mathematically, but for me it is already finished... 

Odysseus’ argument convinced him of the ‘truth’ of the statement he is asked to prove. As he 
presents his argument, Odysseus draws upon his concept image using gestures to generate and 
validate his argument. For example, for validation, Odysseus is certain of the validity of this ‘proof’: 
for him “it’s already finished”. His certainty appears to derive from his image manipulation and his 
gestures: at first, he notes that his argument “is not still a proof”, but subsequently he claims that “it 
cannot be less than this”. At the same time, he acknowledges that this argument cannot be presented 
as a proof and that he needs “to write this mathematically”. His mathematised argument is close to 
the original argument and though the ascertaining argument draws upon his concept image, his 
mathematised argument is a ‘translation’ to a mathematically ‘acceptable’ language. 

Finally, it is noted that, Odysseus’ ‘formal’ proof was carefully structured like a textbook proof 
based in axioms and definitions (unlike the less linear, based on image manipulation ‘draft’ proof). 



Emotions in proving according to EMFACS 
Time Emotions 

(EMFACS; Ekman et al, 1994) 
Excerpt Answering 

phase 
‘Draft’ answer 
12:59:84 Sadness Researcher: So would you like to give it a couple of tries first 

and then ... 
Odysseus: Yes 

Definition 
construction 

14:27:00 Sadness-Anger Odysseus: But this should be true for everything ... the ε ... 
14:27:60 Sadness-Contempt 
14:56:64 Fear Researcher: Do you have a specific ‘image’ in your mind? 

Odysseus: No, I don’t have it as a picture. I have it as ... I 
would call it ‘thought’... 

14:56:80 Happy -Fear 
14:57:16 Happy  
17:11:03 Happy  Odysseus: and therefore ... it is ‘logical’ that it is bounded 

... and so we will try to solve it 
‘Truth’ 
investigation 

21:54:24 Sadness-Anger Odysseus: more or less I am done […] How much time do I 
have left? 

‘Formal’ answer 
36:50:80 Sadness-Anger  Odysseus: How much time do I have left? Beginning 
37:04:88 Contempt Odysseus: …and in exams there are many similar problems 

[such as time constraints] 
39:22:72 Contempt-Anger  Odysseus: I’ll write it in a different way … it is not 

essentially different 
Writing-up 

44:03:24 Contempt-Anger Odysseus: I’ll write it down differently [instead of writing 
down two more lemmas] 

44:29:20 Happy-Contempt  Odysseus: In mathematics if you can avoid too many 
variables it is better, because … in the end you 
get lost… 

45:09:96 Contempt-Sadness  Odysseus: Because I consider it [a theorem] as given… it 
might be silly of me, but .. 

Figure 2: Odysseus, emotional journey to proving the ‘convergent-bounded’ task 

The results of the EMFACS analysis are outlined in Figure 2 along with the corresponding excerpt 
and answering phase. Odysseus’ positive emotions are few, mainly linked with his mathematical 
ideas: when he describes them as ‘thoughts’ or when they make sense. His negative emotions or 
emotional blends are predominantly linked with his attempting to meet the requirements of an exam 
situation: time constraints, appearance, amount of information included in the formal answer. In line 
with the rationale of differentiating amongst different proving strategies, Odysseus’ emotions can be 
differentiated between internally referenced (linked with his inner reality; Skemp, 1979) or 
externally referenced (linked with the perceived by Odysseus social reality of the given situation, 
including the exam-status of the given questions). For example, Odysseus in his ‘draft answer’ 
manifested an internally referenced ‘happiness’ emotion (17 min) when convinced of the truth of the 
statement (ascertaining): “It makes sense to me that it is bounded and so I’ll try [to prove] it”. In 
contrast, in the end of his ‘draft answer’, when he completed the persuading process, he expressed 
an externally referenced sadness-anger blend (21 min), because the moment he realised that “more 
or less I am done”, he almost immediately wondered “How much time do I have left?”. His 
emotional clash is in line with his cognitive clash due to his tendency for choosing more α-type 
strategies (potentially differentiating ascertaining from persuading), linked with his ground breaking 
thinking styles profile (Moutsios-Rentzos, 2009). 



Concluding remarks 
In this study, we investigated the proving strategy and the emotions of a mathematics undergraduate, 
Odysseus, as he dealt with an exam-type question. Skemp’s theory of internal consistency and social 
survival helped in gaining deeper understanding of the concurrent phenomena. A complex proving 
reality was revealed, diversely affecting Odysseus’ experiencing a need for constructing a proof 
(Zaslavsky, Nickerson, Stylianides, Kidron & Winicki-Landman, 2012). His negative emotions 
were linked with the externally experienced communication of the answer, whereas his positive 
emotions were linked with the internally referenced success in finding a proving argument. 
Emotions are non-verbal, facially expressed reflexes, indicating Odysseus’ emotionally interiorising 
of his previous proving experiences. The presented approach complements existing studies based on 
language and/or introspection (Furinghetti & Morselli, 2009), by revealing the students’ real-time 
emotional states. It is stressed that the identified emotions are affected by the thinking aloud 
protocol and, thus, a current project is focussed on identifying the students’ emotions as they prove 
without thinking aloud and on their evaluating written proofs. Overall, the proposed line of research 
may help in designing pedagogies reinforcing the positive affective aspects of proving, thus 
promoting the students’ deeper engagement with proving, which is expected to facilitate their 
developing a fully-fledged internal need for proof. 
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Play and pre-proving in the primary classroom 
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This report focuses on a research study the aim of which is to investigate the activity of proving as 
constituted in a Cypriot classroom for 12-year-old students. By drawing on Cultural Historical 
Activity Theory, this study explores the way the teacher is working with the students to foreground 
mathematical argumentation. Analyses of video-recorded whole class discussions show how 
explaining and exploring provide a key pathway for the development of proving. We refer to these 
developments as pre-proving. However, inherent contradictions within explaining and exploring 
hinder the constitution of proving in the classroom.  

Keywords: Proof, exploration, explanation, play, CHAT  

Introduction 
It is now acknowledged that proof and proving should become part of students’ experiences 
throughout their schooling (Hanna, 2000, Yackel and Hanna, 2003, Stylianides, 2007). However, 
secondary school students as well as undergraduate students face difficulties when giving formal 
mathematical arguments. At the same time, research that shows how upper primary school students 
approach and construct proofs is still limited (Stylianou et al, 2009). It is also argued that 
argumentation, explanation and justification provide a foundation for further work on developing 
deductive reasoning and the transition to a more formal mathematical study in which proof and 
proving are central (Yackel and Hanna, 2003). But what is meant by proof and proving? 
Mathematical argumentation is a discursive activity based on reasoning that supports or disproves 
an assertion and includes the exploration process, the formulation of hypotheses and conjectures, 
explaining and justifying the steps towards the outcome and the proof of the statement. Thus, proof 
is at the core of mathematical argumentation, as a justification, an explanation and a valid argument.  

Research has responded to the need to conceptualize proof and proving in such a way that it can be 
applied not only to older students but also to those in elementary school (Stylianides, 2007). The 
challenge remains however to understand how proof and proving is shaped by the practices in the 
mathematics classroom. This is in accordance with Herbst and Balacheff (2009), who argue that the 
focus should not only be on proof as the culminating stage of mathematical activity, but also on the 
proving process and how this is shaped by the classroom environment. Thus, in understanding how 
proving is constituted in the classroom, a wider network of ideas is required as these ideas no doubt 
have an impact on how proof in the narrow sense is constituted.   

To address this issue, we refer to pre-proving, that aspect of mathematical reasoning that might 
nurture proving. What are the roots of proving? Given that proof is both a justification and an 
explanation, it can be argued that emphasis should be placed in these two aspects of mathematical 
reasoning. In considering those functions of proof that are considered important for school 
mathematics (Hanna, 2000), evidence has been reported that the establishment of 
sociomathematical norms (Yackel and Cobb, 1996) for explanation and justification (Yackel and 
Hanna, 2003) might foster deductive reasoning in the classroom. That is, describing, conveying and 
exchanging ideas through the act of communication, explaining and justifying statements influences 



the appearance of proof and the transition from unsophisticated empirical arguments to the level of 
sophistication that might be expected at the tertiary level. It is through exploration and investigation 
that all these elements surface and develop in the process of proving. Thus, when discussing the 
roots of proving, exploration, which activates intuition and encourages thinking, constitutes another 
notion that should be taken into consideration. Thus, pre-proving refers to those elements that direct 
mathematical reasoning towards the ultimate goal of formal proving; that is exploration, 
explanation, justification and communication. In the social environment of the classroom, where 
hypothesizing, explaining and justifying conjectures is encouraged, the tools and tasks used, the 
rules of the classroom, the way the students work together, the way the teacher negotiates meanings 
and other external factors all interact, interrelate and influence each other in forming classroom 
activity. The purpose of this study is to explore pre-proving and proving in the elementary 
mathematics classroom and the way the structuring resources of the classroom’s setting shape this 
process. 

CHAT based theoretical constructs   
As this study is exploring the various forces that impact on the activity of proving, Cultural 
Historical Activity Theory (CHAT) is being employed as a descriptive and analytical tool alongside 
collaborative task design (a means of gaining access to the teacher’s objectives), to capture the 
interaction of different levels, such as the actions of teachers, students and the wider field as 
evidenced in curricula and research documentation. The analysis and discussion in this paper draws 
upon the following CHAT perspectives: (i) the object of the activity and (ii) the notion of 
contradictions. Initially, the unit of analysis in CHAT is an activity, a “coherent, stable, relatively 
long term endeavor directed to an articulated or identifiable goal or object” (Rochelle, 1998, pp.84). 
The object of a collective activity is something that is constantly in transition and under 
construction, has both a material entity and is socially constructed and its formation and 
transformation depends on the motivation and actions of the subject indicating that it proves 
challenging to define it. Among the basic principles of CHAT is the notion of contradictions. 
Contradictions are imbalances, ruptures and problems that occur within and between components of 
the activity system, between different developmental phases of a single activity, or between 
different activities. These systemic tensions lead to four levels of contradictions (Engeström, 1987). 
This conceptualization, should be differentiated from mere problems or disorienting dilemmas from 
the subject-only perspective as they are more deeply rooted in a sociohistorical context (Engeström, 
2001). Contradictions are important because they may lead to transformations and expansions of the 
system and thus become tools for supporting motivation and learning. This paper focuses on a 
primary contradiction on the teacher’s object. The primary contradiction can be identified by 
focusing on any of the elements of the activity system (subject, tools, object, rules, community, 
division of labor). For instance, within the mathematics classroom, the clash between the teacher’s 
goal of teaching a specific content of the mathematics curriculum and her need to continually 
manage student behavior and maintain focus, leads to a primary contradiction within the system’s 
subject (the teacher). 



Data collection and analysis  
This study was conducted in a year 6 classroom in a primary school in Cyprus. Apart from the 
researcher, the participants were the teacher, a Deputy Principal at the school who endorses the 
integration of technology in teaching mathematics, and 22 students (11-12 years old) of mixed 
abilities. Even though using computers was part of the classroom’s routine, the students were not 
familiar with dynamic geometry environments, DGEs. The data collection process as relevant to this 
paper included video data from the classroom observations and field notes. The content of the 
curriculum covered during the classroom observations was the area of triangles, and the 
circumference and the area of circle. The overall process of analysis of the collected data was one of 
progressive focusing. According to Stake (1981, pp.1), progressive focusing is “accomplished in 
multiple stages: first observation of the site, then further inquiry, beginning to focus on relevant 
issues, and then seeking to explain”.  The systematization of the data led to the evolution of two 
broad activities: (i) the activity of exploration including the exploration of mathematical situations, 
exploration for supporting mathematical connections and exploration of the DGE and (ii) the 
activity of explanation which focuses on clarifying aspects of one’s mathematical thinking to others, 
and sometimes justifying for them the validity of a statement. These activities were then interpreted 
through the lens of CHAT, by generating the activity systems of both exploration and explanation. 
Achieving this also made possible the identification of tensions.  

There is insufficient scope in this short paper to consider in detail these various levels and so this 
specific study focuses on illustrative episodes, which were generated during classroom discussion, 
to show one aspect of how the teacher was working with the students to foreground mathematical 
argumentation. To elaborate more, while the teacher was endeavoring to provide opportunities for 
exploration and investigation, it was observed that the teacher would sometimes interrupt this 
exploration. This interruption was often followed by the teacher either translating students’ 
exploration as playing and/or was providing the step that needed to be followed. This paper focuses 
on the teacher using the word ‘play’ as part of the activity of exploration. The relevance of this 
emphasis of the paper lies in the connection that exists between exploration and play. That is, 
analyzing ‘play’ provides important information in portraying the activity of exploration and 
identifying the way this might influence the activity of explanation, and thus, shed light on how 
proving is constituted in the classroom.   

Results  
This section provides a chronological overview of the protocols that illustrate the teacher 
intervening in the classroom by using the word ‘play’. 

Protocol 1  

On the first lesson related with the area of triangles, the students are expected to say the area of 
rectangles presented on the interactive whiteboard and make explicit the way they worked towards 
the answer. 

Teacher: 12 again … but why are your playing? We are not doing something on the 
computers now. Stop. 



In this protocol, the teacher is relating exploration of DGE with ‘play’. That is, exploration was 
interpreted by the teacher as ‘playing’ instead of learning.  

Protocol 2 

After demonstrating on the interactive whiteboard how to construct a rectangle in which the triangle 
is inscribed, the students worked in pairs and constructed rectangles on a DGE. When they finished, 
the teacher asked: 

Teacher: Now that you constructed the rectangles, can they help you to find the area of the 
triangles? 

Students: Yes. 

Teacher: What is the area of triangle PRS? 

Student1: 3. 

At this point, the teacher interrupted the classroom discussion as she was concerned with a student 
‘playing’ with the computers. 

Teacher: Student2 you are still talking. You are playing all the time and I will move you 
from the computers.  

In this protocol, the teacher is relating exploration of DGE with ‘play’. That is, exploration was 
interpreted by the teacher as ‘playing’ instead of learning. 

Protocol 3 

On the third lesson, after revising the mathematical formula for the area of triangles, the students 
would construct triangles with specific areas on the DGE. Before the teacher demonstrated to the 
class the steps followed so as to construct a triangle on the DGE, she said: 

Teacher: Now we will go back to the DGE to play with its features. I will give you 
instructions and you will construct … to see how it operates and then we will 
move on to a game where you will play in pairs on the computers online.  

In this protocol, the teacher relates both exploration of the DGE, and playing a game on the 
computer with ‘play’, something encouraging and constructive. 

Protocol 4 

On the first lesson related with circle, after defining circle, the class moved to the computers. Before 
engaging in tasks so as to explore mathematical relationships related with circle, the teacher 
introduced the class to a new DGE. Eventually, the teacher, referring to a circle presented on the 
DGE made the following comment: 

Teacher: I can make it bigger or smaller. Look what we will do next. We will play later. 
Construct a circle and move it. Click on the center. Did you all do it? Nice. Stop.  

This protocol focuses on the teacher relating exploration of DGE to ‘play’, something that has a 
positive value. 



Protocol 5 

On the second lesson, after revising the definition of a circle, the teacher asked the students to tell 
her the mathematical relationships explored the day before. At this point, several students could not 
give an answer. The following comment comprises the teacher’s interpretation of the hesitation 
these students had in participating in the classroom discussion:  

Teacher: You shouldn’t only play but concentrate and listen in the classroom.  

In this protocol, the teacher is relating exploration of DGE with ‘play’. That is, exploration was 
interpreted by the teacher as ‘playing’ instead of learning.  

Protocol 6 

In the following part of the lesson, the class engaged in discussing ways in calculating the area of 
circle. Among the students’ ideas was to count the squares inside a circle. However, it was 
concluded that this could prove difficult to achieve. Other students hypothesized that the area might 
be equal to circumference times radius. Others said that the area could be equal to circumference 
times diameter. The teacher encouraged them to investigate and test these hypotheses while 
exploring a task on a DGE, by making the following comment: 

Teacher: I will leave you for a while to play.  

In this protocol, the teacher is relating exploration of DGE with ‘play’. That is, exploration is 
translated as something encouraging and constructive. 

Protocol 7 

During the third lesson that followed the exploration of the mathematical formulas of the 
circumference and area of circle, the teacher asked the students to find the radius and area of a circle 
with a given circumference.    

Student1: But how? 

Student2: I do not understand. 

At this point, the teacher interpreted the queries the students had as a result of ‘playing’ with the 
computers. 

Teacher: We came up to some conclusions. We have been working on the computers for 
two days now. We should not only play but also find … 

Through classroom discussion, the students were able to use the mathematical formula, separate the 
variables, use division and find the radius and area of a circle with a given circumference. 

In this protocol, the teacher is relating exploration of DGE with ‘play’. That is, exploration was 
interpreted by the teacher as ‘playing’ instead of learning.   

Discussion 
Analysis of the above protocols indicates that the word ‘play’ as used by the teacher has differing 
connotations. This leads to the emergence of two contrasting values, play/learn.  



Initially, one value the word ‘play’ entailed was related with the teacher interpreting exploration as 
‘playing’ instead of learning. That is, while the teacher would encourage the students to explore an 
activity in order to reach some conclusions, she would also make a negative comment about this 
exploration as something that had no didactical value. In protocols 1 and 2, the teacher is relating 
exploration of DGE that preceded the classroom discussion with ‘play’. That is, exploration was 
interpreted by the teacher as ‘playing’ instead of learning, though, in protocol 2, the student was still 
exploring the DGE, so as to construct the triangle. In protocol 5, the teacher translated the fact that 
some students could not really summarize the work which was done previously as ‘play’ instead of 
learning. Furthermore, in protocol 7, the teacher is relating the exploration of DGE (as in protocol 6 
which is described subsequently) with ‘play’, something that has no didactical value. What is 
striking is the fact that the teacher is referring to the DGE tasks that were designed in collaboration 
with the researcher in such a way that could initiate the formation of hypotheses and mathematical 
argumentation. This intervention was followed by the teacher guiding the classroom discussion.  

The word ‘play’ had an opposite value when used by the teacher to refer in a general way to the 
exploration of the activity. In protocols 3 and 4, exploring the features of the DGE and working in 
pairs for the construction of triangles, and investigation of mathematical relationships accordingly, 
is translated as something encouraging and constructive. What should be noted though for protocol 
4, is that it appears that exploring the environment by following the teacher’s instructions has more 
value than the students exploring the environment themselves, which is called ‘play’. In protocol 3, 
the teacher announces that the students will have the opportunity to play a game on the computer. In 
this protocol, the word play is used with its authentic meaning, even though, from an educational 
and didactical perspective, it can be considered as a form of reflection, evaluation and further 
understanding. In protocol 6, the teacher is encouraging investigation and exploration of a 
mathematical situation that would lead to explanation and justification.   

The ‘play’ dichotomy relates to the notion of the play paradox (Hoyles and Noss, 1992) and the 
notion of the planning paradox (Ainley et al, 2006). Hoyles and Noss (1992) introduce the notion of 
the play paradox to describe the multiplicity of paths that are available to students when using a tool 
in an exploration related with a mathematical task. That is, the students, through their exploration, 
might not encounter the mathematical ideas that were perceived as the objectives set by the teacher 
or the curriculum materials. Thus, the teacher may decide to close down an exploration opportunity 
as she may interpret students’ exploration as shifting away from her own objectives. In a similar 
way, Ainley et al. (2006) call the conflict that may occur in the daily mathematical classrooms, due 
to contextualize tasks as the planning paradox. This tension may also be related to the notion of 
ownership as perceived by Papert (1993) in his formulation of Constructionism. That is, while the 
students are provided with the necessary tools to participate and to take ownership of the learning 
process, the teacher is at the same time attempting to avoid facing these paradoxes. 

Considering the dichotomy related with the word ‘play’ through the CHAT constructs, this tension 
is a manifestation of a primary contradiction. The primary contradiction that emerges is inherent in 
the component related with the object of the activity system. In the activity of exploring as part of 
pre-proving, the object for the teacher is related with exploring triangles and circles. At a first 
glance, this object seems to be clear and distinct. However, this object is multifaceted. To be more 
precise, the object for the teacher is related with the investigation of situations that lead to 



conclusions related with the aforementioned parts of the mathematics curriculum. The teacher on 
one hand understands the importance of providing enjoyable exploring opportunities that keep 
students’ motivation and interest to engage with the problem. As a result, the teacher provides 
opportunities that can be approached by the students in their own way. On the other hand, students, 
through the exploration of these opportunities are expected to reach those conclusions regarding 
triangles and circles as pre-determined by the teacher. The two poles of the object lead to a constant 
struggle in the teacher’s everyday practice. The teacher, due to this multifaceted object, is faced with 
the play/learn dichotomy and thus the play and the planning paradoxes. That is, students’ free 
exploration may lead to paths other than those expected by the teacher. This initially shows that the 
students share the teacher’s object. Thus, the object related with exploring is being reached. 
However, if the exploration moves away from the teacher’s motive, the teacher will inevitably close 
down the exploration opportunity and guide the students towards the exploration that leads to the 
conclusions that satisfy her. Time management and the pressure of the coverage of the curriculum 
further highlight this tension.  Inevitably, even though closing down the exploration is necessary, the 
object will not be met because of this contradiction. 

Manifestation of this contradiction leads to a clash between the activity of exploration and 
explanation and, subsequently, with the way pre-proving activity occurs in the classroom. It has 
been illustrated that pre-proving activity is closely connected with exploration and explanation. That 
is, those aspects of reasoning that appear to have the qualities of proving, even though they may not 
be proving in themselves, entail exploration and explanation that provide a point of reference for 
proof production. Correspondingly, the object of developing proving in the classroom is related with 
these notions. The object of the central system of pre-proving activity is related with exploration 
that leads to explaining and justifying for a specific part of the mathematics curriculum. However, 
closing down the exploration has an impact on how explanation and justification are established in 
the classroom. Furthermore, closing down an exploration opportunity may have a negative impact 
on the students’ ability to approach the construction of a proof. Referring to exploration as ‘play’ 
may also have a negative impact on students’ confidence in relying on their intuitions when 
exploring a situation. 

Concluding remarks 
The aim of this paper was to shed some light on the area related with the activity of proving as 
constituted in the naturalistic setting of the mathematics primary school classroom. The elements 
that drive pre-proving activity and influence the way proving may be established in the classroom 
have been identified. That is, in mathematical argumentation, pre-proving is coming out of 
reasoning through exploring, explaining and justifying and can lead to proving. This paper reports 
on a teacher whose object is related with exploration that leads to explaining and justifying. 
However, this object is being conflicted as while a play-like exploration can facilitate learning, this 
can prove quite challenging for the teacher, as she wishes to maintain focus and is worried that 
exploring detracts from that focus. The contradiction between emphasizing exploring and 
maintaining focus is one of the tensions which make the constitution of pre-proving in the 
classroom inherently complex. However, this does not tell the whole story. Exploring opportunities 
that were closed down were exploited so as to negotiate and establish socio-mathematical norms in 
the classroom. As these norms are related with the very nature, functions and characteristics of 



proof and proving, they can lead to explaining and justifying. Consequently, their establishment 
strengthens the activity of explanation and thus, the activity of proving.  
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The importance of proofs as a way to gain understanding has been observed many times. In this 
paper we show the result of two different experiences with division of natural numbers. The first 
comes from children in grade 3 who have learned about division and divisibility through what we 
call proof-based teaching (PBT), and the second comes from students who just finished their school 
studies and intend to become preservice primary teachers. Our main aim is to point out how 
different school experiences might lead to different (divergent) ways of gaining insight into the 
relationship between the divisor and the remainder. We particularly focus on describing some 
elements we identified in the third graders’ instruction that might have allowed them to articulate 
their own understandings.  
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Proofs as a way to gain understanding 
The goal of proof-based teaching is that students gain understanding through proving. Hence, it is 
based on past work on the role of proof as a means to understand or explain.  

In mathematics education, explanation and understanding go together. The goal is understanding, 
so any explanation offered is aimed at having someone understand why a mathematical claim is 
true. This implies that a proof, to be useful in the classroom, should embody explanation. It 
should show not only that a result is true, but also why it is true. It should be concerned not only 
with its conclusion, but also with its main ideas, its overall structure, and its relationship to other 
mathematical fields and concepts (De Villiers, 2004; Hanna, 1990, 2000) (Hanna, 2016, p. 2).  

Hanna (2016) discusses a number of different views of what makes a proof explanatory, but for our 
purposes, one aspect of these views is important. Explanatory proofs make reference to what we call 
a key notion, but which is also called a “characterizing property” or “salient feature”. “An 
explanatory proof makes reference to a characterizing property of an entity or structure mentioned” 
(Steiner, 1978, p. 143). “A proof can be explanatory only if ‘some feature of the result is salient’ 
and the proof builds upon that salient feature (Lange, 2014, p. 489, cited in Hanna, 2016, p. 4).  

Elsewhere (Vallejo & Ordoñez, 2015; Reid, 2011) we have suggested that proof-based teaching  
(PBT), in which students learn mathematics through explanatory proving that builds on a shared 
body of knowledge, offers an opportunity for the development of relational understanding.  

In the following we first elaborate on the elements of proof-based teaching based on our experience 
of a 3-year design research with third graders. We then show examples of the understandings of 
division of the third graders after a short unit of proof-based teaching instruction. Finally, we 
contrast these understandings with those of students who have completed secondary school and are 
about to begin university studies and draw some conclusions for teacher education.  



Proof-based teaching  
Reid (2011) proposed proof-based teaching as “a way to develop understanding of mathematical 
concepts” (p. 28), and Vallejo has elaborated this idea in a 3-year design research intervention with 
third graders, the main goal of which was constructing division and divisibility knowledge.  

The first intervention took place in 2013 in a Peruvian public school. This intervention was framed 
in the context of a master thesis (Ordoñez 2014) for which Vallejo was the supervisor. The second 
intervention took place in 2014 with a different group of third graders in the same public school. It 
addressed weaknesses identified in the first intervention through observing the difficulties students 
encountered in the lessons. We will report on the third intervention in the next section.  

In the three interventions Vallejo taught all the sessions as a guest teacher in the classroom of 
another teacher. Written classwork assignments and quizzes were collected which helped the 
researchers to assess the students’ progress in their knowledge construction. All the sessions were 
videotaped, and significant parts of the first and third interventions were transcribed. In all three 
cases, the students had no prior knowledge of these topics at the time the interventions began as the 
goal was to see knowledge being constructed. 

Elements of proof based teaching 
Through this research several elements of proof-based teaching have been identified as important: a 
‘toolbox’ of shared knowledge, an expectation for explanation, and deductive explaining.   

The toolbox  

In order to prove students must share a common set of accepted principles. A ‘toolbox’ of such 
principles is an essential feature of PBT and this also reflects the practice of professional 
mathematicians. We adopt the term “toolbox” from Netz (1999) who uses the term to describe the 
set of theorems and assumptions that are used in classical Greek proofs without explicitly referring 
to them. Thurston, (1995) describes the same phenomenon in contemporary mathematical practice:  

Within any field, there are certain theorems and certain techniques that are generally known and 
generally accepted. When you write a paper, you refer to these without proof. … Many of the 
things that are generally known are things for which there may be no known written source. As 
long as people in the field are comfortable that the idea works, it doesn’t need to have a formal 
written source. (p. 33)  

In the interventions, Vallejo assessed prior knowledge through an individual diagnostic test, but 
more importantly, she established through a class discussion three “key notions” related to division 
and divisibility. These provided “a framework of established knowledge from which to prove” 
(Vallejo & Ordoñez, 2015, p. 231). The three key notions are: 

Fair distribution: Distributions must give the same number of objects to each person.  

Maximum distribution:  The maximum number of objects possible must be distributed. 

Whole distribution: Each person must receive a whole number of objects.    

These key notions were the basis for the proof-based teaching of division and divisibility employing 
a mixture of written (individual and groups) tasks and class discussion.  



An expectation for explanation 

From the very beginning, Vallejo’s students were accustomed to being asked ‘why?’ for every 
conclusion they made or in general for every answer they gave based on the “key notions”. “In the 
course of the sessions students also gave incorrect answers. Occasions of this type were exploited to 
promote discussion and justification by students since they were the ones who corrected the 
answers” (Ordoñez 2014, p. 334). She established in this way “an expectation that answers should 
be justified within this framework” (Vallejo & Ordoñez 2015, p. 231). It became part of the didactic 
contract (Brousseau, 1997) established in the classroom. In the context of proof-based teaching this 
is what we call an expectation for explanation.  

Deductive explanations 

As part of the common ‘toolbox’ the whole class also shared an understanding of conjecture and 
justification, explained and modelled by the teacher, which was in tune with the meaning of proof 
given in A. Stylianides (2007). As part of the didactic contract the students knew that they could 
make as many conjectures as they wanted. The teacher wrote the students’ conjectures at the 
blackboard to be analyzed by the whole class. But they were constantly reminded that in order for 
their conjectures to be upgraded to ‘mathematical truths’, they should provide strong support in the 
form of deductive arguments that were evaluated by the teacher.  

Third graders’ understandings of division 
We report here some results from the third cycle of the research design we discussed above. This 
intervention took place in a public school in Peru, in 2015, with a group of 21 third graders (7-8 
years old). The intervention consisted of 23 sessions, each of them made of around 90 minutes. It 
was session 3 when these third graders discovered the relation between remainders and divisors and 
explained the relation using the key notions through a whole class discussion.    

At the end of the intervention (session 23), the third graders were given a final test, including two 
items related to remainders: 

Is it true that in a division by 𝟒 we can have a remainder of 𝟔? ⬜ Yes ⬜ No  Justify your answer. 

In a whole, fair and maximum distribution among 5 people, how many objects may be left over 
at most? Why can no more objects be left over? Justify your answer. 

These two items were number 8 and 9 on a test with 11 items. We report here on the children’s 
responses to these two items, which are summarized in Table 1. 

 First Item Second Item  

Correct answer with explanation  9 (43%) 12 (57%) 

Correct answer with unclear explanation  2 (10%) 2 (10%) 

Correct answer with no explanation  1 (5%) 1 (5%) 

Incorrect answer  1 (5%) 3 (14%) 

No response or question misunderstood.  8 (38%) 3 (14%) 

Table 1: Summary of results from the third graders’ test 



Of the 21 children, 12 (57%) answered the first question correctly and 15 (71%) answered the 
second question correctly. Most of those who answered the second question correctly were also able 
to give an explanation. Their answers are based on a relational understanding of division, bringing 
together knowledge of the key notions they learned and experience with explanatory proving in this 
context.    

For example, Bruno answered the first question “No. Because if we divide by 4 the remainder is at 
most 3, and 6 is more than 3”. This shows that he understands why the answer is no, and can 
explain by making reference to specific knowledge about division by 4, and implicitly to a general 
rule concerning the maximum remainder possible. Some children who answered the first item 
correctly (2 of the 12) provided a similar explanation, although their knowledge of the possible 
remainders when dividing by 4 was faulty. For example, Eduardo wrote “No, because in a division 
by 4 the only remainders are 1, 2, 3”. Eduardo omits one possible remainder, but his explanation is 
still appropriate, as he points out that 6 is not among the possible remainders in a division by 4.  

On the second item, Max answered “Question 1: 4 can be left; Question 2: because I can keep 
distributing (objects)”. His answer shows his understanding of why the remainder cannot be more 
than 4 when distributing objects among 5 people. Although he does not refer to the condition by 
name (maximum distribution), he uses a condition that makes reference to it (“because I can keep 
distributing objects”) as the question makes reference to cases in which the maximum number of 
objects has not yet been distributed. Max’s answer is an example of the kinds of arguments they 
were able to produce. 

Similarly, Renato’s answer “There can be at most 1, 2, 3 and 4 left over. More objects can’t be left 
over because it wouldn’t be (a) maximum (distribution)”, shows he understands why the maximum 
value for the remainder in a division by 5 is 4. He is actually the only student who makes explicit 
reference to this condition by its name in his written work. Even though Renato’s answer is 
incomplete (he doesn’t consider the remainder zero) his explanation is correct. The use of this 
common toolbox was consistent in this intervention. 

From the very beginning Vallejo invited the students to share their ideas orally, and they seemed to 
feel comfortable to communicate in this way. However, some students had troubles with their 
writing skills while communicating their ideas individually, though they could still share well-
thought ideas orally. Hence, after the final test Vallejo decided to interview some of the students 
who had performed well in whole class discussions, but not so well on the written tasks. These 
semi-structured interviews revealed that some students who had not given explanations had not 
understood the questions being asked. For example, Piero had answered the first test item by giving 
an example of a division by 4 that does not result in a remainder of 6. He did not understand that the 
question refers to dividing by 4 in general. When Vallejo asked the same question in the interview, 
he answered “No, because if there would be 6 left over, it would be 6 divided by 4, and I must 
continue distributing (objects)”. Like Piero, most of the students who gave an answer classified as 
“Question misunderstood” showed in the interview that they had not understood the question in the 
first item. However, when the question was clarified and they were given time to reflect, most were 
able to provide reasons.  



We feel that the explanations given by the third graders demonstrate a relational understanding of 
divisibility, which arose through the proof-based teaching they experienced. We have not (for 
practical and ethical reasons) attempted to make a comparison with a matched group of third graders 
taught about divisibility in another way. Instead, in the next section we compare their 
understandings with those of students at the end of secondary schooling, who have had many other 
opportunities to develop their understandings of division.   

University students’ understandings of division 
We analyze here the answers given on a diagnostic test given at the beginning of university studies 
to 148 students enrolled in primary level teacher education. These students were enrolled at a 
private university and had received a government scholarship to support their teacher education. 
Hence, they can be assumed to be among the best students enrolling in primary level teacher 
education. Around 65% of these students came from the capital city, Lima, where the university is 
located, and the other 35% came from the other parts of Peru.  The test was given prior to any 
instruction at the university, which means that it assessed only the understanding the students 
retained from their school experience. 

The students were asked the following question: “In a division of natural numbers with the divisor 
equal to 3, what are all the possible values the remainder can take? Why?” To ensure that the 
terminology used in the question was understood, the question was accompanied by the diagram 
shown (which is a translation of the real one) in Figure 1.    

Remember that in every division:    

Dividend  Divisor 

(Remainder) Quotient 

Figure 1: Reminder included with the question 

The task presented to these students is not exactly the same as presented to the third graders. This 
reflects the background knowledge of these two different groups. In the case of the prospective 
teachers, they were not familiar with the language fair, whole and maximum distributions and the 
third graders were not introduced to the terms dividend, divisor, or quotient. Despite that, one can 
see that both tasks ask for the same knowledge about the divisor and remainder relationship.  

Table 2 summarizes the results from the pre-service teachers.  

 Correct answer Partially correct Incorrect answer No response 

With explanation 9 (6%) 

25 (17%) 

1 (1%) 

11 (7%) 

  

Reference to a general rule 

Without explanation 21 (14%) 13 (9%) 38 (26%) 30 (20%) 

Table 2: Summary of results from the pre-service teachers’ diagnostic test 

A correct answer was given by 55 (37%) of the pre-service teachers. But of these only 9 gave 
explanations that show they understood the reason why the remainder must be 0, 1 or 2. For 



example, Elizabeth wrote “It can only take values less than 3, in this case they would be (0, 1, 2) 
x<3, because a number multiplied by 3 cannot be less than this. (x: Remainder)]”. 

Among those giving a correct answer the most common way to answer the question “Why?” was by 
reference to a rule such as “the maximum remainder is one less than the divisor’s value” or “the 
remainder is always less than the divisor”. These answers may reflect understanding, but the rule 
may have been memorized without understanding. The remaining 21 responses include no 
explanation, an unclear response, or empirical evidence as “explanation”. Figure 2 shows a response 
of this last kind. Note that the divisions are of small numbers, but were done using a standard 
algorithm. In the first two cases, the dividends 1 and 2 were treated as if they were 10 and 20 for the 
purpose of determining the remainder, although the first decimal place of the quotient is worked out 
as if 1 and 2 are being divided. The pre-service teacher writes “Por lo tanto:” [Therefore] suggesting 
she feels that her six examples are sufficient to explain her answer. She also wrote “¿Por qué?” 
[Why?] with an arrow pointed to her examples, which is consistent if she believes these examples 
answer the question. It seems she was not able to provide a mathematical explanation.  

 

    Figure 2: A pre-service teacher’s response, showing a correct answer without an explanation 

Another 25 (17%) pre-service teachers gave partially correct answers (listing two of the three 
remainders, or listing 0 and 3 as distinct possibilities resulting in four remainders), 38 (26%) gave 
incorrect answers and 30 (20%) gave no answer. Overall, the responses of the pre-service teachers 
show an instrumental understanding (in the sense of Skemp, 1987) of division and limited number 
sense. Only 46 could give an explanation or cite a general rule and most used procedural approaches 
to determine the possible remainders in spite of the small numbers involved. 

Conclusions 
We do not claim that this comparison replaces an experimental design with a control group, but this 
was not a goal of our design based research in any case. Nevertheless, it does offer some food for 
thought. One might expect that adults at the conclusion of more than a decade of schooling would 
have had many opportunities to develop concepts related to division, a basic operation in arithmetic 
and one that is basic to understanding of rational numbers and algebra. Why compare them with 
children who have had only twenty-three lessons on the topic? What we wish to compare are the 



two different school experiences with division of natural numbers these two groups have had. Most 
of the preservice teachers can be assumed to have had a typical school experience in mathematics. 
That the third graders have a better understanding of division we feel reflects the non-traditional 
learning context they experienced, that allowed them to make sense of division. We strongly believe 
that proof-based teaching was important in their achievement of this understanding, but further 
research is needed to confirm this.  

However, this comparison also raises an important question for teacher education. If, at the 
conclusion of secondary school, future primary school teachers do not understand basic concepts 
related to division, will they be able to guide children in the development of these concepts? If they 
are to develop these concepts as part of their teacher education, how can this best be done? Clearly 
the approaches taken in their schooling were unsuccessful. Our current research focusses on such 
pre-service teachers, and explore whether a proof-based teaching intervention at the university level 
can allow adults with instrumental understandings to develop relational understandings.   
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In Germany, there is increasing interest in language competences in mathematics lessons. Based on 
national curriculum standards, argumentation should also be strengthened in primary school 
mathematics classes (KMK, 2005). The reported interdisciplinary (linguistics and mathematics 
education) study on reasoning presents a model to rate arithmetic reasoning competences at 
primary level, in which mathematical reasoning and its linguistic realization are separately coded. 
In a pilot study, 243 third, fourth, and sixth grade students solved a number of arithmetic reasoning 
tasks. The results support a one-dimensional scale for the model of reasoning; its components 
identify differentiated requirements, which are formulated concretely in the coding guidelines and 
may point to didactical potential for language support in mathematical reasoning itself, as well as 
in mathematics lessons at primary level. 

Keywords: Reasoning, written argumentation, primary school. 

Reasoning in early mathematics learning 
Early mathematical argumentation can be divided into four steps: detecting mathematical 
regularities, describing them, asking questions about them and giving reasons for their validity 
(Bezold & Ladel, 2014; Meyer, 2010; Bezold, 2009; Wittmann & Müller, 1990). The content base 
for argumentation is achieved by description of the detected structures or by reference to common 
knowledge (Krummheuer, 2000); reasoning is then needed to verify the described regularities as 
true (Toulmin, 2003/1958; Schwarzkopf, 1999).  

The didactical value of reasoning in mathematics learning lies in gaining deeper insights into 
mathematical structures, so developing one’s mathematical knowledge. In this sense, reasoning 
leads to questions about mathematical statements to ensure their correctness and to develop new 
mathematical connections (Steinbring, 2005). Two intertwined processes can be distinguished: 
one’s own understanding and the process of sharing this understanding with others. In most cases, 
these processes don’t occur separately, but are the response to cognitive-social needs (Harel & 
Sowder, 2007; Hersh, 1993). It follows that, in its epistemic function, mathematical reasoning may 
be monologic in leading to deeper individual understanding; in its communicative function, where 
mathematical structures are explained and justified, it is dialogic and dependent on other people 
(Neumann, Beier & Ruwisch, 2014; Ruwisch & Neumann, 2014). 

In primary classrooms, mathematical reasoning usually occurs in the form of oral communication 
between pupils and in interactions with the teacher. These communicative processes have been 
widely studied. From an epistemological perspective, the emergence of shared knowledge and its 
structures has been described (e.g. Steinbring, 2005) while a more interactionist perspective traces 
the type and structure of argumentation in classroom interactions (e.g. Krummheuer, 2015).  



Mathematical reasoning in this sense must be distinguished from reasoning in language classes, 
especially at primary level. While both are seen as concepts that develop out of situated everyday 
(“vernacular”) speech (Elbow, 2012), reasoning in language learning focuses much more on self-
evident facts and personal meanings than on provable structures in special content areas. It follows 
that argumentation in language learning leads to more addressee-oriented cognitivization (Krelle, 
2007), as reasoning of this kind is much more about persuasion than proving. Nevertheless, typical 
linguistic forms of reasoning are learned in these everyday situations, and students must learn how 
to use these in different content areas (e.g. Wellington & Osborne, 2001; Lemke, 1990). So, in 
combining mathematical and linguistic views of early reasoning, we can hope to gain a broader and 
deeper understanding of early reasoning.  

While most age-related studies of primary students focus on oral communication, experts in 
language learning emphasise writing as an important instrument for deepening individual 
understanding (Becker-Mrotzek & Schindler, 2007; Pugalee, 2005; Galbraith, 1999; see also 
Wellington & Osborne, 2001; Morgan, 1998; Miller, 1991). Although primary school children are 
not yet expert in writing, fourth-graders are capable of constructing expository texts with a relevant 
number of causes in elaborating a topic (Hayes, 2012; Krelle, 2007). It may therefore be fruitful to 
look at their written argumentations, and especially at how they offer reasons for mathematical 
regularities (Ruwisch & Neumann, 2014; Fetzer, 2007). 

Modelling written mathematical reasoning 
To investigate children’s written reasoning, we developed a theoretical model that combines 
mathematical and linguistic aspects of reasoning (Ruwisch & Neumann, 2014; Neumann, Beier & 
Ruwisch, 2014). 

Arithmetic reasoning tasks 

Following the four steps of argumentation in primary mathematics (see above), we decided to give 
the children an already structured situation (see Figure 1), which explicitly requires detection, 
transfer and description before offering reasons for the validity of their suggestion.  

Figure 1: Complex addition task (CA) as a sample item  
(left: original version; right: English translation)  

For the purposes of this study, four different arithmetic tasks were designed. Although differing in 
complexity of regularities, all of these tasks focused on detection and reasoning and were easy to 
compute. Format ZF involved three number sequences to be continued: +9, +7, and +2n. Format EA 
asked the children to continue a given additive structure by increasing all three summands by one so 
that the sum increases by three. In solving formats CA and CM, the children had to identify two 



structures at the same time. To answer the complex addition task in Figure 1, the children had to 
find two tasks with the same sum. At the same time, they had to take into account that the 
summands must be changed by 10 in opposite directions. The multiplication tasks (CM) showed a 
constant difference in the product caused by the difference between the multipliers while the 
multiplicands remained constant. 

Sample 

The data include 477 justifications written by 243 students. In total, 41 third-graders (♀21; ♂20), 96 
fourth-graders (♀43; ♂53) and 106 sixth-graders (♀52; ♂54) worked out two of the four arithmetic 
reasoning tasks. 

Data analysis: Theoretical model of rating scales 

The separate evaluation of mathematical and linguistic aspects of reasoning is fundamental to our 
model, which we assume allows differentiated exploration of the sub-skills of reasoning. We also 
wish to check whether experts in either domain (mathematics teachers and German language 
teachers) differ in their evaluations. As our tasks demanded both computing and continuation of a 
given structure (see Figure 1), competencies involving detection of a mathematical structure are 
distinguished from ability to offer reasons for its validity. Students’ writings are rated by one 
detection scale and two reasoning scales (see Table 1).  

Mathematical detections: Children were required to compute the arithmetic tasks on the sheet to 
identify the underlying structure and transfer it to two further packages of tasks. This process might 
be realised fully or only partly; sometimes, only irrelevant aspects were used to create new tasks. If 
the structure is transferred fully, the results of the given tasks are also correct, and three levels of 
this rating scale therefore seemed sufficient. This scale will not be discussed in the following 
application of the model, as it provides little information about reasoning skills.  

Mathematical  
detections 

Mathematical  
aspects of reasoning 

Linguistic  
aspects of reasoning 

 
irrelevant aspects  

as regularities 
   

regularities  
partly transferred 

   

regularities  
totally transferred 

 regularities  
(partially) described   indicators without reason-

effect structure  

 rudimentary  
reasoning   reason-effect 

structure  

 reasoning  
through examples   explicit linguistic  

reference to the task  

 partially generalized 
reasoning   completeness and  

consistency  

 generalization/ 
formal reasoning   use of math. terminology/ 

decontextualization  

Table 1: Rating-scales to evaluate written mathematical reasoning 

Mathematical aspects of reasoning: Mathematical reasoning must be based on a description of 
mathematical elements. If only some regularities are described without giving reasons, this is coded 
as level 1. If rudimentary reasoning is given in addition to a description, the work is coded as level 
2. To be rated as level 3 to 5, all relevant aspects must feature in the argumentation. If this is done 



by use of examples, the work is rated as level 3; if already partly generalized, it is rated as level 4; 
and if it is totally general or constitutes a formal proof, it is rated as level 5.  

Linguistic aspects of reasoning: Realisation of a mathematical argument by written language is also 
rated in terms of five levels, defined in terms of use of connectors and identifiable coherence of the 
text. If explicit linguistic indicators are used without any structured reasoning, the text is classified 
as level 1. If the text shows a reason-effect structure, it is coded as at least level 2. If explicit 
linguistic reference to the tasks is also included, the text is classified as level 3. A level 4 text shows 
consistent and complete argumentation. To achieve level 5, there must also be use of mathematical 
terminology for identifiable decontextualization. 

Process of coding 

Each written argumentation was assessed by at least four raters; while preservice mathematics 
teachers concentrated on the mathematical scales, German language teachers rated the linguistic 
aspects. There was 62% absolute agreement in the judgments across all tasks and scales. Deviations 
of more than one stage occurred in 8% of cases—mainly for linguistic ratings, which were reported 
as more difficult. Coding quality could be seen to increase during the course of the project. 
Although there were acceptable internal consistencies across all tasks (Cronbach’s α = .80), these 
values increase if only ZF (α = .82) and EA (α = .84) (which were used later in the project) are 
considered.  

By excluding the multiplication task for the following overall scaling, an acceptable average internal 
consistency of individual scales was achieved for the remaining tasks (α = .86 for mathematical 
detections, α = .81 for mathematical aspects of reasoning and α = .71 for the linguistic aspects of 
reasoning). 

First results 
Given the number of raters and in the interests of acceptable inter-rater-consistency (α > .70), the 
following results are based on the means of ratings. 

Overall scale 

The IRT scale for the three tasks and all texts shows a common scale across all components (see 
Table 2). As items also conform to the model (WMNSQ .85-1.09), early mathematical reasoning in 
arithmetic as measured by the three tasks and ratings on our scales can probably be described as a 
one-dimensional construct. Looking at the three scales, it becomes clear that, as expected, it is easier 
to detect and transfer mathematical structures than to give reasons for their validity (negative 
deviation from zero). Comparing the two reasoning scales, it seems easier to realise mathematical 
aspects of reasoning than to find an appropriate linguistic structure. At the same time, the most 
stable dimension is mathematical detections, with a maximum difference of .783 as compared to 
1.446 for the linguistic aspects of reasoning and 1.516 for the mathematical aspects of reasoning. 

Comparing the three tasks, it seems that complex addition is the most difficult to transfer; simple 
addition and number sequences show almost no difference. The justifications show that it was 
easiest to realise both mathematical and linguistic aspects of reasoning in the number sequence 
tasks, followed by complex addition and then simple addition. Granted these differences, all tasks 
can be characterised as suitable for capturing mathematical reasoning in arithmetic. 



 
Mathematical  

detections 
Mathematical  

aspects of reasoning 
Linguistic 

aspects of reasoning 

Item Estimate WMNSQ Estimate WMNSQ Estimate WMNSQ 

(ZF) number   
        sequences  

-1.556 1.02 -0.459 1.06 0.124 0.85 

(EA) simple  
        addition  

-1.628 1.09 1.057 1.09 1.570 0.93 

(CA) complex 
        addition  

-0.845 0.98 0.506 0.92 1.230 0.97 

Table 2: Item parameters (estimated) for IRT scaling 

 

Student performance 

Performance of the total sample is distributed normally to slightly right-shifted. On the raw scores 
level, 21.2% are one standard deviation above the mean; 9.6% are one standard deviation below; 
6.2% are two standard deviations above; and 4.2% are two standard deviations below.  

To facilitate comparison of the three groups of 
students, all scores were transposed to a scale 
with mean 100 and standard deviation 20. Figure 
2 shows almost the same mean performance 
across third-graders (M = 102, SD = 29), fourth-
graders (M = 98, SD = 19) and sixth-graders (M 
= 101, SD = 17).  

Unexpectedly, reasoning competences seem not 
to increase over time. Interpreting the differences 
in standard deviations across the three groups, it 
seems that third-graders differ more within their 
group than fourth-graders, and both differ more 
than sixth-graders, suggesting homogenization 
during schooling. However, the relatively limited 
data and lack of comparative data means that any 
general conclusions remain speculative.  

Discussion of the model by application to examples 
Five examples are presented here for deeper discussion of the model’s adequacy (see Table 2). As it 
might prove difficult to discuss the argumentations only in the translated version, the original 
sentences are included on the left. 

Mathematical aspects of reasoning: The child in example 1 has recognized that “something” is the 
same and “something” has changed. However, as he/she does not refer to any connection between 
the tasks or mention that the results are the same, this answer was coded as level 1. Examples 2 and 
4 were coded as level 2; in example 2, it is clear that the child focused on only one of the two 

Figure 2: Student performance by grade 

 



relevant aspects. It is arguable whether child 4’s argumentation is complete; as it is confined to one 
example in the task, it might be evaluated as level 3. In our opinion, the change of the summands in 
opposite directions is only implicit in “that’s always 10 less”. Answer 5 shows both connections 
clearly. Furthermore, the child is able to conclude (using an example) that the results must be the 
same, and so it is clearly to be coded as level 3. As child 3 is doing almost the same but also 
exhibits some generalization in using “always”, we coded this as level 4. 

1) es sind immer die gleichen Aufgaben nur 
umgedreht weil wenn man es rechnet merkt 
man das. 

The tasks are all the same but vice versa 
because if you calculate, you’ll realize it. 

2) Es sind immer 10 mehr und 10 weniger. It’s always 10 more and 10 less. 
3) Dass es die gleichen Ergebnisse sind, kommt 

davon, weil bei der einen Aufgabe immer 10 
weniger sind als bei der anderen. Aber bei 
der Aufgabe wo 10 weniger sind, ist die 
Zahl die noch dazu gerechnet wird 
wiederum 10 größer als die über ihr. 

The results are the same because in one task 
it’s always 10 less than in the other one. But 
in the task that has 10 less, the number to be 
added is 10 bigger than the one above. 

4) Das es immer 10 weniger sind. Zum beispiel 
18+10=28 aber wenn man 10 weg nimmt 
und in der mitte 10 dazu nimmt z.b. 
8+20=28 und dann kommt das gleiche 
ergebnis wie bei der 1. Aufgabe 

That’s always 10 less. For example, 18+10 = 
28. But if you take away 10 and put 10 in the 
middle—for example, 8+20 = 28—then 
you’ll get the same result as in the first task. 

5) mir fällt auf das immer die Ersten 2 
Ergebnisse gleich sind. Die Ersten zwei 
Ergebnisse sind gleich weil die bei zum 
beispiel a) 18+10=28 und dann haben die 
bei 8+20 einfach 18, 10 weniger 8, und bei 
10 zehn mehr, 10-10 ist 0, also bleibt das so 

I notice that the first two results are always 
the same. The first two results are the same, 
because, for example a) 18+10 = 28, and 
then at 8+20 it’s simply 18, 10 less 8, and at 
10 ten more, 10-10 is zero, so it remains the 
same. 

Table 3: Examples of written argumentation for the arithmetic sample item  
      (left: original version; right: English translation) 

Linguistic aspects of reasoning: Example 1 is coded as level 2 because as well as the comparative 
connector “because”, a link between the sentences is also given. As example 2 includes only the 
indicator “always”, without any link, it is coded as level 1. Examples 3 and 4 are coded as level 4 
because there is a clear reasoning structure as well as a link to the tasks. As the argumentation in 
example 5 is ambiguous, and the language used is imprecise, it is coded as level 3.   



Conclusion 
The model was again presented for discussion here to improve its didactical value in evaluating the 
written reasoning of fourth-graders. Although our descriptions in the coding book have continued to 
improve over time, there are still deviations of more than one level between raters. While we wish 
of course to develop the model for its psychometric interest, the levels should also help teachers to 
evaluate written reasoning.  

Although these tasks provide a good deal of information about children’s written reasoning, we 
have to be aware that because they focus on products collected in a test situation, the argumentation 
was necessarily ad hoc. As requests of this type are not part of students’ normal mathematics 
lessons, and they do not have time to restructure their texts, neither the requisite procedural 
knowledge for writing nor situated mathematical argumentation can be grasped in this way. It 
follows that competence in mathematical reasoning—even in written form—may be higher than is 
indicated by the results to date. 
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 This paper presents a theoretical perspective for understanding and teaching university students’ proof 
construction. It includes features of proof texts with which students may be unfamiliar. It considers 
psychological aspects of proving such as behavioral schemas, automaticity, working memory, 
consciousness, cognitive feelings, and local memory. We discuss proving actions, such as the 
construction of proof frameworks that could be automated, thereby reducing the burden on working 
memory and enabling university students to devote more resources to the truly hard parts of proofs.  

Keywords: Proof construction, behavioral schemas, automaticity, consciousness, feelings. 

Introduction  
We report an expanded theoretical perspective to better notice, understand, and alleviate difficulties 
of university students’ proof construction including: features of proof texts, types of proofs, 
situation-action links, behavioral schemas, automaticity, non-emotional cognitive feelings, and local 
memory. Most difficulties were observed and documented during a 10-year teaching experiment—a 
proof construction course. Our explanations call on the psychological as well as the education 
literatures. Local memory (Section 4.10) arose from observing our own proving experiences. 

Features of proof texts 
The proving process involves many more actions (both physical and mental) than appear in the final 
proof text (e.g., Mamona-Downs & Downs, 2009; Selden & Selden, 2016). Indeed, researchers have 
distinguished argumentation from proof, noting that an informal line of reasoning may “justify” a 
theorem to the prover’s satisfaction, but this often differs from the corresponding final proof text 
written to the standards of the mathematical community (e.g., Pedemonte, 2007).  

The genre of proofs 

Students sometimes find the manner in which proofs are written perplexing, as it is often at variance 
with other genres of writing. We have identified some significant features that generally occur in 
proof texts: (1) Proofs are not reports of the proving process. (2) Proofs contain little redundancy. 
(3) Symbols are (generally) introduced in one-to-one correspondence with mathematical objects. (4) 
Proofs contain only minimal explanations of inferences, that is, warrants are often left implicit. (5) 
Proofs contain only very short overviews or advance organizers. (6) Entire definitions, available 
outside the proof, are not quoted in proofs. (7) Proofs are "logically concrete" in the sense that 
quantifiers, especially universal quantifiers, are avoided where possible. (Selden & Selden, 2013a). 

Structures of proofs 

A proof can be divided into a formal-rhetorical part and a problem-centered part. The formal-
rhetorical part is the part that depends only on unpacking the logical structure of the statement of 



the theorem, associated definitions, and earlier results. In general, this part does not depend on a 
deep understanding of the concepts or genuine problem solving in the sense of Schoenfeld (1985, p. 
74). We call the remaining part of a proof the problem-centered part. It does depend on problem 
solving, intuition, heuristics, and understanding the concepts involved (Selden & Selden, 2011). 

Proof frameworks 

A feature that can help write the formal-rhetorical part of a proof is what we call a proof framework, 
of which there are several kinds, and in most cases, both a first- and a second-level framework. For 
example, given a theorem of the form “For all real numbers x, if P(x) then Q(x)”, a first-level proof 
framework would be “Let x be a real number. Suppose P(x). … Therefore, Q(x),” with the 
remainder of the proof ultimately replacing the ellipsis. A second-level framework can often be 
obtained by “unpacking” the meaning of Q(x) and putting the second-level framework between the 
lines already written for the first-level framework. Thus, the proof would “grow” from both ends 
toward the middle, instead of being written from the top down.  

Operable interpretations 

Another feature that can help write the formal-rhetorical part of a proof is converting definitions and 
previously proved results into operable interpretations. These interpretations are similar to Bills and 
Tall’s (1998) idea of operable definitions. For example, given a function f: X →Y and A ⊆ Y, one 
defines f -1(A) = {x ∊ X | f(x) ∊ A}. An operable interpretation would say, “If you have b ∊ f -1(A), 
then you can write f(b) ∊ A and vice versa.” One might think translation into an operable form 
would be unnecessary or easy especially because the symbols in {x ∊ X | f(x) ∊A} can be translated 
into words in a one-to-one way. But for some students this requires practice.  

Dimensions of potential proof construction difficulty 
The need for previous results—proof types: 0, 1, 2, 3 

We have classified theorems of increasing difficulty to refine our inquiry-based “proof course” 
notes (Selden & Selden, 2013b). Type 0 often follows immediately from definitions. Type 1 may 
need a result in the notes. Type 2 needs a lemma, not in the notes, but relatively easily to discern, 
formulate, and prove. For Type 3, at least one of discern, formulate and prove should be difficult. A 
sample Type 3 theorem is: A commutative semigroup S with no proper ideals is a group, when 
provided only the definitions of semigroup and ideal. One needs to observe that, for a∊S, aS is an 
ideal, so aS=S. This implies equations of the form ax=b are solvable for any b∊S. Using some clever 
instantiations of this equation, one can obtain an identity and inverses, and conclude S is a group.  

The need for unguided exploration 

In constructing some proofs, one may reach a point where there is no “natural” way forward. In 
what we call unguided exploration, one may need to find, or define, an object and prove something 
about it, with no idea of its usefulness, that is, one may need to “explore” the situation. For 
example, in proving the above semigroup theorem, this can happen three times. First, one notes aS 
is an ideal and thus aS=S. Then one sees equations of the form ax=b are solvable for any b∊S. Such 
exploration may require self-efficacy (Bandura, 1994), which can be encouraged by arranging early 
student successes.  



The need to unpack the logical structure of a theorem statement 

An informal statement is one that departs from the usual use of predicate and propositional calculus 
or fails to specify variables. For example, Differentiable functions are continuous, is informal 
because a universal quantifier and a variable are omitted, and because it departs from the usual “if-
then” form of the conditional. Such statements are commonplace in everyday mathematics. They are 
not ambiguous or ill-formed because widely understood, but rarely articulated, conventions permit 
their precise interpretation by mathematicians and less reliably by students. An informally stated 
theorem can be memorable and easily brought to mind, but it may be difficult to unpack and prove 
(Selden & Selden, 1995).  

Psychological aspects of the proving process 
We view proof construction as a sequence of actions that can be physical (e.g., writing a line of the 
proof or drawing a sketch) or mental (e.g., changing one’s focus from the hypothesis to the 
conclusion or trying to recall a theorem). The sequence of actions that eventually leads to a proof is 
usually considerably longer than the final proof text and is often not constructed from the top down.  

Situations and actions 

When considering proving, we use the term, action, broadly as a response to a situation in a partly 
completed proof. We include not only physical actions, but also mental actions. The latter can 
include trying to recall something or bringing up a feeling, such as a feeling of caution or of self-
efficacy (Selden & Selden, 2014). In addition, we include “meta-actions” meant to alter one’s own 
thinking, such as changing focus to another part of a developing proof construction. 

Situation-action links, automaticity, and behavioral schemas 

If, during several proof constructions in the past, similar situations have corresponded to similar 
reasoning leading to similar actions, then, just as in classical associative learning (Machamer, 2009), 
a link may be learned between them, so that another similar situation evokes the corresponding 
action in future proof constructions without the need for the earlier intermediate reasoning. Using 
such situation-action links strengthens them, and after sufficient experience/practice, they can 
become overlearned and automated. We call automated situation-action links behavioral schemas. 

Features of automaticity 

In general, it is known that a person executing an automated action tends to: (1) be unaware of any 
needed mental process; (2) be unaware of intentionally initiating the action; (3) execute the action 
while putting little load on working memory; and (4) find it difficult to stop or alter the action 
(Bargh, 1994). However, not necessarily all four of these tendencies occur in every situation. 

Forming behavioral schemas converts S2 cognition, which is slow, conscious, effortful, 
evolutionarily recent, and calls on considerable working memory, into S1 cognition, which is fast, 
unconscious, automatic, effortless, evolutionarily ancient, and places little burden on working memory 
(Stanovich & West, 2000). This conversion into S1 cognition conserves working memory resources. 



Behavioral schemas as a kind of knowledge 

We view behavioral schemas as belonging to a person’s knowledge base. They can be considered as 
partly conceptual knowledge (recognizing and interpreting the situation) and partly procedural 
knowledge (doing the action), and as related to Mason and Spence’s (1999) idea of “knowing-to-act 
in the moment”. We suggest that, in using a situation-action link, or a behavioral schema, almost 
always both the situation and the action (or its result) will be at least partly conscious. 

Here is an example of a behavioral schema that can conserve resources. One might be starting to 
prove a statement having a conclusion of the form p or q. This would be the situation. If one had 
encountered this situation a number of times before, one might readily write into the proof “Assume 
not p” and prove q or vice versa. While this action can be warranted by logic (if not p then q, is 
logically to, p or q), there would no longer be a need to bring the warrant to mind. 

The genesis and enactment of behavioral schemas 

The action produced by the enactment of a behavioral schema might be simple. It might also be 
compound, such as a procedure consisting of several smaller actions, each produced by the 
enactment of its own behavioral schema that was “triggered” by the action of the preceding schema 
in the procedure. We have developed a six-point theoretical sketch of the genesis and enactment of 
behavioral schemas (Selden, McKee, & Selden, 2010, pp. 205-206). Very briefly, here are the six 
points: 1) Within very broad contextual considerations, behavioral schemas are immediately 
available. 2) Simple behavioral schemas operate outside of consciousness. One is not aware of 
doing anything immediately prior to the resulting action – one just does it. 3) Behavioral schemas 
tend to produce immediate action, which may lead to subsequent action. One becomes conscious of 
the action resulting from a behavioral schema as it occurs or immediately after it occurs. 4) 
Behavioral schemas were once actions arising from situations through warrants that no longer need 
to be brought to mind. Behavioral schemas cannot be “chained together” and act outside of 
consciousness, as if they were one schema. 5) An action due to a behavioral schema depends on 
conscious input, at least in large part. In general, a stimulus need not become conscious to influence 
a person’s actions, but such influence is normally not precise enough for doing mathematics. 6) 
Behavioral schemas are acquired (learned) through (possibly tacit) practice. That is, to acquire a 
beneficial schema a person should actually carry out the appropriate action correctly a number of 
times – not just understand its appropriateness. Changing a detrimental behavioral schema requires 
similar, perhaps longer, practice. 

Implicit learning of behavioral schemas 

It appears that the process of learning a behavioral schema can be implicit, although the situation 
and the action are in part conscious. That is, a person can acquire a behavioral schema without being 
aware that it is happening. Indeed, such unintentional, or implicit, learning happens frequently and 
has been studied by psychologists and neuroscientists (e.g., Cleeremans, 1993). In the case of proof 
construction, we suggest that with the experience of proving a considerable number of theorems in 
which similar situations occur, an individual might implicitly acquire a number of relevant 
beneficial behavioral schemas. As a result, he or she might simply not have to think quite so deeply 
as before about certain portions of the proving process, and might, as a consequence of having more 
working memory available, take fewer “wrong turns”. 



Detrimental behavioral schema 

Many teachers can recall having a student write √(a2 + b2) = a + b, giving a counterexample, and 
then having the student make the same error somewhat later, perhaps in a different context. Rather 
than being a misconception (i.e., believing something that is false), this may well be the result of an 
implicitly learned detrimental behavioral schema. If so, the student would not have been thinking 
very deeply about this calculation when writing it. Furthermore, having previously understood the 
counterexample would also have little effect in the moment. It seems that to weaken/remove this 
particular detrimental schema, the triggering situation of the form √(a2 + b2) should occur a number 
of times when the student can be prevented from automatically writing “=  a + b” in response.  

Feelings and proof construction 

The word “feeling” is used in a variety of ways in the literature so we first indicate how we use it. 
Often feelings and emotions are used more or less interchangeably, perhaps because both appear to 
be conscious reports of unconscious mental states, and each can, but need not, engender the other. 
We will follow Damasio (2003) in separating feelings from emotions because emotions are 
expressed by observable physical characteristics, such as temperature, facial expression, blood 
pressure, pulse rate, perspiration, and so forth, while feelings are not. 

Feelings, such as a feeling of knowing, can play a considerable role in proof construction (Selden, 
McKee, & Selden, 2010). For example, one might experience a feeling of knowing that one has 
seen a theorem useful for constructing a proof, but not be able to bring it to mind at the moment. 
Such feelings of knowing can guide cognitive actions because they can influence whether one 
continues a search or aborts it (Clore, 1992, p. 151). We call such feelings non-emotional cognitive 
feelings. 

For the nature of feelings, we will follow Mangan (2001), who has drawn somewhat on William 
James (1890). Feelings seem to be summative in nature and to pervade one’s whole field of 
consciousness at any particular moment. Non-emotional cognitive feelings, different from a feeling 
of knowing, are: a feeling of familiarity and a feeling of rightness. Rightness is “the core feeling of 
positive evaluation, of coherence, of meaningfulness, of knowledge”. (Mangan, 2001). About such 
feelings, Mangan (2001) has written that “people are often unable to identify the precise 
phenomenological basis for their judgments, even though they can make these judgments with 
consistency and, often, with conviction.” Finally, we conjecture that feelings may eventually be 
found to play a larger role in proof construction than indicated above, because they provide a direct 
link between the conscious mind and the structures and possible actions of the unconscious mind. 

 The roles of affect and self-efficacy 

In order to prove harder theorems--ones with a substantial problem-centered part--students need to 
persist in their efforts, and such persistence is facilitated by a sense of self-efficacy. According to 
Bandura (1995), self-efficacy is “a person’s belief in his or her ability to succeed in a particular 
situation”. Of developing a sense of self-efficacy, Bandura (1994) stated that “The most effective 
way of developing a strong sense of self-efficacy is through mastery experiences,” that performing a 
task successfully strengthens one’s sense of self-efficacy. Also, according to Bandura, “Seeing 
people similar to oneself succeed by sustained effort raises observers’ beliefs that they too possess 
the capabilities to master comparable activities to succeed.” 



Bandura’s ideas “ring true” with our past experiences as mathematicians teaching courses by the 
Moore Method (Mahavier, 1999). Such courses are taught from a brief set of notes consisting of 
definitions, requests for examples, and statements of major results, together with lesser results 
needed to prove them, but no proofs. The students provide the proofs and present them in class. 

The development and uses of local memory 

Some may think that proof construction consists mainly of conscious thought (i.e., as 
communication with oneself or others using speech, vision, etc., or their inner versions, as 
suggested by Sfard, 2010). However, we take a somewhat different view. In constructing a proof of 
some complexity, often much more relevant information can be activated than can be held in one’s 
short-term working memory (ST-WM). When such information is lost from consciousness, it may 
not return to its original state, but rather to a state of partial activation. Nonetheless, conscious 
thought can sometimes influence the activation of related information in long-term memory (LTM), 
that is, help bring something to mind. Ericsson and Kintsch (1995) stated that “reliance on acquired 
memory skills will enable individuals [experts] to use LTM as an efficient extension of ST-WM in 
particular domains and activities after sufficient practice and training.” We speculate that 
mathematicians can do this when conducting their own research. We have observed of ourselves, 
when attempting an intricate complex proof, that a considerable amount of information is generated, 
but cannot all be kept in mind; however, it is easily recalled. We refer to such partially activated 
information as local memory -- it is available as long as we are seriously engaged with the proof. It 
seems analogous to Ericsson and Kintsch’s (1995) idea of long term working memory (LT-WM). 

Teaching and future research considerations 
We believe this perspective on proving, using situation-action links and behavioral schemas, 
together with information from psychology, is mostly new to the field. Thus, it is likely to lead to 
additional insights and teaching interventions, which brings up the question of priorities. Which 
proving actions of the kinds discussed above are most useful for mid-level university mathematics 
students to automate when they are learning how to construct proofs? Since such students are often 
asked to prove relatively easy theorems—ones that follow directly from definitions and recently 
proved theorems—it would seem that noting the kinds of structures that occur most often might be a 
place to start. Indeed, since every proof can be constructed using a proof framework, we consider 
constructing proof frameworks as a reasonable place to start. Furthermore, we have observed that 
some students do not write a second-level proof framework, perhaps because they have difficulty 
unpacking the meaning of the conclusion. This may be because a relevant definition needs to be 
converted into an operable interpretation in order to construct the second-level proof framework. 
Thus, helping students interpret formal mathematical definitions so that these become operable 
might be another place to start, even though students should eventually learn to make such operable 
interpretations themselves. 

Finally, this theoretical perspective is likely to allow one to see parts of the teaching of proof 
construction in unusual ways and lead to new questions. For example, unguided exploration can be 
helpful for some proofs, but a student could easily feel the time required for exploration might 
reduce (timed) test grades. A feeling of self-efficacy might overcome that, but how are feelings 
“taught”? Early successes with proofs can help, but arranging for these might require detailed 



planning of the course before it starts. Such planning could perhaps be aided by following a 
textbook, but most advanced mathematics textbooks prove the most important and useful theorems 
themselves, thereby taking away from students the opportunity to experience the proving of even 
parts of such theorems. 
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The study presented in this report is part of a research project concerning the mediation of artifacts 
in teaching and learning geometry. In this paper we analyze the first step of our research which 
concerns the student-pantograph interaction and the identification of the math laws incorporated in 
the machine. During this interaction we are specifically interested in arguments that students produce 
for supporting their claims. Tools, especially mathematical machines, may support argumentation 
processes focusing either on the structure of the machine, or to the embodied math concepts that 
emerge from the machine’s movement. Our research has shown that these arguments hold mainly on 
the topological conception of geometric figures.  

Keywords: Argumentation, instrumentation, figural concept, topology, pantograph. 

Introduction 
Mathematics is in close relation with material and non- material artifacts. Artigue (2002, p. 245) 
points out that “the development of mathematics has always been dependent upon the material and 
symbolic tools available for mathematics computations”. Teaching and learning geometry may be 
mediated by visual or design artifacts. Research on the use of artifacts in Geometry teaching as means 
to facilitate understanding and learning, has tended to focus mainly on technology integration into 
curriculum- such as computer software packages focusing on how learning takes place when students 
use such artifacts. In addition to the use of information technology in schools, the MMLab researchers 
(e.g., Bartolini Bussi, 2010; Mariotti et al., 1997) have recommended and investigated from an 
epistemological and pedagogical aspect the use of mechanical artifacts -mathematical machines- as a 
way to generate mathematical ideas or concepts in the classroom. The geometrical machine “is a tool 
that forces a point to follow a trajectory or to be transformed according to a given law” (Bartolini 
Bussi & Maschietto, 2008). These machines (for example pantographs) are linkages that allow the 
implementation of geometrical transformations, such as symmetry, reflection, translation, and 
homothety.  

The study presented in this report is part of a research project concerning the teaching of geometry at 
an upper secondary school in Greece (early 2016). Our research project was conducted in the 
framework of an attempt to incorporate artifacts that bear geometrical machine characteristics, in the 
instruction of Euclidean geometry.  

Theoretical framework  
The theoretical framework of the instrumental approach was used for analyzing our observations 
(Verillon & Rabardel, 1995). According to this approach, the artifact is the material or symbolic 
object, while the instrument is defined as a mixed entity made up of both artifact and utilization 
schemes. In order for an artifact to lead to the development of an instrument, “the user has to develop 
mental schemes, which involve skills to use the artifact […] the birth of an instrument requires a 
process of appropriation, which allows the artifact to mediate the activity. This complex process is 



called the instrumental genesis” (Drijvers & Trouche, 2008, p. 370). “The instrumental genesis, is a 
two sided process. On the one side, the construction of schemes is oriented toward the use of the 
artefact: the instrumentalisation. On the other side, the construction of schemes is oriented toward the 
task to be achieved: the instrumentation.” (Goos et al., 2009, p.313). In our study we investigate the 
instrumentalisation process, i.e. the discovery of the elements and qualities of the artifact by the user. 
For our purpose, teaching homothety, the pantograph was the most convenient tool. Following 
Drijvers and Trouche (2008, p.369) we consider that the utilization schemes students construct during 
the instrumentalisation process, contain operational invariants that consist of – explicit or implicit – 
knowledge in the form of concepts-in-action or theorems-in-action.  

Martignone and Antonini (2009) analyze more specifically the pantograph utilization schemes. They 
identified the “utilization schemes linked to the components of the articulated system (as the 
constraints, the measure of rods, the geometric figures representing a configuration of rods, ect.) and 
the utilization schemes linked to the machine movements” (p. 1253). In the second case, they 
distinguished two main sub-families: (1) the utilization schemes aimed at finding particular 
configurations obtained stopping the action in specific moments (limit zones; generic or particular or 
limit configurations) and (2) the utilization schemes aimed at analysing invariants or changes during 
continuous movements (wandering, bounded, guided; of particular configuration; between limit 
configuration; of dependence or in the action zones) (p. 1254). They have also conducted research on 
the argumentations produced in activities employing the pantograph (Antonini & Martignone, 2011). 
They distinguish between arguments about a) the drawings traced by the machine, b) the movement 
of the machine (as some dynamic properties of the articulated system), and c) the structure of the 
machine. Arguments about the structure are distinguished between referring to the figural aspect of 
the machine and the conceptual component of the geometric figure, which they discern in the 
structure.  

In this paper we analyze the kind of argumentation produced by 16-17 year old students during the 
phase of investigating (a) the structure of a pantograph and (b) the configurations and (con) 
formations produced by the movements of its structural components.  

Our research hypothesis was that the argumentation produced by the students, is in close relation with 
the machine’s characteristics: students’ explanations in the form of concepts or theorems in action 
are the exteriorization of precise utilization schemes developed by investigating the structure and the 
movement of the pantograph. 

Methodology 
The first step of our research, that is the subject of this paper, concerns the student-pantograph 
interaction. 26 students of an 11th grade class (16-17 years old), of different learning abilities and 
interests, took part voluntarily in the experiment. Participating students worked in 6 groups (4 groups 
of 4 people, and 2 groups of 5 people). All the participating students had no prior experience with 
any artifact, except for compasses and rulers. Two meetings were carried out with the groups, of four 
hours in totals, and members of two groups (A and B) were interviewed. The working sessions and 
interviews were audio recorded, and afterwards transcribed. The transcripts, visual material 
(photographs), and written reports of the groups constitute the data for the analysis. 



The artifact, with which the students were asked to work, is a geometrical machine (linkage) with the 
characteristics of a pantograph, specifically a version of Scheiner’s pantograph (Figures 1, 2). The 
building blocks of the pantograph model were two equally-sized wooden rods 30 cm long 
[OD=AE=AC=BD], held together by the links/pivots [A, L, D, and K] in the middle, thus forming a 
parallelogram [ALDK]. The rods had notches allowing reassembly of the linkage while maintaining 
its properties, provided that the links were placed in such a way that the ratios of the lengths of rod’s 
parts were equal in each rod. The pantograph’s linkage was mounted on a wooden platform 
(60cmx60cm).  

  

Figure 1: The linkage Figure 2: Schematic representation of the linkage 

The tasks given to be treated by students concerned exploring the pantograph’s structure and the 
investigation of special configurations and formations produced by the movements of the structural 
components of the linkage. The choice of the tasks was made following the distinction by Martignone 
and Antonini (2009) of the utilization schemes during pantograph exploration: the utilization schemes 
linked to the components of the articulated systems and the machine movements. The students invited 
to observe carefully the articulated system and to describe elements and characteristics of its structure 
such as length relationships and the mode of the rods' connection; to try to detect schematic shapes, 
properties and relationships that comprise its form and to create schematic representations of the 
articulated system (forms of system).  

The analysis of the transcript was done following the classification of Martignone and Antonini 

(2009) about mathematical machine utilisation schemes and the kinds of arguments students use 

during the exploration of a geometrical machine, as a pantograph (Antonini & Martignone, 2011). In 

our research we examine utilization schemes linked to the structure of the machine in a static and in 

a dynamic status (: movement of the machine). For the first case (: static structure), hereafter, we use 

the symbols SF and SC, for the figural aspect of the machine and the conceptual component of the 

geometric figure which students discern in the structure, respectively. For the second case (: dynamic 

structure) we use the symbols MF and MC. In fact, in this second case we investigate the way students 

justify the embodied mathematics in the structure of the machine.  

In this paper, we present and analyze the arguments produced by Group A -four girls hereby referred 
to as S1, S2, S3 and S4- as they investigate the configurations produced by the movements of the 
pantograph’s structural components. Apart from space constraints, the omitted group (B) was already 
familiar with the abstract math concepts involved, as opposed to group A whose gradual discovery 
of the tool yielded high resolution into the thought process addressed by our research hypotheses. 

Analysis of a transcript 
The students of Group A took advantage of the capability of the linkage pivots to alter its form by 
opening and closing its parts, identified the property of the midpoint for the position of the pivots (as 
K, L in Figure 2) and inferred the equality of their lengths (equal rods).  



S1: We identify a rhombus configuration (Figure 4), because the sides are equal as half 
of equal segments (SF, MC).  

The student S1 perceives the components of the machine’s structure as geometric objects and 
identifies in them geometrical relations. The equality of segments arose as an ascertainment while 
opening and closing the linkage. She uses the definition of rhombus (: because the sides are equal) 
and together with the figural aspect of the linkage’s structure (: half of equal segments) to argue that 
the quadrilateral ALDK is a rhombus (Figure 2).  

S2: Can we mention implied properties too?  

Interviewer: Describe what you consider important. 

This encouragement led the students to operate the artifact more dynamically, not only by opening 
and closing the rods, but also exploring characteristics and properties of specific conformations and 
support their claims, taking advantage of the capabilities provided by the pivots.  

S2: Isosceles triangles are formed (with her finger traces on the artifact the triangles 
OKA and ALB in Figure 2) … if we assume that the articulated system can close its 
ends (she points at the end of the rods and moves them until the linkage is closed, 
Figure 3) and if we assume that it has a base because those (she points at the pivots 
K and L, Figure 2) are midpoints of equal sides (MF, MC). 

The student executes the motion mentally (“if we assume … that it closes … and if it possesses a 
base”). They envision triangles in the linkage structure, though triangles do not exist. For these 
students the triangles they refer to are figural concepts (Fischbein, 1993). The students imagined the 
triangle and the reason that it is isosceles by moving the rods so that one rod meets the other (MF), 
while they deduce the equality of sides as halves of equal segments (MC). 

S3: Maybe they're not triangles because they don't close? 

The dimensions (thickness) of the rods don't allow them to coincide. The limitations of the artifact 
create a conflict between the figural aspects of the structure and the conceptual aspects of the 
geometrical figures of the articulated system. The students doubt whether they can actually consider 
it as a triangle. 

S1: If we move the linkage, in a special position, we have a square (MC).  

   

Figure 3: Closed linkage Figure 4: The rhombus Figure 5: The square 

The student mentions the word “square” without justification. They have been taught that square is a 
special case of the rhombus. By moving the artifact, they predict that for a specific position of the 
rods, a square will be formed (Figure 5). Their square is of a conceptual nature. At the same time, it 
has an intrinsic figural nature: only while referring to the artifact one may consider operations like “if 
we move….we have a square”. As a matter of fact, the square to which they refer cannot be considered 
as either a pure concept or a mere concrete representation. 

Interviewer: How do you know it's a square?  



S1: We have a right angle. 

Interviewer: How do you know the angle is right? 

S1: Since we have the capability of opening and closing an angle, then it can take all 
values between 0 and 180 … then definitely one of these values will be 90 … so 
one (angle) will be 90 degrees (MC). 

The students imagine through the rod motion a continuous creation of angles between 0°-180° and 
that obviously 90° will exist as mean of the interval, and consequently will correspond to an angle.  

S3: It is not just one particular (right) angle … but anyone… for a specific position of 
the rods (MC).  

Here is shown clearly the conceptual aspect of the argument. To the students the angle is not a 
characteristic of a static position of the artifact, but is dynamically created independently of the nature 
and position of the artifact on the planar surface (generalization). The right angle has been 
disconnected from the particular tool and is being described dynamically through its measure as a 
specific value in the interval 0°-180°. 

S4: (She opens and closes the rods and observes where the ends move and where the 
joint) … the ends of the rods (the points O, A and B in Figure 2) … remain always 
on the same line as Ο (MF). 

Interviewer: How do you know that those are on the same line?  

S2: From the triangles […] 

Interviewer: You assume that the base of one isosceles is an extension of the other, how do you 
know?  

The student assumes that the bases of two isosceles triangles are on the same line. The researcher’s 
intervention is critical. She is suspecting that parallelism will allow her to transfer angles so as to 
justify the conjecture of the points' co-linearity.  

S1: Those (points at pairs of opposite rods) … are parallel … they are always parallel 
(MF)… from construction … because their distance remains always equal. 

Parallelism is suggested to the students by the artifact’s structure, and is reinforced during the 
artifact’s movement. Substantiation of equal distance bears is theoretically unfounded.  

The fact that the distance between the rods is always the same does not arise from a mathematical 
justification, but from analysis of the tool's structure. The student considers the tool as embodiment 
of some geometrical properties. From the moment they regarded the square as a special case of 
rhombus, they pointed out the constant distance (: opposite sides of the square) between the lines 
containing opposite rods, a fact that leads them to parallelism. In fact the student overgeneralizes 
(Gärdenfors, 2004, p.151) the equal distances in the case of the square, to any other position of the 
rods. She implies that in any configuration (even in the case of rhombus) the distances are equal.  

Interviewer: How do you know this distance is always equal?  

S1: The distance from here (the student opening two fingers represents the supposed 
distance between two opposite rods) is always equal to this one (DH=DZ, in Figure 



6) and are equal in all positions (Figure 7) … same with this one (Figure 8-a 
square) … they can also be unequal, of course they're not always the same but 
they're equal in every position (MF) and the maximum distance is when it (the tool) 
forms a square (MC).  

   

Figure 6 Figure 7 Figure 8 

Figures 6,7,8: Schematically represent the conformations of the artifact that the student trace on the 
drawing paper. 

The student’s spatial conception is topological in nature. This conception appears first as an 
overgeneralization, and following the interviewer’s persistence, it is expressed clearly through the 
movement of the artifact. For S1 rhombus and square are topologically equivalent (homeomorphic), 
leading to the conservation of equal distances (Figures 6, 7, 8). Piaget and Inhelder (1967) consider 
the structures of topology, to be the origin of the ontogenesis of spatial thinking.  

Interviewer: Why is it the maximum distance? 

S1: Because if I go over here (she refers to her equivalent to Figure 6 drawing on the 
board) from a right triangle (shows on the drawing the triangle DZL to which she's 
referring) I have a smaller distance, because this distance (DZ) is the smallest, as 
it's a leg … so these form this angle equal to this angle (referring to the right angles 
of the right triangles DHK and DZL in her drawing). 

The argument the student formulates in her attempt to justify why the distance of opposite rods 
becomes maximum, in the case of a square, has two components. One concerns a geometrical 
property (: the perpendicular segment is shorter than any oblique) (MC), while the second component 
is based on figural characteristics related to the conformations of the tool (rhombus –square) (MF). 
In line with Radford (2003), we could consider the student’s argument as a factual generalization: “A 
factual generalization is a generalization of actions in the form of an operational scheme that remains 
bound to the concrete level.” (Radford, 2003, p.65). 

Interviewer: But why are they parallel? 

S3: Since the general shape is a rhombus (MC) and the distances between them 
(meaning the opposite sides) are always equal (MC). 

The students identify the characteristics of a geometrical problem they have tackled in the past 
(distances of opposite sides in a rhombus are equal), but being unable to give a geometric proof, 
remain on a topological approach. 

Discussion and conclusions  
Our research hypothesis was that the argumentation produced by the students, is in close relation with 
the machine’s characteristics. In fact, in agreement with the findings of Antonini and Martignone 



(2011) students produce arguments both on a figural and a conceptual level even for the same 
investigation. The arguments used by the students are supported by the linkage’s continuous 
movements in the action zones or between limit configurations.  

Students produce arguments based on the figural characteristics of the tool mainly in two cases: when 
the structure of the tool renders their observation probable (3 collinear points), or when the tool 
produces the “proof” mainly through the linkage’s continuous movements (: the triangle is isosceles, 
because the rods overlap). The figural characteristics make some facts “obvious” for the students to 
the point to give to the observer the impression of lack of substantial comprehension of geometrical 
definitions. For example, the students, in spite of recognizing the rhombus, do not readily deduce the 
parallelism of its side, and seek more complex proof, mainly via the artifact's attributes.  

The instrument’s structure may favor the theorems-in-action formulation (Fischbein, 1993), 
providing convincing argumentation: an angle is right, as it can be constructed by the artifact on a 
specific moment of its movement. Although the students were familiar with elementary proof in the 
framework of Euclidean geometry, their way of thinking was mainly topological. It seems that the 
mathematical tool, through its capacity for motion, favors such approaches. This was demonstrated 
not only in the justification that an angle is right, but also in the justification of two lines’ parallelism. 
This fact implies the benefit of artifact use in Geometry teaching, before a formal introduction to the 
concept of proof.  

Nevertheless, the tool’s restrictions (e.g. rods not fully overlapping), create a conflict between the 
figural aspects of the structure and the conceptual aspects of the geometrical figures of the articulated 
system. For example, when trying to superimpose the wooden sides of the triangle in order to check 
if they are equal, students face the tool's restriction. Nevertheless, they can imagine it as an isosceles 
triangle. Those restrictions have two outcomes: a positive one being that students are forced to think 
in a more abstract manner and the negative one that the restrictions may lead them to false 
conclusions, giving the occasion of fruitful discussions.  
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The paper describes a game-activity proposed to 7th grade students with the goal to make them 
discover the geometric property concerning the mutual relationship between two circles. The activity, 
called “the game of the two circles”, is composed of a strategic game that students play in GeoGebra 
and an investigative task which requires conjecturing and generalization. The aim of the activity is 
to trigger an approach to mathematics based on the logic of inquiry. We analyse students’ dialogues 
and actions paying particular attention to the additional values the game confers to the more 
traditional exploratory activities with dynamic geometry software. 

Keyword: DGE game-activity, played-game, reflected-game, inquiring and justifying processes. 

Introduction 
Many studies in mathematics education have documented the importance of making students explore 
mathematical situations before asking them to construct proofs (Boero et al. 1996, Pedemonte 2007). 
The exploration triggers the formulation and the checking of conjectures, introducing students into 
logical ways of reasoning. As pointed out by Dewey, all forms of logics, included the deductive logic, 
are consequence of inquiry processes: 

 all logical forms (with their characteristic properties) arise within the operation of inquiry 
and are concerned with control of inquiry so that it may yield warranted assertions. This 
conception implies much more than that logical forms are disclosed or come to light when 
we reflect upon processes of inquiry that are in use. Of course it means that; but it also 
means that the forms originate in operations of inquiry. (Dewey, 1938, p.3,4) 

 Boero et al. (1996) have observed the possibility of a cognitive continuity between the processes of 
discovering and justifying. It occurs when the students, in the construction of the proof, exploit the 
argumentations employed for producing the conjecture. Pedemonte (2007) has distinguished between 
a cognitive unity in the referencial system and in its structure. The first occurs if some expressions, 
drawings, or theorems used in the proof have already been used in the argumentation for supporting 
the conjecture. The second occurs if the inferences produced in the argumentation and in the proof 
are connected through the same structure (abduction, induction, deduction). Hintikka (1999), an 
eminent Finnish logician, analyzing Sherlock Holmes way of reasoning in inquiry processes, showed 
that the clever deductions he made are obtained by reversing the abductions (Peirce, 1960) produced 
while investigating. His works demonstrates the existence of an epistemic unity between inquiring 
and justifying processes.  

In this study, we favor and emphasize the possibility of connections between the discovery and 
justifying processes by introducing strategic games within Dynamic Geometry Environments 
(DGEs): these are games in which players have to make strategic choices meant for setting up and 
coordinating actions aimed at the achievement of a goal. As it is known from the literature (Arzarello 



et al. 2002, Baccaglini-Frank & Mariotti, 2010), DGEs are particularly apt for triggering inquiring 
processes. Our conjecture is that in virtue of the game, the conjectures and abductions produced inside 
the DGE are not left isolated but can be connected together and reorganized in logical chains. In fact, 
for making a strategic choice within a game situation, players reflect backward on the moves made 
and forward on the possible moves to make. These reflections can support the construction of logical 
links through which reorganize the geometrical invariants observed during the players’ moves. In 
fact, since the moves are made on dynamic figures and involve geometric elements, we wish that the 
strategic reflections made on the moves could affect also the geometric elements involved in the 
moves. For this reason, DGE game-activities can promote a kind of thinking which is different from 
the one triggered by more traditional explorative activities with DGS. 

Theoretical framework 
The interrogative logic or logic of inquiry, introduced by Jaako Hintikka (1999), proposes a back to 
the origin consideration of the discipline. According to Hintikka, the modern logic switched from the 
study of excellence in reasoning to the study of infallibility in reasoning: “preserving one’s logical 
virtue becomes a more important concern than developing virtuosity in drawing logical inferences” 
(Hintikka, 1999, p.28). The rules of inference are definitory rules, which inform us about the possible 
inferences, but do not say anything about which inferences are appropriate in the current moment, 
which are not so and which ones are better than others. These types of considerations are the concern 
of strategic principles.  

Hintikka conceives the process of seeking new knowledge as an interrogative game, which is a two-
player game between an inquirer, who asks the questions and an oracle, who answers him. 
Observations can be thought of as answers put to an environment, a controlled experiments, a 
database stored in the memory of a computer, a diagnostic handbook, a witness in a court of law, or 
one's own tacit knowledge partly based on one's memory can be considered as questions asked to 
nature. “Strategies of questioning play a central role in interrogative games, these include strategies 
of information seeking by means of different choices of questions to be asked and of the order in 
which they are asked.” (Hintikka, 1999, p.34).  

Hintikka models the processes of verification and falsifications through a semantical game (Hintikka, 
1998), which is a two-player game between a verifier, whose goal is to show the truth of a 
mathematical formula or statement and a falsifier, whose goal is to confute it. In order to establish 
the truth of the mathematical formula ∀𝑥 ∃𝑦 | 𝑆[𝑥, 𝑦] it is possible to imagine a game in which the 
falsifier choses a value x0 “in the most unfavorable way as far as the interests of the verifier are 
concerned” and the verifier should find a value y0 for y such that 𝑆[𝑥0, 𝑦0] is true. The formula is true 
if there exists a winning strategy for the verifier of the game, while it is false if there exists a winning 
strategy for the falsifier of the game. 

In our study, taking inspiration from Hintikka’s semantical game, we designed DGE game-activities 
in order to aid students in their discovery of geometric properties, through the game-play and the 
guiding questions. Analysing students’ actions, we distinguish between two ways of using the game: 
the played-game and the reflected-game (Soldano & Arzarello, 2016). In the played-game, the 
students’ aim is to win against their opponent. To reach this goal they activate strategic principles 
which help them to select the best move to make in a given situation. In the reflected-game students 



play the game in order to answer the questionnaire and to communicate with each other. They play 
the game in a fictitious way: the game helps students to formulate the correct answer. In the reflected 
game we distinguish between the two main cognitive processes that characterizes dragging practices 
(Saada-Robert, 1989; Arzarello, 2002; Olivero, 1999): ascending and descending processes. We 
recognize ascending processes when students use the game in order to explore the situation and 
formulate a conjecture and descending processes when they use the game to check it. We have 
integrated this analytical tool with a new cognitive modality: the detached modality, in which students 
refer with words to the dynamic observed in the game, but they do not use it concretely.  

The game of the two circles 

The game-activity presented in this paper is based on the relationship between the distance between 
the centres of tangent circles and the sum/difference between their radii. Students play the game on 
the GeoGebra file shown in Figure 1. The GeoGebra window is divided in two parts: on the right 
there is the numerical window with sliders and variables, in the left the graphic window here is a 
graphic representation of the geometric objects. 

Sliders a, b, and c control respectively the distance between the centres, the radius of the circle with 
centre O and the radius of the circle with centre O’. The variables d, e, f are respectively the absolute 
value of the difference between the radii (d=|b-c|), the distance between the centres and the sum of 
the radii (f=b+c). When students drag sliders b or c, they can observe the synchronic variation of the 
values of d and f and of the length of one circumference.  

The game develops as follows: player B, the verifier, controls slider b, player C, the falsifier, controls 
slider c while player A, the referee, controls slider a and the hourglass. The goal of player B is to 
make e=d or e=f, the goal of player C is to make e≠d and e≠f. At the beginning of each match, the 
referee chooses the value of a and turns the hourglass over. Each time a player reaches his goal, the 
referee turns the hourglass over and the turn moves to the opponent. If the player cannot reach the 
aim within the time on his/her hands, he/she loses. The dynamic described is that of a semantical 
game played on the following statement: for every value of c there exists a value of b such that the 
circles are internally or externally tangent. 

Each time that player B reaches his goal he produces an example of internally or externally tangent 
circles (look at Figure 2 a, b). Contrastingly, each time player C reaches his goal he produces an 
example of non-tangent circles (look at Figure 2 c, d, e). Since the interval of the sliders can take 
values from 0 to 10, players can produce also degenerate configurations (look at Figure 2 f, g). Player 
B can win also in this situation (look at Figure 2 h).  

Figure 1: Game-activity 



a) b) c) d) 

Externally tangent circles 

e=f 

Internally tangent circles 

e=d 

Non-tangent circles 

e≠d ∧ e≠f 

Non-tangent circles 

e≠d ∧ e≠f 

e) f) g) h) 

Non-tangent circles 

e≠d ∧ e≠f 

Degenerate non-tangent circles 

e≠d ∧ e≠f ∧c=0 

Degenerate non-tangent circles 

e≠d ∧ e≠f ∧c=0 

Degenerate tangent circles 

d=e=f ∧c=0 
Figure 2: Example space associate with “the game of the two circles” 

Theoretically it is always possible for players to reach their goals. Therefor the outcome of the game 
is determined by the time limit.  

After playing the game, students are required to answer to the following questions: 

1. Which are the mutual positions between the two circles each time player B reaches his aim? 
2. Which are the mutual positions between the two circles each time player C reaches his aim? 
3. What do the sliders a, b and c represent?  
4. What do the value of d, e and f represent? 

The questionnaire is intended to help students shift their frame of reference from the game to the 
geometric theory. In particular, the first two questions are intended to change the focus of attention 
from the numerical values of variables d, e and f to the mutual positions between circles. In this way 
students discover the geometric invariants which characterizes player B’s moves: each time the 
verifier reaches the goal the circles are tangent. Question number three is intended to link the values 
of the sliders to the length of the radii and the distance between the centres. Finally, question number 
four is intended to link the values of the parameters to the sum and difference of the radii. In this way 
students can discover another invariant which characterized player B’s moves: each time the verifier 
reaches the goal the distance between the centres is equal to the sum or difference between the radii 

Methodology and data collection 
The study reported in this paper involves one classroom of 7th grade Italian students. The game of the 
two circles is the first of a group of four game-activities related to the geometry topic of circles. Note 
that the properties on which the game are designed are not part of the classroom knowledge: the goal 
of the activity is to guide students in their discovery. Each activity lasts almost two hours: in the first 
hour and half students are divided into groups of three students and they play the game and answer a 
questionnaire using a computer or a tablet. In the last half an hour the teacher revisits students 
discoveries and systematizes the mathematical knowledge. The data for the analysis includes the 
transcript of students’ dialogue and the GeoGebra diagrams explored during the game and the 



questionnaire. We videotaped two groups and the final class discussion but, for space reason, we will 
represent only one group’s work. 

Analysis 
The videotaped group is composed by three students: Gu and Al are males, Bia is a female. They play 
the game on the computer. In the first match Bia is the referee, she chooses the value of a and she 
turns the hourglass. Gu is player C, the falsifier. He has to move slider c so that e≠d and  e≠f. Al is 
player B, the verifier. He has to move slider b so that e=d or  e=f. Figure 3 contains, in the first row, 
the diagrams produced during the first match. Below each diagram are the reported values of sliders 
and variables which appear in the numerical window. Finally the last row contains students’ role 
(Falsifier (F), Verifier (V)) who produces the diagram, the type of example created and the time spent 
producing it. Remember that slider a controls the distance between the centres, slider b the radius of 
the circle with centre O and the slider c the radius of the circle with centre O’. The values of d, e and 
f are, instead, the respective absolute values of the difference between the radii, the distance between 
the centres and the sum of the radii.   

a) b) c) d) 

𝑎 = 8   𝑏 = 5.1   𝑐 = 3 𝑎 = 8   𝑏 = 5   𝑐 = 3 𝑎 = 8   𝑏 = 5   𝑐 = 10 𝑎 = 8   𝑏 = 3.3   𝑐 = 10 

𝑑 = 2.1  𝑒 = 8   𝑓 = 8.1 𝑑 = 2  𝑒 = 8  𝑓 = 8 𝑑 = 5  𝑒 = 8  𝑓 = 15 𝑑 = 7.7  𝑒 = 8  𝑓 = 13.3 

F, secant circle,7 sec V, externally tangent, 6 sec F, secant circle, 4 sec V, secant circle, Time’s up 

Figure 3: First match 
The match lasts short length time and it ends with the winning of the falsifier (Figure 3). In the last 
move the time ends before Al reaches his goal, hence Al loses even if, theoretically, he could have 
won. Al knows that he could have won if he had had more time, in fact he says “it should have been 
like this”, making internally tangent circles. After Al demonstrates the winning configuration, Bia 
says “So B should always win”. This sentence reveals the activation of the anticipatory thinking 
(Harel, 2001). After playing another match, students move to the first question. 

Gu: In order to reach the goal they have to touch each other in only one point. 

Al: On the other hand the answer to the question: ‘In which mutual positions are the 
two circles when C reaches his/her goal?’ is any position. They can touch each other 
in two points or nowhere. 

Bia: No, they always touch each other in exactly two points. (looking at an example of 
secant circles). 

Gu: They can touch each other in two points, but they can also not touch each other. 

Bia: Ah… (moving c so that the circles do not intersect each other. Then she moves c 
back and forth for 30 seconds) Yes, that’s right! 

Al and Gu approach the question in a different way from Bia. They are in detached modality, they 
rethink what has happened in the played-game and then they answer the question. Bia, instead, uses 



the game in order to investigate the situation, she is in descending modality: she is using the reflected-
game in order to check her schoolmates’ claims. The group repeats this approach (detached versus 
descending) in answering the subsequent questions. When they get to the last one, the students do not 
agree with each other: according to Al and Bia, d and f are the radii of the circles, while Gu does not 
agree with them. The disagreement invokes the need of a justification.  

Al: Let me prove that it’s the radius (taking the mouse)! They have to coincide 
perfectly… (moving the centre O’ on the other circumference, see Figure 4e) 

Gu: It’s not the radius… Because if you change the radius of a circle, you don’t 
automatically change the radius of the other one! Both values [d and f] change! You 
should change just one [d or f] by moving it [b] by changing the length of one 
radius… you are not changing the other one! 

Al: Don’t you notice? Don’t you see? (he moved c to 0, obtaining that e is equal to d 
and f, see Figure 4f). Point T just appeared and, putting this on zero. Do you notice? 
It’s 2.9 2.9 2.9. 

In order to refute Al’s conjecture, Gu tries to explain the contradiction he noticed between the graphic 
and the numerical window. In detached modality, Gu explains why Al’s claims creates a dynamic 
contradiction in the conversion (Duval, 2006) from the numerical to the graphic register. Al, instead, 
tries to provide evidence for explaining that what he claims is true. In this attempt, he uses the value 
of the parameter e (distance between the centres) in order to measure the length of the radius of one 
circle. His goal is to show that this value is equal to the value of d or f. If this process were to be 
applied on a generic example, it would have led to a contradiction, but since Al moves the value of 
the radius of the circle O’ to 0, he produces a supporting example.  

e) f) g) h) 

Figure 4: Reflected-game 
After exploring silently the situation, Bia who at first supports Al’s claim, changes her mind. 

Bia: Anyway he’s right… If you put them like this (each centre belongs to the other 
circle, see Figure 4g), the radius is the same thing, isn’t it? I mean, it’s the same 
here and here (pointing at the two circles), but here they are different (pointing at 
the values of sliders d, f)… Then it must be another thing, do you get it? 

Adopting Al’s strategy, she uses the distance between the centres to create two circles with the same 
radii in the graphic window. She notices that the two parameters which are supposed to be the radii 
are not equal in the numerical window. In contrast to Gu, who creates a dynamic counterexample, 
Bia exhibits a static counterexample, but this one also fails to convince Al that he is mistaken. The 
discussion continues with Gu who repeats his dynamic example, Bia who produces other static 
counterexample and Al who moves back to his supporting special example and cannot understand 
why he is wrong. Finally, observing the value d=0 when circles are externally tangent (Figure 4h) 



and with the same radii, Al formulate a new conjecture: d is the difference between the radii of the 
circles. This discovery allows him to unlock the situation and to explain his special example. 

Discussion and conclusion 
Game-activities can operationalize a functional approach to geometry. Within these activities, 
students deal with soft tangent circles, namely dynamic circles in which some constructive steps that 
make the circles robustly tangent (the tangency is preserved by dragging) are voluntarily not 
performed (Healy, 2000). A constructive step creates a functional dependence between the geometric 
elements, which is hidden in the robust construction of the figure. In DGE game-activities, this 
functional dependence is made explicit through the verifier/falsifier’s dialectic. More precisely, when 
the verifier has observed the invariant tangent configuration produced by his/her moves, he/she can 
create a cause-effect link between his/her goal and the invariant produced.  

We describe the verifier’s dragging as follows: 𝑏
𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑙𝑖𝑑𝑒𝑟𝑠
→                𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑐𝑖𝑟𝑐𝑙𝑒𝑠 which 

indicates that the verifier, by moving the slider b, can observe the invariant tangent configuration as 
the effect of making sliders values coincide. Once discovered the invariant, the verifier can 
accomplish the move with the goal of building tangent circles. In this case, he observes the 
coincidence of the values of the slider as the effect of making tangent circles. This time the verifier’s 
dragging is described in this way: 𝑏

𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑐𝑖𝑟𝑐𝑙𝑒𝑠
→            𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑙𝑖𝑑𝑒𝑟. By switching the focus of 

attention of the move, the DGE game-activities, create a sort of frame, which helps students to 
appreciate the “if and only if” relationship between tangent circles and the fact that the distance 
between the centres is equal to the sum or absolute values of the difference of the radii. 

DGE game-activities enrich the exploration supporting the in-depth investigation of situations: the 
presence of the falsifier, who tries to create trouble to the verifier, exposes the verifier to different 
initial situations triggering the exploration of both standard and non-prototypical examples of tangent 
circles.  In this way, the game-activities enlarge students’ accessible example space (Goldenberg & 
Mason, 2008) associated with tangent circle configuration. This is a very important aspect for the 
construction of mathematical concepts: proposing students only standard configurations can be 
source of mathematical misconceptions. 

Finally, the game tool enriches and supports students’ arguing abilities and the coordination of 
numerical and graphic information. In order to communicate their claim, students activate a versatile 
use of the game: not only for formulating and checking conjectures but also for supporting their claim, 
confuting different opinions and explaining ones’ point of view. The game assumes a fundamental 
role in promoting mathematical ways of reasoning. Al, for example, uses the game to show evidences 
of the truth of his claim, hence uses the game for constructing a supporting example, while Bia and 
Gu use it to show that he is wrong, hence for constructing counterexamples to what has been claimed 
by Al. In producing these arguments, students make conversion between numerical and graphic 
registers. Concluding, the game instruments help students not to assume the absolute truth of external 
opinions, but to establish a dialectic approach to them.  
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To promote learning mathematics with understanding, mathematics educators in many countries 
recommend that proof play a central role in school mathematics. In response to this recommendation, 
this study examines the opportunities for students to learn reasoning-and-proving from the geometry 
strand of a popular school mathematics textbook in Hong Kong. The study adopts the methodology of 
Stylianides (2009). Results show that Hong Kong takes the traditional but problematic approach in 
which proof is taught mainly in geometry and in which two-column proof is emphasized. Overall, 
results suggest that proof plays a marginal role in school mathematics in Hong Kong. 

Keywords: Reasoning-and-proving, school mathematics textbooks, geometry, Hong Kong. 

Introduction  
In addition to verifying the truth of a mathematical statement, proof can have many other important 
functions in mathematics, including explanation, which can promote sense making and understanding 
in mathematics (de Villiers, 1990). As a consequence, many mathematics educators around the world, 
especially those in the US, recommend that proof (and proof-related reasoning) permeate school 
mathematics at all levels and in all content areas (e.g. Ball et al., 2002; NCTM, 2000). Furthermore, 
since textbooks can have an influence on what students learn, many studies have been conducted in 
different national curricula (e.g. US, Israel, Australia) to examine the opportunities for students to 
learn reasoning and proof from school mathematics textbooks. These studies were conducted at 
various grade levels (e.g. middle school, high school) and content areas (e.g. algebra, geometry); for 
example, see Stylianides (2009) and the articles devoted to this topic in Stylianides (2014). However, 
almost all of these studies were conducted in Western countries whereas only few studies have been 
conducted in East Asian countries (e.g. Singapore, South Korea, Hong Kong) where students have 
consistently performed very well in international studies of mathematics achievement such as TIMSS 
(e.g. Mullis et al., 2012). The present study is part of an on-going project aimed to complement the 
international research knowledge by examining the opportunities for students to learn reasoning and 
proof when they are using a popular secondary school mathematics textbook from Hong Kong. It is 
expected that the results obtained will shed light on how proof is being treated in school mathematics 
in one of those high-achieving countries (or regions) and provide insights into the influences that 
Chinese culture may have on issues concerning understanding in school mathematics. This paper 
reports our findings in geometry; for our findings in algebra, see Wong & Sutherland (2016).  

The context: Hong Kong SAR 
Being a special administrative region (SAR) of China, Hong Kong enjoys curriculum independence, 
in the sense that Hong Kong designs her own school curriculum, which is different from that in China. 
In 2009, Hong Kong launched her new academic structure, under which the number of years for 
senior secondary school changed from four years to just three years (Secondary 4, 5 and 6). 
Accordingly, at the same time Hong Kong initiated her New Senior Secondary Mathematics 



Curriculum (Education Bureau HKSARG, 2007). This new curriculum consists of two parts: the 
Compulsory Part and the Elective Part (also called the Extended Part). It should be pointed out that 
teaching proof is not one of the stated goals (or processes) of the curriculum, which mentions proof 
only locally in the learning targets of geometry, namely, to “formulate and write geometric proofs 
involving 2-dimensional shapes with appropriate symbols, terminology and reasons” (ibid, p.15). The 
textbook series chosen for this study is the popular New Century Mathematics (2nd edition, Leung, 
Frederick K. S. et al., 2014–16). There were three reasons for choosing this textbook series: (a) this 
textbook series was one of the most popular ones in Hong Kong (if not the most popular one), (b) it 
was on the recommended booklist by the Educational Bureau, which means that it was guaranteed to 
be fully aligned with the new mathematics curriculum, and (c) it was coauthored by a prominent 
mathematics educator. Within this textbook series, there were two books (Books 4A and 4B) for 
Secondary 4, two books (Books 5A and 5B) for Secondary 5 and one book (Book 6) for Secondary 6. 
All topics in these five books were categorized into three strands: Number and Algebra, Data 
Handling, and Geometry (in the curriculum document (ibid.) the name “Measures, Shape and Space” 
was used instead). 

Analytic framework and method 
We followed the methodology of Stylianides (2009) in his investigation into reasoning and proof in 
school mathematics textbooks in the US. The framework he used was based on his conceptualization 
of reasoning-and-proving (RP), a term describing the overarching activity encompassing all of the 
four major proof-related mathematical activities: (a) identifying patterns, (b) making conjectures, (c) 
providing proofs, and (d) providing non-proof arguments. As shown in Table 1 below, the first two 
activities were grouped into the category of making mathematical generalizations and the latter two 
into the category of providing support to mathematical claims. The idea behind this conceptualization 
was that making mathematical generalizations (identifying a pattern and conjecturing) and providing 
support to mathematical claims (proving) are two fundamental and interrelated aspects of doing 
mathematics (Boero et al., 2007). Further, there were two kinds of pattern: plausible and definite; two 
kinds of proof: generic example and demonstration; and two kinds of non-proof argument: empirical 
argument and rationale. For the exact definitions of these terms, see Stylianides (2009).  

Reasoning-and-Proving  
I. Making Mathematical Generalizations II. Providing Support to Mathematical Claims 

(a) Identifying a Pattern 
  

(b) Making a 
Conjecture 

(c) Providing a Proof 
  

(d) Providing a Non-  
proof Argument 

1. Plausible Pattern 
2. Definite Pattern  

3. Conjecture  4. Generic Example 
5. Demonstration 

6. Empirical Argument 
7. Rationale 

Table 1: The analytic framework (Stylianides, 2009, p. 262) 

In this study, we focused on the Compulsory Part of the curriculum. We examined all of the eight 
chapters comprising the Geometry strand (see Table 4 below for the names of these chapters). 
Following Stylianides (2009), we focused on the exercises in these chapters and examined all of them. 
In each of these chapters, exercises were categorized under various headings: Q&A, Review Exercise, 
Instant Drill, Instant Drill Corner, Exercise, Supplementary Exercise, Class Activity, Inquiry & 
Investigation, and Unit Test. Within each category of these exercises, there were many tasks. A task 



here means any problem in the exercies or parts thereof that have a separate marker (Stylianides, 2009, 
p. 270). Task served as unit of analysis in this study and there were totally 2,929 tasks to be analyzed 
and categorized into the seven subcategories of the constituent activities of reasoning-and-proving set 
out in Table 1 above. Additionally, we extended Stylianides’ framework by further dividing the 
subcategory “Demonstration” into seven (sub)subcategories that correspond specifically to the 
different proof methods that were used in the exercises of the Geometry strand of our chosen textbook 
series; these included (i) Proof by Definition, (ii) Proof by Calculation, (iii) Proof by Calculation and 
Definition, (iv) Paragraph Proof, (v) 2-Column Proof, (vi) Proof by Contradiction, and (vii) Existence 
Proof (see Table 3 below). To decide if a task was an RP task, we considered how it appeared in the 
textbook (e.g. key phrases "Prove that", "Explain your answer"). In cases where the requirements 
were not clear, we consulted the Teacher’s Manual (which contained suggested solutions, but only 
suggested solutions) in order to infer what types of response was expected for students.  

Examples of analysis 
Although there was a considerable amount of tasks, the forms of expression of tasks providing RP 
opportunities were very limited. Tasks phrased with the obvious "Prove that" or "Show that" were 
treated as RP activities (see Examples 2, 4 and 5 below). Those tasks ending in "Explain your 
answer." were also treated as RP activities, because they were asking for some kind of justification 
(see Examples 1 and 3 below). However, in some cases there was no explicit request to explain the 
answer, but judging from the solutions in the Teacher's Manuals, justifications were actually expected 
and hence these tasks were also treated as RP activities (see Task 3 of Example 5 below). Some tasks, 
usually in Class Activity or Inquiry & Investigation, were special in that they were part of a template 
for illustrating reasoning-and-proving. Such tasks were dually coded: on the one hand as a unit of 
analysis on its own, and on the other hand as part of the constituent activity (or activities) of 
reasoning-and-proving being illustrated (see Example 5 below).  
Example 1 
4. Q( 1, 3) is rotated anticlockwise about the origin O through to Q1. 
   (a) Write down the coordinates of Q1.  
   (b) If Q1 is reflected in the x-axis to Q2, are Q and Q2 the same point? Explain your answer.  
Solution (from Teacher's Manual 4B, p.228): 
   (a) Coordinates of Q1 = ( 3, 1) 
   (b) Coordinates of Q2 = ( 3, 1) 
        Coordinates of Q  Coordinates of Q2 
          Q and Q2 are not the same point.  

Figure 1: Task 4(b) of Supplementary Exercise of Ch. 12 of Book 4B 
 

Here Task 4(a) was not coded as any RP activity. Task 4(b) was coded as “Demonstration – Proof by 
Definition,” by which we mean one-step deductive reasoning which can be derived directly from 
some definition (or property or theorem). This type of tasks does not involve substantive reasoning – 
its aim is simply to check students’ understanding of the definition (or property or theorem).  



Example 2 
58.  A(0, ), B( , 0) and C( , 0) are the three vertices of  ABC.  
      (a) Show that AC = . 
Solution (from Teacher's Manual 5B, p.96): 

      (a)          

                                 

                       AC =  

Figure 2: Task 58(a) of Supplementary Exercise of Ch. 7 of Book 5B 
 
As shown, the solution involved substitution of values into the distance formula and algebraic 
manipulations to calculate AC. This task was coded as "Demonstration – Proof by Calculation". This 
proof method is also called "Mechanical Deduction" in the literature (e.g. Reid & Knipping, 2010, p. 
124). Though involving mechanical algebraic manipulations and little reasoning, logically it should 
be regarded as a proof (for more on this point, see Slomson, 1996, p.11, "Proofs as Calculations"). 
 
Example 3 
5. In the figure, BM = CM = 6 cm, AM = 8 cm and AB = 10 cm. AMD is a straight line. Is AD a    
    diameter of the circle?  Explain your answer.  
Solution (from Teacher's Manual 4B, p.135): 
 AM2 + BM2 = (82 + 62) cm2 = 100 cm2 
 AB2 = 102 = 100 cm2  
 ∵   AM2 + BM2 = AB2 
    AMB =  
    AM  CB 
 ∵  AD is the perpendicular bisector of BC. 
   AD passes through the centre of the circle. 
   AD is a diameter of the circle. 

Figure 3: Task 5 of Supplementary Exercise of Ch. 10 of Book 4B 
 

This task was coded as "Demonstration – Paragraph Proof", because it involved not just algebraic 
manipulations, and was written in the paragraph (or narrative) form – a less formal form in which it is 
not required to provide justification for every step. Paragraph proofs in geometry correspond to level 
2 (informal deduction) of van Hiele Levels (Usiskin, 1982). 
 
Example 4 
11. In the figure, PCQ is a straight line. Chord AB is parallel to PQ. If  prove that PQ     
      touches the circle at C. 
Solution (from Teacher's Manual 4B, p.182):  
∵                                given 

  ABC =BAC                       equal arcs, equal angles                
     BCQ =ABC                        alt. s, AB // PQ 
  BAC =BCQ 
  PQ touches the circle at C.      converse of  in alt. segment 

Figure 4: Task 11 of Exercise 11F of Ch. 11 of Book 4B 



This task was coded as "Demonstration – 2-Column Proof", because it involved not just algebraic 
manipulations, and was written in the traditional two-column form – a more formal form in which 
every step is required to be justified with a reason and to be presented in the rigid two-column format 
as shown in Figure 4 above. Two-column proofs in geometry correspond to level 3 (formal deduction) 
of van Hiele Levels (Usiskin, 1982).   
 
Example 5  
Inquiry & Investigation 9.1:  Alternative proof for the sine formula 
Inquiry  
In  ABC, what is the relationship among the radius r of the circumcircle, , and  ?  
Investigation Steps 
In the figure, O is the centre of the circumcircle of  ABC. The radius of the circumcircle is r. Produce 
AO to meet the circle at X. Join BX. 
1. Find ABX. 
2. Consider  ABX. Express  in terms of c and r. 
3. What is the relationship between angles C and X? 
4. (a) Use the results of Questions 2-3 to express  in terms of r. 

    (b) Use similar method to express and in terms of r. 
Conclusion 

 =  =   =  ____________ 
 

Figure 5: Task of Inquiry & Investigation 9.1 of Ch. 9 of Book 5B  
 
This exercise consisted of six tasks (1, 2, 3, 4(a), 4(b) and Conclusion). It was a template for 
illustrating a direct proof. So these tasks were dually coded. First, each task was coded as a unit of 
analysis on its own. In this example, Task 3, and only Task 3, could be interpreted as an RP activity 
(Demonstration – Paragraph Proof or 2-Column Proof) in case the solution given in the Teacher's 
Manual would include a justification (e.g. "Angles in the same segment"). However, the solution 
given was just "C = X", so it was not regarded as a reasoning-and-proving task. Neither were the tasks 
1, 2, 4(a), 4(b) and Conclusion.  Then, each task was coded as part of the template illustrating RP 
activities. In this case, all of them were coded as “Demonstration – Paragraph Proof”.  For more 
examples, see the full version of this paper. 

Results and Discussion   
We have three major findings. Firstly, as shown in Table 2 below there were relatively limited 
opportunities (444 out of 2,929 tasks, i.e., 15.2%) for students to learn RP from the exercises of the 
Geometry strand of the chosen textbook series (Secondary 4 – 6). The majority of these exercises 
were to drill procedural skills. Secondly, there was a large difference between Making Mathematical 
Generalizations (24 tasks) and Providing Support to Mathematical Claims (420 tasks). This suggests 
that these two categories of activities were treated, in large part, in isolation from each other. This is 
problematic as they are two fundamental and interrelated aspects of doing mathematics (Boero et al., 
2007; Cañadas et al., 2007; Hsieh et al., 2012). Thirdly, the majority of the RP opportunities were 
Demonstration (364 out of 444, i.e., 82%). However, as shown in Table 3 below, out of these 364 
demonstrations, 32.1% were Proof by Definition or Proof by Calculation or Proof by Calculation and 



Definition, all of which involve little reasoning. If we excluded them from Demonstration, the total 
RP opportunities would reduce to 11.2% (= 444  83  26  8 out of 2,929 tasks). A consequence that 
might be attributed to this lack of sufficient emphasis on proof even in geometry is that, as informed 
by TIMSS 2011 (Mullis et al., 2012, p.148 & p.150), “Hong Kong students in general do well in 
Knowing items, and relatively badly in Reasoning items” (Leung, 2015, p. 3).   

 Reasoning-and-proving subcategory            Frequency    (Percent)    

I. Making Mathematical Generalizations:                                                       24            (5.4%) 

(a) Identifying a Pattern:                            
1. Plausible Pattern                                        0            (0.0%) 

2. Definite Pattern                                      12            (2.7%) 

(b) Making a Conjecture:                             
3. Conjecture                                      12            (2.7%) 

II. Providing Support to Mathematical Claims:                                             420           (94.6%) 

(c) Providing a Proof:                     
4. Generic Example                                      18            (4.1%)   

5. Demonstration                                    364            (82.0%)  

(d) Providing a Non-proof Argument:  
6. Empirical Argument                                      38            (8.6%) 

7. Rationale                                        0            (0.0%) 

                                                                                                 Total:             444           (100%) 

Table 2: Frequency and Distribution of RP Tasks across RP Subcategories 
 

On the other hand, as shown in Table 4, 36% of the total RP tasks were concentrated in one chapter, 
namely, Book 4B Ch. 11 More about Basic Properties of Circles – more specifically, in Section 11.5 
Geometric Proofs on Circles, which began with "We learnt many theorems relating to properties of 
circles in Book 4B Chapter 10 and this chapter. In this section we will learn how to use these 
theorems to prove more geometric properties." In the exercises of this section, almost every task 
asked for a 2-column proof, suggesting that the curriculum took a traditional approach in which proof 
is taught mainly in geometry and in which 2-column proof is emphasized. However, this approach to 
proof is problematic as it gives a misrepresentation of the nature of proof in mathematics (Wu, 1996) 
and its emphasis on form over meaning can lead to a shallow, syntactic kind of knowledge, rather 
than a connected understanding of the mathematics involved (Schoenfeld, 1988).  

Given that Hong Kong teachers rely heavily on textbooks in their teaching (Tam et al., 2014), the 
above results not only confirm that in secondary school classrooms in Hong Kong students’ activities 
mainly focus on practicing and memorizing mathematical concepts and procedures (Leung, 2001), 
but also suggest that proof plays a marginal role in school mathematics in Hong Kong. The fact that 
school mathematics textbooks in Hong Kong stress drilling on procedural (or calculation) skills far 
more than reasoning and proof may be due to influences from Chinese culture (or, more specifically, 
the Confucian heritage culture or CHC). According to Leung (2006, p. 43), CHC believes that “the 



process of learning often starts with gaining competence in the procedure, and then through repeated 
practice, students gain understanding.” Additionally, CHC is an examination-oriented culture. In fact, 
the curriculum in Hong Kong is highly examination-driven. The fact that Hong Kong school 
mathematics textbooks stress practicing procedural (or calculation) skills far more than reasoning and 
proof may be a reflection of the strong influence of public examinations on textbook design. For more 
on how Chinese learn mathematics, see for example Fan et al. (2004).  

    Proof method                                          Frequency   (Percent)     

   Paragraph Proof                                174       (47.8%) 

   Proof by Calculation and Definition                                 83       (22.8%)                              

   2-Column Proof                                 71       (19.5%)   

   Proof by Definition                               26       (7.1%) 

   Proof by Calculation                                  8       (2.2%) 

   Proof by Contradiction                                 1       (0.3%) 

   Existence Proof                                 1       (0.3%) 

Table 3: Frequency and Distribution of Proof Methods used in Demonstration 

   Topic       Frequency   (Percent) 

  Book 4A Ch. 2 Equations of Straight Lines                 56       (12.6%) 

  Book 4B Ch. 10 Basic Properties of Circles                 46       (10.4%) 

  Book 4B Ch. 11 More about Basic Properties of Circles              160       (36.0%) 

  Book 4B Ch. 12 Basic Trigonometry                47       (10.6%) 

  Book 5B Ch. 7 Equations of Circles                67       (15.1%) 

  Book 5B Ch. 8 Locus                26       (5.9%) 

  Book 5B Ch. 9 Solving Triangles                21       (4.7%) 

  Book 5B Ch. 10 Applications in Trigonometry                21       (4.7%) 

Table 4:  Frequency and Distribution of RP Tasks across Topics 
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Our overall concern is with helping students learn to construct and re-construct proofs. Here we 
investigate an exploratory style which invites learners to think for themselves, with the instructor 
circulating among them while listening, probing, and suggesting. The objectives of this investigation 
are, to understand how the actions of teachers can contribute to the development of their students' 
thinking, and to provide explicit pedagogic strategies that teachers can use to promote their students’ 
appreciation and understanding of mathematical proof. 

Keywords: Explanation, exploration, proof, proof construction. 

Theoretical underpinnings 
Our paper adopts the notion of acts of teaching (Mason, 2009; 2004): something that initiates and 
directs; something which is acted upon; and something which mediates between these, enabling the 
action to take place. We proceed from this stance to analyse an exploratory style as it was observed 
in an advanced undergraduate geometry class, with the aim of identifying what specific contributions 
this style brings to the learning process.  

When teachers introduce a proof task, they are likely to have a complex set of expectations of what 
learners will get from engaging with the task. They are (we hope) aware of, or have access to 
connections with pervasive mathematical themes, with other contexts in which similar ideas arise, 
and with the specific powers that learners have. Teachers will have views on how these powers might 
be developed through working on the task, and on opportunities to interact with learners during which 
both mathematical thinking and appreciation and comprehension of some particular mathematical 
topic will be deepened and enriched. Tasks can vary from following an exposition, through exploring 
relationships, exercising new-found procedures, and making use of newly encountered technical 
terms as part of their personal and collective developing narrative.  

Following the Systematics of Bennett (1956-1966; 1993), we distinguish six modes of interaction 
which arise from the teacher, the learner and the content playing the roles of the three impulses 
comprising any action: initiating, responding and mediating, and conveniently labelled by six ‘exs’: 
expounding, explaining, exploring, examining, expressing and exercising (Mason, 2004). In 
expounding, the initiative is with the teacher who uses the presence of learners (actual or virtual) as 
the mediator to make contact with the mathematical content in a significant way. The teacher draws 
the learners into the teacher’s world and ways of perceiving and acting. By contrast to expounding, 
and also in contrast to its every-day sense, explaining in this framework involves the teacher using 
the content as a mediator in order to make contact with the student, through listening, watching and 
probing. The teacher tries to enter the world of the learner. As soon as the teacher thinks they ‘know’ 
where the learner’s difficulty lies, the action usually reverts to exposition. Exploring involves students 
taking initiative, mediated by the teacher who may suggest a starting point for exploration, and may 



make suggestions based on what students are saying and doing. Examining in this framework involves 
the student seeking to validate their own criteria against those of the teacher’. Expressing is what the 
student does when they feel the urge to articulate insights or make conjectures. This can occur for 
example in response to a teacher asking probing questions. Exercising is what a student does when 
they feel the desire to practice in order to gain fluency. Our interest here is on the interactions labelled 
as exploring, expressing, and explaining in the technical sense used in this framework. 

Our investigation builds upon previous research. Grenier (2013) has shown that an experimental 
teaching approach focusing on various “research situations” can succeed in helping students master 
mathematical reasoning and proving. Selden and Selden (2013) considered a division of proofs into 
a formal-rhetorical part and a problem-centered part. In their view, the formal-rhetorical part of a 
proof depends only on unpacking and using the logical structure of a theorem, while the problem-
centered part depends on exploration and understanding, which is essential to the learning of proof.  

Several researchers have investigated the use of explorations in various learning contexts. In the use 
of dynamic geometry, for example, Mariotti (2000), and others have shown the value of teaching 
proof through exploration. In the context of argumentation and proof and of the axiomatic 
organization of mathematics, several other researchers have examined students’ use of empirical 
explorations (Durand-Guerrier et al., 2012; Hanna, 2010; Hemmi, 2010; Jahnke & Wambach, 2013; 
Reid & Knipping, 2010; Stylianides & Stylianides, 2009). Additionally, Garuti et al. (1998) and 
Pedemonte (2007) highlighted what they termed cognitive unity, the continuity between the process 
of conjecturing achieved through exploration and the production of an acceptable proof.  

The exploratory style in this study  
We investigate a particular exploratory style in which university students already familiar with linear 
algebra are taking an advanced geometry course in which they are exposed to proofs by means of 
explorations that invite them to think for themselves, with the instructor circulating among the 
students, listening to their discussions, asking probing questions intended to help the students think 
more deeply about the issue at hand, and at times offering suggestions.  

Participants and classroom setting 

The 24 participants were undergraduate mathematics students in a mixed-year class (2nd to 4th year) 
at a large urban university in central Canada. The advanced geometry course covered plane geometry, 
spherical geometry, and briefly, some hyperbolic geometry. It addressed the critical role of 
transformations (symmetries and isometries) in all of these geometries, the use of dynamic geometry 
software (The Geometer’s Sketchpad), and proof. The instructor of the course was a geometer. The 
class met once a week for 3-hour sessions, 20 classroom meetings in total. The course was intended 
to keep equal proportion of instruction time and exploration time to facilitate the exploratory style of 
teaching and learning. Three classroom sequences were assigned to the investigations on conic 
sections. This paper focuses on one of the sessions – the exploration of ellipse.  

To facilitate investigations and communication, the classroom setting of the geometry course was 
unconventional: 7 large round tables with chairs around each filled up the classroom, with 5 large 
blackboards mounted on three walls. In addition, manipulatives and visual aids associated with 
geometry were kept in the closet at the back of the classroom with free access for the students. 



Data collection and analysis  

The exploratory style of learning proofs was documented through (1) classroom observations in the 
form of audio recordings and field notes; (2) follow-up questions for students; (3) students’ course 
reflections on the explorations; and (4) the researcher’s research journal. In particular, the follow-up 
questions consist of 4 open-ended questions about students’ explorations in geometry throughout the 
course. 17 out of 24 students completed the follow-up question sheets. All students submitted the 
course reflections.  

The data drawn through classroom observations was organized and analyzed by the framework of 6 
‘exs’. The data from students’ written reflections was analyzed using NVivo 10 software to explore 
themes and patterns of responses. The unit of analysis was a statement. Each participant’s work was 
divided into statements and grouped in categories.  

Investigations of conic sections: Findings and analysis  
This paper focuses on how proving was promoted through the initiative taken by the instructor and 
the students, while the content connects the instructor and the students. It does not measure the 
students’ achievement because it is concerned with perceptions of their own understanding of proof.  

Initiatives of the instructor – Expounding and Explaining  

The class made use of a hands-on investigation involving flashlights to explore conic sections. The 
instructor held a flashlight aimed at a wall at different angles. “The flashlight bulb and reflector make 
a “cone” of light. The wall cuts the cone with a plane, making a conic section. So moving the light 
changes which section we have,” the instructor explained. As the beam was forming a circle, ellipse 
or parabola, he asked students to identify the particular shape made on the wall and to pay attention 
to the critical points where there was a change from one conic section to another, as the angle changed. 
Then the instructor raised a question about hyperbolae with a suggestion, “Now, what features will 
confirm the shadow is a hyperbola? You may look for asymptotes - lines which the light approaches 
as it goes up the wall.” 

Initiatives of the students - Exploring and Examining  

After the demonstration, students worked in groups to create all four conic sections by using the light 
source of their smartphones or the flashlights provided. Students quickly discovered that when the 
beam was perpendicular to the wall, it gave a circle; when it was tilted a bit, it gave an ellipse; when 
it was tilted more, with the ellipse vanishing, a parabola emerged. Group discussions mainly focused 
on the creation of a hyperbola and the difference between hyperbolae and parabolae. 

S8:  How do you know it is a parabola or hyperbola?  

S22:  It depends on the angle you hold it at.  

S8:  Right, but how does an angle tell us whether it is a parabola or hyperbola?  

S12:  Well… if you look at this graph I found online, the parabola’s axis is parallel to the 
cone’s side. If it were not parallel, it would become a hyperbola.  

S8:  I see. So how is this related to what we are doing? The wall is the cutting plane and 
the light source is the cone. When the wall is not parallel to the borderline of the 
beam, it is a hyperbola. I cannot make them parallel precisely, but I get it.     



This group discussion shows that in the course of their exploration, students did not limit their 
exploration to the flashlight demonstration but went on to research the problem by retrieving 
information online so as to better understand the features that confirm that the shadow was a 
hyperbola, the difference between hyperbolae and parabolae, and also to explain it to their peers.  

Following the flashlight investigation, a series of paper folding activities was carried out. Taking the 
ellipse as an example, each student was given a clean sheet of paper with a circle and a point P inside 
the circle but away from the center (Figure 1a). Students were first asked to pick a point on the circle, 
say G, and fold the paper until P was lying directly on top of G (Figure 1b), and then to make a neat 
crease. Then students were asked to repeat the fold and crease action for a few dozen relatively evenly 
spaced points on the circle and to observe what shape emerged (Figure 1c).  

        
                                            a                                        b                                       c            

Figure 1: The sheet of paper for folding to create an ellipse 

Some students struggled to work out which point was being folded and to where – mistakenly folding 
a chosen point onto some other point on the circle, while others struggled to create a precise fold, due 
to the nontransparent nature of paper sheets. Although students worked on the folding at their own 
pace, within groups, they were talking to and helping each other as they proceeded, which allowed 
the ones who were struggling to listen, watch and move forward. With a number of creases created, 
conjectures were emerging in groups. For instance: 

S6:  I know that it is not going to be a circle. It is not circular. It would only be a circle 
if you can fold it onto the middle point. If you can fold it onto other point, it will be 
off-site the shape.  

S17:  I think it is going to be a parabola and P is going to be the focal point of the parabola. 
It makes sense.  

Instructor:  You need more folds. You can select a few more points on this side of circle 
(pointing at the sheet that S7 was holding).   

S7:  Oh, wait. It is an ellipse! I have a lot of lines. You can envision other points are 
going to be there. It is very clear it is an ellipse. You can really see it!  

S17:  (looking at S7’s paper) Yeah, it is an ellipse… P looks like one of the focal point.  

S6:  Where is the other focal point?  

Here we see that the students did not always do more than offer a conjecture about the shape of the 
conic created by the creases. The instructor felt it necessary to intervene and re-direct the students’ 
attention to the core idea (the content) of the session.  

Initiatives of the content - Exercising and Expressing  

With more questions raised, the instructor asked each group to focus on the following questions: 



(1) Now you have this ellipse, you know how to paper fold it. How do you prove it is an ellipse? 
(2) If you pick one of the folds, how does this fold help us prove it is an ellipse?  
(3) What can you say about this ellipse and the circle? How and why are they related?  
S17:  If you have this fold, and you have this distance from point P, then this distance 

(PE+EC) is going to equal to that distance (GC) because this is a reflection.  

S6:  Yes, but what does that have to do with the ellipse?  

Instructor:  Note: GC is the radius. These two distances (PE and EC)… 

S6:  No, I didn’t get it.  

Though the students had all the information they needed, they still had difficulty reaching the final 
step of the proof. By posing a prompt and question, the instructor tried to direct students’ attention to 
the sum of the two distances (PE+EC) and the fact that it is equal to the radius. Then, a GSP graph, 
similar to the folding sheet in Figure 1 above, was shown to have students focus on the relationship 
between the two (see Figure 2a). 

S17: OK. We are looking at P to E and E to C. The distance is equal to GC, which is the 
radius of the circle. Oh… That makes an ellipse because this distance (PE) plus this 
distance (EC) is fixed, the radius of the circle.  

S6:  And the ellipse must have something to do with the center as a focal point. If P is 
moving around according to the center point, the ellipse will just move as you move 
the P. So the center is another focal point. You can take any circle and a point off 
the center of the circle, and it will always be the case.  

 

 
                                              a                                     b                                       c  

Figure 2: A GSP graph (a) and animation of the formation of an ellipse (b and c) 

A Geometer’s Sketchpad (GSP) animation was shown at the very end of the class. Figures 2(b) and 
2(c) were two snapshots of the GSP animation indicating how an ellipse was constructed. This process 
taught them that, “A hypothesis is evaluated by deductively drawing consequences and by 
investigating whether these consequences agree with experience or should be accepted for other 
reasons” (Jahnke & Wambach, 2013, p. 469).  

In a subsequent class, students were shown a demonstration in which sand was poured onto a circular 
disk with an off-center hole in it corresponding to the point in Figure 1a. A number of the students 
voluntarily poured the sand through a plastic strainer. As more sand poured onto the board, more a 
“ridge” clearly emerged. Looking down on it from above, it appeared to be an ellipse.  



Students’ reflections  
Paper folding and sand pouring  

More than half of the students admitted that they found paper folding complicated. While struggling 
with the first step, they missed the instructions for the second step. Following what was being said 
and doing folds correctly was an obvious challenge. Despite the confusion and the errors they made 
in folding, students appreciated the geometry embedded in the experiments. As S3 put it: “The reason 
for why the specific folds result in the shape never bothered me until I had this experience. I felt that 
I had a teacher explained the mathematical relevance.” S4 observed that seeing the ellipse emerge 
during the sand pouring, was completely unexpected: “You can actually see an ellipse due to gravity 
pulling the excess parts down, forming a ‘hill’.” When asked about the definitions of conic sections, 
S14 stated that, “it is much easier, at least for me, to recall a process or property that I have physically 
manipulated or seen carried out visually than to recall a written definition.” 

The GSP demonstrations  

The students were asked whether the GSP graph and demonstration directly or indirectly helped them 
with the proof of ellipse. The majority of the students claimed that the animation directly helped with 
the proof. The responses that support this claim can be categorized as follows: 

 Have attention focused. “We had all the information but we couldn’t prove it until we saw 
this picture (Figure 2a) which has all the lines with the colors” (S6). 

 Accuracy. “The animation is more visual and accurate than the paper folding” (S7); “The 
animation showed an infinite number of straight lines without making mistakes” (S12). 

 Legitimate process. “The animation presented a 3D visual to experiment with” (S6); and 
“It provided an extended version of the folds we did in class and allowed me to continue 
my experience in a less time consuming and more efficient way (S17). 

 Exposure of the final product. “It showed the final product of paper folds when you fold 
100 or 1000 times” (S4). 

However, 2 students claimed that the GSP indirectly helped with the proof. One student explained 
that the animation “helped more with my understanding as opposed to helping me write down the 
formal proof” (S16), whereas the other student believed that the role of the GSP was to show how the 
ellipse was constructed and to show how the proof connects to the demonstration (S5). Compared to 
the hands-on investigations, S7 and S20 claimed that the GSP animation presented in class did help 
with their understanding, but they had difficulty interacting with it. This is so because they did not 
know how to use the geometry software. As S11 said, “If I knew how to use the software, I would 
definitely use it more”.  

Discussion 
Adopting an exploratory style of teaching is metaphorically a bit like heading off into unknown 
territory; perhaps a city or forest not previously visited, and coming across blaze marks. On the 
surface, the ‘exploratory style’ of teaching involved initial stimuli provided by the instructor, then the 
instructor circulating listening, probing and suggesting. Questions raised by group members were 
fundamental and critical for the trajectory of the sessions. Beneath the surface lie the subtleties in 
how much time students were given to think for themselves, to discuss with each other, to try to 



resolve questions that arose, and to seek assistance from the instructor. Three different contexts in 
which the same shapes emerge can be seen as a form of variation (Marton, 2015) with both conceptual 
and procedural aspects. The instructor’s commitment to experiential style of engaging students with 
the mathematical content provided opportunity for different forms of interaction: students were 
stimulated to explore, to express, to seek explanation when they felt they needed it, and even to 
exercise their developing ideas. This prepared them to be able to make sense of what little exposition 
was provided during the sessions. Being fully engaged, with their hands, their own thoughts, and 
discussing with their peers, enabled them to produce a proof in which they had a high degree of 
confidence. Because the conjectures came mostly from them, they had an interest in proving, and a 
desire to find a proof. The physical and virtual phenomena directed student attention to the dynamic 
changes and alterations of the objects that they were creating, particularly when the instructor noticed 
students’ struggles during the exploration. Student attention was directed by their peers through 
formulating conjectures, raising questions, and communicating their thoughts. These allowed learners 
to be immersed in an environment which engaged them to make conjectures, to try to express their 
vague thoughts, to modify their own conjectures and to challenge the conjectures of their peers, which 
is in line with the observations of Grenier (2013) and Hemmi (2010). 

Pedagogical implications  
One of the features that distinguish mathematics from other disciplines is that mathematical 
conjectures ultimately require proof. One importance of exposure to mathematical reasoning and 
proof is that it provides learners with an opportunity to “know that they know”, not because someone 
has asserted something but because they can justify it on the basis of previously agreed properties. In 
the case of the paper folding and sand pouring, it is a means to provoke students’ curiosity of why it 
works and invite them to discover a geometric proof of ellipse on their own. The exposure to the 
necessity of ‘why’ could have great impact on promoting students’ learning of proof when the activity 
is carefully designed and chosen.  

The Geometer’s Sketchpad was used in the classroom throughout the course. Introducing and using 
geometry software in the classroom at a regular basis can gradually change the way that students 
approach geometry. However, as a teacher, exploiting manipulatives and geometry software 
effectively requires familiarity with the materials. Each context has its own trajectory, in terms of 
time required to make sense of the actions and to interpret the effects. Perhaps the most important 
pedagogic implication is the need to stimulate students to make connections, to develop their own 
personal narrative concerning the connections between different manifestations of the same 
mathematical object.  

For the student teachers in the class, we believe that the exploratory teaching style allowed them to 
grow as a student and as a teacher. At first they looked to be told what they must do and how they 
will be assessed. By engaging them in mathematical activity, they had a chance to experience 
themselves as mathematician-learners, and to exercise and develop their own powers to imagine and 
express, specialize and generalize, conjecture and convince (Mason, 2004). As S3 put it, “My focus 
throughout the course remained on learning rather than passing, as it should be.” 



Thinking in terms of modes of interaction has enabled us to add a little bit of detail to the notion of 
an ‘exploratory style’ of teaching. However, in order to provide specific advice for teachers, it will 
be necessary to discern even finer details, which deserves further studies.   
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Looking for the roots of an argument: Textbook, teacher, and student 
influence on arguments in a traditional Czech classroom 
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As part of a larger investigation aimed at getting a deeper insight into how particular teacher beliefs 
influence the role of the teacher, the students, and textbook materials in arguments that take place in 
one classroom, this study shows specific teacher beliefs that determine the role of each of the two 
other factors: the students' contributions and the textbook influence. This paper presents findings 
observed in a case study of a teacher who holds more traditional beliefs about teaching and learning 
of mathematics, in a 7th grade classroom. Namely, I present cases of conflict in preferences for 
particular warrant forms between: a) the teacher and the textbook authors b) the teacher's own 
beliefs, and c) the teacher and the students. I then interpret these in terms of the teacher's particular 
beliefs and show how they affect the theoretical model.  

Keywords: Mathematical argument, teacher mathematical beliefs, textbook curriculum. 

Introduction 
Whether providing a mathematical proof of a theorem, explaining a formula, or a solution to a word 
problem, arguments are an inseparable part of mathematics teaching and learning. A lot has been said 
about argumentation practices and norms that guide those practices in various contexts. Literature has 
focused on the role of argumentation in textbooks, uncovering differences among textbooks in terms 
of arguments presented (Stacey & Vincent, 2009; Thompson, Sharon, & Johnson, 2012; Zalska, 
2012), opportunities for arguments (Stylianides, 2009), and in providing teachers with support in 
argument-based tasks (Stylianides, 2008). The differences become even more complex when 
researchers describe mathematics teachers' beliefs concerning argumentation in their classrooms 
(e.g., Staples & Bartlo, 2012), the acceptability of certain types of arguments (Biza, Nardi, & 
Zachariades, 2009), and students' perceptions and preferences of arguments (e.g.,  Levenson, 2013; 
Levenson et al., 2006).  

But what specific arguments actually take place when the teacher's beliefs meet the textbook authors' 
and the students' in a classroom? What is the role of the textbook and what role do students' 
contributions play in the class conducted by a teacher with a specific set of beliefs?  

Theoretical framework 
According to Remillard's (2005) review, the textbook curriculum's role is important but the levels of 
participation in the intended curriculum vary greatly. The general model holds that a teacher selects 
tasks from the text, designs their implementation, supplements it with other tasks, and, finally, 
improvises based on the student contributions (Remillard, 2005). Sherin and Drake (2006) further 
find that teachers approach these activities in different ways and link these to teachers' experiences 
as mathematical learners. Schoenfeld (2010) argues that the actions an individual takes can be 
explained by their enacted beliefs, goals, and resources (including knowledge).   

The individual students' mathematical knowledge and their perceptions of the expectations put on 
arguments they produce, as well as their own preferences and beliefs, can differ from their teacher's 



expectations (Planas & Gorgorió, 2004; Levenson et al., 2006). The students' contributions, requests 
or choices of arguments are the result of their own knowledge, beliefs, and goals; they have their 
weight in the negotiation of socio-mathematical norms regarding mathematical arguments and 
explanations. 

Based on the above literature, I adapt Remillard's (2005) model to propose a framework for studying 
the potential influence of the three main participants on the arguments, or the "enacted" arguments. 
Namely, the model theorizes that: 1) the curriculum may: provide examples of, requests and 
opportunities for arguments (tasks) to be enacted; it may also provide guidance for the teacher, based 
on the textbook authors set of beliefs, resources and goals; 2) the teacher may, based on their own set 
of beliefs, resources and goals: evaluate (select), design and provide the examples, requests and 
opportunities for particular arguments and may need to make immediate decisions about arguments 
prompted by students, and 3) the students' actual requests for arguments, for clarifications of 
arguments, as well as their own arguments or claims, which in turn are given by their own beliefs, 
goals and resources.  

In my research, I focus on the similarities and differences between the interactions of the three 
participants in this model, in classrooms with teachers with different general beliefs about 
mathematics and its teaching and learning. Further, I investigate what specific teacher beliefs underlie 
the particular interactions when it comes to specific types of arguments or warrants. In this paper, I 
present some findings in the case of a teacher who holds a set of beliefs that tend to be associated 
with traditional views.  

Participants and data 
Karen is an experienced mathematics teacher who was identified, within a broader investigation (see 
Zalska & Tumova, 2012), as a teacher with strong utilitarian beliefs about mathematics education. 
Two extensive interviews as well as short post-lesson interviews were conducted with Karen to infer 
her professional beliefs as well as her own intentions and interpretations of events in the lesson. She 
had been working with her class for almost two years prior to the data collection, to ensure that social 
norms in the classroom have been established. The number of students ranged from 15 to 18, with 
about an equal distribution of male and female students. The class use a main-stream textbook series, 
one of the most popular ones in the country. Karen was among the teachers who approved the choice 
of the textbook in her school, and her students each have a copy of it.  

The data consists of interview and lesson audio-recordings, fully transcribed, and photographs from 
series of five lessons that Karen taught on the topic of percent. The analyzed textbook text included 
the unit on percent and the corresponding text in the teacher's book where authors provide teachers 
with commentaries for particular parts of the text and the tasks. 

Data analysis  
In order to be able to establish differences between mathematical arguments, I will adopt the 
following terms from the widely used Toulmin's model in the following way: a (mathematical) 
argument denotes a sequence of statements (including visual statements) that is provided with the 
intention to show that a mathematical claim (specific or general) is true (or not). In this study, 
arguments include explaining of an answer to a problem, as well as the working out of the answer to 
a problem. A warrant is one such statement that directly supports the claim. In the context of a 



classroom, it is a statement that does not require further explanation, i.e. is accepted as true. I will 
consider two arguments to be different if they contain different forms of warrants (e.g. 
representations) or a different sequence of warrants.  

The textbook data was analyzed in accordance with the theoretical framework: the arguments that 
were provided were analyzed in terms of warrant forms and sequences. The tasks were analyzed as 
requests and opportunities for arguments (towards a claim that contains a problem's solution). There 
were no specific requests for arguments.  

The transcript of the lessons and the text was first analyzed for episodes of argumentation to establish 
specific context for argumentation and social norms in the classroom. Next, the identified episodes 
of argumentation were broken down to individual arguments and warrants and warrant forms were 
identified in order to investigate where differences between arguments were present. The kind of 
student and teacher participation on the argument was also taken into account, in order to separate 
the cases of arguments provided by the teacher (i.e. when Karen elicited an argument step by step and 
students only provided the final part of a requested warrant) from those suggested by students 
themselves.  

The arguments observed were then compared to the examples of arguments in the textbook, 
comparing warrants and warrant forms. Further, the relevant part of teacher's manual was analyzed 
for commentaries and any additional rationale given a particular argument in order to get insight into 
the text author's beliefs. Karen's own comments about particular arguments and warrant forms, in 
class and during interviews, were also analyzed to gain insight into the beliefs behind her decisions.   

In this paper, I present the instances when an argument chosen by Karen did not correspond with a) 
the textbook, b) her own belief about mathematics, and c) her students' contributions. I selected them 
to illustrate the choices made by Karen, to pinpoint her specific beliefs, linking them with the students' 
and textbook influence.  

Efficiency and insight: Karen and the textbook 
The arguments that Karen exemplifies in her classes when she teaches her students to solve problems 
involving percent differ from those in the textbook in two aspects. The textbook introduces the 
rectangular representation (see Figure 1) as part of problem-solving, a form of warrant(s); the authors 
sketch out the known and unknown quantities.  

 
Figure 1: A rectangular representation of a 15% percent discount 

Similarly, the textbook introduces one method for solving word problems with percent. The authors 
base the arguments on the concept of direct proportion, in particular, on the fact that the percent part 
changes in the same ratio as the percent. This idea is then used as a warrant in the method of the ratio-
based rule of three (see Figure 2), which is explained and practiced in an earlier chapter in the book, 
the unit on ratios.  



 
Figure 2: The rule-of-three method 

In contrast, Karen does not use the rectangular representation at any moment in her classes. The 
arguments that she does show students are given names ("one percent", "with a decimal", and "ratio") 
and referred to as "methods". The majority of warrants for methods are based on the multiplicative 
relationship of percent part and the base, and on the definition of one percent, as corresponding to 
one hundredth, either as a fraction or decimal.  

In the authors view, in the teacher's book, the geometrical representation helps students to get a better 
insight into the problem. Similarly, the authors assign the use of the ratio warrant the prominent role 
of helping students to get an insight into the problem.  

This belief about a need to understand the problem through the use of a particular method or warrant 
seems to collide with Karen's beliefs about what is important for her students. Rather, she values 
efficiency and straightforwardness in problem-solving. Hence, she introduces neither the rectangular 
representation nor the rule-of-three arguments when solving word problems in her teaching. In fact, 
she discourages her students from using it (albeit acknowledging its existence and its effectiveness):  

Teacher:  Someone mentioned a third method, in case you study from your textbook, [I don't 
recommend it, only if someone gets] really lost and needs a crutch […] but in the 
time you write it all out (referring to the method), you might as well have finished 
other three problems [using the other methods].  

Choosing not to justify – Karen's beliefs in conflict 
The below example of a dialogue gives us a sense of how Karen's beliefs about the need to provide 
mathematical arguments for methods and general mathematical statements manifest themselves when 
the class discuss the percent – decimal relationship.  

Teacher:  So, if we have 18% (writing on the board), how do we get a decimal?  

Students: Eighteen divided by 100. 

Teacher: We divide by 100. Why? Because 18% is 18 hundredths (writing 18% = 18/100 = 
0.18 on the board), to divide by a 100 means 18 hundredths.  



Karen expressed her belief in having the responsibility to provide students with justification of 
mathematical statements. This responsibility is felt even in the one moment in the observed lessons 
when Karen acknowledges that she doesn't know how to provide a mathematical argument for the 
procedure, and states that students just "have to remember". The problem Karen posed to class is: 
"From a class of 22 students, six participated in a math competition. What percent of the class was 
that?" Karen goes on to exemplify two methods for solving the argument.  

Teacher:  The first one is the 1% method. Again, I think that this method is more convenient 
and easier… ok, what's the base in this problem? 

Students:  [suggest ideas] 

Teacher:  Yes, base or 100% is 22 pupils. There are 22 pupils [She writes a record of the 
solution on the board, writes "1% =".]. Now, we'll calculate, Ada?   

Ada:   1% will be 0.22. [Karen writes this on the board.] 

Teacher:  Now you just have to remember that the percent, […] I don't know how to help you 
remember … you need to remember. You can calculate the percent this way […] 
we divide the percent part we want to express in percent by one percent.   

The argument that she is reluctant to share with her students is in fact the ratio argument used in the 
rule-of-three method: firstly, that the percent part : percent ratio is a constant, and for all non-zero 
real numbers a, b, c, and d, if a : b = c : d then a = c · b / d. Clearly, this presents a conflict of beliefs 
for her, and she chooses not to present the argument, because this, in her mind, is too complicated 
and not possible to grasp with their current knowledge, especially for some students.    

In the textbook, authors let the reader observe the first warrant through a series of examples, and then 
simply refer to the rule-of-three as practice established in the previous unit (on proportion). However, 
in the teacher's book they also admit that the equivalence of the two equations is, as yet in the 
curriculum, inaccessible to students and has not been established with students at this particular stage.  

The stronger and the weaker: students' and Karen's preferences 
The following passages will show examples when different arguments are provided by students. The 
exchanges take place at the beginning of the second lesson, students were converting a series of 
fractions into percent. They had just converted 4/5 by expanding to tenths and then hundredths. Now 
Sam tries to convert 3/8 in the same way:  

Sam: I'll multiply the fraction by twelve and a half. 

Teacher: Why twelve and a half?  

Sam:  Because if I multiplied 8 times 125 [unintelligible] 

Teacher:  So by 125, right?  

Sam: But that will be a thousand, so …  

Teacher: Doesn't matter. But (writing on the board) 8 times 125 is 1000. What is 3 times 
125? 

Student:  375. 



Sam is trying to expand the fraction to hundredths (realizing that expanding by 125 and simplifying 
to hundredths is the same as expanding by 12.5) but the teacher feels that this is not straightforward 
and accessible to all pupils, so she takes over and breaks the argument down.  After a few more simple 
problems, where students don't need to calculate, they are asked to convert the fraction 9/40. At first, 
a student (Will) suggests to reduce by two and expand by five. Then he adds:  

Will: Or multiply (sic) by two and a half. 

Teacher: Excellent, two and a half. Do you [all] agree? 

Kim:  And couldn't you expand to thousands? 

Teacher:  Also. And if you were to do that, by what number would you expand? 

Kim:  So, that would be times … (thinking) … two hundr …  

Teacher:  Twenty five. Either, as Will said, we expand by two and a half, which is not very 
common, (she turns to the board and writes) if we want hundredths in the 
denominator we expand by two and a half (she writes this on the board), do you 
agree? Forty times two and a half is one hundred, right? And the numerator … 18 
and 4 and a half […] 22 and a half. So what percent is 9/40?  

Students:  Twenty two and a half.  

Teacher:  Or, as Kim said, expand by 25 (she writes on the board), the numerator (sic) is 1000, 
do you agree? And the denominator (sic) is …  

Students:  225. 

Teacher:  And we got the same thing, 22.5 %.  

At this point, Karen allows a student (Will) to carry out an argument that is (like Sam's) based on 
expanding by decimals, but this time the student breaks it down into two warrants first, and Karen 
praises it. Will feels encouraged to suggest expanding by a decimal. Finally, another student supplies 
an argument based on the expansion to thousands (which had been shown by Karen before, see the 
transcript above). Both methods are now endorsed by the teacher, publicly, as valid arguments, and 
demonstrated on the board. When Karen summarizes these approaches, however, she qualifies Will's 
solution as "not very common".  

Conclusions 
The above examples illustrate how the enacted arguments were influenced by the three participants, 
the teacher, the textbook, and the students. Even though Karen was the most influential provider of 
mathematical arguments, arguments that were made in the classroom included students' own 
warrants, and became accepted as correct and valid by the teacher. At the same time, even as Karen 
acted as the decision-maker when it comes to choosing what representations are useful in warrants, 
i.e. efficient, for her class, what was her choice not to include the textbook's geometrical 
representation warrants based on? Clearly, the textbook does not give it a utilitarian value, i.e. it does 
not provide opportunities for its direct use, and makes the representation void of value, outside the 
possible provision of better insight, as the authors claim, but Karen did not find the claim convincing 
enough. In that sense, her decision was very much determined by two factors: a) by her pedagogical 



content belief about the efficiency of a certain type of arguments and b) by the problems 
(opportunities for arguments rather than argument forms themselves) presented by the textbook 
authors in the unit. The second factor, in turn, is given weight by Karen's utilitarian view of the goals 
of mathematics education, i.e. being able to correctly solve problems provided by the curriculum.   

The case of the rule-of-three method is perhaps even more interesting, especially as the ratio warrant 
that underlies it is also at the heart of a method Karen presents when she shows the procedure for 
finding the percent in a word problem, but decides that the justification is not straightforward enough 
for her class, and backs the procedure up with her own authority. What made her do that? When asked 
about the need to mathematically justify mathematical statements, Karen conceded that not all 
arguments are accessible to students (or not all of them). As I showed above, the textbook authors 
also use a warrant that they acknowledge is out of the students' immediate reach. Again, we observe 
similar tendencies, and at the same time it appears that in this case Karen's perception of her students' 
abilities accounted for her decision not to justify.   

In her classes, Karen also allowed students to provide arguments that she had not intended to take 
place, and accepted them as long as they were mathematically correct. At the same time, she 
manipulated such publicly expressed arguments according to her perception of accessibility to all 
students and made frequent evaluative comments about the methods and arguments, labeling them as 
efficient, common practice, convenient, easier, or universal. This qualitative evaluation springs from 
her beliefs about her students' mathematical ability and what it means to be good in mathematics: in 
her view, some students are better at understanding the problem, and innately capable of finding and 
choosing the most efficient, original, or convenient method, an attribute she also gives 
mathematicians in general. For the others, she needs to show simply which method to use, and they 
need to learn it by solving many similar problems, i.e. for some students drilling is the only way to 
succeeding in mathematics. The episodes seemed to confirm that this belief corresponds with the 
students' contributions: the weaker students would rely on arguments promoted by Karen, while 
students who feel confident in their own warrants, could keep using their own. 

In terms of the teacher's influence, it appears that the teacher is independently imposing her own 
beliefs that are very local, e.g. the choice of method, but the choice of representation is also clearly 
determined by the curriculum (and its tasks) and beliefs that are much more global. Further, the 
teacher's choice of not justifying mathematically can be caused by her own belief but also reinforced 
by similar examples in the textbook. Finally, the students' arguments are evaluated by the teacher in 
terms of their mathematical correctness, their efficiency, and their accessibility to all other students 
(as perceived by the teacher). They are then often re-formulated by the teacher, which potentially 
reinforces the dependency of the weaker students on the teacher's choice of argument.      
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It is well known that undergraduates commonly have to deal with great difficulties in constructing 
proofs, especially at the beginning of their mathematical studies (e.g. Weber, 2001). In the presented 
study, students’ approaches to proving are analysed from a process-oriented perspective. The primary 
aim is to empirically confirm a process-oriented model for the proving competence of undergraduates. 
This model may be used to analyse proving processes at an individual level and, therefore, to gain 
more detailed information about proving process and its phases in general.   

Theoretical framework 
The study is based on a theoretical model of the proving process that describes different phases and 
activities in proof construction and which is mainly following the considerations of Boero (1999). 
Boero (1999) describes a proving process that starts with conjecturing and exploration activities and 
ends up in selecting arguments and linking them to a deductive chain. However, proving tasks at 
university level often consist of a statement estimated to be true, especially during the first year of 
studies. The construction of a proof is in this case rather aimed at justification instead of conjecturing 
and problem exploration. According to this, we suggest the following variation of Boero’s model. 

Figure 1: Proving cycle 

This model differs from the existing model in three ways: 

1. The model focuses on proving activities concerned with the justification of a given statement. In
particular conjecturing activities are excluded. However, reducing the process described above
does not mean to exclude all exploration activities, but locating them at the beginning of the
proof construction. Leaning on Reusser’s (1997) approach of a situation model, a mental
representation of the given statement is estimated to be developed by exploring the proving task.
This representation could affect the proving process in a meaningful way.

2. The model includes validating activities at the end of the process. In this phase, which is already
implicitly considered by Boero (1999), the final proof is reviewed regarding content, structure
and linguistics. Besides, further (shorter or more elegant) proofs can be considered.



3. The underlying structure of the model is a cycle. This kind of structure provides the assumption
that proving processes are not supposed to be linear. In fact, the proving process is shaped by
interruptions, revisions and turns.

Research question and method 
The modifications lead to the following research question: Is the proving cycle an appropriate tool 
for analysing proving processes? That means, is it possible to reconstruct the different phases and 
activities stated in the proving cycle empirically? Is there in particular evidence for the existence of 
an exploration phase? In accordance with the research question, a qualitative study has been designed 
with the purpose to provide evidence of the proving cycle and to gain more detailed information about 
the different phases. Therefore, first year undergraduates and first year pre-service mathematics 
teachers (grammar school) are asked to work on proving tasks in the field of real analysis. To 
encourage the participants to talk about their ideas and approaches, the working processes are 
organized in pairs. The proving process of each pair is videotaped, transcribed and finally encoded 
according to Mayring’s (2007) structuring content analysis. The coding is based on a system of 
categories, which consists of the five theoretical stated phases in the proving cycle. 

Results 
The analysis of data from six cases shows that the system of categories seems to be well suited to 
describe proving approaches of undergraduates. Each of the suggested phases could be empirically 
confirmed in nearly all cases. However, formulating a precise and clear proof is an activity, which is 
sometimes omitted. An exploration phase could be reconstructed in all cases, although it varies in 
quality and quantity. The structure of the analysed proving processes is linear insofar as many phases 
could be reconstructed in the suggested order and turns mainly concern consecutive phases. Only in 
those cases, where the identified key ideas turn out to be inadequate, the proving process starts with 
repeated exploration cyclically. As there is no need for further categories the proving cycle can be 
used as a tool for analysing proving processes. Additionally, this tool can serve as a basis for deeper 
inductive investigations of the proving competence from a process-oriented perspective.  
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Introduction 
Working Group 2 was formed in 2011 in Rzeszów, Poland (CERME 7) as a forum for presenting 
and discussing theoretical and empirical research on the teaching and learning of arithmetic and 
number systems. The scope of the working group comprises grades 1-12 and emphasizes research-
based specifications of domain-specific goals, analysis of learning processes and learning outcomes 
in domain-specific learning environments and classroom cultures, new approaches to the design of 
meaningful and rich learning environments and assessments as well as research on teachers’ 
professional development.  

According to the great variety in the field of learning arithmetic and number systems, the group 
intensively discussed fifteen papers and one poster addressing research for different ages and 
different approaches1. The key themes were number sense and structure sense, estimation and 
estimation tasks, flexibility in mental calculation, derived fact based strategies of multiplication in 
low-achieving students, understanding of rational numbers and ratio, didactical models as scaffolds 
for the evolution of mathematical knowledge as well as teachers’ knowledge about rational 
numbers, ratio and place value according to big numbers. 

In comparison to former working groups, we had an even greater variety of themes, and therefore 
the challenges and opportunities to identify common ideas and approaches in the papers presented. 
Two papers put the emphasis on teaching arithmetic, five on learning arithmetic, five followed a 
design based research approach with combining teaching and learning, and two papers focused on 
teachers’ professional development.   

Teaching arithmetic and number systems 
The topics of the two papers focusing teaching were diverse. One paper reflected the role and 
function of didactical models, the other analyzed and compared textbooks.  

Marita Barabash and Raisa Guberman presented a theoretical study on didactical models (DMs) to 
support students’ development of mathematical concepts and ideas. The authors discuss didactical 
models as a mathematical model (supporting the development of appropriate and consistent 

1 Fourteen papers were resubmitted after the conference and are published in the proceedings. 



 

 

concepts) as well as a learning tool (providing an experience of using models). In this sense, DMs 
may help to cope some discontinuity in mathematics teaching across different levels.   

With the focus on a foundational number sense, Anna Löwenhielm Gosia Marschall, Judy Sayers 
and Paul Andrews analyzed and compared how English and Swedish textbook tasks facilitate 
children’s learning of those number-related competences that require instruction. Analyses 
identified both similarities and differences. Swedish pre-school curriculum seems to have prompted 
a conceptually focused textbook, while the strongly framed English pre-school curriculum seems to 
have precipitated a procedurally focused textbook. 

Learning arithmetic and number systems 
The subject area “learning arithmetic and number systems” includes papers on number sense, 
structure sense, and understanding of rational numbers and ratio.   

Students’ development of structure sense in arithmetic is the focus of Andrea Maffia and Maria 
Alessandra Mariotti. Structure sense can be mobilized by students to compare and to transform 
arithmetical expressions, however sometimes it can lead to mathematical inconsistency that pupils 
might not be aware of. Their paper provides evidence of this type of phenomenon through 
syntactical transformations.  

The assessment of students’ ability in number estimation is the topic of a study conducted with 
Brazilian second and third graders. Beatriz Vargas Dorneles, Mariana Lima Duro, Nohemy 
Marcela Bedoya Rios, Camila Peres Nogues and Clarissa dos Santos Pereira compare a Number 
Line Estimation Task and a Numeroisty Task. Results show that the Number Line Estimation Task 
is more accurate in assessing students’ performance in estimation.  

Luciana Corso and Beatriz Vargaz Dorneles put the emphasis on number sense and investigate the 
relation between three domains: working memory (especially the central executive and the 
phonological component), number sense and arithmetical performance. Based on different valid 
instruments, data was collected regarding each single component. The analyses reveal a significant 
correlation between the central executive component of working memory and number sense.   

Ayşenur Yılmaz and Mine Işıksal-Bostan examine to what extent middle-grade students agree on 
statements about the ordering of two negative integers given within a real-life context, and what 
kind of procedural and conceptual strategies do middle-grade students generate to order those 
numbers. The results reveal that students did not explain the concept of ordering in daily life 
considering their conceptual meanings, and have problems in their procedural knowledge repertoire.  

Ozur Soyak examines students’ difficulties in proportional reasoning in rate and ratio problems. 
Students’ difficulties are caused by the confusion of unit rate identification and by algorithmically 
based mistakes. A lack of understanding in the unit of measurement, the difference between additive 
and multiplicative reasoning, and some errors in the computation process seems to underlie such 
difficulties.  The study suggests emphasizing proportional reasoning in the learning process.   



 

 

Teaching and learning arithmetic and number systems   
This time we had a considerable amount of papers following a design based research approach. All 
studies were characterized by designing a teaching and learning arrangement and investigating 
students learning and understanding according to this specific context.  

With the focus on students’ development, Laura Korton explores a teaching-learning arrangement 
for the inclusive mathematics classroom to foster flexible mental calculation. The approach 
considered both the level of design (consideration for use) and the level of research (quest for 
fundamental understanding). Initial findings appear to suggest positive outcomes when Mutual 
Learning processes are integrated. 

Michael Gaidoschik, Kora Maria Deweis and Silvia Guggenbichler exhibit results of an ongoing 
design research project. Based on a specific instructional design that emphasizes conceptual 
understanding and derived fact strategies, the study investigates the exhibited strategies in basic 
multiplication of lower- achieving students. Within the analyses three different strategy types could 
be developed. Results also show the influence of the instructional context.  

Cristina Morais and Lurdes Serrazinha describe an approach to develop conceptual understanding 
of decimal numbers by using and adapting the hundred square model.  Within a teaching experiment 
3rd and 4th grade students worked with three different models focusing on part-whole meaning. 
Results indicate that models promote students understanding of rational numbers, and suggest the 
decimat as an important part-whole model.  

Helena Gil Guerreiro and Lurdes Serrazina discuss an approach to focus students’ conceptual 
understanding of rational numbers based on teaching percentages in elementary school.  Within a 
teaching experiment, the authors collected data by logbook, audio and video-recording, and 
analyzed qualitatively. Results suggest that this specific approach supports to understand 
multiplicative relations and rational numbers.  

The pilot study of Carlos Valenzuela García, Olimpia Figueras, David Arnau and Juan Gutierrez-
Soto contributes to the development of better mental objects for fractions. Using a Theoretical 
Model for fractions, they designed and developed a seven stage teaching sequence based on the use 
of applets created with GeoGebra and the number line as a conceptual and didactical resource. 
Results of the first two stages suggest students’ preferences to represent fractions as proper fractions 
(unit segment). The majority of the participants paid more attention to the graphical aspects of the 
applet. 

Teachers’ professional development 
The two papers in this field focused on teachers’ knowledge and its impact on students’ learning.  

Frédérick Tempier and Christine Chambris paper aims to reveal teachers understanding of place 
value related to larger numbers, and its impact on teaching and students understanding. Based on the 
“Theory of Didactic Transposition” the authors investigate the relations between all three aspects. 
The qualitative analyses of a teachers’ lesson compared with the results of a questionnaire of 
students’ knowledge provide interesting insights in teaching large numbers. 



 

 

Gulseren Karagoz Akar conducted a single case study on teachers reasoning about ratio. Using a 
theoretical framework based on the concepts within (state) ratios and between (state) ratios, the 
teachers’ conceptions of ratio are discussed. The results suggest different levels of reasoning in 
between-state ratios (as an operator and a combination of two extensive quantities), but some lack 
understanding about in between-state ratios as a single intensive quantity.  

Summary and outcomes 
The great variety of papers provided a fruitful base for interesting and often animated discussions in 
a supportive quizzical environment. We agreed that we were able to broaden our own perspectives 
in terms of new perspectives on different mathematics educational research domains, and different 
uses of terms, concepts and theoretical frameworks. In our discussions, we went far beyond the 
specific themes of the single papers and covered general aspects that influence our work as 
international and interdisciplinary group of researchers. Those were 

 the synergy of cognitive science and mathematics education, 

 the similarity and differences in research paradigms and approaches, 

 the intercultural differences, 

 the different terminologies and the relevance of creating common terminologies and 

 the necessity to clarify concepts and theoretical frameworks. 

This spectrum of research focus in the papers reflect the number of open questions that still persist 
in the teaching and learning of arithmetic and number systems, and in need of further research. The 
intense group discussions raised further awareness amongst the group and questioned some 
positions that were taken for granted in both the field and in specific contexts. With the commonly 
perused aim improving mathematics education in the field of arithmetic and number systems in all 
academic levels, we perceived common ideas as a base for further research and discussion: (1) The 
importance of number sense regarding different age levels, number systems and perspectives form 
different domains. (2) The necessity to develop models for fostering flexible relational thinking 
about numbers. (3) The requirement to enhance our notion of number literacy as interaction of 
various components.  

For our further work, the group agreed on enhancing the exchange of research on arithmetic and 
number systems from cognitive psychologists and mathematics education researchers, and work on 
specifying terms for both fields to agree on.  
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This study investigated one prospective secondary mathematics teacher’s (Jana’s) reasoning on 
between-state ratios in missing value problems and comparison problems.  In two one-and-one-half 
hour written problem solving sessions followed by one hour-long clinical interview, Jana’s use of 
informal and formal strategies and justifications behind those strategies in the context of ratio were 
examined. Extending previous research, results of this study showed that someone could quantify 
between-state ratios acting as an operator in fraction form once she has understood ratio as an 
association of amounts of quantities in within-state ratios. Results indicated a dichotomy within the 
boundaries of identical groups conception in terms of within-state ratios and between-state ratios 
prior to an understanding of between-state ratios as a single intensive quantity.  
Keywords: Between-state ratio, within-state ratio, division, multiplication, extensive and intensive 
quantity. 

Theoretical framework 
Students might approach to a proportion such as a/b=c/d by comparing the first set of ratios a/b or c/d or 
the second set of ratios a/c or b/d (Noelting, 1980). In the first case, the ratios a/b or c/d are called within 
(state) ratios, where the ratio represents the original quantities within one state.  In the second case, the 
ratios a/c or b/d are called between (state) ratios, where the ratio represents quantities between two 
situations (Noelting, 1980).  For instance, envision the Recipe 1 Problem in this study. The original 
quantities of 9 tablespoons of oil and 4 tablespoons of vinegar could be represented by the within-state 
ratio, 9/4; and, the 4 tablespoons of vinegar and the 7 tablespoons of vinegar from two situations could be 
represented by the between-state ratio, 7/4. 

Researchers investigating prospective teachers’ conceptions of ratio have revealed how teachers 
interpreted the relationships between quantities in ratio situations to quantify some attribute of interest such 
as lemon-lime flavor (Heinz, 2000; Karagoz Akar, 2007; Simon & Blume, 1994; Simon & Placa, 2012; 
Thompson, 1994). For instance, envision the Mixture Problem in this study. For this problem, research has 
shown that one might interpret the relationship between the quantities of 36 grams of pure lemon juice and 
32 grams of pure lime juice in the following three different ways: First, someone having a robust conception 
of ratio conceptualizes that ratio is a single intensive quantity that expresses the size of one quantity (i.e., 
amount of lemon) relative to the size of the other quantity (i.e., amount of lime) represented by within-state 
ratios (Simon & Placa, 2012). In this conception one can utilize both partitive and quotitive division of the 
quantities in within-state ratios to quantify the attribute (i.e., lemon-lime flavor) in the situation. That is, 
either engaging in partitive or quotitive division, one might interpret the quotient (i.e., 1.125) of the original 
quantities represented in the within-state ratios, 36/32 , as a single intensive quantity representing the 
invariant multiplicative relationship between the quantities (Simon & Placa, 2012). This concept of ratio is 
also called as ratio as measure conception (Simon & Blume, 1994).  

Secondly, in order to quantify the lemon-lime flavor, one might think of the within-state ratio, 36/32, as 
representing an association of amounts of two quantities (Johnson, 2015). In this regard, s/he thinks of the 
quantities making up a particular combination that quantifies the taste of the mixture. This understanding 



aligns with the identical groups conception (Heinz, 2000) and ratio as a composed unit (e.g., Lobato & 
Ellis, 2010). Within the boundaries of such conception, one might find equivalent ratios by dividing for 
instance, 36 and 32, simultaneously with 4 and come up with 9/8 ratio (i.e., as a composed unit, Lobato & 
Ellis, 2010), representing the same lemon-lime flavor (Beckmann, 2011). Third, to quantify the attribute, 
one might engage in partitive division of quantities in within-state ratios, 36/32 (Heinz, 2000; Karagoz 
Akar, 2007; Johnson, 2015). The quotient 1.125 then represents an association between the quantities of 
1.125 grams of pure lemon juice per one gram of pure lime juice. Therefore, ratio as identical groups 
conception (Heinz, 2000) and ratio as per-one conception (Simon & Placa, 2012) involves one’s 
interpreting within-state ratios as an extensive quantity rather than a single intensive quantity (Heinz, 2000; 
Karagoz Akar, 2007; Johnson, 2015). The study reported in this paper attempted at extending the 
previous research results in the following way: As the previous research has shown, students interpreting 
within-state ratios as representing an association between quantities (i.e., identical groups conception) 
could utilize equivalent fractions to handle missing value problems and /or comparison problems (Heinz, 
2000; Lobato & Ellis, 2010). However, they cannot reason in missing value and/or comparison problems 
with quantities non-integer multiples of each other (Heinz, 2000). In this study, data from one prospective 
teacher documented that given that she interpreted within-state ratios as representing an association of 
quantities, she could reason with between-state ratios for situations involving quantities non-integer 
multiples of each other. In particular, Jana quantified the relationship between the quantities in between-
state ratios as representing a particular combination and acted it on the within-state ratios as an operator. 
This is important because earlier research focused only on students’ reasoning on the relationship between 
the quantities in within-state ratios. However, there is also need to focus on how someone reasons with 
between-state ratios; because, the conceptions of between-state ratios and within-state ratios have 
cognitively different underpinnings and that the understanding of proportion integrates both of these 
conceptions (Noelting, 1980). Also, the results from Karagoz Akar (2007) study showed that an 
understanding of between-state ratios as an intensive quantity (as percent-increase/ decrease) does not 
necessarily depend on an understanding of within-state ratios as per-one. Together with the results of 
Karagoz Akar (2007) study, the results of this study indicated a dichotomy within the boundaries of 
identical groups conception without having within-state ratios as per-one. Also, knowing about different 
levels of sophistication in the conception of ratio might shed light on determining and detecting students’ 
reasoning along the way to advanced understandings of ratio, such as ratio as measure. In this regard, this 
study scrutinized the following research question: How might a prospective secondary mathematics teacher 
quantify the relationship between the quantities in between-state ratios and within-state ratios in missing 
value and comparison problems?  

 
 
Methodology  
The voluntary participant was a prospective secondary mathematics teacher, Jana, at one of the universities 
in the United States. In this study data was collected through the structured task-based clinical interviewing 
method (Clement, 2000) following two one-and-one-half-hour long written problem solving sessions. 
During the written sessions, Jana, was asked to provide solutions with explanations and justifications to the 
tasks. The reason for doing written sessions was to determine Jana’s solution processes prior to the clinical 
interviewing so that her reasoning,  justifications of her solution processes, and the connections she made 



among her interpretations of multiplication, division and part-part-whole relationships in missing value 
problems and comparison problems could be further elucidated. The interview was videotaped. The 
transcript of the interview and artifacts from written problem solving sessions and the interview were all 
used as data sources in the analysis.  

In analyzing clinical interviews, the researcher “…is constructing a model of hidden mental structures and 
processes that are grounded in detailed observations from protocols” (Clement, 2000, p. 549). In this 
regard, the unit of analysis was Jana’s strategies, solution processes and justifications she provided in 
externally written or uttered arguments (the observations from the point of view of the researcher). The goal 
was to determine what underlying conceptions of ratio Jana might be revealing. Thus, the analysis was 
interpretive (Clement, 2000). In this respect, reading the whole transcript line-by-line having in mind 
previous research, I determined chunks of relevant data that would allow generate the descriptions of 
Jana’s mental structures such as her thinking of ratio as extensive or intensive quantities. Then, to further 
validate interpretations I went back to how she reasoned during the written sessions and how she reasoned 
on different tasks. Then I wrote a narrative. Following, another researcher was consulted to challenge the 
conjectures and/or to affirm their reasonableness to further validate the plausibleness of the interpretations.  
Tasks (used in the study) 

For the study, I wrote the Hair Color 1 and 2 problems and adopted the others from the existing literature 
(see Table-1). The rationale for the choice of problems was the following: Heinz (2000) study showed that 
prospective teachers had quantified ratio at different levels. For instance, within the identical groups 
conception, some teachers engaged in partitive division of the quantities in within-state ratios and quantified 
within-state ratios as an association of amount of one quantity per one unit of another quantity.  To the 
contrary, some teachers engaged in quotitive division to quantify the within-state ratios as a single intensive 
quantity. Thus, I wrote The Mixture Problem in reference to the distinctions in partitioning and measuring. 
Also, Heinz (2000) stated that within the identical groups conception someone might have used either their 
part-whole understanding to make sense of the problems, or have gone back to additive thinking. Thus, I 
wrote The Hair Color-1 Problem. Further, within the identical groups conception teachers were not able to 
deal with the quantities non integer multiples of each other (in between-state ratios). So I hypothesized that 
there might have been teachers who could do so by using adjustment strategies (e.g., Kaput & West, 
1994). Thus, I adopted and modified the Recipe-1 Problem from Kaput and West (1994) since also they 
ranked it among the highest levels of difficulty (13th out of 15th difficulty). I also wrote The Hair Color-2 
Problem based on the research results on rational number as operator (Marshall, 1993). 



 

Table-1: Tasks used in the study 

Results 
Jana’s understanding of between-state ratios 

Data from the “b” option of The Hair Color-2 Problem and the Recipe-1 Problem showed that Jana left 
the between-state ratio in the fraction form, contrary to the previous research results (e.g., Karagoz Akar, 
2007; Heinz, 2000). She did not think of finding the quotient in between-state ratios once the problem 
required her to think of it as quantifying percent decrease/increase. On the other hand, data from the 
interview showed that once her goal was to find out how many times the quantities were incremented, 
she was able to divide the quantities in between-state ratios. Jana had solved the Hair Color-2 Problem 
using the cross and multiply rule during the written sessions. So, during the interview, the first question I 
asked Jana was The Hair Color-2 Problem “a” and “b” options. 

R: All right, okay, without solving the problem. What does that 22 divided by 15 represent in the 
problem? 

J: It doesn't represent. Umm, 22 over 15, it kind of just says that she is adding 7 grams to the new 
amount over and it is over the old amount… well, 17, She put it in a fraction that new amount over the 
old amount, 22 over 15, she multiplied it by 17 because that was the old amount of brown, so that is 
what she was doing…she already know what she wants to change the red one to, so, she has to make 
one of the numbers and she has to make sure that the other color is the same ratio as before. 

It is interesting that, although I told her ”22 divided by 15” Jana thought that 22/15 represented the change 
in color, as in a fraction of the new amount of red to the old amount of red. She knew that the other color 
needed to be kept in the same ratio, and she knew that she could do it by multiplying the other quantity in 



the original ratio with the same number. Yet, whether she thought of the 22/15 as the “change factor” was 
not clear. In fact, further data clarified this. Jana’s reasoning about the between-state ratios, once given in 
the simplest, reduced form, was the same on The Recipe-1 Problem, too. During the written sessions, Jana 
had written the following (see Figure-1): 

 

 

 

 

 

 

Figure-1: Jana’s reasoning on the Recipe-1 Problem in problem solving sessions  

Two interesting points need to considered: Jana thought of adding 3 grams to both ingredients, which was a 
characteristic of the identical groups conception. Kaput & West (1994) also stated that students revert 
back to additive reasoning once the numbers used in the original ratio are very close to each other. Thus, 
first, if Jana had the conception of ratio as a single intensive quantity, she would not have thought of 
subtracting the quantities magnitudes of which are close to each other; rather, she would have thought of 
dividing (e.g., Heinz, 2000; Karagoz Akar, 2007). Secondly, Jana used equivalent fractions, after her 
addition strategy, to check her solution, leading her to the conclusion that her solution was not correct. Her 
use of equivalent fractions indicated that she did not have any other way of verifying whether the proportion 
held. This claim will be further supported by her reasoning on the Hair-Color-1 Problem. To figure out the 
extent of her knowledge, I asked Jana during the interview to account for a solution for The Recipe-1 
Problem provided by another student as 9x(7/4). Jana said, “Because you are trying to get the same 
combination, so this is like the new combination of the vinegar where it is changes from 4 to 7 so it is like a 
new ratio and you want the ratio of oil to be the same as it was before so you are allowed to multiply the 
old oil times its new ratio in order to get the new oil”. Her reasoning on this problem was similar to the 
Hair-Color-2 Problem option “b,” a between-state ratio represented a particular combination in fraction 
form. Taken together, data indicated a deviation from the identical groups conception: She did not solely go 
back to additive reasoning when the numbers in the original ratio were very close to each other. Also, she 
interpreted the fraction form of the between-state ratio as an extensive quantity, creating a particular 
combination, representing so many of the old quantity (from the first situation) for so many of new quantity 
(from the second situation).  

 

 

 

 

 

 

 



 

Figure-2: Jana’s reasoning on The Hair Color-1 Problem in problem solving  

Data above (see Figure-2) together with her statement in the interview below, once again indicated why 
Jana‟s stage of knowing was within the scope of the identical groups conception, albeit with deviations 
from it. During the interview, Jana stated “ this[referring to equivalent fractions] helps us to compare 
because you need to make one of them the same in order to compare actually compare ”. The excerpt and 
her solution above (see Figure-2) are important in two ways: first, it shows that Jana used the equivalence 
of fractions as a way to compare whether two different dyes are the same color. Second, it shows how 
she related the equivalence of fractions and the common denominator algorithm. Jana thought that the 
within-state ratio represented an association between two extensive quantities, representing so many for so 
many other parts. This was evident when she said she could change the order (brown to red) of the ratios. 
So she did not need the second quantity to compare the ratios once she equaled them out. Here, she again 
deviated from identical groups conception since she was able to deal with quantities non-integer multiples 
of each other. 

Limitations of Jana’s understanding in within-state ratio context 

Jana’s understanding in the within-state ratio context showed some limitations and deviations from the 
identical groups conception. During the interview, for the “c” option of The Mixture Problem, Jana claimed 
the following: 

[First Part] J: Yeah, fractions even though when you actually these fractions, when you divide the 
fractions you get this number 1.125 but you when you look at that number you don't know how much 
lemon juice there is and how much actual lime juice. 

[Second Part] R: Does this tell like tell you anything like the lemon and lime about the juice or does this 
represent anything [referring to 1.125] 

J: Well, if you have different number which I don't, I can't calculate numbers, where you have a different 
amount of like I don't know if you have like x and y this is lemon over lime and when you divide it you 
get 1.125 then you know this combination [referring to b option] equals this one [referring to the ratio of 
x to y], that they will taste the same… because they are in the same ratio, so that kind of. 

[Third Part] R: other than that this is going to help you? 

J: No, actually, you can't, you can't, it is not going to help because you can't create more juice like this 
from just this number, you have to, because you don't know how much lemon juice is in there compared 
to actually how much lime. 

The first part shows that Jana understood that, given the fractions of 36/32 and 20/16, when she divided 
those numbers she got 1.125 and 1.25 respectively. However, although she realized that when she divided 
36 by 32 she would get 1.125, she had not abstracted the fact that the quotient was the invariant 
multiplicative relationship that quantifies the taste. In the Second Part, data also suggested that Jana could 
tell that two fractions are equal if they equal the same decimal, but she did not think of the quotient as 
indicating something about the situation modeled by the ratios (Simon & Blume, 1994). Data from the 
Third Part suggest that Jana did not realize 1.125 lemons per lime as at least the representation of a 
particular mixture: for 1.125 grams of lemon there is 1 gram of lime. This indicates that Jana did not 
anticipate the quotient as per-one. If she had, she would have been able to add the quantities of 1.125 



lemons and 1 lime until she reached the targeted quantities. To the contrary, she claimed “you can't create 
more juice like this from just this number [referring to 1.125]”, deviating from the identical groups 
conception. 

Discussion 
Results showed that, regardless of the type of tasks, Jana interpreted the relationship between quantities in 
within-state ratios as association of amounts of quantities. This is similar to the previous research results 
(Heinz, 2000; Johnson, 2015). Yet, she deviated from such level of reasoning by interpreting the between-
state ratios as an operator acting on the quantities in the original ratio situation (i.e., within-state ratios) since 
she was able to deal with the non-integer multiples of quantities. Also data from the Hair-Color 1 and 2 
and the Recipe-1 Problems indicated that Jana understood between-states ratios as a particular 
combination of two extensive quantities. For instance, for her, the 7/4 ratio from one situation to the other 
in the Recipe-1 Problem was a new combination of vinegar, a new ratio, acting as an operator (Noelting, 
1980). Also, deviating from the identical groups conception, when the numbers in the original ratio were 
very close to each other, she did not go back to additive reasoning, though attempting at it. Such attempt 
indicated that she did not have an understanding of between-state ratios as an intensive quantity, quantifying 
the change from one situation to the other in percent-increase decrease Karagoz Akar (2007). She also 
deviated from the identical groups conception (Heinz, 2000) and ratio as per-one (Johnson, 2015; Simon 
& Placa, 2012), such that she was not able to anticipate the quotient in The Mixture Problem as how much 
of one quantity associates with one unit of another quantity even when she divided it. These results 
suggested a different level of reasoning in between-state ratios and also a dichotomy within the continuum 
of identical groups conception in term of the conceptions of within-state and between state ratios prior to 
interpreting between-state ratios as a single intensive quantity. These results also have some implications for 
teaching ratio to both students and prospective teachers: The tasks in the study might be used to introduce 
prospective teachers with different strategies students might engage in while solving missing value and 
comparison problems. Secondly, Jana’s reasoning seem to be at a higher stage than an understanding of 
ratio as an association of quantities, as reported in the field (e.g., Johnson, 2015). Teachers and teacher 
educators might expect to observe these different kinds of reasoning while developing an understanding of 
ratio on the part of their students. Also, they might refer to these kinds of reasoning while assessing their 
students’ understanding of ratio at different levels.  
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This paper is a small part of an on-going theoretical study on didactic models as a form of didactic 
transformations of mathematical notions, concepts and ideas, i.e. of adjusting mathematics for 
teaching. In what we propose here we argue that regarding this adjustment as mathematical modeling 
should be inherent to the mathematics teaching: they may enhance the concept development as the 
on-going result of students’ learning; foster embedding the “big ideas” approach to mathematics 
learning, and lead to more self-consistently evolving mathematical knowledge. The “big idea” is that 
numbers are to be studied in the context of number structures, i.e. together with operations defined 
on them and properties of these operations, and that a familiar number system may serve a model for 
studying a new one. We illustrate the didactical model’s approach at the initial stage of learning 
fractions. 

Keywords: Didactic models, acquiring notion of number systems, evolution of mathematical 
knowledge, arithmetic at elementary school. 

Introduction 
This paper is a small part of an on-going theoretical study on didactic models as a form of didactic 
transformations of mathematical notions, concepts and ideas, i.e. of adjusting mathematics for 
teaching in a way that would preserve to a maximal possible extent its structure and spirit. “We want 
the students to be exposed as early as possible to the idea that beyond the nuts and bolts of 
mathematics, there are unifying undercurrents that connect disparate pieces” (Wu, 2009). The 
theoretical framework for the research is inspired by ideas such as Wu’s idea cited above, and sprouts 
from the works by Freudenthal (in particular, Freudenthal, 1975), Kirsch (2000) and from the 
discussion on applied-mathematic nature of didactic transformations (Borovik, 2012). These and 
other sources reflect the need for the merged input of deep mathematical, psychological and didactic 
considerations in constructing the mathematics feasible and meaningful for students of various ages 
and levels of mathematics learning. 

Any form of teaching mathematics involves adjusting it for the students. In what we propose here we 
argue that regarding this adjustment as mathematical modeling should be inherent to the mathematics 
teaching. The philosophy behind mathematic models is applying a user-attainable mathematica l 
apparatus to study an unknown subject or phenomenon. No mathematical model fully represents the 
subject being studied. One should always be aware of limitations of a model being used along with 
its purpose and benefits, and also of what Freudenthal (1975) presents as the dual character of 
mathematical models: “Models of something are after-images of a piece of given reality; models for 
something are pre-images for a piece of to be created reality” (p. 6). 

An educated usage of models is supposed to shed light on phenomena and subjects being studied and 
seems to be indispensable as a tool at any level of mathematic studies. This implies that the 
mathematical models usage should become an integral part of the teaching/learning procedure in 



mathematics lessons. In particular, concerning the models for something – the “to be created reality” 
in school mathematics is first and foremost the new mathematical knowledge hopefully to become in 
due time reality for the pupils. Thus, when the unknown subject to be studied belongs to mathematics, 
the model illustrating it serves didactic purposes; in this case, we are referring to didactic models 
(DMs) (see Figure 1):  

 
Figure 1. Didactic models as mathematical models and as a learning tool 

Examples of well-known and widely used DMs are the Dienes model demonstrating the princip les of 
the decimal system, and the rectangle-area model used to impart some properties of multiplicat ion 
and division. In this paper, we would like to look closer at didactic models as mathematical models 
of the to be created reality, in order to appreciate their educational value provided they are used 
knowingly and systematically. We suggest that mindfully and systematically applied to teaching, they 
may enhance the concept development as the on-going result of students’ learning; foster embedding 
the “big ideas” approach to mathematics learning, and lead to more self-consistently evolving 
mathematical knowledge. 

A more-or less usual applied-mathematics scheme for the mathematical model usage is (Figure 2):  

 

Figure 2. Applied- mathematics scheme for the mathematical model 

An initial model is the result of a simplification rendering the phenomenon being studied 
mathematically feasible, solvable, analyzable. The mathematical model is applied to obtain results, 
which are supposed to reflect at least to a certain extent the “real thing” – the phenomenon or object 
being studied. The analysis of the results of the model application usually indicates situations at which 
the model fails to reflect adequately and fully the “real thing”, and should therefore be improved to 
better reflect it. The improved model leads to more understandings concerning the object, provided it 
is mathematically feasible for the user. This looks like a never-ending story, and in mathematics it 
usually is.  

Applying this concept of mathematical model as is in the didactic context, i.e., as a didactic model, 
does not differ conceptually from application of mathematical models to any other field. It is just that 
the “real thing” being studied is of mathematical nature. In what follows, we illustrate the approach, 
emphasizing the need for the expertise in using it, which means knowledgeably following the main 
steps represented in the scheme above, accounting for the students’ level, so that the model being 
used is feasible to them; otherwise it cannot serve a basis for the further learning.  

The object to 
be studied 

A model The analysis 
of the results;  

An improved model Limitations of the 
model 



Didactic models  
Didactic models are the result of didactic transformation, being a form of applied mathematica l  
activity aimed at teaching: „We have to accept that, in mathematics, didactic transformation is indeed 
a form of mathematical practice. Moreover, it is in a sense applied research since it is aimed at a 
specific application of mathematics teaching.” (Borovik, 2012, p.99). Didactically transforming a 
mathematical concept is no trivial matter, since it is supposed to cater to both the mathematical and 
the didactic aspects of the concept: to simplify without distorting the mathematical concept and to 
present it to pupils in an accessible form.  

Shternberg & Yerushalmy consider didactic models to be a means for learning mathematics on the 
basis of mathematics already familiar to the students and rigorous mapping of learned operations onto 
the formal mathematical operations (2004). In line with this, we argue that a properly and consistent ly 
applied DM approach is a way to enhance the concept-development aspect of mathematical learning.   

Prior to presenting the examples illustrating this assertion, we will sum up the main principles on 
which we propose to base the DMs approach in school. First of all, following Kirsch who claims that 
activating the existing knowledge is the way to attain accessibility of the new knowledge; DMs should 
be based on the existing mathematical knowledge, skills and understandings of a student (Kirsch, 
2000). Second, the mathematical idea in the basis of the notion should not be distorted as a result of 
simplifications leading to a didactic model. The definition, operations and properties of a 
mathematical object should be lucid to those who construct a DM for its learning and to those who 
use it in its teaching (teachers, textbook writers, curriculum designers etc.)1 Kirsch (2000) asserts that 
simplification is a way of making mathematics accessible, but explicitly refers to the “dividing line 
between legitimate simplification and falsification that does not get past critical pupils” (p. 267). “Not 
getting past critical pupils” does not ensure that less critical and mathematically aware students do 
not acquire the falsification as a true image of the mathematical concept. Third, properly used DM 
approach is a link between the student’s existing mathematical knowledge, the knowledge being 
currently acquired and the future study of the subject, exactly as the mathematical model is the main 
tool of the on-going upgrading of the mathematics-based understanding of a phenomenon or an 
object. Thus, properly used DM approach is a tool for inherently mathematical way of studying it.  

 In addition, no DM is unique in presentation of a mathematical object (as any mathematical model 
is not the unique mathematical presentation of any object, for that matter). No contradiction should 
exist between various DMs; they are supposed to complete each other in the representation of the 
mathematical object. A student may be exposed only to some DMs representing the concept, 
appropriate to the didactic circumstances (such as the stage of acquaintance with the subject; level of 
mathematical development of the students; aims of the specific lesson etc.); the properties represented 
by a DM must be coherent with mathematics, even if it is not explicitly presented to a student.   

The efficient usage of DMs involves two equally important components of the DM-based approach: 
regarding DM as a mathematical model and as a learning tool. As a mathematical model, the proposed 
approach enables gradual building-up of an appropriate and consistent concept using the 
mathematical phenomena, objects and skills familiar to a student. As a learning tool, it provides a 
                                                 
1 This is obviously the matter of Specialized Mathematics Knowledge for Teaching (see Hill et al., 2004). 



precious experience of utilizing models in the process of acquiring a new piece of mathematica l 
knowledge, which necessitates critical and mindful insight into the existing knowledge being used.  
In what follows, we consider two possible appearances of DMs at school. The outline of the first one 
appearance is presented in Examples 1-4. The reference to the second one we found appropriate to 
include as a part of the Discussion. 

The beginning of fractions  
To illustrate what we consider to be a consistent and educated mode of DMs usage in elementary 
school, we will apply it to the initial stage of fractions learning. This is an example that we believe to 
be especially valuable at the elementary school level, when the young pupils do not yet have 
experience in the process of developing a mathematical concept, while they gradually accumula t e 
some mathematical knowledge. Beliefs, skills and concepts they have acquired are supposed to serve 
them for the further study. The properly planned and applied model usage for learning may be one of 
the most important experiences in learning mathematics (Van Den Heuvel-Panhuizen, 2003).   

Much too often the term “fraction” is used as a synonym to “a number smaller than 1”, which is the 
more problematic since in the very beginning of fractions learning the pupils really meet mostly 
fractions smaller than 1. Moreover, dominating approaches to the beginning of the fractions teaching 
are based on the “part-of-the-whole” concept and on geometric-visual representations )Hurst & 
Hurrel, 2014). Important and intuitively supportive as they are, they are detached from the only 
arithmetic and the only number system the students have come to know to a certain extent at this 
stage, which is the system of natural numbers. Hurst & Hurrel (ibid.) suggest that it might be plausib le 
to present fractions already at the early stages of learning in a way that will not inhibit, but rather 
support the future acquiring of the fraction concept without having to significantly change it. Their 
approach is that of “big ideas”, which we interpret as constructing coherent DMs consistent with the 
future evolution of fractions into (final and infinite) decimal fractions, notion of ratio, algebraic 
fractions, the slope of a line and the derivative, and other advanced mathematical appearances of 
fractions. We suggest that the big idea behind the notion of fraction is the division operation (Mamede 
& Vasconcelos, 2016). In mathematics, a fraction is either the division operation itself or its result 
(quotient) (not necessarily a number). If the numerator and the denominator are both natural numbers, 
the fraction represents a rational number. Fraction is also an operator acting on other mathematica l 
objects, and this is also directly related to its being the division operation. Hence, “the big idea” we 
propose as the mathematical background, is fraction as division: operation or result. Needless to 
mention that the idea itself is not intended for elementary school pupils, but the teachers should be 
cognizant of it.  

We illustrate the DMs approach at the initial stage of learning fractions, the model being the 
arithmetic of natural numbers. We are fully aware of the risk of inhibition effect of this approach. 
Davis (1989) includes whole number schemes among inhibitors on the way to the rational numbers. 
Nevertheless, we assert that there is no other mathematical knowledge to build upon for the simple 
reason that the natural number arithmetic is more or less everything the pupils know before their first 
encounter with fractions, but for their possible acquaintance with ½ (also justly included by Davis 
among inhibitors), some primary geometric intuition and some idea of a number line.  



Following Shternberg & Yerushalmy (2004), we provide here examples of “mapping” ideas familiar 
to pupils from the natural numbers arithmetic onto the new mathematical object - fractions, applying 
the usual scheme for a mathematical model use presented above.  

We use it in the first example to impart a meaning of fractions needed for the understanding of 
addition of fractions; in the second example - to impart conventions of fractions presentations; in the 
third example – to adjust to fractions a handy geometric model used for integers. In all three examples 
we refer briefly both to advantages and to limitations of the chosen model, and propose an improved 
model. Last but not the least is the fourth example of a meaning of natural numbers inapplicable to 
fractions. 

Example 1:  Addition of fractions.  

The model: a natural number as a cardinal number of a finite set of objects. In a fraction whose 
numerator and denominator are natural numbers, the numerator serves as a cardinal number of a set 
of equal parts - unit fractions, into which the whole is divided. The denominator indicates the number 
of parts and their magnitude. Different unit fractions are different objects and cannot be added, unless 
they are united into one set, just as apples and pears are to be united into the set of fruit to be counted 
together. For unit fractions, this means representing them with a common denominator. Limitations: 
applicable only to rational numbers. Any other fraction, for example, √2

1+𝑎
, has to be understood 

otherwise, namely, as the division operation √2:(1+a) written in another form.  

Example 2: Conventions concerning representation of fractions. 

The model: the decimal representation of natural numbers. The decimal representation is an equally 
important appearance of two ideas: of a representation of numbers per se, and of conventions in 
mathematics. As a decimal representation, it is the model applied almost as is to decimal fractions, 
when the pupils are prepared to deal with them. As an example of a representation convention, it may 
pave the way to the understanding that in mathematics there may be different forms of presenting 
commonly used objects; these forms should be familiar to everybody; this is the part of the 
mathematical language. 7

5
 is just another form of writing 7:5, meaning either the operation or the 

number resulting from it. Limitations: the final decimal representation is inapplicable for some 
numbers; it has to undergo adjustments to infinite (periodic or non-periodic) decimal representations, 
and provide meanings for their truncations of various kinds. 

Example 3: The area model 

To adjust the useful area model from a rectangle whose sides’ length are integers to the rectangle 
whose sides are rational numbers, it suffices to count “unit rectangles” whose sides are unit fractions 
corresponding to the factors’ denominators, instead of unit squares. Limitations: the area model “as 
is” is hardly applicable, for example, to infinite decimal fractions2, to fractions with irrationa l 
nominators or denominators, and would demand serious amendment to apply it to negative rational 

                                                 
2 Some ideas as presented e.g. in Nelsen (1993, pp.118-122) are based on this type of visual reasoning linking the 

area notion to numerical reasoning and convergence ideas. 

 



numbers. Nevertheless, speaking of irrational numbers - the segments division in an arbitrary ratio is 
defined for incommensurable segments as well, for example, by Thales similarity theorems in 
geometry, on the basis of segments measurement directly related to the number line. Having 
recognized that the segments ratios is attainable for irrational lengths as well, one can happily keep 
using the rectangle model for distribution properties of multiplication and division provided it is 
transfigured so that a subdivision neither into unit squares nor into small “unit” rectangles is needed 
anymore to apply it. Moreover, the basic fact that the whole segment of length a may be represented 
as the sum of the two parts, for example, 𝑎

(1+√2)
 and 𝑎√2

(1+√2)
, is consistent with a similar idea for rational 

ratio, which again is beneficial for the further goal of regarding the system of real numbers as a whole.  

Example 4: Addition of natural numbers as continued counting.  

Consider the addition of natural numbers as continued counting: m+n as n times the addition of 1 to 
m, or m times the addition of 1 to n. Here the limitations of the model render it inapplicable as a 
model for fractions. Obviously, these examples are not meant to be used simultaneously and 
immediately and not necessarily explicitly in the beginning of acquaintance with the notion of 
fraction. We do assert though that the ideas represented in these examples must be intertwined in 
appropriate detail in the course of primary school arithmetic as a general approach to mathematics 
teaching and learning (DM being a learning tool) and as a groundwork to further encounter with 
irrational numbers (DM being a mathematical model).    

Discussion 
The examples above include instances of appearance of new features when the object evolves from 
an existing one, of transforming the existing feature to adjust to the evolving object, and instances 
when some features disappear in the new object. Systematically focusing on such occurrences as a 
teaching norm may foster the concept development as an integral part of learning, provided the notion 
being taught is regarded as a concept to be permanently developed as a result of teaching and not 
merely as a topic in a curriculum. One important observation should be made here: should this 
approach be adopted for fractions or for real numbers, it has to be kept in mind already in the natural 
numbers teaching. More generally, it will hardly be useful if applied sporadically instead of being a 
systematic mindful approach. The more so in view of constraints of educational systems: in Israel, 
for example, and in many other countries, the primary schools are separated from the secondary and 
the mode of mathematics teaching at different levels is not always coordinated. This transit ion 
between the levels is therefore intrinsically discontinuous. We believe that systematic adoption in the 
primary school of DMs may help to cope with this discontinuity. We regard this to be an issue worth 
theoretical and empiric study.  

Speaking of the encounter with the real number system, we refer here again to the double-sided role 
of DMs. DMs as a mathematical model: similarly to the initial encounter with fractions which is 
based on natural numbers as a model, in the case of irrational and in general, real numbers, the initia l 
models to build upon are those originating from the system of rational numbers more or less familiar 
to the students. DMs as a learning tool: should the students have acquired appropriate mathematica l 
concepts and learning skills prior to the encounter with real numbers system, these will determine  
their ability to take-in this new, rather advanced concept, and the extent to which they may take it in. 
They should have experienced testing the properties of new numbers and operations on them vs. the 



familiar ones and the appearance of a new system that includes the previous one not only as a set of 
numbers, but also as a number system. 

Examples of the challenges anticipating the students in their encounter with irrational and in general 
with real numbers in which the DM approach seems to be promising and worth a close empiric study, 
are appearance of the root operation and sign; operations on roots (arithmetic and later - algebraic), 
on expressions of like 𝑎 + √𝑏, and rules of these operations; decimal representations, in particular, 
decimal approximations of irrational numbers and the necessity to decide when, whether and how to 
approximate; inclusion of rational and irrational numbers in the same number system, etc. One of the 
key problems with the notion of irrational numbers is based first and foremost on impossibility of 
writing an irrational number as a fraction of two integers. Thus, their mere existence seems to claim 
for a new model because of the impossibility of using the previous one. On the other hand, any number 
a may be written as a fraction at least in a trivial way as 𝑎

1
 meaning nothing more than a:1. A 

representation of an irrational number by a fraction means just that at least one of the two parts of the 
fraction: its nominator or denominator or both, are not rational3. This does not prevent one from using 
operations on these fractions the way they were used on fractions as rational numbers; sometimes this 
representation calls for formulation of new rules. For example, to avoid fractions with irrationa l 
denominator, the students are sometimes taught to expand them following the rule familiar from 
rational fractions and based on division properties, for example, 1

√2
=

1

√2

√2

√2
=√2

2
. On the other hand, an 

equality like √3

√5
= √

3

5
 represents actually a new rule, to be both understood and adopted into the set 

of mathematical skills. Thus, the notion of fraction as division operation and its properties retains its 
usefulness. Comprehension of this can be the result of recurrent examination of the notion of fraction 
and operations defined on it and by it for “new” numbers, based on the DM approach. 

Not less important, we suggest that a process of learning that systematically involves DMs is intrins ic 
to mathematics. No DM adequately represents “the real thing”, in our case eventually the system of 
real numbers. Various facets of the same complicated mathematical object awaiting the students in 
their forthcoming studies based, at least to some extent, on the analytic abilities acquired with the 
help of DMs, is a didactic challenge not less that it was a mathematical challenge, and mathematica l 
and didactic tools should be combined in their teaching and learning.  We suggest that the didactic 
models should be seriously regarded as a tool for this type of learning and closely studied in various 
theoretical and empiric aspects. 
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National French assessment shows difficulties with writing large numbers at the beginning of the 
6th grade. But, what do students need to learn and teachers need to teach? What do they actually 
learn or teach? We investigate these questions at different levels of the didactical transposition: 
students’ knowledge, teaching practices and reference knowledge. We show a lack of mathematical 
understanding of large numbers and make a proposal for teaching knowledge which provides 
justifications for the use of large numbers which could foster a ‘number sense’ understanding of 
such numbers. 

Keywords: Large numbers, numeration, units, teaching, knowledge. 

Introduction 
The topic of place value related to whole numbers is a major one in the primary grades, especially because 
it is the fundament of basic arithmetic. There is an abundant research literature on the issue. Most often it 
focuses on “small numbers”: from two to four digits. Several authors (Wagner and Davis, 2010; Howe, 
2015) consider larger whole numbers, and specific issues on this topic. In this literature, order of magnitude 
– even more relative magnitudes - appears as a key one. For instance, it is needed for a thorough 
understanding of economic, political and scientific issues. National French assessment shows difficulties in 
writing large numbers at the beginning of the 6th grade. The latter can be seen as an anecdotal subject 
compared to number sense understanding of this kind of numbers. Yet, is there any link between both? 
How writing and reading large number tasks can be connected to quantity sense or number sense? What 
do students need to learn and teachers need to teach? What do they actually learn or teach?  

Theoretical framework, previous works, and methodology 
Theoretical framework 

The Theory of Didactic Transposition (TDT) (Chevallard, 1985) (figure 1) considers school mathematics 
as a reconstruction by the educational institutions from the mathematical knowledge produced by academic 
scholars. The TDT has been often used for secondary school, more rarely for primary school where 
scholarly knowledge as a reference is not always taken for granted. 

Scholarly knowledge 
Institutions producing 

and using the 
knowledge 

 Knowledge to be 
taught 

Educational system, 
“noosphere” 

 
Taught knowledge 

Classroom 

 Learned, available 
knowledge 

Community of study 

Figure 1: The didactic transposition process (Bosch and Gascon, 2006, p. 56) 

The Anthropological Theory of Didactics (ATD) (ibid.) extends the TDT. It postulates that practicing 
math, as any human practice, can be described with the model of praxeology. It is constituted by four 



pieces: a type of tasks -a set of similar problems-, a technique -a “way of doing” for all the tasks of the 
type-, a technology justifies the technique and is justified by a theory. 

Previous works  

Chambris (2008, 2015), Tempier (2016) have analyzed teaching and learning of decimal numeration in 
French context, notably in second and third grades. Classical mathematical theory in numeration which 
embeds units (tens, hundreds, etc.) and relations between them was the reference knowledge up to the 
New Math. Chambris (2008) proposed the wording “numeration unit” for the units used in numeration 
(ones, tens, hundreds, etc.). Beginning in the 1980s, classical “scholarly knowledge” has been replaced by 
transposition of academic theory (polynomial decomposition with the exponential notation) within which 
there is no unit. This might explain why relations between units (e.g. 10 tens = 1 hundred) are little mastered 
–sometimes not taught at all- in present French context. In turn, Houdement & Chambris (2013), Tempier 
(2016) designed interventions for reintroducing units for “small numbers” in teaching practices, especially 
the relations between units, as well as explicit properties of positional notation: 1) The position of each digit 
in a written number corresponds to a unit (for example hundreds stand in the third place) (“positional 
principle”); 2) Each unit is equal to ten units of the immediately lower order (e.g. one hundred = ten tens) 
(“decimal principle”). Ten digits are enough to write any whole number thanks to an iterative process. The 
names of small numbers present many irregularities: numeration units provide a way to bridge the gap 
between irregular number names and positional notation. In short: thirty three tens 3 tens  3 in the 
second place (Houdement & Chambris 2013). 

In a broader francophone context (France and Switzerland), there is a range of literature (e.g. Mercier 
1997, Ligozat & Leutenegger 2004) on another issue in numeration: students’ and teachers’ difficulties in 
the topic “how to write large numbers”. Here we present some of their findings. The teachers being 
observed seem to consider relations between number names and positional notation as a linguistic issue 
which does not require mathematical knowledge. This generally leads them to teach two rules for writing 
numbers: 1) replace the words thousand, million by a space1 (sometimes a dot), 2) put three digits between 
two spaces. These rules appear to be little powerful to solve the most complex problems with “mute 
zeros”. Mercier (1997) (related to French context) argues this reflects an institutional problem: the lack of 
mathematical knowledge on the topic, in the teaching system for several decades. Moreover, only one of 
the five teachers observed attempts to teach general base ten property of positional notation for large 
numbers. In all these contexts, it is finally social knowledge which leads to validate (or not) an answer! 
About “13180” “St.: One-hundred-thirty-one-hundreds and eighty. (…) T.: This would be one of the ways 
to name this number; but: will everybody understand immediately?” (Ligozat & Leutenegger 2004 p. 15). 

These scholars present mathematical knowledge to fill the vacuum: Mercier (1997) indicated the general 
rule for positional notation using exponential notation algebraically, as well as a brief history of number 
names. Ligozat and Leutenegger (2004) proposed to distinguish and link two pieces of knowledge: for 
positional notation (base ten), for number names (base 1000). They formulate this using “powers of ten 
written with figures” (Chambris 2015, p. 57) notation: 

                                                 
1 In France (among other countries), a space is used between the periods for writing large numbers: 34 020 (unlike 34,020 
in some other countries). This space is sometimes replaced by a dot (34.020) but never by a comma. The latter is 
dedicated to decimal numbers: 34,020 is thirty four ones and twenty thousandths. This paper uses “French” notation. 



  (1) 

 
(2) 

 
(3) 

Figure 2: Relations between positional notation and powers of ten (1), between number name and 
powers of thousand (2 & 3). (Ligozat & Leutenegger 2004, p. 3) 

They state: “the point is an institutional “foregone knowledge” phenomenon about how to name the 
numbers and how this (foregone) knowledge is linked with positional notation” (p. 17, our translation). 
They suggest tasks like 13180 = 131 hundreds 80 ones. Years before, Fuson (1990) already indicated this 
in term of knowledge, the systems of multiunits that are intertwined (named base-ten numeration units, and 
base-1000 numeration units in the present paper). For large numbers, ten “thousands” make a new unit, a 
“ten of thousands” which is written in the 5th place; ten “tens of thousands” make a “hundred of thousands” 
which is written in the 6th place, etc. This reveals that the issue of large number names is mathematically 
connected with relations between units: in base-ten and in base-1000. That is clearly a first step to 
“quantity sense”. 

Research questions: Finding praxeologies 

What are the relations between knowledge learned (by students), knowledge taught (by teachers) and 
scholarly knowledge? How do they contribute to give sense to large numbers? 

Method and data 

Within praxeological analysis, exercises to be performed generally indicate the tasks, explanations related 
to students’ mistakes as well as introduction of new type of tasks often bring the teacher to make explicit 
the aimed technique and/or technology in classroom episodes, and definitions show technologies. Data will 
be analyzed in term of praxeologies. A mathematical analysis about reference knowledge is deepened. The 
data were designed and collected by the second author as follows. A teacher (Soline) was trained on 3-to-
4-digit numbers teaching in a collaborative research project aiming at designing a resource for teachers 
paying specifically attention to the use of base-ten units in relation with written numbers (same vein as 
Tempier 2016). This grade-4 teacher was later observed during a lesson on another subject: numbers 
larger than 9999. The lesson was audio-recorded, transcribed, and notes were taken. During an interview 
(with note-taking by interviewer) just before the lesson, Soline was asked to explain her plan for this 
lesson. The different tasks of the lesson have been identified then three episodes corresponding to three 
tasks have been selected as follows. The two first ones are related to students’ mistakes (1- in relation with 
the introduction of the first 5-digit number, 2- in relation with the first mute zero in a 5-digit number). The 
third one is the introduction of one million. Finally, a written questionnaire was designed to better identify 
students’ knowledge and difficulties (n=159, end of grade 6). 

Results 
A teacher’s mathematical praxeology about large numbers (taught praxeology) 

Planning the lesson 
Reading and writing numbers (in digits) is the only explicit task (“to be taught”) in the French syllabus. The 
preparation plan shows that Soline chose this writing task with increasingly large numbers from 4 to 8 
digits, with various places for “mute zeroes”. She was also planning to introduce the definition of the million 



as one thousand thousands, but no base-ten relation with the new units (despite the previous study). The 
teacher wonders whether it is enough to teach how to write large numbers, and that a million is one 
thousand groups of one thousand. 

Implementing the lesson 
The first number greater than 9999 to write in digits is "twelve thousand five hundred". A student, Anaïs, is 
not able to write it. Perhaps she refrains from writing a two digits number in the thousands place in 
accordance with the technique learned before. The teacher does not identify this cognitive conflict. She 
shows some confusion by calling out to the researcher; then she tries to help Anaïs. 

You see […] I already have Anaïs who has troubles. She is able to write three thousand but does not 
know how to write twelve thousand. Does it change something Anaïs? Think about it. Twelllllllve 
thousand. Twelllllllve thousand five hundred. Twelve thousand it is twelve groups of one thousand. 

While the students learn for the first time to write a five-digit number, the teacher seems to consider there is 
nothing new to know about the new 5th place in the written number and about the old word (thousand) in 
the number name. She tries to help the student by emphasizing “twelve”. The technique aimed is to write 
the number heard before “thousand” (here 12) and then the next number (here 500) with eventually a dot 
between them. 

Later, the teacher asks to write "thirty four thousand and twenty". It is the first time with a “mute zero”. 
Axel writes “34.20”: it is what he hears: 34 and 20 with a point instead of the word “thousand”. 

Soline (T):  Thirty four thousand. Twenty. It doesn’t look strange? After the word one thousand 
how many digits are there?  

Axel:  Three 

Soline (T):  And here you have only two digits. How could you make to have three?  

Soline writes on the black board “34.20” and underline 20. 

Axel:  To put a zero? 

Soline (T):  Where? (Axel’s answer is inaudible. But Soline writes “34.200” on the board).  

Soline (T):  Look Axel (and Soline writes on the board: “34.020”). 

Once again, the teacher seems powerless in front of a student’s mistake. She gives then the answer without 
any explanation. With this case the technique to write a number in digits incorporates a new element: after 
“thousand” there must be three digits. Thus, when there is a two digits number after the thousands it is 
necessary to write a zero.  

Later, after the writing of the number 999 000, Soline intends to introduce the millions. She asks the 
students how many groups of one thousand there are just after 999 000 and introduces the million thereby: 

Soline (T):  One thousand times one thousand is called otherwise. How it is called? 

A pupil:  One million. 

Soline (T):  One million, it is a new word. For the moment we said the word one thousand, now we 
say too one million.  

A pupil:  How we are going to write it? 



Soline (T):  This is what we are trying to discover together. It is necessary to make a kind of small 
chart (Soline draws then this place value chart on the black board). 

 
The million is defined as one thousand thousands, what confirms Soline's plan. She tries to give meaning to 
large numbers relying on relations between base-thousand units. According to this point of view, the million 
doesn’t appear as ten groups of hundred thousands. In the above table there are the names and places of 
periods but no reference to the name of base-ten places like the hundred thousands place for example. 
These technological elements rely only on a period viewpoint of the written number. The corresponding 
technique for writing numbers is: “write the number heard and points for the words millions and 
thousand”. This is confirmed during the rest of the lesson. For example for the writing of two million, the 
teacher tells: “I write my two with my little point which means million”. With this technique, teacher is not 
able to help students with mute zeros as a whole period or within a period. For example, at the end of the 
lesson, to write twelve million fifty some students write 12.50.000, 12.000.50 or 12.050.000 (with points 
or spaces). The teacher continues to explain the three digits in a period without a “base ten/place” 
viewpoint in addition to this “base 1000/period” viewpoint. 

A questionnaire to inform about 6th grade students’ knowledge (learned praxeologies) 

The first part of our questionnaire concerns the writing of large numbers in digits (table 1).  

Numbers to be written in digits 
Beginning of 
gr. 6 (2008) 

End of gr. 6 
(2016) 

Four hundred and seventy-five (475) 94%  
Three thousand and three (3 003) 96%  
Six hundred and twenty seven thousand (627 000) 76% 87 % 
One million six hundred thousand (1 600 000) 76% 89 % 
Three million fifty thousand three hundred and twenty (3 050 320)  79 % 
Seventeen million two thousand and fifty-eight (17 002 058)  69 % 
Five hundred and three million thirty-seven (503 000 037)  82 % 

Table 1: Results of national assessment (2008) and our assessment (2016) of 6 th grade students 

To complement the data we also proposed conversions in order to examine the relations between large 
units and determine which of the relations between base-ten units and base-thousand units are better 
known. Such tasks are inspired from our prior research, and Ligozat & Leutenegger (2004)’s analysis. 
Both tasks raise as much difficulties. Approximately half of the students succeed in converting 4 millions 
into hundreds of thousands (48%) and 3 millions into thousands (50%). Many students did not write any 
answer. This was not the case for the “writing number” tasks. Perhaps they never performed conversion 
tasks before. 

Complements for reference knowledge for teaching large numbers 

We have already recalled some considerations about the specificity of the written and spoken numeration 
systems and their imbrications in a double system. The above lesson analysis and our previous studies 

millions thousands ones 

_  _  _ _  _  _ _  _  _ 

   

 

millions thousands 



about “small” numbers show that there is a need for an intermediate system between these numeration 
systems in order to articulate this double system: the numeration units systems for bases ten and 1000. 
These systems of units enable various decompositions of numbers related to base 10 and base 1000. Up to 
9999, number names can be linked with base ten numeration units, whereas beginning of 1000 they are 
linked with base 1000 numeration units. The transformation from a base-ten decomposition into a base-
thousand decomposition is made by conversions.  

 

Figure 2: Links between numeration units, written numeration and spoken numeration 

The numeration units system supplies a way to justify the writing (in digits) of a number name. It enables to 
justify the mute zeros. See, for example, the task “writing eight millions thirty seven thousand fifty” (figure 2) 
in digits. The number can be written or spoken in numeration units "8 millions 37 thousands 50 units", which 
can be converted in this register “8 millions 3 tens of thousands 7 thousands 5 tens”. It relies on conversion 
of 37 thousands in 3 tens of thousands and 7 thousands. The digit of millions is written in the 7th place, that 
of hundreds of thousands in the 6th place, etc. It is necessary to write a 0 to mark the lack of missing units. 
The obtained number can then spell 8, 0, 3, 7, 0, 5 and 0 by the positional principle of the written 
numeration. This example shows how this designation is relevant for reference knowledge for teaching. It 
enables to make links between the written and spoken system and to explicit the knowledge at stake. 

Discussion 
The analysis of Soline’s lesson shows that her knowledge of the spoken numeration of large numbers, for 
one side, and her previous teaching of small numbers with an important concern about relations between 
base-ten units, on the other side, brought her to a beginning of a teaching of relations between base-
thousand units. The latter seems not to be the case in the observations reported by Mercier (1997) or 
Ligozat and Leutenegger (2004) where only one teacher focused on the relation between base-ten units, 
and none on those between base-thousand units. Yet it is not enough to provide explanations for writing 
large numbers. Indeed, the teacher seems sometimes deprived to help her students during this lesson. In 
addition, our observation at the end of the lesson shows that it is insufficient to enable the students to avoid 
some mistakes, particularly those which are related to the mute zeros. The teacher explanations and her 
place value chart let us think that she assigns a base-thousand system to the written system and ignored its 
base ten operating. The two first episodes are coherent with our literature review considering large number 
names as an “institutional foregone knowledge”, and a linguistic issue. 

By introducing numeration units in the reference knowledge to make links between base-ten and base-
thousand units, we aim to provide a more explicit knowledge for teachers and students. It enables to take 
into account the double system units for large numbers (base ten and base 1000). It can, on one side, 
enrich the understanding of the written system by realizing that the system always works in the same way 



according to the base ten and, on another side, learn the names of large numbers by putting them in 
connection with the written code. For example, to justify the writing of twelve thousand five hundred, the 
teacher has to clarify the link between ten thousands, the ten thousands unit and the corresponding places in 
the written number. In the writing of mute zeros, as in thirty four thousand twenty, the link between the 
values of 3 and 4 and the corresponding places in the written number can justify the writing of a zero in the 
hundreds place. Questionnaire results seem to confirm a more effective technique is needed for mute left-
hand zeros. 

This dual system of units can favor recognition of relative magnitudes of large numbers. For example, 
understanding the million involves the relation with smaller numbers. For example to understand the million 
involves the relation with smaller numbers: a million it is “ten times one hundred thousand” as well as “one 
thousand times one thousand”. Tasks of mental computation on numbers with only one non-zero digit can 
strengthen these relations. For example, “ten times two hundred thousand” could aim at leaning on the 
relation between one hundred thousand and one million, relation which does not explicitly appear in our 
way to speak these numbers. Other tasks aim at the extension of the written numeration. For example it is 
possible to recover and adapt small numbers tasks as the situations of collection counting and ordering 
(Tempier 2016). Counting a collection, with representations of large groups, can then be used to introduce 
new base-ten units. In addition, ordering a collection can be used to produce various decomposition of 
number under base ten and base 1000 with numeration units. Under this approach the spoken numeration 
could be secondly brought, in connection with these decompositions. 

Conclusion 
Obviously students can succeed in writing numbers without knowing relative order of magnitude of 
numeration units in base ten and in base 1000. Yet, relations between units can provide justification for 
even writing numbers. This knowledge can be expressed with numeration units. It is missing in French 
institutional system. It might also contribute to the understanding of quantity sense. In this context, the work 
on small numbers is not enough to train teachers (even it is only for one case); surely, it helps the teacher to 
question her usual practices on large numbers. However, it does not provide tools for justification, neither 
the specific stakes of large numbers. Further research is needed in order to provide powerful tasks for 
teaching and learning large numbers. 
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Studies correlating working memory, number sense and arithmetical performance show 
controversial results which create the need for further investigation. This research aims to verify 
the relationship between two working memory components (central executive and phonological 
loop) and numerical competence assessed through two different tasks: the Number Knowledge Test 
and the School Achievement Test.  It involved 79 Brazilian students from 4th to 7th year of 
elementary school. The results suggest a significant correlation between the central executive and 
number sense. The same relationship was observed for the arithmetical performance. The 
phonological component showed no significant correlation with number sense nor arithmetical 
performance. The educational implications of the study are pointed out.  

Keywords: Working memory, number sense, arithmetical performance.  

Background 
Both number sense and working memory are fundamental skills for arithmetical learning (Geary, 2011; 
Jordan et al, 2013). Studies investigating the relationship between working memory and arithmetical 
performance have been widely discussed in the literature (Anderson & Lyxell, 2007; Geary et al., 2007; 
Passolunghi & Siegel, 2004). However, the research that deals with the relationship between working 
memory and number sense is recent. Number sense is considered the basis of arithmetical learning and, 
consequently, it is assumed to be associated with working memory (Friso-Van Den Bos, Van Der Ven, 
Kroesbergen & Van Luit, 2013).  

Working memory is a cognitive system that supports the development of various learning processes. It is a 
limited capacity system which allows the temporary storage and manipulation of verbal or visual information 
required for dealing with complex tasks. During learning the student constantly uses the resources of 
working memory to perform a series of activities, from the simplest tasks, such as remembering 
instructions, to the more complex ones, such as solving problems, that require the storage and processing 
of information and the control of learning progress. In the case of arithmetic, for example, a multidigit 
calculation (23 + 48) requires several subprocesses (retrieval of arithmetic rules and arithmetic facts from 
long-term memory, calculation and storage of intermediate results, arithmetic procedures that involve 
carrying and borrowing operations) that must be coordinated and executed by the working memory 
system. Students  with deficits in this ability would face problems. Thus, a difficulty especially related to the 
coordination of simultaneous operations of processing and storage can interfere in the execution of 
arithmetic tasks, resulting in slower performance and more errors in computation (Andersson & Lyxell, 
2007).  

 Considering the tripartite model proposed by Baddeley and Hitch (1974), the working memory system is 
formed by three components: two storage systems (visuospatial component and the phonological loop) and 
the central executive, the nuclear component of working memory, responsible for the processing of 
cognitive tasks, coordinating the information stored within the other two components. It is generally agreed 



that arithmetical achievement is associated with working memory performance (Alloway & Alloway, 2010; 
Andersson & Lyxell, 2007; Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007). However, there is a 
lack of consensus regarding the relative importance of the central executive (Andersson, 2008; Geary et 
al., 2007; Passolunghi & Siegel, 2004), the phonological loop (Andersson & Lyxell, 2007; Passolunghi, 
Mammarella & Altoè, 2008) and the visuospatial component (Geary, Hamson & Hoard, 2000; Mclean & 
Hitch, 1999) in relation to arithmetical performance. 

 Some studies found that the central executive is the most affected working memory component (Corso & 
Dorneles, 2012; Geary, Hamson & Hoard, 2000; Geary, Hoard & Hamson, 1999). The central executive 
has three main functions: inhibition (prevent irrelevant information from entering or remaining in working 
memory), shifting (shifting between pieces of information and response sets) and updating (active 
processing and refreshing of information in working memory). There is no consensus regarding the role that 
each specific executive function plays in number sense. Some studies point out that inhibition is central to 
number sense development (Kroesbergen,Van Luit, Van Lieshout, Van Loosbroek & Van De Rijt, 2009), 
but such a result was not found by others (Lee et al., 2012; Navarro et al., 2011). Updating is usually seen 
as the most important predictor of number sense (Kroesbergen et al., 2009; Lee et al., 2012), but, it is 
important to emphasize that research focusing on the relation between number sense and executive function 
is still limited (Friso-Van Den Bos et al., 2013).  

Concerning number sense, the literature shows consensus related to the important role that this construct 
plays to mathematical development, but there is a lack of consensus regarding the best way to define, 
assess and intervene in number sense (Gersten, Jordan & Flojo, 2005). Considering studies in the areas of 
mathematical education and cognitive development, Berch (2005) compiled a list of 30 characteristics 
presumed to compose the number sense concept. According to the author, number sense means 
awareness, intuition, recognition, knowledge, ability, desire, feeling, expectation, process, conceptual 
structure or mental number line. When defining number sense, some authors point out the conceptual, 
abstract aspect of numerical processing
For example, Dehaene (2001) emphasizes that number sense refers to the ability to mentally represent and 
manipulate numbers and quantities. Gersten and Chard (1999) define number sense as the flexibility with 
numbers and the understanding of the meaning of numbers and ideas related to them. Other researchers use 
definitions emphasizing the performance that is facilitated by that conceptual understanding of number, such 
as counting ability, number identification, number awareness, estimation, measurement, mental operations 
with numbers (Jordan, Glutting & Ramineni, 2010). We believe that both definitions of number sense are 
complementary: In order to succeed in the comprehension and execution of tasks involving numbers, 
relations and quantity, an abstract understanding of numerical processing is necessary. Therefore, the 
conception of number sense that characterizes this paper is that it is a general construct, which 
encompasses a very broad set of concepts, which the student develops gradually from his interactions with 
the social environment. Number sense is a way of interacting with numbers with its various uses and 
interpretations, enabling the individual to deal with daily situations that include quantification and the 
development of efficient strategies (including mental calculation and estimation) to deal with numerical 
problems (Corso & Dorneles, 2010). 

 Recently, researchers are interested in the association between the different components of working 
memory system, especially the central executive and the number sense. Children are expected to employ 
working memory capacity while experiencing number sense tasks such as counting, understanding 
magnitude, doing basic arithmetic calculation, using mental number line (Gersten, Jordan & Flojo, 2005). 



However, there is a small body of literature targeting the association between working memory and number 
sense.  

The current study 
The literature presented above suggests that working memory plays an important role for the development 
of numerical competence. However, the importance of each working memory component is not well 
defined. In order to contribute to this discussion, the present study aims to verify the relationship between 
two working memory components (central executive and phonological loop) and numerical competence 
assessed through two different tasks: the Number Knowledge Test and the School Achievement Test.  

Method 
This is a cross-sectional study involving 79 (10- to 14- year-old) Brazilian students (36 girls and 43 boys) 
from the 4th to the 7th year of five public elementary schools. Mean age was 11.9 years. Students were 
indicated by their teachers considering the students’ performance (average and low average) in the math 
curriculum according to each school year.  

Instruments 

1) Working Memory 

1.1 The central executive component of working memory was measured using two different tasks: a non 
numerical - processing of verbal information (adapted from Hecht et al., 2001) and a numerical task 
- processing of numerical information (Yuill, Oakhill & Parkin, 1989). In the first task the students 
were required to answer yes or no to sets of two to four questions and then say the last word in 
each of the sentences, for example, in the two-question set, “Do tables walk?” and “Do lamps 
run?”, a correct response would be “no” to each question and then “walk” and “run”. For the 
numerical task, the students read aloud a growing sequence of three-digit sets and, at the end of 
each set, should remember, in order, the last digit of each set. For example, for the sets (2 5 7) and 
(1 8 6), the digits "7" and "8" must be remembered. 

1.2  The phonological component of working memory was assessed through the Memory of Digits, 
Sentences and Short Stories task (Golbert, 1998). It consists of a growing sequence of digits, 
sentences and short stories to be repeated by the student.  

2) Numerical Competence 

2.1 Number Knowledge Test (Okamoto & Case, 1996): This task is designed to assess the students’ 
knowledge and comprehension about counting, numerical concepts and basic arithmetic calculation. 
The instrument is divided into four levels of complexity, being presented from the simplest (level 1) to 
the most complex (level 4). Although this instrument was designed for assessing students up to 10 years 
of age, we decided to use it, even having few students in the sample older than this age group. The 
students who were 13 and 14 years old were repeating students who were facing difficulties in some 
foundational components of numerical proficiency. The sample of this study was formed by average 
and low average arithmetic learners, but no ceiling effect in this task was observed.  

2.2 School Achievement Test (Stein, 1994): This is a Brazilian standardized psychometric instrument 
designed to verify the students’ arithmetical achievement. It presents 38 items (3 word problems and 
35 written calculations). The word problems involve magnitude comparison and simple addition and 



subtraction calculation. The written computations involve basic operations, operations with decimals, 
fractions, operations with integers and potentiation.  

 

Data were analyzed using the correlation analysis between number sense and arithmetical achievement 
measures with the working memory tasks (central executive and phonological tasks), using the analysis of 
Pearson correlation at the significance level of p<.05. 

Results 
Considering the central executive component of working memory, a significant correlation was found 
between the two working memory tasks and the tests that measured both number sense (WM1 r = 0,449, 
p = 0,000; WM2 r = 0,316, p = 0,005) and arithmetical achievement (WM1 r = 0,303, p = 0,007; WM2 
r = 0,344, p = 0,002). The phonological component of working memory, though, did not reveal a 
significant correlation between the three tasks designed to assess the phonological loop neither with the 
number sense task nor with the arithmetical measure. Only a weak correlation was found between number 
sense and the task that assessed the recalling of short stories (r = 0,226, p = 0,045). Correlations among 
the measures are reported in Table 1.   

Table 1 - Pearson correlation coefficient (r) and the significance level (p) between the number sense test 
and the mathematical subtest of the TDE with the different components of working memory (central 
executive and phonological loop) 

                                WM 1                    WM2                      MD                   MS                     MSS 
                             r           p              r             p              r             p           r         p           r              p 

 
NKT                  0,44      0,000*    0,316     0,005*      0,153    0,177     0,169    0,137    0,226    0,45* 
SAT                  0,303     0,007*    0,344     0,002*      0,189    0,096     0,12      0,915    0,069    0,547 

NKT = Number Knowledge Test; SAT= School Achievement Test; WM1 = Working Memory 1 (non numerical 
task);WM2 = Working Memory 2 (numerical task); MD = Memory of Digits; MS = Memory of  Sentences; MSS = 
Memory of  Short Stories. 
* p-value < 0,05 

Discussion 
The results of the study presented a significant correlation between the two central executive tasks and the 
number sense test. This point emphasizes the fact that dealing with number sense activities requires working 
memory involvement, in this case, specially through the central executive system, since it was not found a 
positive relation  between the phonological component of working memory and the number sense measure. 
This outcome reinforces what research has shown in relation to the strong association between the central 
executive (updating function) and number sense in children (Lee et al., 2012). Results in the same line are 
presented by Friso-van den Bos et al. (2013) who found that updating has the highest correlation with 
number sense, when compared to the shifting and inhibition functions of the central executive. As pointed 
out earlier, a small number of investigation has targeted the association between number sense and the 
central executive component of working memory and, therefore, more investigation is needed considering 
that research of this kind will bring contributions to preventing and remediating arithmetical difficulties.  



The results of this research are in line with those that emphasize the positive association between working 
memory and arithmetical achievement (Geary, Hoard, Byrd-Craven & Desoto, 2004; Passolunghi, 
Mammarella & Altoè, 2008) reinforcing that the working memory is critically involved in a variety of 
numerical and arithmetical skills. In this study, this positive association refers to the executive component of 
working memory, but not to the phonological one. As mentioned before, there is a controversy in the 
literature regarding the role of each component of the working memory system in arithmetical achievement 
(Meyer, Salimpoor, Wu, Geary & Menon, 2010). Studies that include students with difficulties in 
mathematics in its sample indicate problems with the three components of the working memory system, but 
the central executive seems to be specially affected.  

The non-conclusive results related to the contribution of each working memory component to numerical 
competence can be related to the following aspects: the large variability in the tasks used to assess the 
different components of working memory, the different kind of arithmetical tests being used and the ages of 
the subjects being assessed. We know that different cognitive demands require distinct working memory 
resources and these resources, in turn, can vary according to the age of the subject (Andersson & Lyxell, 
2007). Therefore, although there have been advances in this area of study, more investigation is needed.   

Conclusion 
The study showed a significant correlation between the central executive component of working memory 
(updating) and number sense. It contributed with more investigation with regard to the association between 
working memory and number sense, as studies linking these two domains are still scarce and present 
controversial results. The next steps for future investigation will involve more detailed analysis aiming to 
identify how the different tasks that compose the Number Knowledge Test (counting, numerical magnitude, 
mental number line, estimation, arithmetic calculation) are associated with the central executive, including in 
this analysis not only the updating component of the central executive, but also shifting and inhibition. This 
sort of analysis can give us a better view of the intensity of the involvement of the central executive function 
in different number sense tasks.   

 The outcomes of this investigation are in agreement with previous studies highlighting the significant 
correlation between working memory and arithmetical skills. The educational implication of such a finding 
deserves our attention. It is crucial to know the cognitive abilities that are impaired in the learner since the 
way the teaching process is conducted, will directly influence the effect that the cognitive deficit has on 
learning. For instance, students who are very slow to calculate, need the teaching of more efficient counting 
strategies and procedures in order to avoid being based overmuch on their working memory (when the 
counting all procedure is being used, for example), overloading it and increasing the chance of error in the 
calculation. Problems in working memory end up affecting the set of everyday situations in which 
mathematical tasks are involved. Those difficulties lead the students to present some characteristics that 
make the learning of mathematics more difficult, for example: counting on the fingers for a longer time, not 
performing mental calculation, forgetting the result of calculation they just made, not remembering the 
sequence of steps of an operation (Geary et al., 2007). 

Studies are being designed focusing on the development of interventions to improve the working memory 
capacity by asking children to engage in tasks that require simultaneous processing and manipulation of 
information (Klingberg, 2010). However, the results of these studies are still controversial (Melby-Lervag 
& Hulme, 2013). Recent intervention research emphasizes the importance of combining working memory 
interventions with interventions that target the specific mathematical areas in which the student is showing 



delay (Sperafico, 2016). This type of work has brought promising results to help students with working 
memory difficulties to learn mathematics. 

Finally, this study contributed to the field of arithmetical learning by bringing some evidence of the positive 
associations between working memory and numerical competence (number sense and arithmetical 
achievement). Knowing the cognitive abilities underling arithmetical learning is fundamental to guide 
curriculum planning considering the working memory demands of the tasks, their level of difficulty and the 
characteristics of the learners. Further studies in this area will offer advances in the processes of preventing 
and remediating learning difficulties in mathematics. By identifying which components of working memory 
are weak, it is possible to avoid that at-risk students develop future problems. In the same way, research of 
this kind will support our understanding of  possible cognitive obstacles that interfere in learning 
mathematics, so that we can face them trough the selection of adequate teaching resources and content as 
well as good teaching strategies. Maybe this is the most important contribution that the constructs of 
working memory and number sense can make to mathematical education.     
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Number estimation is an important skill for both everyday and school situations that involve a 
group of cognitive abilities. The ability to estimate may provide a feedback tool to check 
performance in different mathematics learning contents. The most widely used task to assess 
number estimation is the Number Line Estimation Task (Siegler & Booth, 2004), and some 
researchers used a kind of Numerosity Task (Luwel, Verschaffel, Onghena & De Corte, 2003). This 
research compares the students’ accuracy in two tasks that assess the ability of Brazilian children 
(N = 60), attending the 2nd and 3rd grades of a public school, to estimate. The children’s success in 
the Number Line Estimation Task suggests it is more accurate than the Numerosity Estimation Task  
in assessing children’s performance in estimation maybe because of the different cognitive functions 
required by the two tasks. The study´s educational implications are discussed. 

Key words: Number line estimation, numerical development, spatial representation of number 
magnitude. 

Introduction 
The decimal number system is used to establish exact quantifications, in contrast to quantity estimation 
processes. In everyday situations, we often use either exact quantification or number estimation (Feigenson, 
Libertus, & Halberd, 2013), and sometimes estimation can be easier than exact quantification (Siegler & 
Booth, 2004). Number estimation is a cognitive process used for quick or approximate answers or, for 
example, to calculate the duration of a movie or the distance between two places. It can be used as a 
feedback tool to check performance in different areas of mathematics including those requiring exact 
quantification. From our point of view, two complementary ideas define number estimation: a non-counting 
based quantitative answer to represent a set of objects; and a translation (Siegler and Booth, 2004) 
between two different ways of representing a number. We know that mathematical competence involves a 
group of abilities and cognitive processes. Number estimation has been considered one such process 
(Levine, 1982) despite the fact it has been less studied than exact quantification (Piazza, Mechelli, Price & 
Butterworth, 2006) although its importance has been highlighted (Rousselle & Noel, 2008). This can be 
explained by the variability of the tasks used to assess estimation skills in children, adolescents and adults 
as well as the different situations in which we use estimation (Siegler & Booth, 2004). The recognition of 
small amounts may be related to the ability to represent quantities in a mental number line and this ability 
would assist in comparing the magnitude between two numbers (Schneider, Grabner, & Paetsch, 
2009).The estimation performance can be necessary in solving some mathematical tasks and the 
development of estimation is also considered a good predictor of later symbolic math skills (Park & 
Brannon, 2013). Despite the importance of its use, number estimation is not part of the school curriculum in 
many countries, including Brazil. Changes designed to improve mathematical achievement, including the 
introduction of number estimation in the curriculum, are currently being introduced in Brazil. For teachers, 
assessing the ability to estimate using different tasks might be a good starting point to analyze the 



importance of the ability as well as to highlight the topic´s importance in mathematics education. One of the 
most consistent conclusions reached by studies about the development of estimation is that children are not 
very able estimators, even when estimation is used in various daily applications. However, some 
researchers have hypothesized that children’s estimations reflect their internal representation of numbers 
(Siegler & Opfer, 2003).  

Moreover, there is some evidence to suggest estimation is related to mathematical competence in general 
and arithmetical performance in particular (Siegler & Booth, 2004; Booth & Siegler, 2006; Schneider et 
al., 2009; Mazzocco, Feigeson, & Halberda, 2011; Laski & Siegler, 2007) and can be improved (Park 
and Brannon, 2013). Recent research has highlighted the importance of estimation for mathematical 
development (Link, Nuerk, & Moeller, 2014; Laski & Yu, 2014). This research indicated that the better 
the students’ accuracy in mental number line is, the better their performance in other numerical and 
arithmetic tasks (Link, Nuerk, & Moeller, 2014). Hence, it is important to understand the estimation 
process, the abilities involved, how to assess them and its role in mathematical performance, especially 
regarding the proposed changes to the curriculum in Brazil. It can be said that even though the estimation 
processes have been studied for the past twenty years, there is no consensus regarding the assumption that 
the estimations assessed by different tasks reflect a pure mental representation of numbers as proposed by 
Siegler and Booth (2004) and some new data indicate that it is affected by the limited knowledge of 
numbers (Ebersbach, Luwel & Verschaffel, 2015), as well as by visuospatial abilities (Crollen & Noël, 
2014). 

In the current scientific debate, among the explanations for the development of number estimation in 
children, two stand out. The first, the multiple representations of numbers model (Siegler & Booth, 2004), 
assumes that children initially represent numbers in a less accurate algorithmic way and develop a more 
accurate linear representation with age and experience. That is, in children the mental number line is 
compressed and they tend to maximize the distance between the magnitudes of numbers at the low end of 
the range and minimize the distance between the magnitudes of numbers in the middle and upper ends of 
the range. This tendency was named logarithmic representation. Gradually, children develop a linear 
representation, which maintains the same distance between the numerical magnitudes. Empirical evidence to 
support this logarithmic-to-linear shift model has largely come from the Number Line Estimation Task 
(NLET) proposed by Siegler and Booth (2004) in which children or adults must estimate the magnitude of 
a number by marking its proper position on a number line. However, the logarithmic-to-linear-shift 
hypothesis has been questioned by researchers studying number-line estimation (Barth & Palladino, 2011; 
Ebersbach, Luwel & Verschaffel, 2015). Some of the issues raised led to the development of a second 
explanation, the proportion-judgement strategies model (Barth & Palladino, 2011), which suggests that in 
the NLET children estimate the size of a part, the numerical magnitude of a specific number, relative to the 
size of the whole, thus making a judgement about the proportion of the size of the former. Hence, 
according to the numerical range, the more reference points (landmarks) made available, the more accurate 
the estimation will be, especially close to the landmarks. In other words, estimation performance reflects 
the strategies chosen to solve the tasks. Recently, a third model, the Two-Linear Account has been 
proposed as a plausible alternative (Ebersbach, Luwel, Frick, Onghena, & Verschaffel, 2008) and explains 
the developmental changes in number estimation as a result of children’s familiarity with numbers. In this 
model, the mental numerical representation can be alternatively described as a combination of two linear 
patterns with different slopes, depending on number familiarity. In other words, this linear representation of 
numbers changes according to the age and numerical range known by children; the unknown numbers have 



a slower linear representation than the known numbers. A recent paper (Dackermann, Huber, 
Bahnmueller, Nuerk & Moeller, 2015) proposes the integration of these accounts, which is a line of 
reasoning that we support as they introduce the idea that aspects of all three accounts may complement 
each other and facilitate a more comprehensive understanding of children´s development of number line 
estimation.  

Among the tasks most widely used to assess the ability to estimate are the NLET, described above, and 
the Numerosity Estimation Task (NET), which requires the subject to estimate the quantity of objects in a 
set (Luwel, Verschaffel, Onghena & De Corte, 2003; Barth, Starr & Sulivan, 2009). To the best of our 
knowledge, there is no research that indicates which of these tasks best assesses students’ accuracy in 
estimation and therefore which would be best for application in research and in schools. Thus, the purpose 
of the study was to compare the accuracy in the numerical estimation of 60 children from the 2nd and 3rd 
grades of a public school in the city of Porto Alegre (Brazil) in order to determine which task (NLET or 
NET) best assesses the students’ accuracy in number estimation. As the children in both grades were used 
to manipulating objects and completing tasks similar to the NET and admittedly had no contact with the 
number line before, we assumed the students would perform better in the NET than in the NLET. We 
chose the two tasks because the NLET is the most frequently used in estimation research and is widely 
used to examine how the human mind represents numbers (Barth & Palladino, 2011; Ebersbach, Luwel & 
Verschaffel, 2015), while the NET is similar to another task often used by some research groups that have 
a slightly different theoretical viewpoint regarding estimation, for example, Barth, Starr & Sulivan (2009). 
Both tasks are assumed to assess the same numerical estimation ability. 

Method 
Using two different tasks, we compared performance in number estimation within a group of sixty children 
(mean age = 8.4, SD = .69, age range from 7.4 to 11.2 years) who were recruited from one public school, 
37 boys and 23 girls: 28 from 2nd grade, (M = 7.8, SD = .29) and 32 from 3rd grade (M = 8.9, SD =.50). 
Two tasks were used: the NLET (Siegler & Booth, 2004) and the NET, adapted from Luwel, Verschaffel, 
Onghena & De Corte (2003). We used only one criterion to determine the students’ accuracy in the 
presented tasks: the measure proposed by Siegler and Booth (2004), described below. The task was 
applied collectively in the classroom, the workplace and the school activities were affected as little as 
possible. The time to perform the activities in each class was about 40 minutes per task. The solution to 
both tasks involved the use of pen and paper. 

The NLET requires the subjects to mark points corresponding to specific numbers along a number line 
bounded by 0 and 100. Children were asked to mark the place they considered most suitable for the 
position of the number to be estimated. Before each item, the experimenter said, “This number line goes 
from 0 at this end to 100 at this end. If this is 0 and this is 100, where would you put n?” (n being the 
number specified in the trial). 29 number estimations were required, one at a time. Each number was 
presented twice. Each child received a booklet with a number line drawn on each sheet to mark their 
answers. The difference between the two estimations of the same number provided a measure of the 
variability of the estimations. The 29 numbers comprised the 24 proposed by Siegler and Booth (2004), 
plus another 5 numbers that were also used in the second task. The 29 numbers presented were 3, 4, 6, 7, 
8, 9, 12, 17, 21, 23, 25, 29, 33, 39, 43, 48, 49, 52, 57, 61, 64, 72, 78, 79, 81, 84, 90, 95, 96. They 
were presented in random order and then repeated in the same random order. Children had no pre-
determined time to finish the task, each one could complete the task in the time they wanted.  



The NET requires the children to estimate the amount of dots distributed in a checkered 10x10 grid. 
Before starting the task, the students were told the empty grid contained 0 dots and the full grid contained 
100 dots. To reduce the possibility of verbal counting, the stimuli were presented quickly (1 second for 
each group of ten dots presented) and immediately followed by a white screen. Students were asked to 
perform a numerical estimation of the amount observed, writing them down in a notebook. They could not 
use any additional tool to solve the task. In the task, eight numbers from 0 to100 were randomly matched 
(4, 7, 9, 17, 25, 49, 78, 95) in two different ways. In the first, the dots were presented in clusters and, in 
the second, they were presented dispersed. Both tasks were carried out collectively on different days. 
There was no feedback for correct or wrong answers. 

Results 
To calculate the accuracy of the estimations given, the calculation of absolute percentage error of each child 
was used, adapted from Siegler and Booth (2004), and represented by the formula: 

Mean Estimation – Estimated Quantity 
_______________________________ 

Scale of Estimations (100) 
 

To illustrate how this measure works, if a child was asked to estimate the location corresponding to the 
number 60 (or quantities of dots) in a number line from 0 to 100 (or 10X10 grid) and his/her answers were 
65 in the first estimation and 75 in the second, we calculated the mean between the estimated values in the 
two attempts (in this example, (65+75)/2=70). The absolute percentage error would be 10%, 
corresponding to the result of (70 - 60)/100, according to the above formula. We used this calculation 
because previous analysis showed that the difference between two answers for each number in both tasks 
was not significant (p=.24) for NLET or (p=.06) for NET.  

After that, a descriptive analysis of the accuracy of each child was conducted to identify the general 
standard of performance for each task. These analyzes show the students’ accuracy is higher in the NLET. 
The reported performance tends to be more cohesive in the NLET (Table 1).  

 

 Mean SD Significance 

Number Line Estimation Task .089 (.050) 
p =.018* 

Numerosity Estimation Task .158 (.250) 

*p<.05 

Table 1: Comparison of the Mean of Percentage Error in each task 

 



 

To determine the correlation between the two tasks, Pearson´s correlation coefficient was carried out (r 
=.67, p<.01), and indicated a positive correlation between both tasks, suggesting that either demand similar 
cognitive functions or both are related to other skills that were not measured.  

To test for differences in the children's estimation accuracy when required to estimate smaller and larger 
amounts, we considered the same numbers estimated in both tasks. A paired-samples t-test only indicated 
difference when estimating the same number in each task in larger quantities (Table 2). 

 Number Line Estimation Task Numerosity Estimation Task  

Number to be 
estimated Mean SD Mean SD Sig. 

4 .034 (.043) .086 (.333) ns 

7 .063 (.086) .084 (.397) ns 

9 .081 (.101) .083 (.229) ns 

17 .109 (.112) .188 (.495) ns 

25 .117 (.087) .151 (.184) ns 

49 .085 (.062) .204 (.145) .000* 

78 .118 (.064) .249 (.224) .000* 

95 .091 (.080) .219 (.441) .022* 

*p<0.5 

Table 2: Comparison of estimations between the same numbers  

This analysis showed that the students’ estimations were all more accurate in the NLET, however, these 
differences were only statistically significant with the numbers 49, 78 and 95 (Table 2), while there is 
greater variability in the children’s estimation in the NET. This may suggest important differences between 
the tasks performed. Maybe the three numbers (49, 78 and 95) are closer to “quarters” (50, 75 and 100), 
which would help children to identify the position of the numbers in the number line. Hypotheses to explain 
these variations will be discussed later. In the NLET, one of the most common strategies used by students 
was to fill the number line with marks that represent the numbers before or after the number proposed, as 
illustrated in Figure 1. In the NET, some students tried counting groups of dots and imagining how many 
similar groups could be in the whole. Progressions related to the speed with which the children performed 
the estimations were not tested in this analysis, considering that the time for execution was the same for all 
participants.  



 

Figure 1. Example of marking strategy in two numbers of NLET 

Discussion and conclusions 

As we described above, number line estimation is related to both basic and complex arithmetical abilities. 
Moreover, there is evidence to suggest number estimation is related to mathematical achievement. Despite 
this, number estimation is rarely taught in Brazil and other countries. In our research, we observed children 
more accurately estimate numbers on a number line than dots on a grid. Although the two tasks measure 
the ability to estimate, as indicated by the general correlation between the students’ accuracy in the two 
tasks, they may be linked to different cognitive functions, as suggested by the differential performance when 
the tasks involve numbers over 25. Although speculative in nature, some ideas help us to understand the 
results. The NLET requires transposition from numerical knowledge to a position on a line, whereas the 
NET requires transposition from a perceptual estimation (linked to quantities) to numerical knowledge. 
Both demand translation between different representations. However, unlike the NET, the NLET allows 
children to try a discrete quantity representation, sometimes marking the number line with lines or dots from 
the beginning to the point that could represent the required number. This marking strategy was the most 
widely used by the children and helped them identify an almost correct answer. Children used different 
strategies or representations when estimating. The linear distance of numbers along the number line seems 
to be an important support for the estimations, as Siegler and Booth (2004) have described. Additionally, 
children used decision-based strategies considering the proximity of the extremities, for example, to 
represent number 78, they made marks from 100 to 78 in descending order. Alternatively, some decided to 
begin from 50 and made marks from 50 to 78 in an ascending sequence. Another strategy was to mark the 
quarters (e.g. 25, 50, 75) as landmarks. All these strategies have been identified as means to improve the 
way children estimate (Siegler & Opfer, 2003; Siegler & Booth, 2004). The use of these strategies 
suggests the children did not estimate the numbers by chance, but instead coordinated mathematical 
knowledge and spatial skills to assess the place to mark. This tactic fits very well with the proportion-
judgement strategies model (Barth & Palladino, 2011). The central number (50) was understood by some 
students as a reference mark used to estimate the other numbers. 

The difference found in the tasks with the numbers 49, 78 and 95 can be explained by the fact the three 
numbers are close to “quarters”, which would help children to identify the position of the numbers on the 
number line. Also, we must remember that, generally, younger children tend to overestimate small numbers 
and compress large numbers toward the end of the scale, whereas older children, using the same number 
range, tend to estimate more accurately (Siegler & Booth, 2004). Moreover, in our research, it may be the 



case that due to lack of familiarity with the number line task, the older children continued to overestimate 
small numbers, as described in the logarithmic model. Another possible factor influencing the results was the 
time. In the NLET, children have time to think about the relation between the number and the place on the 
line, while in the NET they have only a few seconds to observe the quantities and more time to estimate the 
quantity represented. The NLET requires the ability to coordinate the knowledge of number systems with a 
kind of spatial graphic representation on a line. Maybe the effort made by children to coordinate these two 
cognitive demands helps them to estimate more accurately, despite having little experience with number line 
tasks. Moreover, the NET may not help students to access their knowledge of the number system, since it 
provides no clues that would allow students to adopt some proportion-judgement strategies coordinated 
with their number system knowledge. We suggest the NET requires more “guessing” than the NLET 
because there is no opportunity to mark “quarters” or anything like that to help them to estimate. One 
limitation of the research is that only eight numbers were repeated in both tasks. For future research, we 
suggest amplifying the analysis of the cognitive processes involved in both tasks. We did not control the 
number system knowledge of the subjects. We do not discuss whether or not the number line task reflects 
an internal mental number line, since this was not the subject of the paper. However, considering the results 
of our research, we can say that the NLET is a relevant measure even if it does not reflect an internal 
mental number line. We support this idea because, although the children were not familiar with the number 
line estimation task and were more used to NET-like activities, they performed better in the NLET. This 
surprising result provides the opportunity to introduce the discussion about estimation in the Brazilian 
curriculum. Furthermore, considering that the ability to estimate is correlated to many aspects of 
mathematics, for example, number comparison, addition, and subtraction, it is important to take in 
consideration the assessment of this ability in mathematics education as well as the ways to improve it. 
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We present findings made during the first cycle of an ongoing design research study on the working 
out of basic multiplication in 8 Austrian classes. Their teachers had tried to implement an 
instructional design that put conceptual understanding and derived facts strategies centre stage. 
Focusing on the degree of fact mastery reached at the end of grade 3, we present a typology of 
strategy use within a sample of 48 students. We take a closer look at lower-achieving students, in 
particular those 8 students who had little if any success in mastering basic multiplication. While 6 of 
them used derived facts strategies quite often, their deficiencies either in adding and subtracting or 
with regard to the conceptual basis of derived facts strategies seem to have hindered them from 
mastering more facts. We discuss implications for the planned second cycle of the study. 

Keywords: Basic multiplication, derived facts strategies, lower-achieving students, design research.  

Introduction 
Sherin and Fuson (2005), in an overview of prior work on teaching and learning basic multiplicat ion, 
refer to 4 different though interlinked threads of research. Like them, in this paper we focus on only 
one of these, namely the development of computational strategies. We agree with Sherin and Fuson’s 
assertion that strategy development must be examined with close reference to the ways multiplicat ion 
is taught. Hence, after looking over different ways learners solve multiplication tasks, we summarize 
contemporary approaches as to how to work out basic multiplication in primary grades. Against this 
backdrop, we focus on the multiplication learning of lower-achieving students. We contribute to that 
issue some findings of a design research study on 8 classes whose teachers had tried to base the 
learning of multiplication on the targeted working out and practicing of derived facts strategies.  

Empirical framework and research questions 
A taxonomy of strategies used for basic multiplication  

Sherin and Fuson propose that the “most important changes” in the development of strategies for 
basic multiplication are primarily “driven by relatively incremental changes to number-specific 
computational resources” (Sherin & Fuson, 2005, pp. 353–354). So a child might solve, e.g., 3x4 
initially by drawing 3 groups of 4 circles each and “counting all” of them; later by “rhythmic 
counting” (“one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve”); then by “repeated 
addition” of 4+4+4 or maybe by saying the “count-by sequence” (“four, eight, twelve”). Finally, the 
child may “retrieve from memory” that “3x4=12”. These strategies as well as “hybrids” such as 
applying a “derived facts strategy” (“2x3=6, then 4x3 must be twice as much”) form part of the 
taxonomy of strategies the authors devise drawing on prior research. But even if the strategies as 
listed follow a progression, this is not to be seen as the consequence of an increasingly sophistica ted 



understanding of multiplication, but mainly driven by a child’s growing abilities to, e.g., add, subtract, 
double and halve, and thereby compute products with increasing ease (Sherin & Fuson, 2005).  

This is why, for a long time during the learning process or even permanently, a single individual will 
presumably use a variety of strategies for solving different basic multiplication tasks, depending on 
the value of the operands and his or her computational resources. What is more, “because the learning 
of number-specific resources is very sensitive to instructional emphasis” (Sherin & Fuson, 2005, p. 
379), strategy development may differ significantly across classrooms. Such differences are 
sufficiently documented. For instance, Sherin and Fuson (2005) report that rhythmic counting, while 
being ascribed an important role by Anghileri (1989), was not observed at all during the interviews 
they carried out with students whose teachers had not promoted that strategy. Steel and Funnell found 
no evidence for the use of repeated addition within a sample of 241 children in grades 3 to 7, but a 
large amount of children using count-by sequences. Their teachers stated they had not encouraged 
repeated addition, whereas writing down sequences had been used as a method (Steel & Funnell, 
2001). This leads to the question of how basic multiplication should be taught at the beginning.  

The need of further design research on the teaching and learning of basic multiplication  

There seems to be an international consensus nowadays that students should both acquire a sound 
conceptual understanding of multiplication and eventually solve all basic tasks accurately and 
effortlessly (cf., e.g., Padberg & Benz, 2011; CCSSI, 2016). It is also widely agreed that fact mastery 
should not be pursued by rote learning of multiplication tables. As an alternative, children should first 
learn how to solve harder problems by deriving them from those that are fairly easy to remember, i.e. 
the problems with 2, 5 and 10 as the multiplier. Only later should they move on to retrieving more 
and more facts directly from memory (cf. Gasteiger & Paluka-Grahm, 2013; Van de Walle, 2007). 

However, when it comes to “details of instruction” that might be relevant for teaching success (Sherin 
& Fuson, 2005), there remain a lot of unresolved issues. One of them is whether or not to make 
children work within separate multiplication tables (e.g., the “table of 6” from 1x6 to 10x6). A specific 
answer quite commonly given in Austrian textbooks is “short tables”: Children are supposed to learn 
the whole body of basic facts by consecutively learning the facts of one table at a time before moving 
to the next table. Within each table, they are supposed first to automate 1 times, 2 times, 5 times, and 
10 times the respective number and to derive from these core tasks the other tasks of that table. In the 
second step, they should practice all the tasks of the table with the objective of automation.  

In contrast, Gaidoschik (2014) advocates what he calls a “consistent” approach to derived facts 
strategies. According to this, strategies should be worked out in a targeted manner without any 
consideration of separate tables. For example, as soon as children have learned that they can easily 
derive a 9-times fact from a 10-times fact, they should be encouraged to do so with any 9-times fact. 
The same applies to any other strategy like halving 10-times to derive 5-times facts or doubling 2-
times to solve 4-times facts. If the commutative property is emphasized from the very beginning, 
there is little need for strategies that demand computations that are more difficult. For instance, 7x9 
can be done more easily by thinking of 9x7, which is 10x7–7, than by adding 2x9+5x9. Therefore, to 
abandon activities that are restricted to single tables is supposed to reduce the overall workload.  
Secondly, it should help get a better understanding of any single strategy since it is applied to a wide 
range of numbers as soon as it has been established, and not just within a single table. Last but not 



least, this approach emphasizes the wide reaching power of these strategies, which is supposed to 
contribute to the children’s willingness to acquire them (Gaidoschik, 2014). 

Evidence as to whether and how such differing approaches to the teaching of basic multiplicat ion 
indeed have an impact on children’s learning is rather scarce and fragmentary. Cook and Dossey 
(1982), comparing teaching the tables with a derived facts strategy approach, find empirical support 
for the latter, but remain vague about the specifics of either approach. Woodward (2006) gives more 
details about an integrated approach combining explicit teaching of derived facts strategies with timed 
practice drill which yielded significantly better results than drill only. However, he reports not on 
regular classroom activities, but on a remedial programme applied when multiplication had already 
been worked out. So do most other studies in this field (e.g., Kroesbergen, Van Luit, & Maas, 2004).  

One of the few studies known to the authors that deal with the initial workout of basic multiplicat ion 
in a regular classroom and try to deliver a “rich description of the way the design works” (Swan, 
2014, p. 151) is Selter’s (1994) report on a teaching experiment with one grade-2 class in Germany. 
The teaching in this class favoured derived facts strategies throughout the second half of the school 
year, while it deliberately downsized drill. The study indicates that this concept was quite successful 
with regard to its conceptual targets. However, the account of whether it worked out equally well 
regarding the development of fact mastery is less satisfying. The study is rather sketchy in that respect. 
Selter (1994, p. 106) rates it as the “preliminary ending to a research project” to be followed by more 
detailed inquiries into single issues, such as “learning processes of underachieving pupils” (p. 281). 

Questions addressed in the study presented in this paper 

Teaching basic multiplication with a focus on derived facts strategies is still not at all common in 
Austria, where there is a long tradition of basically drilling tables with little, if any, consideration of 
derived facts strategies. Teachers particularly tend to be sceptical as to whether lower-achieving 
students would a) understand derived-facts strategies at all and b) reach fact mastery without rote-
learning of the tables (Gaidoschik, 2014).    

Against that backdrop and in consideration of the empirical framework outlined above, we started a 
design research project on the teaching and learning of multiplication in grades 2 to 3. In this paper, 
we present some findings collected during the first cycle of the project that lasted from September 
2014 to June 2016. Out of the numerous issues we address in that project, in this paper we have to 
restrict ourselves to the following: 

1) If multiplication is taught with a clear focus on derived facts strategies in the “consistent” way 
suggested by Gaidoschik (2014) and shortly outlined above, what types of strategy 
performance can be identified at the end of grade 3 with respect to the target of fact mastery? 

2) To what extent, when taught like this, do children who have been identified by their teachers 
as mathematically lower achieving actually use derived facts strategies and reach fact 
mastery? 

Method 
We report on 48 students from 8 classes in Carinthia, Austria. Their teachers had volunteered to 
participate in a design research study aiming at evaluating and refining the concept of teaching 
multiplication in grades 2 to 3 as formulated in Gaidoschik (2014), with the following main ideas: 



1) In the first half of the second school year, arithmetic lessons should have a clear focus on what 
children need to understand and be able to compute fluently in order to get comfortable with 
the strategies that are useful to derive multiplication facts. That is, they should be able to 
double and halve two-digit numbers effortlessly and to add and subtract fluently up to 100. 

2) Subsequently, instruction should concentrate on the conceptual understanding of 
multiplication and its properties, particularly commutativity and distributivity. At the end of 
this stage, children should be able to translate smoothly terms such as 3x4 into actions, visual 
representations (identical groups as well as arrays), word problems, and vice versa.   

3) In the next step, teachers should secure that all children know how to double and decuple any 
number at least up to 10 with ease, then learn how to derive the 5-times facts from the 10-
times facts by halving and do so more and more effortlessly.  

4) On that basis, a guided discovery-learning approach should be complemented with direct  
instruction when needed by single children to convey derived fact strategies as a convenient 
way to solve multiplication tasks. To this end, single lessons should be devoted to groups of 
facts as defined through the multiplier, for instance 9-times facts, 6-times facts, and so on. 
Children should be encouraged to find an easy way for themselves to solve tasks of such a 
group by deriving the solution from facts they already know, using representations such as 
arrays of dots or equal groups of interlocking cubes. Strategies found by the children should 
be discussed and compared in the classroom. Different strategies for the same task are 
welcome as long as they are mathematically correct. However, children who constantly fall 
into cumbersome ways to derive a task (such as, e.g., computing 6x9 as 10x9–9–9–9–9 instead 
of 10x6–6 or 5x9+9) or even resort to repeated addition or counting strategies should receive 
direct instruction to develop understanding for one derived facts strategy after the other , 
including the knowledge for which tasks that strategy fits well.  

5) Subsequent practice should comprise substantial tasks such as explorations of mathematica l 
patterns as well as timely restricted “strategy drill” (Van de Walle, 2007), e.g. using flash 
cards with the objective of performing a certain strategy with growing ease and speed. 

To convey and discuss this concept in detail, the researchers met the participating teachers for 8 
working sessions (3 hours each) once a month during the second and 4 follow-up sessions once every 
2 months during the third school year of their classes. During each session, the researchers would 
give theoretical inputs and make concrete proposals for daily classroom activities. Each teacher was 
visited in the classroom 3 times by one of the researchers to receive feedback on his or her teaching 
practices. The teachers were interviewed individually 4 times during the cycle to cover as 
comprehensively as possible if and how closely they had followed the researchers’ recommendations.  

To assess the children’s development, we selected 6 children out of each class to be interviewed a 
total of 7 times, from October 2014, at the beginning of their second school year, till the end of April 
2016, before the classes started to move on to multi-digit multiplication. Always 2 of the 6 children 
had been rated as being above average, average, and below average with respect to their arithmetica l 
performance as perceived by their teacher at the beginning of grade 2. The students were interviewed 
by the researchers during school time in some quiet extra rooms of the school. The first interviews 
were centred on addition and subtraction up to 20, which had been the main contents of arithmetic 
instruction till then. The semi-structured qualitative interviews to follow each reflected what had been 
the major classroom topics since the previous interview, from the base-10-system in January 2015 to 



a focus on multiplication in the later interviews. In accordance with the instructional design, the 
interviews were restricted to the conceptual understanding of multiplication in March 2015, but 
starting with May 2015 encompassed both understanding and computation of multiplication tasks.  

In the computation part of the interviews the children were presented always with the same 15 tasks, 
each of them written on a DIN A7 card, 7 being core tasks (10x7, 2x8, 4x10, 9x2, 5x7, 8x5, 5x5), and 
8 harder tasks (in the order of the interview: 9x4, 7x7, 6x4, 6x9, 7x8, 6x7, 8x8, 4x7). The children 
were requested to solve each task mentally the way they usually would, and to state the result verbally 
as soon as they knew it. Immediately thereafter they were invited to explain or show how they had 
arrived at the solution. Strategies were evaluated on the basis of video recordings. “Fact mastery” 
was assigned to any solution that was accurately produced within 3 seconds (cf. Van de Walle, 2007). 

Apart from computing, we invited the children inter alia to explain verbally to a fictitious first-grader 
the meaning of a task such as 3x5 and demonstrate that meaning with different materials (wooden 
cubes, arrays of dots). Moreover, we asked them to clarify whether and how an easier multiplicat ion 
task could be of help to solve the not so easy tasks 9x7 and 4x8, respectively.  

Findings 
Types of strategy use in solving basic multiplication tasks 

Based on the multiplication strategies exhibited by the children in April 2016, we performed an 
empirically grounded construction of types and distinguished 3 main-types of strategy performance 
at the end of grade 3: 

A) “Masters”: These students solved all tasks accurately either by retrieval or effortless derivation 
within about 3 seconds or, in most cases, instantly. Only in single cases, if at all, they would give 
a wrong answer or take slightly longer to produce a correct one. 19 out of the 48 children go 
smoothly with this type, and 5 children fall somewhere in between Type A and B (see below).  

B) “Experienced users of derived facts strategies with limited fact mastery”: These children, while 
exhibiting mastery of the core tasks, relied on derived facts for at least 3 of the 8 harder tasks. As 
a rule, these tasks were solved with rather little effort in 6 seconds or less. However, up to 2 of 
the 8 harder tasks still posed quite a challenge to these children, either taking more than 9 seconds 
or being answered incorrectly. 15 to 20 (see above) of the 48 children rank among this type. 

C) “Users of derived facts with limited mastery and some trouble in deriving”: These children 
typically solved core tasks by retrieval and harder ones by using derived facts strategies. At least 
3 tasks caused them perceivable trouble, with solution times in excess of 9 seconds and/or 
resulting in incorrect solutions. 6 of the 48 children quite clearly fulfil this description.  

These 3 types cover 45 of the sample’s 48 children fairly adequately. Note that fact retrieval and 
derived facts strategies were the only strategies to be found within these types at the end of grade 3, 
with no single child relying on strategies like counting all, counting by or repeated addition.  

3 children do not fit into this typology. One of them, whom we refer to by the fake name Leo, was 
the only child in the sample that relied on count-by sequences. He did so when solving 9x4, 6x4, and 
4x7, all of them within 3 or 4 seconds. All the other facts he solved by retrieval, except 6x7, which 



he derived from 6x6. Leo’s teacher reported that Leo had consistently been getting “a great deal of 
support” by his mother. The teacher had “not been able to convince her of not drilling the tables”.    

Whereas Leo had reached a high degree of fact mastery, this clearly is not true for 2 other children. 
One of them, we call her Mia, had only mastered 4x10, 10x7, 2x8, 5x7, and 5x5. Whereas she 
retrieved these facts accurately, all the other tasks she either refused to try at all, or admittedly guessed 
upon. Only 4x7 did she solve correctly by a rhythmic count-all supported by her fingers. In no case 
did she use a derived facts strategy. The other child, whom we name Lara, solved all the core tasks 
as well as 7x7 and 8x8 by retrieval. On 7x8, she used a hybrid strategy by counting down 8 and 
another 8 from 9x8=72, which she had retrieved from memory. She tried to derive 6x4 as well, this 
time incorrectly by computing 5x4+5. 9x4 she rated as her “battleground task”; she eventually solved 
it by drawing 4 rows of 9 circles each and counting them all, which took her about 90 seconds.  

Out of the 16 children who had initially been selected as below average, 3 were assigned to Type A 
at the end of their third year, 6 more to Type B, and one child between A and B. Out of the other 6 
students who started as below average, 4 finally belonged to Type C, whereas the remaining 2 of this 
group have been introduced as Mia and Lara. There were 2 other children who had been rated as 
average by their teachers at the beginning of the second year but were finally assigned to Type C. 

Interrelations with the performances on other tasks 

As set forth, 8 children within our sample demonstrated only very moderate, if any, success in having 
mastered basic fact multiplication by the end of their third school year. To help better understand this, 
we refer to some of the findings we made aside from the computation part of the interviews. First, the 
tasks that were conceived to test the conceptual understanding of multiplication unsurprisingly 
revealed considerable differences, in particular with regard to the verbal competences of the children. 
However, all 48 children, including the 8 lowest achieving, could without any exception give a 
comprehensible and adequate verbal explication of what meaning could be ascribed to a term like 
3x5, and support this by laying equal groups or arrays of wooden cubes.  

What is more, all these 8 children seemed to have at least some clue of how to derive facts from other 
facts. This even applies for Mia, albeit in a very restricted way. She was the only child of this subgroup 
who had not used one single derived facts strategy during the computation part of the interview. 
Subsequently, when questioned whether there was an easier task that could help her solve 9x7, she 
spontaneously answered: “No idea”. However, when directly asked whether 10x7 could be helpful, 
she said without any hesitation: “Yes, you just have to take away 7.” Significantly, though, when 
asked whether knowing 5x8 could help a child solve 4x8, she stated: “Yes, you have to take away 4.” 
The same mistake was made by Lara. Lara also erred in computing 6x4 as 5x4+5 in the computation 
part (see above), but she, too, stated that 9x7 could be derived as “10 times 7, then take away 7”.  

Only 2 other of the 8 lowest achieving children made such mistakes with regard to the logic of a 
derived facts strategy (as distinguished from calculation errors in executing a mathematically correct 
strategy; such errors were made by other children, too). For instance, one child said that to get 6x9 
you have to compute 60–9, and the other that 10x8–2x7 equals 7x8.  

The other 4 children of Type C not only used a variety of derived facts strategies in a mathematica lly 
correct way during the computation part, but also gave comprehensible explanations of how to derive 
9x7 and 4x8. It seems to be noteworthy that these 4 children as well as Mia and Lara and 2 children 



of Type B were the only ones in the whole sample who had considerable trouble with the addition 
and even more with the subtraction tasks they had to solve in a separate section of the interviews.  

Discussion and final remarks 
We are well aware of the limitations of our paper. As stated by Swan (2014, p. 151), “writing up 
design research is problematic”. Due to space restrictions, the design is presented rather sketchily, as 
is the account of its implementation and the ways different children performed. Having conceded this, 
we still hope that some of our findings are of use and interest for other researchers in this field.  

First, our results seem to corroborate the view of Sherin and Fuson (2005) that the development of 
strategies for solving multiplication tasks is to a high degree dependent on instruction. We recorded 
the tedious use of count-by sequences known to be rather typical of low-achievers in higher grades 
for only one out of 48 students at the end of grade 3. In that case, we have clear indications of parental 
drill. We may add that this strategy had been equally rare in the preceding interviews. On the other 
hand, all but one student used derived facts strategies autonomously for those facts that they had not 
yet automatized. Both occurrences correspond with the applied instructional approach that, as 
outlined, deliberately neglects working within single multiplication tables, thus aiming to prevent 
children from using count-by sequences as a solution strategy. As far as can be judged from teacher 
interviews, classroom visits and the examination of working sheets used in the classrooms, all 
teachers basically adhered to that concept. 

This leads to a second finding: Teaching multiplication with a clear focus on derived facts strategies 
yielded what might be seen as quite satisfying results even for lower-achieving students. Of course, 
the study was not conceived to prove the superiority of one design over another, but to examine 
qualitatively whether and how certain measures may contribute to children’s learning. With regard to 
lower-achieving students, it can be stated that the chosen combination of discovery-learning and 
direct instruction of single strategies followed by strategy drill seems to have helped almost all of 
them use these strategies correctly (as can be judged from the computation tasks) on the basis of a 
sufficient conceptual understanding (as can be judged from the additional tasks described above). 

Thirdly, 8 students in the sample show severe problems with basic multiplication at the end of grade 
3. 6 of them, constituting the Type C, still use derivations and do so quite frequently. But they do it 
in a way which indicates what may contribute to their struggling with multiplication: 4 of them, while 
apparently knowing how to use known facts as a basis for deriving unknown ones, are not able to add 
and subtract efficiently. That is why they often need considerable time to solve a task and sometimes 
miscalculate. We assume that out of the same reason their repeated use of derived facts strategies on 
harder tasks has not resulted in the mental linking of these tasks and the respective solutions (cf. Van 
de Walle, 2007) and therefore not contributed to the automating of basic facts to the same extent as 
it has done for their more successful peers. In this regard, their learning difficulties differ qualitatively 
from those of the other 2 children within Type C who are indeed quite proficient at adding and 
subtracting, but then again seem to have a limited conceptual basis of their strategy use.  

All in all, these 6 children and so much the more Lara and Mia, who were least successful within this 
sample, have severe problems not only in multiplication but also in areas of elementary arithmetic 
that form a prerequisite for learning multiplication on a conceptual basis (Gaidoschik, 2014). That is 
why in a second cycle of this design research project we will focus on how to better foster children 



who lag behind in adding and subtracting at the start of grade 2 before and while working on 
multiplication. From where we stand in our analysis, we assume such measures will have to include 
individual support for some children additional to what a single teacher can manage in the classroom.  
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This paper discusses an approach that fosters students’ conceptual understandings of rational 
numbers with an initial focus on percentage, in elementary school years. This approach enables 
students to work with multiple representations associated with percentage which are taken as 
models of contextualized situation and reconstructed as models for reasoning through an emergent 
modeling process. A classroom teaching experiment was developed following the methodological 
procedures of a Design Research. Data were collected through participant observation, supported 
in a logbook, audio- and video-recorded lessons and students’ productions in the classroom. The 
analysis of data reported in this paper seems to highlight that through this approach, percentage - if 
privileged in the introductory steps of its learning - strengthens the interpretation of multiplicative 
relations and fosters understanding of rational numbers through an emergent modeling process.  

Keywords: Elementary school mathematics, rational numbers, models, percentage. 

Introduction 
The development of rational number understanding is considered a very important, but also a complex 
mathematical topic (Behr, Lesh, Post & Silver, 1983). It involves conceptual understanding that is the 
entwined comprehension of concepts, operations, and relations (NCTM, 2014). Students are called to 
construct new knowledge supported by multiplicative relations, through active sense making and extending 
previous knowledge and experiences with whole numbers. This conceptual understanding is closely related 
to number sense, which is an essential competence that students should gradually develop from an early 
age. Percentage, with its changing nature and multiple interpretations, can be more than a representation of 
rational numbers (Parker & Leinhardt, 1995). Percentage is itself a useful topic to learn rational numbers 
with understanding (Moss & Case, 1999).  

The purpose of this paper is to provide useful insights into how percentage can be powerful, when 
privileged in elementary years, to foster rational numbers’ learning process with understanding. This should 
be addressed with an active involvement of students through an emergent modeling process supported by 
multiple representations.  

Percentage for a meaningful learning of rational numbers 
Percentage is part of student’s everyday contexts. Although, as a mathematical content, compared to other 
areas of arithmetic, there are few recent researches that discuss the issues surrounding its learning in the 
classroom (Pöhler, Prediger & Weinert, 2015). Since early years, students become familiarized with 
percentage in real life situations, for instance, on food labels, clothes tags, in discounts. Its practical use 
develops children’s intuitive sense in dealing with it before being at school (Moss & Case, 1999). This very 
common use of percentage points to its introduction in elementary education, within rational numbers 
domain (Hunter & Anthony, 2003; Moss & Case, 1999). Percentage is “a language of privileged 



proportion” (Parker & Leinhardt, 1995, pp. 472) that is based on multiplicative comparison to 100. 
Exploring percentage can be an opportunity to begin thinking relatively and to deal with multiplicative 
situations, enhanced on students’ early intuitive understandings of proportional relations (Lamon, 2007). 
Being a language, percentage has different interpretations as it assumes properties of number, part-whole, 
ratio, function or statistic (Parker & Leinhardt, 1995).  Grounded in real-world experience percentage can 
be a way to start the work of developing a solid understanding of those meanings as rational numbers 
subconstructs, which highlight essential characteristics of rational numbers (Lamon, 2007).  

Learning percentage should begin with understanding its relational language using elementary strategies, 
including benchmarks, proportional reasoning, and additive building-up strategies, rather than learning 
formal calculation procedures (Moss & Case, 1999; Parker & Leinhardt, 1995). This process might start 
in elementary grades, but the concept of percentage at its very rich sense will be reached later. Thus, 
understanding percentage requires the development of appropriate models to grasp its various meanings 
and its relational features in order to support students' attempts to make sense of the numbers and the 
relationships that connect them (Dole, Shelley, Cooper, Baturo, Conoplia, 1997; Parker & Leinhardt, 
1995). In problem solving, models can arise from the use of multiple representations – enactive, iconic, 
symbolic (Bruner, 1962) and oral and written language (Ponte & Serrazina, 2000), when associated with 
percentage can provide support to develop its conceptual understanding. Models should display the 
relationship between quantities and allow to describe comparisons in multiple ways, encouraging 
proportional reasoning (Parker & Leinhardt, 1995). Gravemeijer (2002) refers to emergent modeling 
process to explain both the “process by which models emerge” (p.3), as representations are used and 
progressively become models and the “process by which these models support the emergence of more 
formal mathematical knowledge” (p.3). Gradually models of contextualized situation are reconstructed and 
evolve to models for reasoning through this emergent modeling process.  

The above ideas are the key components of the conceptual framework that supports this research. They 
seek to associate conceptual understanding, number sense and emergent modeling process to support 
percentage as an entry point for developing students’ understanding of the rational numbers. 
The interrelationship between these components sets a developing framework for analysis, which will 
provide the lens to describe and analyze how rational numbers’ conceptual understanding takes place in a 
specific classroom learning ecology (Gravemeijer & Cobb, 2006).  

Methodology 
Data reported in this paper was collected as part of a classroom teaching experiment in a design research 
approach (Gravemeijer & Cobb, 2006), within a broader study that aims to deepen how students 
construct their understandings of rational numbers through a learning trajectory with an initial focus on 
percentage. The cyclic process of the design research involved a first phase where a conjectured local 
instruction theory was defined supported by design principles, used to guide the design and development of 
the classroom teaching experiment. In the second phase, the teaching experiment took place and, through 
micro-cycles of design and analysis, the process of the students’ participation and learning was analyzed. 
The last phase involved a retrospective analysis, which is still running. The conjectured local instruction 
theory, which is about a possible learning process together with theories about possible means of 



supporting that learning process, is refined and improved all along, supporting a revised local instruction 
theory (Gravemeijer & Cobb, 2006).  

The classroom teaching experiment was designed considering a mathematical content dimension and a 
pedagogical one. The first one is based on an hypothetical learning trajectory, inspired by Moss and Case 
(1999) experimental curriculum for teaching rational numbers. The first stage of this trajectory begins with 
the understanding of percentage in a linear-measurement context. Then two-place decimals are introduced.  
Finally, fractions are the focus concerning the use of different interchangeable representations.  The 
pedagogical dimension attempts to account for the means of supporting the co-participated learning 
process as it occurs in the social context of the classroom. The classroom experiment involved a total of 20 
lessons spread across two three-month periods (Grade 3 and Grade 4) in the same classroom, where the 
first author was also the teacher. It took place in a public elementary school in Lisboa with students aged 
between 8 and 10 years. In this paper, we analyze some episodes that took place in the first period when 
the students were in third grade.   

The dual role as teacher and researcher raised significant ethical challenges. To avoid potential conflicts and 
assure students’ and families’ protection, an informed and voluntary consent was taken. Anonymity and 
confidentiality were guaranteed to be maintained.  To establish credibility and allow convergence, multiple 
sources of evidence were chosen (Confrey & Lachance, 2000). For data collection, we used the transcript 
of video and audio recorded moments of all classroom sessions, students’ written work, and teacher´s 
research journal. 

A preliminary analysis was developed during the classroom teaching experiment, which supported the 
process of redesigning and testing instructional activities and other aspects of the design. (Gravemeijer & 
Cobb, 2006). This analysis involved an analytic induction strategy where we identified significant episodes 
from students’ activity while exploring tasks. Then, we scanned those episodes for evidence of students’ 
conceptual understandings related to rational numbers and for relationships among them. Thereafter, a 
retrospective analysis was made through content analysis. In this analysis, all data was revisited and divided 
into content categories generated from the interrelationship between the conceptual framework components 
through a typological analysis (Goetz & LeCompte, 1984). This analysis process creates a cross-coding 
system that evidence relationships among the various categories, emerged from data and anchored in the 
conceptual framework, which is still in progress. The analysis discussed in the next section of this paper 
focuses on students’ activity with meaningful representations during four lessons of the classroom teaching 
experiment. It was carried out using three interrelated categories as indicators of students’ conceptual 
understandings of rational numbers through percentage learning. Each of these categories involves working 
subcategories, handling percentage to: (1) support reasoning strategies (decomposition/composition; 
half/double; 10%; multiples of; unitizing/reuniting); (2) foster numerical relations (benchmarks; magnitude of 
numbers; orderliness and comparison; equivalence) (3) encourage a modeling process (mobilize familiar 
representations; interpret subconstruct situations; emerge of symbolic representations).  

Learning rational numbers by focusing on understanding percentage   
A mobile phone battery was one of the first iconic representations related to percentage chosen to be used 
in a problem-solving context. In this task, students were asked to estimate the percentage represented in 
batteries in Figure 1. 



 

 

  
Figure 1: Ana’s group resolution using a battery representation 

Considering battery C, some students stated that the shaded part would represent 25% of charge, and 
others claimed that it would be 20%. During the discussion, students’ arguments were shared in order to 
justify their reasoning strategy. 

Simão: That is not 25 percent. 

Teacher: […] So, what do you think it is? 

Students: 20 percent.  

Teacher: Why? Marco. 

Marco: Because it fits 5 times. 

Students who claimed 20% reasoned that if the shaded part was iterated it would fit the unit five times, so, 
it should be 20% and not 25%. This idea expresses a reasoning strategy drawn on division and laid out on 
numerical relations. The measure subconstruct allowed students to see the unit represented by the full 
battery as a distance, and the percentage as a relative quantity of that distance. Familiar battery 
representations were used to encourage a modeling process. They are used as models to think about the 
task as a measurement situation, allowing percentage to be conceived as an iteration of a unit part, rather 
than representing a part out of a whole.  

Status bar (Figure 2) was another iconic representation regarding percentage that was privileged. Students 
interpreted status bar in an easy way by analyzing its fullness, as they are used to do it when downloading a 
file.   

 

 

 

Figure 2: A task that privileged status bar representation 

They perceived the comparison of quantities using proportional relationships. Percentage allowed students 
to see the multiplicative relation between the minutes taken to save the complete program and the amount 
of program saved shown by the status bar. “The whole program took forty minutes to save because if a 
half is twenty, the double is forty” as Mafalda’s group explained. This use of splitting/doubling procedure 
seemed to make sense to the others as it expressed the multiplicative relation between half and double, 
keeping the ratio constant.  

The students were able to see that saving half of the program would took as long as the remaining half, 
although not all students have yet clearly perceived it as a ratio. Status bar seems to encourage the 
modeling process during the teaching experiment while supporting intuitive ratio understanding, involving 
quantities of a standard unit.  



Thereafter, the proportional judgments established with the status bar were mobilized to work percentage 
using another representation – the ratio table (Figure 3).  

 

 

Figure 3: Clara’s group resolution using a ratio table 

This representation was used to make comparisons between entities in multiplicative terms, applying to 
multiples of 10%, as reasoning strategies. Percentage benchmarks allowed to foster numerical relations 
highlighting the relationship between time and the amount of program saved. Students could realize multiple 
numerical strategies through collaborative engagement. 

Heitor:  The process was always four in four minutes. 

Simão:  10% are 4, is always times 4. 

Mafalda: The all process took ten times four minutes. 

Teacher: The whole process of saving the program took ten times four minutes… 

Hélio: We could also look at 36 minutes and see which would be the number that could give 
40.   

The ratio table seemed to be powerful in the modeling process as it supported different reasoning strategies 
suggested by percentage, such as halving, doubling, multiplying by 4, showing why the relationship between 
quantities is multiplicative.  

Some less stereotyped representations came up in classroom from other contexts. For example, during a 
specific group project work about dogs, the representation of a dog food bag was used to encourage the 
modeling process as it becomes a model of acting in a real meaningful situation. In this task, the 
representation of the dog food bag was tailored to consider its fullness (100%) that is 20kg as the top of 
the bag.  To this iconic representation, two vertical number lines were added to foster numerical relations 
allowing to relate weight with the percentage of the amount of food in the bag. In this way, the dual set of 
numbers involved in percentage comparisons become explicit and can be used for calculations. 

 

 

 

 

Figure 4: Carolina’s group resolution using the bag representation 

All groups found out immediately that 50% of the weight of the bag was 10 kilograms, as shown in the 
example on figure 4. When students had to compute other amounts of food, they consider percentage as a 
relative quantity according to the attained unit and applied to multiplicative reasoning strategies. Some 
divided using halving strategy, and reconstructed the unit, considering the unit the bag weight in each 
moment (Figure 5).  

  



 

 

 

Figure 5: Mafalda’s group resolution using the bag representation 

Students understood that the relationship between the quantities in both number lines kept constant and 
perceived that they vary together, even though they have different magnitudes, interpreting ratio 
subconstruct. In this modeling process, the food bag representation became a model that supported 
reasoning strategies and proportional relationships.  

Later on, this modeling process was extended to the double number line. Double number line fostered the 
emergence of numerical relations, as it allowed ordering and establishing equivalences, invoking benchmark 
percentage values in a measure context (Figure 6).  

 

 

 

 

Figure 6: Dina’s group resolution using the double number line  

The double number line became a model of a measurement situation in which students supported their 
reasoning strategies (Figure 7). They established comparative relations between equivalent representations, 
as percentage and measure of an amount (e.g. 9% and 9/100). For this, a key aspect is the unit 
identification. Considering one as the unit, the decimal numbers representation emerged when a number 
was located. Together with percentage, this allowed students to invoke whole number’s knowledge, 
establishing numerical relations between each decimal number and 
its position. 

 

 

Figure 7: Whole-class resolution using the double number line  

Two-place decimals were used as a symbolic representation by students to express an equivalent 
percentage of “fullness” of the unit, when the unit is 1, applying to establish numerical relations. 

Simão – It’s not enough to make up one meter… 

Clara – …You have zero comma ninety-one meters. 

Teacher – Then, this is Clara’s suggestion [writes 0,91 at the number line] 

Clara – Because it’s not enough to make up one meter, so it´s zero meters and then we write ninety-one 
centimeters.   



In this situation, the decimal representation was convened to identify a quantity less than one in a 
measurement context, fostering a modeling process as the number line became a model for a more formal 
reasoning. 

Final remarks  
As data analysis highlight, percentage enables an approach to multiplicative situations, describing 
comparisons in multiple ways and exploring relationships, enhancing an introductory step to rational 
numbers conceptual understanding (Lamon, 2007; NCTM, 2014; Parker & Leinhardt, 1995). The context 
within percentage appears in these tasks and suggests it can be linked with ratio and measure subconstructs 
of rational numbers, which are important although less common in these years of elementary school (Parker 
& Leinhardt, 1995).  The meaning of percentage, supported by the use of number line in the dog food bag 
representation allowed to show the relation between the four numbers that make up the percent proportion, 
in an intuitive way. The focus on measurement revealed a growing flexibility of the reasoning strategies and 
provided opportunities for students to build a meaningful connection between percentage and decimal 
numbers notation. Ratio situations allow to recognize the importance of 100 as a privileged base and to 
develop sensitivity for the comparative uses of percentage, fostering numerical relations. Representations 
associated with percentage, drawn from students’ real-life experience, like the mobile phone battery or the 
status bar, revealed to be essential. Students used them to make sense of problem situations and to solve 
them. Gradually, those representations became models as they encouraged students’ reasoning strategies 
and promote rational numbers’ conceptual understanding. In this emergent modeling process, as called by 
Gravemeijer (2002), percentage had a key role. It contributed to disclosure the multiplicative nature of 
rational numbers, connecting prior whole numbers’ knowledge with intuitive understandings regarding 
relative proportion (Moss & Case, 1999).       
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The topic of teaching mathematics in an inclusive classroom provides – by the increased 
heterogeneity range – a big challenge between individualizing and mutual learning. (How) Can we 
make sure that all children work and progress on their individual level but at the same time learn 
with and from each other? Based on this question the aims of this project are the development of, 
and the research on a teaching-learning arrangement for the inclusive mathematics classroom to 
foster flexible mental calculation. The approach is a Design Research approach to face research 
interests on the level of design (consideration for use) and on the level of research (quest for 
fundamental understanding). This contribution focuses on the research level: first insights about 
mutual learning processes of elementary students with and without cognitive learning disabilities 
concerning flexible mental calculation will be presented. 

Keywords: Inclusive education, heterogeneity, cooperative learning, flexible mental calculation. 

Theoretical framework 
Developing flexible mental calculation has been considered as a ‘central goal’ for more than a 
decade, not only for middle and high achievers, but also for less advanced children. However, 
empirical insights about teaching and learning processes of flexible mental calculation in inclusive 
classrooms do not exist. Although, inclusive education is a current international discussion, based 
on the UN-Convention on the ‘Rights of Persons with Disabilities’. Supporting everyone’s learning 
process and at the same time encourage cooperative learning with and from each other are the two 
central matters of inclusive education, which imply more than sharing a room. But, in school 
practice, teachers emphasize the difficulty of learning with and from each other in arithmetic (Korff, 
2015). Building on the two matters of inclusive education, this study focuses on the goal-
differentiated fostering of flexible mental calculation in an inclusive classroom during Mutual 
Learning takes place.  

The goal-differentiated fostering of flexible mental calculation in an inclusive classroom  

Developing flexible mental calculation is not only a central goal but also a ‘critical point’ in 
everyone’s learning process (Heinze, Star, & Verschaffel, 2009), especially for students with 
cognitive learning disabilities. In this process, error-prone counting strategies should be replaced 
with more beneficial calculating strategies. Current literature offers different definitions, which 
commonly include the two aspects of ‘flexibility’ and ‘adaptivity’. In most of the cases flexibility is 
understood as the ability to switch between different solution tools (Rathgeb-Schnierer & Green, 
2013), while adaptivity is more emphasizing on the selection of the most appropriate strategy. In 
this project ‘adaptivity’ is related to the recognision of problem characteristics, number patterns and 
numerical relations. Consequently, flexible mental calculating is a situation-dependent and 
individual response to specific number and task characteristics and the corresponding construction 
of a solution process using strategic tools (ibid.).  



The fostering of flexible mental calculation competences is influenced by the outlined general 
assumptions. If flexible calculation is related to number and task characteristics and relations, 
activities have to be chosen, which support children to focus on these. Thus, the crucial aim is to 
develop the competence to recognize problem characteristics, number patterns and numerical 
relations, and to use them for solving problems. Rechtsteiner-Merz and Rathgeb-Schnierer (2016) 
call this “Zahlenblick” and found out that it is a good vehicle for developing flexible calculation. 

Today it is proven that also less advanced students can develop flexible mental calculation 
(Verschaffel, Luwel, Torbeyns, & van Dooren, 2009) and that the focus on developing 
“Zahlenblick” especially supports less advanced students (Rechtsteiner-Merz & Rathgeb-Schnierer, 
2016). Schröder (2007) points out their problems in the usage of flexible strategies: Even if they 
know strategies, they very often cannot adapt and use those. Reflecting on characteristics and 
relations is especially essential for children with cognitive learning disabilities (ibid.) and at the 
same time supportive and preventive for everyone’s learning process, because generally all children 
show little task-adequate action (Selter, 2000). Further, the content provides opportunities for high-
performing students to establish mathematical structures and to generalize. Consequently, flexible 
mental calculating meets the requirements for a common content for an inclusive classroom to 
encounter the diversity of abilities and skills and to make goal-differentiated learning possible. 

Mutual Learning in an inclusive mathematics classroom 

The expression of Mutual Learning as it is used here combines the two central matters of inclusive 
education, which were mentioned above: individualizing as well as interacting and cooperating. 
Mutual Learning means to consciously induce learning situations as often as possible in which all 
children work and learn at a common content, in cooperation with each other, on their individual 
level, and by use of their current individual skills (Feuser, 1997). This definition is based on a wide 
sense of inclusion, acknowledging the diversity of all children and counteracting all forms of 
discrimination and special learning needs. Nonetheless this research project focuses on learning and 
interaction processes of children with and without cognitive learning disabilities. (This distinction 
is not used to label deficits, but rather with regard to make research and communication possible.) 

In consideration of the two central matters of individualized learning and at the same time learning 
with and from each other, first supportive principles for successful Mutual Learning can be derived: 
‘content variability’, ‘goal-differentiated learning process -‘, and ‘interaction orientation’. As 
already outlined, the content of flexible mental calculation meets the requirements of the first two. 
Having regard to the principle of ‘interaction orientation’, the construction of mathematical 
knowledge is understood as an active, social and explorative process; also for children with 
cognitive learning disabilities as today several studies show. Gaidoschik (2009) points out, children 
with problems need more time and more support to learn arithmetic but they don't need something 
different. The exploration, understanding and use of arithmetical patterns and particularly the 
communication about number and task characteristics and strategic tools is especially important for 
children with cognitive learning disabilities (ibid.; Schröder, 2007). In social-communicative 
processes, individual mathematical learning develops through ‘irritations’, ‘contradictions’ and ‘re-
interpretations’ on the basis of individual interpretation processes (e.g. Steinbring, 2005). Therefore, 
this very individual processes of learning flexible mental calculation in the context of interaction 
processes, needs to be fostered on different cognitive levels for successful Mutual Learning.  



Research question and methodological design 
For this purpose, it seems important to research when and how successful Mutual Learning occurs 
and which support means can be reconstructed. Therefore, it is necessary to reconstruct the 
individual learning processes concerning flexible mental calculation as well as the interaction 
processes to be able to evaluate weather Mutual Learning with its two central matters took place.  

To meet the aspiration of designing a teaching-learning-arrangement to foster flexible mental 
calculation on the one side, and to investigate learning and interaction processes on the other, a 
Design Research approach is used (Prediger & Zwetzschler, 2013). This requires research questions 
on the level of design and research. Nevertheless, this contribution focuses only on the level of 
research and the investigation of individual learning processes. The following question will be 
addressed: How do individual learning processes of elementary students with and without cognitive 
learning disabilities concerning flexible mental calculation develop during the cooperative-
interactive phase of Mutual Learning?  

Iterative design research cycles as an approach for answering the question 

To investigate this, a teaching-learning arrangement was designed, tested and refined by conducting 
design experiments in three iterative cycles. Within each cycle the individual learning processes as 
well as the interaction processes were reconstructed to be able to evaluate weather Mutual Learning 
took place. To, in a next step, reconstruct support means for successful Mutual Learning.  

Theoretical sample: The design experiments were conducted in classes two and three (7-9 years 
old), at three different German primary schools. Laboratory situations with couples of learners 
allowed to learn more about their thinking, their individual learning and interaction processes. Each 
design experiment consisted of three phases (Figure 1) and took place in a pair setting with one 
child tested and “termed” with and one child without learning disabilities. The participants were 
selected with the help of the class teacher and the special needs teacher in order to find pairs of 
children who like each other to have a positive basis of communication. In the design experiments, 
the learners processed the learning activities largely by themselves. The researcher, on the one 
hand, acts as a teacher, in order to give the learner a stimulus or help, and on the other hand as a 
researcher, who wishes to learn more about the thinking processes and the ways of proceeding by 
means of observation and targeted inquiry. 

 
Figure 1: The structure of a design experiment 

The teaching-learning arrangement - "We explore neighboring sums": After a mutual introduction 
(Figure 1), the children individually explore neighboring numbers on a 20frame (I-/individual-
phase). The focus on neighbors – which are next to, under or crosswise to each other – and their 
sums enables them to discover number and problem characteristics and relations, as well as to 
develop mental calculating strategies based on individual abilities, arithmetic-, and context-
characteristics. In the following, two children – one with and one without learning disabilities – 



work together (You-/cooperative-interactive-phase), which enables them to communicate, use, 
reflect, refine, and/or improve their discoveries and strategic tools. In this way, singular accesses 
and comprehensions can evolve, through communicative exchange, to new comprehension and 
understanding. Due to the focus on neighboring sums the arithmetical patterns stay the same even in 
higher number ranges. This makes communication possible, even though some children already 
transfer their discoveries to neighbors on the 100frame or generalize the mathematical structures.  

In order to reconstruct and categorize the development of goal-differentiate heterogeneous learning 
processes concerning flexible mental calculation, a model (Figure 2) has been drafted on the basis 
of previous research (Rathgeb-Schnierer & Green, 2013; Rechtsteiner-Merz, 2013). As mentioned 
before, a ‘process of solution’ is a situation-dependent and individual response to specific ‘cognitive 
elements’ (Rathgeb-Schnierer & Green, 354) (e.g. ‘characteristics and relations of numbers and 
problems’ or ‘automatized procedures’) and the corresponding construction of the actual solution 
process using ‘tools for solution’ (Rathgeb-Schnierer & Green, 2013, 355).  In this sense, ‘cognitive 
elements’ are individual experiences, which comprise background-knowledge and -expertise for the 
individual process of solution. Referring to the theoretical background, the grey fields in Figure 2 
are predictors of flexible calculation. Those will be fostered on different cognitive levels as an aim 
of the designed teaching- learning arrangement. 

 
Figure 2: A model to reconstruct children’s learning paths (cf. section ‘Selected Results’) 

Each field of this model is described and defined by certain characteristics in order to group 
children’s learning paths (for more information see Korten, i.V.). 

Two analytical perspectives for answering the question and for developing local theories 

The process of generating local theories gets content-specific theoretically and empirically justified. 
The data was collected in form of transcribed videos and gets analysed from two perspectives: 1) 
An epistemological perspective, to learn about individual learning processes on different cognitive 
levels in terms of the common content. 2) An interactionist perspective, to learn about the 
interactive structures during the cooperative-interactive phase of student with and without learning 
disabilities, and how these interaction processes influence the learning processes.  

In order to address the two central matters of successful Mutual Learning, both perspectives are 
essential to evaluate if the children progress on their individual level and at the same time learn with 
and from each other. The interpretation of statements and actions, reconstructs interactive 
knowledge construction. Accordingly, an Interpretatively Epistemological Analysis Approach of 
Interactive Knowledge Construction (Krummheuer & Naujok, 1999; Steinbring, 2005) gets used. 



At the same time this reveals information for the analysis of the teaching-learning arrangement and 
gives answers weather Mutual Learning in the sense of inclusion is supported or not. Thus, the 
empirical findings allow elaborating and enhancing the teaching-learning arrangement, as well as 
local theory building about mutual learning processes. Here the focus will be on the latter. 

Selected results  
In this section, the described analysis approach is illustrated with a short exemplary cooperative-
interactive phase. Afterwards, selected general results concerning the research question addressed in 
this contribution will be presented. In the exemplary situation, a child with learning disabilities (S1) 
and a child with average mathematical skills (S2) work together. They explore crosswise 
neighboring numbers and their sums. Figure 3 shows an example. 

      
Figure 3: Crosswise neighboring numbers   

S1: We need [the sum] 24 in between… 23 (points on 7+16=23) #, 24 (points between 
7+16=23 and 7+18=25), 25 (points on 7+18=25)  

S2:  # No, this is… No... Here is the same. (points on 4+13=17) Also always one. 
(points on 3+12=15) See, there is 16 missing… here 14 is missing. (points 
between 2+11=13 and 2+13=15) Here 18. (points between 4+13=17 und 
4+15=19) Oh here even (points between 5+14=19 und 6+17=23) two … no, 3… 

 
 
 
 
 

 
 
 

S1:  What? Now I am confused. 

S2: Why? Ah! See, … 

Interactionist perspective: S1 assumes that the sum 24 is missing and questions the completeness of 
the sums. This ‘incorrect assumption’ (key impulse) leads S2 to exemplify relations between the 
sums. Her empirical argumentation leads to the hypothesis that the sum 24 does not exist. Both 
participants communicate with each other about the common content, according to individual 
assets. A ‘balanced cooperation’, in which both are involved and utterances are linked can be 
observed. Regarding to Naujok (2000) they are ‘collaborating’ with the focus on the same topic. 
Additionally, both develop on their individual level as the reconstruction of learning processes 
reveals: 

Epistemological perspective: The children respond to the same ‘incorrect assumption’ (Figure 4, 
sign/symbol) in different ways by referring to number relations on the basis of their individual 
cognitive abilities. Figure 4 and 5 show the progress of the scene from an epistemological 



perspective: S1 argues with counting and refers to the number word series (ordinal). S2 uses 
empirical arguments to prove that the sum of 24 does not exist by referring to arithmetical patterns 
(relational). Due to S1´s incorrect assumption, S2 discovers, exemplifies and later even generalizes 
number relations between the addition problems. S1, like this situation shows, is able to see and to 
question number patterns. This focus of attention on number characteristics and relations only 
started due to the interaction with S2. In the following, this situation leads S2 even to explore, 
explain and generalize the constancy of two sums (a+b)=(a-10)+(b+10) (Figure 5). From this point 
on, as a reaction on the interactive situation, she is not only referring to numbers characteristics and 
relations anymore but to problem relations, which she is using later to solve new problems. 

             
Figure 4 & 5: Analysis of interactive learning processes (Steinbring, 2005) 

The example shows how the individual learning processes developed during the cooperative-
interactive phase of Mutual Learning. Both progressed according to their individual levels, triggered 
by a key impulse in the interaction, in this case an ‘incorrect assumption’. These key impulses – 
here called ‘productive moments’ – seem to be opportunities for fruitful Mutual Learning (Korten, 
2017). Previously to the cooperative-interactive phase, S1 exclusively refers to ‘automatized 
procedures’ and used ‘counting’ as her ‘tool for solution’ with the help of counters as 
‘visualisations’ (cf. Figure 2, red dots). She only relied on the procedure of counting, which seems 
to be like a “dead-end road” for developing flexibility in calculating (Rechtsteiner-Merz & 
Rathgeb-Schnierer, 2016, p. 359). But due to the impulses resulting from the interactive-cooperative 
phase she starts to look at number characteristics and relations. She is able to sort the addition 
problems according to characteristics and puts them into relation (cf. Figure 2, red cross). This 
recognition of number patterns and numerical relations is after Rechtsteiner-Merz and Rathgeb-
Schnierer (2016) an important skill to overcome counting on the way to flexible calculation. S2 was 
also stimulated by the exchange with S1: She was a flexible calculator from the start on. She used 
‘basic facts’ and adequate ‘strategic means’ (e.g. decomposing and composing, using decade 
analogies, deriving solutions from similar problems such as 2 more and 20 more) by recognizing 
relations (cf.  Figure 2, blue dots). Due to the interaction with S1 she was forced to explain and 
argue, which led her to discover new relations (constancy of two sums), which she used to refine her 
‘strategic means’ later (cf. Figure 2, blue cross). It can be concluded that it was rewarding for both 
children to work in heterogeneous pairs in an arithmetic classroom. A study of Häsel-Weide (2016) 
about replacing persistent counting strategies with cooperative learning, supports this finding. 

These were typical learning and interaction processes, which took place in all design experiments. 
In regard to the research question, which is addressed here, five types of individual learning paths 



and their development during the cooperative-interactive phase of Mutual Learning could be 
reconstructed: 1) Children, who did not progress during the cooperative-interactive phase and used 
none or pre-existing individual insights into number/task characteristics and relations. 2) Children, 
who gained new insights into number/task characteristics and relations due to the task´s context. 3) 
Children, who gained new insights into number/task characteristics and relations due to impulses in 
the cooperative-interactive phase (e.g. S1). 4) Children, who refined their strategic means by taking 
advantage of new insights into number/task characteristics and relations due to the task´s context. 5) 
Children, who refined their strategic means by reflecting, inquiring and evolving insights into 
number/task characteristics and relations due to impulses in the cooperative-interactive phase (e.g. 
S2). In the cases 2)–5) changes could be identified because new insides were gained or strategic 
means were refined. Concluding, a development of learning process concerning flexible mental 
calculation was reconstructed for these situations. With respect to the title of this article and the 
definition given at the beginning, successful Mutual Learning took place and flexible mental 
calculation competencies were fostered on different cognitive levels in this inclusive situation. 

Outlook 
All research cycles demonstrated regularity in the appearance of the 'productive moments' in the 
interaction, which trigger individual learning as shown in the example. These moments mainly 
appeared during a ‘balanced cooperation’. Generally, a distinction can be made between ‘direct-
didactical, indirect-didactical and interactive productive moments’ (Korten, 2017). In the future, 
research questions on the level of design will be addressed in order to reconstruct support means for 
successful Mutual Learning. It will be investigated in more detail how the developed teaching-
learning-arrangement can specifically foster these ‘balanced cooperation’ and the 'productive 
moments'. First analyses show that beneficial and meaningful interaction must be specifically 
encouraged by an emotional benefit for all participants, which must be created from the outside. 
This, for example, can be a goal, which they can only reach together and functions as an ‘extrinsic 
positive dependence’ (Korten, i.V.). This idea takes up the principle of ‘positive dependency’ from 
the concept of ‘cooperative learning’ (e.g. Johnson, Johnson, & Holubec, 1994) and advances it for 
the conditions of an inclusive classroom. Without this ‘extrinsic positive dependence’ a ‘balanced 
cooperation’ with ‘productive moments’ seems to be impossible in an inclusive setting. With this 
Topic-specific Design Research Approach the two interests of the goal-differentiated fostering of 
flexible mental calculation in an inclusive classroom and the general understanding and supporting 
of Mutual Learning processes could be integrated and first local findings were presented.  
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In this paper, we present analyses of popular grade one textbooks, one from each of England and 
Sweden. Focused on Foundational Number Sense, we examine how each book’s tasks facilitate 
children’s learning of those number-related competences that require instruction and which underpin 
later mathematical learning. Analyses identified both similarities and differences. Similarities lay in 
books’ extensive opportunities for children to recognise and write numbers and undertake simple 
arithmetical operations. However, neither offered more than a few tasks related to estimation or 
simple number patterns. Differences lay in the Swedish book’s greater emphases on different 
representations of number, quantity discrimination and relating numbers to quantity, highlighting 
conceptual emphases on number. The English book offers substantially more opportunity for students 
to count systematically, highlighting procedural emphases. 

Keywords: Foundational number sense, mathematics textbooks, England, Sweden, grade one. 

Introduction 
In this paper we offer a comparative analysis of how commonly used textbooks, one from each of 
England and Sweden, enable year one pupils’ acquisition of foundational number sense (FoNS). 
FoNS, which has been discussed in earlier CERME papers (Back, Sayers & Andrews, 2013; 
Andrews, Sayers & Marschall, 2015; Sayers & Andrews, 2015), comprises those number-related 
competences that underpin later mathematical learning, both in the short and the long term, and 
require instruction. Derived from a systematic review of the literature (Andrews & Sayers, 2015), 
FoNS comprises the eight broad categories shown in Table 1. Focused on the FoNS-related 
opportunities initiated during whole class teaching, the framework has structured analyses of grade 
one lessons in various European countries (Back et al., 2013; Andrews et al., 2015; Sayers, Andrews 
& Björklund Boistrup, 2016) and identified didactical emphases commensurate with earlier research 
undertaken in the same countries.  

Until now, we have not examined the framework’s effectiveness with respect to identifying FoNS-
related opportunities in textbooks. This is a significant omission, particularly as both textbook 
production and deployment are unregulated in England and Sweden. This significance is heightened 
by uncertainty with respect to pre-school students’ likely FoNS-related experiences. On the one hand, 
the English pre-school curriculum specifies that children should “count reliably with numbers from 
1 to 20, place them in order and say which number is one more or one less than a given number. 
Using quantities and objects, they add and subtract two single-digit numbers and count on or back to 
find the answer” (Department for Education, 2014, p.11). On the other hand, the Swedish pre-school 
curriculum, which specifies no such detail, expects children to develop an understanding of the basic 
properties of quantity, number and number concepts (Skolverket, 2016). Thus, while there are no 
explicit FoNS-related expectations in the Swedish pre-school curriculum, a number, but not all, are 
addressed in the English. 



FoNS Characteristic Learners are encouraged to 

Number recognition Identify, name and write particular number symbol  

Systematic counting Count systematically, forwards and backwards, from arbitrary starting points 

Number and quantity Understand the one-to-one correspondence between number and quantity 

Quantity discrimination Compare magnitudes and deploy language like ‘bigger than’ or ‘smaller than’ 

Different 
representations 

Recognise and make connections between different representations of number 

Estimation Estimate, whether it be the size of a set or an object 

Simple arithmetic Perform simple addition and subtraction operations 

Number patterns Recognise and extend number patterns, identify a missing number 

Table 1: Summaries of the eight FoNS categories 

Of particular interest to this paper is Bierhoff’s (1996) comparison of the number-related 
opportunities offered in commonly used English, German and Swiss textbooks. Focused on the 
transition from “working with numbers up to 20… to working with two-digit numbers” (p. 143), she 
found that English textbooks were the least coherently structured. Also, students were expected to 
calculate with large numbers before consolidating their understanding of the integers up to 20, a 
situation made problematic by the English overemphasis on place value. Turning more explicitly to 
studies focused solely on English textbooks, Newton and Newton (2007), in an evaluation of the 
professional support school textbooks might afford primary teachers, examined eighteen textbooks 
written for use with English 7-11 students. They found few tasks that would facilitate mathematical 
reasoning, being primarily focused on skills acquisition.  

With respect to Sweden, as in England, the production of textbooks has been unregulated since 1991 
(Ahl, 2016) and several recent studies have examined Swedish mathematics textbooks against various 
criteria. For example, at the university level, Lithner (2004) found tasks typically promoting low 
levels of imitative reasoning. At the upper secondary, or post-compulsory, level Nordström and 
Löfwall (2005) analysed the extent to which students were offered opportunities to engage with proof 
in two commonly used sets of textbooks. They found little evidence of proof in any of their examined 
topics, although there were many implicit opportunities in many of the tasks analysed. In similar vein, 
Lundberg (2011) compared three of the most commonly used textbooks from the perspective of 
proportional reasoning and found not only that direct proportion dominated but also that while both 
dynamic and static notions of proportion were present in all three textbooks, justifications were rare. 
With respect to the final years of compulsory school, Ahl (2016) examined the proportional reasoning 
in two popular textbooks. She found that “the impact of research findings on the representation of 
proportional reasoning is scant” in both (Ahl, 2016, p. 198) and that the books failed to encourage 
learners to understand the distinction between additive and multiplicative situations. In short, the 
limited available evidence indicates that textbooks written for older Swedish students present few 
opportunities for them to make mathematical connections or engage in mathematical reasoning. 



However, little is yet known about the ways in which textbooks written for young children present 
mathematical ideas. 

This study is a first attempt to evaluate the FoNS framework as a tool for analysing grade one 
textbooks. Thus, while it is not an explicit attempt to evaluate the content of the books themselves, it 
is an important first comparison of textbooks from the two countries. In making this comparison, we 
acknowledge Rezat’s (2006, p. 482) position that the mathematics textbook “can be regarded as an 
artefact in the broad sense of the term. It is historically developed, culturally formed, produced for 
certain ends and used with particular intentions”. In other words, comparative analyses of this nature 
highlight well cultural differences in expected learning outcomes. 

Methods 
Two popular textbooks, one from England and one from Sweden, were identified for analytical 
purposes. In focusing on popular textbooks, we believed we would gain insight into not only how a 
reasonably high proportion of children in both countries experiences FoNS but also what teachers 
and schools value in their choice of textbooks. Before formal analyses were undertaken, all four 
authors met for two days to discuss and evaluate a range of textbook tasks in order to operationalise 
the FoNS categories. Drawing on the studies of Li (2000) and others, only those tasks explicitly 
addressed to the student were analysed. For example, both of the examined textbooks included 
instructions or suggested activities that teachers might use. However, these were not analysed as they 
did not explicitly address the learner and typically included too little detail to show how they might 
have been used with children. For similar reasons, since tasks included in teacher guides were not 
focused directly on students, teacher guides were not included in the analyses. After this first pass, 
each of the first two authors took responsibility for analyses of the Swedish and English textbooks 
respectively. In these roles, each was supported by the third and fourth authors with respect to 
ambiguous or difficult to interpret tasks. In addition, random exercises from each textbook were also 
coded by both the third and fourth authors as part of a moderation process.  

Operationalising the codes 

 
Figure 1: Additive tasks from the Swedish and English textbooks respectively 

Figure 1 shows one example from each of the textbooks, Swedish on the left and English on the right. 
In one of several similar tasks in one exercise, Swedish students were asked to “compare the number 
of dots” and then “write either = or ≠” in the box. This particular task, which occurred before the 
introduction of addition, was thought to encourage completion by counting and coded for systematic 
counting. The expectation that students would address issues of equality or inequality led to its also 
being coded for quantity discrimination. In addition, the dot patterns not only offered different 



representations of number but allowed for subitising and an awareness of the relationship between 
number and quantity. The goal of the English task, based on a coat hanger with ten pegs of which 
some of which had been covered with a cloth, was to identify the number of hidden pegs. The way in 
which the task was presented explicitly involved number recognition, while its focus was on simple 
arithmetic. In addition, its allusion to cardinality led to its being coded for awareness of the 
relationship between number and quantity. In short, many tasks attracted multiple codes. 

 
Figure 2: Number patterns tasks from the Swedish and English textbooks respectively 

Some FoNS categories, as shown in Table 3, were rare in both textbooks. In this respect, Figure 2 
shows tasks, one from each textbook, with explicit foci on number patterns. The Swedish task on the 
left was based on a section of a hundred square, with students being expected to complete the missing 
values. In addition to being coded for number patterns, the explicit focus of the task, it was also coded 
for systematic counting, number recognition and, implicitly, simple arithmetical operations. These 
decisions drew on the facts that the task required students to count on, recognise numbers and, in 
moving from one row to another, add or subtract ten. The English task on the right was one of several 
based around a section of a multiplication table torn from a longer strip of paper that invited students 
to count on in fives and enter the missing numbers. In addition to being coded for number patterns, 
these tasks were also coded for number recognition, systematic counting and simple arithmetical 
operations.  

Results 
Below we present two analyses offering similar but importantly different perspectives on the data. 
The first is based on frequencies and the second on proportions. 

A frequency analysis 

The figures of Table 2 show the distribution of the eight FoNS categories across the two textbooks, 
one from England and one from Sweden. The first thing to notice, acknowledging that both books are 
intended to provide the complete learning experience for year one students, is that the Swedish book 
offered 444 tasks appropriate for FoNS coding, while the English only 257. That is, while both figures 
represented similar proportions of the totality of tasks within their respective books, the Swedish 
textbook comprised 187 (73%) more FoNS-related tasks than the English. Table 2 also shows that of 
the eight FoNS categories, number recognition was the most frequently observed, with 532 out of 
691 tasks providing opportunities for learners to recognise, write and say numbers. In similar vein, 
simple arithmetical operations were common occurrences throughout both books. Neither of these 
results, we suggest, is surprising as arithmetical competence is an unequivocal curricular goal, which 



relies extensively on number recognition. The least commonly observed FoNS category was 
estimation, with just 18 occurrences. 

  
Category present in task (444 Swedish tasks and 257 English tasks) 

 
  No Yes   No Yes   No Yes  
 Number recognition Systematic counting Number and quantity 

England 29 228   145 112   194 63  
Sweden 130 304   354 80   259 175  

  159 532   499 192   453 238  

  χ2 = 31.8 (A)   χ2 = 50.9 (A)   χ2 = 17.9 (A)  
 Quantity discrimination Different representations  Estimation  

England 237 20   202 55   250 7  
Sweden 370 64   181 253   423 11  

  607 84   383 308   672 18  

  χ2 = 7.33 (B)   χ2 = 88.9 (A)   χ2 = 0.03 (C)  
 Simple arithmetic Number patterns    

 
England 154 103   232 25     

 
Sweden 232 202   406 28     

 

  386 305   638 53     
 

  χ2 = 2.74 (C)   χ2 = 2.45 (C)     
 

Chi squares marked A yielded p<0.0005, B yielded p<0.01 and C were not significant 

Table 2: Frequencies and chi square tests for each category for each country.  

When data are compared, some interesting results emerge. On the one hand the English books 
comprised significantly higher proportions of tasks involving number recognition (χ2=31.8, 
p<0.0005) and systematic counting (χ2=50.9, p<0.0005) than the Swedish. On the other hand, the 
Swedish books offered significantly higher proportions of tasks involving opportunities for students 
to relate numbers to quantity (χ2=17.9, p<0.0005), engage in quantity discrimination (χ2=7.33, 
p=0.007) and experience different representations of number (χ2=88.9, p<0.0005). Proportionally, the 
figures of Table 2 show no significant differences with respect to estimation, simple arithmetical 
operations or number patterns. These results take us to the second step of the analysis. 

A proportional analysis 

A second perspective on the data can be seen in Table 3. Firstly, several FoNS categories were found 
in similar proportions in both textbooks. These included relatively high occurrences of simple 
arithmetical operations, implicated in just under half of all tasks in both textbooks. In smaller 
proportions, around a quarter of all tasks in both books, were opportunities for students to relate 
number to quantities. In very small proportions in both books, were found number patterns and 
estimation. Secondly, several categories distinguished the expectations found in one book from the 
other. On the one hand, the English textbook comprised a significantly higher percentage of number 
recognition tasks (89%) than the Swedish (70%) (t=6.31, p<0.0005). Also, almost half of all English 
tasks involved systematic counting in comparison with less than a fifth in the Swedish (t=6.95, 
p<0.0005). Alternatively, the Swedish textbook comprised nearly three times as many tasks involving 
different representations of number as the English (t=10.57, p<0.0005), twice as many tasks focused 



on quantity discrimination (t=2.92, p=0.004) and almost twice as many tasks relating numbers to 
quantity (t=4.42, p<0.0005). Finally, Table 3 shows that the percentage of tasks coded for estimation, 
simple arithmetical operations and number patterns were comparable in both books, confirming that 
the two analyses, one essentially parametric and the other non-parametric, yielded equivalent results. 

 E% S% t p 
Number recognition 89 70 6.31 0.000 
Systematic counting 44 18 6.95 0.000 

Relating number to quantity 25 40 -4.42 0.000 
Quantity discrimination 8 15 -2.92 0.004 

Different representations 21 58 -10.57 0.000 
Estimation 3 3 0.16 0.874 

Simple arithmetical operations 40 47 -1.66 0.097 
Number patterns 10 6 1.49 0.136 

Table 3: Percentage of all tasks coded for each FoNS category along with t-tests 

Discussion 
In this paper our objective was to examine the efficacy of the FoNS framework as tool for evaluating 
the learning opportunities embedded in commonly used textbooks and to undertake a comparative 
analysis to determine the framework’s sensitivity to different cultural expectations. In both cases, we 
believe the study to have been successful. For example, with respect to the identification of the 
different FoNS categories, very few tasks were identified with an emphasis on estimation, a finding 
resonating closely with earlier classroom observations showing no evidence of teachers in England, 
Hungary, Poland, Russia or Sweden emphasising it in their teaching (Back et al., 2013; Andrews et 
al., 2015; Sayers et al., 2016). This, it seems to us, is an issue of some concern and the basis of further 
systematic inquiry. Indeed, acknowledging that estimation skills are important indicators of later 
mathematical competence (Booth & Sigler, 2006), that both older students (Sowder & Wheeler, 1989) 
and many otherwise competent adults (Hanson & Hogan, 2000) are uncomfortable with estimation 
tasks, it seems sensible to ask; why does estimation play such a lowly role in the classroom practice 
and textbooks of these two countries? This, we argue, is particularly pertinent in light of evidence 
from other countries that teachers see little relevance in teaching estimation (Alajmi, 2009). 
Furthermore, the similar frequencies of other FoNS categories are unsurprising. For example, it is 
reasonable to assume that the relative lack, in both textbooks, of tasks focused on number patterns 
may be explained by the fact that most year one curricular goals emphasise learners’ number 
recognition, relating number to quantity and the beginnings of arithmetic. In other words, while 
number patterns are important in preparing students for later mathematical learning (Lembke & 
Foegen, 2009), they may be subordinated in children’s early number experiences to more pressing 
developmental needs. 

With respect to cultural sensitivity the data yielded several hitherto uncovered insights. For example, 
on the one hand, the higher proportions of Swedish tasks coded for different representations of 
number, relating number to quantity and quantity discrimination allude to a book focused on 
conceptual understanding. On the other hand, the apparent lack of a conceptual emphasis in the 
English book finds further support in the high proportions of tasks coded for systematic counting and 
extremely high proportions of tasks addressing number recognition, which tend to suggest a book 



focused on the development of procedural knowledge commensurate with the low levels of 
mathematical challenge found in earlier studies of English textbooks (Bierhoff, 1999; Haggarty & 
Pepin, 2002; Newton & Newton, 2007). However, the conceptual emphasis found in the Swedish 
textbooks seemed not to match the generally negative findings of earlier Swedish studies (Ahl, 2016; 
Lundberg, 2011; Nordström & Löfwall, 2005). In this respect, it is not improbable that these 
differences may be because these earlier studies addressed textbooks for students in grades 7 and 
upward rather than on those for young children. Finally, drawing on Bernstein’s (1990) notion of 
curricular framing, it is interesting to note that the weakly framed Swedish pre-school curriculum 
seems to have prompted a conceptually focused textbook, while the strongly framed English pre-
school curriculum seems to have precipitated a procedurally focused textbook. Such matters allude 
to research beyond the scope of this paper but which will form a key aspect of any further analyses 
we make. 
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Structure sense can be mobilized by pupils to compare and to transform arithmetical expressions, 
however sometimes it can lead to mathematical inconsistency that pupils might be not aware of.  This 
paper provides evidence of this type of phenomenon. Through the analysis of an interview with a third 
grader, it is shown that the development of structure sense can result in transformations as 
a×b+a×c→(a+a)×(b+c). It is concluded that a development of structure sense requires a dialectical 
control between the syntactic and semantic interpretations of symbolic sentences. 

Keywords: Structure sense, distributive property, arithmetic, syntactical transformations. 

Learning distributivity 
Distributive property appears to be less accessible to young students if compared to other 
multiplication’s properties (Larsson, 2016). This phenomenon could depend on the fact that it is not 
a property of one operation but it states a relation between two operations. Lo and colleagues (2008) 
found that many prospective primary teachers show difficulties in applying the distributive property: 
a frequent erroneous transformation is 18×26=10×20+8×6 in which tens are multiplied just by tens 
and units are multiplied just by units (ibidem).  

According to Carpenter et al. (2005) “an implicit understanding of the distributive property can 
provide students a framework for learning multiplication number facts by relating unknown facts to 
known facts” (Carpenter et al., 2005, p.55). For this reason they sustain that it is important to foster 
the use of fundamental properties of operations to transform mathematical expressions rather than 
simply calculating. An awareness of the structure of arithmetical expressions appears as fundamenta l 
to recognize the equivalence of two arithmetical sentences without carrying out calculations. Mason 
et al. (2009) use the expression ‘structural thinking’ to refer to such awareness. 

We wonder which difficulties might students face when they are introduced to structural think ing, 
and specifically when they elaborate expressions through operations’ properties – distributive 
property in particular. 

Structure sense in arithmetic 
Apparently, before Mason et al. (2009) introduced the construct of structural thinking, different words 
have been used to express similar ideas. Linchevski and Livneh (1999) found that many of the typical 
difficulties faced by students while interpreting algebraic expressions can be found also in the 
arithmetical context. In particular, they notice students’ difficulties in determining the order in which 
additions and subtractions have to be performed both in the arithmetical and in the algebraic context. 
These authors conclude that “difficulties revealed in children’s understanding of structural properties 
of the algebraic system originate in their understanding of the number system” (Linchevski & Livneh, 
1999, p.192).  



Undoubtedly, students must be exposed to the structure of algebraic expressions. However, it must 
be done in a way that enables them to develop structure sense. This means that they will be able 
to use equivalent structures of an expression flexibly and creatively. (ibidem, p. 191) 

Similarly, Caspi and Sfard remarked how “structures of algebraic formulas are not unlike those of 
arithmetic expressions” (Caspi & Sfard, 2012, p. 64) and they interpreted such similarity as based on 
the fact that school algebra can be conceived as a gradual formalization of meta-arithmetic (ibidem); 
thus the development of an effective algebraic calculation competence has been referred to as the 
development of structure sense in arithmetic.  

Hoch and Dreyfus (2004) characterize structure sense in the context of high school algebra. They 
define it in terms of a collection of abilities. According to the cited literature, these abilities can be 
related to similar abilities in arithmetic. So we propose to modify Hoch and Dreyfus’ (ibidem) 
definition to adapt it to the context of primary arithmetic. Thus, structure sense in arithmetic can be 
described as a set of competences:  

1. recognising an arithmetical expression or sentence as an entity, for instance comparing two 
arithmetical sentences without calculating partial results. 

2. Recognising an arithmetical expression or sentence as a previously met structure, for example 
noticing that 3×4+5 is less than 10+3×4+5 because the second one is a sum which includes 
the first one. 

3. Recognising sub-expressions in which an arithmetical expression can be divided, as in the 
case of a student who can describe 5×7+8×7 as composed by two multiplications. 

4. Recognising mutual connections between sub-expressions, that means being able to identify 
which are the operations connecting the terms of an arithmetical sentence, even when such 
terms are not just single numbers but shorter expressions. 

5. Recognising which manipulations are possible to perform. For instance, on an arithmetica l 
sentence like 7+8×7+3+4, many transformations could be done (9×7+7 or 14+8×7) but there 
are also transformations that are not executable (as 15×7+3+4).  

6. Recognising which manipulations are useful to perform. According to the aim of 
transformations (comparing or calculating), some manipulations can be more useful. In the 
case mentioned above, the usage of associative property of sum (3+4=7) and distributive 
property (7+8×7+7=10×7) allows to notice that 7+8×7+3+4 is equivalent to 10×7. 

This definition is coherent with and specifies those given by Mason et al. (2009) and Linchevski and 
Livneh (1999). Some of the competences listed above can be activated by pupils to compare and to 
transform arithmetical expressions: thus, the presence of these abilities can witness the emergence of 
structure sense, however sometimes this same abilities can lead to mathematical inconsistency that 
pupils might be not aware of.   

This paper aims to provide evidence of this type of phenomenon, that can be considered as a an 
indication of an incomplete development of structure sense due to a lack of control on the numerica l 
interpretation of a specific structure.  



Data collection and analysis 
The results that we are going to present are part of broader research study (Maffia & Mariotti, 2016) 
aimed at investigating the teaching/learning of multiplication properties in the primary school. The 
empirical design included long-term teaching experiments involving, among others, a group of 
second graders. The results presented in this paper concern data coming from this specific group. 
Grade 2 was chosen to promote structural thinking in the case of multiplication since the very first 
introduction of this operation, that usually takes place at this school level in Italy. Among others, 
following Linchevski and Livneh’s suggestion to “promote the search for decomposition and 
recomposition of expressions” (1999, p. 191), we designed and implemented activities aimed at 
introducing the pupils to the distributive property as a transformation of numerical expressions 
(Maffia & Mariotti, 2015). The rectangular model of multiplication was introduced: activities of 
cutting and pasting rectangles with the same height (or width) were proposed to explore the 
relationship between different arithmetical expressions, eventually generalized and symbolica lly 
expressed in the distributive property. Examples of such cutting and pasting are given in Figure 1. 

      
Figure 1: Composition and decomposition of rectangles 

Starting from the activities with paper rectangles, the teacher realizes a mediation process to guide 
students till the usage of conventional arithmetical symbols to represent the relation between 
multiplication and sum according to the distributive property (ibidem). 

In this paper, we show data from semi-structured interviews conducted one year after the end of the 
teaching experiment. Thus, at the moment of the interviews the children are third graders (aged 8-9).  

The interviewer shows an image of two children who are writing the equalities 4×7=7×4 and 
6×8+6×3=6×11 on a blackboard (Figure 2) and he asks if what these children are writing can be 
considered correct. During the teaching experiment, children were asked to produce composit ions 
and decompositions of multiplications, using paper rectangles and then writing them with arithmetica l 
symbols. This is the first time that they have to validate or refute an already written equation. 

After the equalities shown in Figure 2, three other numerical sentences are shown and the interviewee 
is asked to comment about their correctness. These sentences are 5×6=5×2+5×4; 5×6=5×3+5×4; 
5×4+5×3=5×2+5×5. The structure of the first one is similar to the one shown in the image, but the 
position of expressions is inverted in respect to the equal symbol. The second one is like the first one, 
except for one number (so it is wrong), and the last one has a different structure but it relates two 
expressions with the same structure – a sum of products – and specifically, the structure of one of the 
members of the other equalities. So, the different sentences are designed to allow the child to compare 
or contrast the structures in the different equalities and, eventually, to apply arithmetical properties. 
During the interview, paper and pen are provided. 



 

Figure 2: Image showed to students at the beginning of the interview 

The interviews have been videotaped and then fully transcribed. Students’ transcribed utterances were 
analysed seeking for evidences of structure sense, through identifying instances of the characterizing 
abilities. In the following section we discuss some examples, showing specific aspects emerging from 
this analysis. In the analysis, the six competences of the list are indicated through the corresponding 
number in the list that is indicated between square brackets. 

Seeking symmetry in distributive property 
We begin with some excerpts, starting from the end of an interview: Francis comments about the 
equality 5×4+5×3=5×2+5×5. 

53 Interviewer: Now I will show you a very long one. What do you think about this one [he 
shows the equality 5×4+5×3=5×2+5×5]?  

54 Francis: [he writes the equality on his paper and then he answers quickly] It’s right! 
55 Interviewer: Did you already do it? 
56 Francis: Yes. 
57 Interviewer: Tell me how. I am not as fast as you are. 
58 Francis: Wait. I’ll write it. 5×4, is 20. [he writes 20 under the first multiplication. Then 

he writes the results of the other multiplications; second line in Figure 3] If I 
would put the 3 and I put 2 [he circles the 3 and he writes a 2 above it] and 
here I put a 5 [he circles the 4 and he writes a 5 above it] it would be the same 
operation.  

 

 

Figure 3: Francis’ inscriptions for the last equality 

In his explanation (line 58) Francis recognises the possibility of decreasing one of the factors of the 
second multiplication and increasing one of the factors of the first one, still maintaining the same 
result (he says “it would be the same operation”). We can recognize an occurrence of the first 
component of structure sense because Francis is jointly and consistently acting on each part of the 
arithmetical sentence to maintain its value: he is recognising that the transformation of one 
multiplication affects the other one, thus he is considering the arithmetical expression on the left side 
as a unique entity [1]. 

The expression 5×4+5×3 is transformed in 5×5+5×2 to show the equivalence with 5×2+5×5; so 
Francis recognises a useful transformation for his purpose [6]. However, in the obtained expression 
5×5+5×2, the order of the two multiplications is inverted in respect to 5×2+5×5. Stating that the two 



expressions are equivalent, Francis is considering the expression as a sum of two multiplications [4] 
and so – according to addition’s commutative property – the order of the addends 5×2 and 5×5 can 
be inverted [5]. The child is also recognising that the expression is composed of two multiplicat ions 
[3]; this interpretation is strengthened by the written operations in the second line of Figure 3.  

So far, we have instances of five of the competences that characterize the structure sense; we can say 
that Francis is showing some evidence of structure sense. As a matter of fact, Francis’ explanation 
not only shows his awareness of structure regularities, but it is completely consistent in terms of the 
mathematical meaning of the expressions.  

However, this has not always been the case. At the very beginning, when the image (Figure 2) was 
firstly showed, he recognized the equality 6×8+6×3=6×11 as incorrect and stated that the equivalence 
would have been true if 6×11 was replaced with 12×12. Here is his explication: 

11 Interviewer: Wait. Tell me how did you get twelve and twelve.  
12 Francis: Six times eight plus six times three [he writes it] I would do six plus six [he 

draws circles around the 6s, as shown in Figure 4a] that makes twelve. 
13 Interviewer: I understand. So you get the first twelve.   
14 Francis: And eight plus three [he circles 8 and 3, Figure 4a] that makes twelve.  
15 Interviewer: I don’t agree. How much is eight plus three? 
16 Francis: Eight plus three... eleven [he corrects the second 12 writing a 1 over the 2]. 
17 Interviewer: Eleven. Ok. 
18 Francis: So it wouldn’t be twelve times twelve but twelve times eleven. 
 

(a)  (b)  (c)   

Figure 4: Francis’ inscriptions for the first equality 

Francis seems to recognize the expression 6×8+6×3 as relating two parts [3], two multiplicat ions 
connected by an addition [4], and he elaborates this structure according to a syntactic rule clearly 
respecting some kind of “structure sense”, but unfortunately it is inconsistent from the mathematica l 
point of view. The transformations he operates (Figure 4a) are strictly at the syntactical level: he is 
transforming the expression as if the addition would operate in the same way on both the first and 
second factors of the two multiplications.  

The interviewer asks Francis to check the correctness of his conjecture. Francis proposes to calculate 
the operations’ results. 

27 Interviewer: How can we get the result of this thing?  
28 Francis: We calculate forty-eight plus six times three that is… eighteen. Forty-eight 

plus eighteen is… and six times eleven is… [he performs the written 
calculation in Figure 4b]. Forty-eight plus eighteen… is… [he performs the 
written calculation in Figure 4c] sixty-six. So it’s right! 



29 Interviewer: Is it? So, what was wrong here? [he points Francis inscription in Figure 4a] 
In your initial check. Because you said that it wasn’t right.   

30 Francis: I thought we had to do 12×11. 
31 Interviewer: And is 6×11 enough?  
32 Francis: […] Yes, because we have to calculate the results of the two multiplications, 

to calculate the result of the third one and see if the first two ones equal that… 
their result.  

In line 28, Francis is able to divide the expression into its parts: he recognizes that it is composed of 
two multiplications [3], then he recognizes that he has to sum the two products, so he is recognizing 
the connection between the two parts [4]. This interpretation is made explicit again in line 32. Francis 
is showing two of the competences that characterize structure sense: number 3 and 4 in the list. This 
time, though using his structure sense, the pupil is interpreting the equivalence between the two 
expressions in a different way. Previously he considered the expressions 6×8+6×3 and 12×11 to be 
equivalent because one could be transformed into the other according to a syntactical manipulat ion. 
In the following, he recognizes two expressions to be equivalent when they give the same result (lines 
28 and 32). We consider the first case an occurrence of a syntactical interpretation of the equivalence 
between numerical expressions, the second one as an occurrence of a semantic interpretation. Though 
not yet well harmonized, both types of interpretations seem to be available to Francis, at the same 
time, the semantic interpretation seems to maintain its primacy.  

When the other two equalities are shown, Francis resorts again to the semantic interpretation. He 
calculates the results of the expressions on the two sides of the equal sign and then he checks if the 
results equal each other: 

43 Interviewer: What if I show you this one? [he shows 5×6=5×3+5×4] 
44 Francis: Thirty [he writes 30]. Fifteen, [he writes 15] twenty [he writes 20 next to 15 

and then he puts a + sign between the last two numbers. Then he writes =35 
obtaining the inscription shown in Figure 5a]. It doesn’t work.  

45 Interviewer: Can we modify it to make it correct? [Francis doesn’t answer] If I would keep 
this as it is [he points the right side of the equality] what should I write on this 
side? [he points the left side of the equality]  

46 Francis: Ehm… [he puts the pen on the sheet of paper] 
47 Interviewer: Let’s write it on the paper [Francis writes the equality] Ok. Let’s say that I 

want this [he points the right side of the equality in Francis’ inscription] as it 
is, but I would change the other to make it correct.  

48 Francis: We should change the 6 [he circles it] into a 7 [he writes 7 above the 6, Figure 
5b]  

In this excerpt the interviewer tries to push Francis to go back to a syntactical interpretation. However, 
though Francis responds in a mathematically consistent way, it is impossible to determine if the 
proposed modification depends on a syntactical transformation (3+4=7) or on a comparison of the 
expressions’ results. His behaviour in lines 27-32 and 53-58 suggests that both the interpretations are 
plausible.  

 



 (a)    (b)  

Figure 5: Francis’ inscriptions for the third equality 

 

Discussion and conclusion 
As discussed in the introduction of this paper, the development of what we have called “structure 
sense” can be considered a main objective of the teaching and learning of algebra.  

Starting from adapting the definition given by Hoch and Dreyfus (2004) to the case of arithmetic 
expressions, we set up a list of competences characterizing structure sense and we used it to evaluate 
students’ behaviours as evidences of the presence of structure sense. The aim of this paper is not to 
discuss about the effectiveness of the classroom intervention; indeed, it presents a recurrent 
phenomenon that was possible to identify in the development of the structure sense: it is characterized 
by an unstable relationship between the syntactic and the semantic level in treating numerica l 
expressions. The case of Francis can be considered a paradigmatic example.  

The pupil shows all the competences we used to characterize structure sense but in order to check the 
correctness of an equality he adopts a syntactical manipulation of operations that is not 
mathematically consistent: an expression as a×b+a×c is transformed into (a+a)×(b+c). We interpret 
this behaviour as coherent with a structural sense, but also as a case of corrective action aimed at 
overcoming what can be seen as a structural flaw, a seeking for symmetry in the distributive property. 
The perceived lack of symmetry could be twofold. On the one hand there is no symmetry in the role 
of the terms: the common factor in the multiplications plays a different role than the others. On the 
other hand the structure of the equality a×b+a×c=a×(b+c) is asymmetrical because there is a sum of 
multiplications on one side of the equal sign and just one multiplication on the other side. This 
interpretative hypothesis is reinforced by the fact that the student does not show difficulties in treating 
an equality like 5×4+5×3=5×2+5×5, which has a symmetrical structure. This urgent demand of 
symmetry may be based also on the experience with other properties, such as the commutative and 
associative properties, and can be considered as a particular source of difficulty in dealing with 
distributive property.  

The wrong transformation (a+c)×(b+d)→a×b+c×d is well known in the context of school algebra and 
it is found also in the arithmetic context in equalities like 18×26=10×20+8×6 (Larsson, 2015; Lo et 
al., 2008). In this paper we have evidence of the application of the opposite transformation 
a×b+c×d→(a+c)×(b+d) in the arithmetic context. As far as we know, this particular transformation 
has not been documented in literature before. It has to be stressed that this transformation is shown 
by four students out of nineteen pupils who were involved in our research. So, we have a too small 
sample to state anything about its spreading.  

In any case, the emergence of this kind of erroneous transformation appears relevant from the didactic 
point of view: if we expect teachers to promote structural thinking they have to know the potential 
difficulties that students could meet. Literature shows that this is not always the case (Lo et al., 2008).  
One clear suggestion emerging from our study is that an approach privileging pure syntactica l 



transformations seems risky, whilst educating pupils on the danger of losing the semantic 
interpretation of an expression can help them to reach mathematical consistency.  

Fostering structural thinking requires the development of semantic control assuring that any syntactic 
transformation has a consistent arithmetical interpretation. Further investigation is needed in order to 
fully describe how such a semantic control can be efficiently developed.  
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In this paper, we report part of a study carried out within a design research methodology. An initial 
conjecture was made that included the importance of the hundred square model to facilitate the 
discussion about decimal number system features and connections among and within different 
rational numbers’ representations. We present how this model was used and why it led to changes 
into different models, 10x100 grid, and decimat, during the teaching experiment. Finally, we reflect 
on how these changes inform the initial conjecture. 

Keywords: Models, decimals, elementary education, design research. 

Introduction 
Currently, in the Portuguese official curriculum (Ministério da Educação, 2013), rational numbers 
are first approached in Grade 2 (7/8 years old students), in its fraction representation and measure 
meaning. This meaning has a central role and the use of line segments in the number line is 
recommended. Decimal numbers1 are first introduced in Grade 3 and operations with both 
representations are highly valued. Given the students’ age, we believe that these guidelines are too 
focused on procedures, and, instead, a learning path aiming at conceptual understanding should be 
privileged. 

We will focus part of a broader study in which we follow a design research methodology. In this 
paper, we discuss how the decimal number system features can be addressed and discussed in the 
hundred square model, and why this representation was changed into other representations, during 
the teaching experiment. In order to better frame this paper, we first present an overview of the 
characteristics of design research methodology, because the use of this approach allowed the 
constant analysis and adaptation of the model explored during the teaching experiment. We then 
organize the paper according to the different stages of design research: in the preparation phase 
section, we present how the literature informed the design principles and initial conjecture; in the 
experimentation phase, episodes regarding the use and adaptations of the hundred square model will 
be presented, and in the third phase a deeper analysis of the episodes will be made as well as its 
impact on the initial conjecture. 

Design research methodology 
Design research is a methodology that has gaining ground in Mathematics Education research. It 
can allow the construction, or “engineering”, as Cobb, Jackson, and Dunlap (2016) describe it, of 
                                                 
1  Term used in this paper to identify positive rational numbers written accordingly to the decimal system 
notation, using the decimal comma or point. 



instructional means to promote the learning of a particular topic, while constantly studying the 
development of that learning, considering all elements of the instructional means, not only the 
designed tasks but also the context in which they are carried on. Therefore, in design research 
theoretical and pragmatic components are highly dependent on each other. 

There are five crosscutting features of design research that, together, distinguish it from other 
methodologies: (i) the purpose is to develop theories about both the learning process and the means 
designed to support it; (ii) it has a highly interventionist nature, since it can be a powerful 
methodology to design an approach to promote the development of a particular content or form of 
practice, in a real classroom; (iii) it has two interrelated components, a conjecture is made regarding 
students’ learning (prospective component), that is constantly confronted to the actual learning 
(reflective component); which can lead to changes in the initial conjecture that is tested again, 
giving design research its (iv) iterative design; and finally there is an attempt to (v) develop humble 
theories that address the learning of a particular topic (Cobb et al., 2016). 

One of the main characteristics of this methodology is its cyclic nature. Each cycle develops in 
three phases: (i) teaching experiment preparation and design; (ii) teaching experiment; and (iii) 
retrospective analysis that can lead to revisions and a new cycle (Cobb et al., 2016). The conjecture 
can be refined during the teaching experiment, resulting in micro cycles, or in between experiments, 
in macro cycles, or both types of refinements can happen (Prediger, Gravemeijer, & Confrey, 
2015). The present study builds on micro cycles. 

Study’s rationale (preparation and design phase) 

Decimal numbers in the research field 

Studies related to decimal numbers reveal important evidence regarding difficulties that arise when 
dealing and operating with this number representation (e.g., Steinle & Stacey, 2003), whole 
numbers’ knowledge influence (e.g., Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 1989) 
or about knowledge of the decimal number system, specific of this representation (e.g., Baturo, 
2000). Studies present evidence that those difficulties and whole number interference can remain in 
adulthood (e.g., Vamvakoussi, Van Dooren, & Verschaffel, 2012), which reveals the demanding 
conceptual understanding needed regarding this representation of rational numbers. 

According to Post, Cramer, Behr, Lesh, and Harel (1993), the development of rational number 
understanding is related to (i) flexibility with translations between rational number representations; 
(ii) flexibility with transformations within a representation; and (iii) progressive independence from 
concrete embodiments of rational numbers. In a broader perspective, representations can be a tool to 
or reflect students’ development of mathematical ideas of a particular concept. Therefore, 
representations that can become models assume an important role, establishing a link between 
knowledge connected to reality and the mathematical knowledge to be developed (Van den Heuvel-
Panhuizen, 2003). Initially, models named as models of (Gravemeijer, 1999), are closely connected 
with the task context and cannot be used in other situations. This type of model should evolve to a 
model for (Gravemeijer, 1999), that can be applied in various situations, focusing mathematical 
connections and not the situation described in the task. In order for this development to happen, the 
model should have certain characteristics that make it suitable to be used in diverse situations. As 



Van den Heuvel-Panhuizen (2003) highlights, to support learning, the model should allow students 
not only to progress into the mathematical ideas but also to go back to the reality context if needed. 

Research show evidence of decimal numbers’ learning fostered by the appropriation of different 
models. We will now focus two of the models considered in the teaching experiment: the hundred 
square and the decimat. The hundred square is a model often used when teaching decimal numbers, 
until hundredths, that allows connections between the iconic representation of the grid and symbolic 
representations, not only decimals but also fractions and percentages. The grid also facilitates 
students to understand the meaning of each digit and, consequently, its decimal number system 
notation. It is also an important model to compare and order decimal numbers and, later on, can be 
used to add and subtract decimal numbers (Cramer, Monson, Wyberg, Leavitt, & Whitney, 2009). 
Decimat is a similar model, however, by being rectangular and divided into two rows and five 
columns, allows a clear visualization of each part again divided by 10, emphasizing the 
multiplicative structure of the decimal place value in the decimal number system (Roche, 2010). 

Structuring the cycle 

Based on literature review, the following six design principles were elaborated to guide the 
conjecture and instructional means: (1) use of tasks which context appeals to the use of rational 
numbers in its decimal representation; (2) promote movements among decimal numbers and other 
rational number’s representations highlighting their relations; (3) promote the use of representations 
that support their transformations into models to think about rational numbers in its decimal 
representation; (4) encourage the use of prior knowledge; (5) promote the discussion of whole 
number interferences and common misconceptions; and (6) establish a learning environment where 
students are encouraged and feel confident to share and discuss their own mathematical ideas. 

Supported by these principles, an initial conjecture was made: A teaching experiment comprised by 
different types of sequenced tasks, explorations and exercises, focusing decimal numbers in 
measure and part-whole meanings and the use of number line and hundred square model, 
considering students’ whole number and informal knowledges and evoking the need for the use of 
decimal numbers, as well as its connections with other rational numbers representations, in a 
learning environment where students have an active role and small group work and whole-class 
discussions are privileged, will promote a meaningful understanding of decimal numbers. 

A set of tasks was planned (some new and others adapted from existing materials) and students’ 
understanding was anticipated. Tasks were open to adjustments or to be completely revised 
depending on the understanding students revealed along the way. The teaching experiment was 
intended to be carried out in Grade 3, from February to June 2014, however, the last tasks were 
conducted at Grade 4. The teaching experiment was, generally, carried out once per week, in one 90 
minutes lesson, involving a total of 16 weeks over the two school years. 

The participants were 25 students and their teacher. A diagnostic study was made with the same 
students, in Grade 2, that provided information about students’ ideas of different rational numbers’ 
representations, which supported the design of the initial tasks and also help to gather information 
concerning the teacher’s role. Consequently, the classroom teacher asked for a detailed plan for 
each task. The plan was made by the researcher (first author) and discussed previously with the 



teacher, and included suggestions to support teacher inquiry, possible students’ answers and 
solutions and potential students’ difficulties. 

In the data presented in the next section, students will be referred to with fictitious names. The tasks 
were solved in small group work or in pairs, and whole-class discussions were privileged. Records 
of all the students’ written work, along with participant observation by the researcher supported by 
audio/video recordings and field notes, constituted the main data sources. Meetings between the 
researcher and the teacher, prior and after each lesson, were also audio-recorded. 

One of the expected products of the broader study is a set of indicators of decimal number 
understanding that can be helpful both for teachers and researchers. We intend that these indicators 
address two different levels: (i) what is specific of this rational number representation, and, (ii) the 
intertwinement between this representation and other rational number representations. In this paper, 
we outlined some indicators of students’ understanding of decimal numbers to be supported by the 
appropriation of the models here presented. As an ongoing research, these indicators are 
preliminary and open to revision. Regarding the first level, we consider identifying the partitioning 
and grouping by powers of ten to create units of tenths, hundredths, and thousandths, and reveal an 
understanding of the decimal numeration properties (positional value, multiplication and addition 
properties, in addition to base ten property). In relation to the second level, we consider recognition 
of a decimal number in different representations; identifying the unit, and establish equivalences 
between numbers represented as decimals, percentages, and fractions. 

Classroom episodes (teaching experiment phase) 

We present three illustrative episodes of the use of three models throughout the teaching 
experiment, focusing on part-whole meaning. The examples presented concern the use of each 
model by students (representations as models of). The first two occurred in Grade 3 and the third in 
Grade 4. We focus our analysis on the indicators of decimal number understanding as mentioned 
above. 

The hundred square was presented to students as a towel, divided into tenths and hundredths. After 
some exploration of this model, a task was presented to promote the discussion of common 
misconceptions, such as the comparison of decimal numbers based on its number digits. The 
hundred square model was showed to help students explain their answers. One of the questions was 
“Do you think 0,67 is bigger than 0,9?”. In whole-class discussion, Jorge revealed how he used the 
hundred square model to compare both numbers: 

Jorge: Initially I thought that 0,67 was bigger than 0,9 because at first sight 67 seems 
bigger than 9. . . but then I realized that I could think in a different way. So, if we 
think that each column has ten-hundredths, we would have to paint six of these 
columns, without the seven (in 0,67) it would be only sixty. And the other one 
(0,9) would be 90, it was bigger, nine columns are 90 hundredths, so it was bigger 
than painting 67 hundredths. 

Due to the appropriation of the hundred square, Jorge could visualize and compare the quantities 
represented by both numbers (Figure 1). The hundred square has shown to have great potential, as 
its use helped Jorge to overcome the initial, and expected, interference of whole number knowledge.  



 

 

 

 

Figure 1: Jorge’s work record at a task with the hundred square model 

When preparing the teaching experiment, it was anticipated that students could visualize each small 
square in the model (one hundredth) divided into ten equal parts, each representing ten thousandths. 
However, it was important that students, in fact, saw the thousandths, instead of inferring that from 
this model. Given its shape, the hundred square doesn’t allow further divisions into thousandths, in 
the same manner, thus another model was thought. Later, in the classroom, this model started to be 
called as “thousandths bar”. With a rectangular shape, a bar represents the unit that is divided into 
ten large squares, representing tenths, and each one is then divided into ten columns, the 
hundredths, that are again divided into ten equal parts, the thousandths (Figure 2). 

 

 

Figure 2: Thousandths bar model 

At first, students were encouraged to find out how many “small squares” were in the whole bar. 
Many looked into one “big square” divided into quarters and calculated 4x25, which was 100, and 
then multiplied 100 by 10, reaching 1000. Initially, students thought that each “big square” was like 
the hundred square, representing a hundred hundredths, or one. This was probably due to the fact 
that each tenth in this model was similar to the hundred model. A unit change was implied: before, 
one big square represented one unit, now a similar but smaller square represents one tenth. 
Nonetheless, the model allowed students to relate tenths, hundredths, and thousandths. 

An example of these connections made by students is shown in Figure 3. Artur’s answer relates to a 
question where students were asked to paint in the thousandths bar 0,001 with green, 0,01 in red and 
0,1 in yellow. After, they were asked about what connections they could find among these parts. 

Figure 3: Artur’s work record at a task with the thousandths bar model, with translation 

“The relations we found were:  
green x 100 = yellow, green x 10 = red, 

red x 10 = yellow, red : 10 = green, 
yellow : 10 = red, yellow : 100 = green” 
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Artur, like other colleagues, could clearly state the partitioning and grouping by powers of 10 that 
create the units of tenths, hundredths, and thousandths. It is important to refer that it was the first 
time that these relations were clearly stated by the students. We believe that visualizing each 
painted unit in the same model promoted the establishment of these connections. On the other side, 
and even though some students correctly identified the tenth and the thousandth in the bar, they had 
painted one hundredth as one-quarter of one-tenth. Students said that 0,1 was the biggest square in 
the bar, then 0,01 was the “middle” square and 0,001 was the smallest square (Figure 4). 

 

 

Figure 4: Mafalda’s work record at a task with the thousandths bar model 

We weren’t expecting this response. It can be linked to two factors: due to the strategy used to 
count the total of “little squares” in the bar, or probably due to the bar layout that misleads students 
to think about the different decimal units in terms of squares. If a big square is 0,1 and a small 
square is 0,001, the middle square will be, incorrectly, 0,01. 

Thus, together with the classroom teacher, we felt the need to adapt the model again. We needed a 
model that, like the hundred square, clearly allowed to see the connections between different units, 
and like the thousandths bar, allowed the extension to the thousandths and students’ inference of 
further partitions by powers of 10, to develop the idea of density. After scratching a model with 
such features, followed by searching for a similar model in the research field, we came across the 
decimat model, as described by Roche (2010). Therefore, we included some tasks adapted from this 
author’s work in the teaching experiment. 

The model was presented with one tenth divided into hundredths, and one of which divided again 
into thousandths. When students first saw it, they called it “towel”, relating it to the hundred square. 
They immediately recognized the model shown tenths, one of which divided into hundredths and 
thousandths. It was said that the model could be further divided if they wanted or needed. 

One of those tasks was a game adapted from the one proposed by Roche (2010). In groups of about 
four students, two dices were given: one regular dice with dots and other with different symbolic 
representations, specifically 0,01; 0,001;   ,  , 1%, and 10%. The students had to roll both 
dices and multiply the numbers represented in them. Then, they had to color that part in the decimat 
and say which part of the decimat had already been painted, altogether. Figure 5 shows the record 
of the game played in Maria’s group.  

Figure 5: Maria’s group record of game plays using the decimat model, with translation 



Besides the flexibility in the movement within symbolic representations (decimal, percentage, and 
fraction) and the operations with decimal numbers as multiplication and addition, this example 
illustrates the potential of this model. Only one tenth is further divided, however, when needed, the 
students easily did the divisions on another tenth, revealing an at-ease use of the model.  

Looking back and adjusting (retrospective analysis phase) 

We addressed the use of part-whole models to promote students’ understanding of rational number 
in its decimal representation. Both the hundred square and the thousandths bar models can foster 
connections between the unit partitioning and grouping by powers of 10, and the decimal number 
system. However, the hundred square only extends to hundredths and the features of the 
thousandths bar can hinder the idea of partitioning the unit by powers of 10. 

We want to highlight that students had already worked with the hundred square and thousandths bar 
when the decimat was introduced, which influenced its successful use. We also need to refer that we 
weren’t seeking for a single and perfect model. In fact, students should explore different models. In 
the present study, the students continued to use all models. Nevertheless, a model should promote 
the visualization of specific mathematical connections to support student’s learning (Van den 
Heuvel-Panhuizen, 2003), thus, the model’s features should allow its evolving alongside the 
development of students’ understanding. The adjustment of the initial model, done to highlight the 
decimal number system properties, such as the partitioning and grouping of units and place value, 
led us to the revision of our initial conjecture, in which we will now emphasize the decimat as an 
important part-whole model. 

However, the use of a model by itself is not enough for students to establish mathematical 
connections, so the connections intended by the use of models should be focused (Prediger, 2013). 
The results help us to understand that the decimat can be the first model approached, initially 
divided into tenths, then fully divided into hundredths, in the same manner that the hundred square 
was also first approached, and, finally, divided into thousandths. We believe that such an approach 
can promote the understanding of partitioning by powers of ten connected with decimal place value. 
Besides that, it will allow to order and compare different representations, promote the development 
of a benchmark number system, unit conceptualization and support decimal numbers’ operations. 
All these connections are strong foundations for the development of decimal number understanding. 
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The purpose of this study was to investigate 6th, 7th and 8th grade students’ common difficulties 
regarding rate and ratio problems. The data was collected from 149 sixth, seventh, and eighth grade 
students enrolled in public middle schools in Balikesir in response to three typical proportionality 
questions. Data analysis revealed that the confusion of unit rate identification and algorithmically 
based mistakes were identified as major difficulties in solving the missing-value proportion and 
comparison problems. To address the potential difficulties students have regarding rate and ratio 
problems, students should be exposed to different types of proportional problems. 

Keywords: Proportional reasoning, unit rate identification, algorithmically based mistakes. 

Introduction 
Proportional reasoning is considered to be a keystone of students’ mathematical development and is 
required to access more advanced high school mathematics like algebra, geometry, probability, and 
statistics (Lesh, Post, & Behr, 1988). Lesh and his colleagues identify the proportional reasoning 
involving multiple comparisons between quantities (Lesh et al., 1988).  

Previous studies have shown that children can manipulate part-whole relationships within sets of data, 
but they tend not to employ a systematic approach or to use categories (Inhelder & Piaget, 2013). 
Although children’s mathematical development contains preproportional reasoning knowledge, 
which has always been seen as the hallmark of the formal operations stage (Inhelder & Piaget, 2013), 
this knowledge is insufficient for an understanding of proportional reasoning and the solution of ratio 
and proportion problems (Lamon, 1993).  

In order to promote a conceptual understanding of ratio as the first step of proportional reasoning, it 
is necessary to create comparisons, beginning with additive and moving on to multiplicat ive 
comparisons. Additive comparisons compare two quantities to decide how much greater or less one 
quantity is than another by finding their difference, which is not the same thing as ratio. On the other 
hand, multiplicative comparisons provide a ratio by comparing two quantities to decide how many 
times larger one quantity is than another. Therefore, providing some key activities carefully designed 
to link these two concepts will be useful to help students to construct the aspect of ratio (Kaput, 1985).  

Difficulties in proportional reasoning 
Teachers have focused on teaching how to arrive at correct answers by applying rules instead of 
explaining the reasons behind those rules (Hart, 1988). While most of the students will be able to do 
computation properly, they are not encouraged to build links between concepts. Furthermore, some 
of the methods used by students lead to problems due to incorrect solution strategies or incorrect use 
of correct strategies (Hart, 1988).  

Regarding proportional difficulties, algorithmically based mistakes are usually the result of lack of 
attention during the learning process or weak conceptual understanding (Hart, 1988).  According to 



researchers, problems may also arise from the attempt to find a fast way to compute ratio problems. 
In other words, students may be rushing to solve the problem quickly without thinking about the 
relationship between the given quantities and tend to simply copy the procedures identically. In 
addition, even though they may be able to construct a correct algorithm for cross multiplication, some 
students may not correctly explain the reasoning behind the algorithm (Lobato, Ellis, & Zbiek, 2010). 
Routine problems may lead students to assume that they can mimic solution procedures, but when 
they come across different problem types or non-standard language, they may struggle. Literature 
review showed that a number of studies have dealt with the reasons for mathematical difficulties in 
the field of ratio (Ellis, 2013; Hart, 1988; Lamon, 1993; Misailidou & Williams, 2003; Sarwadi & 
Shahrill, 2014). However, few studies have examined common difficulties among 6th, 7th and 8th 
grades students connected with unit measures approach for the different types of proportionality 
problems. 

Statement of the problem 
This study was conducted to investigate 6th, 7th and 8th grade students’ difficulties regarding rate and 
ratio problems. To put it another way,  study aimed to answer the research question: “What are the 
common difficulties encountered by 6th, 7th and 8th grade students’ while the missing-value proportion 
and comparison problems involving rate and ratio concepts?” 

Method 
Sample 

The sample of this study, which included 66 males and 83 females, consisted of students from sixth 
to eighth grade at a public middle school in Balikesir, Turkey. The school addresses a wide variety 
of neighborhoods and income levels ranging from low income to upper middle class.  

Measuring tool  

Three proportional word problems in real world contexts were used to investigate students’ 
proportional reasoning difficulties by grade levels (see Table 1). When we reviewed the literature on 
proportional reasoning, these three questions were cited as the most widely known problems. The 
first and the second questions were chosen from Lamon’s (1993, 1999) studies. The last question was 
an adapted version of an orange-juice task identified by Noelting’s (1980). In terms of problem types 
in the domain of ratio, the first and third questions were comparative, and the second question was 
missing value problem. While comparison problems provide four values and the aim is to specify the 
order relation between the ratios, in a missing-value problem three of four values are given and the 
last value is asked (Karplus et. al, 1983b; Lamon, 2012).These adapted questions were applied to 
sixth, seventh and eighth grade students, and the students were given one class hour to complete the 
written test. The questions are given in Table 1 below. 

 

 
  



       

 Ratio Achievement Test 

Please solve the problems by using appropriate strategies  

1. Ayse bought four bananas paid 3.6 liras from Market A. Berna bought three bananas paid 3.3 liras from 
Market B. Where would you buy your bananas to make profit? 

2. Derya, Ahmet and Kaan bought three helium-filled balloons and paid 1.5 liras for all three. They 
decided to go back to the store and buy enough balloons for everyone in the class, How much did 
they pay for 24 balloons? 

3. Zeynep and Sinan tested three juice mixes. Which juice will have the stronger lemon flavor?  

Mix A    Mix B                                        Mix C 
2 cups lemon concentrate  1 cup lemon concentrate           4 cups lemon concentrate 
3 cups cold water  4 cups cold water                       8 cups cold water  

Table 1: Questions about proportional reasoning    

Data analysis 
The solution strategies were analyzed along the strategies as unit rate, scale factor, ratio tables, and 
cross multiplication (e.g., Bart, 1994; Hart, 1988; Lesh, Post, & Behr, 1988).Then, incorrect solutions 
were separated from correct solutions, and then qualitative analysis was conducted to capture the 
difficulties behind the incorrect answers. The students’ solutions were categorized with regards to 
mistake (error) strategies that have been stated in the literature: misusing a correct strategy (e.g., Hart, 
1988; Karplus et al, 1983), using additive strategy (e.g., Hart, 1988; Inhelder & Piaget, 2013) and 
faulty application of a correct results that deviates from the unit rate (e.g., Tourniaire & Pulos, 1985). 
These mistake strategies were used to characterize students’ difficulties while solving the given 
proportional problems (see Table 1) involving rate and ratio concepts. Table 2 showed the types of 
difficulties. 

Types of difficulties                        Explanation Example 

Confusion of the unit 
rate identification 
 

Using an arbitrary unit value (it is the guessing 
method without adjustment/ 
the unit value is the number of objects the 
problem starts with. 

The student assumes that each  
banana is 3.6 liras  fin Market A 
(Q1) 
 

Algorithmically based 
mistakes 

Having computational mistakes  4 𝑐𝑢𝑝𝑠

8 𝑐𝑢𝑝𝑠
 =2 Mixture C (Q3) 

Table 2: Classification of Student’ difficulties on Ratio Achievement Test 

Findings 
Students’ incorrect solutions in solving rate problems were analyzed through category building (see 
Table 2) to reveal their difficulties and grouped under two headings: “confusion of the unit rate  
identification” and “algorithmically based mistakes”. These two difficulties were identified as the  
major problems in three typical proportionality questions. Data analysis revealed that of 149 students, 
45 (27%) for the Q1, 25 (15%) for the Q2 and 94 (56%) students for the Q3 gave either no answer or 
an incorrect solution, as recorded in Table 3.  

 



Table 3: Number and percentages of students’ incorrect solutions  
Confusion of the unit rate identification 

Unitizing is identified as a cognitive process that occurs after identifying the unit.  This process allows 
subjective preference by composing two quantities to create a new unit called composed unit (Lobato 
et al., 2010). Students employed a number of different measurement units. However, some types of 
questions require the use of a standard measurement unit; the use of any other unit than this one was 
not allowed (Lamon, 1999). The main difficulty in answering these problems was the identificat ion 
of the unit/rate. To answer the Q1 (see Table1), it was necessary to measure the amount of stuff using 
the concept of unit. Students can also find a different number of measures with regards to their 
measuring unit. When solutions to the first problem were analyzed, confusion about the unit rate 
could be plainly seen, indicating that the student was not able to conceptualize the unit of 
measurement.  

  
(a)                                                                   (b) 

 

 

(c)                                                                    (d) 

Figure 1: Student’s original (a) and translated (c) solution on ignoring the number of objects , 
Student’s original (b) and translated (d) solution on finding the amount of balloons for one lira as 

original versions 

As can be clearly seen from Figure 1-a, although the unit was defined explicitly (single banana cost) 
the student thought that a banana cost 3.6 liras in Market A and 3.3 liras in Market B. In other words, 
the student ignored the number of objects. Then two prices 14.4 and 13.2 were compared and this 
solution did not contribute to the correct answer.  11 (16%) of 69 sixth grade students, 6 (15%) of 39 
seventh grade students and 7 (17%) of 42 eight grade students stated that the best place to buy a 
banana was Market B because they spend 13.2 for four bananas and they get profit. 

Another misunderstanding regarding the unit rate given in the question can be seen in Figure 1-b. 
This student could not decide the exact and correct numbers to find the unit rate in Q2. Therefore, 

 6 Grade (69) 7 Grade (39) 8 Grade (41) 

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 

Incorrect 
Solutions 

13(19%) 4(6%) 30(44%) 8(16%) 3(8%) 17(44%) 8(20%) 2(5%) 23(56%) 

Confusion of 
the unit rate 
identification 
Algorithmically 
based mistakes 

10 (77%) 

 

3 (23%) 

2(50%) 

 

2(50%) 

30(100%) 

 

0(0%) 

5(63%) 

 

3(37%) 

1(33%) 

 

2(67%) 

12(71%) 

 

5(19%) 

4(50%) 

 

4(50%) 

2(100%) 

 

0(0%) 

20(87%) 

 

3(13%) 

No answer 7(7%) 8(12%) 9(13%) 5(13%) 2(5%) 8(16%) 4(10%) 6(15%) 7(17%) 

I think the answer is B. We can compute [corresponding two 
prices] for 4 [bananas]. They [corresponding prices] are Market 
A=14.4 and Market B= 13.4. Therefore Market B is more 
economical. 

 

We need to find price for one balloon. Therefore we should 
divide 3 balloons by 1.5 liras. And then we should multiply the 
result by the number of balloons that they need to get how much 
money is required. 

 



instead of finding the price for one balloon, as can be seen here, he calculated the amount of balloons 
for one lira by dividing 3 by 1.5. Then this value was multiplied by 24 to find the price of whole 
balloons. Indeed, it makes sense to divide 3 by 1.5 to find the amount of balloons per unit lira. This 
student seems to follow the directions provided in terms of finding single units. Even though in her 
written explanation on the right hand side of Figure 2 she stressed finding the value of one balloon, 
she noted that three would be divided by 1.5. 

 
(a)         (b)  

Figure 2: Student’s original (a) and translated (b) solution on comparing the amount of lemon juice 
with the amount of water 

The Q3 provides more evidence for students’ difficulties regarding typical ratio comparison unit rate 
problems. Findings revealed that 56% of 149 students think about the unit rate with given quantit ies 
in a reasonable way. For instance, as can be seen in Figure 2 without thinking about fractiona l 
relativity, the student compares the amount of lemon juice used (2 glasses, 1 glass and 4 glasses) with 
the amount of water to find the stronger tasting lemonade. Even though this student came to the 
correct solution that Mix A has a stronger taste than the others, this solution contains misconceptions. 
He matched the glass of water with the lemon concentrate, and decided that there is one extra cup of 
water in Mix A. However, if this student was asked to sort the concentration of juice for each mix, 
the answer would likely be wrong, because, according to his solution, the order would be Mixture A 
and then Mixture B and then Mixture C. Thus, the less tasty mixture would have been Mix C.  

Algorithmically based mistakes 

The other difficulty which emerged from the data was algorithmically-based mistakes and emerged 
in the computation process. Ashlock (2001) identifies these errors as ‘buggy’ algorithms that involve 
more than one incorrect step in the procedure and do not attain the desired purpose. When the details 
of this difficulty were examined, it was revealed that 8% of the students made basic fact errors and 
conducted incorrect operations while dividing the decimals. 

  

I divided [corresponding to price) 3.6 
by [corresponding to amount] 4 to get 
the price of one banana for Market A. 
And I did the same computation for 
Market B. I made a comparison 
[between Market A and Market B]. 
Market B is more economical with 79 
cent (kuruş).  

(a) (b) (c) 

Figure 3: Students’ original (a) solution on an algorithmically based mistake, Student’s original (b) 
and (c) translated solutions on a difficulty with division 

 

 
A=2 glasses of lemon concentrate 
3 glass of water 
B=1 glass of lemon concentrate 
4 glasses of water 
C=4 glasses of lemon concentrate 
8 glasses of water 

Answer: A 

 
Mixture A has one more glass of 

water, 
Mixture B has three more glasses 
of water 
Mixture C has 4 more glasses of 
water 



Figure 3-a illustrates these algorithmically based difficulties for Q2. First, by dividing 24 by 3, this 
student got 8 groups. As shown above, this student attempted to add 1.5 eight times. She wrote 3 and 
left a space and then wrote 1.5. It can be seen in the calculation that the student first multiplied the 
whole part by 8 and then the decimal part by 8. However, she did not recognize the multiplicat ive 
structure even in a familiar computation and she started with an incorrect computation. Then it seems 
she apparently lost track and then made algorithmic error by adding .50 to 12. Another example for 
algorithmically based mistakes can be seen in Figure 3-b. This student divided 3.3 by 3 and found 
0.11 as a cost of one banana. However, the correct answer was 1.1 and this mistake led the student to 
make the wrong comparison between the profits of two markets. According to this solution 0.9 is 
bigger than 0.11, so Market B is the best place to buy a banana. 

Discussion and conclusion 
The aim of this study was to investigate the common difficulties faced by 6th, 7th and 8th grade 
students while solving typical proportionality problems involving rate and ratio concepts. The first 
common difficulty resulted from confusion of unit rate identification. The second major finding that 
algorithmically based mistakes were another common difficulty in computation process. These 
findings show that current difficulties are consistent with the Turkish context beginning from 6th 
grades (Kaplan, Isleyen, & Ozturk, 2011).Unitizing is a different process from determining the unit, 
because different systems of units are based on different choices of base units. The most obvious 
finding to emerge from this study is that students mostly preferred the unit rate method as a solution 
strategy. The reason might be related to their tendency to retreat to more familiar strategies in their 
solutions.  

The cognitive process emerges after making a decision about the unit and misunderstanding arises 
when students think about the unit, from their computations especially while explaining unitizing 
(Lamon, 1999). The results of this study showed that sixth, seven and eight graders had problems 
about conceptualization of the unit of measurement. More specifically, the lemonade juice problem 
showed that students from all grades used unit rate strategy as a part of faulty application of a correct 
result by comparing the numerical differences additively rather than the multiplicatively. As Noelting 
(1980) states, they focused on the basis of the number of glasses of orange juice instead of 
proportional relations between given quantities. Especially sixth graders who offered a rich repertoire 
of unit rate mistakes tended to apply unit rate for the lemonade problem, and their incorrect results 
seems to be deviated from unit rate method (see Table 3). Based on this point, lemonade problem 
juice experiments might be beneficial for students in terms of experiencing their own strategies in 
real contexts instead of just explaining them verbally. Findings suggest that they might be performing 
this operation without realizing the difference between additive and multiplicative reasoning (Lamon, 
2012; Lobato et al., 2010). This situation can make a noteworthy contribution in terms of providing 
some indications of the complexity of these mixture problems not only for sixth but also for seventh 
and eighth graders. This suggests the need for more in-depth investigation into student thought-
processes when making these specific mistakes (Ashlock, 2001; Son, 2013). These results are 
consistent with other studies regarding emergent difficulties within Turkish context and suggest that 
proportional reasoning should involve more than just applying rules, and that there is a need for more 
information about what students perceive the unit to be (Sarwadi & Shahrill, 2014). Teachers should 
be more aware of student conceptions about unit rate while teaching proportional reasoning. This 



corroborates with Lamon (1993) and Singh (2000) who state that teachers must encourage the spend 
time to connect composed units with multiplicative comparisons by setting different types of 
problems for students as much as possible to enable them to build flexible and complex unit structures 
develop thinking strategies.  

Findings of the present study showed that algorithmically based mistakes are commonly seen in the 
student computation process. Son (2013) identifies three categories of error in the responses received 
in her study: concept-based errors, procedure-based errors and diagnosis errors. As Ashlock (2001) 
states, one of erroneous steps lead to emerge these kind of mistakes and then as a result the intended 
purpose is not systemically accomplished. On the other hand, the lack of clinic interviews with 
students in this study suggests caution in identifying the exact causes of these fundamental mistakes. 
In another words, it is difficult to decide whether students’ algorithmically based mistakes stem from 
limited conceptualization of the problems or whether there was a mistake in their algorithmic 
procedures. It is possible that some of the difficulties revealed in this study may result from 
concentration on algorithmic computation. This suggests the need for further investigation into the 
exact reasons for algorithmically-based mistakes through clinical interviews.  

The findings of the present study and previous research suggest several implications. As Lamon 
(1999) states, textbooks don’t provide the flexibility of using unit rates, and under these limited 
conditions students will not be able to compose units. Turkish mathematics textbooks do not provide 
sufficient examples of these types of problems which might promote the development of an 
understanding of unit rate. Besides, exposing students to a variety of proportionality problems can 
help them to develop multiplicative reasoning skills, and to promote flexibility in unitizing. 

Even though the scope of this study includes only determining the potential difficulties students have 
regarding rate and ratio problems, we might make some implications and suggestions to overcome 
those difficulties. Future research might continue to investigate students’ verbal reasoning process 
and provide more detailed insight into the reasons for incorrect solutions. Such exploration might 
yield more informative insights into the reasons for student identification of unit-rate confusion and 
algorithmically-based errors, and provide valuable implication for the development of students’ 
multiplicative reasoning ability.   
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Results of secondary school students' performance who participated in a pilot study of a general 
research project whose purpose is to contribute to building better mental objects for fractions are 
described. A Local Theoretical Model for fractions is used as a theoretical and methodological 
framework to design and develop a seven stages teaching sequence based on the use of applets 
created with GeoGebra and the number line as a conceptual and didactical resource. In this paper 
details of the design, development, and results of the first two stages are given. Results show 
children’s preferences to represent fractions on the unit segment, that is, they think of proper 
fractions. A majority of the participants paid more attention to the graphical aspects of the applet. 

Keywords: Fractions, local theoretical models, applets for teaching, number line, improper fractions. 

Introduction 
The teaching and learning of fractions and rational numbers have been studied during several decades 
by researchers such as Freudenthal (1983), Behr, Lesh, Post and Silver (1983), Kieren (1988) and 
Figueras (1988). In the last decade, fractions have been considered as one of the most complex 
concepts studied in basic education (see for example López-Bustamante (2009) in Mexico, Contreras 
(2012) in Spain and Petit, Laird & Marsden (2010) in the United States of America).  

The construction of better mental objects of fractions during elementary school is considered 
important because that concept is widely accepted as an integral part of mathematics curriculum. 
Moreover, Siegler, Duncan, Davis-Kean, et al (2012) characterized the knowledge of fractions and 
division as unique predictors of students’ mathematics performance from elementary to high school. 

On the other hand, the technological tools as a resource for teaching mathematics have been 
incorporated into the curriculum because there is evidence that those are cognitive resources (e.g., 
Kieran & Yerushalmy, 2004). In this sense, an attempt is made to design a teaching model that 
includes these tools to promote the building up of students’ better mental objects of fractions. 

Research objectives  

The principle aim of the general study is to construct a Local Theoretical Model for fractions in order 
to enrich the actual teaching model (in Figueras' sense, 1988, pp. 21- 22) for Mexican elementary 
school. To achieve this aim a seven stage teaching sequence based on the use of applets was designed. 
The focus of this paper is the design and results of the first two stages of a pilot study. The purposes 
of those stages are: 1) to characterize the type of fractions students keep in mind to represent them on 
the number line displayed on the screen, 2) to make an exploration inquiry about students' ideas 



related to density and order of fractions, and 3) to identify if the students relate numerical aspects of 
fractions with their graphical representation. 

Theoretical framework and related literature  
The idea of Local Theoretical Model (LTM) developed by Filloy (see Filloy, Rojano & Puig, 2008) 
is used as a theoretical and methodological framework. From the theoretical point of view, the LTM 
serves to focus on the object of study through four interrelated components: (1) formal competence, 
(2) teaching models, (3) models for cognitive processes, and (4) models of communication. The 
construction of these components allows having an interpretative framework to identify the different 
aspects of fractions, which according to Freudenthal (1983) appear as fracturer, comparer, measurer, 
fraction operator and numbers.  

The building up of the teaching models component enabled the detection in Mexican and Spanish 
curricula, that the study of properties of order, density, the equivalence of fractions, and proper and 
improper fractions were considered in the last years of primary school. Bright, Behr, Post, and 
Wachsmuth (1988) and Saxe, Taylor, McIntosh, and Gearhart (2005) support the idea that working 
with the number line gives students an approach to the notion of above concepts. However, in some 
sixth-grade’ textbooks used in Spain (e.g., González et al, 2015) continuous and discrete models are more 
often than not used for teaching fractions, and activities that include the number line are lacking. 
These are some reasons for using the number line in this research as a didactical resource. 

A revisiting of specialized literature was carried out to construct the cognitive processes’ models 
component. Some of the papers analysed report students' difficulties faced when they learn with the 
number line. Michel and Horne (2008) mentioned three principal misconceptions: (1) Instrumental 
part-whole knowledge -difficulties with unit-forming, that is, children consider any line segment as a 
unit-. (2) Counting lines, not spaces -to represent a fraction on the number line some students count 
the lines or points (considering the zero point) instead of counting intervals-. (3) Decimalising the 
count -to represent any fraction, some children always divide the unit segment in ten parts-. 

Finally, the communication component is formed by the observation of communication processes 
between student-applet interactions. The building up of the four components grounds the design of 
the teaching sequence and its trial. The latter is detailed in the following sections. 

Methodology and methods 
From the methodological point of view the LTM serves to organize the research project in two main 
parts: (1) the building up of the four components of an initial LTM for fractions as a reference 
framework of the general research project and (2) an experimentation with students.  

Three phases comprise the experimental part. The first one relates to the design of a pre-test, a post-
test and a seven-stage teaching sequence. The second phase is the application of the teaching sequence  
and is structured as shown in Figure 1. Each stage is composed of two parts, one is a GeoGebra applet 
and the other a series of questions posed with the purpose that students show the ideas they bring into 
play about fractions when interacting with the applets. Applets and questions are set up on a Webpage 
that is associated with a database to record students' responses and interactions with the applets. The 
third phase corresponds to data analysis and characterization of students’ performance. 



 
Figure 1: Structure of the teaching sequence design and its trial 

The first two stages of the teaching sequence were done in one 45-minute session. Student individua l 
interactions with applets were collected in a non-invasive manner. Answers given were stored in a 
database and collected with computers provided by researchers. At the end of the experimental phase, 
stored information was joined and organized to proceed with its analysis. The applets are used as a 
resource to teach fractions and to collect data.  

Setting and participants 

The pilot study was carried out with 45 students from 12 to 14 years old in a secondary school located 
in a troubled urban area of Valencia in Spain. According to their mathematics teacher, participants 
have a large history of difficulties in mathematics. The students have serious problems of truancy, for 
this reason, not all of them completed the trial of the teaching sequence. Due to this fact, only data 
from students that completed sequential steps were considered, that is, 28 students made the first stage 
and 25 completed the second stage and so on (see Figure 1). The students worked alone during the 
teaching sequence trial. In this study, the teacher applied the pre-test and post-test.  

Applets’ design and results 

The applets were constructed in a learning environment for fostering the development of conceptual 
understanding of fractions, taking into account the didactical functions of technology in mathematics 
education adapted by Drijvers (2013, p. 3). As aforementioned, each stage of the teaching sequence 
has an applet with an exploration/interaction component (Figure 2 and 4) and a list of questions for 
students to reflect on what they observe during the interaction. To respond, students can turn to applets 
and observe the animation or representations of fractions. 

To characterize the answers given by students, schemes that enable a codification have been 
constructed (Figure 3 and 5). Answers given by pupils were grouped in different types determined by 
the form in which questions are posed. Type i are answers to questions that are general statements 
with diverse interpretations. Type ii collects answers that can be classified solely as correct or 
incorrect. Type iii groups answers to questions where a justification is required and Type iv are 
answers to questions that requires information students must write on the applets' windows.  

Applet design for the first stage . The applet's tasks for the first stage were developed considering 
two parallel lines of action. One directed towards the student's familiarity with the interact ive 
environment. The other leads the student to represent different aspects of fractions on the number line 
and to introduce them to a proper use of the fractions' mathematical sign system (Figure 2). Three 
indications appear on the screen in Figure 2. The first one -‘Move the sliders and watch what happens 
on the number line'-, has the purpose to focus students on the effects of the numerator and 



denominator sliders that appear at the upper left corner of the screen and to relate those to the 
graphical and symbolic representations of fractions also shown on the screen. 

 
Figure 2: Screenshot of the applet for the first stage  

With the second indication –“Represent fractions 1/2, 3/2 and 7/2 by moving the sliders”-, students 
are asked to represent the first two fractions to see them in the line segment on the screen. The main 
idea for asking students to represent 7/2 is to promote reflection regarding characteristics of fractions 
that can be visualized on the screen and of those that cannot. 

The third indication -‘Represent the fractions 1/3 and 4/3 and observe the blue segment that is drawn 
on the number line’- is provided in order to identify the point representing the fraction or the fraction 
as number, but also to focus students' attention on the magnitude representing the fraction, that is the 
length of the segment that represents the fraction. Thus, fraction as a measurer emerges, taking into 
account the part-whole relationship. 

In addition to the above information, seven questions (Figure 3) are posed to make students write 
their ideas about the observations made during exploration/interaction period. Students can read 
questions and explore the applet as many times as necessary to answer them. 

Data analysis and results of the first stage. For applet 1 there are only questions of types i and ii. 
The codification of students’ answers is done using the scheme shown in Figure 3. 

Questions (1, 2, 4, 5 y 6)  Type i 
Q1. Represent the fraction 1/4. What happens to the fraction 
if you move the numerator slider and the denominator slider 
is fixed? 
Q2. Represent the fraction 7/8. What happens with the 
fraction if you move the denominator slider and the 
numerator slider is fixed? 
Q4. What will happen if the number 25 in shown in the 
denominator slider? 
Q5. What happens when the numerator and the denominator 
are equal? 
Q6. Why the fraction 7/2 cannot be seen on the screen? 

 Students answers are referred to:  The interpretation is 
considered: 

1. Numerical aspects 
2. Graphical aspects 
3. Numerical and graphical 
aspects. 
4. Could not be interpreted 

 

a. Complete 
b. Incomplete 
c. Incorrect or 
ambiguous 

Questions (3 y 7)  Type ii 
 
Q3. Represent the fraction 6/7. In how many parts does the 
line segment that starts at 0 and ends at 1 is divided? How 
many of those parts are coloured? 
Q7. Write two fractions that cannot be represented on the 
line segment shown on the screen. 

 The purpose of these questions is that the students observe the 
graphical representation (line segment). The answers can be: 
 
a. Complete 
b. Incomplete 
c. Incorrect or ambiguous 

Figure 3: Scheme to characterize the answers to questions posed in the first stage  

One of the most common mistakes to respond Q3 was that students focused on counting the lines or 
points considering the zero point instead of counting spaces. 22 students identified at least one 
fraction greater than three to respond Q7. In the answers to questions type i (for example, Q1, Q2, 



Q4, Q5 and Q6), pupils orient their attention on what happens in the line segment that appears on the 
screen (Table 1). Of the 140 responses (28 students x 5 questions), 63 (45%) were classified in this 
group (code 2, in grey). Eight of these answers are considered complete (code 2a), since a consis tent 
explanation is offered, 25 incomplete (code 2b) and 30 incorrect or ambiguous (code 2c). Two 
answers related to these results are included to exemplify the way the coding is done. 

(1) The answer given by student S1 to question Q1 is: "the bar is moving to the right". This response 
is coded as 2b (see Table 1) because the focus is posed on what happens on the line segment. 
Specifically, it refers to the movement that occurs in the blue segment ("the bar" named by the 
student) representing the fraction when the slider moves to the right, that is when the value of the 
fraction is increased. The response is not considered complete because the student centres his 
attention on the movement to the right and presumably does not move the slider to the left. (2) The 
answer given by S3 to question Q1 is: "there are more points between numbers (denominators), in 
particular, four points between numbers". In this case, the answer also reveals a focus on the number 
line; the student observed the partition of the line segment, but the interpretation is incorrect or 
ambiguous because the student did not explore using the sliders (code 2c). 

The focus on numerical aspects of the fraction (code 1, in green) was observed in 38 of the 140 
responses to the questions of type i (27.15%); two answers were classified as complete (1a), 14 as 
incomplete (1b) and 22 as incorrect or ambiguous (1c). The answer given by student S17 to question 
Q6 is: "because the denominator is 2, and this is smaller than 7, so the numerator is bigger, so it is 
not possible". The student observed the values of the numerator and denominator, makes a 
comparison between the numerical values and justifies his answer; it was coded as 1c (see Table 1).  

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 
Q1 1b 2c 2c 3b 2b 3b 2c 1c 1c 1c 2c 2b 2b 2b 3b 2c 1c 2b 1b 2c 4c 3b 2c 1c 2b 2b 2c 4c 
Q2 1b 1c 2c 2b 2b 3b 3b 1c 1c 1c 2c 2b 2c 1c 3b 1b 3a 2c 3b 2b 1b 3b 2c 2c 3a 2b 2c 2c 
Q4 2b 2c 2c 2b 2b 2c 2c 4c 4c 4c 4c 2c 4c 4c 2b 2b 1b 2b 2a 1c 1c 4c 4c 2c 1c 4c 4c 4c 
Q5 2a 3a 2a 2c 4c 2b 1b  1c 1c 1b  4c 1a 1b  4c 2a 2a 1b  2a 3a 1b  4c 1b  1a 2b 2b 2a 4c 2a 
Q6 3b 1c 2c 1c 1b 1c 3b 4c 2c 1c 2c 1c 1c 2b 2b 2b 1c 3b 3a 4c 2c 4c 2c 2c 4c 2b 2c 1b 
Q3 c a b a b a c b b b a b b b a c c c a c b b c c c b a a 
Q7 b c a a c c c b b a b b a b b b a a a b a b b b c c b b 

Table 1: Characterizations of students’ answers in the first stage   

Only in 17 of the 140 (12.14%) answers to the questions of type i (in purple) the focus on numerica l 
and graphical aspects is made evident. Five of them were classified as complete (3a) and twelve as 
incomplete (3b). The answer given by student S19 to Q6 is: "because in the line, one can only 
represent numbers between 0 and 3, and 7/2 is greater than 3". The student observed the structure of 
the line segment; his focus is posed on the graphical representation but also refers to the fraction as a 
number. For this reason, the answer was coded as 3a.   

Applet design for the second stage. A new form of symbolic representation is introduced in this 
applet (see Figure 4). In this case, students are asked to write five fractions in a pop-up window when 
they click the start button (INICIO in Spanish). This button is associated to a JavaScript subroutine 
that offers feedback and stores the student actions.   



 
Figure 4: Screenshot of the applet for the second stage  

 

Fractions are limited to those with denominator between 2 and 10 and numerator between 0 and 40. 
If a pupil writes a fraction that does not meet these conditions, a pop-up window appears with a 
message advising to take into account the characteristics of the numbers involved. When introduc ing 
a fraction greater than three, another alert window appears to indicate that the fraction cannot be seen 
on the number line. Fractions that are written by the user leave a trace in the form of red dots and the 
value of the fraction on the number line (see Figure 4). The visible trace on the screen helps the 
students answer questions posed in the Webpage in which the applet is embedded. 

Data analysis and results of the second stage . In the applet that corresponds to the second stage, 
there are questions of type i, ii and iv. The codification is done using the scheme in Figure 5. 

Questions (1, 3 and 4)   Type i 
  Students answers are referred to:  The answer could be: 
Q1. The 5 fractions you wrote appear on the 
number line on the screen? Why? 1. Numerical aspects 

2. Graphical aspects 
3. Numerical and graphical 
aspects. 
4. Could not be interpreted  

 a. Yes 
b. No 

Q3. Of the 5 fractions written, which one is the 
smallest? Why? 
Q4. Of the 5 fractions written, which one is the 
greatest? Why? 

 
a. Correct 
b. Incorrect 

Questions (2, 5 and 6)  Type ii 
Q2. Write the fractions you wrote from greatest 
to smallest. 

 The answers can be: 
a. Correct;             b. Incorrect;                c. Incomplete 

Q5. How many fractions could you write between 
0 and 1? 
Q6. How many fractions could you write between 
1 and 4? 

  
a. Finite     
b. Infinite, many, a lot of…  
c. No answer (blank)     

Write 5 fractions  Type iv 

The student must write five fractions 
 Written fractions can be classified as: 
 1. Proper;                2. Improper;               3. Unit   

Figure 5: Scheme to characterize the questions of the second stage  

Only 12 of 25 students were able to answer correctly Q2 (code 1). This result has an effect on the 
answers to questions Q3 and Q4, as shown in Table 2. The students who order fractions correctly 
chose correctly the greater or smallest fraction for questions Q3 and Q4 respectively. To justify the 
order of those fractions S1 considered the length of the blue segment that represents the fraction on 
the number line (2a). S2 considered the position of the point representing the fraction on the number 
line (2a), i.e. graphical aspects of fractions. Students S5 and S18 considered the characteristics of the 
numerator and denominator of the fraction, that is, numerical aspects of fractions (code 1a). 

The justification for most students who do not respond correctly to questions Q3 and Q4 is based on 
comparing the numerators and denominators of the fractions. Two of these cases are the following: 
(1) Student S8 choose 8/3 as the smaller fraction, "because the denominator is the smallest." The 



comparison made with fractions 4/10, 3/9 and 12/5. He also chose 4/10 as the greater fraction 
"because the denominator is the largest." (2) Student S7 chose 2/3 as the smaller fraction between 
5/4, 3/7, 3/4, "Because that [fraction] has the smaller numbers." 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 

 

Q 1 2a 1a 2b 1b 4a 4b 2b 4b 4b 4b 4a 4a 4b 4b 4a 2a 4b 2b 1a 1b 4b 4a 4b 2a 4b 
Q 2 1 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 
Q 3 2a 2a 4b 1b 1a 4a 1b 1b 2b 4b 1a 1a 2a 4b 4b 2b 2b 1a 1a 1b 1a 4b 2b 2b 2a 
Q 4 2a 1a 4b 1b 1a 4a 4b 1b 2b 4b 4a 2b 4a 4b 4b 4b 2b 1a 2a 1b 1a 4b 2b 2b 2a 
Q 5 b a a a a b a a a a a a a a a a a a b a c a c a b 
Q 6 b a a a a b a c a c a a b a a a a a b a c a c a b 
P 3 5 3 3 1 2 3 3 1 3 0 1 2 3 1 3 3 0 2 3 1 3 1 4 2 56 
Im 0 0 0 2 1 3 1 2 2 1 4 2 2 1 4 1 1 2 1 0 3 0 3 1 1 38 
U 0 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 5 

Table 2: Characterizations of students’ answers in the second stage  

Of the 50 answers (25 students x 2 questions) related to the density of fractions (questions Q5 and 
Q6), 35 were classified with code a, because the answer refers to a finite number of fractions, 6 were 
blank (code c), and only in 9 answers the density property was mentioned in some sense (code b), 
because some of the responses were "infinite fractions" or "as much as one wants". Finally, Table 2 
shows that students wrote more often proper (56) than improper fractions (38). 

Conclusions    
Results of the first two stages described before allow to highlight the fact that few students were able 
to relate the numerical and graphical representation of fractions. However, students who are able to 
relate these two representations can give complete and correct answers. To justify questions related 
to fractions' order, some students relied solely on the numerical aspect, for example, comparing the 
numerator and the denominator, which led to incorrect or ambiguous answers. Whereas answers in 
which graphical aspects are used, for example, the position of the point on the number line or the 
length of the blue segment, led to correct answers. Although most students focused on the latter 
aspect, they encountered difficulties in representing a fraction on the number line. The most common 
mistakes are instrumental part-whole knowledge and counting lines, not spaces, also reported by 
Michel and Horne (2008). 

On the other hand, the idea of density that students had seems to be strongly related to the number of 
fractions they represented during their interactions with the applet, these results are a warning to 
continue investigating these ideas in later stages and reflect the influence of applets. The students 
wrote more proper fractions even though the number of proper fractions with small denominators as 
2 or 3 are few compared with the number of improper fractions. These results can be related to fact 
that teaching models favouring the recognition of proper fractions are widely used. 
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How middle-grade students explain ordering statements within real 
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The purpose of the study is to examine the extent to which middle-grade students agree on statements 
about the ordering of two negative integers given within a real-life context, and what kind of 
procedural and conceptual strategies they generate to order those numbers. Data is collected through 
a questionnaire including two statements about ordering integers from fifty-seven middle-grade level 
students in a public school. The results show that even though students agreed with both of the 
statements, they did not explain the concept of ordering in daily life with regard to conceptual 
meanings and that they have problems in their procedural knowledge repertoire.  

Keywords: Integers, contextual problems, negativity. 

Introduction 
Integers is one of the main topics that students have to understand to be successful in later contents 
such as algebra, geometry, or data analysis. While integers are required to solve algebraic expressions, 
sometimes it is required to understand the number system (Levenson, 2012). In particular, negative 
integers are hard for students to understand because of difficulty in representing those numbers 
physically (Davidson, 1992), locating them on the number line, performing four operations (e.g.: 
Ojose, 2015), or ordering them (e.g. Schindler & Hußmann, 2013). Ball (1993) exemplifies the 
dilemma of the case of teaching negative numbers regarding the ordering of two integers. 
Furthermore, according to Ball (1993), the transition among direction and magnitude aspects of 
negative integers are the heart of understanding negative integers.  

Students’ solution strategies  

Linchevski and Williams’ (1999) study reports on a disco game supported by an abacus model that 
helps students make sense of net-change, zero situations, and develop strategies such as compensation 
and cancellation within the everyday life situations requiring operations of integers. In addition to 
this, students have solution strategies of four operations such as the tendency of using the first 
addend’s sign, ignorance of the second addend’s sign, or generalizing the statement by rote as ‘two 
negatives make a positive’ and so on (Ashlock, 2010). Considering the literature, it is seen that many 
studies focus on student solution strategies about operations on integers. However, in the availab le 
literature, there are limited studies that focus on students’ strategies about ordering integers (Schindler 
& Hußmann, 2013; Ojose, 2015). Furthermore, what kind of pieces of information students have 
regarding ordering integers, is rare. 

Conceptual and procedural knowledge 

According to Hiebert and Lefevre (1986), pieces of information might be separately located or are in 
closely related within the knowledge network in students’ minds. Once students start learning, they 
can make links among those pieces or students keep in mind the necessary steps to solve problems 
and they apply the steps to solve the problems without questioning. The pieces of knowledge can be 



constructed with appropriate links to make meaningful understanding and that can be accomplished 
by creating relationships among the separately existing pieces of knowledge. Hiebert and Lefevre 
(1986) define conceptual knowledge as ‘... knowledge that is rich in relationships. It can be thought 
of as a connected web of knowledge, a network in which the linking relationships are as prominent 
as the discrete pieces of information. Relationships pervade the individual facts and propositions so 
that all pieces of information are linked to some network’ (Hiebert & Lefevre, 1986, pp. 3-4). The 
other kind of knowledge which is used by students in learning mathematics while solving 
mathematical problems is procedural knowledge. Hiebert and Lefevre (1986) describe procedural 
knowledge through including parts as ‘one part is composed of the formal language, or symbol 
representation system of mathematics. The other part consists of the algorithms, or rules, for 
completing mathematical tasks’ (Hiebert & Lefevre, 1986, p.6). Both procedural and conceptual 
knowledge is necessary for students in order to finish the process with a correct answer and to 
understand the relationships among concepts. Students’ backgrounds include procedural and 
conceptual knowledge and both of them are required for mathematical proficiency (Kilpatrick, 
Swafford, & Findell, 2002). They are constantly interacting with each other and in light of instruct ions 
given to students, the kinds of knowledge can be revealed. In this regard, this study will examine 
students’ explaining strategies while ordering two negative integers through conceptual and 
procedural knowledge descriptions of Hiebert and Lefevre (1986). It gives information about how 
middle school students conceptualize ordering of integers, how they give meaning to integers in real 
life contexts, and what kind of procedural and conceptual strategies they have while ordering integers. 
With this study, possible explanations of the reasons behind middle-grade students’ difficulties and 
their understandings in integers, specifically about ordering integers are revealed. Thus, the aim of 
this study is to explore answer for the following questions: (1) To what extent do middle-grade 
students agree on statements about the ordering of two negative integers? (2) What kind of strategies 
do middle-grade students generate to order two negative integers given within a real-life context? 
Related with the second research question, this study examines how those strategies can be classified 
as procedural or conceptual.  

Context of the study 

The context of the study might be understood better via curricular guidelines of ordering integers in 
Turkish middle school mathematics curriculum. The topic starts at the beginning of middle-grade 
levels. Objectives related to this topic are about interpreting integers, the meaning of absolute value, 
operations of integers, the meanings of the operations, comparing and ordering integers, solving 
integer-related problems, and relate exponential numbers to integers. Specifically, in learning to order 
integers, the objective says that: "Students should be able to compare and order integers" (MoNE, 
2013, p.14). The curriculum advises teachers that the largest number is located to the right side in 
reference to the small number on the number line while ordering numbers. Therefore, it is seen that 
teachers are supported to use the link between number line location and integers’ ordering. In other 
words, the curriculum supports ‘direction’ aspects of negative integers while the magnitude aspect of 
negative integers within real life situations (e.g.: temperature, asset and debt, elevator and so on.) are 
an application of objective presented in the middle school curriculum (MoNE, 2013). In this sense, 
in their instruction, students are given real-life contexts to understand how integers are represented 
within real life contexts in a meaningful way (MoNE, 2013). For ordering integers, the location of 
numbers on a number line is the basis of teaching the content (MoNE, 2013). In this respect, ordering 



integers is not interpreted on the basis of real life examples. Rather than that, interpretation of the 
ordering integers mostly depends on the location of numbers on the number line.   

Method 
In this study, qualitative research method, specifically single case study approach, is used in order to 
reveal students’ strategies and investigate students’ understanding of contextual statements. The 
research method enables researchers analyzing data through creating a theme and codes (Creswell, 
2005).  

Sampling  

Fifty-seven middle-grade students participated in the study. These students are selected under the 
purposeful sampling and they are studying at the middle-grade level in a public school in Ankara, 
Turkey. The school could be regarded as successful on the basis that it accepts students with having 
higher grades in nationwide held examinations. Before conducting the main study, a pilot study was 
conducted in two classrooms together with another fifty-four middle-grade students at the same grade 
level as the school the main study was conducted. The purpose of the pilot study is to make the 
statements understandable to the participants and to minimize the misunderstandings derived from 
the format of the questionnaire. The objectives which are aimed to be evaluated in the study require 
middle school students interpret integers within real life situations and to compare and order integers. 
Within this context, the content validity of the questionnaire is validated with mathematics teachers 
and one mathematics education instructor in the university.  

Data collection tools  

In this study to collect data the questionnaire given in Figure 1 is used. In order to understand middle 
grade students’ general tendency of ideas about the different nature of ordering statements, students 
were asked whether they agree with the two ordering statements given in real life context. In addition, 
they were required to give details about the reason of agreement status in order to understand their 
reasoning in ordering two negative integers of strategies for explanation. As it is seen, there are two 
ordering statements given in the context of temperature. In this regard, questions were generated 
based on the context which middle grade students are familiar with and use the knowledge of ordering 
two negative integers by relating the direction and magnitude (quantity) aspects. The questionna ire 
has two statements pointing out two kinds of relations about ordering two negative integers. The first 
statement says that "As -10 degrees are less hot than -5, -10 is smaller than -5." The statement allows 
middle grade students to order two negative integers considering temperature as a quantity and 
direction. In other words, they can order two negative integers considering the mentioned degrees as 
similar to ordering two positive quantities. In line with this, -5 is more hot (more quantity of hot) than 
-10. In addition, temperature context enables students ordering integers considering direction 
integers. The second statement says that "As -10 degrees is situated on thermometer, lower than -5, -
10 is smaller than -5. The statement allows students to interpret ordering of two negative integers 
based on their locations on the thermometer and their distance from zero. In this regard, whether they 
are using any conceptual or procedural strategies for using the nature of ‘direction’ and ‘magnitude’ 
meaning of two negative integers is examined.  
  



 
 
 
 
 
 
 
 

 
 
 

Figure 1: Questionnaire items of the study 

Data analysis 

Similar and different categories of answers are grouped through content analysis. Explanation 
strategies are revealed by examining words or group of words students use in their answers (manifes t 
content) and following this the underlying meaning of those wordings are revealed by investigat ing 
their explanation strategies deeply (latent content) (Fraenkel, Wallen, & Hyun, 2011, pp.483-484). 
Answers of the questions are analyzed for the agreement status, students’ explanation strategies of 
the agreement status regarding conceptual and procedural strategies while explaining their responses. 
Data of the study are analyzed within Hiebert and Lefevre (1986)’s conceptual and procedural 
knowledge framework. 

Findings 
Agreement status of students about the ordering statements 

Based on the analysis, it is seen in Table 1 that participants are agree with both of the statements.  
 

 

 

 

*A: Agree, NA: Not Agree, N: neutral, NM: No marking 

  Table 1: The percentage of agreements to the ordering statements  

The analysis of the results show that middle grade students agree with the idea that ordering two 
negative integers can be explained by using ‘hot’ concept together with the word ‘less’. In this regard, 
they agree on the idea that two negative integers can be ordered by using the words ‘more’ and ‘less’ 
which express the quantity of something and came to the conclusion that ‘hotter’ is bigger than ‘less 
hot’. Thus, for the first statement "As -10 degrees is less hot than -5 degree, -10 is smaller than -5", 
most of the students (75%) selected the choice agree. Parallel with this, for the second statement most 
of the students (67%) also agree on the idea that two negative integers can be ordered based on the 
location of the integers on the thermometer. In other words, the idea accepted by most of the 
participants is that the number which is below the other is much smaller.  

  

"As -10 degrees are less 
hot than -5, -10 is smaller 
than -5. " 

AGREE 
o  

NOT AGREE 
o  

NEUTRAL 
o  

 

Why do you think so? 

"As -10 degrees situated 
on thermometer lower 
than -5, -10 is smaller 
than -5.  

AGREE 
o  

NOT AGREE 
o  

NEUTRAL 
o  

 

Why do you think so? 

Temperature Context A NA N NM    Total 
1.statement 
2.statement 

75
66 

16
14 

7 
16 

2         
4         

100 
100 



The explanation strategies of middle grade students  

Table 2 shows that the most preferred explanation strategies for the given statements are related to 
the network of hot and cold (37%), and rule-based explanations in reference to zero or positive 
numbers (18%). The strategy of network of hot and cold represents a relationship between the 
concepts of temperature, coldness and integer in the minds of students. In line with this, students 
make transitions among those concepts. For example, students form a link between negative integers 
and coldness saying if negative numbers increase the weather gets cold. The strategy of rule-based 
explanation in reference to zero or positive numbers is about rules with which students are familiar 
and which are created using zero and positive numbers like negative numbers are [ordered as] 
opposite to positive numbers. This table also depicts that students do not tend to use rule-based 
explanations in both of the statements. Put differently, rule-based explanations are not a dominant 
strategy for explaining those two ordering statements. They are used in the second statement, which 
mentions the location of numbers on the thermometer, compared to the first statement which is about 
interpreting the coldness, hotness, and their relationship. Another unexpected result is that although 
not many, some students did not consider this sort of order and they agree with the idea that "the 
number -10 is more than -5". In other words, they reject the order and think that -10 is bigger than -5 
or -10 is hotter than -5. Similar to this, some students criticize the statements saying ‘they are illogica l’ 
or ‘they [both of the statements] are the same’ and so on. Besides, some students used the copy of the 
statement strategy which is related to writing the same statements given in the questionnaire. In this 
regard, a substantial portion of students (44% for the first statement; 62% for the second one) do not 
employ any kind of explanation strategies for ordering integers in a given context. Students who copy 
the statement, use no strategies (e.g.: I don’t know), use unclear statements (e.g.: I don’t know why I 
am saying that I agree with the statements), and left the answer blank did not give reasons in writing 
as if they could not interpret the situation.  

Conceptual and procedural strategies  

Examination of students’ written responses showed that students used conceptual and procedural 
strategies while explaining their agreement. Whether the strategy a student is used is related to 
procedures or concepts is determined considering how the concepts are interpreted in the statements, 
how transitions are made among the statements, and the content of the definition of Hiebert and 
Lefevre (1986). Students’ responses of conceptual strategy were analyzed based on conceptual 
knowledge definition of Hiebert and Lefevre (1986). In this regard, network of hot and cold category 
was created when students interpret hot and cold concepts and make transitions between them saying 
that ‘more hot’ means ‘less cold’ etc. In addition to this, as Hiebert and Lefevre’s definition for 
conceptual knowledge supports the relationship between pieces of information, the network of hot 
and cold was appropriate for this category. On the other hand, procedural strategy category was 
created based on Hiebert and Lefevre’s (1986) procedural knowledge definition which supports the 
repertoire of basic factual knowledge and symbolic representation without interpretation of those 
facts and representations. In line with this, rule-based explanation reference to zero or positive 
numbers was categorized as procedural knowledge. Rule-based explanation reference to zero or 
positive numbers was related to the facts which are presented as context independent relations 
including facts of ordering two negative integers regarding their magnitude and direction. 

  

 



 

*One student suggested more than two ways for explanation 

Table 2: Explanation strategies and conceptual and procedural strategies of students  

Table 2 indicates that for the first statement, students used more conceptual strategies than the second 
one, and students used more procedural strategies for explaining the second statement than the first 
one. This might be derived from the nature of the statements which allow students to focus on the 
conceptual nature of the word ‘less hot’ and of allocating numbers on a number line. However, it 
seems that a considerable number of students used the procedural and conceptual strategies (20% and 
16% for the first and second statement, respectively) regardless of the nature of the problem.  

Most of the students used the network of hot and cold strategy with the conceptual strategy of ordering 
two negative integers using coldness (e.g.: -10 is colder than -5). In other words, most of the students 
made a transition from the word less hot’ to the word ‘colder’. As opposed to the expected 
interpretation of students, they explained ordering two negative integers considering the quantity of 
hotness concept (e.g.: -5 have more hotness than -10). Students used connected knowledge of zero  
strategy, for instance, saying that ‘being closer to zero is connected to being hotter’. Similarly, in the 
first statement, the procedural strategy of ‘bigger number is closer to zero’ is used (e.g.: -5 is closer 

 
Explanation Strategies 

 
Example of students ‘ statements 

Statements (%) 
1. 2. 

C
on

ce
pt

ua
l s

tra
te

gy
  

Connected knowledge of 
zero 

Closer to zero is connected to being hotter 2 6 

 
 
Network of hot and cold  

The big number (-10) is colder than the smaller 
number (-5) 

21 4 

As numbers increases hotness increases 5 2 
If negative numbers increase the weather gets 
cold 

4 - 

-5 has more quantity of hot than -10 7 2 
Quantity of quicksilver is smaller at -10 degree - 2 

Total 39 16 

Pr
oc

ed
ur

al
 st

ra
te

gy
  

 

Rule-based explanation 
reference to zero or 
positive numbers  

Bigger number is closer to zero (and the reverse 
of the statement) 

9 14 

Numbers get smaller if you move to the left side 
of zero 

4 4 

Negative numbers are ordered as opposite to 
positive numbers 

5 - 

Numbers above the number line are bigger than 
the numbers below the number line 

- 2 

Total  18 20 

O
th

er
 st

at
em

en
ts

 

Criticism of the content of 
the statement 

No relationship between the given statements, 
they are contradictory to each other 

5 9 

Rejecting the order -10 is not less than -5 8 9 
Copying the statement Student write the same statements given to them 7 14 
Unclear statements   For the reason that this is appropriate 7 1 

Drawings help ordering two negative integers 2 9 
Blank - 5 4 
No strategy I don’t know 12 18 

Total  46* 64 
Total answers* 100* 100 



to zero and so it is bigger and vice versa). Parallel with this, for the second statement, the same 
procedural strategy was mostly used by the participants.  

Most of the participants supported the idea that two negative integers can be ordered by using rule-
based explanation in reference to zero or positive numbers. In this regard, it might be said that 
students have pieces of knowledge about the nature of magnitude and direction of integers. 
Participants agreed that 1) the number which is located below the other on the thermometer   is the 
smaller (direction) or (2) the number which is closer to zero is bigger than the other negative integer, 
which is less close to zero (magnitude).  

Discussion and conclusion  
In this study, the two statements about ordering allow students to see how they interpret those 
statements and what kind of strategies they use. Moreover, this study helps reveal the difficult ies 
students encounter in their learning process. As seen in Table 1, students agreed with the given 
statements; however, Table 2 showed that middle grade students have variety of conceptual and 
procedural strategies that might not support their agreement. The results of the study show that their 
dominant strategies are spread over the sample of the students and are rarely used. Table 1 shows that 
most of the participants supported the idea that negative integers can be ordered by the nature of the 
amount of hotness that each integer is assigned. In other words, each negative integer is assigned to 
the concept of being hotter or being less hot. A possible explanation might be that students 
conceptualize ordering with the help of quantity or cardinal conception of numbers (Davidson, 1992). 
It means that students agree that ordering negative integers can be thought as similar to ordering 
positive integers when giving meaning to hotness concept. In this regard, for the first statement, 
students changed the word hotness to the word coldness and explained the statement based on 
coldness. Most of the students interpreted the situation by transferring hotness to the cold. While 
comparing two negative integers, they used the ‘the hotter is less cold’ or ‘less hot is colder’ 
relationships. Thus, these kinds of explanations indicate students’ lack of interpretation of ordering 
as an amount of hotness because they might have a potential for interpreting the smaller number (-
10) as a bigger number while ordering the concept of coldness a quantity. However, the relationship 
which indicates what being less cold or being colder means needs to be established within ordering 
context. Otherwise, it causes misconceptions or errors about misinterpreting what the integer 
statements or symbols mean (Ashlock, 2010). Moreover, this finding supports the idea that it is not 
easy to infer order relations from context-related statements, but teachers can integrate those 
strategies to classroom activities to establish a relationship between real life situations and negative 
numbers (Schindler & Hußmann, 2013). It is worth emphasizing that the procedural strategies 
illustrated in Table 2 might create faulty decision while comparing two negative integers. Students’ 
understanding of negative numbers might be achieved by using the procedural strategies carefully 
being aware of the overgeneralization. For instance, the procedural strategy of ‘bigger number is 
closer to zero’ might be problematic when the number is a whole number.  

Taken together, students have a variety of conceptual or procedural strategies that can be used for  
interpreting ordering in real life situations. Those strategies are important to make instruction better 
and to facilitate student understanding. In future studies, the meaning of ordering negative integers 
within real life contexts and in mathematics can be examined to explain some students’ lack of 
interpretations of the given statements.  
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In CERME-10, the Thematic Working Group 3 “Algebraic thinking” continued the work carried out 
in previous CERME conferences. There were a total of 16 papers and 5 posters with a total of 29 
group participants representing countries from Europe and other continents: Canada, Finland, 
Germany, Greece, Ireland, Norway, Portugal, Spain, Sweden, Tunisia, Turkey, UK, and USA. 

Recurring issues 
While the importance of algebra education is universally acknowledged, the problem of teaching it 
successfully to most students is not yet solved. Thus, there is a need to go back to basics over and 
over again and a lot of issues occur repeatedly in the history of CERME working groups on algebra. 
A broader overview is given in Hodgen, Oldenburg and Strømskag (2017). The discussion during 
CERME 10 brought up the following fundamental issues: 

 What is algebra? There is still no uniform definition of what is the particularity of this field 
and what are the relations to other mathematical fields like combinatorics or geometry (that 
use letters as well). Moreover, many notions are not fully defined.  

 How can it be empirically determined what works? We still have no universal measures of 
algebraic competence. Hence, many ad hoc tests are used.  

 What should be taught? Too little is known about how knowledge builds up in the long 
term. For instance, it may be that certain concepts and metaphors that work well in some 
grades will give raise to obstacles later on.  

Regarding the first point in this list, the group discussed the question of whether it would be sensible 
to rename the group’s title just to “Algebra”, because the word “thinking” gives the cognitive a higher 
weight than it might deserve. But this was resolved by the shared understanding that “algebraic 
thinking” is interpreted to include language, affect and possibly further factors. 

The second point was taken up in a series of discussions about the quality of research and 
communication. Conceptual validity is seen often to be a problem. To rely just on Cronbach’s alpha 
to ensure internal consistency seems not adequate. Perhaps the community should ensure that whole 
tests, measurement instruments and data are made accessible for other participants? Still, it will be 
difficult to ensure a common understanding of notions, given the plurality of theories and terminology 
used. 

Despite these questions, there are substantial areas where a consensus has been reached: It is accepted 
that early algebra “works”, in the sense that it is possible to develop algebraic thinking using, or just 
beginning to use, formal symbolic notation. Furthermore, most researchers see structure as a guiding 
principle in algebra and especially the structure of equations and the role of the equal sign is identified 
as central. The context/environment of each research event is relevant and especially the tasks and its 
implementation by the teacher are crucial together with the role of the researcher. Regarding ideas 



for the curriculum, we agreed that equation solving should not start with too simple equations. Filloy 
and Rojano’s (1989) distinction between arithmetical and algebraic equations is important to 
exemplify the domain in which algebraic methods can show there power to students. 

Some comments on issues dealt with in the papers 
Functions have been identified my many colleagues as central issue in algebraic thinking and hence 
we have seen several papers (Isler et al., Pinto & Cañadas, Postelnicu, and Weber) that deepen the 
understanding of functions. 

Isler et al. report results from a quantitative study in the US of Grade 6 students’ written work on a 
functional thinking assessment item. The results show that students who experienced an early algebra 
intervention during Grades 3-5 were more likely to successfully represent a function rule in words 
and variables than students who did not. Also, both comparison and intervention groups of students 
were found to be more successful representing a function rule in variables than in words. The results 
underscore the impact of early algebra on students’ later success in algebra, and challenge the view 
that the concept of variable should not be introduced until secondary school. 

Pinto and Cañadas report from a study of 24 Spanish Grade 3 students’ functional thinking during 
engagement with a contextualised linear problem (placing tiles). Two types of functional relationships 
were identified—correspondence and covariation—and the ability to generalise was observed in 
some of the students. The study was part of a broader teaching experiment, and the data were collected 
through a task-based questionnaire.  

Postelnicu conducted a study of 58 US high school students’ difficulties with writing equations of 
parallel and perpendicular lines (in the context of Algebra 1). Chevallard’s theory of didactic 
transposition was employed to account for the relativity of the mathematical knowledge with respect 
to the institutions where the knowledge was created. The analysis shows that the mathe-matical 
knowledge (through the didactic transposition) lost its essential feature—the proof—with serious 
consequences for the curriculum. What remained to be learned was how to execute tasks.  

Weber presents a theoretical paper, where vom Hofe’s construct of ‘Grundvorstellungen’ and Sfard’s 
distinction between operational and structural conceptions are used to analyse structural and 
operational models of logarithmic functions. Weber claims that logarithmic functions should not be 
introduced structurally, as inverse exponential functions. Instead, several operational models of the 
logarithmic concept are proposed, and their explanatory power for graphing is expounded.  

Zindel presents a model for conceptualizing the core of the function concept, which is made up of 
those facets that are equally important for all types of functions and common to all representations. 
The so-called facet model enables the identification of potential obstacles and a detailed description 
of students’ learning processes when connecting representations (e.g., verbal and symbolic 
representations when solving word problems). In total, 19 design experiments with overall 96 learners 
(mainly Grades 9-10) were conducted and qualitatively analyzed. 

A focus on the thinking in algebraic thinking has been laid by four papers: Palatnik and Koichu; 
Twohill; Soneira, González-Calero and Arnau; and, Proulx.  

Palatnik and Koichu took a detailed view on how students make sense of formula they found on 
various ways. The authors found that the process of sense making is consists of formulating and 



justifying claims, making generalizations, finding mechanisms and established coherence among the 
explored objects.  

Twohill investigated number sequences from geometric patterns and the path of students to general 
terms. It turned out that between figural and numerical aspects of the patterns there is a whole 
continuum of ways that students think about these sequences. It is not easily said what aspects 
students should look at to be successful in finding a proper generalization. 

Soneira et al. investigated in details the well-known error that students might produce expressions in 
which different occurrings of the same variable have different (but often related) reference. They 
explain this by idiosyncratic semiotic systems used by the students. The process of translation 
between algebra and natural language is highly complex. 

Proulx investigated how teachers and students solve algebraic problems mentally. Forcing them not 
to use paper and pencil or other techniques allows to get close to their thinking. This revealed a wide 
variety of approaches and students and teachers differed in these. In the end, a sense for the diversity 
should be developed especially by the teachers.  

Röj-Lindburg et al. considered the transition from informal to formal methods of equations solving 
in Grade 6 (12 years old) in Finland. The approaches taken by three teachers were analysed. One 
teacher used the image of a balance scale; another used uncomplicated ‘real-world’ situations; and 
the third had an emphasis on formal methods, in particular the need to ‘do the same thing on both 
sides’. The third teacher’s lesson was analysed and concluded that the discussion focused strongly on 
memorizing the procedure and did not develop an algebraic understanding of equality. In fact, it was 
concluded that in none of the teachers’ lessons was there a need for students to adopt an algebraic 
way of thinking about equality. 

Steinweg brought out the fact that the mathematics teaching units in Germany primary education lack 
explicit algebra learning environments. She offered ways in which key algebraic ideas can be used as 
guiding principles to rethink ‘arithmetic’ topics in six German primary school classes so that they can 
be used as learning environments for algebraic thinking. She focused on work from a pupil who was 
working on a task to decompose the area of a given rectangle and who appeared to show an awareness 
of the inherent distributive structures. Pre- and post-tests showed an increase in the percentage of 
children giving answers deemed to be algebraic in nature. 

Papadopoulos and Patsiala studied the use of a particular learning environment called “Father 
Woodland” with seventy Grade 3 students (8-9 year olds) from two different primary schools in 
Greece. The approaches taken by the students were categorized into four types and it was noted that 
over the course of eight tasks, there was increased use of approaches which were classified as either 
‘combining words and symbolic language’ or ‘using symbolic language to express relationships”. An 
argument was made that the environment helped develop the students’ algebraic thinking. 

As mentioned above, several researchers were concerned with the issues of “what should be taught” 
and what constitutes proficiency from the learners’ points of view. Pinkernell, Düsi and Vogel 
proposed a way to construct validity for the concept of proficiency in elementary algebra, and 
presented the methodology of constructing a “model” of proficiency, together with the resulting 



product – the “revised model.” Wladis and colleagues described an instructor-generated “concept 
framework” for elementary algebra in the tertiary context. 

Chimoni and Pitta-Pantazi addressed the issue of determining empirically “what works” for teaching 
algebra. They conducted a study with 96 early algebra students and compared two intervention 
courses. The first intervention course included real life scenarios and semi-structured tasks, while the 
second intervention course involved mathematical investigations and structured tasks. The results 
showed that the first course had better learning outcomes. 

Two papers reported on structural aspects of algebra, at the elementary and university level, 
respectively. Strømskag and Valenta addressed the issue of justifying the commutative property of 
multiplication of natural numbers for Grade 6 students.  At the heart of the study were the limitations 
of the visual representation used by the observed student teacher to help her students justify the 
property of commutativity of multiplication. Mutambara and Bansilal investigated the understanding 
of the concept of vector subspace. Participating students were 84 in-service teachers enrolled in a 
mathematics course at a Zimbabwean university. The action, process, object schema (APOS) theory, 
based on Piaget’s genetic epistemology, was proposed for the analysis of two tasks. The results 
highlighted the teachers’ difficulties with the concepts of sets, matrices, and vector subspace. 

Outlook 
The synopsis of papers given above shows the wide variety of theories, topics and methods used in 
this group. Such a pluralistic situation is highly welcomed as it allows to test the validity of research 
results from multiple perspectives. Thus, the consensus described above, can be viewed as solidly 
grounded and form the base for further research that can and should address questions that are not yet 
understood well enough. One such area is the domain of high school algebra. Weber’s paper has 
shown the potential of better understanding such concepts. Another point to be developed further is 
the perspective of teachers and teacher education.  
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The aim of this study is to investigate the nature and content of instruction that may facilitate the 
development of students’ early algebraic thinking. 96 fifth-graders attended two different intervention 
courses. Both courses approached three basic content strands of algebra: generalized arithmetic, 
functional thinking, and modeling languages. The courses differed in respect to the characteristics of 
the tasks that were used. The first intervention included real life scenarios, and semi-structured tasks, 
with questions which were more exploratory in nature. The second intervention course involved 
mathematical investigations, and more structured tasks which were guided through supportive 
questions and scaffolding steps. The findings, yielded from the analysis of pre-test and post-test data, 
showed that the first course had better learning outcomes compared to the second, while controlling 
for preliminary differences regarding students’ early algebraic thinking.  

Keywords: Early algebraic thinking, teaching intervention, tasks.  

Introduction  
In response to calls for spreading the teaching and learning of algebra throughout K-12 grades (e.g. 
NCTM, 2000), a wealth of studies focused on the design and implementation of instructional 
interventions that facilitate the development of early algebraic thinking (e.g. Blanton & Kaput, 2005; 
Irwin & Britt, 2005; Warren & Cooper, 2008). These studies offered strong evidences that students 
are able to develop algebraic thinking as early as the primary grades. Moreover, these studies 
highlighted the key role of teachers in providing their students with rich opportunities to investigate 
and understand algebraic ideas from elementary school. 

As Kieran, Pang, Schifter and Ng (2016) highlighted, a large number of past studies identified pattern 
generalization and functional thinking as important routes that foster the development of early 
algebraic thinking; however, little research has involved other aspects of algebra, such as properties 
of numbers and operations. This bring us to the question of the effectiveness of intervention courses 
that might involve a range of algebra content strands, such as functional thinking and generalized 
arithmetic. There is, therefore, still a need to extend our understanding of supportive instruction that 
aims to improve students’ early algebraic thinking and further clarify the content of a corpus of 
lessons that capture the core content strands of algebra. 

The current study addresses this issue. Furthermore, considering the suggestions of recent literature 
regarding the impact of different types of tasks on students’ learning (e.g. Swan, 2011), this study 
raises the question of whether the nature and content of the tasks used in instructional interventions, 
regarding their structured or semi-structured nature, and the association of their context to real life 
scenarios or not, might affect students’ early algebraic thinking.  



Theoretical framework  
The notion of early algebraic thinking  

Several research studies addressed the multidimensional nature of early algebraic thinking. Kaput 
(2008) claimed that there are three fundamental content strands of algebra: (i) generalized arithmetic, 
(ii) functional thinking, and (iii) the application of modeling languages. Generalized arithmetic, 
involves generalizing rules about relationships between numbers, manipulating operations and 
exploring their properties, transforming and solving equations, and understanding the equal sign in 
number relations. Functional thinking, refers to the identification and description of functional 
relationships between independent and dependent variables. Modeling, refers to the generalization of 
regularities from mathematized situations or phenomena inside or outside mathematics.  

The notion of early algebraic thinking has also been associated through literature with several 
mathematical processes. For example, Kieran (2004) suggested that early algebraic thinking is linked 
to problem solving, modeling, working with generalizable patterns, justifying and proving, making 
predictions and conjectures, analyzing relationships, and identifying structure.  

Early algebraic thinking, therefore, is expected to emerge through intervention courses that capture a 
variety of areas and contexts related to algebra and assist students to use a range of mathematical 
processes.  

Sources of meaning in algebraic problems and the importance of the nature of tasks 

Radford (2004) specified that there are three main sources of meaning within algebraic problems that 
trigger the development of early algebraic thinking: (a) the algebraic structure itself (e.g. the letter-
symbolic representations, graphical representations), (b) the problem context (e.g. word problems, 
modeling activities) and (c) the exterior of the problem context (e.g. social and cultural features, such 
as language, body movements, and experience). Hence, the specific characteristics of these sources 
might facilitate or not the construction of meaning when students participate in algebra lessons. 

Additionally, existing literature on the importance of tasks that students are engaged with, has shown 
that the nature and features of mathematical tasks influence learning, since they direct students’ 
attention to specific content and specific ways of processing information (Jones & Pepin, 2016). For 
example, Sullivan, Clarke and Clarke (2012) suggested that problem-like tasks have a positive effect 
on students’ mathematical thinking rather than step-by-step procedures. In this perspective, the extend 
to which a task involves problems that are more or less structured, is associated with an open question 
or a series of scaffolding questions, and represents situations related to students’ experiences within 
real life contexts or not, may influence students’ development of early algebraic thinking. 

Aim of the study  
The aim of this study is the investigation of the effect of two different intervention courses in 
improving students’ early algebraic thinking. Both courses involved the three content strands of 
algebra suggested by Kaput (2008), had the same duration, and were based on the inquiry-based 
learning approach. Nevertheless, they were implemented through different types of tasks. The first 
course, which we named “Semi-structured problem situations”, used semi-structured tasks connected 
to real life scenarios and required students to identify the mathematics involved in order to answer to 
their main question. The second course, which we named “Structured mathematical investigations”, 



used more mathematical tasks that were supported by scaffolding questions. Hence, the two teaching 
interventions were compared in relation to the types of the tasks through which algebraic thinking 
was expected to emerge.  

Methodology  
Participants  

The participants were 96 fifth-graders from 4 classes in 2 urban schools. The classes were selected 
by convenience. Two of the classes (one class from each school) formed the group that participated 
in the first course and the other two classes formed the group that participated in the second course.  

Test on early algebraic thinking 

The same test was administered to the students before and after the conduction of the courses in order 
to measure their early algebraic thinking. The test consisted of 22 tasks that were accordingly 
categorized into three groups which reflected Kaput’s (2008) three content strands of algebra. Table 
1 presents examples of the tasks in each category. The first group (generalized arithmetic) involved 
tasks, such as determining whether the sum of two numbers will be odd or even, using the properties 
of operations, describing movements in the hundredths’ table, and solving equations and inequalities. 
The second group of tasks involved finding the nth term in geometrical and numerical patterns, 
interpreting graphs, and describing co-variational and correspondence relationships among quantities. 
The third group of tasks (modeling) required the generalization of regularities by observing the 
relationships involved in realistic situations. The internal consistency of scores measured by 
Cronbach’s alpha was satisfactory for the test (a=0.87).  

 

Table 1: Examples of tasks included in the early algebraic thinking test 

Teaching experiments 
Both intervention courses addressed the same concepts and objectives, and were developed through 
ten lessons of 80-minutes duration each. The first researcher taught all the lessons. Table 2 presents 
the objectives of the lessons in each strand. 
 
 
  

Algebraic Thinking as Generalized 
Arithmetic 

Is the sum 245676 + 535731 an odd or even number? Explain 
your answer. 

Algebraic thinking as functional 
thinking 

 
 
   Figure 1                Figure 2                    Figure 3 

Bill is arranging squares. How many squares there will be in 
the 16th figure? Show your work. 

Modeling as a domain for expressing 
and formalizing generalizations 

Joanna will take computers lesson twice a week. Which is the 
best offer? Justify your answer. 

OFFER Α: €8 

for each lesson 

 

OFFER B: €50 for the first 5 lessons of the 

month and then €4 for every additional lesson 

 

 



 

Table 2: Structure of Instructional Interventions and Objectives for each Lesson 

The “Semi-structured problem situations” course used semi-structured problems arising from real life 
situations. Students were confronted with a general question and were given time to explore the 
problem situation, analyze and combine information and apply their own strategies to solve the task. 
These tasks employed some features of modeling-like tasks. Specifically, modeling-like tasks were 
considered as appropriate for enhancing the development of algebraic thinking because they involve 
the description and interpretation of complex systems of information through the application of 
processes such as, constructing, explaining, justifying, predicting, generalizing, conjecturing, and 
representing (English, 2011).  

The “Structured mathematical investigations” course reflected mathematical contexts that aimed to 
direct students to identify structure and relationships in mathematical concepts. Specifically, these 
tasks were more mathematical in nature, involved scaffolding steps and pathways which guided 
students to the extraction of an explicit conclusion. This kind of activities were considered as relevant 
and important for enhancing algebraic thinking since they apply fundamental processes, such as 
formulation and expression of relationships and generalizations, and progressive symbolization.  

In order to ensure the content validity of the tasks we used for both interventions tasks of previous 
studies (e.g. Blanton & Kaput, 2005) or online resources (e.g. https://illuminations.nctm.org/) which 
seem to be well accepted by researchers and mathematics educators. Moreover, the authors consulted 
two other mathematics education experts about their judgment regarding the content validity of the 
tasks until consensus was reached. Figure 1 presents examples of tasks from each intervention course. 
The task on the left was adapted from a lesson presented in the website https://illuminations.nctm.org. 
Using a context of arranging chairs around tables, students were exposed to two different linear 
patterns. As specified in the website, this activity leads to an intuitive understanding of how to extend 
and describe a pattern using words or symbols. The task on the right was adapted from a lesson 
presented in the website www.explorelearning.com. Students studied different patterns of squares in 
a grid. Each new pattern was more complex compared to the previous pattern (The pattern presented 
in Figure 1 was the third pattern). As stated in the website, this activity aims to the extension of figural 
patterns and the extraction of a general rule. In this sense, both tasks targeted on the description and 
generalization of figural and numeric patterns. However, the first task introduced from the beginning 
a complex pattern; the second started from a simple pattern and moved to more complex patterns. 

Lessons Content strand Objectives 

3,4 Generalized 
arithmetic 

Apply properties and relationships of whole numbers, apply 
properties of operations on whole numbers, treat numbers by 
attending structure rather than computations 

1,2,6,7 Functional 
thinking 

Encode information graphically for analyzing a functional 
relationship, identify correspondence or co-variation 
relationships, identify numerical and geometrical patterns 

5,8,9,10 Modeling 
languages 

Generalize regularities from mathematized situations inside or 
outside mathematics 



                 
Figure 1: Semi-structured problem situation (left) and Structured mathematical investigation (right)  

Analysis  

The SPSS statistical package was used to analyze the results. Since the tasks in the pre-test and post-
test were the same, gain scores were used (the difference between post-test and pre-test scores) as the 
dependent variable. The Kolmogorov-Smirnov and Shapiro-Wilk tests showed that the gain scores 
were normally distributed (p>.01). The P-P and Q-Q plots did not show crucial variations. In order 
to compare the early algebraic thinking abilities of the two groups prior to the intervention, a 
multivariate analysis of variance (MANOVA) was conducted. MANCOVA was used to examine the 
impact of the intervention courses on participants’ early algebraic thinking. The type of intervention 
was the independent variable, students’ performance in early algebraic thinking pre-test was 
considered as the covariate, and the performance differences between the pre- and post- tests as the 
dependent variables. Moreover, paired-sample t-test was performed in order to measure the 
differences in the performance of students of the same group in the pre- and post-tests.  

Results  
The results of the MANOVA analysis suggested that the two groups did not have any statistically 
significant differences in their early algebraic thinking abilities prior to the intervention (F=.576, 
p>.05). Table 3 presents the results of the MANCOVA analysis, regarding the comparison of the 
impact of the two teaching experiments on the groups’ performance in the early algebraic thinking 
post-test, controlling for their pre-test scores. 

The analysis indicated significant overall intervention effects, controlling for pre-test scores in the 
early algebraic thinking test (Pillai’s F=9.586, p<.05). The students in the “Semi-structured problem 
situations” group had a significantly higher overall performance in early algebraic thinking to students 
in the “Structured mathematical investigations” group. The effect size indices for the overall algebraic 
thinking ability (partial n2=.088) suggested that the effect of the “Semi-structured problem situations” 
course over the “Structured mathematical investigations” course was moderate. The performance of 
the “Semi-structured problem situations” group in the generalized arithmetic tasks did not have any 
significant difference in relation to the performance of the “Structured mathematical investigations” 



group (Pillai’s F=.081, p>.05). The “Semi-structured problem situations” group had significantly 
higher performance in the functional thinking tasks (Pillai’s F=26.845, p<.01) and the modeling tasks 
(Pillai’s F=9.804, p<.05) in comparison to the “Structured mathematical investigations” group. The 
effect size indices for the functional thinking tasks (partial n2=.286) and the modeling tasks (partial 
n2=.128) suggested that the effect of the “Semi-structured problem situations” course over the 
“Structured mathematical investigations” course was moderate. 
 
 Structured  Semi-structured   
Ability Mean1 SE Mean1 SE df F p np

2 
Overall 
Performance 

.452 .206 .570 .179 1 6.452 .013* .088 

Generalized 
Arithmetic 

.663 .213 .647 .246 1 .081 .777 .001 

Functional 
Thinking 

.369 .225 .547 .270 1 26.845 .000** .286 

Modeling .291 .291 .509 .319 1 9.804 .003* .128 
1 Estimated Marginal Means, *p<.05, **p<.01 

Table 3: Results of the Multiple Covariance Analysis between the Two Intervention Groups Post-test 
Performance in Early Algebraic Thinking 

Table 4 presents the results of the paired-samples t-test regarding the differences in the pre- and post-
test scores within the same group. 
                                                                                                                                                 
Ability  Pre-test Post-test  

M SD M SD T(df) p 

Overall 
Performance  

Structured  

Semi-structured  

.337 

.368 

.195 

.151 

.452 

.570 

.206 

.179 

-5.519(33) 

-10.147(34) 

.000** 

.000** 

Generalized 
Arithmetic 

Structured  

Semi-structured  

.467 

.473 

.326 

.235 

.663 

.647 

.213 

.246 

-4.112(33) 

-4.818(34 

.000** 

.000** 

Functional 
Thinking 

Structured  

Semi-structured  

.302 

.404 

.263 

.228 

.369 

.547 

.225 

.270 

-2.774(33) 

-5.663(34) 

.09 

.000** 

Modeling Structured  

Semi-structured  

.223 

.183 

.241 

.202 

.291 

.509 

.291 

.319 

-1.231(33) 

-9.926(34) 

.227 

.000** 

**p<.01        

Table 4: T-test Comparisons between Pre-test and Post-test Performance of the two groups 

The results showed statistically significant differences between the pre- and post-tests performance 
means of the “Structured mathematical investigations” group. Students in this group had a significant 
increase in their overall early algebraic thinking ability and in the generalized arithmetic tasks. The 
results also showed that no statistically significant differences existed between pre- and post-tests 



performance means in the functional thinking and modeling tasks. Regarding the “Semi-structured 
problem situations” group, the results showed statistically significant differences in the mean 
difference between the pre- and post-tests means of performance. These students had a significant 
increase in their overall ability and in all types of tasks. 

Discussion and conclusion  
This study compared the effect of two intervention courses on students’ early algebraic thinking. The 
results showed that instruction with “Semi-structured problem situations” had better learning 
outcomes compared to instruction with “Structured mathematical investigations”, while controlling 
for preliminary differences regarding students’ early algebraic thinking. Specifically, students who 
received instruction through the “Semi-structured problem situations” outperformed students who 
received instruction through the “Structured mathematical investigations” in the early algebraic 
thinking post-test. Nevertheless, more detailed results regarding the effect of the two types of courses 
have shown that both of them had positive impact in the generalized arithmetic strand. What seems 
to have influenced the overall outcome of the comparison between the two courses is the fact that 
students involved in the “Semi-structured problem situations” course had significantly higher 
performance in the functional thinking and modeling strands. 

A possible explanation for this result seems to be the fact that the two intervention courses involved 
different types of tasks in respect to the way algebraic thinking was expected to emerge. While both 
interventions had high cognitive demands and were developed through activities that entailed 
cooperative learning, use of manipulatives, and technological tools, it appears that the nature and type 
of the tasks used had a significant role regarding the learning outcomes. As suggested by Stein and 
Lane (1996), the tasks determine not only the concepts and knowledge that students acquire but also 
the way students will come to process, use and make sense of those concepts and knowledge.    

On the one hand, the tasks that were included in the “Semi-structured problem situations” course 
shared common features with modeling approaches to mathematical problem solving. As English 
(2011) described, modeling-like tasks offer enriched learning experiences that require students to 
extract meaning from open situations by mathematizing the situations in ways that are meaningful to 
them. This kind of processes are linked to early algebraic thinking. As Kieran (2004) supported, early 
algebraic thinking is related to several processes, including problem solving, modeling, justifying, 
proving, and predicting. Hence, modeling-like tasks seem to involve the majority of the processes 
that are related to early algebraic thinking. On the other, “Structured mathematical investigations” 
tasks appeared to be effective in helping students to notice the structure in arithmetical contexts and 
engage students to learning experiences that are mostly focused on the generalized arithmetic strand.  

As Radford (2004) argued, the algebraic structure of a problem (e.g. the letter-symbolic 
representations), the problem context (e.g. word problems, modeling activities) and the exterior of 
the problem context (e.g. social and cultural features, such as language, body movements, and 
experience) constitute basic sources that students utilize in order to extract meaning. The results of 
the current study indicated that the “Semi-structured problem situations” tasks encompassed all of 
these sources in an effective way and enabled students to construct their own meaning and develop 
understanding of various algebra aspects. Thus we may say that the positive effect of an intervention 
course is in a great extend related to the design and implementation features of the tasks involved.  



Future research might further investigate whether the effect of “semi-structured” or “structured” tasks 
is different with younger or older students. The effect of an intervention course that makes use of 
both “semi-structure” and “structured” tasks might also be addressed. Moreover, the qualitative 
characteristics of students’ behavior while participating in this kind of intervention courses needs to 
be investigated in detail, in order to better understand the nature of thinking they develop. 
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This paper reports results from Grade 6 students’ written work on a functional thinking assessment 
item. The results show that students who experienced an early algebra intervention during Grades 
3-5 were more likely to successfully represent a function rule in words and variables than students 
who did not. Also, both comparison and intervention groups of students were found to be more 
successful representing a function rule in variables than in words. The results underscore the 
impact of early algebra on students’ later success in algebra, specifically with functional thinking, 
and challenge the notion that variable as a varying quantity should not be introduced until 
secondary school. 

Keywords: Early algebra, algebraic thinking, secondary school. 

Background of the study  
Algebra in the  U.S. has long served as a gatekeeper to future academic and employment 
opportunities (Ingels, Curtin, Kaufman, Alt, & Chen, 2002). Thus, recent reform efforts have sought 
to integrate aspects of algebra into the elementary curriculum (National Council of Teachers of 
Mathematics [NCTM], 2000; National Governors Association Center for Best Practices and 
Council of Chief State School Officers [NGA Center & CCSSO], 2010). By algebra in the 
elementary grades (hereinafter, early algebra), we do not mean an add-on to the existing curriculum 
or a pre-algebra course that is typically taught at the secondary level. We follow instead the 
definition put forward by Blanton el al. (2007): 

[Early algebra is] a way of thinking that brings meaning, depth and coherence to children’s 

mathematical understanding by delving more deeply into concepts already being taught so 

that there is opportunity to generalize relationships and properties in mathematics. (p. 7)  

Through a series of interrelated projects, Project LEAP [Learning through an Early Algebra 
Progression], has developed and investigated the efficacy of a learning progression for early algebra 
in Grades 3-5 (Grade 3 is the fourth year of elementary/primary school in the U.S. Students in this 
grade are typically 8-9 years old; Grade 5 students are typically 10-11 years old). 

In the first project, we focused on developing the learning progression and its components: a 
curricular framework and progression, instructional sequence, written assessments, and levels of 
sophistication describing students’ strategy use (see Fonger, Stephens, Blanton, & Knuth, 2015 for 



more information about the development of the learning progression). This project also examined 
the effectiveness of the early algebra intervention (see Blanton et al., 2015 for the results of this 
study).  

In the second project, from which the data for this paper came, we used a quasi-experimental design 
to follow two groups of students—one designated comparison and one designated intervention—
across Grades 3-5. The intervention students were taught about 18 one-hour weekly early algebra 
lessons each year. These lessons replaced their mathematics instruction thus the total time spent on 
mathematics instruction remained unchanged. The lessons were taught by a member of the project 
team, a former Grade 3 teacher. Each lesson started with a “jumpstart” at the beginning of the class 
that included a review of previously-discussed topics. The lessons continued with group work and 
whole-class discussions centered on research-based tasks. The algebraic concepts were often 
revisited in the “jumpstarts” so that the intervention students were provided opportunities to revisit 
several concepts throughout the intervention. The comparison students did not receive any 
intervention and were exposed only to their traditional mathematics curriculum throughout the three 
years. Written assessments were administered to measure students’ early algebra understandings and 
skills at four time points: at the beginning of Grade 3 and at the end of Grades 3, 4 and 5 (see 
Blanton, Isler, Stephens, Gardiner, et al., 2016 for the preliminary results of this study). A year after 
this longitudinal study ended, both the intervention and the comparison students were administered 
a written assessment in Grade 6 (when students were about 11-12 years old). This paper reports 
results from a functional thinking item that was common across Grade 5 and 6 written assessments. 

Theoretical framework 
Kaput (2008) conceptualized algebra as: (1) the study of structures and systems abstracted from 
computations and relations, including those arising in arithmetic (algebra as generalized arithmetic) 
and quantitative reasoning, (2) the study of functions, relations, and joint variation, and (3) the 
application of a cluster of modeling languages both inside and outside of mathematics. Building on 
Kaput’s content strands, we identified three “big ideas” (Shin, Stevens, Short, & Krajcik, 2009) of 
early algebra: generalized arithmetic; functional thinking; and equivalence, expressions, equations, 
and inequalities. In addition to the content strands for algebra, Kaput (2008) also identified 
algebraic thinking practices. We organized the content strands around four algebraic thinking 
practices: (1) generalizing, (2) representing, (3) justifying, and (4) reasoning with mathematical 
structure and relationships. 

The focus of this paper is on students’ abilities to engage in the algebraic thinking practices of 
generalizing and representing in the context of the “big idea” functional thinking. Blanton, Levi, 
Crites and Dougherty (2011) described functional thinking as “generalizing relationships between 
covarying quantities, expressing those relationships in words, symbols, tables, or graphs, and 
reasoning with these various representations to analyze function behavior” (p. 47). In this paper, we 
explore students’ abilities to represent functional relationships in words and variables.  



Methods 
Participants 

The participants were 80 Grade 6 students, 46 of whom were part of the intervention that took place 
during Grades 3-5 and 34 of whom were part of the comparison group in those grade levels. All of 
the students were from the same middle school. The teachers of these students reported using the 
Connected Mathematics Project (CMP3) curriculum for their mathematics instruction. The 
demographics for the district are 8% non-white, 5% English Language Learners, and 20% low 
socioeconomic status students.  

Data collection and analysis 

An early algebra assessment was administered to students at the end of Grade 6. The assessment 
items were developed and validated in a prior project. The assessment consisted of 11 items, most 
including multiple parts that addressed the aforementioned big ideas, and took students 
approximately one hour to complete. 

We focus on one item, the Brady task (parts c1, c2, e1, and e2) (see Figure 1), which was designed 
to assess student’s functional thinking, one of the big ideas, fundamental to our learning 
progression. The student responses were coded for both correctness and strategy use (correct or 
incorrect). The strategies that are the focus in this paper are listed in Figure 2. For more information 
about the coding scheme for strategy use for this item and the levels of sophistication observed in 
students’ written work, see Blanton et al. (2015), Stephens et al. (in press), and Strachota et al. 
(2016). 

A second coder conducted reliability coding for all items and any disagreements were discussed and 
resolved until 80% inter-rater agreement score was reached for all items. 

Figure 1: The Brady task 



 

Strategy Code Description Example 

Parts c1 and e1 

Functional-
Condensed in 
Words  

Student identifies a function rule in words that describes a 
generalized relationship between the two variables, 
including the transformation of one that would produce 
the second. 

Part c1: The number of 
people is 2 times the 
number of desks. 

Part e1: The number of 
people is 2 times the 
number of desks plus 2. 

Parts c2 and e2 

Functional-
Condensed in 
Variables  

Student identifies a function rule using variables in an 
equation that describes a generalized relationship between 
the two variables, including the transformation of one that 
would produce the second. 

Part c2: 2  d = p 

 

Part e2: 2  d +2 = p 

Figure 2: Functional-Condensed in Words and Functional-Condensed in Variables strategies for the 
Brady task 

Next, we focus on the results regarding the Grade 6 students’ abilities to represent the function rules 
in words and variables (parts c1, c2, e1, and e2 of the Brady task) by comparing the performance of 
students who were exposed to the early algebra intervention during Grades 3-5 (n = 46) to the 
performance of students who were not part of any early algebra intervention (n = 34). We also 
compare Grade 6 results to the results we obtained at the end of the three-year intervention in Grade 
5 (n = 90 for the intervention group and n = 61 for the comparison group). 

Results 
Results for parts c1 and c2 showed that by the end of Grade 6, the intervention students used the 
functional-condensed in words strategy in part c1 and the functional-condensed in variables strategy 
in part c2 more frequently than the comparison students (48% vs. 26% for part c1 and 65% vs. 41% 
for part c2) (see Figure 3). Moreover, both the intervention and the comparison students were found 
to be more successful representing the function rule in variables than in words (65% vs. 48% for the 
intervention group and 41% vs. 26% for the comparison group, respectively stating the rule in 
variables vs. words). 



 

Figure 3. Percentage of Grade 6 students using the Functional-Condensed in Words strategy in part 
c1 and Functional-Condensed in Variables strategy in part c2 

 

Figure 4. Percentage of Grade 6 students using the Functional-Condensed in Words strategy in part 
e1 and Functional-Condensed in Variables strategy in part e2 

Results for parts e1 and e2, which asked students to extend the rule, showed patterns similar to the 
results for parts c1 and c2, which asked students to write the rule. The intervention students used the 
functional-condensed in words strategy more frequently than the comparison students in part e1 
(24% vs. 12%) and functional-condensed in variables strategy more frequently than the comparison 
students in part e2 (43% vs. 26%) (see Figure 4). Similarly, both groups of students were found to 
be more successful representing the rule in variables than in words (43% vs. 24% for the 
intervention group and 26% vs. 12% for the comparison group, respectively stating the rule in 
variables vs. words). 



When we compared the Grade 6 results to the results we obtained at the end of the three-year 
intervention in Grade 5 (n = 90 for the intervention group and n = 61 for the comparison group) on 
the same item parts, we found out that the percentages of responses in which the intervention 
students represented the functional relationship in words and in variables stayed about the same 
from Grade 5 to Grade 6. The percentages of responses in which the comparison students 
represented the functional relationship in words and in variables increased from Grade 5 to Grade 6 
(see Table 1 for students’ percentages in Grade 5 and 6). However, the intervention students still 
outperformed the comparison students in Grade 6. 

 Representing the 
function rule in 
words (part c1) 

Representing the 
function rule in 

variables (part c2) 

Extending the 
function rule in 
words (part e1) 

Extending the 
function rule in 

variables (part e2) 

 Grade 5 Grade 6 Grade 5 Grade 6 Grade 5 Grade 6 Grade 5 Grade 6 

Comparison 16% 26% 21% 41% 3% 12% 8% 26% 

Intervention 50% 48% 67% 65% 27% 24% 40% 43% 

Table 1. Percentage of students using the Functional-Condensed in Words strategy in parts c1 and e1 
and Functional-Condensed in Variables strategy in parts c2 and e2 in Grades 5 and 6 

Fisher’s exact tests revealed that the students’ performances significantly differed by group 
(intervention and comparison) in all parts in Grade 5 and in part c2 in Grade 6 (p < .05). Although 
the intervention students outperformed the comparison students in all other parts in Grade 6, there 
was no significant association between performance and group. We discuss the results next. 

Discussion and conclusion 
Results across items showed that a year after the conclusion of the early algebra intervention, the 
intervention students remained more successful in generalizing functional relationships and 
representing them in words and variables the comparison students. These results emphasize the 
impact of our Grades 3-5 early algebra intervention on students’ success in algebra in the secondary 
school, and the importance of early algebra in helping students develop algebraic thinking practices, 
specifically, representing and generalizing (Kaput, 2008), as early as elementary school.  

The results also showed that the comparison students’ performance in representing functional 
relationships increased from Grade 5 to Grade 6 while the intervention students’ performances 
stayed about the same. Based on our Grade 6 curriculum analysis (Connected Mathematics Project 3 
[CMP3]), we suspect that the increase in comparison students’ performance might be due to the 
focus on patterns and functions in the curriculum, which is covered in a unit called “Variables and 
Patterns” in CMP3 in Grade 6. In our analysis of CMP3, we found that the “Variables and Patterns” 
unit covers some of the same content that was addressed in the early algebra intervention during 
Grades 3-5 (e.g., analyzing relationships among variables, filling in tables, making graphs, 
investigating expressions, equations, and inequalities). Thus, while the CMP3 curriculum may have 
contributed to the intervention students’ ability to retain knowledge and skills learned in the Grades 
3-5 intervention, it might have helped the comparison students to “catch up” a bit with the 
intervention students in Grade 6.  



Another important finding is that both groups of students were more successful in representing the 
function rule in variables than in words. This finding challenges the notion that variable as a varying 
quantity should not be introduced until Grade 6 (see the Common Core Grade 6 Expressions and 
Equations Standard #9, NGA Center & CCSSO, 2010), and suggests that an earlier introduction 
may support students in developing functional thinking. During the LEAP intervention, we 
observed that elementary students were successful using variables to represent generalizations in 
multiple contexts including representing unknown, varying quantities in algebraic expressions, 
representing equations with a fixed unknown, and using variables to represent and generalize a 
functional relationship (see Blanton, Isler, Stephens, Knuth, et al., 2016 for further details). Blanton 
et al. (2011) stated:  

learning to express functional relationships in symbolic form not only strengthens 

understanding and facility in the use of a symbolic language—a skill that is so essential to 

algebra—but as the study of functions deepens, flexibility with symbolic rules also supports 

analysis of changes in the behavior of complex functions through more sophisticated 

techniques. (p. 63) 

We therefore underline the importance of introducing functional thinking in the elementary school 
and using variables as varying quantities in functions to help students represent and generalize 
functional relationships. This study is also a first step towards measuring the impact of the early 
algebra instructional intervention on students’ success in algebra in the secondary school. 
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The content of Linear algebra is often considered to be difficult because of the formal logic 
required as well as the lack of connections to previous courses such as calculus. The purpose of this 
study was to explore the conceptions of vector subspace concepts, of 73 in-service mathematics 
teachers as revealed in their written responses to two tasks. The action, process, object, schema 
(APOS) theory was used to structure the analysis of the responses. The findings revealed that the 
teachers struggled with the vector sub-space concepts mainly because of poorly developed 
conceptions of prerequisite concepts of sets and binary operations.  

Keywords: APOS, vector subspace, binary operations, vector space. 

Introduction 
Linear algebra is considered to be one of the most widely applicable subjects for students in the 
field of mathematics in that it can be applied to many different content areas, such as engineering 
and statistics and can be studied for mathematical abstraction. However, we noted that when the 
students take their first linear algebra course, they seem to encounter cognitive barriers. Dorier, 
Robert, Robinet and Rogalski (2000) noted that the teaching of vector spaces have completely 
disappeared in the secondary schools and the teaching has become less formal as there are no 
studies on algebraic structures.  Some criticisms given by students about linear algebra concern the 
use of formalism and the lack of connections with what they already know since this is not done at 
secondary level. Dorier et al., (2000) elaborated that the formalism is experienced when students 
need to learn new definitions, symbols, words and theorems. Stewart and Thomas (2010) noted that 
many students in the first years cope well with the procedural aspects of solving systems of linear 
equations but struggle to understand the crucial concepts underpinning the material involving the 
study of vector space concepts such as subspace, linear independence and spanning.  The teachers 
complain that the students have no skills in elementary cartesian geometry, and display an 
inconsistent use of the basic tools of logic or set theory (Dorier et al.,2000).   

An APOS study set up to explore pre-service teachers’ mental constructions of matrix algebra 
concepts, found that most of the participants were operating at the action and process level, with a 
few operating at the object level (Ndlovu & Brijlall, 2015). The authors argued that the lack of 
background knowledge of basic algebra schema hampered the teachers efforts to develop adequate 
schemas at the object level. Many preservice teachers could not manipulate numbers correctly when 
multiplying matrices and some of them failed to use notations correctly. They confused the 
notations AT and A-1.  The goal of mathematics teaching is that students understand mathematical 
concepts presented to them or information that they discover for themselves. This is also supported 
by Hiebert and Carpenter (1992) who asserted that one of the most widely accepted ideas in 
mathematics education is that students should understand mathematics. The research described in 
this paper is concerned with students’ difficulties with conceptual understanding of vector subspace.  



Britton and Henderson (2009) in studying student’s conceptual understanding of a subspace argued 
that the abstract “obstacle of formalism” and the theoretical nature of linear of linear algebra are the 
root cause of the difficulties experienced. They believed that lecturers teach students for procedural 
rather than conceptual understanding and students have poor backgrounds of the concepts on proofs, 
logic and set theory. One of the questions asked the students to show that the set scalar multiples of 
a vector formed a subspace of R3. Most of the students could show that the set, V, is non empty but 
failed to prove the aspect on the closure property. Students chose particular vectors instead of 
arbitrary vectors, and some student worked out the sum of two vectors and assumed that the sum 
belonged to the set V. Some students had misconceptions about the definition of a subspace, while 
others mixed up concepts and showed rote learning of the concepts on vector subspace. The 
researchers also noted that students had problems with logic and set theory, moving from abstract to 
algebraic mode algebraic mode and failing to write a convincing proof.  

Theoretical framework: APOS theory 

We use the action–process–object–schema (APOS) theory as a framework to make sense of the 
data. According to Arnon, Cottrill, Dubinsky, Oktaç, Fuentes, Trigueros and Weller (2014) APOS 
theory is based on the extension of Piaget’s principle that an individual learns mathematics by 
applying certain mental mechanisms to build specific mental structures. The main mental 
mechanisms for building the mental structures include interiorisation, coordination and 
encapsulation. The mental structures refer to the action, process, object and schema. As actions are 
repeated and reflected on, the student moves from relying on external cues to having internal control 
over them. This is characterized by an ability to imagine carrying out the steps without necessarily 
having to perform each one explicitly. Interiorisation is the mechanism that makes this mental shift 
possible. Encapsulation occurs when an individual becomes aware of a process as a totality upon 
which transformations can act. At this stage the student can analyse properties of the object and 
compare objects arising from the same process. (Arnon et al., 2014) 

Many actions, objects and processes are interconnected in the individual’s mind and these will be 
organised to form a coherent framework called a schema. An object can be assimilated by an 
existing schema, thus extending the span of the schema. According to Piaget, schema development 
also passes through stages of development. The Intra level is the preliminary level and is 
characterised by analysing particular events or objects in an isolated manner in terms of their 
properties, where explanations are local and not global and relationships between objects may not 
be perceived. At the Inter level, comparison and reflection upon properties of objects lead to the 
establishment of relationships. The individual can coordinate two different interpretations of the 
concept to mean the same thing.  During the Trans stage, the student reflects upon and coordinates 
the relations and is aware of the complete structure. Using these definitions, we now present a 
genetic decomposition of the vector space concept. 

Genetic decomposition of the Vector Space concept 

We draw upon the work of Parraguez and Oktac (2010) and Arnon et al., (2014) to present a 
summarised description of the genetic decomposition of the vector space concept. The construction 
of the vector space concept is developed as the coordination of the prerequisite concepts of set and 



binary operations. Hence, we refer to the set and binary operations Schema as abstraction layers of 
the vector space concept. 

Set Schema. At an Action level, an individual conceives of a set when given a specific listing if a 
particular condition of set membership. The Action of gathering and putting objects together in a 
collection according to some condition is interiorised into a Process. This is encapsulated into an 
Object when an individual can apply actions or processes to the Process such as compare two sets, 
consider a set to be an element of another and analyse properties of the set. (Arnon et al., 2014) 

Binary operation Schema. A binary operation is a function of two variables defined on a single set 
or on a Cartesian product of two sets. At an Action level, given a binary operation, an individual can 
take two specific elements of the sets and apply the formula. The individual interiorises the action 
into a Process that takes two objects (elements) and acts on these to produce a new Object (element) 
that is the result of the binary operation. At the Object level, an individual can distinguish between 
two binary operations, check whether a binary operation satisfies an axiom and compare Objects 
arising from two different binary operations. (Arnon et al., 2014) 

Parraguez and Oktac (2010) describe how these two schema are drawn together  to form the concept 
of vector space:  

The Objects that are sets with two kinds of operations (addition and multiplication by a scalar) can 
be coordinated through the related processes and the vector space axioms that involve both 
operations, to give rise to a new Object that can be called a vector space. At the Intra level the object 
of vector space stays isolated from other actions, processes, objects and schemas. For example the 
student can verify different sets as being vector spaces or not, but does not see the vector space 
structure inherent in all of them. At the Inter level the object of vector space starts having 
relationships with other concepts such as subspace, linear transformations, basis, etc. When the 
student reflects upon these relations, through synthesis they can be recognized as part of a whole 
structure that makes up a vector space schema. This implies that the Trans level is reached and the 
student can recognize and work with non-standard examples of vector spaces and can invoke her/his 
schema when needed. (Parraguez & Oktac, 2010, p. 2116) 

This description emphasises the complexity of the construction of the vector space concept which is 
built upon layers of abstraction. Firstly, the binary operation and set concepts are developed through 
to higher levels of abstraction via the Action-Process-Object path. The vector space concept is then 
constructed on these layers, forming an even higher layer of abstraction and as the vector space 
schema develops, at each stage the previous layer is re-organised as increasing coordination and 
coherence across the objects and relationships develops. The vector subspace concept is built upon 
this schema – students will not be able to see the connections between a vector space and vector 
subspace if they have not developed the vector space schema up to at least an Inter level.  

Methodology 
This study was conducted with 73 underqualified mathematics teachers who were enrolled in a part-
time in-service course at a Zimbabwean university that was designed to upgrade them. The design 
of the program was such that the teachers would complete the equivalent of an undergraduate three-
year degree program. However, the lectures were offered in two intensive block sessions for each 



semester and held from 8 Am to 6 Pm every day. The participant teachers have already taken a first 
course in matrix algebra, a course in mathematical discourse and structures together with two 
courses in calculus. The second course in linear algebra (during which they participated in the 
study) includes the concepts of vector spaces, linear independence, linear transformation and 
diagonalization, eigenvalues and eigenvectors. The research question that underpins this study is: 
What does an APOS perspective suggest about the conceptions of vector subspace concepts held by 
73 in-service mathematics teachers as revealed in their written responses to two tasks?. 

The data was collected from the teachers’ written responses to an activity sheet consisting of nine 
items which were intended to probe their understanding of vector spaces and vector sub-spaces. In 
this short paper, we focus on two tasks which were set within the vector space of 2×2 matrices. 
These appear below. 

Item Comments 

1. Let V be the vector space over of all 
2×2 matrices over the real field . 
Show that W is not a subspace of V, 
where W is the set of 2×2 matrices 
which have a zero determinant. 

For this, teachers were expected to find a counter-
example to show that the set W is not closed 
under vector addition. 

2. Show that the set of all   

matrices of the form      is a 

vector space. 

For this, teachers could argue that since  is 
already a vector space, then it was only required to 
show that the given subset formed a vector 
subspace of  or, they could show that the 
eight axioms for a vector space were satisfied.  

Table 1: Research Tasks 

Results and discussion 
The teachers’ responses were numbered from one to 73, where the order held no significance, for 
example, R11 is the response of Teacher number 11 on the list. We found that the teachers 
displayed different levels of engagement with the vector space concept. On the one hand some 
teachers held extremely limited conceptions of binary operations and of set that were not even at 
Action levels, while on the other hand some teachers had developed strong enough conceptions of 
vector space schema at an Inter level. The details of some of these levels of engagement are 
described now. 

Binary Operation Layer 

The teachers’ responses to the two tasks, suggested that the teachers were reasoning at various 
levels about binary operations, ranging from those who did not show evidence of even Action- level 
conceptions, while some displayed Object-level conceptions. Responses which illustrate different 
levels of reasoning are discussed below. 

 



Not yet at Action levels 

It was clear that some teachers had not developed an Action conception of binary operations, as 
illustrated by the responses of R13 to Task 1 and that of R1 in Task 2. The response by R13 below 
shows that the teacher has not been able to carry out the Action of scalar multiplication because he 
has been sidetracked by thinking about the sign of the scalar.  

 

 

Response R13 to Task 1 

 

Response R1 to Task 2 

Figure 1: Responses suggesting action level conceptions of the binary operation have not developed 

The response R1showed that the teacher was not clear about what “1” in the axiom referred to in the 
scalar multiplication 1.u and took it as the “identity” matrix, consisting of 1’s in all the entries. The 
teacher then proceeded to carry out a pairwise multiplication of the corresponding elements in the 
two matrices. This is shown in the response of R1 in Figure 3.  

Process- level engagement with the binary operations  

Some teachers’ responses suggested that they were able to engage in  Process- level reasoning with 
the binary operations. However, for Task 2, if they had not developed an Object-level conception 
they were unable to apply the axioms correctly to the binary operations, as illustrated in Figure 2 
below. 

 

 

 

Figure 2: Response R11 working with scalar multiplication  and R12 showing confusion about closure  

In Figure 2, R11 is trying to show the associativity property of the operation of scalar multiplication 
(λ ) = λ ). The teacher is able to multiply the scalar into the vector (2×2 matrix) without any 
problems, suggesting that she has developed a Process conception of the binary operation of scalar 
multiplication. However, her expression on the left hand side of the first line does not have any 
brackets. This indicates that the teacher has problems with distinguishing between Objects arising 
from the different binary operations ((λ  as opposed to λ ). This suggests that the teacher has 



not yet developed the necessary Object- level conception of the binary operation of scalar 
multiplication.  

Similarly some teachers showed evidence of Process-level reasoning about the binary operation of 
addition but this was not sufficient to enable them to respond correctly to Task 1, which required 
them to show that the closure condition was not satisfied as in the case of R12 which also appears in 
Figure 2. 

The response R12, shows firstly that the teacher has considered a particular type of 2×2 matrices, 
that has identical entries. These matrices belong to the given set, because their determinants are 
zero. The teacher has done the vector addition of the two matrix elements, but was unable to show 
that the set was not closed under the binary operation.  The sum of the matrices does satisfy the 
condition of having a zero determinant. Although he is able to reason at a Process-level about the 
binary operation of vector addition of 2×2 matrices, the teacher was confused about what he needed 
to do, with the result of the addition (sum). He seemed to be trying to show that the sum should be 
equal to the identity matrix. This shows that he is unable to work with the sum of the vectors as an 
Object. 

Set Layer 

Similar to the binary operations layer, teachers’ responses to the two tasks, showed reasoning at 
various levels in the Set layer. Examples of responses which illustrate this are discussed below. 

Not yet at Action levels 

Many teachers were not clear about what the elements of the subset of Task 1 was. One teacher 
(R17) used a general  matrix, U, with variable entries and the zero matrix and  tried to show 
that the closure  condition was not satisfied as shown in Figure 3. The teacher has assumed that the 
matrix U belonged to the set W. This suggests that the teacher has not developed an Action 
conception of the subset W, of all 2×2 matrices which have a zero determinant. 

 

Figure 3: Response R17, unable to identify non-zero elements of the given Set 

 

Process- level reasoning 

Some teachers showed that they were able to recognize whether elements belonged to the set of 2×2 
matrices with zero determinants by considering the condition which characterized the set One 
teacher (R6) considered a matrix with elements 1, 2, 3 and 4 and showed that the determinant of the 
matrix is not equal to zero as shown in Figure 4. That is, he identified a 2×2 matrix which did not 
belong to the given set. This shows that he can work out that the element does not belong to W 



suggesting that he has developed a Process conception of the Set of all 2×2 matrices which have a 
zero determinant, however he could not prove  that the set W was not a subspace. 

 

Figure 4: Response R6 considering an example of a  matrix which did not belong to the given set. 

Indications of Inter level conceptions of vector space schema   

There were six teachers whose responses suggest that they have may developed an Inter level 
conception of the vector space schema. R3, for example, considered two 2×2 matrices x, and y  
where x had 0’s in the first column and 1 in the first row of the second column, while  y had had 1’s 
in the first column and 0’s in the second column. The sum (x + y) was therefore a 2×2 matrix with 
three entries being 1. So the determinant was 1 and hence did not satisfy the zero- determinant 
condition. The proof involved generating a counter-example of two elements and then showing that 
the sum did not belong to W, hence implying that W was not closed under the binary operation of 
vector addition. This argument suggests that the student has developed Object-level conception of   
both binary operation as well as Object-level conception of the set of 2×2 matrices with zero 
determinants set and the relations between these are perceived.  Being able to show that the set W 
did not satisfy the conditions for being a subspace of the vector space V , suggests that these 
teachers have developed Inter level conceptions of the vector space concepts. These teachers also 
presented appropriate responses to Task 2. 

Conclusion  
The use of APOS theory suggests that most of the teachers have not developed the necessary mental 
constructions that would enable them to reason about the properties of vector subspaces, which 
requires an Inter level conception of vector space schema.  The study showed that for many 
teachers, their conceptions of the prerequisite schemas of set and binary operations hampered them 
from developing the vector space schema at an Inter level. Most teachers showed that they were able 
to generate the vector addition of two matrices, in their responses to Task 1. This suggests that they 
had developed a Process conception of the binary operation of vector addition using 2×2 matrices. 
However, to show that the set was not closed under the binary operation, the teachers needed to 
have encapsulated the process of vector addition into an Object  

 whose properties they could analyse further. Some teachers had not developed even Action level 
conceptions of the binary operations. Many teachers struggled with the basics such as trying to 
identify the elements of the subset and were unable to reason about the kind of elements that 
produced a zero determinant. These teachers had basic problems with working with the set itself of 
matrices. These struggles indicate that their conceptions of the set of 2×2 matrices with zero 
determinants had not progressed past an Action level so they did not have access to the 
sophisticated Object–level reasoning about properties of 2×2 matrix with zero determinants. It is 
however important to note that the classification is based on written responses and if interviews 



were used, the inferences about their levels of reasoning may differ somewhat depending on how 
the teachers’ responded to questions about their reasoning. 

Unlike simpler concepts which require coordination between few Objects and Schema, developing a 
robust understanding of vector subspace is dependent on a sufficiently strong conception of the 
various layers underlying the concept. Each of these layers is built upon previous ones and becomes 
increasingly abstract, requiring the coordination and connection between the various objects and 
relations. Hence very few teachers were able to cope with both tasks. For the teachers to develop the 
insight that was necessary, they needed to have access to Object-level conceptions of the set (of 2×2 
matrices with zero determinants as well as Object-level conceptions of both binary operations. It is 
therefore no surprise that only six teachers seemed to be able to cope with the abstraction required 
to present proofs about why a subset did not form a vector subspace of the vector space. 
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This article presents a case in which a pair of middle-school students attempts to make sense of a 
previously obtained by them position formula for a particular numerical sequence. The exploration 
of the sequence occurred in the context of two-month-long student research project. The data were 
collected from the students' drafts, audiotaped meetings of the students with the teacher and a 
follow-up interview. The data analysis was aimed at identification and characterization of events 
and algebraic activities in which the students were engaged while making sense of the formula. We 
found that the students' conviction, by the end of the project, that the formula "makes sense" 
emerged when they justified the formula, checked its generality, discovered a geometry mechanism 
behind it, and found that it came to cohere with additional formulas. The findings are summarized 
as a suggestion for a four-component decomposition of algebraic sense making. 

Keywords: Algebraic sense-making, problem-solving, project-based learning, integer sequences. 

Introduction 
Sense making has long been a focal concern of the mathematics education research community 
(e.g., Kieran, 2007; NCTM, 2009). NCTM (2009) recognised sense making as a means to know 
mathematics as well as an important outcome of mathematics instruction. To review, NCTM (2009) 
refers to sense making in mathematics “as developing understanding of a situation, context, or 
concept by connecting it with existing knowledge” (p. 4). Nevertheless, NCTM (2009), as well as 
many additional mathematics education publications, is rather inexplicit as to what sense making 
comprises of and how it occurs. Moreover, it has been broadly acknowledged (e.g., Schoenfeld, 
2013) that empirically-based knowledge about the processes involved in sense making, as well as 
knowledge about the processes involved in learning through mathematical problem solving, is 
insufficient.  

The case presented in this article occurred with two 9th graders, Ron and Arik (pseudonyms) who 
participated in the Open-Ended Mathematical Problems project, which was conducted by the 
authors (an abridged version of Palatnik and Koichu, 2017).  The initial part of Ron and Arik’s 
project lasted for three weeks and resulted in an insight solution to the problem of finding a position 
formula for a particular sequence. This part is analysed elsewhere (Palatnik & Koichu, 2015). The 
insight gained was celebrated as an important highlight of the project. The students told us, 
however, that they found the formula “by chance” and that it did not make sense for them. As a 
result, making sense of the obtained formula became an explicitly chosen goal and the main theme 
of the second part of the students’ project. This part had lasted for four weeks and ended when the 
students succeeded, in quite an idiosyncratic way, to make sense of the formula. 

The goal of our study was to discern the activities and processes involved in the sense making 
effort. Specifically, we pursued the following research questions: 

In which events and algebraic activities were the students engaged while attempting to make sense 
of a formula? 



What were some of the processes involved in the students’ explicitly expressed conviction, by the 
end of the exploration, that the formula “makes sense”? 

Theoretical background 
In empirical studies, the notion of sense making frequently denotes ways by which learners of 
mathematics act upon a particular entity in the context of particular mathematical activity. The 
expression “to make sense of…” is attributed in different studies to such entities as proofs, 
instructional devices, concepts, solution methods and problem situations (e.g., Smith, 2006; Rojano, 
Filloy, & Puig, 2014). 

The idea of algebra as an activity was elaborated by Kieran (1996, 2007). Kieran identifies three 
types of activities in school algebra: generational, transformational, and global/meta-level 
activities, and argues that each type has special affordances to meaning construction. The 
generational activity involves the forming of the objects of algebra (e.g., algebraic expressions or 
formulas) including objects expressing generality arising from geometric patterns or numerical 
sequences. The transformational activity includes various types of algebraic manipulations. 
Transformational activity can involve meaning construction for properties and axioms on which the 
manipulations rely. A related point is highlighted by Hoch and Dreyfus (2006), who proposed the 
notion of structure sense, which is related to algebraic manipulations and aspects of symbol sense 
(Arcavi, 2005) in relation to friendliness with symbols as tools, an ability to switch between 
attachment and detachment of meaning, and an examination of the meaning of symbols. Finally, 
Kieran (2007) argues that meaning construction is associated with global/meta-level mathematical 
activities (e.g., problem solving, working with generalizable patterns) in a sense that “these 
activities provide the context, sense of purpose, and motivation for engaging in the previously 
described generational and transformation activities” (p. 714). It is essential for the forthcoming 
analysis that when the learners are engaged in a global/meta-level activity, they can carry it out in a 
variety of ways, and the decision to use the algebraic apparatus arises as learners’ choice.  

Treatment of sense making as an inseparable part of mathematical thinking makes the MGA model 
of creating mathematical abstractions (Mason, 1989) particularly important for our study.  The main 
operational categories of the model are Manipulating, Getting-a-sense-of, Articulating (hence 
MGA). The MGA model elaborates on the processes of creating abstraction as a helix, in which 
each cycle includes its own, local, sense-making act. Briefly, the model presumes that manipulating 
familiar mathematical objects (M) leads to the formation of a sense of generality or regularity based 
on properties of these objects (G), and then to the articulation of that general property or regularity 
(A), which in turn forms new objects for further manipulations. Mason (1989) suggested that the 
driving force behind the process of creating abstractions is the gap between expected and actual 
results of manipulations. 

To summarize, in our study we adapt NCTM’s (2009) perspective on sense making, and elaborate 
on it in an algebraic context. Our theoretical framework is built upon the idea of algebra as an 
activity (Kieran, 1996, 2007) and on analytical apparatus of Mason’s (1989) model of mathematical 
thinking known as Manipulating – Getting-a-sense-of –Articulating (MGA). 



Method  
Learning environment, participants and the mathematical context 

The Open-ended Mathematical Problems project, in the context of which the case of Ron and Arik 
took place, is being conducted, since 2010, in 9th grade classes for mathematically promising 
students. The learning goal of the project is to create for students a long-term opportunity for 
developing algebraic reasoning in the context of numerical sequences. It is of note that 9th graders in 
Israel, as a rule, do not possess any systematic knowledge of sequences; this topic is taught in the 
10th grade.  

The project is designed in accordance with the principles of the Project-Based Learning (PBL) 
instructional approach (e.g., Blumenfeld et al.,1991). Specifically, the organizational framework of 
the project is as follows. At the beginning of a yearly cycle of the project, a class is exposed to 8-10 
challenging problems. The students choose one problem and work on it in teams of two or three. 
They work on the problem at home and during their enrichment classes. Weekly 20-minute 
meetings of each team with the instructor (the first author) take place during the enrichment classes. 
When the initial problem is solved, students are encouraged to pose and solve follow-up problems. 
At the end of the project, all teams present their results to their peers. Then 4-6 teams, chosen by 
their classmates, present their work at a workshop at the Technion – Israel Institute of Technology, 
attended by academic audience (for more details see Palatnik, 2016). 

Ron and Arik chose to pursue the Pizza Problem (Figure 1) which is a variation of the problem of 
partitioning the plane by n lines (e.g., Pólya, 1954). 

 

Figure 1: The Pizza Problem 

Using Kieran’s (2007) terminology, we expected the PBL environment and the Pizza Problem in 
particular to afford students to be engaged with generational and transformational activities in the 
context of a global/meta-level activity. In this way, the students were provided with opportunities 
for developing algebraic sense-making and we – with an opportunity to study their sense-making 
effort.  

Data sources and analysis  

We audiotaped and transcribed protocols of the weekly meetings with Ron and Arik (eight 20-
minute meetings), collected written reports and authentic drafts that the students prepared for and 
updated during the meetings (more than 40 pages) and interviewed the students by the end of the 
project. These data were used to create a description of the students’ exploration and for dividing it 
into events.   

In accordance with the presented above methodological principles for exploring sense making, we 
discerned the activities the students chose to be engaged in: proving, generalizing, pattern-seeking, 

Every straight cut divides a pizza into two separate pieces. What is the 

largest number of pieces that can be obtained by n straight cuts? 

A. Solve for n = 1, 2, 3, 4, 5, 6. 

B. Find a recursive formula for the nth term of the sequence. 

C. Find a position formula for the nth  term of the sequence. 



and question-generating. We also applied the MGA model to trace mathematical objects 
manipulated by the students in a sequence of activities potentially contributing to sense-making. 

Findings: Ron and Arik make sense of the obtained formula 
We present here four main events that occurred during students’ sense-making pursuit. 

Event 1: Choosing new goals 

The following conversation took place just after the students presented their solution of the Pizza 
Problem to the instructor:  

Instructor:   Now you have a lot of work to do, and this is great. First of all, you see that 
the formula works. Now we have to think why it works, and try proving that it works. 

Ron (to Arik):  Write it down. “Why it works, and prove that it works” (laughs), it is 
interesting! 

Ron accepted instructor’s suggestion. In his words: “When we have a formula, but don’t know its 
meaning, it is not interesting. If we knew how the formula is constructed, we would know it 100%. 
We got it by chance. So we do not know what it means.” In addition, both students proposed to 
explore a more general problem, that of plane partitioning (see Figure 2). 

 

Figure 2: Division of the plane: there are three closed (hatched) and eight open pieces 

The students also suggested additional objects to explore: the points of intersection of the cutting 
lines with and within a circle representing a pizza and the number of segments on the cutting lines.  

Event 2: Simultaneous exploration of several sequences and first manipulation with a formula 

Having chosen the above goals, the students started making sketches and counting: segments within 
the circle, closed and open parts of the plane and points of intersection of the cutting lines, for 
different numbers of lines (see Figure 3a-c). As a by-product, the students noticed that the sum of 
the first n odd numbers also equals n2. They also began exploring the connections between different 
sequences (see Figure 3d-3e). In particular, Ron noticed that the differences between the 
corresponding terms of the sequences form a sequence 0, 1, 2, 3... (see columns X,Y at Figure 3d). 



 

Figure 3: The strategy employed in Events 1 and 2 

To obtain an explicit formula for the sequence 2, 5, 9, 14 … (the numbers of intersections of the 

cutting lines with and within the circle), Ron adjusted the formula 1
2

2

+nn=Pn
  into the formula 

nnnX= 


2

2
 (Figure 3c) in the following way: “I thought it would be like the previous formula, 

but it did not fit. So I got rid of 1 and added n [to the right side of the formula], and it was right.” 

Event 3: Producing an explanation of why the target formulas worked 

The wish to understand why the formula returns the maximum number of pieces was a repeated 
theme in weekly meetings with the instructor. The students eventually answered this query in the 
following way. After exploring of new drawings Ron and Arik realized that the maximal number of 
pieces is obtained when a new cutting line crosses all the previous lines in new points. As a result, 
the students concluded that a new cutting line added n new intersection points to the existing 
configuration of lines. For the students, it was an explanation of why the formula nnnX= 



2

2
 

returned the maximum number of the intersection points. They further asserted that this idea also 

explained, for them, why the target formula 1
2

2

+nn=Pn
  returns the maximum number of pieces. 

Event 4: “Proving” the target formula  

As mentioned, the need to prove the correctness of the formula for the Pizza Problem was an 
additional driving force for the students. First, Ron suggested: “We thought of a way to prove it [the 
position formula]…[in order to do so, we wanted] to connect all the formulas we had, every table 
we’ve made… may be it will give us the formula, then we will know that it is a true formula indeed. 
Then we'd have a proof”. Ron and Arik built upon the following inference: for any number of cuts, 
the sum of the number of open and closed pieces (see Figure 2) equals the overall number of pieces 
into which a plane is divided. They explored the sequences for open and closed pieces. The number 
of open pieces for n cuts, 2n, was easy for them to find and explain: adding a new cutting line adds 
exactly two open pieces to the drawing. For the closed pieces the students empirically (i.e., by 
counting on the drawings) obtained a sequence 0, 0, 1, 3, 6 for 1, 2, 3, 4 and 5 cuts, respectively. 
They perceived it as “quite close” to the target sequence (2, 4, 7, 11, 16…) and began manipulating 



the target formula ( 1
2

2

+nn=Pn
 ) in a way similar to adjustment in Event 2. Eventually Ron and Arik 

obtained the correct expression   1
2
2 2


 nn . The last piece of the puzzle came when Ron and Arik 

and their classmate with whom they consulted devised and realized the following plan.  Since the 

formula 1
2

2

+nn=Pn
  represents the total numbers of pieces and since Ron and Arik have obtained 

the formulas for the numbers of closed and open pieces, the three formulas should match. After 
several unsuccessful attempts, Ron and Arik implemented this idea and algebraically connected the 
three formulas. In their final presentation, they showed a slide with the following transformations: 

 
2

2
2

424421
2
2 222







 nnnnnnnnn ;  
2

21
2

1 2 


 nnnn . This and 

validation of all three formulas by means of Excel tables were presented as “the proof” of the target 
formula, and the formula itself was treated as “making sense” by the students.  

Discussion  
The four-weeks-long exploration of two 9th grade students working on a particular project has been 
presented. The answer to the first research question (about events and algebraic activities in which 
the students were engaged while attempting to make sense of the previously obtained position 
formula) straightforwardly follows from the above exposition. Briefly, the students were engaged in 
generational and transformational activities in the context of the global/meta-level activities of 
explaining to themselves why the formula worked and of proving the formula. It is of note that Ron 
and Arik’s persistence to make sense of their formula is unusual. We suggest two circumstances 
contributing to the emergence of the students’ self-imposed sense-making goal. First, the 
students’ activities were organized and driven by their interest to a particular mathematical 
phenomenon and not merely to generation of some patterns (cf. Hewitt, 1992, for train spotters 
metaphor). Second circumstance is the organizational setting of the project, which was in 
accordance with project-based learning instructional approach (Blumenfeld et al., 1991). In such 
an environment the students had a chance to get used to the long-term, open-ended explorations, 
to the high level of expectations and to having room and time to spend with a problem. 
Our second research question concerned the processes involved in student sense making. To answer 
the query “why the formula works” the students examined the geometric mechanism behind the 
formula. In the course of generational activity the students experimented with concrete drawings 
(i.e., drawings with 4-6 cutting lines), which apparently served as a visual tool to reveal a generic 
process that occurs when a line is added to a system of n existing lines. Accordingly, the multi-stage 
process of abstracting, at each stage of which an MGA cycle occurred, seems to be the central 
process underlying the why-part of the students’ sense-making effort. 

The query “how to prove the formula” turned to be the thorniest part of the project. The students 
addressed this query when they succeeded to show how the target formula came to cohere with two 
geometrically related formulas. These formulas were obtained by means of exploration of the 
connections between the sequences chosen by students. The connections were found in the process 
that featured counting on the drawings, pattern-sniffing in the tables and manipulating the 
previously obtained formulas by adjusting them. Eventually, the target formula was inserted in a 
cloud of related formulas, which did not exist when the students began the sense-making pursuit. 



Thus, the process of generating a cloud of formulas and checking it for coherence seems to be an 
important process in the proving part of the students’ sense-making effort (cf. Rohano, Filloy & 
Puig, 2014, for sense making by connection of a new mathematical text to a system of texts). It is of 
note that the coherence was achieved not only among various objects, but also by means of a 
coherent exploration strategy. 

As argued, Ron and Arik constructed meaning of the target formula in a sense-making process 
consisting of sequence of generational and transformational algebraic activities in the overarching 
context of global, meta-level activity, long-term problem solving. In this sense-making process, the 
students: (1) formulated and justified claims; (2) made generalizations, (3) found the mechanisms 
behind the algebraic objects (i.e., answered why-questions); and (4) established coherence among 
the explored objects. We now take the liberty of formulating this summary as a proposal for a four-
component decomposition of sense making (see Figure 4). 

 

Figure 4: Four aspects of an algebraic sense making through algebraic activities 

The aspects of generalizing, justifying and search for mechanism in sense making are in line with 
the main attributes of symbol sense (Arcavi, 2005) as well as findings about the role of generalizing 
and justifying in meaning construction (e.g., Lannin, 2005; Radford, 2010). However, establishing 
coherence has not yet been considered as part of sense making.  

The four-component decomposition elaborates NCTM’s (2009) definition of sense making in the 
following way. First, it presents sense making as a conjunction of processes. Second, it highlights 
the potential of algebraic activities to provide students with means to make sense of algebraic 
objects. 

References 

Arcavi, A. (2005). Developing and using symbol sense in mathematics. For the Learning of 
Mathematics, 25(2), 42−47. 

Blumenfeld, P., Soloway, E., Marx, R., Krajcik, J., Guzial, M., & Palinscar, A. (1991). Motivating 
project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 
26, 369−398. 

Hewitt, D. (1992). Train spotters’ paradise. Mathematics Teaching, 140, 6–8. 

Hoch, M., & Dreyfus, T. (2006). Structure sense versus manipulation skills: an unexpected result. 
In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th 

Sense making  

Meta-level /Global activities Transformational activities 

Generational activities 
 

 

 

 

 

 

 

Justification 

Mechanism 

Coherence 

Generalisation Generalizing 
Justifying 

Searching for mechanism 

Establishing coherence 



Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 
305−312). Prague, Czech Republic: PME.  

Kieran, C. (1996). The changing face of school algebra. In C. Alsina, J. Alvarez, B. Hodgson, C. 
Laborde, & A. Pérez (Eds.), Eighth International Congress on Mathematical Education: 
Selected lectures (pp. 271–290). Seville, Spain: S.A.E.M. Thales. 

Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels: 
Building meaning for symbols and their manipulation. In F. K. Lester (Ed.), Second handbook of 
research on mathematics teaching and learning (pp. 707–762). Charlotte, NC: Information Age.  

Lannin, J. K. (2005). Generalization and justification: The challenge of introducing algebraic 
reasoning through patterning activities. Mathematical Thinking and Learning, 7(3), 231−258. 

Mason, J. (1989). Mathematical abstraction as the result of a delicate shift of attention. For the 
Learning of Mathematics, 9(2), 2−8. 

Meira, L. (1998). Making sense of instructional devices: The emergence of transparency in 
mathematical activity. Journal for Research in Mathematics Education, 29, 121−142. 

NCTM (National Council of Teachers of Mathematics) (2009). Executive summary: Focus in high 
school mathematics: Reasoning and sense-making. Reston, VA: The Author.  

Palatnik, A., & Koichu, B. (2015). Exploring insight: focus on shifts of attention. For the Learning 
of Mathematics, 35(2), 9−14. 

Palatnik, A., & Koichu, B. (2017). Sense making in the context of algebraic activities. Educational 
Studies of Mathematics, doi:10.1007/s10649-016-9744-1. 

Palatnik, A. (2016) Learning through long-term mathematical research projects. (Unpublished 
doctoral dissertation). Technion – Israel Institute of Technology, Haifa, Israel. 

Pólya, G., (1954). Induction and analogy in mathematics. Princeton, NJ: Princeton University 
Press. 

Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA - 
Pensamiento Numérico Avanzado, 4(2), 37−62. 

Rojano, T., Filloy, E., & Puig, L. (2014). Intertextuality and sense production in the learning of 
algebraic methods. Educational Studies in Mathematics, 87, 389−407. 

Schoenfeld, A. H. (2013). Reflections on problem solving theory and practice. The Mathematics 
Enthusiast, 10 (1-2), 9−34. 

Smith, J. C. (2006). A sense-making approach to proof: Strategies of students in traditional and 
problem-based number theory courses. The Journal of Mathematical Behavior, 25, 73−90. 



‘Father Woodland’: A learning environment to facilitate the 
development of algebraic thinking 

Ioannis Papadopoulos1 and Nafsika Patsiala2 
1Aristotle University of Thessaloniki, Greece; ypapadop@eled.auth.gr 
2Aristotle University of Thessaloniki, Greece; nafspats@eled.auth.gr 

In this paper, the contribution of the use of the “Father Woodland” learning environment in Grade-
3 students’ algebraic thinking is examined. Four types of thinking were identified indicating a 
progressive movement towards the use of symbolic language that seems to have a rather 
developmental character. In their solutions the students induced rules for solving equations that will 
later be introduced formally to them.  

Keywords: Early algebraic thinking, puzzle-like environments.  

Introduction  
Given the central position of algebra in the secondary curriculum which led to a separation between 
arithmetic and algebra with the first being the main focus of elementary mathematics curriculum, 
mathematics educators try to cope with the challenge of managing the transition from arithmetic to 
symbolic algebra. Numerous researchers admit that this separation deprives children of powerful 
schemes of thinking in the early grades and makes it more difficult to learn algebra in the later years 
(e.g., Kieran, 2007). One way to address this issue might be to study the impact of certain learning 
environments in the students’ development of algebraic thinking. Papadopoulos, Kindini and 
Tsakalaki (2016) working with a mobile puzzle environment found that sixth graders exhibit a 
progressive movement towards algebraic thinking. In this context, we try to explore the potential 
contribution of another specific learning environment called ‘Father Woodland’ in young students’ 
algebraic thinking that would allow us to identify certain steps in this movement from arithmetic to 
algebra. This is based on two of the algebra goals specified by NCTM (2000) standards, i.e., (i) 
represent and analyze mathematical situations and structures using algebraic symbols, and (ii) use 
mathematical models to represent and understand quantitative relationships. Therefore, we try to 
examine whether this environment facilitates the achievement of these goals through the 
identification of the types of thinking that the students followed in order to cope with the given tasks. 

Early algebraic thinking and ‘Father Woodland’ environment. 
Cai and Knuth (2011) do not limit algebraic thinking in earlier grades to simply mastering arithmetic 
and computational fluency but it goes deeper in identifying the underlying structure of mathematics 
which includes the development of particular ways of thinking, analysis of relationships between 
quantities, noticing structure, generalization, problem solving, justifying, proving and predicting. Cai 
et al. (2005), in a cross-cultural comparative study talk about multiple representations (pictures, 
diagrams, tables, graphs, and equations) that are used to represent functional relationships between 
two quantities and more specifically about ‘pictorial equations’ used to represent quantitative 
relationships providing thus a means for developing students’ algebraic ideas. This raises the 
necessity to make the distinction between the external and internal representations in the sense of 
considering at a minimum configurations of symbols or objects external to the individual learner or 



problem solver (i.e., concrete materials, pictures/diagrams, spoken words, written symbols) that can 
be described mathematically and configurations internal to the individual (i.e., mental models and 
cognitive representations of the mathematical ideas underlying the external representations) 
respectively (Goldin, 2002). Such internal representations are inferred from the way the students 
express their aspects of the process of mathematical thinking in their written responses.  It seems that 
certain learning environments can be in favor of introducing young learners to these aspects of 
algebraic thinking (Papadopoulos et al., 2016). In the current study a specific learning environment 
has been chosen. It is called ‘Father Woodland’ and is about a Czech fairy-tale figure owning a farm 
who organizes tug-of-war games among the animals living in the farm (Hejný, Jirotková, & 
Kratochvílová, 2006). The weakest animal is the mouse. Two mice are as strong as a cat, a cat and a 
mouse equal a goose and a goose and a mouse equal a dog (Fig. 1). The strength of each animal is 
represented by a picture and an icon (symbol) and the students are asked mainly to decide between 
two groups the stronger one or to add some animals to the weaker group in order to create two 
equivalent groups, or to reveal the identity of hidden animals so as to obtain equity. 

     

Figure 1: Equivalences in the Father Woodland environment 

It is a rich environment. Hejny and his colleagues use it in a series of textbooks they produced. The 
relevant tasks within these textbooks are connected with the development -among others- of an early 
number sense, pre-concept of divisibility, the lowest common multiple and greatest common divisor 
as well as the solving of equations. Hejný, et al. (2006) used this environment with Grade 1-3 students 
focusing on how the environment facilitated the identification and acceptance of the association 
between animals and quantities. Marchini and Back (2010), used also a modified version of the 
environment to fit in the Italian schools and worked with Grade-1 students focusing on how the 
variety of “ways for representing the same mathematical concept together with treatment inside a 
register and conversion between registers facilitate pupils’ understanding and the construction of 
concepts” (p. 55). In this study we focus on the use of this environment as a way to smooth the 
transition from arithmetic to algebra (in the sense of using pictorial equations as a means or 
developing algebraic ideas, see Cai et al., 2005) by considering the various types of students’ thinking 
that would show a progressive movement towards algebraic thinking.   

Design of the study 
Seventy 3rd graders (8-9 years old) participated in the study. They were the total population of three 
classes from two primary schools and they represent a sample of an ordinary Greek primary school. 
They had no previous experience working with this kind of environments and they had not been 
taught any of the basic concepts of algebra such as equations or variables. When the students were 
introduced to the ‘Father Woodland’ environment, each tug-of-war game was presented using both 
the pictorial and symbolic representations of the animals. The whole study (part of a broader one) 
lasted five weeks. The students were initially introduced to ‘Father Woodland’ and then on a regular 
basis they were given tasks to solve individually. The whole project took part in parallel to the normal 



teaching and was not integrated in the content of their math lessons. This paper focuses on the first 
10 tasks due to the limited number of pages. There are 3 collections of tasks. In the first, there were 
two groups of animals in each task and the students were asked to add a mouse to the weaker group 
in order to make both groups equivalent (Fig. 2). This demands comparison and relational thinking 
connected to the notion of equality as an equivalence. In the second, the tug-of-war game took place 
but one (or some) of the animals wore a mask. The students were invited to find the animal(s) behind 
the mask (Fig. 3, left and middle). The aim was to exploit relational thinking in the form of using 
alternative ways for representing the unknown quantity. Finally, in the third, the students were asked 
to create two equally strong teams using any combination of the farm animals (Fig. 3, right). The aim 
was to see whether the students exploit the experience gained before and how intuitive mathematical 
ideas are embedded in their creations. For each task, the students were asked to explain their answer 
in a separate textbox. During the study, no feedback was given to the students about their answers. 
The students’ worksheets constituted the data for this study. These data were examined in order to 
identify evidence of early algebraic thinking and possible formal mathematical concepts, which are 
informally used in the students’ answers. In the context of qualitative content analysis, inductive 
category development was used to organize the categories. 

 
Figure 2: The first group of activities 

 
Figure 3: The second (left, middle) and the third (right) group of activities 

 

Results and discussion 
After the data examination, the answers were categorized in four types. The criteria for this 
categorization were the ways students chose to express the underlying structure in each task (i.e., 
using pictures, words or symbols), the relationships among the given quantities (i.e., using the given 
or new (invented) relationships), and the mathematical information contained within the pictorial 
representation (i.e., identifying a basic unit, substituting animals with their equivalents, 
adding/subtracting the same quantity in both sides, etc.). The four types are: (i) using pictorial 
language, (ii) using words to express relationships, (iii) combining words and symbolic 
representations and (iv) using ‘symbolic’ language to express relationships. Obviously not all the 



students applied all the types. This is why it was decided to choose a proper sample of students to 
show the diversity of the approaches taken.  

Type 1 – Using pictorial language 

This type refers to the students who preferred drawing pictures in detail rather than using a symbolic 
representation (Task-E, Fig. 4). The answer is correct. The missing mouse must join the group on the 
left to get two equal teams but the reasoning is weak since it is limited to merely transfer the ‘abstract’ 
information into a more ‘realistic’ version and it lacks an explicit explanation of the ‘underlying’ 
thought. It seems that the student fails to shift the focus to the existing relationships between the 
values of the participating animals. 

 
Figure 4: Use of drawings  

Type 2 – Using words to express relationships 

This type was used by the majority of the students and it proved more convenient for most of them 
to express their solution of the problem. Actually, in this type, the students made a step forward by 
trying to use words for expressing relationships among the quantities as it can be seen in the next two 
examples. This choice in many of the cases was described by the students in detail revealing thus 
their line of thought. In Task-J, one student created two equivalent groups by placing 5 dogs on the 
left and 20 mice on the right (Fig. 5). His explanation was: “I thought that 5 dogs are as strong as 5 
geese and 5 mice. But, 5 geese = 5 mice and 5 cats and 5 cats are as strong as 10 mice. So 20 mice”. 

       
Figure 5: Use of mouse as the basic unit 

The student exploited all the default information given by the pictures in Figure 1, e.g., 1 
d(og)=1g(oose)+1m(ouse), 1g(oose)=1c(at)+1m(ouse), and 1c(at)=2m(ice). Then, the whole process 
can be presented on a more formal way as 1d=1g+1m ⟹ 5d=5(g+m)[multiply both parts by the same 
number] ⟹ 5d=5g+5m [distributive property]⟹ 5d=5(c+m)+5m [substitute with equivalent] ⟹ 
5d=5c+5m+5m ⟹ 5d=5x2m[substitute with equivalent] +10m ⟹ 5d=10m+10m ⟹ 5d=20m. It 
must be said that this is not explicitly outlined by the child. But this enables us to identify in the 
student’s explanation the seeds of the mathematical reasoning described above. In the same way we 
will try to see the possible formal way of expressing the students’ answers in the remaining part of 
the paper. Actually, we make inferences about students’ internal representations on the basis of their 
production of external representations (Goldin & Shteingold, 2001).   



The second example concerns Task-H which asked the students to identify the animal hidden behind 
the mask. The student’s answer was (Fig. 6, left): “There is a cat hiding behind the mask. Because, a 
mouse and a dog are as strong as a cat and two mice. I figured it out because a mouse and a dog are 
as strong as 5 mice so behind the mask is a cat since 2 cats and 1 mouse are as strong as 5 mice too”. 

The student’s starting point was the right part of the equation and she chose the mouse as the building 
block to replace all the involved animals. It is necessary to mention here that the students did not 
restrict themselves on the given relationships that were given during the first session (Fig. 1). They 
were able, during the next sessions, to identify new relationships based on the given ones. This student 
made use of one of these invented relationships by claiming implicitly that a dog has the same strength 
with 4 mice. This claim results to the total amount of 5 mice in the right part. Given that a cat has the 
same strength with 2 mice, it means that there are 3 mice in the left part of the equation plus the 
hidden animal. Two mice are needed to obtain equality; therefore, a cat must be placed behind the 
mask.    

    
Figure 6: Use of words (left) and combination of symbols and words (right) to explain relationships 

If we translate the reasoning of the student into its formal version, considering x the unknown, we 
obtain the following series of equations. 𝑥 + 𝑐 + 𝑚 = 𝑚 + 𝑑

𝑑=4𝑚
⇒   𝑥 + 𝑐 +𝑚 =

5𝑚 [𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡]
𝑐=2𝑚
⇒   𝑥 + 3𝑚 = 5𝑚[𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡] ⟹ 𝑥 =

2𝑚 [𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑓𝑟𝑜𝑚 𝑏𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠]
𝑐=2𝑚
⇒   𝑥 = 𝑐 [𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡]  

The strategy that led to successful solution here was: (i) choose the basic unit (e.g., the mouse), (ii) 
translate the picture to equation, (iii) substitute the dog by its equivalent number of mice and execute 
the operation, (iv) substitute the cat by its equivalent number of mice and execute the operation, (iv) 
find the unknown (x). 

Type 3 – Combining words and symbolic language 

This type starts -as a first step towards symbolic language- to combine words and symbols to show 
relationships between the participating animals. This is one answer for Task-I: “I figured it out 

because  becomes (equals)  plus . So there is hiding behind the mask”.  

The student in the first half of her answer used the word ‘becomes’ to denote the equality between 
cat and mice (Fig. 6, right). But, in the second half she used the sign of ‘=’ to denote again the 
relationship between mice and geese (left part) and dogs (right part). Firstly, she substituted the cat 
(c) with 2 mice (m). Now, the left part consists of two identical sub-groups (a goose and a mouse per 
subgroup) which if substituted by their equivalence in terms of dogs reveal the identity of the 
unknown. So, starting from the left part: 2𝑔 + 𝑐 = 𝑥 + 𝑑

𝑐=2𝑚
⇒   2𝑔 + 2𝑚 = 𝑥 +

𝑑 [𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡] ⇒ 2(𝑔 +𝑚) = 𝑥 + 𝑑 [𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦]
𝑔+𝑚=𝑑
⇒     2𝑑 =



𝑥 + 𝑑[𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡] ⇒ 𝑥 = 𝑑 [𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦]. The knowledge 
that 2 mice plus 2 geese is the same as 2 dogs -which is based on the given relationship that a mouse 
plus a goose is the same as a dog- reveals an implicit understanding of the above mentioned 
distributive property. 

Type 4 – Using symbolic language to express relationships 

The last type used by the students abandons the use of words and the reasoning is mainly symbolic. 
The first example is an answer from Task-F dealing with the animal behind the mask. The student 
started with the left group, using a symbolic expression to show its substitution by a dog (

). Then, based on this expression she wrote another one to show the solution (

, see Fig.7 left). The first claim of the student seems arbitrary but if seen carefully it 
makes use of known relationships in order to obtain new ones. The left group represents the sentence 
m+m+c. Given that m+c=g(oose) the sentence becomes m+g which, according to the given 
relationships, equals with a dog. Then, it is obvious that what is needed in the right part of the equation 
is a mouse.   

 
Figure 7: Usage of symbolic representations (left and right) 

The second example shows a solution for Task-C. This solution is considered more elaborated since 
the student made use of the sign of the required operation to show the equivalence. This is indicative 
of understanding both the operation that takes place and the correct use of the sign of this operation. 
The missing animal is the mouse that must join the left group to get equality (Fig. 7, right). The sum 
of the strength of the three mice equals the strength of the goose. Again, this is a relation different 
than the given ones and it is important that so young students exhibit this ability, to use and combine 
given situations in order to get new ones. So, it is interesting to follow the thought of the student. 
Two mice equal with a cat. Then, a cat and a mouse have the same strength with a goose. 
Consequently (transitivity) three mice are equivalent with a goose. Expressing relationships using 
this symbolic language to solve a problem constitutes an important step towards the development of 
algebraic thinking. Besides, all the answers show an explicit focus of the students to the underlying 
structure of each equivalence in order to reach a solution. 

It is intersting to examine now the findings of this study in the light of a previous one. Papadopoulos 
et al. (2016) in their study based on the use of mobile puzzles with 6th graders, distinguished mainly 
four types of students’ thinking (translating the picture to equality expressions, using words to show 
the relationship, using  symbolic  language to show the relationship, and combination of more than 
one of the previous types). This means that there is a match between the types of thinking in these 
two studies and this stregnthens the possible positive contribution of puzzle-like learning 



environments to the development of young students’ algebraic thinking. The feeling from the first 
study (no numerical data available) was that the order of these types is rather developmental in the 
sense that types 3 and 4 are more advanced (and thus less frequent), and are met at the end of the 
project (an indication that they are connected with the accumulated experience). One could attribute 
this finding to the teachers’ appreciation  of the symbolic answers instead of textual ones. However,  
this is not the case, since the teachers were not involved in the project and in the meanwhile the 
students did not receive any feedback about their answers.  

 Type-1 Type-2  Type-3 Type-4  

Tasks A-E 5 (1.6%) 253 (83%) 14 (4.6%) 33 (10.8%) 

Tasks F-I 8 (3.74%) 157 (73.36%) 24 (11.22%) 25 (11.68%) 

Task J 2 (2.94%) 56 (82.35%) 8 (11.77%) 2 (2.94%) 

Table 1: Frequency of Types 1-4 

In this study an effort was made to get arithmetical evidence that would shed light on this issue. Table-
1 confirms that Types 3 and 4 are indeed the less frequent ones. The low frequency of Type-1 was 
expected since the pictorial language was already included in the statement of the tasks.  

Table-2 presents the distribution of the last two types across the range of the tasks. As it can be seen 
to a great extent the number of instance for each Type is increased as we move towards the last tasks 
indicating that these types are connected with the accumulated experience. 

 Task-A Task-B Task-C Task-D Task-E Task-F Task-G Task-H 

Type-3 3 2 4 3 3 7 7 7 

Type-4 5 6 3 8 10 8 8 8 

Table 2: Distribution of Types 3-4 across tasks 

Conclusions 
The findings of our research indicate that the ‘Father Woodland’ environment might contribute to the 
development of students’ algebraic thinking. The four types of thinking mirror the rules induced by 
the students in order to solve the posed problems. Starting from certain external representations of 
equality sentences the students made an attempt to express their internal representations through the 
shift from pictorial to symbolic language. Obviously, this is not all that matters with the development 
of algebraic thinking with young children. However, it cannot be considered trivial. The students had 
to add or remove the same animal (quantity) from both sides, to substitute certain animals with their 
equivalence, isolate the unknown animal (variable) trying to maintain the same strength between both 
groups of animals applying at the same time the distributive law or transitivity. Despite that lack of 
explicit knowledge about operations and relations hinders a good approach to algebra (Gerhard, 
2013), it seemed that there were instances of an implicit knowledge of certain rules for solving 
equations which will be later introduced formally to the students. However, it still remains to answer 
questions like: In what way the transition from the animal symbols back to the arithmetical or 
algebraic equations will be possible? Additionally, the findings support the developmental character 
of these types of thinking when the students use puzzle-like learning environments aiming to support 



algebraic thinking. However, this does not mean that some students did not occasionally move 
backwards to previous types of thinking. This is in itself a significant finding we aim to explore 
further since the relatively small number of participants does not allow to generalize our findings.    
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This paper provides insight in the process of developing a comprehensive and concise summary of 
the most prominent aspects of proficiency in elementary algebra at the end of secondary grade. It 
will serve as a theoretical frame of reference for devising or validating instruments for diagnosing 
the mastery of elementary algebra at the transit from school to university. A first draft had been 
based on literature, which then was presented to experts for further evaluation. The model now 
comprises ten aspects of proficiency which are allocated into a table of two dimensions, one 
referring to elements of algebraic language, the other referring to the cognitive actions performed 
on them.  

Keywords: Elementary algebra, basic skills, secondary school mathematics, STEM Education. 

Introduction 
For being successful in subjects from science, technology, engineering or mathematics at high 
school or university (STEM), a good mastery of formal algebra is indispensable. But what is a good 
mastery of algebra, and how does it show? To provide a theoretical base for devising an instrument 
for diagnosis, we have been working on a comprehensive yet concise overview of the important 
aspects of proficiency in elementary algebra as it has been covered by relevant research. For this, the 
model is meant to be summative, i.e. it contains aspects of proficiency that are expected by the end 
of secondary school. And, when referring to elementary algebra we mean symbolic algebra as it 
appears at the end of secondary school. A first draft of the overview was based on relevant literature 
from national and international publications, which was then presented to experts for validation. In 
the following we will first give a short report on the main outcomes of the literature review of the 
first stage, after that we will present the main outcomes of the expert survey. This paper’s main part 
then contains a detailed description of the present state of our model. 

Model development 
First draft based on literature 

The aim of this first stage of model development was to give a structured compilation of the 
important aspects of proficiency in elementary formal algebra as it is present in research 
publications of nearly 40 years, starting with Küchemann’s paper on children’s understanding of 
variables (1978). A loose series of unconnected aspects would not be of much help where a concise 
summary is needed. So we decided to build categories from the various aspects found in literature, 
based on two a-priori dimensions that served as a first theoretical frame for categorization: It starts 
with listing all relevant mathematical objects of the domain in question, which here are variables 
and expressions as elements of the algebraic language. The second dimension focusses on the 
mental and real activities associated with these objects that all represent some stage of “making 



sense of algebra” (Arcavi, 1994). Arcavi’s approach to describing what is meant by understanding 
algebra seemed a suitable frame, or better: attitude for collecting and arranging research findings 
from the past years. “Symbol sense” is, in his own words, “a complex and multifaceted 'feel' for 
symbols” (Arcavi, 1994, p.31) which invites to searching for aspects of quickly grasping a situation 
where symbolic algebra is involved. Hence the second of the two dimensions of our model 
comprises a range of various activities that in some way “make sense” of variables and expressions, 
ranging from stating correct manipulation rules and identifying expression to which these rules can 
be applied to modeling realistic situations by means of algebra. 

 

Table 1: Literature based draft of important aspects of proficiency in elementary algebra 

This first draft resulted in formulating ten aspects of proficiency, arranged in a tableau along the two 
dimensions (table 1) introduced above. Here, these ten aspects were defined as single elementary 
“blocks” of which more complex activities could be constructed by combination. For example, 
combining three abilities which we then called “(1) formulate rules for manipulating expressions”, 
“(2) identify expression type” and “(3) manipulate expression by applying rules” would sum up to 
what is generally meant by the ability to manipulate algebraic expressions correctly. While this 
approach seemed sensible for a detailed diagnosis, it proved to be unhandy in discussions even 
between experts as the following sections shows. 

Expert survey 

For validating the results of the literature review an expert survey was conducted. By choosing the 
experts we focused on professors and seminar teachers of mathematics education in German 
speaking areas who published primarily about teaching and learning elementary algebra within 
recent years. Twenty-four colleagues were contacted via e-mail, one of them declined but 
recommended a colleague as a substitute who, after checking our requirements, was contacted too. 
All experts were asked to complete an online-questionnaire which was implemented in the free 
online-tool SoSci Survey (www.soscisurvey.de). The experts were expected to comment on two 
fields: firstly, on the contents and the structure of the model, while each of the ten aspects was 
illustrated by one exemplary task, and, secondly, on a battery of additional 48 items that was 
devised to operationalize the ten aspects. Because giving feedback on all 48 items would have taken 
too much time we created 6 different versions of the online-questionnaire and reduced the extent of 
each version by an overlapping multi-matrix-design (cf. Zendler, Vogel & Spannagel, 2013). All in 



all, an expert had to view 22 or 23 tasks. Since the response rate was 50%, each task was processed 
and judged by an average of about 6 randomly assigned experts. 

In the first section of the survey the experts were presented an interactive version of Table 1 where 
explanations of the entries were shown together with exemplary tasks in a pop-up window. Here, 
they were asked to familiarize themselves with the table entries and explanations while making 
notes on which aspects they thought needed to be reworked or were unessential for basic mastery of 
algebra, or which aspects were missing in their view. There also was place for free comments on the 
model as a whole. In the second section of the survey the experts were asked to assign each of the 
22 or 23 task assigned to them to three of the ten aspects of the model and comment on their 
decision. Here, a smaller version of the interactive table was present with each assignment question. 
By combining assignment questions and open question types the question format can be considered 
as being half-open. This type of questions is suitable for experts who are considered to have a 
differentiated self-awareness, expressiveness, motivation and fidelity (cf. Gerl & Pehl, 1983). The 
open question format is to be seen as the qualitative part of the online-questionnaire which complies 
with a written survey in sense of an expert interview (Bogner, Littig, & Menz, 2002). Qualitative 
methods are especially suitable for purposes of theory-based exploration (cf. Bortz & Döring, 2006). 
In the following we focus on the results of this qualitative part of the survey.  

Data analysis and results of the expert survey 

The aim of the expert survey was to validate the first, literature based draft of the model. For data-
reduction by clustering analogous comments we followed an open-ended approach to qualitative 
evaluation as provided by Grounded Theory (Corbin & Strauss, 1990) along these four steps: (1st) 
All comments from the open question parts of the survey were rephrased by the authors into single 
conclusive statements about the model or a task. (2nd) All these statements were pasted into the free 
digital mindmap programm xmind (www.xmind.com) where, for each expert, they were arranged in 
the order as they appeared in the survey. (3rd) Categorisation took place first with the aim of 
clustering comments of analogous content – now renamed as “contributions to model revision” and 
then, (4th), with the aim of categorizing these contributions according to how each of them would 
contribute to modifying the model or the test battery. 

Since many of the statements – though sometimes commenting on single items of the battery – were 
of a general kind, the process of categorizing eventually detached from the original structure of the 
questionnaire, so that the following four categories emerged: (a) contributions to clarifying the 
theoretical frame of the model, (b) contributions to restructuring the model, (c) contributions to 
reformulating definitions or exemplary tasks of single aspects of the model, (d) contributions to 
reformulating or deleting a task from the test battery. Among the contributions assigned to category 
(a), some experts asked how the various aspects of “making sense of algebra” relate to existing 
models of mathematical understanding. Other experts expressed their uncertainty of how our model 
relates functions. And other experts were missing activities of preformal algebra. Among the 
contributions assigned to category (b), one expert pointed out that the activities of transforming or 
interpreting algebraic expression would imply the activity to identify the structure of an expression 
so that “structuring” needs to be given a more prominent role in our model’s layout. Some experts 
mentioned “substituting” as one of the central activities in doing algebra. Additionally, from their 
task assignments it became apparent, that many experts were misinterpreting the elementary activity 



“to transform with given rules” from our first draft as meaning “being able to manipulate 
expressions correctly” regardless whether a rule is given or not. This contribution also was assigned 
to category (c), as it would not only lead to introducing a new aspect but to reformulating existing 
elementary activities too. There were also further contributions to reformulating definitions or 
exemplary tasks, and to reformulating or deleting tasks from the test battery. 

The revised model 
For model revision, the authors discussed each contribution as to whether to incorporate it and how. 
Among contributions that were accepted was that the activity of structuring needed a more 
prominent position within the model. Here we followed recent findings of Rüede (2015) as to which 
structuring can be understood as an activity of making sense of an expression by identifying 
relations between parts. Relations are identified by substitution, i.e. parts of an expression are seen 
as entities that can be related to each other. Thus the activity of “substituting” was accepted as part 
of the central activity of structuring. Together with Musgrave's et al. (2015) definition of 
substitution and Kieran’s (1989) distinction between systemic and surface structure it helps to refine 
activities of recognising the applicability of transformation rules or the operational ordering of an 
expression. Now, these two activities cover the activity of substituting which, from a cognitive 
perspective, means to construe parts of an expression as meaningful entities, esp. to replace 
variables and terms by other variables or terms in writing or in thought. 

 

Table 2: A concise summary of the important aspects of proficiency in elementary algebra 

Further amendments were applied to the model so that Table 2 now shows its present state. In the 
following each table entry is explained in detail. 

Elements of algebra 

 Variables including parameters: Variables are signs that represent numbers or quantities. 
Parameters are variables that vary over sets of values of other variables (Veränderliche vs. 
Einzelzahl: Malle, 1993, variable vs. metavariable: Drijvers, 2001, values taken by a variable: 
Bardini et al., 2005). This discrimination arises from the context of the task. 



 Expressions and equations: Algebraic expressions are compositions of variables and arithmetic 
operation signs. When a variable is viewed as representing a range of number values or 
quantities (variable object: Schoenfeld & Arcavi, 1988; Bereichsaspekt: Malle, 1993) the value 
of the expression is interpreted as a function of this variable (Malle, 1993; Heid, 1996). 
Equations are expressions where two terms are compared with regard to their values, 
symbolized by an equation sign. An equation differs from a computation or transformation of a 
term in that it is used in a relational sense (notion of equivalence: Kieran, 1981; operational vs. 
relational view: Baroody & Ginsburg, 1983; Zuweisungs- vs. Vergleichszeichen: Malle, 1993).  

Making sense of elements of algebra 

 Knowing and acting: a first level of differentiation that differs between declarative knowledge 
about rules and various forms of “making sense” of algebraic objects. The latter is further 
differentiated into transformational and generational types of activities following Kieran (2004). 
Kieran’s third class of “meta-level” type of activities has been omitted as it describes a higher 
level of mastery that is not considered being a part of basic mastery. 

 It seemed appropriate to formulate within the range of Kieran’s (2004) transformational and 
generational types of activities three central activities: Transforming (to transform an algebraic 
expression into an equivalent expression of different structure (transformational equivalence: 
Musgrave et al., 2015; treatment: Duval, 2006)), structuring (to transform or interpret an 
algebraic expression while maintaining its structure (substitutional equivalence: Musgrave et al., 
2015, Rüede 2015)) and interpreting (to describe a non-algebraic situation by formal algebra and 
vice versa (conversion: Duval, 2006)). Among these, structuring takes on a fundamental role. It 
describes an activity of recognizing the structure of a present expression or formulating an 
expression that is structurally equivalent to relations between quantities in a given situation. 

Ten aspects of proficiency in elementary algebra 

(1) “To specify transformation rules or terminology” – Important technical terms for expressions 
and rules for manipulating expressions or equations are identified or specified, e.g. names for 
classes of terms or equations, or rules for simplifying expressions, binomial rules, rules for 
solving quadratic equations, etc. 

(2) “To transform by following given rules” – Expressions and equations are transformed into 
equivalent expressions or equations by applying given rules (manipulation skills: Hoch & 
Dreyfus, 2006). 

(3) “To recognize applicability of transformation rules” – An expression is identified as a 
representative of a class of structurally equivalent expressions and transformation rules that are 
associated with this class. This is done by, mentally or explicitly, substituting variables or terms 
by terms or variables (systemic structure: Kieran, 1989; structure sense: Hoch & Dreyfus, 2006) 

(4) “To recognize the operational ordering” – The logical ordering of the operations within an 
expression is recognized. This is done by, mentally or explicitly, substituting terms by variables 
(surface structure, Kieran, 1989; Rechenschema: Vollrath & Weigand, 2006; Rechenhandlung: 
Malle, 1993) 



(5) “To compute or to compare” – An expression with an equation sign is interpreted in an 
operational or a relational sense, as it is appropriate in the context (Malle, 1993; operational vs. 
relational view: Baroody & Ginsburg, 1983; Knuth et al., 2006). 

(6) “To transform (efficiently)” – Expressions and equations are being transformed into equivalent 
expressions or equations (2,4), by activating existing knowledge about transformation rules (1) 
which are identified as applicable to the present problem (3). Also, two expressions or equations 
are identified as being equivalent „on the spot“ without applying rules explicitly (algebraic 
expectation, Pierce & Stacey, 2001). A transformation is „efficient“ if, among various rules of 
transformation that are applicable, one is chosen that allows relatively few steps and few 
computations (strategic flexibility: Rittle-Johnson & Star, 2009; structural relations of second 
order: Rüede 2015, cp. Malle 1993). 

(7) “To interpret variables and parameters” – Variable signs are interpreted or used as 
representations of numbers (Einsetzungs-, Gegenstandsaspekt: Malle, 1993; Küchemann, 1978). 
Within given contexts, appropriate variables are identified or used as parameters. 

(8) “To switch between expressions and innermathematical situations” – A non-algebraic but 
innermathematical situation (e.g. dot patterns or geometric configurations) is described by a 
term or an equation, and vice versa (Bauplan: Vollrath & Weigand, 2006). 

(9) “To switch between expressions and tables or graphs” – An expression or equation is translated 
to a value table or a graph, and vice versa (McGregor & Stacey, 1995), e.g. when viewed as a 
function (Duval, 2006; Nitsch, 2015), or for solving an equation (Arcavi, 1994). 

(10)“To switch between expressions and real situations” – An expression or equation is translated to 
a realistic situation, and vice versa (McGregor & Stacey, 1995; Heid, 1996), e.g. when viewed 
as a function (Nitsch, 2015). This activity involves a higher gradient of abstraction than 
activities (7,8,9) that results from the need to replace the concrete mental model of the given 
real situation by an abstract mental model before formulating an expression (Malle, 1993). 

Summary and outlook 
In its present state, the model intends to be a concise summary of aspects of proficiency in 
elementary algebra, based on relevant literature and a survey of maths educators from the German 
speaking community. It represents a normative view on what ideal schooling can provide at the end 
of secondary grade, thus serving as a theoretical base for devising instruments for a summative and 
differentiated diagnosis of proficiency in elementary algebra at the transition from school to 
university. The model does not cover all aspects of school needs to consider, but it is restricted to 

 symbolic algebra, not generic: at the end of secondary school maths, an individual's proficiency 
in algebra must have reached a stage of being competent with symbolic representations of 
indeterminate number values and quantities and relations between them, 

 a summative view, not formative: the model is meant to comprise all aspects of proficiency at 
the end of secondary school maths, not while they are being taught, 



 algebra, but not functions: a model about algebraic proficiency cannot cover all aspects of the 
concept of function, but does cover some which are only present in the form of a functional 
interpretation of an algebraic expression. 

Additionally, based on this frame of reference, a test battery is presently being prepared for large 
scale application. While the model helps to devise tasks that cover most important aspects of 
proficiency in elementary algebra, the data raised from applying the battery will be used to generate 
an empirical cognitive model that adds to the theoretical normative view of the present one.  
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This paper focuses on functional thinking as an approximation to algebraic thinking in third-year 
primary-school students. It describes a study with a class group of 24 Spanish pupils displaying 
functional thinking to solve a contextualised problem, identifying the type of functional 
relationships distinguished by these students and the ability to generalise observed in some of them. 
It contains an analysis of the information collected in one questionnaire, which is part of a teaching 
experiment. The students distinguished two types of functional relationships, correspondence and 
covariation, predominantly the former. Three students generalised as well. 

Keywords: Algebraic thinking, generalisation, functional relationship, functional thinking.  

Introduction 
The idea of introducing algebraic notions in the elementary and even in the pre-school curriculum 
began to gain acceptance in the early nineteen nineties, when the emphasis was on what students 
were able to learn (Kaput, 2008). That led to the early algebra proposal, which seeks to further and 
enhance algebraic thinking among the younger pupils through approximations by working on 
classroom algebra-associated elements intended to help secondary school students perform the tasks 
expected of them. Generalisation lies at the heart of algebraic thinking: arithmetic operations can be 
viewed as functions and algebraic symbolism supports such thinking (Blanton, Levi, Crites, & 
Dougherty, 2011). 

Functional thinking is a type of algebraic thinking, which is focussed on functions, regarded as the 
relationship between two co-varying quantities. The growing research interest in this type of 
thinking is attributable to its many advantages as an introduction to algebra (Blanton & Kaput, 
2011).  

Studies on functional thinking address different aspects. Some of the foremost include: (a) 
functional relationships drawn by students (Cañadas & Morales, 2016), (b) patterns and 
generalisation (Brizuela & Lara-Roth, 2002), and (c) representational strategies and systems 
(Carraher & Schliemann, 2007).  

This paper addresses a topic not covered by previous studies concerning the different types of 
functional relationships identified by third year primary school students (hereafter, P3). The 
objectives pursued are: (a) to identify P3 pupils exhibiting functional thinking, (b) to describe the 
generalisation observed, and (c) to describe the functional relationships identified by students who 
generalise. 

Functional thinking and functional relationships 
Consensus has yet to be reached around the definition of algebraic thinking (Cañadas, Dooley, 
Hodgen, & Oldenburg, 2012). Algebraic thinking is regarded as an educational objective that 
affords, for instance, opportunities: (a) to generalise; and (b) to enable students to use symbols to 



represent ideas, which helps them solve problems, communicate and justify their ideas (Kaput, 
2008).  

Functional thinking is regarded as a cognitive activity “that focuses on the relationship between two 
(or more) varying quantities, specifically the kinds of thinking that lead from specific relationship 
(individual incidences) to generalisations of that relationship across instances” (Smith, 2008, p. 
143). Such thinking involves the construction, description and reasoning with and about functions 
and includes generalizing about inter-related variables (Blanton, 2008).  

Based on the functional relationships established from a mathematical perspective, Smith (2008) 
proposed three types of approximation for working with functions: (a) recurrence, which entail 
finding the variation or pattern of variation in a series of values for a variable in a way such that a 
specific value can be obtained based on the preceding value or values; (b) correspondence, and (c) 
covariation. We particularly focus on the correspondence and covariation relationships because the 
recurrence does not involve values of more than one variable. Correspondence, stresses the 
relationship between the pairs (a, f(a)) for the variable; and covariation focuses on how a change in 
the values of one variable entails a change in the values of another. We show an example of these 
two functional relationships in Figure 1. 

Variation between two quantities 

x y 

1 8 

2 10 

3 12 

… … 

Figure 1. Example of functional relationship (Smith, 2008, p. 146-147) 

These relationships not only concern the generalization as the representations of the general 
relationship, they can also refer to the pattern observed in particular cases of the two variables. In 
recent studies, Blanton, Brizuela, Murphy, Sawrey, and Newman-Owens (2015), and Stephens, 
Fonger, Knuth, Strachota, and Isler (2016) described the types of functional relationships and the 
levels of sophistication with which subjects think about such relationships. One indicator for 
establishing such levels is the kind of functional relationship. Some findings showed that students in 
the early years evolve from the ability to establish recurrent relationships, the most basic area 
worked with, primarily in pre-school and early primary education, to the understanding of 
correspondence and covariation. Cañadas & Morales (2016) observed correspondence and 
covariation relationships in P1 pupils. These pupils’ replies showed no evidence of the recurrence 
relationship. Moreover, as pupils generalise, correspondence and covariation relationship were 
observed more frequently, particularly the former. 

Covariation. “The focus is 
on corresponding changes in 
the individual variable”. 
Example, in the table 1, 
when x increases by 1, y 
increases by 2. 

Correspondence. “The 
focus would be on the 
relation between x and y, 
which might be 
described as twice x plus 
six, or algebraically as: 
2x +6”. 



Generalisation 
Generalisation is one of the core processes in algebra (Kaput, 2008). All pupils can generalise and 
abstract from specifics, for this activity is “entirely natural, pleasurable, and part of human sense-
making” (Mason, Graham, & Johnston-Wilder, 2005, p. 2). Generalisation is said to have been 
attained when a statement is made that applies to all the instances in a given class.  

Although algebraic symbolism is the characteristic representation for algebra, there are other ways 
of representing the generalization, specially when concerns elementary students. Carraher, 
Martinez, & Schliemann (2008) focused on third year primary school students’ generalization and 
how they express it. These students generalise functional relationships (correspondence and 
covariation). The authors highlight that students should learn to generalise solving mathematical 
problems that allow them to look for and observe patterns, relationships, and structures. In this way, 
students have the possibility to get new informations and reflect about the generalisations produces 
by themselves and their partners. 

Method 
This study forms part of a broader teaching experiment focusing on Spanish P3 students’ functional 
thinking. The contextualised problem posed in each session involved a linear function. The fourth 
and last session is discussed hereunder. 

Subjects and data collection 

The subjects were 24 P3 pupils (8-9 years old), intentionally selected on the grounds of school and 
teacher availability. These students had not worked with problems involving functional 
relationships prior to the study, except in the first three sessions of the same project in which they 
were introduced to problems involving two linear functions: f(x)=x+5 and f(x)=x+3. All the 
sessions were guided by a teacher-researcher.  

In the first part of the session, we introduced the tiles problem1 to the students, asking them 
questions concerning particular cases, in order to assure that they understand the situation and the 
questions. In this problem, the function involved is f(x)=2x+6. This paper focuses on the results 
from a written questionnaire that had to be answered individually in connection with the problem 
posed. The way in which the problem was posed and questions used are presented in Figure 2. In 
questions Q1, Q2, Q3, Q4.A and Q4.B pupils were asked about specific non-consecutive cases, 
whilst the fifth (Q5) asked the pupils to generalise the relationship between the dependent and 
independent variables (white and grey tiles, respectively). The students were furnished with 
manipulative material: white and grey paper tiles. 

                                                 
1 The well-known tiles problem used here has been applied by a number of researchers in the context of classroom 
algebra (e.g., Küchemann, 1981). 



 

A school wants to renovate the ground of all its corridors because it is already very damaged. The 
management team decides to pave the corridor with white tiles and grey tiles. All tiles are squares 
and have the same size. The tiles are being placed in each corridor so that you can see in the 
picture below. 
 
 
The school ask a company for renovating the different corridors of the school. We ask you to help 
the workers to answer some questions that they need to answer for their work.  
Q1. How many grey tiles are needed for the floor of a corridor in which 5 white tiles are placed? 
How do you know that? 
Q2. Some corridors are longer than others. Therefore, the workers need different number of tiles 
for each corridor. How many grey tiles are needed for a floor corridor in which 8 white tiles are 
placed? How do you know that? 
Q3. How many grey tiles are needed for a floor corridor in which 10 white tiles are placed? How 
do you know that? 
Q4A. How many grey tiles are needed for a corridor floor in which 100 white tiles are placed? 
How do you know that? 
Q4B. Now, do it in a different way and explain it below. 
Q5. The workers always place the white tiles and then the grey tiles first. How do you know how 
many grey tiles you need if you have already placed the white tiles? 

Figure 2. Tiles problem 

Analytical categories and data analysis 

Following our research objectives, we used information from the theoretical framework and 
previous studies to design the categories used in data analysis. Moreover, we were aware of 
possible modifications needed as long as we performed a preliminary data analysis in order to adapt 
them to our specific data. Two categories were established: (a) functional relationships, and (b) 
generalisation. Finally both categories were related because the generalisation involved at least one 
of the functional relationships.  

The category of functional relationship covered the type of functional relationships identified by the 
pupils: (a) correspondence, and (b) covariation. Functional thinking was deemed to be present in 
pupils’ replies when at least one functional relationship was drawn in at least two of the questions 
posed. This criterion pursued to avoid those students who used a computation strategy but not 
neccesarily a relationship between variables. 

The second category dealt with the presence or absence of generalisation and how it was reached 
and expressed in any of the five questions posed. More specifically, it focused on the students’ 
replies to Q5 (regarding generalisation), because is the only question in which students generalised.  

Results and discussion 
The 24 pupils’ written responses to the questionnaires were analysed. All the students answered the 
first three questions, 23 the fourth one, and 16 the fifth one (generalisation). Those findings were 



interpreted to mean that more students answered the first four questions because they involved 
specific, non-consecutive instances and small numbers. Similarly, the high rate of blank answers to 
Q5 was conjectured to be due to the complexity involved in generalizing the functional relationship. 

The findings set out below are organised in keeping with the objectives pursued. The students are 
referred to with the letter S followed by a number, from 1 to 24.  

Functional relationships 

Eleven students exhibited functional thinking, identifying a functional relationship in at least two of 
the questions asked. The other 13 students, in contrast, did not.  

Among the students exhibiting functional thinking, seven students distinguished only 
correspondence relationships in their replies, and four identified both functional relationships 
(correspondence and covariation).  

A representative example of students who used only the correspondence relationship is S22. We 
show this student’s responses to the first four questions in Figure 3. 

Q1 
 

Q2 

 
Q3 

 

Q4.A 
 

Figure 3. S22’s responses 

For instance, in Q4.A, he took the number of white tiles (100) and added 2 (100+2). Then he found 
the number of grey tiles needed for the bottom and top rows by adding 102 twice (102 + 102). 
Lastly, he added 2, the ones on the right and left of the white tiles (102 + 102 + 2). He used that 
same functional relationship for 5, 8 and 10 white tiles in Q1, Q2, and Q3, respectively. In all three 
cases, this student related pairs of values (a, f(a)) to the a values in each specific case and 
established a relationship with the number of grey tiles: 16, 22 and 26, respectively. 

Four pupils identified two functional relationships in their answers to the questions on the 
questionnaire: correspondence and covariation. None of the students recognised more than one 
functional relationship in their answers to a given question.  

S3 is a student who identified correspondence and covariation relationships. In Q2, she answered 
that 22 grey tiles are necessary for 8 white tiles, using a counting strategy. In Q3, S3 answered, “if 8 
[white tiles] need 20 [grey tiles], there are 20 + 2 = 22”. Although this answer is wrong, she used 
the previous response to work on (adding two to the previous response). We observe that the 
student focused on the variation between the number of white tiles (between 8 and 10, there is an 
increase of 2 white tiles) in order to calculate the number of grey tiles, considering that such 
increase is also 2. Therefore, she focused on how variation in values of the number of white tiles 
influence in a variation in values of grey tiles, which is the notion of covariation relationship.  



Generalisation 

We find generalization evidence in Q5. In previous questions, students referred to the relationship 
between variables through particular cases involved.  

Three of the 11 pupils who exhibited functional thinking showed the generalisation in their replies 
to Q5. One of them, S9, generalised appropriately to the problem posed. In contrast, the other two 
students —S11 and S22— generalised incorrectly. In what follows, we present examples of the 
students who generalized, describing when they got it and what kind of relationship generalised.  

S9 used a numerical representation to calculate the number of grey tiles in the first four questions. 
In Q5, he stated “you double the number white tiles and then you add 6”. He used different 
representation to the verbal one in other questions. This fact evidences the importance of the verbal 
representation in the development of functional thinking in the same way as Kieran, Pang, Schifter, 
and Fong Ng (2016) noted. Student S9 generalised the correspondence relationship that he also 
identified in questions concerning particular cases. 

S11 found a correspondence relationship in the questions concerning particular cases. In his reply to 
Q5 he noted: “if there are 50 tiles, then I add 50+50 and then the ones on the sides, 3+3, 106 in all”. 
The student used a particular case to answer the question but he evidenced that he recognised the 
fixed number of grey tiles (3+3). This fact shows generalization at an initial stage: although his 
answer is not complete, he is approaching to the generalization of the relationship because he 
identified the function constant (6). S11 used different relationships to determine the number of 
grey tiles in Q2, Q3, and Q4, focussing on a correspondence relationship between the variables 
involved. He “generalise” the correspondence relationship in Q5. 

S22’s reply illustrates another way to generalise in Q5: “add 6”. This generalisation was 
incomplete, for she recognised the number of grey tiles that remains constant (left and right sides), 
but not the number on the top and bottom rows, even though in the preceding questions she 
distinguished the pattern for determining the number of grey tiles given a certain number of white 
tiles (see Figure 1). Moreover, S22 used the correspondence relationships to answer the first four 
questions (see Figure 3). On the contrary, this student used a co-variation relationship in Q5 
because he identified the neccessity of adding 6 to calculate the number of grey tiles given any 
number of white tiles. 

Conclusion 
The students exhibiting functional thinking (those recognizing at least one functional relationship in 
at least two questions) could be detected on the grounds of the relationships they identified. 

The correspondence was the functional relationship predominantly observed in the students’ 
answers, followed by covariation. This holds particular significance, specifically by: the pupils’ age, 
the specific demands of the tiles problem and the functional relationships distinguished. The 
prevalence of the correspondence relationship in the first four questions, which involved familiar 
specific cases, seemed to be connected with the pupils’ broader experience with areas such as 
numerical patterns. Additionally, we conjecture that this functional relationship could be induced by 
the problem context because each particular case involved in one question is not connected with 
other particular cases.  



Covariation was observed in Q5, which sought to induce the pupils to express the general 
relationship between the variables involved; the preceding questions could be answered with no 
need to generalise. 

According to Blanton, Brizuela, Gardiner, Sawrey, and Newman-Owens (2015), functional thinking 
involves (among others) drawing general patterns from relationships between quantities that co-
vary and representing and justifying such relationships in different ways with a number of 
representational systems. The results of their study are supplemented by the present findings, 
further to which P3 pupils naturally (for they had not worked on this area in the classroom) 
identified more than mere recurrence, establishing relationships (correspondence and covariance) 
involving the values of both variables. Whilst influenced by the type of problem, these P3 students 
were found to be able to distinguish correspondence and covariation relationships, even though they 
were not always able recognise a general pattern. 

In a future line of research the way generalisation is expressed will be studied in greater depth, 
along with pupils’ arguments and explanations. Student interviews are regarded as a suitable tool 
for obtaining a fuller description of how inter-variable relationships are expressed. 
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Didactic transposition in school algebra: The case of writing equations 
of parallel and perpendicular lines  

Valentina Postelnicu 
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A study was conducted with a high school teacher and her 58 Algebra 1 students, with the purpose 
of gaining insight into students’ difficulties with writing equations of parallel and perpendicular 
lines. Chevallard’s theory of didactic transposition was employed in order to account for the 
relativity of the mathematical knowledge with respect to the institutions where the knowledge was 
created. During the process of didactic transposition, the mathematical knowledge lost its essential 
feature, the proof, with dramatic consequences for the school algebra curriculum. What remained 
to be taught and learned was how to execute tasks. As predicted by mathematicians, this utilitarian 
view of the curriculum affected the actual process of teaching and learning by focusing on 
executing basic tasks, and resulted in teachers and students having difficulty executing those tasks.  

Keywords: Didactic transposition, school algebra, writing equations of lines.  

Introduction   
Students’ difficulties with aspects of linear functions, like the rate of change, slope, y-intercept, or 
writing equations of parallel lines have been studied in the United States by many researchers, 
among them the group from Berkeley led by Schoenfeld (Schoenfeld, Smith, & Arcavi, 1993). In 
spite of a wealth of research, the issue of students’ difficulties with linear functions has remained 
relevant (Postelnicu, 2013). The study reported here has the purpose to account for the students’ 
difficulties with writing equations of parallel and perpendicular lines, and to advance a plausible 
explanation on the persistence of students’ difficulties. We propose another way to look at this 
issue, by paying attention to the difference between the mathematics as a body of knowledge 
(scholarly mathematics created by mathematicians) and mathematics as a subject matter to be 
taught and learned (school mathematics created by textbook authors or taught by teachers) (Bosch 
& Gascón, 2006).  

About the theory of didactic transposition  
For this study we employ Chevallard’s theory of didactic transposition because it takes into account 
both the mathematics as a scholarly body of knowledge and as a subject to be taught and learned. 
By didactic transposition of knowledge, we mean “the transition from knowledge regarded as a tool 
to be put to use to knowledge as something to be taught and learnt” (Chevallard, 1988). As pointed 
out by Bosch and Gascón (2006), when studying any didactic problem, like the teaching and 
learning of writing equations of parallel and perpendicular lines, we must account for all the steps 
of the process of didactic transposition:  

i) from scholarly knowledge created by mathematicians (e.g., analytic geometry) to school 
mathematics written by textbook authors (e.g., high school textbooks); ii) from textbook knowledge 
(e.g., Algebra I textbook written by Larson et al., 2007) to school mathematics taught by teachers in 
classrooms (e.g., the mathematics taught by the teacher in the study reported here); and iii) from 
school mathematics taught by the teacher in this study to mathematics learned by her students.  



Each society and institution has a certain way of creating mathematical knowledge and using it, thus 
bringing to life a praxeology, “an organized way of doing and thinking contrived within a given 
society” (Chevallard, 2006). A praxeology is composed of praxis and logos, each with two 
components (Bosch & Gascón, 2014): 

i) praxis - tasks/problems that can be solved employing a certain technique (“ways of 
doing”/executing the tasks/solving the problems), and  

ii) logos- technology (the discourse of the technique, justifies the technique), and theory 
(general discourse or abstract set of constructs and arguments, justifies the technology).  

A praxeology can be “point praxeology” with only one type of task, “local praxeology” with a set 
of tasks sharing a technological discourse, and “regional praxelogy” with all the point and local 
praxeologies sharing a theory (Bosch & Gascón, 2014). For example, a point praxeology may 
contain only the task of sketching a “quick” graph of a line with an equation written in slope-
intercept form. A local praxelogy may contain all the tasks requiring writing equations of lines 
given certain conditions, including tasks like Tasks 1 and 2 given to students by the teacher from 
our study: 

Task 1: Sketch the graph of the line that is parallel to 3
2
1

 xy and goes through )1,2(  .  

Task 2: Sketch the graph of the line that is perpendicular to 2
4
3

 xy  and goes through the 

point )6,2(  . What is the equation of the new line you created? 

Tasks 1 and 2 have the same target knowledge, an algorithm for solving the class of problems that 
require the writing of the equation of a line passing through a given point and parallel or 
perpendicular to a given line. Such tasks are similar to those proposed in the textbook used by the 
participants in this study. The technique used to execute Task 1 may employ algorithms like the one 
used by the teacher in this study:  

1. Draw a Cartesian systems of coordinates and plot the given point )1,2(  . 

2. Identify the slope of the line parallel with the given line, 
2
1

m . 

3. Use a “quick graph” to obtain a second point on the line (from the point )1,2(  move 1 unit up  
    and 2 units to the right, and obtain and plot the point )0,4( ). 
4. Draw the line passing through the given point )1,2(   and the newly found point )0,4( .  

Part of the technological discourse for this local praxeology may include the justification for the 
fact that the second point )0,4(  obtained in the way described above is indeed situated on the line 

with the slope 
2
1

m  and passing through )1,2(  , or the justification that the line parallel to the 

line 3
2
1

 xy  has the same slope, 
2
1

m . A theoretical justification of the fact that parallel lines 

have the same slope and, conversely (i.e., a theorem and its proof in analytic geometry, based on 
similarity of triangles) may belong to a regional praxeology.  



Method 
Participants in this study were an Algebra 1 teacher from a public high school in the United States 
and her 58 students who agreed to participate in this study. The teacher had a Bachelor degree in 
Mathematics and five years of teaching experience. Classroom observations (Erickson, 1985) were 
conducted by the researcher/author of this paper for all six Algebra 1 classes of 50 minutes each, 
taught by the participating teacher, during the same day of school. The researcher took notes 
referring to the way the teacher and her students interacted with the mathematical content of the 
tasks. The teacher taught the same lesson, about writing equations of parallel and perpendicular 
lines, to each of her classes. Prior to the day of observation, the teacher introduced to her students 
the equation of a line in slope-intercept form and point-slope form, and the notions of parallel and 
perpendicular lines. The teacher started each lesson with Task 1 (described above), discussed it with 
her students, and then administered Task 2 (described above). Two raters scored students’ answers 
to Task 2 (“1” for correct answer, and “0” for incorrect or incomplete answer). Using techniques 
from grounded theory (Strauss & Corbin, 1998), students’ algorithms were split into two categories, 
algorithms with a graphical approach (teacher’s approach, described in the section referring to the 
theory of didactic transposition, and in the section referring to teacher knowledge), or algorithms 
with an algebraic approach (textbook approach, described in the section referring to textbook 
knowledge). The inter-rater agreement (Cohen, 1960) was very high, k = .92 (p < .001), 95 % CI 
[.83, .98].  

Analysis and results  
Figure 1, below, is adapted from Bosch & Gascón (2006) and illustrates the steps of the process of 
didactic transposition specific to the study presented in this paper. 

 
Figure 1. The process of didactic transposition 

We will describe each of the types of knowledge/praxeologies in Figure 1, starting from the 
scholarly knowledge, in the direction of the arrows. Worth mentioning, in determining the regional, 
local or point praxeologies, one starts from the task and what the task entails, in our case writing 
linear equations of parallel or perpendicular lines to a given line, and passing through a given point.  

Scholarly knowledge/Regional praxeology  

As can be seen in Figure 1, we chose analytic geometry as our regional praxeology. Given the space 
constraints, we refer here only to perpendicular lines. When writing equations of perpendicular 
lines, we use the following theorem: 

Two nonvertical, nonhorizontal lines 21 , ll   with slopes 1m  and 2m  are perpendicular if and only 
if 121 mm  (Kay, 2001, p. 303). 



Worth mentioning, the proof chosen for the above theorem is specific to the participants’ 
institutionalized knowledge. Our regional praxeology/theory contains all the axioms, definitions, 
theorems and their proofs needed to prove the above theorem. An example of a path through the 
theory is given by Kay (2001) in his textbook, College Geometry, where he starts constructing the 
geometry with the foundations of absolute geometry (points, lines, segments, angles, triangles, 
quadrialterals, circles), and continues with the Euclidean geometry (trigonometry, coordinates, 
vectors). This path of knowledge includes the definition of a right angle, the definition of 
perpendicular lines, the Pythagorean theorem and its converse together with its proof based on 
similarity of triangles, and the distance formula between two points, given their coordinates. Within 
this regional praxeology, “a right angle is any angle having measure 90” and “two (distinct) lines 

21 , ll   are perpendicular if and only if 21 , ll   contain the sides of a right angle” (Kay, 2001, p. 97). A 
proof of the theorem stated above is simple (see Figure 2).  

 
Figure 2.  Perpendicular lines and their slopes 

As can be seen in Figure 2, the system of coordinates has been specially chosen, without loss of 
generality, so that its origin, O, coincides with the point of intersection of the two lines, 1l (with 
slope 1m , containing the segment OA, with A chosen such that its x-coordinate, 1Ax ) and 2l  
(with slope 2m , containing the segment OB with B chosen such that its x-coordinate, 1Bx ). The 
line 1l  passes through )0,0(O  and has the slope 1m , hence all its points ),( yx  satisfy the equation 

xmy 1 . Similarly, all the points ),( yx  situated on 2l  satisfy the equation xmy 2 . As such, the 
points A and B have the coordinates: ),1( 1mA  and ),1( 2mB , respectively. To prove the direct 
implication of the theorem, we assume that the lines are perpendicular therefore they contain the 
sides of a right angle, hence the triangle AOB  is right, and according to the Pythagorean theorem 
we have 222 ABOBOA  . Using the distance formula to calculate OA, OB, and AB function of 
their coordinates, we obtain 2

12
2

2
2

1 )(11 mmmm   and after we simplify, we have 
121 mm . Conversely, if 121 mm , then 2

12
2

2
2

1 )(11 mmmm  , therefore 
222 ABOBOA  . Using the converse of the Pythagorean theorem, it follows that the triangle 

AOB  is right, hence the lines 1l  and 2l  containing its legs, OA and OB, respectively, are 
perpendicular.  

The observation that any vertical line with the equation ax   is perpendicular to any horizontal 
line with the equation by   takes care of the exception stated in the theorem (“nonvertical, 
nonhorizontal lines”). 

 

 



Textbook knowledge/ Local praxeology 

In the United States, the Algebra 1 course, usually taught in the first year of high school, contains 
topics like linear equations with one and two variables, linear functions, linear inequalities, systems 
of linear equations, quadratic equations and functions, and introductions to polynomials, 
exponential equations and functions. For historical reasons (Kilpatrick & Izsák, 2008), the 
American students take the Algebra 1 course before Geometry, thus they learn about the slope of a 
line, or slopes of parallel and perpendicular lines before learning about similarity or how to prove 
the Pythagorean theorem. As such, there is no expectation for justifications or proofs for the “key 
facts” stated in Algebra 1 textbooks. The textbook knowledge for this study comes from the 
Algebra 1 textbook used by the participants’ school district (Larson et al., 2007). The lesson 
referring to the writing of parallel and perpendicular lines offers some techniques and the 
technological discourse to justify the techniques (e.g., definition of perpendicular lines and a "key 
concept" without proof - the theorem referring to the slopes of perpendicular lines): 

PERPENDICULAR LINES. Two lines in the same plane are perpendicular if they intersect to 
form a right angle. Horizontal and vertical lines are perpendicular to each other.  

KEY CONCEPT. If two nonvertical lines in the same plane have slopes that are negative 
reciprocals, then the lines are perpendicular. If two nonvertical lines in the same plane are 
perpendicular, then the slopes are negative reciprocals (Larson et al., 2007, p. 320). 

A similar definition and a similar theorem about parallel lines precede the definition and theorem 
about perpendicular lines. The technique/algorithm described in the textbook (Larson et al., 2007, 
pp. 319-321) for executing tasks similar to Task 1 and 2 has an algebraic approach (Knuth, 2000):  

1. Identify the slope m of the new line based on the “key concepts” referring to the slopes of 
parallel or perpendicular lines (parallel lines have the same slope, perpendicular lines have 
slopes negative reciprocals). 

2. Use the slope-intercept form of an equation bmxy  , the newly found slope m, and the 
given point ),( 11 yx  to find b (the y-intercept). 

3. Write the equation of the newly found line bmxy  . 

Teacher knowledge/Local praxeology 

We continue describing Figure 1 with teacher knowledge, as observed. After discussions with her 
students, the teacher executed Task 1 using the algorithm with the graphical approach described 
above, in the section about the theory of didactic transposition. She drew a system of coordinates, 

plotted the point )1,2(  , identified the slope of the parallel line 
2
1

m  and used it to obtain the 

second point )0,4(  (from )1,2(   moved 1 unit up and 2 units to the right), and drew the line 
connecting the points )1,2(   and )0,4( . To check the execution of Task 1, the teacher proposed to 

her students to graph the first line 3
2
1

 xy  as well, on the same system of coordinates like the 

newly obtained line, and make a judgment regarding their parallelism, based on visual inspection. 
When one of the students proposed a technique with an algebraic approach for Task 1, the teacher 
allowed the student to carry it out, but then she asked the class for another way to execute Task 1, 
and led the students to use her graphical approach technique. Part of the observed technological 



discourse for the teacher’s local praxeology also included the definitions of parallel lines (“lines that 
do not meet”) and perpendicular lines (“two lines in a plane that intersect at a 90  angle”), and the 
“key concepts” that parallel lines have the same slope and perpendicular lines have the slopes 
opposite reciprocals. In short, the teacher’s local praxeology, as observed, consisted of some basic 
tasks, a technique with a graphical approach, and some of the technological discourse necessary to 
justify the technique. In the teacher’s view, as expressed during the class discussions, Tasks 1 and 2 
were part of the same class of problems, requiring the same technique, and Task 2 could be 
approached in the same way as she approached Task 1, i.e., graphically. 

Student knowledge/Point praxeologies   

Executing Task 2 with the algorithm from the textbook implies: i) identify the slope of the 

perpendicular line, 
3
4

m ; ii) substitute )6,2(   and 
3
4

m  in bmxy  , and determine b 

from b )2(
3
46 ; iii) write the equation of the newly found line 

3
10

3
4

 xy . Only two 

students (3.4 %) of those 58 participating in the study executed Task 2 successfully, and both 
employed the technique with an algebraic approach described in their textbook. About one out of 
five students (20.6 %) tried to solve the problem employing the technique with the graphical 

approach used by the teacher – they determined the slope of the perpendicular line, 
3
4

m , started 

from the given point )6,2(   and used the “quick graph” technique to obtain the second point on the 
line, then drew the line connecting those two points and determined incorrectly, by visual 
inspection, the value of the y-intercept of the newly created line, and finally wrote the equation of 
the line (see Figure 3).  

 
Figure 3. Example of student work – Task 2 

It can be seen in Figure 3 that the student incorrectly determined the y-intercept of the newly 

created line as 2 , while the correct value is 
3

10
 , a value hard to determine with the graphical 

approach. Moreover, the student tried to check/evaluate her work, and graphed the original line 
together with the newly created line and it seems that she was satisfied with her visual inspection of 
the perpendicularity of those two lines she graphed. The rest of the students (76 %) tried to use a 
graphical approach (strongly suggested by the teacher’s approach and the presence of the grid), but 
could not identify the slope of the perpendicular line, or determine the y-intercept. When writing the 
equation of the perpendicular line, students tried to substitute the point )6,2(   or its coordinates in 



the slope-intercept form equation of a line ,bmxy   irrespective of their graphical representations 
or the meanings of the coordinates of the point, slope of the line, and y-intercept of the line. They 

obtained equations, like “ )6,2(
3
4

 xy ”, “ ,2
2
6

 xy ” or “ ,62  xy ” showing a great 

disconnect with the technique required to execute Task 2. As observed from their written 
assignments, the students’ praxeologies were point praxeologies with only one task and technique 
(successful or not), without any justification of the technique. 

Discussion  

The scholarly knowledge constructed from axioms, definitions, and rigorously proven theorems has 
been replaced by other definitions and axiom-like “key concepts” considered true without proof. In 
our case, the theorem regarding the slopes of perpendicular lines and its proof has been replaced by 
a “key concept” without proof, and several “solved examples” presenting the technique for 
executing basic tasks. What remained to be taught and learned was how to execute basic tasks. The 
change was dramatic from scholarly mathematics to textbook knowledge, since mathematics was 
stripped of its essential feature – the proof. The mathematicians warned that this dramatic change in 
our curriculum would lead to generations of teachers and students with increasing difficulty 
executing tasks requiring more than one step (Wu, 1997). The textbook knowledge shrank to 
teacher knowledge, but remained the same in nature, i.e., a set of tasks, techniques, and 
justifications for techniques. As observed, the teacher from this study used only basic tasks that 
were similar with the examples solved in the textbook, employed only the graphical approach, and 
supported her technique with some justifications. The teacher may have favored those tasks and 
techniques for various reasons like, the end-of-course exams contained mainly basic tasks for which 
the techniques were appropriate, her students’ weak competency with symbolic manipulations, and 
time constraints. The technique with a graphical approach imposed by the teacher in this study was 
inadequate for Task 2. Almost all the students (96.6 %) relied on the teacher’s knowledge – a subset 
of the textbook knowledge. The students failed to connect the graphical and symbolic 
representations of points and lines, and the techniques necessary to carry out Task 2. As predicted 
by mathematicians (Wu, 1997), the students had difficulty executing tasks with more than one step. 

The observed logos from the local praxeologies (textbook and teacher knowledge) contained only 
the technological discourse. There was no observed logos in the case of point praxeologies (student 
knowledge). Without theory based on proof, the knowledge advancement can only be obtained by 
learning to execute new tasks with new techniques that are not necessarily connected to old ones. 
As seen in our study, this type of knowledge advancement did not lead to teacher’s or students’ 
success. 
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Students’ and teachers’ mental solving of algebraic equations: From 
differences to challenges 
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This paper presents students’ and teachers’ strategies for mentally solving algebraic equations. The 
enactivist notions of problem-posing offer conceptual grounds to engage in analysis of students’ 
and teachers’ strategies, and in their comparisons, leading to the exploration of differences in the 
nature and origin between the solving processes of students and those of teachers. Final remarks 
reflect on the potential of being sensitized to the nature of these differences in solving processes. 

Keywords: Algebraic equations, mental mathematics, problem-solving. 

Introduction 
This paper is in continuity with the one presented at CERME-8 in WG3 about the mental solving of 
algebraic equations (Proulx, 2013a). Work has been conducted with secondary-level students and 
with teachers on mentally solving algebraic equations of the form Ax+B=C, Ax+B=Cx+D, 
Ax/B=C/D without paper and pencil or any other material aid. The main research objective is to 
gain better understandings of the nature of the strategies developed when solving these algebraic 
equations mentally. From our analysis, students’ and teachers’ ways of solving highlight significant 
differences to which it is worth paying attention in terms of their meaning and nature as well as the 
issues that they raise about the teaching and learning of algebraic equation-solving. This paper 
reports on analyses of the strategies developed by students and teachers for similar if not identical 
algebraic equations, and grounds it in a discussion of the nature of solving processes. 

Solving processes in mental mathematics: Emergence and problem-posing 
As mentioned in Proulx (2013a), recent work in mental mathematics points to a continued need for 
investigating and conceptualizing how students develop mental mathematics strategies. Researchers 
have begun criticizing the notion that students “choose” from a toolbox of predetermined strategies 
to solve problems in mental mathematics. Threlfall (2002), for example, insists rather on the organic 
emergence and contingency of strategies in relation to the tasks and the solver (e.g., what s/he 
understands, prefers, knows, experienced, is confident with; see Butlen & Peizard, 1992). This view 
is aligned with Lave’s (1988) situated cognition perspective that conceives of mental strategies as 
flexible emergent responses, adapted and linked to specific contexts and situations. 

In mathematics education, the enactivist theory of cognition has been concerned with issues of 
emergence, adaptation and contingency of learners’ mathematical activity (e.g., Maturana & Varela, 
1992; Varela, Thompson, & Rosch, 1991). In particular, Varela’s (1996) distinction between 
problem-posing and problem-solving offers insights for conceptualizing the generation of strategies. 
For Varela, problem-solving implies an understanding that problems are already in the world, lying 
“out there” waiting to be solved independent of us. He explains, in contrast, that we specify – we 
pose moment by moment – the problems that we encounter through the meanings we make of the 
world. We do not “choose” or “take” problems as if they were lying out there objectively and 
independent of our actions: we bring them forth. In short, for Varela, we pose our problems. 



This perspective underlines Simmt’s (2000) argument that it is not tasks that are given to solvers, 
but rather prompts that are taken up by solvers, who by posing them in a specific mathematical 
context create tasks with them. Prompts become tasks when solvers engage with them, when they 
pose them as tasks. Hence solvers make the prompt a multiplication task, a ratio task, a function 
task, an algebra task, and so forth, and solve it in relation to this posing. And, this posed task is not 
static or fixed once and for all, because the posing triggers a solving process that in turn transforms 
the posed task in an ongoing and dynamic process. It is with/in this process that the task emerges, 
organically, constantly becoming, being re-solved and re-posed (see Proulx, 2013b). By way of an 
example of this interaction between the posing and the solving, here is a strategy taken from a study 
on mental calculations (Proulx et al., 2014). To solve 741–75, one solver explained: 

(a) 741 – 75 is like 700 – 75 + 41. 
(b) 700 – 75 is like having 7 dollars and subtracting 3 quarters. I am left with $6.25.  
(c) 6.25 is six-twenty-five, so I add 41 to 625. I do 5+1 is 6, 4+2 is 6, and I have 600, so 666. 

When 741–75 was given, the first step was to find a way of solving, of entering, of posing it as a 
task. This prompt was then posed as a decomposition task, leading the solver to decompose 741 in 
700 and 41, in order to subtract 75 from 700. This decomposition produced in return a new prompt 
for the solver, that is, to solve 700–75, which was posed as a monetary task (7 dollars minus 75 
cents). This other solving step led to another prompt, 625+41, which the solver posed anew as a 
decomposition task of each digit in each number in relation to their position (hundreds, tens, units) 
and its successive addition. Hence each solving step led to the posing of a task to solve, 
necessitating a way of entering into it, continuing to solve it, etc., producing an entire solution path. 

A posteriori, in light of this entire solution path, one can assert the presence of a strategy, but this is 
an assertion after the fact because all this unfolds one step at a time when advancing in the solving 
of the posed task. Interacting with the prompt, engaging in the task, is to take a step and another, 
and these steps emerge in the solution path. All this happens in continuity, step by step, with each 
step leading to another posing of the task, to another solving process contingent on and emerging 
from previous steps, leading in return to another posed task, leading to another step, etc. 

[E]ach solution ‘method’ is in a sense unique to that case, and is invented in the context of the 
particular calculation – although clearly influenced by experience. It is not learned as a general 
approach and then applied to particular cases. […] The ‘strategy’ (in the holistic sense of the 
entire solution path) is not decided, it emerges. (Threlfall, 2002, p. 42) 

The entire solution path, or strategy in Threlfall’s sense1, is not predetermined, but generated for 
solving, emerging from the interaction with the prompt. Thus the solver transforms the prompt as a 
mathematical task generating a strategy for the posed task for solving it. It is this dynamic entry on 
strategies, on solution paths, that characterizes the conception that grounds the analysis of solving 
processes in this study, that is, of students’ and teachers’ strategies for solving algebraic equations. 

                                                 
1 It is in Threlfall’s sense that the expression strategy is used in this paper, that is, not as a fixed and reified entity, but as 
the entire solution path, in its totality and dynamic nature as it unfolds through the diverse solving steps. 



Solving algebraic equations without paper and pencil 
The context in which the mental mathematics sessions are conducted is simple. A group of solvers, 
students or teachers, sit at their table without any paper or pencil and attempt to solve the prompts 
given. The organization takes the following structure: (1) an equation is offered in writing on the 
board; (2) solvers have 15-20 seconds to solve the equation mentally (without paper-and-pencil or 
material aid); (3) at the signal, strategies are shared orally and explained to the group. 

The data collected come from the strategies explained orally by solvers, taken in note form by at 
least two research assistants (RAs). These notes are refined with on-the-spot discussions between 
the research team members (PI and RAs) following data-collection sessions, to produce a report on 
the various solution paths developed by participants. In this report, each strategy is given a name 
that describes it for matters of classification (descriptive level of analysis). With these descriptions, 
various analyses are conducted, depending on the purpose aimed for (meaning making engaged 
with, nature of strategies produced, difference with paper and pencil, etc.). In this case, as explained 
in the introduction, the analysis of strategies is conducted with the precise intention of establishing 
comparisons between students’ and teachers’ solving processes. Thus the analysis in this paper is 
not conducted for/on the strategies themselves, but mostly to establish this comparison ground 
between the solution paths being laid down by students and by teachers. 

Students’ posed tasks and solution paths 

Work was conducted in two Grade-8 classrooms with about 30 students for 75-minute periods. In 
each classroom, the same five equations were given. The two used in the analysis are “Solve for x 
the equation 2x+3=5” and “Solve for x the equation 2

5
x =

1
2

”; the solution paths emerging for these 

are illustrative of the solving processes developed by students. As such, the analysis is not focused 
on the occurences of strategies, but on the nature of the solving processes and the functionality and 
meaning of the strategies developed. For this, strategies in both classrooms are grouped to offer and 
set up comparative grounds with teachers’ solving processes. 

For “Solve for x the equation 2x+3=5”, students produced the following: 

Inversing operations. One student explained that he did “minus 3” on the right side of the 
equality to obtain 2x=2, which directly gave x=1 (without needing to divide by 2). 

Balancing. One student explained having done the same actions on both sides of the equality, 
thus subtracting 3 on both sides to obtain 2x=2 and then dividing by 2 on both sides to get x=1. 

Direct reading. Some students explained that with 2x+3=5 he knew right away that x must equal 
1, because 2+3=5. Another explained having first taken the x out of the equation, leaving 2+3=5. 
So, when 2 was multiplied by x, it has to remain a value of 2 to fit in the equation, so x needed to 
be 1. Another student explained that this meant that x=0, because in 2+3=5 the x is uneccessary. 

For “Solve for x the equation 2
5

x =
1
2

”, students produced the following: 

Transforming in equivalent fractions and decimals. One student explained having transformed ½ 
in 10/20 to make the ½ divided by 2/5 simpler, then repeating the same thing for 2/5 to obtain 
20
50

x =
10
20

. He explained that this is equivalent to 0.4x=0.5 and thus the response is x=0.5/0.4. 



Inversing and transforming in decimals. One student explained inversing the equation to 5
2

x = 2 . 

He then transformed in decimals to obtain 2.5x=2, and dividing by 2 got 1.25x=1 so that x=1.25.  

Cross multiplying. After making the equation 2x
5

=
1
2

, the student explained having cross 

multiplied, where 5 times ½ gave 2x= 2.5 and thus x=1.25. 

Halving. One student explained that half of 5 is 2.5, and because one looks for ½, so x is 1.25. 

Finding a scalar. One student explained looking for the value of x that made 2/5 equal ½. 
Placing fractions over 10, he explained that x is 1.25 because 4 times 1.25 is 5 and 5/10=½.  

Finding common denominator and adding. The student explained having placed fractions over 
10, obtaining 4

10
x =

5
10

. Subtracting 4/10 and 5/10 gave –1/10, so then x is worth 1/10.  

All these solution paths, and their underlying solving steps, are not necessarily “adequate” or 
“standard”, but illustrate an emergent solving process geared toward finding a value for x that 
satisfies the equality. Through these examples of solution paths emerges a diversity of solving steps, 
of entries for solving. As explained in Proulx (2013c), the “mental” dimension provokes the search 
for an entry point, a way of posing the prompt, of getting in, of making a step. The solving context 
is thus created by the solver, producing an adapted way of entering into the problem. This diversity, 
which is translated in a variery of solution paths for solving the “same” equation, transforms that 
“same” equation, which is differently contextualized or posed differently from one solver to the next 
as each develops his/her own ways of posing and solving. The diversity of solution paths illustrates 
well how the various ways of posing the task led to varied ways of solving by solvers, hence diverse 
strategies or solution paths. In other words, the “same” equation gives rise to the emergence of a 
variery of posing, which leads to the development of a variety of strategies. 

Teachers’ posed tasks and solution paths 

The work with the group of 20 secondary-level teachers was conducted during a day-long session, 
where the solving of algebraic equations was carried out in the first half of the day. Similar 
equations given to students, even identical ones, were given to teachers to solve (about 10). 

In general, most if not all teachers’ strategies can be described as efficient and errorless for solving 
the algebraic equations, e.g., through balancing strategies and isolating x. However, at specific 
moments during the sessions, some strategies of a more arithmetical nature were proposed. For 
example, some teachers explained having done what they described as “recovering”, where, e.g., for 
“Solve for x the equation x2 - 4 = -3”, one teacher explained: 

[Hiding x2 with his hand] I look for the number which, when subtracted 4, gives –3. I know it is 
1. So then, what number squared gives 1? It is +/–1.  

This solution path is similar to “inversing” methods discussed in Filloy and Rojano (1989), or 
Nathan and Koedinger’s (2000) unwinding, where operations are undone to obtain a value for x. As 
Filloy and Rojano explain, in order to solve an algebraic equation this way “[i]t is not necessary to 
operate on or with the unknown” (p. 20), because it comes back to an arithmetical context of 
operating on numbers. However, these arithmetic strategies were occasional for teachers. For 
example, for “Solve for x the equation 2

5
x =

1
2

”, teachers produced the following: 



Equating middle and extreme products. One teacher explained having acted like with ratios, 
multiplying middle and extreme terms together, obtaining 4x=5, hence x=5/4. 

Multiplying by the inverse. One teacher explained having divided by 2/5 on each side of the 
equality, leading to multiply by 5/2 to get the same answer, giving x=5/4.  

Isolating x in two steps. One teacher explained having multiplied by 5 on each side of the 
equality, obtaining 2x=5/2, and then dividing all by 2 to obtain x=5/4. 

Following these solution paths, one teacher offered another entry: 

Simplifying the equation. The teacher explained having aimed to get rid of ½ by multiplying the 
entire equation by 2, giving “4 fifths of x equals 1”. He then multiplied by 5/4 to find x. 

Here the teacher simplifies the equation, eliminating the ½, in order to find the value of x through 
multiplying by the inverse coefficient. Numerous teachers were intrigued by this solution path and 
questioned the teacher about it. He explained that his intention was to get rid of ½ to obtain “1 on 
one side” of the equation and because “multiplying by 2 is easy here”. Asked about the numbers 
present in the equation, he also explained that it was not clear for him if other numbers like 3/2 or 
1/6 would have led him toward similar solving steps and that it was the presence of ½ that triggered 
his activity. This is thus an example of a local strategy, affected by the concrete “data” in the 
equation: the solving steps are produced on the spot for this equation and not as a general strategy 
applicable to all cases (as well as not being a strategy for isolating x, but about simplifying ½). The 
entry in the solving is done locally with the ½, the task is posed as one implying a ½, and not by the 
equation taken in its totality independent of its concrete values as could be the case in a cross-
multiplying product. Although local, this strategy underlines an entry directly grounded in the data 
of the equation. The teacher simplifies this equation by doubling ½, because it was “simple” to do 
so, and then solves it. However, this kind of solution path diverges from most of the strategies that 
teachers have produced. 

Whereas in students one sees more local solving steps of this sort, directly sensitive to the data in 
the equation to solve, the strategies developed by teachers appear more decontextualized and 
general, less centered on the direct data of the equation. In short, faced with the same prompts, 
teachers posed problems different from those posed by students. This difference between teachers 
and students is well reflected in a comment made, after sharing the “doubling the ½” strategy, by 
one of the teachers about what he perceived as the optimal strategy to solve this equation: 

In Grade-8 the winning strategy is really the ratio one [multiplying extreme and middle values]. 
We work at it so much with them and I encourage them to use it in front of these sorts of 
equations. […] I am not against the other strategies, but with my students [waiving his hand in 
discouragement], I am not sure that it would come out much, especially if we ask them to solve 
without paper calculations. In mental mathematics it is not obvious, whereas with ratios I think 
that 2 times 2x gives 4x, and 1 times 5 gives 5, and 4x over 5 they know afterwards that they have 
to divide by 4, these are rules of transformation of the equations. 

This comment on the winning strategy and students’ (un)ease, supported by the other teachers, 
contrasts with the students’ solution paths displayed above. Shortly afterwards, this prompt was 
given to teachers: “Find the value of 2t in 3(2t)+6=18”, for which they produced three strategies: 



Balancing. One teacher subtracted 6 on each side of the equation, obtaining 3(2t)=12, and then 
dividing by 3 on each side to obtain 2t=4. 

Undoing of operations. One teacher explained having done the opposite operation, by subtracting 
6 from 18 and then dividing it by 3. 

Recovering. One teacher explained hiding 2t to find the number which when added 6 is worth 18. 
This number is 12. Then he asks which number multiplied by 3 gives 12. This number is 4. 

Here again, this recovering strategy provoked questions from teachers, not stemming from 
misunderstanding but mostly from curiosity about having used this kind of strategy to solve the 
equation. One teacher explained that even if he himself solves algebraic equations in a variety of 
ways, he does not teach this variety to his students because he considers it important to proceed step 
by step in a structured and linear fashion for each side of the equality: something with which other 
teachers strongly agreed. However, after this comment, another teacher raised the following: 

I have a question. I would show it like that to my students [step by step, operating on each side of 
the equation in the same manner]. However, as a secondary student I was never shown this 
“balancing” way. It is one of my colleagues who told me “Listen, I teach it like that”. Then, when 
I taught Grade-7, I started doing this “you do the inverse operation, bing, bang”. And I wonder if 
it has not become an automatism. Is it because we always do it like that, that students themselves 
begin doing it also rapidly? Is it OK if they do so, or do they need to continue with their personal 
strategies? […] Should we encourage varieties of strategies in students? 

This comment is reminiscent of Freudenthal’s (1983) one about automatism in teaching: 

I have observed, not only with other people but also with myself […] that sources of insight can 
be clogged by automatisms. One finally masters an activity so perfectly that the question of how 
and why [students don’t understand them] is not asked anymore, cannot be asked anymore and is 
not even understood anymore as a meaningful and relevant question. (p. 469) 

What Freudenthal underlines as much as the teacher is not about misunderstandings of non-usual 
solution paths, but about well-ingrained habits of solving that (1) prevent one from stepping outside 
them, and (2) question the relevance of alternate solution paths for solving equations. The teacher’s 
question is about this, that is, the relevance or legitimacy of alternate solution paths: Should they be 
taught? Should they be accepted? These questions sensitize one to the variations in ways of solving, 
but also to the challenges that this raises for teaching-learning situations. 

Discussion and reflections on algebraic equation solving processes 
In what ways do these differences in solution paths raise challenges? The discontinuity, the 
distances between the various strategies developed by students and teachers are without any doubt 
important sources of challenges for the teaching-learning of algebraic equation solving. One way of 
addressing these questions is to probe the solving processes as much in students as in teachers. How 
can this variety be explained, as well as the differences in solution paths of teachers and students? 

If we take into account Threlfall’s (2002) views, we can consider that the nature of what emerges 
for the student is quite different from what emerges for a teacher. A student’s experience is quite 
different from that of a teacher. For the teacher, one has the impression that some earlier 



experiences intensely orient future ways of solving. The teacher’s comments above, as well as 
Freudenthal’s, insist on the challenge of stepping out of the frame pretraced by earlier repetitive 
experiences of teaching the solving of algebraic equations along specific solution paths. Faced with 
having to teach students and make them learn, teachers make choices that in turn orient the nature of 
their own mathematical experiences of this specific mathematics thematic. By insisting on some 
solution paths seen as fruitful for students to solve equations, these solution paths in turn orient 
teachers’ solving processes; a phenomenon that the above expression automatism describes well. 

It is this experience that plays a major role for teachers. When facing the “same” equations, teachers 
and students pose quite different tasks. Although all solving steps leading to what are seen as 
different strategies arise from the posing of different problems by different persons when interacting 
with the prompt, the solving steps do not share the same origins. Teachers are expert solvers in the 
sense of what could be called an “overspecialization”. They can perceive these equations through 
the same algebraic lens, steering almost all equations to the same kind of task, posing them as the 
same tasks. Students are not non-experts, but have, however, not yet lived the same repetitive 
experiences that cause this overspecialisation. Think of the riverbed metaphor: teachers’ riverbed is 
well dug, quite specialized, and the river runs through it comfortably. That of students looks much 
more like a stream that deviates at the least change in scenery, but this does not prevent it from 
unfolding (sometimes in the same place, sometimes elsewhere, unpredicted but adequate, or not).  

Final remarks: On differences and challenges 
Despite its efficiency in solving, teachers’ overspecialisation limits the variety of problems that they 
pose, being less sensitive to variations (in numbers, unknowns, operations, etc.). This makes it 
difficult for them to act differently, as one of the teacher expressed, but also to appreciate the variety 
of students’ solution paths; a variety that teachers themselves no longer experience much in their 
day-to-day mathematics teaching (a situation that also leads to question the validity of these solution 
paths). These different poses provoke a distance between solution paths in students and in teachers. 
The challenge for the teaching and learning of algebraic equation-solving can then be seen in 
teachers’ overspecialization – which implicitly imposes a particular pose of the task and thus the 
strategy – which brings about a distance with students’ solution paths. Also, this overspecialisation 
seems to be generated by the belief that a specifically guided and structured experience of solving 
will be helpful to students: teachers believe, as expressed above, that students need these structured 
and specific experiences. This belief may be an important source of reflection, because the 
challenge of this overspecialisation points to the necessity of not discarding the less common or 
local solution paths, but of developing a sensitivity toward them and toward the role played by this 
overspecialisation or these automatisms. 

This resonates with Anghileri’s (2001) literature review on mental calculations, pointing to students 
locally tailored strategies, linked to their understanding of problems. However, she explains that 
these strategies do not last because they are often substituted by standard algorithms taught in 
classrooms, where students attempt to conform to what happens in everyday mathematics lessons. 
Anghileri adds that this situation is complex, because without negating the power of standard 
algorithms for solving, they conflict, provoke a “distance”, in the development of students’ aptitutes 
in problem-solving. For her, this amounts to a matter of intentions: 



The emphasis in teaching arithmetic has changed from preparation of disciplined human 
calculators to developing children’s abilities as flexible problem solvers. This change in 
emphasis requires new approaches in teaching that will develop children confidence in their own 
methods rather than replicating taught procedures, and that will enable them to understand the 
methods used by others (Anghileri, 2001, p. 79). 

The transition toward flexible problem-solvers represents an invitation to think about algebraic 
teaching and learning, an invitation directly aligned with the above argument on the importance of 
developing sensitivities about distances between teachers and students’ algebraic solving processes. 
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Understanding of equality and solving equations are some of the big ideas in algebra. They have 
been in focus in early algebra research for some decades and in many countries it is now usual to 
work with equalities and solving equations using informal methods from early school years. 
However, it is not clear how the transition to formal methods of equation solving could be 
conducted in order to maintain students’ interest and enhance their algebraic understanding. We 
shed light on the issue by reporting on what happens when three teachers introduce equation 
solving with formal methods in Grade 6 (age of 12) in Finland. We especially consider how the 
introduction could support students’ development of an algebraic understanding of equality and 
their engagement in more formal mathematics. 

Keywords: Equations, primary school mathematics, equality, algebra.  

Introduction 
Learning to solve linear equations in a more formal manner may be a critical moment in a student’s 
school mathematical experiences.  The student is perhaps able to figure out the missing value in an 
equation with one unknown written as an open number sentence, for instance solving x – 10 = 15 by 
arguing ‘for x minus 10 to become 15, then x has to be 25 because when 10 is taken away from 25 
the answer is 15’. But the student does not understand how and why the standard algorithm works 
for solving the very same equation, that is, looking at the equation x – 10 = 15 as equivalent to the 
equation x – 10 + 10 = 15 + 10 and equivalent to the equation x = 25. This particular situation is 
shown to be associated with how the student understands equality (Kieran, 1981; Knuth, et. al., 
2006, 2011; Vieira, Gimenez & Palhares, 2013). In arithmetic it is often enough to understand the 
equal sign as an operator, as a do something -signal (Kieran, 1981).  In algebra, however, the 
student should understand equality between two expressions as an equivalence relation that does not 
change. Such algebraic understanding may not be supported if the student is taught to solve 
equations by memorized procedures as ‘move terms from one side to the other side of the equal sign 
and change the corresponding signs’ or ‘do the same thing on both sides’. Successful equation 
solving is connected to a relational meaning of the equal sign, and understanding the notion of 
equation as a statement about an equivalence structure (Knuth, et. al., 2006, 2011; Stacey & 
MacGregor, 2000).  

Scholars have only recently started to theorize about possible learning progressions with respect to 
algebra in different school years (Cai & Knuth, 2011). Although students may be taught to consider 
the equal sign as a relation by working with equivalent expressions and by solving simple equations 
with informal methods already in early school years, it is not sure that they can operationalize the 



meaning of their experiences when moving to more formal methods of equation solving in later 
school years. In Finland, Grade 6 teachers are expected to focus on a progression from equation 
solving by informal methods to equation solving by more formal methods. The general aim of this 
paper is to shed light on this progression by analyzing how students in three Grade 6 classrooms in 
Finland are introduced to solving linear equations with one unknown.  

Learning to solve linear equations 
A distinction can be made between an arithmetical and an algebraic notion of equality and a 
corresponding difference in arithmetical and algebraic understanding.  Following Filloy and Rojano 
(1986) and Vlassis (2002), if the unknown in a linear equation appears only on one side of the equal 
sign, e.g. x + 5 = 8, 13x = 39, 6(x + 3) = 48, the student has less need to operate on or with the 
unknown, or to deal with the equivalence structure of the expressions on both sides of the equal 
sign. For equations of this arithmetical type the student probably manages to find the value of the 
unknown by applying known number facts or inverse operations. When the unknown appears on 
both sides of the equal sign arithmetical understanding is however no longer enough.  Neither is 
arithmetical understanding enough in the abstract type of arithmetical equations where certain 
algebraic manipulations are needed, for example, because of the presence of negative integers (e.g. 
2 - x = 7) or several occurrences of the unknown (e.g. 6x + 5 - 7x = 27) (see Vlassis, 2002, p. 351).  
When solving such more abstract equations the student who has an algebraic understanding of 
equality first of all acknowledges that the expressions on both sides of the equal sign are 
representing equal values, next that the solving process involves mathematical actions, which 
preserve this balance and produce equivalent equations. Vlassis (2002) noted that concrete 
representations of equalities, like the two pan balance model, might act as good tools for developing 
students understanding of equality, but Vlassis also pointed at their limitations. For example, the 
balance model cannot represent the negatives in an equation. More generally, a true algebraic 
understanding of equation solving implies that the student considers the equation as representing a 
problem situation, and starts to understand the equation as an equivalence structure maintained by 
the operations one has to apply on both sides to solve for the unknown.  

If a real-life problem is used as a tool to introduce students to solving equations and the unknown is 
solved for through the syntax of algebra, the student needs to refrain from an arithmetical 
understanding of the solution to the problem. This situation may be at odds with the student’s 
knowledge and intuitions about arithmetic because the meaning of the equal sign changes from 
announcing a result to stating an equivalence relation (e.g. Carraher, Schliemann, Brizuela & 
Earnest 2006). Furthermore, an algebraic interpretation of the solution to the real-life problem 
implies that the student should be able to refrain from immediately attributing a concrete meaning to 
the letter appearing in the corresponding equation. Instead the student should understand the letter 
as an unknown number, the value of which is not significant at the moment the equivalence relation 
is set up and manipulated (Vlassis, 2002).  

Although the equal sign (=) is focused together with minor than (<) and major than (>) signs already 
from Grade 1 in order to enhance students’ understanding of equality, primary school students in 
Finland most often use the equal sign in their mathematical practices in order to show the result of 
an arithmetic problem. It is also usual to concretize the simple equations appearing in primary 



school with a balance model and encourage students to solve equations with testing, using inverse 
operations and other informal methods. 

Methodology 
The material was gathered in the spring 2012 from three Grade 6 classrooms in the Swedish-
speaking community of Finland as part of the international VIDEOMAT-study (see Kilhamn & Röj-
Lindberg, 2013).  Four consecutive lessons on equation solving, and a fifth lesson on problem 
solving were video-taped and imported into Transana, an open source transcription and analysis 
software for audio and video data (www.transana.org). The teachers answered a few clarifying 
questions immediately after each lesson and participated in formal interviews after the last (fifth) 
videotaped lesson. The teachers Anna, Bror and Cecilia have a similar educational background as 
certified generalist teachers and Masters of Pedagogy. At the time of the study their teaching 
experience varied from Bror’s five years to Cecilia’s seven and Anna’s 15 years of experience. They 
used the same textbook and teacher guide. In this paper we report on a close attention to what 
happened during the first videotaped lesson when the three teachers introduced solving linear 
equations in one unknown with formal methods. We especially considered how the introduction 
might have supported students’ development of an algebraic understanding of equality. First we 
briefly present the characteristics of all three teachers’ introductions to solving equations and 
continue by presenting the case of Anna. 

Three entries to equation solving 
In line with the Grade 6 textbook all three teachers introduced equation solving with one-step 
equations were the unknown appeared once on the left side and with an integer on the right side.  

Cecilia started from a strong emphasis on the equal sign as stating an equivalence relation. Her aim 
was to help students unlearn their earlier use of the equal sign to represent a string of calculations. 
She focused on the equal sign as representing equivalence in several ways: by discussing its 
meaning explicitly with her students, by referring to a solution a student had made in the test, and by 
representing both inequality and equality with a balance scale. These situations were familiar to the 
students, who also participated in the corresponding discussions in seemingly relevant ways. 
However she did not utilize the balance scale analogy to support the emergence of algebraic 
understanding of equation solving.  The first lesson her students solved only equations of the 
addition type, e.g. x + 8 = 15, by subtracting, in this case x = 15 – 8, without any further discussion 
related to a structural meaning of the equal sign.  

Bror started from four uncomplicated real-world situations that the students solved mentally by 
stating the answer. The first one was “There are seven fruits in a basket altogether. And four of the 
fruits are apples, the rest are pears, followed by the question: How many pears are there in the 
basket?” Each situation was then represented with an equation, e.g. 7 + x = 12, solved and checked 
with arithmetical means like in Cecilia’s classroom. Next Bror did a rapid switch in his teaching to 
an algebraic interpretation of why the subtraction 12 – 7 in the solution can be thought of as ‘the 
number 7 is moved to the right side of the equal sign and the corresponding sign is changed’. 
However, the students’ activity showed no explicit signs of an emerging algebraic understanding of 
equality. In their verbal answers students continued to refer to the equal sign as a do something –



signal, and in their notebooks they applied inverse operations to find the value of the unknown for 
all equations. 

The third teacher, Anna, started in a similar way as Cecilia and focused on the equal sign as stating 
an equivalence relation, however in a more formal manner. Anna started from defining an equation 
as equal expressions. She then did a quick transition to the algebraic approach of ‘doing the same 
thing on both sides’ to maintain equality and find the value of the unknown. Her message to the 
students was clear: you must isolate the unknown number step by step by operating on both sides of 
the equation.  

Here we present episodes from the first lesson in Anna’s classroom. The episodes show how the 
pattern of communication funneled the students (Wood, 1998) into memorizing ‘do the same thing 
on both sides’ rather than focusing on why this strategy works. 

We have to do the same thing on both sides 
Anna opens her lesson by writing an open number sentence, 4 + _ = 9, on the white board. The 
students give the value of the open number, and they name the object an equation. Anna reads the 
following aloud from the white board and then fills the placeholder in 4 + _ = 9 with the letter x. 

Anna: An equation is an equality relation between two mathematical expressions, which 
are called left side and right side. It includes one or more unknown numbers. If 
there is one unknown number, you normally use the letter x. 

Next, Anna continues to read aloud: “An equation is an equality relation between two sides. The 
two sides are separated by an equal sign”. She illustrates the statement with an arithmetical equality, 
4 + 2 = 7 - 1, 6 = 6, and with the equation 4 + x = 9 where she emphasizes that both sides of the 
equation must be equal. The students are asked to solve for two open number sentences and she 
stresses that the placeholder for an unknown can be replaced by the letters x, y or z. All the 
equations she has shown to her students so far include only one number on the right side, except for 
the arithmetical equality she used to indicate a new understanding of equality: the equal sign as a 
signal of an equivalence structure. 

Before the start of the following episode Anna refers to solving equations as a stepwise 
mathematical strategy.  She writes x + 12 = 18 on the white board. By stating, “we know that x 
should be six” she then indicates that the students’ attention should not be on finding the value of 
the unknown. She then starts funneling her students to discover “how to do it”: how to preserve the 
equality while simultaneously finding the value of the unknown. 

Anna: If I have an equal sign in the middle, then I aim at having x alone on the left side 
(…) But now I have plus twelve there, what do you think, the way of thinking, 
how can I get this plus twelve away from there? I want to have x alone on the left 
side of the equal sign. How can I get it away? Janne.  

Janne’s answer “eighteen minus twelve” shows that he attends to finding the value of the unknown. 
Anna’s attention is however on the mathematical actions to preserve the equality and she does not 
develop his answer any further. She repeats the question “How can I make plus twelve to zero?” 
several times, but does not get the answer she wants. She then gives the students a hint by drawing a 



minus sign after 12 on the left side of the equation. When she starts getting answers she accepts, the 
funneling accelerates and ends by her statement “I have shown how it actually goes step by step”. 

Anna: How shall I get plus twelve to zero? I helped you a little bit on the way. Nelli. 

Nelli: Minus twelve. 

Anna: Minus twelve. But twelve minus twelve is zero, isn’t it. But now the matter here, 
when I do something on the left side so what do you think I should do on the right 
side? Tor. 

Tor: Take away from there, that twelve. 

Anna: Exactly. I have to do the same thing here, now I have got eighteen, what should I 
also do then, here, on the right side? Well, now, Mimmi. 

Mimmi: Minus eighteen. 

Anna: No, not minus eighteen, the same thing as on the left side. Mimmi. 

Mimmi: Minus twelve. 

Anna: Minus twelve. Well let’s check, x, twelve minus twelve is zero, so then, now I’ve 
got x on the left side, eighteen minus twelve is (…) Quickly Mimmi. 

Mimmi: Six. 

Anna: Six. Now I have, stepwise, through mathematical steps, done this equation. You 
could quickly see that it must be six. You could do it just like that. But now I have 
shown how it actually goes step by step. I want to have x alone on the left side, so 
that I get what x equals to. And then, I just have to look what I have on that side, 
what I need to do. In this case, I had plus twelve, then I have to take minus twelve 
so that it becomes zero. But when I do something on the left side, I also have to do 
the same thing on the right side. Do you understand? Did you follow? 

Immediately after the previous episode, Anna and her students started solving the equation y – 6 = 
11. The “mathematical steps” are repeated and it becomes clear that some students, as Janne, now 
know that “to do the same on both sides” is the name of the game the teacher wants to hear. 

Anna: Quickly, I know you know the answer. But we shall think about the mathematical 
steps. What do I want, I’ll put the equal sign here, what do I want to have alone on 
this side of the equation? What am I aiming at? (Suggestions from students: x and 
y) Y, okay, I’ve got y there. But it is not ready yet. I’ve got the minus six, what 
shall I do then, what do I want to do then? Now I’ve got minus six. Karin 

 

Karin: You want to make it zero. 

As Anna then continues by asking how she can get a zero out of y – 6 she gets the answer “plus six” 
from both Karin and Janne. But she is not yet satisfied. 

Anna: Plus six. Okay. And then on the right side I have eleven. Are we ready with it or 
shall I still do something? /…/ Why Janne, plus six there too? 



Janne: We have to do the same thing on both sides. 

Anna: The same thing on the left and right sides. What I do on the left side, the same 
thing on the right side, or on the right and left sides. It’s plus six, now, because I 
had minus six. Okay. Then I have got y. Those two cancel each other out. Then 
I’ve got y there. And what will be on the right side? Vanja. 

Vanja: Seventeen 

Anna: Seventeen. And I know that you could have been able, you could find it already in 
a few seconds, but now we did the mathematical steps, again. Are you following? 
[SS: Yeah, yeah.] Beginning to understand this, although these are easy numbers 
/…/ Now you have solved equations, easy equations. Later, there will be a little bit 
harder ones, but now we’ll begin with these. 

When Anna starts teaching the steps of solving the equation x + 12 = 18 in the first episode, the 
students do not contribute with the answers she seems to expect. After receiving a hint from Anna in 
the form a minus sign, x + 12 –, Nelli gives the expected answer, “minus twelve”. In the second 
episode we can notice how the students and Anna use the same wordings as when solving the 
equation x + 12 = 18 in the first episode. Earlier Anna stated her expectation very clearly when she 
said “I want to have x alone on the left side of the equal sign” and she repeats the question “How 
shall I get plus twelve to zero?” many times. Now her expectation is reformulated as questions, 
“What do I want to have alone on this side of the equation?” followed by “What do I want to do 
then? Now I’ve got minus six”, and the student Karin finally gives Anna the expected answer “You 
want to make it zero”.  

In her summary in the first episode Anna reminded the students “when I do something on the left 
side, I also have to do the same thing on the right side”. In the second episode the student Janne 
repeats her words in his answer “We have to do the same thing on both sides” and Anna confirms 
that he remembers correctly by saying “The same thing on the left and right sides. What I do on the 
left side, the same thing on the right side, or on the right and left sides”. Anna’s discussion with her 
students focused strongly on memorizing the procedure she called the “mathematical steps” and, 
hence, did not serve well in supporting their development of an algebraic understanding of equality. 
Moreover, solving the equation by algebraic means, and with an algebraic interpretation of equality, 
was of no use to the students who already knew the value of the unknown x. Nevertheless they tried 
to fulfill Anna’s expectations and answer her questions.  

Discussion 
The three teachers in this study took some initiative in leading their students forward, from an 
arithmetical to an algebraic understanding of equality, but none of the teachers confronted the 
students with situations where mathematically more powerful approaches were needed than those 
students were already familiar with. Cecilia emphasized the need of understanding the structural 
meaning of the equal sign. Bror and Anna focused the strategy of doing the same thing to both sides 
of the equation. It seems, however, that neither the teachers nor the authors of the Grade 6 textbook 
were aware of the underlying conceptual differences between solving equations within an 
arithmetical understanding of equality and, on the other hand, within an algebraic understanding. 



The students had encountered missing value problems in the textbooks every now and then from 
Grade 1 onwards. They were familiar with the logic of that type of tasks. However, in the 
videotaped lessons the students did not have any real need to adopt algebraic ways of thinking about 
equality. For instance, one can wonder whether the students in Bror’s classroom were motivated at 
all to make sense of the uncomplicated real-life situations with a new complicated way of thinking 
as the solutions to the problems were obtained more economically by arithmetical means. At best, 
solving equations by adding or subtracting the same term from both sides of an equation was used 
by students as a memorized procedure and applied for one particular type of equation, only. The 
students did not need an algebraic understanding of the equal sign to solve neither the real-life 
problems nor the equations, and the book did not explicitly expect students to expand their 
mathematical knowing into operating with or on the unknown (cf. Filloy & Rojano, 1986). 

Balacheff (2001) recommends that students should experience a clear rupture between arithmetic 
and algebra. The rupture might be a strong emphasis of the newness of a situation, for instance to 
give more complex equations to students to be solved by including numbers beyond students’ 
arithmetic capacity and hereby support a need for an algebraic approach. Another way forward 
could be an algebraic use of numbers (Blanton & Kaput, 2003), for instance to investigate series of 
arithmetic tasks with a pattern, and support the students to express and justify the pattern. In many 
cases an algebraic sense of equality can be developed from just small changes and extensions in the 
types of tasks and questions textbooks or teachers present to students, and by encouraging 
discussions. The students’ arithmetical understanding of the equal sign can be confronted in 
versatile problem situations where a structural meaning of the equal sign is in focus whilst the 
situations are represented and made sense of within an algebraic syntax. In Anna’s classroom, for 
instance, the students general thinking about numbers, and hereby their emerging algebraic sense of 
equality, could have been supported in several ways (cf. Blanton & Kaput, 2003; Carraher et al., 
2006). A focus on transforming the arithmetical equality 4 + 2 = 7 – 1 into equivalent expressions 
like 4 + 1 = 7 – 2 or 14 + 2 = 10 + 7 – 1 at the start of the lesson, as well as on the simple questions 
“How do you know that the procedure ‘doing the same on both sides’ is true and does the procedure 
always work?” could probably have promoted an algebraic understanding of equality by means of 
students’ own justifications of the transformations and the procedure. Moreover, the funneling 
effect we saw in Anna’s classroom could have been avoided (cf. Wood, 1998).  
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The term “multiple referents” (MR) is used to describe the error of using the same letter to refer to 
two different quantities when translating word problems to equations. MR can be related to the 
presence in the statement of what are termed indexical expressions so that the presence of indexical 
expressions in statements may be associated with a greater number of MRs. In this paper we 
analyse students’ performances when solving word problems algebraically with the aim of 
determining the causes of this kind of error. Results from this research indicate that there is not an 
unique factor that accounts for the commission of MRs. At least the error may be associated either 
with the tendency for students to use personal idiosyncratic sign systems when translating from the 
natural language to the algebraic language or with the construction of a wrong problem model. 

Keywords: Algebraic language, word problems, secondary school, indexical expressions, multiple 
referents. 

Introduction 
The relevance and utility of solving word problems is widely accepted by the educative community 
as an issue interesting by itself and as medium to develop general skills applicable to everyday life 
and other academic subjects. Actually, its relevance is reflected in many research agendas on 
educational mathematics (e.g., Kieran (2006) or Mason, Graham & Johnston-Wilder (2005)). 

In the mathematical activity in general and in problem solving in particular, it becomes essential the 
internal and external representation of the mathematical ideas, in such a way that different registers 
are simultaneously combined. As word problems are enounced in natural language, the role of this 
register is a determinant factor in the task difficulty and, indeed, a correlation between reading 
comprehension and mathematical ability exists (e.g., Capraro, Capraro, & Rupley, 2012). In this 
regard, the influence of syntactic (e.g., Abedi & Lord, 2001) and semantic (e.g., Riley, Greeno, & 
Heller, 1983) variables has been studied. In the algebraic solving, another register that necessarily 
arises is the symbolic one, which works differently than the natural language. For instance, in the 
algebraic language there is a univocal correspondence between expressions and symbolised 
quantities, whereas it does not happen in the natural language, where the same name can be given to 
different objects (Filloy, Rojano, & Puig, 2008). This fact may cause errors when solving word 
problems algebraically. Without prejudice of the usefulness of other methods, the algebraic 
resolution constitutes a useful tool that can expand the potential of the subjects as problem solvers. 

 



Theoretical framework 
The Cartesian Method describes the process of obtaining and solving the equation (or equations) 
that represents the situation depicted in a problem statement (Filloy et al., 2008; Polya, 1981). This 
process implies a cyclical process of sense production. In order to explain it, we use the notions of 
Textual Space and Text (Filloy et al., 2008). The Textual Space encompasses the semantic content 
communicated by the linguistic structure of the text in the explicit context to which it refers. The 
Text is the result of a personal re-elaboration of the Textual Space carried out by the subject, by 
means of which he/she gives sense to these semantic content. The resulting Text becomes the 
Textual Space of a new reading and so on. In a global way, the Cartesian Method requires a 
transformation from the original Textual Space expressed in natural language to a Text expressed 
with one equation (or a system of equations). The first step is an analytical reading of the statement 
(Filloy et al., 2008), which involves a reading/transformation process where the solver extracts the 
set of quantities and arithmetical relationships among them from the original Textual Space. Hence, 
its result may be interpreted as the identification of the problem model in the terminology of 
Nathan, Kintsch and Young (1992). By way of example, let us consider the problem P2 of Table 1. 
If we use the letter x, to represent the son’s age at present, and y for the father’s age at present, then 
the problem model can be expressed, for example, by means of the system y = 2x; y – 17 = 3(x – 
17). The resolution of the system provides the solution x = 34, y = 68. 

However, a solver can eventually perform this process in successive cycles of transformation from 
Text to Textual Space, and use several registers in order to externally represent it. Since many non-
linguistic signs are commonly used, we adopt a semiotic perspective and consider the notion of 
Mathematical Sign System (MSS) in the sense of Radford (2000). In this way, we account for the 
construction and use of idiosyncratic MSS (MSSIdi), specific for each individual, with its own 
syntactic features and ways of assigning meaning to symbols. Such MSSIdi are used as intermediate 
registers when the student attempts to translate a Textual Space stated entirely in natural language 
(MSSNat), and to produce a Text expressed in algebraic language (MSSAlg).  

Regarding the change of MSS, we follow the approach of Duval (2006) and use the term conversion 
to name the change of semiotic representation register where the signifier is located, but without 
modifying the represented meaning. Such conversion can be congruent or non-congruent, 
depending on whether the syntactic structure and/or semantic segmentation are the same or not in 
the source and in the image representations. In this paper, we focus our attention to one kind of 
linguistic expressions called indexical expressions. These are expression whose meaning may shift 
depending on the context. They are common in MSSNat (e.g., “here”,  “today”, or “somebody’s age” 
at different temporal moments). However, in MSSAlg the designation of quantities is functional and 
indexical expressions do not exist. Hence, if the statement of a word problem contains an indexical 
expression, then the conversion to equations is necessarily non-congruent. In this paper we study 
the phenomenon consisting on the violation of such functional designation. We will refer to it as use 
of multiple or shifting referents for the unknown (MR), following the terminology of Stacey and 
MacGregor (1997, 2000). Although MR is valid in MSSNat or certain MSSIdi, it represents an error 
in the context of MSSAlg. In the present work we use a family of word problems known as age 
problems, and where indexical expression s arise naturally. Specifically, they are used to express 
that the age of the characters evolve over time (Table 1). As Stacey and MacGregor (2000) 



reported, the MR may appear due to distinct causes: “i”) the letter refers to different quantities in 
one equation or within a system of equations; ii) the letter refers to different quantities at different 
stages (ages); and, iii) the letter is a general label for any unknown quantity or a combination of 
quantities” (p. 10). It should be noted, however, that we follow the Radford (2000) semiotic 
approach, where signs are seen as tools of the mind to perform actions in a particular context, so 
they must be studied in terms of the practice they mediate. In this sense, the tasks we propose in this 
work are essentially different from that of Stacey and MacGregor (1997, 2000), because we require 
the students to pose an equation (or equations) but not to solve it. The latter is relevant because, as 
Stacey and MacGregor (1997, 2000), or Radford (2000) have pointed out, it is usual that, when a 
solution is required, the meaning students give to letters has an arithmetic resemblance. The task we 
propose focuses on the conversion from the natural language to the algebraic language. As a 
consequence, in concordance with Radford’s (2000) approach, the idiosyncratic semiotic registers 
that might potentially emerge would be different from those of Stacey and MacGregor (1997, 
2000).  

Another key aspect that must be taken into consideration is the moment, specific mathematical 
activity or step of the Cartesian Method where the MR has its origin. In particular, if a solver did 
not build a problem model correctly and two different quantities are erroneously considered as 
equals, then an MR would be committed although the subsequent steps were done correctly. On the 
other hand, even though a correct problem model was identified during the analytical reading, an 
MR can happen due to conversion errors when posing equations. A lack of command of MSSAlg or 
coordination between distinct MSS (especially between MSSNat or MSSIdi and MSSAlg.) may cause 
MRs. The ideas exposed above seem to point out the existence of various sources of MRs and that 
MRs may be due to different causes for each person, this being relevant in order to design a didactic 
intervention. Note also that the error by MR during the application of the Cartesian Method has a 
conceptual nature, because it relies on the unawareness about the way meaning is given in the 
MSSAlg and the MSSIdi. This may reduce the potentiality of the MSSIdi as a tool, and obstruct the 
progress in the use of the algebraic method. 

Research aims and research methodology 
The aim of this work is to search for and to document possible sources of MR when solving word 
problems using the Cartesian Method. Subsequently, we pay special attention to determine in each 
case whether the MR arises due to the inability to build a correct problem model or due to a lack of 
command to perform conversions between different MSSs. Regarding to the last possibility, we also 
study the emergence of MMSIdis during the conversion process from MSSNat to MSSAlg.  

Participants 

The sample consists of 54 students (15-16 years) in their fourth grade of secondary school (in a 
modality oriented to a subsequent BSs) in three Spanish Public High Schools. According to the 
Spanish curriculum, they were familiar with the Cartesian Method, having used it over the two 
previous years. 

Materials and procedures 

This work consists of two phases: a written phase and a case study, although in this paper we will 
exclusively focus on a qualitative study of students’ written productions from the written phase. 



Prior to that, we carried a pilot study with 36 participants, aimed to calibrate the difficulty of the 
problems and the time required to complete them. In addition, based on the pilot study, we 
stipulated a series of criteria to code the students’ productions. 

In the written phase we used a questionnaire consisting of six age problems but in this manuscript 
we only employ students’ resolution of three problems from the whole collection (Table 1). All the 
problems were versions from others in textbooks corresponding to two previous grades (13-14 years 
old). The statements were entirely expressed in MSSNat and they all contained indexical 
expressions. The written test was conducted in the students’ usual classroom. Each statement was 
shown on a screen at the front of the classroom for three minutes. The participants were given 
explicit instructions prior to beginning the test. They must try to pose the equation (or equation) that 
leads to the solution of each problem but solving it was, however, not mandatory. We focus on the 
raising conflict due to the structural differences in MSSs.  In order to stress these differences and 
also to delimit the study, we turn to the indexical expressions.   

Students’ productions were analyzed on the basis of the above developed theoretical framework, 
taking into especial consideration the ideas contained in Duval (2006), Filloy et al. (2008), Radford 
(2000) and Stacey and MacGregor (2000). 

P1 One sister is 3 years older than the other sister, and their father is 43. In 7 
years time the father’s age will be twice the sum of the sisters’ ages. How 
old is each sister? 

P2 A father is twice the age of his son. Seventeen years ago, the father was 
three times the age of his son. How old is each one? 

P3 Eight years ago Ana’s age was four times Maria’s age. In 12 years time 
Ana’s age will be only twice Maria’s age. Find the age of each one. 

Table 1: Problems from the written test 

Results 
In the example shown in Figure 1 the student performs some cycles from Textual Space to Text and 
represents a Text in a MSSIdi, which is less abstract than the MSSAlg. It consists of a table with two 
columns separated by a straight line, and also a system with two equations. In each column of the 
table the relations between the ages of the characters at a particular temporal moment are correctly 
represented. The letter x stands for Maria’s age in both temporal moments, and its value evolves 
automatically when switching between columns. This means that indexical expressions are valid in 
this MSSIdi, so it shares some features with the MSSNat. A spatial reorganization takes place, but, at 
a deeper structural level, there is not a discontinuity between the rules of both systems regarding the 
acceptance of indexical expressions. Here we interpret that the subject’s analytical reading produces 
a correct problem model, and that it is correctly represented within the frame of her/his MSSIdi. The 
subject properly coordinates both MSSs, performing a correct conversion from MSSNat to MSSIdi. 
However, when posing the system of equations the student produces an MR because the letter x 
stands for the age of both problem characters. In this case we interpret that the MR takes place in 
subsequent cycles due to a lack of command of the MSSAlg and/or a deficient coordination 
between her/his MSSIdi and the MSSAlg. Indeed, the error may be a consequence of the student’s 



lack of awareness of the structural differences between her/his MSSIdi and the MSSAlg regarding the 
validity of indexical expressions.  

 
Figure 1: Student’s resolution of the problem P3 (“años” means “years”) 

 
Figure 2: Student’s resolution of the problem P2                                                                                 

(“Hijo” and “Padre” mean “Son” and “Father”, respectively) 

Figure 2 shows another student’s performance in which we interpret that a correct problem model 
has been built and again the MR seems to be caused by a lack of ability to use the MSSAlg in 
subsequent steps of the Cartesian Method. The first equation seems to indicate an overlapping 
between MSSAlg and the student’s MSSIdi. Indeed, the letter x does not stand for the actual age of 
one character, but as a general label that refers to any unknown quantity. Actually, one of the 
possible causes of MR suggested by Stacey and MacGregor (2000). In addition to that, in light of 
the first equation, we interpret that the meaning and interpretation of the equals sign in this MSSIdi 
differs from those in the MSSAlg. The subject uses symbols from the MSSAlg, but the way of giving 
meaning to them is completely wrong in the frame of the MSSAlg. Finally, the second equation 
seems to reveal that the student has difficulties related to the syntactic rules of MSSAlg because 
he/she does not perceive the necessity of using brackets. 

 

Figure 3: Student’s resolution of the problem P1                                                                       
(“hermanas” and “padre” mean “sisters” and “father”, respectively) 



Unlike in previous examples, in the case shown in Figure 3 the student does not to identify a correct 
problem model since the passage of time is not considered for any character. In addition to that, the 
additive relation between the siblings’ ages is wrongly symbolised because a multiplicative relation 
is used. Regarding the multiplicative relation that should link the future ages of the three characters, 
the student seems to use the actual ages instead of the futures ages. From a conservative view it may 
be argued that the letter x could refer to one quantity at different times (e.g., the current and the 
future ages of one sister). However, the use of the known quantity father’s current age in the 
equation reveals the existence of an incorrect problem model. Here, the MR already arises during 
the analytical reading, because it seems that the student do not perceive the necessity to involve in 
its model two different quantities for each character (one referring to the current time and another to 
the future).  

Conclusions 
Personal idiosyncratic representations are usually thought to be helpful to students in order to 
understand and solve problems. It is commonly accepted that these representations can work as a 
bridge to more formal systems, as is the algebraic language. However, as Weinberg, Dresen and 
Slater (2016) suggest, the differences between such idiosyncratic systems and institutional semiotic 
systems can be also a source of conflict. In particular, these authors claim that the way in which 
such systems differ may greatly influence the students’ mathematical activity. In this paper we 
report and analyse an example (Figure 1) where the student firstly represents a problem model in an 
idiosyncratic system that contains algebraic symbols but structurally different to the algebraic 
language, and only following this, a system of equations is posed. 

This and other examples of students’ outputs reported in this work provide evidences of the 
tendency to manage algebraic symbols according to a set of personal rules that are not coherent with 
those of the algebraic language. Indeed, the analysis of such outputs allow us to affirm that some of 
the characteristics of these idiosyncratic semiotic systems are more close to the natural language 
rather than the algebraic register. This fact is not trivial and can lead to the commission of errors 
when mathematical relationships are translated between different mathematical sign systems. But 
such translation has to be unavoidably performed during the algebraic solving of word problems. 
Thus, a semiotic perspective on the students’ performances makes possible to locate possible 
sources of the error consisting on using multiple referents for the unknown (MR). Specifically, the 
examples presented in this paper strongly support the fact that the commission of MR may be due to 
quite some different factors. On the one hand, an erroneous understanding of the problem may lead 
to the construction of a wrong problem model, what in turn would lead to commit a MR. In this 
case, however, the error is not necessarily related to the students’ ability to use the algebraic 
language. Instead, difficulties seem to emerge when conceptualising the arithmetical relations 
expressed in the statement in natural language.  

On the other hand, we provide examples that show how the appearance of MR can be a 
consequence of students’ misunderstandings and overlapping between the structural semantic and 
syntactic rules of natural language, idiosyncratic systems, and algebraic language. In some cases, 
the student build a correct problem model but represent it using an idiosyncratic sign system that 
shares important features with natural language (e.g., indexical expressions are valid in both 
systems). Since these idiosyncratic sign systems employ algebraic symbols but do not obey the 



same rules than this language, the MR may appear due to the incongruity between both 
mathematical sign systems. In other examples, similar causes prompt errors when the student 
directly translates from natural language to algebraic language. From a didactic point of view the 
different nature of MRs is transcendent because teachers need to know the sources of the MR for a 
particular student in order to design an appropriate remedial instruction.  
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German mathematics teaching-units in primary school lack explicit algebra learning environments; 
however, the topics which are taught address algebraic thinking if seen from a new perspective. 
Teachers and children are mostly unaware of the algebraic potentials of tasks –especially in the 
scope of the content area patterns and structures. The project presented here submits a suggestion 
of algebraic key ideas as guiding principles to rethink ‘arithmetical’ topics and to design learning 
environments on algebraic thinking. Additionally, effects of implementing and evaluating such tasks 
are illustrated by one example. 
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Introduction  
The approach presented here is worked out for the particular situation in German primary schools 
and accordingly addresses one of the borderlines in the scope of algebraic thinking pointed out by 
Hodgen, Oldenburg, Postelnicu, & Strømskag (2015), i.e. “differences between teaching cultures in 
different countries (and within countries) are enormous and restrict generality of results very much” 
(p. 386). In German primary school algebraic topics have no tradition and still no explicit place in 
curricula, textbooks, and teaching-units on the one hand (KMK, 2004). On the other hand, recent 
research on early algebra or algebraic thinking is emerging (e.g. Akinwunmi, 2012; Gerhard, 2013). 
Furthermore, the daily classroom interaction and common teachers’ beliefs reveal bright 
opportunities for early algebra (e.g. Krauthausen & Scherer, 2007). Yet, implementing promising 
approaches and algebraic tasks in daily school life still is a great issue. 

The main aim of the project is making algebraic learning chances possible for children. 
Opportunities to get to know algebraic ideas and ways of algebraic thinking depend on tasks 
presented in the classroom. These tasks are offered by teachers. Hence, the focus has to be on tasks 
and on teachers’ awareness of the potential of these tasks. In so doing early algebra can be supported 
via a detour that influences classroom interaction and therefore children’s awareness and abilities.  

Theoretical framework 
Algebraic thinking and core areas 

Algebraic thinking is assigned to special thinking habits. Current research identifies mainly four 
algebraic thinking practices, which lay in generalising, representing (incl. symbol use), justifying, 
and, reasoning with generalisations or relations (e.g. Kaput, 2008; Kieran, Pang, Schifter, & Ng, 
2016; Blanton, Stephens, Knuth, Gardiner, Isler, & Kim, 2015). The focus of attention needs to shift 
from numerical solutions to mathematical structures behind the given patterns or equations. This 
shift allows seeing the generality as reification (Sfard, 1991) and therefore creating new objects 
(Mason, 1989). “By attending to relations and fundamental properties of arithmetic operations (what 
we call relational thinking) rather than focusing exclusively on procedures for calculating answers” 
(Carpenter, Levi, Franke, & Zeringue, 2005, p. 53) procedural thinking is not erased but expanded. 



Algebraic thinking as conceptual (Tall & Gray, 2001), relational or structural thinking can be 
applied to various topics or as Sfard puts it, “any mathematical activity may be seen as an intricate 
interplay between the operational and the structural versions of the same mathematical ideas” 
(Sfard, 1991, p. 27). Although in most of the research studies certain topics are outlined to be 
particularly relevant for algebraic thinking, different content-orientated registers identifying the 
strands or core areas of algebra can be found in many of them (Table 1).  

 
  pattern  

and formulas patterns patterns  
(& structures) 

generalised 
arithmetic 

generalised 
arithmetic restrictions arithmetical 

structures 
property 

structures 

 equations   equivalence 
structures 

functional thinking functional thinking functions relations functional 
structures 

 proportional 
reasoning    

application of 
modelling languages variable symbolic language   

Kaput  
2008 

Blanton et al.  
2015 

Drijvers, Goddijn & 
Kindt 2011 

Kieran et al.  
2016 

Steinweg  
2016 

Table 1: Algebraic strands and core areas 

These lists overlap in various topics as shown in the re-assigned order in Table 1. The core areas 
therefore are more or less universally acknowledged and differences can be identified in details 
only. For instance, some authors differentiate between generalised arithmetic and equations whilst 
others exclude patterns or list symbolic language (variables) within its own section. My suggestion 
(Table 1 rightmost column) and basis of this paper takes into account the current situation in 
Germany, because it “is important to indicate that any curriculum has a complex relationship to 
what actually occurs in classrooms” (Cai et al., 2005, p. 14). The German primary curriculum 
includes no algebra area, even though a single door for the implementation of algebraic thinking 
opens up. This possible link is the content area ‘patterns and structures’, which is given in the 
national standards (KMK, 2004). Moreover, patterns and structure can be regarded as generic field 
for the different algebraic topic strands (Drijvers et al., 2011). 

Owing to these two reasons my own suggestion stresses the terms patterns and structures. In the 
following paragraph these terms are theoretically analysed in more depth. 

Patterns and structures 

Often mathematics itself is described as the science of patterns (Devlin, 1997). In this view, all 
mathematical theories arise from patterns spotted. Even axioms characterise patterns to build on. 
Not surprisingly, teaching and learning about patterns and structures is not a special topic but is 
fundamental for all mathematics lessons: 

Pattern is less a topic of mathematics than a defining quality of mathematics itself. Mathematics 
‘makes sense’ because its patterns allow us to generalize our understanding from one situation to 
another. Children who expect mathematics to ‘makes sense’ look for patterns. (Brownell, Chen, 
& Ginet, 2014, p. 84)  



Becoming aware of patterns allows us to see sense in mathematics and to appreciate its beauty. This 
awareness is at least twofold. On the one hand, seeking patterns can be classified as meta-cognitive, 
on the other hand, there is a cognitive component of awareness which is characterised by 
“knowledge of structure” (Mulligan & Mitchelmore, 2009, p. 38). 

Patterns can be described as “any predictable regularity, usually involving numerical, spatial or 
logical relationships” (Mulligan & Mitchelmore, 2009, p. 34). Constructing a pattern of numbers or 
shapes by making up a rule or a certain operative variation (Wittmann, 1985) of a given number or 
task is an individual creative process. If, for instance, the pattern of a number sequences is creatively 
made up, the regularity then is fixed and can be used, continued, and described (Steinweg, 2001). 

In the approach presented here structure is understood as mathematical structure and not as a 
category system to describe the individual pattern awareness of children (Rivera, 2013). Mason, 
Stephens & Watson (2009) recommend “to think of structure in terms of an agreed list of properties 
which are taken as axioms and from which other properties can be deduced” (p. 10). They point out 
the difference between the spotting of (singular) relations and the use of the given example as 
paradigmatic for certain properties of a general structure (Mason et al., 2009). Thus, detecting 
structures, in contrast to patterns, requires mathematical knowledge about objects and operations. 
The relation between mathematical objects is essentially determined by mathematical structures 
(Wittmann & Müller, 2007). Awareness of structures often suffers from the fact that structures are 
mentioned only briefly and only formulated in rules, like a+b=b+a, in mathematics lessons. 
Unfortunately, these condensed statements are not an appropriate tool to become aware of the 
logical structures and properties of mathematical objects and relations which are fundamental for 
mathematics. In summary structure is the crucial term in the twosome patterns and structures. The 
approach described in this paper therefore puts emphasise on structure, and mentions structure 
purposefully in each key idea in order to call attention to it.  

Algebraic key ideas – a suggestion 

The key ideas outlined in the approach presented here focus on (1) patterns (& structures), 
(2) property structures, (3) equivalence structures, and (4) functional structures (Steinweg, 2016). 
The first idea differentiates between patterns and structures. Patterns are not a priori structures but 
may eventually generate products following mathematical properties and relations. Hence, the 
expression ‘structures’ is given in brackets to indicate this substantial difference. The second key 
idea lies in the properties of numbers and operations: Numbers can be divided into odd and even, 
divisibility can be explored, etc. Daily used –supposedly arithmetical– operations follow structures 
because of their properties (commutativity, associativity, distributivity). One example of this key 
idea is presented below. The third key idea holds learning opportunities in evaluating, preserving or 
construing equivalence in given correct or incorrect equations by sorting terms, etc. The main issue 
here is to overcome the urge to calculate the given terms and to solely compare the results but to 
focus on the relation of given numbers, sums, differences, products, or quotients (Kieran, 1981; 
Steinweg, 2006). This key idea goes hand in hand with the currently commonly used and fostered 
individual strategies in arithmetic, which can be found in Germany (also cf. Mason et al., 2009). 
The last key idea sums up learning environments on functional structures, (i.e. mainly proportional), 
relations, and co-variation aspects. One example is a task called ‘number & partner number’ 



(Akinwunmi, 2012). The structural relationship can be described by a rule (functional term) which 
assigns a partner number to each given number.  

As mentioned above, the key ideas presented here are ordered by mathematical core areas and put 
emphasis on structures as one of many feasible approaches. Sufficient knowledge of mathematical 
structures is crucial for both teachers and children. Only well trained teachers are able to understand 
the mathematical structures and to make them accessible for children. One possible strategy to get 
access to mathematical structures lies in implementing especially designed tasks which enable 
children to explore, use, describe, and even prove mathematical structures (Steinweg, 2001). 

Methodology  
In the research project learning environments suitable for the four key ideas outlined above are 
designed (Wittmann, 1995) and evaluated in order to uncover the algebraic potential of common 
tasks and to give tangible examples in the algebraic core areas within the field patterns and 
structures. Each learning environment includes various tasks in a booklet to be handed out to the 
children and information for teachers in a teacher’s guide (Steinweg, 2013). The teachers 
participated in an introductory meeting in which the tasks and possible teaching arrangements –
given in the guidelines– were discussed. They committed themselves to implement all of the tasks 
in daily classroom work with the intensity and depth of the use of the learning environments being 
in their hands. This means that there was no specific focus on the child-teacher-interaction while 
working on the tasks –with the exception of some mathematics lessons randomly visited by the 
author. The research therefore focusses on the question: Does the implementation of the designed 
tasks show any effects on children’s algebraic competencies? Six German primary school classes 
with 144 children from 2nd to 4th grade (on average 7- to 9-year-olds) participated in the project.  

Research results on the example of distributivity 
This paper exemplarily illustrates the research idea on distributivity as one element of the key idea 
‘property structures’. The main challenge is to see the structure of equations and terms in a meta-
perspective way. For instance in the term 2  8 + 5  8 children have to spot the specific ‘internal 
semantic’ (Kieran, 2006, p. 32). Only if the equal factor is identified as an important component in 
the products can the ‘variable’ factors be summed up. The two products have to be identified as 
objects in a sum and then the two different factors can be added to create a new product (7  8). The 
additive combination of products and the decomposing of products into a sum of two products with 
one equal factor in each case seems a tough challenge for the children. The shift of attention to 
elements of the equation as objects and to identify the mathematical structure is essential for 
algebraic thinking. Most likely, the children participating in the project had already experienced 
derive-and-combine-strategies solving multiplication tasks in class. The actual approach to the 
multiplication tables in German mathematics in primary school is peculiar. There is no longer 
‘doing tables’ but working on core tasks (e.g. doubles, times 5, times 10) and derive-and-combine-
strategies to solve other multiplications. Only core tasks should be known by heart as facts 
(sometimes known as ‘helping facts’ in Anglo-Saxon literature). Unfortunately, an arithmetical 
perspective –calculate terms to determine the specific result– is normally supported by teachers in 
primary mathematics. The out of the common change of perception of the structure of equations is 



therefore challenging. Only by a shift of attention can the structure of the maths behind the equation, 
i.e. distributivity, be recognised. 

The tasks implemented in the project try to support the identification of structure. For instance 
columns of variations of one equation are given to allow focussing on both the constant and the 
changing elements, like 32+62=…2, 33+63=…3, 34+64=…4, etc. Alongside tasks in 
symbolic representations, rectangle areas as representation for multiplications (length by width) can 
be used as well. If rectangles are accepted as multiplication representation, manipulating these 
rectangles by cutting and re-interpreting the two part-rectangles as multiplications can be the next 
step to explore and understand distributivity. The children were given one example and then asked 
to find three more possibilities to decompose the product 75 (Figure 1). Such rectangles can be 
provided by the teachers as representations on worksheets or ‘actively’ made up by the children by 
cutting out sections of grid paper. As an instance of possible developments in algebraic thinking by 
simply working on the tasks Philipp’s solution of one exemplary task of one worksheet given in the 
booklet is interpreted in Figure 1. 
 

 
Figure 1: Philipp explores distributive structures by interpreting rectangles as multiplications 

Philipp’s solution is stunning in some ways. The task asks him to find three further decompositions 
of the given product. He marks his ideas in the given three rectangle areas and writes down 
matching symbolic representations of the product-sums. The little dots in the first rectangle grid 
point at the fact that Philipp might have counted the number of squares. The other solutions do not 
show these presumed counting dots. Philipp apparently becomes aware of the structure and the main 
idea. The relation between the terms is understood individually. Philipp connects the different 
solution by using the verbally form of ‘oder’, which means ‘or’. This habit indicates that he is aware 
of the possibility of different compositions of the product but not yet sure about the equality-relation 
between these terms. The worksheet invites the children to find three products by giving three blank 
rectangles. Philipp extended the task spontaneously by drawing a fourth rectangle. This add-on 
again is remarkable. Philipp sketches a rectangle without drawing the grid. The countable squares 
obviously are no longer necessary for him. The fourth solution is the only one which decomposes 
the factor 5 instead of the factor 7. Philipp applies the main structure of splitting up the factor 
flexible for either factor now. The example of Philipp shows the multi-facetted possibilities to gain 
access to mathematical structures by working on challenging tasks. 

As the main research question aims at evaluating effects of the implementation of the learning 
environments, results of a pre- and post-test are of interest. In this paper the results of the test item 
10  5 – 4  5 = ___  ___ (corresponding to distributivity) are documented exemplarily (Table 2).  
 



Category pre-test (n = 135) post-test (n = 133) 
Algebraic 1.5 % 32 % 
Procedural 32.5 % 35 % 
no answer given 66 % 33 % 

Table 2: Results solving 105 – 45 = ___  ___  

The task is quite hard to handle for the participating children in the pre-test even so the curriculum 
expects teachers to work on derive-and-combine-strategies in multiplication. Two thirds have no 
idea what to fill in the blanks. Only in very few cases are children able to combine the two 
multiplications into 6 x 5 and thereby make use of the structure (algebraic perspective). After 
participating in the project one third is now able to give this answer. Another third places a 
multiplication like 3 x 10, which is fitting because of an equivalent result (procedural, arithmetical 
perspective). The figures suggest a developmental step of the procedural thinkers to the algebraic 
thinkers apparently. This assumption actually cannot be confirmed by the data. The developments 
are very much individual. For instance, some children who gave no answer prior to the project are 
now able to see the structural relation or calculate to find matching terms and others still have no 
answer at all. Despite the fact that these results are still far from being satisfactory, the increase in 
numbers of children using an algebraic perspective is considerable. 

Discussion 
The project gives an initial indication that it is possible to foster algebraic thinking by providing 
sound learning environments without explicit variable use in the scope of the content field of 
patterns and structures. The challenges offered support effects on understanding and on performance 
in algebraic tasks. Yet, the impact of learning environments alone is not enough to support all 
children. As mentioned above, the project provides no binding specifications to teachers of how, for 
example, to focus on distributivity, but offers different opportunities to explore this mathematical 
structure via the designed tasks. As a “good balance between skill and insight, between acting and 
thinking, is … crucial” (Drijvers et al., 2011, p. 22), further effort should focus on exploring the 
differences between procedural and structural work on tasks. Teachers’ instructions and interaction 
in classroom discussions as well as the specific role of representations have to be focused on in 
further studies. 

The hope is that the developed key ideas function as bridges between arithmetical topics and 
algebraic ones and also as guiding principles for classroom interaction. If common arithmetical 
strategies –like derive-and-combine– are seen from a different angle, they actually are algebraic 
ones. From a meta-perspective view the procedures performed are determined by mathematical 
structure and the properties of operations. The shift of attention towards structures has to be made 
explicit to both teachers and children. Only if teachers appreciate algebraic structures can they offer 
effective support and take up children’s algebraic ideas. In the particular situation in Germany 
awareness of the multi-facetted potential of the usually underestimated core area patterns and 
structures is crucial. Last but not least, the sensibility implies a win-win-situation: “Awareness of 
structure of expressions helps students understand these better, thus leading to a better 
understanding of rules and procedures” (Banerjee & Subramaniam, 2012, p. 364). 
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In this paper we investigate a pre-service teacher’s whole-class discussion at Grade 6, where she 
attempts to justify the general claim that multiplication is commutative in ℕ. Our analysis points at 
two conditions that constrain the discussion in class: The first is that the diagram used to represent 
a multiplicative situation—and the way the diagram is used—is inadequate because it does not 
illustrate the meaning of multiplication. The second is that the diagram enables the students to 
respond “adequately”, even if they may not have understood why multiplication is commutative. The 
latter is a constraint because it deprives the pre-service teacher of the opportunity to get feedback 
that might have let her understand that she would need to revise her intervention.  

Keywords: Multiplicative situation, commutativity, representation, justification, teacher education. 

Introduction 
Addition and multiplication in ℕ (or, more generally, in ℝ) are commutative and associative. 
Moreover, multiplication is distributive over addition. These basic properties of addition and 
multiplication play a crucial role in abstract algebra, but also in arithmetic and algebra in elementary 
school. The work on fluency of the multiplication table gets considerably easier if the students make 
use of the basic properties. In fact, all arithmetic strategies can be shown to have origin in the basic 
properties of commutativity, associativity and distributivity. Promoting these properties in elementary 
school is important for integrating arithmetic and algebra (Carpenter, Franke, & Levi, 2003). Involved 
in this is the activity of generalising and formalising relationships and constraints, which is one of 
three strands of algebra identified by Kaput (2008). Furthermore, the basic properties of addition and 
multiplication are also important in “transformational activities” (Kieran, 2004), which involve 
syntactically guided manipulation of symbols (e.g., simplifying expressions, exponentiation with 
polynomials, and solving equations).   

At the background on the above, the question raises as to how it can be discussed with students that 
addition and multiplication are both commutative and associative, and that multiplication is 
distributive over addition? If we want these properties to emerge from students’ mathematical 
reasoning in the classroom—and not from the teacher’s just presenting them as rules—how could it 
be done, and what challenges may arise? In this paper we discuss this question with data from teacher 
education, where a pre-service teacher has designed and implemented a lesson, aimed at whole-class 
discussion with 12 year-old students on basic properties of multiplication. The research question set 
out to answer is: What conditions constrain a pre-service teacher’s whole-class discussion with 
Grade 6 students about commutativity of multiplication in ℕ?  

Theoretical framework 
Multiplicative structures—modelling situations involving equal-sized groups 

From a mathematical point of view, multiplication and division by natural and rational numbers may 
appear easy. However, from a psychological point of view, it is more complex. In a teaching situation, 



these operations are dealt with not only as abstract binary operations, but also in terms of how they 
model different situations. Vergnaud (1988) claims that “[m]athematical concepts are rooted in 
situations and problems” (p. 142). Because a single concept does not refer to only one type of 
situation, and a single situation cannot be studied with only one concept, Vergnaud proposes that 
researchers study “conceptual fields”. This is defined as a set of situations, the mastery of which 
depends on mastery of a conceptual structure. For instance, the conceptual field of multiplicative 
structures consists of all situations that can be analysed as simple and multiple proportion problems, 
where the necessary operation is multiplication or division (Vergnaud, 1988).  

According to Greer (1992), the most important types of situations where multiplication of integers is 
involved are:  

- equivalent groups (e.g., 6 tables, each with 4 children) 
- multiplicative comparison (e.g., 3 times as many girls as boys) 
- rectangular arrays/areas (e.g., 4 rows of 7 students, or area of a rectangle) 
- Cartesian product (e.g., the number of possible trousers-sweater pairs)  

Fishbein, Deri, Nello and Marino (1985) investigated how 623 pupils enrolled in 13 Italian schools 
(Grades 5, 7 and 9) responded on 26 multiplication and division word problems. Their findings 
confirmed the impact of repeated addition as an intuitive model on multiplication, in which a number 
of groups of the same size are put together—that is, equivalent-groups situations. 

In Norwegian schools, multiplication is usually introduced through situations with equivalent groups, 
where 4 ∙ 7 means 7 + 7 + 7 + 7, while 7 ∙ 4 means 4 + 4 + 4 + 4 + 4 + 4 + 4. Here, it is not 
obvious that multiplication is commutative. The first of the factors—the number of equivalent 
groups—is taken as the operator (termed multiplicator); the other factor—the size of each group—is 
taken as the operand (termed multiplicand). In this model, the multiplicand can be any positive 
quantity, but the multiplicator must be an integer (Fishbein et al., 1985).  

Justification in the elementary classroom 

Algebraic thinking is a term used to describe particular ways of thinking applied when we are looking 
beyond quantities and operations on quantities. It includes analysing relationships between quantities, 
noticing structure, studying invariance and change, generalising, problem solving, modelling, 
conjecturing, justifying and proving (Cai et al., 2005). In this section we concentrate on justification. 
There are several ways of approaching justification and proof in school mathematics. Balacheff 
(1988) has identified four types of reasoning in 14-15 year-old students’ practice of proving a 
conjecture that applies on infinitely many examples:  

- Naïve empiricism is where students think that some examples (even one or two) are 
sufficient to justify a conjecture.  

- The crucial experiment is where students think that the validity of a conjecture is 
accomplished by testing it on an instance that has some complexity—the reasoning being “if 
it works here, it will always work”. The crucial experiment is different from naïve empiricism 
in that the generality at stake is explicitly articulated.  

- The generic example involves making explicit the reasons for the truth of an assertion by 
means of operations on an object that is a representative of the class of elements considered. 
A generic example is an example of something—the validity of a hypothesis is argued for by 
the characteristic properties of this example.  

- The thought experiment requires that the one who produces the proof distances him from the 
actions of solving the problem—he must give up the actual object for the class of objects on 



which relations and operations are to be represented in formalised symbolic expressions. Proof 
by induction is an example of a thought experiment. 

Proofs by naïve empiricism, the crucial experiment, and the generic example are based on actual 
actions and references to examples—these proofs are referred to as pragmatic proofs (Balacheff, 
1988). The thought experiment is based on abstract formulations of properties and of relationships 
among properties—this proof is referred to as a conceptual proof. Balacheff emphasises that a proof 
by naïve empiricism or by a crucial experiment does not establish the truth of an assertion, and the 
reason why he refers to them as “proofs” is because they are recognised as such by the students who 
produce them. He asserts, further, that the generic example and the thought experiment are 
mathematically valid proofs. They involve a fundamental shift in the students’ reasoning because the 
nature of the truth of a claim is established by giving reasons. When using a visual representation to 
justify a claim of generality, the representation needs to have some properties. Schifter (2009) has 
identified three criteria for a representation in elementary grades to be adequate: (1) the meaning of 
the operation(s) involved is represented in diagrams, manipulatives, possibly complemented by story 
contexts; (2) the representation is accessible for a class of instances; and, (3) the conclusion of the 
claim follows from the structure of the representation (p. 76).  

Justification in the elementary classroom of the commutative property of multiplication can be done 
through a generic example based on a rectangular-area situation. In this situation, multiplication in 
ℚ+ is commutative because the area of a rectangle is the same regardless of the order in which its 
side lengths are multiplied. However, given the impact of the equivalent-groups situation, we consider 
it important also to be able to build on this intuitive interpretation in justifying that multiplication is 
commutative. Then of course, the asymmetry of this situation is a challenge. In the following we 
explain how a justification of commutativity of multiplication in ℕ can be constructed, taking the 
situation of equivalent groups as a starting point. We discuss a justification first by a generic example, 
then by a thought experiment.  

Let 4 ∙ 3 be interpreted as the total number of discs when we have 4 equivalent groups of 3 discs, as 
shown in the upper row of Figure 1. The discs can be regrouped into 3 equivalent groups of 4 discs, 
which corresponds to 3 ∙ 4 (illustrated in Figure 11).  

 

Figure 1. A generic example illustrating the symmetrisation of an asymmetric situation  

The total number of discs is not changed, and consequently we have that 4 ∙ 3 =  3 ∙ 4. This process 
of regrouping can be imagined with an arbitrary number of groups a, and an arbitrary number of discs 
b—that is, for any 𝑎 ∙ 𝑏 where a and b are natural numbers. The number of discs in the equivalent 
groups in the original grouping transforms into the number of groups in the new grouping. The 

                                                 
1 The discs are coloured to make the process clearer. The arrows signify the movement of the discs. 



example with the transformation of 4 ∙ 3 into 3 ∙ 4 is thus used as a generic example in the 
justification.  

Justification by a thought experiment can be rather similar to the generic example presented above, 
though the reasoning is done in general terms: Given natural numbers a and b, then 𝑎 ∙ 𝑏 can be 
interpreted as the total number of discs when we have a groups with b discs in each group. Regrouping 
of discs by taking one by one disc from each group to make a new group gives b groups with a discs 
in each group—that is, a situation in which the total number of discs can be represented by 𝑏 ∙ 𝑎. 
Since the number of discs is not changed in the process of regrouping, we can conclude that 𝑎 ∙ 𝑏 = 
𝑏 ∙ 𝑎 for all natural numbers a and b. 

Methodological approach 
The pre-service teacher (henceforth PST) participating in the research reported here was in her first 
year of a 4-year undergraduate teacher education programme for Grades 1-7 in Norway. The 
investigation has been done within a compulsory mathematics course in the programme, which 
involves an integration of mathematics and didactics. The data were collected at the end of the second 
semester. The main content of the mathematics course previous to data collection was multiplicative 
thinking, and the emphasis was on different strategies for, reasoning with, and properties of, 
multiplication and division. The second author, together with a colleague, taught the mathematics 
course and carried out the data collection.  

During the mathematics course, the PSTs in the class worked on several assignments that involved 
practice of teaching in school (Grades 4-7), all concerned with strategies for and properties of 
multiplication. In the fourth assignment, from which the data analysed in this paper emerged, the 
PSTs were asked to plan and carry out a discussion with students concerning a given strategy or 
property of multiplication or division. The PSTs video-recorded and transcribed their discussions 
with students. The transcript analysed here is from one of 25 classroom discussions that were carried 
out and analysed. 

Our research question concerns basic properties of multiplication, and we are interested in PSTs´ 
handling of general justifications—that is, justifications for an infinite number of cases. In most 
episodes where the PSTs discussed properties of multiplication with the students, there was no 
attempt to generalise and justify. There were discussions of particular examples, usually succeeded 
by a conclusion along the lines of “this will apply for all numbers”. In this paper, we present an 
analysis of one of the discussions, the case of Janet (a PST). This case is chosen because Janet actually 
tried to discuss with students why a property of multiplication applies in general (in ℕ) and it 
demonstrates challenges thereof, which are also traced in some of the other transcripts (not analysed 
here). We will explain what conditions that prevent the case of Janet from being successful in the 
sense of including a valid argument for the claim of generality.  



Results 
Establishing a situation to interpret a multiplication problem 

Janet and the students have discussed the products 12 ∙ 10 and 10 ∙ 12, and the students have come 
to the recognition that the products are the same. David says it is because “the numbers have simply 
changed places” (turn 10). Then Janet provides another example:2  

11. Janet: We will get the same answer, it’s just the calculation that is reversed… If we  
 take another arithmetic problem, will that be similar, too? 13 ∙ 17 and 17 ∙ 13 [writes on 
 the blackboard]. [Pause 7 sec.]. Will this be the same, or are they different? [Pause 11 
 sec.]. What do you think? Do you think it will be the same answer, or are they different? 

12. Brian: I think it will be the same, because you have just exchanged the numbers. 
13. Janet: You think it will be the same? Mary, do you think it will be like Brian said? 
14. Mary: Yes. 
15. Janet: I don’t know whether you have done this before, made a story or a drawing. Is there 

 anyone who would try to make a story for 13 ∙ 17, if we just concentrate on this 
 [product]? Can someone make a story or drawing that might explain 13 ∙ 17? Is there 
 anyone who dares to do that? [Pause 5 sec.]. 

16. Janet: What does it mean? Could it mean that we have 13 of something that we shall have 17 
 times? If we imagine having a baking tray with muffins for instance. If we imagine 
 having a baking tray [draws on the blackboard]. Can someone try to figure out how  
 the drawing will be, if we have a baking tray with 13 ∙ 17 muffins? [Pause 3 sec.]. 

17. Janet: Where should we place 13 for instance? Should we just draw them all over the place, or  
 should we place them across or down? Anyone who dares to try? Trying is  
 allowed. Remember, no answer is silly. [Pause 5 sec.]. 

18. Janet: Nobody dares to try? Well, OK. If we imagine that we have 13 muffins across here 
 [draws on the blackboard], and we have 17 down. We fill out the whole tray, but I don’t  
 bother to draw them all. You understand that we have 13 across and 17 down. If we were 
 to calculate this instead of counting all the muffins, how could we do that? You may want 
 to take 13 ∙ 17. Then we can think that we have 13 across and 17 down [points at the 
 blackboard]. However, if we had 17 ∙ 13 [points at the blackboard], can someone figure 
 out what the drawing would look like? Carl? 

19. Carl: It will be 17 across and 13 down. 
20. Janet: Uh-huh. Anne, can you repeat what Carl said? 
21. Anne:  It will be 17 across and 13 down. 
22. Janet: Yes, we would have had 17 here and 13 down [points at the blackboard and explains].  

 Have we changed how many muffins we have on the tray? [Tim shakes his head]. 
In turn 15, Janet invites the students to give an interpretation of the product 13 ∙ 17. Nobody responds, 
after which Janet (turn 16) introduces multiplication in terms of equivalent groups:  
13 ∙ 17 is explained as the number of objects we will get when “we have 13 of something that we 
shall have 17 times”. This is a non-commutative situation, where 17 is the multiplicator and 13 is the 
multiplicand.  

Then there is a shift to a rectangular-array situation, when Janet introduces a context of muffins on a 
baking tray to interpret the product 13 ∙ 17 (turns 16-17). In turn 18 she explains how the product can 
be placed on the tray: 13 muffins across and 17 down. She says that the whole tray should be filled 
out, but draws only the first row and first column. The resulting diagram is reproduced in Figure 2, 
and we will refer to it as a “degenerated” array. With a proper (13x17)-array, it would have been 
possible to interpret the multiplication problem as an equivalent-groups situation in correspondence 

                                                 
2 The transcript has been translated into English by the authors. Names are pseudonyms. 



with Janet’s initial explanation of multiplication: 13 muffins in a row could be interpreted as a group, 
and 17 rows could be interpreted as equivalent groups of 13 muffins. But the degenerated array and 
Janet’s use of spontaneous concept (“across” and “down”) instead of the scientific concepts “row” 
and “column”, makes it unclear how the presented situation should be interpreted as the product 13 ∙

17.  

 

 
Figure 2. The diagram used by Janet to illustrate the product 𝟏𝟑 ∙ 𝟏𝟕 

The operation aimed at is just declared by Janet (turn 18): “You may want to take 13 ∙ 17”. When she 
asks how it would be if they had 17 ∙ 13, Carl gives the desired answer (turn 19, repeated by Anne in 
turn 21). Nevertheless, this does not imply that Carl has understood what 17 ∙ 13 means—it indicates 
only that he is able to substitute the numbers used by Janet. The diagram in Figure 2 does in fact 
represent two numbers (one across and another down), but the diagram does not represent the 
operation of multiplying these numbers.  

Justifying that multiplication is commutative in ℕ 

After having indicated how the products 13 ∙ 17 and 17 ∙ 13 should be interpreted as (degenerated) 
array situations in terms of muffins on a tray (as presented above), Janet sets out to justify that 
multiplication is commutative for all numbers in ℕ: 

23. Janet: When we have 17 ∙ 13, the tray would look like this, and if we have 13 ∙ 17, we can just 
 imagine that we rotate the tray. Then the arithmetic problem will be different. We may  
 also think that we have a sheet of paper. If we imagine having 13 ∙ 17 like this, and
 17 ∙ 13 like this [demonstrates on the sheet]. Then we can see that these arithmetic 
 problems will be the same.  

Janet uses the products 13 ∙ 17 and 17 ∙ 13—represented as drawings of muffins on a tray—to 
exemplify that multiplication is commutative. In turn 23, she refers to these products as being 
different arithmetic problems. The imagined rotation of the tray (possibly 90 degrees) is used to show 
that the arithmetic problems have the same result, the reasoning being that the rotation of the tray 
does not change the total number of muffins—hence 13 ∙ 17 =  17 ∙ 13. We interpret the sheet 
mentioned in turn 23 as a representation enabling Janet to actually show the rotation and its effect on 
the arrangement of the muffins (a feature not afforded by the representation on the blackboard).  

Having established that 13 ∙ 17 = 17 ∙ 13, Janet then asks whether this property applies for all 
numbers: 

29. Janet: How do you think it will be? Does it apply only for these numbers, or does it apply for all  
 numbers? When we multiply two things… [Pause 5 sec.]. Mary? 

[Mary says that she thinks that it applies for all numbers, and exemplifies by 1 ∙ 2 and 2 ∙ 1] 



33. Janet: Uh-huh. Do you think it applies for all numbers, all whole numbers? [Pause 4 sec.]. Or  
 are there numbers for which it doesn’t apply? [Pause 5 sec.].  

Several students respond that they think it applies for all numbers, and Janet asks why they think so.  
37. Mary: I think it has to apply for all numbers. Because it’s about the same [pair of] numbers.  
38. Brian: It can be a little demanding when you have very large numbers, like 1 million times 2  

 millions. It will be challenging to draw. 
39. Janet: Uh-huh. Well, it will indeed be much to draw if we were to draw a million. But if we 

 imagine that we take away all the muffins. If we imagine that we have only one sheet of 
 paper [erases the muffins on the blackboard drawing]. We can imagine that we have 1 
 million times 2 millions, then we can place it like this [points at an array-model on the 
 blackboard]. So, does anyone dare to formulate a rule for multiplying two numbers.  
 When we use what we have just seen, which applies on those [points at the blackboard 
 drawing]. [Pause 10 sec.]  

40. Mary:  It will be the same if we swap the numbers.  
41. Brian:  It is possible also to check out with this tray in case one is insecure. 
42. Janet: Uh-huh. A rule can be that, when we do multiplication problems, the order does not 

 matter. Whether we take 13 ∙ 17 or 17 ∙ 13 does not matter. We can see this [property] if 
 we make such a drawing. If we rotate the drawing, the [total] number has not been 
 changed, we just rotate the drawing.  

The multiplication problem 13 ∙ 17 is used as a generic example in the dialogue to justify the 
commutative property of multiplication in ℕ. The property that the factors in a multiplication problem 
commute is based on the idea of rotating a tray (or sheet) with muffins arranged in a rectangular 
array—this is Janet’s intention, even if the diagram used is not a proper array. The generic properties 
of the example are, however, vaguely expressed: Janet suggests that the total number of muffins on 
the tray is not changed by a rotation (turns 23 and 42), but she does not express in clear text what the 
commutative property means in the actual situation (i.e., exchanging row and columns). When Brian 
(turn 38) provides an example that involves the product 1 million times 2 millions, it can be 
considered a crucial experiment (supplemented by Janet in turn 39): the validity of the conjecture of 
commutativity is accomplished by testing it on an instance that is quite complex (and impossible to 
draw). In turn 42, Janet utilizes the generic example of 13 ∙ 17 when she articulates the conclusion of 
the claim—an important, last step in a justification process. 

Discussion 
The decision not to draw all the muffins (possibly because it would take too long) prevents the 
diagram in Figure 2 from representing the meaning of the operation at stake (even if Janet says that 
the whole tray should be filled out). Hence, Schifter’s (2009) first criterion for a representation to be 
adequate is not met. It can be noticed that the other representation used, the sheet, does neither 
illustrate the meaning of multiplication, but it affords the rotation to be demonstrated physically. For 
the meaning of multiplication to be represented in a diagram, the total number of objects—the result 
of the operation—needs to be displayed. This entails that the numbers involved must be of 
manageable size, thus enabling them to be represented in diagrams or manipulatives. That Janet failed 
to draw the complete array indicates that the numbers she used in the generic example (13 and 17) 
were too big, as she possibly conceived of it.  

It is possible to represent any pair of natural numbers in the diagram used by Janet, and hence, it 
seems as if Schifter’s (2009) second criterion is met. Yet, this is irrelevant since the meaning of the 
operation is not represented in the diagram. Further, since the diagram does not represent 



multiplication at the outset, it is useless to check if Schifter’s third criterion is met (i.e., whether the 
conclusion of the claim follows from the structure of the diagram). 

The discussion in class (based on Figure 2) enables the students to evidence possession of some 
knowledge. This knowledge is, however, different from the knowledge aimed at by Janet: The 
students were able to say that the result—in the general case—would be the same even if the numbers 
in the multiplication problem were reversed. Yet, there is no indication that the result they refer to is 
the product of the two numbers. It is likely that the students imagine a diagram with objects in a 
formation similar to the one in Figure 2, and that they see that rotation does not change the total 
number of objects in the diagram. This is basically an aspect of the principle of number conservation, 
and it is doubtful whether the students have understood why multiplication is commutative for any 
pair of natural numbers, which was the aim of the lesson. 

In conclusion, there are two conditions that constrain Janet’s discussion with the students about 
commutativity of multiplication in ℕ: The first is that the diagram, as used by Janet, is inadequate 
because it does not illustrate the meaning of multiplication. The second is the matter of fact that the 
diagram (and the way it is used) enables the students to respond “adequately” (i.e., as expected by 
Janet), even if they may not have understood why the commutative property applies for 
multiplication. The latter is a constraint because it deprives Janet of the opportunity to get feedback 
that might have let her understand that she would need to change her approach. 

The case of Janet can be used in teacher education to discuss with pre-service teachers criteria for, 
and impact of, generic examples (or representation-based proofs) used to justify general claims about 
properties of arithmetic operations. It is relevant to extend the research reported here by analysing 
written material from students’ justification of properties of arithmetic operations.  
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Generalisation is a key element of algebraic thinking, and children’s developing thinking is 
supported by engagement with algebraic activities when they attend primary school (Kaput, 2008). 
Shape patterns provide a context within which children may identify structure, and construct 
general terms. Within my research I presented children with shape patterns and observed their 
interactions as they discussed the structure of the patterns and sought to construct general terms. In 
this paper, I discuss the elements of the patterns to which they attended, and how their focus 
supported some children in constructing general terms, while other children experienced more 
challenge in their engagement with the patterns. Specifically I focus on children who observed both 
numerical and figural aspects, and I examine the varying levels of success they experienced. 

Keywords: Algebraic thinking, generalisation, shape patterns, reasoning, task-based interview, 
group interaction. 

Introduction 
Kaput (2008) defined generalising, representing generalisations, and syntactically guided reasoning 
on generalisations as core aspects of algebraic thinking. Providing a context for functional thinking, 
shape patterning tasks may facilitate children in engaging with these core aspects. Strømskag (2015) 
defines a shape pattern as a sequence of terms, composed of ‘constituent parts’, where some or all 
elements of such parts may be increasing, or decreasing, in quantity in systematic ways. While a 
limited number of terms of a shape pattern may be presented for consideration, the pattern is 
perceivable as extending until infinity. In order to construct a general term for a shape pattern, 
children must “grasp a regularity” in the structure of the terms presented, and generalize this 
regularity to terms beyond their perceptual field (Radford, 2010, p. 6). In seeking to construct 
general terms for shape patterns, children’s opportunities for success improve when they attend to 
both the spatial and numerical aspects of the structure of the pattern (Radford, 2014). In seeking to 
extend a pattern, children identify the position of pattern elements by attending to the spatial 
structure, and in order to quantify such elements they must attend to the relevant quantities within 
the pattern terms presented.  

In the Irish context, the Primary School Mathematics Curriculum (hereafter PSMC) includes an 
‘algebra’ strand, and there are content objectives prescribed for teachers to address in their teaching, 
from when children commence primary school at four or five years of age (Government of Ireland, 
1999). The curriculum does not, however, include the construction of general terms in any context, 
and beyond the first two reception years the patterns prescribed are strictly numerical in nature. 
During task-based group interviews, I asked children to construct general terms for each of three 
shape patterns. In this paper I will explore the tendency of children participating in my research to 
attend to the spatial and numerical aspects of pattern structures, as they worked towards the 
construction of general terms. Of the children who attended to both numerical and spatial elements, 
some children experienced success in applying their observations in order to construct general 



terms, whereas some children seemed to experience a challenge in translating their observations into 
meaningful understanding of the structure of the pattern. 

The construction of general terms 
Building upon the core aspects of algebraic thinking outlined by Kaput (2008) and mentioned 
above, Blanton, Brizuela & Stephens (2016) identified four key practices of algebraic thinking as: a) 
generalising, b) representing, c) justifying, and d) reasoning with generalisations, emphasising that 
these practices must focus upon structures and relationships. Blanton et al. (2016) also presented the 
following three content domains within which children may apply the key practices of algebraic 
thinking: a) generalised arithmetic, b) equations, and c) functional thinking. 

In particular, Blanton et al. (2015) highlighted the relevance of functional thinking to the algebraic 
thinking of young children, stressing the connection between functional thinking and the four key 
practices of algebraic thinking highlighted above. Blanton et al. (2015) emphasised the role of 
functional thinking in young children’s algebraic thinking by stating that functional thinking 
includes generalisations of co-varying quantities and their relationship; representations of these 
relationships, and reasoning with the relationships in order to predict functional behaviour. As 
functional thinking, and specifically shape patterning, is absent from the PSMC, it is therefore 
highly improbable that most children attending Irish primary schools will have engaged with 
activities designed to develop functional thinking. 

Rivera and Becker (2011) identified two approaches utilised by children in seeking to construct 
general terms for geometric patterns. Some children in Rivera and Becker’s longitudinal study 
focused solely, or primarily, on numerical aspects of the terms provided, and sought to use the 
numerical patterns observed in order to identify a commonality, extend the pattern and construct a 
general term. Such children the authors described as adopting a ‘numerical’ mode of generalising. In 
comparison, Rivera and Becker considered a child to have adopted a ‘figural’ approach if he/she 
used figural aspects of the pattern such as the shape of terms, or the position of elements, both 
within the term and relative to each other. A figural approach may include attention to numerical 
elements, but not in a manner that supersedes the child’s perception of the spatial aspects of the 
pattern structure. 

Along with observations of the structure of terms, children may observe various relationships within 
patterns which support their understanding. A ‘recursive’ strategy involves an examination of the 
mathematical relationship between consecutive terms in a sequence, and if using an ‘explicit’ 
strategy, a child identifies a rule for the relationship between a term and its position in the pattern 
(Lannin, 2005). Such observations work in tandem with children’s numerical or figural approaches, 
and in this paper I will refer to children’s explicit, or recursive thinking when relevant. 

Radford asserted that children’s constructions of generalities may be factual, contextual or 
symbolic. Factual generalisations involve instantiating a general structure to specific terms, whereby 
children do not express a generalisation as applicable to all terms, but apply an “operational 
scheme” which allows them to calculate a value for particular terms (p. 82). Many of the children 
involved in this research project applied factual generalisations when they described the near and far 
terms for the patterns, as in the example of Emily for Pattern 3 when she said “You’d need a 
hundred and twelve horizontal and then fifty-seven vertical”. Emily applied her understanding of the 



2n horizontal poles, and n vertical poles in order to calculate the number of poles for this far term. 
Equally she could apply this thinking to any term of this pattern, and could therefore be said to have 
factually generalised, even though there is no abstraction evident in her expression, and she is 
describing a specific term. 

Contextual generalisations, by comparison, involved the consideration of non-specific terms (ibid.). 
While contextual generalisations are not completely abstract, or general to all terms, they indicate a 
distancing from the specific, whereby children may make reference to “the next term” or to a 
generic term. As an example, Grace could be said to have constructed a contextual generalisation 
for Pattern 1 when she said “whichever number it is at the top it will just be one more than it, and at 
the bottom”. Symbolic generalisations involve the abstract expression of disembodied mathematical 
objects, wherein children express the algebraic concepts with no reference to the method of their 
calculation, or to any specific term. Throughout this paper I make use of ‘n’ to refer to a general 
term number, but all such expressions were generated by me, as representations of children’s verbal 
utterances, constructions and gestures. The children were not prompted to construct symbolic 
generalisations. 

Methodology 
In seeking to explore children’s constructions, I facilitated their engagement with the patterns in 
groups of four in a ‘task-based interview’ setting. Goldin (2000) emphasised that task-based 
interviews, involving individuals or groups, have become an essential tool within mathematics 
education research, as the goal of mathematics education has moved from the transmission of 
disconnected facts, to the development of children’s rich understanding and “internal constructions 
of mathematical meaning” (p. 524). In order to explore children’s complex understandings, and to 
observe their approaches to the solution of problems, it is necessary to adopt a research approach 
designed specifically for this purpose. In this way, it may be possible for educators and policy 
makers to assess whether the application of progressive approaches within classrooms are working 
to develop children’s mathematical understanding and robust problem-solving skills. 

Sixteen children (with a mean age of 9.6 years) participated in the task-based interviews, when they 
were presented with three patterns (see Figure 1). When presented with the patterns, the children 
were asked to describe what they observed, to extend the pattern to subsequent or previous terms, 
and to construct near and far terms, as factual generalisations. The children were provided with 
concrete materials, and asked to construct pattern terms during their discussions. Having considered 
far terms, I asked the children to describe “any term” in the pattern to facilitate their articulation of a 
contextual generalisation. At the commencement of each interview, and at regular intervals 
throughout, the children were encouraged to work collaboratively, by constructing terms together, 
by sharing their ideas, whether they agreed or disagreed, and by asking questions of each other. The 
children did not receive any instruction before participating in the interviews. 



 

Pattern 1 

  
Term 1  Term 2  Term 3   Term 4 

Pattern 2 

 
Term 1  Term 2  Term 3   Term 4 

Pattern 3 
 

4-panel fence  5-panel fence   6-panel fence 

Figure 1: The three patterns presented to children. 

Seeking to explore the reasons for children’s strategy choice, as well as the strategy chosen, the 
research approach I considered most appropriate was phenomenological, as a phenomenological 
approach to research seeks to explore a phenomenon where it occurs, and acknowledges the many 
factors which influence how the phenomenon plays out within the given setting (Creswell, 2013). In 
exploring the children’s thinking, I not only analysed the children’s actions, but I also sought to 
analyse the contributing factors that impacted on the strategies children employed. 

Goldin (2000) advises that “by analysing verbal and nonverbal behaviour or interactions, the 
researcher hopes to make inferences about the mathematical thinking, learning or problem-solving 
of the subjects” (p. 518, my emphasis). In seeking to explore children’s mathematical constructions, 
I was conscious throughout that my inferences from children’s comments were approximations of 
their true meaning. As Van Manen (1990) attests “a good phenomenological description is an 
adequate elucidation of some aspect of the lifeworld” (p. 27, my emphasis) and while I sought to 
unpick as best I could how and why children thought about the mathematical tasks, I posit that it is 
not possible to feel a sense of completion, or closure, in relation to the children’s thinking, but 
rather that interpretation is ongoing (Postelnicu & Postelnicu, 2013).  

In exploring the children’s verbal utterances, I coded comments as referring to figural or strictly 
numerical aspects of a pattern. Rivera and Becker (2011) state that adopting a figural approach is to 
“figurally apprehend and capture invariance in an algebraically useful manner (p. 356). When 
coding children’s statements, I identified a statement as indicating a figural approach if it included 
reference to the position of an object within a term, by using words such as ‘top’, ‘bottom’ or the 
deictic ‘there’ along with an associated gesture (Radford, 2006). An object in this context referred to 
a square, a diamond, a tile, a line, or any item which formed a constituent part of a term. Comments 
were deemed to indicate a numerical approach if no reference was made to the position of objects 
within a term. The term ‘growing’ was used regularly by children, and required some thought with 
regards to whether it indicated a figural approach. Typically, when mentioning growth children were 
referring to a sense of the terms’ shape growing in size, that is “selectively attend[ing] to aspects of 
sameness and difference among figural stages”, but I could not assume that this was always the case 



(Rivera & Becker, 2011, p. 356). Rather, it was necessary to attend to some term, or deictic within a 
child’s comment, and to seek to determine the referent, which would indicate whether the child was 
referring to the shape as growing, or the quantity of constituent elements. 

Findings and Discussion 
In seeking to explore the strategies used by children, and the reasons underpinning their strategy 
choice, I firstly considered an overview of each child’s approach across all three patterns. As the 
length of this paper does not allow for a complete explication of the approach of each child, Figure 
2 presents an overview of my interpretation of the children’s thinking, as it pertained to the balance 
between numerical and figural observations. In collating and analysing this data, I referred to the 
comments children made in the context of the exchanges they participated in. I also referred to field-
notes made during the interviews, photographs of the children’s constructions, and the children’s 
drawings and jottings which I had retained as artefacts of their thinking during the interviews. I had 
video recordings for three of the four interview groups, and audio recording for the fourth, as not all 
participants of this group had assented to video recording. 

Wholly numerical: all comments referred to numerical 
aspects of patterns. 

 

 

Alex 
Largely numerical, some comments focused on figural 

aspects, or observed figural aspects but not in a manner 
which seemed to support an understanding of the 

structure of the pattern. 

 

Daniel, Luigi 

Largely figural, but experienced confusion, or remained 
quiet during large parts of the interview. In some cases 

confusion was due to ‘loyalty’ to numerical aspects. 

Cherry, Orla, 
Danny, Fiona, Jay 

Largely figural, and comments indicated the use of 
numerical aspects to gain a strong understanding of a 

pattern’s structure. 

Ciaran, Grace, 
Emily, Arina, Jane, 
Wyatt, Christopher 

Lily Rose 

Exclusively figural: all comments referred to figural 
aspects of patterns. 

 

Figure 2: An overview of my interpretation of the children’s thinking, as it pertained to their focus on 
numerical and figural aspects of patterns 

As can be seen from Figure 2, rather than demonstrating a dichotomy between children who 
approached all patterns figurally and children who approached all patterns numerically, this small 
group of children (n=16) span a continuum from children who made comments focusing largely on 
numerical aspects, through children who commented on both numerical and figural aspects in 
meaningful ways, to children who referred largely to figural aspects. In considering the aspects 
children were attending to, I sought to distinguish between children’s observations which supported 



their thinking, and observations which they made and didn’t build upon or apply in order to 
construct a general term. Later in this paper I will further explore how two of the children applied 
their observations of figural aspects. 

While attending to figural aspects may have supported some children in constructing general terms, 
figural observations did not lead inevitably to generalisation. In order to compare children’s 
tendency to observe figural aspects with their success in constructing factual or contextual 
generalisations, I generated a scoring rubric for children’s progress towards the construction of a 
general term. A score of 0 indicated no progress, a correct extension of the pattern scored 1, some 
description of general terms scored 2, factual generalisation scored 3 and a contextual generalisation 
scored 4. I generated a total score for each child and calculated the mean score for each cluster of 
children identified in Figure 2 above. I found that the cluster of children identified in Figure 2 as 
making “largely figural” observations while applying numerical observations succeeded well, 
achieving a mean score of 8.6, where a score of 9 would equate to, for example, factual 
generalisation of all three patterns. In contrast the group of children who also made many figural 
generalisations, but expressed some confusion fared considerably less well, achieving a mean score 
of 3.2, where a score of 3 would equate to extending each pattern correctly, but not making any 
progress in describing a general term.  

To explore what other factors may have impacted on children’s progress, I chose to contrast the 
thinking of two children, Cherry and Arina, who worked together, and who both articulated figural 
observations, but made strikingly dissimilar progress. Arina achieved a score of 9 overall, while 
Cherry achieved a total score of 2. In this section I will discuss the girls’ observations of Pattern 3, a 
‘fences’ pattern presented in Figure 1 above. Arina had demonstrated strong figural thinking on two 
previous patterns, and succeeded in describing factual generalisations for both. When the children 
began their deliberations about the pattern discussed here, Arina remained very quiet, making few 
comments, but succeeded in constructing the 56th term using an explicit approach. She didn’t 
verbally articulate her thinking enough to confirm whether this factual generalisation was based 
upon a numerical or figural mode of generalising, but she could be seen on the video footage 
counting up in twos to quantify the horizontal posts, and adding on a number equivalent to one more 
than the term number. Figure 3 presents an illustration of how Arina may have been quantifying the 
number of posts for terms in this pattern.   

 
5th Term in the Pattern: n=5. 2n horizontal Posts and n+1 Vertical Posts 

Total number of posts: 2n + (n+1) = 3n+1 

Figure 3: A representation of Arina’s perceived structure of the Fences pattern. 

By comparison, Cherry’s verbal articulations of her thinking indicated that she observed within each 
fence one panel containing 4 posts, and every other panel containing three posts. When finding the 
number of posts needed for the nine-panel fence, she used a recursive approach, counting on six 
posts from the seven-panel fence she had constructed with match-sticks. I interpreted Cherry’s 
perception of this pattern as including figural aspects, as she referred regularly to ‘posts’ and 



grouped the posts into groups of three or four, as appropriate. However, Cherry’s approach to this 
pattern was dominated by a counting strategy, an analysis of which is beyond the scope of this 
paper. This counting strategy did not support Cherry in constructing far generalisations, and in 
seeking to construct a far generalisation, Cherry drew 56 panels, and began to count the number of 
posts needed. 

Conclusion 
Rivera and Becker (2011) suggest that when children only attend to numerical aspects of a pattern, 
they are grasping the commonality within the structure of the pattern at a superficial level. In 
analysing the comments made by the children in this research study, it may be seen that one cluster 
of children attended to figural elements but did not succeed in generalising. I would suggest 
therefore that some children who attend to figural aspects of the pattern, may persist with a limited 
and superficial understanding of the structure of the pattern, and that a figural perspective may not 
lead inevitably to successful construction of a general, or generic term. Other perceptions of the 
pattern structure seemed to be required in tandem with observations of both figural and numerical 
aspects. In the examples given here, Arina’s explicit approach supported her thinking, and in 
marrying an explicit approach with observations of both numerical and figural aspects, Arina 
grasped the structure of the pattern and successfully constructed a factual generalisation. In contrast 
Cherry demonstrated a consistent tendency to use counting as a strategy in seeking to quantify the 
number of elements of components of far terms of this pattern. While she could describe the figural 
structure of the pattern, her thinking seems to have been hindered by difficulties she encountered in 
seeking to conceptualise an expression which would allow her to calculate the number of posts 
without counting them. Even though this was the third pattern, and other children in her group had 
described explicit approaches during the interview, Cherry might not have made sense of the 
explicit thinking articulated by others. Equally, limitations in her multiplicative thinking may have 
contributed to this, and restrained her from exploring the explicit relationship between each term 
and its position in the pattern. Further research is merited into the interplay between the many 
aspects of patterns to which children may attend in seeking to grasp the structure. 
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This argumentative paper focuses on graphing logarithmic functions and presents some mathemati-
cal knowledge for teaching, employing vom Hofe’s construct of basic models (or ‘Grundvorstel-
lungen’) and Sfard’s distinction between operational and structural conceptions. On the assumption 
that difficulties students have with graphing might be a consequence of the standard interpretation 
of logarithms as inverse exponents, it claims that logarithmic functions should not be introduced 
structurally, as inverse exponential functions. Instead, several operational models of the logarith-
mic concept are proposed, and their explanatory power for graphing logarithmic functions is ex-
pounded. These models are intended to serve students as a meaningful basis for argumentation. 

Keywords: Logarithmic functions, basic models, operational—structural, knowledge for teaching. 

Introduction 
Logarithms as functions differ from logarithms as numbers (e.g. determining log21024) or opera-
tors (e.g. using logarithms to manipulate expressions and solve equations), especially when it comes 
to teaching and learning (Smith & Confrey, 1994). To make logarithms as numbers and operators 
meaningful and thus more accessible to learners, some subject matter knowledge for teaching has 
been developed by Weber (2016). This was achieved by combining the theoretical construct of basic 
models (or ‘Grundvorstellungen’, vom Hofe & Blum, 2016) with the construct of operationality and 
structurality (Sfard, 1991; 2008). The present paper focuses on the functional side of logarithms and 
its teaching, namely on the sketching of logarithmic graphs. After recalling various conceptualisa-
tions of logarithms and analysing some students’ difficulties in graphing logarithmic functions, four 
basic models are discussed with regard to their explanatory power for graphing logarithmic func-
tions. Because of the mathematical analogy between logarithms and division (cf. Weber, 2016), 
some arguments used here are analogous to those familiar from the teaching of division (Ball, 
Thames, & Phelps, 2008; Greer, 1992; vom Hofe & Blum, 2016).  

Background 
Various conceptualisations of the logarithmic concept 

As we are interested in different ways of viewing logarithms, it is worth taking a quick look at the 
history of mathematics. Several properties of logarithms have been discovered since their invention 
in the early 17th century (for details, see Weber, 2016): 

(P1) Napier and Bürgi conceptualised logarithms as numbers that count divisions. For example, 
log2 8  equals 3 because 8 has to be divided by 2 three times (to yield 1). In analogy to the 
standard division algorithm, this interpretation can be extended to a logarithm algorithm for 
the manual calculation of logarithms proceeding by repeated division down to 1 instead of re-



peated subtraction down to 0: one divides instead of subtracting, exponentiates by 10 instead 
of dividing by 10, trying to yield 1 instead of 0 (ibid., pp. 79–80). 

(P2) The conception found in current collections of formulas only became possible after Descartes 
had invented the symbol for powers, an. This notation enabled logarithms to be seen as parti-
cular exponents, a property that Euler used in his 1765 definition loga b = x :Û ax = b. More-
over, the left-hand equation can be read not only arithmetically (focusing on the number x ), 
but also functionally, taking “ log” as a function of the argument b . 

(P3) Another conceptualisation was provided by Cauchy in the 19th century. He proved that loga-
rithmic functions are, apart from a factor, the only continuous solutions F  of the functional 
equation F(x × y) = F(x)+F(y) ( x > 0 , y > 0). Specifying the logarithmic function in implicit 
form, this conceptualisation is a purely functional one. 

Each of the properties (P1) to (P3) highlights a particular aspect of logarithms. Because, from a ma-
thematical perspective, they are all equivalent, each property could serve as a definition of the con-
cept. From an epistemological perspective, however, their qualities are distinct, as discussed below. 

Logarithmic functions, their graphing and some of the difficulties students face 

Logarithmic functions are essential in calculus and for modelling processes, which is why they are 
taught at secondary level and in undergraduate courses. As with other types of functions, there are 
several challenges for students, such as when it comes to interpreting graphs verbally, or deciding 
whether or not a given graph represents a certain function (e.g. Leinhardt, Zaslavsky, & Stein, 1990; 
Markovits, Eylon, & Bruckheimer, 1986; 1989). For instance, one well-known student misconcep-
tions says that any function should be linear (e.g. Sfard, 2008, p. 21). An issue specific to logarith-
mic functions is the confusion of the logarithmic graph with the “combined graph” (Kastberg, 2002, 
p. 129), i.e. with the exponential and the logarithmic graph merged into a single image. A similar 
misconception reported is students viewing the graphs of y = 2x  and y = log2 x  as being “exactly 
the same” (Williams, 2011, p. 54). Misconceptions like these might be caused by the standard intro-
duction of logarithmic functions as inverse exponential functions. 

As space precludes other aspects, this paper deals with the graphing of logarithmic functions only, 
i.e. with manually sketching the graph of a function in a Cartesian plane, based on its logarithmic 
equation y = f (x). To analyse some of the difficulties that can arise here, the following steps (S1) to 
(S4) involved in graphing logarithmic functions are identified:  

(S1) Determining and calculating an appropriate number of pairs (table of values): This step in-
volves selecting a finite series of x -values that lie within the domain of the function, which in 
the case of logarithmic functions is a proper subset of the real numbers. In particular, one has 
to determine a first x -value, a last x -value, and the pattern the series follows (e.g., if there is 
a pattern, whether the difference or the ratio of two consecutive x -values is constant).  

(S2) Drawing the axes and scales, and plotting the corresponding points (“local construction,” 
Leinhardt et al., 1990, p. 13): The plotted points form the supporting points of the graph to be 
drawn. 



(S3)  Connecting the supporting points with a line segment (“prediction,” ibid., p. 13): This step 
involves making a conjecture based on the visual characteristics of the plotted points. It will 
therefore be referred to here as “graphical interpolation”. It includes decisions regarding the 
curvature and the degree of smoothness of the line (e.g. differentiable at the points). 

(S4) Extending the graph to the right and left of the line segment: This is a second prediction to 
make, based on a part of the graph, referred to here as “graphical extrapolation”: Does the 
graph straighten out to a straight line? If not, in what way does its curvature change? Is it 
bounded, does it have vertical asymptotes, intercepts with the axes, etc.?  

In each of these steps, the lack of a meaningful basis for argumentation can result in difficulties: 
Firstly, determining the domain in (S1) is a known issue (e.g. Markovits et al., 1986, 1989). As an 
illustration, Figure 1 shows two students’ graphs of the function y = log2(x)-3. Student A’s graph 
extrapolated to the left intersects the x -axis and thus exceeds the domain. Moreover, his x -values 
form an arithmetic progression, which is not optimal in terms of the corresponding y -values.1 

 

 

  

 

Figure 1: Students’ documents showing their tables of values for  and , 

together with the corresponding graphs (left side: student A, male; right side: student B, female)  

Secondly, graphs are sometimes thought of as isolated points (Leinhardt et al., 1990), or the sup-
porting points may be interpolated with a straight line (Markovits et al., 1989). Figure 1 shows that 
in their third step (S3), both students chose the graphical interpolations to be a more or less straight 
line, at least piecewise. And thirdly, in (S4), the graph is sometimes not extended beyond the range 
of the supporting points at all, or only by a little; or there may be an extrapolation to one side which 
suggests a progressive growth of the logarithmic function (cf. student B in Figure 1). 

                                                 
1 The two first- and second-year undergraduate students (18 and 19 years old) had attended a precalculus course held at 
a public university on the east coast of the USA in spring 2016. Logarithmic functions had been introduced in the tradi-
tional way, i.e. as inverse exponential functions. The documents shown in Figure 1 are from their final examination. The 
exact wording of the task was: “Consider the two functions f (x) = 2x+3  and g(x) = log2(x)-3: a) For each function, 

create a table of values, choosing your x -values carefully. b) Graph both functions on the same set of axes.”  



Students’ difficulties like these give rise to the following question: What mathematical knowledge 
for teaching logarithmic functions could endow learners with a meaningful basis for argumentation 
in order to potentially reduce their difficulties? 

Understanding functions and logarithms 

There are many ways to conceptualise what it means to understand the concept of a function in gen-
eral (e.g. Lauritzen, 2012; Markovits et al., 1986; Sfard, 2008), or the concept of logarithmic func-
tions in particular (Berezovski & Zazkis, 2006; Kastberg, 2002). Interestingly enough, graphs are 
rarely included in conceptualisations of how functions are understood; when they are, they are used 
to gauge whether it is possible to derive the equation of a certain function (Markovits et al., 1986). 

Graphing as a vital aspect of understanding functions 

Focusing on the opposite — graphing equations — here, Lauritzen’s (2012) conceptualisation of 
procedural and conceptual knowledge of functions is useful, because he attaches importance to the 
construction of graphs. To measure the ability to perform “graphic procedures” (ibid., pp. 52–53), 
he asks students to sketch the graph of a function, thus subsuming graphical interpolation (S3, see 
above) and extrapolation (S4). On the other hand, he considers calculating values (S1) a type of “al-
gebraic procedure” (ibid., pp. 54–55). In Lauritzen’s theoretical framework, graphic and algebraic 
procedures together operationalise the procedural knowledge of functions. In other words, graphing 
can be seen as a vital part of understanding functions. 

Operational and structural conceptions of functions, and the discourse on functions 

Sfard’s analysis of how mathematical notions are formed shows that conceiving mathematical no-
tions (1991) and talking about them (2008) can happen in two fundamentally different ways: as pro-
cesses (operationally), or as objects (structurally). For instance, learners tend to read equations of 
functions and tables of values operationally, whether as prescriptions of how to calculate values of 
the function, or as a covariation between two quantities (Sfard, 1991, p. 15). By contrast, they tend 
to perceive graphs of functions structurally, as “[…] infinitely many components of the function 
[…] combined into a smooth line, […] as an integrated whole […]” (ibid., p. 6). According to Sfard 
(1991), firstly, operational approaches are more accessible to learners when forming new concepts. 
Secondly, concept formation, for instance of functions, means subsuming the discourses on equa-
tions and graphs in a new discourse. For example, the concept “logarithmic function” is reified as 
soon as the discourse on logarithms as numbers and operators is merged with the discourse on loga-
rithmic graphs, as soon as they “become mere representations” (Sfard, 2008, p. 122). 

As such, the history of the logarithmic concept reminds us of the reification of rational numbers 
(Sfard, 1991, 2008): On one hand, because the conceptualisation (P1) of logarithms as numbers that 
count divisions can be transferred to a set of computational rules that make it possible to calculate 
logarithmic values step by step, it expresses an operational view (similar to the division 1÷ 2). This 
is why Sfard’s findings on functions could apply to logarithmic functions as well, as her analysis of 
understanding functions relates to polynomials only, and their operational character. On the other 
hand, a historically more recent conceptualisation such as inverse exponents (P2) expresses a struc-
tural view (similar to the fraction 1 2).  



Basic models for logarithms as numbers and operators 

To help students access and understand a certain mathematical concept, it is sometimes embedded 
in a context that is realistic or, if this is not possible, in a context that is at least familiar to the stu-
dents (cf. the Dutch “realistic mathematics education”, van den Heuvel-Panhuizen, 2003). In the 
German-speaking countries, basic models is a theoretical construct to capture what is meant by 
making concepts accessible, or understanding them (referred to as “Grundvorstellungen”, vom Hofe 
& Blum, 2016). Put simply, a basic model for a concept must have two characteristics: Firstly, it is 
an interpretation of that concept in a context in which students are likely to have more experience, 
and secondly, it has a certain explanatory power, that is, it is flexible enough to be applicable to dif-
ferent mathematical situations. For instance, when division is seen within the everyday context of 
fair-sharing, an equation such as 30 ÷1 2 = 60  is difficult to follow or perform. However, within the 
context of splitting-up or measuring, it can be explained as “1 2  fits into 30 sixty times”. Both basic 
models of division, fair-sharing and splitting-up, are thus indispensable for understanding division 
(referred to as “partitive” and “quotative division”, Greer, 1992). For Ball and colleagues, they con-
stitute the specialized content knowledge for teaching division (Ball et al., 2008, p. 400). 

For the teaching of logarithmic functions, no basic models are known thus far. For logarithms as 
numbers and operators, however, I have previously identified four models (for details, see Weber, 
2016): 

(BM1) Logarithms as multiplicative measuring: The logarithm of a number b  (to base a ) indicates 
how often the base a  fits into the number b  as a factor. This interpretation derives from the 
algorithm mentioned above (P1), or from the relation b / alogab =1. Example: log21024  can 
be simplified to 10  because 2 as a factor fits into 1024 ten times. As it generates result, mul-
tiplicative measuring emphasises the operational side of logarithms most strongly. 

(BM2) Logarithms as counting the number of digits: The (common) logarithm of a number b  finds 
the number of digits of b  needed to represent b  in positional notation, minus one. This in-
terpretation derives from the fact that the number of digits of any natural number n  (in dec-
imal notation) is equal to log10nêë úû+1. Example: The number 22000  has 603 digits when 

written out in decimal notation because log1022000 ≈ 602.06. In describing the effect it has 
on numbers and thus dealing with a specific application, this interpretation could be used to 
support the operational explanation of logarithms in the case of numbers. 

(BM3) Logarithms as decreasing the hierarchy level: The logarithm of an expression reduces third-
level operations (powers, roots) to second-level operations (multiplications, divisions), and it 
reduces second-level operations to first-level operations (additions, subtractions). This inter-
pretation derives from property (P3). Example: The expression log cd  can be expanded to 
1

2 logc + logd( ) because the taking of square roots, as a third-level operation, becomes di-

viding by two, and multiplication of the variables becomes addition of their logarithms. In 
describing the effect it has on expressions and thus dealing with another specific application, 
this interpretation could support the operational explanation of logarithms for expressions. 

(BM4)  Logarithms as inverse exponents: The logarithm of a number (or expression) to base a  is 
the exponent by which the base a  must be raised to yield the number (or expression). This 



derives from property (P2), and is useful for solving exponential equations. Example: 40  as 
a power of 2  is approximately 25.32 because log240 ≈ 5.32. Because this interpretation re-
lates logarithms to another object (exponents), it reflects the structural view of experts. 

In the next section, this collection of operational and structural basic models will be shown to have 
the potential to serve as a basis for argumentation for the graphing of logarithmic functions as well. 

Basic models for logarithmic functions and their explanatory power 
From a mathematical standpoint, every property of logarithmic graphs can be derived from expo-
nential graphs, using (BM4) as a basis for argumentation. From an epistemological viewpoint, how-
ever, conceiving logarithmic functions as inverse exponential functions reflects the structural view 
of experts who have reified their experiences, and not the view of learners. Perhaps, as Sfard (1991) 
and others suggest, operational conceptions should instead precede structural ones as consecutive 
steps to be passed through when teaching a new concept such as logarithmic functions? As basic 
models (BM1) to (BM3) do not replace logarithmic functions with another class of functions, they 
could be more appropriate for learners than model (BM4). Instead, they inform students about what 
logarithms “do” and what logarithms “are good for”, interpreting them within contexts in which 
learners are likely to have some experience (counting, long division, having an effect on …, etc.). 

In what respect, then, could the three basic models described offer students a meaningful basis for 
argumentation when they are introduced to graphing logarithmic functions? And in what way could 
they potentially reduce the difficulties described above? Here are some arguments: 

1. Operational conceptualisation: The logarithm algorithm, which stems from property (P1), “loga-
rithms are numbers that count divisions”, and is captured by basic model (BM1), can allow stu-
dents to conceive a logarithmic equation such as f (x) = log2(x)-3 operationally, much like a 
polynomial one: “First, calculate how often the base 2 fits into x  by repeated division, then sub-
tract 3.”  

2. Domain of the function: In order to graph a logarithmic function, it is essential to determine its 
domain (cf. (S1) and Figure 1). With reference to the model “logarithms as multiplicative meas-
uring” (BM1), values such as log(0)  and log2(-8) can be recognized as incalculable because 
there are no reasonable answers to the corresponding questions “How many times does 10 as a 
factor fit into 0?” and “How many times does 2 as a factor fit into –8?”; neither 0 nor –8 can be 
converted to 1 through repeated division. This is why logarithms of 0 and of negative values can-
not be defined. 

3. Pattern of the finite series of x -values: Another choice to be made for graphing a logarithmic 
function easily is the pattern that the series of x -values follows (S1). In view of the basic model 
“logarithms as decreasing the hierarchy level” (BM3), the x -values should follow a geometric 
series, with the ratio of two consecutive x -values equalling the base. The logarithm would then 
transform the geometric series into an arithmetic one, resulting in equidistant y -values. 

4. Growth of the graph: As we have seen above, both graphical interpolation and graphical extrapo-
lation can cause many problems (cf. (S3), (S4)). Referring to the basic model “logarithms as 
counting the number of digits” (BM2), the growth of logarithms can be recognized as non-
proportional: In general, doubling a number does not double its number of digits. Furthermore, it 



is strictly increasing and unbounded above because this is how the number of digits behaves. 
Thus neither the interpolated nor the extrapolated graph can be a straight line, but must increase 
monotonically, growing degressively. 

Discussion 
This work builds on my earlier paper about the basic models for logarithms as numbers and opera-
tors (Weber, 2016). There, the supposition was discussed that the standard textbook explanation 
loga b = x :Û ax = b could be too compact or “dense” for many learners to serve as a meaningful 
basis of argumentation, which may be why dealing with logarithms often turns into mere manipula-
tion of formal symbols, causing students’ difficulties (ibid., pp. 85–86). If this applies to logarithmic 
functions as well, an alternative, broader way of introducing and teaching logarithms is required. 
For this reason, this paper discusses some content knowledge for the teaching of logarithmic func-
tions. The guiding theoretical construct is that of basic models (vom Hofe & Blum, 2016), com-
bined with the construct of operationality and structurality (Sfard, 1991, 2008). The four basic mod-
els, developed previously for logarithms as numbers and operators (Weber, 2016), are shown here to 
have some explanatory power for logarithmic functions and their graphing, that is, that they could 
potentially help to make logarithms meaningful and reduce some common difficulties that students 
encounter. 

This paper lays some theoretical foundations for future research. To what extent an approach with 
multiple basic models can facilitate more meaningful teaching and understanding in the actual class-
room will have to be investigated carefully. There has been a first encouraging episode from my 
own teaching, where a student who in general struggles with mathematics realized why logarithmic 
functions cannot be proportional: Making use of basic model (BM2), not the standard interpretation 
(BM4), she argued precisely as in point 4 in the previous section. A teaching experiment is therefore 
planned in the near future to study the affordances and limitations of the basic models, exploring the 
discourse of students who are taught not just one but four interpretations of the logarithmic concept. 
In analogy to the teaching and learning of division with multiple models, a crucial point will be the 
students’ shift from the multiple basic models proposed here to the object of logarithmic functions. 
Or, to cite Freudenthal (1975, as quoted in van den Heuvel-Panhuizen, 2003, p. 15, italics in origi-
nal): “Models of something are after-images of a piece of given reality; models for something are 
pre-images for a piece of to-be-created reality”.  
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Introduction 
The problem of taking a data set and separating it into subgroups, where the members of each 
subgroup are more similar to each other than they are to members outside the subgroup, has been 
extensively studied in science and mathematics education research. Student responses to written 
questions and multiple-choice tests have been characterised and studied using several qualitative 
and/or quantitative analysis methods. However, there are inherent difficulties in the categorisation 
of student responses in the case of open-ended questionnaires. Very often, researcher bias means 
that the categories picked out tend to find the groups of students that the researcher is seeking out. 
In our contribution, we discuss an example of application of hierarchical and non-hierarchical 
analysis method, to interpret the answers given by 118 Tenth Grade students in Palermo (Italy), to 
six open-ended questions about algebraic thinking. We show that the parallel use of the two 
quantitative analyses allows us to interpret in deep way the reasoning of students solving different 
mathematical problems using Algebra. These clustering methods also allow us to highlight  
different students groups, that can be recognised and characterised by common traits in their 
answers, without any prior knowledge on the part of the researcher. 

Methodology 
In recent years, some papers have tried to develop detailed models of the reasoning competences of 
the student populations tested, or to subdivide a sample of students into intellectually similar 
subgroups, by using quantitative or qualitative analysis methods. (Everitt, Landau, Leese & Stahl, 
2011; Prediger, Bikner-Ahsbahs & Arzarello, 2008) It is worth noting that research papers using 
quantitative analysis methods to study student responses to open-ended questionnaire can be found 
in Science education; not many research work can be trace in Mathematics education (Di Paola, 
Bataglia & Fazio, 2016), especially on the application of clustering analysis. In this paper we focus 
on the application of hierarchical and non-hierarchical clustering methods referred to dendrograms 
representation and k-means algorithm (Everitt, Landau, Leese & Stahl, 2011), trying to make sense 
to answers given by 118 Tenth Grade Italian students to six open-ended questions on algebraic 
thinking. The questionnaire was administered to the students at the beginning of the school year, 
before any discussion about Algebra had taken place. They answered in 45 minutes. 



In particular we discuss the results on the study of typical students’ behaviour in tackling the 
algebraic resolution of word problems and, at the same time, at understanding how the student 
semantically and syntactically control questions containing symbolic algebraic expressions (Radford 
& Puig, 2007). Our decision to refer to word problems, according to the PISA test, can allow us to 
study student literacy in using algebra (Bohlmann, Straehler-Pohl & Gellert, 2014) and in the 
transition from arithmetic to the modelling of problems expressed in a not-symbolic language, 
called “natural language (NL)” (Prediger, Bikner-Ahsbahs & Arzarello, 2008). K-means and 
dendrograms approach allowed us to partition and characterize our student sample, without making 
any a-priori assumptions and giving interesting output about student’s behaviour.  

Clustering results 
The k-means method (showed in Figure 1) allowed us to simply group and 
characterize the common students traits related to their solution strategies of 
the open-ended questions about algebraic thinking (procedure choices, 
mistakes, failings etc.). This gives us the opportunity to safely partition 
students into three groups: these are characterized by centroids Ci (called Arithmo, Pre Al-gabr and 
l-gabr) that represent the answering strategies given with maximum frequency by the students who 

are part of the cluster. The Hierarchical clustering method (showed in 
Figure 2), obtained using the Weighted Average linkage, identified five 
groups of students (called Arithmo, Pre Al-gabr 1, Pre Al-gabr 2, Pre 
Al-gabr 3 and Al-gabr) allowing us to better highlight their difficulties 
in the answering strategies related to the transition between the NL 
(typical of word problem) and the symbolic one. The results we found 

are largely coherent with the ones already reported in the literature obtained by means of qualitative 
methods. For this reason, we can consider the use of both hierarchical and non-hierarchical 
clustering a valid tool to complement the use of qualitative analysis to study a large number of 
students with respect to the way they give answer to the questionnaire. 
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This paper presents a model for conceptualizing the core of the function concept, which is made up 
of those facets that are equally important for all types of functions and common to all representa-
tions. The so-called facet model enables the identification of potential obstacles and a detailed de-
scription of students’ learning processes when connecting representations (e.g. verbal and symbolic 
representations when solving word problems). In total, 19 design experiments with overall 96 
learners were conducted and qualitatively analyzed. 

Keywords: Function understanding, concept formation, functions, word problems, lower secondary 
school. 

Theoretical background 
Conceptualizing function understanding 

Functions are regarded as an important learning content in school. Consequently, many theoretical 
and empirical studies have investigated the teaching and learning of functions since the beginning 
of the 20th century, working with very different conceptualizations of “function understanding” 
(Niss, 2014). For examples, cf. Oehrtman, Carlson, & Thompson (2008); Leinhardt, Zaslavsky, & 
Stein (1990); Vinner & Dreyfus (1989); common in German didactics is the concept of basic mental 
models (GVs), cf. vom Hofe (2016). Niss (2014) emphasizes the complexity of the function concept 
and the necessity of “intentional and focused work on designing rich and multifaceted learning en-
vironments” (Niss, 2014, p. 240). Most studies share the overarching claim that students should 
really understand functions, even if this aim is interpreted in different ways, e.g. being able to iden-
tify a function (Vinner & Dreyfus, 1989), taking a process view of functions (Oehrtman et al., 
2008), and more. Thereby, some of the conceptualizations are more specific than others with regard 
to their incorporated aspects of single representations or types of function. One example is the role 
of slope, which is only important for linear functions. This paper now presents a conceptualization 
of the core of the function concept as a dependence relation that is independent of (1) specific as-
pects of representations, (2) types of functions, and (3) different perspectives which all still can and 
should be taken. The facets making up this core were reconstructed empirically and are summarized 
in Figure 1. 

The different function types (linear, square, exponential …) are introduced one after another within 
the German syllabus for example. Hence, when students deal with square functions it is not surpris-
ing that they tend to incongruously adopt specific attributes of linearity to square functions (e.g., 
Leinhardt et al., 1990). One reason might be that square functions are presented as “new” learning 
content without making explicit commonalities (especially the facets of the core of the function 
concept) and differences (e.g., the relevance and usability of constants for interpreting functional 
equations) to linear functions. This problem also occurs when connecting representations. The aim 
of this study is to develop teaching-learning material that makes these common core facets explicit. 



Connecting representations – learning medium and learning content 

An important activity when dealing with a functional relationship is connecting its representations. 
The notion “connecting representations” resonates with the activity Duval (2006) describes as the 
conversion of semiotic registers. Studies consider this activity in two different roles: On the one 
hand, connecting representations is regarded as useful medium for concept formation processes (cf. 
Duval, 2006). On the other hand, studies emphasize that connecting representations proves to be 
demanding for learners (Niss, 2014; Leinhardt et al., 1990). Therefore, connecting representations is 
not necessarily a resource one can build on when designing teaching-learning material, because it 
already requires some kind of conceptual understanding itself. Hence, before using it as a resource 
for higher concept formation processes the students’ understanding of the core facets needs to be 
supported. Many studies focus on the symbolic, numerical and graphic representations (e.g. Mos-
chkovich, 1998; Duval 2006). In this paper, the verbal representation will be used to explicate the 
common core facets. Dealing with functions means dealing with their representations (e.g. Duval, 
2006; Leinhardt et al, 1990; Swan, 1985). However, the representations can be considered under 
different lenses or perspectives. Some perspectives are more obvious in one representation than in 
the other. Niss explains this fact as follows: 

One important issue that arises in this context is the fact that functions can be given several dif-
ferent representations (…), each of which captures certain, but usually not all, aspects of the 
concept. This may obscure the underlying commonality – the core – of the concept across its dif-
ferent representations, especially as translating from one representation to another may imply 
loss of information. (Niss, 2014, p. 240) 

Considering the activity of connecting representations as a learning content raises the question of 
which detailed aspects form the core of the function concept that students have to understand. The 
core of the function concept shall include those aspects that are common in all representations and 
equal for all types of functions. This requires an adequate conceptualization to describe this core 
explicitly and in a differentiated way. 

Facet model 
Conceptualizing the core of the function concept 

This study approaches the question which 
facets form the core of the function con-
cept by using the construct of „comprehen-
sion elements“ (Drollinger-Vetter, 2011), 
which is based on cognitive psychological 
theory. Comprehension elements (further 
called: facets, indicated by ||…|| in the text 
and designated in the boxes of the model) 
of a concept are defined as central mental 
schemes, which are mirrored differently in 
different representations. This theory 
draws on Aebli’s (1981) conception of under-
standing as a network of facets that are com-

Figure 1: Facet model 



pacted into denser concepts: concept formation processes require the acquisition of single facets of 
the concept and then the relation between the facets. The most compact facets are in the top region 
of the model while the more unfolded ones are located in the bottom region. Processes of under-
standing are initiated through processes of unfolding and compacting (Drollinger-Vetter, 2011). 
Depending on the situation, the edges of the model can be interpreted either as a process of com-
pacting or as one of unfolding.  

This construct is now adopted for the function concept. The facets have been reconstructed in the 
first design experiment cycle. When considering the facets common to linear and square functions 
for example, one can identify that first it is important to know that there are two ||involved quanti-
ties||. General facets like this are shown in the middle column of the model, the concrete manifesta-
tions in the situation are shown in the outer paths. Having identified the concrete ||quantity I|| and 
||quantity II||, students have to realize that these ||quantities vary|| and that the ||direction of depend-
ency|| matters. These are the facets necessary to finally identify the two quantities as ||independent 
variable|| and ||dependent variable|| in the concrete situation. Considering the ||independent variable|| 
and ||dependent variable|| by describing the whole ||functional dependency|| is the most compact 
way to talk about the core of the function concept. But when dealing with word problems it is 
equally important to be able to unfold compacted facets. Other “facets” as the ||meaning of the 
slope|| for example, are only helpful when dealing with linear functions. When dealing with square 
functions, the constants can only be interpreted in the graphic representation. Accordingly, using the 
facet model allows the following conceptualization of understanding the core of the function con-
cept: 

 “Conceptual understanding of [the core of] functional relationships can be defined as the ability 
to adopt different perspectives in different [representations] and to coordinate them by flexibly 
and adequately addressing the facets from [here: Figure 1]. The adequate addressing comprises 
flexible compacting and unfolding of conceptual facets, thus moving upwards and downwards in 
the facet model.” (Prediger & Zindel, in press, p.9) 

This model has proven successful to identify and describe potential obstacles (for examples cf. Pre-
diger & Zindel, submitted). Of course, learners might address other additional facets than the nor-
matively expected ones. The model is sensitive for these individual facets which can also be noticed 
and combined with other facets.  

Research questions 

Connecting representations is not necessarily a resource that can be used to support conceptual un-
derstanding, because it already requires some kind of conceptual understanding itself, namely flexi-
bly unfolding and compacting the associated facets (Figure 1). This is a starting point to focus on 
the question of how to support conceptual understanding. In the overarching study teaching-
learning material has been developed and empirically tested. In this paper the focus is on the fol-
lowing research question: 

How can the facet model be used to describe and visualize learning processes (especially processes 
of connecting representations)? 



Design 

The methodology of this project is Topic-specific didactical Design Research (Prediger & Zwe-
tzschler, 2013), which relies on an iterative interaction between designing teaching-learning materi-
al, conducting design experiments and analyzing the processes. In the overarching project, three 
design experiment cycles in laboratory setting and a fourth design experiment cycle in classroom 
setting were conducted. In total 39 learners participated in 16 design experiments in laboratory set-
ting and further 57 learners participated in 3 design experiments in classroom setting (usually grade 
9-10). The overall 42 sessions were videotaped (1890 minutes), partly transcribed and qualitatively 
analyzed. 

Facet model as methodical framework to describe learning processes 
This facet model, which has just been introduced, can be used now as a starting point for supporting 
conceptual understanding by explicitly addressing its facets. The teaching-learning material intends 
to give the opportunity to get to know, address and combine facets from the facet model. The fol-
lowing part starts dealing with the design element of varying phrases and proceeds with a presenta-
tion of the empirical insights regarding its effects. 

Varying phrases – a design element 

Due to limitations in length of this paper Figure 2 shows only an excerpt of activities from the 
learning arrangement, realizing the design principle of connecting representations and including the 
systematic variation of phrases. 

 
Figure 2: Excerpt from the learning arrangement (Descriptions A-D literally translated from German) 

From a normative perspective, different facets should be addressed by dealing with varied phrases. 
To achieve this, all the phrases vary in at least one of the facets. No sequence of phrases to be con-
sidered is given to the students.  



Empirical insights: Describing learning processes by using the facet model 

In order to connect representations it is necessary to address the same facets in both representations 
adequately. Both representations (each visualized by one model) refer to the same functional rela-
tionship (here: verbal representations on the left, symbolic representation of the DreamStream offer 
on the right). Each model visualizes the facets that are addressed in the respective representation. 
Adequately addressed facets or connections are framed by green lines, inadequately addressed fac-
ets or connections by red dashed lines. Depending on the situation the lines can be interpreted as 
process of either unfolding or compacting.  

A brief insight into the case study of Tatjana (15) and Alexandra (14) illustrates how dealing with 
varied phrases makes students aware of the facets from the model. Tatjana starts with description D. 

100 Tatjana [3s] Well, the first one definitely fits [points to “With the equation, I can - 
in dependency of the number of bought films - calculate the price in one 
month”]. 

101 Alexandra Yes, I think so, too. [laughs] 
102 Tatjana [laughs] [3s] Because actually it doesn’t matter how many films one takes. 

One still pays the same per month anyway. 
First Tatjana (Figure 3) mis-
judges the matching of de-
scription D and explains it in 
102 with the argument that it 
does not matter how many 
films one buys. She does not 
consider the two quantities 
in the phrase as ||varying 
quantities|| that are connect-
ed by a dependence relation. 
Instead she focuses on the 
two ||involved quantities|| 
and creates a connection 
between them by herself. This connection corresponds neither to the phrase nor to the functional 
equation. She identifies ||quantity I|| and ||quantity II|| in the equation, but she does not realize that 
these quantities and the ones in the phrase are not the same. Following this thought, they pay atten-
tion to the next phrase. 

104 Alexandra [12s] I think the second one is right, too [points to “With the equation, I can 
- in dependency of the number of months - calculate the total price”]. Be-
cause with the number of months, this would be x indeed – hum – calculate 
the total price, how much (…) 

105 Teacher Mhm.  
106 Tatjana [11s] This is the same like this [points to “The equation indicates the total 

price in dependency of the number of months”], right? 

Figure 3 Tatjana (100 and 102) 



107 Alexandra Yes.  
Alexandra (Figure 4) cor-
rectly explains in 104 the 
matching of description B 
by identifying the same 
||independent variable|| in 
the phrase and in the func-
tional equation. Moreover, 
she addresses the 
||functional dependency|| by 
identifying that one can cal-
culate the total price 
(||dependent variable||) with the identified ||independent variable|| (number of months). Afterwards, 
Tatjana determines that the descriptions B and A mean the same and only vary linguistically (106). 

Finally in this scene the tutor asks Alexandra’s opinion to description D.  

141 Alexandra Yes. I think so, too, that this is right, because one – x is indeed – are indeed 
the films and thereby one can just – no these are the months! So I don’t 
think that this is right. I think this is wrong. 

In 141 Alexandra (Figure 5) 
reasserts her approval to 
Tatjana’s judgment in 100 
that the phrase fits to the 
DreamStream offer. She 
starts to explain this deci-
sion by reasoning about the 
meaning of the ||independent 
variable|| in the functional 
equation and falters. Begin-

ning with interpreting the 
phrase she identifies that the 
||independent variable|| would be the number of bought films. But then she correctly states that this 
fact does not apply to the functional equation because the ||independent variable|| is the number of 
months. She concludes that the phrase does not fit after all, which suffices for a non-match.  

145 Teacher [laughing] If you like to say something about this, here you are.  
146 Tatjana Yes, now I think, this is wrong. 
147 Teacher Why? 
148 Tatjana Well, because it is put on the number of bought films there. 

Then Tatjana revises her first judgement, too. In 148 she explains this fact by referring to the differ-
ent ||independent variables||. 

Summing up, contrasting the varied phrases initiated the addressing of different facets. The learning 
process is visible in the increased precision and explicitness in students’ utterances. In the begin-

Figure 4 Alexandra (104) 

Figure 5 Alexandra (141) and Tatjana (146 and 148) 



ning, Tatjana’s utterance was not precise enough to match the phrase to the equation adequately 
because she could not identify the differences in the functional relationships described. This fact 
becomes visible in the model through the non-adequately addressed facets (Figure 3). One reason 
may be that she could not interpret the verbal representation. In contrast, Alexandra is able to ad-
dress the facets of the core adequately and precisely. This fact becomes visible in the model due to 
the same adequately addressed facets in both representations (Figure 4). When Alexandra deals with 
the first phrase, she first approves Tatjana’s assessment. However, in her explanation she struggles 
and realizes that the ||involved quantities|| are not the same in the verbal and symbolic representa-
tion. She adequately concludes that these representations do not belong together. At the end of the 
scene, Tatjana revises her first judgement (Figure 5). Thereby, she focuses more on the meaning of 
the given phrase than on the situation itself.  

Of course, this excerpt is only an illustrating example of such a learning process. In other cases the 
developments look very different. One reason for this fact is that the sequence and number of con-
sidered phrases varied due to the fact it was not preset in the material, but adopted for each process 
by the teacher.  Overall, the empirical analysis of students’ learning processes indicates the analytic 
power of the facet model and that dealing with varied phrases can support the process of addressing 
facets as well as unfolding and compacting them. 

Conclusion 
This paper presented a conceptualization of function understanding focusing on the core of the 
function concept, which is based on cognitive psychological theories. It provides not only the iden-
tification of potential obstacles but also a normative framework for supporting function understand-
ing. These facets of the core of the function concept are not specific to single representations or 
function types. Nevertheless, it is of course important to learn specific knowledge about representa-
tions and different types of functions. However, the core facets should be emphasized whenever 
students get to know new aspects of functions and should be addressed consistently and repeatedly 
in order to make students aware of the commonalities of every functional relationship.  

Dealing with varied phrases stimulates addressing the core facets as well as unfolding and compact-
ing them. This has been illustrated in the empirical insights. The facet model enables both, visualiz-
ing and describing processes of connecting representations by contrasting the facets that are ad-
dressed in each representation. An adequate connection of representations requires adequately ad-
dressing the same (core) facets in both representations. However, using the model not only enables 
describing these normatively prescribed core facets but it is also sensitive for individually activated 
facets. 

Within these brief empirical insights, the model enabled the investigation of the connection of ver-
bal and symbolic representations of functional relationships when dealing with word problems. Pre-
sumably this is compatible to other connections of representations. Furthermore, the conceptualiza-
tion presented here focuses on the core facets of the function concept. To what extent this conceptu-
alization can be combined with others in order to form a broader understanding of the function con-
cept ought to be subject of further analysis. 
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Introduction 
In February 2016, the Otto-Kühne Schule in Bonn, Germany, established an International 
Preparation Class (IVK, Internationale Vorbereitungsklasse) for 20 foreign pupils from different 
conflict and war zones all over the world. In this class, they learn the German language as foreign 
language adequate to their skill level (12 hours per week) and other subjects such as mathematics (5 
hours per week). Their educational background is very heterogenous and therefore their mathematic 
class is usually split into at least three different groups covering topics from multiplication tables to 
quadratic functions. This project focuses on learning material developed for one group in their first 
lessons about algebraic expressions and their manipulation. The above-mentioned restrictions and 
conditions led to the necessity to develop a special approach1 with few lingual prerequisites and the 
potential to support the development of mathematical language. 

Theoretical background 
According to an analysis of German textbooks by Prediger & Krägeloh (2015, p. 91), variables are 
usually introduced by lingual means. In particular, for the generalising aspect (Arcavi et al., 2016), it 
is referred to the everyday language. Taking important literature on structure sense resp. structuring 
(Hoch & Dreyfus, 2004, 2006; Rüede, 2012) into account, the learning material was constructed 
with a twofold goal: on the one hand the material should be easy accessible (in a linguistic way) in 
which the students can broaden their notion of variable while on the other hand the material may 
foster the activity of structuring on a beginner level. For this, dot patterns (or: figurative numbers) 
were chosen. By a figurative number, we mean a sequence of pictures consisting of dots (Figure 1) 
and the related number sequence. 

 

Figure 1: The “filling glass” with the sequence 6, 10, 14, … 

                                                 
1 For more details on the current status of the project, we refer to: http://www.math.uni-bonn.de/people/sauerwei/ 



Actual setting 
The class started with a discussion of the dot pattern in Figure 2. The leading questions were: How 
many dots are in each picture? Can you continue the pattern? How many dots are in the 4th picture? 
How many dots are in the 100th picture? How many dots are in arbitrary picture? 

 

Figure 2: Adding three dots with the sequence 3, 6, 9, … 

This very basic introductory example could catch the attention of every pupil. Even pupils with a 
usually low motivation for mathematics participated actively. All the questions were answered 
promptly and correctly and the only reasonable formula was found (3x). At this point, we did not 
introduce the formula (x+x+x) for adding the rows since we did not want to lead the pupils in any 
direction. From there on, the class worked individually or in smaller groups with the same leading 
questions on other dot patterns. It was stressed by the teacher that there can be many correct 
expressions for each pattern, but that each expression requires its own justification. Moreover, it 
was agreed on that two expressions are only equal if they yield the same result for every number 
plugged in. Hence, the only chance to verify equality was via the dot patterns and their structure. 
Thus, the dot patterns became a tool for argumentation. 

This project is ongoing and more cycles of implementation in different regular and international 
classes are in preparation. 
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Elementary algebra and other developmental courses have consistently been shown to be barriers to 
student degree progress and completion in the United States.  Significant research has been done in 
the primary and secondary context, but little research has been conducted with students enrolled in 
elementary algebra courses in the tertiary context, despite the fact that there is significant evidence to 
suggest that mathematics learning is likely somewhat different in this context (Mesa, Wladis, & 
Watkins, 2014).   

Teacher beliefs and expertise 
There is significant research suggesting that teacher beliefs are often strongly related to the teaching 
practices that teachers implement in the classroom, and therefore are also related to student beliefs 
and learning experiences (see e.g. Fang, 1996; Maggioni & Parkinson, 2008).    In addition, teacher 
expertise also has the potential to benefit the research community by contributing important 
information about what teachers have learned while teaching.   

Theoretical framework 
This study uses Vygotsky’s (1986) theory of concept formation: learners begin to use algebraic 

symbols, graphs and other representations before they have “full” understanding of them, and through 
this experimentation and communication with “more knowledgeable” others, they internalize more 
formal and correct meanings for the objects that the representations symbolize.     

Methodology and results 
Five elementary algebra instructors collaborated on this action research project, some of whom 

are also educational researchers.  This included faculty with doctorates in both mathematics and 
mathematics education, with varied backgrounds and different teaching styles.  This study used the 
Action Research Spiral Framework (Kemmis & Wilkinson, 1998) to guide the process of 
collaborative exploration into student thinking about elementary algebra concepts.  This framework 
outlines a cyclical practice in which practitioners go through the following steps repeatedly: 1) plan; 
2) act and observe; 3) reflect; 4) revised plan, etc…  In a cyclical process of experimentation, 
instructors developed assignments and assessment questions intended to assess student 



understandings on the framework (see Table 1) that they had initially developed through discussion 
based on prior teaching experience.  An example of one type of assessment question is below: 

Assume that 𝑎 ≠ 0.  Dale simplifies the expression 𝑎3𝑎−2 and gets the correct expression 𝑎.  Which of the
following must be true?  There may be more than one correct answer—select ALL that are true. 

a. 𝑎3𝑎−2 = 𝑎
b. If Dale lets 𝑎 = 10 in both the expressions 𝑎3𝑎−2 and 𝑎, he will get two different answers.
c. Dale can substitute 𝑎 for 𝑎3𝑎−2 anywhere it appears in an algebraic expression.
d. If Dale lets 𝑎 = 20 in both expressions, he will get the same value for each expression.
e. Dale needs to know the value of 𝑎 before he can say whether 𝑎3𝑎−2 and 𝑎 are equal.

This question was designed to test the extent to which students understand 4.a. in the framework.  
Based on student responses, instructors probed students about their understanding of specific 
components of item 4.a. in order to better understand what those are and how they relate to one 
another.  Based on this process, the framework was revised: The first draft contained only item 
4.a.ii.1; after repeated cycles the other items under 4.a. were added and structured hierarchically.

1. Algebraic Symbolism
2. Algebraic Structure
3. Properties/Generalizing Arithmetic Operations
4. Equality/Equivalence: Understands equality/equivalence.   The student understands:

a. what it means for two expressions to be equal
i. that two expressions are equal iff they are equal for all possible variable values

ii. that if two expressions are equal, one may be substituted for the other in any context
1. that rewriting expressions is a process where an expression is replaced by an equivalent one

b. what it means for two equations to be equivalent
5. Equations as Relationships between Variables
6. Thinking Graphically
Note: Because of space constraints, not all details of the framework could be reported here

Table 1. Elementary Algebra Concept Framework, with details for one sample sub-concept 
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Introduction 
Around 25 researchers of various geographical origins (from across Europe and also from North 
America, the Middle East, East Asia) participated in Working Group 4 on Geometry Education. 
Some 20 contributions (15 papers and 5 posters) informed five discussion sessions and two further 
sessions dedicated to debates and the preparation of a final report that was presented at the end of 
the conference. Each discussion session was structured around a selection of contributions, each of 
which was briefly introduced and followed a reaction from a pre-arranged reactor to inform the 
collective discussion. 

The name of this group was previously Geometrical Thinking, and this was modified for this 
CERME to emphasize the focus on the teaching and learning of geometry. During the previous 
CERME, four competencies were used to describe geometrical thinking: reasoning, figural, 
operational and figural. The group took these dimensions as a background that was very helpful to 
understand each other and to compare our approaches to the issue of what is at stake in the teaching 
and learning of geometry. 

This choice was all the more crucial given that many approaches and issues were discussed during 
the group sessions. Three main issues were addressed during the working group: 

• The role of material activity in the construction of mathematical concepts, including using 
instruments, manipulation, investigation, modelling… 

• Visualization and spatial skills; 

• Language, proof and argumentation. 

In comparison to the previous CERME, this time psychological points of view, among others, were 
represented. This raised new questions, often with very different theoretical and methodological 
backgrounds. As rich as the discussions were, mutual understanding was a great issue. 
Consequently, we did not focus, during the discussions, especially on one single topic at a given 
school level. In each of the three issues aforementioned, we tried to identify the interest of various 
theoretical or methodological approaches, of different cultural or institutional contexts, and the 
ruptures or continuity during the education process. 

It is important to note that almost all the papers addressed ‘classical’ issues in this WG: this means 
teaching geometry to young children, the impact of specific contexts, geometrical activities in pre-
service teacher training, moving from practical to theoretical geometry, using Digital Geometry 
Environments, and so on. Nevertheless, the main part of the discussions were about confronting, 



sometimes in passionate ways, the theoretical and methodological approaches (for instance, 
didactical engineering was a 'classical' element for this WG) of the phenomena being studied. We 
try here to give an overview of these debates. 

Topics of rich debate in the group 
Role of manipulation and thoughtful experiment 

This very broad topic has been a great field of study and experiment during the previous CERMEs. 
The discussed papers concerned students at all level, from kindergarten to university and included 
the use of instruments for investigation, manipulation and modeling. As these subtopics were 
strongly linked in the papers, we decided not to split the topic. 

The use of two kinds of instruments was evident. One kind of instrument was in the form of 
‘material manipulatives’ used as ways to enhance the didactical potentialities of the manipulation by 
pupils: such manipulatives include the protractor, paper-pin, mathematical machine, 2D and 3D 
shapes, miniature, compasses, and so on. The other kind of instrument the participants studied 
comprised various technological tools, including DGEs, videos, IWB, tutorial system, touch-screen 
tablet. Some papers described the use of only one kind of instruments, while other ones proposed 
educational environments in which the two kinds of tools were used by students and teachers within 
complementary and synergistic approaches. 

Those papers had different approaches and theoretical backgrounds. For instance, there was 
discussions about papers that aimed at fostering the use of tools to mediate mathematical meanings 
(e.g. geometric reflection, Pythagorean theorem), with explicit reference to the theory of semiotic 
mediation. In papers that used DGEs or manipulation (of shapes, 3D models, geometric miniatures) 
to pass from the global spatial perception (iconic visualization) to an analytic visualization and to 
identify proprieties (non-iconic visualization), the main references were to the instrumental 
approach, the works of Duval and Van Hiele's levels. 

Some of the papers examined how the use of tools give opportunities for new experiments that can 
be useful in teaching. These tools included images used as a way to stimulate dialogic talk amongst 
student, or technological tools used to change the way of teaching. In this last case, the double 
approach (didactic and ergonomic) was used. 

Two papers focused on teacher education (pre-service and in-service) and reported on the use of 
DGE to improve generalization and geometrical construction (with their justifications within 
Euclidean geometry). Here it seems that DGEs are no longer ‘new’ and specific in the classes but 
nevertheless remain somewhat complicated within teachers’ education. 

The group noted, as detailed later, that there is a true need for improving the ‘networking’ between 
the didactical approach and the psychological approach concerning the use of tools. 

Visualization and spatial skills 

Some 8 contributions mentioned visualization or spatial skills as a keyword. This topic has been 
raised over the three previous CERMEs and continues to be an important and autonomous subject in 
our discussions. We chose to use the word skills rather than abilities, capacity or capability, as it can 
be that these latter terms induce pejorative interpretations, seeing it as something innate that cannot 



be changed or trained. The research questions were multiple and intertwined: What are the children 
spatial skills? How can we evaluate or train it? What is the role of spatial skills in the teaching and 
learning of mathematics? Visualization: what are we talking about? How to train visualization in 
geometry? What for? What are the links with language issues? We first had to clarify the relations 
between visualization and spatial skills: are these referring to the same thing? 

In terms of spatial skills, these are related to a psychological point of view. They are linked to the 
perception, representation, (mental) manipulation of objects, orientation (following a path...), spatial 
knowledge, location in space. Spatial skills have many facets, and from a psychological point of 
view visualization is one of these (but it is not very precisely defined in the literature). Spatial skills 
are very important in mathematics education and has various meanings: sometimes it is not specific 
to geometry (STEM education), and sometimes it is linked to spatial problems and spatial 
knowledge (Berthelot & Salin). We pointed some mutual understanding issues between the two 
fields: for instance, micro/macro space (Berthelot & Salin) are similar to small/large scale 
(Montello). 

What we called visualization is more specific to geometry, and involves combination of perception, 
interpretation and reasoning. It links perception to reasoning, and helps back and forth between 
practical and theoretical matters in geometry, so that it depends on spatial skills, mathematical 
constraints and language. Then, the precise meaning of visualization depends on the topics: 
visualization is not the same when drawing plane projections of 3D models or when trying to prove 
a result. From a didactical perspective it has a double nature – psychological and mathematical – 
and, in this case, spatial skills are a part of visualization. We will keep this acceptation in this text. 

Spatial skills are very important for early geometry, as most of the tasks are related to the perception 
of the space: role in the learning of geometric characteristics of the shapes (Douaire & Emprin), 
need for the coordination of small/large scale, micro/macro space, local/holistic perception 
(Vendeira, Papadaki, Klaren)… A psychological point of view is crucial to make more clear general 
cognitive difficulties of the tasks, and a didactical one links it to the teaching of mathematics.  
Visualization is more a mathematics education issue, so it is related both to spatial skills and to 
mathematical knowledge. In a general way, the question is “How to get enough information using a 
drawing to solve a given problem?”. It is declined, with very different aims, in every context: as an 
obstacle (prototypical shapes or too obvious results), using DGS, differences with Autistic Syndrom 
Disorder students, identification of geometrical properties or characteristics on a drawing… It is a 
great issue for early geometry, but it is often neglected when students get older, and we suggest this 
should be studied. 

Language, proof and argumentation 

The former topics are linked to proof and argumentation by langage. Argumentation and formal 
proof are linguistic activities about abstract objects, but they involve working on material objects 
(and then manipulation and visualization). Many works pointed this out. For instance Fujita’s 
dialogic process involves both visualization and social interaction, Klaren’s work on ASD students 
suggests that not seeing a square as a rectangle could be lined to the dutch word for rectangle, and 
we worked on Duval’s dimensional deconstruction which is a discursive process and visualization 
at the same time. 



Some five contributions addressed proof and argumentation, not necessarily about proof itself but 
about ways of motivating proofs or argumentation. One topic for discussion was the influence of 
prototypical images on the reasoning process. Another topic was how teachers can have different 
concept images of a geometric figure (such as a rhombus) and different conceptions of a valid 
geometric construction of the shape. A third topic for discussion was the design of tasks that can 
provoke surprise, uncertainty or cognitive conflict, and tasks that can provoke the reconsideration of 
conjectures or proofs. This last consideration was strongly linked to the visualization issues, as for 
instance using non-euclidean geometry was seen as a way to give less visual information and to 
provoke the use of mathematical proof. 

A particular focus for discussion was the digital environment QED Tutrix which is being designed 
to provide hints to the student user, while taking into account a judgment of the student’s cognitive 
state based on the way they are using the system. 

Perspectives and conclusion 
As might be discerned from the introduction, and as can be found in the papers that follow, there are 
a number of topics that continue to be of great interest to this topic working group. These include 
the role of instruments, manipulation, representations, proof and argumentation, and initial 
geometrical knowledge, in geometry education. We also note that the variety of the teaching and 
learning contexts increased: young children, secondary school, pre and in-service teachers training, 
but also university, specific education (ASD students), clinical studies… The synthesis of this 
numerous points of view required intense and rich debates. At this CERME, in the continuity to the 
former ones, a number of topics became more important. These include visualization and spatial 
skills which had already been discussed in the last CERMEs, and language in doing geometry, 
whose role has increased during this session. 

In conclusion, the working group continues to feature great diversity: in cultural backgrounds 
(curricula, school culture, teaching culture, research culture …), research questions, theoretical 
backgrounds and methodology. This continues to present some challenges in people understanding 
each other, sometimes linked to language and sometimes to what can be implicit meanings due to 
different research backgrounds. 

A very visible benefit of the great diversity is that it invariably leads to very fruitful discussions and 
to attempts (and success) to clarify participants’ points of view. In taking forward the work of the 
group, there is an increasingly important need for combining the frameworks, both theoretical and 
methodological. 
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In the present study, we compare the practice of one teacher in two 5th-grade classes for the same 
teaching concept (about angles) according to different working arrangements. In one of her classes, 
the teacher combines lecturing and interactive class: she talks and she exposes knowledge in front of 
her students. In the second class, she decides to try a new working arrangement: the flipped 
classroom. We compare the knowledge at stake by studying actions, gestures and language when 
video lectures are used on the one hand and when such devices are not used on the other hand. Thus, 
we compare the knowledge, which was shared and discussed in the classroom. 
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Introduction  
Our goal is to study the impact of the working arrangements’ modifications (use of the touch screen 
tablet or not) about knowledge exposure (Allard, 2016). More specifically, we study the geometric 
knowledge exposure when the students learn to use an instrument (the protractor). We think that the 
use of artifacts have a contribution at the cognitive level (Mariotti & Bartolini Bussi, 2008).Thus 
learning to use a protractor contributes to the construction of the angle’s concept.  

This paper focuses on the teaching and learning of the angle’s concept. It involves one teacher, Marie, 
and her grade 5 students in their use of the protractor. In France, at primary school level, students 
learn how to compare angles and how to reproduce a given angle using templates or tracing paper. In 
5th grade they are then trained to use a protractor to measure angles and to construct an angle with a 
given measurement. 

For several years, ministry of education recommends the use of new technologies and more recently 
emphasizes the need to individualize teaching: the flipped classroom may provide the means to meet 
these demands. This model of classroom instruction can be defined as an educational technique that 
consists of two parts: interactive group learning activities inside the classroom, and direct computer-
based individual instruction outside the classroom (Bishop & Verleger, 2013). 

Theoretical framework  
This qualitative study is built on prior work on the Double Approach by Robert & Rogalski (2005), 
current work on the concept of angle and on the study of actions with instruments Petitfour (2015).  

About practice 

To analyse and interpret teacher’s practices, we use the theory of the Double Approach defining five 
components: personal (teacher’s choices, beliefs), social (teachers’ working place, their colleagues 
and the social environment of their students, in both disadvantaged and advantaged areas), 
institutional (curriculum, relationship with supervisors), cognitive (choices about mathematical 
contents, tasks, organization and forecasts on how to manage the session) and mediative 
(improvisations, speeches, motivation of the students’ participation, devolution of instruction and 



knowledge exposures). The study of the students’ activities allows to give information on cognitive 
and mediative components (what students did, what they said about their activities and what they 
learnt). Consequently, we have to clarify the elements of knowledge at stake, misconceptions and 
difficulties in the learning of the concept of angle.  

About angle  

Angle appears to be a very complex and multifaceted concept, which can be defined in three different 
aspects: turn (an amount of turning between two lines meeting at a point), ray (a union of two rays 
with a common end point) and region (the intersection of two half-planes) (Mitchelmore & White, 
1998).  

Students encounter numerous difficulties in the learning of angles and misconceptions have been 
pointed out in several experimental studies (Berthelot & Salin, 1995; Mitchelmore & White, 1998; 
Devichi & Munier, 2013). Many students for instance consider that an angle's size depends on the 
length of its arms; or that one arm must be horizontal and the direction always counterclockwise; or 
that the angle is a sector in a circle (i.e. a “slice of pizza”). Tanguay and Venant (2016) hypothesize 
that this misconception is a possible effect of the systematic use of the protractor, when measures in 
degrees are at stake. Moreover, the confusion between the mathematical concept and the shape that 
represents it generate mistakes when students consider the spatial characteristics of the design 
representing the angle (Balacheff, 1988). 

Students face some difficulties in using a protractor, which have been stressed in the literature. For 
example, Close (1982) observed mistakes due to a lack of mental representation of the protractor’s 
angle to superimpose to the angle to be measured or due to the complexity of the dual scale. Tanguay 
(2012) summarizes some well-known difficulties encountered by students: they align the edge of the 
protractor body itself along one of the angle’s arm instead of the baseline; or they don’t place the 
protractor origin over the vertex of the angle to be measured. They can also read the measure on the 
wrong scale or on the right scale but in the wrong direction, for example by reading on 
counterclockwise graduation 39° left to 40° instead of 41°. 

About actions with instruments 

We consider four categories of knowledge according to a theoretical framework to study actions with 
instruments (Petitfour, 2015)1: 

- geometric knowledge about geometric objects, relations and properties 
- graphic knowledge about representation of geometric objects (symbolic signs, drawings) 
- technical knowledge about the instrument functionality, its use to obtain the graph and the 

theoretical relationship between the graphical trace and parts of the instrument 
- practical knowledge about a given artifact, connected to its concrete handling and to a 

concrete organization of the action with it 

Methodology 
We study the practice of one teacher, Marie, who wanted to experiment with a new style of 
instruction: the flipped classroom. Thus, her students should learn some mathematical content online, 

                                                 
1 This framework is based on an instrumental approach (Rabardel, 1995). 



by watching video lectures at home before the class session, whereas in the classroom, they should 
solve more exercises. Consequently, the teacher would be freer in the class session for discussing 
with the students: that should lead her to a more personalized guidance and to greater interactions 
with students than traditional teaching. 

In our study, three components are common to the two situations that we analyze here: institutional, 
personal and social. Marie’s components can be defined as follows: she is appreciated by her 
supervisors, colleagues and students. She thinks that in order to learn (and to teach) well it is necessary 
to handle and to solve a lot of exercises. She finds that she has never enough time. She is concerned 
about the learning of her students. She teaches in a rural school without social difficulties. In her two 
5th-grade classes, she volunteers to include gifted students. These three components are stable and the 
same in the two situations. Thus, we can compare the practice of the same teacher in two 5th-grade 
classes in the same area. Consequently, we can focus only on the mediative and cognitive 
components. In order to foster the comparison, we asked Marie to teach the same content and to 
propose the same tasks in her two different classes, one with video lectures and the other one without.  

Data  
In order to describe practices and inform mediative and cognitive components involved in the Double 
Approach, we focused on: 

- one video for the ‘flipped classroom’ and two for the ordinary class that we have transcribed 
- two short video lectures which we have transcribed 
- the notebook lessons, exercises book and topics of assessment 
- the teacher’s interviews conducted before and after the sessions 

We have split each session in episodes. We have identified different types of episodes in relation with 
the teacher’s specific goals and exposure of knowledge (Allard, 2016). For example, in the lecturing 
session, the teacher remembers specific words (how to call angles according to their openings 
measured in degrees) at the beginning of the class session. The teacher also recalls to the students the 
specific symbol to note an angle (𝐴𝐵𝐶̂). These moments are reminder episodes (type 1): the teacher 
recalls of previous knowledge. Regulation episodes (type 4) are moments when the teacher intervenes 
to explain and to anticipate difficulties. The main goal of the regulation episodes is to provide 
students’ progress. So we have identified six types of episodes.  

For lecturing sessions 

The two lecturing sessions last 45 minutes. The aim of the first session is to measure an angle with 
the protractor. The aim of the second session is to draw an angle of a given measurement. They follow 
the same organization in six types of episodes (table 1). 
  



 

1 Reminder episodes: 
- categorizing angles according to their opening measured in degrees (1st and 2nd sessions) 
- noting and naming the angles (1st and 2nd sessions) 
- defining the center of the protractor, based on a description of the artifact (1st and 2nd sessions) 
- measuring angle with a protractor (2nd session) 
- estimating and controlling the measure (2nd session) 

2 Methodological episode: estimating and controlling the measure 

3 Presentation of the new knowledge: presenting and discussing the methodological sheet about measuring (first 
session) and drawing angles (second session) with a protractor. 

4 Regulation episode:  
- anticipating difficulties (in relation with the dual scale or extend ray) 
- reviewing any personal concerns or difficulties that are raised during the session 

5 Exercises episode: providing activities and handing out methodological and exercises sheets 

6 The correction of the exercises: exposing knowledge and the difficulties encountered 

Table 1: the six types of episodes for ordinary session class  

The teacher talks to the entire class during certain types of episodes: 1, 2, 3, 4 and 6. Students are 
then facing the blackboard. It is only during the episode of type 5, that students work individually to 
solve exercises and the teacher interacts with them about their errors or difficulties. 

For the classroom with tablet 

Some students did not have access to the learning platform at home (because of one technical 
problem), as a result they did not watch the video session before the session in the classroom. 
Therefore, the teacher improvised and gave time during classroom session to watch and to listen to 
the video-class on the touch screen tablet. So, it’s an opportunity for us to observe students 
discovering by themselves a mathematic lesson. This session lasts 45 minutes. We have then 
identified three types of episodes (table 2). 

3 Presentation of the new knowledge by the video sessions about measuring and drawing angles with a protractor 

4 Regulation episode: reviewing any personal concerns or difficulties that are raised during the session 
5 Exercises episode: providing activities and handing out methodological and exercises sheet 

Table 2: the three types of episodes for video session  

Students worked in groups (by pairs) and watched the video lessons (episode of type 3). After that, 
they completed some exercises (the same ones that in the ordinary session class). The teacher walked 
around and talked with students to regulate their work one by one. For example, once more she 
explained how to handle the protractor. 

Data analysis 
Comparison of the episodes 

Ordinary class requires two sessions instead of only one for the class with the touch screen tablet in 
order to learn the same content. For the teacher, it seems to be an efficient method. But our study 
shows that less knowledge is going around in the class in the case of touch screen classroom (episodes 
of type 1, 2, 6 are absent), there is no link between previous knowledge and the new one, no collective 
reminder by the teacher and a lack of formulation of the knowledge by the students.  



In the ordinary classroom, students listen to each other and listen to the teacher, they raise their hand 
in order to come to the blackboard, they do individual exercises and sometimes ask questions or 
answer question the teacher’s ones. They are facing the blackboard, which promotes discussions 
between themselves and the teacher. In the touch screen tablet session, students watch the first video 
session several times and they solve the exercises individually. While they work on the exercises, 
many students listen to the touch screen tablet: they look at the gestures in the screen and they try to 
do the same, they stop, observe and copy. After that, they watch the second video and do exercises. 
Meanwhile, the teacher walks around the pair groups, corrects mistakes, rectifies the bad handling of 
the protractor. 

In the ordinary classroom, the teacher leads her students to use an appropriate language during the 
presentation of the new knowledge episode: for example, “center” for the center of the protractor 
instead of “hole”. We can see that the students appropriated this formulation in the ordinary classroom 
whereas they did not in the other classroom even if they had listened to the session video several 
times. We can see in this comparison to what extent the working methods seems to change what is 
said and what is shared. 

Now we compare what changes at the level of the potential learning about angle and the use of the 
protractor. 

Knowledge at stake 

Actions with a protractor in order to measure an angle or to draw an angle with a given measurement 
involve different pieces of knowledge. We study the knowledge at stake in the types of episodes 
where this knowledge is exposed to all the students, that is to say where the whole class has the 
opportunity to hear or to see the same thing. It concerns episodes of types 1, 2, 3, 4, 6 in the sessions 
without a tablet and type 3 in the session with a tablet. 

Some geometric knowledge appears explicitly in the session without a tablet whereas it does not in 
the session with a tablet. On the one hand, the classification of angles based on the degree 
measurement is recalled: angles are categorized according to their openings measured in degrees: an 
angle can be right, acute, obtuse, straight, zero or reflex. On the other hand, “angle” is defined as 
formed by two rays (sides) that have the same endpoint (vertex), and “ray” is defined as a line 
extending indefinitely in one direction from a point. In the same way, graphic knowledge appears 
explicitly only in the session without a tablet: first, the symbol Λ enables to distinguish an angle and 
a triangle; second, an angle can be named with three letters, the second letter names the vertex, the 
first names a point on one side and the third a point on the other side. The fact that the line representing 
the ray can be extended in one side is mentioned in both sessions but only explained referring to some 
geometric knowledge in the session without a tablet. 

As far as the representations of an angle are concerned, drawings are more numerous in the session 
without a tablet. Indeed, in this latter session, five angles are drawn on the whiteboard, one is freehand 
traced and the others are traced with one of the edges of a set square. Besides, one is obtuse and four 
are acute with similar opening around 45° but which one with the vertex at right (it allows to use both 
protractor’s scales) (Figure 1). At last, the five drawings have a horizontal side and are named with 
three points. 

  



  

     

Figure 1: Drawings of angles in the session without tablet 

The drawing of the angle 𝐹𝑂𝐺̂, 52° had been presented by two students on the blackboard and each 
time, they have drawn an arc of a circle along the semi-circular edge of the protractor despite the fact 
that the teacher mentioned the uselessness of this curved line. This representation has led some other 
students to speak explicitly about “cake slice” which revels the misconception of the angle as a sector 
in a circle. 

Only two acute angles are drawn on a paper in the session with tablet. They are oriented in a non-
prototypical way and are named with the letter of the vertex (upper case) and the letters of the 
direction of each ray (lower case) (Figure 2). It is not this latter notation that is used in the application 
exercise but the notation with three points. 

  

Figure 2: Drawings of angles in the session with tablet 

In both sessions, drawn angles are named both spoken and written. In the session without a tablet, the 
teacher sometimes used gestures too (Figure 3) expressing either the “ray” aspect or the “region” 
aspect of an angle. 

 

 

 

Figure 3: Gestures about angles (Left, “ray” aspect and middle and right, “region” aspect) 

Moreover, in the case of the obtuse angle 𝐴𝑂𝐶̂ (Figure 1), she used a symbolic sign – a small arc of 
a circle – in order to indicate what angle is to be considered. In the session with a tablet, there are 
only deictic gestures pointing the letters “x”, “O” and “y” when they are uttered in order to name the 
measured angle.  

Some technical knowledge is recalled only in the session without a tablet. This knowledge concerns 
the protractor’s functionality: a protractor is a measuring instrument, the measurement is expressed 
in degrees; and a description of the protractor parts to link with the graphical representation of an 
angle. Indeed, the localisation of the protractor’s centre is first given in a general way, by the use of 



language accompanied by gestures, then the graduation 0° and the dual scale (inner and outer) from 
0° to 180° are named and pointed on the protractor by the teacher. 

The steps to measure an angle and the steps to draw an angle using a protractor are formulated in the 
same way in the two sessions. What is said is exactly what is written on the summary sheet given to 
the students. For example, here are stated the three steps to measure an angle: first, place the protractor 
so that the centre is over the vertex of the angle to be measured; second, place the graduation zero 
degree over one side of the angle; third, follow the graduations of zero degree, ten degrees, twenty 
degrees, … until you reach the other side of the angle. It is also stated that perceptive evaluation of 
the opening of the angle – greater or smaller than the one of the right angle – enables to control 
possible measurement errors.  

In the session with a tablet, the students can hear and see the operating filmed sequence as many times 
as they wish, pause and go back whereas in the session without a tablet, the operating sequence is 
presented several times by different students on the blackboard (for example, three times to measure 
an angle before doing the application exercise). The teacher helps the students to formulate the 
method they implemented. 

Practical knowledge appears only in the session without a tablet. For example, some protractors have 
a hole to show the centre near the bottom of the protractor whereas the blackboard’s protractor has 
his centre on the bottom; the semi-circular edge of the protractor can be damaged so that it is better 
to avoid tracing along this edge; if the protractor goes beyond the lines represented sides of an angle 
to be measured, then the lines must be extended. Regarding organizational aspects, the teacher gave 
students the advice to store the protractor in a pocket in their workbook to avoid breaking it.  

Results and conclusion 
Our analysis of one teacher’s practice about the use of the protractor allowed us to point out the 
following results. Some of the students ’difficulties and mistakes are the same in both sessions, with 
and without tablet, when the students trace or measurement by themselves during the exercises 
episodes: wrong localization of the measure on the protractor, measurement without extending the 
line representing ray when it is necessary, clumsy handling of the protractor. Errors to note and to 
name points and rays appeared only in the session with tablet (students didn’t manage to adapt what 
was presented in the video lecture). Moreover, there are inaccurate wordings that show confusion 
between length and angle. The correction of the arising errors is private in the both sessions but also 
public and shared in the session without a tablet. Finally, whatever the case, there is no difference 
between the assessment results of the two classes, according to the teacher and the collected data 
cannot inform us about the arrangement that would better foster learning.  

This study confirms that the modifications tied to the mediative component, in particular in terms of 
working arrangements, have a very important impact on the knowledge exposure (Allard, 2015). 
Indeed, in the session with tablet, the only exposed knowledge is the knowledge of the tablet, without 
possible links with difficulties met by the students. In the lecturing session, there is more knowledge 
exposure thanks to the interactions between the students and their teacher. 
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This study is a research on teaching practice, developed in the context of an elective course on 
Dynamic Geometry for prospective kindergarten and elementary school teachers taught by the first 
author of this paper. We aim to analyse the role of GeoGeobra in the development of geometric 
reasoning, particularly the way individuals geometrically structure figures. The participants are a 
class of six future teachers. Data was gathered from the participants’ portfolios and classroom 
observation while working on an exploratory task, which focuses on constructing draggable figures. 
The results show that this type of activity promotes spatial and geometric structuring, beginning 
with the perception of elements and relationships that enable the dynamic construction, and moving 
on to the description of the construction using formal concepts associated to the tools of the DGE. 

Keywords: GeoGeobra, geometry, structuring, visualization, teacher education.  

Introduction  
Research has shown the interest in engaging students of different ages in activities using dynamic 
geometry environments (DGE), for the improvement of concept learning and the development of 
reasoning (Sinclair & Yerushalmy, 2016). In particular, Hanna and Sidoli (2007) indicate that the 
DGE are a promising way “in enhancing the students' ability to notice details, conjecture, reflect on 
and interpret relationships and to offer tentative explanations and proofs” (p. 77). Also, in education 
programs, relevant research confirms the effectiveness of the use of technological tools, including 
DGE, to improve the knowledge of teachers and future teachers (Jones & Tzekaki, 2016). In this 
study, we aim to analyse the role of GeoGeobra in the development of geometric reasoning, in a 
context of a geometry course for future kindergarten and elementary school teachers, based on 
exploratory tasks. In particular, we which to understand how the construction of draggable figures in 
the DGE contributes to geometric structuring (Battista, 2008)? 

Theoretical framework 
Prospective elementary teacher education in geometry 

The knowledge necessary for teaching includes mastery of mathematical reasoning, ways to solve 
problems and communicate mathematics effectively, understanding of concepts, procedures and the 
process of doing mathematics (Albuquerque et al., 2005; NCTM, 1991). Concerning geometry, 
kindergarten and elementary school teachers should understand how it is used to describe the world; 
analyse two and three dimensional figures; use synthetic geometry, coordinates and transformations; 
improve skills in producing arguments, justifications and in visualization.  

Some researchers have claimed that there are few studies about teachers and future teachers’ 
knowledge in geometry (Chapman, 2013; Clements & Sarama, 2011; Steele, 2013). However, the 



existing literature provides reasons to believe this is a problematic area. As Clements and Sarama 
(2011) state, in many countries teachers from every level are not always provided with adequate 
preparation in geometry and lack of knowledge and confidence in this area. Concerning 
kindergarten and elementary prospective teachers, many only recognise and categorize shapes by 
their overall similarity to prototypes, instead of charactering them by their properties (Clements & 
Sarama, 2011; Fujita & Jones, 2006) a problem we also identify in Portugal (Menezes, Serrazina & 
Fonseca, 2014). Overall, as Jones & Tzekaki (2016) recently stressed, studies on teachers’ 
geometric knowledge and teacher education programs indicate that we still need to give attention on 
how prospective teachers build their understanding of geometrical objects. Also, we should take 
into account the effectiveness of approaches such as the use DGE. 

Developing geometric reasoning and the use of DGE 

King e Shattschneider (2003) present eight reasons for a teacher to use a DGE: (i) to take advantage 
of the accuracy of geometric constructions and measurements, leading to confident results; (ii) to 
promote visualization; (iii) to encourage exploration, investigation and discovery leading to the 
formulation of questions, conjectures, and their test; (iv) to encourage demonstration because the 
experimental evidence offers the necessary conviction for such enterprise, and may provide clues; 
(v) to support the understanding of geometric transformations; (vi) to support the understanding of 
loci; (vii) to provide simulation opportunities for a wide variety of situations; and (viii) to allow the 
creation of microworlds, using new tools and allowing exploitation of non-Euclidean geometry. 

A major emphasis on using DGE concerns the constructing of figures. Laborde (2001) compares 
this type of activity when performed using a DGE versus using paper and pencil. In her view, when 
we draw a figure using paper and pencil, the activity is often controlled by perception rather than 
being driven by the properties of the figure. Instead, in a DGE is not possible to construct a square 
in a similar way (“led by eye”) and it requires more knowledge about the figure. But if the students 
are able to apply the properties correctly, we can ask ourselves, as does Battista (2007), what have 
they learned from the activity? For this researcher, “perhaps no new knowledge was acquired, but 
instead, the students’ knowledge and reasoning were deepened and enriched . . . Or perhaps 
connections between properties were newly constructed or extended” (p. 878).  

In order to analyse this reasoning we draw on the framework developed by Battista (2008). This 
researcher established a categorization of reasoning using three levels, corresponding to increasing 
degrees of sophistication: spatial structuring, geometric structuring and logical/axiomatic 
structuring. Spatial structuring is a special type of abstraction corresponding to the mental act of 
constructing an organization or form for an object or set of objects by identifying its components, 
combining them into spatial composites, and identifying the way they combine and relate. Spatial 
structuring enables a person to imagine manipulating an object, reflect, analyse and understand it. 
Geometric structuring describes spatial structuring using formal concepts such as congruence, 
parallelism, angle, transformations or coordinate systems. Geometric structuring is based on spatial 
structuring, that is, to be able to structure geometrically an object, it is necessary that one has 
interiorized the corresponding spatial structure. Logical/axiomatic structuring formally organizes 
geometric concepts in a system so that their relationship can be established through logical 
deduction. To operate at this level, it is necessary that verbal or symbolic statements can replace 
mental models. The research of Battista (2008) in a DGE (the Shape Makers microworld) with fifth 



graders showed that the manipulation of shapes and the reflection on that manipulation may enable 
the pupils to move from thinking holistically to thinking about the geometric properties of the 
figure, that is, to progress from spatial structuring to geometric structuring. However, he also points 
that there is a need for guidance, reflection and experimentation in order to construct formal 
geometric conceptualizations of the DGE constraints. 

Methodology 
The first author of this paper designed and taught an elective course on Dynamic Geometry in 
2015/26, as a new offer in the teacher education program for prospective elementary school teachers 
in her institution, in Portugal. The course was divided into two phases: (i) 10 lessons dedicated to 
solving geometry tasks organized into four topics – problem solving, constructing, investigating and 
creating; and (ii) 5 lessons dedicated to didactics of geometry, projecting the work of the DGE with 
children from kindergarten to 6th grade. In the classroom, there was one computer for each 
participant, but they were encouraged to discuss with their colleagues. Regarding the assessment, 
each participant built a portfolio containing a task from each topic, detailed solution and a reflection 
on the activity, and also constructed a GeoGeobraBook with the files used to solve the tasks.  

This study is a research on teaching practice based on the observation of the activity of the 
participants and their solutions of a task and aims contributing to their professional and 
organizational development, “as well as to generate important knowledge about educational 
processes, useful for other teachers, for academic educators and the community in general” (Ponte, 
2002, p. 13). Data was gathered mainly from the portfolios and GeoGeobraBooks of the 
participants, complemented by the field notes taken by the first author, while observing the 
participants and supporting their work. There were only six participants: five females who were in 
the 2nd year of the program (also attending a compulsory course of Geometry) and a male in the 3rd 
year, the only one who had some experience with DGE. Since the Dynamic Geometry course is 
elective, the choice the participants may be considered an indicator that they like geometry and do 
not feel strong difficulties in this area, which was confirmed in this group. The task (Figure 1) was 
proposed in the 5th lesson, within the topic Constructing. It was intended that the participants would 
reproduce draggable figures, or families of figures, in GeoGeobra from the properties visually 
identified, thus corresponding to one of the major emphases reported by Battista (2007).  

1. Construct both stars. Describe briefly the process.  
2. For each of the stars, find another building process 

and describe it.  

3. Construct other stars of this family with a larger 
number of points. Generalize one of the construction processes you used.  

4. Establish relationship between the number of star points and other elements. 

Figure 1 – Task Constructing stars (adapted from Johnston-Wilder and Mason, 2005) 

The data was analysed using a framework (Table 1) built by the first author of the paper (Brunheira, 
2016), based on the concepts of spatial and geometric structuring (Battista, 2008). The table does 
not include the logical/axiomatic level, since it means that one operates at a symbolic level, which is 
not the purpose in this task. We use the framework to analyse the solutions, looking for the evidence 



of the descriptors in order to characterize the level of structuring of the participants. However, we 
stress that despite the attribution of a level to a solution, this does not mean that we can characterize 
the level of structuring for an individual solely based on a solution of a task, so this must be seen as 
an indicator. Also, we cannot consider that solving a single task is enough to improve significantly, 
but this analysis may enable us to recognise it’s potential. 

Levels 
Geometric structuring 

Spatial structuring Knowledge of concepts 

N0 
Does not establish geometrical relationships 
between figures and their elements, or does 
not provide most of the times. 

Does not know most of the basic 
concepts and the language is very limited 
in terms of geometric vocabulary. 

N1 

Perceives geometric relationships involving 
visible elements of figures, but it may 
depend on the position of the figures, their 
elements or the context. 

Knows the concepts of side and angle, 
congruence, perpendicularity and 
parallelism in the plan; in space, knows 
the concept vertex, edge, and face. 

N2 

Perceives geometric relationships involving 
visible elements of figures in any positions 
or context. 

Perceives geometric relationships involving 
invisible elements of figures, but it may 
depend on the position of the figures, their 
elements or the context. 

 

Knows the concepts as axe of symmetry, 
diagonal, bisector, midpoint and the 
geometric transformations in the plan; in 
space, knows the concept of congruence, 
parallelism and perpendicularity.  

 N3 

Perceives geometric relationships involving 
visible or invisible elements of figures in 
any positions or context. 

Produces generalizations of geometric 
relations for a family of figures. 

Table 1 – Descriptors of the levels of spatial and geometric structuring 

Results 
Next we present an analysis of task solutions from prospective teachers Maria, Carla and Louise 
taken from their portfolios, which we consider to be representative of all the solutions presented. 

Maria’s solution of the task 

In figure 2 we present an excerpt containing two processes presented by Maria. Process A was used 
to build the two initial stars and process B was used for the same purpose, as well as to generalize. 
Both constructions begin with the image of the star as a whole figure and a regular hexagon where 
the star is inscribed in two different ways. 



 

Process A                                             Process B 

             
Construct a polygon with a certain number of sides and then two polygons from the union of non-
consecutive vertices. The number of the star points corresponds to the number of the vertices of 
the polygon used for its construction. It is not possible to do this based on regular polygons with 
an odd number of sides, since there are not two sets of non-consecutive points to be connected. 

Figure 2 – Excerpt of Maria’s solution of the task  

Maria looks at the star as a whole figure inscribed in a regular hexagon in two different ways. She 
draws on invisible elements that were created to assist the construction. Regarding the 
generalization, Maria presents a process which can be applied to any star and establishes a 
relationship between the initial polygon and the number of points of the star. Finally, she identifies 
that this polygon cannot have an odd number of sides and justifies her finding. Thus, Maria’s 
solution shows a very good geometric structuring for this family of figures, corresponding to Level 
3 of the framework. 

Carla’s solution of the task 

Carla uses a procedure similar to Maria’ process B and another process, shown in Figure 3. 

   
1. Construct an initial figure in accordance with the number of points of the star (this polygon 
should be a regular polygon in which the number of vertices is half the number of points of the 
star). 2. Trace the perpendicular bisectors for each side of the polygon to find its center. 3. Draw a 
circle centered at the intersection point of the bisectors and a radius to reach a vertice of the figure. 
4. The intersection points between the bisectors and the circumference will be the vertices of the 
second figure that makes up the star. 

The number of points of the star is twice the number of sides of the inicial figure. 

Figure 3 – Excerpt of Carla’s solution of the task  

She looks at the star decomposing it into two congruent regular polygons, one of which constitutes 
the starting point for construction. The determination of the second polygon involves visualizing the 
star inscribed in a circumference, and the vertices of the second polygon on the perpendicular 
bisectors (a concept that she did not know). Thus, she identifies that the consecutive vertices of the 



star are equidistant from each other and also equidistant from the centre of the star. Regarding the 
relations established, Carla identifies that the number of vertices of the initial polygon is twice the 
number of points of the star, but does not justify this. Therefore, Carla identifies various 
relationships between their elements, using visible and invisible elements and adequate concepts, 
such as the circle and the perpendicular bisector, thus showing a very good geometric structuring of 
the family of figures, which also corresponds to level 3. 

Louise’s solution of the task 

Louise builds the stars initially as Carla (draws the first polygon, traces the bisectors and finds the 
point of intersection). However, while Carla seems to look at the star in a static point of view, 
Louise visualizes the “movement” of the first polygon to obtain the second. The participant had an 
intuitive idea that rotating the initial triangle in a certain way, it would be possible to obtain the 
second triangle and form the star, although she did not know the formal concept of rotation and that 
we should define the rotation by a centre and an angle. She asked for help to find out if the 
GeoGeobra could run this “movement” and the teacher explained how the “Rotation” tool worked. 
Next, Louise presented the following relationships: “For regular polygons with even number of 
sides, amplitude = 180°/(number of sides); For regular polygons with odd number of sides, 
amplitude = 180º”. Thus, we consider that her solution also reflects level 3. 

Discussion 
All participants were successful in the task. They presented different and valid constructions 
mobilizing a variety of elements of the figures (visible and non-visible), relations between them, 
transformations and properties, some of them were unknown to them. So, the main conclusion we 
want to emphasize is that the construction of figures using GeoGeobra significantly enhances the 
geometric structuring by promoting the identification of properties and relations between elements, 
as Battista (2008) reported in his study. This improvement stems from different features and 
strengths that we recognize in the DGE, some of them indicated by King e Shattschneider (2003). 
We start with two features – easiness of use and accuracy of the constructions – which we associate 
the two strengths – promoting intuition and exploration. In fact, sometimes participants started the 
construction from an insight of the properties and elements of the figure (or auxiliary figures) that 
could be useful, but they were not sure. The possibility to easily test the conjectures through a quick 
and accurate construction was a key aspect, as Maria explains: 

With GeoGeobra it was possible to explore different forms of construction of the stars using 
polygons, lines, midpoints, parallel lines, among others, easily, simply and accurately. If we 
didn’t have this software this would be a long and relatively difficult process, especially the 
construction of regular polygons used as a basis for the construction of stars. (Portfolio) 

Another potential of GeoGeobra that emerged was the promotion of justification, which we did not 
ask for in the task. In fact, the ability to test the construction validity, as in a trial and error process, 
does not mean that participants do not reflect on their actions, as we note in Louise's comment: 

I had to stop and think why the rotation angle depends on the number of sides, as well as to find a 
mathematical answer to for the correct value. (Portfolio) 



In this case, we see a need to reflect on the value of the angle, which led to the justification of the 
chosen value and the understanding the generalization. So, although the DGE played an important 
role in the user's belief that a relationship is valid, did not lead to underestimate justification, instead 
promoted the search for it (Hanna & Sidoli, 2007).  

Another feature of GeoGeobra is that it leads the user to work with the formal concepts associated 
with its tools. In this way, we may think that we can only take advantage of the DGE when 
operating at the level of geometric structuring. In fact, as Battista (2007) suggests, we cannot make 
geometric constructions without reaching some level of “conceptual and representational 
explicitness”. However, this investigation shows that GeoGeobra can facilitate the transition from 
spatial to geometric structuring. An example that supports this conclusion is the use of new 
concepts, like perpendicular bisector or rotation, that participants had just a vague memory from 
middle and high school, but were correctly applied as the DGE promoted their appropriation. 

Finally, in connection to the nature of the task which favours different solutions, GeoGeobra 
supports this diversity through a set of tools available, which also stimulates creativity. As Peter 
says:  

The choice of this task reflects on the freedom it gives us to construct the figures using different 
processes . . . [which] depend on our ability to imagine overlapping figures, guidelines for the 
construction and other key points of the figure . . . improves the ability to find relationships 
between figures and their elements and encourages creativity. (Portfolio) 

Conclusion 
This research was based on a construction task for which we recognize the potential mentioned by 
Laborde (2001). Besides, we corroborate the claims of King and Shattschneider (2003) regarding 
the reasons that support the use of the DGE, particularly the use of rigorous constructions and the 
promotion of visualization, exploration, investigation, discovery and demonstration, to which we 
would like to add creativity and intuition. However, the data also shows that constructing draggable 
figures in GeoGeobra contributes to spatial and geometric structuring. The main contribution of this 
study concerns the importance of this work in prospective teacher education. From a mathematical 
point of view, the data shows the relevance of the exploratory work involving geometric 
constructions using a DGE, promoting the evolution in the way they structure the geometrical 
figures by identifying relationships and properties. Apart from this perspective, the comments of 
participants also show the relevance of reflecting on mathematical activity itself. This reflection – 
here enhanced by the portfolio – enables prospective teachers to become aware of their own learning 
in relation to the task, which can be an important contribution to their didactical knowledge. 
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A unit on dynamic geometric construction was included in a professional development course for in-
service mathematics teachers. As a final task in that unit 28 teachers were required to construct a 
rhombus based on their own choice of given objects and tools, using the dynamic geometry software 
GeoGebra. Their responses were analysed according to: the choice of given objects; the choice of 
tools; the explanation and validity test; and the number of different rhombuses they claimed to have 
obtained. The teachers were found to have different concept images of a rhombus and different 
conceptions of what constitutes a valid geometric construction. While many claimed to have obtained 
an infinite number of different rhombuses, differences were observed in the "type of infinite". 
Recommendations are given for improving the task design to strengthen teachers' mathematical and 
pedagogical knowledge.  

Keywords: Geometric construction, dynamic geometry, GeoGebra, concept image, in-service 
teachers.  

Introduction 
From the use of a dynamic environment for geometric construction arise new frames of reference for 
the idea of construction. In this paper we present data accumulated during an in-service teachers' 
professional development course on dynamic geometric construction. We report on the data from two 
viewpoints: 
1. The practical viewpoint – we will describe teachers' construction methods in the final task in which 
they were required to construct a rhombus in different ways (each construction according to different 
given objects). We will discuss issues arising from the construction, both those concerning the nature 
and validity of the construction and those concerning the teachers' images of a rhombus. 
2. The pedagogical viewpoint – we will suggest possible ideas for improving the task design in order 
to hone and strengthen teachers' mathematical and pedagogical knowledge.  

Theoretical background 
Construction in geometry has a specific meaning: the drawing of geometric figures using only 
compass and straightedge without measuring angles or lengths (Hartshorne, 2000a). Geometric 
constructions have been a popular part of mathematics throughout history. Euclid documented them 
in his book entitled "Elements", which is still regarded as the authoritative geometry reference. In that 
work, he uses these constructions widely and extensively, and so they have become a part of the 



geometry field of study.  Geometric constructions also provide insight into geometric concepts and 
give us tools to draw figures when direct measurement is not appropriate (Hartshorne, 2000b). 
For about a decade, geometric constructions were removed from the Israeli curriculum. In 2014 
geometric constructions were again included in the geometry curriculum for middle school in Israel. 
Curriculum decision makers claim (INMMC, 2013) that geometric construction integrates geometric 
content knowledge with a deductive way of thinking that is essential for geometry proofs.  

The professional literature indicates that teaching mathematics using technological tools helps in the 
process of constructing an abstract knowledge of mathematics, and geometry in particular (Lagrange 
et al., 2003). GeoGebra is a powerful dynamic environment that allows testing of countless number 
of examples; provides effective and convenient tools for confirming or contradicting conjectures; and 
provides a wide selection of different tools for geometric constructions – from digital analogs of 
compass and straightedge, to shortcut tools, such as automatically drawing a line parallel to a given 
line (Fahlberg-Stojanovska & Stojanovski, 2010). GeoGebra is also a tool of assessment (Bu et al., 
2012); thinking processes can be observed by examining the construction protocol which can replay 
step-by-step onscreen.  

Vinner and Hershkowitz (1983) focused on the cognitive development of mathematical concepts, and 
proposed a model of two components: the concept definition – the verbal description of the 
mathematical concept, which characterizes the concept mathematically; and the concept image – the 
cognitive structure that includes all the examples and the processes related to the concept in the 
learner's mind. Geometric concepts have a special status: Fischbein (1993) coined the term "figural 
concepts" and argued (Fischbein & Nachlieli, 1998) that geometrical figures are characterized by 
both conceptual and sensorial properties. A geometrical figure is a mental abstract which is governed 
by a definition. At the same time, it is an image. In geometrical reasoning the two categories of 
properties should merge absolutely. 

In the context of this research, geometric constructions, which are carried out in a GeoGebra dynamic 
environment, can be seen as figural concepts. We used our personal, not formal definition (Vinner, 
1991) for geometric construction. To construct a geometric figure means to draw the figure on a 
computer screen using GeoGebra digital tools in such a way that essential properties of the figure 
remain invariant under dragging. 

The purpose of the study 
The aim of the present study is to: 

1. Characterise the in-service teachers' geometric constructions on the final task of the unit.  
2. Improve the design of the construction tasks in order to increase their contribution to the 

development of in-service teachers' mathematical and pedagogical knowledge.  

  



Methodology 
The research population  

This research was carried out in the framework of a 30-hour in-service professional development 
course whose aim was to acquaint middle-school and high-school teachers with a digital program for 
ninth-grade mathematics students.  A part of this course was the geometric construction unit. Since 
our assumption (which subsequently proved unfounded) was that the teachers were already 
acquainted with traditional geometric constructions using straightedge and compass, the unit dealt 
mainly with the use of the dynamic geometry software GeoGebra. When necessary, traditional 
methods were referred to. The focus of the research was on the responses of 28 teachers to the final 
task of the unit. 

About the final task  

Throughout the course the in-service teachers tried out different geometric construction activities 
using GeoGebra and thus learned to create a valid construction using dynamic tools. Instructions for 
the final task included the following reminder.  

Constructing with dynamic tools is not the same as drawing on a page since the objects (points, 
segments, etc.) are moveable: you can drag them and observe how other objects change 
accordingly. Each figure must be constructed so that it retains its characteristics even after other 
objects are dragged. For example, on constructing a rhombus according to its diagonals, check that 
after changing the lengths of the diagonals the figure remains a rhombus. This type of construction 
is called a valid construction. 

In the final task the teachers were required to: 

1. Construct a rhombus by three different methods, each construction according to different 
given objects (according to your choice), for example, according to its diagonals. 

2. Describe each construction process and prove that it results in a rhombus. 
3. State and explain how many different (non-congruent) rhombuses can be obtained by each 

method. 

Note that no instruction was given as to whether the given object is fixed or dynamic. A fixed side 
will yield an infinite number of rhombuses (same side length, different angles) while fixed diagonals 
will yield only one rhombus. Clearly if the objects are dynamic an infinite number of rhombuses are 
possible, but this is a feature of the software and not of the underlying mathematics. 

Data collecting and analyzing  

Each teacher sent a solution which comprised a picture of the final construction of the rhombus, the 
GeoGebra file, and explanations and justifications for the construction process. We used 
interpretative methods for analyzing these data. 

Findings: Characteristics of geometric constructions 
A qualitative analysis of the teachers' constructions yielded four main categories. 

1. The given objects on which the construction of the rhombus was based 
2. The construction process itself according to tools used 



3. The teacher's explanation and validity test 
4. The number of different rhombuses the teacher claimed to have obtained 

We present some examples of teachers' constructions, according to the above categories. The teachers' 
choices of given objects on which to base their construction were varied; for example, one side, two 
diagonals, one diagonal, an angle, a combination of the already mentioned objects, and other objects 
(such as area). We will present just two of these choices: one side and two diagonals. Here are 
examples from three different teachers who constructed a rhombus according to its side. 

Tzila's construction 

1. "The construction is according to 4 equal sides, each 
5 cm long." 

2. Used segments of fixed length, parallel line through 
a point, intersection point. 

3. "I created a rhombus from two adjacent sides each 5 
cm long, using parallel lines; that is a parallelogram 
with all 4 sides equal 5 cm." 

4. Infinite number. "Using a circling movement, with 
point A fixed, in a sort of circling round each time 
getting another rhombus whose diagonals are changing." 

Instead of just writing that the side of the rhombus was given, Tzila added a definition of rhombus, 
which, like every definition, provided a sufficient condition. Possibly she misunderstood the task, and 
thought that she had to state the conditions for creating a rhombus, or perhaps her concept image of 
rhombus is a parallelogram with four equal sides, or perhaps she misunderstood the components of 
deductive geometry. 

Anat's construction 

1. A quadrilateral of equal sides – each side of length 2 cm. 
2. Used segment of fixed length, circle with fixed radius. 
3. "According to the theorem: a rhombus is a quadrilateral with 

all sides equal."  
4. No answer. 

Anat's explanation shows that she, like many of the teachers, was 
confused about the components of deductive geometry (stating she was 
using a theorem when in fact she was using a definition).  

Yaron's first construction 

1. Rhombus with side of length a. 
2. Used circle with given radius, intersection point. 



3. "The length of the side of the rhombus is a since all the sides 
and the radius are length a. The construction is valid 
according to the dragging test. The construction relies on the 
principal of the length of the radius of a circle". 

4. "There can be an infinite number of rhombuses since 
although the sides remain equal lengths the diagonals and 
angles can be changed."  

Despite Yaron's claim that the diagonals and angles can be changed, 
he in fact built a rhombus in which the shorter diagonal was equal to the side and so the acute angle 
of the rhombus was 60o. He claimed that there are an infinite number of possible rhombuses given 
the length of a side, which is correct, but does not correspond to what he constructed. This error was 
repeated by many of the teachers. Interestingly, in another construction – described below – Yaron 
erroneously claimed an infinite number of possible rhombuses because of the dynamic nature of the 
given attributes.  

Here are examples of two teachers who constructed a rhombus according to its diagonals. 

Yaron's second construction 

1. Rhombus according to two diagonals. 
2. Used segment, perpendicular bisector, circle, and 

intersection point. 
3. "I based this on the fact that in a rhombus the 

diagonals are perpendicular and bisect each 
other, and on the principal of the length of the 
radius of a circle. The construction is valid 
according to the dragging test." 

4. "There can be an infinite number of rhombuses 
since the lengths of the diagonals are not fixed. We 
can lengthen or shorten them (or even only one of 
them). The rhombus can change – both its sides and 
its angles."  

Yaron constructed diagonals whose length changed dynamically. He did not relate to the fact that 
each pair of diagonals determines only one possible rhombus. 

Nora's construction  

1. According to two diagonals. 
2. Used segments of fixed length. By trial and error changing the 

angles between the segments. 
3. Did not check validity. 
4. No answer. 

If Nora had checked her construction she would have realised that it did 
not pass the validity test, as seen in figure 5.  

Discussion and conclusion 



In the discussion we will relate to the two viewpoints mentioned earlier: the practical and the 
pedagogical.  

The practical viewpoint  

In the context of the practical viewpoint we will characterise the findings in each of the construction 
categories. The first category is:  Given objects for constructing a rhombus. We have presented 
two of the teachers' choices of given objects: one side or two diagonals. All the teachers in the course 
chose the size of their given objects in one of two ways – either fixed size (a number) or dynamic (a 
parameter). This choice seems to be related to the teacher's conception of geometric construction – 
what is permitted in such a construction. It should be noted that these teachers had not previously 
learned constructions in a rigorous manner, and in particular, not dynamic constructions. Therefore 
we relate to their answers as based on intuitions about what is a construction and on geometric 
knowledge relevant to the specific topic. We suggest that teachers who chose fixed numerical givens 
have a concrete conception of construction that is related to particular sizes during the construction 
process, and did not refer to the characters of the figure which is constructed with dynamic tools. 
Teachers who chose dynamic givens have a broader conception of construction, not connected to size. 
This choice of dynamic givens corresponds more closely to the instructions – see above description 
of the final task. In addition, there were some teachers who were confused about defining the given 
objects, for example, Tzila, as described above.  

The second category is:  Choice of construction tools. We identified three types of construction 
process: measuring; using the extensive range of tools supplied by GeoGebra; and using a limited 
range of tools (cf. Fahlberg-Stojanovska & Stojanovski, 2010).   

Construction by measuring involves fixing the size of the required object (side, diagonal, or angle). 
For example, in Nora's construction she moved two rays to form a right angle. Another teacher created 
four equal segments using co-ordinate axes.  

An example of construction with the extensive range of tools is using the parallel line tool to ensure 
a parallelogram, as in Tzila's construction. Another example is using the perpendicular bisector tool, 
as in Yaron's construction.  

Construction with a limited range of tools imitates construction with straightedge and compass. For 
example, Yaron built a circle of variable radius. Anat used both measurement and the limited range 
of tools (using a circle of radius equal to the given segment of length 2 cm).  

The third category is: Explanation and validity check. None of the teachers gave formal proofs of 
their constructions. However their explanations provided us with an idea of their concept images 
(Vinner, 1991) of a rhombus. They explained their constructions according to their concept image 
and not according to the definition as given in the national school curriculum: a quadrilateral with all 
sides equal. A problematic concept image seems to create confusion between the different 
components of a deductive geometric argument, for example, between a theorem and a definition and 
between a theorem and a property. This confusion can be seen in the explanations of Tzila and Anat.  

We discerned two problematic areas in the teachers' explanations: an incoherent concept image 
related to mathematical knowledge; and an intuitive conception of construction in a dynamic 
environment, which seem to be related to the construction process in everyday life, for example 



Nora's construction which produced a rhombus. This construction did not fulfill the demand that the 
construction will remain a rhombus also after dragging. 
This conception resulted in most of the teachers producing an invalid construction. There is not 
enough information in the data to pinpoint the main causes of these problems – are they connected 
to missing technological knowledge, or to missing mathematical knowledge, or to a faulty 
conception of construction, or to a combination of all three? More research is required to clarify 
this. 

The fourth category is: Number of solutions. We identified three types of responses, each claiming 
an infinite number of solutions: relating to the dynamic nature of the given object, as seen in Yaron's 
second construction; relating to the mathematical properties of the given object, as seen in Tzila's 
construction; relating to the position of the given object in the plane. This latter type was seen in the 
response of a teacher who wrote: "In the plane it is possible to position the rhombus in any place you 
want".  

The pedagogical viewpoint  

In the light of these research findings we recommend investigating some aspects of task design in a 
dynamic environment. On one hand the task design can assist teachers to execute the task, and on the 
other hand it can persuade them to use this task in their classroom (Bu et al., 2012). We suggest that 
it would be worthwhile to design the task on three levels: mathematical-pedagogical, technological-
pedagogical, and reflective. 

The mathematical-pedagogical level requires the teacher to define the concept and to construct the 
figure accordingly. In line with Fischbein (1993) we relate to a geometrical concept as a figural 
concept and thus its construction has practical meaning. Subsequently the teacher is required to 
construct the figure based on different sufficient conditions. Such a construction task would enable 
identification of the teacher's mathematical knowledge and her concept image, and could help to bring 
that concept image closer to the concept definition.  

The technological-pedagogical level requires the teacher to construct the figure at first using the 
limited range of GeoGebra tools (imitating straightedge and compass) and subsequently using the 
extensive range (enabling short cuts). We would like to investigate the connection between these two 
types of construction and the connection between the teacher's image of the geometric concept and 
her conception of geometric construction.  

The reflective level requires the teacher to check the validity of her construction, while considering 
the meaning of validity. Giving a detailed account of the results of the validity test should be an 
inseparable part of the task. Such an execution of the task should strengthen the connection between 
the mathematical and technological aspects. For example, if the construction "collapses" – after 
dragging the dynamic objects the properties of the required figure are not preserved – it is important 
to understand whether the "collapse" is due to a mathematical failure or a technological failure, or a 
combination of both. Such an analysis should contribute to the development of mathematical 
knowledge, pedagogical knowledge, and technological knowledge. 

We believe that the above characterisation may provide a starting point for further research and may 
contribute to the technology, pedagogy, and content knowledge framework (Koehler & Mishra, 2009) 
–  to help teachers integrate technology into their teaching. 
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Geometry is the subject where U.S. students are weakest on international assessments, but college 

geometry is an area of proof that is understudied. Since geometry is secondary students’ only 

exposure to proof, it is vital our secondary teachers can prove effectively in this content area. 

However, one obstacle to developing deeper understanding of geometric concepts in college 

geometry courses is that students tend to try recalling prior geometry instruction instead of 

engaging in any new material within a Euclidean geometric context. A document analysis of student 

portfolios revealed that although pre-service teachers in this document study began the semester 

with limited abilities to work with formal definitions, by the end of the semester all were able to 

propose and justify conjectures on novel surfaces. 

Keywords: Geometry, inquiry-based learning, pre-service teachers. 

Theoretical background 
Geometry arises from a set of undefined terms and axioms through which all other theorems and 
definitions are constructed. Hence, a thorough understanding of geometry involves a deep 
understanding of proof; yet, teachers possess a narrow understanding of proof. Studies indicate that 
pre- and in-service teachers believe proof only helps explain ideas used in mathematical concepts, 
and they do not recognize the ability of proof to systemize results (Mingus and Grassl, 1999; Knuth, 
2002b). Teachers lack the geometry content knowledge required for geometry proofs, and they are 
convinced by empirical evidence as well (Jones, 1997; Knuth 2002a). Consequently, teachers with 
inadequate proof and geometry understanding cannot be expected to impart adequate proof and 
geometry knowledge to students. Furthermore, college geometry is the only undergraduate proofs 
course that has not been studied in any systematic manner (Speer and Kung, 2016). 

Pre-service teachers in undergraduate proof courses do not adequately understand what arguments 
qualify as proof (Weber, 2001). They lack comprehension of the mathematical language and 
concepts necessary to proof (Selden, 2012), and they possess an incomplete understanding of 
definitions and theorems (Weber, 2001; Selden and Selden, 2008). In typical direct-instruction, 
lecture proof courses, students are expected to develop proficient proof skills with little to no 
guidance. Without guidance, students will fail and likely cultivate ineffective strategies (Weber, 
2001). These ineffective strategies are typically proof schemes dependent upon external and 
empirical convictions, such as the authoritarian, ritual, and perceptual proof schemes (Harel and 
Sowder, 2007). In order to successfully write a proof, students need to employ effective strategies or 
proof schemes with arguments based on axioms and logical deductions, which in turn requires 
understanding of definitions and the idea of conditionally true statements.  

The typical instructor-centered learning environment, is the dominant paradigm, but may not induce 
the logic and proof techniques needed to construct a proof in all students (Fukawa-Connelly, 



Johnson, & Keller, 2016). Alternatively, a proof course should consist primarily of student-student 
and student-teacher interactions (Selden and Selden, 2008). Given the prevalence of lecture-based 
proof courses in the United States (Fukawa-Connelly, Johnson, & Keller, 2016) and preservice 
teachers’ continuing struggles with geometry, one potential approach to help improve pre-service 
teachers’ is an inquiry-based learning pedagogy where students are active learners, and the 
instructor is responsible for facilitating students’ exploration of the content, particularly definitions 
(Padraig and McLoughlin, 2009).   

However, one of the additional challenges of college geometry is that the material is familiar to 
students. Rather than investigating the ideas presented in the current assignment, many students rely 
on recollections from previous geometry courses, especially if the problems seem familiar. Hence, 
an inquiry-based college geometry course in non-Euclidean geometry seems more likely to help pre-
service teachers develop their proving skills and deepen their understanding of the geometric 
concepts they will eventually teach. This study was guided by the question: how, if at all, an inquiry 
based non-Euclidean geometry class helped deepen students’ understanding of definitions and 
Euclid’s postulates? We argue that the deep exploration of a limited number of non-Euclidean 
geometry problems helped students to move from primitive geometric knowledge to formalizing 
definitions and successfully posing and solving conjectures on novel surfaces.  

Methodology 
An adaptation of Pirie and Kieren’s (1994) model for student understanding was used to code 
students’ written assignments for their understanding of definition. Although this eight-level model 
was originally created to model students’ understanding of fractions, it adapts well to geometry, as 
the purpose was to describe the transition from concrete to abstract reasoning to justification to 
problem posting. One level, image having, was not used when coding, since students always had 
access to physical models of whatever non-Euclidean surface they were working with that week, so 
we could not determine students’ facilities for understanding similar exercises without physical 
models. We also did not include looping back within our standards of evidence because it was not 
something we observed in the data. 

This study took place at a midsized, rural, Hispanic-serving research university in the South, and the 
students who participated were those enrolled in a ten student college geometry course. The data 
collected was part of a larger study; this study presents a case study of five pre-service teachers 
Lindsey, Bradyn, Alexis, Mackenzie, and Chase. We also analyzed the work on one non-preservice 
teacher, Florencio, because Florencio’s papers were different from the other participants. While we 
wanted to maintain a purposeful sampling of pre-service teachers, Florencio was enough of a 
disconfirming case that we felt his inclusion was necessary (Patton, 2002). Florencio was an 
engineering major with one prior proofs class. Lindsey has no formal proof experience, Bradyn had 
completed discrete mathematics in one attempt with a B, Alexis had completed discrete 
mathematics and abstract algebra with A’s, and Chase, who has a learning disability, had completed 
discrete mathematics with a C after two attempts and failed another upper level proof class. 
Mackenzie was a non-traditional student in her final semester; she had completed all other upper 
level proof classes with a mixture of A, B, and C grades.  



Students in the course were provided with course notes (Miller, 2010) that presented open-ended 
problems related to a specific learning goal. There were fifteen assignments; five of which were 
focused on formal axiomatic proof, eight on definitions and axioms in various non-Euclidean 
situations, and two assignments (the midterm and final project) which combined both strands in the 
same assignment. Four of the assignments were formal (one revision allowed), and the other ten 
were informal (unlimited revisions). On the midterm (F3), students were given new but similar 
problems to their assignment and asked to work through them individually, and on the final project 
(F4), students were asked to discover as many things as they could about the geometry of the surface 
a cone. For each new assignment, students were assigned a specific problem from the provided 
course notes and a group. If a group appeared to be making little progress or moving in an 
unproductive direction, the teacher would use guided questioning to redirect students’ thoughts. If 
multiple groups stopped progressing, the teacher would initiate a whole class discussion.  

To determine students’ understanding of definitions and postulates, researchers examined the first 
submission students turned in for each assignment. Researchers also used observations to gain 
further understanding of students’ proof comprehension. As students discussed their ideas within 
their group, a researcher sat behind them listening and taking notes on their interactions for about 
ten minutes. The submissions were analyzed by assignment and all the drafts from an individual 
participant were analyzed at the same time. After this initial reading of blinded assignments, 
researchers would journal their impressions of the coding and the overall trajectory exhibited in the 
multiple submissions. These journals were used to operationalize concepts in the literature review, 
and then they were compared to the standards of evidence table (Table 1).  

Level of 
Understanding 

Identifiers 

 

Primitive 
Knowledge (1) 

Students are applying prior knowledge of Euclidean geometry, stating given 
definitions, or providing empirical proofs 

Image Making 
(2) 

Students make distinctions and reclassify prior knowledge or use prior 
knowledge in a new manner 

Property 
Noticing (3) 

Students can apply a definition on a previous surface to a novel surface or 
situation by recognizing commonalities in the learned and novel situation 

Formalizing (4) 
Students can abstract a method, formula, or common property from previous 

property noticing 

Observing (5) Students can propose conjectures and provide justification or counterexample 

Structuring (6) 
The argument is logical and made up of systematic application of axioms and 

theorems/If any portion of the argument could be clarified, the clarification is not 
necessary for the argument’s validity. 

Inventising (7) 
Students can pose new questions and solve them, creating new (to the student) 

knowledge 

 Table 1: Standards of evidence (Modified from Pirie and Kieren, 1994) 
 



Findings 

With the exception of Mackenzie, all pre-service teachers struggled to complete the initial 
assignments with correct arguments; primitive knowledge from a previous high school geometry 
course was applied to the problem instead of an argued solution. However, by the fourth inquiry-
based task, all participants were able to formalize definitions, and all students were at least able to 
successfully use definitions and postulates in novel situations to construct proofs. All students 
followed a similar trajectory throughout the semester and improved, on average, four levels of 
understanding (Figure 1). 

 
Figure 1: Student levels of understanding throughout the semester 

The first definition centered-assignment of the semester was an inverse categorization problem. 
After finding all possible symmetries on the square, students were asked to use Geogebra to start 
with a subset of these symmetries, construct all possible quadrilaterals with that set of symmetries, 
and justify why they had found all cases. Mackenzie was able to categorize on first assignment, but 
the other preservice teachers either listed the symmetries of each quadrilateral or could not justify 
if/why they had found all cases (Figure 2). Both of these difficulties indicate students making partial 
reclassifications of their prior knowledge.  



 

 

 
Figure 2: Typical solutions on IF2 Chase (left, primitive knowledge); Florencio (right, image making) 

During the middle third of the semester, the two assignments that helped pre-service teachers move 
towards formalizing their understanding of definitions and counterexamples were IF3 and IF6. In 
both assignments, students were asked to justify which, if any of Euclid’s postulates held on a 
sphere (IF3) and the hyperbolic plane (IF6). Students were also asked to prove the existence of 
asymptotic geodesics on the hyperbolic plane. On IF3, the first exposure to the postulates, Alexis 
was not able to work in the spherical context and reasoned through the justification of the postulate 
in terms of the more familiar planar geometry (Figure 3). However, by IF6 Alexis was able to 
provide a counterexample for false postulates (Figure 4). 

 
Figure 3: Alexis’ IF3 (Image Making) Postulate 5 solution 

 
Figure 4: IF 6 (Formalizing) Postulate 5 solution 



In the final third of the semester, the goal of all assignments was to integrate pre-service teachers’ 
improved proof schemes with more formal uses of definitions. IF5 and F3 were major proofs 
assignments that took students most of the middle third of the semester. With their improved proof 
schemas, and understanding of the surfaces, were more easily able to construct proofs for parallel 
lines that were independent of the surface upon which the lines were drawn (IF8 and IF10). Most 
students were able to construct a generally correct proof, with some minor disordering of steps and 
missing justifications. This shows participants possessed a more structural understanding of 
symmetry than the understanding demonstrated in IF2. Bradyn, like Florencio, was image making 
on the first assignment related to symmetry, but by the time symmetry was used to construct proofs 
related to parallel transported lines, Bradyn was much more successful (Figure 5). Although 
Bradyn’s language is not quite standard and he had trouble typesetting his proof, his overall 
structure is systematic and he has a transformational understanding of symmetry not present in his 
initial write-ups. 

 
Figure 5: Bradyn’s second proof in IF8 (observing) 

The final formal assignment asked students to discover (and prove) as many things as they could 
about the geometry of an infinite cone. Groups were expected to prove 2-4 conjectures. Given the 
open nature of F4, one group chose to only investigate properties of a cone where group members 
had successfully revised an assignment on another surface. This limited their levels of 
understanding to observation. The other two groups each had at least one investigation of a 
conjecture about a novel concept with at least one new or newly-modified definition, which is 
summarized in Table 2.  



 

Participant Project Summary Code 

Alexis (+3 
others) 

Using a novel group-invented definition of straightness to 
investigate self-intersecting lines on cones (conjecture: no 

formula possible), angle sums of triangles with self-
intersecting sides 

Structuralizing, 
Inventising 

Mackenzie, 
Lindsey (+1 

other) 

Holonomy, internal angle sums of a triangle with no self-
intersecting sides, triangle congruence theorems, non-

intersecting lines that are not parallel transports 

Inventising 

Bradyn, 
Chase (+1 

other) 

Postulates (some cone angles), collected data for self-
intersecting lines 

Observing 

Table 2: Summary of final project 

Discussion 
Regardless of prior proof course grades or experience all pre-service teachers struggled to complete 
the initial assignments with correct arguments; primitive knowledge from a previous high school 
geometry course was applied to the problem instead of an argued solution. However, by the fourth 
inquiry-based task, all participants except for Chase were able to formalize definitions, and all 
students were at least able to successfully use definitions and postulates in novel situations to 
construct proofs by the end of the semester.  

By centering the college geometry course around understanding core geometric concepts on several 
different surfaces, participants were forced to engage in understanding each new situation rather 
than simply applying their prior Euclidean geometry knowledge to a more familiar problem. As a 
result, students developed more advanced understanding definitions and counterexamples. All 
participants got to at least formalizing definitions and seven of the ten students in the class ended 
the semester at either the structuring or Inventising level.  

The structure of the course maximized students’ opportunities to reify their understanding of 
definitions and postulates. The use of multiple non-Euclidean contexts was key to helping students 
develop better understanding of formal definitions. By switching surfaces, operationalizing 
definitions and determining if they were applicable stayed a problem and not an exercise. Further, 
the repetition of the postulates and determining geodesics in particular were important because these 
concepts were presented in enough slightly different concepts to allow students to develop deeper 
levels of understanding of the definition than a single context would allow. Students also reported 
that the chance to revise their written work was a valuable way to help them reflect on the current 
surface and how it compared to their prior work.  

There are two potential limitations for this study, which could be remedied by further inquiry. First, 
we did not collect students’ interview data; our analysis is a document study coupled with 
observations of students’ in-class discussions. Teaching experiments or task-based interviews of 
students’ understanding of definition in similar inquiry based classes, and comparative data to 



students in axiomatic Euclidean courses would also be of use. We also had non-native English 
speaking students in this class, and further research on their experience with proof and geometry is 
still needed. Finally, although most students followed the same trajectory, Chase was about two 
weeks behind everyone else. However, Chase has dyslexia; and there is a dearth of literature about 
undergraduates with learning disabilities; more work is needed to understand how to support such 
students’ learning. 
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Teaching geometry to students (from five to eight years old) 
“All that is curved and smooth is not a circle” 
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The ERMEL team (IFé, ENS-Lyon) in France, builds complete engineering to teach math in 
elementary school. For several years, we have been experimenting with teaching situations on space 
and geometric learning for 5-8 years old students. In this paper, we focus on the results about the 
relationship between actions on objects, graphs and first geometric properties about curved line. Our 
methodology involves an analysis of the student’s way of solving problems and thus their abilities, 
but it also allows us to make a hypothesis on what it is that teachers need in order to carry these 
learning situations out. 

Keywords: Geometry, teaching, learning, primary education, spatial ability.  

Issue of this paper 

Our research takes place in the French context of geometry teaching in primary school. Our goal is 
to build a proven, complete and reliable teaching engineering and thus to improve geometry teaching. 

In CERME 9, we reported our results about the knowledge of straight line for the same kind of 
students, not as an element of geometrical figure but as a usual or new component of the pupil’s 
practice. Several point of view in the WG4 showed the similar approach and questions were shared: 

 The relation between everyday and geometrical concept, perception, language and 
manipulation 

 How to start with low level, and long planning time 

 What kind of tools for the research and tools for teaching geometry are there? (How to help 
teacher to know what student are able to do) 

In this paper, we aim to make our contribution to the three first topics of the WG4 group: what is 
doing, learning and teaching geometry at school?  

Why working on geometry teaching? 

A starting point of our research is a finding of deficiencies in the geometry teaching practices in the 
early grades of elementary school. A short analysis of easily available French resources for teaching 
geometry to young pupils shows that two mains goals are pursued: learning geometric words and 
drawing abilities. Spatial activities also exist but without much problem solving, and also unrelated 
to the pupil’s initial knowledge or mathematical activity. This research is also based on the idea that 
students’ abilities are insufficiently taken into account in geometry teaching in primary school. Thus 
we have to identify the knowledge at stake in this learning and take the students’ already acquired 
knowledge into account. 



About our team 

ERMEL is the research team on mathematics education in primary school (in French “Équipe de 
Recherche en Mathématiques à l’École Élémentaire”) belonging to the French institute of education 
(IFé). ERMEL team is made up of primary school teachers, teachers’ trainers and researchers working 
in different regions of France. Results of these researches lead to comprehensive books publications 
including complete teaching engineering. Studies on teaching and learning conducted since 1999 are 
about geometry teaching more precisely on the analysis of spatial and geometric skills that students 
from primary school to GS (5-6 years old) CE1 (7-8 years old) can build. Key issues of these 
researches are knowledge creation and resources production for teachers and teachers’ trainers as well 
as the study of the appropriation of these resources. In CERME 9 we have clarified our theoretical 
framework and the steps of our methodology: a didactic engineering, based on an experiment 
conducted in many classrooms for several years (Douaire & Emprin, 2015). In this paper, we try to 
explain the transition between space and graphic knowledge which is often underestimate. 

Purpose of the study 

Our previous studies (Douaire & Emprin, 2015) showed that the knowledge developed by pupils in 
meso-space by solving problems does not necessarily build a geometric knowledge usable on paper. 
This lead us to ask many questions: in particular, what are the opportunities for pupils to understand 
the underlying patterns of drawings on a sheet of paper?  

We have to clarify the relationship between two types of knowledge, spatial and geometric, and 
especially the discovery of the meanings of lines on a sheet of paper, and how these plots can provide 
information about objects in space. If several works address the distinction between drawing or figure 
at the beginning of the “college” (Parzsyz, 1988) or the apprehension of the components of a figure 
at the end of primary school (Duval, 2005) (Perrin & al, 2013), our research concerns the emergence 
of graphic representations a few years earlier.  

In this working group we will identify the contributions of space experiments in the construction of 
geometrical knowledge. Our goal is that pupils overcome the overall perception of a figure and 
develop the analysis of its components.  

We analyze learning involved by a problem solving of closed curves figures construction, the 
characteristics of different implementations, as well as the needs of teachers. We present insights of 
learning situations for space experiments and we question the relevance of a resource based on the 
needs of teachers for its implementation identified in the context of ongoing Ermel research. 

Presentation of the experimentation 
Experimentation concern procedures (graphics, practices, discourse ...) that can be developed by 7-
year-olds pupils to distinguish circles from ellipses and other rounded shapes. We are not trying to 
develop early knowledge of the circle, but to promote the passage from a global perception of 
drawings and shapes to a geometric analysis of geometric shape underlying. 

Some questions concern the comparison procedures: what are the abilities of students of CP (6 years 
old) or CE1 (7 years old) to distinguish a circle from another closed curve (an "almost circle")? What 
use of superposability as a validation procedure for that? 



We present an experiment in progress: students have to produce closed rounded shapes, and must 
prove if they are different from others. 

Proposed situation 

The problem is to build closed shapes using four circular or elliptic arcs (quarter of a big circle, little 
circle or an ellipse figure 1). Identifying that shapes built are different lead students to develop and 
formulate analytical geometric criteria. 

Two major phases of this situation are analyzed successively, the first concerns the problem solving 
phase to produce shapes: we briefly analyze the productions. The second concern comparison of 
production. We also present some exchanges during the validation of the solutions. 

Finally, a brief summary will address the explicit needs of teachers. 

Presentation of the activity 

Each pair of students has a deck of 16 cards: 4 quarts of a small circle, 4 quarters of a large circle and 
8 quarters of an ellipse (shapes figure 1 are cut following dotted lines like in figure 2). The major axis 
of the ellipse is the diameter of the large circle. The minor axis of the ellipse is the diameter of the 
small circle. Thus, shapes can be linked. 

 

 

 

 

 

     Figure 2 

 

 

Several successive phases in this situation:  

 

1- To ensure the pupils’ appropriation of the constraints of the problems 
they are experimented one by one. Each pupil must first assemble 
pieces to form a closed shape. Then they verify that these solutions 
are really closed. These discussions lead to clear assembly 
instructions: "Are only accepted shapes that are joined edge to edge 
(assembly like in figure 3 are rejected)". In this first phase, the 
students do not need to draw, but to assemble pieces of heavy paper. Then pupils have to 
make closed shapes using exactly four arcs. The findings, confirmed by teachers and 
observers in classes are that all students are aware of the goal, namely produce closed curves 
("tracks") consisting of four arcs at the end of devolution phase. Students have understood 
the problem’s rules.  

Figure 1 

Figure 3 



2- Then each student looks for new solutions. In order to save their shapes and be able to make 
new assembly pupils are asked to draw on tracing paper (or lite paper) the outline of each 
new shape found. When students believe they cannot find new shapes the search stops, and 
solutions are pooled: are they different? If a student thinks he has found another solution, it 
is displayed and compared with previous. Students explain why they think it is different or 
it's the same as another already displayed. The goals of the pooling are to identify products 
that meet or not the constraints and identify the identical solutions. 

 

Possible shapes 
The solutions are:  

 reconstruction of three basic shapes (large circle, 
small circle, ellipse) solutions 1-3 

 combining two half ellipses contiguous or half a 
small circle (ovoid: solution 4) a large circle (such 
as "roly poly" or "roller" or solution ... 5). Radius 
or half axes being concurrent. 

 combining alternative quarters of small circle and 
large circle (solution 6) 

 combining two quarters of alternating ellipses 
with a quarter of a small circle and a quarter wide 
circle (solution 7)  

 combining two quarter ellipses and a small circle 
(8, 9) or large circle (14,15) 

 juxtaposing four quarter ellipses (10, 11) 
 juxtaposing two quarters ellipse with on one side 

a quarter of large circle, and on the other side a 
quarter of small (12,13). 

Of course, the goal of this situation is not to find all 
solutions but finding shapes form 1 to 5 with also one or 
two shapes they cannot name globally is enough for pupils 
to learn. 

Description of pupils’ strategy to produce shapes 

 choose pieces of random way; 
 if unsuccessful start from scratch; 
 put two pieces, then try the other two; 
 replace one or two pieces in an assembly already achieved; 
 place the fourth piece by estimating its size. 

Description of the comparison procedure  

Solutions are shown on the blackboard (some of them may be identical but differently oriented).  

We describe comparison strategy used by pupils: 

Figure 4: 15 different shapes were found 



1. Use of the overall look of the drawing (perceptual validation): 
a. recognition of known shape (circle, round, egg ...); 
b. rely on variables: overall size, width; 
c. rely on differences of regularity in curves. 

2. Identification of the elements that compose the shape (analytical aspect). 
3. Recognition of identical shapes by rotation or reversal. 
4. Use of construction processes, with the possibly of remaking to the class. 
5. Use of symmetry properties of the shape, mention of the folding ... 
6. Use of a practical validation by overlapping. 

Strategies based on perception are meanly used.  

Those results confirm that spatial abilities are often neglected and that it is a great challenge of our 
current research.  

This pooling highlight some questions linked with the drawing: 

• the impact of the thickness of the lines on strategy using perception, 

• the acceptable tolerance to judge the compliance with constraint, for example the fact 
that the curve is closed. 

The fact is that those questions emerge are important because it lead pupils to progressively give up 
perception in favor of the analysis of the shape. This dialogue during the validation of solutions 
illustrated this aspect. 

Exchanges during the validation 

The solutions are exposed to the blackboard and students check if the set is suitable. 

Student (S2) I believe we cannot do it ... 

Teacher (T) The others, are you sure? 

S2 appears to confirm 

T This drawing there you think that doing it is impossible? 

S2 show the drawing of the shape and try to express something. 

T So, what could you do to know? 

S2 Take the pieces 

M So, the team who have made this track, you come back to the dashboard.  

Resuming the question of drawings validity 

S It looks like … 

T With four parts 

S2 But then there are bumps 

S …but in all there are bumps ... because we do not succeed in drawing…. 



T Yes, there is the problem of drawing, we will not be going back to that. Is this circuit 
possible to do? ” 

(Many S.) Yes 

We can see in this transcript that pupils manage to move away from the drawing to analyze the shape. 
plutôt un”.” que “;” 

After a pupil has the drawing of his shape on one hand and follows the lines of the set of pieces to 
check is the shapes are the same (we will show a video of this moment). 

Analysis of learning at stake 
Firstly, the effects of the situation on pupils learning we can observe are: 

1- A change in perception of the role of vocabulary: 
a. The familiar vocabulary for describing the known forms, is not effective for others. 

Many different shapes can look like an egg ... 
b. Since drawing on paper is not always successful students have to describe the shapes 

by analyzing the way they have been built: the arcs used and their sequence of use. 
2- The progressive understanding of the role of sheet layouts to work on the lines (here 

curves, but straight in other situations) 
3- A better knowledge of the circle, based on the development of procedures compared with 

other forms (Artigue & Robinet, 1982)  
4- The practice of displacement to produce new solutions and to recognize identical figures 

arranged differently  
5- Transition from a practical validation based on the superposition to a validation based on 

the analysis of the properties 
6- The perseverance in research: the students have to rely on perseverance and go to the end 

of the task, and of course explain, justify, criticize, debate. 

We think that, at the end of this situation, students are able to explain, with their words, several of 
their learnings.  

Secondly, we have analyzed what are the difficulties, and what is possible to propose to pupils. We 
think, after several experiences, that the main obstacles are not epistemological; they do not come 
from the inability of students to analyze forms or working on their uncluttered representation. But it 
is rather didactic obstacles created by neglecting their knowledge and solving capacity. There is a 
necessary transition from a perceptive approach of the shapes to the analysis of their geometrical 
characteristics (size, composition, curvature…). In our progression of learning we also offer other 
situations which contribute to this passage from "global" (for instance, students perceive the 
regularity of form) to "analytic". 

Thirdly we try to find condition of a real use in classrooms. For those of teachers who are not satisfied 
with their way of teaching geometry we think it is important to propose activities that are real 
problems (where pupils have to produce new strategies) and to clarify learnings at stake. But we think 
that it would be unrealistic for a teacher whose main objective would be to set a vocabulary to embrace 
the process. Potential learning is related to the possibility for the teacher to understand the issues: 
allow students to implement the different comparison procedures. 



This workshop proposes to enlighten those issues.  

In this presentation we have not detailed the many changes in the description of the situation, related 
to successive and necessary experiments for students to produce the specified procedures. On this 
aspect of the construction of a teaching situation, we simply discuss the question of the context: is it 
necessary for such young students to evoke a familiar context? The way quarter-circles or ellipses are 
drawn have also been choose different during the experiment: either simple lines (parts of the cited 
figures), double lines to evoke real-world objects: railway circuits. But does the latter choice provide 
a better understanding of the constraints (in particular the continuity of lines)? We currently believe 
that, on the contrary, this approach makes the problem harder to understand. 

Conclusions and prospects 
Let us return briefly to the issues addressed: 

On learning targeted: what learnings can be developed based on the perception (regularity of a shape) 
to contribute to the analysis of geometrical properties? We mentioned a shift from a parts assembly 
problem to a drawing problem (a graphical problem); to that extent, the sensitive space has changed. 
First it is the space of action on the shapes to assemble, which has been among the first personal 
procedures of the students in the resolution phase. During the pooling, pupils focus on curves 
continuity and sensitive space become the place where graphical plots are questioned: they are new 
geometrical objects. 

On taking initial knowledge of students into account: how knowledge, language, gesture, participate 
in the apprehension of the common elements to the diverse types of spaces?   

How are first procedures and knowledge of the "graphical-space" combined with previous experience 
on objects? In particular, these prior knowledge is not primarily "declarative" but rely on gestures (eg 
the difference between rotate and reverse or the use of drawing with instruments without necessarily 
aiming to represent a geometric objects ...) 

They are also expressed in the language forms, as part of a language used by the student to control 
his actions or to communicate about a production (formulation of a procedure, checking of constraints 
validation of a solution ...). The importance of this learning is often underestimated in education in 
favor of the use stereotyped and offline vocabulary. 

Our research aims to analyze and develop, not only in this specific example, general student abilities 
via experience and actions on objects with graphical plots. Thus they evolve from a spatial perception 
to geometric characteristics of the shapes. Our concerns are also those of Swoboda (2015) about 
problem solving mainly with older students: “Therefore, the problem of bringing students to the 
ability of making mental transformations I treat as an educational task. In the literature, there is no 
explicit opinion on what educational level there is possible to create such skills. »  
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In this paper, we report on how a group of UK 12-13-year-old students work with hierarchical 
defining and classifying quadrilaterals, an area which students find very difficult to understand. We 
implemented a geometry test to 9 groups of students. Quantitative data suggest that the students found 
very difficult to undertaking hierarchical defining and classifying quadrilaterals even in 
collaborative learning situations. Our qualitative video-recorded data from the four groups suggest 
that we find that even in collaborative learning settings prototypical images of geometrical figures 
strongly influence students’ ways of hierarchically defining and classifying quadrilaterals. In 
addition, groups often had opportunities to examine their ideas, but they did not explore these 
opportunities because each member did not see what others were saying ‘as if through the eyes of 
another’ 

Keywords: Dialogic, collective geometric thinking, defining and classifying quadrilaterals. 

Introduction 
Geometry has been recognised as of one of the most important topics in school mathematics as it 
provides students with learning opportunities for developing their spatial thinking, reasoning and 
sense making of this world. Sinclair et al (2016) reviewed over 200 research papers in geometry 
published since 2008, and identified six themes, including the understanding of the teaching and 
learning of definitions. They state that one of their research questions is about students’ understanding 
of hierarchically defining and classifying shapes (p. 706). Our paper is concerned with this issue, in 
the context of hierarchically defining and classifying shapes in collaborative learning settings which 
can be productive ways to develop mathematical thinking and understanding (e.g. Martin and Towers, 
2014). We chose this topic because the research has reported that students find the understanding of 
hierarchically defining and classifying shapes difficult, but how students tackle this in collaborative 
settings has not been sufficiently investigated.  

The purpose of this paper is to examine the following research question ‘What obstacles will be 
identified when students are working together with geometrical problems?’ In order to answer this 
question, we first propose our theoretical framework for emergence of collective geometrical thinking 
in the context of hierarchical defining and classifying quadrilaterals. We then investigate students’ 
collaborative learning process in defining and classifying quadrilaterals. In this paper, we focus on 
collaborative group work where teachers or instructors’ interventions are minimal. Therefore, while 
we acknowledge that teachers’ roles are highly important to support learners’ mathematical thinking 
and understanding (e.g. Martin and Towers, 2014), we do not consider this issue in this paper.  

  



Theoretical framework 
Concept images and definitions and prototypical examples of geometrical figures 

In order to study students’ thinking with geometrical shapes, the terms ‘concept image’ and ‘concept 
definition’, introduced by Vinner and Hershkowitz (1980) are useful. A concept definition is defined 
as ‘a form of words used to specify that concept’ and concept image as ‘the total cognitive structure 
that is associated with the concept, which includes all the mental pictures and associated properties 
and process’ (ibid, p. 152). When considering a parallelogram, at least two types of concept images 
are considered, i.e. one is ‘conceptual images’ such as ‘parallelograms have two sets of parallel lines’, 
‘opposite sides of a parallelograms are equal’, and the other is ‘visual images’ (e.g. ). In relation 
to learners’ concept image and definition, another useful idea is the prototype phenomenon 
(Hershkowitz, 1990). This theoretical idea claims that students’ difficulty in seeing geometrical 
shapes flexibly is caused by the prototype example, which students often encounter in their initial 
stages of learning of geometrical figures. For example, as a concept definition, parallelograms are 
introduced as ‘a quadrilateral with two pairs of parallel sides’, but a typical ‘slanted’ visual image is 
often used. This ‘visual images’ will stay strongly in students’ minds, and as a result their ‘conceptual 
images’ become “the subset of examples that had the “longest” list of attributes – all the critical 
attributes of the concept and those specific (noncritical) attributes that had strong visual 
characteristics.” (ibids., p. 82). Thus, for many students, when the hierarchical relationships between 
quadrilaterals are required, they cannot accept that rectangles can be a member of parallelogram group 
as, on the one hand, rectangles have 90 degree angles, and on the other hand, parallelograms should 
be ‘slanted’ (‘visual geometrical images’) and not have such angles, and therefore rectangle are not 
member of parallelograms, stating ‘rectangles have 90 degree angles and so they are not a member 
of parallelograms’ as their ‘conceptual image’  (e.g. Fujita, 2012).  

Collective geometrical thinking process 

Collaborative learning has been recognised as a key topic in mathematics education research, and the 
difficulties in geometric thinking described above might be overcome if students’ undertake problems 
collaboratively. Martin and Towers (2014) apply Pirie and Kieren’s model (1994), which describes 
the growth of mathematical understanding with eight potential layers; Primitive Knowing, Image 
Making, Image Having, Property Noticing, Formalising, Observing, Structuring and Inventing. The 
learners’ developmental paths from Primitive knowing to Investing would not be straightforward. For 
example, when an individual/a group of learners had difficulty in noticing properties during problem 
solving, they might examine their already made images, and as a result they re-make new images for 
exploring new paths for problem solving. This is what Pirie and Kieren call Folding back. Martin and 
Tower also suggest that this process is crucial in collective thinking process. For example, suppose a 
group of students are discussing whether a ‘rectangle’ can also be seen as a ‘parallelogram’. In order 
to solve this (under a curriculum hierarchical relationships of geometrical shapes are assumed), they 
have to collectively make and have their conceptual and visual images of rectangle and 
parallelograms including their definitions, examine their properties collectively, and then formulate 
their reasoning etc. In this process, they might fail to collectively have useful conceptual and visual 
images of parallelograms and in this case they have to fold back to their collective image making 
stage in order to continue to examine this problem.  



Dialogic process in collective geometrical thinking 

The framework for collective thinking process by Martin and Towers (2014) discussed above can 
offer useful ways of analysing collective thinking process which collectively made or had conceptual 
and visual images, held back, noticed properties and so on, but this approach can be strengthened by 
considering some of the dialogic processes involved in thinking. For example, Mercer and Sams 
(2006) studied how certain types of talk, which mediate conceptual knowledge, affect students’ ways 
of collective thinking and problem solving. They particularly consider that the roles of exploratory 
talk, described as being critical friends each other and using explicit reasoning during problem 
solving, showing how it is crucial for developing understanding, comparing to the other types of talk 
such as disputational (being competitive or disagreeing with each other in egoistic ways) or 
cumulative talk (agreeing each other without constructive criticisms). Extending this talk type 
approach further, Kazak, Wegerif and Fujita (2015) report that an ‘Aha!’ moment occurred after 
learners had engaged in productive ‘dialogues’. ‘Dialogues’ to which we refer include more than 
exchanging recognisable utterances, but it is in a Bakhtinian sense, which Barwell (2016) recently 
described as “a theoretical idea that defines the nature of many aspects of the relationality of 
language.” (p. 6). Our view is that such ‘dialogues’ elucidate differences and gaps, and encourage 
learners to see their learning from a different perspective, which is based on Bakhtinian dialogic 
theory (1963; 1984).  

From this point of view, in addition to effective collaborative practice such as building effective 
collective conceptual and visual images of geometrical figures for problem solving, seeing a problem 
‘as if through the eyes of another’ is important for emergence and development of collective group 
thinking and understanding. This includes, for example, recognising multiple ‘voices’ in 
mathematical concepts, seeing ideas from an ‘outside’ perspective, establishing dialogic space, 
learners’ attitudes to each other, laughter, and so on. This is what Wegerif (2011) refers to as dialogic 
process of conceptual growth. Barwell (2016) also states, in the context of the development of the 
concept ‘polygon’: “the process of making sense of the word and the concept ‘polygon’ arises through 
the differences between the two groups of shapes on the blackboard, between the different ways of 
classifying shapes that preceded this moment, and so on.” (p. 9). Let us take again the example 
whether a ‘rectangle’ can also be seen as a ‘parallelogram’. Here, in their utterances students will use 
‘rectangle’ or ‘parallelogram’, but they will contain ‘multiple perspectives and agencies, i.e. 
rectangles for their own definitions and conceptual and visual images, for peers’ definitions and 
images, for the formal definitions which appear in the textbook or for definitions used by teachers, 
and so on. In their talk they might agree or disagree with their thinking and if the group of students 
do not see a rectangle from an ‘outside’ perspective, they might not be able to reach mutual 
agreements or reasonable answers, or extend their discussions and apply other contexts such as ‘is a 
square a type of parallelogram?’, etc. 

Methodology   
The participants of our study were 27 Y7 students (12-13 year old) in a lower secondary school in 
South West England. Their abilities are recognised by their class teacher as the second highest group 
in the year group, meaning that their achievements are higher than the average students in the UK 
school context. They have also studied formal definitions of basic 2D shapes including 
parallelograms. The participates undertook the following tests in 2015-16, summarised in fig. 1. 



Group thinking measure test Geometry group test 

General group thinking test: We first identify 
groups’ thinking by using the group thinking test 
which consists of two tests A and B of 15 graphical 
puzzles each, carefully matched to be of equal 
difficulty. We used this test as it was reported that 
the test provides useful insights into how groups 
work well in general. Students do one test working 
in groups of three and the other test working 
individually, assuming a measure of individual 
thinking correlated to a measure of group thinking 
with a measure of the difference between the 
individual scores and the group score (Wegerif et 
al, in press). In our study, the half of students in 
the chosen class individually undertook Test A, 
and then we formed groups of three in accordance 
with their test scores. Then each group undertook 
Test B. The other half did Test B as their 
individual and Test A as group test. All groups’ 
work was video-recorded.  

  

For each question, students have to choose which 
graphical image should fit into ‘?’ based on 
patterns and properties of the other 8. For the left 
the answer is 5, and the right one it is 4 (by seeing 
‘outside’ as addition and ‘inside’ as subtraction). 

Geometrical thinking tests: The same groups of students 
undertook geometry test which are derived by Fujita (2012) about 
hierarchical relationships between parallelograms. 4 of 9 groups 
were video-recorded for further analysis, informed by their group 
thinking test performances. Students undertake the following 
questions related to inclusion relations between quadrilaterals. 
For each question, 3 points will be given if students’ choice is 
based on the hierarchical classification, but if it is prototypical 
then 1 point will be given. For example, for Q1, 3 points for ‘1, 
2, 4, 5, 6, 7, 9, 11, 13, 14, 15’ but 1 point for ‘1, 6, 9, 14’ or for 
Q3, 1 point for choosing (b) and (c) are correct. 
Q1. Which of the quadrilaterals 1-15 above are members of the 
Parallelogram family?  

 
Q2. What is a parallelogram? Please write its definition. 
Q3. Read the following sentences carefully, and circle the 
statements which you think are correct. 
(a) There is a type of parallelogram which has right angles. 
(b) The lengths of the opposite sides of parallelograms are equal. 
(c) The diagonally opposite angles of parallelograms are equal. 
(d) There is a type of parallelogram which has 4 sides of equal 
length. 
(e) Some parallelograms have more than two lines of symmetry. 
Q4. Is it possible to draw a parallelogram whose four vertices are 
on the circumference of a circle? 

Figure 1. Tests for group thinking and geometrical thinking 

In the data analysis, we first examined general relationships between general group thinking test and 
geometry test, focusing on whether geometrical thinking can be predicted from group thinking test 
performances. We then analysed the video data by considering what types of talk (disputational, 
cumulative, or explorative) can be recognised in their group work, what kind of ‘voice’ can be 
recognised in their collective Image Having/Making, Property Noticing and Folding Back processes 
(see the next section for the examples).  

 



Findings and analysis 
Overall performance in their group thinking test and collective geometric thinking 

The test results for our sample of 27 students are as follows: 

Test Mean S.D. 

Group thinking test (Individual, N=27) 9.3 (out of 15) 2.07 

Group thinking test (Group, N=9) 10.4 (out of 15) 1.24 

Geometry test (N=9) 3.67 (out of 12) 1.66 

There is no statistical significant difference between individual and group scores in the Group 
thinking tests (Mann-Whitney U test, p-value is 0.1063, p > .05), indicating in this class in general 
collaborative learning did not positively affect test scores. Also, low scores from geometry tests 
indicate that the students' collective geometric thinking are also governed by prototypical examples 
of parallelograms, despite being given opportunities to share their ideas and to work collaboratively 
to solve the geometry test. Furthermore, statistical analysis of the data, using linear regression 
modelling, showed that the ability to predict geometry test scores from individual thinking scores, 
and group maths test scores was very weak (R2 of 0.046). Likewise, the relationship between 
individual group thinking scores and geometry test scores was very weak (Spearman Correlation 
0.224). This might suggest that collective geometric thinking as 'measured' by the geometry test is 
different from the thinking ‘measured’ by the group thinking test at least in our sample (we will 
explain relationships between general group thinking and mathematical thinking in more detail in our 
presentation.) 

Examples of students’ collective thinking process 

Although quantitative analysis did not suggest strong relationships between general group thinking 
and collective geometric thinking, the video data suggest some interesting features relating to why 
students could not do well in the geometry test in their collaborative work. In total 340 interactions 
from students were examined in terms of stages of collective thinking process and dialogic theory. In 
this section we select examples from Group 1 and 5, whose obstacles were particularly related to not 
only their conceptual and visual images of quadrilaterals but also their dialogic relationships in their 
collaborative learning.  

In the individual test, the three students BS, AC, and JC in Group 1 scored 14, 10, 11 but their group 
score was 12. This means their group work did not benefit very positively (in the context of group 
thinking measure test). In their geometry test, their interactions were rather disputational and they 
could not see their peers’ ideas from the others’ point of view in addition to influences from 
prototypical examples. For example, in their collective Image Making/Having stage, they discussed 
what a parallelogram was conceptually and visually, one of them questioned if rectangle or square 
can be a parallelograms based on the statement voiced by BS (line G1 49), but immediately after AC 
said “And a square and a rectangle. It’s trash”. This indicate in the line 54, the word ‘square’ or 
‘rectangle’ by AC were very personal, and not accepting the ‘voice’ by BS or JC: 

G1 47. JC What is a parallelogram? Write the definition.  
G1 48. AC A squashed up rectangle. 



G1 49. JC No both sides are parallel. 
G1 50. AC A squashed up rectangle. 
G1 51. BS So that would mean thirteen as well and two. 
G1 52. AC: And a square. 
G1 53. BS: And one and… 
G1 54. AC: And a square and a rectangle. It’s trash.  

They then continued their discussion, and it is evident that their understanding is influenced by the 
prototypical image of parallelogram (line G1 59, G1 60 or G1 70). In addition, it seemed that they 
could not see each other’s positions. In the line 61, AC aggressively said ‘That’s what we got told 
in…’, referring to authoritative voices. In the line 64, BS again held back to a definition “all the sides 
are parallel” and suggested rectangle can be a parallelogram (line G1 67). There was a dialogic gap 
between BS and AC/JC. However, JC and AC again referred to a (wrong) definition based on the 
prototypical image (line G1 68 and G1 69), and BS’s voice was dismissed, and BS disappointingly 
said ‘Oh no’, and their collaborative explorations stopped.  

G1 58. AC I think it’s…  
G1 59. BS A squashed up rectangle.  
G1 60. JC No if it’s a squashed up I need to know squeeze it.  
G1 61. AC That’s what we got told in…  
G1 62. BS All sides are the same.  
G1 63. AC No they’re not.  
G1 64. BS No, no, all the sides are parallel.  
G1 65. JC Yeah. 
G1 66. AC Yes so is a square. 
G1 67. BS So that will do one, two (pointing a rectangle image). 
G1 68. JC No because that’s a quadrilateral not a parallelogram. A parallelograms are  

  like… 
G1 69. AC A squashed up rectangle.  
G1 70. JC No parallelograms are like that they’re like that they’re messed up.  
G1 71. BS Oh no.  

Let us see another group, Group 5. In the individual test, the three students JM, BH, and TF in Group 
5 scored 9, 10, 7, but their group score was 11. This means their group work did not benefit either 
positively or negatively. In their collective Image Making stage of the geometry test, JM first voiced 
his own image and definition (line G5 12) which was influenced by the prototypical image and then 
TF agreed. Then BH added ‘Two pairs of parallel sides” (line G5 14). This made JM question “a 
rectangle has two pairs of parallel sides as well?” (line G8 17), but after a moment he said “But it 
(parallelogram) doesn’t have right angles" (line G5 18), indicating he could not see BH’s point of 
view. TF then agreed with JM. BH did not argue back from here (a kind of cumulative talk), and they 
now had parallelogram as ‘a rectangle without 90 degree angles’ as their collective image of 
parallelogram. 

G5 7. JM       …Ok what is a parallelogram?   
G5 8. BH Oh. 
G5 9. JM It’s rectangle but… 



G5 10. BH It’s like… 
G5 11. TF Erm like… 
G5 12. JM It’s like, it’s a rectangle but it doesn’t, we’re not, it doesn’t have all ninety     

  degrees. It doesn’t have all right angles. 
G5 13. TF Yeah, yeah yes so it’s a rectangle but it doesn’t have… 
G5 14. BH Two pairs of parallel sides. 
G5 15. JM It’s a rectangle. 
G5 16. BH Two pairs of parallel sides. 
G5 17. JM Yeah but that erm that a rectangle has two pairs of parallel sides as well. 
G5 18. JM … (a moment) But it doesn’t have right angles so it’s rectangle without … 
G5 19. TF Ninety degree angles. 

After this, this shared definition used throughout the problem solving process in their Collective 
Property Noticing stage, resulting they only chose (b) and (c) of Q3 as true or in Q4 they formulated 
it would be impossible to draw a parallelogram whose four vertices are on the circumference of a 
circle because “the obtuse angles would not touch the circumference of the circle” (G5 line 56). The 
other groups (Group 2 and 8) also showed similar processes, i.e. definitions based on prototypical 
images were collectively made and had uncritically at first and then these were used to examine 
properties and formulate their answers.  

Discussion  
In this paper we examined what obstacles will be identified when students are working together with 
geometrical problems. By answering our research question, our findings suggest that even 
collaborative learning settings prototypical images (Hershkowitz, 1990; Fujita, 2012) strongly 
influence when students were making/having conceptual and visual images of geometrical figures 
collaboratively, i.e. collective Image Making and Having stages (Pirie and Kieran, 1994; Martin and 
Towers, 2014). Also, when learners collectively had definitions based on prototypical images and 
missed opportunities to dialogically examine these (Bahktin, 1964; Wegerif, 2011; Barwell, 2016). 
Even if they shared ideas during their problem solving processes well, these students could not reach 
the correct answers by examining different ideas voiced in their collaborative work (Barwell, 2016). 
It is interesting to see that groups often had opportunities to examine their collective definitions (e.g. 
line G1 67 or G5 18-19), but they did not explore these opportunities because each member did not 
see what others were saying ‘as if through the eyes of another’ (e.g. line G1 67-71 or G5 16-19). 
Thus, in conclusion, in addition to prototype phenomenon, in collaborative learning settings it is 
necessary for students to dialogically examine their starting points of problem solving (in this case 
the definition of parallelogram).  

In our research context, we did not find strong relationships between general group thinking and 
geometric thinking. As the sample size is relatively small, we would like to pursue this topic in our 
future research, together with developing effective pedagogical models for better collective geometric 
thinking.  
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Double perspective taking processes of primary children  
– adoption and application of a psychological instrument 
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Perspective taking can be conceptualized in the framework of mental transformations in terms of 
subsequent egocentric transformations. Kozhevnikov and Hegarty’s (2001) PTSOT is a test 
instrument for adults that investigates double perspective taking processes. Both perspective taking 
processes can be defined by certain egocentric transformations. An adoption of this test for primary 
children reveals that they are able to understand the test and verbalize easily their thinking 
processes. 8 items were solved by 254 fourth graders. Results show a variety of typical difficulties 
that can be interpreted in detail using the egocentric transformations framework. The theoretical 
framework and the straightforward way of item construction allow us to systematically generate 
items for various applications in psychology and mathematics education. 

Keywords: Egocentric transformations, geometric thinking, perspective taking, spatial abilities. 

Theoretical background 
Spatial abilities have widely been debated within mathematics education, with a multitude of 
meanings and definitions (Mulligan, 2015). Discussions within WG4 in CERME highlight 
implicitly the implication of those abilities on all four geometrical competencies to support 
geometrical thinking that were proposed by Manschietto et al. (2013).  

Psychometric studies on individual differences have shown that the construct of spatial ability is 
multidimensional and consists of several spatial ability factors (e.g,, McGee, 1979; Linn & Petersen, 
1985). Although the exact factor structure of spatial abilities remains a subject of intensive debate, 
some of these factors were studied in detail, both for adults and children. One of these factors, 
spatial orientation, also denoted as perspective taking in the literature, was proposed to measure the 
ability to imagine the appearance of a set of objects from different orientations (perspectives) of the 
observer (McGee, 1979).  

In the experimental cognitive literature, spatial abilities have been conceptualized as the ability to 
engage different mental transformations that require the subject to update an encoded visual stimuli 
with respect to three different frames of reference: the intrinsic reference frame of objects, which 
encodes relations among objects, the egocentric frame of reference, which encodes object locations 
with respect to one’s body, and the environmental frame of reference (Huttenlocher & Presson, 
1973; Zacks et al., 2000). Perspective taking ability has been defined as the ability to perform a set 
of egocentric transformations on objects, in which the relationship between the environmental 
coordinate frame and those of the objects remain fixed, while each of their relationships with the 
observer’s egocentric reference frame are updated. Although the conceptualization of perspective 
taking within the theoretical framework of mental transformations is logically equivalent to the 
qualitative description of the factor spatial orientation, it adds value for the deconstruction of 
complex perspective taking into separable, analyzable transformation processes. 



Perspective taking abilities have been studied extensively in the developmental psychology 
literature (see Newcombe, 1989, for a full review). It has been highlighted that children demonstrate 
first perspective taking abilities even in infancy, show first achievements on more advanced tasks at 
around 4 or 5 years and improve performance considerably between the age of  6 and 8 (Frick et al., 
2014). Complex perspective taking tasks that involve typically conflicting frames of references such 
as Piaget and Inhelder’s (1956) Three Mountains Task are not fully mastered until the end of 
primary school. Although the involvement of conflicting frames of reference in perspective taking 
tasks, e.g. the involvement of a to-be-imagined frame of reference that conflicts with the child’s 
direct relation to the visual stimulus, has received criticism (see Huttenlocher & Presson, 1973, for a 
detailed discussion), it is valuable from a spatial cognition point of view. Tasks with conflicting 
frames of reference are of high interest, because they demand for the ability to represent, maintain 
and coordinate multiple frames of references within one coherent spatial framework. This ability is 
meaningful and predictive for a whole range of everyday life spatial abilities, such as misaligned 
map reading (Lobben, 2004), environmental learning and wayfinding (Allen, 1999; Hegarty et al., 
2006). A deeper understanding of perspective taking processes involving conflicting frames of 
references allows us therefore to discuss spatial abilities of primary children in a much broader 
context. This is consistent with the mathematics curriculum but also curricula of applied sciences 
and geography. 

A qualitative re-analysis of typical markers of perspective taking ability such as the Guilford and 
Zimmerman (1948) Spatial Orientation Test for adults turned out not to be construct valid as being 
solved mostly by mental rotation strategies (Barratt, 1953). Kozhevnikov and Hegarty (2001) 
proposed a novel, psychometric paper and pencil perspective taking/spatial orientation test (PTSOT) 
for adults in order to overcome the drawbacks of the Guilford-Zimmermann task. The test 
instrument consists of 12 items that display an arrow of seven 2D-objects. On each item, the 
participant is asked to imagine being at the position of one object (anchor point), facing another 
object (defining the imagined perspective within the array) and is asked to indicate the direction to a 
third object (target). Item formulation stimulates therefore complex perspective taking processes 
with conflicting frames of references. The answer is noted on an “arrow circle" (see example item in 
Figure 1, left side, item adopted for better readability). Participants are neither allowed to rotate 
physically the object array nor the “arrow circle”. 

The PTSOT has been shown to be construct valid by the authors themselves, involving mostly self-
reported perspective taking processes in adults (Kozehevnikov & Hegarty, 2001). Due to its 
accepted validity the test has been used to underline perspective taking abilities to be predictive for 
environmental layout learning in real world and virtual contexts (Hegarty & Waller, 2004). 

The present study aimed to address the development of an instrument that stimulates complex 
perspective taking processes with conflicting frames of reference. One goal of the study was an 
adoption of the original PTSOT for primary children. A second goal was to describe the instrument 
with respect to test characteristics and typical error patterns that are caused by problems or failure in 
a set of mental transformations that are necessary to solve the items. Finally, an overall goal was to 
conclude potential applications of the instrument within the field of psychology and mathematics 
education. 



Adoption and item construction 
Design of an adopted instrument 

The adoption process was conducted throughout a qualitative study with 25 fourth graders in a 
bachelor thesis project. We adopted the PTSOT with respect to 12 design parameters that are listed 
in Figure 1. We will elaborate in detail on the literature background in a following publication. 

Figure 1: Comparison between the PTSOT and the adopted instrument with respect to 12 design 
parameters. One item of the PTSOT is shown on the left, the whole adopted instrument is shown from 

a quasi-bird perspective on the right side, showing the object field and the solution answering disk 

 

The adopted instrument consists of a 3D, small scale array of six farm animals that are placed on a 
green sheet of paper (the “meadow”). The child is sitting in front of the fixed array of objects, taking 
an oblique view on the whole scene. Just in front of the child there is a fixed, circular disk with 12 
numbered sections and a mobile arrow on it. Animals can be stuck on the disk using glue dots. 
Verbal item formulation is standardized as following: 

Tutor: “Imagine that you are animal A (sticks animal A in the middle on the arrow of the 
disk) on the meadow and are facing animal B (places animal B on on the 
semicircle attached to the disk). In which direction do you have to turn in order to 
see animal C?”  

The child turns the arrow of the answering disk at the section which corresponds to the right 
direction and the tutor notes the answer. During the solution process, the child is allowed to gesture 
but not to turn the array, the answering disk or itself. 

Item construction & framework for item analysis 

We constructed eight initial items with the help of two parameters that describe two perspective 
taking processes within one item. In Figure 2 you can see that each item is defined by a set of four 
subsequent mental transformations of the egocentric frame of reference, which – pairwise – define 
one perspective taking process within the item.  



 Figure 2: Item analysis for an arbitrary item showing the two mental viewing directions (dashed 
lines), the original viewing direction of animal A (black line), the egocentric viewing direction of the 

observer as well as the item construction parameters α and β  

Exploratory Studies 

We studied the range of strategies that children use to solve different items in a qualitative interview 
study with 16 fourth graders in the context of a second bachelor thesis. Interviews served as an aid 
for the interpretation of results of the exploratory study as well as verification of the goal of the 
instrument.  

In a main study, we performed the eight items of our adopted test instrument with 254 fourth 
graders (mean age was 9.17 years; 116 boys and 138 girls) out of 11 classes in Lüneburg; forming a 
heterogeneous sample in terms of scholar achievement and social background. The test was 
administered in a separate room in a 1:1 situation with the experimenter. We documented children’s 
solutions, but we did not film the children.  

Results and discussion 
Test theoretical considerations 

In a first approach, Item Response Theory (IRT) analysis, we scaled the data using a Rasch-model1 
in Conquest. The characteristics prove that data fit well with dichotomous data from the exploratory 
study with a MNSQ within 0.95 and 1.07 for all items. EAP reliability is poor, 0.456, yet might be 
influenced by the small number of items. Discrimination values show poor discrimination (0.24 and 
0.33) for two items and acceptable (0.42- 0.56) discrimination for the other items. Item difficulties 
are between -0.52 and 2.8 (0 being medium difficulty), yet showing a tendency towards a selection 
of very difficult items. We conclude that from a test theoretical point of view, our selection of eight 
items is still far away from been applied as a psychometric measure of perspective taking. However, 
a first analysis pointed out a set of items with good characteristic values. 

Quantitative results 
                                                 
1 Rasch-models are one specific class of measurement models in IRT in which latent trait estimates depend on both 
persons’ responses and the properties of the item (difficulty, discrimination). 



In a second analysis, we interpreted the number of answers per section in the answering disk within 
the mental transformation framework that was presented in Figure 2. 

(Item 6) “Imagine that you are the cow and you are facing the dog. In 
which direction do you have to turn in order to see the chicken?” 

Item 6 is characterized by α=250°, thus demanding the child to rotate 
its egocentric frame of reference by more than 90° to the right while indicating the direction of the 
chicken (β=33°), thus asking for a clear left/right decision at this point of view. IRT analysis 
showed that the item is difficult (1.06) and has an acceptable discrimination value (0.55).  

We performed the analysis of item solutions within our mental transformation framework. Errors 
were classified into “problems” (task is basically understood but there are a few inaccuracies within 
one transformation), “failure” (one transformation is not performed at all, but the item is solved 
within the general item structures) and “neglect” (the goal of the item is changed due to a 
misunderstanding/heavy problem with one of the two perspective taking processes) in order to stress 
the amount of difficulty that a child showed during the solution of an item.  

A detailed analysis in Figure 3 demonstrates the depth in which item solutions might be interpreted 
with the mental transformation framework. Figure 3 shows typical error patterns, such as  

 neglect of the  first  perspective taking process, thus solving the item from a fixed egocentric 
viewing direction 

 failure at the last transformation T4, thus having left-right problems 

 failure at T2, the item is thus solved by taking the initial, fixed heading of the first animal 
(cow) and the child fails to shift the viewing direction from α0 to α 

 problems with estimation of the angle β in T3 
 neglect of the first perspective taking process and projection of the egocentric viewing 

direction on the first animal (cow), thus pointing towards the relative position of the dog  
 

Figure 3: Analysis of solutions for item 6.  



(Item 8) “Imagine that you are the chicken and you are facing the horse. 
In which direction do you have to turn in order to see the cow?” 

Item 8 is characterized by α=170°, thus demanding the child to 
transform its egocentric frame of reference by almost 180° while 
indicating the direction of the cow (β=68°), thus asking for clear 
left/right decision at this point of view. IRT analysis showed that the 
item is very difficult (2.48) and has an acceptable discrimination value 
(0.53). The high difficulty of this item results from the need to take 
almost an opposite perspective while indicating to the front right. 

For the analysis we expected therefore a large percentage of children to 
fail at the last transformation T4  (thus producing right-left-errors)  as well as a high number of 
children to neglect the first perspective taking process, thus solving the item from an egocentric 
viewpoint. Figure 4 demonstrates that the last item shows a whole range of typical difficulties. 

However, although the solution rate is for this item was low, many children managed to perform 
most of the transition processes correctly. Almost 77% of the children succeeded on performing at 
least T1,  47% succeeded in doing at least T1 and T2 correctly, 30% managed T1, T2 and T3 and 
almost 10% managed to do all the transformations correctly. Figure 4 shows that problems with the 
first perspective taking process may occur due to egocentric behavior, the failure to perform T2 or 
due to the projection of the egocentric viewing direction on the chicken. We explain errors in the 
first perspective taking process by difficulties that are inherent to children at this age (see 
Huttenlocher & Presson, 1973) but also by problems in understanding the item formulation and the 
item structure itself. The latter might be improved by doing multiple examples with the children (we 
explained the item structure with only one example). 

Figure 4: Detailed analysis of item 8, revealing problems in the T4 transformation process. Answer 
patterns that are not interpretable within our framework might be explained by counting in the field 

of animals or arbitrarily guessing the answer. 



Applications of the instrument in different contexts 
We analyzed performance on our adopted version of the perspective taking test at two different 
levels in order to underpin the argumentation on possible applications of the instrument.  

Diagnostics 

We demonstrated that item construction is straight forward using the construction parameters α and 
β. Our instrument allows therefore purposeful item construction in order to investigate individual 
differences and developmental issues in complex double perspective taking abilities.  Children 
verbalized easily their thinking processes in our qualitative study, using gesture for showing 
viewing directions and the direction of the third animal. A combination of item solution and 
explaining aloud the solution process might help to diagnose the transformation processes that are 
still problematic for each child. 

During construction and evaluation process, we identified two problems with our instrument that 
should be considered during item formulation: First, we measured angles from head to head of each 
animal. As the animals are quite large, the correct estimation of the angle β might depend on 
whether the child focuses on the head or the tail of each animal. Second, as the rabbit was placed at 
the center of the animal array, children had problems with taking the viewing direction of the rabbit. 
Instead, they projected their egocentric viewing direction onto the rabbit and answered items as 
giving relative positions of animal C to the rabbit.  

Learning environment 

Our adopted instrument consists of easily purchasable, inexpensive material. Again, our study 
showed that children are able to verbalize their spatial thinking processes with ease, using a whole 
range of gestures. Our instrument might be used for teaching of complex perspective taking 
processes (children solve pre-formulated items by the teacher), in communicative settings (children 
formulate items on their own), in discussions that address the transformation processes explicitly 
(“Can you explain me why this item is so complicated?”), or in creative settings (formulation of 
own items within constraints, e.g. difficulty, or re-configuration of all animals on the meadow).  

Psychological test instrument 

The original PTSOT has gained much attention concerning psychometric measurement of 
perspective taking ability because it is construct valid and reveals the predictive nature of 
perspective taking abilities for environmental learning. Another wishful application of our adopted 
version of the PTSOT is therefore in psychometrical measurement of children’s perspective taking 
abilities. IRT analysis revealed a poor reliability and pointed out some inappropriate items with low 
discrimination values. In a further study, an exploratory analysis on a larger set of items of 
intentionally different difficulties is planned. IRT analysis might then reveal good items for a 
psychometric test of spatial ability in children. An IRT analysis of the test instrument might then be 
linked to our analysis technique based on egocentric transformations in order to develop a typology 
of complex perspective taking in children. 
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What attention is given to spatial sense in Geometry? The outcome (2015) of a special ZDM issue, 
Geometry in the Primary School and the CERME conference is a good opportunity to think about 
and compare different approaches or frameworks regarding this topic.  
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Introduction 
A travel abroad enriches our way of thinking and furthers our understanding of the values and 
behaviours of his/her own culture. For us just the same an intellectual trip outside the country (or 
the language) helps deepen our knowledge and analysis of our way of thinking. The study initially 
aims to compare the perspectives of educational researchers regarding the notion of spatial sense. 
Along the way, it documents the conceptual frameworks which support research.  

In ZDM issue 47, Geometry in the Primary School, the theme of spatial sense is common to all 
papers (Mulligan, 2015). Could it be that the study involves primary school or that the imagery in 
thought is a topical subject in recent neuroscience research? In the 36 papers of the ICMI Study 
Perspectives on Teaching Geometry for the 21st Century (1998) the word spatial was mentioned 
353 times but never in a title. Our ongoing study is based on (not yet completely extensive) reading 
of ZDM 47 and CERME texts on Geometry since the first time (2003) that a specific group about 
Geometry exists. Such a group has persisted for all the CERME under the name Geometrical 
Thinking (except 2011 Geometrical teaching and learning).  

In short, this paper provides an overview on spatial sense the difference theoretical frameworks 
regarding it, based on literature published in ZDM issue 47 and CERME papers of the last decade 
(2003-2015). 

First definitions and motivations for studies about spatial sense  
Many expressions (spatial reasoning, spatial sense…..) are related to spatial when considering 
English papers from cross- and interdisciplinary fields of mathematics education, psychology, child 
development and neuroscience: In a first approach we consider these expressions as equivalent and 
agree the large definition quoted by Mulligan (2015), from Spatial Reasoning Group (2015)  

“Spatial reasoning (or spatial ability, spatial intelligence, or spatiality) refers to the ability to 
recognize and (mentally) manipulate the spatial properties of objects and the spatial relations among 
objects. Examples of spatial reasoning include: locating, orienting, decomposing / recomposing, 
balancing, diagramming, symmetry, navigating, comparing, scaling, and visualizing.” (Mulligan, 
2015, p. 513).  



It should be noted that this definition considers spatial in a broader sense than 3D- situations or 3D-
geometrical thinking. In this paper we are interested in spatial skills, which are not associated 
with objects 3D. 

Many researchers stress the utility of spatial reasoning for mathematical learning and problem 
solving (Owens & Outhred, 2006; Sinclair & Bruce, 2015), and to Science, Technology, 
Engineering and Mathematics Education (Mulligan, 2015). Tahta (1980) and others note the ability 
to mobilize wisely spatial skills in mathematical and scientific thought, which Battista (1999, 
quoted by Mulligan, 2015, p. 514) named spatial structuring and defined as: “the mental operation 
of constructing an organization or form for an object or set of objects. It determines the object’s 
nature, shape, or composition by identifying its spatial components, relating and combining these 
components, and establishing interrelationships between components and the new objects” (Battista, 
1999).  

Spatial structuring is also an important component of the early learning of numbers, of 
measurement units, and well of geometrical thought (Van den Heuvel-Panhuizen et al., 2015; 
Mulligan, 2015). Van den Heuvel-Panhuizen et al. (2015, p. 347) outline the strong relationship 
between spatial and mathematical abilities. Mathematical performance and spatial abilities are 
positively correlated, not only in mathematical domains that are ostensibly spatial.  

French scholars as Berthelot & Salin ‒ with a long story of research on geometrical education ‒ 
agree on the place of spatial abilities in geometry learning, also for geometrical proof. But they have 
always emphasised (since the 1990s) their interest for everyday life: “the treatment of spatial 
abilities is the main source not only of many of the further learning difficulties met by secondary 
school pupils, but also of some of the main deficiencies in spatial representation needs in everyday 
life” (Berthelot & Salin, 1998, p. 71). This point of view has encouraged them to define and 
elaborate, unconstrained by geometry (or dissociated by classical geometry), what they called 
spatial knowledge.  

In conclusion it appears that spatial abilities are critical for learning mathematics and beyond. As 
these abilities are naturally associated with geometry, geometry seems the ideal niche for their 
teaching. It could even be read between the lines that it would be, nowadays, the main reason for 
teaching geometry in compulsory school education. Indeed, the present trend in some countries is to 
marginalize geometry in curricula in favor of probability and statistics (Maschietto et al., 2013).  
Obviously spatial reasoning nourishes geometric reasoning (Mithalal-Le Doze, 2015), but 
geometric reasoning needs other abilities, like defining and classifying (in the sense of Brunheira & 
Ponte, 2015), axiomatic reasoning, and doesn’t take in account non-mathematical forms of 
deduction... Furthermore spatial problems, like finding one’s way in an unknown town, cannot be 
assimilated to geometrical tasks. Studying spatial reasoning for itself seems to be interesting.  

Spatial sense in CERME papers (2003 to 2015)  
Let us first examine how the successive CERME (2003 to 2015) working groups named 
Geometrical Thinking deal with spatial sense.  

The Group Geometrical Thinking worked within the continuity in the CERME3, 4 and 5 (2003, 
2005, 2007). In CERME5 the topic Spatial abilities and Geometrical tasks was considered; it is 



noted: if it seems possible to agree about Geometrical tasks, it is necessary to precise what spatial 
abilities mean. We try to do it in the next section.  

In CERME6 (2009) spatial abilities is not a specific topic of the Group even though it could be 
present in the sub-theme Teaching, thinking and learning 3D Geometry.  

In CERME7 (2011) spatial abilities is connected to diagrammatic reasoning. Deliyanni et al. 
(2011) explore spatial abilities in relation with 2D-geometrical figure understanding and consider 
the influence on reasoning of the different diagram’s apprehensions (Duval, 1995): perceptual, 
sequential and operative. Braconne-Michoux (2011) proposes to intertwine the Geometrical 
Paradigms (Houdement & Kuzniak, 2003; Houdement, 2005) and the Van Hiele levels which 
integrates visualization, a spatial ability.  

In CERME8 (2013) the Group introduction proposed four competencies (see Figure 1) to support 
geometrical thinking: reasoning, figural, operational and visual (Maschietto et al., 2013) and assume 
that the links between these competencies are more important for geometrical work. Spatial abiliies, 
spatial sense are not explicitly mentioned but it seems (see above in Mulligan, 2015) to “have a 
place” in each competency. Two papers assume a spatial entry (other than 3D activities): in Sevil & 
Aslan-Tutak (2013) and particularly de Freitas & Mc Carthy (2013) emerges a new face of spatial 
abilities, the gestural / haptic ones.  

 
Figure 1: The geometrical competencies (Maschietto et al., 2013) 

CERME9 (2015) in the continuity of CERME8 is supported by the same model (Figure 1). The 
topic quoted in relation with spatial abilities is visualization. The authors (Ceretkova et al., 2015) 
stress the influence of geometric knowledge on visualization, beyond perceptive and psychological 
aspects.  

How do educational researches deal with the issue of spatial abilities? More precisely what kind of 
theoretical frames do they use or construct for their research? 

Theoretical frameworks for spatial abilities   
Specifying the frame the authors use in order to analyse spatial abilities is quite rare: only once in 
ZDM, only a few times in CERME papers before CERME9. Let us give some examples of such 
frames. 



Example 1 

In Panaoura et al. (2007) spatial abilities are commonly addressed by three major dimensions 
spatial visualization, spatial orientation and spatial relations.  These researchers use an analysis 
model for spatial abilities (Demetriou & Kyriakides, 2006) with three components, namely image 
manipulation, mental rotation and coordination of perspectives to investigate whether or not 
and to what extent primary and secondary school students’ spatial abilities are related to their 
performance on geometry tasks involving 2D figures, 3D figures, or nets of solids.  

Example 2 

In Berthelot & Salin’s research (quoted in Douaire & Emprin, 2015) spatial knowledge is 
knowledge which enables to control one’s relations to the surrounding space, the sensible world. 
This control may consist in recognizing, describing, manufacturing or transforming objects; moving, 
finding, communicating objects’ position; recognizing, describing, constructing or transforming a 
route (Berthelot & Salin, 1999, p. 38). Children begin to integrate spatial knowledge before going to 
school while experimenting, and sharing with adults about their actions. Spatial knowledge cannot 
be reduced to geometrical knowledge but can be necessary to solve a geometrical problem. 

It should be noted that this definition relies on problems (what Berthelot & Salin name spatial 
problems). In Brousseau’s theory (the theoretical frame of Berthelot & Salin’s research) knowledge 
is what enables to solve problems, and problems solving is a condition for learning. For instance 
how to define knowledge to be taught to use efficiently a map when lost in an unknown town? First 
identifying situations in which using plans and maps are necessary; second analysing the spatial 
interactions to solve them and thus indentifying the necessary knowledge.  

Daily life interactions take place in space of different sizes which exert different constraints on the 
actions. Microspace is very close to the subject, like a sheet of paper, a computer screen, a touch 
screen; in this space objects can be moved, touched, turned; it corresponds to the usual grip 
relations. Mesospace is the surrounding space, inside a room, a building; the subject can move 
inside it, mesospace is the space of usual domestic spatial interactions. Macrospace is the broader 
space, unknown city, rural or maritime spaces; the subject has only local views, he had to 
conceptualize (Berthelot & Salin, 1998, p. 72; Douaire & Emprin, 2015, p. 532). Thus spatial 
knowledge is structured into three main conceptions, microspatial conception, mesospatial 
conception, macrospatial conception. For instance, following this frame, a straight line can be 
conceived as a print trace produced with a ruler, the edge of a door, or a set of trees properly 
aligned in a orchard.  

This framework has different functions: in Berthelot & Salin, as in Douaire & Emprin (2015) the 
framework allows them to construct situations as means to teach students spatial knowledge (as to 
alignment and straightness, through the good use of a map to navigate). In other described cases, the 
frame allows to evaluate and compare performances of students, or to map spatial abilities.  

Example 3 

Following Newcombe et al. (2013), Van den Heuvel-Panhuizen et al. (2015, p. 346) distinguish 
between two kinds of spatial skills: between-objects representation and transformation skills (for 



example in Perspective-Taking tasks –PT–-, like the Three Mountains of Piaget & Inhelder, 1956) 
and within-objects representation and transformation skills (for example a mental rotation).  

The aim of their research is to assess children’s PT-skills focusing on the difference between two 
components of what they named IPT (Imaginary Perspective-Taking): visibility and appearance. 
These two competencies are highlighted by the items they proposed to the children. 

Visibility 

 
A boy walks along the street. What does he see? 

Appearance 

 
How do you see Mouse if you look at it from 
above like a bird? 

Figure 2: Examples of drawings and questions in the test (Van den Heuvel-Panhuizen et al., 2015) 

It could be noted that the 3D situation (meso- or macro-spatial) is communicated to the 2D 
representation (micro-spatial).  

The analysis of their tests with more than 300 children of Netherlands and Cyprus (age 4-5) shows 
that kindergartners of the two countries can answer correctly: on average respectively 70% and 55% 
of the visibility items, and 40% and 30% of the appearance items; that the development of the IPT 
competence visibility precedes the development of the IPT competence; that specific item 
characteristics of the evoked context could also influence the difficulty level of the item.  

Example 4   

In the 1990s Duval (1995, 2006) has brought an important contribution to necessary visualization of 
the drawing (implicitly in a microspace) for geometric reasoning. Some authors rely particularly on 
Duval’s research, e.g., Mithalal-LeDoze (2009, 2015), Papadaki (2015) and Swoboda (2015).  

With iconic visualization “the drawing is a true physical object, and its shape is a graphic icon that 
cannot be modified. All its properties are related to this shape (…)” (Mithalal-LeDoze, 2009, p. 
797). With non iconic visualization “the figure is analysed as a theoretical object represented by the 
drawing, using three main processes: Instrumental deconstruction: in order to find how to build the 
representation with given instruments), Heuristic breaking down of the shapes: the shape is split up 
into subparts, as if it was a puzzle), Dimensional deconstruction: the figure is broken down into 
figural units — lower dimension units that figures are composed of —, and the links between these 
units are the geometrical properties (…)” (Mithalal-LeDoze, 2009, p. 797; Papadaki, 2015). Duval 
quoted two other processes Change of Scale and Change of Orientation.  



Studying visually impaired students moving 2D objects to imagine 3D objects, Papadaki (2015) 
introduces a new source for mental images, the kinesthetic one. For these students visualization 
integrated many repetitions of the same gesture, cross-checking it with one’s everyday life tactile 
experience and geometrical knowledge as objects’ definitions. Visualization is clearly more than 
vision, what Duval wrote for a long time describing different ways (iconic and non iconic) of 
visualizing a figure. But Papadaki (2015) introduces a new dimension in visualization, a dynamic 
one; conceiving a figure 3D as the result of a reproducible movement of a figure 2D.  

Swoboda (2015) stresses the rotation as a natural transformation for young students; mental rotation 
is a fundamental component of the frame of Demetriou & Kyriakides (2006), and of non iconic 
apprehension of Duval too. Maybe the rotary motion and the rotation as transformation could be 
studied sooner (than the line symmetry) in compulsory school to enrich visualization skills.  

Conclusion  
Spatial sense and the different frames regarding it is now better mapped. We will not go back on 
what was discussed above, but just stress some difference between the frames regarding it. 

1) The framework of Berthelot & Salin in relation with the size of space enables to realize that 
almost all the mentioned situations or items of the ZDM and CERME papers (except Douaire & 
Emprin, 2015) are located in the microspace; a priori they only request microspatial knowledge1. 
The existence and importance of mesospatial and macrospatial knowledge seem underestimated. 
For example in the paper of Van den Heuvel-Panhuizen et al. (2015) spatial apprehension of a 
picture (or a drawing, microspace) is considered as an apprehension of the evoked real world (meso- 
or macro-space).  

2) Some papers try to isolate “basic” skills or “basic” items which could be predictive of spatial 
sense and serve for students assessment, analysing spatial situations (for example Van den Heuvel-
Panhuizen et al., 2015) or geometrical problems (Duval 1999, 2006). On the other hand Berthelot & 
Salin, in coherence with their support framework, don’t attempt to describe finely “the” spatial 
skills but ask students to solve real spatial problems in which spatial skills are at work. 

3) Papadaki (2015) and Swoboda (2015) allow us to realize that gestures can be a powerful help to 
mentally construct geometrical images and facilitate visualization. Among the gesture the rotary 
motion (rotation) could play an important role.  

4) Visualization is enriched with new entries as gestures and motion; it has gained increasing 
importance on the spatial skills. But what is meant by this term? Another inquiry to lead… 
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Inclusive education urges educational research to deepen its understanding of students with special 
needs. The aim of this theoretical paper is to provide an overview of the didactical aspects in the field 
of autism and mathematics education. First we review literature on autism spectrum disorders (ASD) 
from a broad psychological perspective, and second, we focus on three cognitive theories which are 
used to explain the behavioral symptoms of ASD. Next, we discuss mathematics specific didactical 
issues that relate to these cognitive theories. Finally, we elaborate on an example of research on 
mathematics education for ASD students based on the Van Hiele model of thinking in geometry. In 
the conclusions we bring together the findings and give suggestions for future research. 

Keywords: Autism Spectrum Disorder, mathematics, geometry, Van Hiele, secondary education, 
didactics, inclusion. 

Introduction 
Autism is a neurodevelopmental disorder characterized by impairments in social interaction and 
communication, and by restricted and repetitive patterns of behavior (American Psychiatric 
Association, 2013). Different combinations of the impairments occur, and together form a continuum, 
which is called the autism spectrum of disorders (ASD; Wing, 1988). Both the severity of the 
symptoms and the intellectual capacities of people with ASD vary widely. There is a growing 
understanding that people with autism can also provide a substantial contribution to society (e.g. 
Mottron, 2011). In most countries, and also in the Netherlands, inclusion policies require schools to 
develop support for children with autism. In this article we will focus on ASD students with higher 
intellectual abilities1 and who require limited support, and hence can participate in inclusive 
secondary education. 

Mathematics is a school-subject that builds on logic, is well structured, uses symbolic language with 
well-defined meanings and deals, at least in its purer forms, with unambiguous questions. These 
characteristics make mathematics a subject that is relatively easy to access for people with ASD. 
Research shows that autism is found more often amongst mathematics students than those of other 
disciplines (e.g. Baron-Cohen, Wheelwright, Burtenshaw, & Hobson, 2007). However, other studies 
showed that the majority of ASD students and higher intelligence have an average mathematical 
ability compared to the normal population, while only some have mathematical giftedness (e.g. 
Chiang & Lin, 2007). 

In secondary schools that include ASD students, teaching mathematics is not an easy task. Based on 
research and our own experiences of teaching in inclusive schools, we claim that ASD students 
learning mathematics require specific subject-didactical support. A review of research on autism 
                                                 

 
1 In literature on autism this also indicated as High Functioning Autism and Asperger Syndrome or HFA/AS (Whitby & 
Mancil, 2009). 



showed that most studies are about medical or behavioral aspects, and less than 20% targets education 
(Graff, Berkeley, Evmenova, & Park, 2014). Research on autism in inclusive education is mainly 
about pedagogic topics concerning the ASD students (Ravet, 2011). However, there is little research 
on didactical aspects of autism in specific subject fields. 

The aim of this theoretical paper is to provide an overview of the didactical aspects in the field of 
autism and mathematics education. Our research question is the following: 

Which didactical issues are related to ASD students learning mathematics? 

Literature review 
Autism spectrum disorders 

After the first case studies by Kanner in 1943, and Asperger in 1944, it took until the end of the 
1970’s, when Wing and Gould (1979) provided their classic description of the triad of impairments 
of autism: first, the absence or impairment of social interaction, especially with peers; secondly, the 
absence or impairment of the development of verbal and nonverbal language; and third, repetitive, 
stereotyped activities of any kind. Confusion about different subtypes lead Wing (1988) to the 
conclusion that there must be an autistic continuum, which she coined the Autism Spectrum of 
Disorders (ASD) with diagnoses such as classic autism, PDD-NOS (Pervasive Developmental 
Disorder – Not Otherwise Specified) and Asperger’s syndrome. With the latest version of the 
diagnostic manual DSM-5 (American Psychiatric Association, 2013) the diagnosis of ASD is based 
on persistent deficits in social communication and social interaction, and on restricted, repetitive 
patterns of behavior, interests or activities. The subtypes of PDD-NOS and Asperger are no longer 
official diagnoses, and DSM-5 describes three levels of severity for ASD (i.e. requiring very 
substantial support; requiring substantial support; and requiring support). 

The psychological research into autism has been dominated by three cognitive theories (Rajendran & 
Mitchell, 2007): the Theory of Mind deficit; Executive Dysfunction; and the Weak Central Coherence 
accounts.  

The Theory of Mind deficit 

Children with ASD experience their social environment as unpredictable and incomprehensible 
(Baron-Cohen, Leslie, & Frith, 1985). They seem to treat people and things the same way. 
Observations showed, strikingly, that children with Down syndrome and a low intelligence developed 
a normal social competence, whilst children with ASD and higher intelligence did not (Baron-Cohen 
et al., 1985). To explain this, Baron-Cohen, et al. did research on the Theory of Mind: neurotypical 
children (non-ASD) are able to impute mental states to themselves and others (in other words, they 
have a “theory of mind”), whilst children with ASD fail to do so. This “mind-blindness” was shown 
by the false belief test: a story, played out for the child with dolls, where one doll has a belief about 
the location of an object that is incongruous with its real location. The test subject is then asked where 
the doll will look for the object. To answer correctly the test subject should infer the mental state of 
the doll (“I think she thinks”). A large proportion (80%) of children with ASD incorrectly assumed 
the doll would look on the real location. To explain the 20% of children with ASD who answered 
correctly, second-order false belief tests (“I think she thinks he thinks”) were developed, and based 
on those results, it was assumed that a Theory of Mind is not always lacking completely but may be 



not fully developed in children with ASD. Another problem was that Theory of Mind can be used to 
explain impairments in play, social interaction and verbal and nonverbal communication, but not for 
explaining the other characteristics of ASD, such as the restricted interests, obsessive desire to keep 
things unchanged (rigidity and inflexibility), and so on (Frith & Happé, 1994).  

Executive dysfunction 

Early in the 1990’s, Ozonoff, Pennington and Rogers (1991) suggested that deficits in the executive 
functions could explain symptoms of autism such as narrow interests, rigidity and inflexibility. 

Executive function is defined as the ability to maintain an appropriate problem-solving set for 
attainment of a future goal; it includes behaviors such as planning, impulse control, inhibition of 
pre-potent but irrelevant responses, set maintenance, organized search, and flexibility of thought 
and action (Ozonoff et al., 1991, p. 1083). 

The research by Ozonoff et al. (1991) showed that deficits with executive function where found in 
both children with classic high-functioning autism and those with Asperger’s syndrome (who 
succeeded on the second-order false belief test). This suggested that deficits in executive function 
form a primary cognitive deficit in ASD.  

Weak Central Coherence 

In neurotypical children (non-ASD) the development of information processing is oriented towards 
extracting the overall meaning from the sensory input. This inclination is called ‘central coherence’. 
Frith (1989) described how this development is different in children with ASD, and she proposed the 
weak central coherence theory to explain the symptoms of autism. Psychological tests later showed 
that children with ASD have superior performance on local information processing, but were less 
inclined to global information processing (Happé, 1999). In people with ASD this is also observed as 
a preoccupation with details and parts and a failure to understand the meaning of the whole. 

Implications of ASD for mathematics education 
Although the focus of this paper is on mathematics education, we first address some approaches for 
ASD students that apply to education in general. 

General education 

A general pedagogic approach for students with ASD is structured teaching (Mesibov & Shea, 2010). 
Structure can be provided in the physical environment (e.g. arrangement of the room and the use of 
visual clues), the sequence of events during the day (e.g. an understandable schedule), the individual 
tasks (e.g. provide specific information of the goals and the completion criteria) and the grouping of 
tasks into a work system. Many of these approaches in autism have not been well researched, and 
research is now addressing the determination of evidence-based practices (Reichow, Volkmar, & 
Cicchetti, 2008).  

Mathematics education 

Based on a review of 18 studies of mathematical abilities of ASD students with AS/HFA, Chiang and 
Lin (2007) found that the majority of the ASD students have average mathematical capabilities and 
only some ASD students have a mathematical giftedness. Based on these results, Chiang and Lin 



concluded that an age-appropriate mathematical curriculum can be used, but individual adjustments 
may be needed to support both relative strengths and weaknesses. 

In a review of the literature on academic achievement profiles of ASD students, Whitby and Mancil 
(2009) report that more than half (52%) of individuals diagnosed with ASD have IQs above 70 and 
for these children, academic goals come within reach. There is a need for appropriate interventions 
to allow these children to perform up to their potential and obtain meaningful employment. For 
mathematical abilities, Whitby and Mancil found that computational skills were intact, but applied 
mathematics capabilities were impaired. Issues with the application of mathematics are possibly due 
to executive functioning deficits with their organizational and attentional skills that have a negative 
effect on multi-step problem solving. Deficits in comprehension (both listening and reading) relate to 
contextual understanding (e.g. word problems) and conceptual understanding (e.g. abstract concepts). 

With word problems, ASD students have difficulty choosing the right approach because they have, 
due to their weak central coherence, difficulty seeing the similarities and the common structure of 
different examples and exercises. An ASD adjusted didactical approach for solving word problems 
should address improving reading comprehension, mathematics vocabulary, computation, and 
everyday mathematical knowledge (Bae, Chiang, & Hickson, 2015, p. 2206). 

In solving mathematical problems (“a question that exercises the mind”; Schoenfeld, 1985) ASD 
students are impaired by executive dysfunction (Ozonoff et al., 1991). In mathematical problem 
solving ASD students have similar issues as with word problems, but are also expected to face issues 
with cognitive flexibility, the use of heuristics and the use of meta-cognitive strategies. Positive 
results have been reported on the effects of cognitive strategy instructions for students with learning 
disabilities (Montague, Krawec, Enders, & Dietz, 2014), and these results may also be obtainable for 
ASD students. In classroom practice we see that some ASD students develop problem solving 
procedures of their own, which may work on the initial (simple) problems but cannot be generalized 
to later extensions. Upon receiving feedback, the rigidity of these ASD students sometimes inhibits 
them from accepting the time-proven approaches. Feedback is also known to play an important role 
in self-regulated learning (Butler & Winne, 1995). Improving feedback seeking strategies of ASD 
students, can support their self-regulated learning, and help to overcome barriers in problem solving. 

Conceptual understanding can be a challenge for ASD students: they have, due to their weak central 
coherence, difficulty integrating information and generalizing previously learned concepts (Klinger 
& Dawson, 2001). Minshew and Goldstein (2002) found that individuals with high-functioning 
autism had impaired concept formation. Furthermore, these individuals had difficulty with cognitive 
flexibility and showed incomplete understanding of learned concepts. Temple Grandin, diagnosed 
with ASD, describes (2006) how she memorizes as much facts and experiences as possible, and uses 
an internal search engine to retrieve visual images of prototypes to understand a concept. In general, 
ASD-students benefit from visualization of abstract concepts, and with their strong root memory, 
they remember the visualizations as prototypes of the concept. 

An example: A research study on learning geometry by ASD students 
To illustrate research on subject-specific didactic problems for ASD students, we describe an example 
from geometry and the cognitive theory of weak central coherence. This example is based on a master 
thesis of the first author (Klaren, 2012). The theoretical/ analytical framework is concerned with Van 



Hiele’s theory, which defines five levels of the learning process that learners are said go through 
when learning geometry. The five levels are described by Hoffer (1981) as: 

- Level 1, Recognition: the student 
learns some vocabulary and 
recognizes the shape as a whole;  

- Level 2, Analysis: the student 
analyzes properties of the figures; 

- Level 3, Ordering: the student 
logically orders figures and 
understands interrelationships 
between figures and the importance 
of accurate definitions; 

- Level 4, Deduction: the student 
understands the significance of deduction and the role of postulates, theorems, and proof; 

- Level 5, Rigor: the student understands the importance of precision in dealing with foundations and 
interrelationships between structures 

Van Hiele posited that learners master the levels in a stepwise manner and always in the same 
sequence. In other words: the difficulty of questions specific to the successive levels, will rise. Usiskin 
(1982) confirmed the ability of the Van Hiele theory to describe and predict the performance of 
students in secondary education on geometry. The fifth level was not well operationalized by Van 
Hiele, and left out of further analyses. 

Students with weak central coherence (operationalized as students with ASD), are hypothesized to 
have an inversion of the difficulty of level 1 and 2. In other words: they are expected to find questions 
at level 1 (“shape as a whole”; see Figure 1) more difficult than questions at level 2 (analyses of 
properties). 

To test the hypothesis, 81 children with ASD and higher intellectual abilities, age 12 to 17 years, were 
tested with the geometry test of Usiskin (with the texts translated in Dutch and the original diagrams). 
Rasch analyses was used to estimate the average difficulty (on a logit scale) of questions at each level. 

The results were compared with results found for non-ASD students by Wilson (1990) in a reanalysis 
of the data of Usiskin. The combined results (Figure 2) show that the estimated average item-
difficulty of questions on level 1 and 2 
were indeed shifted for ASD students 
(level 1 more difficult and level 2 
easier) compared to non-ASD students. 
However, level 1 was not found to be 
more difficult than level 2 for ASD 
students. Based on these findings, the 
(strong) hypothesis of inversion must 
be rejected, but the test gives some 
support for the anticipated differences 
between ASD and non-ASD students 

Figure 1: Example of question on level 1 (recognition) 

Figure 2: Average item-difficulty per level 



regarding the difficulty of the first two levels of Van Hiele. In the didactical practice of geometry 
teaching, this should raise awareness that visual recognition by ASD students is to be linked to explicit 
analyses of properties in order to support concept formation. 

A peculiar observation was that some students who performed well on questions on higher levels, 
made unexpected errors in questions on level 1: on questions where the squares were to be pointed 
out (e.g. Figure 1), they included the rectangles. A possible explanation of this type of errors is the 
ambiguity of the mathematical language: in Dutch the translation of square is “vierkant” (literal 
translation: “four sides”). In interviews after the test, students explained their answers by stating that 
the rectangles had four sides. Possibly these students where not relying on the shape as a whole, but 
applied rule-based logic in combination with literal understanding of the mathematical concept. 

Conclusions 
The three cognitive theories described in this paper represent theoretical frameworks that can guide 
research in autism and mathematics education. 

As described by the (lack of) Theory of Mind account, ASD students experience their social 
environment as unpredictable and incomprehensible. Research on ASD and general educational will 
address the development of evidence-based practices that support ASD students in their social 
interactions. Research on mathematics education can develop interventions that aim for using 
(understanding) and seeking feedback with respect to learning mathematical concepts and skills. 

Related to feedback is the use of self-regulated learning. Students with ASD, with their typical weak 
executive functioning, can be supported by interventions that improve their metacognition and use of 
strategies and heuristics, especially in the field of mathematical problem solving. 

Recent research on perception by people with autism (e.g. Pellicano & Burr, 2012; Hohwy, 2013) is 
deepening the neurocognitive understanding of the weak central coherence account. Research on 
mathematics education may benefit from these results, and improve the understanding of concept 
learning by ASD students. 

To summarize, students with ASD have deficits in their social interaction, their contextual and 
conceptual understanding, and the self-regulation of their executive functioning. In order to allow 
successful inclusion of ASD students in education, teachers have to apply effective instruction 
methods to overcome the “mind-blindness” of these students. Research can help define design 
guidelines for instructional methods in mathematics, which are attuned to the specific needs of ASD 
students and allow them to see the beauty of mathematics. 
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The purpose of this paper is to present a questionnaire devoted to trigonometry and its results. 
More specifically, the study focuses on curriculum and cognitive aspects of learning and teaching 
sine and cosine over the final five years in French secondary schools, from grade 8 to grade 12. We 
ask: what are the difficulties of students in learning sine and cosine concepts and making the 
transition from the geometric setting to the functional setting. We identify four major types of error 
committed by students. This raises the question of how to make students effectively assimilate the 
concepts of sine and cosine. 

Keywords: Trigonometry, sine and cosine, secondary school, available knowledge.  

Introduction 
In secondary schools in France, trigonometry notions are introduced progressively from grade 8 to 
grade 11 (science option), and end with sine and cosine functions in grade 12 (science option). We 
ask the key questions: How to articulate the passage from trigonometry in right triangles to the 
trigonometric circle and to sine and cosine functions? And, how to make the students assimilate 
these notions? To answer these questions, we investigate the status of the educational system: 
curriculum and learned knowledge. 

In connection with our analysis of institutional texts and manuals for the study of the mathematical 
organization (Anthropological Theory of the Didactic, Chevallard, 1999; Bosch & Gascón, 2014), 
we elaborated a questionnaire for grade 12 students. The purpose of this questionnaire is to test the 
knowledge acquired by students in the final five years of study on trigonometry and specifically the 
sine and cosine functions in grade 12 (science option), to identify implicit notions in learning and 
teaching of trigonometry, to clarify the set of issues in our research work on what the students have 
learned, and to generate further research questions.  

The questionnaire consists of six exercises, mainly concerning the cosine and sine of an acute angle 
in a right triangle, the cosine and sine of an oriented angle in the trigonometric circle, and some 
properties of the cosine or sine function like periodicity. In this paper, we analyze the first three 
exercises of the questionnaire and describe its results.  

Methodology 
For the curriculum study, we use the Anthropological Theory of the Didactic (Chevallard, 1999; 
Bosch & Gascón, 2014) as a theoretical framework in order to identify the mathematical 
organization (MO) of the French institutions that is developed in French mathematics textbooks. It 
is rather an exploratory analysis of French textbooks which gives us an overview of the teaching of 
trigonometry and of trigonometric functions in secondary schools.  

We do not present in details the curriculum study but the identified MO allowed us to construct a 
questionnaire. It is grounded in the most used types of tasks and techniques in the French teaching 
institutions, from grade 8 to grade 12 related to trigonometry in right triangles (Exercise I, grades 8-



9), trigonometric circle (Exercise II, grades 10-11) and trigonometric functions (Exercise III, grade 
12). 

To analyze the tasks in the questionnaire, we choose tools from the Theory of Double didactic and 
ergonomic Approach (Robert, 2008; Robert & Hache, 2013) which provides us with fine cognitive 
tools to analyze students’ knowledge. The questionnaire is a test given to grade 12 students outside 
the context of any particular chapter in order to avoid any didactical contract influence. We study 
the knowledge adaptation in these tasks (see the following section) and especially, in this paper, the 
available level of knowledge application. This will allow us to have an idea of the cognitive 
complexity of the questionnaire and what students have learned (particularly in terms of available 
knowledge).  

When tasks require adaptations of knowledge that are at least partly indicated, we speak of the level of knowledge 
application that can be mobilized. Students’ work is not effectively analogous, depending on whether they must look 
for the knowledge to use (questions of why or what), or apply and adapt the indicated knowledge (question of how). 
If it is up to the student to recognize the knowledge to use, we speak of the available level of knowledge application. 
[…] We also distinguish combinations, links, or changes among elements such as frameworks, and work further on 
different types of intellectual activities that are specific to mathematics. (Robert & Hache 2013, p.37)  

The questionnaire was given in two versions in order to avoid any influence of neighbor students. 
Variations between them were cognitively irrelevant to our study: different lengths in Exercise I, 
different coordinates in Exercise II, and cosine vs. sine functions in Exercise III. 

Presentation of the questionnaire, a priori analysis 
In this section we specify the aims of each question (of each exercise), the available knowledge 
(AK), the correct methods1, possible erroneous methods and possible errors made by students. Most 
of the tasks are not “simple and isolated tasks” in the following sense: 

We first distinguish simple and isolated tasks, or immediate applications of piece of knowledge without adaptation or 
combination. A single piece of knowledge is used, potentially with simple replacement of general inputs by the given 
information in the context of the exercise. (Robert & Hache 2013, p.36) 

Exercise I: Trigonometry in a triangle  

 

Figure 1: Exercise I – Trigonometry in a triangle 

Exercise I (see Figure 1) asks for the values of sine and cosine of the angles of the given triangle.  

                                                 
1 We focus on the knowledge effectively used by students, for example, we do not discuss methods using scalar product 
of vectors (seen in grade 11). 



Note that in this figure, there is no coding denoting that β is a right angle. We want to know the 
available knowledge of students, and particularly if the generalized Pythagorean theorem effectively 
is mobilized by students.  

The first Method, M-I.1, relies on the definitions of the cosine and sine of an acute angle in a right 
triangle (seen in grades 8 and 9) which require first the reciprocal of Pythagorean theorem (AK, 
seen in grade 8) or the visual recognition of the right angle of the given triangle without proof. 

Note that trigonometry in a right triangle only allows to calculate the cosine and sine of an acute 
angle whose measure is strictly between 0  and 90  but does not give cos  nor sin , which 
require another knowledge (AK). 

There are three steps in M-I.1, where steps a and b form a non-simple task, and step c reinforces the 
complexity: 

a. Recognition of a right triangle with the reciprocal of Pythagorean theorem (AK) or by visual 
inspection. 

b. Definitions of the cosine and sine of an acute angle of the right triangle to find independently 
cos , sin , cos  and sin .  

c. Property of the cosine and sine of the right angle to find cos  and sin .  

Note that there are two other possible pieces of knowledge that could be used: finding, for example, 
cos  with sin  via the formula 1sincos 22   (AK, seen in grade 9) or using a right triangle 

property (AK, seen in grade 9) that ensures the equalities  sincos   and  cossin  . 

Possible errors of the student are confusion between cosine and sine or an error in formulas.  

The second method, M-I.2, relies on the generalized Pythagorean theorem (or Al-Kashi’s formula, 
it allows to calculate the cosine of an angle whose measure is strictly between 0  and 180  or 
between 0 and   radians, seen in grade 11) to find the cosine of an angle of any triangle. In this 
case, what is the reaction of the student when finding 0cos  ? Does he/she conclude that   is a 
right angle? Noticing that the given triangle is in fact a right triangle, will he/she change the strategy 
to M-I.1 method to determine the remaining values?  

There are two related tasks, consisting in finding straightaway cosine, then sine. Apply the 
generalized Pythagorean theorem (AK) to independently find the three cosines and then, with the 
results obtained, use the fundamental relation 1sincos 22   (AK, seen in grade 11) to find the three 
sines. It is a non-simple task to find the cosine of an angle of a triangle. And, it is a non-simple and 
non-isolated task to find the sine of angle: there is the introduction of steps and also a combination 
of settings (numerical and algebraic) - transformation into an equation of the type ax 2 , 
determining the sign of the sine of the angle and deducing its value.  

Possible errors of the student are in the application of the formulas, in algebraic transformation, and 
in numerical calculations.  



Exercise II: Trigonometry in the trigonometric circle  

 

Figure 2: Exercise II – Trigonometric circle 

From Exercise II, we only discuss here the question 1 (see Figure 2) which consists in asking for the 
cosine and sine of   (an acute angle) and of   (an obtuse angle). In the context, we gave the 
coordinates of the points M(4/5; 3/5) and N(-24/25; 7/25). We want to know the available 
knowledge of students such as definitions of the cosine and sine of an oriented angle (seen in grade 
11). It is asked similarly to the Exercise I for the cosine and sine values but in another setting, and 
moreover, with different notions of angles.  

Note that in textbooks corresponding to the 2010 program in grade 11 (science option), one begins 
by defining measures of an oriented angle, then the cosine and sine of an oriented angle in this way: 
The cosine and the sine of an oriented angle are the cosine and the sine of any of its measures. 

The first method, M-II.1, relies on the expression of the Cartesian coordinates of a point of the 
trigonometric circle with the cosine and sine. As  baM ;  is a point of the trigonometric circle in a 
direct orthonormal frame  JIO ,;  of the plane and as   designates the oriented angle  OMOI ,  , 
so we have acos  and bsin  (AK). It is a non-simple task. As   does not designate a 
measure of the oriented angle  OMOI , , do students use the M-II.1 method, namely that the 
coordinates of the point M are   sin;cos ? If not, with the graph, will they think of using other 
methods, for example, like M-II.2 in the following?  

The second method, M-II.2, relies on the relations between algebraic writing of a complex number 
and its trigonometric writing (AK) and on the characterization of equality of two complex numbers 
via equality of real and imaginary parts (AK, seen in grade 12). It is a non-simple task - introduction 
of steps: mark, in the given graph, the angles  ,   - consider the points M and N as respective 
image points of complex numbers of module 1, then write the two complex numbers in two forms: 
algebraic writing and trigonometric writing - deduce the exact values of the cosine and sine of   



and of  . Compared to M-II.1 method, M-II.2 method requires the change of settings, of registers 
and of point of view in the reasoning (Duval, 2006).   

Possible errors of the student are the confusion of sine and cosine in the expression of Cartesian 
coordinates of a point of the trigonometric circle with cosine and sine, error in the application of 
formulas and in numerical calculations.  

Exercise III: Graph of trigonometric functions 

 

Figure 3: Exercise III – Graph of cosine function 

From Exercise III, we only present here the question 1.c. We want to know the available knowledge 
of students like the existence and the nonexistence of a point on the curve of a trigonometric 
function (cosine or sine) and the possibility of placing a point on the curve in the given graph, and 
particularly the property of periodicity.  

The third method, M-III.1: Placing the point C of abscissa 
6

2016611   on the curve C  within 

the graphic is an impossible task: recognize the existence of a point on a curve justifying it using the 
domain of a function and the given graph. It is a non-simple and non-isolated task - combination of 
graphical and functional settings.  

Comparing the coordinates of A and of C relies on the property of a point on a curve and that of the 
cosine of a real number (AK) (or rather that of periodicity of the cosine function). It is a non-simple 
task. Besides, one could use the geometric property of periodicity of a function (AK, using graph of 
the function with translation). 

Note that for comparing the coordinates of A and of C, there is another possible method based on 
the property of a point on a curve and the calculator in radian mode (an incomplete method with an 
erroneous conclusion starting from the numerical results from the calculator). 

Possible errors of the student are a numerical error in the calculation; the periodicity of cosine 
function might not be an available knowledge.     

 

 



A posteriori analysis of the three exercises shown and their results  

The questionnaire was given to 40 students in March 2016 in two grade 12 classes of two different 
high schools.  

Exercise I: 37 students used M-I.1 method (22 by reciprocal Pythagorean theorem (see Figure 4) 
and 15 by visual inspection), only 1 student used M-I.2 method, and 2 students did not answer this 
exercise.  

We identify three major types of error committed by students, denoted TE1 (5 students), TE2 (9 
students), TE3 (18 students). TE1 and TE2 are two types of more general errors, and TE3 consists 
in attempting to give different values of the cosine and sine of the right angle of the right triangle 
in the geometric setting. 

TE1: “Confusion of the values of the cosine and sine of an angle with the value of the angle”.  

For instance, 4.6713/5cos   (with or without the sign “  ” designating the measure of the angle 
  obtained in degree; here, the second “ = ” sign would designate “it gives”). We did not meet the 
error committed like 13/5  signifying that the angle   was the value of the cosine of  . 

TE2: “Confusion of the value of the cosine (or sine) of an angle with the value of the cosine (or 
sine) of a real number”. Students mobilize correctly, for example, the definition of the cosine of an 
acute angle of the right triangle but they do not stop there, they continue putting the sign “ = ” and 
conclude with an approximate value of the cosine of the real number which designates the value of 
the cosine of the acute angle obtained using the calculator either in degree mode or in radian mode. 
In this case, their result would be an approximate value of the “cosine of the cosine of the angle”. 
For instance, 99.013/5cos   with the calculator in degree mode, and in radian mode, 

93.013/5cos   (see Figure 4).  

TE3: “Inventing values of the cosine and sine of the right angle of the right triangle”. It seems that 
students do not remember the values of the cosine and sine of the right angle which are the 
respective particular values 0 and 1. Thus, they invent these values in the right triangle committing 
TE3 (see Figure 4). 

 

Figure 4: Exercise I – TE2 and TE3  
We can conclude that the cosine and sine of an acute angle ( or  ) of the right triangle are 
available knowledge only for half of the students while those of the right angle (  ) are not 
available knowledge because only about a quarter of students correctly gave the values 0 and 1. 



Exercise II: 11 students out of 40 did not do this exercise. 17 students out of 29 correctly gave the 
values of the cosine and sine of the angle  : 11 students recognized the cosine and sine of the angle 
  as the x and y coordinates of the point M (M-II.1); 2 students exploited the properties of complex 
numbers (M-II.2); 4 students used previous knowledge seen in the 8th and 9th grades (M-I.1). 13 of 
these 17 students also correctly gave those of cosine and sine of the angle   (11 used M-II.1 & 2 
used M-II.2) while 4 other students who used M-I.1 method to give the cosine and sine of the angle 
 (acute angle) had any difficulties to calculate the cosine and sine of the angle   (obtuse angle). 
3 students out of 12 who incorrectly gave the values of the cosine and sine of the angles   and   
committed TE2, and 5 students did not calculate those of  . Thus, cosine and sine of an oriented 
angle are not available knowledge because only about a quarter of students effectively mobilized 
this knowledge. 

Exercise III: Among 36 students who did this exercise, 11 committed TE4 (see below) and 14 did 
not answer question 1.c. And, 6 students out of 22 who answered question 1.c committed TE4 (see 
Figure 5) and they placed inside of the graphic the point C on the curve either at the point A or 
elsewhere. 

 
Figure 5: Exercise III-1.c – TE4  

TE4: “Confusion between the position of the two points on the trigonometric circle, images of two 
real numbers of the difference k2  (k is an integer) and that of the points on the cosine/sine curve 
with abscissas these two real numbers”. The TE4 is an error amounting to say, for instance, that the 
points A and C might have the same abscissa while the two points have in fact the same ordinate by 
the periodicity of the cosine function (see Figure 5a).  

Conclusion 

Through our analysis of this questionnaire, we clearly see the difficulties of students in using their 
knowledge on cosine and sine of an angle (seen in grades 8, 9, 11) and on those of a real number 
(seen in grades 10, 12) in the geometric and functional settings. Considering French institutional 
texts and manuals, and the work produced by students in answering the questionnaire, we identify 
the implicit notions related to the learning and teaching of trigonometry as follows. 

In the case of trigonometry in right triangles (grades 8, 9), the notion of cosine and sine of an 
acute angle is an available knowledge for students while that of cosine and sine of the right angle in 
right triangles is not an available knowledge. To give the values of the cosine and sine of the right 



angle, about half of the students tried to use the ratio of two lengths of the right triangle but it is not 
adapted to the case of the right angle, and other knowledge is required (seen in grades 10, 11).  

In the case of trigonometry in the trigonometric circle (grade 11, science option), a remarkable 
number of students have difficulties seeing the link between the coordinates of a point on the 
trigonometric circle and the cosine and sine of the oriented angle that is defined in this circle. This 
knowledge is an available knowledge for only about a quarter of the students.    

In the case of sine and cosine functions (grade 12, science option), some students have difficulties 
distinguishing between two real numbers of difference 2kπ (k is an integer) denoting two 
measurements in radian of the same oriented angle.  

Overall, there is available knowledge for students to solve mathematical tasks on the trigonometry 
and on trigonometric functions, yet there is a blur or confusion in using their learned knowledge: 
between the value of cosine (or sine) and the angle or a measure of the angle, between an angle and 
its measurements, between a measure of an angle and a real number. 

We can undoubtedly find epistemological, didactic, and curricular reasons; and this constitutes our 
research questions. 
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This paper refers to the Pythagorean theorem and the use of physical artifacts (called mathematical 
machines), which are related to one of the proofs of the theorem. It aims to discuss the didactical use 
of these kinds of artifact, paying attention to students’ work with them and the role of the teacher. It 
presents a laboratory approach to this theorem developed within the Theory of Semiotic Mediation 
in mathematics education for 13-year-old students in Italy. The analysis shows that manipulation of 
the machine only does not imply the emergence of the mathematical meanings embedded in the 
machine. It also pays attention to the different graphical representations of the artifact and their role 
in the learning process.   

Keywords: Artifacts, geometry, laboratory, lower secondary school education, Pythagoras. 

Introduction 
The Pythagorean theorem is a traditional content in the mathematics curriculum of the secondary 
school, not only in Italian school (Moutsios-Rentzos, Spyrou & Peteinara, 2014). This theorem is 
often proposed in the geometrical domain at the beginning, and it is soon converted into formulas and 
related to algebraic calculations. There exist several proofs of this theorem1, some of them are 
proposed as visual proofs. On this topic, Bardelle (2010) analyses how university students in 
approaching a visual proof of that theorem try to look for the algebraic relation among sides starting 
from their knowledge of the theorem rather than getting the relationships between the components of 
the given figure. On the other hand, different exhibits are constructed basing on this kind of proofs, 
and they are also associated with and spread as gadgets (Eaves, 1954). In our work, we ask if and 
how it is possible to approach the Pythagorean theorem starting from artifacts which embed one of 
its proofs (Rufus, 1975), taking into account the role of manipulation, with 7-grade students (13-year 
old students). At the same time, we are interested in reinforcing the geometrical meaning of equivalent 
figures, which makes this theorem a particular case.  

In this paper, we introduce the theoretical background for the didactical use of physical artifacts 
(called mathematical machine2, Maschietto & Bartolini Bussi, 2011), then we present the teaching 
experiment.  

Theoretical framework 
In this section, we outline the theoretical framework of our work, based on the Theory of Semiotic 
Mediation (Bartolini Bussi & Mariotti, 2008) and the cognitive processes in geometry fostered by the 

                                                 
1 http://www.cut-the-knot.org/pythagoras/index.shtml Accessed 20th March 2017. 

2 Mathematics Laboratory at the University of Modena e Reggio Emilia: www.mmlab.unimore.it. Accessed 20th March 
2017. 



task of reproducing artifacts. The teaching experiment is designed according to the methodology of 
mathematics laboratory (Maschietto & Trouche, 2010) with different kinds of artifacts.  

Mathematics laboratory 

The teaching experiment is proposed and analyzed within the Theory of Semiotic Mediation 
(Bartolini Bussi & Mariotti, 2008, TSM), grounded in the Vygotskian notion of semiotic mediation 
and role of artifact in cognitive development. Following to the TSM, the teacher chooses the artifacts 
evoking particular mathematical meanings and uses them to mediate those meanings, proposing tasks 
to be accomplished by those artifacts. The tasks are organized in terms of didactical cycles with group 
work, individual work and collective discussions (mathematical discussions) orchestrated by the 
teacher. The cycle usually starts with the exploration of the chosen artifact, above all in small group 
work, structured following fundamental questions as: “How is the machine made?”, “What does the 
machine make?” and “Why does it make it?”. In general, the first two questions try to take in account 
students’ processes of instrumental genesis (Rabardel & Bourmaud, 2003). In the mathematics 
laboratory, students’ processes of formulation of conjectures and argumentation are strongly 
motivated and supported by the third question. The mathematical meanings emerge from the use of 
the artifacts, the interactions among peers and between peers and the teacher, who has the role of an 
expert guide. In all the activities, students are involved in a semiotic activity (producing gestures, 
words, drawings, called artifact signs) that the teacher makes evolving into mathematical signs (i.e., 
linked to mathematical contents) by the means of pivot signs. In this sense, the teacher uses the artifact 
as an instrument of mediation for mathematical meanings. 

The teaching experiment on the Pythagorean theorem is carried out with the use of two mathematical 
machines (M1 and M2 in Figure 1)3. They were analyzed in terms of their semiotic potential (Bartolini 
Bussi & Mariotti, 2008), corresponding to a semiotic relationship between an artifact and: on the one 
hand the personal meanings emerging from its use to accomplish a task; on the other hand, the 
mathematical meanings evoked by its use. 

The analysis of the semiotic potential considers three components: mathematical content, historical 
references and utilization schemes (Rabardel & Bourmaud, 2003). This kind of analysis is essential 
for the choice of the artifact and the identification of mathematical meanings evoked by it.   

M1:                    M2:  

Figure 1: The mathematical machines proposed to the classes (M1 on the left, M2 on the right) 

                                                 
3 http://www.macchinematematiche.org/index.php?option=com_content&view=article&id=162&Itemid=243&lang=it. 
Accessed 20th March 2017. 



Semiotic potential of the artifacts 

The mathematical machine M1 (Figure 1, on the left) is a wooden artifact, composed of a square 
frame and four triangular prisms, with right triangles as the base that are congruent each other. The 
fundamental relationship between the prisms and the square inside the frame (red square in Figure 1) 
is that the sum of the legs of the right triangles (base of the prism) is equal to the side of the square 
frame. This artifact shows a proof of the theorem (Rufus, 1975). For making evident the interior 
squares as figures, we have added a red paper into the frame.  

The scheme of use of this mathematical machine is quite simple: shift the prisms into the square 
frame, without raising them from the base and without superposing them (this condition is evident 
because of the height of the prisms and the frame). The mathematical meanings involved in this 
artifact are: geometrical figures as right triangle and square, the area of those figures, and equivalence 
of area by addition/subtraction of congruent parts. The property of the triangles to be right-angled is 
obtained by the support of the square frame, and that represents the hypothesis of the theorem 
embedded in the machine itself. The movement of the prisms is bound by the frame, which ensures 
the invariance of the sum of the areas of the triangles and the squares or, in other words, the invariance 
of the area of the squares, whatever it is. Two tasks can be proposed: the first one is to place the 
prisms for obtaining square hole(s), the second one is to pass to a configuration (M1 in Figure 1, in 
the center) to the other one (M1 in Figure 1, on the right). 

In our experiment, we asked the students to reproduce 1:1 the first mathematical machine on paper 
(four triangles and square corresponding to the interior of the frame), after its manipulation and 
description. This choice was due to the fact that we had only one wooden model in the classroom and 
we wanted to propose the task about the configurations with a model for each small group. In such a 
way, the students constructed a new artifact. We want to pay attention to the two elements that 
characterize the semiotic potential of the reproduction of the machine: the negligible thickness for all 
the components of the machine and the lack of the frame. The first element can force the students to 
transfer implicit constraints of the manipulation of the wooden machine into a control of the reciprocal 
position of the right triangles to avoid their superposition (Figure 2, on the right). The second element 
fosters to make evident the range of the movement of the right triangles on the big square base (Figure 
2, on the left). In this way, making explicit the mathematical components of the utilization schemes 
is supposed to reinforce the link to mathematics evoked by the machine. 

     
Figure 2: configurations by manipulating the paper machine 

Drawings and geometrical figures 

In the first activities with the artifact, the students are asked to answer the question “how the machine 
is made”, with the request of representing it. As we have written above, in this case, the students had 



to physically reproduce 1:1 the machine (while, in general, they should draw the machine in their 
homework or worksheet, which often is not squared paper). In the TSM framework, drawing the 
artifact corresponds to individual production of artifact signs, strictly dependent on student’s 
knowledge and his interpretation of the artifact. However, with respect to the TSM, we aim to pay 
more attention to our request of drawing. Following Duval (2005), this is a task of geometrical 
construction involving student’s visualization and how geometrical properties are identified (see also 
Vendeira & Coutat, 2017). Our tasks involve the two kinds of visualizations that Duval distinguishes 
as iconic and non-iconic:  

A visualisation is iconic when, for instance, it represents positions or shape of real-world. It is non-
iconic while it is organised to internal constraints and gives access to all cases possible. (Duval, 
2008, p.49) 

Concerning the role of visualization as an argument in proof, Duval (2005) analyzes the proof of the 
Pythagorean theorem corresponding to our first mathematical machine (as given by Rufus, 1975). He 
claims that the visualization is not complete if it only considers the two configurations (see Figure 1), 
because the relationship between the big square and the hypotenuse of the right triangles on one hand, 
and the two other squares and the legs of the same right triangles on the other hand are supposed 
known for the reader. This is grounded on the relationship between a conjecture and a figure. But if 
an arrow from left to right, for instance, connects the two representations, the transformation from 
one representation to another is realized. Nevertheless, the comparison of the areas of the squares is 
not directly possible, but it has to consider a computation (i.e., the difference between the big square 
and the four triangles) for paying attention to invariant elements in that transformation. In our 
machines, the transformation of representations corresponds to the movement of the four triangles, 
nevertheless with the loss of their simultaneous view. 

Research questions 
In this paper, we are interested in the didactical use of the mathematical machines for the Pythagorean 
theorem. Our research questions are: 

1. Is it possible, and how, to approach the Pythagorean theorem with the mathematical machines 
described above?  

2. Does the sequence of movements with the machines give a sufficient representation of the theorem 
for its understanding?  

3. Which kinds of visualization are related to the tasks of drawing M1?  

Methodology 
According to our theoretical framework, the didactical methodology is the mathematics laboratory 
with artifacts. The tasks for students are organized in didactic cycles (Bartolini Bussi & Mariotti, 
2008), consisting of small group work (GW), individual activities (IW), and collective mathematical 
discussions (CW). In the classrooms, other technologies are available, such as the Interactive 
Whiteboard with its software for making animations of the machines, and the simulations of the 
second machine made with Dynamic Geometry Software from the web. In the specific case of two 
classes involved in the experiments, the platform Edmodo was used. Therefore, the teaching 



experiment proposes a learning environment in which material and digital technologies are present. 
In general, it is structured in three phases, as follows: 

Phase A: 1) GW: Exploration of the first mathematical machine M1 (Figure 1); 2) CW: sharing of 
the description of the M1; 3) GW: construction of the M1 by paper; 4) GW: study of the possible 
configurations of the four triangles of M1 (Figure 2); 5) IW: representation of M1 on workbook; 6) 
CW: identification of relationships (invariants) between the components of M1. 

Phase B: 7) History of the Pythagorean theorem and Pythagorean triples; 8) GW: Generalization of 
the theorem by different puzzles. 

Phase C: 9) CW: Exploration of the second mathematical machine M2 and its reproduction with 
paper; 10) GW: Preparation of posters on the two mathematical machines. 

The teaching experiments have started in 2013, and have involved six Italian classes of 13-years old 
students and two teachers, co-authors of this paper.  

The analysis is carried out on students’ worksheets, videos, photos and IWB files.  

Findings 
In this section, we refer to phases A focusing on the task of drawing the machine M1.  

Steps 1-3. Work with the material model in small group and its reproduction  

During the first three steps, the students worked in small group with the task of describing the machine 
M1 and collecting the elements (for instance, the types of triangles, the length of the sides) useful for 
its reproduction with colored paper. Before the reproduction, a collective discussion allowed students 
sharing their explorations and agreeing on a written description of the machine, with the measure of 
its sides. In particular, the right triangles were described as equivalent and some students recalled the 
Tangram game. Then, the students obtained the reproduction scale 1:1 by measuring and using tools 
for drawing (above all, rules and set square).  

After this, the students had to fill a worksheet with the properties of the two figures, square and right 
triangle, constituting the machine. The manipulation of this new paper machine was guided by the 
task of looking for “square holes”. But this task requires being conscious of the two schemes of use: 
the triangles must remain in the big square and do not overlap each other (Figure 2). During students’ 
work, the configuration with the two square holes (Figure 1, M1 in the center) often appears first with 
respect to the configuration with the square alone (Figure 1, M1 on the right). This could be because 
the sides of the square are not parallel to the side of the square frame.  

Individual Work for representing the two configurations in paper and pencil (Step 5) 

Although the students had correctly described the congruence of the four right triangles (and 
constructed those in the previous step) into the square, several representations were not correctly 
drawn. We summarize some elements of students’ drawings: 

1) Square base is not equal in the two configurations (Figure 3, on the right); 

2) All the four right triangles are not all congruent: a) in one confirmation itself (Figure 3, left, 
drawing on the left); b) between the two configurations (Figure 4); 

3) The “square with the hypotenuse as side” is not a square (Figures 3 and 4). 



The review of all the representations shows an important invariant of the machine was not taken into 
account by the students: the side of the square base is equal to the sum of the two legs. 

        
Figure 3: Students’ representations of the two configurations of M1 on their workbooks 

Figure 4: Student’ representations of the two configurations of M1 on his workbook 

Collective discussion with IWB  

The collective discussion had two phases: the teacher paid attention to the wrong representations of 
the configurations; he took into account the passage from acting on the machine (both wooden and 
paper) to identify the relationship between the two configurations. First, the teacher used a checklist 
with the geometrical properties of the components of the machine that had been shared in the previous 
discussion for comparing the different representations. After, he asked to make new representations 
on the workbooks. 

 
Figure 5: Collective work on IWB 

Then the machine is represented on the IWB from a photo (Fig. 5, on the left). The use of the IWB 
enables a new collective manipulation of the machine, in which the students passed from one 
configuration to another one by dragging the right triangles as they made with the material machine. 

An important part of the discussion focused on the argumentation that the holes were squares (Figure 
6, on the left). The collective use of digital machine allows students linking the manipulation of the 
triangles to the manipulation of Tangram pieces (Figure 6, on the right) and, so, emphasizing the 
conservation of the areas of the holes. The Pythagorean theorem becomes a particular case in the 
equivalence of areas. 

They are squares because you see the 
shape and the sides seem equal and the 
base of a triangle can be turned and it is 
equal to the other sides. 



        
Figure 6: Question on proof and conclusion of the collective work on IWB (screenshots) 

Discussion and concluding remarks     
This paper aims to study the approach to the Pythagorean theorem using some physical artifacts that 
are material representations of that theorem. Students’ answers to different task seem to confirm the 
assumption that the manipulation carried out by the students on the first mathematical machine is not 
enough for the emergence of mathematical meanings embedded in the machine. About our first 
research question, the analysis shows that those tasks allow fostering the production of signs, 
according to the theoretical framework of the TSM, and representations that can be used by the 
teacher for the mediation of mathematical meanings.  

The scheme of use of shifting triangles for obtaining different configurations can support the 
emergence of personal signs and show the Pythagorean theorem in the context of equivalence of 
areas. For instance, in the first task of describing M1, some students recall the Tangram. If this 
meaning is not available for the students, the teacher has to focus on areas through a written, and/or 
symbolic calculation. With respect to our second research question on the feasibility of approaching 
the theorem with artifacts, we can argue that the Tangram, or meaning related to it, can be considered 
a prerequisite. In this case, Tangram means equivalent areas and manipulation of pieces for obtaining 
equivalent figures. 

The comparison between the resolution of the tasks of making M1 by paper and representing M1 on 
workbook pays attention that the two tasks foster two different visualizations, as we have asked in 
our third research question. The first task solicits an iconic visualization of the two configurations, in 
which the shapes are drawn, but not their relationships inside the same configurations and between 
the two configurations. The second task seems to support a non-iconic visualization, because the 
students have to choose the measures of the sides of the figures (that are the parameters of M1) and 
make links between them. This choice has the potential of giving access to generalization to all the 
right triangles. However, it is not enough to draw twice a square and four triangles but the students 
have to represent their relationship, that is, an iconic visualization does not support the resolution as 
the wrong representations on workbooks show. Moreover, the students do not use the previous 
description of the components of M1.  

Within the TSM framework, when the teacher proposes the discussion about those representations, 
the students’ drawings are pivot signs for him. They are signs related to the artifact, but they are used 
for identifying and representing geometrical properties and invariants of M1. The potential of giving 
access to generalization is exploited by the teacher.  
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This paper presents a teaching sequence conducted with 4th grade students, aimed at the 
construction/conceptualization of axial symmetry and its properties in which a crucial role is played 
by a duo of artefacts. This consists of a concrete artefact and a virtual artefact which address the 
same mathematical content. According to the Theory of Semiotic Mediation, both the artefacts have 
been chosen for their semiotic potential, in terms of meanings that can be evoked by carring out 
suitable tasks involving their use. The design of the teaching sequence is developed with the purpose 
of exploiting the synergy between the artefacts, in such a way that each activity boosts the learning 
potential of all the others.   

Keywords: Axial symmetry, duo of artefacts, synergy of artifacts, semiotic mediation. 

Introduction 
The study of geometric transformations originates from the observation of phenomena and 
regularities present in real life, and takes on a particularly important role in the field of mathematics, 
both as a mathematical concept in itself and as a tool that can be used to describe geometric figures. 
For this reasons, it can offer an interesting lens through which investigate and interpret geometric 
objects, thus contributing to the development of students’ reasoning and argumentation skills 
(Xistouri & Pitta-Pantazi, 2011). However, an effective use of transformational geometry in 
mathematics education requires a correct mathematization process of real life observations, ending 
with the mathematical formalization of concepts and properties (Ng & Sinclair, 2015). This process 
of construction of meanings could be fostered by the use of artefacts. But, the design of the teaching 
sequences needs to be developed according to a theory that can take into account the key transitions 
from the personal meanings, emerging from the activities, to the mathematical meanings, that are the 
aims of the teaching. This paper presents a teaching sequence aimed at the 
construction/conceptualization of axial symmetry and its properties, in which a crucial role is played 
by a duo of artefacts (Maschietto & Soury-Lavergne, 2013). This is composed of a concrete artefact 
and a virtual artefact which address the same mathematical content. The design of the teaching 
sequence is framed by the Theory of Semiotic Mediation and is developed with the purpose of 
exploiting the synergy between the artefacts. Both the artefacts have been chosen for their semiotic 
potential, in terms of meanings that can be evoked when carring out suitable tasks involving their use. 
The components of the concrete artefact are a sheet of paper and a pin, while the components of the 
virtual artefact originate from the components of a specific dynamic geometry environment (New 
Cabri - Cabrilog), in which microworlds focused on particular concepts can be created.  The research 
hypothesis concerns the synergic action expected to develop when alternating the use of the concrete 



artefact and the virtual artefact, so that each activity can boost the learning potential of all the others. 
The aim of the paper is to highlight key moments of the design of a teaching sequence and to 
underline, in particular, how the meaning emerges not only through the unfolding of the semiotic 
potential of the two different artefacts, but also strongly through the synergy activated by the alternate 
experiences gained using the duo.    

Theoretical framework 
The geometric concept addressed in this research is axial symmetry, in the sense of the isometric 
transformation of the plane itself, with a line of fixed points (the axis); from the definition it can be 
deduced that axial symmetry transforms straight lines into other straight lines, segments into other 
congruent, comparable segments, and it is an involutory function (Coxeter, 1969). Attention will 
therefore be paid to the symmetrical properties by means of which it is possible to construct the 
symmetrical point from a given point in regard to a straight line, in other words the perpendicularity 
of the axis with respect to the line joining the corresponding points, and the equidistance of the two 
points from the axis. Although geometric transformation is traditionally reserved for high school 
students, we believe that it becomes crucial already for the primary school students to move from a 
generic perception of regularity to that of correspondence between figures, and subsequently to the 
transformation (point by point) of the plane in itself (Sinclair & Bruce, 2015). The design we present 
is based on the theoretical framework of semiotic mediation. The Theory of Semiotic Mediation 
(TSM), developed by Bartolini Bussi and Mariotti (2008) in a Vygotskijan perspective, deals with 
the complex system of semiotic relations among fundamental elements involved in the use of artefacts 
to construct mathematical meanings: the artifact, the task, the mathematical knowledge that is the 
object of the activity, and the teaching/learning processes that take place in the class. The aim of the 
teaching is to guide the evolution of personal meanings toward mathematical meanings, recognized 
as such by the math culture that the teacher needs to mediate. In a long, complex interweave process 
the teacher can foster the shared construction of mathematical signs. Some recent researches have 
drawn on TSM focusing the interplay between static and dynamic reasoning in the teaching and 
learning of geometry (i.e. Bartolini-Bussi & Baccaglini-Frank, 2015). The main aspect that we 
focused upon in the design process of the teaching sequence was the semiotic potential. The semiotic 
potential of an artefact consists of the double relationship that occurs between an artefact and, on the 
one hand, the personal meanings emerging from its use to accomplish a task (instrumented activity), 
and on the other hand, the mathematical meanings evoked by its use and recognizable as mathematics 
by an expert (Bartolini Bussi & Mariotti, 2008). This potential is the basis underlying both the design 
of the activities and the analyses of both the actions and production of signs and the evolution of 
meanings.   

The duo of artefacts involved 
As stated above, a duo of artefacts is employed: concrete and virtual. The concrete artefact consists 
of a sheet of paper, with a straight line drawn on it marking where to fold it, and a pin to be used to 
pierce the paper at the right points in order to construct their symmetrical points. This artefact allows 
an axial symmetry to be created in a direct fashion because the sheet naturally models the plane and 
the fold allows the production of two symmetrical points using the pin. The virtual artefact has been 
designed by the Authors to exploit the added value conferred by technology to the use of the chosen 
concrete artefact. It is embedded in an Interactive Book (IB) created within the authoring environment 



of New Cabri, which allows learning activities to be designed and created, including the objects and 
tools of a dynamic geometry environment. The IB appears as a sequence of pages including the 
designed tasks, together with some specific tools that correspond to specific elements of the concrete 
artefacts. In particular, among the tools available in the authoring environment, and in agreement with 
the general principles of dynamic geometry, the tools chosen are: those that allow the construction of 
some geometric objects (point, straight line, segment, middle point, perpendicular line, intersection 
point), the “Symmetry” and “Compass” artefacts and the “Trace” tool. A fundamental role is also 
played by the drag function, boosted by the “Trace” tool, that allows to observe the invariance of the 
properties characterizing the figures.   

Research methodology 
The study reported in this paper is inserted in a larger project that is aimed at validating the hypothesis 
regarding the possible synergic effect of the use of the two artefacts. The methodology employed is 
that of the teaching experiment (Steffe and Thompson, 2000). In this context the design of the 
teaching sequence plays a key role, because it is this sequence, designed in conformity with the chosen 
theoretical framework and the teaching hypotheses formulated, that constructs the teaching/learning 
environment where the observations will be made and, in general, the data collected on which to 
analyze the results of the experiment. In accordance with the TSM, the design of the teaching 
sequence follows the general scheme of successive “didactic cycles”. The expression didactic cycle 
refers to the organization of teaching in activities. These consist of using the artefact, individually 
producing signs and then in the end collectively producing and absorbing signs through Mathematical 
Discussion activities (Bartolini Bussi, 1998).  As regards the design of the activities using the artefact, 
in accordance with the study hypothesis that the two types of artefacts may be complementary, it was 
decided to alternate activities involving the use of one or the other artefact, formulating tasks that 
could exploit the complementarity of their semiotic potentials. The devised sequence was 
accompanied by an a priori analysis illustrating the semiotic potential expected to emerge during the 
activities.   

Developing the sequence 
In this paper we present the design of the sequence, addressed to 4th grade students, describing the six 
didactic cycles that make it up, and the tasks and semiotic potential of the artefacts involved. These 
are related to the conceptualization of axial symmetry as punctual transformation, and the properties 
that allow us to construct a symmetrical copy of an object with respect to an axis.    

The first didactic cycle and the semiotic potential of the concrete artefact 

The first didactic cycle involves three tasks (T1, T2 and T3). Given a figure (convex quadrilateral) 
drawn (in black) on a sheet, at the moment when handing over the sheet a red line is drawn on it.  In 
T1 the pupils are asked to draw in red a symmetrical figure to the black one, with respect to the red 
line, by folding the sheet along the line and using the pin to mark the necessary symmetrical points 
by piercing the paper. After completing this task, on the same paper a blue line is drawn and in T2 
they are asked to draw a blue symmetrical figure to the black one, employing the blue line. In T3 the 
pupils are asked to write an explanation of why and how they drew the red and blue figures and what 
looks the same and what looks different about them. In these first three tasks, folding the paper along 
the line evokes the meaning of axial symmetry, while the holes/points created with the pin evoke the 



idea of symmetry as puctual correspondence.  In addition, joining the points obtained with the pin is 
the process that yields as product the symmetrical figure, provided that the correspondence between 
the segments is preserved. This evokes the idea of symmetry as a one-to-one correspondence that 
transforms segments into other congruent segments. Finally, comparing what changes and what stays 
the same when drawing two symmetrical figures with respect to two distinct axes evokes the 
dependence of the symmetrical figure on the axis. The use of the pin can allow the meaning of the 
punctual correspondence to emerge without necessarily needing to explain the functional dependence 
between the points. In addition, folding the paper, so as to make one figure coincide with the other, 
can allow the intuitive meaning of line/axial symmetry to emerge as the element that characterizes 
the transformation. Finally, T3 makes the pupils reflect on the invariant aspects and the key role of 
the axis, when creating a symmetrical figure by folding the paper.  

The second didactic cycle and the semiotic potential of the virtual artefact 

The second cycle involves two tasks (T4 and T5) to be carried out using the virtual artefact: the 
button/tool “Symmetry” with the dragging function. In T4, the pupil is asked to build the symmetric 
point of a point A with respect to a given line, using the “Symmetry” tool and call it C. The second 
step is to activate the “Trace” tool on point A and point C, move A and see what moves and what 
doesn’t, and explain why. In the next two steps, in the same way the pupils are asked to move the line 
and the symmetrical point, after having activated the “Trace” tool on A, and to watch what happens 
during the dragging. In T5 the pupils are asked to write down in a summary table the answers to the 
questions asked by the interactive book in T4. In T4 and T5 clicking on “Symmetry” evokes the 
meaning of symmetry as punctual correspondence and once more underlines the key role of the axis 
as the element that characterizes the application, because in order to obtain the symmetry it is 
necessary to click not only on the point but also on the axis. Moreover, dragging the point of origin 
and observing the resulting movement of the symmetrical point evokes the idea of the dependence of 
the symmetrical point on the point of origin; dragging the axis and observing the resulting movement 
only of the symmetrical point evokes the idea of dependence of the symmetrical point on the axis; 
dragging the symmetrical point and observing the resulting rigid movement of the entire configuration 
evokes the idea of the dual dependence of the symmetrical point both on the point of origin and on 
the axis: the effect of the various drags is made even more evident by the “Trace” tool and by the 
observation of the relations among the trajectories. The difference in the movements between the 
symmetrical point and the point of origin can be compared to the distinction between dependent and 
independent variable.    

The synergy resulting from alternate use of the artefacts  

The hypothesis formulated is that the observation the pupils need to do in T4 will cause the concrete 
experiences they have already had with the concrete artefact to reemerge, in other words, that the 
images on the screen can be better interpreted in the light of the previous acts of folding and piercing.  
In this way we expect that the meanings that have already emerged thanks to the use of the concrete 
artefact may be extended and completed by the specific meanings that should emerge using the virtual 
artefact.  In short, the expected phenomenon is that a reciprocal boosting process will occur, in the 
form of a synergic process of mediation through the different types of artefacts.   For example, after 
having constructed the symmetrical point using the button, the relation between the two points can 
be interpreted through the actions of folding, so the two points can be seen as two holes.  But the 



meaning of the relation, that is symmetrical, can be enhanced by the distinction between the original 
point and the corresponding point, thus contributing to the development of the mathematical meaning 
of a functional – asymmetrical – relation between a point (independent) and its symmetrical point 
(dependent).  

The third didactic cycle and the semiotic potential of the concrete artefact 

According to our hypothesis, the third didactic cycle involves three tasks (T6, T7 and T8) again using 
the concrete artefact. In T6 the pupils are guided as they see how correct folding yields the 
perpendicularity between the segment joining two symmetrical points and the axis, and the 
equidistance of the symmetrical points from the axis. In T7 they are asked to construct a symmetrical 
point without using the pin but just by correct folding. In T8, finally, they are asked to explain what 
two segments joining two distinct pairs of symmetrical points have in common and what is different 
about them. In the tasks of the third cycle, folding the paper along the line passing through the two 
corresponding points and then, without opening, along the axis and finally observing the 
superimposition of four right angles, evokes the properties of perpendicularity between the axis and 
the segment joining two corresponding points; observing that the two points are superimposed when 
folding along the joining line and then, without opening, along the axis, in other words that the 
segment joining the two corresponding points is cut in half by the axis, evokes the property of 
equidistance of each of the two points from the axis. The complex folding processes required in the 
accomplishment of these tasks can be compared to the symmetry of the relationship between 
perpendicular lines and evokes the idea that the perpendicularity and equidistance properties allow a 
symmetrical copy of points to be constructed with respect to a line without needing to use the pin but 
just by folding correctly. Comparing the segments to be created in T8 could allow to see the 
perpendicularity and the equidistance as being characterizing properties. Finally, from the 
mathematical point of view, the step that leads to the elimination of the pin is fundamental in order 
to bring about the evolution of the meaning of symmetry from the simple operative level of folding, 
to the mathematical meaning of geometric transformation identified by a line and the geometric 
properties that characterize it.    

The synergy resulting from alternate use of the artefacts  

We expect that, the interpretation of the actions and the configurations with the concrete artefact 
might be related to the experiences within the virtual environment. In particular, we may expect that 
two different points, of which to construct the symmetric points, can be interpreted as different 
positions adopted by a point that has been dragged, thereby contributing to the generalization of the 
two properties (perpendicularity and equidistance) and to the evolution of the status of these 
properties from being seen as contingent to being seen as characterizing.    

The forth didactic cycle and the semiotic potential of the virtual artefact 

The fourth cycle involves two tasks (T9 and T10) to be carried out using the virtual artefact composed 
by the buttons/tools “Perpendicular line”, “Compass” and the dragging function. In T9 pupils are 
asked to construct the symmetrical point of a point A with respect to the given line, without using the 
tool “Symmetry”, and call it C.  Then it asks them to check whether the construction they have made 
is correct, using the tool “Symmetry” and moving point A.  In T10 it asks them to explain how they 
found C and why what they did works. Clicking the button “Perpendicular line” and then on point A 



and on the axis, evokes the idea of the perpendicularity between the segment for A on which the 
symmetrical point lies and the axis; clicking on the button “Compass” and then on the intersection 
point between the axis and the line through A perpendicular to the axis and on A, evokes the idea that 
the symmetrical point is obtained from the intersection between the circumference thus created and 
the perpendicular line, and so is at the same distance as A from the axis;  constructing the line through 
A perpendicular to the axis and the circumference with the center at the intersection point between 
the axis and the perpendicular line and radius at the distance of A from the axis, evokes the idea that 
by using the properties characterizing the symmetry, already previously constructed, it is possible to 
identify the symmetrical point. 

The synergy resulting from alternate use of the artefacts  

In the same way as occurred for task T7 we expect that so as to construct C, without using the tool 
“Symmetry”, the pupils will need to rely on the properties of perpendicularity and equidistance, 
already emerged from folding activities. However, this will bring them to recognize and to reuse these 
properties to construct the symmetrical point using specific buttons. These are quite complex notions 
and we do not expect the resolution process to be immediate but rather to be the result of trial and 
error. We also expect that the recognition of perpendicularity and so the possibility of using the button 
“Perpendicular line” may act synergically on the construction of the signs built up during the whole 
process, in terms of both images and words. We then expect a quite different complexity to present 
when transforming the properties of equidistance using the tool “Compass” (whose use should not be 
correctely linked to the mathamtical meanings embedded into it): the conceptualization of the 
configuration could consist of the relation between the segment joining the two points and the axis 
that divides it in half, rather than have been conceptualized in terms of distances and equalities among 
distances.  

The fifth and sixth didactic cycles: inverting the order of the artefacts  

In the fifth and sixth cycles the order of use of the two artefacts is inverted and they start with the 
virtual artefact. Both the cycles consist of the same two tasks (T11 and T12; T13 and T14), the 
difference is in the artefact. In T11 and T13 there are a pair of points A and C that must be interpreted 
as symmetrical points with respect to a symmetry where the axis is hidden. They are asked to identify 
and trace the axis. Finally, they are asked to check, using the button/tool “Symmetry” or with the pin, 
whether the symmetrical point of A with respect to the line is really C. In T12 and T14 they are asked 
to write down how the axis was identified and to explain why what they did works. In the tasks of 
these two last cycles, drawing the segment AC and then using the button “Midpoint”, such as folding 
along the line through A and C, and then without opening the paper, folding so as to superimpose 
points A and C, evokes the idea that the middle point is a point that is equidistant between A and C 
and so must belong to the axis; observing that by folding so as to superimpose A and C you obtain 
the superimposition of four equal angles, evokes the idea that the line/fold for the middle point that 
allows the superimposition of A and C is perpendicular to segment AC; clicking on the button 
“Perpendicular line” and then on the middle point between A and C and then on segment AC, such 
as folding first along the line through A and C and then without opening, superimposing A and C, 
and seeing that four right angles are formed, evokes the idea that the axis is perpendicular to the 
segment joining A and C, as well as that it is perpendicular to the axis, as they had already seen. It 
should be noted that these tasks have been devised so that the same properties of symmetry used to 



construct the symmetrical point with respect to a line (without using the artefacts “Symmetry” and 
pin) can be used to identify the axis that generates a pair of symmetrical points. But to draw up the 
construction the pupils need to invert the relation of perpendicularity between the axis and line 
through A and C. In addition, the property “the middle point of segment AC lies on the axis” must be 
redefined as “the axis passes through the middle point”. Also in this case it is a form of inversion of 
the belonging relationship, expressed in two different ways that have the same geometric meaning 
but that focus attention (by inverting the subject of the sentences) on one or the other element of the 
relation. 

The synergy resulting from alternate use of the artefacts  

The use of the same task (T11 and T13) with the two different artefacts, is not accidental but has been 
designed with the aim to bring out the common elements between the different schemes of use of the 
artefacts. We expect that this strengthens the idea that the two construction are both based on the use 
of the characteristic properties and are feasible only using them. In particular, what emerged in the 
previous activities, related to the double folding and to the properties of axial symmetry needs to be 
thinked over within the collective discussion aiming to bring out the development of the operational 
meaning of perpendicularity toward the geometric meaning of mutual relationship between lines. This 
is expected to recognize the geometrical meaning of the word perpendicular and of the configuration 
composed by two intersected lines so that four right angles are formed. In conclusion, two signs could 
be shared, a verbal and an iconc, defining the perpendicularity as “a property concerning two lines 
that by interesction form four equal angles”. It could be also noted that, this can be connected to the 
common routine to construct the “sample” of a right angle by means of a double folding. In T12 and 
T14, we expect that the pupils will describe the construction by listing, in the fifth cycle the used 
button and in the sixth the folding actions carried out and their effects. The relationships between a 
button and its embedded property such as the ones between the folding and its effects should emerge 
in the pupils’ descriptions.  

Final remarks 
The teaching sequence described above has already been experimented in a first pilot study. The 
analysis of results, based on videotapes and dialog transcriptions, has shown that the use of the duo 
of artefacts seems to develop a synergy whereby each activity enhances the potential of the others 
(Faggiano et al., 2016). Our research hypothesis concerning the synergy developed through using the 
artefacts has been validated. For instance, in the second cycle it was seen that the dynamic 
representation of the points and the observation of the coordinated movements of the points of origin 
and its symmetrical point, characteristic of the virtual artefact, recalled the meaning of 
correspondence between points that had previously emerged when piercing the paper with the pin 
using the concrete artefact. In this way, the dynamism of the virtual artefact enahnced the 
understanding of point-to-point correspondence, paving the way to making further considerations 
about the correspondence between segments and between lines. The study is still in progress but the 
results obtained encourage us to go ahead and develop a long term teaching experiment to confirm 
them.   
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In this paper I will present the implementation and some preliminary results of a teaching 
experiment conducted in a 9th grade geometry class within the framework of my doctoral studies. 
For the teaching experiment I designed geometry tasks in a Dynamic Geometry Software (DGS), 
with specific characteristics: they involve transitions from 2D to 3D geometric objects (and vice 
versa), they are “Black Box” tasks and they are designed to cause surprise, uncertainty or cognitive 
conflict to the students. The main foci of the paper are the description of the tasks, examples of 
strategies that a pair of students followed while dealing with them and the influence that the 
characteristics of the tasks had on students’ strategies, visualization and argumentation. 

Keywords: DGS, argumentation, visualization. 

Introduction 
In the lesson of geometry students are often asked to solve a problem, which is usually accompanied 
by a drawing. In many cases the drawing acts as an obstacle for students’ argumentation, as “since 
they are able to see results on the drawings, since they can work easily on it, mathematical proof 
seems to be useless” (Mithalal, 2009, p. 796). 

The idea behind the study presented in this paper could be expressed by the following question: 
What would happen if we asked students to solve geometry tasks designed in a DGS, in which the 
drawing of a geometrical solid that they would have to identify was actually invisible to them? This 
is something that one couldn’t do with physical objects, hence the designing of the tasks in a DGS. 
My hypothesis is, that when challenging the students with such a task, they will reach a point at 
which they will realize that when naive visualization is limited or fails, they have to turn to more 
efficient strategies in order to prove a conjecture or justify an answer. In this hypothesis the 
strategies are based on the use of geometrical properties of the figure. The aim of the study is to 
examine how students’ argumentation can be promoted by using tasks with specific characteristics 
and how visualization and argumentation are interweaved in 3D-DGS tasks. 

I will show how these two parts of the geometrical activity are linked theoretically and then present 
the teaching experiment that was conducted and some preliminary results. 

Theoretical background 
The interplay between visualization and argumentation in the frame of tasks designed in DGS 

The notion of visualization has constituted a topic of research interest both for psychologists and 
mathematics education researchers. Nevertheless, until today researchers have not yet agreed on one 
unique definition regarding this notion. In this problem-solving context it is the cognitive part of 
visualization that will be taken into account, as it is related to argumentation. 

Duval (2005) classifies visualization into two categories, iconic and non-iconic visualization. In 
iconic visualization “the drawing is a true physical object, and its shape is a graphic icon that cannot 



be modified. All its properties are related to this shape, and so it seems to be very difficult to work 
on the constitutive parts of it” (Mithalal, 2009, p. 797). In non-iconic visualization  

the figure is analysed as a theoretical object represented by the drawing, using three main 
processes: 
Instrumental deconstruction: in order to find how to build the representation with given 
instruments.  
Heuristic breaking down of the shapes: the shape is split up into subparts, as if it was a puzzle. 
Dimensional deconstruction: the figure is broken down into figural units — lower dimension 
units that figures are composed of —, and the links between these units are the geometrical 
properties. It is an axiomatic reconstruction of the figures, based on hypothetico-deductive 
reasoning (ibid, p. 797) 

It follows that argumentation isolated or visualization isolated, is not enough for students to solve a 
problem or prove a statement. There needs to be a continuous interplay between the two, for 
students’ geometric reasoning to progress and evolve. And it is through the use of tasks designed in 
a DGS that the interplay between visualization and argumentation is made stronger.  

Several studies that have been conducted show that the use of DGS can promote students’ 
visualization skills (see for instance Christou et al., 2006). During the last three decades DGS, like 
GeoGebra and Cabri, are being used more and more in the teaching of mathematics in secondary 
education. In this paper, the focus regarding DGS will be on their use in geometry teaching. 

As Laborde characteristically writes: “DGS contain within them the seeds for a geometry of 
relations as opposed to the paper and pencil geometry of unrelated facts” (2000, p. 158). Healy and 
Hoyles (2002) and Jones (2000) argue that DGS could play an important role in supporting students 
formulating deductive explanations and therefore also in the development of students’ deductive 
reasoning, as they  

appear to have the potential to provide students with direct experience of geometrical theory and 
thereby break down what can be an unfortunate separation between geometrical construction and 
deduction (Jones, 2000, p. 81) 

Before I proceed to the presentation of the study and the tasks, I would like to give some more 
insight regarding the theoretical perspectives on which the task-design was based. 

Theoretical perspectives behind the task design in this study 

The design (the characteristics) of the tasks, aims at challenging the students to produce conjectures 
and examine their validity using strategies that go beyond iconic visualization and naïve empirical 
justifications, engaging them naturally in mathematical activity that involves non-conic 
visualizations and argumentation. 

Characteristic No 1 – D-transitional tasks 

According to Markopoulos (2003), understanding the properties of a solid is equivalent to 
understanding the characteristic parts of a 3D shape, the comparative relations between the same or 
different structural parts and how the elements of the solid are interrelated. That is an idea which is 
very close to what Duval (2011) calls “figural units” of a figure. That means that the properties of 



the component parts (figural units) of a 3D geometrical object are also properties of the 3D 
geometrical object itself. 

This correlation of properties between shapes and geometric objects of different dimensions is 
vividly present in tasks that involve both 2-dimensional (2D) and 3-dimensional (3D) geometric 
objects. This thought generated the idea of what I call D-transitional tasks. These are tasks 
involving transitions from 2D to 3D (and vice versa) geometric objects. Such tasks provide students 
with the opportunity to think about an object through the manipulation of another, and thus combine 
their properties and identify the relationships, connections and dependencies between their 
properties. Furthermore, contrary to other studies which also use 3D DGS geometry tasks (see for 
instance Hattermann, 2009), the students are not asked to see 2D units in 3D shapes, but to identify 
3D shapes by studying 2D sub-figures of them. 

Laborde argues that: 

If properties of figures are not conceived as dependent, a deductive reasoning has no meaning. 
The question of the validity of a property conditional on the validity of other properties would 
not arise in a world of unrelated properties (2000, p. 157) 

As Pittalis and Christou explain: 

Students should understand that each paradigm of a 3D shape has a number of invariant and 
variant geometrical properties based on the properties of the isolated component parts and its 
own properties as a unified structure. The invariant properties constitute the criteria that the 3D 
shape should meet in order to represent an example of a class of 3D shapes (2010, p. 194) 

Characteristic No 2 – Cognitive conflict, uncertainty and surprise 

As cited in Hadas et al.: 

Goldenberg, Cuoco, and Mark (1998) stated that: “A proof, especially for beginners, might need 
to be motivated by the uncertainties that remain without the proof, or by a need for an 
explanation of why a phenomenon occurs. Proof of the too obvious would likely feel ritualistic 
and empty” (p. 6) 

They concluded that DGS may provide opportunities for the creation of uncertainties, leading 
students to seek for explanations (2000, p.128). 

But uncertainty is not the only possible motivation for students to seek for a proof of the validity of 
their conjecture. According to Healy and Hoyles (2002), and Laborde (2000) students feel the need 
for explanation when what they observe on the computer screen gives them a feedback that is 
surprising or is in conflict with what they expected.  

Characteristic No 3 – Black Box: A way to create uncertainty and surprise 

Black Box activities were designed by Laborde (1998) in the context of geometry teaching. Such 
activities have also been used by Knipping and Reid (2005) during a research in geometry teaching 
using Cabri Geometry. In such a task, a construction is already offered to the students but the 
properties and rules on which this construction is based are hidden. The Black Box activities give to 
students the opportunity of interesting and productive explorations. “When students’ predictions 



turn out to be wrong, this is a good opportunity for asking ‘Why is it so?’ and calling for an 
explanation or even proof” (Laborde, 2002, p. 311). 

The teaching experiment 
The teaching experiment was designed by the researcher and implemented by the participating 
teacher as part of his geometry lesson. The participants were 24 students of a 9th grade class. Five D-
transitional tasks were designed in the 3D Graphics environment of GeoGebra 5. Before the 
implementation of the teaching experiment, a 90’ session was dedicated to introduce the software to 
the students. During the teaching experiment the students worked in pairs on the computers. 

For the purposes of the data collection there were used 3 cameras. Each camera was focused on one 
pair of students. For the three pairs of students that were video recorded, a screen-recording 
program was used to record their work in GeoGebra. The analysis of the data is based on the 
transcribed video of the students’ discussions, the screen recordings and their notes on the 
worksheet they were provided with for each task. 

Description of the tasks 

In each task the GeoGebra window was divided into two sub-windows. On the right sub-window 
(3D Graphics) there was a 3D coordinate system in which a solid was designed, and a blue plane 
defined by axes x and y. On the left sub-window (Graphics) there were three sliders (h for height, t 
for tilt and s for spin), which the students could manipulate in order to move the solid, and a 2D 
depiction of the cross-section that was created when the solid intersected with the blue plane. The 
decision for the use of this representation was made, based on the prior knowledge of the students, 
who had already worked on intersections of solids in previous geometry lessons. 

         
Figure 1: Snapshot of Task 1                                         Figure 2: Snapshot of Task 3C 

In Task 1 (see Figure 1), the solid (a cylinder) was visible. The students were first asked to 
experiment with the three sliders and describe what the function of each slider was and how it 
affected the position of the solid in space. Subsequently, they were asked to examine the shapes of 
the cross-sections that were created in some different (h, t, s) positions of the sliders. 

In Tasks 2, 3A, 3B and 3C (see Figure 2) the solid was hidden. The question set to the students in 
each of these tasks was “Which solid do you think this could be, judging from its cross-sections?”. 

The teaching experiment was conducted in two phases. During each phase the students worked as 
shown in Table 1 below. 



Phases Steps of the Phases Duration 

1st Phase – Students work in pairs 

(1st day) 

Task 1 – Visible Cylinder 22’ 

 Classroom discussion 18’ 

Task 2 – Invisible Sphere 15’ 

 Classroom discussion 5’ 

2nd Phase – Work in parallel. Students 
work in pairs 

(2nd day) 

Task 3A - Invisible Cone 

Task 3B - Invisible Pyramid 

Task 3C - Invisible Cube 

 

50’ 

 Classroom discussion 30’ 

Table 1: Phases of the teaching experiment 

Before each phase, the teacher explained the lesson procedure to the students. He explained to them 
that the focus of these tasks should be the justification of their answers. That was both linked to the 
didactical contract and the tasks. The students were asked to be as precise and explicit as possible in 
their explanations, to use mathematical arguments in order to support their answers to the rest of the 
classroom, during the classroom discussions that would follow.  

During the time the students worked on the tasks, the teacher and the researcher were only observers 
of the situation. During the classroom discussions the teacher acted as a facilitator of the discussion. 

Preliminary results 
As the analysis of the collected data is still in progress, I will here present an example from the data 
as part of the preliminary results of this study. I will present the analysis of some excerpts from 
Gabriel and Elbert’s discussion while working together on Task 3C (see Table 2). The students 
started by exploring freely the situation in the task, without using the worksheet that has been given 
to them as a helper. 

 

Dialogue Pictures and Analysis 

G: Holy ****! What is this sh**? 
It should be symmetric! 
E: It could also be a cube. Change 
the height again. Make it zero (the 
tilt) and change the height. 
(They have set h=0 and d=0  and 
they change the tilt) 
E: Ay ay ay! 
G: We have here a diagonal cross-
section, that is no... 
E: No cube (he laughs) 
G: No cube… Right? 
 

The first sign of surprise is seen in the reaction of 
Gabriel, when he starts exploring the cross-sections 
performed, by the blue plane, on the solid when 
moving it with the sliders The students’ first 
conjecture, based on their visual perception, is that 
the hidden solid is a cube. Nevertheless, as soon as 
they find some unexpected cross-sections like 
pentagons and hexagons, their naïve visualization 
proves insufficient and they start questioning their 
initial conjecture.  



 
[…] 
E: Quite…not a cube. But it 
should be a cube. 
G: Could be one (cube). 
E: The other face is definitely 
square. We have seen that. 
G: Mhm.. (affirmative) 
E: The top face is also square. So, 
it could be a cube, it could – 
G: Wait, wait, wait. Spin 90, 90. 
So, 45. So, now is this thing 
perfectly oriented. 
E: Or it could be a – what do you 
want to see? 
G: More than one, more than one. 
I have more than one, therefore 
lets try the tilt. Now it is straight, 
right? I have simply oriented the 
thing (the solid) on the coordinate 
system 
E: That would work, if it is a 
cube, but it could also be a, a 
thingy. How is it called again? 
Prism? 
[...] 
G: That would be a cuboid. 

They start following a more organized exploration, 
by identifying some figural units of the hidden 
solid. They now start looking at the properties of 
the cross-sections (the 2D geometrical object), that 
is of the figural units, of the solid and relate and 
transfer them to the hidden solid (the 3D 
geometrical object). At this point, they discuss that 
according to the characteristics and properties of 
the cross-sections they have seen until now, they 
can only argue that the solid is a cuboid and not a 
cube yet. Although they have moved from iconic 
visualization to identifying figural units of the solid 
and some of their properties, they haven’t yet 
reached the level of dimensional deconstruction. 

 

[…] 
E: We know that the height and 
the width are equal. We know that 
it is square. That the faces are 
square. That means, it must –  
G: We check that, right? We are 
here at the smallest –  
E: No, this is so. Everything else 
makes no sense. We have a height 
of 2,35, a width of 2,35 and a 
length of 2,35. 
G: Well good. 
E: That is a square, eeh a cube! 
[…] 
G: Yes, as we proved, the face is 
square. We have proved that. But 

The students end up to the conclusion that their 
initial conjecture was true, basing their justification 
on deductive arguments linking together and 
relating the properties and the characteristics of 
both the visible cross-sections and the invisible 
solid. This process resulted to the reconstruction of 
the hidden solid by first achieving the dimensional 
deconstruction of its cross-sections. 

 



the length, the width and the 
height are equal, we have proved, 
because we changed the tilt and 
the object was always a square at 
90, 180, 270 and 360 and 0. Just 
turned round the axis. 

 

Table 2: Excerpts from the collaborative work of Gabriel and Elbert on task 3C  

Conclusion 
Gabriel and Elbert wanted to come up with a justification of their conjecture that would be 
satisfying for them. The nature of the task and the students’ initially “unorganized” exploration soon 
caused them surprise and cognitive conflict. The students started doubting their conjecture and they 
turned to a deeper exploration moving from iconic visualization to identifying figural units of the 
solid and their properties. They based their reasoning on the properties of both the cross-sections 
and the solid and also the dependencies between them. They achieved the reconstruction of a hidden 
solid, judging by its 2D cross-section and subunits. At the end they correctly identified the hidden 
3D shape as a cube by studying its 2D sub-figures. They stopped and accepted their conjecture as 
true only when they had produced what for them constituted a valid argumentation. 

There is still a long way to go until I can present some more general results from my study. 
Nevertheless, examples like the one presented here show that it is possible to support students’ 
visualization, argumentation and deductive reasoning in geometry, by using tasks whose design is 
based on the idea of the interplay between visualization, argumentation and which have the 
characteristics presented in this paper. 
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What influences grade 6 to 9 pupils’ success in solving conceptual 
tasks on area and volume 
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In this article, I investigate relationship of space structuring and multiplicative thinking with success 
in solving volume and area problems. The observations are made based on the analysis of written 
tests completed by 748 Czech pupils from grades 6 to 9. Phenomena observed in solutions of three 
volume problems are used as indicators of the level of space structuring and multiplicative thinking, 
which is then related to the pupils´ results in the conceptual part of the test. Relatively strong 
connections were identified for both factors. 

Keywords: Volume measurement, multiplicative thinking, structuring of space, hypothetical learning 
trajectory.  

Many Czech teachers mention measure in geometry as one of the critical parts of primary 
mathematics and Czech pupils scored in TIMSS well below their average in most of the tasks 
concerning area or volume. Moreover, our previous research (Vondrová, 2015; Tůmová & Janda, 
2014) shows that pupils’ problem often lies in conceptual understanding. However, the measurement 
in geometry is problem worldwide – the difficulty seems to be intrinsic to the topic itself (Duval, 
2006; Finesilver, 2015; Kamii & Kysch, 2006).  

The aim of my research has been to investigate how the conceptions of area and volume are built, 
what the major pitfalls and problems are, what skills and strategies are helpful for solving problems 
and what are the frequent unsuccessful strategies and pupils´ misconceptions.  

Theoretical framework and review of existing literature 
As Sáiz (2003) pointed out, it is helpful to distinguish between the concept of volume, which means 
a set of encyclopaedia knowledge of volume with its uses in various contexts (theoretical construct, 
or semantic field of volume) and conception of volume, which is its counterpart in the internal, 
subjective “universe of human knowing” (Pehkonen & Furinghetti, 2001, as cited in Sáiz, 2003, p.97). 

The concept of volume is rather complex compared to area also because there are several ways it can 
be understood: e.g., as a capacity, a free space inside a closed surface or a space occupied by the solid 
(Potari & Spiliotopoulou, 1996). I will focus on the second perspective which I also understand like 
a space that can be filled with cubic units (limiting myself to rectangular prisms). 

Further, I presume that pupils´ conceptions are built gradually and hierarchically – as described in the 
hierarchic interactionism theoretical framework presented by Sarama and Clements (2009, pp. 20nn). 
In order to describe a likely trajectory that pupils may take while getting familiar with the concepts 
of area and volume, I will use a tool called hypothetical learning trajectory (HLT). A learning 
trajectory describes a sequence of levels of thinking. It consists of a goal, a developmental 
progression, or learning path (i.e., ordered sequence of mental ideas and actions), and therefore it has 
also teaching implications (i.e., what instruction helps pupils to move along that path).  

The starting point of my further work has become the HLT for volume as proposed by Battista (2007, 
p. 903) as it distinguishes two parallel streams: numerical reasoning and non-numerical reasoning 



(Table 1). By non-numerical reasoning, I mean reasoning in the geometrical context about 
conservation, comparison, transformations, geometry motions, etc. The emphasis on non-numerical 
reasoning when building a conception of area or volume is in line with research (Kospentaris, Spyrou, 
& Lappas, 2011; Huang, 2011).  

Seeing the HLT as two parallel streams, we can see another important feature of geometrical 
measurement: the importance of building connections between numerical and non-numerical aspects. 
For example, Huang (2011) showed that both the curriculum which stresses the numerical 
calculations for area measurement and the geometry motions curriculum aimed at developing the 
non-numerical reasoning have to be combined to improve pupils’ performance.  

Non-numerical reasoning Numerical reasoning 
1. Holistic visual comparison of 

shapes 
1.  Use of numbers not connected to unit iteration 

2.  Visual comparison of shapes by 
decomposing/recomposing 

2.  Unit iteration and enumeration (coordinated 
structuring of space into arrays), includes: 

 Units properly located only along the 
edges/sides 

 Units properly located without overlaps or 
gaps 

 Units organized into composites (layers) – 
repeated addition; multiplication 

 Operating with other units than cubes 

3.  Comparison of shapes by property 
preserving transformations/ 
decompositions 

3.  Operating on numerical measurement 
 Structuring becomes implicit – multiplication 

of measures 
4. Integrated numerical and non-numerical reasoning  

Table 1: HLT used for the concept of volume 

I will use this HLT as a roadmap, showing a hypothetical way how the conceptions of volume and 
area is built. In my work, I will try to find relations between selected elements described in the HLT 
(e.g. space structuration into arrays) and success in solving conceptual area and volume problems. 

Battista (2007) distinguishes pupils’ problems with space structuring of the situation and problems in 
connecting the space structuring with appropriate numerical procedures. The latter is apparently very 
difficult. Pupils often use a completely different formula (e.g., for the surface or area instead of 
volume) or substitute wrong measures into the formula (Vondrova & Rendl, 2015; Tan Sisman & 
Aksu, 2016; studies cited in Battista, 2007, p. 893). These problems can be found not only with pupils, 
but also with prospective teaches (Dorko & Speer, 2013).  

Huang (2014) found a significant relationship between multiplicative thinking and performance at 
solving a certain type of area measurement problems. In our previous research (Tumova & Janda, 
2014), we also identified a relation between multiplicative thinking and success in solving application 
tasks for volume and area: pupils who were able to calculate the number of tiles needed using division 
were much more successful than pupils who had to draw the actual tiling and use multiplication.  

Connections 



The structuring of space into arrays is one of the main building blocks in the HLT. Dorko & Speer 
(2013) hypothesize that the ability to structure space into arrays of cubes is related to the 
computational success in all their tasks. I wanted to explore these two issues on a larger scale.  

Research questions 
The article focuses on the part of my work dealing with volume and grade 6 to 9 pupils. The research 
questions are: (1) Is the ability to structure space into arrays related to success in conceptual tasks? 
(2) Can we see any relation between multiplicative thinking and success in conceptual tasks?  

Methodology 
Tasks 

I constructed tasks roughly corresponding to the HLT of area and volume. They can be divided into 
three categories. The first category consists of non-numerical tasks that aim to find whether pupils 
can de-compose and re-compose 2D and 3D objects and manipulate these objects (or their parts) 
mentally. Results of these tasks are not used for the data analysis in this article.  

The second type are structuration tasks – i.e., tasks that rely heavily on array structuration of space 
(manipulation). In 3D, tasks H12, H13 and H14 were used.  

H12.3: The blue cube building has 20 cubes in the first layer. How 
many cubes do you have to add in order to get the smallest possible 
completely filled prism (in other words, if the building was in a 
tightfitting rectangular box, how many cubes you have to add in order 
to fill that box completely)?  

H12.1. and H12.2. are similar, with different cube buildings with first 
layers of 9 and 12 cubes, respectively.  

The aim of task H12 is to identify, how well the pupil can 
understand the array structure when the structure is depicted and unit cube is used. It can be solved 
by enumeration of the missing cubes, no calculation is needed. 

Task H13: You have exactly 59 cubes (with the edge of 1 unit) to build a cube building1 on a plot of 
land which is 4 units long and 3 units wide. You have to use all of the cubes but the building has to 
be as LOW as possible. How many layers will there be? How many cubes will there be in the top 
layer? [No drawing provided.] 

In H13, two types of solving strategies are possible. The first is calculation-based: divide 59 by the 
product of 3 and 4 (i.e., the number of cubes in one layer). The resulting whole number means the 
completely filled layers and the rest is the number of cubes in the last incomplete layer: 
59 : (3 ∙ 4) = 4 (rem. 11). The other approach is partially manipulative: draw cubes in the bottom layer 
and see how high we can continue building until all 59 cubes are used (using repeated addition or 
multiplication). Based on the method the pupil will use and drawings he/she will make (e.g., if he 
draws just a rectangle, or structure consisting of rows and columns), we can hypothesize what kind 

                                                 
1 This term was understood intuitively by pupils – it is a building made of unit cubes and a subset of a 3D array structure 
that can be physically built (all the columns must be built putting one cube on another). 

Figure 1: Blue cube building 



of space structuring the pupil used and relate it to the levels in HLT (Table 1, rows 2 and 3 in the 
right column). 

Task H14: What is the maximum number of parcels measuring 2x1x1 dm that would fit into a cubic 
box with an edge of 6 dm? Justify your answer. [No drawing provided.] 

H14 also has two types of strategies. One is calculation-based: calculate the volume of the box and 
the volume of the small parcel and divide the two to get the correct number of fitting parcels. The 
manipulative strategy: draw or imagine how may parcels are in one layer and multiply it by the 
number of layers. H14 is more complex because the unit to be used is not a cube, also the volume of 
the box has to be calculated from the length of the side.  

The third category  of tasks are conceptual tasks (4 for area and 2 for volume) – these are non-routine 
or novel tasks that require more advanced understanding of the underlying principles and concepts 
than a simple use of formula (see also the definition of Tan Sisman and Aksu, 2016, p. 1298). After 
piloting the tasks, only those were selected as conceptual tasks to the main test in which the percentage 
of pupils that used structuration as their solving strategy was less than 10 %. Task H16 is a typical 
example. 

Task H16. A cuboid-shaped vase has a base of 9x12 cm. If I pour one litre of water inside, how high 
it will reach? (Hint: 1 l=1000 cm2).  

Data collection 

After a small scale pilot testing of the tasks and revision based on discussions with experts, the test 
was distributed to more than 1 300 pupils (grades 4 to 9) from 8 different ordinary primary schools 
in Prague (it is to be noted that this was a convenience sample). The pupils solved the tasks within 
the first three weeks of September 2015, after summer holidays to eliminate the influence of the 
mathematics topic currently taught and test pupils’ long-term knowledge. The test was given by 
mathematics teachers who got instructions from me. The test took 55 minutes and it was completed 
by 735 pupils in grades 6 to 9. 

Data analysis 

Pupils’ solutions were coded by the author and two more coders. Based on the above a priori analysis 
of tasks, we had some preliminary codes. The coders first coded for the preliminary codes and while 
doing so, assigned points for each task and noted other phenomena such as what mistakes appeared, 
what other calculations appeared in the written solution, etc. Examples of codes are in Findings 
section. The codes were further grouped and analysed both quantitatively and qualitatively. The bulk 
of the quantitative analysis consisted of looking for relations between phenomena and the total result 
in all the conceptual tasks (CONC total).  

Note: Whenever I look at the performance of pupils, I always report the result of all conceptual tasks 
(CONC total) – i.e., for both area and volume problems (tasks H3-H6 and H15-H16). I wanted to 
assess the conceptual understanding of geometrical measurement therefore I included both concepts 
into the result. The results are reported in percentages calculated as the number of points actually 
achieved by the pupil divided by the maximum number of points. 



Findings 
Phenomena identified for structuration problems H12, H13 and H14 will be related to CONC total 
regardless of age of pupils. The findings will be grouped according to research questions.  

Structuration of space and its relation to the success in conceptual tasks 

H12 to H14 are hypothesized to form a series of tasks with a growing demand on space structuring 
abilities. H12 tests pupils’ ability to structure space properly in a situation when the structure of cubes 
is given (shown in a picture) and the unit is a standard unit cube. H13 tests whether pupils are able to 
calculate the height of a cuboid based on the knowledge of its volume and base in a discreet situation. 
H14 diagnoses how pupils can structure space using non-cubic units. 

Figure 2: Venn diagram showing the overall test score and a 
number of pupils successful in H12-14 

The Venn diagram in Figure 2 
shows the number of pupils 
who scored at least 50 % in 
H12, H13 and H14. The 
number in brackets is the 
average CONC result (i.e., of 
all conceptual tasks) for 
relevant group of pupils. For 
example, 252 pupils 
successfully solved H12 but 
not H13 or H14, the average 
CONC result for these pupils 
is 11%. There were 74 pupils 
successful in all three tasks (in 
the centre) and their average 
result was 51%.  

As expected, H14 proved to be the most difficult and the pupils who solved it, also scored the highest 
in the conceptual part of the test. As we can see, there seems to be a relationship between pupils’ 
ability to structure space into appropriate structure (3D array) and their success in the conceptual 
tasks in the test. If we calculate correlation between the result of structuration tasks (H2, H12-14) and 
conceptual tasks (CONC total), we get a relatively high Pearson correlation of 0.66.  

Further, in the solutions of H13, we identified almost all the strategies for space structuring mentioned 
in the HLT (pupils most often drew the first layer only, so the structuring is, in fact, a tiling). The 
strategies were coded as follows (see Table 2): “Unable to structure” (incorrect number of cubes in 
a layer, structure only along the edges – perimeter or structures 5x4, etc.), “Individual cubes” (each 
cube drawn separately), “Rows and columns” (partitioning drawn for whole rows and columns), “3D 
structure” (3D drawing), “Implicit structure” (no drawing or only the rectangle drawn and number of 
cubes correct), “Unable to identify” (where the structuring strategy was unclear from the test).  

The difference in CONC total result is statistically significant between strategy “Implicit structure” 
and all other strategies2. This means that the pupils who can determine the number of cubes in one 
                                                 
2 Data are shown in left part of Table 2. The independent sample T-test in SPSS was used for each pair of codes. 



layer without having to draw the structure (according to HLT, this means that they have reached the 
level where the structure became implicit for them), perform significantly better than other pupils. 
Again, there seems to be a relation between the way the space structuring is depicted and success in 
the test – the higher level of structuring (according to HLT), the better average result in the conceptual 
part of the test.  

To see connections with space structuration, we look at manipulative strategies in H14 in more detail 
(about half of the pupils solving this task used manipulative strategy) – see Table 2 right.  

Structuring of area 
in H13 

Avg CONC 
total 

No.  
pupils  

Strategy in H14 Avg CONC 
total 

No.  
pupils 

Unable to identify 24% 71  Strategy cannot be 
determined 

16% 
 31 

Unable to structure 11% 43  
Individual cubes 19% 68  First layer incorrect 19%  41 
Rows and columns 21% 80  No. of layers incorrect 24% 25 
3D structure 27% 31  Numerical error 34% 5 
Implicit structure 38% 93  Structure correct 47% 43 
Total H13 25% 386  Manip. strategis total 31% 114 

 

Table 2: Space structuring and strategies vs. success rates in tasks H13 and H14 

First, we look at the manipulative strategies: 43 pupils were able to structure the space inside the box 
properly and solve the task (Structure correct) – they scored the highest in the conceptual tasks (the 
average result of 47%). These pupils performed significantly better in the conceptual tasks than pupils 
who used other strategies. Quite a few pupils (41) were not able to structure even the first layer (their 
average CONC result is only 19%). If we presume that the strategies represent the level of skill in 
space structuration, we can say that pupils who cannot fill even the first layer would form the lowest 
level, those who did one level correctly but did not get the number of layers right would be on the 
next level, followed by those who drew the correct structure. We can see that pupils who structured 
space better score higher in CONC total.  

 

Multiplicative thinking and its relation to the success in conceptual tasks 

To analyse the use of operation, we look at H13. The codes we used are (Table 3): “No operation 
mentioned”, “Unable to interpret results of operation” (includes 9 pupils who could not perform the 
operation of division correctly), “Repeated addition” (calculate the cubes one by one or by layers – 
i.e.,  12+12+…), “Repeated multiplication” (such as 3 ∙ 12, 4 ∙ 12 until something bigger than 59 is 
reached), “Division and correct interpretation” (division 59 : 12 = 4 (rem. 11) and correctly interpret 
results). All strategies were present in all grades – around 5% of pupils in all grades were not able to 
interpret results of the operation they used and 18% of all pupils in grade 9 still used repeated addition 
strategy to solve this problem.  

 



Strategy_OPERATION Average result of CONC 
and Structuration tasks  

Average of CONC 
result 

No. of 
pupils 

No operation mentioned (NO) 25% 13% 126 
Unable to interpret (UI) 23% 16% 33 
Repeated addition (RA) 32% 22% 106 
Repeated multiplication (RM) 38% 30% 53 
Division and interpretation (DI) 47% 39% 68 
Total 33% 18% 386 

 

Table 3: Use of mathematical operation and success rates in H13 

The independent sample T-test in SPSS showed that the combined result of Structuration tasks and 
CONC total result for strategy DI is significantly different from all other strategies, except from RM. 
The same is true for CONC result. This means that the pupils who can use division and correctly 
interpret results in this task, performed significantly better in all conceptual tasks and in all conceptual 
and structuration tasks than pupils who used repeated addition or pupils who could not interpret 
results of their calculations. The difference between RM and DI groups was not significant. 

Quite a few pupils (33 in H13) were not able to interpret results of the operation they used. This is 
apparent in other tasks as well. In H14, there were 41 pupils who used what may seem to the observer 
like a random mathematical operation on given numbers and their interpretations of results were 
incorrect.  

Conclusion and discussion 
To sum up, the structuring of space seems to be related to the success in our conceptual tasks. We 
looked at space structuring from two perspectives. First, when pupils are able to apply the correct 
structuring (i.e., which of H12 to H14 are solved correctly). Second, how pupils depict the structure 
of a layer which is in a rectangular form with given lengths of sides. In both cases, the pupils who 
structure space better achieved better results in area and volume conceptual problems. This seems to 
confirm the hypothesis of Dorko and Speer (2013) above.  

The relation between the use of mathematical operation (multiplicative thinking) and success in our 
conceptual problems seems to manifest itself even on a large sample which confirms our finding from 
the previous research (Tumova & Janda, 2014). From the observed number of pupils who were not 
able to interpret results of the operations they used we can see that connecting the appropriate 
mathematics operation with the geometrical situation is another major problem for Czech pupils as 
mentioned in (Battista, 2007). Not only how good is their multiplicative thinking, but what operation 
in which situation they decide to use and with what numbers might be the most important. 
Investigating this connection in more depth (how it is built, what promotes building it) remains an 
open question for future research. Also, connections between multiplicative thinking and space 
structuring seem to be worthwhile to investigate further. The connection seems to be bidirectional: 
structuring of space guides enumeration but also enumeration can help space structuring (Finesilver, 
2015, p. 257).   



One of the limitations of my research is the fact that the results cannot be easily generalised as the 
sample was not representative. Another limitation is in the set-up of research – I did inferences on 
pupils’ thinking based only on what was written in the test. Some of my interpretations of the written 
solutions might need additional support in interviews with pupils.  
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In primary school there is, in geometry, an important rupture between primary (age 4 to 12) and 
secondary school. Some activities are already proposed for students from 8 to 12 years old to help 
to prepare for this rupture. Our research has the same aims, but for students from 4 to 6 years old 
by developing some pre-geometrical activities around shape recognition using dimensional 
deconstruction. 

Keywords: Shape recognition, visualization, dimensional deconstruction, way of thinking. 

Context 
In all French speaking Switzerland we have a common program for all compulsory education. For 
the geometry curriculum, in the elementary division (from 4 to 8 years old), students use a physical 
space where «the shape is linked to the visual perception of the object»1. Then, from 8 years old, 
they use a conceptual space where objects are associated with figures as «unchangeable and ideal». 
These figures are independent of their graphical representation. We consider that there is an 
important gap between these two divisions, and we need to help students to overcome it. 

Theoretical framework 
Some researches like Berthelot and Salin (1993-1994), Houdement and Kuzniak (2000), Parzysz 
(2003), Braconne-Michoux (2008) show a rupture, in geometry teaching, between primary and 
secondary school where the focus is put on reasoning and deduction. Without reaching the 
theoretical level of the geometric objects and therefore of their properties, an intermediate work on 
the elements which compose the forms is possible and constitutes the heart of this research with 
students of cycle 1 and beginning of cycle 2. As Duval (1994) says, one of the aims of geometry in 
primary school is to emerge the operative apprehension of a figure parallel to the one, first and 
naturel, more perceptive. Therefore, to help, it “presupposes the dimensional deconstruction of the 
visual representations”2 (Duval & Godin, 2005, p.11). The first visualization is global; the 
perception is centered on the closed contours of the shape. This visualization is called two 
dimensional visualization (2D element), which is referred to by Duval (2005) as the iconic way of 
seeing. The dimensional deconstruction considers the elements of the shape like the sides and the 
lines, which are one dimensional elements (1D element) and the vertices and the points, the zero 
dimensional elements (0D elements). This is what Duval (2005) distinguishes as the non-iconic way 
of seeing. The decomposition of shapes into figural unities is an essential stage prior to building the 
non-iconic visualization. 
                                                 
1 Our translation from the French speaking Switzerland curriculum « Plan d’études romand » 
(https://www.plandetudes.ch/per) : « la forme est liée à la perception d’ordre visuel d’un objet ». 
2 Our translation. 



Having as objective to evolve the students' visualization of geometrical shapes, we rely on the work 
of the Lille group (Duval (1994), Duval, Godin & Perrin-Glorian (2004), Duval & Godin (2005), 
Keskessa, Perrin-Glorian, Delplace (2007), Godin & Perrin (2009), Perrin-Glorian, Mathé & 
Leclercq (2013), Perrin-Glorian, Godin (2014), Perrin-Glorian (2015), Bulf & Celi (2016)) which 
consider the transition between the recognition of a form by global perception and the deduction 
from its axioms as the "identification of properties that are verified or produced with instruments"3 
(Houdement and Godin, 2014, p.28). Most of those researchers propose tasks of reproduction of 
figures in particular the reproduction problems called "restoration of figures (define by Perrin-
Glorian and Godin (2009)). In our case, we work on tasks of forms recognition. To prepare students 
to the rupture pointed out between primary and secondary school, we introduce two new levels 
between the global perception and the non-iconic way of seeing. We call them the “hybrid thinking” 
and “thinking by characteristics”. Below, we associate each thinking according to the ways of seeing 

of Duval. We give an example based on the following shape:  

 Iconic visualization  Towards dimensional deconstruction  

N
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on
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liz
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n Way of 

thinking 
Perceptive thinking  Hybrid thinking Thinking by characteristics 

Associated 
vision 

  

 
 
 

Associated 
language4 

« It looks like a fish» « It looks like a fish with a 
flat nose and a curved 

body » 

« It is a shape with holes (the convex 
character). It as rounds and straights 

(straight and curved edges) » 

Table 1: Levels of the different visions of the shapes 

Those levels focus 1) on a global vision of the shape (2D) 2) on a hybrid vision of the shape (using 
the global vision and some characteristics of the shape (0-1-2D) 3) on the vison of only some 
localised areas of the global form (as the types of lines (straight or not, etc.)) considering therefore 
some of the characteristics of the shape (0-1D). This third level corresponds to pre-geometrical 
work. The last level “non-iconic visualization” relates to the definition of the properties of 
geometric figures. So, to think by the characteristics is more than a perceptive vision but does not 
yet correspond to the geometric properties. As for the hybrid thinking, it mobilizes in the same time 
the global vision of the shape, through its surface, and a more expert vision from its elements.  

This table shows a wider process of dimensional deconstruction than usual. Thus, our goal, in this 
research, is to develop some pre-geometrical activities around shape recognition using these two 
new levels to provide students with a more harmonious transition in order to overcome the gap 
between primary and secondary school.  

                                                 
3 Our translation. 
4 In the next steep of our research we will also consider the “associated action”. 



The developed material  
In order to help 4 to 6-year-old students to pass from the perception of the shapes as they are worked 
in primary school to what is expected in secondary school, we propose to work on shapes 
recognition tasks with a collection of 36 shapes. Very often, the most common use of characteristics 
concerns the number of sides of the shape. However, students at this age are precisely building the 
concept of number which is therefore "fragile". Other characteristics of shapes are nevertheless 
affordable and interesting from Cycle 1. For example, the presence of straight or curved edges, 
symmetries, parallel opposite sides or the convex or concave character of the shape. Of course, 
students are not expected to use the correct mathematical terms. What is important is that they 
identify these characteristics, whatever the vocabulary used. The collection of 36 shapes takes into 
account the different characteristics cited. Figure 1 presents the collection of the 36 shapes. All the 
different tasks are built around this collection (tasks of classifications, associations and housing). 

 

Figure 1: The collection of the 36 shapes 

The chosen shapes are not nameable, at least not using "classical" shape names such as triangles, 
squares, rectangles, circles. To identify them, students have to focus on other aspects than their 
name. Either students recognize, in the shape, a resemblance to a well-known object (for example 
the fish mentioned above), or they are obliged to refer to its characteristics. This last point promotes 
dimensional deconstruction with the components of shapes. 
Thus, the main objective aimed through the developed activities is that the student constructs a 
thinking of the objects based on their characteristics. This does not mean that it is necessary to 
replace the global thinking, but to supplement it. The joint use of the hybrid thinking and the 
thinking by characteristics is therefore also necessary. For example, in many activities, students can 
first classify the shape by global perception (we put together shapes perceptually close), and then 
only need to distinguish them through their characteristics. 

Below is an example of strategy to find a shape in a collection of eight shapes  : 
Starting Collection Reduced collection Identified shape in the reduced collection 

   

I observe and manipulate the 
assortment of forms 

I extract all "bow ties" 
(or "vases") of the 

assortment. 

I then focus on the characteristics "it is the one that is 
not regular (=symmetrical) and with rounds (=curved 

edges)". I select then the corresponding shape. 

Table 2 



The choice of the selected shapes is essential because it can directly influences the way of thinking 
that the students will mobilize. 

Perceptive thinking  Hybrid thinking Thinking by characteristics 

   

Table 3 

Thus, if the selected shapes are perceptively distant, the overall vision is promoted. Conversely, if 
the shapes are perceptively close, an entry through the characteristics is necessary. These shapes are 
cut out from "translucent" Plexiglas. The choice of a circle does not favour any particular 
orientation. With this material, we can work on the shape using the edging by the exterior or the 
interior of the shape. Depending on the activity, we may choose to present one or both of these 
supports (or both). The interest of this material is that it can be embedded providing direct feedback 
for students. 

    
The inside form  the empty circular part 

With this collection of shapes we then create activities working on shape recognition with different 
kinds of tasks, classifications, associations and housing. 

Methodology 
For one school year we have worked with six classes including four classes in a downtown Geneva 
school, a class in the Geneva countryside and a class in neighbouring France. This diversity makes it 
possible to confront our material and our activities in different contexts (without pretending any 
generalization). In total there were 112 students aged from 4 to 6. At the beginning and the end of 
the year all the students took a test. We do not develop the results of the tests in this article. The 
students worked in small groups with the researchers from 2 to 4 periods in total. Each period lasts 
45 minutes. In every class, except one, we realized, among the proposed periods, a session with big 
shapes in the “meso-space”.  

 
Photo 1: Work with big shapes 

In each class we have: 1) One individual pretest at the beginning of our research in which we use 
the activity « families to build ».  This test has been passed by the teachers and was not filmed. 2) 
Many activities using the developed material. Each session was filmed by one or even two cameras.  



3) One activity with big forms. 4) One « concluding activity » at the end of the year. 5) One post-test 
at the end of the school year (exactly the same as the pretest). 6) One pretest at the beginning of the 
following year (exactly the same as the previous ones). This test was filmed and students were 
systematically asked about their production.  

We thus have many hours of observations that allow us to verify if students of this age can mobilize 
the characteristics of the shapes.  

Presentation of an activity for 4 to 6 year old students: Families to build5 
The activity is done in groups of 2 to 5 students. The teacher selects an assortment of 8 to 16 pieces 
from the collection (the inside form or the empty circular part). Below is an example of an 
assortment that has been frequently used in classrooms with students. 

 
Figure 2: An assortment frequently used in classrooms 

In this activity students must build families (with a number of families imposed or not). The pieces 
are scattered on a table. Students must create families by putting the pieces "that fit well together". 
Students must agree and be able to explain their choice, possibly giving a name to the families 
created. Various objectives can be identified for this activity: 1) classification of shapes based on 
characteristics 2) emergence of a common lexicon that can be reinvested in other activities 3) peer 
collaboration with the need to agree and to argue. Thus, according to the assortment of selected 
pieces, students can use global or hybrid thinking or thinking by characteristics. The choice of 
perceptively close shapes or not is therefore an important didactic variable for this activity as well as 
the number of families (imposed or free). 

In the pooling phase the teacher can introduce new pieces to check the solidity of students' family 
choices. Either they manage to integrate the new pieces within the existing families, or they need to 
question their classification criteria and maybe modify them. 

                                                 
5 For more activities see Coutat & Vendeira (2015). 



 
Photo 2: An example of three families built by a group of students: 1) "the mountains" 2) "the 

pebbles" 3) "the fish" (vision according to the resemblance of the shapes to well-known objects) 

Some results 
In this section we look at the productions of three students which reveal three different ways of 
thinking that the students mobilize about the shapes following our interventions in class. These are 
outcomes from the activity "families to build" carried out during the pretest (done at the beginning 
of our research) and the same test realized a year later.  

Concerning the case of Luce, almost no change is noticable between the two productions at one year 
interval. During the first run, it is found that very perceptively similar objects are associated in order 
to create three families. A year later, the student explained that he had formed a family of 
mountains, trumpets, teapots and lamps and could not say more. It is possible to relate these objects 
to some of their characteristics as the sharp peaks for the mountains, the symmetry for the lamps or 
the asymmetrical spout for the teapot. However, this remains implicit and the primarily mobilized 
vision is, in this case, global. 

 
Table 4: the two productions of Luce at one year interval 

Lea's productions at the same task are identical to those of Luce for the first test. Her vision is 
essentially global. On the other hand, the two families created the following year are quite distinct. 
She chose only two families by mobilizing hybrid thinking. Indeed, the global perception is partially 
used with the second family where Lea recognizes thunder thanks to their "peaks in". As for the first 
family, it only possesses "rounded in" and does not belong to the family of the thunders. 



 
Table 5: the two productions of Léa at one year interval 

The first production of David is distinct from those of these two classmates. However, without a 
trace of his activity, it is difficult to understand how this student proceeded. It is conceivable (1) that 
devolution has not taken place; (2) that David mobilizes hybrid thinking but it is impossible for us 
to interpret. This is why we focus directly on the second production made the following year. The 
first family of David is justified according to two characteristics common to the three forms, namely 
"rounded and sharp". As for the second family, the forms are “all sharp”, but have no rounding. This 
student thus mobilizes some characteristics of the forms. 

 
Table 6: the two productions of David at one year interval 

Conclusion 
The task “build families” is very interesting for the researcher because it gives a lot of information 
about the student’s perception of the shape such as the visualization to build the families (global or 
not), the use of characteristics to build the families, the use of a pertinent language for oral 
interactions.  

The various tasks created with the developed material and experimented in classrooms allow a 
progressive change of the visualization of geometrical shapes. It is important to note that students 
do not replace their perceptual way of thinking with a new way of thinking by the characteristics of 
the forms. Indeed, these ways of thinking must coexist and intertwine, sometimes giving rise to a 
hybrid way. It remains to be defined 1) whether the work undertaken allows all students to change 
their eyesight and 2) whether they are able to mobilize the appropriate thinking according to the 
situation. 



Currently we are experimenting with new tasks with students from 6 to 8 years old and still 
analyzing the data collected with students from 4 to 6 years old. In addition, the developed material 
is currently tested in five schools. We look forward to the feedback from the teachers. 
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This work presents part of the thesis developed in the Professional Master’s Degree in Mathematics, 
at the Pontifical Catholic University of Rio de Janeiro, entitled “The study of Conics through 
Origami.” In the present work, we will focus on the construction and study of the Ellipse, 
highlighting the definition of its geometric place through the axiomatic geometry of the Origami.  

Teaching geometric concepts may present many challenges, because its process requires the study of 
concepts and relations that are not learned by students in activities which use memorizing and 
exercise techniques. Therefore, it's necessary to have creativity and reasoning. In this context, it is 
important that the student is encouraged to see the Geometry study as a practice of investigative and 
exploratory nature. 

According to Ponte, et al. (2006), “The geometric investigations contribute to realize the essential 
aspects of the mathematic activity, such as the formulation and conjecture tests, the search and 
demonstration of generalizations.” Moreover, to investigate, explore and establish conjectures in 
activities of geometric nature are not easy tasks. Among various teaching methods that can be 
explored in order to foster the meaningful learning, we can be highlighted the use of manipulable 
materials. In this regard, we spotlighted the possibilities of geometric investigation offered by a 
simple and powerful teaching tool: the paper. 

Ancient and modern at the same time, “the art of the paper folding”, better known as “Origami”, 
transcends the boundaries of a simple art with its ability of conducting to the mathematic learning, 
either by its harmonic visual or by the Axiomatic Geometry inherent in the folds. Its description is 
given by the Huzita-Haroti Axioms, which consists in the seven basic operations capable of align 
straight lines and pre-existing points in a paper sheet through a single fold.  

Some researches have already chosen origami as a resource which improves the learning of maths, 
such as Monteiro (2008), who used the technique to solve some equations and to demonstrate 
theorems, as well as Asrlan & Isiksal (2014) who described an experience about preservice teachers 
training using this japanese tool. 

Despite the different themes that can be broached through the axiomatic geometry of folds, allied to 
an investigative and exploratory practice, we will highlight an activity which the objective is to 
explore the definition of the geometric place of the Ellipse. In its teaching, it is verified an undue 
priority for the memorizing of equations, and in many cases, the students only dedicated themselves 
to the repetition of exercises which solely involved algebraic methods. In order to rescue the 



geometric approach of the topic in question, we unite these two elements in the present work, conic 
curves and Origami, with the aim of developing concepts of the first one from the constructions of 
the second, emphasizing the investigative practice through the process. 

In order to spread the geometry of folding as a resource for activities of geometric investigation, to 
rescue the approach of the geometric place of the Ellipse and to validate the presented research, a 
workshop was developed, applied, evaluated and enhanced in a group of 17 Mathematics Licenciate 
Degree students. 

As a basis for the development of the activity, which consisted of the construction of the curve, we 
used four moments related to the investigation process in mathematics classes mentioned by Ponte, 
et al (2006): recognition of the situation, its preliminary exploration and the formulation of 
questions; conjecture formulation process; testing and eventual refinement of the conjectures; 
argumentation, demonstration and evaluation of the work done. 

Thus, we will present in this poster the Huzita-Hatori axioms description, the method of the Ellipse 
construction, the mathematics concepts related to the folds and finally the results of the activity 
application with the future mathematics teachers.  

Through the application of the construction activity and the study of the Ellipse, we realize that the 
geometric place concept is underexplored in Mathematics Licenciate Degree courses, which 
culminates in disfavouring this content in Basic Education. Thus, this work is expected to be a 
source of motivation to the teachers and professors to valorise the approach of the geometric 
concepts in an investigative way. Also, we look to find in the folds a possibility to mix various 
mathematical themes in a meaningful manner. 
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Introduction 
We present a preliminary study focused on a scale on cognitive configurations for tasks requiring 
visualization and spatial reasoning. The main notion used is that of cognitive configuration from the 
onto-semiotic approach (Godino, Batanero and Font, 2007). The results show that there may be 
several configurations at each level and these levels depend on both certain conditions of the task 
and the visualization skills involved. 

Theoretical framework 
From the onto-semiotic approach (OSA), the analysis of the mathematical activity, of objects and 
processes taking part in it, focuses on the practices done by people implied in the solution of certain 
mathematical problems (Godino, Batanero and Font, 2007). The enforcement of this approach to 
visualization leads to distinguish between visual practices and non-visual or symbolic/analytic ones 
(Godino, Cajaraville, Fernández and Gonzato, 2011). In order to make these principles operative, 
the OSA poses as one of its tools the ‘onto-semiotic configuration’, i.e., the network of objects and 
processes involved in the fulfillment of a mathematical practice (Font, Godino and Gallardo, 2013). 
These configurations can be socio-epistemic (networks of institutional objects) or cognitive 
(networks of personal objects). Here we will focus on the second ones. 

Research problem and method 
Can we set a scale on cognitive configurations associated to tasks requiring visualization and spatial 
reasoning (VSR)? To answer this question, three spatial tasks requiring counting, folding/unfolding 
and composing/decomposing have been selected. These tasks have been proposed to a total of 400 
preservice teachers and the answers have been analyzed using the cognitive configurations (CC) 
proposed by the OSA (Fernández, Godino and Cajaraville, 2012). 

Results 
A variety of CC associated to each of the tasks has been found. This allows us to describe skill 
levels in VSR (Table 1) subject to certain conditions directly depending on the characteristics of the 
task, the visualization skills (Del Grande, 1990) required and the synergy between visual and 
analytical languages of each configuration (Godino, Blanco, Gonzato and Wilhelmi, 2013). 



 

Task Levels Rank % 

Truncated 
cube 

Level 1 Level 2 Level 3 Level 4 Level 5 High: levels 4 and 5 10,25 

CC2 CC1 

CC4 

CC3 

CC8 

CC6 

CC7 

CC5 Intermediate: level 3 11,50 

Low: levels 1 and 2 45 

Folding/ 

unfolding 

Level 1 Level 2 Level 3 High: level 3 8,5 

CC1 CC2 

CC5 

CC3 

CC4 

Intermediate: level 2 14 

Low: level 1 52,50 

Perforated 
cube 

Level 1 Level 2 Level 3 Level 4 High: levels 3 and 4 49,25 

CC2 CC4 

CC5 

CC3 CC1 

CC6 

Intermediate: level 2 0,75 

Low: level 1  24,25 

Table 1: Scale of configuration levels 

Conclusions 
In general the ratio of students expressing high level CC is significantly below than of those 
exhibiting low level. The analysis shows that students mobilized variety and quantity of visual 
objects and processes. However, they do not reach the solution successfully. This fact might be due 
to students are not used to working with these objects and visual processes. 
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Introduction 
Diagrams appear in many different forms in mathematics and in its teaching and learning. While the 
use of diagrams is pervasive, research on learners’ activity with diagrams is somewhat limited (for 
partial reviews, see Jones, 2013; Sinclair et al., 2016). In this short paper, our focus is on the question 
of how secondary school students work with diagrams during proving activity in secondary school 
geometry. We use data from a project investigating the design of dynamic geometry software (DGS) 
tasks that facilitate students’ proving activity (see Komatsu & Jones, 2017). 

Existing research and theoretical background 
Samkoff et al (2012, p. 49) argue that “diagrams are viewed by mathematicians and mathematics 
educators alike as an integral component of doing and understanding mathematics”. Even so, existing 
research indicates that, amongst other things, learners’ beginning identification and interpretation of 
diagrams tends to be based on spatio-graphical properties represented in the diagram (Laborde, 2005) 
and that learners can have difficulties distinguishing within the configurations of a geometric diagram 
the visual characteristics that are relevant from those that are not (Gal & Linchevski, 2010). How 
secondary school students work with diagrams during proving activity in secondary school geometry 
is likely to vary depending on whether the geometrical diagram is ‘static’ (as in physical books and 
worksheets) or ‘dynamic’ (via digital technologies; for example Yerushalmy & Naftaliev, 2011). 

The study 
Data (in the form of transcribed student talk, student written work, and digital files) come from a 
task-based interview using the tasks in Figure 1 with a triad of 11th grade students (16-17 years old), 
Kakeru, Sakura, and Yuka (pseudonyms), from an upper secondary school in Japan. The students had 
previously learnt geometric proofs, including using the conditions for congruent and similar triangles. 
As such, they were familiar with the inscribed angle theorem, the inscribed quadrilateral theorem, and 
the alternate segment theorem. Prior to the task-based interview, they had four hours using DGS.  

For Q1, and only using paper and pencil, the students conjectured that ∆PAB ~ ∆PDC and wrote a 
suitable proof based on the inscribed angle theorem. For our analysis for this paper, we focus on what 
happened as the students worked on Q2 after they had used the DGS to construct the figure.  

Findings 
Our analysis found that during the time that the students worked on Q2, they moved (‘dragged’) 
points A, B, C, and D to various places on circle O. In working with this ‘dynamic’ diagram, we 
found that their discussion settled on various versions of the diagram that we could categorise into the 
six types of diagram shown in Figure 2. 



 

Q1. (1) As shown in the diagram given, there are four points A, B, C, and D on circle O. 
Draw lines AC and BD, and let point P be the intersection point of the lines. What 
relationship holds between ∆PAB and ∆PDC? Write your conjecture. (2) Prove your 
conjecture. 
Q2. Construct the diagram shown in Q1 with GeoGebra. Move points A, B, C, and D to 
various places on circle O to examine the following questions. (1) Is your conjecture in 
Q1 always true? (2) Is your proof in Q1 always valid? 

Figure 1: Tasks used in the interview 

 
Figure 2: Types of diagrams the students produced 

For Figure 2a, which the students created by dragging points so that points A and B (and consequently 
point P) coincided, they commented that “if (the points) overlap, (our conjecture is) impossible” 
because “(triangle PAB) disappears”. For Figure 2c, where they considered that line AC was parallel 
to line BD, they concluded that “(our conjecture is) impossible” because “intersection point (P) 
disappears when (lines AC and BD are) parallel”. Eventually, they concluded that their conjecture 
was not true for these two cases (for more on the other types of diagram, see Komatsu & Jones, 2017).  

Concluding comment 
The diagrams we found in the students’ proving activity underlines the observation by Samkoff et al. 
(ibid) that the processes involved in using diagrams in mathematics are “surprisingly complex”, 
especially the extent to which students are aware of the general result or a specific diagram.  
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QED-Tutrix (QEDX) is an intelligent tutoring system which assists students in proof problem solving by 
providing hints while taking into account the student’s cognitive state. QEDX stands out by the fact that it 
adapts to each user and class reality, not the opposite. However, this model implies recognizing, like a 
teacher would, proofs that do not necessarily conform to a formal logic. Hence, QEDX can’t rely on an 
automated proof engine (Tessier-Baillargeon, 2016), raising the question of how to expand QEDX’s 
problem database without manually implementing each valid proof. Therefore, our poster at CERME10 
doesn’t present a traditional research project with its research questions, it’s methodology and conclusions. 
It rather aims at presenting the new research questions that stem from the challenges that arise with trying to 
broaden QEDX’s problem bank while staying true to our main goal, which is to create a geometrical 
workspace (Kuzniak, 2006) according to witnessed student/teacher interactions through a design in use 
approach (Rabardel, 1995). Here we will focus our attention on the process of problem implementation, 
starting with how we currently generate a proof problem’s solution graph. 

Generating a proof problem’s solution graph. 
QEDX’s HPDIC graph (Figure 1) is used to record all the valid proofs to a given problem. It includes 
Hypotheses, Properties, Definitions, Intermediary results and a Conclusion. This graph is unique to each 
problem and is built from the inferences individually identified as true according to the problem to solve and 
the class context. The HPDIC graph for the rectangle problem in Figure 1 is fairly simple since it counts 
only 13 inferences. However, in the five problems implemented in the current QEDX version, one counts 
214 inferences creating a much more complex HPDIC graph. 

 

 



 

Figure 1: HPDIC graph, rectangle problem that asks to prove that a quadrilateral with three right 
angle is a rectangle 

Needless to say, there is a great amount of prerequisite work to be done before a problem can be added 
to the system. Therefore, in order to expand QEDX’s problem database, we need to, at least partially, 
automatically generate each problem’s solution space. A rich problem database will allow the student to 
navigate a geometrical workspace made up of a sample of problems put together to help him or her 
overcome difficulties as well as exercise proving skills through personalized problem itineraries. However, 
since QEDX aims at adapting to every didactical contract (Brousseau, 1998) by expecting and recognizing 
proofs according to what the teacher of any given classroom would require, manually generating every valid 
solution becomes almost impossible. How can we take into account teaching traditions while maximizing 
our proof problem pool? This challenge will define the next steps in QEDX’s design and development.  
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Introduction 
The main focus of the study is on primary students’ concept knowledge about geometrical solids. In 
particular, we intend to detect the development of geometrical concept knowledge of Year 3, 4 and 5 
students (aged 8 to 11). We investigate young children´s knowledge of geometrical solids by providing 
wooden blocks in construction tasks: 52 third-graders (German and Malaysian children), 30 fourth-graders 
and 9 fifth-graders were asked to construct cuboids and cubes according to their knowledge and 
visualization. Results are interpreted according to the Van Hiele framework. In addition, we have a closer 
look on the variety of cube and cuboid constructions and raise conclusions concerning the development of 
children´s conceptual knowledge. 

Theoretical framework 
The customary conception of a concept comprises the “ideal representation of a class of objects, based on 
their common features” (Fischbein, 1993, p. 139). In this sense, geometrical concepts refer to common 
features of a class of geometrical shapes or solids which can be visualized or perceived when encountering 
concrete representatives. Typical representatives (prototypes) depict specific features of the class of 
geometrical figures in particular (Mitchelmore & White, 2000). Based on this notion, students’ conceptual 
knowledge of geometrical solids reaches beyond the capability of correctly naming concrete 
representatives or giving a verbal definition. It rather comprehends the perception, visualization and 
identification of distinctive properties which refers to individual mental images students have while thinking 
of a specific solid (Tall & Vinner, 1981). The development of geometrical concept knowledge from 
primary to secondary has been described by the well-known Van Hiele Model which defines five levels of 
development (Van Hiele, 1986). Yet, most research which refers to the Van Hiele framework has been 
concerned about children’s geometrical concept knowledge of 2-D shapes, whereas little is known about 
children’s concepts of 3-D solids. Based on this theoretical framework, we assume that analyses of 
similarities and differences in individual construction processes and products of Year 3, 4 and 5 children 
provide deeper insights into children’s visualization of geometrical solids, regarded to be a core element of 
geometry and mathematics education in primary schools. 

Research questions, methods and results 
The results of the study are expected to contribute to a deeper understanding of the development of 
children’s concept knowledge of geometrical solids at primary level.  

 How do Year 3, 4 and 5 children (aged 8 to 11) articulate their conceptual knowledge of
geometrical solids via construction activities with wooden blocks (cubes, cuboids, prisms and
Froebel’s Gift No 6)? Are these constructions in line with their verbal explanations?



 What kind of cuboids and cubes do they construct and which variations occur? Do they possess
particular approaches in their activities?

 How can we interrelate these results to the Van Hiele framework and is there a necessity to enrich
the Model of Development of Conceptual Knowledge?

We analyse the conceptual understanding, strategies and reasoning of Year 3, 4 and 5 children when 
observing and video-taping their construction activities of 3-D solids (cuboids and cubes) with wooden 
blocks. In a first step, German and Malaysian children were asked to explain their ideas and knowledge of 
geometrical solids in a short dialogue with the interviewer. Afterwards, a variety of tasks invited them to 
express their knowledge of cuboids and cubes via construction activities. During their constructions children 
were encouraged to describe their strategies. Data was coded with software support by Atlas.ti. A 
coding-guideline was developed mainly according to Grounded Theory Methods (Corbin & Strauss, 
2015), trying to detect facets of articulating children’s conceptual knowledge of geometrical solids and to 
relate our first results with the Van Hiele framework (Van Hiele, 1986).  

Our results show an impressive variety of different types of constructed cuboids and cubes and of 
individual approaches, which indicate a wide variety in children‘s geometrical concept knowledge of the 
selected solids. Relating to cubes, most children focus on a square-base area during their constructions, 
some German and Malaysian third-graders only built one quadratic layer and name this a cube. 
Furthermore, we detected ambiguous mental images in children’s concept knowledge concerning cubes. 
Relating to cuboids, our results illustrate the existence of prototypical representatives, e.g. convex 
constructions with various layers, followed by constructions only consisting of one layer. Furthermore, 
children’s constructive activities can be (partly) interrelated to the Van Hiele framework, most children are 
at level of Visualization (“It’s a cube because it looks like a cube.”), resp. Analysis (“It‘s a cube because 
all surfaces are the same.“). None of the children are in the phase of transition from Analysis to 
Abstraction, all children Year 3, 4 and 5 faced difficulties in realizing relationships between a cube and a 
cuboid. 
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Overview 
The working group gathered 30 participants from 15 countries. 22 papers and 4 posters were 
accepted. 

The first session started with an ice-breaker activity. Firstly, the participants were asked to 
introduce themselves to a neighbor they had never met before.  In a second time, each participant 
had to briefly present her/his colleague: her/his name, occupation, country and expectations about 
the working group. The cross-presentations made it possible to identify 3 main expectations. First 
researchers who attended TWG5 sought after constructive feedback on their work. Then they hoped 
to widen their point of view: gather new ideas, get informed of new trends, get to know better 
research works from other countries. The third main expectation was about networking: meet nice 
and smart people and develop possible collaborations. 

The team of co-leaders had organized papers into 5 groups on 5 different topics. A session was 
devoted to each group and this session was managed and chaired by one of the co-leaders. 

Teacher education (Aisling Leavy) 
This session explored a broad spectrum of research in teacher education pertaining to statistics. The 
presentation by Artego, Diaz-Levicoy and Batanero reported on a study of the competence of 140 
Chilean primary school students levels in reading pictograms. Frischemeier and Biehler reported on 
the development of statistical literacy and thinking in a statistics course for elementary preservice 
teachers. Negotiating the content and the teaching of statistics during teachers’ professional 
development was the focus of the presentation by Bakogianni. The research reported by Gokce and 
Kazak examined middle school mathematics teachers’ pedagogical content knowledge in relation to 
statistical reasoning. Afeltra, Mellone, Romano & Tortora reported on the results of a study 
designed to support teachers’ interpretative abilities and use of errors as a didactic resource.  

Discussion focused on the following guiding questions: What are the important understandings that 
teachers/students need to develop? What experiences can we provide to promote and develop 
teacher understanding? What considerations should we take into account when designing tasks to 
assess statistical understandings?  In what ways might current knowledge frameworks limit/support 
the identification of teacher knowledge? 

When discussing the important understandings and knowledge that teachers need to develop, there 
was acknowledgement of the limited experiences of pre-service teachers in statistics and the limited 
space it receives in teacher education courses. The greater recognition in teacher education of the 
dual role of content knowledge and pedagogical content knowledge was welcomed. In moving 
forward there was the recommendation of the need to support teachers in developing awareness of 



the features of good tasks so they can design and modify their own tasks to ensure maximal learning 
benefit for children. When discussing the considerations that need to be taken into account when 
designing tasks to assess understandings/knowledge, there was agreement that it is difficult to 
assess teacher knowledge when we are not entirely sure what knowledge is important in order to 
teach statistics. Thus, there is the need for more research that elaborates what it is that teachers need 
to know in order to teach effectively in their classrooms. Finally, when discussing the ways in 
which we can we promote and develop teacher understanding, there was discussion around the 
importance of acknowledging what makes statistics unique (from mathematics). Consensus was 
also reached on the importance of task design is drawing attention to conceptual understanding, on 
the usefulness of focusing on children’s responses (both errors/misconceptions and correct 
responses) and on the use of collaborative feedback is useful in revising understandings about 
teaching and learning statistics. 

Informal statistical inference (Caterina Primi) 
Recently several researches effort are made to understand the informal ideas relating to statistics 
inference (ISI) as it is seen as having a potential to help build fundamental concepts that underlie 
formal statistic inference. Indeed, students can show complex ideas regarding statistical concepts 
(such as distribution, sampling) that can be seen as “precursor notions” of regular statistical 
concepts.   

Four papers were presented on this topic. Leavy explores the informal inferential reasoning of 
primary students (5-6 years old). In Büscher’s paper students’ patterns of thought and the processes 
of their conventionalization are reconstructed in a qualitative study with students of grade 7 (12-14 
years old). De Vetten shows the importance of preparing primary school teachers for teaching ISI, 
identifies learning goals for the teachers, and reports on an intervention study focusing on these 
learning goals. McLean’s paper reports on students’ modelling activities involving resampling 
process of bootstrapping. 

In the final discussion emerged the importance of informal inferential reasoning in particularly how 
it should be promoted at every level (from early years upwards) as it is the beginning of access to a 
statistical cultural. Additionally, the group agree that Informal inference has an important socio-
political contribution and may represent the first exposure to prediction and data-based inference. 
For this reason, the group has identified the need for national curricula and policy bodies to promote 
an emphasis on informal inference at the school level.   As future directions, the group has 
identified the critical role of task design, language and technology in accessing understandings of 
inference, and finally the research of evidence of whether and how informal statistical inference 
improves the transition to formal statistical inference. 

Probability and sampling (Sibel Kazak) 
Four papers were presented and discussed in the subtheme of probability and sampling. The paper 
by Paparistodemou, Meletiou-Mavrotheris and Vasou report on young students’ ideas of 
randomness and expressions of probability of an event when designing their own games with the 
use of Scratch software. Silvestre and Sanchez examine high school students’ reasoning while 
engaging with the idea of sampling distribution and the estimations of likelihood of outcomes in 
repeated random sampling by using Fathom software. Elicer and Carrasco explore the use of a 



sequence of tasks designed based on the framework of didactical engineering to introduce 
conditional probability as a decision-making tool. Eichler, Vogel and Böcherer-Linder describe and 
compare the use of different visualization tools, such as unit square, tree diagram and 2x2 table for 
visualizing Bayesian situations that involve conditional probability and Bayes’ rule. In the general 
discussion based on these papers the following issues were raised: 

 Use of ‘uncertainty’ term instead of ‘probability’ to emphasis the link between probability and 
statistics and informal inferential reasoning. 

 Current trend in teaching probability topics in higher grade levels in school mathematics 
curricula in different countries.  

 Mismatch between emergence of probabilistic ideas in young students and how the school 
mathematics curricula are designed. Lack of focus on subjective probability in school. 

 Role of representations in conditional probability situations and in decision-making. It was 
noted that there is no ultimate representation but variety of choices for different purposes. 

 The need for attending to cognitive and non-cognitive components of learning both for teachers 
and for students of all ages (elementary through to college level). 

 How to design tasks or activities in game-based environments like Scratch that will foster the 
development of statistical/probabilistic reasoning. By over stipulating the environment we may 
lose the affordances that the environment provides (i.e. openness, creativity). 

 Use of technology in task-design and challenges in implementating such tasks in classrooms. 
 Research (future directions): More research on ways of thinking about what children can do 

and more focus on philosophical perspectives in research are needed. 

Technology (Daniel Frischemeier) 
This session explored in what ways technology can promote and develop statistical reasoning. In 
detail we got to know about the use of different technology tools like educational software, 
spreadsheets, online platforms (for distance learning), response tools, and programming tools in 
statistics education.  Overall we have five papers in the session on technology.  

Parzysz reports on the use of spreadsheets to teach probability and introduces learning 
environments for French High school students to learn about the binomial distribution with 
spreadsheet software like Excel and discusses the potential and limitations of using spreadsheets 
when simulating random experiments and when shifting from discrete to continuous distributions. 
Serpe and Frassia present teaching examples to enhance the discussion on the meaning and 
interpretation of probability for higher secondary school students in Italy. In detail Serpe and 
Frassia show ways to implement programming for simulating chance experiments and introduce 
specific tasks (e.g., airplane task). In the article of Tacoma, Drijvers and Boon the reader gets to 
know about the potential of feedback devices and response tools in statistics education. Their 
research aims how students’ models can be used to generate feedback in an online course on 
statistical sampling. The paper of van Dijke-Droogers, Drijvers and Tolboom describes a study 
which investigates ways to enhance grade 8 students´ statistical literacy through within-class 
differentiation. The study is framed in a design-based research project and interventions like Digital 
Mathematics Environments and digital tools are used. Finally, Meletiou-Mavrotheris, 



Paparistodemou and Bayes describe an online course about statistical methods for post-graduate 
education majors and point out prospects and considerations of distance education.  

Two fundamental issues have arisen in the discussion at the end of the session regarding the 
learning and teaching with technology in statistics education: design issues (task design and design 
of learning environments) and also the role of technology in teacher education. Regarding the first 
aspect “design issues” two fundamental questions have arisen in the discussion process of the whole 
TWG5: How to support learners in their use of technology? How to concentrate on the content 
rather than on technical issues of the tool? Regarding the second aspect “technology in teacher 
education”, the group agreed that teachers need a solid technological knowledge (technological 
pedagogical content knowledge, TPCK) to be able to implement and orchestrate technology in 
statistics classrooms successfully. As future directions in the field of technology in statistics 
education the group has identified the potential of web-based applications, mobile devices and 
online learning systems for the learning and teaching of statistics. 

Varia (Corinne Hahn) 
Five papers were gathered in a “varia” group as they covered issues that were not directly related to 
other subthemes. Arteaga and colleagues describe a large study carried out in Chile with 6th and 7th 
grades students. The aim of this study was to explore students’ competencies in reading pictograms. 
They report that the highest level they called “critical interpretation” is rarely reached by students. 
Gea and colleagues analyse correlation and regression problem situation in Spanish textbooks. 
Amazingly they report that there were very few problems with context. Trakulphadetkrai presents a 
qualitative study carried out with undergraduate students, with the aim of exploring how students 
learn statistical concepts through enactive story writing. Gonzales and Chitmun describe a socially 
open-ended problem in a sport related context and present the results of an exploratory study on the 
impact of one of these problems. Chiesi and Primi investigate how students’ attitudes changes 
during an introductory statistics course and discuss educational implications. 

The general discussion at the end of this session focussed on the question of task design. We raised 
many questions, among which the following three have been particularly prominent: 

 Can a problem be “real” or simply realistic or meaningful? 
 What could be the most appropriate task for the statistic classroom: didactical situation, 

project work, inquiry-based activity, open problem? 
 What is the role and impact of tools? 

Conclusion 
In this working group, we challenged current frameworks and perspectives on statistics education 
research and some important issues emerged from the discussions. The participants agreed that we 
need to know more about: 

 uncertainty in IIR, 
 theoretical frameworks / philosophical frameworks for research purposes, 
 childrens’ naive conceptions and how to build on them. 
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In this paper we discuss a teacher education task centred on the request to interpret the reasoning 
of students addressing a ‘throw of the dice’ task. The task for teachers was designed after an 
analysis of class excerpts, carefully selected by our research group because of the interesting 
educational reflections to which they gave rise. The goal of the task is to support prospective 
teachers to develop interpretive ability in order to use errors as a didactic resource and to help 
students build their mathematical knowledge starting from their reasoning.  

Keywords: Probability, teacher education, task design. 

Introduction 
In the framework of PISA 2015 the domain “Uncertainty and Data” is put at the core of the 
mathematical cultural experience. Items about this topic are, by now, present in all the national 
assessment tests and the bad students’ results to these items, both in national and international tests, 
put in evidence the need to improve the teaching of Probability and Statistics in school. But this 
request, as is often the case, is not adequately satisfied, at least in Italy, by a specific plan of teacher 
education.  

Many studies (see, e.g., Batanero, Godino & Roa, 2004) have highlighted that teachers do show 
interest for this topic but, at the same time, declare to feel a lack of knowledge and experience in it. 
Indeed, on one side probability was not included in school curricula until a few years ago, and, on 
the other side, many teachers, even with a Master Degree in Mathematics, did not take the exams of 
Probability or Statistics in their plan of studies, as in the past it was an optional exam. Nevertheless, 
it is well known that the success of any educational design aimed at developing students’ 
knowledge and skills in Probability, as well as for any other topic, depends in great part on 
teachers’ knowledge and attitude toward the topic itself.  

In this study, we refer to Mathematical Knowledge for Teaching (MKT) framework that serves as a 
resource for specifically addressing the mathematical demands of teaching (Ball,Thames & Phelps, 
2008). More and more researches all around the world are demonstrating the effectiveness of this 
frame for teacher education.  

Several studies (Tversky & Kahneman, 1974; Jones, Langrall & Mooney, 2007), starting from the 
fact that situations of uncertainty are widely present in daily life, show that very often the common 
sense or the experience linked to gamble can conflict with the mathematical management of the 
situation. For this reason we think that it is crucial to design practices of teacher education in this 
topic which take into account students’ answers and look at them as didactic resources (Borasi, 



1994), even when these answers seem to be in conflict with the formalization goal of the 
educational design.  

In this paper we discuss a particular teacher education task in teaching Probability. Its design and 
implementation is rooted in the “modus operandi” of our research team, in which university 
researchers, in-service school teachers and Master students are involved as a co-learning 
community throughout an inquire research experience (e.g., Jaworski & Goodchild, 2006). We will 
explain the rationale that guided us in the choices of some transcripts of classroom discussions, used 
to design a task for in-service teachers that, in our opinion, should be considered the final product of 
a long training path and an effective tool to develop their interpretive skills. Finally, we try to 
answer to the question whether this particular type of task could be used also with perspective 
teachers, in order to scale up the reflections and the outcomes developed in our co-learning 
community. 

Theoretical framework  
Teacher knowledge and, in a broader sense, teachers’ attitudes and goals, play a key role in any 
effort of educational innovation. Among the different conceptualizations of teacher knowledge, the 
MKT effectively describes the particular features of mathematical knowledge needed for teaching 
(Ball, et al., 2008). In particular, many studies underline that, in order to improve the teaching of 
Probability, it is crucial to support teachers’ training not only in the Common Content Knowledge 
(CCK), subdomain of MKT, i.e. the general knowledge of a math topic, but also in terms of the 
Specialized Content Knowledge (SCK), that is the knowledge about the topic specifically connected 
with its teaching. However, to develop SCK in the context of Probability, different aspects need to 
be taken into account (see, e.g., Ponte, 2008): i) epistemological reflections on the meaning of 
concepts (e.g.,,different meanings of probability); ii) awareness of the closed connections between 
probabilistic and statistical issues; iii) students' learning difficulties, errors, obstacles and 
counterintuitive ideas in this field; iv) necessity to plan assessment tests and instruments for 
interpreting students’ responses.  

In this study, we focus on the third point of the previous list, looking at errors and non-standard 
reasoning not as something to avoid but rather as a source to be capitalized, that really shapes the 
dynamics in mathematics educational process (Borasi, 1996). Indeed, in our perspective, one of the 
main task for a mathematics teacher is to grasp the “meaning” of students’ answers, in order to 
develop their mathematical knowledge starting from students’ reasoning.  
This aspect is even more crucial in Probability than in other fields, considering that all the typical 
technical terms (probable, possible, random, event) are widespread common words. The 
epistemological consequent conflict can be faced only if teachers get aware that, according to 
Borasi (1996), ambiguities, in particular linguistic ones, can play a useful role in the development of 
mathematics learning. This peculiarity makes students, and, sometimes also teachers, more 
susceptible to counterintuitive ideas, which, in addition, arise in Probability already at an early 
level, more than in other branches of mathematics (Borovcnik & Peard, 1996).    
We are firmly convinced that improving students’ mathematical knowledge on the basis of their 
arguments, even when they seem naïve, requires that teachers activate a real process of 
interpretation, shifting from an evaluative listening to a more flexible hermeneutic listening (Davis, 



1997). In this peculiar field, the wrong answers of students often arise from well-known 
misconceptions (Ang & Shahrill, 2014), the same ones that afflict teachers, even in service, as 
discussed in (Batanero, Godino & Cañizares, 2005). According with this vision, we have proposed a 
design of tasks to develop teachers’ SCK, specifically addressed to support them in making didactic 
choices fit to develop students’ mathematical knowledge, starting from their reasoning (Ribeiro, 
Mellone Jakobsen, 2016). The tasks we have designed address the difficulties encountered by 
students in coordinating the classic and frequentist approaches to probability, above all with respect 
to the representativeness of the sample, and in recognizing the notion of equiprobability as a basic 
aspect of any probabilistic judgement. These tasks come as a final result of a training path in our 
research group, with the aim to enhance teachers’ professional development. But, after experiencing 
the task within our community, we also decided to propose a similar task for teachers’ learning, 
because we agree with (Robutti et al., 2016) that it is necessary to scale up the significant 
experienced practices for teacher professional development. 

Methodology 
The particular task we are going to present was developed during the meetings of our research 
group. In the last two years, our group have been working as a co-learning community, where 
educators : 

(…) create opportunity to work with teachers, to ask questions and to see common purposes in 
using inquiry approaches that bring both groups closer in thinking about and improving 
mathematics teaching and learning. (Jaworski & Goodchild, 2006, p. 354) 

This group is composed by five university researchers (two in mathematics education and two in 
physics education), fifteen in-service teachers with a long experience (one kindergarten teacher, five 
teachers from primary school, two from first order secondary school and 7 from second order 
secondary school), and some Master students in Mathematics or Education who have been working 
in their master thesis with us. Most of the teachers have been collaborating with the researchers 
since 2004, some were also involved in a three-year project (PDTR, Professional Development of 
Teacher-Researchers, www.pdtr.eu), financed by the European Community, aiming at “engaging 
classroom teachers of mathematics in the process of systematic, research-based transformation of 
their classroom practice” (Malara & Tortora, 2009 for the Italian contribution). It is worthwhile to 
say that we have found several similarities with the method of work of the mathematics learning 
communities in Norway described in (Robutti et al., 2016). 

In the last two years, we decided to start a reflection about Probability and we used to meet once a 
month for three hours at the Department of Mathematics of the University of Naples. The training 
path was divided into two parts. Firstly, we organized several theoretic seminars on the 
epistemological bases of Probability, the connections between Probability and Statistics and on the 
necessity to enhance the study of Probability at school. Secondly, our meetings were devoted to 
plan didactic activities in Probability, from primary to secondary school. Each teacher had the 
possibility to adapt the didactic paths to his/her school level according with the national curricola.  
Successively, the teachers were asked to illustrate the outcomes of the didactic activities in their 
classrooms, sharing with the community audio and video recordings of class discussions, and 
samples of students’ productions.  



In this paper, we focus on some excerpts of the discussions occurred in Piera’s (one of the author of 
this paper, and expert secondary teacher of the group) classroom of 10th grade students.  
The class discussions were registered and transcribed thanks to the help of Laura (another author of 
the paper) who have been working to her Master Degree Thesis in Mathematics on the experimental 
educational activities on Probability, carried out in Piera’s classes (Afeltra, 2015). Piera had already 
involved her two 10th level classes in inquiry based activities about descriptive statistics and her 
students were quite used to discuss each other, in order to deepen their understanding of what they 
were asked to study. The didactic path had been planned in the learning community with the aim to 
check if her students would have evidenced the predicted difficulties, also considering that most of 
them had studied the early elements of Probability in the previous years, often with a formula based 
approach. Among the others, we selected those class excerpts that gave rise to deep discussions 
during our meetings, about the possible interpretation of students’ answers, as we will illustrate in 
the following. In order to mobilize teachers’ SCK, we focused our attention on the following two 
frequent students’ errors: to view different outcomes of an event as always equally likely (within a 
classic approach to Probability); and to consider a too small sample as representative to estimate the 
probability (within a frequentist approach).  
These excerpts had a significant impact on the professional development of all in-service teachers, 
since most teachers, with a master degree in mathematics, seemed not able to act as students, 
because of a clear prevalence of their CCK on the SCK, necessary to predict students’ learning 
difficulties. In our learning community, Piera’s classroom excerpts were considered particularly 
interesting to be used for a pre service teachers’ training activities, as they show, even on a small 
sample, that these misconceptions are a common way of thinking, so a teacher has to be ready to 
appreciate the opportunity to transform a wrong answer into a challenging one. 

A teacher education task 
In the following, we present the teacher education task based on excerpts of a class discussion on 
the game of tossing two dice, indeed, a very rich and complex context, in spite of its apparent 
simplicity. In fact, it is one of the typical contexts used to introduce Statistics and Probability, 
nevertheless several research studies show that both students and teachers can run into 
counterintuitive ideas about the representativeness of the sample, when rolling one die, and about 
the item of equiprobability, when playing with two dice (see, e.g. Batanero et al., 2005). Moreover, 
this context offers many interesting experiences involving the necessity to handle at the same time 
different approaches to Probability. It is necessary that students become aware of the intrinsic limits 
of the two approaches: in the classical case, it may be all but easy to identify all the possible equally 
probable cases, whilst in the frequentist approach it may be not possible to repeat a large number of 
trails at the same conditions. On the other hand, students who have already studied some elements 
of Probability in their previous scholar levels can get quite confused about the probability of an 
event, when they may calculate it in two different ways, for example when playing with dice, but 
with a small sample. Indeed, the game with dice, as all kinds of gamble, allows to introduce the 
Law of the Large Numbers in a significant way.  

The task is organized as a questionnaire composed of three items, two of them centred on class 
discussion’s excerpts. In the following, we comment on each item, and, in particular, on the class 



excerpt, to illustrate the reasons why we consider them meaningful to be interpreted and interesting 
from the teacher education’s point of view. 

Item 1 

Read and analyse the following class excerpt. 

Teacher: Playing with one die, how can we measure the probability of each side? 

Daniele: There is no favourite side, so for each of them the probability is 1/6. 

Federica: But rolling the die, we have got five 8 times over a total of 63. So the 
probability is 8 over 63, that is approximately 0,127. 

Daniele: One sixth is 0,167, they are not the same! 

Federica: Yes, we can use both definitions… but we have studied that in this case it 
is certainly one sixth! 

a) For each students’ answer discuss if, in your opinion, it is mathematically correct or not;  
b) Plan a suitable didactic action to develop students’ learning, starting from their answers.  

We consider this excerpt as a good starting point to discuss the link between the classic approach 
and the frequentist one to Probability. The transcript shows that Federica is firmly convinced that 
the classical definition of Probability is prevalent over the frequentist approach. On the other hand, 
the play with one die is a very well known situation, and the “a priori” probability is so simple and 
evident that Federica’s answer is quite “reasonable”. In our opinion, the thought-provoking thing is 
her absolute indifference to the value of the relative frequency obtained as the result of rolling the 
die several times. Many speculations are possible: Federica’s certainty can come from a previous 
formula-based approach to probability, experienced in previous years, or, instead, from the 
awareness that the frequentist definition needs a large number of data. In both cases, the item allows 
to reflect on the necessity that teachers clarify the question with their students. Moreover, it shows 
the importance to involve students in activities of data collection, which gives the chance to 
significantly introduce the Law of Large Numbers, also, maybe, with the aid of a digital simulator, 
to work with large samples.  

Item 2  

During a lesson on Probability, a teacher submits to his/her students the following question: 
“When two dice are simultaneously thrown, what are the chances of obtaining 7 as the sum 
of the two sides up?” 

a) Answer the question, as you are able to do; b) Which possible answers, correct or not, in 
your opinion, will be given by students? c) Discuss about the possible difficulties that, in 
your opinion, a student will encounter when addressing this question. 

The first item of the task aims to put teachers at the place of students. The whole task involves 
teachers in a brainstorming activity, mobilizing their CCK about the topic. In this way, teachers can 
recognize a didactic obstacle, and, consequently, realize the need to design an educational path to 
face it. Moreover, in the following item, the teachers can confront their own answers with those 
given by the students. 



Item 3 

In the following excerpt it is reported a discussion between a teacher and his/her students 
about the previous question. 

Teacher: When two dice are simultaneously thrown, what are the chances of 
obtaining 7 as sum of the two numbers? 

Gianluigi: There are 11 possible sums, from 2 to 12, so the probability is 1/11.  
Ludovica: No, it would be true if we used a die with 11 sides. We have to consider all 

the possible couples, such as one and one, one and two and so on. 
Teacher:  Ok. And then, how many? 

Students work in groups for a while until one of them affirms: 
Massimo: There are 21 possible couples.  

a) For each students’ answer, discuss if, in your opinion, it is mathematically correct or not; 
b) Identify a set of possible questions that you would pose to students to support them their 
learning process. 

According to the classic definition of probability, Gianluigi’s answer has to be considered wrong, 
since the 11 values of the sum are not equally likely. But Gianluigi’s answer opens up the reflection 
about the difference between the sample space and the possible cases. The transcripts were 
enlightening for most teachers in our community. Even Piera, one of the author, witnessed that, in 
the previous years, on the basis of her CCK only, she would have rejected this answer, immediately 
underlining that the eleven possible outcomes are not equally possible. In the light of the reflections 
previously made in our community, this time she rather decided to give space to the classroom 
discussion. Moreover, Ludovica smartly refers to another context, where 11 would have been the 
correct answer, and this seems to us a significant process to support the construction of meaning, 
above all because it arose from students.  

Even Massimo’s answer, which is caused by the common belief that, throwing two dices, the order 
is not relevant (see, e.g., Batanero et al., 2005), is wrong but interesting. Indeed, we have selected 
this excerpt because, in our meetings, it triggered many discussions about the didactic choice, for 
example, to use or not dice of different colours, in order to avoid this error. Finally, we agreed on 
the opportunity to use dice of the same colours in order to open up the possibility that reasoning as 
Massimo’s one emerge.. In this way, a teacher has the possibility to ask students to look for 
contexts different from the dice game, where the order turns to be relevant. In our meetings, many 
ideas were proposed: the most popular examples were contexts of sport competitions, while a more 
sophisticated context could be the Bose–Einstein statistics. Only on the basis of her learning’s 
development, due to the participation in our co-learning community, the teacher was able to guide 
her students in finding a possible context in which Massimo’s answer could be correct, activating in 
this way an hermeneutic listening (Davis, 1997) Her actions helped students not only to better 
understand the crucial role of equiprobability, but also to describe mathematical models and 
formulate hypotheses about them.   



Conclusions  
For several years researchers in probability education have been investigating the counterintuitive 
ideas arising when people formulate judgements in real situations involving uncertainty (Tversky & 
Kahneman, 1974). These ideas are often in conflict with the mathematical formalization of 
Probability, so they can cause, if not recognized, paradoxical results. It is widely known that a 
correct probabilistic reasoning needs a specific instruction (Fischbein, 1975), therefore, it is 
fundamental that a teacher is able to use students’ intuitions, their counterintuitive answers or 
incorrect reasoning as resources for learning (Borasi, 1994). We think that this work is particularly 
useful for Probability, even more than for other mathematics topics, since, in this field, widespread 
counterintuitive ideas arise from many daily situations. 

Our research group has been working as a co-learning community (Jaworski & Goodchild, 2006), 
where the professional development of all the participants was enhanced throughout inquiry 
activities, in order to improve learning from experience and reflection. In this paper we have 
focused on the process which led us to design a teacher education task, starting from the analysis of 
excerpts of classroom activities. We selected the excerpts most challenging to be converted in 
interpretative tasks for teacher training, with the aim to improve teachers’ SCK about some crucial 
notions of Probability. The deep impact observed on the Math teachers of our community 
encourages us to redesign a similar path to be used for teacher training on a larger scale, as an 
attempt to face the issue of dissemination of the significant practices experienced in a co-learning 
community, as described in (Robutti et al., 2016). In this direction many questions are still open, 
and need further investigation. However, we are just now exploring the real effectiveness of this 
types of task with in-service and perspective teachers, their difficulties and limits. 
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This study builds on Wenger’s (1998) notion of meaning as the essence of a practice and the process 
of negotiation of meaning as determinant in the development of a practice. Following an emerging 
community of 11 secondary mathematics teachers, I aim at exploring the interactions between two 
dominant processes in teachers’ work, the negotiation of the statistical content and the negotiation 
of the teaching of statistics. The results indicate that the two processes act complementarily in the 
formation of the practice of the community and consequently in the professional development of the 
teachers. Evidence of how the one provides feedback and meaning to the other is also illustrated and 
discussed.  

Keywords: Community of practice, mathematics teachers, teaching and learning of statistics.  

Introduction 
The development of teacher education programs that aim to support teachers to promote statistica l 
inquiry in their classroom, is gaining an increasing attention the last years in statistics education 
community. This current discourse emphasizes the importance of offering teachers opportunities to 
experience as learners statistical investigations (Makar & Fielding-Wells, 2011), and nominates the 
significance of teachers’ engagement with inquiry in the teaching (Shaughnessy, 2014). A further 
approach suggests combining experiences in teacher education, namely as learners and as teachers, 
and provide evidence that this combination can help teachers not only to strengthen their statistica l 
content knowledge but also to be able to transfer their understanding to the classroom (Heaton & 
Mickelson, 2002). Although the complementarity of teachers’ experiences as both learners and 
teachers seems to be crucial in teacher’s professional development, we still know very little on how 
these two types of experience interact and provide feedback to one another. 

In this study I explore the interplay between the process of negotiating the content of statistics (NCS) 
and the process of negotiating the teaching of statistics (NTS) in the professional development of 
teachers. Particularly, I followed a group of 11 secondary mathematics teachers who worked 
collaboratively in an emerging Community of Practice (CoP) (Wenger, 1998) to develop the statistics 
teaching practice. During their work in this community, the teachers had the opportunity to engage in 
tasks that promote negotiation of meaning in both the content and the teaching of statistics, and so 
they participated as both teachers and learners. The research question that guides this exploration is 
the following: 

How do negotiation of the content of statistics and negotiation of the teaching of statistics interact 
and provide meaning to each other in the context of a Community of Practice? 

Theoretical perspectives 
In this study, I view the teaching of statistics from a statistical thinking point of view (Wild & 
Pfannkuch, 1999) which sets inquiry at the core of statistical teaching and learning and highlights 
both the specificities and the complementarity between statistics, probability and mathematics. I focus 



on three dimensions related to statistics teaching practice. The first dimension is the learning 
potentials which refer to particular skills, abilities and knowledge that are connected to the statistica l 
activity, e.g. that students are expected to understand and deepen in the fundamental statistical ideas 
(Burrill & Biehler, 2011) or that they need to be able to use and evaluate appropriate statistical tools 
and methods in order to analyze data (e.g. Franklin et.al., 2005). The second dimension is the features, 
namely instructional tools and strategies that seem to be crucial in supporting students to achieve the 
defined learning potentials. Examples of features are students’ engagement in statistica l 
investigations (MacGillivray & Pereira-Mendoza, 2011) or the use of dynamic software tools that 
support data explorations (Ben-Zvi, 2006). The third dimension is resources. The variety of the 
resources that are brought into the teaching of statistics constitutes a dynamic ground where teachers 
can build and form their practice. In my view of resources I adopt Adler’s (2000) conceptualizat ion 
which extends beyond material resources (e.g. software tools, physical objects, media extracts, real 
data sets) to include human resources (e.g. previous experiences, collaboration with colleagues, 
knowledge about concepts and procedures) and cultural resources (e.g. time, classroom habits). 

In my view to practice, I use the lens of the social theory of learning (Wenger, 1998) which theorizes 
learning in practice through four components: meaning (the way we experience our life and the world 
as meaningful), practice (shared historical and social resources and actions), community (social 
configurations to which we belong) and identity (personal histories of becoming). In the social theory 
of learning, practice is about both action and interpretation of the action, and meaning is the essence 
of a practice and it is situated in the process of negotiation of meaning. In this study, I acknowledge 
two types of meaning that is negotiated in the CoP, the meaning related to the content of statistics 
where the teachers participate as learners in the negotiation, and the meaning related to the teaching 
of statistics where the teachers participate as teachers in the negotiation. The study of the interact ion 
between the process of NCS and the process of NTS aims to get insight on how NCS can provide 
meaning for NTS and vice versa. Especially in the case of teaching statistics where the mathematics 
teachers are challenged with a content that they are not familiar with (Hannigan et.al., 2013) and 
which contains epistemological differences from the mathematics content they teach (Moore & Cobb, 
2000), such insights could be rather helpful for the research in statistics teachers’ professiona l 
development. 

Methodology 
To achieve my research goal I followed an exploratory case study methodology (Yin, 2003), where 
the case was a group of 11 secondary school mathematics teachers, 5 practicing (Akis, Dinos, Kimon, 
Lidea, Marcos) with 8-30 years of teaching experience and 6 prospective (Athina, Chloe, Eva, Lia, 
Ria, Sofi). All teachers were mathematics graduates and also graduates or senior students in a 
Master’s program in Mathematics Education with no particular familiarity with the teaching and 
learning of statistics and with a varied background in statistics. This group was gathered in a voluntary 
basis and worked collectively for two years (2012-2013 and 2013-2014 academic years) in a regular 
base (about 2 meetings per month that lasted approximately two and a half hours each). Two 
researchers were also participants (the author-R1 and the supervisor of the study-R2) encouraging the 
active participation of the teachers, providing various resources, finalizing each meeting’s agenda 
and challenging teachers to reflect on their experiences. The main agenda of the meetings was formed 
around a cyclic route of: (a) inquiring the content of statistics, (b) designing for their classroom (c) 



implementing the designed tasks in their classroom and (d) reflecting on their practice. I considered 
this group as an emerging Community of Practice (Wenger, 1998) by encouraging the development 
of mutual engagement, joint enterprise and shared repertoire. This paper is based on the data of a full 
cycle (inquire the content, design teaching, teach the planning lesson and reflect on it) which covered 
10 of the total of 12 meetings in the first academic year. 

All meetings were audio and video recorded and the group discussions were fully transcribed. Semi-
structured individual interviews at the beginning and at the end of the study were also conducted. 
Another source of data was teachers’ journals regarding issues they considered as central in each 
meeting. Although these reports were not a complete source of data, they often constituted a useful 
source of triangulation in order to corroborate the study’s findings. 

The analysis of the data was based on a grounded theory perspective using the ATLAS.ti software. 
During the coding process I used as unit of analysis the task that the teachers were engaged in. In 
each task I distinguished NCS and NTS parts in which I assigned features, learning potentials and 
resources that were visible in teachers’ discussions. In Table 1 I present an example of the process 
we followed. Last, in a second level I focused on identifying how the negotiation of each type of 
meaning was mobilized as well as exploring interactions among the negotiation of the two types. 

 

Table 1: Example of the data analysis where the teachers were discussing the 5th problem presented 
on Fischbein & Schnarch’s article (Fischbein & Schnarch, 1997) 

Results 
In Figure 1 I present the various tasks that the teachers were engaged in during the 10 meetings. As 
we can see, there were tasks oriented to encourage negotiations in the content of statistics (e.g. 
exploration of statistical tasks/situations), tasks that aimed at negotiating the teaching of statistics 
(e.g. design for the classroom, reflection on the teaching) and tasks that had the potentiality to 
immobilize negotiations in both types of meaning. However, as we can see in Figure 2 the realized 
negotiations indicate that the interaction between NCS and NTS was not only a function of the nature 



of the task. This is especially obvious in the case of the design for the classroom tasks, where a quite 
large part of teachers’ discussion was related to NCS.  

 

Figure 1: General description of the meetings agenda 

How NCS provides meaning to NTS 

The analysis of the data showed that NCS was mobilized by the teachers’ need to understand better 
or deepen in a statistical concept or process. In the extract presented in Table 1 above, the teachers 
were discussing students’ false intuitions with regard to the effect of sample size while Akis’ 
intervention mobilized a negotiation of meaning related to sample notions and the Law of Large 
Numbers.  This episode was expanded and lasted for about 10 minutes during which the teachers 
together with R1 exchanged arguments and utilized various resources that aimed to deepen their 
understandings around these notions. This discussion helped teachers not only to deepen their content 
knowledge but also to negotiate new difficulties that they had (making connections with particular 
knowledge and abilities required to gain meaning, namely the learning potentials) and means that  
helped them to overcome these difficulties (namely the features that can facilitate these learning 
potentials). In other words, they had the opportunity to incorporate their NCS experience into their 
teaching practice. Akis notes in his meeting report are indicative of how NCS provided meaning for 
the teaching practice: “What I observed is that our beliefs and our attitudes towards probability and 
statistics are very close to those of students, I mean we are guided by an intuitive way of thinking. If 
we want our students to adopt a more inquiring stance, we first need to give them appropriate tools 
to overcome their intuitions. I think that the way we discussed in the meeting, revealing our 
misconceptions and resolving them could be a good model for our teaching”. 

 
Figure 2: Alternations in the content of negotiation in the various meetings  

Moreover, NCS was also mobilized by teachers’ need to gain experiences with data. This was the 
case for example in the 6th meeting, where the group conducted a pilot study for an experiment that 
was designed for the students by a team of five teachers. Particularly, in this experiment the students 
were supposed to investigate if listening to music affects their ability to recall words. The teachers 
designed the experiment and before they implemented it in the classroom they collected data inside 
the group, explored the data, made conclusions and thought of possible modifications in the 



experiment’s design. In this sense the NCS helped teachers to acquire experience and confidence 
regarding the implementation of the designed activity. The words of Dinos in his final interview are 
characteristic: “this interaction gives you the impression that this (he means the task) will be 
considered by many couples of eyes, by many views. I mean especially in statistics where you can 
never acknowledge all the possible parameters,… it is not that you will learn something new, it is that 
it helps to illuminate other dimensions that you may have neglected at first”. 

Furthermore, in many cases the teachers transferred directly their experience as learners to their 
teaching practice. For instance, in the 6th meeting Dinos used an example to help his colleagues to 
understand the notion of the standard deviation in the estimation of a probability. Later in the 
discussion, Dinos suggested using the same example in the classroom and the others responded: 

Sofi:  So you suggest using the same example with the students. I like it. Actually it helped 
me to understand so it would be also helpful for students to understand. 

Athina/Chloe: Yes, I agree too.     

Last, as can be seen in the examples discussed above, it is also the general context of their enterprise, 
namely the community of statistics teaching practice, that mobilized them to analyze their NCS 
experience in terms of identifying learning potentials that could be supported in the classroom, 
features that could support these learning potentials and resources that could facilitate students in the 
learning process.       

How NTS provides meaning to NCS 

Apart from the nature of the task, NTS was mainly mobilized due to a question posed by one of the 
researchers, such as “Would you use such a task in your classroom and if yes how?” or “What do you 
think a student can gain from the experience of such a task?”. Such questions encouraged teachers to 
extend their experience as learners to start a negotiation of meaning around the teaching and learning. 
The extract below is from the 3rd meeting when teachers discussed a statistical task and illustra tes 
how such NTS was mobilized. 

R1:  What difficulties can someone face in the classroom with this task? Would you try 
to implement such a task? If yes, then how and with what goal? 

Kimon:  I could try it with 12th Grade students not with younger ones. 

Dinos:  I could do this with young students as well, with 8th Grade students for example. 

Lia:  I agree with Dinos. I think this would be useful in the formation of their attitudes 
towards probabilistic ideas. In 12th Grade level they have already formed quite 
formal conceptions.  

Dinos:  But the point is what modifications we can do.  

This discussion for which the starting point was the question posed by R1, continued for about 30 
minutes during which the teachers exchanged views and suggestions, referred to specific learning 
potentials, discussed potential features that could serve their goals and utilized or suggested resources 
(e.g. use of statistical tools / suggestion to include in their study all the students in the school instead 
of the students in the classroom) that could facilitate the learning process with regard to the defined 
learning potentials. In this way, teachers extended their NCS experience to consider aspects of 



teaching and learning and to connect the statistical objects they negotiated with features, learning 
potentials and resources that broaden their view towards these objects.  

Another example is the case where, during NTS, the teachers or the researchers asked for 
clarifications regarding particular teaching decisions or suggestions. In this way teachers reconsidered 
their choices and developed a deeper understanding on the underlying concepts or possible conceptual 
connections. The following example, from the 7th meeting, is indicative of this case. In this extract 
Marcos was trying to explain his choice to use mean values instead of median when students study 
the difference in our ability to recall words and no words.   

R1:  Marcos, why did you choose to use the mean values here? 

Marcos:  It actually depends on what you want to see. 

Chloe:  And what about you? What do you want to see? 

Marcos:  Look. It is true that with the median is easier to manage the results, I mean it could 
be easier to find subsets that can give a difference on median that is so big or bigger 
than the one we get. But on the other hand… What if the difference is small, like 
here? If I was to choose from a students’ perspective, I would choose the median, 
but not with a very small difference. I mean maybe there are other parameters that 
result in such a small difference. I am not sure what I would say to students for a 
very small difference. 

This episode continued and lasted for about 4 minutes during which Marcos developed arguments to 
explain his choice. In this way, Marcos got insight not only in his didactical choice but also in the 
role of the mean value and the median in the study of differences between two variables. Such an 
inquiry, although it refers to NTS, was also helpful in illustrating statistical concepts and thus 
provided meaning to NCS as well. Almost all the teachers of our study, in their final interviews, 
referred to the positive impact of their inquiry in teaching on their content knowledge. This was either 
because they were facilitated by their colleagues or the researchers’ examples and explanations or 
because of their attempt to help or convince their colleagues, which guided them to develop 
appropriate examples or arguments and thus helped them to deepen in their own understandings. In 
both cases, the context of the CoP which encouraged the collaboration among them played a 
determinant role on this interaction. Below, we present two characteristic extracts from the final 
interviews. 

I feel I gained a lot, especially as a learner. You see, the concepts we decided to work with in the 
classroom were blurred for me, too. It was mainly Dinos’ examples and explanations that helped 
me to understand first these concepts and consequently what we were going to do with the students. 
(Chloe, final interview) 

These discussions helped me to develop a deeper awareness of many issues. I mean, when you are 
trying to take a stand towards an issue or a particular decision, it helps you either to get a more 
clear position, by developing a deeper understanding or to consider new views or aspects that were 
out of your attention. (Marcos, final interview) 



Conclusion 
This study aimed at getting insight into the interaction of NCS and NTS in the context of a CoP. The 
results showed that both processes were mobilized either by the nature of the task itself or by reasons 
that are related to the teachers’ needs and the context of their work inside the CoP. Moreover, we saw 
that NCS process, apart from teachers’ content knowledge, helped them to enrich their teaching 
repertoire (appreciate learning potentials, explore features, get access to new resources) as well as to 
strengthen their confidence in handling particular statistical concepts inside the classroom. Similar ly, 
NTS process, apart from a space for inquiring teaching and learning, was also a starting point for the 
teachers to develop deeper understanding on statistical content, to make conceptual connections and 
to acknowledge different dimensions of the underlying problem. These results go beyond the work 
of Heaton & Mickelson (2002), which shows the importance of the complementarity of the two 
processes in the professional development of teachers, to give empirical evidence of how the one 
process provide feedback and meaning to the other. Moreover, the collaborative context of a CoP 
acted supportively in the interactions between them. Thus, such a context, that fosters the co-existence 
of NCS and NTS, seem to help teachers not only to experience statistics as learners, but also to link 
this experience with classroom reality.     

Last, this complementarity and feedback are especially important to the professional development in 
the case of statistics since the stochastic nature of the content on the one hand, and the unfamiliar ity 
of teachers with the statistical tools on the other hand, constitute factors that, as we saw, reinforce the 
interactions between NCS and NTS. 
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Common patterns of thought and statistics:  
Accessing variability through the typical  

Christian Büscher 

TU Dortmund University, Germany; christian.buescher@math.tu-dortmund.de 

Allowing students to construct meanings of statistical concepts like variability requires building on 
their individual experiences. The notion of patterns of thought is utilized to conceptualize the 
difference between formal statistics and learners’ initial thinking and to describe a pathway to bridge 
this gap between individual and mathematical thinking. Students’ patterns of thought and the 
processes of their conventionalization are reconstructed in a qualitative study with n = 10 students 
of grade 7. An outlook is given on the possibility of connecting students’ patterns of thought with 
formal statistics. 

Keywords: Informal inferential reasoning, design research, concept development. 

Introduction 
One of the aims of statistics education is to foster informal inferential reasoning (IIR), the ability and 
disposition to use data in order to reason about some wider universe (Makar, Bakker, & Ben-Zvi, 
2011). In IIR, statistical concepts are combined with contextual knowledge under certain statistica l 
norms and habits, such as a “critical stance towards data” (see Makar et al., 2011 for a more thorough 
overview). While the framework of IIR can explain the role of statistical concepts in producing 
informal statistical inferences (ISI, see Makar & Rubin, 2009), it does not account for the development 
of statistical concepts. Accordingly, there exists a lack of research concerning statistical concept 
development of students with little experience in statistics. Tracking of the development of concepts, 
Bakker and Derry (2011) draw on the background theory of inferentialism, linking students’ emerging 
concepts in inferential practices with IIR. Looking at the micro level of students’ reasoning processes, 
Bakker and Derry argue that students can show complex ideas regarding statistical concepts such as 
center, variation, distribution, and sampling. These ideas are not formally articulated, but can rather 
be seen as “precursor notions” of regular statistical concepts (Bakker & Derry, 2011, p. 20). 

These precursor notions could provide a promising basis for the development of more formal 
statistical reasoning. The challenge remains however to design tasks that draw on these precursor 
notions in order to foster students with little prior experience in formal statistics. These tasks need to 
draw on students’ individual ways of reasoning as a resource in order to develop statistical concepts 
meaningful to the students. This requires paying careful attention to students’ learning processes, and 
to uncover the links between formal statistical concepts and students’ everyday thinking. This study 
aims at reconstructing students’ individual ways of thinking on a micro level in order to find ways to 
connect students’ everyday thinking to regular statistical concepts. 

Patterns of thought in everyday thinking 
The mathematician and philosopher Wille (1995) argues that in order for mathematics to become 
learnable and possibly meaningful to non-experts (i.e. the general public), the discipline of 
mathematics itself has to be restructured in a program he coined Generalistic Mathematics 
(“Allgemeine Mathematik”). Wille calls for mathematicians to reveal the reasons, the aims, the 



common patterns of thought, and the boundaries and dangers of mathematical concepts and of whole 
mathematical theories. This however must not be done in the language of mathematical theory. 
Opening mathematics to the general public necessitates the use of common language, rather than 
specialized vocabulary, to describe those reasons, aims, patterns, and boundaries. 

This approach to make mathematics open and meaningful resonates well with Lengnink and Peschek 
(2001), who see the challenge and goal of mathematics education in explicating the connection 
between everyday thinking and mathematical thinking. For them, mathematical thinking manifests as 
conventionalized everyday thinking. In this way, confidence intervals can be seen as a 
conventionalized form of the generalizations taking place in daily life: being reasonably sure that 
some observation of daily life can be taken as true, with a certain intuitive degree of variation. 

This places a firm emphasis on the importance of common thought patterns and practices, so that a 
task of mathematics education becomes the identification of these patterns of thought. While Wille 
(1995) sees this task in the hands of (the philosophy of) mathematics, Prediger (2008) points out that 
empirical insights into mathematical learning processes form a valuable and even necessary basis for 
identifying connections between everyday thinking and mathematical thinking. This also means that 
thought patterns cannot be approached in a general way, but rather are tied to the specific 
mathematical content of the learning process under investigation. This study adopts the approach 
outlined by Prediger (2008), in order to reveal patterns of thought and their connection to the 
statistical concepts of center and spread when comparing distributions. 

The typical as a common pattern of thought 
One way students’ thinking differs from formal statistics is in the use of measures. In statistics, 
measures such as median or standard deviation function as highly specialized tools for talking about 
statistical concepts like center or variability. In their intuitive approaches to statistics, students use 
strategies such utilizing “modal clumps” instead (Konold et al., 2002) to point out ‘the majority’ of 
the data. Since to the students the location and the width of the clump both are important, these modal 
clumps can simultaneously address the center of a distribution as well as a form of spread. Thus, in 
their everyday language, learners integrate many different statistical concepts that would formally be 
strictly distinguished through use of different specialized measures (Makar & Confrey, 2005).  

This raises the question on what would be promising patterns of thought to build on. One such 
candidate would be the practice of identifying ‘typical’ values or ranges of values within datasets. 
Some research indicates that ‘typical’ might be a good way for students to think about the average 
(Makar, 2014), while other research finds ‘typical’ or ‘normal’ to be a term for talking about ideas 
combining center and spread (Büscher, 2016a; Büscher, 2016b). Thus, the pattern of thought of 
identifying the ‘typical’ of a distribution seems a promising candidate as a resource for concept 
development, although it remains unclear for which concepts exactly. 

Patterns of thought and concept development 
To address the question of how patterns of thought can support concept development, this study 
follows a conceptual change approach (Duit & Treagust, 2003). Learning is understood as a 
restructuring of prior conceptions, occurring when these conceptions no longer satisfactorily exp lain 
phenomena. The goal of statistics teaching is then to initiate the development of conceptions into 
statistical concepts. Since statistical concepts show a high degree of connection to each other, learning 



trajectories in statistics however should not address concepts in an isolated way, but rather in a holist ic 
way (Bakker & Derry, 2011). This calls for organizing structures that (a) connect to learners’ prior 
conceptions, (b) holistically address statistical concepts, and (c) lead to regular statistical concepts. 
Patterns of thought can provide just such a structure, as they encompass different prior conceptions 
and thus enable the connection of everyday thinking to mathematical thinking. 

Research questions 
The theoretical background of this study suggests that designing learning trajectories towards 
statistical concepts should start from fruitful patterns of thought. It is thus an issue for empirica l 
investigations to find those patterns of thought in students’ thinking which can indeed serve this 
function as starting points in learning trajectories. Looking at what is ‘typical’ was identified as one 
potential pattern of thought that could result in such concept development. This study therefore aims 
to answer the following research question: What concepts do students address and develop when 
conventionalizing the vague pattern of thought of ‘identifying the typical’? 

Research design 
This study adopts the methodological framework of topic-specific didactical design research 
(Prediger & Zwetzschler, 2013) with a focus on learning processes (Prediger, Gravemeijer, & 
Confrey, 2015). This approach aims at providing empirically grounded local theories on topic-
specific learning processes as well as design principles and concrete teaching- learning arrangements 
for the topic. While the framework utilizes iterative cycles of design experiments, this study reports 
on the third cycle of design experiments. 

Data gathering 

Design experiments were conducted with five pairs of grade 7 students (aged 12 – 14) who had only 
little experience with statistics within the mathematics classroom. Experiments consisted of two 
sessions of 45 minutes each, with each session having its own arrangements of data and tasks. They 
were fully videotaped and partially transcribed. The process-focused analysis of the video data from 
the first session of the design experiments allows to reconstruct the development of students’ patterns 
of thought, in their relation to task design. 

Task Design 

For designing the teaching- learning arrangements, various design principles have been implemented 
throughout the different cycles of design research, two of which play an important part in this study. 

Drawing on ‘typical’ as pattern of thought. As outlined above, connecting to the pattern of thought 
of characterizing what is ‘typical’ of a certain distribution can potentially provide a starting point for 
processes of conventionalization that lead to meaningful use of formal statistics. Therefore, ‘typical’ 
has to be explicitly addressed in the task design, and the setting of the task has to provide a context 
in which this pattern of thought can naturally occur. 

Criticizing conventionalizations. As Lengnink and Peschek (2001) point out, mathematical learning 
has to explicitly address the relation between everyday thinking and mathematical think ing.  
Following this, it is not enough for a task to just utilize students’ patterns of thought and to encourage 
conventionalization of those patterns of thought. It is rather these conventionalizations that have to 



become the object of investigation. Under a Generalistic Mathematics perspective this could mean 
addressing reasons, aims, and boundaries of these conventionalizations. 

These design principles were realized in the design of the Antarctic weather task . The initia ted 
activity puts the students into the role of consultants to researchers at the Norwegian Antarctic 
research station Troll forskingsstasjon. In the first phase of the task, the students investigate dot plots 
of daily temperatures for the month of July 2004 and predict the weather for next July by giving a 
distribution of ten days. In Phase 2, additional data for July 2002 and 2003 were included (Figure 1). 
Predicting the weather was chosen as activity because it is rooted in everyday thinking, combining 
experiences of short-term variability (one can never be too sure about the weather…) with long- term 
signals (… but there are typical temperatures after all). 

 
Figure 1: Distributions of the Antarctic weather task (translated from German) 

In order to support conventionalization of patterns of thought, the third phase introduces a design 
element called report sheets (cf. Figure 2 and 3). The report sheets are introduced to serve as a brief 
summary of the Antarctic weather in July. They combine graphical representations and the use of 
measures with a brief inference. First, the students are asked to fill out their own report sheet. After 
that, in the fourth phase, the students receive three different filled- in report sheets by fictit ious 
students (Figure 2). These filled- in report sheets differ in their interpretation of typical. This serves 
as a basis for discussing and criticizing the different conventionalizations of typical, as the students 
are asked to evaluate the correct use of typical. 

 
Figure 2: Fictitious students’ filled-in report sheets (translated from German) 

Data Analysis 

The students’ patterns of thought were reconstructed in an interpretative analysis using concepts-in-
action and theorems-in-action from Vergnaud’s (1996) theory of conceptual fields. Concepts-in-
action are “categories (objects, properties, relationships, transformations, processes etc.) that enable 
the subject to cut the real world into distinct elements and aspects, and pick up the most adequate 



selection of information according to the situation and scheme involved” (Vergnaud, 1996, p. 225). 
Theorems-in-action are statements held to be true by the learner. 

Which concepts-in-action and theorems-in-action are activated depends on the pattern of thought 
utilized by the learners. Thus, patterns of thought are conceptualized as groups of concepts-in-action 
concurrently occurring in the learners’ activity. Concepts-in-action and theorems-in-action are 
reconstructed from the students’ point of view, and do not necessarily correspond to regular statistica l 
concepts. In the analysis, the reconstructed concepts-in-action are symbolized by ||…||, while 
theorems-in-action are denoted by <…>. 

Empirical Insights: The case of Maria and Natalie 
The first snapshot starts with Phase 2 of the Antarctic weather task. After getting the additional data 
of the years 2002 and 2003, Maria and Natalie, Grade 7, try to explicate their view on the data. 

1 Maria: We are pondering what the relationship, like, how to… 
2 Natalie: Yes, because we want to know what changes in each year. And we said that 

there [2003] it came apart.  
[…] 
8 Maria Yes, I think it [2004] is somehow similar to that [2002], but that one [2003] 

is different. 
9 Natalie: Like here [points to 2004, around -12 °C] are, like, like the most dots, and 

here [2002, -12 °C] are almost none. And there [2002, -8 °C] are the most 
and here [2004, -8 °C] are almost none. 

This excerpt serves as an illustration of the starting point in the students’ reasoning. The students are 
trying to characterize the differences observed in the distributions. At first, the students formula te 
differences between 2003 and 2002/2004 in terms of ||spread||: in 2003, the temperatures “came 
apart” (#2). Another difference they notice is the difference of the location of the ||center|| between 
2002 and 2004, indicated through modal clumps (“the majority”, #9). 

It is important to note that at this stage, the students face difficulties in trying to express their findings. 
The distributions of 2004 and 2002 are found to be “somewhat similar” (#8) though “different” (#8) 
to 2003, with further explanation supplied by Natalie through use of gestures and improvised 
vocabulary (“like, like the most dots”, #9). Few minutes later, the students find a way to deal with the 
complexity. 

21 Maria: Well, we first should look at how many degrees it has risen or fallen. 
Generally. In two years. 

[…] 
27 Natalie You mean average, like… 
28 Maria The average, and then we look at how the average changed in two years. 

By introducing the notion of reducing the distributions to a ||general value|| (“Generally”, #21), the 
students are able to handle the complexity of the differences between the distributions. For this 
general value, they appear to already know an adequate measure: the ||average||. To the students, 
<the average represents the general value of a distribution>. The average acts as a summary to be 
used in further procedures, as <the differences between distributions can be described by differences 
in general values>. 



In the following exchange, after having estimated the averages to be -12 (2002) and -14 (2004), Maria 
and Natalie try to use their result for a linear extrapolation of the weather in 2015 to be predicted. 

41 Natalie: Wait. If it gets colder by 2 °C in two years, then it gets colder by 1 °C each 
year, so we have to… 

42 Maria: Nah, eh, yeah okay 
43 Natalie: 13 °C colder average temperature. Right? 
44 Maria: Yes. 
45 Natalie: But that’s too much, isn’t it? 

When reflecting on their result however, the students realize that a decline of the average temperature 
by 13 °C is not a realistic proposition (#45). While their knowledge of the real-world context helps 
them to identify this contradiction, they are not able to find another solution. In the minute following 
(not shown here), the students stay insistent in using the average and a linear extrapolation of the 
trend. It is important to note that, at this stage, their ideas concerning ||spread|| as expressed in the 
first excerpt seem to have disappeared, replaced by the stronger notion of ||general value|| expressed 
through the more conventionalized form of ||average||. 

The design experiment progresses through the third phase, in which the students create their own 
report sheet (Figure 3). The analysis picks up at beginning of the fourth phase, with the students 
comparing the different interpretations of ‘typical’ in the filled- in report sheets. 

 
Figure 3: Maria and Natalie’s report sheet  

Comparing the different interpretations of ‘typical’, Maria and Natalie are intrigued by the possibility 
to use an interval to characterize ‘typical’. This leads them to reflect on their use of the average. 

61 Natalie: But the average temperature isn’t really typical, is it? 
62 Maria: What, typical? Of course the average temperature is the typical. 
[…] 
66 Maria: Well, no. Typical is more like where the most… no… 
67 Maria:  The average temperature isn’t the typical after all. Because it’s only the 

general, the whole. The typical would be for example for this [2004] here 
[points to -14 on the 2004 dot plot]. 

68 Natalie: Typical I think simply is what is the most or the most common. 
The students utilize Typical to differentiate between two different ideas: The ||general value|| that is 
expressed through the ||average|| (“the general, the whole”, #67), and the ||most common|| part of the 

Translations: 

“Report sheet: temperatures at Troll Forskningsstasjon” 

Skizze – Sketch 

Typisch – Typical 

Zusammenfassung – Summary 

Temperaturen - Temperatures 

(The black graph was drawn first, labeled a mistake, and 
immediately replaced by the red graph. Typical was first 
assigned as -15, then after the fourth phase changed to -
19 to -15.) 

 



distribution, expressed through the ||Typical|| (“the most common”, #68) – although at this point it is 
not yet clear if Typical consists of a number or an interval. With the ||most common|| corresponding 
to the notion of ||center|| expressed earlier (“the most dots”, #9), Typical seems to help the students 
to express ideas that got swept aside by the more conventionalized average. Both, average and typical, 
start to act as conventionalized tools for talking about specific aspects of distributions.  

Some minutes later, Natalie summarizes her view on the relation between ‘typical’ and average. 

81 Natalie:  And average is pretty imprecise, because it doesn’t say anything about a 
single day. And with typical, I’d say, that it’s a span between two numbers, 
because that way you can better overlook how it is most of the time. 

In the end, typical and average provide two different applications. Whereas the average acts as a 
summary, ‘typical’ gives an overview into a distribution. The average can be used in comparing 
distribution in an efficient way, while ‘typical’ gives an insight into a range of ‘normal’ or ‘expected’ 
temperatures, to which any single day can be compared. In this way, ‘typical’ combines aspects of 
||center|| and ||spread||. 

Conclusion 
The aim of this study was to examine the interaction of concept development and students’ patterns 
of thought. The students showed two different patterns of thought: Characterizing data through a 
general value and through a range of typical values. These patterns differed in their degree of 
conventionalization. While the general-pattern was addressed through use of the average, the students 
lacked a conventionalization corresponding to the typical-pattern. This resulted in the typical-pattern 
to be suppressed in favor of the general-pattern, as the ideas addressing spread disappeared. Only 
when the students were supplied with different conventionalizations of Typical, they were able to 
reconnect to their typical-pattern. This then allowed them to express ideas combining center and 
spread. 

This identification of thought patterns provides a promising starting point. Work still remains 
however utilizing these thought patterns to develop regular statistical concepts. This could be 
achieved by reconceptualizing formal statistics in terms of a typical-pattern. One possible connection 
could be interpreting the ‘box’ of a box plot as the typical area of a distribution. Additionally, more 
insight into processes of conventionalization is needed in order to be able to successfully guide 
students on their way to meaningful statistics (for one example see Büscher, 2016). 
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Do attitudes toward statistics change during an introductory statistics 
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Mixed results have been reported about changes that might occur in students’ attitudes as a 
consequence of attending introductory statistics courses and about male and female students’ 
differences in attitudes. Thus, the aim of the current study was to shed light on attitudes changes in 
students attending introductory statistics courses taking gender into account. Overall, we observed 
changes in attitude that resulted in a more positive attitude from the beginning to the middle of the 
course. Nonetheless, along with a general positive trend, it was possible to highlight that some 
students get significantly worse attitudes and many of them do not substantially change their initial 
attitudes. Overall, no significant differences were found between male and female students. Finally, 
probabilistic competences along with statistics anxiety accounted for individual changes in attitudes 
toward statistics. Educational implications were discussed. 

Keywords: Statistics education, attitudes toward statistics, attitude changes, gender differences. 

Introduction 
Attitude toward statistics is a disposition to respond favourably or unfavourably to objects, situations, 
or people related to statistics learning (Schau, Stevens, Dauphinee & del Vecchio, 1995). It is 
commonly described as a multi-dimensional concept that consists of affective (students’ positive and 
negative feelings about statistics), cognitive (beliefs about the ability requested to learn statistics and 
about the discipline), and behavioral (interest and effort) components, which are deemed to have an 
effect on achievement. Emmioglu and Capa-Aydin (2012) provided a meta-analysis that addressed 
this relationship suggesting that there is a significant correlation between students’ achievement and 
statistic-related beliefs, motivation, and feelings. Indeed, whereas the reviewed studies employed 
different research approaches and included different kinds of samples and courses, more positive 
attitudes were correlated - with different extent, and directly or indirectly- to a better course 
performance.  

For this reason, a basic question of research refers to the changes that might occur in students’ 
attitudes as a consequence of attending introductory statistics courses. Although some studies 
reported an increase in attitudes as a result of the courses (e.g., Chiesi & Primi, 2010), Schau and 
Emmioglu (2012) conducted a large-scale investigation reporting that the different attitude 
dimensions do not substantially change through the courses. Nonetheless, Millar and White (2014) 
highlighted that the mean changes were around zero but the variability in the individual changes was 
relatively large, i.e., whereas in some cases the attitudes actually did not changed, positive changes 
(i.e., shifts to a more positive attitude) and negative changes (i.e., shifts to a more negative attitude) 
were both observed.  

Finally, literature on attitudes toward statistics addressed the issue of gender differences. Presumably 
due to the different sample and course characteristics (engineering students, economic students, 
psychology students, pre-service teachers), inconsistent results were reported. Some authors found 



that men expressed more positive attitudes toward statistics than women (e.g., Chiesi & Primi, 2015; 
Tempelaar & Nijhuis, 2007), others studies found no gender differences (e.g., Martins, Nascimento 
& Estrada, 2011), and some others documented more positive attitudes for women (e.g., Rhoads & 
Hubele, 2000).  

These mixed results suggest, in line with the recommendation made by Eichler and Zapata-Cardona 
(2016), to intensifying research on students’ statistics-related attitudes. Thus, the aim of the current 
study was to shed light on attitudes changes in students attending introductory statistics courses taking 
into account gender differences. The specific aims can be detailed as follows.  

a. To investigate the possible changes in attitudes as result of the course. Based on previous studies 
conducted on similar samples (e.g., Chiesi & Primi, 2010), we hypothesized that a positive overall 
change might occur from the beginning to the middle of the course. To take into account possible 
gender-related difference in attitudes, we observed the differences from pre- to post-test in male 
and female students separately. We expected that the course had an effect on both genders. 

b. To provide a more fine-grained investigation we looked at the individual differences in attitude 
changes, i.e. if the student shifted to a better attitude, or if she/he got worse attitudes as a result of 
the course, or if the student’s attitudes remained unchanged. In defining these typologies we 
referred to Schau and Emmioglu (2012) and Millar and White (2014). They suggested that, along 
with the statistical significance of the change in attitude scores, it is important to ascertain if 
students’ attitudes change consistently, i.e., if there is a substantial increase/decrease in the 
observed scores. As such, following their indications to determine the relevance of the score 
change, we investigated individual differences in attitude changes controlling for gender. We 
expected that positive and negative shifts as well as no changes might be observed in both men 
and women. 

c. Since we expected that students – all attending the same course - might change in positive or 
negative their attitudes towards statistics or maintain them stable, we explored if some specific 
factors could accounted for individual differences. In line with previous studies on cognitive and 
non-cognitive factors related to statistics education, we looked at mathematical and probabilist ic 
competences along with test anxiety and statistics anxiety. 

Method 
Participants 

Participants were 136 psychology students enrolled in an introductory statistics course at the 
University of Florence in Italy (mean age = 20.93 years, SD = 3.59; 70% female). They were first 
year students who did not have previous experience with the discipline at the university level but they 
might have encountered the discipline before in school-related contexts or in their out-of-school lives. 
All students participated on a voluntary basis after they were given information about the general aim 
of the investigation (i.e., collecting data for a research project on students’ statistics achievement).  
Description of the course 

The course was compulsory. It covered the usual introductory topics of descriptive and inferentia l 
statistics (including basic concept of probability theory and calculus), and their application in 
psychological research. It was scheduled to take place over 10 weeks, and takes 6 hours per week (for 



a total amount of 60 hours). During each class some theoretical issues were introduced followed by 
exercises using either paper-and-pencil procedure or a computer package (R-commander). Students 
were assigned homework for which they were allowed to work in groups. Consultation hours were 
also offered for one on one help with exercises. The instructor was one of the authors of the current 
paper. 

Measures 

Attitude toward statistics was measured administering the 28-item version of the Survey of Attitudes 
toward Statistics (SATS) (Schau et al., 1995; Italian version: Chiesi & Primi, 2009). The SATS 
contains Likert-type items using a 7-point scale ranging from strongly disagree to strongly agree. It 
assesses four attitudes components: Affect (6 items) measures positive and negative feelings 
concerning statistics (e.g. “I will feel insecure when I have to do statistics problems” or “I will like 
statistics”); Cognitive Competence (6 items) measures students’ attitudes about their intellectua l 
knowledge and skills when applied to statistics (e.g. “I can learn statistics” or “I will make a lot of 
math errors in statistics”); Value (9 items) measures attitudes about the usefulness, relevance, and 
worth of statistics in personal and professional life (e.g. “Statistics is worthless” or “Statistical skills 
will make me more employable”); Difficulty (7 items) measures students’ attitudes about the 
difficulty of statistics as a subject (e.g. “Statistics formulas are easy to understand” or “Statistics is a 
complicated subject”). Two versions to use at the beginning (pre-SATS) and during or at the end 
(post-SATS) of the course were developed. For both the pre- and post- versions of the SATS 
responses to negatively scored items were reversed. Because the subscales were composed of a 
different number of items, scores were obtained by dividing each component score by the number of 
items that assess that component. As such all the scores ranged from 1 to 7 and higher scores indicated 
a more positive attitude. For Difficulty a positive attitude (i.e., high scores) means that students 
believe that statistics is easy whereas a negative attitude (i.e., low scores) means that it is harder. 

The Mathematics Prerequisites for Psychometrics (MPP, Galli, Chiesi & Primi, 2011) was employed 
to measure the mathematical skills needed by students enrolling in introductory statistics courses. The 
MPP consists of 30 multiple-choice format questions (one correct out of four alternatives) from which 
a total score (range 0-30) was calculated. Additionally, the Probabilistic Reasoning Questionnaire 
(PRQ; Primi, Morsanyi & Chiesi, 2014), designed to measure proportional reasoning and basic 
probabilistic reasoning ability, was administered. The scale consisted of 16 multiple-choice questions 
from which a total score (range 0-16) was calculated.  

The Test Anxiety Inventory (TAI; Spielberg, 1980) was administered to measure anxiety associated 
with test-taking situations. The TAI is self-report instrument consisting of 20 items. Respondents are 
asked to report how frequently they experience specific symptoms of anxiety from 1 (almost never) 
to 4 (almost always). A total score was calculated as the sum of all items, with higher scores 
corresponding to high test anxiety. Along with this general anxiety indicator, the specific anxiety 
toward statistics was assessed using the Statistical Anxiety Scale (SAS; Vigil-Colet, Lorenzo, & 
Condon, 2008; Italian version: Chiesi, Primi & Carmona, 2011). The SAS is a self-reported measure 
consisting of 24 items with a five-point rating scale ranging from 1 (no anxiety) to 5 (very much 
anxiety). The SAS includes Examination anxiety (8 items, e.g., “Studying for examination in a 
statistics course”), Asking for help anxiety (8 items, e.g., “Asking the teacher how to use a probability 
table”), and Interpretation anxiety (8 items, e.g., “Trying to understand a mathematica l 



demonstration”). A composite score was calculated with higher scores corresponding to high statistics 
anxiety.  

Procedure 

Students were administered the SATS-pre, the MPP, the PRQ, and the TAI at the beginning of the 
course. At the middle of the course (about four weeks later), the SATS-post was administered along 
with the SAS. The questionnaires were introduced briefly to the students and instructions for 
completion were given. Answers were collected in paper-and-pencil format and the time needed to 
complete them ranged from 20 to 40 minutes.  

Results 
To ascertain the possible changes in attitudes toward statistics and the gender related differences, we 
ran a 22 mixed ANOVAs with course (pre/post) as a within-subjects factor, and gender as between-
subjects factors on each of the four attitude dimensions. It was found a main effect of course - that 
resulted in an overall increase -  on Affect (F(1, 134) = 17.34, p<.001, p2 = .12; pre: M = 3.44, SD = 
1.08, post: M = 3.74, SD = 1.25), Difficulty (F(1, 134) = 24.17, p < .001, p2 = .15; pre: M = 3.23, SD 
= 0.64, post: M = 3.51, SD = 0.66), Cognitive Competence (F(1, 134) = 59.67, p < .001, p2 = .31; 
pre: M = 4.19, SD = 1.01, post: M = 4.72, SD = 1.07), and Value (F(1, 134) = 4.89, p < .05, p2 = .04; 
pre: M = 5.03, SD = 0.85, post: M = 5.20, SD = 0.94). With the exception of Value (F(1, 134) = 1.91,p 
=.17), significant between-subject differences were found for the remaining attitude dimens ions 
(Affect: F(1, 134)=8.36 p < .01, p2 = .06; Difficulty: F(1, 134) = 4.82, p < .05, p2 = .04; Cognitive 
Competence: F(1, 134) = 6.17, p < .05,  2 = .04) with male holding more positive attitudes. 
Nonetheless, there were not significant course by gender interactions (Affect: F(1, 134) = 2.08,p = 
.15); Difficulty: F(1, 134) = 0.26, p = .61; Cognitive Competence: F(1, 134) = 1.99, p =.16; Value: 
F(1, 134) = 0.89, p = .35) indicating that attitudes improved regardless gender differences in the 
attitude degrees. In Figure 1 the descriptives by gender are reported for each attitude dimension. 

 

 
Figure 1. Mean scores of the four components of the  Survey of Attitudes toward Statistics (SATS) at the 

beginning and at the middle of the course in male and female students. 

 

Because the rating scale ranged from 1 to 7 and 4 is the midpoint, mean values revealed that male 
students were around the midpoint at the beginning of the course and later tended to be above it. 
Female students, whereas they get better across time, remained below it. On average, even taking into 



account the positive shift from the beginning to the middle of the course, both men and women were 
below the midpoint for Difficulty, whereas scores over it were observed for Cognitive Competence 
and Value. 

To look at the individual differences, i.e. if students get better, worse, or unchanged attitudes, we 
referred to Schau and Emmioglu (2012) and Millar and White (2014) to weigh the relevance of the 
change. Thus, we considered differences of about .5 point or more in absolute value as important. 
This means that students’ scores would change consistently if they changed, for example, their Likert 
scale responses by 1 point on half of the items in the component. In the current study, to take into 
account the direction of change, we classified the score as follows: a negative difference of .5 point 
or less indicated a substantive decrease, a positive difference of .5 point or more indicated a 
substantive increase, all the other values indicated no substantive changes To take into account 
possible gender-related difference in attitudes, we observed the kind of pre-/post-test differences 
separately in male and female students (Figure 2).  

 

 
Figure 2. Percentages of negative, stable and positive pre-post difference scores of the four 
components of the Survey of Attitudes toward Statistics (SATS) in male and female students. 

 

Chi-square tests indicated no significant differences between genders (Affect: 2(2) = 2.16,p = .34; 
Difficulty: 2(2) = .34, p = .84; Cognitive Competence: 2(2) = 2.48, p =.30;  Value: 2(2) = 3.83, p 
= .15). Comparing the four components, the highest percentage of negative shifts (more than 15%) 
was found for the Affect component. A prevalence of stable scores (60% or more) was observed for 
the Difficulty and Value dimensions. Finally, we registered the highest percentage of positive shifts 
(about 50%) for the Cognitive Competence component. 

To establish the relative impact of mathematical and probabilistic competences, test anxiety, and 
statistics anxiety on attitude changes, regression analyses were run (Table 1). In order to capture the 
variability in the changes occurred from the first to the second assessment, the criterion variable was 
the difference between the pre- and post-test scores. Given the overall absence of gender differences 
these analyses were conducted on the total sample. Results showed that none of these factors 
explained changes in Cognitive Competence (F(4,130) = 0.71,p = .59) and Value (F(4,130) = 0.76, p 
= .55). On the contrary, the regression models indicated that probabilistic competences and statistics 
anxiety contributed in explaining changes in Affect (F(4,130) = 4.90, p < .01, R2 = .13) and Difficulty 
(F(4,130) = 5.02,  p < .01, R2 = .14). Specifically, higher competences were associated with higher 



positive changes, whereas higher anxiety levels were associated with higher negative changes. 
Finally, test anxiety predicted changes in Difficulty in the same direction observed for statistics 
anxiety, i.e., the greater the degree of anxiety, the less the attitude increase (Table 1).  

 
Criterion Predictors  β t p 

Affect 
change 

Mathematical competence (MMP) 
Probabilistic competence (PRQ) 
Test anxiety (TAI) 
Statistics anxiety (SAS) 

.045 

.29 

.04 

-.24 

0.41 

2.87 

0.45 

-2.33 

.66 

.005 

.65 

.02 

Difficulty 
change 

Mathematical competence (MMP) 
Probabilistic competence (PRQ) 
Test anxiety (TAI) 
Statistics anxiety (SAS) 

.15 

.25 

-.20 

-.36 

1.46 

2.47 

-2.02 

-3.60 

.15 

.015 

.045 

<.001 

 
Table 1. Regression analyses on statistics attitude changes (in brackets the scales employed to measure 

the predictor variables) 
 

Discussion 
The current study aimed at investigating in detail attitude changes in male and female Italian 
psychology students attending introductory statistics courses. In doing that, we took into account 
some cognitive and non-cognitive variables that might help in shed light on individual differences in 
attitude changes. Overall, we observed changes in attitude that resulted in a more positive attitude 
from the beginning to the middle of the course. Except for the Value component, men held more 
positive attitudes. However, there were not significant course by gender interactions indicating that 
attitudes improved in both male and female students. On average, and regardless the positive shift 
from the beginning to the middle of the course, both men and women believed that statistics was 
difficult, although they had confidence they would be able to learn it. Finally, all students valued 
statistics somewhat positively. 

To provide a more fine-grained investigation we looked at the individual differences in changes as 
well as to the relevance of the change. Indeed, along with a general positive trend, it is possible to 
highlight that, although part of the students shifted markedly to better attitudes, some of them got 
significantly worse attitudes, and many of them did not substantially change their initial ones. 
Investigating gender-related difference in attitude changes, we observed no significant differences in 
male and female students. Thus, looking at the general patterns of change, it emerged that about half 
of the sample remained substantially stable across the four attitude dimensions (with the higher 
percentage for the Value component), more than one third of the sample shifted to a more positive 
attitude (with the higher percentage for the Cognitive Competence component), and a small 
percentage showed a negative shift (with the higher percentage for the Affect component).  

When looking at the factors influencing the direction of the shift, we observed that probabilist ic 
competences along with statistics anxiety accounted for changes in Affect and Difficulty components. 
That is, students with stronger competences were more likely to move to positive feelings about the 



discipline and to consider it less hard. At the same time, more anxious students were more resistant 
to positive changes, i.e., they persistently dislike statistics and consider it hard.  

Given these findings, it is interesting to note that the course per se promote positive changes in the 
students’ attitudes. That is, arguably when interacting directly with the topics at an introductory level, 
some students tend to perceive it in a more favorable way. However, many students do not change or 
even get worst attitudes. Thus, it becomes important to identify methods for promoting better 
attitudes, for example arranging activities in which students could reinforce their basic competence 
in probability and providing them the adequate learning strategies to cope with anxiety. As such, they 
can perceive the subject easier and reduce negative feelings toward the discipline.  

The present study has some limitations that we have to take into account when interpreting the results. 
First of all, it was conducted with Italian psychology students and this may limit their generalizabil ity. 
Thus, future investigations should be conducted with different student populations to provide further 
evidence on the changes in attitudes and their determinants. Second, individual differences in changes 
of the value and cognitive competence components remain basically unexplained. As such, other 
factors (i.e., self-efficacy, motivation) should be taken into account to understand why some people 
do not change while others do. Finally, students valued statistics somewhat positively contradict ing 
to some extent previous results on psychology students (e.g., Dempster & McCorry, 2009). This 
might be a result of social desirability effect that should be controlled in further studies. 
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Teachers who engage primary school students in informal statistical inference (ISI) need to have a 
good content knowledge (CK) and pedagogical content knowledge (PCK) of ISI themselves. However, 
little is known of how teacher college education for pre-service teachers can contribute to the 
development of their ISI CK and PCK – a shortcoming we attempt to address in this paper. A class 
of 21 pre-service primary school teachers participated in an intervention consisting of five lessons. 
Design research methodology guided the design of the intervention. The preliminary results indicate 
that most pre-service teachers seemed to be aware of the inferential nature of research questions and 
the uncertainty inherent to ISI, but not all of them understood the fundamental idea that if a properly 
selected sample is representative for the population it can be used for an inference. Lacking this 
understanding might hinder them in teaching ISI. 

Keywords: Informal statistical inference, informal inferential reasoning, primary education, statistics 
education, teacher education. 

Introduction 
In daily life, sample data is regularly used to make generalizations that go beyond the data collected; 
informal statistical inference (ISI) is a form of this phenomenon. The ability to critically evaluate 
such generalizations is increasingly useful in participation in present and future society. ISI is defined 
as “a generalized conclusion expressed with uncertainty and evidenced by, yet extending beyond, 
available data” (Ben-Zvi, Bakker, & Makar, 2015, p. 293). Unlike formal statistical inference, ISI 
does not make use of formal statistical tests that are based on probability theory (Harradine, Batanero, 
& Rossman, 2011). In recent years, statistics education researchers have turned their attention to how 
primary school students can be introduced to ISI. It is hypothesized that if students are familiar ized 
with the concept in primary school, it will help them to understand the processes involved in its 
reasoning and in statistical reasoning in general (Bakker & Derry, 2011; Makar, Bakker, & Ben-Zvi, 
2011). Evidence suggests that meaningful learning environments can render ISI accessible for 
primary school students (Ben-Zvi et al., 2015; Meletiou-Mavrotheris & Paparistodemou, 2015). 

If students are to be introduced to ISI in primary school, future teachers need to be well prepared to 
conduct this introduction (Batanero & Díaz, 2010). This requires them to have an appropriate content 
knowledge (CK) of the subject and to have adequate pedagogical knowledge (PCK) (Burgess, 2009). 
Recent research shows that pre-service teachers have difficulty making generalizations and 



understanding sampling representativeness and the logic of sampling (De Vetten, Schoonenboom, 
Keijzer, & Van Oers, 2016a; De Vetten, Schoonenboom, Keijzer, & Van Oers, 2016b). However, 
little is known how we can prepare pre-service teachers to teach ISI to primary school students. This 
paper reports on the design and preliminary results of an intervention at a teacher college for primary 
education that aimed to foster the development of the ISI content knowledge (CK) and PCK of pre-
service primary school teachers.  

Teachers’ knowledge of ISI 
In his seminal article, Shulman (1986) uses two broad categories to categorize the knowledge teachers 
need to have to teach a particular subject: pedagogical content knowledge (PCK) and content 
knowledge (CK) of the subject. Shulman’s first category, pedagogical content knowledge, includes 
knowledge of how to present, illustrate and explain new material (Knowledge of Content and 
Teaching; KCT for short); and knowledge about the students’ conceptions and misconceptions 
(Knowledge of Content and Students; KCS for short). Concerning content knowledge, teachers need 
to understand the subject at the level of student (Common Content Knowledge; CCK for short), but 
also need to have specialized knowledge of the subject that enables them to teach the subject and that 
is specific for the job of teaching (Specialized Content Knowledge; SCK for short) (Ball, Thames, 
and Phelps, 2008). 

For ISI no categorization of CK and PCK is available. We combine the categorization of Shulman 
with the ISI framework of Makar & Rubin (2009) to conceptualize the CK and PCK needed for 
teaching ISI. Makar & Rubin (2009) argue that an ISI consists of the following three components: 

1. ‘Data as evidence’: The inference is based on the data, and not on tradition, personal beliefs 
or experience. 

2. ‘Generalization beyond the data’ (in short: ‘Generalization’): The inference goes beyond a 
description of the sample data to make a claim about a situation beyond the sample data. 

3. ‘Uncertainty in inferences’ (in short: ‘Uncertainty’): The inference includes a discussion of 
the sample characteristics, such as sample size and sampling method, and a discourse on what 
these characteristics imply for the representativeness of the sample and the certainty of the 
inference. Moreover, it requires an understanding of basic logic sampling: the understand ing 
that if a properly selected sample is representative for the population it can be used for an 
inference, because sample-to-sample variability is low. We have subdivided this component 
into three subcomponents: sampling method, sample size and uncertainty. 

There are a limited number of studies that investigate (pre-service) primary school teachers’ CK of 
ISI. The authors of this paper have investigated all three ISI components in two studies (De Vetten et 
al., 2016a; De Vetten et al., 2016b). In an exploratory design study, De Vetten et al. (2016a) show 
that regarding ‘Data as evidence’ most pre-service teachers indeed use data as evidence when 
comparing two samples to generalize to the population. In a large scale questionnaire study, De Vetten 
et al. (2016b) found less positive results when pre-service teachers were asked to evaluate whether 
data can be used as reliable evidence for a generalization. Concerning ‘Generalization’, De Vetten et 
al. (2016b) show that pre-service teachers are well able to discern that probabilistic generalizat ions 
are permissible, while deterministic generalizations are not. However, De Vetten et al. (2016a) report 
that pre-service teachers tend to only describe the samples, and do not generalize beyond the data. 



The evidence on the ‘Uncertainty’ component suggests that many pre-service teachers show a limited 
understanding of sampling methods, sample size, representativeness and the logic of sampling and 
sampling variability (De Vetten et al, 2016a; De Vetten et al., 2016b; Meletiou-Mavrotheris et al., 
2014; Mooney, Duni, VanMeenen, & Langrall, 2014; Watson, 2001). 

Research on teachers’ PCK of ISI and ways to prepare to teach ISI is even scarcer than research on 
teachers’ CK of ISI. Leavy (2010) reports that pre-service teachers tended to focus excessively on 
procedures, spent too much time on descriptive analyses at the expense of discussion of inferences,  
and failed to stimulate data-based reasoning. Using the same data, Leavy (2015) shows that it is 
critical that pre-service teachers learn how to pose questions that invite students to reason about 
inference. Madden (2011) shows that tasks that are statistically, contextually and/or technologica lly 
provocative triggered high school mathematics teachers to reason about ISI. 

Since little is known how to prepare pre-service primary school teachers to teach ISI, the aim of the 
present study is to investigate in what way teacher college education for pre-service teachers can 
contribute to the development of their ISI CK and PCK. The research question is: To what extent, 
and how, do the ISI CK and PCK of pre-service school teachers develop during, and as a result of, an 
intervention at primary education teacher college aiming at developing ISI CK and PCK? 

Method 
Context 

In many countries, including the Netherlands, current statistics education curricula in primary and 
secondary education do not include ISI. Actual teaching practices focus primarily on statistica l 
procedures and graphing skills, where concepts are learned without reference to the need to collect 
and analyze data (Ben-Zvi & Sharett-Amir, 2005; Friel, Curcio, & Bright, 2001; Meijerink, 2009). 
When statistical inference does form part of the secondary education curriculum, the ideas of sample 
and population are often only dealt with on a technical level. Consequently, many students enter 
tertiary education with a shallow and isolated understanding of the concepts underlying statistica l 
inference (Chance, DelMas, & Garfield, 2004). In contrast to many other countries, where students 
can only opt for teacher education after completion of a bachelor’s degree, in the Netherlands, initia l 
teacher education starts immediately after secondary school and leads to the attainment of such a 
degree. For these students, mathematics teaching is usually not their main motive for becoming 
teachers.  

The intervention was part of a course on mathematics education for grade 3 to 6. The course was the 
fourth course on mathematics education and the second for mathematics in grade 3 to 6. During the 
semester the pre-service teachers worked in a grade 3 to 6 class in a work placement school. Since in 
the Dutch mathematics curriculum for teacher college statistics gets only minor attention and since 
we wanted to have an intervention that would fit in the normal teacher college curriculum, we decided 
to restrict the length of the intervention to five lessons, out of the 16 lessons of the total course. 

Design 

We employed design research methodology to study the development in ISI CK and PCK of the pre-
service teachers and to explain this development (Van den Akker, Gravemeijer, McKenney & 
Nieveen, 2006). Previous research (Ben-Zvi, 2006; De Vetten et al., 2016a&b; Paparistodemou & 



Meletiou-Mavrotheris, 2008; Saldanha & Thompson, 2007) and our own ISI teaching experiences 
with primary school students informed us which learning goals are within reach of pre-service 
teachers and what PCK is necessary to teach ISI to primary school students (see Table 1). These 
learning goals were categorized into the three ISI components ‘Data as evidence’, ‘Generalizat ion’ 
and ‘Uncertainty’. 

Table 1: ISI learning goals for the  intervention at primary education teacher college  

ISI component Knowledge 
type a 

Learning goals Attain-
ted?b 

General KCT 

To reason with students about ISI in a meaningful way, teachers can (1) have students 
conduct empirical investigations with an inferential research question about a meaningful 
topic or (2) have students evaluate research (for example as reported in the media) with an 
inferential research question about a meaningful topic. 

0.75 

Data as evidence 

CCK Use data as evidence, not other sources 1 
CCK Sample provides information about likelihood of population parameters 0.5 
KCS Many students do not use data as evidence 0.5 
KCS Many students think that every sample distribution is evenly likely 0.25 

KCT 
To teach students that data can be used as evidence for answers on inferential questions 
teachers can (1) have students conduct empirical investigations where sample and population 
are concretely visible, (2) regularly point at the sample, and (3) ask students on what 
arguments they or other researchers reached their conclusion.  

0.25 

Generalization 
beyond the data 

CCK It is possible to make claims about population, despite individual differences between 
subjects 

0.75 

CCK It is possible to use sample to make claims about population 1 
CCK Awareness of inferential nature of research questions 1 
CCK Claims about a population are often based on a sample 1 
CCK Correctly articulate answers to inferential questions 0.5 
KCS Many students answer inferential questions descriptively only 0.5 

KCT 
To teach students that it is not necessary to investigate an entire population, but that a sample 
suffices for a reliable conclusion, teachers can (1) use examples from media where a sample 
is used, or (2) use resampling activities where different samples yield similar results.  

0.25 

KCT 

To make students aware of the inferential nature of research questions, teachers can (1) use 
real empirical investigations where sample and population are concretely visible, and (2) ask 
questions, such as 'Does our result hold for the sample only, or also for the population?'  

0.25 

KCT 
To help students to correctly articulate answers to inferential questions, teachers can 
reformulate students’ responses. 

0.25 

Uncertainty 
inherent to 
inferences 

Sa
m

pl
in

g 
m

et
ho

d 

CCK Which of the following sampling methods are (in-)appropriate: convenience sampling, 
random sampling, quota sampling 

0.75 

SCK Understand why random sampling is appropriate 0.75 
KCS Many students think random sampling is not an appropriate sampling method 0.5 
KCS Many students tend to use incorrect matching techniques in sampling 0 

KCT 

To teach students that a sample needs to be representativeness of the population, a teacher 
can (1) ask students to investigate how other researchers have selected their sample and what 
students think of the representativeness of the sample and (2) let students discuss how they 
would select a representative sample to answer a specific research question and let the 
children execute the sampling. 

0.75 

Sa
m

pl
e 

siz
e 

SCK Why a larger sample leads to more certainty 0.5 
CCK Sufficient sample size 0.25 
CCK Sample size is independent of population size 0.5 
KCS Many students do not take sample size into account in the certainty of their answers 0.5 
KCS Many students make very certain inferences, even for small samples 0.5 
KCS Many students think that sample size is dependent of population size 0.25 



KCT 
To teach students the effect of sample size on the certainty of inferences, teachers can use 
real empirical investigations where resampling is used, select to two samples of different size 
and ask which sample provides more certainty. 

0.5 

U
nc

er
ta

in
ty

 

CCK Acknowledge uncertainty of inferences and impossibility of absolute certain inferences 1 

CCK The larger the sample, the more certain the inference 1 
CCK The better the sampling method, the more certain the inference 0.75 

CCK When a sample is properly selected, the probability is small that another but likewise sample 
gives an entirely different result  

0.5 

CCK Correctly articulate uncertainty in inferences 0.5 
KCS Many students express complete (un-)certainty in their inferences 0.5 

KCT 
To make students aware of the uncertainty of inferences, teachers can use real empirical 
investigations where resampling is used, and confront the children that different samples lead 
to different conclusions. 

0.25 

KCT To help students articulate uncertainty in inferences, teachers can reformulate studentś  
responses or ask how much certainty the students have. 

0.25 

aCCK: common content knowledge; SCK: specialized content knowledge; KCS: knowledge of content and students; KCT: knowledge of con tent and 

teaching. bEach learning goal received one of the scores 0, ¼, ½, ¾ or 1 (0: not attainted; 1: attained by (almost) all pre-service teachers) 

For each lesson, a hypothetical learning trajectory was designed, connecting activities with the 
learning goals for the lesson, while also explaining in what way the activities were hypothesized to 
help to attain the learning goals. Using example lessons was one type of activity used to foster the 
CK and PCK of the pre-service teachers. These lessons introduced many CK concepts and provided 
opportunities to discuss how children would deal with issues involved in these lessons. Each lesson 
was evaluated to inform the design of the next lesson. Table 2 provides an overview of the 
intervention. Part of the intervention was that pre-service teachers would give an ISI lesson in their 
work placement school. The analysis of these lessons is beyond the scope of this paper. 

Table 2: Overview of the ISI intervention at the teacher college  
Week Activity 
1 Informed consent, pre-test and homework instruction 
Between 1 
and 3 

CK: Pre-service teachers make homework assignment:  
1. Look up an article in the media that makes a claim about a population based on a sample and that somehow appeals to you.  
2. Describe how the researchers came to their conclusions. 
3. Write a critical evaluation about the quality of the research: to what extent is in your opinion the conclusion justified based 

on the research conducted? 
3 Lesson 1 

CK & PCK: Small group and whole class discussion of homework assignment, attention for both CK and PCK aspects of the 
assignment 
CK: Explanation of random sampling and appropriate sample size using an ICT demonstration 

5 Lesson 2 
CK & PCK: Teacher educator models an example lesson which the pre-service teachers could give themselves in their work 
placement schools 
PCK: Discussion of teacher educator’s experiences with teaching the example lesson in primary school 

5 Lesson 3 
CK & KCS: Discussion of equiprobability bias using a task 
CK Short recap of main ISI concepts 
PCK: Teacher educator presents learning goals of ISI lesson (KCT) , discusses typical responses of students (KCS) and provides 
instructions for the ISI lesson (KCT) 

Between 5 
and 12 

Half of the pre-service teachers teach an ISI lesson in their placement school. 

12 Lesson 4 
PCK: Discussion of pre-service teachers’ experiences with teaching with teaching the ISI lesson 
PCK: Pre-service teachers provide suggestions for alterations of the ISI lesson and tips for their fellow students.  

Between 12 
and 16 

The other half of the pre-service teachers teach an ISI lesson in their placement school. 

16 Lesson 5 
PCK: Discussion of pre-service teachers’ experiences with teaching the ISI lesson 

16 Post-test and evaluation of the intervention 

 



Participants 

One class of second year pre-service teachers participated in this study. They studied at a small 
teacher college for primary education in a large city in the Netherlands. The intervention took place 
in their second year of study, because statistics is part of the knowledge base that is tested in the third 
of study. This particular class was chosen, because the pre-service teachers had fewest credits open 
from their first year of all three second year classes. The class consisted of 23 pre-service teachers. 
They were asked to provide their informed consent. While all of them were required to participate in 
the activities and lessons, one pre-service teacher invoked the possibility to have her results excluded 
from the analysis. The results of another student were also excluded, because of absence during all 
but one of the lessons. This resulted in a sample of 21 pre-service teachers. The procedure was 
approved by the ethical board of the Faculty of Behavioural and Movement Sciences of Vrije 
Universiteit Amsterdam. The average age of the participants was 21 years (SD: 2.19); 6 were male; 
10 had a background in secondary vocational education (students attending this type of course are 
typically aged between 16 and 20), 7 came from senior general secondary education, 2 had been 
enrolled in university preparatory education, and the educational background of the remaining 2 was 
either something else entirely or unknown. Their average score on the obligatory first-year 
mathematics exam for Dutch pre-service teachers was 135 out of 200 possible points (SD: 12.86). A 
score of 103 equals the 80th percentile of Grade 6 primary school students in the Netherlands. The 
first author was the teacher educator. He had four years of experience as a mathematics teacher 
educator, a master degree in economics and experience as a university statistics lecturer. He had 
taught most of the pre-service teachers during their first year of study. 

Data collection 

During the lessons, whole class interactions were recorded on video and audio, while small group 
interactions were recorded on audio. Furthermore, during most lessons one of the co-authors was 
present as observer, taking notes. Finally, all written work was collected. A pre-test and post-test were 
used to measure ISI CK and PCK at the start and at the end of the intervention. The results of these 
tests will be presented during the CERME presentation. 

Data analysis 

The goal of the analysis is to study the development of the ISI CK and PCK and to explain these 
developments. This paper reports preliminary analyses. After each lesson, the teacher educator’s and 
observer’s notes and reflections were used as for estimating to what extent the learning goals relevant 
for the particular lesson had been attained by the pre-service teachers as a whole. Each learning goal 
received a score ranging from 0 to 1 (0: not attainted; 1: by large attained by (almost) all pre-service 
teachers). These estimations per lesson were used to make an overall score for each learning goal.  
Next, average scores were calculated for the various components and types of knowledge. Based on 
these notes and reflections, these scores were related to the activities used during the intervention. 
The final results will show in detail the development of ISI CK and PCK at the level of the pre-service 
teacher and the role of the activities used in the intervention. 

  



 

Table 3: Attainment of the learning goals, summarized by ISI component and knowledge type  
Component Average scorea  Knowledge type Average scorea 
General 0.75  Common content knowledge 0.73 
Data as evidence 0.5  Specialized content knowledge 0.63 
Generalization beyond the data 0.61  Knowledge of content and students 0.39 
Sampling method 0.55  Knowledge of content and teaching 0.43 
Sample size 0.43    
Uncertainty 0.59    

aEach goal received one of the scores 0, ¼, ½, ¾ or 1 (0: not attainted; 1: by large attained by (almost) all pre-service teachers) 

Preliminary results 
The preliminary results reveal to what extent the learning goals have been attained and shed some 
light on what activities helped to reach these goals. Table 1 shows to what extent the learning goals 
are attainted. Table 3 shows the average score for the learning goals summarized for components and 
knowledge type respectively. There are some notable results. First, most pre-service teachers seemed 
to be aware of the inferential nature of research questions and the uncertainty inherent to the results. 
The homework assignment at the start of the intervention seemed to have helped to foster this 
awareness. Second, the modeling of the example lesson seemed to be a good context to reason about 
sampling methods, because it naturally led to the use and discussion of  random and quota sampling 
methods. Moreover, although average scores on PCK learning goals are lower than on CK learning 
goals, modeling helped the pre-service teachers to get a better idea how to teach ISI to primary school 
students. Thirdly, while the presentation of PCK issues by the teacher educator in lesson 8 did not 
seem to contribute much to the pre-service teachers understanding, the discussion of PCK based on 
the pre-service teachers’ experiences in lesson 12 and 15 did. Finally, an understanding of the 
fundamental idea that if a properly selected sample is representative for the population it can be used 
for an inference, might be conditional for understanding other ISI concepts. While part of the pre-
service teachers seemed to understanding this idea, part of them did not. Lacking this understand ing 
might hinder them in teaching ISI. 
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In this paper we analyse the competence in reading pictograms by 140 Chilean students (6th and 7th 
grades). The written responses to two activities taken from textbooks are used to describe the 
children’s reading levels and strategies to interpret pictograms and translate them to a table. Results 
suggest that students do not find major difficulties in translating the pictogram to a table; however, 
few of them reach the upper reading level needed for a critical interpretation of the information 
displayed in the pictogram. 

Keywords: Pictograms, understanding, primary education. 

Introduction 
A relevant part of the information we face every day is given in statistical graphs, whose interpretat ion 
is often needed to make different decisions; therefore there is a need for citizens to achieve enough 
graphical competence (Ridgway, Nicholson & McCusker, 2008). These reasons led countries like 
Chile to introduce statistical graphs in the primary education (Díaz-Levicoy, Batanero, Arteaga, & 
López-Martin, 2015).  More specifically, in Chile children are requested to collect and record data to 
answer statistical questions about themselves and their environment, using bar charts, tables and 
pictograms, as well as to read and interpret these representations since the 1st grade (MINEDUC, 
2012). There is however no available empirical studies providing evidence that Chilean children 
understand these graphs at the end of primary education. The aim of this paper is to analyse the 
reading level of the pictograms, reached by Chilean children in the last year of primary school (6th 
grade) and what they remember a year later (7th grade). Since statistical graphs are included in 
primary education in many countries, this information may be useful in other contexts. Below we 
describe the foundations, method and results. 

Pictograms are statistical graphs that display information using icons, whose size is proportional to 
the frequency of each attribute. Each icon represent a fix value, and  can be repeated, to achieve the 
attribute frequency; its iconic character has been considered relevant in conveying recommended 
modes of behavior (Tijus, Barcenilla, De Lavalette, & Meunier, 2007), such as helping sick children 
understand a treatment that they are undergoing (Hämeen-Anttila, Kemppainen, Enlund, Patricia, & 
Marja, 2004).  

Understanding statistical graphs involve composing individual data values into an aggregate or 
distribution and perceiving this distribution as a whole; however, some students only perceive graphs 
as “collections of values” instead (Konold, Higgins, Russell, & Khalil, 2015). In our research we are 
interested in the children competence in interpreting a distribution represented in a pictogram and in 
the reading level shown in the children responses when reading pictograms. We use Curcio’s (1989) 
categorization. 

 Level 1. Reading the data. At this level the student can successfully perform a literal reading of 
the information presented in the graph, but does not succeed in more sophisticated reading, do not 



provide an interpretation, or carry out additional calculations with the information displayed in the 
graph. 

 Level 2. Reading within the data. In addition to making a literal reading, the student can obtain 
information that is not explicitly displayed in the graph, with simple mathematical processes, such 
as arithmetic operations or comparisons.  

 Level 3. Reading beyond the data. The student is able to extrapolate or interpolate the data to 
predict values that are not shown in the graph. He or she is also able to make a critical reading to 
detect an incorrect interpretation of a graph. 

We only found a few investigations related to our study. Cruz (2013) analysed the interpretation of 
pictograms by 21 children in 3rd year of Primary Education in Lisbon after a teaching process. The 
responses to a written questionnaire with different types of graphs were analysed: 82% of children 
properly completed those reading activities that required Level 1 in Curcio’s (1989) classificat ion, 
while 70.5% reached level 2 and 66.5% level 3. One of the activities consisted in reading a pictogram 
where each icon represents a unit. In his item the author obtained 95% of correct answers to Level 1 
questions and 77.3% to the Level 2 questions. There were no questions of Level 3.  Regarding other 
types of graphs, Evangelista (2013) proposed single and double bar graphs and line charts to a sample 
of 60 students in grade 5th in Brazil. The results show that children correctly answer 51% of the 
activities; on average, the students correctly answered 59% of the activities in bar graphs and 43% of 
line charts. Level 1 questions had an achievement of 60% and level 2 between 51% and 41%. 

Method 
The sample consisted in 140 Chilean Primary Education students from 6th grade (69 students, 11-12 
years old) and 7th grade (71 students, 12-13 years old). Two different schools in the city of Osorno 
took part with collaboration from the schools’ principals and of the teachers responsible of these 
groups, to all of whom we sincerely thank. Although we used a convenience sample, the socio-
economic setting and average mathematical ability of children is varied and represent the situation in 
Chile. 
The questionnaire (Figure 1) included two items taken from Chilean mathematics primary education 
textbooks. In the pictograms included in the questionnaire each symbol represents a uniform and 
defined value; therefore, a priori, should be simple for children. In the first adapted from a 3th grade 
Primary Education textbook (Charles et al., 2014, p. 253) item the student should read the pictogram, 
where each icon represents 15 statistical units (books). The student has to read two sentences; the first 
one is false (since there are 30 science fiction books) and the second is true (there are 60 child ren 
books). To complete the task the student must recognize the row for each value  of the variable book 
type and understand that its frequency  is given by the number of icons multiplied 15 (the frequency 
represented by each icon). Therefore, the student first has to read within the data (Level 2 according 
to Curcio’s, 1989 classification), as he or she has to perform calculations with the values in the graph. 
In addition, the student should reason that each statement is true or false; therefore the student has to 
make a critical reading of the graph and consequently work at Level 3 (reading beyond the data in 
Curcio’s, 1989 classification). 

In the second item, adapted from a 4th grade primary education textbook (Batarce, Cáceres & 
Kükenshöner, 2013, p. 343), the student has to translate information from a pictogram to a table . 



Besides reading the number of icons corresponding to each value of the variable, the student has to 
perform calculations; in this case, two types of icons are used to represent either 10 or 5 hours of 
light. The student has to reach level 2, reading within the data and complete the table, calculating the 
total amount of hours the light was turned on. 
Item 1. The school librarian made an inventory of the library books. 

 
Decide if each of the following statements is true or false. Explain your answer. 
    True False 
1. There are only two science fiction books.    
2.  There are 60 children books.   

 
Item 2. Complete the following table with the information displayed in the graph.  

  

Number of hours per week that the light is turned on 
Place Number of hours 

Exercise room  
Dressing room  

Swimming pool  
Tennis court  

Total  
 

Figure 1: Questionnaire   

Results in item 1 
In item 1 we first analyse the percentage of correct responses and then the reading level that the 
students of our sample reach when providing a justification of their response. 

Percentage of correct answers 

In Table 1 we present the percentage of correct answers in the questions regarding the truth or 
falseness of the two statements given in this item. We observe that less than 50% of the students 
provided a correct response to these claims. The results are apparently worse than those obtained by 
Cruz (2013) in reading pictograms, but this author only made questions that involved reading within 
the data (Level 2) and each icon in his pictograms represented only one unit, while in our item each 
icon represents 15 units; therefore, our items are comparatively more difficult. 

There was a higher level of success in the 6th graders than in the 7th graders, which may be due to 
the effect of forgetfulness, since pictograms are studied in Chile with more intensity in the first four 
years of primary education, and in 6th grade some activities related with pictograms are proposed in 
textbooks (Díaz-Levicoy et al., 2015). On the contrary, pictograms are rarely used in 7th grade. 
Anyway, the differences were not statistically significant difference in the t-test of difference of 
proportions (that test the hypothesis of having equal proportion of correct responses in both groups). 

  



 

Statement Total 
(n=140) 

6th grade 
(n=69) 

7th grade 
(n=71) 

p-
value* 

1.It is not true that there are only two science 
fiction books  

47.9 55.1 40.8 0.0904 

2. There are 60 childhood books  49.3 55.1 43.7 0.1774 

* Test of difference of proportions in independent samples 

Table 1: Percentage of correct answers according to statements of item 1 

Reading level  

We secondly analyse the reading level that the students achieved to decide the truth and falseness of 
the statements and to justify their response. Their arguments were classified according to Curcio’s 
(1989) reading levels, which are interpreted as follows: 

 Level 0 is reached if the information requested in the question is not read or the graph reading is 
incorrect (students do not even read correctly the number of icons).  

 The students’ justifications are classified in Level 1 if they simply read the number of icons for the 
variable values indicated in the question without performing any calculations. The student has 
identified the graph row corresponding to the variable value, and has counted the number of 
corresponding icons. However, he or he does not take into account that each icon represents 15 
books, and does not perform the necessary calculations to determine the frequency corresponding 
to each category. Some examples are: 

It is true, because in the inventory two science fictions books appear (Student 55, first question) 
It is false, there ae four children books (Student 73, second question) 

 Level 2 is reached if the student correctly answers the question and apparently has carried out the 
calculations required to determine the frequency of a category in multiplying the number of icons 
by 15. In this case, the student is able to correctly interpret the pictogram but do not sufficie nt ly 
argues the truth or falseness of the claim posed. We have also considered within Level 2 those 
responses in which students perform an incomplete argument, i.e. they do not explicit the 
arithmetic operations performed. For example:  

It is false; there are 30 science fiction books (Student 21, first question) 
It is true, one book is 15 and there are 4 books (Student 66, second question) 

 We consider that a student response reaches Level 3 if the student has performed the calculat ions 
required to determine the frequency of the category and interprets correctly the pictogram. In 
addition, the student reaches a critical reading, because he or she can give an argument that 
supports the correct or incorrect statement. 

It is false, because as you can see each icon represents 15 books and there are two icons for 
science fiction books; for this reason if we sum 15+15 the results is 30 books (Student 38, first 
question). 



In Table 2 we present the distribution of the reading levels achieved by the whole sample, as inferred 
from the arguments that children provide to express their agreement or disagreement with both 
statements.  

Statement Reading Level 

 0 1 2 3 

1. There are only two science fiction books 1.6 37.3 55.4 5.6 

2. There are 60 childhood books  2.3 33.4 53.2 11.1 

Table 2: Percentage of reading levels achieved by students in their responses to item 1 

Overall the most common reading level in both questions was Level 2, which involves comparisons 
and data operations. The second most frequent was Level 1, where students read literally the 
information displayed, and very few students reached Level 3, which involves critical reading (a few 
more in the second statement). 

6th grade students 7th grade students 

Figure 2: Percentage of Reading levels in both parts of the item1 in each group 

When analysing the results by grade and statement (symbolized by S1 and S2) (Figure 2), 7th grade 
students more frequently provided Level 1 answers in both statements (63.4% in the first statement 
and 59, 2% in the second) that the 6th grade students (50.7% in the first statement and 43.5% in the 
second). These, also had higher percentage at Level 2 (42% in the first statement and 40.6% in the 
second), while the 7th grade student’s percentages at level 2 were 26.8% and 21.1%. Level 3 answers 
were scarce in both grades; at this level, 7th grade students got better results than 6th grade students, 
due to their better level of reasoning, but the difference is small. Overall the 6th grade students have 
better results, since they achieved a higher percentage of responses in Levels 2 and 3.  

Results in item 2 
In this item we first describe the results achieved in the reading level and then those related to student 
competence to translate the graph to a table. 

Percentage of correct answers 

In  this item, students should make a translation of the pictogram to a table. The answers given by 
students are classified according to the following categories: 

 Correct table. When the student has successfully translated all data on the pictogram to the table. 
He or she has also correctly calculated the total of the table.  



 Partially correct table. The student makes a partially correct translation of the information shown 
in the pictogram; the table is correct, with some mistake. These errors are: a) taking into account 
one icon more or less when calculating frequency (12 students); b) wrong calculation of total hours 
(7 students); c) considering that the icon that represents half bulb is equivalent to 15 hours of 
consumption, instead of five (1 student); d) considering that one of the icons represents one hour 
of consumption, while the rest has been translated well for 10 hours (1 student); e) producing some 
correct rows in the table, but not finishing the table (1 student); f) not calculating the total, although 
the table is correctly constructed (1 student); g) making two of the above errors (1 student). 

 Incorrect Table. When all or most of the rows in the table are incorrect, what happens, in particular, 
to all of the students who only reached the Level 1 when reading the pictogram.  

 Do not complete the table. When the student does not develop the activity or when students reached 
Level 1 partially. 

Table 3 shows the distribution of the answers given by the students in translating to a table, where 
most students have completed the task successfully, with a percentage bigger than 76% in each course 
and globally. The differences were not statistically significant.  

Type of answer 6th grade (n=69) 7th grade  (n=71) Total (n=140) 

Correct 76,8 78,9 77,9 

Partially correct 18,8 15,5 17,1 

Incorrect 0 2,8 1,4 

The task is not completed 4,3 2,8 3,6 

Table 3: Percentage of students by table correctness  

 

Reading level  

In this item these levels are interpreted as follows:  

 At Level 0 are the students who provided no answer or who fail to read the graph. 

 At Level 1 students perform a literal reading of the data (either all or part of the data). For example, 
some students believe that each bulb represents a unit. An example is given in Figure 3 in which 
the student considers the bulb as an unit in all the categories, except one. 

 At Level 2 are those students who identify the number of icons corresponding to each variable 
value and multiply this number by 10 or 5 to obtain the corresponding frequency. An example is 
given in Figure 4. 

 



 

 

 

 

Figure 3: Level 1 table (Student 29) Figure 4: Level 2 table (Student 75) 

In Table 4 we present the distribution of the reading levels reached by the students in this item, where 
the highest percentage of responses are located at Level 2 (reading the data) in both courses. Over 
90% of students are able to correctly read the pictogram at level 2 and 7th grade students show better 
performance levels when the translation is done correctly. 

Level 6th grade (n=69) 7th grade  (n=71) Total (n=140) 

0 0 2.8 1.4 

1 8.7 2.8 5.7 

2 91.3 94.4 92.9 

Table 4: Percentage of students reaching each reading level by course and in total 

Discussion and conclusions 
This study has provided information about the reading levels reached by the students in the sample 
when reading pictograms and when translating between pictogram and data table, complementing 
previous work. In relation to the work of Cruz (2013) we used more complex pictograms, as each 
icon represents several units, while in those proposed by the author each icon symbolized one unit. 
In relation to the work of Evangelista (2013) with lines and bar graphs, the results in levels 1 and 2 
are somewhat lower than in our work but not too much. 

In our first item students can reach up to Level 3 in Curcio’s (1989) categorization, while Cruz only 
considered the first and second level. This explains why our results are apparently lower than those 
in Cruz. However, the second item proposed in our study has been very easy; both in reading the 
pictogram where our results were better, as in the translation to a table, a task that was not proposed 
by Cruz. Part of the errors found in the first item, where students are asked to refute or confirm a 
statement, are due to their lack of critical reading, and argumentations skills. As suggested by 
Freedman and Shah (2002), graph comprehension is influenced not only by the display characterist ics 
of a graph, but also a viewer’s domain knowledge, graphical literacy skills, and explanatory and other 
scientific reasoning skills that these children may lack. In the next step in our research we are 
expanding the sample of children and schools to confirm the results. 
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Conditional probability arises as a tool for analyzing a strategy for decision-making that molds to 
new conditions. From that point of view, an introductory sequence which utilizes diachronic games 
is designed and analyzed under the framework of didactical engineering, bringing conditional 
probability into play as a decision-making tool. It can be observed that students tend to base their 
decisions on heuristics and experiential considerations, and do not see the need for a proper 
calculation of theoretical probabilities. At most, they use experimentation as a tool, not computing 
probabilities based on relative frequencies, but comparing absolute frequencies. 

Keywords: Decision-making, conditional probability, didactical engineering. 

Introduction 
UNESCO has dedicated a full chapter about confronting uncertainties on its “Seven complex lessons on 
education for the future”. It describes uncertainties of reality and knowledge, and proposes ways of taking 
action despite the unavoidable uncertainty of the world (Morin, 1999). Ignoring or downplaying uncertainty 
could lead us to make fragile decisions, which can generate a negative impact as soon as the circumstances 
change (Taleb, 2012). In this matter, probability and statistics emerge as the core mathematical subjects for 
facing this challenge. Thus, these subjects should play an important role in modern mathematics curricula for 
general education. 

However, in general students have low scores on these fields. PISA 2012 reveals that 76.9% of tested 
students do not pass the second level of accomplishment in the areas of uncertainty and data (Organisation 
for Economic Co-operation and Development [OECD], 2014). At the best they can apply suitable 
calculation basic procedures in familiar contexts such as coin tossing or dice rolling. However, they are not 
able to reason and make critical reflections in order to make valid contextual or general conclusions. 

Probability and statistics have given shape to a field of economics studied since the 40s. It has been 
dominated essentially by “expected value theory” as a normative model of rational choice, proposing that 
rational individuals maximize the expected value of their utility functions (Friedman & Savage, 1948). This 
approach has been criticized lately by behavioral psychology and behavioral economics, pointing out many 
situations in which the axioms of the theory show themselves inadequate for modelling reality (Kahneman & 
Tversky, 2007). The authors propose a “prospect theory”, taking into account individuals’ biases towards 
the probability and impact of each choice. 

The research related to this paper is embedded within a broader domain that embraces the relationship 
between didactics of probabilities and statistics, and decision-making under uncertainty. It involves facing 
the philosophical debate between the idea of probability and statistics as decision-making tools, against 
decision-making scenarios as resources for improving the institutionalized techniques within probability and 
statistics. Moreover, the research relates to critical mathematics education, which emphasizes the 
empowerment of students as citizens as an argument for mathematics in general education (Skovsmose, 
1994). 



In this frame, two research questions are addressed. (1) “What kind of probabilistic contents and related 
didactics could help students make better and more reflexive decisions in their lives?” and (2) “How do we 
assess the students’ learning of probability theory and methods, and which role can decision-making 
scenarios play in such assessment?” 

In particular, this paper reports the results of an exploratory application of didactical engineering that 
involves conditional probability in decision-making scenarios. The purpose is to illustrate challenges and 
difficulties involved in the teaching of probability under this point of view. 

Theoretical framework 
From an enactivist perspective (Brown, 2015), knowledge is only reflected by and detectible through 
action by those who know. One learns with an embodied mind, within a process called enaction. This 
notion breaks representationist ideas of the mind, considering an incarnated cognition, in which meanings 
arise as particular states of cooperation in neuronal networks. These states are put into action –enacted– 
via retroactive co-definitions between the subjects and the contexts they live in. This concept implies that, 
when faced upon a learning situation, students will enact the knowledge that had let them to act in similar 
situations, not only their school experience. 

Within the scope of this research, students would enact what they have learned from situations of 
uncertainty and decisions they made before, their previous formal school knowledge, operational aspects 
such as heuristics and perceptual aspects like feelings that the context evokes in them. 

According to mathematical philosophy literature (e. g. Leitgeb & Hartmann, 2014), two types of decision-
making scenarios can be defined. Namely, a situation under uncertainty is a setting in which one does 
not know what the relevant probabilities are, and in decision-making situation under risk, the probabilities 
of the various outcomes are in principle. In both cases, decisions are made based on the best available 
information and building conjectures about likelihood of different results. We will consider the latter one in 
this paper. Here we will intend to use mathematical objects, such as probability theory and calculations, in 
the context of mathematics teaching. 

Morin proposes “(…) two ways to confront the uncertainty of action. The first is full awareness of the 
wager involved in the decision. The second is recourse to strategy” (Morin, 1999, p. 47). Strategy must 
prevail over program, which gets stuck as soon as the outside conditions are modified. A strategy is meant 
to be adaptable to variations in the context. In this regard, as one acquires new information about the 
situation in which one requires to make decisions under uncertainty, the notion of conditional probability lets 
us incorporate changes in the degrees of belief about possible outcomes (Batanero & Díaz, 2007), 
improving decision-making based on predictions. As a consequence, the rank of experiments to consider in 
the classroom becomes wider. 

The central mathematical object of study is, therefore, conditional probability. The learning goal is, as stated 
on the study program at 11th grade in Chile, to “solve problems that involve computation of conditional 
probabilities within simple situations” (Ministerio de Educación [MINEDUC], 2004). The choice of 
situations and means of representation (tree diagram, 2x2 tables) are left open for the teachers, but the 
given established notions involved are: 

 Meaning of “probability of event A, given event B”, using the notation P(A|B). 

 If A and B are independent events, then P(A|B) = P(A). 



 If A and B are not independent events, then P(A|B) = P(A and B)/P(B), with P(B) not equal to 0. 

As an example, let’s say that an experiment consists of tossing a fair coin twice. Let A be the event of 
obtaining two successive heads, and B be the event of obtaining a head in the first toss. According to 
previous contents, students should be able to calculate theoretically that P(B) = ½ and P(A and B) = ¼. 
Given the context, students should be able to interpret and calculate that P(A|B) = ½, because now that we 
know that B happened, then for A to happen, a second head should be obtained. Also, it may be obtained 
that P(A|B) = P(A and B)/P(B) = ¼ / ½ = ½. 

Methodology 
Didactic engineering is assumed as a research and design method, and includes four phases: preliminary 
analysis, a priori analysis, execution, and contrast and redesign (Artigue, 1988). 

For the preliminary analysis, historic-epistemological elements are obtained by selected authors, in 
particular, Pascal and Huygens, and their significant work on the development of probability (Pascal, 1983; 
Basulto, Camuñez, Ortega, & Pérez, 2004). The analysis is made from a chronological construction of the 
concepts by the authors and their sociocultural contexts. Practices that build the necessity and give meaning 
to gambling and decision-making are documented. For the cognitive analysis (Elicer & Carrasco, 2014), 
exploratory tests are taken to gather productions of students about their probability notions and their 
strategies to make decisions in the Monty Hall game (Batanero, Fernandes, & Contreras, 2009). The 
didactic analysis is made from the 11th grade study program and textbook delivered by the Chilean 
government to public and subsidized schools, which represent 91.1% of the total enrolled students in 2015 
(MINEDUC, 2015). 

The didactic sequence is then designed taking into account key notions resulting from preliminary analysis 
and an increasing level of complexity. Students should start making specific calculations and end making 
justified decisions. For the a priori analysis, conjectures emerge from the authors, according to the 
cognitive analysis. It is fair to anticipate similar outcomes from the students and, therefore, to add questions 
that help them have a critical insight about them. 

The execution stage consists in the application of the didactic sequence to a group of students and the 
contrasting between initial conjectures and the students’ actions and productions. The experimental group is 
one upper secondary class of 19 students aged 15-17 years old. They have already been introduced to 
probability calculations using Laplace’s law, tree diagrams and basic combinatorial techniques. Students 
have not yet studied the concept of conditional probability. 

Finally, transcriptions of students’ written outcomes are tabulated according to defined categories in the 
preliminary analysis (Elicer & Carrasco, 2014). Those which are unexpected and do not match these 
categories are highlighted and mentioned in the results. Suggestions for redesign resulting from the 
discussions with the teachers are mentioned for each activity. 

Results and discussion 
The designed sequence is fully exposed on the Appendix of this paper. It is meant to be executed as an 
introduction to the mathematical object of conditional probability. This means no new institutional contents 
would be presented, they should use their previous knowledge. The first session includes Activities 1 and 2, 
and the second session concludes with Activities 3 and 4. 



For a full revision of relevant elements of the preliminary analysis see Elicer & Carrasco (2016). Those 
considered for the design are as follows, given in parentheses the questions implemented. 

Historic-epistemological. In Pascal-Fermat correspondence, probability analysis arises from projective 
decision-making, in the effort of setting a fair share (1.1, 1.4, 2.1 and 3.4), in particular when a gambling 
game stops (2.5, 2.8 and 2.9). After this notion comes the idea of betting with some kind of advantage. 
Studying the ratio between favorable and all cases comes from getting to know every possible case. 
Huygens brothers association between forecasting situations, such as life expectancy, and gambling, allows 
us to give a new meaning to the idea of probability in a game, as an a posteriori calculated probability. 
From this point of view, possible outcomes of a game are described in statistical data (1.2, 1.4, 2.4, 2.7 
and 3.3). 

Cognitive. Students conceive that different realizations are all possible cases, without weighing them, and 
draw upon non-mathematical arguments to make a choice (3.1). They also recognize that they would make 
different decisions if they played the actual game, where they had to make a choice in situ and not a priori 
(4.1 and 4.2). 

Didactic. The main activity proposed in the textbook is theoretical probability calculation (1.3, 2.2, 2.3, 
2.6, 3.2 and 3.5), without decision-making or searching for an advantage in gambling. This is implemented 
on Activity 3, where the Monty Hall problem involves an actual decision. 

Activity 1 goes as expected. Students unanimously recognize this is a fair game because both players have 
the same probability of winning (1.1), which is well calculated using the Laplace law (1.3). Usually, the 
distraction of doing eleven repetitions is recognized by them, saying there are too few repetitions, that it is 
an odd number (1.2), and that results depend on chance or luck (1.2 and 1.4). One particular comment we 
didn’t expect was that “the game is not fair, because the results depend on chance and not on personal 
abilities” (1.1). Considering a future design, the meaning of fairness should not be trivialized. Might be 
defined or discussed. 

Activity 2 throws similar responses about the basics (2.1 and 2.4), which is the intention. Some students 
still confuse the concept of “possibility” and “probability” (2.2) when giving their answer, which could be 
revised before. They do not use their previous combinatorial reasoning. Instead, they count different 
scenarios than come up to their minds (HTT, HHT, …), which not always lead to counting four possibilities 
for each player (2.2). For this reason, they might answer that each player has the same probability of 
winning (2.3), based on their intuition and the scheme made in question 2.2. The same schemes lead some 
of them to wrong answers. 

For the second part of Activity 2, most students recognize that one player has an advantage after the first 
toss. Just a few could actually compute the theoretical probability (2.6), so most of them base their answers 
on interpreting experimentation results (2.7). Here the probability of success arises as an estimation of 
compared absolute or relative frequencies, giving use to fractions. Our observation is that an exact 
calculation of these probabilities does not seem to be necessary for answering the question, so the intention 
must be revised. 

As for the repartition when the game is interrupted, (2.5, 2.8 and 2.9), there are two main types of 
reasoning among the students. One big group defends an equal repartition of 50% and 50%, arguing that 
“even when one of us has more possibilities of winning, randomness says that any of us could win”, giving 



randomness a mean for equality. Others recognize fair to split it according to probabilities, using fractions 
constructed on their ratio phase (Fandiño, 2015) as an operator to multiply the poll to be shared. 

In Activity 3, most of students believe each of the remaining doors give an equal chance of winning (3.1), 
falling into an isolation effect (Tversky, 1972). Since there is a choice to make, they use personal 
experience-based explanations, repeating many of the answers obtained on the preliminary analysis. This is 
expected to change after the experimentation, finding the need for a proper probability calculation. Most of 
them change their position (3.3 and 3.4), based only on experience. This means the frequentist meaning of 
probability is stronger than a classic or theoretical one, as a decision-making tool. Questions 3.2 and 3.5 
are too confusing for them and most of answers are left blank. We recognize there is no need for analyzing 
the sample space in an introductory session. 

Conclusion 
In the context of primary and secondary compulsory education, probability and statistics usually arise as 
mathematical concepts that represent tools for description of uncertainties. In order to move forward, the 
authors participate on the idea of having them as elements for decision and action. Didactical sequences 
should involve escalating decision-making scenarios and questions. According to the historical development 
of probabilities, it is convenient to ask if a game is fair or not (Hernández, Yumi & de Oliveira, 2010), 
followed by building a strategy to make it favorable. 

Researchers and teachers should anticipate that heuristics and personal experiences are frequently more 
powerful considerations than calculations about probability and risk, when students are faced with 
decision-making scenarios. This has been documented not only in the didactics of mathematics research 
(e.g. Serrano, Batanero, Ortíz & Cañizares, 1998), but also (even previously) in psychology and 
economics literature. In particular, teaching and learning the conditional probability object could involve 
decisions within diachronic games. These are subjected to the isolation effect (Tversky, 1972; Kahneman 
& Tversky, 2007), among other difficulties, such as perceptions of independence and sample space, and 
interpretations of convergence (Batanero et al., 2009). 

We recommend creating new sequences for other probabilistic concepts. Natural extensions are total 
probabilities and Bayes’ theorem. Given information about medical research, students may decide whether 
approving or not a certain pharmaceutical product; or deciding about changes on their habits according to 
the relationship between cancer and processed meat or smoking. 
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Appendix: Proposed sequence for execution 

Activity 1: Single coin toss 

Two players choose heads or tails. They toss a coin and whoever guesses wins. 

1.1 Do you think this is a fair game? Why? 



1.2 Repeat this game eleven times and register who wins each time. Do you keep your answer for 
question 1? 

1.3 What’s the probability of winning for each player? 

1.4 [Teachers compile the results on the board]. Do you still keep your answer for question 1? 

Activity 2: Best out of three 

The game consists in two players choosing heads or tails, betting 60 each. They toss a coin successively 
three times and whoever obtains the most guesses wins. 

2.1 Do you think this is a fair game? Why? 

2.2 How many options does each player have of winning? 

2.3 What’s the probability of winning for each player? 

2.4 Repeat this game ten times and register who wins each time. Do both players have the same 
amount of victories? Why do you think this happens? 

Now suppose the first coin toss results on heads and the game is interrupted. You must decide what to do 
with the poll. 

2.5 Would it be fair to split the poll by 60 each? Why? 

2.6 Could you calculate the probability of winning for each player starting from that point? 

2.7 Still assuming the first toss resulted in heads, simulate ten times the two remaining tosses, and 
register who wins the best out of three each time. 

2.8 Given this scenario, would it be fair to split the poll giving 80 to the player who betted heads, and 
40 for the one for tails? 

2.9 Propose a repartition coherent with each one’s probability of winning. 

Activity 3: Monty Hall game 

You are faced against three doors. Behind two of them there are goats and the other has a new car. Your 
goal is to guess the door where the car is hidden. The sequence is as follows: (1) The host offers you to 
pick a door. (2) After your choice, the host opens another door, different from the one you have chosen 
and shows there’s a goat. (3) Now he offers a second chance: will you keep your first choice or change it 
to the other closed door? 

3.1 What would you decide; would you keep your first choice or change it? Explain what is relevant for 
you to make this decision. 

3.2 Which events have the same probability of occurring? 

3.3 In pairs, play the game with your cups and car toy. One of the players will always change his or 
first choice, and the other will never change it. Repeat this ten times and compile the results for the 
whole class. Is there any difference between both types of players? 

3.4 Is, therefore, any way of betting with an advantage? 

3.5 Reconsider your answer from question 3.2. Given that the game has two stages of choice, which 
events have the same probability of occurring? 



Activity 4: Plenary 

Each pair of students responds the following questions in front of the class. 

4.1 How would you face the Monty Hall game if you had to be there? 

4.2 What recommendations would you give to someone who is about to play? 
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Stepwise development of statistical literacy and thinking in a statistics 
course for elementary preservice teachers  
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In this paper we describe the design, realization and evaluation of a course for elementary 
preservice teachers, applying the PPDAC-cycle (Wild & Pfannkuch, 1999), using innovative 
methods and digital tools like TinkerPlots (Konold & Miller, 2011). We will refer to design 
principles of the course and show in which way a stepwise development of statistical literacy and 
thinking with TinkerPlots works in cooperative learning environments.  

Keywords: Elementary preservice teachers, design based research, cooperative learning, statistical 
literacy and thinking, TinkerPlots. 

Introduction 
Since the implementation of the leading idea “Data, Frequency and Chance” (Hasemann & Mirwald, 2012) 
in mathematics classrooms in primary schools in Germany, statistics has become a central topic in primary 
school. This has set requirements not only for schools and teachers, but also for universities who have to 
educate preservice teachers in statistics for their upcoming school career. Requirements for teacher 
education in statistics can be found on German national level (e.g. AK Stochastik, 2012), and on 
international level (e.g. Batanero, Burrill & Reading, 2011). Two important aspects appear at both levels: 
applying a whole data analysis cycle (like PPDAC, see Wild & Pfannkuch, 1999) and analyzing data with 
digital tools (see Biehler, Ben-Zvi, Bakker & Makar, 2013). We decided to use TinkerPlots (Konold & 
Miller, 2011) for our purposes, since it is easy to learn, no formulas are needed, and it enables learners to 
create multiple representations of data. In our sense, TinkerPlots can serve as educational software for 
pupils from grade 4, as software for teachers for analyzing data, and as medium for demonstration 
purposes in classroom. This was our motivation to design, realize and evaluate a statistics course for 
elementary preservice teachers with TinkerPlots on the basis of the Design Based Research paradigm 
(Cobb, Confrey, diSessa, Lehrer & Schauble, 2003).  

Our course to develop statistical literacy and thinking with TinkerPlots 
The main goal of this course is to develop statistical literacy and thinking components (for a definition see 
Garfield & Ben-Zvi, 2008, pp. 34) and the technological knowledge of our participants. At Paderborn 
University in Germany elementary preservice teachers for mathematics attend an obligatory course 
“Elementary Statistics”, which is about data analysis, combinatorics and probability theory. Due to limits of 
time, there is no space for going through a whole data analysis cycle like PPDAC or to do further data 
explorations in multivariate datasets. For that reason our course was designed taking into account the 
principles of the “Statistical Reasoning Learning Environment” (Garfield & Ben-Zvi, 2008), to expand 
preservice teachers’ knowledge in data analysis and to introduce a new tool to them, which better fits to 
primary and lower secondary school. Fundamental ideas realized in our new designed course are to “focus 
on developing central statistical ideas”, to “use real and motivating data sets”, to “use classroom activities to 
support the development of students´ reasoning”, the integration of “appropriate technological tools”, to 
“promote classroom discourse that includes statistical arguments and sustained exchanges that focus on 



significant statistical ideas” and the “use of formative assessment” (see Garfield & Ben-Zvi, 2008, p. 48). 
On the paradigm of the PPDAC-Cycle (Wild & Pfannkuch, 1999), the course has the aim to encourage 
participants to define a statistical problem and to pose statistical questions (First “P” in PPDAC), to plan 
and to prepare a data collection (Second “P” in PPDAC), to collect data (with regard to data management 
and cleaning – “D” in PPDAC), to analyze data (“A” in PPDAC) and to make conclusions of the data 
explorations (interpretation – “C” in PPDAC). We implemented cooperative learning environments like the 
“Think-pair-share” method to develop the statistical literacy and thinking components of our participants 
(see Roseth, Garfield & Ben-Zvi, 2008) and to support peer-learning, peer-feedback and expert-
feedback. In this respect, in a “Think-pair-share” setting, students first deal with the task on their own 
(“think phase”), discuss about their findings in peers (“pair phase”) in a second step and finally discuss their 
findings in class with the teacher (“share phase”). All in all, the course consists of four modules: The first 
module deals with the generation of statistical questions, the preparation of data collection and the 
collection of data. Here the participants get to know the “PPD” elements of the PPDAC cycle with a 
special emphasis on the generation of adequate statistical questions (see Biehler, 2001). The second 
module has the intention to introduce the participants into data analysis with TinkerPlots. Here the 
participants can learn first steps in data analysis using data cards and hands-on-activities and then use 
TinkerPlots for first explorations in small datasets. Because the focus is on the “AC” (Analysis & 
Conclusion) elements of the PPDAC cycle, the datasets are given to the students in an already prepared 
form. Furthermore the students learn to describe and interpret distributions of categorical and numerical 
variables with special emphasis to the elements and characteristics of distributions like center, variation, etc. 
as it is proposed in Rossman, Chance & Lock (2001) and Biehler (2007a, 2007b). Module three builds 
on module two and covers advanced data analysis with TinkerPlots in large multivariate datasets. Here the 
learners are introduced into comparison of groups (Pfannkuch, 2007). A major aspect in module two and 
three is to enable the participants to explore datasets and make their own statistical investigations with their 
own statistical questions (for a typical task for a statistical investigation in this respect see Figure 1). 
Module four has the intention to introduce the participants into inferential statistics, especially into 
randomization tests with TinkerPlots (Frischemeier & Biehler, 2014). Further details on the course design 
and the lesson plans can be read in Frischemeier (2017). 

Accompanying research of the course: Stepwise development of statistical 
literacy and thinking 
The course was taught by the first and second author and consisted of 14 sessions, each session lasted 90 
minutes. One major goal of the course was to develop the elementary preservice teachers’ statistical 
literacy and thinking components with TinkerPlots. Since statistical investigations of complex datasets are 
new to our participants, we want to evaluate the statistical investigations in the introductory stage (module 
2) and see in which way the quality will improve over time in cooperative learning environments. Two 
major research questions arise: How is the quality of the statistical investigations in the intermediate steps in 
module two? How does the quality of the statistical investigations develop in process of module two? 

Participants, task and data collection 

All in all 22 elementary preservice teachers participated in the course. All of them attended the course 
“Elementary Statistics” as described in the introduction. As a typical task a multivariate dataset with an 
exercise sheet consisting of four subtasks was given. As example you can see the “KinderUni”-task in 
Figure 1, where the dataset “KinderUni” had to be explored. The KinderUni dataset, is a (non-random 



sampled) dataset with 28 variables containing information about leisure time and school activities of 39 
pupils in the area of Kassel, Germany. In the introductory phase of module two the idea was, that learners 
at first explore small multivariate datasets to get used to data explorations with TinkerPlots and then to 
explore larger datasets in module three. So when working on the “KinderUni” task, the participants are at 
first (subtask (i)) asked for a short description of the dataset to get familiar with it. The second part (ii) of 
the task was to generate an appropriate statistical question. This statistical question of subtask (ii) is the 
starting point for subtasks (iii) and (iv). In subtask (iii), the participants are asked to create suitable graphs 
with TinkerPlots, which allow answering the statistical question arisen in part (ii). In subtask (iv) the 
participants are supposed to describe and interpret the TinkerPlots graphs of (iii) and finally to answer the 
statistical question posed in (ii).  

 
Figure 1: Task “KinderUni” as typical statistical investigation task in module two 

The participants worked in pairs of two on the “KinderUni” task. So all in all, we had 11 pairs, who 
remained constant all over the course. When working on the task “KinderUni”, the participants were asked 
to document the procedure of their statistical investigations in written form in Microsoft Word with the 
TinkerPlots graphs implemented. We collected all word documents from the “KinderUni” task. As 
mentioned above, one major idea of the course was to improve the quality of the statistical investigations by 
peer-feedback and expert-feedback. This happened with cooperative learning activities like “think-pair-
share”. First, in the “think” phase, all pairs worked on the task on their own and produced the preliminary 
version of the task (preliminary version: V1). Then two pairs came together and discussed the products of 
their statistical investigations (not necessarily with the same questions) in peers in the “pair” phase with the 
goal to find improvements for the TinkerPlots Graphs, for the descriptions of the TinkerPlots Graphs, etc.. 
Finally after revising the documents after the “pair” phase (version after peer feedback: V2), as a last step, 
the revised documents were discussed in plenum with the first and second author. After this phase the 
participants were again asked to revise their products for a final version (version after peer- and expert-
feedback: V3). So for our data analysis we have the documentations on the statistical investigations of the 
participants as preliminary version (V1, n=11 documents), as version after peer feedback (V2, n=11 
documents) and finally as version after expert-feedback (V3, n=10 documents).  

Methodology for data analysis and coding 

Our main goal was to rate the quality of the statistical investigations by points. Due to the huge amount of 
data, we used qualitative content analysis (Mayring, 2010) for rating the quality of the subtasks. We 
decided to weigh the subtasks (ii), (iii) and (iv) with equally two points maximum since these tasks are 
fundamental for the statistical investigation. In subtask (i) only one point is given, since this is an 
introductory task and easier than subtasks (ii), (iii) and (iv). 

For subtask (i) we expected a description of the dataset (number of cases and variables, description of 
variables). In our course we have set the norm to begin every statistical investigation with an introduction. 
So two codes are given: “subtask (i) done correctly” and “subtask (i) not done correctly”. If subtask (i) is 
done correctly, one point is given, if it is not done correctly no point is given for this subtask. Details given 
with examples can be found in Frischemeier (2017, p. 350). 



To distinguish the quality of statistical questions posed in subtask (ii), we took into account the classification 
of Biehler (2001) in “one-variable-” and “two-variable-” questions from a deductive point of view. So we 
distinguished whether the questions take into account one variable (example: “What is the distribution of the 
variable height?” - variable: height) or two variables (example: “In which way do boys and girls differ in 
respect to the variable height?” - variables: gender and height). For questions taking into account only one 
variable one point is given as maximum, because the exploration coming out of questions containing one 
variable is easier than for questions taking into account two variables. For “two-variable-questions” a 
maximum of two points are given. In between we inductively identified different qualities of statistical 
questions: So there can be “one-variable-questions”, which have just “yes” or “no” as answer (example: 
“Do 60% of the pupils have a mobile phone?”) – rated with 0.5 points, whereas “one-variable-questions” 
in regard to a characteristic of a distribution (example: “How many pupils have a personal computer?”) – 
rated with 1 point - are a little bit more sophisticated. Also in the set of “two-variable-questions” we find 
different types: There are questions leading just to a “yes”/”no” – answer (example: “Is there a difference 
between boys and girls in their time spending on computer use?”), whereas other types of questions lead to 
working out differences between the distributions (example: “In which regard does the computer use differ 
between boys and girls?”). Questions of the first type are rated with one point, questions of the second 
type are rated with two points. There is also another type of “two-variable questions”, which we call “open 
and complex”-questions like “which differences exist between boys and girls in regard to their leisure time 
activities?” This type of “two-variable-question” is also rated with two points. In this course we have set 
the norm to try to pose statistical questions which aim at two variables. As an example for our rating in 
regard to subtask (ii) we take the question “How many kids have a way to school of 30 or more minutes?” 
of the pair Anne and Alice. We rated the question with one of two points, since it only covers one variable 
(“way to school”) and it is aimed at one characteristic of a distribution (“how many …?”). Further details 
for the categorization of questions are given in Frischemeier (2017, p. 350).  

For subtask (iii) an adequate TinkerPlots graph has to be created, which enables participants to answer the 
statistical question posed in (ii). Since we want our participants to focus on the distribution of the 
investigative variable and on the influence in regard to further variables, we have set the norm in our course 
that the icons should be stacked in TinkerPlots and further explorations (taking into account other 
variables) have to be made. If all three requirements (informative TinkerPlots graph, stacked dots and 
further explorations) are fulfilled, subtask (iii) is rated with the maximum of two points. Table 1 shows the 
several ratings for subtask (iii).  

 

Informative TinkerPlots graph, stacked and further explorations 
Informative TinkerPlots graph, stacked and no further explorations 
Informative TinkerPlots graph, not stacked and further explorations 
Informative TinkerPlots graph, not stacked and no further explorations 
Non informative TinkerPlots graph/missing TinkerPlots graph  

2 points 
1.5 points 
1.5 points 
1 point 
0 point 

Table 1: Overview of ratings and their definitions of subtask (iii) 

As an example for our rating with regard to subtask (iii) we take the pictogram (with stacked icons) of 
Anne and Alice in Figure 2. With this TinkerPlots graph they are able to answer their question (“How many 
kids have a way to school of 30 or more minutes?”) posed in subtask (ii). Since icons are stacked, but no 



further explorations are made, this graph is rated with 1.5 of 2 points. Further details and examples on the 
ratings of subtask (iii) can be read in Frischemeier (2017, pp. 354). 

 
Figure 2: TinkerPlots graph for “KinderUni” task of Anne and Alice  

In subtask (iv) the TinkerPlots graph (see Figure 2) has to be described adequately in at least one aspect 
and the question arisen in subtask (ii) has to be answered correctly. A maximum of two points are given, if 
both conditions are fulfilled. As adequate descriptions of the TinkerPlots graph we see elements like center, 
variation, shape, peaks, clusters and outliers (see Rossman et al. 2001, p. 48) but also absolute and 
relative frequencies of bins. For adequate elements to be carved out in group comparisons, see 
Frischemeier (2017, p. 42). In Table 2 we see the ratings for subtask (iv).  

Component of TinkerPlots graph described and question (ii) answered correctly  
Component of TinkerPlots graph described and question (ii) not answered correctly  
Component of TinkerPlots graph not described and question (ii) answered correctly  
Component of TinkerPlots graph not described and question (ii) not answered correctly  

2 points 
1 point 
1 point 
0 points 

Table 2: Overview of ratings and their definitions of subtask (iv) 

As an example for our rating in regard to subtask (iv) we have a look at the conclusion of Anne and Alice 
in subtask (iv): „We can see that 12+3 pupils have a way to school of 30 minutes or more.“ This was rated 
with the maximum of two points, since one component (absolute frequency of pupils in bins 30-59.9 and 
60-90) of the graph is described and the question posed in (ii) is answered correctly. Further details on the 
ratings of subtask (iv) can be read in Frischemeier (2017, pp. 362). 

 

Results  

Let us have a look at the quality of the statistical investigations for the “KinderUni” task in module two in 
the different stages V1, V2, V3. For each team we rated the subtasks and calculated the success rate 
“points gained in all subtasks divided by the maximum points in all subtasks” for the “KinderUni” task in 
each stage (V1, V2, V3). In Figure 3 we see the distributions of the success rates in stages V1, V2 and 
V3.  



 
Figure 3: Success rates of the statistical investigations  in stages V1, V2 and V3 

Regarding to our research questions we can say that the median and also the mean (see blue triangles in 
Figure 3) of success rates of the different teams increase in the process of the several stages: In preliminary 
version (V1), where the pairs where on their own, 10 of 11 statistical investigations have a rate below 
0.50, the median of the rates is 0.40, the mean of the rates is 0.3636. After the peer feedback phase 
(“pair”), there is a big positive shift in quality from V1 to V2. Exemplarily one peer feedback component 
which has often occurred was the advice to stack the dots in the plot to get a better view on the distribution 
of the data. The quality of the statistical investigations in V2 has increased a lot (mean=0.5236; 
median=0.56), since in this version only 3 of 11 statistical investigations are below the 0.50 rate. After the 
expert feedback (“share”) in stage V3 all reports are over the 0.50 rate, the median of the rates is 0.65 and 
the mean of the rates is 0.6520. The expert feedback concentrated most notably on prompts which suggest 
a better description of the TinkerPlots graph and a more adequate answer to the statistical question posed 
in subtask (ii). Finally we can identify a positive development of the quality from V1 to V3. We can also 
see that the distributions in Figure 3 are heterogeneous at the beginning (stage V1) and become more 
homogeneous in V2 and V3. For a more detailed look we will have a look at Table 3, which identifies the 
changes within the development of quality in between the four subtasks (i), (ii), (iii) and (iv) in the stages 
V1, V2, V3. We see that there is an improvement of quality in all subtasks, but the amount of the 
improvements differ on the kind of subtask. In subtask (i) there is a high quality (0.73) even in the beginning 
at the preliminary version (V1). This quality improves over time in the different stages V2 (0.91) and V3 
(1.00). In V3, the rate is 1.00, which means that every pair began their report at this stage with an 
introduction of the dataset. In subtask (ii) we see the smallest development of quality: for the questions in 
the preliminary stage (V1) the rate is 0.47 on average, there is no improvement in V2 (0.47) and only a 
small improvement in V3 (0.50). Even at the stage V3, in subtask (ii) all questions were only rated with one 
point, since none of the questions went beyond single characteristics of a distribution or beyond “yes”/”no” 
answers. One reason might be that the peer and also the expert feedback concentrated too much on the 
improvement of subtasks (iii) and (iv) but not enough on the development of the quality of the statistical 
questions. 

 V1 V2 V3 
Average success rate in subtask (i) of all pairs 0.73 0.91 1.00 
Average success rate in subtask (ii) of all teams 0.47 0.47 0.50 
Average success rate in subtask (iii) of all teams 0.39 0.51 0.68 
Average success rate in subtask (iv) of all teams 0.19 0.55 0.74 

Table 3: Development of quality (average of rates) between the subtasks 



In subtask (iii) the tasks were rated 0.39 on average at the preliminary stage and improved over time (0.51 
at V2 and 0.68 at V3). In subtask (iv) the performance was very poor at the beginning (0.19), but 
improved in progress: In V2 the rate was 0.55 on average and in V3 the rate was 0.74 on average. So in 
summary we can say that peer feedback and expert feedback in a think-pair-share environment enhances a 
stepwise development of statistical literacy and thinking components with TinkerPlots. Especially with 
regard to subtask (iii) und (iv) the creation of TinkerPlots graphs and their description seem to improve 
after peer and expert feedback. Only in subtask (ii) problems with the generation of statistical questions 
occur and there was no “big” improvement of quality. 

Discussion and implications  

The quality of statistical investigations depends on the statistical question rised for the investigation. As we 
could see, some questions only lead to a short exploration because the answer to that question is just “yes” 
or ”no”, wheares there can be also other questions which are aiming at carving out many differences 
between two or more variables. The analysis of the reports on the “KinderUni” task shows, that especially 
the creation of informative TinkerPlots graphs and also their description and interpretation with regard to 
the statistical question succeeds and the peer- and expert-feedback can improve the TinkerPlots graphs 
(subtask (iii)) and the descriptions and interpretations of the TinkerPlots graphs (subtask (iv)). The key 
point is the generation of adequate statistical questions aiming at more than only one variable. Although this 
was taught in our course, too many statistical questions lacked quality. For the re-design and the upcoming 
cycle of the course it would be important that there will be feedback on the statistical questions to improve 
their quality as well. Here it could be helpful to discuss adequate and non-adequate statistical questions in 
class to help learners to differentiate between adequate and non-adequate statistical questions.  
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The aim of this paper is to analyse the problem situations within the topic of correlation and 
regression in the Spanish high school textbooks for Mathematics Applied to Social Sciences. In a 
sample of eight textbooks we firstly characterize the main problem situation used to contextualize 
correlation and regression, starting from the historical analysis of the topic. We then study the 
distribution of the following variables characterizing these problem situations: strength, sign, type 
of relationship and data contexts. Results show predominance of high and direct correlations, 
scarce examples of nonlinear regression and an excess of problem without context. 

Keywords: Correlation and regression, textbooks, problem-situations. 

Introduction 
New curricular reforms emphasize statistical reasoning and its role in decision making and 
professional work (e.g., NCTM, 2000, CCSSI, 2010). Main content in these curricula for high 
school in Spain (MEC, 2007; MECD, 2015) and other countries are correlation and regression, 
which are fundamental statistical ideas that expand the previous knowledge about univariate 
distributions and mathematical functions. They also extend functional dependence to random 
situations and can be applied in a variety of other school subjects (Engel & Sedlmeier, 2011). 

Previous research is mainly focused on students understanding of correlation (Estepa & Batanero 
1995; Estepa, 2008; Zieffler & Garfield, 2009) with little attention to teaching materials, and, in 
particular, to the way the topic is taught or presented in the textbooks, in spite of their role as 
educational tools. From the official curricular guidelines until the teaching implemented in the 
classroom, an important step is the written curriculum reflected in the textbooks (Herbel, 2007). 
The selected textbook is an important part of teaching and learning mathematics, since it provides 
the main basis why the topic is taught (Shield & Dole, 2013). Moreover, mathematical textbooks 
receive increasing attention from the international community; see for example Fan and Zhu (2007). 

The aim of this research was to analyse the tasks characterizing the problems used to present 
correlation and regression in high school Spanish textbooks directed to Social Sciences students. It 
is part of a wider project, where the way in which correlation and regression are presented in the 
textbooks in Spain is analysed. Complementary results were published in Gea et al. (2015). 

Theoretical framework 
We base on the Onto-semiotic approach to teaching and learning mathematics (Drijvers, Godino, 
Font & Trouche, 2013; Godino, Batanero & Font, 2007), where mathematical knowledge has a 
socio-epistemic dimension, since it is linked to the person’s activity and depends on the institutional 
and social context in which it is embedded. In this framework, the meaning of mathematical objects 



 

is linked to the mathematical practices carried out by somebody (a person or an institution) to solve 
specific mathematical problems. Around the mathematical practices linked to these specific 
problems, different rules (concepts, propositions, procedures) emerge (Godino et al., 2007) 
supported by mathematics language (terms and expressions, symbols, graphs, etc.), which, in turn, 
is regulated by the rules. All these objects are linked to arguments that serve to communicate the 
problem solutions, and to validate and generalize them to other contexts and problems.  

The authors conceive different types of institutional meanings for a mathematical object (in this 
case correlation and regression): a) reference meaning (the system of practices used as reference in 
a particular research); b) intended meaning (the part of the meaning that is planned for teaching; for 
example, that proposed in the curricular guidelines); c) implemented meaning (what was finally 
taught to the students); and d) assessed meaning (content of assessment) (Godino et al., 2007). In 
our research we try to identify the implemented meaning of correlation and regression, as defined 
by the problems proposed in the textbooks, and to compare it with the intended institutional 
meaning for these students, as defined in the curricular guidelines (MEC, 2007; MECD, 2015). 

Background 
In spite of the relevance of these topics, previous research suggests poor results in people’s 
understanding of correlation and regression. For example, Erlick and Mills (1967) found that 
negative correlation is commonly estimated as close to zero. Other authors studied the influence of 
previous theories about the context of the problem on the accuracy in estimating correlation. In this 
respect, Chapman and Chapman (1967, p. 194) described "illusory correlation" as “the report by an 
observer of a correlation between two classes of events which in reality (a) are not correlated, or (b) 
are correlated to a lesser extent than reported, or (c) are correlated in the opposite direction than that 
which is reported”. The estimates are more accurate if people have no theories about the type of 
association in the data. If the subject’s previous theories agree with the type of association reflected 
by the empirical data, there is a tendency to overestimate the association coefficient. But when the 
data do not reflect the results expected by these theories, the subjects are often guided by their 
theories, rather than by data (Jennings, Amabile & Ross, 1982). 

According to Barbancho (1992), the correlation between variables may be explained by the 
existence of a unilateral cause - effect relationship (one variable produces the other), but also to 
interdependence (each variable affects the other), indirect dependence (there is a third variable 
affecting both variables), concordance (matching in preference by two judges in the same data set) 
and spurious correlation (or coincidental covariation). In addition to the estimate accuracy, 
understanding correlation involve the discrimination of these types of relationships between 
variables.  

Estepa (1994) studied the understanding of correlation in a sample of 213 Spanish high school 
students. The author defined the causal conception according to which the subject only considers 
correlation between variables, when it can be explained by the presence of a cause - effect 
relationship. He also described the unidirectional conception, where the student does not accept an 
inverse association, considering the strength of the association, but not its sign, and assuming 
independence where there is an inverse association.  

As regards research on textbooks, Sánchez Cobo (1999) classified the definitions of concepts 



 

presented in 11 textbooks published in the period 1977-1990 as procedural, structural or a mixture 
of them. Lavalle, Micheli and Rubio (2006) analysed the concepts and procedures included in 7 
high school textbooks from Argentina. The current paper complements these publications and our 
previous paper (Gea et al., 2015), where we analyse the presentation of concepts, properties and 
procedures in the same textbooks that we are analysing here.  

Method and results 
The sample was made of eight mathematics high school textbooks (H1 to H8), directed to Spanish 
Social Sciences students that are listed in the Appendix. They still are used in the schools, and were 
published by editorials of prestige and wide diffusion in Spain just after the past curricular 
guidelines were introduced (MEC, 2007). We performed a content analysis (Neuendorf, 2002) of 
the chapters devoted to correlation and regression with an inductive and cyclic procedure, and 
classified all the problems, exercises and examples used in the chapter according the variables 
described below. The total number of problems analysed were 2166, distributed according Table 1. 

 Textbook 

 H1 H2 H3 H4 H5 H6 H7 H8 

Number of problems analysed in the book 268 221 258 225 318 176 403 297 

Table 1: Sample of problems analysed 

Main types of problem fields 

Anthony and Walshaw (2009) reported on the different types of tasks that have been analysed in 
mathematics education research, which include problems centred on specific mathematical content; 
problems that promote mathematical modelling; tasks requiring students to interpret and critique 
data and those that prompt sense making and justification of thinking. The problems analysed 
belong to the first category and were classified according the main types of problems identified by 
Gea, Batanero, Cañadas and Contreras (2013) in the study of correlation and regression: 

P0: Organising and summarising bivariate data, which include graphical representation and 
computation of summaries statistics. 

P1: Determining the existence of a relationship between the variables, which can be subdivided in 
four types of problems: (P11) Defining the univariate variables that constitute the bivariate data; 
(P12) Determining the type of dependence (functional, random or independence); (P13) Determining 
the strength of the relationship; and (P14) Determining the direction (direct, inverse or nonlinear). 

P2: Predicting a variable from the other, which can be subdivided in the following types: (P21) 
Fitting a model to the data (usually, the linear model); and (P22) Making estimations from the 
model, where we also include assessing the goodness of fit. 

All these types of problems appear in the books, with different frequency, as shown in Table 2, with 
the following distribution: 11% P1, 61% P2 and 28% P3. The most frequent field of problems 
consisted in identifying the strength of correlation (P13), (with percentages ranging from 19% in H3 
to 24% in H2). The textbooks paid less attention to the problem field P0, with the exception of H3, 
H4 and H7, despite the organisation of data is an important step prior to analysing a relationship 



 

between the variables. We also observe that H4 is more balanced as regards the different types of 
problems, although the percentage in P22 problems is still a little low.  

Problem field H1 H2 H3 H4 H5 H6 H7 H8 

P0 6.7 10.9 17.4 16.9 8.8 4.5 17.4 7.7 

P1 P11 10.1 11.8 6.2 20.0 6.6 15.3 8.4 12.8 

 P12 14.6 14.0 19.8 11.6 13.8 13.6 11.2 14.8 

 P13 20.9 24.0 19.0 20.0 23.9 22.2 22.8 20.5 

 P14 19.4 9.5 14.0 12.0 16.0 9.1 13.4 13.5 

P2 P21 16.4 11.8 10.1 11.6 15.7 15.9 14.6 20.2 

 P22 11.9 18.1 13.6 8.0 15.1 19.3 12.2 10.4 

Table 2: Classification of activities in the textbooks by problem field 

Strength, sign and shape of association 

For each problem analysed, we computed the Pearson’s correlation coefficient when the data 
suggested linear relationship and the square root of the determination coefficient when the 
dependence was non-linear. We then classified the problems according to the strength of 
association in the following way: a) independence, if the value of the coefficient was very close to 
zero; b) low dependence if these coefficients ranged in the interval [0.1; 0.5); c)medium for the 
interval [0.5; 0.8), d) high for the interval [0.8; 1), and e) functional where there was a perfect fit of 
the data to a model and r = ±1 or D = 1. In Table 3 we classify the problems according the strength 
of the dependence in the data suggested by these coefficients. 

Strength of association H1 H2 H3 H4 H5 H6 H7 H8 

Independence 0.7 2.3 9.3 5.3 1.6 3.4 7.4 7.1 

Low  9.3 8.6 7.8 23.1 9.7 8.5 22.1 9.1 

Medium  19.8 10.4 13.2 20.0 17.3 11.9 16.1 16.8 

High 47.4 76.0 48.1 39.1 53.1 60.8 28.3 49.2 

Functional 5.6 1.8 8.6 6.2 2.2 1.7 8.7 8.1 

No data provided 17.2 0.9 13.2 6.2 16.0 13.6 17.4 9.8 

Table 3: Percentage of problems, according strength of relationship 

Most commonly the data showed a high association or medium association; there were scarce 
problems with independent data or corresponding to functional relationships, in agreement with 
previous results from Sánchez Cobo (1999). We remark that most statistical studies in Social 
Sciences (the speciality that these students intend to follow) deal with moderate correlation, so that 
we recommend to include more problems with moderate association and a more balanced 
distribution of this variable in future textbooks.  



 

We also studied the sign of correlation (direct or inverse) in case of linear relationship and found 
about 60% of problems that used direct correlation, as shown in Table 4. The scarce presence of 
inverse correlation problems (20% on average), also noticed by Sánchez Cobo (1999), may 
contribute to the unidirectional conception of correlation (Estepa, 1994) where students wrongly 
identify negative correlation with independence.  

 H1 H2 H3 H4 H5 H6 H7 H8 

Independence 0.7 2.3 9.3 5.3 1.6 3.4 7.4 7.1 

Direct 59.7 85.1 47.7 68.0 46.2 61.9 51.6 56.9 

Inverse 22.4 11.8 28.3 20.4 36.2 21.0 22.8 26.3 

Others 0 0 1.6 0 0 0 0.7 0 

No data provided 17.2 0.9 13.2 6.2 16.0 13.6 17.4 9.8 

Table 4: Percentage of problems, according sign of correlation 

A third variable analysed, not considered in previous research, was the type of function that fits the 
data. In order to determine this model, in each problem, we fitted different types of functions to the 
data and selected the function providing the best fit. Most situations corresponded to linear 
relationship, as shown Table 5, because this type of function is easier for the students for an 
introduction for the topic. However, we recommend incorporating some examples of functions well 
known by the students, for example, quadratic, polynomial or exponential functions to develop their 
statistical thinking, while avoiding the deterministic conception (Estepa, 1994). We remark that all 
the books include the least square line, as well as its use for prediction, while only one (H8) 
includes the Tukey line (2% of problems proposed in the book). 

 H1 H2 H3 H4 H5 H6 H7 H8 

Independence 0.7 2.3 9.3 5.3 1.6 3.4 7.4 7.1 

Functional 
Linear 4.5 1.8 6.6 6.2 1.9 1.7 7.7 6.1 

Non-linear 1.1 0 2.0 0 0.3 0 1.0 2.0 

Random 
Lineal 76.5 57.9 62.0 66.2 76.1 80.1 63.8 62.3 

Non-linear 0 37.1 7.0 16.0 4.1 1.1 2.7 10.8 

No data provided 17.2 0.9 13.2 6.2 16.0 13.6 17.4 9.8 

Table 5: Percentage of problems, according type of function defining the line of best fit 

Data context 

The relevance of context in the teaching of statistics has been extensively discussed by different 
researchers. We analysed the context of the situations proposed to the students in these textbooks 
and classified them (see Table 6) in the following categories: a) Biology (e.g., parents and children 
heights); b) Science (e.g., speed and distance); c) Sport (e.g., distance and time spent in a 
competition); d) Economy (e.g., energy consumption and gross national product); e) Education 



 

(e.g., score in two exams in a group of students); f) Sociology (e.g., birth rate and percentage of 
women at work). Results show a high percentage of problems with no context (students cannot 
relate their results to a meaningful context) and a similar distribution of other contexts. 

Context H1 H2 H3 H4 H5 H6 H7 H8 

Biology 8.2 10.9 7.0 4.4 13.8 17.6 6.9 12.5 

Science 13.1 33.0 14.7 13.3 13.2 16.5 9.4 9.1 

Sports 4.5 0 5.4 2.2 2.2 0 0 0 

Economy 14.2 8.1 13.6 5.3 6.9 14.8 3.5 10.1 

Education 10.4 4.5 1.9 14.2 17.0 15.3 5.7 11.8 

Sociology 6.3 17.2 10.9 14.2 9.1 12.5 9.9 9.8 

No context 43.3 26.2 46.5 46.2 37.7 23.3 64.5 46.8 

Table 6: Percentage of problems according to context 

Discussion and didactic implications  
The study suggests important differences in the problems proposed by the different textbooks; for 
example, H2 and H6 include a lower proportion of problems with no context, although H2 has the 
highest proportion of high correlation problems and H6 the lowest percentage of problems P0. We 
also found some biases in the distribution of the variables analysed, in particular there is a tendency 
towards direct, strong and linear relationship. It is important that teachers complement these types 
of problems with a wider variety of strength, sign and type of association, as well as with contexts 
that are interesting for the students, as it is suggested in the curricular guidelines (MECD, 2015): 
“The teaching of this subject should not be dissociated from its application to social phenomena”.  

Our results suggest that the institutional intended meanings for correlation and regression and the 
implemented meaning in the textbooks analysed do not fit appropriately according to the variables 
analysed. In this sense, these problems should also be complemented with statistical projects in 
which the students experiment a complete cycle of statistical enquiry and get experience in the 
different modes of statistical thinking in Wild and Pfannkuch (1999)’s model (need for data, 
transnumeration, variation, reasoning with models, integration of statistical and contextual 
knowledge). Today there are plenty of data available on Internet that can be used to introduce ideas 
of correlation and regression via projects, as suggested in Batanero, Gea, Díaz and Cañadas (2014). 
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Ciencias Sociales I. Madrid: Grupo Anaya.  

[H2]. Arias, J. M. & Maza, I. (2011). Matemáticas aplicadas a las Ciencias Sociales 1. Madrid: 
Grupo Editorial Bruño.  

[H3]. Anguera, J., Biosca, A., Espinet, M. J., Fandos, M.J., Gimeno, M. & Rey, J. (2008). 
Matemáticas I aplicadas a las Ciencias Sociales. Barcelona: Guadiel - Grupo Edebé. 

[H4]. Monteagudo, M. F. & Paz, J. (2008). 1º Bachillerato. Matemáticas aplicadas a las Ciencias 
Sociales. Zaragoza: Edelvives (Editorial Luis Vives). 

[H5]. Martínez, J. M., Cuadra, R. & Heras, A. (2008). Matemáticas aplicadas a las Ciencias 
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To investigate middle school mathematics teachers’ pedagogical content knowledge (PCK) with 
regard to statistical reasoning, an interview protocol was developed and used with nine teachers. 
This paper focuses on one of the problems in this interview protocol (Basketball problem) to illustrate 
teachers PCK in relation to four components: big ideas, student responses, student difficulties, and 
instructional intervention. Our analyses showed that levels of teachers' PCK varied in each 
component. Teachers had difficulties mostly in explaining student difficulties, developing instruction 
intervention strategies and distinguishing appropriate and inappropriate student reasoning. 
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Introduction 
The reliability and persuasiveness of advertisements or arguments that people encounter in daily life 
were ensured by the statistical information (Ben-Zvi & Garfield, 2004). For being informed citizens, 
it is crucial to analyze and interpret such statistical information and to make inferences from them. 
These problem solving, inquiry, analysis, justification and interpretation skills in statistics are all 
related to statistical reasoning. Garfield, delMas and Chance (2003) define statistical reasoning as 
“the way people reason with statistical ideas and make sense of statistical information” (p. 8). In 
statistics education, teachers have a critical role in helping learners develop deep conceptual 
understanding of statistical ideas. Shulman (1987) notes the importance of the capacity of a teacher 
to transform their content knowledge into pedagogically more powerful forms. Shulman (1986) states 
that the teacher content knowledge is not sufficient by itself for teaching a subject and points out the 
teacher pedagogical content knowledge (PCK) referring to the combination of content knowledge 
and pedagogical knowledge. More specifically, PCK is described as “the blending of content and 
pedagogy into an understanding of how particular topics, problems, or issues are organized, 
represented and adapted to the diverse interests and abilities of learners, and presented for instruct io n” 
(Shulman, 1987, p. 8). In statistics education literature, the studies by Watson and her colleagues 
(Watson, Callingham & Donne, 2008; Callingham & Watson, 2011) on examining levels of teachers’ 
statistical PCK suggest that teacher knowledge needs to be investigated more systematically and note 
the need for uncovering the current state to advance the statistics education. However, there is little 
research on teacher knowledge particularly with regard to statistical reasoning (e.g., Mickelson & 
Heaton, 2004; Makar & Confrey, 2004). Thus, the aim of this study is to investigate middle school 
mathematics teachers’ PCK related to statistical reasoning. Our research question is: In a distribution 
comparison task, to what extent do mathematics teachers consider the big ideas in statistics in their 
reasoning, how students might reason and how they would intervene to promote appropriate statistica l 
reasoning?  

  



Theoretical framework 
The notion of PCK, as noted by Shulman (1986), entails teachers’ knowledge about both the 
understanding/misconceptions of students and pedagogical strategies for instruction. According to 
An, Kulm and Wu (2004) there is an interaction between PCK and content knowledge and between 
knowledge of curriculum and knowledge of teaching, and the knowledge of student thinking is in the 
center. Moreover, teachers’ competence of making instructional interventions is considered as part of 
‘enacting mathematics for teaching and learning’ which is one of the components in the model of 
PCK developed by the Teacher Education and Development Study in Mathematics (Tatto et al., 
2008). Accordingly, responding to unexpected mathematical issues, evaluating student solutions, 
identifying student misconceptions, providing appropriate feedback, explaining and representing 
mathematical concepts are amongst the essential criteria for teacher competency to achieve the goals 
of learning-teaching process and increase its quality. This study focuses on the knowledge of student 
and knowledge of instructional interventions as the two components of PCK.  

The study by Watson, Callingham and Nathan (2009) focused on teachers’ PCK with regard to 
statistical knowledge at the middle school level. The researchers identified four non-hierarchica l 
components of PCK.  The first two components, “Recognizing Big Ideas” and “Anticipating Student 
Answers”, reflect the link between teachers’ knowledge of content and knowledge of understand ing 
students. The other two components, “Employing Content-Specific Strategies” and “Construct ing 
Shift to General”, involve elements of pedagogical practices that the teachers used by foreseeing the 
progress of student understanding. In another study by Watson and Nathan (2010), teachers’ PCK 
was investigated using three different problems. Teachers were asked about the big statistical ideas 
in each problem, possible appropriate and inappropriate student responses and opportunities provided 
by the problem for teaching. Teachers’ responses were analyzed based on the four components of 
PCK developed previously by Watson et al. (2009). In our study we utilized these two studies for 
developing interview questions and coding teacher responses. 

Method 
This exploratory study focuses on one-on-one interviews with nine middle school mathematics 
teachers (two females and seven males). The participants were selected on voluntary basis and from 
two different middle schools in Denizli. Their teaching experience changes from 2 to 30 years. The 
national curriculum of school mathematics includes data analysis strand since 2005 but according to 
our classroom observations, the participants tend to teach mainly computations and procedures in a 
traditional way rather than to focus on developing students’ statistical reasoning.  

Data collection and task  

Interviews with each teacher were conducted by the first author and video-recorded. These video 
recordings were transcribed for analysis. An interview protocol was developed to study teachers’ 
PCK with regard to statistical reasoning. In the larger study, the interview tasks involved three 
different scenarios, in which teachers were asked to determine possible student reasoning and 
difficulties. In order to develop teacher-student dialogues in these scenarios, these problems initia lly 
were administered to a classroom of 6th graders. Students’ responses provided a basis for constructing 
the dialogues given to teachers during the interview (see Figure 3). Motivated by the design of 
statistical reasoning tasks used in Cobb and his colleagues’ study (Cobb, 1999) each problem involves 



comparing two or three data distributions from equal and small sample sizes to unequal and larger 
sample sizes. And four kinds of statistical reasoning were addressed in these problems: reasoning 
about distribution, reasoning about center, reasoning about spread, and informal statistical inferentia l 
reasoning. This paper focuses on one of these problems, called Basketball Problem. In the interview, 
each teacher was initially asked to decide and explain which of the players they would choose to the 
school basketball team looking at the given data in Figure 1. 

 
 
 
 
 

 
Graph 1: Arda’s scores in the last 10 matches 

 
Graph 2: Baris’s scores in the last 10 matches 

 
Graph 3: Cem’s scores in the last 7 matches 

Players Players’ scores 
Arda 8 14 11 13 15 12 10 10 9 13 
Baris 4 15 8 17 18 9 19 6 18 5 
Cem - - - 13 14 10 7 13 11 9 

 
 

Figure 1: Data given in the Basketball problem in the interview protocol 

Next, in order to explore teachers’ PCK in relation to students’ statistical reasoning and instructiona l 
interventions, participants were asked to come up with examples of appropriate and inappropriate 
student reasoning in the context of given problem (see questions 1-5 in Figure 2).  

Q1: In the context of this problem with appropriate reasoning, how might students answer? 
Q2: Why do you think that reasoning is appropriate? 
Q3: In the context of this problem with inappropriate reasoning, how might students answer? 
Q4: Why do you think that reasoning is inappropriate? 
Q5: How would you guide those students who reasoned inappropriately to correct reasoning? 
Q6: In this page, there is a dialogue between students and teacher about basketball problem (see Figure 3). 
Firstly I want you to read this (dialogue sheet).  

a) Here, could you identify which students make appropriate reasoning? Why? 
b) Could you identify which students make inappropriate reasoning? Why? 
c) What is the difficulty that prevents the student from reasoning in an appropriate way? 
d) When you encounter such a situation in the class, what kind of questions would you ask to your 

students to make them reason appropriately? What kind of intervention would you consider? 

Figure 2: Interview questions to elicit teachers’ PCK in the context of Basketball problem  

After these questions, teachers were given a dialogue between students and teacher about the problem 
(see Figure 3) to examine their PCK further by the questions 6 a-d in Figure 2. 

Simge: Well, there is also the probability that Cem will score more or less than that you say he would 
make. So you also took risk in a way. In my opinion we can do this: Arda made 15 points the most, 8 the 
least score. So if I sum up these two numbers and divide by 2, I will find the number 11,5 as the middle 
point. Baris made 19 the most and 4 the least. The middle point of these two numbers is 11,5. Cem made 
14 the most and 7 the least. The middle point of these two numbers is 10,5. So I would eliminate Cem. 

Teacher: Well Simge, how would you choose between Arda and Baris? 



Simge: I would look at the highest score for both of them. Since Arda made 15 points and Baris 18 points, 
I would choose Baris. 

Kagan: As there is a difference between the numbers of matches played so far, we should look at the mean. 
As the mean of Arda’s score is 11,5; Baris’s is 11,9 and Cem’s is 11, I would choose Baris.  

Duygu: Baris’s mean score can be high. But he performed very well in one match and very poor in another 
match. He has a varying performance in the range of 4 and 19 points. He is not consistent.  

Teacher: What do you mean by ‘not consistent’? How do you conclude that he is not consistent? 
Duygu: When we look at the graphs we see that these scores that Baris made seem far and dispersed from 

each other. Arda’s scores seem closer together. Arda has a varying performance between 8 and 15 points. 
He is more consistent than Baris. There is not much difference between Arda’s average score and Baris’s 
average score. I would choose Arda. 

Figure 3: Part of a dialogue between students and teacher about basketball problem  

Data analysis 

Qualitative analysis of data was done by two researchers. Initially a number of codes were adapted 
from Watson and Nathan’s (2010) study to examine interview transcripts for PCK in relation to 
statistical reasoning and codes were assigned. During the content analysis phase new codes were 
created from the data. The categorizations of teacher responses were discussed and agreed on by two 
researchers. As a result, four components of PCK were formed as seen in Table 1: Big ideas, student 
responses, student difficulties, and instructional intervention.  

Aspects of 
PCK Codes/Levels f 

Big Ideas 
0- Response confused and /or incorrect - 
1- Response implied and/or understanding revealed beyond initial question  4 
2- Statistical reasoning 5 

Student 
Responses 

0- Response irrelevant 1 
1- Appropriate or inappropriate but not both, or unclear 1 
2- Distinguishes both appropriate and inappropriate, but no reason/explanation 1 
3- Demonstrates understanding of students’ reasoning with reason/explanation 6 

Student 
Difficulties 

0- Response irrelevant 5 
1- Unclear (General statements, lack of knowledge)  1 
2- Correct reason/explanation 3 

Instructional 
Intervention 

0- Response irrelevant / personal view 1 
1- Noticing content without given data (common beliefs)  5 
2- Promoting the appropriate use of percents, numbers, measures of center and spread for 
statistical reasoning  3 

3- Promoting generalization beyond data  - 

Table 1: Codes for PCK (new codes were indicated in italics) and their occurrences  

Differently from Watson and Nathan’s study, a new component called “student difficulties” was 
considered in the current study. In addition, “instructional intervention” was used as a more general 
component that covers the two components in Watson and Nathan’s study, namely “Employs 
Content-specific Strategies” and “Constructs Shift to General”. “Big ideas” aspect of PCK was 
formed to uncover teachers’ statistical reasoning by using big ideas in statistics with the addition of 
“code 2-statistical reasoning” to the codes in Watson and Nathan’s study. Moreover, “no reason or 
explanation for the appropriateness of student reasoning” and “explaining the reasons for the 
appropriateness of student reasoning” criteria were added to code 2 and code 3, respectively, in 
“student responses” component. The codes in “student difficulties” component were formed as a 



result of the content analysis. The codes in “instructional intervention” component were formula ted 
as a result of the content analysis and aspects of statistical reasoning skills.  

Findings 
Teachers’ PCK level with regard to big ideas 

Five of the teachers were able to reason with the big ideas in statistics (code 2 level). These teachers 
took into account both variability and central tendency in their comparisons of distributio ns as it can 
be seen in Semih’s reasoning: “First we should compute their means. Arda’s is 11,5; Baris’ is 11,9; 
Cem’s is 11. Baris scored the most. I would choose Arda because of his stability.  His scores are 
placed between 8 and 15 in the graphs. Baris’ scores are placed between 4 and 19. Baris’ average is 
not much higher than the others.” Another teacher, Ebru, made her decision based on somehow a 
middle range in addition to the stability criteria. Her reasoning was: “I would transfer Arda. I chose 
a lower and an upper limit [between 8 and 15]. Even though Baris scored more points than this upper 
limit, from stability point of view Arda is more consistent.” Other four teachers’ responses were yet 
considered partially correct (code 1 level) because they focused on either the mean or the spread. The 
following two quotes illustrate code 1 level responses. 

I would transfer Baris. He scored in every game, no points less than 4. By just looking at the 
average, it does not look bad. (Eren) 

Their means are close. Arda’s performance is better. These data aren’t adequate. I would prefer 
Cem. His scores are closer. I am hesitant but I don’t have any reason. I said that I would choose 
Cem, but I wouldn’t choose Baris. He scored once 4 and the other time 19. There is no consistency. 
Arda scored 10 twice, 13 twice, these numbers are closer, so more stable. I can take Arda. (Suat) 

Teachers’ PCK level with regard to student responses 

Responses of six teachers showed an understanding of students’ reasoning with appropriate 
explanation (the code 3 level) as seen in the answer below:  

A student who reasons appropriately will firstly look at the mean. Arda’s is 11,5; Baris’ is 11,9; 
Cem’s is 11. Student would look at the place where the cluster is more. Not only the cluster but 
also between which numbers the cluster is [pointing to the range]. His mean is high and the cluster 
is above a certain number, so he would choose Arda. Moreover their means are close to each other 
[pointing to Arda and Baris]. A student who reasons inappropriately would choose Baris scoring 
the highest number 19. Student reasoned inappropriately because there is only one match in which 
Baris scored 19, he scored 4 as well. Student should look at the whole. (Semih) 

The other three teachers’ responses were identified at the other levels. For example, Eren’s response 
was considered at the code 0 level because his answer was related to the use of representations given 
in the problem rather than using statistical ideas/measures for his reasoning: “Student reasoning 
appropriately would look at both the graph and the table, evaluate them together and choose Baris. 
Student who doesn’t reason appropriately would only look at the graph and choose Arda.” In the 
following quotes, Suat was uncertain about the appropriate student reasoning due to the mistrust in 



his own reasoning (the code 1 level) while Sema could distinguish appropriate and inappropriate 
student response but with inadequate explanation response (the code 2 level). 

Since I had a difficulty in answering the question in this problem, I am not able to guess how 
students could respond. I don’t even think that my answer was sound, but a student who reasons 
appropriately might choose Arda because of the two modes and their being close to each other. A 
student who reasons inappropriately chooses Baris because he makes the high score. (Suat) 

Student reasoning appropriately would interpret the data looking at the table. By computation, he 
would choose Baris with the highest mean. Because we have only numbers, there is nothing else. 
Student who reason inappropriately would choose Baris since he scored the highest point. (Sema) 

Teachers’ PCK with regard to student difficulties 

When asked to explain student difficulties in their reasoning, the teacher responses mostly were 
inadequate and had irrelevant details (the code 0 level) as seen in Ismail’s response: “A student saying 
‘I’d choose Baris because he scores the most number’ thinks in a shallow way.” At the code 1 level 
Okan linked student difficulty to a wider context of school practice while at the code 2 level Suat 
made an evaluation based on what is expected statistically. 

The difficulty in a student who would choose Baris because of his highest mean could be the 
following. Students have computed the mean since primary school and so always mean stays in 
mind. The others [other measures of center] are introduced in the middle school. For students, the 
first thing they have learned seems more accurate. That is a student who chooses the extr eme 
values maybe do not know measures of center and spread. (Okan) 

A student who chooses Baris according to highest score is looking at the players’ best result. In 
fact the student should look at all of the results. (Suat) 

Teachers’ PCK with regard to instructional intervention 

When teachers were asked about the kind of questions they would ask and interventions they would 
consider in the classroom to guide students to reason appropriately, most teachers responded at the 
code 0, code 1 and code 2 levels and none at the code 3 level. Since Suat’s example of what he would 
ask to students was far from the context and irrelevant to the problem, his response was at the code 0 
level. When Ismail gave the following answer: “I would ask the following question to the students 
who choose Baris scoring the highest: ‘Guys, if you made a critique about the performances of Arda 
and Baris, which of them would you find successful? Why?’. If it is the final match, student may say 
Baris or for league matches Arda. This is important.”, it was considered at the code 1 level because 
his response involved a use of context but not based on data. However, in the following response (the 
code 2 level) teacher’s approach tended to involve having a discussion about the measures of center 
and spread within the problem context:  

I’d ask the student who chooses Baris due to his highest score: ‘Who scored the lowest?’. Scoring 
the least is Baris as well. I would also ask Arda’s highest and lowest scores. I would have the 
student find the range. Arda’s range is 7, Baris’ is 15. I would show that the scores Baris has made 
are in a wider interval. I would ask student: ‘Would you choose the player who scores 4 in one 
match and 19 in the other or the player who scores 8 in one match and 15 in the other?’ (Semih) 



Identifying appropriate and inappropriate student reasoning in a given dialogue  

In the given dialogue between teacher and students within the basketball problem context, only one 
of the teachers was able to distinguish appropriate and inappropriate student reasoning properly. This 
teacher (Göksel) argued that since consistency is important in this context, both mean and spread 
should be used in making the decision. The other eight teachers’ responses were partially correct. For 
instance, one of these eight teachers (Suat) correctly identified student responses using both the mean 
and range with attention to consistency and yet he also considered the student responses using only 
the mean or the increases/decreases in the scores as appropriate reasoning. 

Discussion and conclusion  
In this study, teachers overall seem to do better in using big ideas in their reasoning and considering 
possible student responses on the Basketball problem. Yet, some teachers still had slight difficult ies 
consistent with those that students might have in comparing distributions (Cobb, 1999) and in using 
big ideas for solving statistical problems (Watson & Nathan, 2010). Similar to the previous find ings 
(Watson & Nathan, 2010; Watson, et al., 2008) some challenges also exist for these teachers when 
considering how students might reason in their decisions. In contribution to the previous research 
results, this study shows other challenges that most of the teachers tend to have: (1) somewhat 
incomplete understanding of potential student difficulties, (2) inadequacy for suggesting instructiona l 
intervention strategies that could help students make generalizations beyond data and (3) 
distinguishing appropriate and inappropriate student reasoning in the given classroom dialogue. 
These findings related to teachers’ knowledge about student responses may not be unique to statistics 
teaching since they show consistencies with previous research with mathematics teachers in other 
mathematical topics, such as functions and undefined mathematical operations (e.g., Even & Trosh, 
1995). The insufficiencies in teacher PCK both in our findings in relation to statistical reasoning and 
other studies by Watson and her colleagues suggest that there is a need for in-service teacher training 
on PCK in statistics. More specifically, teachers need to be able to anticipate possible student 
difficulties in statistical reasoning and develop ways to respond to them. 
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The purpose of this article is to describe the features, as well as the instructional potential and 
advantages, of socially open-ended problems set in a sport-related context, through which students 
could be challenged to model variability in order to assess performance and develop data-driven 
decision-making skills. These arguments will be illustrated by using as an example the “Darts game” 
task, a problem from a study conducted by González and Chitmun (2015) on Japanese and Thai 
secondary school mathematics teachers’ professional knowledge of data-driven decision-making. 

Keywords: Decision-making, socially open-ended problems, variability modeling, value awareness, 
statistical investigations. 

Introduction 
The importance of using, handling and interpreting data to inform decision-making is fundamental to 
participate competently in today’s society. Such importance has been acknowledged by recent 
reforms to the mathematics curriculum in many countries, in which having the attitude and ability to 
purposely process and grasp features of daily-life data, and making informed decisions in real- life 
situations, are instructional goals explicitly stated in the statistics-related strands of the mathematics 
curriculum (e.g., MEXT, 2008, 2009; MOE, 2008). Thus, it is necessary for teachers to be able to 
choose the most appropriate tasks to take students further in the achievement of such goals. 

Although important, being able to grasp features of daily-life data is not enough to make informed 
decisions. Today’s society is a value-pluralistic one, in which it is natural for people to hold mult ip le 
values which, due to life experiences and interactions, will be prioritized, accommodated, negotiated, 
compromised and traded-off. Moreover, value awareness has been regarded as fundamental for 
engaging in effective decision-making, since values are principles used to evaluate actual or potential 
consequences of action or inaction, of proposed alternatives and of decisions (Keeney, 1992). 

Under this scenario, socially open-ended problems (Shimada & Baba, 2015) emerge as an appealing 
and plausible way of providing students with the possibility of using, handling and interpreting data 
to inform decision-making, as well as with the opportunity to develop the skill of value awareness. 
The purpose of the present article is to clarify the instructional potential and advantages of socially 
open-ended problems set in a sport-related context by analyzing the features of a problem of this kind 
from a previous study (González & Chitmun, 2015). Moreover, in light of the aforementioned 
analysis, it is our purpose to propose this kind of problem as an instructional way to challenge students 
to structure variation among repeated observations of the “same” event, to model variability, and to 
make data-driven decisions. A lesson implementation of the aforementioned socially open-ended 
problem will be discussed and analyzed, and some conclusions will be given based on the results of 
the lesson implementation. 



Decision-making process: Definition and related skills 
A decision is the process within which a choice among specific options will be made, regarded here 
as having six phases: Definition, planning, data, evaluation, weighing impact, and making and 
justifying a decision (e.g., Arvai, Campbell, Baird, & Rivers, 2004; González, 2015). Some related 
skills are ability to identify, design, and choose optimal ways to make a decision; ability to seek, 
collect and process data relevant to a decision; and ability to give an informed justification for a 
decision made. Factors such as values hold by the decision-maker, communication and interpersona l 
interaction all influence the development of each phase of the decision-making process (Keeney, 
1992). 

Statistical investigation: Definition and type of problems to engage students in it 
A statistical investigation is one of the four central aspects of statistical thinking used in statistica l 
inquiry of authentic problems (Makar & Fielding-Wells, 2011). It is a process, comprised of the 
following five phases: Problem, Plan, Data, Analysis, and Conclusion (PPDAC). Since each phase of 
this process can be tied to a particular phase of the decision-making one, in the present article, the 
process of statistical investigation will be considered as being included under the most general process 
of decision-making (González, 2015; Keeney, 1992). 

Teachers need to be able to plan and conduct statistical investigations that develop rich statistica l 
understandings in their students, and one key issue to achieve this is using problems worthy of 
investigation, or to guide students to do so (Makar & Fielding-Wells, 2011). Such problems should 
have the following characteristics (Makar & Fielding-Wells, 2011, pp. 349-350): 

Interesting, challenging, and relevant: Topics of interest include sport, weather, music charts,  
movies, and more serious topics of social issues relevant to teenagers (González & Chitmun, 2016). 
Challenging questions are those calling for a thorough analysis of the given data. 
Statistical in nature: Problems posing questions calling for students to gather and interpret data 
and to justify their choices based on such interpretation. Appropriate interpretation of evidence 
requires simultaneous consideration both of one’s knowledge about the domain and of the 
discernible patterns in the data (Lehrer & Schauble, 2004). The data related to the problem at hand 
must also offer enough complexity to generate interesting results. 
Ill-structured and ambiguous: Questions such as “who is the best player?” or “which one is the 
best team?” raise the issue of what the meaning of “best” is, which enables negotiation and data-
driven argumentation and discussion by students. 

Socially open-ended problems 
Socially open-ended problems (Shimada & Baba, 2015) are problems that are embedded in a real- life 
context, are familiar to the students and, by extending the traditional open-ended approach (Becker 
& Shimada, 1997), have been developed to elicit and address students’ mathematical values (e.g., 
visual appeal, parsimony, efficiency, elegance and sophistication), social values (e.g., social 
responsibility, compliance with the law, human rights, fairness, compassion and equity), and personal 
values (e.g., persistence, integrity and friendliness) through modeling and argumentation. According 
to Shimada (2015, p. 11), this ability to address multiple values is one of the competencies expected 
to be developed in students by using socially open-ended problems in the mathematics classroom. 
Such ability requires the following skill-set: (1) The ability to build mathematical models—such as a 
formula, equation or system of equations describing how underlying factors are interrelated—based 



on values, which is usually manifested in the first-half of the mathematics lesson; (2) the ability to 
appreciate the diversity of mathematical models based on values, which is usually manifested in the 
middle stage of the mathematics lesson; and (3) the ability to critically examine mathematical models 
based on values, which is usually manifested in the last-half of the mathematics lesson. 

An example of socially open-ended problems: The “Hitting the target” task. 

Shimada and Baba (2015) carried out a problem-solving lesson using the socially open-ended 
problem “Hitting the target” (see Figure 1).  

 
Figure 1: The “Hitting the target” task (Shimada & Baba, 2015) 

“Hitting the target”, which is a very popular game among children in Japan, is basically a darts game, 
but instead of throwing pointed darts at a concentric circles dartboard, small tennis-like balls covered 
with magnetized foam are used as a safety measure. Through engagement with the “Hitting the target” 
problem, it is expected from students to create rules in the form of mathematical models, in order to 
assign a score to the game performance of a participant after completing a set of three throws. The 
lesson planned by Shimada and Baba (2015) was deployed as follows: Provision of the problem; 
individual solutions by the students; whole-class presentation and discussion of students’ 
mathematical models and reasons, and individual selection of one model with its reason at the end of 
the lesson. Each of these steps can be matched to a phase of a statistical investigation, and the problem 
itself seems to meet the criteria to be considered a problem worthy of investigation, or to guide 
students to do so (Makar & Fielding-Wells, 2011). Through the analysis of classroom interaction and 
students’ data, Shimada and Baba (2015) identified four characteristics: (1) Diverse mathematica l 
models with the same values; (2) Implicit values became apparent through comparison with other 
values; (3) Some students who transformed their initial values and those who did not; (4) Some 
students who changed their initial mathematical models under the same values. 

Shimada (2015) and Shimada and Baba (2015) concluded that the decision of adopting a 
mathematical model for this particular problem was made based not just on the ball position on the 
target board, but also on the values (mathematical, social or personal) held by the students. This is in 
line with Keeney (1992), who stated that values are the primitive for considering any decision, since 
the first step in an effective decision-making process is for decision-makers to carefully consider their 
own values by clearly defining what it is they want to achieve in the decision context. 



The “Darts game” task: Socially open-ended problems as potential tools for 
engaging students in decision-making and statistical investigations 
Assessing sport outcomes (such as in the case of the “Hitting the target” task) has been discussed as 
potential way to build students’ data-driven decision-making skills through statistical investigat ions 
(González & Chitmun, 2016). A similar (but more complex) problem to the one posed by the “Hitt ing 
the target” task is the “Darts game” task (González & Chitmun, 2015, 2016). This problem was the 
only one with a sport-related context posed by a Thai teacher—hereafter T1—from a sample of 15 
secondary school mathematics teachers in the study conducted by González and Chitmun (2015) on 
professional knowledge of data-driven decision-making. In the present article, we will use the lesson 
plan designed by T1 (see Figure 2) as an example of a potential way of instructional design link ing 
understanding of variability, modeling, statistical investigations and value awareness, all under the 
umbrella of the decision-making process. 

The “Darts game” task—which can be considered a socially open-ended problem—represents an 
enhanced version of the “Hitting the target” task, with a more robust statistical nature. For example, 
the problem posed by the “Darts game” task will allow students to actively engage in the processes 
of generation, testing, and revision of real-life models of the world, which are at the very heart of 
what it means to think statistically (Lehrer & Schauble, 2004, p. 636). Furthermore, this problem 
focuses on the role of inventing measures of variability as a means for structuring variability. 
Inventing measures (statistics) of variability affords opportunities for coming to see differences 
among cases in new ways (Lehrer & Kim, 2009). As in the discipline of statistics, inventing statistics 
is not a solitary act: The meaning of a statistic for “team performance score” could be discussed and 
negotiated amongst students in a classroom community (Keeney, 1992; Lehrer & Kim, 2009; 
Petrosino, Lehrer & Schauble, 2003). Moreover, the formulation of a mathematical model—and 
scoring functions are mathematical models—can present an interesting challenge to the students. 

In the “Darts game” task, unlike the “Hitting the target” problem, landing a dart on any region of the 
dartboard was not assigned a pre-established score (adding so ill-definition and ambiguity to the 
problem). So, by interpreting the patterns of the thrown darts to determine which team is the best one, 
students will engage in data modeling. Characteristics of distribution, like center and spread, could 
be made accessible and meaningful to students by displaying and structuring variation among 
observations of the “same” event, instead of considering such observations simply as a collection of 
differences among measurements (Lehrer & Schauble, 2004; Petrosino et al., 2003). In the “Darts 
Game” task, students will be required to structure variation among observations of the “same” event. 
The outcome of that process will be a mathematical model for scoring each team’s performance, in 
order to make a decision regarding which team is the best one. Such models will be a source of 
information on students’ structural behavior, observations, in situ measurements, and values. 

According to Kazak (2006), engaging students in scoring a dart game will provide them with 
opportunities to engage in analysis concerning scores assigned around the target point, as well as in 
a discussion about what to do to get the highest score.  



 
Figure 2: Lesson plan designed by T1 to engage students with the “Darts game” task 

T1 did not mention explicitly the role of values in her lesson; however, as a socially open-ended 
problem, the “Darts game” provides an opportunity to develop students’ ability to address mult ip le 
values through the implementation of the ability to address multiple values (Shimada, 2015).  



Research methodology overview: Implementing the “Darts game” task 
Study sample and research methodology: Overview 

On November 16, 2016, the second author carried out a problem-solving lesson using the “Darts 
game” task with Grade 12 students in a public high school in Bangkok. The sample consisted of 34 
students, with18 boys and 16 girls. The second author is a teacher specialized in mathematics 
education, with 13 years of teaching experience. In this study, almost the same lesson design depicted 
in Figure 2 was implemented, with two main modifications: Firstly, before lesson implementat ion, 
students were asked to find out as many answers as possible to the task as a homework; and secondly, 
during the presentation and discussion of the individual solutions and reasons, students were not 
organized in groups, following the lesson design presented by Shimada and Baba (2015).  

Findings and discussion of results 

In average, about two answers were provided per student, being the mode one solution (21 students, 
61.8%), and the number of given solutions ranging from one to seven. Among those answers, 10 
different decision models were identified (see Table 1). Since students were allowed to provide more 
than one decision model, the total will be more than 100 per cent.  

 Model description Frequency (%) 
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M1: Tallying the number of darts landing in each concentric circle. The winner team will 
be the one with more darts landed closer to the innermost circle. 

9 (26.5) 

M2: Tallying the number of darts landing on the outermost circle. 1 (2.9) 
M3: Determining how clustered the three thrown darts are. 5 (14.7) 
M4: Tallying the number of darts landing on a line. 10 (29.4) 
M5: Measuring the distance of the farther shot to the bullseye. 3 (8.8) 
M6: Developing a scoring function 21 (61.8) 
M7: Tallying the number of times a dart hit the bullseye. 3 (8.8) 
M8: Counting the times a player landed the darts inside the same concentric circle.  1 (2.9) 
M9: Tallying the number of darts landing on the innermost circle. 7 (20.6) 
M10: Measuring the total distance to the bullseye 1 (2.9) 

Table 1: Different decision models posed by the students in this study 

The reasons given by students during the phase of individual solutions revealed a diversity of 
considerations to decide the winner team: taking into account all the members of a team (21 students, 
61.8%) vs. only considering a team representative (7 students, 20.6%), or posing decision models 
considering both perspectives (6 students, 17.6%). Among the reasons for choosing particular models 
in the phase of individual solutions are the following: difficulty in landing the shot in a particular area 
of the dartboard (e.g., on a line or on the innermost circle); precision (i.e., how tightly clustered, or 
spaced apart, the thrown darts are among each other in a particular trial, regardless of their position 
relative to the bullseye); accuracy (i.e., how close the thrown darts are to the bullseye); fairness and 
consideration to the whole team; and maximizing the likelihood of winning by selecting the best team 
player under a particular condition. Students mainly used tables while tallying, and calculated 
frequencies and modes. As expected, multiple scoring functions emerged from the students’ answers. 
Although different scores were assigned to landing a dart on a particular circle region, most of the 
scoring functions assigned the highest score to the innermost circle, and the lowest score to the 
outermost one. Landing a dart on any line was also scored in multiple ways: averaging the score of 



adjacent circle regions; assigning either the highest or the lowest score of adjacent circle regions; a 
fixed score (e.g., 10 points); no points; or invalidating the trial results for the player. 

After engaging in the stage of whole-class presentation and discussion of the mathematical models 
and reasons, some students changed the decision model from the initial self-resolution stage in the 
final selection stage (7 students, 20.6%), while most of the students kept one decision model within 
those posed by them during the self-resolution stage (27 students, 79.4%). Five out of seven students 
who changed their initially-posed model somehow modified it, introducing aspects that emerged 
during the whole-class discussion (e.g., scoring by team instead of considering a team representative, 
and vice versa; considering landing a dart on the line as disqualification). The reasons to make a final 
decision were also varied: acknowledgement of the effort by all team members; fairness; establishing 
equal winning opportunities for both teams; easiness to either score or explain the final decision to 
the team members; and keeping the nature of the game (i.e., the shot closer to the bullseye wins). 

Conclusions 
All in all, students engagement with the socially open-ended problem “Darts game”, set in a sport-
related context and involving measurement of different observations of the “same” event, seemed to 
be an appealing and plausible way to, among other things, (1) make accessible and meaningful to 
students characteristics of distribution such as center and spread; (2) provide students with 
opportunities to structure variation and coordinate variability and chance by engaging actively in 
modeling challenges; (3) develop an aggregate view of data; (4) provide students with an opportunity 
to discuss, argue and negotiate the meaning of a statistic for “team performance score” as members 
of a classroom community; (5) actively engage students in the processes of generation, testing, and 
revision of real-life models of the world; and (6) develop students’ value awareness in a climate of 
open discussion, by implementing the threefold ability to address multiple values. So, in a society in 
which the role of values, data and decision-making is fundamental for both education and active 
engagement in critical citizenship (Ernest, 2001), implementing sport-related socially open-ended 
problems in the mathematics classroom to address statistical contents seems to be a plausible way to 
help teachers achieve the aims of the mathematics curriculum regarding statistics education.  
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Insights into the approaches of young children when making informal 
inferences about data 
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There is growing awareness of the statistical reasoning abilities of young children. In this study the 
informal inferential reasoning skills of a class of 5-6 year old children are examined as they reason 
about data in the context of a week-long data investigation unit. The strategies young children use 
to make predictions about data are identified. A discussion ensues around what these strategies 
communicate about early understandings of statistical inference. The findings suggest that making 
inferences from data can be challenging for younger students primarily due to the powerful 
influence of their developing understandings of number. However, there is evidence that children 
possess some of the building blocks of informal inference most notably in the approaches that point 
to a pre-aggregate view of data. Situating data investigations within interesting and relevant 
contexts, alongside good teacher questioning and opportunities to listen to the reasoning of their 
peers, contributes to the creation of statistical environments that support and develop early 
understandings of inference. 

Keywords: Informal inferential reasoning (IIR), early childhood, data modelling.  

Theoretical perspective 
Informal ideas relating to inference are those understandings that are foundational to the development of 
inferential reasoning. While many different definitions of informal inference have been posited, a useful 
definition of informal inference is “the way in which students use their informal statistical knowledge to make 
arguments to support inferences about unknown populations based on observed samples” (Zieffler, 
Garfield, delMas & Reading, 2008, p. 44). Zieffler et al. (2008) identify three components of an IIR 
framework as: making judgments or predictions, using or integrating prior knowledge, and articulating 
evidence-based arguments. Arising from research with primary students, Makar & Rubin (2009, p. 85) 
propose three principles that are considered essential for informal statistical inference as ‘(1) 

generalization, including predictions, parameter estimates, and conclusions, that extend beyond 

describing the given data; (2) the use of data as evidence for those generalizations; and (3) employment 

of probabilistic language in describing the generalization, including informal reference to levels of certainty 

about the conclusions drawn.’ 

One statistical perspective identified as a necessary building block to form a basis for IIR is the ability to 
view data as an aggregate (Rubin, Hammerman & Konold, 2006). Statistical properties of aggregates 
such as their centers, variability and shapes emerge from attending to features of distributions rather than 
features of individuals. Thinking about aggregates, while possible, has been shown to be challenging for 
children (Cobb 1999; Hancock, Kaput & Goldsmith, 1982). Recent work by Konold, Higgins, Russel & 
Khalil (2015) has resulted in the identification of four perspectives that students use when working with 
data. The use of these perspectives as a way to analyse an individual’s particular interpretation of data may 
provide valuable insights into their statistical reasoning and in turn the extent to which they possess the 



necessary building blocks for informal inference. These perspectives include data as pointer (focus on the 
event rather than the data), data as case value (focus on individual data values or cases), data as 
classifier (identifying subsets of data values that may be the same or similar) and data as aggregate (view 
all the data values in aggregate as an “object” or a distribution).  

A study of first-grade student’s data modelling approaches carried out by English (2012) categorised 
children’s predictions and approaches when working with data using the lenses identified by Konold et al. 
(2015). Using this framework to guide categorization, 6-year olds in English’s study viewed data in a 
variety of different ways. Many children focused on the values of particular cases (case value lens) and 
others demonstrated the ability to consider the frequency of cases with a particular value (classifier lens). 
There was also evidence of what English (2012) terms a pre-aggregate lens which included approaches 
that considered all the data, compared the frequencies and had some attention to overall trends. While not 
as sophisticated as an aggregate lens, which involves consideration of the entire distribution as an entity in 
itself, the presence of this pre-aggregate lens is a strong indicator of the nascent potential of young children 
to engage in informal inferential reasoning. 

A number of studies have explored the reasoning abilities of young children when engaged in data modeling 
activities in environments supported by the use of picture books (English 2010, 2012; Kinnear 2013, 
2016) and data-visualization tools and technologies (Ben-Zvi, 2006; Paparistodemou & Meletiou-
Mavrotheris, 2008). This study continues this line of research by exploring the informal inferences young 
children make about the data presented in a data modelling environment and examining what these 
inference tell us about children’s perspective on data.  

Method 
A multitiered teaching experiment (Lesh & Kelly, 2000) was carried out with twenty-five 5-6 year olds as 

they engaged in a weeklong data modeling activity. Statistical activity was motivated by a driving question 

(Hourigan & Leavy, 2016) and the context was the ‘design of a zoo’ as it was familiar to children and 

incorporated opportunities to work with data, encourage exploration of variation and make predictions 

about the data. The Ertle, Chokshi, & Fernandez (2001) lesson note format, developed for use as part of 

Japanese Lesson Study, guided lesson design considerations. This framework promoted a focus on 

expected student reactions, concomitant teacher responses and evaluation strategies. These foci supported 

examination of students’ ability to engage in IIR. This study examines the final lesson which focused on 

making informal inferences about data.  

The inquiry was stimulated by playing a video excerpt that we produced:  

Hi, I am James the zoo keeper. The elephant’s home in the zoo is getting a little bit crowded. I think we 
need to make it a bit bigger. But, I don’t know how many elephants will be in the zoo next year which 
makes it difficult to plan ahead. I was hoping you could look at the numbers of elephants in the zoo for 
the last four years, and predict how many will be there next year? 

Children were then shown live video feed of the elephant enclosure in Dublin zoo and presented with a 
table of data illustrating the number of elephants born in the first year (3 elephants), second year (4 
elephants), the third year (7 elephants) and fourth year (5 elephants) (see figure 1). Children worked in 



groups of 5 to reason and make predictions about the number of animals born the following year (year 5). 
Following the predictions, other data relating to the birth rates of wolves [5, 6, 2, 3], giraffes [8, 8, 5, 5] 
and monkeys [3, 5, 0, 2] across four years were presented. Children worked in groups and predicted the 
number of respective animals born in the fifth year. The design of these tasks was informed by the Zieffler 
et al. (2008) framework to support IIR by challenging students to make predictions and judgments about 
data and by incorporating opportunities to capture students’ informal inferential reasoning. 

 

Figure 1: The ‘elephant birth task’  

Conversations in 4 of the groups were audio recorded and one group was video recorded. Our primary 
focus when analyzing the data was on identifying the ways in which young children make informal inferences 
in a context rich data modelling environment. 

Recordings of group conversations were transcribed. Transcripts were coded according to whether they 
embodied Makar & Rubin’s (2009) principles of IIR. Thus each transcript was coded at least three times 
in an effort to identify children’s ability to generalize beyond the data, to use data as evidence and to use 
probabilistic language. All predictions were further categorized as representing data as pointer, case value, 
classifier or aggregate perspectives on data (Konold et al., 2015). 

Findings 
Children understood the task and were enthusiastic when making predictions about animal births in Year 5. 
However, making data informed predictions was challenging for some. Initially there was some evidence of 
idiosyncratic reasoning that was distanced from the context and from the data presented, however, this 
soon disappeared once the data and context were discussed further. Many children based their predictions 
on their knowledge of the context and modified their prediction based on discussion with peers. The 
findings are structured using the three principles of IIR that are considered essential for informal statistical 
inference (Makar & Rubin, 2009).   

 

Principle 1:  Generalizations beyond the data 

While all children made predictions regarding the number of births, not all of the predicted values indicated 
an ability to generalize beyond the data. Rather, they reflected the influence and power of counting in the 
mathematical development of the young child. For these children, there was an awareness of frequencies 
and this was demonstrated in the tendency to list the numbers, order them and then compare the outcome 



to the counting numbers. This focus on the frequencies resulted in two approaches to predicting births. The 
first approach was to fill in the gaps. Children compared the frequencies to the sequence of counting 
numbers usually leading to the identification of a ‘gap’ in the list of numbers. Children were eager to fill this 
gap i.e. identify a count/frequency that hadn’t occurred in the presented data and avoid presenting a value 
that had already occurred. Thus, they believed that this missing number would likely be the number of 
animals born the next year (see discussion between Sheena and Ayesha below around wolf birth rate [5, 6, 
2, 3]). The second approach was to extend the number sequence. In these situations children were not 
overly perturbed by an identified gap in the counting sequence and chose instead to extend the numbers 
beyond the range of the presented data (see Kate below). Generally, the next highest counting number 
above the upper value of the range was their prediction for the number of births in year 5. Both these 
strategies indicate a focus on pattern in the sense of ordinal counting numbers and thus the ‘power of 
counting’. However, from a statistical sense the reasoning was located and justified within the world of 
counting numbers thus indicating a lack of focus on pattern and trends in the data.  

Teacher: How many wolves will be born this year (pointing to year 5)? 

Sheena: We say maybe 4 cause 5, 6, 2, 3. And there’s no 4. 

Ayesha: We’ve got our reason. 2, 3, 4, 5, 6. It’s 4 cause 2, 3, 4, 5, 6. 

Teacher: What would happen if there was a year 6? How many animals might be born then? 

Kate: 1. Cause it would start 1, 2, 3, 4, 5, 6. 

Principle II:  Using data as evidence 

Analysis of the transcripts revealed an abundance of situations when children used data as evidence to 

support their predictions and conclusions about data. The explanations provided by children were 

categorized as falling within one of the four perspectives on data posited by Konold et al. (2015).   

Observation 1: The prevalence of a case value lens 

The focus on individual data values indicated the presence of a case value lens. In particular, children were 
attuned to the appearance of zero births for year 3 in the monkey data [3, 5, 0, 2] and commented ‘there 
were none that year’ and ‘there are zero there’. While this case value lens indicates a lack of focus on the 
aggregate, the individual data values were considered within the greater data context. For example, Eva 
drew on her knowledge of the context in her efforts to explain why no monkeys were born in year 3 when 
she stated ‘because if they had too many babies there [pointing to the 5 born in year 2], the mommy babies 
would have to rest all day’.  

Young children’s approaches involving summing data values and calculating totals have been used as 
indicators of a case value lens (English, 2012). Similarly, in this study, several predictions of the births in 
year 5 also indicated a case value lens as they were based on summing all or some of the values and 
presenting this total as the prediction for year 5. Matthew predicted ‘I decided there will be 10 monkeys 
altogether born’ based on summing the births in years 1-4, and Kornelia predicted that 16 wolves would 
be born in year 5 ‘because I counted all of them’. This difficulty in attending to the variation in the data was 
also evident in another child’s response that 10 giraffes [8, 8, 5, 5] would be born because ‘5+5 makes 
10’.  



However for many of these same children, while there was a focus on counting and the application of a 
case value lens, there was an awareness of pattern in magnitude of numbers. When large numbers were 
presented as predictions, children rejected these numbers as too big and drew on contextual information to 
justify their reasoning. In the following segment, children are predicting the number of giraffes [pattern: 8, 8, 
5, 5] that will be born in year 5. 

Thomas: I think 85. Because there is an 8 there and a 5 there. 

Polina: They wouldn’t fit into the box. They are definitely not going to fit into the zoo also. 

Teacher: Really? Why do you think that? 

Polina: Because they [giraffes] are very big. 

Observation 2: Awareness of trends in the data and evidence of a pre-aggregate lens 

The responses of 20% of children suggest an awareness of overall patterns and trends in the data. This was 
termed a pre-aggregate lens by English (2012) and may point to some emerging sense of distribution. The 
awareness of pattern was evident in Mia’s response to the wolf births which she described as ‘going up 
and going down’. Similarly the recognition and subsequent extension of a repeating pattern in the giraffe 
data set [8, 8, 5, 5] was evident when Melios predicted ‘8. It’s 8, 8, 5, 5, 8. Cause it’s a pattern: 8, 8, 5, 
5, 8’. During a whole class discussion about the number of monkeys that would be born in year 5, 
awareness of patterns was evident in the comments from Otille and Kate below: 

Teacher: How many monkeys did you think were born in year 5? [3, 5, 0, 2] 

Otille: I think 1 because it goes down, up, down, up, down. 

Kate: 5. Cause 5 here [points to 5] and then low [points to 0 and 2] so it would go back to high. 

As can be seen from the transcripts above, children’s justifications did not explicitly refer to the context of 
the data (in this case birth rates) and hence there is the possibility that this awareness of trends stemmed 
more from an algebraic rather than statistical perspective. However, the greatest indication of the presence 
of a pre aggregate lens was in the reasoning of those children who married an awareness of trends in the 
data with their understandings of the context in constructing their predictions. In the discussion of the trends 
in elephant births [3, 4, 7, 6] Polina imagined that animals born in year 1 would have grown up by year 5 
and be giving birth to elephants in year 5.  

Polina: We put 8 elephants (born in year 5) 

Teacher: Why did you put 8 in?  

Polina: Because I think these are going to grow up [pointing to the 3 elephants born in year 1] and 
these ones will be in their tummies [pointing to her prediction for year 5]. It is always 
going to get bigger. 

Teacher:  So do you think it will always get bigger?  

Polina: Yes, I think so, I think there will be babies born from these ones. These ones are going to 
be all grown up, they will be adults. 

Thus her understanding of the variation in the data influenced her predictions and ensured she always 
predicted beyond the upper range of the presented data. Another child, Anna, demonstrated her ability to 
view the trends across the years and used this trend to inform her initial prediction. However, she 



subsequently used her knowledge of the context and adjusted her prediction downwards. Here, Anna is 
discussing her prediction for the number of giraffes born [8, 8, 5, 5] and her initial prediction of ‘3’ may 
indicate some developing notion of center. However her attention to the context makes her mindful of how 
her prediction (if it were correct and acted upon) would affect the other animals in the zoo and she adjusts 
her predict to ‘protect’ other animals from the negative outcomes arising from her prediction.  

Anna:  It was different on different years sometimes 5 [pointing to the values for year 3 and 4] 
but here and here it was 8 [pointing to the year 1 and 2]. So I think 3. 

Teacher: Why 3?  

Anna: Cause it is like the others. Not too many (baby giraffes) but not none (baby giraffes).  

No. No. I think 2. Because if there are too many, all of the branches and the leaves would 
be gone and there would be no place for a monkey. 

Principle III:  Use of probabilistic language 

Makar & Rubin (2009) emphasize the importance of expressing uncertainty when making inferences – this 
can be identified in efforts to avoid deterministic claims and in the use of probabilistic language. Analysis of 
the transcripts reveal that children drew conclusions based on the data presented to them (birth rates over 
time) and used this data to make predictions beyond the data. All the while they were articulating 
uncertainty as demonstrated in their use of terms such as ‘I think’ (see Thomas, Otille, Polina and Anna 
above), ‘probably’ ‘maybe’ (see Sheena above) and ‘I’m not too sure’. It is particularly interesting to note 
that children were comfortable with uncertainty and with the different predictions of others. This openness 
was evident when Eva pointed out ‘we don’t know’ in relation to how many elephants the mother elephant 
would have. Her partner Paul continued the reasoning and stated that ‘maybe there would be six elephants 
born because there are 6 elephants there and they could have 6 babies’.  

Conclusions 
Young children in this study demonstrated the seeds of informal inference in their ability to ‘look beyond the 
data’ and engage in data-based argumentation to support their predictions. However, making data-based 
predictions was a challenging task for some children. Case value perspectives were most prevalent. The 
lack of repeating data values in the presented data may account for the low incidence of classifier 
perspectives as compared to the study by English (2012). Similar to English’s study there was evidence of 
the presence of a pre-aggregate lens in the approaches taken by children. A large proportion of children 
scanned the data for patterns, sought ‘missing numbers’ and many made predictions based on patterns in 
the ordered lists of data rather than thinking from a statistical perspective. This reliance on number and 
algebraic reasoning is not surprising given the curricular emphases in early years mathematics curricula. It is 
interesting to note the influence of zero on children’s deliberations about data was also a factor in the work 
of Kinnear (2013) and Kinnear & Clarke (2016) when engaging young children in data modeling activities. 

The success that some children experienced in making informal inferences was due to a number of factors. 
The role played by the data and task context is particularly evident. The use of an interesting and relevant 
context provided a ‘crutch’ for the children when making predictions. Their personal experiences and high 
task interest ensured that rather than reasoning about decontextualized data, children were reasoning about 
and making sense of the situation at hand – this supported their inferences. Secondly, the development of 
skills in making data-informed predictions was due in large part to the use of good questioning on the part 



of teachers and due to their efforts in drawing children’s attention to aspects of the data and clarifying 
misunderstandings as they occurred. Similarly, the work of Paparistodemou & Meletiou-Mavrotheris 
(2008) highlighted the important role that prompting by the researcher played in supporting children in 
speculating about larger data sets. The third factor was the importance of peer interactions. Children built 
on the ideas of others as they reasoned and made prediction within their groups thus providing evidence for 
the power of co-constructing meaning in small groups and demonstrated ‘building on the ideas of others’ 
(Whitin & Whitin, 2008, p.93). This importance of peer interaction in promoting inference and deriving 
conclusions from data was also evident in the work of third grade students when engaging in inference 
(Paparistodemou & Meletiou-Mavrotheris, 2008).  
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In this study, we examined the models of resampling that a group of students constructed in order to 
use one sample to make informal inferences about a population of data. Students participated in a 
model eliciting activity which aimed to elicit the resampling process of bootstrapping. We will discuss 
the model of resampling and inference constructed by one group of students, the factors which led to 
the group constructing a model of resampling with replacement, and how these students’ conceptions 
of the sample related to their model. We suggest that the students' conception of the relationship 
between the sample and population was a key factor in constructing a model of resampling and 
inference similar to the method of bootstrapping. 

Keywords: Statistics education, modeling, informal inferential reasoning. 

Introduction 
Bootstrapping is one method of simulating data through resampling that has become an important 
tool for statisticians, who suggest that it is intuitive to novice statistics students (Lock, Lock, Lock-
Morgan, Lock, & Lock, 2013). The term bootstrap is used in the idiom to pull oneself up by one's 
bootstraps, which means to accomplish a goal with the resources on hand. Rather than take many 
samples to estimate a sampling distribution, the bootstrap method uses the one sample on hand to 
accomplish the same goal. Bootstrapping is a process of simulating data beginning by drawing one 
sample from a population. Resamples are constructed by choosing elements from the original sample, 
one at a time with replacement, until as many elements are drawn as in the original sample. This new 
sample is called the bootstrap sample. The process is repeated many times to create a collection of 
such bootstrap samples. A statistic from each of these bootstrap samples is aggregated to form an 
empirical bootstrap sampling distribution, which can then be used to make inferential claims about 
the population from which the original sample was drawn. 

Bootstrapping was introduced by Efron (1979) as an alternative to earlier resampling methods. He 
asserted that the bootstrap was more widely applicable and dependable than earlier resampling 
methods, while also using a simpler procedure. New curricula for introductory statistics courses at 
the secondary and tertiary levels have been created which focus on simulation and resampling 
methods such as bootstrapping (Garfield, delMas, & Zieffler, 2012; Pfannkuch, Forbes, Harraway, 
Budgett, & Wild, 2013; Tintle, VanderStoep, Holmes, Quisenberry, & Swanson, 2011). Pfannkuch 
et al. (2013, p. 2) asserted that “the bootstrapping and randomisation methods using dynamic 
visualisations especially designed to enhance conceptual understanding have the potential to  
transform the learning of statistical inference.” Lock et al. (2013) claimed that bootstrapping 
capitalizes on students' visual learning skills and helps to build students' conceptual understanding of 
key statistics ideas. While these curricula and subsequent research have examined students’ 
understandings of the use of method of bootstrapping, studies have not examined how students 
construct and develop these understandings. We suggest that this lack of research on student 



understandings of eliciting the concept of bootstrapping is a gap in the research literature. In this 
study we examine aspects of the model of resampling and bootstrapping that one group of students 
constructed in order to make informal inferences about a population of data and these students’ 
conception of the sample’s relation to the population. The research question driving this study was 
what factors led students to construct models of resampling with replacement. 

Review of literature 
The current research literature has viewed the bootstrapping method through the lens of formal 
inferential reasoning, such as using the method as a means to estimate standard errors and construct 
confidence intervals (Garfield, delMas, & Zieffler, 2012; Pfannkuch, Forbes, Harraway, Budgett, & 
Wild, 2013). In this study, rather than focus on students’ understandings of how this method could 
be used for formal inference, we focused on how students constructed and developed methods similar 
to bootstrapping and made informal inferential claims from the resulting empirical bootstrap 
distributions. Key to eliciting students’ models of resampling and inference in this study was 
understanding the use of students’ informal inferential reasoning to make claims about a 
population. Informal inferential reasoning is the drawing of conclusions from data that extend beyond 
the data, from viewing, comparing, and reasoning with distributions of data (Makar & Rubin, 
2009; Pfannkuch, 2007).  

In order to make informal inferential claims in this study, groups of students first needed to determine 
a method of simulating data. Saldanha and Thompson (2002) explored students’ conceptions of a 
sample in relation to the population while the students participated in an activity which constructed 
an empirical sampling distribution by collecting repeated samples from a population. Students' 
conceptions of a sample in relation to the population and sampling distributions were categorized as 
either additive or multiplicative. Those with an additive conception of the sample only viewed the 
part-whole relationship between the sample and the populations, with multiple samples representing 
multiple parts of this whole. The resemblance and relationship between the sample and population 
distributions was not a factor for those with this conception. Those with a multiplicative conception 
of the sample viewed the sample as a “quasi-proportional, mini version” (p. 266) of the population. 
The sample can be used to approximate the distribution of the population, with an understanding that 
various samples' distributions may bear more or less resemblance to the distribution of the population. 
We posit that this multiplicative view may be critical to understanding the use of bootstrapping for 
informal inferential reasoning, since the proportion of each element in a sample is assumed to 
represent the proportion of those elements in the population.  

The focus of analysis for this study was the model of resampling and bootstrapping which participants 
constructed and developed while engaged in a model eliciting activity (Lesh, Cramer, Doerr, Post, & 
Zawojewski, 2003). Models are “conceptual systems … that are expressed using external notation 
systems, and that are used to construct, describe, or explain the behaviors of other system(s)” (Lesh 
& Doerr, 2003, p. 10). Model-eliciting activities encourage students to generate descriptions, 
explanations, and constructions in order to reveal how they were interpreting situations. Model 
eliciting activities are designed in order for students to:  

 Make sense of the situation drawing on both their school mathematics real-life sense-making 
abilities;   



 Recognize the need to construct a model to complete the activity, rather than produce only an 
answer.   

 Create documentation that shows solution paths, patterns, and irregularities that the students 
considered while constructing their model;   

 Assess when their responses need to be improved, refined, or extended,   
 Create models that can be extended to use in a broader range of situations (Lesh, Hoover, 

Hole, Kelly, & Post, 2000).   

By using a modeling approach to examine student reasoning, we viewed reasoning as dynamic and 
developing over the course of instruction. Observing students as they participated in a model elicit ing 
activity allowed us to view the construction and development of their thinking of resampling and 
inference. 

Design and methodology 
This study is a qualitative case study and part of a larger study (McLean & Doerr, 
2016) that consisted of an eight-class-session teaching experiment that was enacted in four 
introductory statistics classes at the high school and community college levels (n=68) in the United 
States. This study focuses on the student reasoning that developed during one class-session as a group 
of four students from a community college participated in a model eliciting activity that aimed to 
elicit the method of bootstrapping. During the model eliciting activity, we collected written 
classwork from all participants and videotaped the group of students in order to document the group’s 
model construction and development. We analyzed the videos and written classwork for evidence of 
informal inferential reasoning, quantities used and the relationships between these quantities, and the 
representations and explanations used in their arguments in order to reconstruct the development of 
the reasoning that were created by the participants.   

The group of students participated in a model eliciting activity, using hands-on manipulatives, where 
they were given one sample from a population and constructed a model of resampling and inference 
in order to make claims about a population. The activity was designed to elicit a model that could 
be used to resample from a sample, with replacement, in order to construct a bootstrap sample of the 
same size as the original sample and use the distribution of these bootstrap samples to determine 
which outcomes are most likely to occur. The model eliciting activity asked groups of students to 
help a manager in a grocery store predict the percentage of peanuts in a certain brand of mixed nuts. 
The students were given a sample of mixed nuts in the form of seven craft sticks marked with a ‘P’ 
for peanut and 18 not marked to represent other kinds of nuts. The model eliciting activity prompt 
and manipulatives are shown below (Figure 1). 

[Grocery store] carries many types of nuts, dried fruits and candies in their bulk food section. The 
manager of bulk food is always interested in bringing new types of food for her customers to try. 
She recently ordered a sample of a new brand's mixed nuts. From past experiences, she has 
determined that customers prefer mixed nuts with fewer peanuts. She plans to order a large 
shipment of mixed nuts and is considering this new brand. Before she orders, the manager wants 
to know more information about the percentage of peanuts in this new brand. From this one sample 
of mixed nuts, the manager has asked that you determine a likely range for the percentage of 
peanuts in the entire brand of mixed nuts. She would also like to know the methods that you 



develop to come to your conclusion. Your methods may of use for future bulk food purchases. The 
bag of sticks is the sample of mixed nuts. Sticks marked with a 'P' are peanuts. Those not marked 
are other types of nuts. 

 

Figure 1: Model eliciting activity manipulatives  

Prior to the model eliciting activity, the group of students participated in a model development 
sequence which elicited and developed models of repeatedly sampling from a population, 
constructing an empirical sampling distribution, and making informal inferential claims regarding the 
population. In this model eliciting activity, students could no longer repeatedly sample from a 
population in order to construct an empirical sampling distribution and needed to construct a new 
model of resampling and inference that could use only one sample from the population to make 
informal inferential claims.  

Results 
In the larger study from which this data was gathered (McLean & Doerr, 2016), groups of three or 
four students constructed two categories of models for making inferential claims of a population from 
one sample. The first category of model (n=16 groups of students) treated the sample of 25 nuts in a 
manner similar to a population and collected resamples without replacement, from the 25 nuts. The 
second category of model (n=4 groups of students) discussed or collected resamples from the sample 
of mixed nuts in a manner which preserved the makeup of the sample while resampling. We will 
report findings from one of the four groups who constructed this second category of model. This 
group constructed a model of resampling with replacement similar to the method of bootstrapping. 
We will discuss two findings of student understanding that were key to constructing these models: 
the representativeness of the sample to the population; and a method of resampling that preserved this 
representativeness. Findings like these were unique to the groups of students who constructed the 
second category of model of resampling and inference, which preserved the make-up of the sample 
while resampling. 



Representativeness of the sample  

Before discussing methods of resampling, the group of students first discussed how they believed that 
one sample could be used to make inferential claims and how their sample of mixed nuts related to 
other possible samples of mixed nuts taken from the sample population 

Susan: I would say from this sample, that a little over a quarter of the peanuts, of the nuts 
are peanuts, from our random sample. 

Randy: But it’s only one sample. 

Ted:          But this is the only sample we have. 

Brenda: So if you pick another random sample what’s going to happen? 

Ted:        It’s most likely going to change. 

Susan:     It’s going to change, but I feel like it will probably be still about the same.  

Susan made an assertion about the percentage of peanuts in the population under the condition that 
she was basing her assertion on the random sample, which Randy stressed is only one random sample. 
Susan emphasized that although other samples of nuts will be different from their one sample, they 
will probably be “still about the same”.  Susan demonstrated an understanding that the percentage of 
peanuts in the sample likely represents the percentage of peanuts in the population. This is a key 
aspect of inferential statistics. When making inferential claims you take for granted that the sample 
likely represents the population because as Ted stated, “this is the only sample we have” and as Susan 
asserted, “it will probably still be about the same” as other samples. 

Preserving the representativeness of the sample when resampling 

The group initially decided to take a resample of 14 mixed nuts by drawing one at a time from the 
bag of mixed nuts, without replacement. The group only took one sample with this method, which 
yielded five peanuts out of 14 nuts. The instructor then came back over to the group to discuss how 
the group had collected the sample of 14 nuts. 

Instructor:  So how are you choosing those? 

Susan:        He [Randy] randomly puts them together, and then I randomly without looking 
draw them out. 

Instructor: Okay. So you’re drawing out one at a time? 

Susan:        Uh-uh. 

Instructor:  Okay, and you’re setting it on the table? 

Ted:            Yes. 

Instructor:  Then you’re going back in and you’re drawing another one? 

Susan:        Yes. 

Instructor:  Okay, so … 



Ted:            Ohh! Wait, you said that you’re putting them on the table. Was that like, do you 
think that we should put them back in the bag after we draw it out? Like for 
probability simulators?  

From this exchange Ted considered how the sampling would change if they resampled with 
replacement instead of resampling without replacement. By using the term “probability simulato rs” 
he was approaching the idea that if you do not replace the stick after choosing each one, the 
probabilities of choosing a peanut or another nut will change. This term was not used previously in 
the coursework for this class, but likely came from his earlier experience in a mathematics or statistics 
classroom. Ted was combining the idea of the representativeness of the sample to the population, that 
the group discussed earlier, with the idea of the probabilities staying constant for each choice of nut, 
the key concepts of bootstrapping. The group continued to discuss how this process of replacement 
was different than their initial approach without replacement.  

Randy:    What are we going to do now? 

Susan:     Now I’m going to hand you back the Popsicle stick and you’re going to mix it back 
in. 

Randy:    So you’re going to draw … 

Susan:     From the 25, not from, you know how before, like when I drawed [sic] and set it 
down, it went less and less and less and less and less? 

Ted:        So we’re going to do it again, we’re still going to draw 14, we’re just going to put 
them in. 

Susan:    So each time we’re drawing from 25, instead of a reduced … 

Ted:        ‘Cause as we would draw, in this one we would draw and there were 10, that meant 
that there were only 15 left in the bag, which doesn’t account for the sample, right? 
‘Cause you’re reducing it.  

They asserted that when not using replacement, the nuts that they were drawing from the bag no 
longer represented the sample after some nuts were drawn and not returned. The group followed this 
procedure of resampling with replacement to collect a sample of 14 nuts. This was the only sample 
that they had time to gather before the class was reconvened to discuss each group’s approach to 
determine the likely range of peanuts in this new brand. The group did not use this one sample to 
draw a conclusion since time ran out for developing their model. 

Discussion and conclusions 
We assert that a key difference between this study and previous research addressing data simulation 
and bootstrapping (Garfield, delMas, & Zieffler, 2012; Pfannkuch, Forbes, Harraway, Budgett, & 
Wild, 2013), is the elicitation of bootstrapping methods by groups of students rather than the 
instruction of students on how to use the method. By eliciting the method, we were able to view 
students’ statistical reasoning which led students to construct a process similar to bootstrapping: the 
representativeness of the sample to the population; and a method of resampling that preserved this 
representativeness. We assert that these students exhibited a multiplicative conception of the sample 
(Saldanha & Thompson, 2002). These students claimed that the distribution of the sample likely 



represented the population and constructed a model of resampling with replacement that simulated 
resamples which upheld the quasi-proportional relationship of the sample to the population. These 
finding have implication for future curricula design by examining the key understandings that 
students may need before instruction on methods of resampling, such as bootstrapping. The finding 
also suggested that the use of model eliciting activities are useful design for instruction in 
introductory statistics classrooms in order to analyze students’ developing thinking of resampling 
and inference. 

Two limitations of this study were that: although this group of students constructed a model of 
resampling similar to bootstrapping, they did not collect resamples that were equal in size to the 
original sample of mixed nuts; and the time needed to sample by replacement with manipulatives 
did not allow the students to collect a distribution of samples from which to draw informal 
inferences. Collecting resamples of the same size is key in order to observe the variability in a 
statistic for samples like the original. While designing the model eliciting activity, we did not 
foresee issues with how the context of the activity encouraged students to make claims about the 
populations of mixed nuts, rather than the proportion of peanuts in future samples from the 
population of mixed nuts. Within this context, rather than use a bulk supply of mixed nuts in which 
samples of many sizes could be taken, the model eliciting activity may have been better designed to 
focus on the small packages of mixed nuts with consistent sample sizes. The time demanding nature 
of resampling could have been alleviating by using smaller original samples or with transitioning to 
the use of technology. A different context from mixed nuts where smaller samples felt natural, 
rather than merely a simplification may have allowed more resamples to be simulated. We made the 
choice to initially explore resampling with manipulatives and in later activities use technology to 
simplify the resampling process.  
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This article focuses on how information and communication tools made available online could be 
effectively exploited to help improve the quality and efficiency of college-level, at-distance statistics 
training. The paper first provides an overview of the content, structure, and pedagogical and 
didactical approach underlying Quantitative Educational Research Methods, an online course 
targeting post-graduate education majors that has been built based on contemporary visions of web-
based statistics instruction and computer-mediated communication. It then presents some of the 
insights gained from a case study of a group of students (n=49) participating in a recent offering of 
the course. The article concludes with some instructional and research implications. 

Keywords: Statistics education, distance education, statistical inference, model-eliciting activities. 

Introduction 
The affordances offered by modern Internet technologies provide new opportunities for statistics 
instruction, making it possible to overcome restrictions of shrinking resources and geographica l 
locations, and to offer, in a cost-effective and non-disruptive way, high-quality learning experiences 
to geographically dispersed students. In recent years, we have witnessed an exponential growth of 
distance education worldwide. Online course delivery has become common in a wide variety of 
disciplines, including statistics. This expansion is likely to continue, given the expanding access to 
the Internet and the greater emphasis to lifelong learning. Several advantages associated with distance 
education have been identified in the literature. In addition to the flexibility and convenience it offers, 
the distance option may also allow students the opportunity to take courses from established experts 
in their field of study that might not be available locally. From the viewpoint of statistics, it creates 
some unique opportunities for enhancing instruction, including the provision of a vast array of 
technological tools and resources for better understanding of statistical methods and concepts (e.g. 
interactive applets, virtual laboratory experiments, etc.). Several successful examples of successful 
programs of teaching statistics via distance have been documented in the literature (e.g., Evans et al., 
2007; Everson & Garfield, 2008; Meletiou-Mavrotheris, Mavrotheris, & Paparistodemou, 2011). 

Despite its proliferation and the unique opportunities for enhancing statistics teaching and learning 
that it offers, online statistics course delivery also presents several unique challenges. There are 
several pedagogical and technical issues that need to be incorporated into the design of an online 
statistics course for it to provide an effective learning environment. Review of the existing research 
literature alerts us to the fact that the quality and effectiveness of online statistics training currently 
offered is variable and inconsistent (Evans et al., 2007). While most of the conducted studies indicate 
that students taking courses with an online component have similar achievement and satisfact ion 
levels compared to students in traditional, face-to-face classrooms (Mathieson, 2010), there is 



growing evidence of many web-based distance learning courses failing to meet the expectations 
raised. For example, while it is well-documented in statistics education research that the incorporation 
of discussion and active learning in the classroom can help learners to think and reason about 
statistical concepts, bringing these important learning approaches to an online course has proved very 
challenging (Gould, 2005; Meletiou-Mavrotheris & Serrado, 2012).  

Early attempts at web-based instruction assumed that setting up an attractive website with interest ing 
multimedia applications was adequate for learning to occur. However, it has now been recognized 
that the level of success of distance education is determined by multiple factors, including underlying 
theory, technologies, teaching strategies, and learner support. Elements in the design of an online 
course such as its content and structure, the tools and cognitive technologies employed, and the 
amount of interaction between instructors and learners as well among learners, are important factors 
affecting students’ learning and attitudes (Tudor, 2006). A particularly important criterion for the 
level of success of at-distance statistical training is also the extent to which instruction allows learners 
to experience the practice of statistics and to apply statistical tools in order to tackle real-life problems. 

This article provides an overview of a post-graduate quantitative research methods course that has 
adopted a non-conventional approach, which promotes online participation and collaboration of 
students using contemporary technological and educational tools and resources. After describing the 
course pedagogical approach, and content and structure, the paper presents some of the insights 
gained from a case study of a group of students participating in a recent offering of the course.  

Nature of the Quantitative Educational Research Methods course 
“Quantitative Educational Research Methods” is a graduate-level course targeting students enrolled 
in the M.A. in Educational Studies program offered at European University Cyprus. Although 
originally developed for a face-to-face setting, the course was in 2013 redesigned as an online course 
to make it accessible to students enrolled in this program through distance education. In designing 
the e-learning course, efforts were made to preserve the pedagogical approach, and content and 
structure of the classroom-based course. 

Contemporary visions of web-based instruction and computer-mediated communication underpin the 
course design. Concurring with Roseth, Garfield, and Ben-Zvi (2008), the online learning 
environment has been built upon the premise that instruction of statistical methods ought to resemble 
statistical practice, an inherently cooperative problem-solving enterprise. Students enrolled in the 
course are provided with ample opportunities for interactive and collaborative learning. They are 
actively involved in constructing their own knowledge, through participation in authentic educationa l 
activities encouraging enculturation such as projects, experiments, computer explorations with real 
and simulated data, group work and discussions. Statistical thinking is presented as a synthesis of 
statistical knowledge, context knowledge, and the information in the data in order to produce 
implications and insights, and to test and refine conjectures. There is a focus on modeling and 
simulation—along with inference – which is being facilitated by having students use the dynamica l 
statistical software package TinkerPlots2 (Konold & Miller, 2011) for all modeling and analysis. This 
software was selected because it is designed explicitly to support integration of exploratory data 
analysis approaches and probabilistic models, and to allow for generation of data (e.g., drawing 
samples from a model) and experimentation (e.g., improving models, conducting simulations). 



The course lasts 15 weeks. It is made up of 7 modules, that are concept driven and focused on 
enriching students’ knowledge of quantitative research methods (mainly inferential) by exposing 
them to innovative learning situations, technologies, and curricula. Each module involves a range of 
activities, readings, contributions to discussion, and the completion of group and/or individua l 
assignments. The activities and assignments mirror those completed in the classroom-based course.  

Throughout the course, students use TinkerPlots2 to work on a set of carefully designed open-ended 
Model-Eliciting Activities (MEAs) (Lesh et al., 2000) in which they create and test statistical models 
in order to solve real world problems of statistics (Garfield, delMas & Zieffler, 2012). The activit ies 
are carefully designed to support but, at the same time, also explore students’ evolving understand ings 
of fundamental ideas related to statistical inference. Some of the MEAs are completed individua lly, 
and others collaboratively in groups of 3-4 students.  The MEA “How many tickets to sell?” (adapted 
from http://new.censusatschool.org.nz/resource/using-tinkerplots- for-probability-modelling/) is a 
typical example of these activities.  It is based on the following fictitious scenario: “Air Zland has 
found that on average 2.9% of the passengers that have booked tickets on its main domestic routes 
fail to show up for departure. It responds by overbooking flights. The Airbus A230, used on these 
routes, has 171 seats. How many extra tickets can Air Zland sell without upsetting passengers who 
do show up at the terminal too often?” In this MEA, students use Tinkerplots2 to model the Air Zland 
flight (e.g. model the scenario in which AirZland sells five extra tickets, i.e. books 176 tickets). They 
repeat the experiment a large number of trials using the “Collect Statistic” feature of Tinkerplots2 to 
keep track of the number of passengers not showing up, and draw the resulting distribution of 
collected sample statistics. Students then decide whether their model should be adjusted or not and, 
based on that, make recommendations to the airline as to how many extra tickets it should issue. 
Finally, they use the properties of the binomial distribution to determine theoretical probabilit ies 
when booking a certain number of seats (e.g. 176 seats) and compare the results with those they get 
through the Tinkerplots simulation. (see Meletiou-Mavrotheris et al. 2015 for more details). 

A progressive formalization approach is being employed in the course. The first part focuses on 
building a teaching pathway towards formal inference by helping students experience and develop 
the ‘big ideas’ of informal inference. Through their engagement with the open-ended MEA activit ies, 
students learn where these ideas apply and how. Later in the course, students are introduced to 
confirmatory or formal inference methods, and begin comparing empirical probabilities with the 
theoretical ones. They learn the formal procedures for building sampling distributions, construct ing 
confidence intervals, and conducting hypothesis testing using different statistical tests. The 
similarities and differences between ideal, mathematical models of reality, and statistical models 
based on experimental data are being emphasized throughout the course. From informal uses of 
models early in the course to formal uses as part of significance tests at the later part, instruct ion 
encourages explicit discussion of how every model is essentially an oversimplification of reality 
which involves loss of information, and of how the success of probability models depends on their 
practically and potential to give useful answers to our research questions.  

The course is delivered completely online using the instructional content and services of the project  
platform (on the LMS Blackboard system). In addition to the course content (video lectures, 
PowerPoint presentations, video tutorials, links to statistics resources available on the internet, etc.) 
the site offers access to various tools for professional dialogue and support (email, videoconferenc ing, 



chat rooms, discussion forums, wikis, etc.). The course instructor acts as a facilitator of a deeper 
learning experience through guiding discussions, encouraging full, thoughtful involvement of all 
participants, and providing feedback, in both asynchronous and synchronous activities. 

Methodology 
The case studied was a group of students taking the online version of the Quantitative Research 
Methods course during the Fall 2014 semester. The first author was the course instructor. There were 
forty-nine (n=49) students enrolled in the course, residing in Greece (n=38) or Cyprus (n=11). Course 
participants were characterized by a wide diversity in a number of parameters including age, and 
professional and academic background. Their age ranged from 23 to 55. Some had an academic 
background in primary education (n=18), while the rest were secondary school teachers in different 
domains (languages, humanities, natural sciences, physical sciences etc.). While the majority were 
experienced educators with several years of teaching experience, a sizeable proportion were either 
unemployed or employed in non-education related occupations. Students also had a varied 
background in statistics. Most of the older participants had very limited prior exposure to statistics, 
while the younger ones had typically completed a statistics course while at college. Even students 
who had formally studied statistics had attended traditional lecture-based courses that made minimal 
use of technology. Thus, upon entering the course, almost all students had very weak statistica l 
reasoning and/or a tendency to focus on the procedural aspects of statistics. 

Documenting online student activity and collaborative knowledge construction is a multiface ted 
phenomenon that requires complementary methods of data collection and analysis in order to 
understand how learning is accomplished through interaction, how learners engage in knowledge 
building, and how designed media support this accomplishment (Hmelo-Silver, 2003). Consequently, 
to increase understanding of the research setting, the current study employed a variety of both 
qualitative and quantitative data collection techniques, including: (i) The contents of the online 
discussion boards, chats, and wikis, in which students had been participating during the course; (ii) 
Bi-weekly collaborative assignments, in the form of Model Eliciting Activities (MEAs); (iii) 
videotaped synchronous sessions taking place weekly throughout the semester using Blackboard 
Collaborate as a communication tool; (iv) final course examination administered to both students 
enrolled in the course under study, and students enrolled in a face-to-face version of the same course 
again taught by the same instructor; (v) an open-ended survey administered at the course completion, 
aimed at determining students’ perceptions, opinions, and feelings regarding the course; (vi) 
Quantitative statistics automatically collected by the system (e.g. number of students participating in 
a discussion forum or successfully completing group assignments, etc.). 

The text-based and video-based data collected during the course (MEAs, discussion forums, 
videotaped synchronous sessions, open-ended survey at course completion) were eventually analysed 
in order to examine how students’ engagement with Tinkerplots2, with MEAs and with each other 
impacted their motivation and participation levels, and how it scaffolded and extended their 
understanding of the big statistical ideas encountered during the course. We did not use an analytica l 
framework with predetermined categories. What we instead did was a content analysis aimed at 
identifying, though careful reviewing of the transcripts, the recurring themes or patterns in the data.  
Quantitative data (system statistics, performance on final examination) were analysed using 
descriptive and inferential statistics.  Linking the depth of qualitative data with quantitative breadth 



provided a more holistic picture of the course impact on students’ attitudes and learning of statistics. 

Results 
Analysis of the data obtained during the case study, indicates that the online Quantitative Educationa l 
Research Methods course provided students with experiences parallel to those provided in its face-
to-face version. The course was characterized by high levels of student engagement in online 
discussions and participation in videoconferencing sessions, and by successful collaborations for the 
completion of group assignments. Findings also suggest that the adoption of a pedagogical approach 
focused on modeling, using a dynamic statistics software like Tinkerplots2 for the conduct of 
statistical investigations, and of technological tools for facilitation of communication and 
collaboration among learners, is a viable option for online statistics instruction. The informal 
approach to statistical inference espoused by the course, using TinkerPlots2 as a tool for investigat ing 
authentic, open-ended model-eliciting activities (MEAs), fostered students’ ability to reason about 
the stochastic, while also developing their appreciation for the practical value of statistics. Through 
their engagement in MEAs in which they collaboratively built models and used them to evaluate 
research claims and hypotheses, the graduate students in our study developed relatively coherent 
understandings of fundamental concepts related to statistical inference. 

The affordances offered by Tinkerplots2 for building and experimenting with data models to make 
sense of the situation at hand, proved instrumental in supporting student understanding of both 
informal and formal inferential statistical ideas. Of course, similarly to other researchers we also 
witnessed a number of challenges associated with the adoption of a modelling approach (Konold, 
Harradine, & Kazak, 2007), and different levels of student reasoning and understanding of the role 
of models and modelling, and of the key assumptions underlying the models simulated by the 
computer (for more details, interested readers could refer to Meletiou-Mavrotheris, Paparistodemou 
& Serrado, 2015). Nonetheless, use of Tinkerplots2 enabled students to build and modify their own 
models of real world phenomena, and to use them to informally test hypotheses and draw inferences. 
Their engagement with data-driven inferences helped them to develop sound informal understand ing 
of the logic of hypothesis testing and its related statistical ideas (significance level, p-value, null and 
alternative hypothesis etc.), and served as a foundation for the formal study of inferential statistics.  

Student performance on assignments and assessments was comparable to what was observed in the 
face-to-face version of the course concurrently taught by the first author. When the end of the 
semester, both groups of students were administered an identical assessment instrument (as a final 
exam) with several open-ended tasks aimed at investigating their understanding of the main ideas and 
concepts related to statistical inference covered in the course, both groups obtained very similar 
results (Mean Score: At distance=76.1, Face-to-face=77.06). A two-sample unequal variance t-test 
(conducted after checking all assumptions) indicated that there was no significant difference in mean 
scores (p=0.73) between the two groups of students (see Table 1). 

Course No. of students  Mean Score Standard deviation t test for equality of means 
At-distance 49 76.10 14.68 t Two-tail Sig. 
Face-to-face 34 77.06 10.49 -0.3463 0.73 

Table 1: Two-tailed t-test Comparison of Mean Differences in final exam scores  

In the survey administered at the end of the course, students were asked to indicate what they liked 



most about the course. The overall feedback regarding the course content, services, and didactical 
approaches was generally very positive. The flexibility and convenience associated with distance 
education was an aspect appreciated by all course participants, since it made it possible for them to 
determine their own place, pace and time of study. Another aspect also much appreciated by the 
majority of the participants was the fact that both the discussions and the assignments were carefully 
designed to be learner-centered, and to make explicit ties between theory and practice by utilizing 
students’ own experiences as learning resources. The promotion of communication and collaborat ion 
was also considered to be an important strength of the course by most learners. Students, in general, 
enjoyed the interaction and the sharing of experiences and ideas, although there were a few who 
expressed a preference for individual assignments, arguing that “group assignments are less flexible 
since you have to regularly meet online with your group”, or that “in group tasks, some members do 
minimal work while the rest work very hard, but the end they all get the same score… this is unfair.” 

In a previous study conducted by the authors in the context of a transnational online teacher 
professional development course in statistics education, the biggest difficulty experienced was the 
limited success in establishing a functional online community of practice (Meletiou-Mavrotheris and 
Serrado, 2012). Similarly to other statistics education researchers (e.g. Gould and Peck, 2005), there 
was a much lower than anticipated level of learner-to-learner interaction in the course. Although 
community building was a main objective, and while at the course outset there was big enthusiasm 
and very high participation in discussion forums, interaction dropped off over time. The vast majority 
of messages (around 80%) had been sent during the first half of the course, while in the second half 
only a handful of learners actively participated in the discussion forums, while the rest had made 
minimal or no contributions. In the current study, by contrast, students’ level of engagement in the 
discussion forum was consistently high throughout the semester. All discussion forums created during 
the course were characterized by vibrant interaction and rich dialog. 

We consider the active participation of students in the discussion forums witnessed throughout the 
semester to be an important success of this course since, as the literature indicates, leading a 
discussion of substance on a “discussion board” is much more challenging and difficult to achieve 
than in a real classroom (Gould & Peck, 2005). We believe that, in the current study, the adoption of 
the following strategies led to more successful community building compared to our prior research: 
(i) Making participation in group activities a compulsory element of the course that counts towards 
learners’ grade; (ii) Establishing a clear set of criteria in the course syllabus to help learners better 
understand the academic expectations and increase the intellectual depth of their contributions; (iii) 
Providing sufficient time for group members to make meaningful interpersonal connections before 
the assignment of the first cognitive task; (iv) Increasing the duration of each discussion forum to 
allow adequate time for learners to formulate and articulate their contributions; (v) Providing more 
prompt and effective moderation of online interactions. 

Despite the overall success of the course, analysis of the collected data has allowed us to identify a 
number of issues and student concerns that adversely affected the online participation of course 
participants. The biggest shortcoming identified was the course overload. When requested, in the end-
of course survey, to indicate what they liked the least about the course, most participants mentioned 
the course workload that made it extremely difficult for them to keep up with the course requirements 
due to their overburdened schedules. Also, participation in videoconferencing and other activities that 



required synchronous communication (e.g. chat sessions) proved very difficult to schedule, as it was 
almost impossible for all of the students to be available at the same time.  

The Quantitative Educational Research Methods course team has adopted a continuous improvement 
iterative model. Insights from the current study informed the revision of the course, so as to further 
improve its quality and effectiveness. The heavy workload was corrected in subsequent offerings, and 
more realistic work expectations were set so as not to overburden students. There has also been more 
careful scheduling of course activities to offer students more flexibility.  

Discussion 
Teaching online courses is a new, unexplored territory for most statistics instructors. Distance 
education is similar yet different from classroom-based instruction, and requires new teaching skills 
and strategies. Several pedagogical and technical issues should be taken into account in the course 
design to provide an effective online learning environment. Using the case study of a distance-based 
approach to a quantitative educational research methods course as an example, the paper has provided 
some suggestions on how to best exploit the affordances offered by modern e-learning technologies 
to improve the quality and attractiveness of the online learning experience through the promotion of 
hands-on and collaborative knowledge construction. In accord with contemporary visions of web-
based instruction that support collaborative and participatory models of online learning, the article 
has offered some insights on how to build an online learning environment in ways that resemble 
statistical practice, an inherently cooperative, problem-solving enterprise involving participation in 
projects, modelling and experimentation with real and simulated data, group work, and discussions.  

Statistics education research in distance education settings is still at a developmental stage. More 
research is needed to advance our understanding of how to best take advantage of computer-media ted 
communication tools to support the development of effective virtual learning environments. By 
exploring the forms of collaboration and shared knowledge building undertaken by the group of 
students participating in our online course, the current case study has contributed some useful insights 
into the factors that may facilitate or impede the successful implementation of distance education. 
These insights have helped to further improve the quality and effectiveness of the course, and sketch 
a road map for our future research work, and for other similar endeavours.  
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Making modeling, generalization and justification an explicit focus of instruction can help to make 
big ideas available to all students at all ages (Carpenter & Romberg, 2004). Because mathematical 
models focus on structural characteristics of phenomena (e.g. patterns, interactions, and 
relationships among elements) rather than surface features (e.g. biological, physical, or artistic 
attributes), they are powerful tools in predicting the behavior of complex systems (Lesh & Harel, 
2003). Based on this assumption, we attempted to enhance students’ (aged between 8 to 13 years 
old) reasoning about probability by asking them to design a computer game for modeling 
probabilistic ideas. Students were introduced to the block-based programming language Scratch 
2.0, and used it to create their own games. The findings show that the idea of chance had an 
important role in their games and that they expressed many probabilistic ideas while they were 
designing and playing their game. 
Keywords: Statistics education, randomness, educational game, game design, Scratch. 
 

Background of the study 
Although probability is increasingly being integrated into the school mathematics curriculum, 
students face difficulties in understanding a variety of probabilistic concepts. Probability is difficult 
to teach because of the gap between intuition and conceptual development, even as regards 
elementary concepts (Batanero & Diaz, 2012). The current article contributes to the emerging 
literature on game-enhanced statistics learning by exploring the capabilities of a learning 
environment that uses programming logic in a game setting, as a tool for facilitating the emergence 
of young learners’ informal reasoning about randomness and other key probabilistic concepts. 
Based on a case study of a group of students (aged 8-13) who developed their own games through 
use of the visual block-based programming language Scratch 2.0 (Massachusetts Institute of 
Technology, 2013), the following question was explored: How do students use elements of 
reasoning about probability when they design their own games?  

The research literature suggests that digital educational games have many potential benefits for 
mathematics and statistics teaching and learning. One of their foremost qualities is the capacity to 
motivate, engage, and immerse players. It has been shown that educational games captivate 
students’ attention, contributing to their increased motivation and engagement with mathematics 
and statistics (Ke, 2008). Studies have also demonstrated that, in addition to providing an incentive 
for young people to engage in learning, games also have the potential to yield an increase in 
students’ learning outcomes (Kolovou, van den Heuvel-Panhuizen, & Köller, 2013). Although 
much of the research on the effectiveness of gaming on learning is inconclusive at this point, there 
are strong indications in the literature that appropriately designed and constructively used games 
can support experimentation with mathematical and statistical ideas in authentic contexts, and can 



be used as the machinery for engaging students in problem solving activities, and for promoting the 
attainment of important competencies essential in modern society (Lowrie & Jorgensen, 2015). 

While digital educational games can provide a range of potential benefits for statistics teaching and 
learning, high quality, developmentally meaningful, digital games for students are less common 
than hoped. There is a wide variability in content, scope, design, and appropriateness of pedagogical 
features, with many educational games including mediocre or even inappropriate content, being 
drill-and-practice, and focusing on basic academic skills rather than on high-level thinking. 
Nonetheless, some exceptional exemplars that can help create constructive, meaningful, and 
valuable learning experiences do exist. One promising type is coding gaming software, which 
teaches students the concepts behind programming in a playful context.  With an increasing focus 
on programming and coding finding its way onto the curriculum in many different countries across 
the world, some innovative, educationally sound game-based learning environments that support the 
development of computer programming skills from a young age have begun to appear. Several 
educational applications are currently available for helping students with no coding background or 
expertise to grasp the basics of programming through the exploration and/or creation of interactive 
games (e.g. Scratch, ScratchJr, HopScotch, Bee-Bot). Often, coding game applications enable 
students to share their games with others, and to play or edit games programmed by others. 

Having taken their inspiration from Logo (Papert, 1980), educational programming environments 
promote a constructionist approach to technology use, with the emphasis being on students using 
technological tools to become creators instead of consumers of computer games. In addition to the 
provision of a highly motivational and practical approach for introducing students to computer 
programming and developing their computational thinking, coding software provide rich 
opportunities for the reinforcement of problem-solving, critical thinking, and logical thinking skills 
(e.g. sequencing, estimation, prediction, metacognition) that can be applied across domains.  

Methodology 
Participants and context 
A total of four workshops were organized and each one lasted for 2 hours. Twenty-six students 
(N=26, 16 male, 10 female), aged between 8 and 13, participated in all four workshops during July 
2016 (summer school vacations) on a volunteer basis.  An invitation to parents was placed in social 
media and the students were selected from a priority list based on registration date. All participants 
had the right to pause or stop their participation entirely at any given moment. Additionally, all 
parents provided their written consent regarding the use and publication of their students’ work for 
research purposes. In this paper, all names used are pseudonyms in order to preserve participants’ 
anonymity.  

To serve the role of the gaming platform, our research team chose Scratch, a visual programming 
language developed at the MIT Media Lab that consists of reusable pieces of code, which can easily 
be combined, shared, and adapted. Scratch can be used to program interactive stories, games, and 
animations, art and music and share all of these creations with others in an online community 
(http://scratch.mit.edu/). It was created to help students think more creatively, reason systematically, 
and work collaboratively, all of which are essential skills required for the 21st century (Resnick, 
2007). The software was first released in 2007 while Scratch 2.0, which is its second current major 
version, came out in 2013. In this study, we deemed Scratch 2.0 as the most appropriate option to 



adopt, due to the fact that there is very little research on how coding learning environments could be 
used as a tool for developing concepts related to the stochastic.  

For each workshop, a different set of extra-curricular activities were closely designed based on 
constructionism (Papert, 1980), and each meeting was structured in such a way as to promote an 
unhurried and creative process. The first workshop aimed to a general introduction to the software 
and in the second workshop students worked on activities based on the movement of a sprite around 
the screen. In the second workshop the x and y axis were discussed based on the position of a sprite. 
In the third workshop, students worked on variables and the idea of randomness through 
experimentation with a flipping coin game, and ways to pick random block. Finally, students were 
asked to create their own game based on what they had learned. In the last session, students 
continued their games from their previous meeting, changed them if they wished, and asked a friend 
to play their game so to identify any bugs and fix them. 

Data collection 
For the purposes of collecting our data, we used a variety of methods, including live video 
recording of the workshop and screen capturing of the participants’ interactions with the software. 
Other sources of data also included field notes and classroom observations. In six cases, we also 
conducted individual mini-interviews of selected students (interviewed while engaging in game 
design) that expressed some exceptional ideas regarding the element of randomness, in an attempt 
to study further their contributions to this project. For the purpose of analysis, we did not use an 
analytical framework with predetermined categories. What we instead did was, through 
careful reading of the transcripts and field notes and examining of the various interactions for 
similarities and differences, to identify recurring themes or patterns in the data. To increase the 
reliability of the findings, the activities were analyzed and categorized by all three researchers and 
any inter-rater discrepancies were resolved through discussion. 

Insights from students’ reasoning about probability in their Scratch games  
In the following paragraphs, we present two main categories of students’ reasoning about 
probability in the context of creating their Scratch games. First of all, we describe how students 
used the idea of chance and randomness in their games and secondly how they used spatial 
representations for expressing probabilistic ideas. The students’ games we present here were from 
the last workshop.  

The role of randomness in designing games 
In our sessions, students experimented with different mathematical and statistical ideas while 
designing their games.  One of the ideas brought up during the class discussion was that of 
randomness. The 'pick random' block, which allows users to bring randomness into Scratch 
projects, was casually explained to students, in a similar way to how the rest of the blocks were 
introduced. It was interesting to find out that the students ended up using randomness in their 
games. 

  



 

 

 

 

 

 

 

Figure 1: Eric’s and Nicole’s random game with letters 

Eric (a ten-year-old boy) and Nicole (a twelve-year-old girl) designed a game where the first letter 
of their name appears randomly when you click on the board. It is like a tic-tac-toe, but the player is 
not sure where the letter goes. 

Eric: I like the fact that the letters appear in a random position. This makes our game more 
interesting. 

Researcher: Why is that? 

Nicole: You have to see the probability, where it might go [the letter], and then select the 
letter.  

Eric: You don’t know at the beginning…You need to make a guess. If you don’t look at the 
results and just play, then you are more likely to lose…but nothing is for sure. 

Eric and Maria used the random rule in their game in order to make it more interesting. 
Randomness and uncertainty made their game to have action. Nicole referred to the concept of 
probability in order to make a correct guess based on the results of the game. So, students were 
playing the game and trying to guess where the next letter would appear based on the idea that the 
probability of each letter to appear somewhere is equal-according to their design.  

Charis, a nine year old boy, also made a game by using randomness.  

 

 

 

 

 

 

 

Figure 2: Charis’ dragon random game 

The aim of Charis’ game is to click on the dragon. When the dragon is clicked, it appears in a 
random position. The magician then follows the dragon to its new position.  



Charis: You know, I made it just for fun! It is nice to see the dragon moving around without 
knowing…But I will develop it. I made the dragon to move all over the place. 

Researcher: So, will it appear again in this position we see now? 

Charis: Of course! I will make something to count where it goes, so we will see which 
position it takes…May be to touch something…Let me see what I can do… 

Charis realizes that randomness is something that you don’t know in advance. It is interesting that 
he designed a dragon with a random move and then he tried to predict its movements by counting 
the dragon’s position each time. He admits that this is how the game begins to have fun! The idea of 
using the x and y variables in a random way, and of trying to predict the next position prompted 
Charis to use the idea that the dragon will move on the pre-designed space and after a long time 
(law of large numbers) the dragon will pass from every point (based on x and y).  

Spatial representations for expressing probability 
Chris, a 13 year-old boy, was one of the students who really liked using randomness in his games. 
Chris designed a game of a dog crossing the street. The aim of the game is to help the dog to cross 
safely (without touching any of the cars).  

 

 

 

 

 

 

 

Figure 3: Chris’ first version of random game 

Researcher (R): So, what is the game here? 

Chris (C): Try and see… 

R: Interesting… [While R is playing the game.] 

C: Yes, you don’t know where the car goes. You should be careful! 

R: Why? The car will move and cross the road. 

C: Not only…It [the car] moves randomly on this road I design. That’s the interesting 
part…So, you don’t know where it goes. And when you touch it! You see! The dog 
touched the car. Do you like it? 

We have also here the existence of randomness in games as a factor of making a game interesting. It 
is important how Chris refers to the dog’s movement - the one that the player controls - and not to 
the car’s movement. This also shows a realization that randomness in his game is something 
‘uncontrolled’ and this was made on purpose for making the game interesting. 
  



 

R: Why didn’t you just make the car to move forward? 

C: This is boring…just seeing the cars and move around. Now you don’t know…Of course 
it is easy with one car. …Chris is making different things on his game.  

We found it interesting that Chris’ game was a non-deterministic model of crossing a road. His idea 
of moving the cars in the road randomly is what makes his game appealing. Chris designed a car 
that moved in a random way. Although a random movement of the car might have sufficed for the 
aim of the game, he also used the road as a spatial sample space and tried to increase the difficulty 
of the game by increasing the number of cars. 

 

 

 

 

 

 

 

Figure 4: Chris’ second version of random game 

R: What have you done? 

C: I just put two cars, a counter, made a bigger road and I changed the dog. I changed the 
code of the cars. 

R: Why? 

C: It is better this way. I made the road bigger and I asked the cars to move randomly all 
over the road. This makes it more difficult for the dog to cross.  

[The researcher plays the game. The dog cannot cross the road. The counter keeps track of her 
failed attempts.] 

R: It is very difficult that way. 

C: Yes [he laughs]. This is something that reduces the probability of the dog safely crossing 
the     road to less than fifty-fifty. Actually, it makes it go to zero. 

R: Would you like to play it? 

C: Actually, that way is not interesting…it’s not fair. You know…I can make some change 
to the design. I will make the dog smaller. That will make it fair…Let’s see. 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 5: Chris’ final version of random game 

Chris uses the idea of fairness and the probability of 1/2 in his game while he is designing and re-
designing his own game. It is interesting that although in the workshop we never referred to spatial 
probability, Chris in his game connects the concept of space with the concept of probability. We can 
see that he did not change the code in his game, although he could have done that in order to reduce 
the probability of the car crossing the road. What he did instead was to reduce the space in the road. 

Discussion and conclusions 
The aim of the paper was to explore how students use elements of reasoning about probability when 
they design their own games. The students in the study experienced statistics as an investigative, 
problem-solving process. Although we tried to separate the use of randomness from the spatial 
representation of probability, the reader might notice that this was difficult to do. Because of 
designing, students used simultaneously the idea of randomness in terms of the icons they had in 
their game. We were really surprised with how these ideas came out without even mentioning what 
sample space is, or how we calculate probability. The design, coding, revision, and debugging of 
computer commands, helps students develop higher order problem solving skills such as deductive 
reasoning, while at the same time improving their conceptual understanding of key mathematical 
and statistical ideas. Thus, it becomes crucial to incorporate computer programming into existing 
statistics curricula. Game coding learning environments provide an ideal opportunity for doing so in 
an engaging, non-threating, and child friendly manner (Resnick, 2007). Educators and others can 
ensure that coding gives opportunities for new expressions, even for reasoning about probability.  

This increased popularity and proliferation of computer games has led to a widespread interest in 
their use as learning tools. Several statistics educators have, in recent years, been experimenting 
with digital games, investigating the ways in which this massively popular worldwide youth activity 
could be brought into the classroom in order to capture students' interest and facilitate their learning 
of statistical concepts (e.g. Pratt et al., 2008; Paparistodemou et al., 2008; Meletiou-Mavrotheris, 
2013; Erickson, 2014). Our study shows evidence that randomness is an important factor in playing 
games and a software like Scratch can give opportunities to fill the gap between intuition and 
conceptual development of probabilistic ideas (Batanero & Diaz, 2012). When we reconsider prior 
work on randomness (for example, Pratt, 2000), we find resonance in the use of symmetry between 
apparent fairness and the tendency for children to consider the appearance of the dice (or coin, or 
spinner…), something that we also found in Chris’ case. The present study showed some insights 
from students’ reasoning about probability while they were designing Scratch games. We intend to 



further analyse our collected data and to continue with further research on how students express 
probabilistic conceptions like the law of large numbers and how students use and elaborate their 
codes. 
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Using spreadsheets to teach probability in French high school 
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Including a ‘frequentist’ point of view has resulted in experimentation becoming an important issue 
in the teaching of probability in high school. Spreadsheets are now widely used, but the status of the 
results produced and how to use them are not always clear for the students, since two domains are 
at play in turn: statistics and probability. Through the French example – but this can also be applied 
to the teaching of probability in other countries − this paper reviews some questions about 
spreadsheets, namely simulating random experiments and shifting from discrete to continuous 
distributions.  

Keywords. Probability, simulation, continuous distribution, spreadsheet. 

In France as in many other countries, probability has become a prominent subject in the teaching of 
mathematics, in link with the growing importance of numerical data in everyday and professional life 
and the development of technologies allowing to process them. Conversely, the point of view on 
probability has evolved, taking into account a ‘frequentist’ point of view implying students making 
experiments. Among the technological tools spreadsheet has become much used in the teaching of 
probability, the main reason being that it makes getting a large number of tries of a random experiment 
very easy and fast. This paper is based on the French current situation, but it certainly can apply to 
many other countries all over the world. Its aim is to give some insights on how new didactic questions 
have occurred and have now to be tackled by teachers in their classes. As it has already been noticed, 
“it is not good enough to only consider which technology to use, but (…), in order for effective 
learning to take place, it is how the technology is integrated into the curriculum and learning process 
and how the teacher uses it that are vital” (Pratt, Davies & Connor, 2008, p. 98), the more so that 
“most teachers have little experience with probability and share with their students a variety of 
probabilistic misconceptions” (Batanero et al., 2005, p.1). I shall discuss some questions about the 
use of spreadsheet in high school, namely: 

- the nature of simulation, implying using a model of the random experiment and making in turn 
intervene probabilistic and statistical paradigms; 

- possible purposes of a simulation: visualize the law of large numbers, make conjectures, bring out 
the notion of stochastic model, help solving probability problems… 

- the suitability of spreadsheet for introducing continuous distributions (exponential, Gaussian…). 

For this, I shall use a theoretical framework including Kuzniak’s Mathematical Working Space 
(MWS), Kuhn’s paradigms and Duval’s semiotic registers.  

Theoretical framework 

In order to get a holistic view of the work undertaken by somebody solving a mathematical problem, 
one has to take into account not only the domains at play but also the cognitive processes involved. 
The Mathematical Working Spaces, or MWS, framework (Kuzniak, 2011) considers two “planes” 
−epistemological and cognitive−, each one having three components: 



- in the epistemological plane: a set of representations (‘real space’), a set of artefacts (instruments) 
and a theoretical reference system; 

- in the cognitive plane, three processes: visualization, construction and proof 

An important feature of the model is the interaction between these two planes according three 
dimensions, semiotic, instrumental and discursive, linking each component of one plane to a 
corresponding component of the other (Figure 1). The model also assumes that efficient mathematic 
work results from involving the 3 dimensions together with interactions between them. 

 
Figure 1: The MWS model (after Kuzniak, 2011) 

Kuzniak distinguishes 3 main MWSs: 

- reference MWS, defined by the syllabus, 
- suitable MWS, planned by the teacher to be implemented in his/her class, 
- personal MWS of the student. 

Kuhn (Kuhn, 1962) defined scientific paradigms as "universally recognized scientific achievements 
that, for a time, provide model problems and solutions for a community of researchers," (page X of 
the 1996 edition). This notion was adapted by Kuzniak to taught mathematics, regarding the 
epistemological plane. In the case of probability several paradigms can be distinguished (Parzysz, 
2011): 

- a realistic paradigm (R), i.e. the real (‘concrete’) random experiment itself; 
- a paradigm (P1) resulting from a first (“light”) modelling of the real experiment by establishing 

a precise protocol, a list of issues and assigning a probability to each of them; 
- a paradigm (P2), in which notions of random experiment and probability are defined, together 

with properties of probability which can be used for solving problems. 
- a paradigm (P3) of the axiomatic type, taught in university. 

N.B. In France, at secondary level, only P1 and P2 paradigms are considered, the latter being possibly 
extended with some elements of calculus at the end of high school  (P2+) for the study of continuous 
distributions. 

Regarding the semiotic dimension I shall refer to the notion of ‘semiotic register’, i.e. a coherent 
semiotic system allowing 3 cognitive activities: produce identifiable elements (representations), 
transform an element into another of the same register, convert an element into an element of another 
register (Duval, 1995). For Duval, a better knowledge is obtained through the use of several registers 
interacting one with another. He also indicates that the shift from one representation to another one 



is more efficient when there is a ‘semantic congruence’ between them, i.e. when there is a one-to-one 
correspondence between signifying elements of the two representations. 

Simulation 
In the beginning of its being studied in high school, probability was taught as an application of 
combinatorics, through Laplace’s formula (probability = number of favorable issues / number of total 
issues). This ‘cardinalist’ point of view implies that all the issues have the same chance to appear, 
and then other random phenomena had to be left aside. For instance this is the case for drawing pins: 
when tossed, they may come down in two ways, like coins, but no argument of symmetry can help 
and one cannot assign a plausible a priori probability to each of them. In such a case you have to 
observe the relative frequencies of the issues, assuming that they will ‘converge’ toward their 
probability when the number of tries grows ‘to infinity’. This is the ‘frequentist’ point of view, 
theorized by the law of large numbers. This point of view was introduced in French high school 20 
years ago. Anyway, whatever is the point of view on probability, one has to decide which probability 
will be allocated to each issue of the experiment, the difference being that the decision is made: 

- either on a priori ground (e.g. ‘symmetry’ of the issues) in a cardinalist approach; 
- or on a posteriori ground (frequencies of the issues) in a frequentist approach. 

In past days, teachers were reluctant to let their students perform sequences of a random experiment, 
mostly because it was noisy and requested too much time, but the coming of computers in classrooms, 
namely spreadsheet including a so-called ‘random’ generator (see for instance Kroese et al., 2011), 
provided them with an alternative path (although starting with real experimentation remains necessary 
to materialize the link with reality). Spreadsheet is now widely used to simulate random experiments, 
with various purposes. 

1) Spreadsheet can be used to visualize the compatibility of the cardinalist and frequentist points of 
view, and finally get the students confident in the generator. For this purpose one has to introduce 
into the machine a probability for each issue. Then the evolution of the relative frequencies on fairly 
large numbers of tries can be observed (Figure 2), this process being in fact a visualization of the 
‘law’ of large number (belonging to the P3 paradigm). 

 
Figure 2: Relative frequencies of heads in 1000, 2000, …50000 tries of heads and tails  

Thus performing a simulation implies constructing at least a simple probabilistic model (within the 
P1 paradigm), in order to implement it in the machine. Hence simulation is a ternary process: what is 
implemented in the software is not the real experiment but a theoretical model of it (Figure 3). 
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Figure 3: The ternary process of simulation 

In such a task several registers are appealed to in turn: natural language, symbolic language (software) 
and Cartesian graphs. The semiotic-instrumental plane of the MWS is at play, involving the initial P1 
paradigm (finding a model of the experiment), then shifting to another paradigm: descriptive statistic 
(DS) (results of the simulation). It is only when a conjecture about the experiment is asked that the 
discursive dimension appears (within P2 paradigm). 

Both as teacher and teacher trainer, I could observe that some students find it difficult to distinguish 
between statistical and probabilistic paradigms (the more so than some notions are similar), somewhat 
analogous with geometrical paradigms.  Here, like with GDS, the dynamic feature of spreadsheet, 
allowing an easy and fast observation of many samples −and consequently many different results 
(Figure 4)−, can help distinguishing the P2 paradigm (theoretical value) from SD (observed value).  
But French textbooks do not put the stress on the distinction between the two domains, in particular 
using the notions in a very loose way (e.g. confusion average / expectation), this probably reflecting 
actual teaching in classrooms. Similarly, about the instrumental dimension a tendency of textbooks 
to ‘overguide’ the students, in order to help them deal with the software, must also be noticed. 

 
Figure 4: Relative frequencies of heads in 50 samples of 100 tries of heads and tails 

2) Simulation can also be used to estimate the value of a probability. For instance, if various models 
of a same experiment give different probabilities for a given event, a simulation mimicking the 
concrete experiment can tell which model(s) can be discarded. This is the case with the following 
problem, which was the basis of an action research with high school students introducing the 
frequentist approach (Parzysz, 2007): 

Toss a well-balanced coin; if head (H) happens you win and if tail (T) happens you toss the coin 
again; then if H happens you win and if T happens you lose. What is your probability of winning? 

In 1754, Jean Le Rond d’Alembert thought that one has 2 chances against 1 to win, at variance with 
“all authors” claiming that one has 3 chances against 1; Mimicking the process with spreadsheet leads 
to some difficulty, since one has to distinguish between the two possible results of the first toss. For 
an easier implementation in the computer the teacher may decide that the coin would be tossed in 
every case. From a probabilistic point of view the two processes are equivalent but all students are 
not convinced. (Historically, a similar argument opposed Blaise Pascal with Gilles Roberval in 1654). 
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The reason for such a reluctance is that the second process is not semantically congruent with the real 
experiment. 

Table 1 shows the corresponding spreadsheets. 

Try n° 1st toss Again? 2nd toss Result 
1 H no  won 
2 T yes H won 
3 T yes T lost 
4 T yes T lost 
5 T yes H won 
6 H no  won 
7 H no  won 

 

Try n° A coin B coin Result 
1 H T won 
2 T H won 
3 H T won 
4 T T lost 
5 H T won 
6 T T lost 
7 T H won 

 

Table 1: Spreadsheets of the two simulations 

 When comparing the sheets, one can see that putting anything (H or T) in the empty boxes of the left 
sheet has no influence on the final result. After that one can forget the “Again?” column and have a 
second toss in all cases, i.e. replace the initial procedure by the second one without any inconvenience 
(Figure 5). 

 
Figure 5: From experiments to model 

Thus a visual comparison within the register of double entry tables, in the semiotic-discursive plane, 
can be a means for deciding if two models are equivalent. And for younger students this can be a 
possible path towards the bnotion of stochastic model. 

3) A most widespread type of activity in French 10th and 11th grades describes a random experiment 
and then asks the student to simulate it a number of times with the spreadsheet, observe the results 
and formulate a conjecture about the probability of one of the issues or the possible value of a 
parameter. Then he/she is asked to solve the problem using the probability theory and compare the 
theoretical results with the initial conjecture. 
In this process several paradigms are at play. As seen above, starting from reality (R), the student 
shifts to probability (generally P1), then moves to descriptive statistic (DS) to extract information 
from the spreadsheet (frequency, mean, etc.) and back to P1 to formulate a conjecture; solving the 
problem within P2 will imply the discursive dimension (Figure 6). 

N.B. In such activities the spreadsheet is used as a multi-purpose tool: it intervenes in turn as logica l 
tool (instructions for software), random generator (simulation), copying machine (results of tries), 
calculator (statistical parameters) and plotter (diagram). 



 
Figure 6: The paradigms and processes involved in the activity 

Continuous distributions 
N.B. This point is based on a recent research (Derouet & Parzysz, 2016). 

The French syllabus for 12th grade includes an introduction to continuous probability laws, and the 
official resource document for that level suggests starting with a statistical continuous variable, in 
order to approximate the histogram of a sample by a continuous curve “which fits the histogram, the 
area under the curve being equal to 1”. The general idea is to link a random variable X, not with a set 
of isolated probability values as was previously the case, but with a function f  (density) verifying : 
P(a ≤ X ≤ b) = ∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
 for any a and b with a ≤  b. This modelling process, which seems quite 

sensible, implies also a shift from statistics (DS paradigm) to probability (here P2+) and an essential, 
though transitional, point is histogram. This rises a difficulty, since spreadsheet cannot produce 
histograms, or rather what it calls histogram is in fact a bar chart. In order to overcome this problem 
one may widen the bars till they become contiguous (Figure 7), but this trick is restricted to cases in 
which all intervals have the same width. But the notion of density gets sense only with unequal 
intervals, since in a histogram the basic notion is area, not height. Thus in this case spreadsheet 
appears to be of no help if the software does not permit producing real histograms.  

  
Figure 7: From bar chart to pseudo histogram 

This same syllabus includes the study of normal law and recommends introducing the standard law 
N(0, 1) from the observation of the distribution of Zn= 𝑋𝑛−𝑛𝑝

√𝑛𝑝(1−𝑝)
, where Xn follows the binomial law 

B(n, p). Then the bar chart for Zn is approximated by the curve of a function of the x → λ.exp(-ax2) 
type. As above a shift from discrete to continuous law occurs, but this time spreadsheet can help since, 
contrary to the general case, the values of Zn are equidistant (the distance being 1 √𝑛𝑝(1 − 𝑝)⁄  ) and 
then a pseudo histogram is suitable. 

All textbooks follow this scheme, in which three types of diagrams are at play in turn: first bar chart 
(for Zn), then pseudo histogram, then bell curve. Spreadsheet is necessary at every stage of the process, 
first to get the values of P(Xn = k) for 0 ≤ k ≤ n) and various values of n and p, then the corresponding 
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bar charts of Zn, then its pseudo-histogram and finally the (pseudo-)curve of the standard normal law 
(in fact a polygon). The main difficulty comes from the histogram and the curve looking proportional 
but not equal (Figure 8) because the distance between the values of Zn is different from 1 (see above). 

  
Figure 8: Pseudo-histogram and pseudo-curve 

This problem of scale is tackled rather awkwardly in textbooks, as is the standardization of the 
binomial variable. However, the question appears when one wants to compare the shapes of the bar 
charts for several binomial distributions (Figure 9); one may then think of a ‘calibration’, i.e. changing 
the units on the axes, in order to get diagrams with the same average and height. 

 
Figure 9: Comparison of binomial distributions (B(100, .1) and B(50, .4)) 

In the process the semiotic and instrumental dimensions of MWS are much appealed to, but the 
discursive dimension is not much present, due to the students’ lack of knowledge. 

Conclusion 
The current French high school curriculum starts with descriptive statistics (from 6 th grade on) and 
later goes on with probability (at 9th grade), introduced through a dual, frequentist and cardinalis t, 
point of view involving several mathematical paradigms (DS, P1, P2, P2+). Experimentation has 
become a central issue in teaching probability and in this process spreadsheet extends real tries, for 
the reason that it is incomparably faster once its use (language, gestures) is mastered. It is now 
included in the semiotic-instrumental plane of the MWS and can play an important role in many ways 
and for multiple purposes. Some points are of importance for teaching with simulation, namely pay 
attention to the model subjacent to the ‘real’ random experiment (even when it does not clearly 
appear), help students distinguish between the statistical and probabilistic paradigms, bring out the 
idea of stochastic model…  When coming to continuous probability a sensible way to introduce it 
consists of approximating a histogram by a continuous curve. Unfortunately usual spreadsheet cannot 
produce general histograms –i.e. with unequal classes− but only bar charts, becoming possibly 
‘pseudo histograms’, and histograms should have to be produced with another software. However 
class experimentation showed that a pseudo histogram may prove useful as a transitory artefact in the 
particular case of shifting from binomial to normal law. 

On the whole, although spreadsheet was not conceived for educational but for professional purposes, 
it has now become a quite appreciable, if not indispensable, tool for the teaching of probability in 
high school. 
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The paper presents a proposal of a teaching practice aimed at higher secondary school students, 
which intends to enhance discussion on the meaning and interpretation of probability, a topic which 
is often neglected in Italian schools. The authors are convinced that turning the traditional teaching 
method upside down - that is, proceeding directly to a problem solving approach with the aid of 
computers as programming tools - better develops in the students the ability to analyse and address 
uncertain situations correctly, and consolidates a probabilistic mentality. The chosen method was a 
phenomenon-inductive approach with the help of simulations, which encouraged the formulation of 
hypotheses and speculation concerning random phenomena. 

Keywords: Computer-based simulations, problem posing and solving, programming environment, 
random phenomena, secondary high school.  

Introduction 
Probability is a formidable tool for investigating the world around us, so it definitely ought to be part 
of the education of informed citizens. The importance of the calculus of probability in the higher 
secondary school curriculum in Italy had already been acknowledged by the ministerial experimenta l 
curricula1.  That is because the topic of probability lends itself well to mathematical and formal 
elaboration processes of sensible reality, as well as numerous applications which project a dynamic 
vision of Mathematics open to the real world. Other European countries have also contributed to the 
debate on the meaning and interpretation of probability, alongside the development of mathematica l 
theory, by including it in the school curriculum (Ahlgren & Garfield, 1991; Shaughnessy, 1992). 
However, efforts in this direction in most cases have not produced significant results, that is to say 
the topic has not received adequate attention for a number of reasons, among which the teachers' 
insufficient education and training stand out (Stohl, 2005). The fact that in Italy the teaching of 
probability in higher secondary schools has been relegated to a secondary and often marginal level 
has led with time to a number of misconceptions, which can have dangerous consequences, especially 
when one takes into consideration the strong growth of gambling. Learning about probability helps 
to understand the structure of gambling, but probability has much more important applications2. The 
difficulties in the classic approach have so far represented a real obstacle to classroom teaching and 
learning of the topic, not only in Italy but also in other countries (Batanero, et al., 2005). However, 
in recent years the growing interest for statistical methods and the use of information technology have 
contributed to the study of probability as a limit of stabilized frequency (Biehler, 1991). The 
                                                 

1 PNI (Piano Nazionale Informatica) in the second half of the 80s and Brocca at the start of the 90s. 

2 One only has to think of modern Physics, Biology, Economics, telecommunications, etc. 



modelling point of view was adopted in recent years, linking probability teaching with statistica l 
thinking. The introduction of efficient computers in secondary education allows us to simulate models 
resulting from statistical observations and to introduce students to the large field of statistica l 
inference. The advantage of using simulations is that we can overcome much of the difficulty 
encountered when using the formal rules. The present paper fits this framework, and proposes an 
example of teaching practice - aimed at higher secondary school students - which intends to enhance 
discussion on the meaning and interpretation of probability. 

Theoretical framework 
In the Italian Secondary school the approach to probability is either classic or frequentist. In 
particular, the classic approach has long been dominant; but in recent years the frequentist approach 
has also been used. The classic approach, based on combinatory calculus, is very hard for the majority 
of students because of the calculations involved in solving the formulae. This perspective introduces 
an a priori approach to probability in which probabilities can be calculated before any physical 
experiment is performed (Prodromou, 2014). The frequentist approach is based on observations of 
relative frequencies of an event associated with a random experiment that is repeated a sufficient ly 
large number of times under the same conditions. In this view, experimental probability is estimated 
as a limit towards which the relative frequencies tend when stabilizing (Von Mises, 1928). The idea 
of stabilization is based on the empirical laws of large numbers. However, the frequentist approach 
does not provide the exact value of the probability for an event and we cannot find an estimate of the 
same when it is impossible to repeat an experience a very large number of times. It is also difficult to 
decide how many trials are needed to get a good estimation for the probability of an event (Batanero 
& Díaz, 2012). To adopt one or the other approach does not help the students to understand the 
meaning and conceptual scope of the calculus of probability; it is even detrimental because it widens 
the gap between formal education and actual practice (Pfannkuch & Ziedins, 2014). So we need to 
look for a synthesis of the two approaches focused on problem-based learning, which also stresses 
connections with inductive applications and reasoning. Today all this is possible thanks to technology, 
which both supports training activities effectively, and can itself be the object of the training, and deal 
with the related problems. The use of appropriate didactic software, for example, while drawing 
attention to conceptual aspects of the methods, also familiarises the students with the handling of 
data. The programming environments - already familiar to the learners - which are used as mathematic 
tools to simulate and analyse casual experiments, are very productive. Computer simulation in fact 
allows to reproduce a model of a real or imaginary system; from a learning point of view, it facilita tes 
learning ‘through discovery' and ‘programmed learning'. Moreover, when teaching probability it is 
fundamental to make effective and efficient representations which help to clarify and explain why 
some resolving approaches work and aid generalisation. The practice of programming is an important 
resource in teaching because it is at all effects an infrastructure for the representation of mathematica l 
objects; in this case, simulation through the realisation of algorithms and their implementation helps 
the student to understand the importance of using models to describe reality and at the same time to 
formulate clearly and in detail the theory at the basis of the phenomenon to be represented. This paper 
presents a teaching proposal which emphasises the value of information technology to support 
probabilistic reasoning, and at the same time moves beyond pre-packaged didactic software which 
imply the rigid application of ‘recipes' in limited contexts and cannot be easily applied to models in 



real situations. Specifically, the proposal harmonically combines the classic and frequentist approach 
to probability into a pedagogic perspective which sees the computer as a programming tool in the 
MatCos3 environment. The authors aim to study and experiment new curves in the field of teaching-
learning of the calculus of probability taking full advantage of computers, whose potential has already 
been well illustrated by William Feller in his book (New York: Wiley, 1950). 

Methodology 
The psychology of conceptual learning has shown how concepts and judgment are formed along a 
lengthy pathway which starts from often confused or even distorted intuitions. These however 
become progressively clearer as new cases either confirm or disprove the initial assumptions, thanks 
to the reflections triggered by the new experiences. This is also true for probability, one of the 
concepts which is most likely to be misunderstood or distorted. Form the didactic point of view, 
computer programming plays a crucial role in the creation of social interactions which can assist 
students in the difficult transition from an empiric and objective interpretation of numbers to a 
relational and functional one. Based on these premises, the choice of methodology has privileged a 
phenomenological- inductive approach, which encourages the formulation of hypotheses and 
conjectures on random phenomena. In Figure 1 we can see the synoptic outline of the process: 

 
Figure 1: Model of the didactic procedure  

The model in Figure 1 consists of five phases, with appropriate intermediate steps, which lead to the 
next phase. In practice, starting from reality, first we investigate it; then, after mathematisation, we 
derive rules of behaviour to be applied to reality itself. The process is carried out encouraging 
inductive reasoning, in an effort to blend the topics and solution methods while leaving plenty of 
opportunity for discovery. The simulations allow the students to take stock of the situation and start 
again from what they already know, to make appropriate considerations and understand why 
phenomena occur, and their implications. In particular, computer simulation through programming 
represents a constructive and cognitive activity because it enables the student to acquire skills, 
strategies and techniques for the solution of problems through the concepts of variable, procedure, 
repetition and reoccurrence; concepts which are also cross-curricular. 

Design of the teaching procedure 
Here we provide details of all the phases of the didactic model described previously. 

                                                 
3 Designed and developed by the Interdepartmental Centre for Didactical Research of the University o f Calabria, and 

widely tested as part of MIUR projects (Ministry for Education, University and Research). 



Problem posing 

The teacher proposes to the students the following problem situation: 

For a tour in Sicily, a well-known airline company provides a small plane with 23 seats laid out in the 
following way: the first row has 2 seats while the others have 3. Those wishing to travel must book on-
line through a dedicated platform, which allocates seats in a completely random way. Luisa is the first 
to access the booking platform; how probable is it that the system allocates her a seat in the first row? 
If Luisa also books for her husband, does the probability that the system allocates at least one seat in 
the first row remain the same? 

A careful reading of the text is followed by a discussion guided by the teacher. Such a process of 
verbalisation is important from the cognitive point of view, and represents a first step towards the 
formalisation of the problem; at the same time, from the constructive viewpoint it becomes a bridge 
towards the next phase, to be carried out in groups, which implies the real simulation of the problem 
(Frassia, 2016). 

Real simulation 

The teacher divides the class into groups giving each group a non-see through plastic urn containing 
23 spheres, numbered from 1 to 23, identical in shape and material. The task for all the groups is to 
simulate the previous problem situation and register the results obtained on a chart. The following is 
the specific task set for the real simulation: 

"From the urn containing 23 spheres numbered from 1 to 23, one is taken out. Calculate the probability 
of getting a number lower than 3". 

The students simulate for n consecutive times (for example n=25) the casual choice of seat by drawing 
a numbered sphere, recording the results on a two-way chart. When comparing the results obtained 
by the different groups, the learners realise they are different, and this motivates them to make a 
sufficiently high number of trials in a limited time. The need for a tool which can aid the learning 
experience, an instrument able to simulate a high number of repeated trials within a reasonable time, 
thus becomes evident.  

Mathematical modelling 

The actual simulation of the proposed problem constitutes an important occasion to highlight the 
ability to switch from the plane of reality to that of mathematics; but in order for the teaching to 
contribute to a real understanding of the concepts and a solid acquisition of them, the use of computers 
as programming tools acquires great importance because it is a method, "a mental place" where 
students have a real chance to explore mathematical concepts, to formulate conjectures to be validated 
or refuted, and then to continue the experience of problem solving  (Frassia, 2015). Mathematica l 
modelling requires the students to reproduce some aspects of sensible reality in order to analyse and 
study them. Moving from the experience to the construction of the meaning requires the construction 
of a simple algorithm representing the simulation of the event.  Being able to work within a 
representation register and going from one to the other - that is what Duval (1993) calls ‘competences 
of dealing with and converting' - is fundamental because the meaning of mathematical objects is 
accessible only through their representations. The probabilistic model is made explicit and reviewed 
in a logical sequence thanks to the algorithm; furthermore, the use of a programming environment 



like MatCos adds value because it helps the students to reinforce their skills in handling mathematica l 
language (Costabile & Serpe, 2009, 2013).  The construction of the algorithm is an important and 
delicate phase because the students have to design the 'finite sequence of steps' that allows the 
computer to get to the solution. The steps of the algorithm are: 

Step 0  Assignment: n  (Simulation number). 
Step 1 Initialization:  cf = 0 (counter for the number of favorable cases). 
Step 2  Cycle (simulation of n prove consecutive) 

- Creating one variable a; 
- Control action: if (a = 1 o a = 2) then do 

 Increase counter cf. 
Step 3  Calculation:  p=cf/n. 
Step 4  Print action: cf. 
Step 5 Graphic representation: histogram of the absolute and relative frequencies . 

Virtual simulation 

The previous algorithm is easily implementable in MatCos. 
Code MCS1 
n=readnumber; cf=0; 

for(i from 1 to n) do; 

 a=int(random(1,23.99)); 

 if((a=1)o(a=2))then do; 

  cf=cf+1; 

 end; 

end; 

print("In ", n , " extractions, a number lower 

3 is taken out ", cf , " times "); 

v=Array(2); v(1)=cf; v(2)=n-cf; histogram(v); 

w=array(2);w(1)=cf/n;w(2)=1-cf/n; 

histogram(w); 

 

Figure 3: Output of simulation for n = 1000 

The students now proceed to the algebraic solution of the set problem and compare the results with 
the numerical values of the relative frequencies obtained in output. Summing up, considering the 
event: 
A = “Draw a number lower than 3, drawing a sphere from a pool of 23 spheres numbered from 1 to 23” 
The number of favourable cases and the number of possible cases related to the event A are: 

𝑐𝑓 = 2 𝑐𝑝 = 23

So, the probability of the event A is: 

𝑝(𝐴) =
2

23
≈ 0,087. 

From a comparison of the results obtained in output with the theoretical ones, the students realize that 
when the number of repeated trials increases, the value of the relative frequencies gets closer to the 
real value of the probability. 



A question still standing… 
The first question has now been answered, but the second is still standing: 

If Luisa books also for her husband, does the probability that the system assigns at least one seat in the 
front row remain the same? 

The corresponding question is made explicit in the following task: 
“From an urn containing 23 spheres numbered from 1 to 23 we pull out two spheres. Calculate the 
probability that at least one is lower than 3”. 

Supported by the experience so far, the students decide to start directly from the virtual simulat ion 
and so make some changes to the previous algorithm. They are convinced that the two questions must 
have the same solution, and that the teacher just wants to trick them. 
Revisiting the previous algorithm implies further steps. 
Here we report the steps of the algorithm and one output. 

Step 0  Assignment: n  (Simulation number). 
Step 1 Initialization:  cf = 0 (counter for the number of favorable cases). 
Step 2  Cycle (simulation of n prove consecutive) 

- Creating one variable a; 
- Control action: if (a = 1 o a = 2) then do 

 Increase counter cf. 
Else do 

- Creating one variable a; 
- Control action: if (b = 1 o b = 2) then do 

 Increase counter cf. 
Step 3  Calculation:  p=cf/n.. 
Step 4  Print action: cf. 
Step 5 Graphic representation: histogram of the absolute and relative frequencies.  

 
Figure 4: Output of simulation for n = 1000 

The students now proceed to the algebraic solution of the set problem and compare the results with 
the numerical values of the relative frequencies obtained in output. In the drawing of 2 spheres from 
a pool of 23 spheres numbered from 1 to 23, the students consider the event: 

E = “Obtain at least a number lower than 3” 
The event complementing event E: 

EC= “From the drawing of 2 spheres from a pool of 23 spheres numbered from 1 to 23, both are lowered 
than 3” 

 
 



So: 

𝑝(𝐸) = 1 − 𝑝(𝐸𝐶) = 1−
21

23
∙
20

22
=
19

55
≈ 0,170 

The students by now have all the necessary information to answer the second question in the problem, 
which requires a comparison of the probability of the two events: event A and event E. From such 
comparison it becomes apparent that the probability of the two events does not coincide. So the 
students’ prior conviction that the two questions of the problem - albeit expressed in formally different 
terms – share the same solution is proven wrong. The probability of event E is indeed bigger than the 
probability of event A. 

Conclusions 
The teaching proposal increases students' confidence on the effectiveness of statistical methods, and 
at the same time raises awareness of random events. The difficulties encountered during the learning 
phases of the mathematics of uncertainty can thus be overcome. Virtual simulation, through the 
practice of programming, plays an essential role because it helps the student to develop good problem 
solving skills. In particular, simulation aids the understanding of the concept of probability of an 
event, assigning to it a ‘degree of reliability' in the prediction of random phenomena. The novelty of 
this proposal is the setting up of an environment for the learning of probability, showing the close 
link between probability and statistics thanks to a very specific task (problem posing). The objective 
is to insist on the role of intuition because, in the majority of cases, students’ probabilistic intuit ions 
lead to erroneous convictions and answers. The use of computer programming enables the students 
to take explorative steps which can lead to the solution of  a problem and trains their ability to 
‘anticipate’ and "being able to see" in mathematics. The learner through the programme breaks down 
complex concepts into simple ones, thinks of and adopts new solution strategies, and compares with 
previous results. In so doing learners expand their mental processes and consolidate constructive 
knowledge. After all, education that promotes informed and solid learning cannot fail to redress 
wrong perceptions on the notions of probability and encourage reflection on its conceptual 
implications, but this had already been pointed out by Bruno De Finetti in 1967. 
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We report some initial results of an ongoing investigation about Mexican high school students’ (17-
18 years) reasoning when working with the sampling distribution (SD) for the first time in a regular 
classroom setting. Learning activities involve the usage of simulations and are part of a 
hypothetical learning trajectory (HLT) aimed at fostering a distributional and stochastic 
perspective of sampling and inference. We describe some appropriate strategies and limitations 
that students exhibited as evidenced by their a priori reasoning. 

Keywords: Sampling distribution, statistical reasoning, high school, inference. 

Introduction 
Several errors and limitations have been reported on statistical and probability education in the past 
decades (Batanero, Godino, Vallecillos, Green & Holmes; 1994). In recent years, the development 
and availability of educational software in these areas have allowed some researchers to explore the 
idea that notions or informal versions of different objects and processes embedded in such 
disciplines, such as statistical inference, can be introduced before tertiary educational levels 
(Zieffler, Garfield, delMas & Reading; 2008). In particular, we point out that a number of proposals 
use empirical SD’s and random simulations as key resources for developing appropriate 
conceptions and reasoning of fundamental statistical ideas, such as sampling, estimation and 
inference (e.g. Rossman, 2008; Batanero & Diaz, 2015; Garcia & Sanchez, 2015). Hence, we 
consider SD’s to be a strong candidate and a starting point for instruction and teaching, with 
assistance of technology, when introducing statistical inference. We report on some preliminary 
results of an ongoing investigation that uses an HLT (Simon & Tzur, 2004) aimed to develop and 
foster a distributive and stochastic concept of sampling based on the SD. We focus on the initial 
learning activity that explores students’ notions of probability, classification of most and least 
probable sample values, and the use of average as a measure for representation and summary of the 
SD. Related literature, method of inquiry, analysis of students’ performance and some final 
reflections and discussions are described. 

Some related literature 
There are a variety of interrelated elements that intervene in the process of construction, 
applicability and interpretation of statistical inference such as sample and population, statistic and 
parameter, distribution and variability, probability and significance, etc. Some researchers suggest 
that several conflicts and limitations of students, teachers and even professionals regarding their 
capacity to draw inferences from sample data are strongly related to a lack of or poor formation of 
concepts such as variability, sampling variability and SD’s. For example, a review by Herradine, 
Batanero & Rossman (2011) points out that people in general hold deep misconceptions about 
sampling and inference (e.g. representativeness heuristics, law of small numbers, incapacity to 
reason about many samples) that traditional teaching does not help to overcome, as it tends to focus 
on calculus and computations instead. Chance, delMas & Garfield (2004), and Liu & Thompson 



(2007) also indicate that a deficient or limited understanding of concepts such as the SD and 
probability could inhibit an appropriate reasoning of statistical inference. 

On the other hand, Fathom is a specialized software developed to assist teaching and learning in 
statistics and probability. It offers the possibility to, among other capabilities, generate random 
simulations that can cause the emergence of abstract and complex mathematical objects such as the 
SD. It also allows access to analyze how this concept behaves through the manipulation of its 
parameters (sample size, population parameters, number of samples); this opens the possibility for 
didactic treatment substantially different from the traditional one that parts from a theoretical 
posture. These are key resources that can potentially promote and foster students’ statistical 
thinking (Chance, Ben-Zvi, Garfield & Medina, 2007; Biehler, Ben-Zvi, Bakker & Makar; 2013) 
and, particularly, can introduce ideas of the logic behind statistical inference (Rossman, 2008). 

However, only a few of the aforementioned studies target high school students, with practically 
none having been conducted in Mexico. The actual curricula incorporate very few, if any at all, 
statistical and probabilistic content for elementary and secondary education; it is only for some high 
school programs that introductory courses of statistics and probability are included. In addition, 
traditional practices use no technology to assist teaching and focus heavily on computations. This 
makes us believe that students’ lack of experience with sampling and statistical inference within 
schools’ practices make them become highly dependent on wrong or inappropriate intuitions and 
misconceptions when making inferences. The presence of this conflictive situation, and the 
availability of research results that propose alternative ways to overcome such difficulties, have 
motived us to set our initial phase of this investigation: to explore and gain insight as to how these 
students reason when working with the SD, and with the assistance of Fathom (simulations of 
random samples), in order to better understand the extent of their reasoning and potential learning. 

Method 
A regular high school classroom of 44 students participated in the study (28 female and 16 male); 
they had previously taken an introductory course (traditional style) to Statistics and Probability 
containing descriptive graphics, measures of center and variability, introduction to classical and 
frequentist approach to probability, calculations of probabilities for simple events, probabilities for 
conditional and independent events. Students didn’t have any previous experience with Fathom. 

This particular learning activity is divided in two stages and was applied in two class sessions of 
two hours each (one stage per session). The problem was posed/introduced to students (described 
below) during the first stage and, in the second, they were allowed to work freely in pairs to respond 
some questions using the software. Data for analysis consist of students’ responses (using digital 
worksheets), observations of two teachers/researchers who also attended the sessions and some 
brief interviews. We are using principles and initial techniques of the Grounded Theory 
methodology (Glaser & Strauss, 1967; Birks & Mills, 2011) to analyze students’ responses; 
specifically, we are using: initial purposive sampling, initial (and open) coding, and concurrent data 
generation and analysis. These techniques have oriented our methodological approach by: (1) 
selecting appropriate participants to study the phenomena of interest (students’ reasoning); (2) 
depart from a pre-established theoretical framework and apply an open codification and 
categorization of data (based on incidents-patterns in procedures and arguments students exhibit 



when resolving the activities); (3) comparison between incidents-patterns and codes for a greater 
refinement. At this point, the initial codes provide a general description and evidence of students’ 
reasoning; our ongoing analysis focuses on identifying core categories, something at this time 
beyond the scope of this communication. 

The HLT and the unfolding of the learning activity 
The main goal of the HLT is to encourage and provide students with an image of sampling and 
inference grounded on the study and exploration of the SD from a stochastic and distributional 
perspective; a conception set apart from the one that usually consists of an image that just reflects a 
“mini version” of the population. This HLT includes eight learning activities organized in three 
phases: 1. Introduction to the SD (to obtain estimations of probabilities for samples’ outcomes; to 
generate an unambiguous method to identify usual or typical sample results and; to relate the 
average of the SD with the population’s parameters); 2. Analysis of the SD when sample size is 
modified (changes in form, sampling variability, estimations of probabilities and typical sample 
results); 3. Estimation of an unknown population’s parameters (assessing estimations based on 
sample size). In addition, after the three phases are completed, students must face a situation that 
requires the usage of (informal) hypothesis testing; a key aspect of interest in our research is to 
analyze students’ performance in order to evaluate how much they draw on their knowledge about 
the SD and aforementioned concepts to do so. 

The selected learning activity for this communication is the very initial one of the HLT and the 
core’s first phase. It is based on Saldanha & Thompson’s (2007) exploration of students’ thinking 
of sampling and inference, with the distinction of being focused on specific sample outcomes. Due 
to space restrictions, we do not include explicitly all the components for this activity (learning 
objectives and hypothesis about the learning process) but briefly describe the unfolding of the 
mathematical task and its procedure of application. 

The first stage of the activity follows a dynamic of an open class discussion guided by the 
teacher/researcher. It begins by presenting Mr. B to students: a small-medium size container 
composed of 7,000 beans, of which 50% are black beans and the rest 50% are pinto beans (Figure 
1); Mr. B represents a physical dichotomous population whose composition is initially unknown to 
students. The main interest at first is to estimate the total percentage of pinto beans based on a small 
sample outcome. After one student draws by hand a random sample of 10 beans from the jar, the 
starting question that opens discussion is: “is this result (sample’s %) enough evidence to assure 
that Mr. B has X% of pinto beans?” Some students are expected to intuitively detect sampling 
variability and ask to obtain more samples; the teacher encourage students to explore their argument 
by allowing them to draw as much samples as they consider necessary to propose a parameter. 

We have observed that students don’t pay much attention to high levels of variability and tend to 
hand-draw only a small collection of samples (less than 15), and then roughly conjecture a 
population percentage out of it using the frequencies, mode or average. After making this proposal 
(most likely different from 50%), the parameter is revealed to students and their “failed” estimation 
produces an engagement that is used to explore what parts of the process can be refined. Once the 
parameter is known to students, the exploration starts by the teacher proposing the classification of 
the obtained sample values as “favorable” (such as 40% - 60%) or “unfavorable” (replacing 



Saldanha and Thompson’s “usual/unusual” to highlight the tension between the presence of 
sampling variability and the expectation of obtaining sample outcomes that match or are very close 
to the parameter); the next step is to investigate how is it possible to quantify how expectable these 
results might be and how much for those considered the opposite. That is, we land and focus on 
obtaining probabilities of sample outcomes through the SD. 

Then the teacher guides discussion to the proposal of generating many samples by posing the 
questions “What if we repeat this experiment a lot of times? Could the generation of many samples 
help us to calculate a probability or identify which are the most and least likely values?”. The 
second stage of the task begins and Fathom is used to simulate a random collection of 300 sample 
outcomes and to generate a graph/distribution out of them (an empirical binomial SD emerges, with 
n = 10 and P = .1, that students can generate repeatedly instantly using the software). Then the 
students are organized in pairs to freely respond a series of questions using the software and digital 
worksheets, which aim to explore key aspects of the SD such as estimations for probabilities, most 
frequent/probabilistic values and the identification of center. We extract for this report the analysis 
of the following items: 

a) Express a number from 0% to 100%, which represents how likely you consider it that you’ll get a 
value of 70% of pinto beans in the sample #301 (n = 10). Write down your procedure and any 
calculations you made. 

b) Which of all possible sample percentages do you think are the most likely to obtain in sample 
#301? Which are the ones you consider to be the least likely? Describe the method you used to 
select those values. 

c) Express a particular value that summarizes and represents all 300 percentages obtained in a 
particular simulation. Explain your procedure and include any computations you made. 

 

 

 

 

Figure 1: Mr. B (left) and display of an empirical SD using Fathom (right) 



Results: Students’ responses 
Codes for summarizing students’ responses in question (a) are: 

  Codes: Procedures and arguments 
Makes 

computations: 6 
pairs 

Computes correctly an estimation for the probability: provides intervals or 
particular values – (6) 

Makes no 
computations: 16 

pairs 

Assigns a probability of 30% or 40% and points out one or two of the 
following features: the sample value (70%) is less likely to obtain due to its 
low frequency; considers that the values of 40%, 50% and 60% are the ones 
that present the highest frequencies (most likely values); specifies the sample’s 
value frequencies – (6) 
Makes no numerical assignment and only points out one or two of the previous 
features – (3) 
Assigns a probability of 35% or 0% because they consider that sample values 
have those tendencies – (2) 
Others: Assumes the maximum frequency of the sample value as the 
probability; assigns 10% because it’s one of 10 possible options (of the random 
variable); assigns 35% as the probability, incoherent argument – (5) 

Table 1: Students’ quantification of probability of a particular sample value (numbers in parenthesis 
indicate frequencies/number of pairs with the same type of answer) 

Two main groups of responses appear; the first one consists of six pairs of students that made an 
appropriate estimation for the probability of obtaining a specific sample value; five of these gave a 
particular value for the probability regardless of the number of simulations they made of the 
sampling distribution, while only one of them expressed it in a form of an interval. For example, 
pair 16 (P16) mentioned: 

“We estimate that sample #301 has a probability of 10%-13% of obtaining 70% of pinto 
beans because we observe that, when generating different samples, the sample value of 70% 
appeared in a range of 30 to 40 times, which equals to 10% -13%” 

It seems that the other group of students was not able to quantify correctly their expectation of 
obtaining the value of 70% and, instead, they assigned (six pairs) a value of 30% or 40% as the 
probability with no computations but most likely based on the frequency of the sample value. Nine 
of these 16 pairs also mentioned some features they observed in the SD, such as values of very low 
or high frequencies that they considered were related to a high or low expectation (probability) of 
obtaining the sample value. For example, P9 answered: “40% because when running the simulation, 
the value of 70% was not one that appeared constantly or continuously more than the previous 
values.”. Codes for students’ responses in question (b) are: 

  Codes: Procedures and arguments 
Arguments 
based on 

frequencies: 14 
pairs 

Sample values of 40%-60% because they present the highest frequencies (specifies 
a particular value for the frequency) – (1) 
Sample values of 40%-60% because they present the highest frequencies (points 
out some sample values or the interval) – (13) 

Includes or 
based entirely 

Sample values of 40%-60% because they present the highest frequencies and 
because the population’s parameter equals 50% – (1) 



on the 
proximity 
criteria: 6 

pairs 

Sample values of 40%-60% because they are the closest to the population’s 
parameter (points out some sample values or the interval) – (4) 

Sample values of 40%-60% because the population’s parameter equals 50% – (1) 

Others: 2 pairs Sample values of 40%-60%, redundant answer or incoherent argument – (2) 

Table 2: Students’ selection of the most likely/probable sample values (numbers in parenthesis indicate 
frequencies/number of pairs) 

Fifteen pairs of students used the highest frequencies to determine which sample values they 
considered to be more likely, but only one of them specified a value for the frequency as a main 
reference to compare the rest. These two types of responses are shown by P2: “40%, 50% and 60% 
because their frequency is higher to 55”; and P22: “The values of 40%, 50% and 60% because the 
Fathom graph shows us that these percentages appeared the most”. Six pairs argued that these 
percentages are the most likely since the population’s parameter equals 50% (five pairs’ responses 
are based entirely on this), which is what we call the “proximity criteria” (note that this type of 
thinking is devoid of reasoning with the main objects at hand, such as frequencies, image of 
distribution or sampling variability embedded in the SD). To exemplify this, P15 answered: 

“40%, 50% and 60% because the quantity of pinto and black beans is the same (50-50) but 
it’s not likely that we will get 50% pinto beans in every sample, so the closest percentages are 
40% and 60%.” 

Due to space restrictions, we do not include responses for the selection of the less likely values; 
however, we mention that the obtained responses match closely with those previously described. In 
this case 21 pairs referred to the values of 20% or less and 80% or more (special emphasis on 10% 
and 90%) as the least likely percentages; only one pair mentioned the values of 30% and 70%. 
Codes for students’ responses in question (c) are: 
  Codes: Procedures and arguments 

Uses (or 
proposes to) 
the average: 

10 pairs 

Computes correctly the average of the sampling distribution – (3) 
Computes incorrectly the average (applies another method to high frequencies of 
sample values) – (2) 
Computes incorrectly the average (applies the "rule of three" based on a single 
sample value of high frequency) – (1) 
Computes incorrectly the average, does not specify method – (1) 
Only proposes to use the average, makes no computations – (3) 

Uses the 
mode: 10 

pairs 

Uses the mode (50%) as a representative for the sampling distribution – (6) 
Uses a biased-mode (values greater than 50% that are not in the set of the random 
variable values) – (3) 
Uses a biased-mode (less than 50%) – (1) 

Others: 2 
pairs Values of 50% or 60%, does not justify or explain the reasoning – (2) 

Table 3: Students’ numerical representation of the sampling distribution (numbers in parenthesis 
indicate frequencies/number of pairs) 

The first 10 pairs of students decided to use the average to represent the sample values but only 
three did so correctly. Three out of four pairs that incorrectly computed the average mistook sample 



values for their frequencies, didn’t include all values and applied a different method; three more 
pairs only proposed to use the average but seemed incapable to compute it. For example, P11 
mentioned (considers some high frequencies and calculates a percentage): 

“We made an average out of the percentages that repeated the most and we came to the 
conclusion that this percentage value is at least of 68% of the 300 percentages. The 
calculations were to obtain a percentage of the percentages that presented the highest 
frequencies: 40 with 60 times, 50 with 82 times and 60 with 62 times. Computations: 60 + 82 
+ 62 = 204 / 300 = 0.68 * 100 = 68%” 

The next 10 pairs decided to use the mode but four of these failed to do so correctly; four of them 
used a biased mode, where three selected values greater than 50% that are not included in the 
random variable. As an example of this, P21 responded: “Of the 300 simulated percentages, we 
estimate that the value that repeats the most is 54% because no sample is equal to the previous one 
and most of the time we get something greater than 50%”. 

Conclusions and discussion 
The procedures and arguments showed above are evidence of an a-priori reasoning since we 
consider our students have not been previously instructed on this type of activities (despite their 
introductory course). In this study, we identify some appropriate reasoning such as students relating 
high and low frequencies of sample values to high and low probabilities of obtaining them (even a 
few calculated correctly this estimation); and the use of the average and mode to summarize and 
represent the sample outcomes of the SD. Also, we identify limited or biased reasoning such as an 
incapability to calculate reasonable estimations for probabilities of sample outcomes; an ambiguous 
method to classify the most or least probable sample values (there’s no definition for “the 
highest/lowest frequencies”; sample values of 30% and 70% are missing for classification); the use 
of the “proximity criteria” as a resource that avoids reasoning with the available data and is based in 
distance or proximity to the population’s parameter; and limitations to calculate an average (despite 
“having all data at hand”). We believe these kinds of learning activities helped us significantly to 
expose students’ conceptions about sampling and probability when working for the first time with 
the SD. The evidence suggests that students are capable of grasping and displaying important 
statistical-probabilistic notions, as well as resources, when placed in a rich-exploration and problem 
based environment. These constitute a starting point for researchers (and teachers) to assess and 
target more efficiently the different learning objectives of statistics education from a more 
constructivist point of view; it is the focus on the limitations founded in their strategies what can 
potentially and progressively re-orientate their reasoning to a more appropriate one. Overall, we 
strongly feel that more studies that can exhibit and foster students’ reasoning are still needed in 
order to better understand and influence more efficiently students’ learning of the complex (and 
necessary) discipline that is statistical inference. 
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Using student models to generate feedback in a university course on 
statistical sampling 
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Due to the complexity of the topic and a lack of individual guidance, introductory statistics courses 
at university are often challenging. Automated feedback might help to address this issue. In this 
study, we explore the use of student models to provide feedback. The research question is how 
student models can be used to generate feedback to university freshman in an online course on 
statistical sampling. An online activity was designed and delivered to 40 Biology freshmen. 
Instruments for generating student models were designed and student models were generated. Four 
students were interviewed about the generated models, and about the differences with their own 
estimation of their understanding. Results show that it is possible to generate individual feedback 
from student work in an online learning activity and suggest that discussing differences between 
own estimations and generated student models can be a fruitful teaching strategy. 

Keywords: Statistics, feedback, educational technology, higher education, student model.  

Introduction 
Many bachelor programs offer introductory courses in statistics. Success rates for these courses are often 
low, which makes them an obstacle for students in obtaining a bachelor’s degree (Murtonen & Lehtinen, 
2003; Tishkovskaya & Lancaster, 2012). One challenge is that such courses are often taught to large 
groups of students, making it difficult for teachers to provide individual guidance. The main challenge 
concerns the complex topics in these courses. One of these topics is statistical sampling, which involves 
concepts such as sampling distributions and sampling variability. Understanding statistical sampling does not 
only require students to understand these concepts, but also the connections between them (Castro Sotos, 
Vanhoof, Van den Noortgate, & Onghena, 2007).  

To address both the problem of individual guidance and the complexity of the subject matter, an approach 
using automated individual feedback can be promising. If appropriately designed and timed, feedback has 
the potential to increase student learning (Hattie & Timperley, 2007; van der Kleij, Feskens, & Eggen, 
2015). Especially for large groups of students, automated feedback can add individual support that would 
otherwise be unattainable. For the case of statistical sampling, such automated feedback should aim at 
student understanding of the complex concepts involved. This asks for feedback on a global level, 
aggregated per concept, rather than on a local, task level. To gather input for such an overview, a specific 
digital assessment activity might be set up, but this would take valuable instruction time. A less time-
consuming option may be to use student work in an online learning activity. Although such an activity is 
primarily designed for learning rather than assessing, it might still be possible to track the students’ evolving 
understanding (VanLehn, 2008).  

The question now is: how can we use students’ solutions to tasks in an online learning activity to generate 
feedback on their knowledge of statistical sampling? This paper makes a start in answering this question by 
describing a prototypical approach through the use of student models. 



Theoretical background 
The theoretical background of this study includes two main elements: an analysis of the difficulties in the 
domain of statistical sampling, and the notion of student model.  

Difficulties in the domain of statistical sampling  

Samples are the key instruments to make inferences about a population. An important idea in making these 
inferences is that samples provide useful, but not complete, information about the population. This idea 
relates to two concepts: sample representativeness and variability. Sample representativeness means that 
for properly selected samples, sample characteristics will likely resemble those of the population. Sample 
variability means that not all samples are equal, and that sample characteristics do not necessarily meet 
population characteristics, and may not even be close. Making inferences from a sample involves a trade-
off between these two concepts; a balance that is influenced by factors such as sample size and population 
variability (Batanero, Godino, Vallecillos, Green, & Holmes, 1994). 

Castro Sotos et al. (2007) identify three main misconceptions that students may have about samples and 
sampling distributions. The first concerns the effect of sample size on the variance of the sample mean: as 
sample size increases, sample characteristics are likely to approach the population characteristics more and 
more. Many students misinterpret this so-called law of large numbers and use the sample 
representativeness heuristic to conclude that any sample’s characteristics should be very similar to those of 
the population. The second misconception concerns the different distributions involved. Students often 
confuse the distribution of one sample of data with the distribution of sample means for several samples 
(Chance, del Mas, & Garfield, 2004). This can, for example, result in confusion between the standard 
deviation in a sample, the mean of the standard deviation over many samples, and the standard error of the 
sample mean. The third misconception concerns the central limit theorem, which states that for sufficiently 
large sample sizes, the sampling distribution of the sample mean can be approximated by a normal 
distribution. Students tend to wrongly extrapolate this theorem and believe that the larger the sample size, 
the closer the distribution of any statistic in the population will approximate a normal distribution (Bower, 
2003).  

Automated feedback through student models  

In many online learning environments, automated feedback is offered at a task level or even at a step level. 
However, as we are interested in the students’ conceptual understanding of sampling, it seems more 
relevant to provide the students with an overview of their knowledge of the entire domain, which, of 
course, is still based on the scores on single tasks. Such an overview for an entire domain is often called a 
student model (Brusilovsky & Millán, 2007; Bull, 2004). Student models can be used to adapt the 
educational intervention (i.e. the series of tasks) to the specific needs of the individual learner (Bull, 2004) 
and are in this role often invisible to the student. However, opening up the student model can promote 
learner reflection on his knowledge and understanding, and may help learners to monitor and plan their 
learning (Bull & Kay, 2007; Sosnovsky & Brusilovsky, 2015). 

A student model contains a domain model and an overlay. The domain model consists of knowledge 
components (KC’s) that each describe a piece of knowledge in the domain. All tasks in the learning activity 
are connected to one or more KC’s in the domain model. The overlay contains a score for each KC, 
based on the student’s performance on connected tasks, which describes the student’s current 
understanding. The KC’s in a domain model can be more or less coarse grained. An advantage of a fine-



grained domain model is that it enables a very sophisticated and precise diagnose of the student’s current 
understanding. However, when using a course-grained domain model, connections between tasks and the 
domain model are much easier to manage, while still a reasonable diagnosis can be accomplished 
(Sosnovsky & Brusilovsky, 2015).  

In the light of this theoretical framework, the research question addressed here is: How can student models 
be used to generate feedback to university freshman in an online course on statistical sampling? 

Methods 
To address the research question, a prototypical environment to generate feedback on the understanding of 
statistical sampling through the use of student models was set up. In this explorative design research, 40 
freshmen Biology participated. The design included an online activity on statistical sampling, and a domain 
model and Q-matrix for generating student models. Data collection included digital student work, a 
questionnaire and interviews with students. Analysis aimed at choices in generating overlays and describing 
the students’ reactions to their student model.  

Design of an online activity on statistical sampling 

 

Figure 1: Example page of the DME-activity on statistical sampling 

The online activity on statistical sampling was designed in the frame of the Utrecht University project 
“Innovative remedial digital learning modules for statistics”, by an educational designer and the researcher 
(first author), in close collaboration with the teacher of the statistics course for biology students. For the 
design, the Freudenthal Institute’s Digital Mathematics Environment (DME, see Drijvers, Boon, Doorman, 
Bokhove, & Tacoma, 2013) was used. Aim of the designed activities was to deepen the students’ 
understanding of statistical sampling and sample variability. The activities contained theory, a simulation on 
sampling and questions about the students’ intuitions, the simulation, and the theory. The difficulties 
described in the theory section were addressed extensively. Students were able to enter answers to all 



questions and receive immediate feedback on the correctness of their response. For many tasks, hints and 
feedback on incorrect responses were designed. For an example page of the activity, see Figure 1.  

Development of a domain model and Q-matrix 

Through studying theory on statistical sampling1, a set of knowledge components (KC’s) for the domain of 
sampling was identified by the researcher. As the intended use of the domain model was to present it to 
students, a rather coarse-grained approach was chosen and too detailed KC’s were avoided. Moreover, 
for a clear presentation to students, complete descriptions of the KC’s were formulated, as opposed to 
one or two words per KC. Four main KC’s were identified: Taking samples (procedure), Estimations 
based on a sample, Distribution of the sample mean, and Standard error. For each main KC, four detailed 
KC’s were identified.  

After the domain model was designed, all tasks in the module were linked to the corresponding KC’s by 
the researcher. This resulted in a Q-matrix, in which entry (i, j) is 1 if task j is related to KC i, and 0 
otherwise. The module contained 45 (sub-)tasks in total. For twelve tasks, the researcher judged that no 
KC’s were relevant. In Figure 1, for example, the students are asked to read off values from a table. This 
activity helps students understand the table-tool they will be working with in this module, but how well 
students read off the values does not involve their knowledge of any of the KC’s. For four subtasks, more 
than one KC was judged to be relevant. All other subtasks were connected to one KC.  

Data collection: Student work, questionnaire and interviews 

The participants in this study were 40 biology students, who participated in the first year introductory 
course Experiment & Statistics at Utrecht University. The students first attended a lecture on sampling and 
worked on the designed online module in the week following the lecture. Three sources of data were 
collected in this small-scale explorative study: 

 Student work: the DME stores all student work, including all attempts that students do before 
reaching a final answer. Student work was collected for all 40 students; 

 A questionnaire, in which the KC’s from the domain model were presented to students. Students 
were asked to give their own estimation of their understanding of each KC. The questionnaire was 
completed by seven students. 

 Interviews, in which students were questioned about the appropriateness of the domain model and 
generated overlay, and about differences between their estimated and generated overlay. Out of 
the seven students who completed the questionnaire, four were interviewed. 

Data analysis  

In the analysis, the students’ attempts were extracted from the DME, exported to Excel and prepared for 
generating overlays. For each student, an overlay was generated. Next, the generated overlays for the four 
students who would be interviewed were studied and remarkably high and low scores were recorded. 

                                                 
1 Sources used are two text books on introductory statistics: Whitlock, M., & Schluter, D. (2009). The analysis of 
biological data. Greenwood Village, Colo: Roberts and Co. Publishers , and Field, A. P. (2009). Discovering statistics 
using SPSS: (and sex and drugs and rock 'n' roll) . Los Angeles [i.e. Thousand Oaks], Calif.: SAGE Publications. 



Explanations were sought by studying tasks connected to the remarkable KC’s and by analysing student 
explanations in the interviews.  

The interviews were transcribed and the students’ answers were aggregated by topic. Next, summaries for 
each topic were written to create a general image of the students’ reactions to the overview, and to identify 
issues in the current calculation of the overlays.  

Results 
In addition to the domain model and the Q-matrix, which are described in the Methods section, the results 
of this study include the generation of overlays, and the students’ reactions to their student model.  

Generating overlays  

To generate overlays, the students’ interactions with the DME had to be translated into scores for each 
KC. Student interactions with the DME are stored as attempts. Three attempt types are possible: correct 
attempts, half-correct attempts (for example when a student still needs to round off an answer) and 
incorrect attempts. To generate an overlay, correct attempts were counted as 1, half correct attempts as 
0.5 and incorrect attempts as 0. For each task, the mean attempt score was calculated by dividing the sum 
of the attempts by the number of attempts. For each KC, the overlay score was calculated as the mean 
attempt score of all tasks that were connected to this KC in the Q-matrix. See Figure 2 for an example.  

 

Figure 2: One student’s generated overlay and his own estimation 

The method used is not the only possible calculation method. Another option that was considered is taking 
only the student’s first attempt for each task into account. The student’s subsequent attempts are guided by 
the DME’s immediate feedback and therefore do not directly reflect the student’s knowledge, but rather a 
combination of this knowledge and the student’s reaction to the immediate feedback. However, this 
method neglects the fact that students are likely to learn from the immediate feedback, and therefore this 
approach is left out of the analysis.  

The generated overlays are different for different students, which confirms that they provide individual 
feedback indeed. Moreover, the scores for each individual student were more or less spread out, so 
students did score different for different KC’s. This shows that our way of calculating discriminates 
between KC’s, and hence can inform students on their understanding of the different KC’s. 

Students’ reactions to their student model 

The domain model was first presented to students in the questionnaire, in which students were asked to 
estimate their own overlay. In the interviews, the domain model was presented again, this time with the 
generated overlay. All four students said that they understood the domain model well and thought it formed 
a useful summary of the domain of statistical sampling. One student explicitly mentioned that he would use 
the domain model in his exam preparation.  

The comparison between the generated overlays and the students’ own estimations resulted in fruitful 
exchanges. Most students seemed to adopt the generated overlay as a true representation of their 
knowledge. Three students seemed to adjust their own estimation to the generated overlay. For example, 



when seeing the generated overview, one student concluded: “Apparently I can give myself higher grades 
than I did.” The fourth student, however, thought that the activities in the DME were easier than other 
activities in the course, and therefore thought her knowledge of the topic was not as good as her work on 
the DME-activity suggested.  

When asked about differences between their generated and estimated overviews, students came up with 
some meaningful explanations: 

 One student made some initial mistakes on a certain KC, because he did not understand it 
correctly yet. Therefore, his generated score was low. But with the help of the DME’s immediate 
feedback, he realized what he had understood wrongly, and therefore learned from these mistakes 
and the feedback. In his own overlay, he rated his knowledge in this KC as high.  

 Some students were tempted to guess answers to see what immediate feedback the DME would 
provide. As in the previous explanation, such trial-and-error-behavior results in lower generated 
scores, but it is likely that students learn from the immediate feedback they obtain.  

 Initial confusion about what students were required to do in the DME also resulted in low scores 
for some tasks. Here, a low score indicates difficulties with DME-interaction, rather than little 
knowledge or skills.  

These explanations for difficulties show two things. First, these are exactly the difficulties that arise when 
learning material as opposed to assessment material is used for generating feedback. The tasks are above 
all designed to make students learn, and it is sometimes difficult to determine whether that learning has 
taken place before or after the student has answered a task. Second, the discussions with the students 
seemed to help them get a clearer picture of which KC’s they understood and which they did not. So using 
student work to generate an overlay, confronting that with the student’s own estimation and discussing 
differences seems to be a fruitful teaching strategy.  

Conclusion and discussion 
In this explorative study, we have shown an example of the use of student models for providing individual 
feedback in a university statistics course. We developed an online activity on statistical sampling, a domain 
model for the domain of statistical sampling and a Q-matrix connecting the tasks from the online activity to 
the domain model. Next, we used the students’ work to generate overlays and presented the generated 
student models to the students, to give them more insight in their understanding of the different concepts 
involved in statistical sampling.  

The generated student models were different for different students, which indicates that they indeed 
provided individual feedback. Students regarded the domain model as a useful summary of the domain of 
statistical sampling. As such, the domain model seems a useful instrument to confront students once again 
with difficult aspects of the domain of statistical sampling. Moreover, students regarded the generated 
overlay as a more or less true representation of their knowledge of the domain.  

Asking students to compare their generated student model with their own estimations resulted in fruitful 
exchanges and therefore seemed a promising teaching strategy. Students tended to adjust their own 
estimation according to the generated model, but were also able to explain remarkable differences between 
their estimation and the generated model. These explanations often involved the immediate feedback 
provided by the DME, or, more general, the fact that the feedback is based on student interaction with an 



activity that is designed to learn from. Calculation methods that account more for this fact are available 
(VanLehn, 2008) and can be taken into account in future experiments. 

Another lesson we have learned is that some tasks are important for the learning activity, but are not useful 
for the generation of overlays. This concerns, for example, tasks that serve to explain a tool or simulation to 
be used. Therefore, careful considerations should be made whether or not to include specific tasks in the 
Q-matrix.  

In this study, with its explorative nature, we have shown that it is possible to generate useful student 
models, based on student work in an online learning activity. A next step is to investigate how these models 
can best be embedded in education to help students monitor and plan their learning.  
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This qualitative exploratory study examined non-statistics specialist students’ perceived benefits and 
limitations of learning statistical concepts through creative story writing. Stories can be a powerful 
tool as it provides an opportunity for statistics learners to refine their statistical understanding in 
different contexts – ones that are relevant to their personal experience and interest. The added benefit 
of learning through creating stories is how it can shift the focus from dealing with numerical data 
and formulae exclusively to the meaningful application of statistical concepts. Interview and 
observation data involving seven social sciences undergraduate students at an English university 
revealed a range of perceived cognitive and affective benefits as well as some limitations of this 
innovative statistics learning approach. 

Keywords: Introductory statistics, statistical anxiety, creative story writing, picture book. 

Introduction 
A deficit in quantitative skills among UK university graduates has recently been highlighted as a 
major cause for concern. In its position statement titled Society Counts, the British Academy (2012) 
- the UK’s national academy for the social sciences and the humanities - expresses its deep concern 
in the UK’s weakness in the quantitative skills, particularly within the social sciences and humanit ies 
(SSH) disciplines, and highlights how such deficit can have serious implications not only for the 
future of the UK as a world leader in research and higher education, but also for its graduates’ 
employability and its economy’s competitiveness. While the focus of SSH disciplines is not 
mathematical per se, the recent drive for research-based teaching in higher education (e.g. Jenkins & 
Healey, 2005) implicitly requires SSH students to be confident in using their quantitative, particular ly 
statistical, skills, to help critically interpret statistical data (as reported in some articles within their 
field of study) and, where applicable, to help them quantitatively analyse data for their own research-
based dissertation project. However, statistics teaching is not often delivered to students in a relevant 
and exciting way (British Academy, 2012). It is hardly surprising then that statistical anxiety among 
university students, particularly those within the SSH disciplines, has been widely reported 
(Lalayants, 2012). The current study proposes an innovative statistics teaching whereby students 
produce a creative story where statistical knowledge and understanding are required to construct the 
storyline. More specifically, the study intends to examine the students’ perceived benefits of the 
approach.  

Literature review 
Statistics education 

The research field of statistics education is primarily concerned with studies that aim to explore 
different ways to make statistics learning and teaching more effective, and in some cases, even more 
enjoyable. In relation to the current study, two key strands of relevant studies include those that focus 



on transferability, and those that focus on associating statistics learning with something lighthear ted 
and enjoyable. Concerning the former strand, Groth and Bergner’s (2005) study in the USA, for 
example, investigated the role of metaphors in providing insights into students’ statistical think ing. 
Whilst the focus of Groth and Bergner’s (2005) study is on using metaphors to reveal pre-service 
elementary school teachers’ understanding of statistical sample (e.g. “a sample is one toy off a toy 
shelf” (p. 34)), it can be argued that the underlying principle of using metaphors is deep-rooted in the 
concept of transferability which can be applied to any group of students and any statistical topic. 
Concerning the second strand, Friedman, Friedman and Amoo (2002) argue for the use of humour in 
statistics teaching and learning. Specifically, they argue that humour can be used to build relationships 
and enhance communication between students and instructor, as well as can be used as a stress-
reducing tool in statistics classes. In Neumann, Hood and Neumann’s (2009) study, use of humour 
was evaluated. Through interviewing 38 students who were randomly selected from those enrolled 
on a first-year Psychology course in Australia, it was found that “humor aided teaching by providing 
amusement, breaking up content, bringing back attention, lightening the mood, increasing motivat ion, 
reducing monotony, and providing a mental break” (para. 1).  

Whilst the aforementioned studies represent an attempt to make statistics learning more accessible 
and enjoyable, the current study would argue that the effectiveness of these attempts to improve 
statistics learning and teaching experience is limited due to their lack of emphasis on embedding 
statistics learning in a relevant and meaningful context. This study thus sets out to explore students’ 
perceptions of using creative story writing whereby statistical knowledge is required to construct the 
story’s narrative in order to help them develop their statistical understanding. 

Creative stories as a learning tool 

Egan and Judson (2016, p. 4) argue that “the old distinction of arts dealing with imagination and 
academic subjects dealing with reason has led to a neglect of engaging students’ imaginations in 
learning academic subjects”. This, they argued, acts as a key barrier to effective teaching and learning. 
The use of creative stories (whether as consumer or producer) thus has a great potential to bridge this 
gap. The current study would argue that two key features underpin the creative story writing approach, 
namely 1) transferability and knowledge application in meaningful context, and 2) self-motivat ion 
through relevance of and emotional engagement in the story. As highlighted by Groth and Bergner 
(2005) with metaphor and Martin (2003) with analogy, transferability one’s (statistical) knowledge 
and understanding from, for example, statistics textbooks (context-free) to their own story (context-
rich) encourages them to first think carefully about what the concepts are, and then engage in higher 
order thinking by applying the concepts in a meaningful context. This process is crucial as Tannen 
(1999, as cited in Haven, 2007, p. 64) argues that “Story merges abstract information with common 
sensory details to create context and relevance for the abstract”. Both context and relevance, as Haven 
(2007) argues “trigger the conscious mind to pay attention and to remember” (p. 64). Additiona lly, 
when learners get to think of a context or storyline for their own story, they are more likely to be 
engaged and self-motivated in their own learning process and become more emotionally invested not 
only in the story (Egan & Judson, 2016), but also in the ownership of their knowledge construction.  

In terms of research, to the best of the author’s knowledge, only one small empirical study has been 
conducted to explore the potential benefits of using creative stories in statistics learning. The study, 
by D’Andrea and Waters (2002), set out to examine how short stories can be used to reduce statistica l 



anxiety among her 17 graduate Education students enrolling on an introductory statistics course in 
the USA. Using the Statistical Anxiety Rating Scale (STARS), the survey results showed that the 
students’ anxiety towards the statistics course steadily declined when their ratings before and after 
the course were compared. However, one key limitation of this study is how the short stories were 
written by the researchers (i.e. the course instructors) themselves, as opposed to providing an 
opportunity for the students to create their own stories – a shortfall that the current study aims to 
address.  

Theoretical perspectives 

This study argues for a statistics teaching and learning strategy that is grounded in Papert’s (1991) 
theory of constructionism. Unlike constructivism, constructionism places a great deal of emphasis 
not only on internationalization, but also the process of externalization. More specifica lly, 
constructionists argue that construction of knowledge takes place both in the head (internalizat ion) 
and supported by “construction of a more public sort ‘in the world’” (externalization), whereby 
learners creating a public artefact of what they know that can be “shown, discussed, examined, 
probed, and admired” (Papert, 1991, p. 142). In turn, this process helps to shape and sharpen the 
knowledge (Ackermann, 2001). In the context of the current study, such public artefact is the story 
created by the learners where knowledge and understanding of the assigned statistical concept is first 
required before applying such knowledge and understanding to construct their storyline. 

The current study 

The current study is exploratory in nature, and it sets out to investigate non-statistics-specia l is t 
undergraduate students’ perceptions of using creative story writing to learn introductory statistics. 
More specifically, the key research question asks: What are non-statistics-specialist undergraduate 
students’ perceptions of key benefits of learning introductory statistics through creative story 
writing? 

Methodology 
Research design 

This study is predominantly qualitative, reflecting a recent call from the research field of statistics 
education and cognition to move beyond it being a purely quantitative field (Kalinowski, Lai, Fidler 
& Cumming, 2010). The data collection took place in May and June 2016, and it primarily involved 
semi-structured interviews with first-year undergraduate non-statistics-specialist students within the 
social sciences discipline. To allow the students to form well-developed perceptions of the approach, 
they were asked to attend a three-hour session where they mostly worked in pairs to independently 
research a given statistical concept for the first 30 minutes. This independent learning was supporte d 
by making a range of introductory statistics textbooks available to them during the session. They were 
also encouraged to watch tutorial videos available on Youtube on their electronic devices. For the 
remaining 2.5 hours, they were then asked to collaboratively produce a creative story to illustrate that 
concept. Before they started creating the story, the participants were asked to vote on the format of 
their story output, and everyone voted for the picture book format, over two other choices, namely 
the graphical novel and the story book formats.  



Audio recordings were made of each team’s discussion whilst they were working on separate tables. 
A week after the session, each team was interviewed separately and they were asked to reflect on 
their own experience of using creative story writing to learn introductory statistics at the interview. 
Together with the stories produced, these multiple sources of data were used as a form of triangulat ion 
to maximise the degree of reliability in the analysis.  

Standard deviation, as a measure of variability, was chosen as an introductory statistical concept for 
the participants to base their story on, for its importance as a building block to more advanced 
statistical knowledge, such as sampling distributions, inference, and p-values (delMas & Liu, 2005). 

It is beyond the scope of this paper to present in detail examples of the picture books created by the 
students in this study. Examples and brief discussions of these picture books were presented in the 
author’s CERME10 presentation. 

Sampling strategies and sample size 

The participants were seven undergraduate Education students, who nominated themselves to be part 
of the study after a recruitment call. The students are English native speaking students of Caucasian 
origin, aged ranging from 18 to 19 years old. Non-random purposive sampling was used to ensure 
that none of the participants had a Mathematics or Statistics post-16 academic qualificat ion 
(commonly referred to as A Level in England).  

The students were split into two pairs and one triad: Team 1 (all male students) with Jim and Dylan 
(pseudonym), Team 2 (all female students) with Maria and Sarah, and Team 3 (mixed) with Rosie, 
Ryan and the additional student - Olivia. The reason for including both single-sex pairs and a triad of 
male and female students in the study was to minimise any impact certain type of pairing could have 
on learning. (One of the male students, Ryan, did not confirm his participation by the agreed deadline, 
prompting the researcher to recruit an additional student, Olivia, as no other male students were 
available. Thus, a total of 7 students attending the session. Ryan also did not turn up for the scheduled 
interview, resulting in having interview data from only 6 students) 

Data analysis 

Due to the study being exploratory in nature and not aiming to test any particular existing theory, an 
inductive thematically-coded approach to qualitative data analysis was adopted. Audio recording 
transcripts of both the group discussions during the session and of the interviews after the session 
were read and reread to identify emerging themes. The process was done manually without the use 
of any software. The researcher alone did the coding, and thus fully acknowledges the limitation this 
presents in terms of the reliability of the analysis. 

Results and discussion 
As previously mentioned, this study sets out to explore non-statistics-specialist undergradua te 
students’ perceptions of key benefits of learning and teaching introductory statistics through creat ive 
story writing. The findings are presented and discussed below. 



Perceived cognitive benefits 

Four key cognitive skills were developed through the creative story writing approach, namely 
understanding, application, visualization and communication.  

Concerning understanding, in order for the participants to come up with a storyline, they first had to 
understand what the given statistical concept (standard deviation) was. For example, Rosie explained 
that “The process helped me because I had to concretely understand what the statistical concept was 
and what misconceptions there may be before we started writing the book”. This resonates well with 
Dylan’s view as he stated that “I think it helps because you have to completely get every single step 
of it … know how to do it … you will have to go over it all before you were able to even start think ing 
about how could we use this in the task [story]”.  

Application is another key cognitive skill put forward by the students. Using creative story writing to 
learn statistical concepts requires learners to think carefully of a meaningful and purposeful context 
in which the concepts can be applied. This encourages them to contextualise statistical concepts. 
Dylan, for example, explained that “figuring a story that would fit around it […] makes you think 
about how could I use it in real life – where it would be applicable. I think […] having to put it in the 
story helps you understand it quite a lot.” Such view is also echoed by Maria who stated that: “having 
to work out a context for the story where there would be a need to use standard deviation further 
helped. […] If it doesn’t have a context, it doesn’t really make sense. It’s harder to understand it”. 
From the observation, students’ conceptual understanding of standard deviation was evidently 
developing through their discussion about the context for and application of the concept. This 
highlights the role of what Donaldson (1987) referred to as embedded thinking.  

As previously mentioned, all participants voted to present their story in the picture book format. 
Whilst originally not central to the key research question, several participants cited the benefits of the 
format, particularly visualization, as contributing to the development of their understanding of 
standard deviation. More specifically, they highlighted how the format encourages them to think 
about how statistical concepts can also be represented visually through illustrations. Jim explained 
that “I think it gives you different ways to learn because you might be a visual learner. The pictures 
will help”, highlighting how producing creative story in the picture book format could cater for 
diverse learning styles.  

Finally, communication – another key cognitive skill that came up several times in the interview with 
the students. This is primarily concerned with how the creative story writing approach explic it ly 
requires authors to break down the concept and communicate it to their readers. Jim, for example, 
explained that “It’s also about breaking it down into a narrative that other people can understand 
because you write it for other people, so you have to … not dumb it down … but you would certainly 
break it down, and I think it helps you understand it that way”. For Maria, she linked this aspect of 
the approach to teaching: “You’re teaching it and you remember it better when you’re trying to teach 
something rather than when you’re just listening. We’re writing a story to teach other people what it 
was”. The participants who were not at all familiar of the concept prior to the session were later able 
to articulate that standard deviation measures the spread of the different data points in relation to their 
mean average. While the definitions offered by Sarah and Ryan did not make clear the relationship 
between the data points and their mean average, it can be argued that their understanding is still 



emergent. Even for Maria and Rosie who already had some understanding of the concept prior to the 
session, the definition of the concept that they offered after the session was more detailed. In line with 
Haven (2007), this demonstrates that creative story writing can be a powerful learning strategy for a 
wide range of learners. 

Perceived affective benefits 

Different aspects of the story writing approach were highlighted by the participants as helping to 
make statistics learning more engaging. Rosie, for example, pointed out that “Personally, maths has 
always been my nemesis, so for me [the story writing] puts maths and statistics in a lighter viewpoint 
rather than being factual and quite off putting”. Similarly, Olivia – echoing Egan and Judson’s (2016) 
– found herself fully engaged in the process as she explained that:  

Before the session, the thought of statistics was fairly scary to me and seemed like something 
I would struggle to engage with. […] But, as the story writing process began, I was able to 
view standard deviation from a less scary lens. Before I realised, I was fully engaged with the 
story writing activity, rather than focusing on how scary the topic was initially.  

Through its hands-on approach, Sarah and Jim commented about how the story writing approach 
helped to make them more engaged in statistics learning than they would otherwise be in traditiona l 
lectures. Sarah, for example, highlighted that:  

The activity was enjoyable and therefore more engaging than if I’d just read about standard 
deviation in a text book or been told about it in a lecture. Being able to have fun with it and 
produce something creative helped me to really get into it and actually want to pay attention 
to getting it right.  

Jim also highlighted how learning statistics through story writing is more enjoyable and less scary 
when “you’ve got a picture involved for a start and you’re making a narrative”. This resonates well 
with Maria’s view. Not only did she attribute the positive statistics learning experience to the story 
writing, Maria also attributed it to the picture book format specifically, as she explained “Picture 
books are also associated with happiness and adventure and putting statistics into a picture book can 
make statistics seem more exciting”. Her view emphasises how the combination of story writing and 
the picture book format seems to compliment each other quite well.  

The way these students described statistics and its learning in itself is revealing: ‘nemesis’, ‘scary’, 
‘factual’, ‘struggle’, ‘complicating’, ‘mundane’ and ‘off putting’, highlighting how disengaged these 
students would have carried on feeling towards the subject had it not been because of the story writing 
approach to learning statistics. When examining how the same students described statistics and its 
learning using the story writing approach, the positive attitudes towards statistics learning became 
apparent: ‘fun’, ‘fully engaged’, ‘more exciting’, ‘creative’, ‘more engaging’, ‘more accessible’, 
‘immersed’, ‘more switched on’, ‘lighter viewpoint’ and ‘your own knowledge’. 

Conclusions 
Key findings and discussions 

Overall, the approach, according to the students, appears to make use of four key cognitive skills, 
namely understanding, application, visualization and communication, and these are labelled as 



perceived cognitive benefits. Concerning understanding, in order for the participants to come up with 
a storyline, they first had to understand what the given statistical concept (standard deviation) was. 
Application is another cognitive skill that is put forward by the students. Using creative story writing 
to learn statistical concepts requires learners to think carefully of a meaningful and purposeful context 
in which the concepts can be applied. This encourages them to contextualise statistical concepts, and 
highlights the role of what Donaldson (1987) referred to as embedded thinking. The students 
themselves highlighted that the picturebook format encouraged them to think about how standard 
deviation could be represented visually through illustrations. This is particularly relevant when 
visualization is often seen to be a key mode of representation that can help learners develop their 
mathematical and statistical understanding (e.g. Bruner, 1966; Haylock, 1982; Haylock, 1984; 
Haylock & Cockburn 2013). Finally, communication is another key cognitive skill that came up 
several times in the interview with the students. This is primarily concerned with how the creative 
story writing approach explicitly requires authors to break down the concept and communicate it to 
their readers. Equally important, the students reported that the creative story writing approach 
motivated them to engage in learning introductory statistical concepts, as this is labelled as perceived 
affective benefits. The students particularly enjoyed incorporating humour in their storyline and page 
illustrations. The fact that laughter could be heard throughout what was essentially a statistics lesson 
was very encouraging as it demonstrates that it is entirely possible to have an enjoyable statistic 
teaching strategy that, according to the students, also helped them learn an introductory statistica l 
concept. This is in line with the findings of Neumann et al.’s (2009) study that found students to be 
more motivated in their statistics learning process when they were able to include humour in their 
statistics learning.  

Implications 

The study highlights the potential benefits of using creative story writing, particularly in the picture 
book format, as an effective introductory statistics learning tool for non-statistics-specialist students. 
Such benefits are both cognitive and affective in nature. Additionally, whilst the students in this study 
were undergraduate students, this study would argue that both high school and postgraduate students 
would too find the approach beneficial.  

Limitations of the study 

The participants in the current study created their story in an arguably clinical setting, as opposed to 
their authentic learning experience. Additionally, it is important to remember that these participants 
volunteered to be part of the study. Taken together, it can be argued that the views and attitudes of 
this group of participants might be potentially different from those who are required to engage in 
creative writing as part of their course. Thus, any findings emerge from this study must be treated 
with caution, and this highlights the need for this study to be replicated in an authentic learning 
environment. 
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Current secondary school statistics curricula focus on procedural knowledge and pay too little 
attention to statistical reasoning. As a result, students are not able to apply their knowledge to 
practice. In addition, education often targets the average student, which may lead to gifted students 
missing challenge. This study explored ways to enhance grade 8 (Pre-University level) students’ 
statistical literacy through within-class differentiation. The developed course materials consisted of 
a differentiated module in the Digital Mathematics Environment (DME), combined with investigation 
activities during classroom sessions. The material focused on statistical reasoning using visual 
representations made with TinkerPlots We concluded that this teaching arrangement indeed 
increased students’ statistical literacy.  

Keywords: Statistical literacy, descriptive statistics, Digital Mathematics Environment, level 
differentiation, TinkerPlots©. 

Introduction 
Statistical literacy has become important for all of us, and statistics will only continue to become 
more critical in the future (Shaughnessy, 2010). Despite the global effort to innovate the ways in 
which statistics is acquired, current statistics education is still viewed as a field with a need for 
significant improvement (Garfield & Ben-Zvi, 2008). Strong educational foci on methodologica l 
skills, procedures and computations result in the limited ability to reason statistically and to apply 
statistics in practice (Allen et al., 2010; Gal, 2002). 

The Netherlands are no exception to this. In grade 8 of the Dutch pre-university stream, for example, 
the statistics curriculum stresses the calculation of mean, modus and median. Statistical investigat ion 
and use of technology hardly occur in the current approach. The emphasis on calculating statistica l 
measures contributes insufficiently to interpreting, critically evaluating and reasoning with data (Van 
Streun & Van der Giessen, 2007).  

As a second concern, the current educational approach pays too little attention to gifted students. 
PISA research shows that the best quartile of Dutch students performs relatively poorly (Kordes, 
Bolsinova, Limpens & Stolwijk, 2013). It is plausible to assume that the education received is 
insufficient for these students. This is endorsed by the KNAW (2003), which calls for more 
differentiation between students and for offering enrichment material.  

To address the abovementioned issues this study focuses on the following key question: Does a 
differentiated learning trajectory that focuses on statistical reasoning with visual representations 
increase students’ statistical literacy in grade 8? The hypothesis is that an educational approach in 
which differentiated online tasks are combined with investigation activities in class will increase 
statistical literacy. 

 



Theoretical framework  
The theoretical framework we used integrates notions of statistical literacy and level differentiation.  

Statistical literacy 

Gal (2002) defines statistical literacy as interpreting, critically evaluating and reasoning with 
statistical information. This requires, in addition to procedural statistical skills, reasoning with and 
about data (Tolboom, 2012). Students should be taught the necessary skills to interpret and reason 
with statistical concepts. Research indicates that students in an early stage can reason meaningfully 
about distributions (Bakker & Gravemeijer, 2002). According to Piaget and Inhelder (1951), students 
have an intuitive sense of statistical reasoning. This intuitive concept can be used to develop statistica l 
literacy. Moreover, research literature suggests that students become statistically literate by 
conducting their own research projects (Abel & Poling, 2015).  

Web-based tools like TinkerPlots (Konold & Miller, 2011), which focus on the use of dynamic 
visualizations, may support statistical reasoning and literacy. The use of such software, in addition to 
manual data processing experiments, has the advantage that problems are taken care of, so there is 
more room for reasoning. There is evidence that the use of ICT in statistics can improve learning 
results (Morris, Joiner & Scanlon, 2002) and, especially if embedded in classroom discussions, can 
lead to increased statistical literacy (Bakker, 2004). Based on these findings, we focus in this study 
on literacy and reasoning using digital tools.  

Level differentiation 

The Dutch education system1 is based on homogeneous streaming. Nevertheless, within a class of a 
specific achievement level, major differences between students in intelligence and performance may 
exist. Students’ learning progress may suffer from neglecting these differences. In differentia ted 
teaching, teachers provide individual learning paths to students, adapted to their levels, to learn as 
much as possible (Tomlinson, 1999). That level differentiation leads to better academic performance 
in primary education (age 4-12) has been shown by several researchers (e.g., Vernooy, 2009). With 
respect to differentiation in secondary education (age 12-17), less is known, even if Terwel (1988) 
and Van Dijk (2014) suggest that differentiation within mathematics lessons may lead to improved 
performance. 

Differentiation assumes the classification of students. The RTTI model (Drost & Verra, 2015) can be 
used to identify the cognitive level of a learner. Dutch secondary schools and textbook editors 
increasingly use this model. It is based on four learning levels: Reproduction (R), Training (T1), 
Transfer (T2), and Insight (I).  Based on RTTI test scores, the students can be clustered into level 
groups (Berben & Teeseling, 2014). In terms of the RTTI model, statistical literacy relates to T2 and 
I levels. Based on the aforementioned findings, in this study we opted for a differentiated educationa l 
approach based on the RTTI learning levels. 

 

Methods 

                                                                 
1 For an overview of the Dutch educational system see https://www.epnuffic.nl/en/study-and-work-in-holland/dutch-
education-system. 



We successively describe the design, intervention, participants, data collection, and data analysis of 
the study. 

Design research 

Since teaching materials that aim at increasing the statistical literacy by offering differentia ted 
teaching arrangements and using digital tools for this group hardly existed, we used a design research 
method (Bakker & van Eerde, 2015; Plomp & Nieveen, 2013). Because the learning objectives differ 
from the current curriculum in grade 8, no control groups were used; we compared the students’ 
learning gains during the intervention through pre- and post-tests.  This research can be characterized 
as a "proof of concept" of an intervention that focuses on statistical literacy and reasoning through a 
technology-rich, differentiated approach based on RTTI. 

Intervention 

The intervention consisted of statistics modules within the Freudenthal Institute’s Digita l 
Mathematics Environment (DME, see www.dwo.nl/en), combined with investigation activit ies 
during the classroom sessions using Tinkerplots. The DME is a digital environment in which students 
work on mathematical activities. It includes opportunities for differentiated education by offering 
several learning routes. The work of students is saved in the DME and teachers can monitor the results 
(Bokhove & Drijvers, 2012). In this study the procedural skills, e.g., calculating central tendency and 
variation measures and values of various graphs including boxplots, were offered within the DME. 
The DME modules were individually run and consisted of two learning routes: the basic route and 
the plus route. The students were assigned to these conditions according to their RTTI achievements 
during the past schoolyear. Students with average score T2 and I less than 65% followed the basic 
route, and others the plus route. Within the designed DME modules, students could check their work 
and correct it when necessary. Adjacent to each classroom session, students worked at home on the 
DME module. The hypothesis was that the procedural skills of students will strengthen through the 
DME-modules, so that they can use them in reasoning with statistical information. 

Statistical reasoning in the frame of investigation tasks was central to the eight 60-minute classroom 
sessions offered in parallel to the DME modules. During this classroom sessions students worked in 
homogeneous teams (clustered according to the RTTI learning levels). The investigation activit ies 
were based on the stages of the statistical investigation cycle (Franklin et al., 2005). The students 
analysed their data manually and by using the software TinkerPlots© (Konold & Miller, 2011). This 
software provides rich visualization opportunities, flexible and investigative functions, and is user-

friendly. Figure 1 shows some examples of the 
visual possibilities in TinkerPlots. The hypothesis was that clustering of students while working on 
investigation activities and using visual representations in TinkerPlots, sharpens and reinforces the 

Figure 1: Examples of visual representations in TinkerPlots © 

 



statistical literacy of students at the different levels. 

Participants 

In the pilot the designed material was tested in a classroom at the school of the researcher, the Csg 
Prins Maurits in a rural area in the Netherlands. The pilot class consisted of 25 pre-university grade 
8 students (14-15 year olds), with sixteen students turning out to be basic students and the other nine 
plus students. The students had no previous experience with statistic education. 

Data collection and data analysis 

To verify whether the intervention improved statistical literacy, we examined students’ DME 
progress, results on two statistical tests, logbook data from the teacher-researcher and students’ final 
investigation task. The data of basic and plus students were analysed separately. To analyse the DME 
work we used data on score and time investment. Further to the DME modules two individual tests 
were taken. One of these tests was a RTTI standardized test conducted with 45% of questions at 
learning level R and T1 and 55% of questions at level T2 and I, the latter corresponding to statistica l 
literacy. This ratio is in line with the standard approach in the research class, so the results can be 
compared with previous RTTI scores on math tests. The additional test consisted of questions at 
learning level T2 and I with a higher difficulty compared to the RTTI standardized test, so as to obtain 
additional information about the level attained.  

The logbook of the teacher-researcher contained information about students’ progress in interpret ing, 
critically evaluating and reasoning with statistical information during the investigation activities in 
class. To find out whether the students in the end applied the statistical methods in practice, a final 
investigation task was administered in homogeneous level groups of 3-4 students. A rubric was 
developed for the analysis of this task to assess performance at learning level T2 and I.  
 DME  

data 
RTTI 
test 

Test at  
T2 and I 

Log Research 
task 

Statistical literacy in solving concrete problems x x x x x 

Statistical literacy in investigation activities x x x x x 
Table 1: Table of triangulation of research instruments  

To ensure the quality of the research data triangulation is used. Table 1 shows how the statistica l 
literacy has been measured with multiple instruments. The font sizes for x indicate the degree to 
which each instrument measures statistical literacy. 

Results 
We now present the results of the learning process using the DME, the test results and the 
development during the investigation tasks.  

Learning process using the DME 
Average time investment per DME module in minutes (sd) 

 Mod. 1 Mod. 2 Mod. 3 Mod. 4 Mod. 5 Mod.  6 Total 

Basic students (n = 16) 36(21) 30(13) 36(19) 39(21) 27(14) 33(29) 34(20) 



Plus students (n = 9) 42(28) 25(16) 30(27) 37(23) 19(16) 21(22) 28(22) 

Average score per DME module in percent (sd) 

Basic students   (n = 16) 87(9) 81(23) 80(13) 79(16) 70(30) 53(31) 75(24) 

Plus students (n = 9) 79(24) 91(8) 72(27) 61(33) 65(37) 43(35) 67(32) 

Table 2: Time investment and score using the DME 
The investment of time and scores of the DME work for each level group and per module are 
summarized in Table 2. The students used the DME with an average time investment of more than 
half an hour per session. During the learning trajectory the time investment, in particular for the plus 
students decreased. Initially, the students needed extra time for getting acquainted with the materia l. 
Moreover, the students indicated that over time they thoughtfully chose their way through the module 
by skipping known problems. 

The students’ scores on the DME show an average of about 70%. The basic and plus students 
respectively achieved an average score of 75%(24) and 67%(32) per module. The exercises in the 
plus route were more difficult. The scores decreased during the learning curve when difficulty 
increased. In the last module there is a substantial decline. This module contains no new material, but 
includes joint exercises from the completed chapters. The plus students show more variability in 
score. The considered choices in learning exercises by these students might have strengthened this 
trend. 

Test results 

Table 3 provides an overview of the pre-test score (RTTI average score on nine math tests over the 
past schoolyear) and post-test score (RTTI score on the final statistics test). The RTTI pre-test scores 
indicate the achieved learning level of the students at the end of each chapter. This means that based 
on the presented pre-test scores the expected RTTI post-test scores should be on average 55% at the 

levels T2 and I. However, the RTTI post-test scores reached on T2 and I, the parts that measure 
statistical literacy, show a 9% higher score of 64%. The dissimilarity in progress between the basic 
students (12%) and plus students (4%) 
at the levels T2 and I may be caused by a ceiling effect or maybe the exercises in the RTTI  
standardized test gave too little space to plus students to exhibit their knowledge. 

 Whole class (n=25) Basic students 
(n=16) 

Plus students (n=9) 

 Pre av. Post Pre av. Post Pre av. Post 

Score on R and T1 in 
percent (sd) 

79 (16) 85 (10) 79 (13) 85 (10) 80 (20) 86 (10) 

Score on T2 and I in 
percent (sd) 

55 (18) 64 (21) 47 (16) 59 (24) 69 (10) 73 (12) 

Table 3: RTTI scores before and after the intervention 



On the additional test both level groups exhibit a high score on T2 level, in spite of the increased 
difficulty. A smaller increase appears on learning level I. The results cannot be compared with 
previous tests because the difficulty of the 
conducted questions was considerably higher. 

Learning process during investigation activities 

The usual statements of students’ written work at 
the start of this intervention can be characterized as 
short answers with a calculation of the mean. The 
used visual representations were limited to bar and 

pie charts. Figure 2 shows 
students’ work on the first 
investigation task:  Investigate 
the colour composition of a bag 
of M & M's.   In the final 
investigation task the students’ 
work contained detailed 
descriptions and rich 
visualizations with a wide 
diversity of graphs. Attention 
was paid to the interpretation of 
the data. Learning progress was 
visible in terms of interpret ing, 
critically evaluating and 

reasoning with statistica l 
information. Figure 3 shows a small part of students’ work on the final investigation task in which 
they formulated and investigated their own research questions using datasets within TinkerPlots. The 
results on the final investigation task with respect to learning level T2 (65% of the total score) and I 
(35% of the score) are shown in Table 4.  
 Whole class (n=8) Basic groups (n=5) Plus groups (n=3) 

Score on T2 in percent  89 (7) 85 (6) 95 (4) 

Score on I in percent  51 (24) 35 (6) 79 (10) 
Total score in percent 70 (26) 60 (27) 87 (11) 

Table 4: Scores on T2 and I at the final investigation task  

On level T2, for example, we evaluated in the assessment-rubric correctly representing and 
summarizing the data and on level I we examined the choice of an appropriate visual representation 
and the critical interpretation of the results. In comparison to the basic groups, the plus groups show 
a higher score on learning level I. This investigation task probably provided more room to gifted 
students to exhibit their statistical reasoning.  

Figure 2: Students’ work on the first investigation task 

Figure 3: Students’ work on the first investigation task 



Conclusion and discussion 
The main question in this research was: Does a differentiated learning trajectory that focuses on 
statistical reasoning with visual representations increases students’ statistical literacy in grade 8? The 
results suggest it does. The RTTI scores reached on T2 and I, the parts that relate to statistical literacy, 
were much higher than would be expected according to the pre-test scores. Moreover, the final 
investigation task showed strong progress on interpreting, critically evaluating and reasoning with 
statistical information according to the start of this trajectory. This is consistent with the theories by 
Bakker & Gravenmeijer (2002) and Abel & Poling (2015) on developing statistical literacy. Both 
basic and plus students showed considerable improvement during the learning trajectory which 
suggests that both groups were challenged in this differentiated approach as suggested by Terwel 
(1988) and Van Dijk (2014). The use of all kinds of visual representations within TinkerPlots helped 
the students to explore their data. In summary, the results suggest that the designed educationa l 
intervention, which consisted of differentiated online modules within the DME combined with 
investigation activities using TinkerPlots during classroom sessions, led to increased statistica l 
literacy. However, this study has its limitations: no control with other groups was possible; we cannot 
indicate whether the differentiated approach or the focus on statistical literacy and reasoning caused 
the increased level; the pilot took place in just one class, taught by the researcher. Therefore, the 
results cannot be generalized and further research is needed. 
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Theoretical background 
In the Guidelines for Assessment and Instruction in Statistics Education (GAISE) College Report (2016) 
endorsed by the American Statistical Association following the GAISE College Report of 2005, the ASA 
revision committee recommends in addition to the teaching of statistical thinking and focusing on conceptual 
understanding, to use software combined with real data and to foster active learning. The main goal of the 
given recommendations for students is to develop statistical literacy and achieve the ability of thinking 
statistically. Therefore, students should understand the nature of data and all parts of the statistical process 
from obtaining and generating data to the communication and interpretation of the results after the analysis. 
In an international meta-analysis of 70 studies from the past 40 years Larwin & Larwin (2011) show that 
students in postsecondary statistics education strongly benefit from computer-assisted instruction (CAI) 
under certain circumstances, for example, when CAI is continuously and supplementary applied in lessons 
and homework. They also warn, however, of an overestimation of CAI. Several studies show the 
advantage of student-centered (e.g., Kuiper, Carver, Posner & Everson, 2015) and problem-based 
learning (e.g., Cantürk-Günhan, Bukrova-Güzel & Özgür, 2011) supported by technology (e.g., Koparan, 
2015). Neumann, Hood and Neumann (2013) explored the benefits of using real data in statistical 
education. Gil & Ben-Zvi (2011) underline the importance of context in the emergence of younger 
students’ informal inferential reasoning in an inquiry-based, technology-rich learning environment.  

Research questions 
The focus of the presented research lies on the beneficial implementation of statistics software in classes, 
considering, for example, the characteristics of various software programs. Another field of this research is 
how the use of statistical software in an inquiry-based learning environment leads to the development of 
conceptual understanding and not to dependence on the software and the learning of tools and procedures. 
This leads to the following research questions. First: How is the situation about the context- and inquiry-
based learning of statistics supported by technology in Austrian secondary schools? Second: Is there an 
evident connection between context and using real data on the one hand and CAI on the other hand to 
provide a meaningful learning of the overall statistical process. Third: How should software under a given 
context in classes of higher secondary schools be installed to support conceptual understanding of the 
statistical investigative process and which characteristics of statistical software are especially beneficial to 
this purpose? 

Research design 
Various learning sequences for the 10th grade of Austrian higher secondary school are being created and 
will be inserted in different Austrian secondary schools. According to Strauss and Corbin’s approach of 
Grounded Theory, diagnostic interviews will be carried out before and after the implementation of the 



learning sequences. Some students’ work on the sequences will be filmed and worksheets will be analyzed. 
The goal is, to develop provable hypotheses relating to the research questions.  
The poster gives an overview of the theoretical framework, the research questions and design and focuses 
on a created worksheet that will be applied for this research. First results show that software in Austrian 
schools is commonly used in other mathematical fields, e.g. for plotting graphs, but not even in 30% of the 
cases for calculating statistical key figures.  
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Statistical concepts often have multiple faces and deep understanding of these concepts requires 
combining these different perspectives. For example, mean is a complex concept (Mokros & Russel, 
1995) that can be thought as a typical value, fair trade or center of gravity (Gattuso, 1994). The 
teachers who teach statistics in social sciences curricula have very different backgrounds (Hahn, 
2015). The question is whether this variety of backgrounds leads them to implicitly favor one of the 
dimensions of the concepts when they teach. 

To answer this question, I chose to use metaphoric representations. Lakoff and Johnson (1980) have 
shown the central role of metaphors in the process of construction of scientific concepts. This question 
has been widely explored in mathematics education, a working group was specifically devoted to this 
topic at Cerme 2 to 5 (Parzysz, 2015). Soto-Andrade (2006) explains that a metaphor connects a 
concept already built in a familiar area with a concept to build in an area that is not familiar. These 
representations are usually “image like” (Sfard, 1994). That is why I chose to use depictive 
representations of these metaphors. In this research, these representations are external to the subject 
as they were not drawn by them. 

The protocol for this research involves six steps: 
1. Choice of statistical concepts  
2. Didactic analysis of these concepts and identification of the different perspectives from the 
literature 
3. Identification of metaphors who are used to teach these concepts and selection of the metaphors 
that can be associated with the different faces of each concept 
4. Drawing of representations of these metaphors 
5. Pretest with teachers from different backgrounds 
6. Semi-structured interviews of professors who teach statistics in a business school. 

The poster presents step 1 to 5 of this research. I chose the concepts of mean, sample and confidence 
interval. Following the review of the literature, different perspectives were identified and assumptions 
were made about the perspectives that should be preferred by teachers considering their background. 
From informal discussions with professors and the study of textbooks, I identified a few metaphors 
and selected those that seemed directly linked to the different faces of the selected concepts. I then 
draw for each concept, three pictorial representations of these metaphors. Through the pre-test, it 
seems that teachers do not at first always identify the concept behind the drawings. They associate 
the pictorial representations with concepts directly related to the target concept and linked to the 
perspective chosen. For example, regarding the mean, interviewed teachers “saw” the concept of 
distribution when they were shown the image referring to the "fair share" and the variance in the 
image referring to the "balance point". 
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Main objectives and theoretical foundation of the research study 
Nowadays, a large proportion of undergraduate university students are required to undertake at least 
one statistics or statistics-related course. The main consideration guiding my research study is the 
exploration of several cognitive and non-cognitive factors, the “other” outcomes of statistics 
education (Schau, 2003), and their relationship with the students’ academic performance in 
introductory statistics courses offered at tertiary institutions. Cognitive, affective and motivationa l 
factors under investigation include: students’ feelings, attitudes and beliefs about statistics;  students’ 
anxiety feelings and perceived self-efficacy regarding statistics; motivational orientations, 
achievement goals, students’ interest in and engagement with statistics (such as effort, persistence, 
learning strategies); resilient behaviour characteristics when learning and studying statistics; and prior 
mathematics or/and statistics background and performance. A proposed theoretical causal model, 
including direct and indirect effect of these variables on achievement in statistics, will be tested. 
Moreover, the study focuses on exploring and documenting non-mathematicians’ perceptions, 
behaviors, challenges and experiences when completing a statistics course.  

My theoretical foundation is supported by some key theories: Social-cognitive learning theory 
(Bandura, 1997) and Self-efficacy theory (Bandura, 1977), Expectancy-Value theory (Wigfield and 
Eccles, 2000) and Achievement Goal theory (Dweck, 1986). Some ideas behind these theories have 
been adapted to statistics learning experiences and they have been used as a guide for both the 
quantitative and qualitative strands of my research work. 

Research design and methodology, and data collection and analysis procedures 

In order to accomplish the research aims and goals, a mixed-methods research design (that is a 
combination of quantitative and qualitative data collection methods) has been employed. A self-
reported questionnaire, which was designed and developed specifically for the purposes of the 
doctoral study, has been administered to a larger sample of students in university classroom settings.  
It comprised of open- and closed- ended questions, and Likert-type questions on a 5-point scale. 

Individual (and pair) face-to-face semi-structured interviews were conducted with a sample of 
participants who had completed the questionnaire and consented to be interviewed.  

The data collection procedure can be summarized in three many stages (not in chronological order): 
quantitative data-gathering (executed in two phases - at the beginning and at the end of the period of 
instruction of various statistics courses); qualitative data-gathering; and participants’ final grades 
obtained at the end of a statistics course from each of the instructors.  The data collection was carried 
out over a period spanning two academic semesters, the fall semester 2015 and the spring semester 



2016. I collected data from six universities – all the recognized universities (both public and private) 
operate in Cyprus.  I observed and gathered data from 35 statistics classes (23 courses) taught by 15 
different instructors. I collected over 1000 questionnaires and I executed 60 face-to-face interviews.  
The participants, with a variety of mathematics background and experience, came from diverse 
academic departments and degree programmes.  

The quantitative data will be analysed using a variety of methods: basic statistical techniques 
(descriptive statistics, reliability estimates, correlation coefficients, χ2 tests, t-tests, analysis of 
variance and regression analysis); advanced statistical methods (multilevel analysis, factor analys is 
and structural equation modelling techniques). Τhe qualitative data will be coded using thematic 
analysis approach.     

Potential significance and contribution 
This study may act as a springboard for further research in Cyprus and cross-cultural comparisons 
between Cyprus and other countries. The major findings and recommendations of the research work 
may constitute a helpful tool for the statistics instructors and stakeholders of statistics education in 
implementing interventions, innovations and instructional strategies/ practices to develop and 
improve the quality, the efficacy and the relevance of statistics courses that provided for non-
mathematics majors. 

The poster for the CERME-10 conference includes a brief introductory statement of the background, 
context and objectives of this doctoral study as well as information about the research design and 
methodology and data collection and analysis processes. Also, some preliminary findings (along with 
visual and graphical representations) are presented.  
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Theoretical framework and research questions 
Most of the recent studies emphasise the challenges when dealing with probability problems. As 
Horvath & Lehrer (1998) show, young children are able to see a relationship between theoretica l 
probability and empirical outcomes, but „[t]he children never understood the role of the sample space 
without significant support and, hence, never completely understood the reasons why patterns were 
more predictable than simple outcomes“ (Horvath & Lehrer, 1998, p. 132).  

The largest challenge for the development of conceptions of probability and chance seems to be 
coordinating empirical and theoretical perspectives on probability. This means to relate the (relative) 
frequency of outcomes (empirical law of large numbers) and theoretical assumptions considering the 
distinction between long-term and short-term on random processes (Schnell, 2014; Horvath & Lehrer, 
1998). A core condition for emerging conceptions of probability seems to be the change of 
perspective from focussing on single outcomes to the long-term results (Prediger, 2005, p. 40) and 
changing from long-term to short-term perspective (Johnston-Wilder & Pratt, 2007). 

This project aims at providing insights into the development of students´ conceptions of probability 
and chance during a board game. Towards this end, this study pursues the following research 
questions: Which elements of a teaching- learning arrangement can support the distinction between 
long-term and short-term? (RQ1) Which elements of a teaching-learning arrangement can support 
students in relating empirical and theoretical probability? (RQ2) 
 
Method  
In this project, students´ conceptions of probability and chance are identified within game interviews 
based on the board game „Who wins?“ (see Figure 1). Players take turns in throwing dice with 
asymmetrical colour distribution (green: 3 sides; red, blue and yellow: 1 side) and taking one step 
with the token of the matching colour. The goal of the game is to predict the winning token. During 
the interview the game is played several times, so that the learning environment provides stochastic 
experiences in a short-term context.  

  
The students are asked to systematise the results with the help of different record types: a winning list  

Figure 1: Who wins? Figure 2: single game list and many games list 
 



recording the winner of each game, a result list recording each individual thrown dice, a single game 
list providing histograms of colours thrown for individual games, and a many games list providing a 
histogram of the aggregated colours thrown over all games (see Figure 2). Simulated long- term 
documents provides opportunities to relate short-term to long-term results.  

In total, 27 students were interviewed in groups of three. Each group met for three interview sessions.  
The 27 sessions were videotaped and fully transcribed (including oral statements, actions, and results 
of games and throws of dice). The students’ conceptions on probability were identified in a qualitat ive 
interpretative analysis. 

First conclusions 
A first analysis of the empirical data shows that the learning environment can initiate a change of 
perspective from short-term to long-term. In particular, comparing long-term results with short term 
AND with other long term results revealed the difference between the contexts. Experienc ing 
variability in a short-term context may support changing perspective from long-term to short-term. 
Different record types (e.g. single outcomes, cumulated outcomes) seem to support “seeing” the 
distinction between long-term and short-term on random processes.  

Relating the outcomes and the colour distribution of the dice support the understanding of the  
relationship between empirical and theoretical probability. Reflection on mathematically unexpected 
outcomes may initiate explanations of the relationship in a more detailed way.  
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Introduction 
Mathematical modelling and its teaching at various educational levels are widely accepted all over 
the world. There is consensus of the need to integrate mathematical modelling and applications in 
curricula and this has already taken place in many European countries. However, there is no 
unanimity on how to integrate mathematical modelling and applications into the processes of 
teaching-and-learning mathematics. In addition, there is little secure empirical knowledge available 
on how to implement efficiently the necessary new learning environments. In its discussions at 
CERME 10, the thematic working group TWG 6 on modelling and applications aimed to contribute 
answers to these open questions and hence further develop the work from previous ERME 
conferences. The contributions discussed at the congress are characterized by a strong and fruitful 
diversity in the research questions considered, the school levels addressed and the theoretical 
approaches taken. On the whole, the papers address theoretical, methodological, empirical or 
developmental research on the teaching and learning of applications and modelling. The group 
involved 35 participants from 16 countries – participants were from Europe, and also from South 
and Central America. A total of 20 papers and four posters were presented and discussed during the 
working group sessions.  

In the following, we describe all presented papers, although not all have been submitted for the 
proceedings, grouped around eight comprehensive themes, which refer to current issues within the 
teaching and learning of mathematical modelling.  

As a first important theme, we identify the interplay between disciplines into modelling activities 
referring to the specificities of interdisciplinary modelling activities, especially in engineering 
teaching. The second theme relates to the connection of the problem solving perspective and 
mathematical modelling and to the development of problem solving strategies and competences, 
when students work in groups and develop individual competences. The third theme covers 
developing modelling strategies and competences, for example theoretical and empirical work 
focused on the analysis and use of heuristic strategies adopted by teachers and/or students which 
illuminates strategies used to foster students’ performance when solving modelling problems. The 
fourth theme refers to the tools and methodologies used to analyse modelling processes, namely 



studies focusing on elaborating specific methodologies for analysing and evaluating modelling 
practices. The fifth theme focuses on teachers’ beliefs in relation to the teaching of mathematical 
modelling, including, for example, research on the role of teachers to foster modelling practices. 
The sixth theme covers teachers’ interventions in mathematical modelling. The seventh theme 
refers to experimental materials and technology in modelling, which covers two topics, a first 
primarily focused on the role of the auxiliary material and its impact on modelling and a second 
concerned with how to combine different resources with technology in concept development by 
means of real word contexts. The eighth theme refers to the assessment of modelling practices. 

Overarching themes  
Modelling and interdisciplinary teaching 

This theme focuses on the interplay between disciplines in modelling activities. The first study by 
Borromeo and Mousoulides describes theoretical reflections about the differences and similarities 
between mathematical modelling and interdisciplinary mathematics education. Besides its focus on 
underlying similarities and differences, this paper provides some examples of projects that make 
connections explicit and how these may be useful for teachers while discussing modelling as a 
means for solving interdisciplinary problems. Within this thematic strand, other empirical works 
were presented based on particular case studies involving interdisciplinary projects with 
mathematical modelling as a central issue. In particular, Brake and Lantau described a pilot study of 
an interdisciplinary project used with experienced students of grade 12 based on modelling segways 
which supported them to build models based on linear systems of differential equations. 
Furthermore, Sala, Font, Barquero and Giménez reported on the design and analysis of an 
implemented interdisciplinary project, where mathematical modelling was embedded into an 
archaeological context. The study showed how the complementarity between two subjects (history 
and mathematics) can be an important tool in supporting modelling and inquiry. Besides the 
potential of designing interdisciplinary modelling situations, such as those presented in these papers, 
a couple of important question remain unresolved: 

 What are the specificities of interdisciplinary mathematical modelling in relation to 
mathematical modelling more generally? 

 How is it possible to manage the interplay between mathematics, mathematical modelling 
and non-mathematical knowledge to enrich teaching practices in the learning of 
mathematics? 

 Can some analytical tools widespread in the research frame of modelling, such as the 
modelling cycle, be adapted to analyse mathematical modelling in interdisciplinary 
contexts? And, if yes, how? 

 What relationships exist between the mathematical modelling cycle and the inquiry process? 
 How do we best integrate different disciplines in developing modelling tasks? 

Another important topic referred to modelling in the particular case of teaching of engineering. The 
papers from Romo, Tolentino and Romo-Vázquez, and Siero, Romo and Abundez reported intentions 
to design and analyse modelling activities for the mathematical education of teachers. Both studies 
were based on the Anthropological Theory of Didactics. They focused on analysing the roles and 
interplay of institutions in the educational programmes of engineers and on the institutional 



conditions that the design of the study and the research activities expose in the teaching of 
modelling in such contexts. Some of the questions discussed were: 

 How can different institutions become involved in mathematical modelling in engineering 
education? 

 How can practical knowledge be grounded on mathematical knowledge? 
 How can the steps of an engineering project (design, mathematical model, prototype) be 

described? How are these steps interrelated? How are they connected to the modelling 
cycle? 

Connection of the problem-solving perspective and mathematical modelling  

The second theme refers to the connection between problem-solving activities and mathematical 
modelling. First, Clohessy and Johnson examined the relationships between the problem-solving 
performance of small groups with that of individual students in order to identify the influence of 
group work as an effective instructional strategy when teaching problem solving. Second, Karatas, 
Soyak and Alp presented an investigation about mathematical non-routine problem solving 
processes of fifth grade students in small groups. Their study aimed to determine problem solving 
behaviours within different episodes of problem solving. As both papers focused on the description 
and measurement of problem solving competences in small groups and individually, some common 
questions appeared: 

 How might individual competences improve when students are participating in a group? 
 What instruments can we use to measure the improvement of individual competences 

before, during and after mathematical modelling processes? Which are the most valuable 
indicators we might use to measure these changes? 

 What are the cultural aspects that have most impact on planning the implementation of 
problem-solving activities? 

Developing modelling strategies and competences 

This third theme concerns the use of heuristic strategies to support modelling practices. The paper 
from Stender and Kaiser presented a study on the usage of heuristic strategies by students in school 
within modelling activities and the promotion of strategic help provided by academic tutors, who 
guide the modelling activity of the school students. The paper of Schmelzer and Schukajlow focused 
on the relationship between reading comprehension and mathematical modelling. The study 
identified strategies to help learners comprehend a modelling problem and described ways these 
strategies might be implemented in the classroom. The following important questions emerged from 
discussions of the working group: 

 How far can heuristic strategies developed in the frame of problem solving be transferred to 
mathematical modelling? 

 Can their identification and characterisation be helpful in supporting teachers’ strategic 
interventions? 

 How, in different teacher education programmes, may these heuristics be made explicit? If 
we make them explicit, do we risk narrowing the radius of action of teachers when guiding 
modelling activities? 



 What are the effects of text length and superfluous elements on reading comprehension in 
modelling problems? 

 How can we prepare teachers to foster students’ reading comprehension in modelling? 

A closely related topic was that focused on the metacognition of modelling competencies as an 
essential part of developing competence in modelling. Vorhölter, Krüger and Wendt presented their 
results from a pilot study about the identification and measurement of metacognitive modelling 
competencies in small groups when working on modelling activities. The following relevant 
questions were discussed: 

 How might we best define metacognitive competencies? How can their characterisation be 
used to evaluate students’ development of competencies? 

 How is it possible to separate the individual progress of metacognitive competences from 
that of the collective group? 

 How might a detailed evaluation of students’ teamwork enrich the understanding of 
metacognitive competences? 

Analysis of modelling processes 

This fourth theme addressed tools and methodologies used to analyse modelling processes. On the 
one hand, Barquero, Monreal and Ruíz-Munzón presented a study, proposed within the frame of the 
Anthropological Theory of Didactic, about how to forecast the increasing number of Facebook 
users. The analysis of the implemented research path was based on three dialectics essential for 
mathematical modelling: the questions-answers dialectic, that of the media-milieu and that of 
individual-collective dynamics. On the other hand, the paper from Delgadillo, Viola and Vivier 
presented an analysis of a modelling task in the context of pre-service teacher education based on 
the theory of the Mathematical Working Space. In this latter study, the modelling cycle was used as 
an essential tool to analyse the personal Mathematical Working Space of students solving a 
modelling task. Some questions appeared in the discussion of both papers: 

 Which different dimensions, or levels, of analysis may be taken into account when analysing 
mathematical modelling practices? 

 Which are the most valuable observables (depending on the focus of study)? 
 Up to what point can tools for analysis be used as tools to help with designing mathematical 

activities? In which more general approaches to task-design do they appear? 
 How do we carry out analysis that takes into account both individual activity and collective 

interactions in modelling processes? 

Teachers’ beliefs on teaching modelling  

This theme refers to a study on teachers’ beliefs on modelling tasks. The paper from Ramirez 
explored mathematics teachers’ beliefs about teaching and learning mathematical modelling and 
about modelling itself. It presented an exploratory study of responses from teachers collected in an 
online questionnaire related to the characteristics of modelling practices. Several questions came up 
about the relation of teachers’ beliefs with their experience and knowledge about modelling: 



 While analysing beliefs many aspects have to be taken into account, which are difficult to 
separate. Thus, what is the relation between ideas, beliefs, previous experiences, and 
modelling competences? 

 The role of teachers’ beliefs in connection with teachers’ knowledge is examined. Therefore, 
the question arises: How do we take into account teachers’ knowledge about modelling? 

 The role of teachers as individuals within institutions is studied. Thus, which cultural and 
school conditions influence their opinions? 

Teachers’ interventions in teaching modelling 

This section refers to teachers’ interventions in teaching mathematical modelling. Ferrando, Donat, 
Diago and Puig presented an analysis of the different kinds of interventions teachers made during a 
project in which students worked on a modelling task about the intensity of sound distribution 
throughout a classroom. The study aimed to identify the influence of such interventions on students’ 
learning opportunities. The following questions arose:  

 How do available resources and means influence the openness of the task and students’ 
possible responses? 

 Who validates the final answer in a project? 

Experimental materials and technology in modelling 

This theme focused on the role and use of experimental materials and of technology. Two topics 
were dealt with. The first focused on the role of auxiliary material and its impact on modelling and, 
the second concerned the combination of different resources with technology to assist concept 
development by means of real-word contexts. Guerrero-Ortiz, Mena and Morales discussed how 
the handling of auxiliary material can favour knowledge transfer between real world situations and 
mathematical models. The research, which was conducted within pre-service teacher education in 
Chile, presented insights into the design of modelling tasks and the affordances of auxiliary 
materials in supporting modelling.  Carreira and Baioa base their research on an episode of a 
modelling activity with grade 9 students which aimed to reflect on the authenticity of the modelling 
task and to examine how students used experimental work to help them succeed in modelling 
activities. Some of the matters discussed were:  

 How can auxiliary material support the learning process? Is it necessary to support students 
in its use or is it self-explanatory? 

 Does the auxiliary material simulate the real processes taking place in the real setting? 
 How far are problems authentic or meaningful to students? 
 To what extent can we include the way things are really done in the real world in modelling 

tasks for students? 

Regarding the second topic, Karimianzade and Rafiepour presented a study about the introduction 
of decimal numbers. The study showed how different resources were introduced and how 
experimental work helped fifth grade students to develop their knowledge and understanding of 
decimal numbers in the context of measurement. Lieban and Lavicza reported about students’ work 
in using dynamic geometry systems in a geometric modelling situation. They suggested the use of 
some new manipulative resources together with digital applets that progressively enrich the 
development of the modelling process by students. Several ideas were debated around the questions: 



 Which alternative ways exist to introduce decimal or rational numbers taking into account 
the introduction of standard units? 

 How can we produce computer simulations of physical models? 
 What are the goals for the different people (students, teachers and researchers) involved in 

creating GeoGebra models? 

Assessment of mathematical modelling  

This last theme refers to the assessment of mathematical modelling. The paper of Greefrath, Siller 
and Ludwig analysed the official school leaving examination in Germany allowing university 
entrance, the so-called Abitur examination, which is supposed to contain elements that examine 
mathematical modelling. For this purpose, they based their analysis on certain criteria: reference to 
reality, relevance, authenticity, openness and partial competence of modelling, to analyse the 
potential of problems included in the official examination. In addition to the difficulties of deciding 
how to evaluate modelling practices in these kinds of official examinations, several questions were 
discussed: 

 Which criteria can be used to describe good examination questions for modelling? 
 Can all the sub-competences of modelling be assessed within examination tasks? 
 How can we design school examination tasks that cover various aspects and goals that 

include mathematical modelling? 

Within this strand, Ärlebäck and Albarracín proposed an analysis of various definitions of Fermi 
problems from a modelling perspective. They focused on analysing how the definition and 
descriptions of Fermi problems in the literature align with different perspectives on modelling. They 
also discussed how far Fermi problems and modelling are connected and how strongly that 
connection is influenced by the definition of Fermi problems. 

Concluding remarks and perspectives 
The overarching themes tackled in TWG 6 show the variety of research questions the papers dealt 
with, for example concerning the theoretical frameworks used or the underlying perspectives on the 
teaching and learning of mathematical modelling (Kaiser & Sriraman, 2006, Kaiser et al., 2007). 
Furthermore, the educational levels involved span from primary to tertiary education.  

In their analysis of the development of the teaching and learning of mathematical modelling over the 
last decades, Cai and colleagues (2014) introduce five perspectives, which can be helpful in order to 
identify the progress made during ERME conferences and potential future development. 

The first perspective, the mathematical perspective, describes the differences between modelling at 
practitioner level and at school level. However, industrial examples can play a powerful role in 
education, because they are authentic and of varying complexity. There is a long tradition of 
discussing examples from engineering education in TWG 6 at various ERME conferences. In 
addition, the relation to other disciplines has always played an important role and needs to be 
mentioned under this perspective. 

The second perspective, the cognitive perspective, focuses on students’ cognitive processes when 
modelling, and cognitive barriers, when students work through the modelling cycle. Cognitively 
oriented analyses have played a prominent role in many sessions of the modelling group at previous 



conferences. At CERME 10, this aspect can be found within two thematic strands, that on 
developing modelling strategies and competences and also that on the analysis of modelling 
problems. The discussions there broadened our focus on the cognitive perspective and helped us 
develop further our thinking. 

The third perspective, the curricular perspective, refers to the inclusion of mathematical modelling 
in the curricula. This question was addressed in all meetings at previous conferences and is 
addressed in nearly all thematic strands of TWG 6 at CERME 10 and highlights the significance and 
urgency of this theme. 

The fourth perspective, the instructional perspective, claims the necessity of high quality modelling 
education in order to promote effective learning. The question on how to implement effective 
modelling environments is a hot topic that has persisted for decades and was addressed at CERME 
10 within various strands of TWG 6, especially within the themes that addressed experimental 
materials and technology in modelling and teacher interventions.  

As a final and fifth perspective teacher education and teachers’ activities in school are addressed, 
because of the obvious necessity of preparing pre-service teachers for the teaching of mathematical 
modelling, although the importance of this topic at the various sessions of the Applications and 
Modelling TWG at previous ERME conferences was less prominent than at this. At CERME 10, 
teachers and their role in teaching as well as teacher education played a prominent role within the 
work of the Applications and Modelling TWG. This was integrated into various themes such as 
modelling strategies, teacher interventions and teachers’ beliefs. This shift shows a clear further 
development of the discussions and the work of TWG 6 and needs to be fostered and broadened. 
Teachers and their education are the key for the effective and efficient integration of mathematical 
modelling into mathematical education at various levels.  
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In this paper we use a modelling perspective to analyse three descriptions and definitions of so-
called Fermi problems found in the literature. We discuss how the three definitions align with, and 
what they potentially have to offer to, realistic or applied modelling, contextual modelling, 
educational modelling (either a didactical or conceptual), socio-critical modelling, epistemological 
or theoretical modelling, and cognitive modelling. Our findings show that the definitions share 
some similarities, but for the most part are formulated in lose terms. From a modelling perspective, 
we found that the conceptualisation of Fermi problem we studied foremost and directly align with 
contextual modelling and both strands of educational modelling. We also discuss the seemly 
incompatibility between Fermi problems and the other modelling perspectives, and suggest new 
lines of research on Fermi problems in particular, and on conceptualizing modelling in general. 
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Introduction 
The notion Fermi problem is tributed to the Italian Enrico Fermi (1901-1954), the 1938 Nobel Prize 
winner in physics, who had a special liking for posing and solving problems like How many 
shopping malls are there in the United States? (Anderson & Sherman, 2010). Fermi’s philosophy 
was that any thinking and reasonably educated person should be able to solve problems of this type 
by just combing one’s capabilities of making quantitatively accurate realistic and intelligent order of 
magnitude estimates, reasoning, and doing simple calculations (Efthimiou & Llewellyn, 2007). The 
perhaps most famous and classic Fermi problems is How many piano tuners are there in Chicago? 
Allegedly Fermi repeatedly gave this problem to his physics students at the University of Chicago 
many times over the years, and illustrated of the power of such reasoning by quickly calculating an 
astoundingly accurate and reasonable answer based on just a few sensible assumptions and 
estimates. Besides going under the name Fermi problems, these types of problems are also called 
back-of-envelope calculation problems or order of magnitude (estimation) problems.  

Much due to the influence of Fermi, Fermi problems have been widely used in physics and 
engineering college courses in the US. Indeed, one can find many “shout-out” advocating and 
claiming various beneficiary effects for using Fermi problems in teaching, often exemplifying the 
assumptions and calculations involved in an explicit example as well as listing Fermi problems to 
try out in the classroom (see for example Carlson (1997)). However, it seems that systematic 
science- and engineering education research focusing on Fermi problem is sparse or at best 
marginalized. In recent years however, a number of studies in mathematics education have focused 
on the use of Fermi problems in the teaching and learning of mathematical modelling. Peter-Koop 
(2004) used Fermi problems to investigate third and fourth graders’ problem solving strategies and 
among other things found that students’ solutions “revealed multi-cyclic modelling processes” (p. 



461). At the upper secondary level Ärlebäck (2009) investigated the potential of using Fermi 
problems as ‘miniature modelling problems’ to introduce modelling. Using so-called MADs 
(Modelling Activity Diagrams) the result showed the complexity of the modelling process involved 
when students at the high school level engaged in solving Fermi problems, something which 
recently also have been documented for college students (Czocher, 2016). Fermi problems have also 
been used to study students’ reasoning involved in solving so called Big numbers estimation 
problems, such as How many persons can fit in the playground of our high school to attend a 
concert there? Albarracín and Gorgorió (2013) showed that problems requiring equivalent 
mathematical solving approaches, but formulated using different context-specific wording, resulted 
in the students using differing solving strategies. Building and furthering this study, Albarracín and 
Gorgorió (2014) showed that some of the solving strategies the students used normally not would 
been considered valid as mathematics classrooms activities. For example, one such strategy found 
was the exhaustive recounting of objects, which requires excessive effort and/or time, or input from 
external sources which would eliminate the need to solve the problem altogether. However, it was 
concluded that 47% of the students’ strategies were based on mathematical models.   

Sriraman and Lesh (2006) have argued for the introduction of Fermi problems as interdisciplinary 
tasks which potentially bridge and connect mathematics and other school subjects. In addition, due 
to the directness aspect of Fermi problem, one can also easily incorporate different social issues of 
interest within the task, such as estimating the amount drinking water consumed, the consumption 
of gasoline or other fuels, the amount of discarded food or other ecological types of problems 
(Sriraman & Knott, 2009). 

In this paper we present our on-going work aimed at doing an exhaustive and systematically review 
of the literature on Fermi problems from all educational fields. As part of this endeavour, we in this 
paper analyse three different definitions and descriptions of Fermi problems in the literature from a 
modelling perspective. We use the classification of perspectives on modelling by Kaiser and 
Sriraman (2006), and map the key features of Fermi problems in the definitions and description 
onto the different perspectives and discuss the potential of using Fermi problems in a modelling 
setting from different viewpoints. Our aim is that this preliminary analysis will point out areas and 
directions that are worth to further explore in the larger study.  

The research question that guided our work in this paper was: How does the definitions and 
descriptions of Fermi problems in the literature align with different perspective on modelling? 

Methodology and method 
Three of our goals with doing a systematic review of Fermi problem is to i) elaborate a research 
grounded coherent definition that characterize Fermi problems as completely as possible; ii) find 
and describe the connection between Fermi problems and modelling in general and connections 
between modelling perspectives in particular; and iii) create a research agenda for future research 
(Ärlebäck & Albarracín, in preparation).  

The literature for the exhaustive review was identified using a) search engines such as Academic 
Primer, ERIC, Google Scholar, and Scopus, and key word searches on Fermi problem/question/ 
estimate, back-of-envelope problem, order of magnitude estimate, “how many piano tuners”, b) 
snowballing (using literature already found and concluded relevant for the research to identify  



further literature; cf. Petticrew & Roberts, 2006), and c) asking colleagues with other mother toughs 
than our own for papers in their native language. It should be noted that there are similar notions 
and concepts in chemistry and physics, and hence the searches will result in large numbers of hits. 
However, the majorities of these can be dismissed since they not are about education. The papers 
that did have and educational focus was skimmed and paper that only mentioned Fermi problems in 
the passing was excluded from the final selection. This resulted in a list of 59 papers from 
mathematics education and other educational subjects (such as science, economics and engineering), 
written in English, Spanish, German Japanese and Dutch. All 59 papers were read and three 
representative definitions and descriptions were selected. We then used the characterisation of 
perspectives on modelling by Kaiser and Sriraman (2006) as an analytic lens to compare the three 
definitions as well as contrast them relative the different modelling perspectives. We chose this 
high-level framework to structure the analysis rather than a more specialized and “derived” 
framework (such a framework classifying modelling tasks) for two reasons. Firstly we wanted do 
use the existing definitions and descriptions of Fermi problems in the literature as the point of 
departure for the analysis, and secondly we wanted to use a neural framework not based on too 
specific cultural or epistemological stances. 

The three definitions and descriptions of Fermi problems 

Although the number of papers related to Fermi problem found is numerous, many of them do not 
offer any explicit definitions of the notion, but are rather based on shared knowledge and often 
provide some elaborated examples to characterize how Fermi problems are conceptualized and 
understood. 

For the analysis and discussion in this paper we have chosen to focus on the following three 
different definitions and characterisations of Fermi problems in the literature: Ärlebäck (2009), 
Goodchild and Fuglestad (2008), and Sriraman and Knott (2009). All three sources are selected 
from the mathematics education research literature and use and discuss characteristics of Fermi 
problems and how students work with these. Ärlebäck (2009) is included since the characterizing of 
Fermi problem in this paper is one of the most cited and used definition in the more recent literature 
(in 9 of the 59 papers in our list of research paper on Fermi problem). Goodchild and Fuglestad 
(2008) and Sriraman and Knott (2009) are both included since their papers are representative for 
much of the other papers in literature. One can discuss whether the expressed conceptualizations of 
Fermi problems in the three papers are definitions in strict sense or mere characterizations or 
descriptions, but to avoid ambiguity and awkward formulations in the paper we will from now on 
refer to the three simply as definitions. 

The first quote, from now on referred to as (Ärlebäck), comes from Ärlebäck (2009) who suggested 
and adapted so-called Realistic Fermi problems defined by: 

 their accessibility, meaning that they can be approached by all individual students or groups 
of students, and solved on both different educational levels and on different levels of 
complexity. A realistic Fermi problem does not necessarily demand any specific pre-
mathematical knowledge; 

 their clear real-world connection, to be realistic. As a consequence a Realistic Fermi problem 
is more than just an intellectual exercise, and I fully agree with Sriraman and Lesh (2006) 



when they argue that “Fermi problems which are directly related to the daily environment are 
more meaningful and offer more pedagogical possibilities” (p. 248); 

 the specifying and structuring of the relevant information and relationships needed to tackle 
the problem. This characteristic prescribes the problem formulation to be open, not 
immediately associated with a know strategy or procedure to solve the problem, and hence 
urging the problem solvers to invoke prior constructs, conceptions, experiences, strategies 
and other cognitive skills in approaching the problem; 

 the absence of numerical data, that is the need to make reasonable estimates of relevant 
quantities. An implication of this characteristic is that the context of the problem must be 
familiar, relevant and interesting for the subject(s) working in it; 

 (in connection with the last two points above) their inner momentum to promote discussion, 
that as a group activity they invite to discussion on different matters such as what is relevant 
for the problem and how to estimate physical entities. (Ärlebäck, 2009, pp. 339-340, italics in 
original) 

The second definition of Fermi problem is by Goodchild and Fuglestad (2008), who draw on (Swan 
& Ridgway, n.d.). Their definitions will be referenced as (Goodchild & Fuglestad): 

These [Fermi problems] are ‘plausible estimation’ tasks, which consist of one or two easily-
stated questions which at first glance seem impossible to answer without reference material, but 
which can be reasonably estimated by following a series of simple steps that use only common 
sense and numbers that are generally known or amenable to estimation (Goodchild & Fuglestad, 
2008, p. 52). 

The third and last definition, from this point referred to as (Sriraman & Knott), is from Sriraman 
and Knott (2009): 

Fermi problems are estimation problems used with the pedagogical purpose of clearly identifying 
starting conditions or assumptions and making educated guesses about various quantities or 
variables which arise within a problem with the added requirement that the end computation be 
feasible or computable by hand. (p. 220) 

Analysing and situating Fermi problems from different perspectives on 
modelling 
We now briefly summarise the main characteristics of the different perspectives in Kaiser and 
Sriraman (2006) and discuss how the three definitions of Fermi problems above “fits” with the 
respective perspective and why. The brief characterization presented of realistic or applied 
modelling, contextual modelling, educational modelling (either a didactical or conceptual), socio-
critical modelling, epistemological or theoretical modelling, and cognitive modelling are based on 
Kaiser and Sriraman (2006) and Blomhøj (2009). 

The realistic or applied perspective of modelling stresses the importance of using authentic 
problems from science and industry as well as for the students to engage in the whole modelling 
process rather than fragmented parts thereof. Although none of the definitions explicitly excludes 
authentic contexts from science and industry, they all tend to suggest and promote more mundane 



and everyday problem contexts: “the context of the problem must be familiar, relevant and 
interesting for the subject(s)” (Ärlebäck); “reasonably estimated by following a series of simple 
steps that use only common sense” (Goodchild & Fuglestad); “making educated guesses” (Sriraman 
& Knott). It could be noted that the use of the word ‘realistic’ in Ärlebäck’s definition might be 
misleading with respect to the realistic and applied perspective of modelling. This wording merely 
stresses that the Fermi problem should have a meaningful real-world connection and not be purely 
intellectual in nature. However, in the sense that Fermi problems that focus on issues like the 
number of piano tuners in a city, or the number of grains of sand in a glass, are not normally 
relevant questions for students. On the other hand, problems that ask students to estimate the 
amount of trash produced, or the volume of fresh water consumption, connect with the students’ 
physical and social environment and have meanings by themselves. The meaning of ‘realistic’ in the 
realistic or applied perspective on modelling is much stronger. This suggests that Femi problems, at 
least as portrayed in the definitions discussed here, have little to offer to the realistic and applied 
perspective on modelling. 

Contextual modelling, having its roots in the word problem solving tradition, is centred around the 
design of carefully structured and meaningful situations, were the students develop, refine, and 
extend their own mathematical constructs as well as apply these in different contexts. The emphasis 
on meaning-making in the contextual modelling perspective can be seen echoed in (Goodchild & 
Fuglestad) and (Ärlebäck) but not evidently in (Sriraman & Knott). In (Goodchild & Fuglestad) the 
students have to meaningfully understand and come to grips with the context of the Fermi problem 
at hand to overcome the “easily-stated questions which at first glance seem impossible to answer”, 
whereas (Ärlebäck) stresses the problem formulation to “be open, not immediately associated with a 
know strategy or procedure to solve the problem, and hence urging the problem solvers to invoke 
prior constructs, conceptions, experiences, strategies and other cognitive skills in approaching the 
problem“, which resonates with the ‘traditional’ problem solving tradition that historically has been 
strongly associated with the contextual perspective on modelling. (Sriraman & Knott) on the other 
hand describe Fermi problems as intentionally designed with the explicit “pedagogical purpose of 
clearly identifying starting conditions or assumptions and making educated guesses about various 
quantities or variables which arise within a problem”. This focuses more on solving (meta-) 
strategies than stressing meaning-making or for the students to develop, refine, and extend their own 
mathematical constructs. 

Both ‘flavours’ of educational modelling (didactical and conceptual) are so-called integrative 
perspectives in that they seek to combine modelling as a learning goal in its own right as well as 
modelling as a vehicle for learning other content matter. The two strands within this perspective 
forefront pedagogical goals such as using modelling as a didactical tool for structure learning 
processes and modelling as a mean to introduce concepts and promote concept development. Within 
this perspective, the cyclic view of modelling (aka the modelling cycle) has a prominent role. 
Looking at the three definitions, we argue that (Ärlebäck) and (Sriraman & Knott) both put forward 
Fermi problems as vehicles for learning other curricula objectives as well as have explicit didactical 
considerations as central features. On the one hand the two characteristics of accessibility and 
discussion promoting in (Ärlebäck) address classroom dynamics and classroom norms as innate 
components of the Fermi problems themselves. (Sriraman & Knott) on the other hand explicitly 



describe the use of Fermi problems as having a “pedagogical purpose”. Looking at the definition in 
(Goodchild & Fuglestad) however, these educational aspects are not emphasised. 

Central from the socio-critical perspective on modelling is critical reflection and critique of 
mathematics role and function in society as manifested in the use of mathematical models and 
modelling. Although it is an innate feature of Fermi problems to engage the problem solver in 
making reasonable, and arguable critically realistic, assumptions and estimates, these need not 
inherently nor explicitly focus on or be connected to the social dimensions involved in the context 
of the problem. Similarly as for the realistic and applied perspective on modelling, there are nothing 
in the definitions that explicitly stresses the fundamental core characteristics of the respective 
perspective. That is, with regards to the socio-critical perspective on modelling, neither of the 
definitions analysed forefronts the social aspects and implications of the use of models and 
modelling in society. However, it is worth noticing that (Goodchild & Fuglestad) use a formulation 
that indicates that Fermi problem can be used to get students to appreciate the potential and power 
of mathematics to address and make sense of real problems in the world, namely “questions which 
at first glance seem impossible to answer without reference materials”. 

Epistemological modelling focuses on theory building and uses modelling as a mean to re-construct 
topics and branches of mathematics as a discipline. Neither of the three definitions (Ärlebäck), 
(Goodchild & Fuglestad) and (Sriraman & Knott) express the ambition to draw on Fermi problems 
to derive theory in terms of re-building and constructing mathematical (sub-)topics or (sub-)areas. 
Indeed, as pointed out in Ärlebäck (2009), Fermi problem can be experienced as limited with 
respect to various mathematical content, and given a particular learning goal within mathematics, it 
might be very challenging to design and formulate a Fermi problem that focuses on eliciting this 
content in a natural way. 

The cognitive modelling perspective is sometime described as meta-perspective in the sense that it 
focuses on fundamental research questions related to various aspects of modelling from a cognitive 
perspective. From the point of view of the cognitive modelling perspective being a meta-perspective 
that guides research into the practices of mathematical modelling and all that goes around and into 
the modelling process, we find it difficult to elaborate on what the different definitions might offer 
in this respect. We fear that such a discussion would be far too speculative to be constructive or 
productive and not inform our aim about how to classify definitions of Fermi problems. 

Discussion, conclusions, and future research 
The limited analysis we have presented in this paper points to some of the challenges in developing 
a classification scheme of definitions of Fermi problems from a modelling perspective. Having 
engaged in this exercise, we conclude that the level of interpretation needed to apply the different 
perspectives on modelling as analytical lens introduces uncertainty in the results. Partly we believe 
this has to do with the fact that the definitions and characterizations of Fermi problems in the papers 
found in literature are vague and ambiguous. However, we also contribute some of this difficulty to 
the used perspectives on modelling in Kaiser and Sriraman (2006), which describes the modelling 
debate from evolutionary viewpoint, connecting todays trends and approaches with their historical 
traditions and roots. This suggests on the one hand, that an overarching and general characterisation 
and definition of Fermi problem could make the research on Fermi problem more connected and 



coherent, rather than scattered and compartmentalized. On the other hand, is also suggests that 
alternative ways of thinking about and characterize different aspects of the on-going modelling 
debate might provide new insight into the growing literature on the teaching and learning models 
and modelling – ranging from basic ontological and epistemological considerations to different 
aspects of both general and particular designs and practices involved in the teaching and learning of 
mathematical models and modelling. 

In going through the papers in our list of research on Fermi problem and looking at the definitions, 
we found that most definitions adapted in the different papers are of a local and pragmatic nature in 
the sense that they are relevant and work fine in the particular setting and study described and 
reported on the paper. We also identified patterns of linkages between the work of some authors 
who draws and build on each other’s work, whereas some pieces of research are more like isolated 
islands. To us this is a second indication motivating the need for a more coherent view and 
characterisation of Fermi problems, in order to coordinate the various research finding in the 
literature and advance our collective experiences and knowledge with respect to Fermi problems. 

As we mentioned before, there is no consensus of what the characteristics of Fermi problems are in 
the research literature. This is perhaps not surprising since this type of problems have been part of 
everyday mathematics and science teaching in various degrees and in various forms for decades, but 
only in recent time been subject for more systematic investigations. Doing the analysis of the three 
definitions have pointed to some communalities and difference in general and from a modelling 
perspective in particular. We are of the opinion that Fermi problems have much to offer from a 
modelling perspective, both as a tool to promote modelling (cf. (Ärlebäck, 2009)) and as a research 
tool. Hence we would like to promote the use of Fermi problems in schools, and through our 
systematic literature review (Ärlebäck & Albarracín, in preparation) we hope to lay the foundation 
for finding a common ground for promoting these types of problems in education and research. Our 
next step is to build on the initial ideas and results presented in this paper to make a more carful 
analysis of our sought out literature, with the ambition, to among other things, come up with a 
tentative and coherent definition of Fermi problems together with a rationale for how, when and 
why to used then in connection to mathematical modelling.  
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This paper presents the a posteriori analysis of an study and research path (SRP) on comparing 
reality versus forecasts of Facebook users, which appears as a teaching and learning proposal for 
mathematical modelling. We present the main elements of the SRP that have been designed through 
a virtual platform developed in the frame of the European project MCSquared and experienced in a 
first-year course at university in management sciences degrees. The three-layer analysis we present 
is based on three main study dialectics: the questions-answers, media-milieu and individual-
collective dialectics, which are central for an SRP and for mathematical modelling. In particular, we 
focus our a posteriori analysis on how these three dialectics were fostered and which are the main 
weaknesses as well as strengths of the SRP experienced. 

Keywords: Mathematical modelling, study and research paths, dialectics, university level. 

Introduction: The SRP as teaching proposal for mathematical modelling 
During the last decades, researchers and practitioners agree that teaching should not be focused only 
on the formal transmission of knowledge, but also should provide students of the tools for enquiring 
into the study of real phenomena and integrate mathematics as an essential modelling tool. It is thus 
important to foster a change of the school paradigm, with new functionalities to mathematical 
knowledge, novel responsibilities to teachers and students, different ways of questioning 
mathematical knowledge, that is, moving from a school paradigm which most of the time focused on 
introducing students to already built mathematical knowledge devoid of its rationale to a paradigm 
of questioning it, ‘questioning the world’ in the words of Chevallard (2015). In the particular case of 
the research on modelling and their applications and on inquiry-based approaches some big steps 
have been made showing how, under certain suitable conditions in different educational levels and 
curricular frames, modelling activities may be successfully put into practice (Artigue & Blomhøj, 
2013; Burkhardt, 2008; among others). Hence, the dissemination and long-term survival of activities 
based on modelling, enquiring and other innovating proposals are one of the main challenges for 
Mathematical Education. Therefore, to support and analyse any kind of alternative teaching proposal, 
researchers need reference models that allow them to analyse and evaluate the impact that these 
innovative teaching practices have on the way mathematics is conceived, on the nature of the didactic 
systems and milieus emerged through these practices, and on the conditions and constraints that help 
or hinder the viability of these practices. 

In our research, developed in the framework of the anthropological theory of the didactic, we bet on 
the use of the study and research paths (SRP) as epistemological and didactic model (Chevallard, 
2015; Winslow et al., 2013) to face the problem of moving towards a functional teaching of 
mathematics and, particularly, where mathematics are conceived as a modelling tool for the study of 
problematic questions. 



Traits and levels of analysis of an SRP 

According to Barquero and Bosch (2015), the starting point of an SRP should be a ‘lively’ question 
of real interest for the community of study (students and teacher/s). The study of Q0, called the 
generating question, evolves and opens many other derived questions Q1, Q2,…, Qn. The continuous 
looking for answers to Q0 (and to its derivative questions) is the main purpose of the study and an end 
in itself. As a result, the study of Q0 and its derived questions Qi leads to successive temporary 
answers Ai that can be helpful in elaborating a final response R♥ to Q0. These first characteristics can 
be associated to the first level of analysis of the SRP that we here consider, it consists in the dialectic 
establishing between the questions posed and the likely answers appearing (questions-answers 
dialectic) which also provide the basic structure of an SRP to be implemented and to be enriched after 
each implementation. This first layer can be linked to the cronogenesis dimension of the teaching and 
learning practices, referring to the evolution of questions to be faced and the necessary knowledge to 
be used.  

Another central dimension for an SRP is the media-milieu dialectic, which constitutes the second 
level of analysis. As described in the aforementioned investigations, the implementation of an SRP 
can only be carried out if the students have some pre-established responses accessible through the 
different means of communication and diffusion (that is, the media), to elaborate the successive 
provisional answers Ai. These media are any source of information, such as: textbooks, treatises, 
research articles, class notes, or the teacher acting as main media. However, the answers provided are 
constructions that have been elaborated to provide answers to questions that are different to the ones 
that may be put forward throughout the mathematical modelling process. Thus they have to be de- 
and re-constructed according to the new needs. Other types of milieus will therefore be necessary to 
test the validity and appropriateness of these answers. This second level of analysis put attention to 
the mesogenesis, that is, the evolution of the experimental milieu. Finally, we may consider the 
collective dimension of the research and study of questions in an SRP. This third dimension focuses 
on the roles and responsibilities that, far from the traditional didactic contract, students and teachers 
may assume in experiencing an SRP and how the individual work is shared, transferred and agreed 
with the wider community, and vice versa. We will denote this third level as the individual-collective 
dimension, which refers to the topogenesis. 

Didactic analysis of a mathematical modelling process: The case of an SRP about 
comparing reality against forecast 
We focus on analysing the case of an SRP on comparing forecasts against reality in the case of 
Facebook users’ evolution. This SRP was designed in the frame of the European project MCSquared 
(http://www.mc2-project.eu), the goal of which is the design of innovating teaching proposals (the 
so-called c-book units) to foster creative mathematical thinking. This c-unit in particular has been 
produced by a group of five multiple background designers: 2 Maths Education researchers, 2 
university lecturers, who were then in charge of its implementation, and an expert on modelling in 
the field of Operations Research, which enrich a lot the way to structure the teaching sequence to 
prompt mathematical modelling. The teaching proposal was made in the virtual socio-technical 
environment developed along the project, the c-book that integrates some narratives with several 
applets of different factories of different educational technologies. Next we present the details about 
the design of the SRP experienced, combining the virtual environment offered by the c-unit with face-



to-face sessions during the winter term of the academic year 2015-16 with first-year students of 
Business Administration Degree and of Innovation Management (BAIM), all from the ‘Escola 
Superior de Ciències Socials i de l’Empresa-Tecnocampus’, Pompeu Fabra University.  

The initial situation starts from a real news about a research developed by Princeton University in 
2014, in which it was predicted that Facebook would lose the 80% of its users before 2017. Hence, 
the initial question Q0 presented to students is about: Can these forecasts be true? How can we model 
and fit real data about Facebook users’ evolution to provide our forecast the short- and long-term 
evolution of the social network? How can we validate Princeton conclusions? The experimentation 
was structured in three interconnected phases linked to the generating question Q0, building up the a 
priori design of the SRP, then reflected in the design of the c-book unit. A first phase that focuses on 
the open research of real data about Facebook users, a second one focused on which mathematical 
models (mainly based on elementary functions) can provide a good fitting to real data, and a third 
one about the use of these models to provide the short-, medium- and long-term forecasts of Facebook 
users and about how to decide about best and most reliable model. The students, working in 
‘consultant teams’ of 3-4 people, got the order from MS2 Consulting (‘Mathematical Solutions 
Squared’) previously described as Q0 and they were asked to deliver a final report by the end of their 
work as an oral presentation as response to the order. The implementation combined face-to-face 
sessions in the teaching device called ‘Math modelling workshop’ (in a total of six 90-minuts weekly 
sessions) for the miss-in-common of the junior consultant teams’ partial reports, with work out of the 
classroom. The guiding c-unit that gives the workshop support was ready before starting in order to 
let the different teams attach their answers, pose new questions by providing an interacting device (as 
chats or shared spread-sheets) and use some applets designed especially to get through the different 
phases of the SRP. Next we sketch how different dialectics were prompted by both: (a) the c-unit 
design (by its initial design but also by the different changes that were introduced according to 
students’ requirements: new questions and answers not envisioned, new media required, etc.) and (b) 
the didactic gestures and devices to manage its implementation.  

The questions-answers dialectics 

We can visualize the first level of description of the SRP designed and experienced as an arborescence 
of the questions that were proposed and faced and the answers foreseen and appeared. This questions-
answers structure constitutes a first layer of analysis of the process designed and of the trajectories 
followed in the implementation of the SRP. As introduced above the generating questions Q0 of the 
SRP on comparing forecasts against reality in the case of Facebook users’ evolution was broken into 
three main derived questions (see Figure 1 for the SRP questions’ organization), which guided the 
successive phases of its implementation. A first phase that focuses on the open research of real data 
about Facebook users, a second one focused on which mathematical models (mainly based on 
elementary functions) can provide a good fitting to real data, and a third and last one about the use of 
these models to provide the short-, medium- and long-term forecasts of Facebook users and about 
how to decide about best and most reliable model.  



 

 

 

 

 

 

 

Fig 1: Tree of questions and answers of the different phases of the SRP 

Q1: Which data sets about Facebook users are better to consider in our research?  A1: Each group 
look for the data set to be used and shared; the whole community agree on the terminology (year, 
period, units, etc.) and on the dependent and independent variables to consider. 

Q1.1: Which time intervals may be considered? Q1.2: How can data be well-organized? Q1.3: How to 
organise and visualise data? Q1.4: What can we say about the growth tendency of the data analysed?  

Q2: Which mathematical models provide the best fitting of real data about FB users?  A2: Each 
consultant group is asked to propose and justify three mathematical models fitting real data. 

Q2.1: Which models (based on elementary functions: linear, parabolic, exponential, etc.) may fit the data? 
Q2.2: How can the coefficients of the model be determined? 

Q3: How can we decide about the ‘best’ models fitting data? Can we use this model to predict the 
future evolution of FB users?  A3: Need to create tools to justify why a mathematical model/s 
is/are the ‘best’ with respect to: (a) fitting data and (b) forecasting the evolution of FB users.  

Q3.1: How can we compare the error committed between reality and forecasts provided by models? 
Q3.2: Can be the same model used for the short- and long-term forecasts? 

Let us comment the main aspects of the a posteriori analysis of the experimentation referring, in 
particular, to the questions-answers dialectic level. About the first phase, we should remark the ease 
with which the students found real data about the evolution of the social net. The most format they 
found the information was by means of a graphical representation (for example, a bar chart). This fact 
strongly determined their analysis, since they focused mainly in the graphical analysis of the data 
growth tendency, but not in their numerical versant (variation tax, that appeared in a tangential way). 
Besides, the fact that many groups found the same data triggered an intense debate and interchange 
of ideas among them, which took us to consider a brainstorming session about the previous hypothesis 
in the classroom, and as a consequence, the duration of the first phase was extended from 3 to 4 
sessions. Due to the wealth of answers collected by the teams during the brainstorming session we 
decided to ask the students to deliver a first report in a poster format, so that each team could 
synthesize their findings and share their conclusions at that moment. About the second phase of the 
SRP, since many groups worked finally with very similar data on the worldwide evolution of FB 
users, we made two new decisions: (a) give each team a second set of different data, corresponding 
to different geographical areas, in order to contrast their hypothesis and extend their study; and (b) 
ask for more than one fitting model for each data set. The analysis of the teams proposals made arise 



a non-expected aspect: many of them proposed using piecewise functions, so that the expected 
answers to Q2 about the consideration of models based elementary functions (linear, quadratic, 
exponential, etc.) was extended. Otherwise, during the brainstorming in the first phase the teams 
started enquiring in the history of FB and about the possible reasons of the changes in the tendency 
of the data or number of users (IPO, new rival social nets, purchases of the company, new 
developments, etc.), and also the moments of change of tendency. New questions and answers 
appeared at this stage about changing the fitting model in accordance to a particular action or 
decisions of FB. Concerning the third and last phase, we only dedicated two face-to-face sessions of 
the workshop (one with the whole group and the other for the consultant teams’ doubts) and were not 
enough for a rich development of Q3. Although this time constraint, there were some applets designed 
and integrated in the c-unit to help on the simulation of models and its contrast to real data, as we 
explain in the following section about the media-milieu.  

The media-milieu dialectic 

Since we have the first layer of analysis of the SRP in terms of the arborescence of the questions-
answers, it is important to ask when, where and how questions can arise and answers can be 
developed. It is at this new level when there may appear the different elements taking part of the 
milieu, composed of varied elements: questions, temporary answers, pre-existing answers in or out 
school, means to validate answers, experimental data, etc., accessible through different kind of media 
(textbook, lectures, website resources, etc.). The relation among these elements can be analysed 
through the media-milieu dialectic. In our SRP it has been central the constant dialectic between the 
search for data (for instance, real data about Facebook users, or about the company changes) and of 
pre-existing answers (ways to organise data, common models to fit population evaluation, elementary 
functions, tools to control error, etc.) that exist in different media that were available to students, such 
as web resources, contents of Mathematics course, answers from lecturers from other courses; and 
the creation of the appropriate means (milieu) to integrate (or refuse) them it their SRP path study. 
Let us stress the importance of some of them. 

In the first phase of the SRP, it was important to count on the help of the teacher of another course 
called ‘Introduction to digital communities’ (running in parallel to the workshop) who helped on 
providing a general sense and functionality to Q0 and to show how the students could look for real 
data about FB and some techniques to organise them. Also, having open access to the news and papers 
published by Princeton University about FB, as well as FB answer to Princeton or their monthly 
report about users growth was very useful for students. All these elements took part of the media 
accessible to students, at the time it enriches students’ milieu mainly composed at this stage of the 
data sets that each team chose to work with, shared and debated with the whole class sessions. All 
these elements helped them to prepare a first report with the first temporary answer A1, in a poster 
format given in the c-book platform, and then shared and debated in the face-to-face session (see 
Figure 1, left side). With respect to the second phase, the a priori design of the c-unit contained some 
applets (designed with Geogebra) proposed to help students to explore different models based on 
elementary functions (Q2). These applets provided the main media for students to visualize data 
jointly with model simulation, and also took part of their milieu as main tools for contrasting, 
comparing and deciding on the ‘best’ models to choose. As aforementioned, in the SRP experienced 
students suggested using piecewise functions, which pushed designers to make changes in the 



questions and applets as these necessities were coming up. Moreover, some groups started to present 
new hypothesis about model to use with non-elementary functions (such as Gaussian function), most 
of which were part of their milieu because they had been introduced in previous courses. So that, 
designers had to quickly cover this demand by designing a new applet with Geogebra to let them 
manipulate also these types of mathematical models.   

 

 

 

 

 

 

 

 

 

With respect to the last phase, despite of the lack of time, the study of Q3 that the consultant teams 
developed was in general very rich. Concerning Q3.1 about comparing the error committed by models’ 
forecasts against reality, we decided to integrate a new applet from Cinderella (see Figure 2, on the 
right) to provide students with the main media, also milieu, to simulate models they had bet for and 
to be able to compare graphically and numerically the error between data and forecasts coming from 
models’ simulation. Through this tool, one could obtain the numerical calculation and graphical 
representation of the punctual and the averaged error (absolute and quadratic error) at the time one 
can changed the parameters that define the model to obtain a better fitting. Although the several 
advantages that this applet provided to students, students assumed and used uncritically the tools 
proposed by the applet. The lack of time and these designers’ decisions made that the media-milieu 
dialectic at this stage was not so rich as it could be.  

The individual-collective dialectic 

In this level of analysis we focus on the relation between the teaching devices habilitated for the 
implementation of the SRP and the changes on the traditional didactic contract that are necessary, 
that is, changes on the roles and responsibilities that both students and lecturers involved in this 
experience had to assume. This layer, closely related to the two previously introduced, provides a 
finer detail about how individuals and the group developed their work in the SRP. And, how all the 
actions and objects of study and research (looking for questions and answers, proposing new media, 
adopting external answers, enlarging the milieu, etc.) are shared, agreed and transformed from the 
individuals to the community. Although we will be not able to go very deep in this description, due 
to space restriction, let us stress some important features of the SRP about its collective dimension.  

First, the devolution of Q0 was presented as an external order coming from MS2 Consulting 
(‘Mathematical Solutions Squared’) and students were asked to spend more than a month to prepare 
and deliver a final report by the end of their work as an oral presentation. The lecturer of the (official) 

Fig 2: Example of page format and applets of the c-unit about Facebook users 

 



Maths course now changed their role to become only a guide of the study and research process, 
transferring most of the responsibilities to students on elaborating their answer. Moreover at the end 
of the implementation, two external persons carried out the validation and evaluation of the final 
consultant team’s answers, in coherence with what was asked at the beginning and trying to make 
students assume these responsibilities. Second, students were organised all the time in consultant 
teams with an autonomous functioning, who were asked since the beginning to jointly deliver a 
collective report, although in its evaluation each of them had to be responsible of explaining responses 
to one of the phases and all could be asked about any phase. To help on assuming this autonomy, 
lecturers took several decisions: (a) distribute different data sets to help them not to be very influenced 
by other teams work and rhythms; (b) use the workshop sessions for the common debate of groups 
work and to share the main advances in finding answers (although different) and new questions 
emerged, and (c) constantly introduce changes in the design of the c-unit design, which work as the 
shared support, with the new questions that had emerged and with the media that could help them at 
each step. For instance, at the last of phase 1, designers decided to integrate a poster format to fix the 
things students had to share with the rest of the groups and dedicate a workshop session when 
consultant’s teams could explain their answers to Q1; or, as explained in the previous section, in phase 
2 and 3 designers decided to create new applets to deal with new models proposal and to facilitate 
them the media and milieu to make the SRP progress. 

Final remarks and conclusions 
In this paper we focus on the case of an SRP on comparing forecasts against reality in the case of 
Facebook users’ evolution to show the use of three dialectics: the one of the questions-answers, of 
the media-milieu and of the individual-collective, corresponding to the three complementary level of 
didactic analysis of teaching and learning processes (Chevallard, 2008). Besides their analytic use, 
they suppose a productive framework to enrich teaching and learning practices, in particular, on 
modelling.  

In what concerns to the questions-answers dialectic, since the beginning of the workshop, the 
generating question Q0 about the controversy of the article by Princeton was adopted by the students 
with a great interest and, up to the end of the process, was kept alive. From its implementation we 
can underline very important conditions that were created. First, the flexibility of the lecturers and 
designers team that were opened to readjust the schedule according to students’ team work, that is 
why we devoted more sessions to the first phase and consequently reducing the ones to the last phase. 
Furthermore, they were very attentive to integrate in the c-book unit all new questions and means that 
students asked for. Second, students were very active on workshop session to share their proposals 
from which many derived questions appeared, some of them planned in the a priori design, some 
others that extended the initial proposal. About the media-milieu dialectic, in the case of this SRP and 
with the support of the c-unit infrastructure, we took several decisions along the implementation of 
transforming the media offered to students to help them in the modelling process and also to observe 
the impact new media had on students’ milieu. We may again insist on the importance of very 
important contributions, such as: collaboration with other subjects (as the one of ‘Introduction to 
digital communities’), focusing some workshop sessions on the discussion external answers that 
students brought, or by the creation of widgets to foster students’ experimental work, etc. Last but 
not least, about the individual-collective dimension, we may underline that students easily accept the 



request of presenting their final response in front of an external committee. The last session that we 
dedicated to these presentations brought to the light the richness and variety of answers given to the 
stated initial question, as well as the complementarities of consultant teams’ answers. But, we are 
aware of the weakness and insufficiency of mechanism to collect individual and teams internal work, 
as most of the workshop sessions were dedicated to the common debate. This is one aspect to be 
improved in the following experimentations and to integrate means to get access to the dynamics 
established between the individual and collective work. 
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In the last years the discussion for promoting Science, Technology, Engineering, and Mathematics 
(STEM) education became a central goal of educational policy in many countries worldwide, in an 
attempt to prepare students for a scientific and technological society. However, interdisciplinary 
mathematics teaching and learning is not limited to the “STE” and should include other disciplines 
across the curriculum. Mathematical modelling, as a mathematical practice and key competence 
within mathematics education standards could be interpreted as an excellent example for promoting 
not only modelling competencies, but also interdisciplinary mathematics education (IdME) in 
school. In this paper we focus theoretically on the question, ‘Which core similarities and differences 
can be stated between the two fields along three perspectives?’, by presenting a piece of theory 
describing the interplay between IdME and mathematical modelling. 

Keywords: Mathematical modelling, interdisciplinary mathematics education, theory development. 

Introduction 
The purpose of the present study is to examine, from a theoretical point of view, the interplay 
between mathematical modelling and interdisciplinary mathematics teaching and learning, and to 
propose how mathematical modelling can promote interdisciplinary mathematics education. 
Following our theoretical approach, we present an example of an activity, based on our previous 
work, which exemplifies the key features and components of such a modelling activity that can 
promote interdisciplinary mathematics teaching and learning. 

In the following sections, we present mathematical modelling as a means for teaching and learning 
mathematics through an interdisciplinary lens, by referring to the characteristics of modelling that 
make this approach feasible. We later present the teacher perspective on using modelling in 
promoting an interdisciplinary approach, and an example of an interdisciplinary modelling activity. 
We finally present and discuss a model of the interplay between mathematical modelling and 
Interdisciplinary Mathematics Education (IdME). 

Mathematical modelling as means for interdisciplinary teaching and learning 
In this section we firstly give a brief general view on mathematical modelling and interdisciplinary 
mathematics teaching and learning by defining the two fields and by posing some initial thoughts 
for consideration. Although these definitions show strong overlaps, one has to look deeper 
concerning their differences, to understand both fields as exclusive as well. To make this more 
transparent we discuss mathematical modelling as a means for interdisciplinary teaching and 
learning, along the following perspectives: (a) the modelling cycle perspective and the individual 
modelling routes, (b) the teachers’ perspective and the cross-link approach, and (c) the 



interdisciplinary activities and the students’ work. These perspectives are presented in the following 
sections. 

General view and definitions 

Whereas there is a strong consensus in the international discussion that mathematical modelling can 
be described as an activity that involves transitioning back and forth between reality and 
mathematics, the definition of interdisciplinary mathematics education is very vague. Recently 
several researchers from different disciplines, including both authors of this paper, published a 
monograph entitled “Interdisciplinary Mathematics Education – State of the Art” (Williams et al., 
2016). Without going into detail here, it became clear that describing a ‘discipline’ is much easier 
than to think about, if more disciplines could be multi-, inter-, trans- or meta –disciplinary. So what 
does interdisciplinary mean? An interesting paper by Nikitina (2006) described three core 
approaches to the teaching of science and mathematics in integrative ways, that differ from one 
another in form and purpose. These three strategies, namely conceptualizing, contextualizing, and 
problem-centering, ask different questions of mathematics and science, and serve different learning 
goals. The authors discussed these strategies based on their empirical study and furthermore they 
claim that understanding the strengths and weaknesses of each strategy can help educators choose 
the optimal way to present their interdisciplinary material. In contrast, a brief pragmatic definition is 
formulated by Roth (2014), who stated that: “Interdisciplinarity denotes the fact, quality, or 
condition of two or more academic fields or branches of learning. Interdisciplinary projects tend to 
cross the traditional boundaries between academic disciplines” (p. 317). In the following we use this 
definition of IdME as a basis for our theoretical reflections in this paper. Following Roth’s (2014) 
definition, some thoughts arise by contrasting it with mathematical modelling: Without having a 
real life problem, mathematical modelling activities are not possible. At first, real life questions 
come out of another ‘(scientific) discipline’ than mathematics. This makes sense and so we have the 
solution and found the overlap between these fields by arguing that mathematical modelling is the 
same as interdisciplinary mathematics and vice versa! – Stop, this would be too easy! Can we easily 
speak about ‘disciplines’ or is it better to say that real life questions of modelling problems come 
out of other ‘realities’? Do modelling problems always include or promote further disciplines/ 
realities and what is the importance when having one or more of them? If there are other disciplines 
implicitly and explicitly distinguishable in a modelling problem, is it the teacher’s goal to connect 
them and make them understandable for the students? Are modelling problems per se a prototype 
for interdisciplinary mathematics education? In the next section the cycle perspective gives some 
answers to the raised questions and again new thoughts are presented. 

Cycle perspective and individual modelling routes 

Recently the importance of modelling cycles, independent of type (see Borromeo Ferri, 2006), 
became clear for the teaching and learning of mathematical modelling in the classroom. In addition 
to promoting general modelling sub-competencies, fostering the meta-cognitive modelling 
competency can be seen as a strong goal in the learning process as well. Research on students’ 
cognitive processes while modelling also showed that the individual’s process of modelling is far 
from linear. So, individual modelling routes (Borromeo Ferri, 2007) better describe students’ jumps 
backward and forward within the cycle. These jumps could be empirically reconstructed between 
phases, not only inside “reality” or “mathematics”, but mostly between “reality” and “mathematics”. 



Looking from the cycle perspective on modelling and interdisciplinary mathematics we would like 
to formulate two main thoughts/ideas, where (b) is dependent on (a). 

(a) The modelling cycles which were developed in the field of applied mathematics and 
mathematics education during the last decades have a strong focus on the mathematics itself of 
course (Pollak, 1979; Blum, 1985). The interdisciplinary view is not explicitly visible. The often 
used terms in the modelling cycles, like “simplifying” or “working mathematically” do not imply 
that other disciplines are involved. This shows exclusiveness and no overlap when just focusing on 
the cycles. The same phenomenon can be observed when looking at modelling cycles in physics or 
chemistry (e.g. Goldhausen & DiFuccia, 2014), because they indeed focus on their discipline, but 
applying mathematics, if necessary, is only a side product. 

(b) Considering that the interdisciplinary view is not explicitly visible in the known cycles, it is 
clear that it can only happen in connection with appropriate modelling problems. The individual has 
to interpret by reading the problem the other disciplines/realities that are included in the problem. 
This means that the extra-mathematical knowledge is not only limited to one’s own experiences, but 
to the knowledge of other disciplines, like physics or ICT. One could argue that the stronger the 
“discipline knowledge” and the “mathematical knowledge” the better a student’s modelling process 
will be. Speaking on an abstract level, the individual modelling routes are on a multi-dimensional 
level, when the other discipline(s) included in the modelling problems is understood by the students. 
From this point of view, we see strong overlaps between mathematical modelling and 
interdisciplinary education.  

Teachers' perspective and the cross-link approach 

With respect to the previous section we focus now on the teachers’ perspective. If we want teachers 
to be qualified in interdisciplinary mathematics, is it expected from them to become experts, for 
example, in all of the four STEM (Science, Technology, Engineering, and Mathematics)-fields? 
This question was the starting point for our theoretical conceptualization of STEM from a teaching 
and educational perspective, which is also based on the existing debate in STEM-education. 
Borromeo Ferri and her colleagues (2016) distinguish between the single-field teaching approach 
and the cross-link field teaching approach. The first approach describes promoting a single 
discipline in school very deeply, like for example an engineering learning environment (e.g. English 
& King, 2015). The other disciplines are not fundamentally included within this environment. The 
second approach means to promote multiple disciplines; at least two disciplines are promoted in one 
learning environment in order to cross-link these disciplines (see Star et al., 2014 for an example). 
Within the empirical classroom study of the “Leonardo-da-Vinci Project” (Borromeo Ferri et al., 
2016) mathematics, physics, engineering and art were explicitly included in one learning 
environment. Grade 9 students (14 year olds) built and modelled the Leonardo bridge in an Inquiry-
based Learning environment. The main goal of the lesson-unit was the permanent reflection of 
cross-linking the disciplines. On the basis of the empirical data and theoretical thoughts “cross-link” 
could be characterized as follows: One can speak from cross-linking, if at least two (scientific) 
disciplines are combined during one lesson or within the whole lesson-unit and are reflected with 
students on a metacognitive level (Borromeo Ferri et al., 2016). Again, the main aspect of making 
several disciplines explicit is at the foreground. If the teacher decided to look at the Leonardo bridge 
from only a strong mathematical perspective by neglecting the other disciplines, it is also possible. 



The students had the opportunity to understand and to model the bridge by also using and naming 
the other disciplines.  

Interdisciplinary activities and students' work 

A great number of research studies has focused on the development of activities and learning 
materials, following an interdisciplinary approach. In this paper, we focus on the development (and 
the characteristics) of learning activities that have adopted a modelling perspective (e.g. English & 
King, 2015; English & Mousoulides, 2015; Mousoulides, 2016). Such activities are set within 
authentic contexts, and allow for students’ multiple interpretations. With regards to mathematics, 
such activities provide students with opportunities to be engaged in important mathematical 
processes, such as describing, analysing, constructing, and reasoning (Lesh & Doerr, 2003).  

Research in the field listed six design principles for developing such learning activities, following a 
modelling perspective. These design principles are based on the work of teachers and researchers 
and that have subsequently been refined by Lesh and Doerr (2003). The ‘Model Construction 
Principle’ ensures that the solution requires the construction of an explicit description, explanation, 
procedure, or justified prediction for a given mathematically significant situation. The ‘Reality 
Principle’ requires that students can interpret the activity meaningfully from their different levels of 
mathematical ability and prior knowledge. The ‘Self-Assessment Principle’ ensures the inclusion of 
criteria that the students themselves can identify, and use to test and revise their ways of thinking. 
Specifically, the modelling activity should include information that students can use for assessing 
the usefulness of their solutions, for judging when and how their solutions need to be improved, and 
for knowing when they are finished. The ‘Model Documentation Principle’ ensures that while 
completing the modelling activity, the students are required to create some form of documentation 
that will reveal explicitly how they are thinking about the problem situation and their solutions. The 
fifth principle is the ‘Construct Share-Ability and Re-Usability Principle’, which requires students 
to produce share-able and re-usable solutions that can be used by others, beyond the immediate 
situation. The ‘Effective Prototype Principle’ ensures that the modelling activity is as simple as 
possible yet still mathematically significant. The goal is for students to develop solutions that will 
provide useful prototypes for interpreting other structurally similar situations. 

By adopting the principles mentioned above, Mousoulides and colleagues (e.g. English & 
Mousoulides, 2015; Mousoulides, 2016; Williams et al., 2016) have developed a number of 
interdisciplinary modelling activities for students. These activities have been piloted and 
mainstream tested in various schools in a number of countries. Such an example, the ‘How can I 
lose weight’ activity is presented in the monograph by Williams and colleagues (2016). The activity, 
which targeted 11-12 year olds, focused on the balance between nutrition and physical activity for a 
healthy life. The activity required students to actively participate in the collection, presentation and 
interpretation of data regarding their nutrition and exercise habits. Based on an analysis of their own 
data, students had opportunities to explore the variables (and their dependencies) that may affect the 
amount of energy intake on a daily basis (e.g. height, mass, age) and suggested specific diet and 
exercise plans, always taking into consideration the need of balancing the two.  

The activity consisted of three parts. In the first part, the case of Mary, a 14-year-old girl who cannot 
fit into her favourite clothes, was presented. The students then considered the general question, “Is 



not eating the best approach to losing weight?” Students, with teachers’ support, quickly realised 
that the question needed to be refined in order to be answered meaningfully. On refining the 
question in their own ways, students acknowledged that real (actual) data on nutrition, and also on 
physical activity are needed. Students were then encouraged (by teachers) to work with their parents 
to collect the required data, through an anonymously completed questionnaire. Using their own data, 
students worked in groups to summarise their results, by categorising data into the different food 
categories (e.g. protein, carbohydrates, dairy products, fruits, vegetables, sweets, etc.), and by 
discussing the advantages and disadvantages of each category (Reality Principle). Students also 
explored trends and relationships in their data, by using a spreadsheet software (Self-Assessment 
Principle). An example of their work is presented in Figure 1.  

During the second part of the activity teachers guided a student-centred exploration for identifying 
the factors that determine a person’s daily calorie intake (age, gender, height and body mass). 
Students worked on analysing tables and graphs by using an applet software, designed to support the 
interdisciplinary activity.  

 
Figure 1: Student eating habits 

In the third part of the activity students worked on suggesting a balanced diet plan (for a single day), 
taking into consideration the daily amount of energy a person needs (Model Construction Principle). 
Students could use the provided ‘food database’ for creating the person’s diet for a day (Model 
Documentation Principle) and then explore the appropriateness of the diet with regards to the 
calories taken and the food categories (Figures 2 and 3). After completing the tasks and sharing their 
results in a whole class discussion, students then moved to the last part of the task, in which they 
designed their own balanced nutrition and physical activity case (Construct Share-Ability and Re-
Usability Principle). 



 
Figure 2: Creating a person’s diet 

 
Figure 3: Examining the appropriateness of a diet in terms of calories and food quality 

The interdisciplinary nature of the activity focused on the role of the bridging concept (balance 
between calories intake and exercise) (Effective Prototype Principle). The quite complex activity 
setting provided opportunities for students to explore important concepts from mathematics and 
biology. The implementation of the activity revealed that both teachers and parents found the 
interdisciplinary nature of the activity challenging; for teachers, it provided a new way of thinking 
and working, while for students it provided a real world problem framework, in which they could 
explore and connect concepts from different, yet connected, school subjects.  

Theorizing the interplay between mathematical modelling and interdisciplinary 
mathematics education  
When summarizing the presented theoretical analysis, it becomes clear that there are strong overlaps 
between mathematical modelling and IdME. The real context of modelling problems, like the case 
presented in the previous section, in fact evokes interdisciplinary activities, but the teacher is at first 
the person who should make them more explicit to students, and finally actively connect the 
different fields, through her/his teaching. Although in some ways mathematical modelling could 
serve as a prototype for interdisciplinary mathematics education, mathematical modelling has its 
own conditions. Theorizing the interplay between mathematical modelling and IdME is a challenge, 
which we like to think about furthermore and also find an appropriate visualization. At this point we 
argue that mathematical modelling has its own “theory(-ies)”, because the characterization of 
mathematical modelling, and further terms/ concepts/ processes like “problem understanding”, and 
“validation”, are part of the theory(-ies) of modelling. This can be seen as the theoretical part of 



mathematical modelling, based on the theoretical and empirical research in this field in the past 
decades. It is rather difficult to separate mathematical modelling from IdME, because on one hand 
mathematical modelling as itself is (can be) a part of IdME, but also on the other hand we can view 
mathematical modelling as a comprehensive research field. By adopting this modelling oriented 
approach in the “nutrition-exercise” case study, students could work in finding/proposing a model 
for balancing the intake-consumption of calories. For instance, students could be asked to propose 
models for different people (e.g. peers, professional athletes, teachers, parents), which balance their 
daily diets and their exercise habits. In doing so, the emphasis of the activity would not be within 
mathematics or biology, but rather on modelling.   

IdME can be situated in its own field, if the (interdisciplinary) task does not fulfil the criteria of the 
modelling problems, e.g. when you have some kind of a “word problem”. Not every 
interdisciplinary task, which has (some) mathematics in it, is a modelling problem per se. IdME can 
be done differently and cannot be connected with a modelling problem, so one can cross the 
disciplines of mathematics, and for example biology in a task, but only focusing on mathematics 
when dealing with the problem at last. This is what we mean with pure crossing disciplines. The 
interplay of modelling and IdME is clearly observed, when a real life question is embedded in a real 
modelling problem, in which students understand the context, recognise all the disciplines involved, 
and use or get to know about the extra-mathematical (other disciplines) knowledge. By adopting this 
perspective, in the Nutrition-Exercise case study students could work in solving a problem related to 
finding algebraic formulae for calculating the number of calories in various types of food and/or 
sport activities. In doing so, students have to work with both mathematical and scientific concepts, 
in solving the required problem, but the emphasis would be on the mathematical concepts or the 
biology ones (e.g. different types of food and relation to calories per gram, etc.). 

There is a number of possible implications, especially for the teachers, in promoting both modelling 
competencies and IdME-competencies. By using modelling problems, teachers can work with their 
students in crossing the boundaries between disciplines. In doing so, interdisciplinary modelling 
activities can provide unique opportunities for teachers to collaborate, synthesize and integrate more 
interdisciplinary pedagogies and teaching methods in their teaching (Berlin, & White, 1995), and for 
students to develop better and more coherent solutions for complex, yet interesting and real world 
based problems. Such approaches raise teachers and students’ expectations and confidence in 
working in a more interdisciplinary way, and lessened their focus on the difficulties in using and 
working with interdisciplinary modelling activities.  
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Dynamical systems like a segway can be described by linear systems of ordinary differential 
equations of the form Obviously, modelling of dynamical systems at school is a huge 
mathematical challenge for students and teachers. Therefore, in a pilot study with a math course 
consisting of 12 students of grade 12, it was analysed if, and up to which depth, modelling projects 
of dynamical systems (using the example of a segway) can be implemented at school. The 
interdisciplinary project was based on the modelling cycle of Blum and Leiss (2007). First of all, 
we describe the implementation and results of the pilot study. Then, we outline the design of a 
follow up study that will be carried out during school year 2016/2017. In this part we formulate our 
research questions, mainly the design of teacher training with a special focus on teachers’ 
attitudes, which are driven by the findings from the pilot.  
 

Keywords: Dynamical systems, interdisciplinary project, mathematical modelling. 
 

Introduction 
 

In a pilot project the modelling of dynamical systems at school (with a math course of twelve grade 
12 students) was carried out by the example of a segway. The project was designed as an 
interdisciplinary project and started with the students independent modelling that lead to a physical 
description of acting forces of a segway. After a review on the appropriate linearisation of nonlinear 
terms, a linear time-invariant system for the segway was proposed. This introductory phase took 
five lessons. Next, we had three full project days where the students worked in groups of up to four 
students to concentrate on one of the several interdisciplinary aspects of the project. Namely they 
worked on 1. How to construct and control a segway and the basics of the Lego Mindstorms EV3-
brick, 2. How to simulate a segway by the help of suitable software and 3. The mathematical model 
of a segway, including finding of a mathematical solution for the theoretical stabilisation. The 
project was completed by a final presentation of the students for a mixed audience of teachers as 
well as university staff members. Obviously, the theoretical and practical issues are highly 
challenging for students and teachers and therefore the research issue of the pilot study was if an 
interdisciplinary modelling project of this complexity can be realised at school. The results of the 
pilot project were impressive, because the students managed to construct and control a Lego 
Mindstorms segway as well as acquiring mathematical knowledge about systems of ordinary 
differential equations and their solutions and eigenvalues to assess the stability of solutions of a 
system of linear ordinary differential equations. Furthermore, they applied a theoretical and a 
practical control of a segway by using a proportional derivative control (PD-control). Based on the 
outstanding results of the pilot study, but with concern that the data set of 12 students is not 
representative for a quantitative analysis, the following main research questions are raised for a 
follow up study: Which form of modelling supervision (open = research-based, fine-structured = 
content-based, or semi-structured = connecting the two approaches) promotes the best development 
of mathematical competencies for the students during this kind of interdisciplinary projects? 
Secondly, it will be discussed how teacher training with respect to modelling projects for dynamical 
systems has to be designed. Altogether there will be a short introductory meeting at the beginning 
followed by a two-day teacher training focussing on possible implementations in class (with a focus 
on different aspects of the whole STEM project). The third part is going to be the implementation of 
the project by the teachers participating in our study. Accompanying the whole study, the attitude of 
teachers (regarding self-efficacy and prior experience) as well as self-assessment (regarding 



opportunities and difficulties for themselves and their students towards interdisciplinary modelling 
projects of dynamical systems) will be evaluated by a series of pre and post surveys (and 
interviews). Furthermore, it will be researched, which competencies can be promoted through an 
interdisciplinary modelling project. The study shall be conducted with 10 to 15 math teachers and 
100 to 150 students from grade 10 to 12.            

The pilot project 
 

The pilot project (cf. Lantau, 2016) will be described in detail since due to the complexity this is 
necessary to understand the generation of our research questions as well as the design of the 
upcoming study.  

A short mathematical background of modelling a dynamical system, such as a Segway 
 

The mathematical analysis of a dynamical system is based on the comprehension of system and 
control theory. A real dynamical object, in this case a segway, is at first described by physical 
equations to model the acting radial- and horizontal forces. After using suitable simplifications for 
nonlinear terms in the equations of forces (by using linear Taylor approximations) the physical 
model is transformed in a mathematical model by the introduction of variables like angle and 
position and their derivatives into a state-space vector . Considering the force  of the regulating 
motor, after linearisation of nonlinear terms one can model a dynamical system by a linear time-
invariant system  of ordinary differential equations. In the case of a segway, the state-
space vector x includes the variables angle, angular velocity, (horizontal) position and (horizontal) 
velocity. This linear time-invariant system can be shifted into a linear system of ordinary 
differential equations by feedback-regulation , to get . Now, the theorem of 
Wonham (Sontag, 1985) yields that if and only if the linear time-invariant system is controllable 
(which means that every possible state can be reached due to a regulation of the motorforce u; 
that holds true for the segway), for every real monic polynomial P there exists a matrix F, such that 
P is the characteristic polynomial of the matrix A+BF. Since the eigenvalues of the matrix A+BF 
are the roots of the polynomial P, the goal is now, to place all eigenvalues of the matrix A+BF into 
the open left half complex plane , such that the segway stabilizes itself to the rest position 

Another approach to control a segway can be realised by a proportional-derivative control. 
The basic idea of a proportional-derivative control, e.g. for the control of the angle , is to choose 
the motor force , to stabilise the segway to its rest position. To implement this type 
of control, some conditions on the parameters  and  have to be fulfilled. 

Realisation of the pilot project                                                                                                                                     
The pilot study was inspired by the modelling cycle of Blum and Leiss (2007) consisting of the 
seven steps Constructing (1), Simplifying/Structuring (2), Mathematising (3), Working 
mathematically (4), Interpreting (5), Validating (6) and Exposing (7).  In what follows, the seven 
steps of the modelling cycle will be connected to corresponding parts of the pilot study. During the 
project the teacher played different roles (research guide/advisor, leader of phases with questions 
and development) that will be explained in detail in what follows. 

1. Constructing: 

The introduction into the project was given by means of a video showing the popular German 
entertainer Stefan Raab unsuccessfully trying to control a segway (URL: 
https://www.youtube.com/watch?v=_m3YBSQYGuw). After this motivating start, the students 
were asked to create their own model of a segway. This task, carried out through a group work of 
four students per group, lasted 30 minutes and was done as an independent work. The construction 
of three fitting models for a segway has successfully been realised by the students (cf. Figure 1) 
who were experienced in modelling real-life situations, since many modelling tasks have been 



established in this class. But in general it is not necessary to be experienced in mathematical 
modelling to participate in teachers trainings or as a student in the project. 

   
Figure 1: The independent modelling of a segway – Three different approaches 

2. Simplifying/Structuring 
Figure 1 shows, that the students recognized that the description of acting forces is a necessary part 
to obtain a mathematical model of a segway. In the next step the three different approaches to 
model a segway were summarised in one model, to describe the acting forces of a segway. 
 

 
Figure 2: Model of a segway based on acting forces 

The part of simplifying and structuring was supported by a matching task, where the students 
should match acting forces, such as radial forces and horizontal forces, to equivalent terms. In the 
sequel the different forces were collected to describe the horizontal forces and the radial forces in 
two equations: 

  (horizontal forces) 
   (radial forces) 

At this point it has to be mentioned, that during the project three different approaches to model a 
segway were proposed to the students. The first one, presented in this paper, leads to a control of a 
segway using the variables angle and position of the segway as well as their derivatives. Another 
possibility to model a segway, is by modelling acting horizontal forces for the variables position of 
the wheels and the centre of gravity of the segway (and their derivatives). The third approach is to 
model the segway as an inverted pendulum by describing radial forces. This leads to a proportional-
derivative control for the angle and the angular velocity of a segway. Due to the fact, that in the 
modelling approaches 2 and 3, only the variables position (of wheels and centre of gravity) and 
angle, respectively, are analysed, the number of physical terms to describe the segway is less in 
comparison to the first approach. However, it has to be clarified, that the physical comprehension of 
acting forces is essential to promote a mathematical model. And this motivates some deep 
mathematical concepts: (linear) ordinary differential equations and their solutions as well as a 
stability analysis through the concept of eigenvalues/-vectors.  

3. Mathematising 

The transfer from the physical model to a mathematical model is achieved by a linear Taylor-
approximation around the rest position taking into account the nonlinear terms in the equations of 



forces. The linearisation for the functions sine, cosine and quadratic function were discussed 
geometrically on the blackboard but the general concept of Taylor-approximation has not been 
introduced to the students. After linearisation, the two equations can be summarised into a linear 
time-invariant system introducing a so-called state-space vector. This phase of the project was 
designed by lessons with question and development. The introductory phase of the study preparing 
the three project days was concluded by the formulation of the linear time-invariant system that was 
jointly developed on the blackboard. 

 
Figure 3: Development of a linear time-invariant system on the blackboard 

 

4. Working mathematically 

To emphasize the interdisciplinary character of the project the three project days (each lasting from 
8 am to 2 pm) started by the formation of three groups. The task of the first group was to construct a 
segway by using a Lego Mindstorms set. Afterwards, the aim was to control the segway, 
specifically regulating the segway into the rest position, using the Lego Mindstorms Software or 
using the Java-based software lejosEV3 – in each case with the help of a gyro-sensor. The students 
were highly experienced in working with Lego Mindstorms, since they have managed several 
projects in the past, where the use of Lego Mindstorms was necessary. For the second group four 
exercise sheets were designed in which the students were introduced to new mathematical concepts, 
namely: One-dimensional ordinary differential equations and their solutions, linear systems of 
ordinary differential equations, the matrix exponential function as a solution for linear systems of 
ordinary differential equations, stability theory for solutions of linear ordinary differential 
equations, eigenvalues in a non-geometric concept, proportional-derivative control and at last, 
feedback-regulation for linear time-invariant systems. The task of the third group was to carry out 
computer simulations according to the mathematical concepts worked on by the second group. To 
this end, a single exercise sheet including six tasks was designed to guide these students. All 
exercise sheets can be found as an appendix to the master’s thesis of Lantau (2016). During the 
three project days the students worked nearly autonomously in class on their tasks and the teacher 
supervised the work of the different groups following the concept of minimal help. 

5. Interpreting and 6. Validating 

The interpretation and validation of the mathematical model also took place during the three project 
days and was motivated by the interdisciplinary character in a very natural way. In particular, this 
can be seen in the application of the proportional-derivative control: While groups 2 and 3 used the 
inverted pendulum to model the segway in order to use the proportional-derivative control for the 
angle and angular velocity, the first group used the information about the theoretical restrictions for 
the proportional- and derivative parameters  and  to practically stabilise the Lego segway for 
about 10 seconds. While two groups established a theoretical concept to model and control a 
dynamical system, including the development of fitting constraints for the control (interpretation), 
the third group used the results of the other groups to practically stabilise the segway (validation). 



Considering steps 2, 5 and 6 of the modelling cycle, we observe that a successful modelling of 
dynamical systems, such as a segway, includes several disciplines like physical comprehension of 
acting forces, engineers’ competencies to construct and control a Lego Mindstorms segway, 
scientific programming for the control and finally, mathematical competencies to acquire a 
theoretical comprehension for the control of dynamical systems. The students also observed that 
several disciplines must be considered in a highly connected sense to promote the success of the 
modelling task. 

7. Exposing 

In order to collect and structure the theoretical and practical results of the project the students were 
asked to create a final presentation. This promoted the mathematical learning success in a holistic 
sense because the students who worked more practically on the project got a deeper insight into 
theoretical results through the explanations of their classmates and the connection of the theoretical 
results to practical results. The same also holds vice versa. During the creating of a final 
presentation the students needed to prepare their newly acquired knowledge properly to present it 
for a mixed audience of math teachers, students, schoolmates, parents and math professors. The 
exploration of the pilot study shows that the phase of presenting (exposing) the results of the 
modelling project promotes many mathematical competencies. Hence, in our view, this step is 
essential when modelling dynamical systems at school.  

Main results of the pilot study 
Considering the project´s realisation it can be observed that a modelling project of a dynamical 
system sets a high demand on physical-, engineering-, computer science- and mathematical 
competencies for both students and teachers. Therefore, the main question of the pilot study was if 
this kind of interdisciplinary projects can be realised at school. The pilot gives a positive answer, 
and it also shows that fundamental mathematical competencies, as proposed by the German 
Education Minister Conference (KMK, 2012), are highly promoted by the students during the 
project. Next, the six fundamental mathematical competencies are listed and connected to processes 
that promoted the corresponding competency during the interdisciplinary project. 

1. K1: to argue mathematically: This competency was promoted at three different stages of the project. 
At first it was promoted during the discussion of linearisation for nonlinear terms, secondly during 
the development of stability criteria for linear systems of ordinary differential equations and thirdly 
during the discussion of constraints for the parameters of the PD-control.  

2. K2: to solve problems mathematically: The research issue for the students was how a segway can be 
theoretically and practically stabilised. This problem has been solved practically by a PD-control 
based on the Lego Mindstorms Software and theoretically, by learning the concepts of feedback- 
and PD-control.  

3. K3: to model mathematically: The competency of creating mathematical models has been the centre 
of the pilot and was highly promoted. The students got the insight that mathematical modelling is 
very useful to solve real-life problems. 

4. K4: to use mathematical forms of representations: By the preparation of a final presentation the 
students were requested to illustrate their main results in a mathematically correct way. 

5. K5: to work with technical, symbolic and formal elements of mathematics: During the development 
of a linear time-invariant system as a model of a dynamical system the students used technical, 
formal and symbolic elements. This competency was also highly requested for the two groups that 
worked out the concepts of eigenvalues, PD-control, feedback-regulation and ODE-theory. 

6. K6: to communicate: During their creation of a model for a segway and especially during preparation 
of the final presentation the students communicated frequently to discuss models, mathematical 
solutions and open questions. Furthermore, this competency was promoted through the final 
presentation itself. 



Corresponding to the development of mathematical competencies during the project, the 
mathematical learning success of the students has been detected. To investigate the learning success 
a multiple-choice test was developed containing 10 questions regarding the mathematical concepts 
that are introduced during the project. The test has been carried out one week after the final 
presentation and was analysed by counting the correct answers of the content-related questions. 
More than half of the class reached at least 83 % of the maximum score and two students answered 
every question completely correct. This shows that the concept of ordinary differential equations, 
their solution and the stability of solutions, the concept of eigenvalues considering the stability of 
solutions for a linear system of ordinary differential equations, modelling a segway as a linear time-
invariant system and controlling it by means of feedback-control or PD-control can be taught 
through an interdisciplinary modelling project. The concepts of eigenvalues (embedded in a 
geometric context of linear mappings and its characteristics) and (one-dimensional) ordinary 
differential equations and their solutions are part of the curricular standards in mathematic for 
secondary level in Rhineland-Palatinate (MBWWK, 2015). Both of them can not only be taught 
through an interdisciplinary modelling project, but also the connection between a classical algebraic 
concept (eigenvalues) and a concept of analysis (ordinary differential equations) can be established. 
But not only these two fundamental mathematical concepts for secondary level courses could be 
transmitted; even concepts that are usually taught in master degree courses for mathematics teachers 
can be included. From our point of view, the combination of promoted mathematical-, physical-, 
engineering-, and computer scientific competencies and a huge learning success in advanced 
mathematical concepts legitimates the implementation of interdisciplinary modelling projects in 
secondary level courses. Beside the description of the pilot project, the paper focuses on research 
issues concerning a follow-up study, explained in the next section.  

Research issues for a follow-up study 
Regarding the results of the pilot study two main research questions are aimed to be analysed within 
the framework of Grounded Theory: 

1. How shall teacher trainings for interdisciplinary modelling projects be designed? 
2. Which competencies can students acquire, depending on the implementation and the type of 

supervision of an interdisciplinary modelling project? 

As explained in Kaiser (2013) the most advanced approach of including mathematical modelling in 
school is by an interdisciplinary project which requires each discipline – in our case of modelling 
dynamical systems: physics, mathematics, engineering and computer science – to share its concepts 
and information in order to guarantee success of the modelling project. This task is very challenging 
for math teachers, considering the fact that some teachers neither have the specific mathematical 
knowledge to understand real problems (here: theory of dynamical systems) and its didactic 
transposition (Chevallard 1985) nor they are experts in other required fields like physics or 
computer science. Therefore, one aim is to design appropriate trainings that help teachers to convey 
the interdisciplinary character of modelling dynamical systems. In our example this includes the 
adequate physical-didactical preparation of detecting acting forces of a segway as well as an 
introduction to basic concepts for the control and programming of a Lego Mindstorms segway. 
However, in order to promote mathematical competencies and a mathematical learning success, it is 
also necessary to design trainings for the inner mathematical concepts required by this project. For 
this purpose it is planned to design learning material for complex mathematical concepts like 
stability theory for ordinary differential equations as well as an introduction to linear time-
invariant systems and their control. To this end the material designed for the pilot study will be 
analysed and modified based on the students´ and teachers’ comments.  

During the follow-up study the attitude of teachers towards mathematical modelling of dynamical 
systems, represented by the example of a segway, will be explored and evaluated through a series of 



surveys. The attitude of teachers will be measured by analysing three connected questions. Since 
the mathematical foundation of a dynamical system is located within the scope of systems and 
control theory and the project requires knowledge from several disciplines, one question is which 
inner and extra mathematical comprehension issues do maths teachers have or expect when they 
think of modelling a dynamical system. According to this question it will also be analysed how far 
the teachers are engaged to fill their content-related gaps. Additionally, teachers will be asked for 
possible implementations of each step of the modelling cycle in secondary level math courses. 
During the first teacher training (end of 2016) there will be pre and post surveys to answer these 
questions. Then, the results will be considered to prepare the second teacher training in spring 2017. 
Moreover, the teachers´ expectations on possible obstacles will be assessed before, in between an 
after a series of trainings regarding the design and supervision of the modelling of a segway. 
Regarding these questions it is planned to design a survey, based on the theory of planned 
behaviour (Ajzen, 1991). The survey shall point out to what extend the teachers´ attitude to 
modelling projects, their subjective norms and their perceived behavioural control influence their 
intention and, later on, the execution of their modelling project of dynamical systems. Additionally, 
teachers shall comment on the possibilities of developing each of the six mathematical 
competencies K1–K6 by modelling a dynamical system. Furthermore, they shall assess the potential 
learning success regarding the two fundamental mathematical concepts of ordinary differential 
equations and eigenvalues/-vectors that can be addressed by this modelling project. Finally, we 
want to analyse the correlation between the teachers´ attitudes and the students learning success.   

Beside the teacher focussed research, our second research question is Which mathematical 
(physical, engineering- and computer scientific-) competencies of the students can be strengthened 
significantly through an interdisciplinary modelling project of dynamical systems. It is planned to 
use video recordings to detect the enhancement of students´ mathematical competencies during the 
project. The video material will be transcribed based on the work of Mayring (2015). To evaluate 
the enhancement of mathematical knowledge there will be pre-and posttests. Furthermore, the 
mathematical working techniques preferred by the students will be evaluated. For the analysis of the 
students´ prerequisites surveys will be designed and it is planned to use video recordings to analyse 
the mathematical working techniques and to detect the phases of the project in which competencies 
of the students are promoted.  

For the teacher trainings, options for different ways to conduct and supervise the project will be 
designed: The first approach is an open modelling process in which the initial problem of a segway 
to be stabilised is given to the students  without further hints or work sheets. The main idea is to 
develop the students’ independence in modelling activities including the competencies of 
„developing productive dispositions, flexible strategies, and foster student persistence and 
independent thinking” (Common Core State Initiative 2010; National Research Council, 2001 as 
cited in Doerr & Ärlebäck 2015, p.1). As described in the paper of Doerr and Ärlebäck (Brodie 
2011; Lobato & Ellis, 2005; Magiera & Zawojeski, 2011 as cited in Doerr & Ärlebäck, 2015, p.1), 
this type of modelling challenges the teacher „to tackle classroom discussions, to structure group 
interactions and to provide effective feedback to students.“ Regarding the task of modelling a 
segway we would like to find out how far students can model a segway independently in a way that 
develops mathematical techniques (e.g. PD-control) to solve the real problem. This question refers 
to the framework of Wake, Foster and Swan, who proposed that students´ competencies of a 
simplification of the reality and the development of a mathematical structure that represents and 
simplifies the reality are under-emphasised in school mathematics (Wake et al. 2015, p. 8). 
Following the theory of Wake et al. it is also planned to create material that promotes a pre-
structured and more teacher-controlled modelling of a dynamical system as an alternative. Our aim 
is to check which approach teachers prefer for their class and to analyse which competencies are 



promoted in a modelling project depending on the conduction and supervision in one of the two 
specified ways.  
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Based on a brief episode of a modeling activity involving experimentation, performed by 9th graders, 
the goal is to reflect on criteria of authenticity for school modeling tasks. The study shows that 
students adhered to the experimental work and materials; still their understanding of the real event 
and their proposed solution to the problem seems to have missed the real problem setting. 
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Introduction 
Worldwide school mathematics curricula embrace the goal of ensuring the knowledge, skills, and 
competences that will enable individuals to understand today’s highly mathematized and 
technological world and to allow them to critically and consciously engage in processes that involve 
mathematics and its applications. This strategic goal of mathematics education is clearly echoed by 
the rhetoric of international tests such as PISA and TIMSS. However, mathematical modeling is 
admittedly a demanding activity for students, not only because each step of the modeling cycle can 
become a potential blockage (Blum, 2015) but also because, for example, the focus for many students 
seems to be to arrive at a single solution instead of developing a suitable mathematical structure for 
a real world problem situation. 

Recently, Blum (2015) has reaffirmed that the aims of teaching applications and modelling can be 
seen as having a dual function. On the one hand, the knowledge of mathematics and its use is vital to 
the real world and its progress, mainly in solving real problems and carrying out complex projects; 
on the other hand, the real world and the way it incorporates mathematical knowledge is 
extraordinarily important as a vehicle to provide meaning to the learning of mathematical concepts 
and generally to mathematics as a discipline. 

Bonotto and Basso (2001) also discussed another dual nature: that of cultural artifacts, which besides 
belonging to the world of everyday life are also part of the world of symbols. If artifacts can be the 
basis for understanding the mathematical structures underlying reality, they can also be used for 
vertical mathematization, where the concepts embedded in real-world objects and processes become 
material for reflection and problem solving. 

In this article we want to reflect on this duality of goals of modelling real situations and, in parallel, 
on the duality of roles that a particular type of task, here labeled as an experience-based task, can play 
in the application/understanding of the concept of direct proportionality. Experiential mathematics is 
a way of students dealing with living and practical knowledge of a problem or situation in the context 
of mathematical modeling at school. It intends to develop students’ ability to collect and interpret 
data in addressing real world situations as well as the ability to develop mathematical thinking and 
communication, while reporting their ideas and findings to others. The experiential mathematics puts 



the real situation as an integral part of the students’ work, allowing them to understand how it works 
in reality and how they can “handle” it mathematically (Palm, 2008, 2009; Vos, 2011, Galbraith, 
2006).  

Theoretical perspective 
Authenticity of a modelling situation 

The question of the authenticity of the examples proposed for the implementation of mathematical 
modeling has been dissected by several researchers and gains particular emphasis on educational 
environments informed by a socio-critical view of mathematical modeling. For example, Rosa and 
Orey (2016) advocate the use of ethno-modeling as a tool for teaching purposes where rather than 
distorting the cultural and ethnic reality, the aim is to help students learn how to find and work on 
authentic situations and real-life problems emerging from cultural and historical artifacts, embracing 
mathematical ideas, thoughts and practices as developed by cultures across time and space. In any 
case, the perspective of the actors who actually participate in the actual settings has long been 
emphasized by Niss (1992), in pointing out that genuine problems, issues and situations must be 
recognized as such by the people who actually work in them. Despite such concerns, there is still 
considerable lack of authenticity in many situations that school mathematics presents to the students, 
which often end up just mimicking real-world scenarios, prioritizing educational goals and curriculum 
alignment over facing the ill-defined reality of many problems (Vos, 2011; Palm 2008, 2009; Eames, 
Brady & Lesh, 2015).  

Blum (2015) explicitly notices that the motivating or the marketing role often attributed to 
mathematical modeling tasks in textbooks and curriculum materials results in the creation of problems 
that are only a disguise of a real situation. But other authors have strongly criticized the pseudo 
authenticity of modeling problems, particularly in the PISA tests. This does not invalidate the 
accepted notion that an out-of-school scenario cannot match completely a proposed scenario in a 
school mathematics assignment. And that seems to be even more unquestionable when it comes to 
formulating problems in assessment tests. 

A school task can, of course, never completely simulate an out-of-school task situation. 
Nevertheless, sometimes the school situation can be organized and the assignment formulated in 
such a way that many of the aspects of a real life task situation may be simulated fairly well 
following that the students’ task solving can take place under conditions fairly close to those in 
the simulated situation. Other times, for example in largescale high stakes testing, the conditions 
under which the task solving takes place put severe restrictions on the possibilities to simulate 
many of the aspects with high fidelity (Palm, 2008, p. 40). 

According to Palm (2008), students have been predominantly faced with unrealistic mathematical 
tasks and have given in many cases unrealistic answers to them. At the same time, it is not totally 
obvious to what extent the realism of the tasks would produce greater caution and attention from 
students to the realism of their answers. Furthermore, Palm notes that there is a lack of consensus in 
the mathematics education community on the concept of realism of a task in terms of adjustment 
between a school assignment and a real life situation. And the evidence of that may be found in the 
variety of different terms for tasks that somehow try to emulate real situations (authentic tasks, 



realistic tasks, real life tasks), together with the many different meanings that have been attached to 
each of them. 

Vos (2011, 2015) has been systematically addressing the issue of authenticity and suggesting criteria 
that allow us to judge the more or less authentic trend of a task. Her first concern is the use of the 
term authentic tasks because the educational environment will require adaptations in the same way 
as with a flight simulator: the criteria of the effectiveness of the learning environment and the realism 
of the proposed situations should therefore prevail. The leading proposal is that the concept of 
authenticity of a task is first and foremost a social construct, so never universally definable. Therefore, 
a task may have some authentic aspects but it may also have others that are deliberately introduced 
and designed to respond to educational purposes. In short, it must be acknowledged that not all aspects 
of a task need to be authentic while accepting that the tasks are more engaging if a number of issues 
that have their origins in the situation are respected. 

Once put into perspective the question of authenticity of modeling tasks, the consequent challenge 
concerns the search for principles to guide the construction of interesting modeling tasks, that are 
both effective and intellectually honest (Blum, 2015; Galbraith, 2006; Palm, 2009). To a great extent 
the challenge is to convert a fruitful idea rooted in a real-world situation in a problem that is fairly 
well framed by the details of the situation and that is accessible to a resolution that also respects the 
authentic school mathematics (Vos, 2011). 

There are at present some proposed formulations of basic principles to inform the authentic character 
of modeling tasks in school mathematics. Here we will consider the work of Palm (2009), Galbraith 
(2006) and Vos (2015).  

Palm (2009) considers a number of variables: Event; Question; Information; Presentation; Solution 
Strategies; Circumstances; Solution Requirements; and Purpose. Galbraith (2006) proposes a number 
of principles: Link to the real world; Tractable question; Feasible solution process; Existing 
knowledge; Evaluation available; Structure. Vos (2015) offers a set of criteria within a pragmatic 
definition of authenticity where the purposes and methods of the modelling researchers and task 
designers converge: authentic aspects in the field of mathematics (symbols, research questions, 
research experience) and authentic non-mathematical aspects (apparatus, professionals, mathematics 
applicability, problem settings). 

In this study, we will concentrate on the aspects which directly relate to experiencing the real-world 
situation and developing a mathematical solution. We will thus select the following parameters: the 
event and the question, the link to the real world, the apparatus and the problem setting. 

Experiential learning 

The use of cultural artefacts and, in particular, objects that are part of children and adults’ everyday 
experience is suggested by Bonotto and Basso (2001) as a strategy to make connections between the 
mathematics involved in real-world situations and  the mathematics that is targeted in the classroom. 
They found that for students to bring mathematics into reality, it is helpful to introduce mathematical 
facts that are embedded and encoded in artefacts. According to their reports, in carrying out 
mathematical experiences from the interpretation of artefacts, the students make the transition from 
the real world to the world of symbols (horizontal mathematization) but in addition the use of artefacts 
also give them the opportunity to advance the construction of mathematical concepts (vertical 



mathematization). The artefacts (concrete materials) may also be used as tools for the application of 
previous knowledge in new contexts and for consolidating the existing mathematical knowledge, 
pushing it to a higher level (Bonotto & Basso, 2001). 

Bonotto (2007) advocates the need for change if we want to create realistic situations in mathematical 
modeling activities, i.e., recommends less stereotypical and more realistic situations, namely with the 
use of concrete materials; those are relevant to the students as part of their life experience, offering 
meaningful references related to concrete situations.  

Other theorists also argue that fundamental knowledge and skills may be more easily accessible if 
students are directly involved in practical and experimental activities, as those can promote not only 
the perception of the usefulness of the materials in question but also a better understanding of the 
concepts explored. The discovery learning and the learning in practice are ideas inherent to the 
experiential education model. The model of learning by doing, developed by Kolb (1984), consists 
of a four-process cycle. The four processes are: experience (perform an activity); reflect (ask 
questions and talk about what happened in the experiment, analyzing possible inconsistencies 
between the observed and the predicted); abstract (generate a new idea or modify a previous idea); 
and apply (use what was learned in a similar or different situation, which can in turn create the need 
for new experiences). Experimental activities lead students to interact, analyze, question, reflect and 
transfer. The activity comes first; learning comes from the thoughts and ideas that arise as a result of 
the process of learning by doing. Accordingly, the drive for the development of new concepts is 
provided by new experiences. “Learning is the process whereby knowledge is created through the 
transformation of experience” (Kolb, 1984, p. 38). “Learning by doing” therefore appears as a natural 
learning perspective if modeling is seen as an activity that is similar to the methods in the 
experimental sciences or to the applied mathematics research. 

The perspective of experimental modeling environments described by Halverscheid (2008) focuses 
on activities supported by experiments that give the opportunity to build mathematical models and 
produce mathematical knowledge around the questions investigated during experimentation. The role 
of experience is to lead the search for a suitable mathematical model that can explain the real data 
and results. The practical experience, as advocated by the author, becomes the rest of the world inside 
the classroom or school laboratory. The models are therefore produced to explain and interpret that 
intended authentic world. 

Our theoretical approach, intends to combine the matter of authenticity with the idea of experimental 
modeling environments. We therefore consider that the authenticity of the school modelling task 
requires a clear account of an event that takes place in an out-of-school situation and the formulation 
of a question that is relevant and pertinent in that real world. But we add that the search for a solution 
entails a link to the real world that is made by an experimental apparatus, and a problem setting 
which is experientially emulated in the classroom. 

Methodological approach 
This study adopts a qualitative methodology of action research as the pillar of the methodological 
approach is a teaching experiment on the implementation of a new pedagogical approach involving 
modeling and applications in mathematics classes (Loughran, 2007; Latorre, 2003). The pedagogical 
motives of the teaching experiment corresponded to the need of providing meaning and practical 



sense to mathematics, to contribute to change the negative view that many students held about 
mathematics, and to develop their appreciation for mathematics in their daily lives. 

Two classes of 9th graders participated in this study. The ages of the students ranged between 14 and 
17 years old, with an average of 14 years old. They were usually collaborative and committed 
students. Most of the lower achievers worked hard to improve their performance but showed many 
difficulties in applying mathematical concepts and in problem solving. None of the students had come 
across modeling activities in previous school years. 

The modelling activities included 4 sections. The first is the introduction to the topic under study. 
The second consists of a practical activity, using manipulatives and everyday objects. The third 
comprises the analysis of the data obtained in the experimental stage, with the purpose of creating a 
model that might be used in similar situations. Finally, a written report should entail the following 
points: explanation of the experimental situation, assumptions made, strategies used, results, 
evaluation of the work and the difficulties found. 

To solve the tasks students worked in groups of three or four elements organized at their will. The 
time allocated to each task was between 90 minutes (1 lesson) and 180 minutes (2 lessons). During 
the activities, the students had the opportunity to move around the room and discussing with 
colleagues the ideas from another group. 

The data collection included participant observation and field notes from the teacher. The classes 
were recorded on video and audio with a mobile camera and the activity of a target group was also 
recorded on video and audio with a still camera. For each activity, a target group was randomly 
chosen. The written reports delivered by all the groups at the end of each activity were also collected. 
Here we will focus on the activity and work of a single group of four students. We will consider in 
particular what they developed in the experimentation phase and on the model proposed.  

The task involved color dispensing and mixing paint solutions. It aimed to simulate the procedure 
used in industrial machinery called tintometric systems. In a tintometric system once the white base 
has been dispensed the container automatically positions itself under the volumetric tinting system, 
which dispenses all the coloring pastes and then mix them. The task was presented as follows: 

Introduction. An indoor and outdoor paint shop uses a mixing paint machine in which it is only 
necessary to place the can with the neutral paint and introduce the code of the chosen color in the 
catalog. But a problem arose in the machine and it partially crashed. It no longer dispenses the 
required pigments, it can only mix them. Now the shop assistants must manually place the pigments 
to obtain the color chosen by the client. This means a new problem. They do not have information 
about the quantities of pigment to be used for each color of the catalog. So, your mission is to create 
a palette of colors and provide the amount of pigments to be used for each color. 

Practical activity. You have at your disposal white liquid (milk) and colored liquid pigments (food 
coloring), a gauge and 1 ml syringes. Your mission is to produce a color palette that involves two 
primary colors and a reference table with the precise amounts to be used by the assistants. 

Analysis. Choose two primary colors and prepare a palette of colors with various shades and make a 
table with the amounts of pigments for tins of 1L, 5L, 10L and 20L.  

Report. Record all your procedures and results and submit your final report. 



A case of proportional reasoning 
The process held with the experimental apparatus was the same in most of the groups. It was clear 
that the students knew the idea of a paint catalog and knew that colors are labeled with names. 
Therefore, in general, they were creating a sequence of shades and were making labels for each shade. 
They used a small amount of pigment at a time and always added that amount to the previous mixture. 
At the beginning they only had milk (equivalent to the neutral paint) and then added color by the 
addition of two pigments. Throughout the experiments all groups recorded the values in the tables 
and subsequently calculated the amounts of pigment for different paint tins. Some of the groups did 
not present a formula to generate any amount of paint (unknown value) and only made the calculation 
of the amounts necessary to make the quantities asked in the problem.  

The target group used yellow and green pigments. In their report the group described how they created 
a palette of four shades: 

Using the syringe we started with 0.1 mL of yellow pigment in the cup with milk (60 mL) and this 
color was Vanilla. Then we added another 0.2 mL of yellow pigment to the glass that already had 
0.1 mL of yellow and the color was Cream. After we added another 0.2 mL of yellow pigment 
and 0.1 mL of blue pigment to the glass which already had some amount of pigment and the color 
was Mint. Lastly we added to the glass another 0.4 mL of yellow pigment and another 0.5 mL of 
blue pigment and the color was Amazon Green. Now, using the results of our table, we will 
determine the amount of pigment to be used with 1L, 2L, 5L and 10L of paint. To obtain those 
values, we use the rule of three. For the case of Vanilla we get:  

x ----- 0.1
 1000 -----  60  mL )6.(1

60
1.01000



x   

To complete our description of the results of the group we note that they created a table for each tin 
size and the four shades, showing the quantities of paint, yellow pigment and blue pigment. For the 
Amazon Green, the table indicated: 20000 mL of paint, 300 mL of yellow, and 200 mL of blue. 

Discussion and conclusion 
In this teaching episode and from the empirical data presented we want to emphasize that the students 
apparently attributed significant authenticity to the task, namely: to the event of producing a color 
catalog of paint; to the question of finding the quantities of pigments for manual mixing; to the link 
with the real situation, that is, helping the assistant to retrieve the quantities of pigments for each 
shade; and to the use of the experimental apparatus which was essential for the ongoing 
mathematization and emulated the real process. 

However it seems that some aspect of authenticity has lacked. At a certain point the mathematical 
model is clearly formulated by the students and it shows their awareness of the fact that there is direct 
proportionality between the quantities of white paint in the experimental model an in the real sized 
tin, as well as direct proportionality between the quantities of a pigment in the model and in the real 
sized tin. That is obviously a sound conclusion. However, they went on assuming that the amount of 
white paint in the real tin was equal to the capacity of the tin, which is equivalent to say that the tin 
would be completely full with white paint and thus with no capacity available for an additional 
amount of color paste.  



We are suggesting that the missing aspect of the modelling situation concerns the authenticity of the 
problem setting.  The students had actually visited a paint supplying store in the neighborhood and 
could learn about a machine used to automatically dispense and mix the paints and produce the desired 
color. But one detail is relevant on the machine operation: it begins by asking the operator the size of 
the tin and then retrieves the amounts of neutral and of colored pastes. The total of the mixture has to 
be equal to that volume (or slightly below).  Instead, the setting in which they worked was a scenario 
involving much lower quantities than the actual tins. Therefore, no absolute urge for correctness of 
the calculations was at stake, as Vos (2011) points out. Indeed, the initial volume of milk was little 
and imperceptibly changed by adding small doses of pigments. In other words, there was almost no 
distinction between the volume of white and the volume of the mixture in the glass of the experiment 
(Figure 1). But that is no longer valid when we want to produce a 
can of 20 liters of Amazon Green color. In this case, the value 
obtained for the combined quantities of yellow and blue pigments 
was 500 mL and that would be a quantity which, if added to the 
neutral paint, greatly exceeds the capacity of the tin.  

Surely, other factors can be considered as responsible for the 
inaccurate mathematisation carried out. One of them refers to the difficulty students have with the 
notion of ratio, which is well documented in research. In fact, the rule of three was a ready strategy 
for students. And the ratio was never really considered. In any case, what happened is that students 
did not differentiate the amount of colored paint from the amount of white paint, as it is evident from 
their table that shows 20000 mL of “paint” instead of “white paint”. Still, that value was the 
correspondent to the 60 mL of milk in their rule of three. In conclusion, the concept of ratio was never 
activated and instead proportionality was used as a process of enlarging the “size” of each ingredient 
in the mixture (enlarge a small cup to a large tin). Therefore, questions of authenticity that are 
recognized by those who work with them in practice (Niss, 1992) seemed to have been absent from 
the process of translation between students’ real model of the mixture produced in the classroom and 
the actual process of paint production. 
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This paper reports on a post-primary classroom intervention conducted to investigate the effect that 
carrying out problem solving in small groups as an instructional strategy has on the problem-solving 
performance of individual students. Over the course of the 6-week intervention students were 
introduced to an explicit problem-solving framework and challenged to solve weekly problems both 
in small mixed-ability groups and also individually during their traditional mathematics classes. It 
was found that there was a strong correlation between the problem-solving performance of the small 
groups and that of the individual students which suggests that group work could be utilised as an 
effective instructional strategy when teaching problem solving. 

Keywords: Group activities, problem solving, secondary school students, secondary school 
mathematics. 

Introduction 
In 2008 in Ireland there was a change in the mathematics syllabus in secondary education in response 
to a number of studies and publications (e.g. Conway & Sloane, 2005). All of these studies identified 
that there were major deficiencies in the mathematical competency of students in secondary education 
and those commencing third level education. These concerns, along with others, fuelled the 
introduction of a new secondary mathematics syllabus in Ireland in 2008 named Project Maths. 
Project Maths identified five key skills that they saw as being central to effective teaching and 
learning across the new curriculum - information processing, being personally effective, 
communicating, critical and creative thinking and working with others (DES, 2015). 

This new secondary mathematics curriculum also places an increased emphasis on group work and 
the development of problem solving skills within the classroom. This syllabus change should lead to 
an increase in the amount of group work occurring within Irish classrooms, but this beg the question 
as to how effective group work actually is? Can we measure what effect group work will have on the 
individual student, particularly when dealing with activities such as problem solving? 

In terms of problem solving it has long been accepted that increasing the problem solving skill set of 
students is one of the primary goal of mathematical instruction (Travers, 1977). In the early nineties 
in America, the National Council of Teachers of Mathematics (NCTM) set out the goals for 
promoting problem solving as a curricular focus by declaring it as one of the three main goals of 
mathematical instruction in a second level school (Szetela & Nicol, 1992). In Ireland this focus on 
problem solving has only taken place in recent years due to the change in the syllabus brought about 
by the new Project Maths course. Many research papers focus on the individual problem solver but 
others have focused on the idea of problem solving in small groups (Artzt & Armour-Thomas, 1992). 
In addition to the obvious benefits of improving the problem solving skills of the students research 
highlights the additional benefits that working in small groups yields e.g. developing personal and 
social skills (McGlinn, 1991), enhancing self-esteem (Slavin, 1991) and reducing the dependency of 



the students on the teacher (Sandberg, 1990). In light of these benefits and the emphasis that the new 
syllabus places on working with others and problem solving, this current research project decided to 
examine whether working in small groups to complete mathematics problems would improve the 
general problem solving ability, and overall mathematical ability, of individual students. This 
research aimed to address this hypothesis by answering the following questions: 

1. Is there a relationship between an individual student’s problem solving achievement scores 
and their achievement scores when solving problems as part of a group? 

2. Do students believe that working in small groups to solve problems is beneficial in the 
development of their individual problem solving ability or overall mathematical ability? 

Framework for problem solving 
With the increased emphasis placed on problem solving in the new syllabus, and the relative newness 
and unfamiliarity of both teachers and students with problem solving, it was deemed necessary to 
provide students with guidelines to assist them during their initial problem solving exploits. The 
instructional framework selected by the authors to assist in the problem solving activities in the 
classroom was developed by Artzt & Armour-Thomas (1992) and was specifically tailored for 
problem solving in small groups. This framework was based on an earlier framework developed by 
Schoenfeld in 1985 but expanded and added additional episodes. Schoenfeld (1985, p. 292) defined 
an episode as “a period of time during which an individual or a problem-solving group is engaged in 
one large task”. Artzt & Armour-Thomas (1992) finally settled on eight episodes when looking at 
problem solving in small groups – read, understand, analyse, plan, explore, implement, verify, and 
watch and listen.  

Methodology 
Participants 

34 students from a medium sized rural secondary school in the west of Ireland participated in the 
research project. 22 of the students (12 male and 10 female) were from a mixed ability first year class 
(average age 13 years) whereas the remaining 12 students (7 males and 5 females) were from an 
ordinary level1 third year class (average age 15 years). The first year cohort only had two classes per 
week with their teacher as part of this intervention whereas the third year group had four classes per 
week with their teacher over the course of the six week intervention. A typical mathematics class lasts 
for 40 minutes. 

Selection of content and questions 

The selection of content for this study was primarily based on the Project Maths Junior Cycle2 
syllabus. The topic covered by the first year students during the six week intervention was ‘area and 
perimeter’, whereas the third year students covered the topics of ‘circles and cylinders’ and ‘area, 
perimeter, and volume’. Note that the third year cohort covered more material due to the extra contact 

                                                 
1 After first year all classes in Irish secondary schools are streamed into two groups, Ordinary and Higher, with higher 
being the more challenging stream.  

2 The Junior Cycle caters for students aged from 12 to 15 years and covers the first 3 years of post-primary education.  



time with their teacher during the intervention. An example of a question given to the first year 
students whilst working in groups is provided here: 

The first rectangle has a perimeter of 30 units and an area of 50 square units. The second rectangle 

has a perimeter of 24 units and an area of 20 square units. Charlie wondered if he could find a 

rectangle, with a side of length 10 units, whose perimeter and area have the same numerical value. 

  

Each week during the intervention the students were challenged to solve some combination of either 
purely mathematical or worded problems based on the previous week’s mathematical content. 
Verschaffel, Greer, and De Corte (2000) use the term ‘word problem’ to refer to any mathematical 
task where significant background information on the problem is presented as text rather than in 
mathematical notation and this is also the meaning that the authors have adopted as part of this study. 
Problems were selected from past examination papers, books and online websites and were deemed 
appropriate for the age and ability levels of the students. 

Intervention and assessment 

The intervention took place in the students’ traditional 40 minute classes over a period of six weeks. 
Normal teaching operations took place during the intervention with approximately 10 minutes of 
certain classes being assigned to the testing of the students’ problem solving abilities. In the first week 
of the intervention the students were given an individual assessment to gauge their initial problem 
solving skills prior to working in groups to solve problems. During the following five weeks students 
were regularly placed in small mixed ability groups of 3 or 4 and asked to solve 4 problems together 
during that week. At the end of each week students were asked to individually solve 2 problems so 
that their individual progress could be monitored. Individual students and all the members of a group 
were awarded a single correct mark if the problem was answered correctly and awarded no mark if 
they failed to correctly solve the problem. A focus group with 6 students randomly selected from both 
the first and third year groups was conducted following the intervention. 

The role of the teacher during the intervention 

Throughout the intervention the primary role of the teacher was that of a facilitator or a time-keeper. 
The teacher answered any questions that the students had with regards to the use of the problem 
solving framework or specific questions such as issues regarding units of measurements (i.e. is 𝑐𝑚3 
associated with volume). When asked a question related to the solving of the problem the teacher 
declined to answer directly and instead used probing questions to try and guide the students towards 
a solution. The frequency of questions directed at the teacher lessened after the initial weeks of the 
study as students began to rely on the other members of their group for assessing their ideas and 
potential solution strategies and not the teacher. Fewer questions were directed at the teacher during 



the individual problem solving sessions as the students viewed these more as ‘tests’ and therefore 
assumed that they were not supposed to ask questions of the teacher. 

Findings 
First-year students 

Looking at the assessment trend among the individual students it can be seen from Figure 1 that over 
the course of the intervention there was an upward trend in the number of questions answered 
correctly. The pre-test resulted in only 5 correct answers (11.36%) out of the possible 44 (22 students 
times 2 problems). This number of correct answers increased to 16 (36.36%) in week 1, 28 (63.63%) 
in week 2, 30 (68.18%) in week 3, 31 (70.45%) in week 4, and finally 38 (86.38%) in week 5. From 
Figure 1 it is clear that there is an almost linear increase in the number of correct responses between 
the pre-test and the week 2 assessment but this increase is then followed by 2 weeks of a much slower 
advancement by the students before increasing more significantly in the final week. 

 
Figure 1: Individual assessment scores for first year students 

In terms of the group assessment, Figure 2, there was evidence of a positive increase in the number 
of correct group responses as the weeks progressed. Out of a total score of 24 (6 groups times 4 
problems) possible correct responses each week 8 groups (33.33%) answered the problems correctly 
in the first week. This increased to 17 (70.83%) in week 2, remained at 17 for week 3, increased 
marginally to 18 (75%) in week 4 and increased again to 19 (79.16%) in week 5. 

 
Figure 2: Group assessment scores for first year students 
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Comparing the number of correct individual solutions against the number of correct group solutions 
each week it was found that there was a strong correlation between the number of correct answers 
among individual students and among the groups (r = 0.95). This suggests that as the first year 
students became more efficient at solving problems within groups so too did they become more 
efficient at solving problems individually. 

Third-year students 

Similar trends are noticeable among the third year group in both the individual and group problem 
solving assessments, although the scale of the improvement is not as significant as with the first year 
students. The pre-test of the individual students problem solving ability resulted in 2 (8.33%) correct 
responses out of a possible 24 (12 students times 2 problems). At the end of week 1 the number of 
correct responses had decreased to 1 (4.16%) before increasing to 14 (58.33%) at the end of week 2, 
15 (62.5%) at the end of week 3, 22 (91.66%) in week 4 and then dropping slightly again to 19 
(79.16%) in week 5 as seen in Figure 3. 

 
Figure 3: Individual assessment scores for third year students 

In terms of the number of correct responses from the groups of third year students there appears to be 
less fluctuation in the results. Out of a total score of 12 (3 groups times 4 problems) 4 groups (33.33%) 
answered the problems correctly in the first week. This increased to 6 (50%) in week 2, 7 (58.33%) 
in week 3, 10 (83.33%) in week 4 and 11 (91.66%) in week 5 as seen in Figure 4. 

 
Figure 4: Group assessment scores for third year students 
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Comparing the number of correct individual solutions against the number of correct group solutions 
each week for the third year class again found that there was a strong correlation between the number 
of correct answers by individuals and among the groups (r = 0.889). 

The second research questions focused on whether the students felt that working in small groups to 
solve problems had been beneficial in enhancing their individual problem solving skills or their 
overall mathematical skills. Overall the students were positive in their responses to the focus group 
question relating to whether they felt that their individual problem solving abilities had improved as 
a consequence of the intervention.  

Interviewer: Do you feel that your problem solving ability has improved? Why do you think 
this? 

Student4: I think it has because I have been finding it easier to figure out my homework, so I 
think it has. 

Most students responded in a similar manner although two of the group did confuse the question 
slightly and make reference to working in groups.  

Student2: Ah, yes because I now know that I can ask others for help and use their opinions to 
build on to get my answer. 

As already alluded to by some of the students in the previous question, all of the students responded 
that they found working in small groups enjoyable and some even stated that it increased their 
confidence in the mathematics classroom. Worryingly some of the students appeared to suggest that 
this type of active is not common place in their traditional classroom which is in opposition to the 
overall aims of the new syllabus. 

Interviewer: How did you find working in groups as part of your mathematics class? 

Student1: I enjoyed doing maths more because I got a fair share of trying to work it out and it 
wasn’t as boring as a normal maths class. I felt like my opinion mattered which is 
different to other classes. I found it weird that the teacher encouraged us to talk 
while in class, usually they are trying to keep us quiet. 

Student5: I feel more confident because maths seems a bit more fun when you can talk to your 
friends. Also it improved my ability to say I could do things when I though I 
couldn’t. I now try a different way of answering the question if I get stuck when I 
try it the first time around. 

When asked about whether working in groups was beneficial in helping them solve the problems all 
the students agreed. 

Student5: Am, yes because it helps it go faster and if you’re stuck you’d have another person’s 
opinion to help work it out. It was really fun working with your friends in class like 
that. 

The final question focused on whether or not the students felt that, as a result of their participation in 
the intervention, their overall mathematical knowledge had improved. The responses to this question 
were positive, but varied. Some students focused on the idea of being able to approach questions 
differently now because they were able to ask other students their opinions and then solve the problem 



themselves, based on the insight from the other student. Another student spoke about being able to 
analyse the ideas of the other members of their group and how it forced them to look at the problems 
from different perspectives.  

Interviewer: Have the classes improved your overall mathematical knowledge? In what ways? 

Student2: I think that I have new ways of solving problems. Before the group work, I used to 
look at the question and if I couldn’t understand I used to leave it because I didn’t 
know what to do. Now I would ask someone else if they could do it and see if I 
could use their idea to answer it. 

Student3: I found it improved my knowledge because I think I had to think more about the 
question. 

Interviewer: What do you mean by ‘think more’? 

Student3: Am, well because if someone in the group had a different opinion, I would try to 
see where they got that idea from and try and see if that would work. I also tried to 
see if it was the same as my idea but said in a different way. 

Conclusion and discussion 
The primary aim of this study was to investigate whether problem solving in small groups had any 
effect on a student’s problem solving achievement when working on their own. Solving problems in 
small groups affords students the opportunities to ask questions, challenge assumptions, discuss 
opinions and share work among colleagues. The results of this study found that the there was a strong 
positive correlation between the weekly number of correct responses to the problems solving tasks in 
small groups and the problems solved by individual students in both of the student groups. This would 
suggest that working in small groups to solve problems has had a positive impact on the individual 
problem solving skills of the students. Reading too much into this results could be misleading though 
as the unfamiliarity of the students with problem solving, or problem solving approaches, meant that 
the improvement in overall problem solving skills shown by the students could be a consequence of 
being introduced to a problem solving framework rather than from working in small groups, or some 
combination of both. 

This been said, all of the students commented positively when asked about whether they felt that 
working in small groups had been beneficial to them. The students highlighted how they liked the 
ability to talk to this classmates and discuss the problem which was not something that was common 
in their previous mathematics classes. This seems to contradict the aims of Project Maths which 
stresses the importance of developing the key skills of communicating and working with others (DES, 
2015). In line with the finding of Slavin (1991) students commented positively about several qualities 
which they felt that working in groups had helped to develop, such as feeling like this opinions 
mattered and feeling more confident towards mathematics. Additionally Sandberg (1990) found 
results that coincide with the findings of this study in that students are willing to persevere when 
faced with a problem that they cannot solve straight away and overall become less dependent on the 
teacher. These are all key skills that need to be developed in students and this would suggest that the 
teaching of a problem solving framework in conjunction with working in small groups to solve 
problems appears to be an effective instructional strategy. 



Finally it is worth noting that the students did highlight some issues with the intervention in its current 
form. Two students commented that they felt that there wasn’t enough time allocated to the group 
work activities at the end of the classes and that they always felt rushed. Another two students 
commented that in one instance one student in their group had taken over the activity and proceeded 
to solve the problem by themselves without consulting or involving the other members of the group. 
Obviously there are limitations to every study but going forward it is important that more focus be 
placed on the roles and monitoring of individual students within the groups. 
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Examples of mathematical problems in German school leaving examinations are examined in detail 
as to the extent to which they verify the competence of mathematical modelling. For this purpose, 
the relevance, the authenticity of the context, the openness of the task and the partial competencies 
as criteria are examined in more detail. It is shown that authentic contexts but no relevant contexts 
are contained in the problems. As a rule, the use of mathematics is not authentic and problems are 
not open. The partial competencies in modelling are quite unequally divided and are not covered 
completely. It is recommended to use all the criteria for the design of future examination questions.   

Key words: Modelling, examinations, Abitur, authenticity. 

Introduction 
In Germany, an overall policy of the Conference of Education Ministers has been in place with 
respect to “Educational Monitoring“ since 2006. The intent is to enhance competence orientation 
within the educational system. In mathematics, the focus also lies on the general competence in the 
field of modelling. From the year 2017 onwards, a task pool of Abitur examinations will be 
available out of which all Federal States can take problems for Abitur examinations. This is an 
important step towards improving the quality of examination problems and to align levels of 
requirements between the Federal States step by step. Such examination problems have been 
developed on the basis of educational standards and also contain, in particular, elements examining  
mathematical  modelling. Studies regarding problems in written Abitur examinations are rare. Still 
today, it is obvious that there are very few theoretically and methodically profound and empirically 
substantiated approaches in respect of examination problems in the framework of the written Abitur 
examinations, which at times just focus on individual standard-related aspects (Kühn, 2016, p. 75). 
Therefore, this applies in particular to problems regarding mathematical modelling. At the core of 
mathematical modelling lie the translation of a problem from reality into mathematics, the work 
with mathematical methods and the application of mathematical solutions to the real problem. 
Usually, the entire modelling process is represented as a cycle. Idealisation here means that the 
representation itself is, again, a model. In Borromeo Ferri et al. (2006) the creation of a 
mathematical model is contemplated in detail, representing the process of the individual, creating 
the model, from the starting situation to the mental representation as a first step. 

Modelling competence 
Blum et al. (2007) describe modelling competence as the capacity to execute the relevant process 
steps required when switching between reality and mathematical problem adequately as well as to 
analyse models or comparatively evaluate such models. This can be discussed in more detail on the 
basis of modelling cycles by Blum and Leiss (2005, p. 19). Thus, it is possible to analyse the 
various partial processes of modelling activities considering various details and other aspects. It is 



also possible to consider the capacity to implement such a partial process as a partial competence of 
modelling (Kaiser, 2007; Maaß, 2004). In consideration of the modelling cycle one could 
characterise such partial competences as shown by Greefrath and Vorhölter (2016, p. 19). We do 
not mention inner-mathematical working between the mathematical model and the mathematical 
results as a partial modelling competence since this is not specific for modelling processes. 

Characteristics of modelling problems 
It is not always easy to select or develop the right modelling task. As an indication, characteristics 
may be specified that a modelling task should fulfil. In her comprehensive classification scheme for 
modelling problems, Maaß (2010) focuses in particular on the type of relation to reality, to the 
openness and the modelling activity as criteria for modelling problems. With respect to the focus on 
the modelling activity, partial competences of modelling will be observed more closely. As regards 
the relation to reality, the relevance and authenticity of the context will be examined more closely 
(cf. Greefrath et al. 2013).  

Relevance 

Initially, we deal with the classification of reality-related problems handed down in German 
discussions. In connection with the factual context of problems, we traditionally talk about 
“embedded problems“, problems formulated in text form and “factual issues“. These types of 
problems provide facts about the relevance of the factual context used for students.  

Embedded problems have no real relation to reality. The factual context is of no importance 
regarding the solution of problems and can be exchanged arbitrarily. The intention of embedded 
problems is the application and practice of numeracy skills. An embedded task as a modelling task 
is suitable only to a limited extent since the mathematical model is already implicitly contained in 
the problem. Word problems are problems formulated in text form – sometimes complemented by 
figures. Similar to the embedded problems, the issue is basically exchangeable as reality is often 
represented in a very simplified manner. The intention is to promote mathematical skills. It is not 
really about an autonomous development of a mathematical model because of the lack of reality and 
the given simplifications. Nevertheless, one major problem for students is the translation of the text 
into the corresponding mathematical symbolism such as terms or equations. For this reason, the 
known term “mathematisation“ in the field of modelling is normally used in this context (Schütte, 
1994, p. 79). In the case of problems formulated in text form the mathematical problem dominates 
the embedding of it. Another focus then lies - depending on the specific problem - on the 
interpretation of the mathematical results in the factual situation and in the wording of a 
corresponding answer. The substantial and - particularly in connection with factual problems - 
frequently exclusive treatment of problems formulated in text form in mathematics classes has been 
strongly criticised. One reason is the lack of genuine reference to reality. Another reason is the 
process of practising similar mathematical issues, formulated in text form, as a result of which a real 
reflection about the context used becomes redundant. In the case of factual issues a factual 
environmental problem is of primary importance. In this context, the function of “Factual 
Calculation“ is described by Winter (2003) as “Environmental Development“. In this context, real 
data are frequently given in respect to which authentic questions are then asked. Since the processed 
issue plays a real role, information about the respective matters must be gathered and processed. 



Therefore, the processing of factual issues is also to be considered as interdisciplinary or - ideally - 
even as discipline-linking. In this context, the factual issues can be viewed as modelling problems 
(Franke & Ruwisch, 2010). 

Authenticity 

Authenticity is one central characteristic of modelling problems. Authenticity means both the 
authenticity of the extra-mathematical context and of the application of mathematics in this 
particular situation. The extra-mathematical context must be real and not be specially designed for a 
certain arithmetical problem. The application of mathematics in this situation must also be 
reasonable and realistic and should not just be used in mathematics lessons. Authentic modelling 
problems are problems that genuinely belong to an existing subject or problem area where they are 
accepted by people working in those areas (Niss, 1992). Thus, an authentic task becomes credible 
and at the same time a realistic task for students from an environmental point of view. Authenticity 
helps students take problems seriously and avoid superficial substitute processing strategies as in 
the case of embedded problems (Palm, 2007). In the case of authentic problems, students can 
assume that the things they are dealing with really exist and that the task they are presented with is a 
real task that finds its justification outside mathematics lessons as well (the task have an out-of-
school origin and a certification (Vos, 2015)). Authenticity of problems helps students take such 
problems seriously. However, authenticity of problems does not mean that the problems are actually 
important for the students‘ present or future lives. 

Openness 

Open problems are those problems that - for instance - allow for more than one approach or 
solution. Openness enables students to choose their own approaches or solutions regarding the 
problems. There are various classifications of open problems. We limit ourselves here to the 
examination of openness by initial state, transformation and target state (cf. e.g. Wiegand & Blum 
1999). Said classifications use the known problem-solving psychological description of a problem 
through its initial state, target state and a transformation that transfers the initial state into the target 
state and are not limited to modelling problems (Klix, 1971). Open problems are divided by the 
clarity of their initial and target statuses as well as by transformation. Maaß (2010) suggests another 
classification of open modelling problems based on Bruder (2003) which includes seven different 
types and which distinguishes between overdetermined and underdetermined problems. 

Criticism concerning Abitur examination problems with modelling elements 
The use of modelling in examination problems, however, is not unreservedly viewed positively. The 
fact that in many cases the relevance of the factual context used is not at the focus of examination 
problems, gave rise to (fundamental) criticism on the part of some expert representatives with 
regard to modelling in examinations. On the one hand, the criticism is directed against the fact that 
“modelling competence“ is not at all examined by the problems (Kühnel 2015, p. 76). On the other 
hand other authors show the categorical refusal of modelling problems (cf. Bandelt & Weidl, 2015, 
p. 4). Strong criticism is also directed against the greater part of texts in examination problems (cf. 
(Jahnke et al. 2014, p. 120): “Instead of dealing with mathematical problems, A-level students have 
to tackle wording problems“.  



Criticism regarding examination problems can be absolutely justified, in particular if it is about 
embedded problems and not about factual problems in examinations (cf. Fig. 1). Henn and Müller 
(2013, p. 205) comment: “Unfortunately, most of the so-called “modelling problems“ at school - 
and in particular in the Abitur exam are not at all modellings according to our way of thinking. 
Almost always one starts out from a more or less complex function equation, allegedly describing a 
ski jump, a tower, a playground or another construction. Now, with this function, a common 
functional examination is to be made. However, the whole thing is not a modelling task, but entirely 
a mathematical problem.“ 

 
Figure 1: Stimulus text of an examination task (www.iqb.hu-berlin.de) 

This brief insight shows that the use of the term “modelling problem“ - in particular in examinations 
- does not at all guarantee the clear characterisation of a certain type of problem. It should be 
considered, however, that the conditions given in examination or in normal lesson situations are 
different from each other (cf. Siller et al., 2016, p. 381/382). Ultimately, in examination situations 
the focus is on the term of “measuring“ the students‘ performance as outlined by Siller et al. (2016, 
p. 384). Thus, less attention may be paid to a creative phase in a test situation. In addition, 
psychometric findings (cf. Rost, 2004) reveal that - for the measurement of performance - such 
performance must be addressed explicitly and structured into small units in order to obtain a valid 
statement.   

Research issue 
Against the background of criticism directed towards current Abitur examination tasks and in 
consideration of the importance of competence of mathematical modelling for German levels of 
education and of international discussions as well as of the theoretically clarified criteria for 
modelling problems, we have to ask ourselves the question, how to evaluate the quality of existing 
Abitur examination problems with modelling elements in Germany. We limit ourselves here to the 
calculus subject area, which accounts for the largest part of the Abitur examination in mathematics 
in Germany. With regard to the criteria discussed above, the question is: How can German Abitur 
examination problems in calculus be assessed with regard to the partial competences of modelling, 
to relevance, to authenticity and to openness? 

Research method 
For preparing for the pool of Abitur examination problems which will be available from the year 
2017 and from which all Federal States can easily draw Abitur examination problems, the Institute 
for Educational Quality Improvement in Berlin will provide a collection of examples (cf. 



www.iqb.hu-berlin.de/bista/abi). Such samples were chosen as a basis for the examination because 
they best fit with the Abitur examination problems of 2017. Among the sample problems there is a 
total of four examination problems for calculus for general grammar schools. Two of the problems 
are of an increased level and a further two are intended to be used in Computer-Algebra-Systems 
(CAS). All in all, the four examination problems include 50 items.  

 
Figure 2: Part b) of an examination task (www.iqb.hu-berlin.de) 

Problems were evaluated by items according to different criteria. The selection of criteria follows 
the frequently quoted central characteristics of modelling problems (cf. Bruder 1988, Greefrath & 
Vorhölter 2016, p. 17, Maaß 2004, p. 22). Problems were discussed and evaluated per item and on 
the basis of Tab. 1 in the framework of a qualitative research process including three evaluators. 
Finally, all items could clearly be allocated the corresponding characteristics (cf. Bortz & Döring 
2006) – by using 0 (does not match – e.g. Relevance 0 in Fig. 2) or 1 (matches the criteria – e.g. 
Authenticity in Fig. 2). In this way, a detailed compilation of the examined items was created and 
an allocation to the aforementioned criteria became possible.   

Reference to reality Does the problem refer to an extra-mathematical factual context? 

Relevance Is the factual context relevant to the students (factual problem)? 

Authenticity Is the factual context authentically related to the actual situation?  

Authenticity Is the factual context authentical with regard to the use of mathematics? 

Openness Is there more than one possibility to solve the problem (solution variety)? 

Partial competences  
of modelling  

Which partial competences of modelling are required for dealing with the problem 
(simplifying / structuring, mathematising, interpreting, validating)? 

Table 1: Criteria used for the Assessment of Items 

Results 
In an initial assessment of the existing data material, we focus on the criteria reference to reality, 
authenticity, openness, relevance and modelling competence. Due to the small data basis, it was not 
possible to make valid quantitative statements. However, certain trends are visible. 20 items out of a 
total of 50 contain a reference to real life situations. The problems, though, included in the basic 
level more items with reference to reality (52 %) vs. items without reference to reality than in the 
higher level group (31 %). Correspondingly, on average, problems with the use of CAS contain 
more items with reference to reality (46 %) than in the group without the use of CAS (33 %).   

Authenticity: If one looks at the problems considering the requirement that the respective items 
should contain realistic situations, our analysis reveals that such items appear both at the increased 



level and at the level where CAS are used. More than one half of the items with reference to reality 
also contain realistic situation at both levels. Regarding a realistic use of mathematics which from 
our point of view represents a further aspect of authenticity (cf. table 1), this has been identified in 
just three items. Students were required to explain in the factual context of a parabolic modelled 
trajectory that only certain parameter values are possible. It should be noted here that quadratic 
functions are used even by experts for modelling trajectories. 

Openness and Relevance: Open problems have not been identified in the items examined. Also with 
respect to the relevance of the problem, no item can be identified in the present examination 
problems that would fulfil this requirement. 

Modelling competences: The analysis concerning the partial modelling competences show that the 
items normally address one of the partial competences. However, the partial problems are not 
designed in such a way that the sequence of an idealised modelling cycle reflects the appearance of 
the partial competences of simplifying, mathematising, interpreting and validating one after the 
other. Most items focus on mathematising, followed by required interpretations. Simplifying or 
structuring or the validation within one item is not required by the current examination problems. 
One item requires both mathematising and interpreting. This item requires the determination of an 
intersection point on the basis of a model given by a function equation with an unknown parameter 
with self-determined conditions interpreted in the framework of the factual context.  

Discussion 
Generally, it can be said that around 40% of the items examined include reference to reality. 
However, this does not mean that such items also contain modelling problems. The application of 
common criteria for modelling problems shows that we can talk about modelling problems only to a 
limited extent. Not a few items include an authentic factual situation, but a realistic use of 
mathematics is given just in exceptional cases. None of the problems is open or relevant. This is 
why criticism towards Abitur examination problems must be taken seriously if one must conclude – 
as already concluded by Henn and Müller (2013).  

It is comprehensible that in individual items only a partial modelling competence is dealt with due 
to the examination situation or to performance measurement, respectively. This can also be 
observed essentially in respect to the problems examined. It would be desirable though, that all 
partial competences of modelling were contained in a test problem and that this problem was tested 
in the typical sequence as in the modelling cycle. This is not the case with regard to the problems 
examined. There are even partial competences, which are not tested at all, such as simplification.  

Numerous general conditions must be observed when preparing examination problems. In order to 
actually test the modelling competence, it is necessary not just to use problems with reference to 
reality which describe an authentic situation only partially and to test just a few competences of 
partial modelling competencies, but to start with an intensive and criteria-led development of 
modelling problems for an examination on the basis of the current educational standards.  

In order to improve the competency modeling and the development of modelling problems for 
examinations, the criteria used here should also be used for the development of examination 
problems and for training problem developers. In order to increase the share of suitable modellings 



in examinations, it seems that a substantially greater proportion of reality-related problems or a 
substantially targeted development of suitable items is needed.  
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The purpose of the study is to investigate mathematical non-routine problem solving processes of 
students in small groups. The study was conducted with nine fifth grade students in three small 
groups. A framework developed by Artzt and Armour-Thomas (1992) for protocol analysis of problem 
solving in mathematics is used for this study to determine problem-solving behaviors observed within 
different episodes of problem solving. The findings revealed that although the understanding episode 
was coded as the greatest percentage, the analyzing episode was coded as the lowest percentage 
within the three groups. 

Keywords: Problem-solving process, small groups, fifth grade students. 

Introduction 
Problem solving has become an integral part of learning mathematics since it helps students to 
understand mathematical contents. It also leads students to understand how to apply their knowledge 
into their daily lives when solving problems. The NCTM (2000) also emphasizes the mathematical 
problem solving activities from pre-kindergarten to grade 12 in all mathematics classrooms. 
Moreover, problem solving is strongly emphasized in recent Turkish elementary mathematics 
curriculum. It is considered as a basic skill that should be developed in each content area (MoNE, 
2005). Besides, students should be able to develop their own strategies and apply them to solve their 
real-life problems when solving problems (MoNE, 2005). 

Moreover, problem solving entails engaging in a task for which the solution process is not identified 
beforehand (NCTM, 2000). Mayer (1992) defines problem solving as a cognitive process in which 
one figures out how to solve a problem of which the solution is not already known. Most definitions 
of problem solving emphasize problems that require problem solvers to use information and 
procedures in unfamiliar ways. Problem solving is an extremely complicated human endeavor.  It is 
considerably more than the implementation of well-learned procedures or the simple recall of facts. 
Problem solving involves the construction of sequential procedures that build strategies in addition 
to the application of the structure (Hammouri, 2003). Problem solving also entails arranging several 
cognitive and metacognitive processes, deciding and performing suitable methods, and regulating 
behavior for varying demands of problems (Montague, 1991).  

A variety of models are proposed that describe the processes that problem solvers use from the 
beginning until they finish their tasks (Garofalo & Lester, 1985; Mayer, 2002; Montague & 
Applegate, 1993; Polya, 1957). For example, Polya’s model comprises of four stages; namely, 
“understand the problem, make a plan, carry out the plan, and look backwards” (Polya, 1957). Later, 
Garofalo and Lester (1985) revised the model proposed by Polya and include cognitive and 
metacognitive components. Their model is described in four stages as orientation, organization, 
execution, and verification. Montague and Applegate (1993) presented a model focused on seven 



cognitive processes “reading, paraphrasing, visualizing, hypothesizing, estimating, computing, and 
checking” and three metacognitive processes “self-instruction, self-questioning, and self-
monitoring”. Mayer (2003) proposed another cognitive process model that included translating, 
integrating, planning, and executing processes. In particular, Artzt and Armour-Thomas (1992) 
developed a framework to examine the problem-solving processes of individuals as they work in 
small groups.  

Furthermore, non-routine problems are problems where how to solve the problem is not obvious 
immediately, or they have not been encountered before in the curriculum. Non-routine problems 
require critical thinking and an extension of prior knowledge that may include concepts and 
techniques which will be explicitly taught at a later stage, and may include finding connections among 
mathematical concepts (Schoenfeld et al., 1999). The findings of this study support that challenging 
problems are likely to enable metacognitive process so that students consciously adjust and regulate 
their cognitive processes (Montague & Applegate, 1993).  

All over the world the importance of exploring elementary school students’ problem solving abilities 
is highlighted. There are some international examinations such as Program for International Student 
Assessment (PISA) and National Assessment of Education Progress (NAEP) to determine the 
performance on non-routine problems and in problem solving. In the 2012 version, students’ PISA 
ranking scores in problem solving show that Turkey is among one of the worst in the world (42nd out 
of 65 countries, 2012 PISA). Therefore, researchers need to find out why this is so. As a country 
students’ problem solving abilities can be improved if how students think, and their awareness of 
their actions while solving non-routine problems are determined. In addition, exploring cognitive and 
metacognitive abilities is difficult in problem solving. Especially, elementary school students may 
not be aware of what, and why, they are doing. As a result, the purpose of this study is to investigate 
problem solving processes of fifth grade students when they solve non-routine mathematical 
problems. 

Significance of the study and research question 

Many research studies and projects have pointed out the importance of learning problem solving in 
school mathematics courses (Higgins, 1997; NCTM, 2000; Verschaffel et al., 1999). One of the major 
goals of mathematics education is the acquisition of the skill of learning how to solve problems. 
However, there are conflicting views about the attainability of these goals (Verschaffel et al., 1999). 
Despite long years of instruction many research studies show that children are insufficient and not 
confident in having the aptitudes required for approaching mathematical problems in a successful 
way (Higgins, 1997; Doorman et al., 2007). The reasons for these deficiencies, particularly in 
elementary students, can be attributed to two factors. The first of them is the lack of specific domain 
knowledge and skills (concepts, formulas, algorithms, problem solving). The second factor is 
shortcomings in the heuristic, metacognitive and affective aspects of mathematical competence. 
When confronted with unfamiliar complex problem situations, students mostly do not spontaneously 
apply heuristic strategies such as drawing a suitable schema or making a table. They usually only 
glance at the problem and try to decide what calculations to perform with the numbers. In addition to 
this, many students have inadequate beliefs and attitudes towards mathematics itself, learning 
mathematics, and problem solving. These beliefs exert a strong negative influence on their 
willingness to engage in a mathematical problem. Some examples of such beliefs and attitudes are 



that there is only one correct way to solve a problem; that a mathematical problem has only one right 
answer; and that ordinary students cannot solve problems which requires higher order thinking. These 
insufficiencies in students’ beliefs are related to the nature of the problems given in the lessons and 
the classroom culture. Hence, problem solving activities should give opportunities to students for 
investigation, reasoning and deciding on the solution process and improve their problem-solving 
skills. Small groups in problem solving may provide natural setting for interpersonal monitoring and 
regulating of students’ goal directed behaviors. In this study, the problem-solving processes that occur 
as individuals engage in mathematical problem solving in small-group settings are examined.  

The findings of the study may contribute the studies on the process of fifth grade students’ thinking. 
The determination of these students’ thought processes will helps teachers to design and adjust 
problem solving instruction and better support the development of students. The findings of this study 
may be applicable for developing teaching methods and materials to enable the development of fifth 
grade students’ problem solving skills in future non-routine problem solving classrooms. In addition, 
this study can be significant for the design of curriculum in that the results support the design of 
educational or special programs that can be more effective and supportive of elementary students. 
Thus, the research question of the study could be stated as follows: 

Which are the most dominant problem solving processes of fifth grade students when solving non-
routine problems? 

Theoretical framework 
It is necessary to appraise the information about problem solving processes to develop a framework 
that can explain how students figure out mathematical problems. Mathematics educators and 
psychologists have suggested various problem solving process models. Polya (1957) proposed four 
phases called “heuristics” to understand problem solving processes. The phases are known as 
“understanding the problem, devising a plan, carrying out the plan and looking back”. Polya also 
proposes several strategies that can be used when students solve problems. His strategies include 
using diagrams, looking for patterns, trying special cases, working backward, intelligent guessing and 
checking, creating an equivalent problem and creating a simpler problem. Considering the problem-
solving processes, an appropriate strategy can be essential to reach the solution of the problem. 

After that, Schoenfeld (1982) developed a model for mathematical problem solving based on the 
Polya’s model. The model includes five episodes; namely, “reading, analysis, exploration, 
planning/implementation and verification”. Adding cognitive and metacognitive aspects of problem 
solving to Polya’s and Schoenfeld’s model, Garofalo and Lester (1985) proposed a framework with 
orientation, organization, execution and verification phases. Montague and Applegate (1993) also 
proposed cognitive-metacognitive aspects of mathematical problem solving. This model focused on 
seven cognitive processes “reading, paraphrasing, visualizing, hypothesizing, estimating, computing, 
and checking” and three metacognitive processes “self-instruction, self-questioning, and self-
monitoring”. These various models have been used to investigate problem solving processes, but only 
two models by Garofalo and Lester’s model as well as Montague and Applegate’s model have been 
used with gifted students as a framework to describe problem solving processes in the literature 
(Garofalo, 1993; Montague, 1991; Montague & Applegate, 1993; Sriraman, 2003). Several 
metacognitive actions during problem solving were described in each phase of those models by 



cognitive theorists, in mathematical problem solving. To examine the problem-solving behaviors and 
cognitive processes of individuals as they work in small groups, Artzt and Armour-Thomas (1992) 
developed a framework based on Schoenfeld's (1982) framework. Schoenfeld (1985) defined an 
episode as "a period of time during which an individual or a problem-solving group is engaged in one 
large task" (p.292). The framework for the protocol analysis of problem solving in mathematics is 
used for this study to differentiate between cognitive and metacognitive problem-solving behaviors 
observed within the eight  episodes (read, understand, analyze, plan, explore, implement, verify, and 
watch and listen) of problem solving. The framework synthesizes the problem-solving phases 
identified in mathematical research by Garofalo and Lester, Polya and Schoenfeld, and of cognitive 
and metacognitive levels of problem solving behaviors studied within cognitive psychology, in 
particular, by Flavell (1981). This framework used in this study is to examine the interactions between 
two levels of cognitive processes (cognitive and metacognitive) observed in the problem-solving 
behaviors of students working in small groups on mathematics problems. 

Methodology 
This project consists of qualitative research in which case studies are employed. A qualitative design 
is appropriate for this study because the study focuses on gaining in-depth information about what 
actually occurs during the problem-solving process. The study conducted with nine fifth-grade 
students in a private school in the capital of Turkey. Purposeful sampling was used to select the 
participants as the researcher wanted to obtain more knowledgeable information about the problem-
solving processes within the groups. Voluntary participants were involved in the study. The students 
who have high self-expression skills were selected by two mathematics teachers. 

This study used multiple methods including a think aloud procedure when the students are engaged 
in solving problems, researcher’s field notes of observation, and analysis of students’ solution papers 
to collect data. Prior to the data collection, the participants practiced the think aloud technique with a 
sample problem. The procedure provides participants with important practice for understanding and 
developing confidence prior to utilizing the technique with the research problems. Over the one day 
3-hours period of data collection, three mathematical problems which were selected from PISA 
problem solving sample questions (going to the cinema, transportations system and holiday) from 
decision making units (OECD, 2005), were given to participants to solve in small groups by using 
think aloud method. All three students in small groups had their own paper and problem sheet to 
follow the process. They continuously spoke aloud while they work on the problems explaining their 
thoughts. Also, they had unlimited time to solve each problem. Since misinterpretations of the data 
might have resulted with only a single researcher as the data collector, the researcher maintains a 
record of field notes explaining her reflections about the activities. The field notes included the 
explanations of questions, reactions, and behaviors that occurred during data collection. 

In the study, group members were chosen from different classes, and they had never studied together 
before. Data collection was in a one-to-one setting between the participants and the researcher to have 
some field notes. One researcher observed exactly one group and took field notes. The researcher 
videotaped all the processes to record the participants’ behaviors, how they responded to the 
problems, and what mathematical language they used. All data from the think aloud session, 
participants’ solution papers, and researchers’ field notes were transcribed for analysis by the 



researchers. To generate the categories, the researchers read through all transcribed data sentence-by-
sentence and identify words or phrases that described the participants’ responses. For example, in 
group 1, student 1 says for cinema question: “First we will read the question then we will discuss”. 
This sentence is coded as Read. Again in group 1, student 1 says for cinema question: “Until now, 
what did you understand?” and student1 suggests:” Let’s underline the important sentences” These 
two sentences are coded as Understand. Also, student 2 says: “They cannot go to that film because it 
is for above 18 years old”. This sentence is coded as Analyze. For the second question, student 1 says: 
“Let’s try the other way” and coded as Explore.. Student 2 says: “They cannot go to Children in Deep, 
Carnaval and Pokemon” coded as Implement. Student 2 says: “Let’s look at it carefully. They can all 
go to Mystery. Let’s check” coded as Verify. 

After each interview is transcribed, participants check the accuracy of the described experiences and 
themes. Then, the codes were applied based on a review of the data and the concepts emerging from 
the data. The responses of one student were compared with those of other students in the same 
problem, as well as the same student across other problems. Multiple data sources were used to 
triangulate and confirm patterns that emerged. Each response was compared with other responses 
with the same idea, regarding the source of the responses. The codes were grouped into categories. 
At this point, preliminary categories were developed. Responses were compared across categories in 
terms of similarities and differences. Next, the researchers revised categories with transcribed data 
again and again until the final categories are confirmed. The final categories were also reviewed 
against the transcribed data for the last time. 

Findings 
The coding for each of the three groups was done and the behavior of each group was categorized by 
episode. As it was suggested by the study, the three groups’ episodes or problem solving behaviors 
were recorded and ranged. The audio records of the groups were coded in 1-min intervals based on 
the emergent behaviors through sentence-by-sentence and identify words or phrases that described 
the participants’ responses. Groups were differentiated from one to another by giving numbers such 
as Group 1, Group 2 and Group 3.  

Table 1 lists the number and percentage of behaviors across all groups, of the 519 behaviors that were 
coded, 25% belonged to Group 1, 21.65% belonged to Group 2 and 53.4% were demonstrated by 
Group 3.  

According to the results students in Group 1, out of 130 items (sentences, phrases, words), show 
“understanding” behavior (e.g. Student 1 says: “Stanley cannot come to the cinema on Sunday also 
he cannot watch Pokemon” which represents rephrasing the questions in different ways) 44 times, 
33.8%, which is the most frequent behavior observed, “exploring” behavior 25 times, 19.2% which 
is the second most frequent behavior observed and “implementing” behavior, 22 times, 16.9% which 
is the third most frequent behavior. As it was mentioned, the greatest percentage of existing behaviors 
was in understanding followed by exploring.   

For Group 2, out of 112 items, students show “understanding” behavior 53 times, 47.3%, which is 
the most frequent behavior observed, “exploring” behavior 19 times, 16.9%, and “implementing” 
behavior, 15 times, 13.3%, which is the third most frequent behavior observed. 



For Group 3, out of 178 items, students show “understanding” behavior 75 times, 42.1%, which is 
the most frequent behavior again, “exploring” behavior 27 times, 15.1%, which is the second most 
frequent behavior observed and “planning” behavior 19 times, 10.7%, which is the third most frequent 
behavior observed among the other behaviors. Differently from Group 1 and Group 2, this group 
shows more “planning” behavior than other groups. 

Table 1: Percent distribution of behavior categories (episodes) by problem solving group 

  Groups 
Behavior 
Category Group 1  Group 2  Group 3 

Read 12 (9.2%) 6 (5.3%) 17 (9.5%) 
Understand 44 (33.8%) 53 (47.3%) 75 (42.1%) 
Analyze 1 (0.7%) 2 (1.7%) 1 (0.6%) 
Explore 25 (19.2%) 19 (16.9%) 27 (15.1%) 
Plan 7 (5.3%) 9 (8.0%) 19 (10.7%) 
Implement 22 (16.9%) 15 (13.3%) 15 (8.4%) 
Verify 11 (8.4%) 4 (3.5%) 10 (5.6%) 
Watch & 
Listen 8 (6.1%) 4 (3.5%) 14 (7.8%) 

 

Of all the episodes coded, the understanding episode was the coded as the greatest percentage within 
three groups while analyzing behavior was very rare. Among 419 items, 172 items represent 
“understanding” episode, 71 items represent “exploring” episode, 52 items represent “implementing” 
episode. The percentages of each episode are given in Figure 1.  

 
Figure 1: The percentage of the problem-solving behaviors for each episode in all groups 

Discussion 
According to Artzt and Armour-Thomas (1992) the greatest percentage of time was exploring 
(60.4%). In contrast to their study, we found that understanding was the most frequent observed 
behavior (33.1%). Watching and listening can play an important role in addressing the issue of 
communication between group individuals. These low and high percentages of watching and listening 
behaviors may be as a result of different reasons. For example, in Group 1, one student interrupted 
the other two students and also this student was writing the majority of the solution. The records and 
observations indicated that in each group some students assumed a leadership role. Therefore, it was 
possible that this kind of act would discourage the other two students in the group. However, during 
the problem-solving procedures, some productive interactions occurred while Student 1 (in Group 2) 
was not only supporting and guiding others but also got benefits from group members’ ideas. These 



results are in agreement with Artzt and Armour-Thomas’ (1992) findings which showed different 
patterns interactions between group members and show the significance of intergroup relations for 
active and productive contribution.  

The framework contributed the observation of individuals while working in small group settings. As 
it can be realized from the records and observations, group composition affected the group life. As 
group members were chosen from different classes, it is interesting to note that in all three groups 
students reflected a pragmatic desire in order to achieve the common goal by working together 
productively. With the exception of one student in Group 3, the small group study enabled researchers 
to observe peer to peer communication in a small group environment.   

‘Understanding’ was the behavior that was coded the greatest percentage by students in this study. It 
would be expected that after this phase, students could decompose the problem into basic components 
and examine the relations between given elements and common goals at the analysis level, and then 
explore the problem by guessing and testing. In our study, understanding led group members to the 
exploration without making visible analysis.  
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We report on the experience gathered in a study using a geometric modelling approach based on 
dynamic geometry systems complemented by physical modelling. Our strategy intends to strengthen 
the interconnections between the current trends in Science, Technology, Engineering, Art and 
Mathematics Education. To help students to better understand how certain physical mechanisms 
work, some da Vinci machine prototypes were reconstructed and used as a starting point for this 
study. Building upon previous experience, our work currently concentrates on the analysis of 
connecting physical and digital resources and on how they contribute to students’ creative thinking 
and problem-solving. We discuss the concept of geometric modelling, focusing on spatial thinking, 
joints and their movements. Further, we present some new manipulatives that are being tested 
together with digital applets and discussions from this practice. 

Keywords: geometric modelling, GeoGebra, problem solving, creative thinking. 

Introduction 
Geometric modelling has been used in a wide range of contexts, but continues to deserve more 
attention in mathematics education. The term “geometric modelling” usually refers to different digital 
techniques for representing specific objects or surfaces. This concept seems to be associated mostly 
with computer-aided design, the tasks of which are usually related to shape and to improving models 
in order to approximate real structures by means of sophisticated algorithms and software. This work 
intends to bring geometric modelling, supported by dynamic geometry systems (DGSs) and combined 
with physical resources, to the classroom. While an analogue model provides “hands-on experience” 
to students so they can comprehend certain mechanical movements (and their restrictions), a digital 
model forces them to develop suitable strategies for transcribing such actions. Students must therefore 
think about how to apply mathematical concepts properly in order to use them successfully in their 
digital models. In our case, creating a digital representation is not only a mathematical exercise, but 
also an opportunity for the students to refine and review their comprehension processes and to 
improve their physical models. In this modelling approach, students are faced with problem-solving 
in Science, Technology, Engineering, Art and Mathematics (STEAM) contexts.  

Modelling is characterized as the branch of mathematics that deals with the translation of a real-world 
situation into mathematical language. In publications discussing mathematical modelling (e.g., 
Brinkmann & Brinkmann, 2008; Lingefjärd & Holmquist, 2001), data are used to optimize particular 
processes or to develop algorithms for analysis or prediction. Geometric modelling approaches also 
concentrate predominantly on processes rather than on actual goals and concepts (e.g., Mason, 2001; 
Henning  & Keune, 2008; Siller, 2008). We use geometric modelling for both the virtual (on the 
computer screen) and physical (concrete manipulative) representation of objects, which allows both 
the objects’ functionalities and the interactions between them to be analyzed. Exploring linked 



mechanisms by using either concrete manipulative or digital tools such as GeoGebra, students can 
examine mathematical ideas in order to improve their constructions. We focus on the process of using 
modelling to support geometrical relationships and vice versa. Our goal is that students gain a better 
understanding of how certain mechanisms work, beyond connect such STEAM areas. As a starting 
point, we used some mechanisms introduced by Leonardo da Vinci and shared them in an interactive 
GeoGebra book (see https://ggbm.at/AnHK7nCX). Although da Vinci invented them more than 500 
years ago, their basic physical principles are still used in engineering and in education. Reconstructing 
these models does not only mean redoing what has already been done; it means connecting ideas and 
strategies for learning and using new resources based on some classical ideas, and maybe even 
improving them along the way.  

In this paper, we present an activity developed within a vocational course in Brazil. Building upon 
this preliminary experience, we intend to investigate (in the form of a PhD project) how the combined 
use of physical and digital tools is of mutual benefit and promotes learning in science and 
mathematics.  

Theoretical framework 
Enhancing geometric modelling through Dynamic Geometry Systems 

More than a “mathematical playground”, dynamic geometry systems (e.g., GeoGebra) must be 
considered as a proper space for transforming students into explorers – a platform where 
mathematical understanding takes on another dimension and goes beyond merely applying formulas. 
Numerous studies have advocated this (e.g. Schumann, 2004; Gawlick, 2005; Bu & Hohenwarter, 
2015) and stress the importance of transcending traditional geometry courses before the increasingly 
sophisticated and widespread application of geometry in science and daily life. In particular, they 
highlight how DGSs have supported changes in mathematics teaching and learning as well as in 
professional mathematical practice. Among the perspectives associated with the DGS approach, we 
outline those that are closer to geometric modelling: problem-solving, concept formation, 
construction, measurement, visualization, exploring, and variation/animation. DGSs often grant 
access to information that would otherwise be inaccessible. For instance, in spatial geometry, 
GeoGebra enables users to see an object from different points of view and its cross sections. Such 
features provide an important link between 2D and 3D representation. Investigating whether some 
ideas established in 2D also work in 3D or how they should be adapted is a promising strategy for 
promoting spatial thinking. Consider an example where the reasoning based on circles in a plane can 
be extended to a sphere in space: We have a point given in a plane and a line at a certain distance d 
from the point. In order to mark those points on the line that are located at the same distance e > d 
from the point, one could use a circle in 2D, but this would not suffice in 3D space (a more appropriate 
approach would be to use a sphere in this case). The attempts to find a solution using DGS software 
enhance the students’ conjecturing processes – another benefit of DGSs. 
Teaching approach using analogues and DGS 

In the didactic domain, Alsina (2007) proposed that students gain insights from the functionality of 
objects and thus engage themselves in a creative process because they can identify the potential or 
restrictions of a particular phenomenon. Gravina (1996) suggested that dynamic geometry can foster 
an approach to geometric learning in which assumptions are made from experimentation and the 



creation of geometric objects. In the same vein, Swan et al. (2007) stated that students can refine their 

own thinking by interacting with different representations of problem situations. In our case, the 

aligned and parallel modelling process led students to a practice where they had to hone their ideas 

in every construction step. Facing the need to convey their ideas, students tapped into their previously 

acquired understanding (an example is discussed in more detail further below).  

Recent studies (e.g., Sinclair, Bussi, de Villiers, et al., 2016; Camou, 2012; Lesh and Sriraman, 2010) 

support the positive effect of the design and implementation of a multi-representational approach to 

exploring 3D objects using crafts, computer technology, and paper-and-pencil methods. In this 

context, we seek to provide an integration of geometry with algebra and trigonometry (using the 

example of joints with circular movements) that goes beyond technical instrumentation.  

In our case in particular, the use of mechanical principles provides the background for the modelling 

process, as can be seen from the diagram in Figure 1, which was adapted from De Sapio and De Sapio 

(2010): they considered the relevance of applying an approach to problem-solving at an elementary 

stage through constructing mechanical analogues to geometric problems. In this case, mechanical 

reasoning supports geometric reasoning. Note that we added the arrow in the opposite direction, since 

the reverse case (geometric reasoning supports mechanical reasoning) is equally possible, as shown 

in our study: On the one hand, mechanical reasoning was essential to discussing the proper ratio for 

a pulley system in one case. On the other hand, with the help of rotational simulations (i.e., geometric 

reasoning) by means of digital modelling, the students figured out how to build a functioning physical 

prototype in another case.  

 
Figure 1: the solution’s correspondence come out in both directions 

Concerning the activity’s driving, the activity is consistent with DeHaan (2009), who stated that some 
strategies can transform the lecture hall into a workshop or studio classroom (even partially), and 
stressed the use of computer-based interactive simulations as a promoter of creativity instruction.  

In fact, researchers investigating creativity generally argue that projects tend to be more creative when 
the solution is redefined, revisited, and questioned numerous times during the process (Lee & 
Carpenter, 2015). Furthermore, there are many different ways of developing prototypes. The process 
of refining ideas and designs puts students on an unrestricted path. Siswono & Novibasari suggested 
that problem-posing activities using the “What’s another way?” strategy could 
improve students’ abilities in creative thinking (as cited in Siswono, 2010). In our study, the students 
discussed their different ideas, especially in digital modelling. In this phase, they considered various 
points of view and also tried to gain some insights to check whether their ideas were feasible or not 
in order to do make the model as simple as possible. 



Methodology  
Our experiment started in September 2015 at the Federal Institute of Education, Science and 
Technology in Brazil. It took approximately four months and had the form of a partial extra-class 
activity with two weekly meetings to follow the progress. The students (most of them were 16 years 
old) participating in the vocational (informatics) course were supported by two additional teachers 
(physics and mathematics). Although supervised by teachers, they chose their own topics to 
investigate. We first present the Da Vinci Rotatory Bridge Project (Figure 2) developed by 4 students. 
It was agreed that they should develop both physical and digital models in order to try to improve the 
joints of the existing mechanisms. Our intention was that, by comparing similarities and differences 
between the models, the students should be able to use one to support the other. No particular order 
was prescribed, but parallel development was suggested. Use of GeoGebra was also optional but 
recommended, since we were exploring it during class. In fact, da Vinci projects have been promoted 
since 2011, but this was the first time GeoGebra materials and GeoGebra 3D features were integrated. 
Particularly in the digital modelling process, the students concentrated on principles of rotation, 
translation, and spatial geometry.  
 
 
 
 
 
 
 

 
 

Figure 2: The digital prototype developed using the GeoGebra 3D feature (left) and the physical model 
made of wood (right) were developed in parallel  

As a further development we are combining this activity with a new resource, 4Dframe1, which is a 
flexible material and easy to manipulate. In the next example (Figure 3), we follow the development 
of a digital catapult in two versions. The second one is based upon the 4Dframe model.  

                  

 

 

 

Figure 3: Catapult evolution and becoming easy to represent  

Since mechanical principles are highlighted in a simple way, it becomes easier for students to 
represent them in GeoGebra. Furthermore, elementary models with straws and connectors become 
part of the digital modelling more easily when only segments and points are used to represent the 
structures.  The functional principle of the joints, however, is preserved. In addition, various colours 
are used to represent the corresponding elements and to contribute to the visualization and facilitate 
spatial comprehension. 

                                                 
1 For some examples, see https://www.geogebra.org/m/xCxJUyyx.  



Finally, another important benefit is that the digital model allows a wide range of representations to 
be created by simple cursor movements (in the example in Figure 4 by dragging the blue points). 
Using 4Dframe, the students can think freely about different possible solutions and the constraints 
arising for an eventual construction, and are engaged in a learning process involving critical and 
creative thinking.  

 

 

 

           

Figure 4: Multiple representations promote creative thinking. By dragging the blue points in the 
digital model, students can create a range of possible solutions.   

Construction’s ideas and discussion  
In order to illustrate some basis used by students to support such models, we share some parts of 
them. The students were free to construct according to their own previous knowledge and were not 
required to use any specific content. However, if the need arose in a particular task, the students 
received proper support. In such cases we enjoyed discussing the problem at hand with them and, 
together, introduced new concepts or strategies, as presented below. 

Given a circle with its centre in A (located on the x-axis) and an arbitrary radius2 we started the task 
(Figure 5). First students investigated the relative position of a point B on the circle in relation to its 
center while sliding along a line. Since the goal here was to simulate the movement of a wheel, they 
needed to implement rotational movement. To figure this out, they changed the definition of point B 
to (x(A) + sin(x(A)), y(A) + cos(x(A))). Naturally, this result was obtained after several attempts and 
discussions. Note that, in this case, the point B is a function of point A.  

 

 
 

Figure 5: Three-frame cycles represent the transition from a “dragging circle” to a “rolling circle”  

In a 3D representation, the same logic is preserved, but this concept was totally new for the students: 
Each point then has three inputs. If a circle is perpendicular to one of the standard axes, then all points 
belonging to this circle have a constant input regarding to such axis. The other two coordinates repeat 
the idea from the previous 2D example. For instance, in the case below (Figure 6), B is given by (x(A) 
+ sin(x(A)), 0, z(A) + cos(x(A))). The connected elements can be completed by rotation or symmetry.  
Additionally, some principles applying to spatial coordinates were used to define proper points as a 

                                                 
2 The radius could also be controlled by a slider. In this case, the scale had to be in accordance with the remaining 
construction.  



basis for such constructions. In the boat example (Figure 6), a first reference segment was built to 
guide the following marks through translations and reflections.  

 

 

 

 
 

 

Figure 6: Developing a 3D representation in 3 steps  

In this activity, the students should preserve the coherence between analogue and digital model as 
much as possible. To illustrate this, we refer to the bridge example, where the relation between the 
turns of the driver pulley and the bridge was to be determined; this is an issue easily identified in the 
physical prototype but not as readily in the digital model. When the students realized that the models 
were not in agreement, they concentrated on the geometrical problem and concluded which ratio 
between the number of turns of the bridge and of the pulley should be appropriate. In contrast, when 
students modelled only the digital boat (in a previous experiment), they recognized the following 
misconception before building the physical model: if the paddle wheels spun together at the same 
speed, the boat would move only forward and backward. They then fixed this problem in the physical 
model. This suggests that it does not matter which model they build first as long as the whole model 
contributes to their experience and improves their learning process. When digital geometric modelling 
was the goal, students needed to use their knowledge of trigonometry and parameters (functional 
thinking) in order to establish links between elements to obtain the desired representation. Questions 
such as “If you want to change the direction of the rotation, what do you have to do?” often initiated 
their investigative process and sometimes became a challenge.  

Conclusion 
 “Inviting” students to reconstruct historical models is one of many possible ways to teach 
mathematical concepts and to promote students’ creative thinking processes. Students must decide 
how they can use their previous knowledge in order to solve a given task. In this way, students 
increase their autonomy and become more involved in their own learning processes. An important 
step of Pólya’s heuristic strategies can be outlined: “If you cannot solve the proposed problem, try to 
solve first some related problem” (as cited in Schoenfeld, 2016). 

While we promote STEAM on the one hand, we introduce different dimensions of learning to students 
and enable deep learning driven by their own interests on the other. Problem-solving and geometric 
modelling can also become a basis for the integration of mathematical learning into trans-disciplinary 
educational frameworks, currently referred to as STEAM.  

In the course of this study, students left some testimonials on Moodle.  One such testimonial referred 
to some physics aspects: “I enjoyed two videos posted by the teacher that showed how da Vinci’s 
bridge worked. They enabled a better understanding of the functioning of the rotatory bridge. I 
understood better how the system of ropes and pulleys works in order to reduce the workforce.” 



Feedback such as this and examples such as those reported above illustrate the students’ interaction 
with different resources that supported them. They indicate that the geometric modelling approach 

can motivate and contribute to their learning process. We therefore seek to evaluate and promote this 

activity among teachers as part of our current research. We are now working on developing new 

resources that connect the physical and the digital world and will report on these at a further occasion.  
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In this paper we report on students' work in Argentina and in France when performing a modelling 
task. The problem given, named the "gutter", is quite a classic in university calculus courses. Analyses 
have been realized by using the Mathematic Working Space (MWS) research model in relation to 
mathematization of a modelling process. We are mainly concerned with the influence of the teaching 
in students’ productions. Since the modelling process is an important issue of teaching, we have 
chosen the population of the study among pre-service teachers. 

Keywords: Mathematical Working Space, paradigms, modelling task. 

Introduction 
Nowadays, modelling is fostered in secondary school and at the university level, and one expects 
teachers and engineers to be trained to achieve the modelling competence. For instance, modelling 
constitutes a specific competence that has to be developed by civil engineers in Latin America, 
according to Tuning project (Guerrero, 2013). But, what modelling problems have to be considered 
in upper secondary school and in university? Are the modelling problems used in high school, and in 
the university, standardized by the institutions? Do they refer to real situations? We think that 
mathematical objects, different representations used, and properties involved in the modelling process 
give a richer sense for students in term of the knowledge they can construct. Teachers have of course 
an important role to play that highlights the importance of the teachers training. In that way, the 
population of this study was mainly choosen in secondary teacher training.  

In this study we present a relation between the Mathematical Working Space research model 
(Kuzniak & Richard, 2014; Kuzniak, Tanguay & Elia, 2016) and the modelling cycle (Blum & 
Borromeo-Ferri, 2009) that could be understood as a first cycle for the resolution of the modelling 
task. Mathematical Working Space (MWS) is a model that is used in research in mathematics 
education, first developed in the field of geometry. When a student starts with the given situation, one 
assumes that he/she begins a horizontal mathematization process which is a foundation for bringing 
the situation problem into a mathematical domain. Then a vertical mathematization process takes 
place where the MWS framework and the modelling cycle can interact with each other. That is our 
approach in this study. 

We first present how to use the MWS model to analyse a modelling activity. Then, we study a 
modelling task given to pre-service teachers in Argentina and in France. Our aim is not to make a 
comparative study, since both populations are different, but rather to identify the personal MWS of 
the students when solving this modelling task. The focus is mainly on three levels of teachers training 
in Argentina. We also looked at primary teachers training in France in order to have an idea of no 
scientific students’ answers. 



MWS and Modelling 
We consider a MWS that depends on a specific mathematical field (Kuzniak, Tanguay & Elia, 2016) 
such as, among others, analysis, geometry, algebra or statistics. Paradigms in an MWS, depending of 
the domain, serve to characterize the work according to a community or an institution. We develop 
the paradigms for analysis (Montoya Delgadillo & Vivier, 2016).  

The MWS model 

Three types of MWS may be distinguished: (i) MWS of reference, which is defined according to the 
relation to knowledge, ideally under mathematical criteria; (ii) suitable MWS, which depends on the 
institution involved, and is defined according to the way that this knowledge is supposed to be taught 
in the institution; (iii) personal MWS, which depends on the individual and is defined by the way in 
which the individual handles a mathematical problem with his or her own knowledge and cognitive 
capacities. 

MWS is an environment in which reflection results from the interaction between an individual and a 
problem in a mathematical domain. It is an environment organized for an expert of this domain, by 
means of two interconnecting planes: the epistemological and the cognitive planes (Kuzniak & 
Richard, 2014; Kuzniak, Tanguay & Elia, 2016). 

The epistemological plane is composed of three poles (Figure 1a), namely referential (properties, 
theorems, definitions…), representamen (semiotic signs), and artefacts (material or symbolic). The 
cognitive plane consists of the processes of visualization, construction and proof. The functioning of 
a MWS must not be understood as a union of single components lying on the epistemological and 
cognitive planes, but rather as links activated by two or three geneses, semiotic, instrumental and 
discursive genesis, that articulate the two planes. 

 
Figure 1a: The Mathematics Working Space, 
geneses and vertical planes (Kuzniak & Richard, 
2014) 

 
Figure 1b: The modelling cycle 

(Bloom & Borromeo-Ferri, 2009) 

Paradigms of analysis 

The situation we propose (see following section) is an optimization task. Hence, using (mathematical) 
analysis is quite natural, even if the problem can be solved in various ways. In order to identify the 
paradigms of analysis in the answers of the students, we present the three working paradigms of 
analysis identified by Montoya Delgadillo and Vivier (2016): 

− Arithmetic/Geometric Analysis (GA): it enables interpretations with implicit assumptions 
based on geometry, arithmetic calculations or the real world. 
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− Calculation Analysis (CA): the rules of calculation are defined more or less explicitly and 
are applied independently of reflection on the existence and nature of the objects.  

− Real Analysis (RA): it is characterized by work involving approximation and 
neighbourhoods; definition and properties are set theoretically; an “ε work”. 

Modelling 

The development of the modelling skills (Blum & Borromeo Ferri, 2009) mobilizes notions and 
mathematical objects of different mathematical domains, where the knowledge that the students can 
learn is grounded on arguments that belong to different domains (analysis, probabilities, geometry, 
etc.). This gives rise to different MWS and paradigms.  

Recently, two doctoral theses in probability in Paris Diderot university proposed a use of MWS in 
modelling processes1. The whole modeling cycle (Figure 1b) is not taken into its totality: the focus is 
on phases 3 to 5 of the cycle and our aim is to analyse, with the MWS model, the mathematization 
process when students solve a modelling task. We expect to identify, in students’ work, the solving 
mathematical domain and mathematical objects, representations or signs, artefacts, mathematical 
knowledge, and the working paradigm. We show below how the two frameworks may be used 
together and their complementarity.  

In the following, we do not consider all the modelling process with the lens of the MWS model, but 
rather how is it possible to analyse mathematical activity. In particular, we set the following questions: 
Given a specific task, what domain and (personal) MWS will a student choose during the modelling 
process? Is it possible to see an influence of a suitable MWS? 

Experimental study 
The "gutter" situation (see below) was given to three groups of future secondary mathematics teachers 
in Argentina: two groups of a private training institute, namely 1PC of 1st year and 2PC of 2nd year, 
and one group of 4th university year, 4PF, of the Universidad Nacional de Córdoba – unfortunately, 
a 3rd level group was not available. The study focuses on these pre-service teachers, but the task was 
also posed in France, in an examination of 3rd year future primary teachers, at the Université Paris 
Diderot. This extra population helps to understand what kind of solving processes one can expect 
from non-scientific students. Students of the study are named L1 to L28, 1PC1 to 1PC24, 2PC1 to 
2PC15, and 4PF1 to 4PF12 accordingly. 

As announced above, it is an optimization task, quite classic except for modelling aspects. Here, we 
make the hypothesis that the majority of students who followed a calculus course that provided a 
method for solving a class of optimization problems (derivation or optimum of quadratic functions) 
will work in paradigm CA, and that they will resort to functions. 

The aforementioned was the case for 4PF students trained at the university, since these students had 
courses on mathematical analysis. But CA paradigm was not expected for 1PC students and 2PC 
students, since in Argentina the first calculus course takes place during the second year and the 
experimentation was at the very beginning of the academic year. We then expected more GA methods 
(see below). 

                                                 
1 See also the poster “Modelling tasks and mathematical work” in TSG6 of CERME 10. 



On the other hand, French students were in a multidisciplinary third university year after the 
validation of two disciplinary university years (mathematics, or biology, or history, or English…). 
Students’ profiles were very diverse and a few of them studied mathematics, and specifically calculus. 
We make the hypothesis that, spontaneously, most of L-students work in GA paradigm, whether or 
not using functions. 

The gutter situation: a priori analysis 

First, we give the statement of "the gutter", then we make an a priori analysis. 

We have a rectangular metal sheet of 30 cm width and of big length. We fold up perpendicularly edges on each side to 
make a gutter (see dotted lines on the figure below). For obvious reasons, both side edges of the gutter will have the same 
size.  

 

How should we fold up the metal sheet in order to obtain a gutter with a maximum flow? 

This is a partially modelled task, since many parameters are fixed and, moreover, the geometrical 
mathematization is given. The choice to fold perpendicularly allows simplifying the task by 
eliminating other cases. There is a lack of parameters to study the flow, among them, the slope of the 
gutter (that we shall not discuss) and the length of the sheet. 

The latter is not necessary because we can replace the study of the flow by the study of the area of a 
cross-section of the gutter supposing that the flow through this section is constant. Nevertheless, it is 
simpler to work with the volume than with the flow which is a quotient magnitude. Thus, some 
students may choose a length to make a calculation of volume. Is this length considered as a parameter 
or either as a numerical value added to the statement? This length is used in calculations or is it only 
a useful intermediary to think of the situation? 

Let us note that there may be problems of understanding of the proposed geometrical modelling. An 
inadequate understanding of the situation corresponds to the addition of an idea or a belief, which is 
not correct regarding the situation. We expect in particular to have equitable answers with 10 cm for 
each of the three edges, as well as the assertion that the area, and thus the flow, does not vary because 
of the constant 30 cm. 

On the other hand, there is no indication on the mathematization allowing to make calculations for 
solving. We focus our analyses on this phase of mathematization, which we interpret as the choice of 
a MWS by students, and the phase of solving. We then look at students’ answers with an adequate 
understanding of the modelling situation: good geometrical shape (specified in the statement), and 
considering the area of a cross-section, or a volume, to study the various values (the variations) of the 
flow. We also look at a schema of the gutter: cross-section, in 2D or in 3D. 

In the following, we present the types of answers expected for solving the modelling task. Before 
that, let us notice that the task can be solved in the geometry field of the statement, with magnitude 
and a knowledge on the areas of rectangles of given perimeter: By taking two “gutters", one forms a 
rectangular pipe the section of which has a perimeter of 60 cm. Since the area is maximal for a square, 

30 cm 



the solution is obtained for a 60 cm/4 side, that is, 15 cm. So, the basis has 15 cm of length and one 
has to fold in 15 cm/2 = 7.5 cm. 

The resolution can be made in a numerical MWS, that is, by doing several calculations of the area or 
the volume. Several levels are possible: choice of some values of the length of the edge, calculations, 
and then decision-making. Numbers to be considered are essentially whole or decimal numbers. The 
solution being 7.5 cm, considering only integers multiples of cm does not allow to find the optimal 
value (unless changing the unit of length). These values can be grouped in a table or not, obtained in 
an organized way or not (for example, with all integers from 0 to 15, or by an oriented search), with 
a sign (as the letter x) to denote the length of the edge or not. A formula allows to automate 
calculations and, possibly, the implementation in an instrument of calculation. Obtained values can 
be also put in a graph. 

The production of a formula can allow to change of MWS to a functional MWS, in calculus. One 
expects the introduction of a quadratic function2: 

 Using only algebra, with the expression of a global variational principle:  
f(x)  f(a) where a is the candidate value, that has to be find, to be the optimal value; 

 With recognition of a quadratic function, its properties, vertices or symmetry axis of a 
parabola, allow to solve the problem. This is a work in CA paradigm. 

 Using the derivative of the function. Is the theorem quoted? Is the change of sign of the 
derivative evoked or forgotten? This is mainly a work in CA paradigm. 

 Setting a values table or a graphic, recognizing or not a parabola, in GA paradigm. The 
difference with numerical MWS mentioned above may be difficult to identify. 

Results 

Let us note that 12 L-students do not answer, and utterances from 5 students of 1PC are not classified. 
Three of these 1PC-students gave the solution 7.5 cm without any justification: possibly an exchange 
of information between students or, for at most two students, the divisions of 30 cm by 4 like for a 
square3. There is also the atypical 1PC24’s production, which will be mentioned later on.  

In Table 1 there is a summary of the results with four groups of indicators: 

1. Representamen: cross-section of the gutter (CS), letter for the edges (Ledg), letter (L) or value 
(V) for the fixed length of the gutter (Par), table (T) and graph (G); 

2. Objects used: function (Fu) or formula (Fo); 

3. Knowledge: derivation (Der), vertex of a parabola or quadratic function (Ver) in a MWS of 
function, CA paradigm; numerical calculations (Num) in a numerical MWS; 

4. Non adequate modelling: 10 cm for each edge (10), no variation (noV) and also extreme 
folding (ExtFold) for “the edge must be the lower” or “the greater”. 

                                                 
2 A quadratic function limits the technical difficulties. The task was also chosen for this reason. 
3 That method is not expected here: since (a,b)ab is bilinear, optimizing the area of rectangles with fixed perimeter p 
is the same than optimizing the area of rectangles of sizes a and b with a + b + a = p.  



Table 1: Students’ answers to the “gutter task” 

 CS Ledg Par  T/G Fu/Fo Der Ver  Num 10  noV ExtFold  

4PF (12) 8 12 6L,0V 0T, 3G 12Fu, 0Fo 7 5 0 0 0 0 

2PC (15) 3 2 0L,1V 2T, 0G 0Fu, 1Fo 0 1 5 4 5 2 

1PC (24) 7 2 1L,2V 0T, 0G 0Fu, 0Fo 0 1 11 5 2 0 

L (16) 0 7 2L,3V 2T, 2G 4Fu,2Fo 2 0 5 2 0 4 

There is a lot of 2D schema, close to the statement schema, but only four 3D schema. On the other 
hand, a cross-cutting (see Table 1) seems characteristic of 4PF-students, more advanced 
mathematically. It is the same with formalization, introduction of letters (variables and parameters) 
or using functions: the 12 4PF-students used a modelling with functions. It is also the same with the 
use of knowledge: 4PF-students work in CA paradigm, either by using derivation or the formula 
giving the vertex of a parabola (rarely justifying that it is a maximum; only two students justified it, 
by calculating the second derivative). There were a few students that used this knowledge in the three 
other groups, or in an empirical way by working in GA paradigm (by numerical calculations, more 
or less organized, or graphs). 

Although the work seems largely guided by the knowledge the 4PF-students have, with few 
variations, modelling was adequate, what is not the case in other groups. For students who do not 
well understand the situation, either no MWS rises from modelling, or a very poor MWS appears, not 
allowing a substantial mathematical work. Answers of inadequate modelling are: 

 Equitable length of the three sides: 10 cm each (5 students); 

 There is no variation, all is constant (4 students); 

 An extreme folding, the littlest lateral side possible (5 students), but sometimes with the (real) 
constraint that 0 is forbidden, so that the water remains in the gutter; 

 L27: a pyramid (to have a pipe?) without understanding the geometry of the statement; 

 1PC24 drew a roof explaining: “if there is a few water that does not go strongly”, and “if there 
is a lot of water and with great strength”. 

Although the productions of the group 1PC are very poor, with not much formalization, in the groups 
2PC and L we find a various types of rich productions: trying values with calculations, sometimes 
leading to the accurate solution when the student thinks out of the integers domain (some students 
remain in the field of the arithmetic of integers, sometimes with answers with two solutions, 7 and 8, 
and even the constraints to have a basis of even length in order to be able to divide by two), graphs 
and tabulations which can lead to the awareness of a symmetry (L6, L28 below). 

L14 proposes a formula with a letter x for the length of the edge and l=10 for the length of the gutter, 
to calculate what he calls Dmax (figure 2). He uses this formula to find a values table for a whole 
number between 1 and 15. He writes: "we notice that the maximal flow is achieved for an edge 
between 7 and 8 cm". Other students stop at this stage, while L14 continues with another table for the 
values of x between 7 and 8 with a step of 0,1. This allows him to conclude correctly, in GA paradigm, 
that "to have a maximal flow, edges have to be 7.5 cm each". 



Student L6, after the introduction of the function f(x) = (30-2x)x, establishes a valuable table for 
integers and draws the graph of f (figure 3). She concludes with visualization on the graph to 
determine the solution by drawing what seems to be the axis of symmetry of the curve. 

 

 

 

 

Figure 2 : Answer by student L14   

 
Figure 3 : L6's graph 

L28 declares the same function but in a more formal way: “x(0,15) f(x)=(30–2x)x”. He then 
calculates the values for the whole values of x that he associates two by two, which is an organization 
adapted to the function at stake. "We notice a symmetry in the values of f(x) when x varies between 
1 and 15. We deduct that the maximum is in the middle of the values, that is: 
fmax(x)=f(7,5)=112,5 cm2.” 

 
Figure 4: Production of L10 

L10's work is very complete (figure 4). She uses a formalism (she fixes the parameter a to 200 cm), 
a function, and a graphic calculator to propose a conjecture for the candidate maximum value in a 
visualization work in GA paradigm. She strengthens her conjecture by considering the middle of the 
function roots. She continues by calculating, algebraically, in paradigm CA, V(x)–V(7.5)= –(20x – 
150)2, what allows her to justify her conjecture and to conclude. 

Finally, 2PC4 has an atypical production with a modelling by means of a paper model: he takes two 
paper strips, which he folds to form a pipe and gives, by a reasoning close to the solution in the 
MWSGeometry described above, the right solution. 

Conclusion 
The recognition of a function in the situation, like the introduction of a letter, is an important 
modelling activity, because a concept is introduced, which a priori has no relation to the situation. 
But more than a letter – by using it the work can remain in a numerical MWS –, the introduction of a 



function switches the work to a MWS of functions with specific techniques (e.g. derivation) and 
representations (graphic, table value). However, the work done can be very different and the personal 
MWS involved can also be different from a student to another. 

The understanding of the situation and the asked question made each student choose a MWS, that is 
to say, mathematical objects, knowledge, theorems, signs (letters, graphics,…), artefacts (calculator, 
spreadsheet,…) and the processes of visualization, construction and proving in various domains – in 
other words, the MWS... – . Those are complex issues for a teacher to control the various knowledge 
involved. 

Then we wonder whether the modelling process for some students is a routine that has been 
"normalized" by the institution, mostly for a specific class of problems, or a mathematical activity 
which has been taught in their institution. It seems that for 4PF group, students’ answers are 
standardized with only a choice between two knowledge on functions. This is a first influence of the 
suitable MWS that we point out. The diversity of the L-students productions reinforce this 
standardization and we set the problem of the possibility for teachers to be aware and open to 
alternative answers that their students may have.   

MWS model allows us to analyse in depth the concepts and mathematical objects coming from 
mathematization identified in the modelling process. However, the possibility that different MWS 
from this process are generated makes an attractive but complex task to control for the teacher, overall 
for a second modelling cycle. Indeed, this study focus on a first cycle where one asks to students to 
solve a modelling task. Then, teachers may use a second cycle in order to reorganize and to point out 
knowledge that arose during the first cycle. 
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In this study, a teaching experiment was used in which fifth grade students developed their own 
knowledge about decimal number based on their prior knowledge and real life actual experiments. A 
Realistic Mathematics Education approach was used for designing this research. Participants in this 
study were 27 students from a primary school and they did not have formal instruction at school on 
decimal number until participating in the current study.  These students engaged in some measuring 
activities during four sessions in two weekends. They discovered the idea of calibration of a 
measurement unit and tried to use this idea for measuring the length of objects. This study shows how 
real life experiments of students help them to calibration a measurement unit.  

Keywords: Decimal number, measurement activities, realistic mathematics education, primary 
students.  

Introduction 
Understanding of decimal numbers is very important for people who live in twenty first century 
because they use computer, calculator, digital monitor and other measurement activities in their real 
life experiments. Usually, people encounter with decimal number in their real life. For example 
nutrition facts written on foods, factors for buying products, vaccination card of children and … have 
a lot of  things related to decimal number. All children encounter with decimal number before formal 
education at school, although its meaning is not understood. According to Bonotto (2009) connection 
between outside of school experiments of children and formal education can support students’ 
conceptual understanding.  

In traditional teaching, decimal numbers developed through place value. Usually students use tens 
and hundreds blocks for consolidating decimal numbers concept. Operations and procedures explain 
by teachers abstractly and then ask students to do some similar exercises. Indeed, students hadn’t 
active role in developing their own knowledge and there is no connection between out of school 
students experiment and their math classroom activities.  

It seems to we need to develop new approaches for teaching decimal number. One of the useful ideas 
in this regard is realistic mathematics education approach. In current study, we try to use this 
approach for finding some real contexts which are authentic for students and these contexts used for 
starting point for constructing mathematics by students themselves. Indeed, this paper will be 
introducing a teaching experiment in decimal number domain. During this teaching experiment, 
students do sequence of measuring activities to develop a measurement unit and calibrate it for 
measuring different lengths. Students also discover different representation for decimal number 
through these activities. The main purpose of this research was that show how students develop their 



 

own knowledge about decimal number in the context of real world with using their common sense 
and prior knowledge.  

Literature review and theoretical framework 
Decimal number is one of important topics in school mathematics which has plenty of application in 
students’ real world experiments. But several studies show that students and even adults haven’t good 
understanding about decimal numbers (Moloney & Stacey 1997; Steinle, 2004; Lai & Tsang, 2009; 
Sengul & Guldbagci, 2012).  Lai and Tsang (2009) show that procedural knowledge of students in 
decimal number was very good, but their conceptual knowledge in decimal number and decimal 
notation were so weak.  

One of the important concerns of Lai and Tsang (2009) is that do the mathematics teachers know how 
to deliver decimal conceptual knowledge to the students? Bonotto (2001) believe that students’ 
difficulties in decimal number rooted in teachers teaching strategies which have no connection to real 
life of students. Indeed, students usually encounter with decimal number in format of some stereotype 
word problems. Niss, Blum, and Galbraith (2007) said word problems exist several centuries in 
school math curricula and used as application of mathematics, but these types of problems in fact are 
a pure math problem in cover of words. Greer (1997) believes that word problems are artificial. 
Verschaffel (2002) states that emphasis on word problem cause to suspend common sense during 
mathematical problem solving.  

Bonotto (2004) in the line with realistic mathematics education, believe that engaging students into 
the contextual activities that related to their own personal life, help them to enhance their conceptual 
knowledge in mathematics and having positive attitude toward math. She mentions two below factors 
that separation between school mathematics and real life facts: Stereotype problems of mathematics 
textbooks and Classroom environment.  

If teachers of mathematics wish to establish situations of realistic mathematical modeling in 
problem-solving activities, Bonotto (2005) proposes below suggestions:  

 The type of activity to which teachers delegate the process of creating interplay between math 
classroom activities and everyday-life experience must be replaced with more realistic and 
less stereotyped problem situations;  

 Teachers must endeavour to change students’ conceptions, beliefs, and attitudes toward 
mathematics;  

 A sustained effort to change classroom culture is needed. 

Bonotto (2001) maintains that children’s understanding of decimal numbers can be fostered by 
classroom activities where learners can transfer their out-of-school knowledge and utilize familiar 
tools, such as the ruler, that they also use in out-of-school contexts. She believes it is possible to 
attempt an innovative teaching trajectory in which decimal numbers are introduced through 
contextualized measuring activities. Indeed, measuring activities requiring vast use of a ruler can 
offer children good opportunities to move toward the construction of a comprehensive understanding 
of decimal number and notation. For example, a study of Astuti (2014) shows that, if students use 
paper strip and calibrate it by themselves, then their understanding about decimal numbers and 
notation will be more developed.  



 

Method 
In this study, a teaching experiment about decimal number will be introduced. Based on the research 
aim, the type of the research is categorized as design research. This research contributes to develop a 
Local Instruction Theory (LIT) to support students develop the understanding of decimal number and 
notation. LIT has cyclic spirit (Gravemeijer, 2004) that in this study is prototyped by a Hypothetical 
Learning Trajectory (HLT) (Simon & Tzur, 2004) which is elaborated and refined when conducting 
the design. The initial step of HLT in this study is developed based on the analysis of key areas of 
decimals from literature review, the analysis of Iran mathematics curriculum, and the analysis of the 
potential use of contexts and model based on the framework of RME. 

Current study is part of larger study that investigates conceptual understanding of fifth grade students 
in several aspects such as constructing a measure, calibration a measure unite, familiarize with 
decimal and notation, comparison of decimal number, density of decimal number, and submission 
and multiplication of decimal number. This study concentrates only on constructing a measure, 
calibration a measure unite, familiarize with decimal and notation. Main purpose of this study was 
familiarizing students with concept of decimal number. In this regard five activities designed which 
related to students real life facts (see figure 1).  

1. Select a measuring unit arbitrary and measure length and width of classroom 
board, approximately. Represent length and width of classroom board with 
mathematical symbol.  

2. How we can get better approximation? Write your proposed method completely, 
then record measured length in a mathematical form.  

3. Select an object that smaller than your measuring unit. How you measure the 
length of this object? Explain your method and write measured length. 

4. In this week a one meter non-graded tape give to each group of students and ask 
them where do you hear about “half” concept? What is the meaning of “half”? 
What is mathematical symbol for that?     

5. Divide non-graded tape in 10 parts. Then try to measure a selective object 
approximately, and then show it with new mathematical symbol (decimal 
number). 

Figure 1: Activities of first week 

These activities implemented in four 80 minutes sessions in two continuous weekends’ day. First 
three activities implemented in session 1 and 2 in the first weekend. Fourth and fifth activities 
implemented in session 3 and 4 in the second weekend. 

This study conducted in a primary school in the beginning of school year (Fall 2014). Participants of 
this study were 27 fifth grade (10-11 years old) female students. These students had no formal 
program in these two days and all of them participate in this extracurricular class voluntarily. All 
students work on activities in group. Each group contains three students. Two types of 
complementary communications occur in this study: group discussion and whole class discussion.   



 

During these teaching experiment sessions, second author and two other math educators record all 
communication of students in group. In the end of each session, students’ group works collected also. 
Below considerations navigate activities designing process, data collection and data analysis.  

 Using of non standard measuring units for measuring objects in the classroom;  

 Measuring with high accuracy;  

 Calibrating a measuring unit; 

 Numerical representation of length of object with using calibrated unit;   

 Importance of decimal division and decimal representation of length of object.  

After each session, video record of session and students’ group works and researchers note analyzed 
and use them for leading teaching experiment in next sessions.  

Results 
Results of first day (Sessions one and two) 

The students used different tools for measuring the length and width of classroom board, such as 
notebook, math book and A4 paper size. As it was asked them to measure the length and width 
approximately, so they write these sizes as follow and in term of a complete unit. In fact, the extra 
parts were neglected. A group of students who chose their notebook size as measuring unit (module) 
had stated that the classroom is 23 and a half notebook size length. Using the term "half" showed that 
they know the decimals informally. 

In the second activity, it was asked them to measure the length more carefully. In all the groups it was 
seen that they divided the measuring unit (module) to small sections. The difference between group 
operations is in the numbers of divisions and choosing denominator. The mathematical symbols 
which were used in this activity are as the length of a natural number plus a fraction or a Mixed 
number.  

To guide students to a more accurate calibration, they were asked to measure the length of an object 
that is smaller than the length of their module and write its mathematical symbol in the third activity. 
In this activity, student should choose smaller objects than unit. They chose the length of pencil lead 
packet, pen, notebook and etc to measure. The students' performance was divided in three 
classifications.  

 Four groups of students neglect the previous division and creating the new one for their 
measuring. They changed the number of their part and explained that the length of chosen 
object is smaller than their unit, so they change the numbers of divisions. Indeed, they divided 
the length of measuring unit into larger equal parts.  

 Three groups of students keeping their previous division. They just divide their previous 
division again.  

 Two groups solve this problem in different way. They divide the unit into the five parts and 
then divide each part into the five parts again.  

 



 

Maryam: we divided our set unit into 2 parts. We divided each into 3 

Researcher: can you represent the length of measurement in math symbols? 

Aida: one second (one a half) and three of this part. 

 (i.e. 1/2 and 2/3of this part).  

Researcher: would you please represent it in math symbols? 

Aida: we should calculate it.  

Maryam: we should add 1/2 and 2/3. 

Marjan: no, it's not the 2/3 of the notebook length. It is 2/3 of one half of its length… It 
means its 5/6. (She shows it on the picture to her partners). 

In fact, this group is faced with a challenge in calculating the length with mathematical symbols. 
They needed to be able to add the fractions in unequal denominator. Dividing the previous parts into 
same part numbers, the operation of one group was different. First, they divided the unit into 5 
divisions and do it again for each part. They stated: 

 ”Although we can re-divide each part into 5 sections and we repeat it again and again for smaller 
parts. But if we want to notate the length, it will be difficult. For example, we have to write one 
fifth plus two twenty fifth plus … so, probably the next denominator is 125. Again 125 times 5 … 
then set the common denominator…”    

The fourth group operation was, writing the numbers in base 5. They stated interestingly that they can 
continue this trend. They expressed that for setting the denominator, it's necessary to multiply the 
denominator to 5, so it was obvious that they found a regular algorithm for approximating the length 
of object.  

In the classroom discussion, which is performed at the end of the first session, students expressed that 
writing the mathematical symbol for the length is very important. They have some problems in 
irregular dividing of parts, so they choose the third method as the best way to calibrate the units of 
measuring.  

Results of second day (Sessions Three and Four) 

In the first activity in the second session, the students were asked to express that where in real life 
have seen the word half and their symbol "half" and its mathematical symbol. Some of the students' 
expressions were as the following ones. 

 We usually say in the grocery store: I need 2.5 kg lentils or in my mother's shopping list it was 
written 1.5 kg beans. 

 The house is 15.5 m length. 

 The jar contains 2.5 litter of water. 

 The volume of the coke bottle was specified 1.5 liters of water. 

 We need 1.5 meters fabrics for making this shirt. 



 

All these written expressions showed that the students have seen and heard of these decimal symbols 
during shopping, in parents' shopping lists, food labels such as cokes etc. and they understand this 
concept. The following classroom discussion was conducted: 

Researcher: what does one half mean? 

Student: it means a half. 

Researcher: what does number 5 mean based on 0.5? 

Fatemeh: half a kilogram means a half of one kilogram, it is 500 grams. Half a meter means a 
half of a meter, so it is 50 centimetres. You can find number 5 in both of them. 

Zahra: in my opinion, one second is equal to one half, so ½=0.5. 

Rezvan: ....so it means that there are many fractions which are equal to 1/2.... For example, 
½=5/10=50/100 ...that all of them are half or a half. 

Maryam: eureka, eureka. 1/2 is one out of two, so 0.5 is 5 out of 10. 

Parisa: that’s right teacher. 0.5 is 5 out of ten. It is the same as 50 out of 100 or 500 out of 
1000. All are the same and mean a half. 

Teacher: could you tell me that what 4 out of 10 looks like? Please, write down your answers 
on the paper (all the students wrote 0.4). 

In this discussion, the teacher tries to help the students using their own knowledge of "half" concept 
in real world to find an equivalent phrase for ½ in mathematical world. Using the concept of one half 
and 1/2 and in regards to their knowledge about equal fractions, they can interpret 0.5 by their own 
and this process shows the horizontal mathematizing. In fact, these students are moving back and 
forward between the real and mathematical worlds for exploring this concept.  

In the second activity in which a one meter ribbon was given to all the groups, all the students divided 
the ribbon into 10 parts. In fact, it was asked them to specify the decimetres on the ribbon and 
measure the object in decimetre or one tenth accurately. In other words, they realize the relationship 
between number 10 in denominator and decimal numbers go out one decimal place. 

According to the class discussion in the previous session, the students divided decimetres into 10 
parts for more accurate measuring and made the centimetres. They made a calibrated ribbon in 
centimetre accuracy. In fact, it was asked them to specify the decimetres on the ribbon and measure 
the object in decimetre or one tenth accurately. In other words, they realize the relationship between 
number 10 in denominator and decimal numbers go out one decimal place (figure 2). 

 

Figure 2: related to measuring the length of objects by calibrated ribbon in decimetre accuracy 



 

When the teacher pointed that the ribbon is one meter length while one of the students said:  

“That’s interesting, we divided the ribbon into 10 parts, and re-divided it into 10 so it means we have 
one meter into 100 divisions. These are centimetres. We knew one meter is 100 centimetres but I 
perceive it now”  

The process of making a calibrated tape measure helps the students to realize the relationship between 
meter, centimetre and decimetre. 

Discussion and conclusion 
In the first session of teaching test, the students are allowed to calibrate a measuring unit freely but 
they had no idea about how to calibrate the unit. In the results of this study, it was seen that they faced 
a challenge with writing the mathematical symbol for the length, in the other words, these challenges 
caused to create a regular algorithm for calibrating the unit of measuring. The results of this study 
showed that choosing a division in base 10 is not natural. In the experience of Astuti (2014), the idea 
of direct division in based 10 was provided by researcher but here it was tried to conduct the students 
to dividing the unit in base 10. 

This study confirmed the Van de Wall (2001) quote as said "students' mind is not like a whiteboard as 
entering the class". As it was mentioned, although the students had not learnt the decimal numbers 
formally and before the research but they used them in their real life frequently or found them on 
some objects covers, their parents' notes and etc. also they had seen the decimal numbers and 
separator mark. As Freudenthal (1991) stated, using students' background experience and 
information could help them in learning decimal notation and its concept. Measuring the length of an 
object for many times and in more accurate ways help them to realize the meaning of the digits after 
the decimal point. In fact, when they divided one meter into 10 sections and re-divided it again and 
again it means that they realize the position and concept of decimal and centesimal scales. One of 
them expressed, for more accurate scales; we can divide the centimetres into 10 and make it smaller 
and smaller. In fact, he noted the millesimal position and could guess the decimal demonstration 
correctly.  

This study represented that if the classroom environment changes and better information in regards to 
the students’ real life experience are provided they can find new unknown mathematical structures by 
discussing and talking to each other and develop their mathematical knowledge.  
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Drawing upon a theoretical framework based on beliefs, learning and teaching of mathematical 
modelling as well mathematical modelling itself, this paper explores mathematics teachers´ beliefs 
about these themes. Based on responses to an online questionnaire, teachers’ beliefs, experiences, 
and mathematical modelling lessons were shared from the teachers’ perspective; several 
similarities with the cyclical process of modelling emerged, as well as sharing a new point of view 
of the aspects that teachers consider as mathematical modelling for example, real-life situations 
and processes behind mathematics problems.   

Keywords: Teacher beliefs, mathematical modelling, mathematical model, learning and teaching 
mathematical modelling. 

Introduction 
Mathematical modelling involves the development of models to explain real-world situations. Such 
models allow for making predictions, explaining phenomena, making decisions, and disseminating 
knowledge (Schichl, 2004). In addition, learning mathematical modelling is a cyclical process in 
which pupils’ study a problem derived from the real world and create a mathematical model to 
explore, predict and explain in order to provide a solution to that problem (Mason & Davis, 1991). 

Mathematical modelling may also be seen as an approach to learning that uses elements of reality to 
create models with mathematics. In this approach, students work together in a cyclical process that 
involves different stages, such as formulating a mathematics problem based on a situation in real 
life, setting up a mathematical model that explains the problem, attempting to find a mathematical 
solution for the problem, explaining the model and interpreting the solution, and comparing the 
solution with the original problem in real life (Mason et al., 1991; Blum & Borromeo, 2009; 
Lawson & Marion, 2008). It is important to note that while it is true that the students are engaged in 
the modelling process in a lesson, it is the teachers who initially implement the strategy, for 
example, by choosing the modelling task. 

In this context, previous studies have suggested that, when applying mathematical modelling, 
teachers should consider, for example, ‘teachers have to know ways how to support adequate 
student strategies for solving modelling task’ (Blum et al., 2009, p. 54). Complementary to this idea, 
Tekin Dede and Bukova Güzel (2016, p. 1) suggest that ‘some researchers indicate the teacher are 
not be sure about how they should act in this implementation process. Especially the teacher who 
are novice or have not enough experience in modelling can have difficulties in this process’. 

Considering that the role of the teacher appears to be a crucial part of the development of the cycle 
of mathematical modelling; the question then arises of what beliefs teachers have about 
mathematical modelling that they could share with their students. As Kaiser (2006, p. 399) notes, 
‘teachers and their beliefs concerning mathematics must be regarded as essential reasons for the low 
realization of applications and modelling in mathematics teaching’. 



Bearing these factors in mind, this study seeks to examine mathematics teachers’ beliefs about 
mathematical modelling through an online questionnaire about teachers’ backgrounds as well as 
their opinions about mathematics classes, mathematics models, and modelling. This study is the 
first part of an ongoing process of a doctoral research project; the aim of this paper is thus to 
examine teachers’ beliefs and practices related to mathematical modelling in order to discuss future 
implications when conducting mathematical modelling.  

Theoretical framework 
Thompson (1992) discussed the idea that teacher beliefs about the nature of mathematics should be 
considered – for example, concepts, meanings, and rules, among others – as well as teachers’ beliefs 
about teaching and learning mathematics. In addition, as Stipek, Givvin, Salmon, and MacGyvers 
noted in their study on evaluating teacher beliefs, we should consider (2001, p. 213):  

(1) the nature of mathematics (i.e., procedures to solve problems versus a tool for thought), (2) 
mathematics learning (i.e., focusing on getting correct solutions versus understanding mathematical 
concepts), (3) who should control students’ mathematical activity, (4) the nature of mathematical 
ability (i.e., fixed versus malleable), and (5) the value of extrinsic rewards for getting students to 
engage in mathematics activities.(6) Teachers self-confidence and enjoyment of mathematics and 
mathematics teaching.  

Handal (2003, p. 47) states that teacher beliefs can be related to ‘what mathematics is, how 
mathematics teaching and learning actually occurs, and how mathematics teaching and learning 
should occur ideally’. It would appear that beliefs about mathematics share common themes with 
the field of mathematics itself, as well as with teaching and learning mathematics. Indeed, many 
researchers currently study beliefs about mathematics, practices, and teaching, so it is natural that 
many researchers would study beliefs within specific areas of mathematics (for example, 
mathematical modelling), since mathematical modelling is part of mathematics.  

When examining beliefs about mathematical modelling, we should consider that ‘beliefs in the 
context of mathematics education can be classified as beliefs about mathematics (as a science), 
beliefs about the learning and teaching of mathematics [,] and teacher self-efficacy beliefs’ (Mischo 
& Maaβ, 2013, p. 22). According to those authors, the first aspect – mathematics as a science – 
refers to the formal aspect of mathematics as theorems, rules, problem-solving, and applications as 
subjects to be learnt. In this context, mathematical modelling is part of this frame, since it is a 
process that involves a task that takes elements from reality to be explained mathematically. The 
second aspect – learning and teaching mathematics – refers to constructivist and socio-constructivist 
views as a way of teaching modelling. Finally, teacher self-efficacy refers to teachers’ beliefs that 
should be carried out and activities that should be implemented in order to reach the teacher’s goals 
within a lesson.  

Ärlebäck J. (2009, p.2100) posits that in order to understand the beliefs from teachers about 
mathematical modelling and models it is necessary to take account of ‘beliefs about the nature of 
mathematics, real world (reality), problem solving, school of mathematics and beliefs about 
applying, and applications of, mathematics’.  

Previous studies from the literature review, however, do not seem to have taken into account the 
‘perceptions and beliefs about mathematics [that] originate from past experiences’ (Mutodi & 



Ngirande, 2014, p. 432); perhaps these studies would have had more to offer if they had included 
relations with past experiences, because if teachers have a history with mathematics (in particular 
mathematical modelling, because it is part of mathematics), then their beliefs about the field can be 
related to the background and experiences they have lived: for example, when they teach or learn 
mathematics. 

According to the literature, we may observe that teachers’ mathematics beliefs may be classified 
into different topics; these topics stem from the experiences that teachers have had with 
mathematics, either through teaching or learning or when they themselves have studied the subject. 
In this study, considering the idea that mathematical modelling is part of mathematics, teachers’ 
beliefs about mathematical modelling will be classified into three dimensions on the basis of the 
literature review: (1) mathematics in itself, in particular considering mathematical models and 
modelling; (2) beliefs about learning and teaching mathematics modelling, considering students, 
behaviours, lesson planning, and task design; and (3) real-life experience with mathematical 
modelling, which means that the history described by each participant will be taken into account in 
relation with mathematical modelling and models, since our beliefs about mathematics stem from 
our past experiences. It is important to note that this third dimension cannot be separated from the 
first two, because the experience gained from any context will be enriched by the mathematics itself 
as well as by the experiences of teaching and learning mathematics.  

Methods  
The aim of this study was to explore teachers’ beliefs about mathematical modelling, therefore an 
exploratory research was adequate because this attempts to ‘seek new insights’ (Robson, 2002, 
p.59) on teaching mathematical modelling in light of my considerations in the introduction, 
consequently gaining familiarity with the beliefs of mathematics teachers. 

Bearing in mind that beliefs are related with mathematics on different dimensions, the selection of 
the participant was through an activity that is related to mathematics, such as teaching mathematics, 
conducting research in mathematics education, or studying mathematics itself. Consequently, three 
of the participants were Chileans who worked at a university in Chile in the mathematics faculty 
where they are training future mathematics teachers; six of the participants were from the United 
States, where they worked at high-need schools1. The richness of these participants, helps me to 
have an international overview of the beliefs in this area.  

In order to research the beliefs of mathematics modelling, an online questionnaire was designed, 
comprising ten structured and open-ended questions based on the literature review about 
mathematical modelling with a focus on the teachers’ relationships with the field of mathematics 
education, mathematical modelling and models. In addition, there are similarities between online 
questionnaires and structured interviews, in that the researcher has the same direct pre-established 
questions for each participant without giving interruptions among questions. Those similarities, 
                                                 

1  ‘The school is located in an area in which the percentage of students from families with incomes below the poverty line is 30 percent or more; or in 

an area with a high percentage of out-of-field teachers; is in an area in which there is a high teacher turnover rate; or is in an area in which there is a 

high percentage of teachers who are not certified or licensed; is within the top quartile of elementary schools and secondary schools statewide, as 

ranked by the number of unfilled, available teacher positions at the schools’ (No Child Left Behind Act of 2001, 2002, p.115, STAT.1656). 



made me consider and exploring the online questionnaire as a way to approach at teacher beliefs. 
Furthermore, taking into account the limitations of distances between countries and accessibility, 
the online questionnaire was adequate.  

The online questionnaires were distributed between December 2015 and January 2016. The answers 
were transcribed and analysed based on categories described above; the way that I used to analyse 
the answers was considering all of them, highlighting common factors that emerged and after that 
observing how these related to the theoretical framework described previously.   It would have been 
preferable to include the questions, but this was not possible due to space limitations. 

Because this is an initial study on mathematics teachers’ beliefs about mathematical modelling, it is 
impossible to generalise from this point of view, but the study can present an opportunity to explore 
what occurs in beliefs of teachers about this subject on persons related with mathematics but not 
necessarily those currently working with mathematical modelling and thus provide insights within 
this large and expanding field, for example, when an implementation is carried out by teachers.  

Results 
A few representative teacher examples are provided below to illustrate their responses; the 
responses were transcribed whole, to prevent loss of fluency. In the transcripts, certain parts of the 
texts have been put in italics font below for emphasis, showing the common factor highlighted on 
the analysis process. In addition, ‘TUS’ refers to teachers from the United States, while ‘TC’ refers 
to teachers from Chile. The number next to the initials indicates the person who has answered the 
question. 

Mathematical modelling 
Real-life situations and processes behind mathematics problems  

According to teachers’ responses about mathematical modelling, for example, what comes to mind 
when you think of mathematical modelling, teachers’ beliefs may be categorised in two ways: (1) 
real-life situations or real-life problems and (2) the process involved in solving mathematics 
problems. Both considerations also take mathematics itself into account: more specifically, the real 
world and the application of mathematics, as Ärlebäck (2009) has noted. 

TC1:                Real situations, math representation, solving, and interpretation. 

TC8:            It came to my mind to think of applied math, i.e., to relate math with nature or a 
daily situation. 

TUS2:           I explain to the students that we use mathematics to model situations in real life to 
be able to understand them better and, if possible, to find a solution to the 
situation … I think of it as visuals that will simplify the situation I am reading. I 
think of equations or systems of linear equations that will allow me to find 
solutions. 

TUS4:          I think mathematical modelling means showing the students the thought process 
that is involved in solving a math problem. It’s the problem-solving techniques in 
regard to a given (abstract or real-world) math situation – explaining which 



method, formula, etc., is going to work and why. That’s what I think mathematical 
modelling is. 

TUS5:          The teacher needs to model the way a problem should be processed and thought 
through in order to come up with a valid solution. 

As the reader may have noted, there is a link between the beliefs about mathematical modelling and 
the ‘real situation’ which can be interpreted, for example, with real life and is related to the 
modelling cycle mentioned previously. However, there is also a distinction between these beliefs 
because to others ‘modelling’ means modelling through a ‘step by step’ approach showing the 
process behind a mathematics problem.  

Mathematical models  

In response to the question ‘what do you think about mathematical models?’, some of the teacher 
beliefs about modelling are related with the use of models within mathematics; in some of the 
teachers’ responses, the teachers’ beliefs were related to the nature of mathematics itself (Ärlebäck, 
2009; Thompson, 1992; Handal, 2003; Stipek et al., 2001; Mischo & Maaβ, 2013) as well as with 
mathematics learning (Handal, 2003; Stipek et al., 2001; Mischo & Maaβ, 2013). In accordance 
with Mutodi and Ngirande’s work (2014) about experience and beliefs, some of the teachers 
mentioned their past experience with models, when they were responding to ‘what is your opinion 
about the statement: ‘Modelling is everywhere’’ (Mason & Davis, 1991, p. 9). 

TUS7: Taking real-world data and using graphing tools and computers to assist in 
obtaining models. 

TUS6:          I think a mathematical model is a key factor in describing measurement that is 
located in space. [Models are] essential for describing the composition of matter 
in our universe. 

TUS2:            During college, we used mathematical models in calculus and geometry as well as 
numerical calculus and number theory … I agree with ‘modelling is everywhere’. 
I believe some of the models are more elaborate than others, but in general, I can 
see everything being a model of concepts, including numbers and graphs. 

TC9:               Visuals are necessary; hands-on [teaching] is almost vital for understanding. 

From the transcript, it is possible to infer that the teachers viewed mathematical models as ways to 
understand mathematics with a factor of utility of model, using words such as assist, essential or 
necessary. 

 

Learning and teaching mathematical modelling 
Experience with mathematical modelling 

In terms of experience in modelling, some of the teachers mentioned that they had studied 
modelling at their universities (i.e., dynamic systems and geometry, among others); they also 
discussed their experience in teaching (or not having experience in mathematical modelling). This 
situation relates to what Mutodi and Ngirande (2014) discuss in their work: our beliefs about 



mathematics come from our experience with mathematics. In addition, some of the teachers 
recognized that they had limited experience with mathematical modelling, or they lacked the time to 
do it; one of the teachers, however, also mentioned her intention to learn more about modelling. 

These ideas could help to explain why teachers are often unsure of how to act when they work with 
mathematical modelling, which results in necessary (and time-consuming) planning during the 
implementation stage, as mentioned by Tekin Dede and Bukova Güzel (see the introduction to the 
current paper). 

TUS2: As a school teacher, I would love to be able to have the time to read and 
understand more about mathematical modelling.  

TUS3:             I have not spent nearly enough time doing mathematical modelling. 

TC8: My experience with mathematical modelling is with dynamical systems. In this 
area, you can find many examples of different situations where modelling is 
present. In the classroom, you can use simple examples and particular cases of this 
area to show the students. 

Mathematical modelling class 

After the question, ‘how do you imagine a mathematical modelling class?’, several teacher beliefs 
have presented several similarities when using elements from reality yet only one teacher mentioned 
focussing on models, as has been mentioned by several authors in this paper (Mason & Davis, 1991; 
Blum, 2009; Lawson & Marion, 2008); In addition, teachers’ beliefs as to how mathematics 
teaching and learning can occur as Handal (2003) described previously were present.  For example, 
some of the teachers’ responses in the present study suggested that mathematical modelling lessons 
could be very creative, active, and didactic, where the students could take part in the learning 
process. 

TUS2: I imagine [that mathematical modelling class] focusses on models more than a 
specific area of mathematics. 

TUS6:           Let’s take, for example, the concept of geometry. The setting within a classroom 
could be used as mathematical modelling. Without going outside the four walls 
[of a classroom], one could introduce to students the concept of angles, lines, 
planes, perpendicular and parallel lines, congruent angles and similar figures, and 
so on … I think of [mathematical modelling class] as very creative; it is an 
atmosphere where students are launched into using their minds so that they will 
become creative, inquisitive, and analytical… Mathematical modelling is one of 
the most intriguing, creative, and thought-provoking subjects that one can teach. 
It blends into other subjects, such as art, physics, and chemistry.  

TC8: I imagine a mathematical modelling class as being very active and didactic – 
students working in groups and discussing the problem that has been assigned. 

Discussion 
Through this study, we can observe that the beliefs are quite similar in both countries. Teachers link 
mathematical modelling with situations to be modelled; this situation stems from real-life 



experiences. This belief shows a similarity with mathematical modelling as a subject that can 
involve the development of models to explain real-world situations (Schichl, 2004). One teacher, 
however, said that mathematical modelling was how ‘a problem should be processed’; in this case, 
the teacher’s beliefs were not related to real-life situations but to the process involved in solving 
mathematics problems. Perhaps this particular belief about mathematical modelling could be 
understood in light of some of the teachers’ limited experience with mathematical modelling or, as 
Tekin Dede and Bukova Güzel (2016) have stated, because the teachers were unsure how to act 
when working in a class that involves mathematical modelling. 

On the other hand, teachers’ beliefs about mathematics modelling classes in general showed that 
they felt that classes could be very creative, intriguing, and thought provoking; as one teacher said, 
they could be taught with the participation of the students. One teacher did recognise, however, that 
it can be difficult to break down some students’ beliefs. Even so, other teachers stated their intention 
to learn more about mathematical modelling.  

In terms of mathematical models, sometimes teacher’s beliefs referred to the utility of using a model 
as a way to demonstrate mathematics concepts. In this sense, mathematical model beliefs are related 
to the nature of mathematics (Mischo & Maaβ, 2013; Stipek et al., 2001; Thompson, 1992; Handal, 
2003; Ärlebäck, 2009) as well as with the experiences that they have had in the past (Mutodi & 
Ngirande, 2014). Then the questions that naturally arise include, In which ways can the utility 
beliefs of a model influence the implementation of mathematical modelling? What kind of decision 
does the teacher take during an implementation? What types of feedback can the teacher give to the 
students?  

Finally, through this particular study and in consideration of teachers’ beliefs about mathematical 
modelling, more questions and insights have emerged; for example, how to lead an implementation 
of the mathematical modelling cycle that would bear teachers’ beliefs in mind, and how can the 
usefulness and reliability of online questionnaires be linked to carry out an exploratory study on 
beliefs.  
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In this paper we present a methodology to design didactical activities for training engineers. One 
phase of this methodology is selecting an extra-mathematical context, allowing identification and 
analysis of mathematical models used by engineers. We selected an industry beer context and we 
identified the Pareto chart as a tool to solve different problems, for example faults in production 
lines. This work uses elements from Anthropological Theory of Didactics. We present a 
praxeological analysis as basis of didactical activities. 
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Introduction 
Over the past 30 years, mathematical modelling and applications have been a subject of study and 
development in the field of Educational Mathematics, as in the ICMI 14 study, edited by Blum, 
Galbraith, Henn and Niss (2007). Mathematical modelling and applications are activities in which 
math is used to solve problems in various contexts (math, engineering, economy, medicine, etc.). 
They are based on developing competencies associated with the application of mathematics and 
constructing mathematical models in extra-mathematical contexts (Niss, Werner and Galbraith, 
2007). However, mathematical modelling and applications are not widely used in primary and 
secondary education, which give more importance to concepts and procedures. At the university 
level, modelling has emerged as a new educational paradigm (Bissell & Dillon, 2000). In the future, 
teaching professionals will be required not only to create but also adapt mathematical models to 
solve practical problems (Bissell & Dillon, 2000) related to interpreting solutions proposed by other 
professionals and to employ technology to perform mathematical tasks. This demands teaching 
math in such a way that it includes the use, adaptation, handling, and interpretation of mathematical 
models in order to adequately deal with tasks in extra-mathematical contexts. One of perspectives 
that comes closest to this demand is known as the realistic perspective, which is described in the 
proceedings of the Topic Study Group 21 (TSG21) of the 11th International Congress on 
Mathematical Education in 2008, as follows: “In this perspective, mathematical modelling is viewed 
as applied problem solving and a strong emphasis is put on the real life situation to be modelled and 
on the interdisciplinary approaches” (Blomhoj & Carreira, 2009). In this work, we consider the 
work of Kadijevich (2009), which illustrates this perspective, is a very interesting approach to the 
mathematical modelling due to the type of problems chosen to address it and to the use of 
information technology that is proposed. However, we believe that is not clear, from a theoretical 
point of view: how do you choose the actual context? How is a modelling activity generated in the 
context chosen? How is analyzed their relevance to the classroom? In general, it seems that the 
question of choosing the extra- mathematical context in order to propose the modelling activity has 
been theoretically little worked, it appears as a little cloudy element, leaving the emphasis on the 
characteristics of didactic activities (Galbraith & Stillman 2006) and on the modelling cycles that 



allow to describe and analyse it (Blum & Borromeo Ferri, 2009). In an effort to attend to this lack of 
theoretical framing of the choice of additional mathematical context for the design of didactic 
activities, we have proposed a methodology based on the extended praxeological model (Castela & 
Romo, 2011) for designing didactic activities based on modelling that incorporate elements of the 
use of models in real contexts.  

Elements of the Anthropological Theory of Didactic 
Since the extended praxeological model (Castela & Romo, 2011) is based on the Anthropological 
Theory of Didactics (ATD), we present in this section some of its elements. The ATD is an 
epistemological model that allows the study of human activity in its institutional dimension. An 
institution is a stable social organization that defines the human activities generating resources that 
make them possible. These materials or intellectual resources, which are made available to the 
subjects, have been produced by communities along the confrontation of problematic situations with 
the objective of solve them in a regularly and effectively way (Castela & Romo, 2011). The classic 
praxeological model, proposed by Chevallard (1999), recognizes the praxeology [T, τ, θ, Θ] as a 
minimal unit of analysis of human activity. Its four components are: the task type (T), the technique 
(τ), the technology (θ); and the theory (Θ). The ‘task’ refers to what is to be done; the ‘technique’ is 
how it is to be done; the ‘technology’ is a discourse that produces, justifies and explains the 
‘technique’; while the ‘theory’ produces, justifies and explains the ‘technology’. Mathematical 
praxeologies or mathematical organizations can be of different level and they serve to a hierarchy of 
levels of determination proposed by (Chevallard, 2002). Mathematical institution imposes a model 
of subjection to the mathematical praxologies: it rests on a structure that organizes praxeologies in 
different interlocked levels that are in increasing order of size as follows: specific, local, regional 
and global. The most basic level of a mathematical organization is the punctual [T, τ, θ, Θ] and it 
has only one technique for performing such tasks. The next level is the local, which groups all 
punctual mathematical organizations associated with the same θ technology. The regional level 
regroups all punctual organizations associated with same theory Θ, global or domain regroups 
certain regional mathematical organizations; discipline is the top level and combines all domains.  

Codetermination of the mathematical and didactic 

Chevallard (2002) develops the model presented below, in order to take into account the subjections 
that weigh on the didactic organization of the study of praxeologies. In this work, the author notes 
that didactic organizations cannot be developed if they are found far from higher levels, domain and 
discipline; reciprocally these levels cannot be imposed without considering the conditions of the 
educational institution. In that sense yields a co-determination of mathematical and didactic 
organizations. 

[…] each level imposes, at a given moment during life of educational system a set of 
constraints and support points:  ecology that results is determined both by what restrictions 
prohibit or drive, and the exploitation that actors make to the support points that different 
levels offers. (Chevallard, 2002, p.49) 

As you can see the fact that Chevallard be interested in teaching leads to extend the range of levels. 
He introduces three higher levels: society, school and pedagogy, noting that levels of domain and 
discipline are also subject to restrictions imposed by these three levels that complement the scale 



upward: Society → School → Pedagogy → Discipline → Domain →Sector → Local → Specific. 
This hierarchy makes us consider that the study of mathematical praxeology or modelling 
praxeology in an institution that is subject to various restrictions imposed by institutions of higher 
levels.  

Moments of the study 

In the frame of ATD, the study is seen as the construction or reconstruction of elements of a 
mathematical praxeology, in order to perform a troublesome task (a task type for which a 
mathematical praxeology does not exist or is not available). In order to finely describe this process 
of construction or reconstruction, the ATD proposes a model of study of a punctual mathematical 
praxeology. This model distinguishes six moments, which are also associated with groups of 
activities. A moment is a dimension of the activity, a phase in the process of study, which may 
appear several times but following an internal global dynamics. Chevallard (2002) presents the 
model as follows: 

Group I (Study and Research Activities [SRA]) 
1. Moment of the (first) meeting with T;  
2. Moment of the exploration of T and technical emergency τ; 
3. Moment of construction of the technological-theoretical block.  

Group II (Synthesis) 
4. Moment of institutionalization. 

Group III (Exercises and problems) 
5. Moment of work of the mathematical organization (specifically of the technique). 

Group IV (Controls) 
6. Moment of the evaluation. 

These moments are not detailed in this paper, but they are presented with the aim of showing how 
the ATD in the process of construction and reconstruction of a praxeology is conceived.  

In particular, we are interested in considering group I and generating an SRA: a didactic device for 
students to construct, in this case, a modeling praxeology involving the Pareto Diagram. One of our 
questions is, what legitimizes the chosen mathematical modeling praxeology? Why is it important 
for students to build this praxeology? And in particular, future engineers. For us it is important that 
the mathematical modeling of the classroom is related to the mathematical modeling of its 
professional practice, which is seen as a relationship between institutions as shown below. 

Training in mathematics and the professional world seen as institutions 
In the framework of the ATD, analysis of mathematical activity is considered in its institutional 
dimension. Given that our proposal is to generate a methodology for designing activities based on 
mathematical modelling that links mathematical knowledge teach at the training institution and the 
one used in the professional field, we must identify institutions that are adequate to participate in 
this process, and their interrelations. Romo-Vázquez (2009) argued that training engineers involves 
three types of institutions: Production (P), where praxeologies are produced, Teaching (E) 
responsible for transmitting the praxeologies. Use or users Ip, where the praxeologies are employed. 
By producing institutions we refer to mathematics P(M) seen as a discipline, together with its 



intermediate disciplines P(DI), which we will also call Engineering Sciences (e.g. signal processing, 
control theory, electrical circuits, etc.). Teaching institutions are represented by mathematics E(M), 
and the intermediate disciplines E(DI); while the practical institution is Ip. The latter is examined at 
two levels: the professional practice of engineers, and the devices that, upon approaching practice, 
are developed in schools; for example, a project to innovate a product or service. Also taken into 
account were three inter-institutional tours that can be followed by a mathematical praxeology by 
going from P(M) to Ip. These can be represented schematically as follows (Figure 2):  

 
Figure 1: Institutional tours of a mathematical praxeology to go from P(M) to Ip 

The transpositive effects (changes that occur upon moving from one institution to another) can be so 
large that a mathematical praxeology in Ip may not be recognized as mathematical. Research by 
Hoyles, Noss and Pozzi (2000) shows that some professionals utilize techniques and strategies in 
their practice that are based on mathematical models, but that when automated are no longer 
recognized as such. This begs the question: what sorts of didactic activities can be generated so that 
the mathematical models used in Ip practice or E(DI) find a place in methods of teaching 
mathematics E(M) (see Figure 2)? To answer these questions we propose the following 
methodology. 

 
Figure 2: News institutional relations between Ip- E(M) and E(DI)-E(M) 

Methodology for designing didactic activities (SRA) based on mathematical 
modelling 
This methodology for designing didactic activities based on mathematical modelling emerged from 
research by Macias (2012). Here, modelling activities are seen as praxeologies (mathematical and/or 
modelling) to be performed in E(M), but in relation to praxeologies of E(DI) and/or Ip. It consists of 
four phases: 1) Selecting an extra-mathematical context, 2) Praxeological analysis and identification 
of a mathematical model. 3) Analysis of the mathematical model identified and its relation to E(M) 
and 4) Design of the didactic activity (SRA) for E(M).  

1) Selecting an extra-mathematical context. First, we must consider the educational level at which 
teaching will take place, then the contexts where the mathematical applications will be put to use. 
For example, if we consider teaching programs for engineers, the natural contexts of use are 
specialty training E(DI) and professional practice Ip. After that, one must identify some of the 
elements (resistance of materials, control theory, data structure, among others) that are of macro 
scale and may include various sub-institutions for the analysis of the modelling activity that occurs 
there. Selecting this context must be based on an approach to the institution or sub-institution 



through interviews with one or more of the subjects involved (e.g. professors, expert users, 
researchers), a review of relevant documentation (suggested by the aforementioned subjects, and/or 
one’s own search), and visits aimed at identifying the type of mathematical and modelling activity 
that is used. Specifically, it is important to analyse whether the mathematical models identified as 
being in use correspond to those that are actually taught E(M); examples could include functions, 
vectors, matrixes, mathematical optimization, or differential equations, among others. In this way, 
one can determine whether the context chosen provides a suitable analytical basis for designing the 
didactic activity.  

2) Praxeological analysis and identification of a mathematical model. In this phase 
mathematical modelling activity is analysed through praxeologies. Modelling activities in an extra-
mathematical context may consist of mathematical praxeologies and/or mixed praxeologies.  

3) Analysis of the mathematical model identified and its relation to E(M). A mathematical 
model that is in use but that is also taught in E(M) is identified and then analysed through the 
functions of the technology practice; i.e., describe, validate, explain, facilitate, motivate and 
evaluate. Describing the model in use allows us to elucidate the reasons relative to context on the 
basis of which that particular model was chosen to resolve tasks in the extra-mathematical context. 
Identifying the elements that validate the use of the model, and under what conditions, makes it 
possible to understand what contextual elements must be considered in designing didactic activities. 
For example, many mathematical models are used in “ideal” conditions such that they make it 
possible to resolve certain tasks more easily, though the solutions obtained will later need to be 
adapted to reality. This adaptation is conducted on the basis of certain elements that validate it. 
Recognizing the explanations of use allows us to understand what each element of the model 
represents and to what degree the model used allows us to model the context (or part of it). 
Analyzing the elements that facilitate the use of the model reveals the process of mathematical 
modelling, which entails not only assuring that the mathematical model chosen will make it possible 
to resolve a problem in an extra-mathematical context but also that the resolution reached will be 
the least complex one. Identifying precisely what it is that motivates the use of the chosen model is 
a medullar phase in designing didactic activities, but this analysis of use must be complemented by 
a didactic analysis of the model in the context in which it is taught. 

4) Designing didactic activities (SRA). Designing a didactic activity must be based on both the 
praxeological analysis of use (praxeologies present in an Iu) and the mathematical model identified; 
i.e., one must recognize the praxeologies of both use and teaching in order to perceive the relations 
between them. One must choose the types of tasks that, because they emerge from use, can be 
adapted for a type of school task; for example, studying the behavior of a continuous signal, 
determining the total cost of an inventory, or calculating the inverse of a mixed matrix, etc. These 
types of tasks require mathematical techniques that may be school-related (being part of curriculum) 
but are also used in the professional field, so mathematical and non-mathematical technologies will 
have to be built by the students (3rd moment) in order to validate, explain and justify techniques that 
emerges when confronting the problematic tasks. Specifically, technologies of use (part of practical 
praxeologies) must be adapted in such way the students can build them in the first college courses. 
The objective of the didactic activities must be oriented towards the type of praxeologies that figure 



in the activity, whether this be constructing, mobilizing, or searching, for knowledge. It is intended 
that this activity may be an SRA which allows building a praxeology of modelling.  

The context proposed: Pareto chart in beer industry 
To make a praxeological analysis we are chosen a Beer industry that is constituted by ten production 
lines and produce about one million hectoliters of beer per month. Apart from domestic beer this 
industry produce lots of beer for export to countries in all continents. To meet domestic demand and 
shipments abroad, it requires each of the ten production lines, meet high levels of efficiency. 
However, in each production line problems requiring immediate attention in order to achieve the 
planned goals they are presented. Thus various problems for the maintenance of thousands of 
machines, components and parts that make up each of the production lines are also presented. And 
logistics to control the flow of materials required in the production and control of shipments. In 
Tolentino (2015), these questions are studied: What Mathematics used in this industrial 
environment? Are there some common mathematical tools to manage the wide range of problems in 
the brewing? Tolentino, was both a master's student of mathematics education program and he was 
working in the industry as an engineer, he found that a Pareto chart is used to solve problems in the 
industry. This chart is based on the principle that if 20% of the causes of problems is attended a 
solution of 80% is obtained in effect. 

Praxeology faults problems 

Type of task. Identify the most important causes of faults in production lines of an industry.Task. 
To solve faults (time) that arise in different production lines of beer production. Technique. Step 1. 
Data collection. It is recorded in a table stop time of production lines due to operational faults, 
faults in machinery or material defects. Step 2. Is ordered from highest to lowest the time column of 
this table, the percentages of stop time are obtained for each line, in relation to the accumulated 
from 157.62 hours. A column for cumulative percentage is added.  
 
 
 
 
 
 
 

Table 1: Wasting time of production lines 

Step 3. Two graphs are performed in Excel: in the bar graph the columns for each line indicate stop 
time. Graph of the Lorenz curve or cumulative percentage. On the right vertical axis measures the 
time from 0 to 41.02 h. For the Lorenz curve on the right vertical axis the percentage of 0 is 
measured at 100 percent (See figure 3). Step 4. Identify the diagram. Finally add a line from the 80 
percent that intersects the graph of the cumulative percentage, and descends to the x axis, to 
separate lines that are to the left of this line it is the line 2, 8, 12, 6 and 10 (see figure 4). These are 
the lines that generate 80 percent of the total time of overall production stoppages during this time 
period. 

Line Wasting time (h) Percentage Cumulative Percentage 
Line 2 41.02 26.02 26.02 
Line 8 25.65 16.27 42.30 
Line 12 24.34 15.44 57.74 
Line 6 14.73 9.35 67.09 
Line 10 14.17 8.99 76.08 
Line 3 13.8 8.76 84.83 
Line 11 11.03 7.00 91.83 
Line 5 8.33 5.28 97.11 
Line 4 4.55 2.89 100.00 
cumulative 157.62   



   
Figure 3: Bars and Lorenz curve  Figure 4: Analysis of the Pareto Diagram 

Step 5. Analyze the Pareto chart. As a result of the above analysis, attention is directed to lines 
that generate 80 percent of stop time, ie lines 2, 8, 12, 6 and 10. Therefore proceeds to Pareto 
analysis of each one of these 5 lines, starting at line 2. Leaving as trivial the 4 lines: 3, 4, 5 and 11. 
That is although the line 11 was stopped 11 hours during this week, is considered out of importance 
according to the analysis Pareto realized. In this case, the Pareto Diagram is used again to analyze 
lines 2, 8, 12 and 6, to make decisions about the elements that must be repaired urgently, in each of 
the lines. The Pareto Diagram is made by engineers and allows them to identify the main causes of 
the problem, however a deeper analysis of the industry is necessary to recognize how the practical 
and theoretical knowledge allows solving the identified causes. This analysis is repeated in the 
brewing industry several times to have elements to act and address problems optimally, using fewer 
resources and obtaining the greatest benefits.  

Conclusion 
We consider that this praxeological analysis (phase 2 of methodology), briefest presented, allow us 
to see the importance of Pareto chart on the beer industry. To design the SRA, it is necessary to 
analyze university courses likely to identify a local Praxeology the Pareto chart. However, analysis 
of the Pareto chart of the beer industry gives elements for SRA: from data of different problems ask 
propose a model that allows the company to identify the major causes of the problems. Considering 
the problem of faults, you can ask students a model to identify the line that causes the greatest 
wasting time or the lines that cause 50% of the strikes, then 75% and then 80%. The interesting 
thing about this proposal may lie not only that students can work with data from businesses, but they 
reach handle the Pareto Principle, the 80-20 ratio. The Pareto Diagram also involves mathematical 
elements that support them as the Lorenz Curve, which has hardly been mentioned here. In 
Tolentino (2015) the mathematical analysis of the origin and evolution of the Pareto Diagram is 
presented and this must also be considered in the design of the SRA, involving three institutions 
P(M), E(M) and Ip. 
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This paper focuses on analyzing the potentialities of using a codisciplinary inquiry context to 
enhance the appearance of mathematical modelling in teaching and learning practices. We focus on 
an archaeological context where modelling becomes an essential tool to enquire into and progress 
on the study of questions emerged from the interplay between two main disciplines: Mathematics 
and History. We present the design, implementation and analysis of a teaching sequence based 
upon the ruins of a Roman theatre discovered in Badalona (Catalonia) to promote inquiry and 
modelling students’ competences. The sequence was implemented in 2015 with 12 and 14-year-old 
students. The central question introduced (what kind of building could have been the discovered 
ruins) involved students in a reflective inquiry process that facilitate them to progress on modelling, 
at the time modelling facilitate that the inquiry process could follow. 

Keywords: Inquiry competence, mathematical modelling, co-disciplinary context, geometrical 
model, task design. 

Introduction 
The main aims of our research are to (1) design codisciplinary teaching sequences to promote 
inquiry students’ competence, (2) implement them and (3) analyze their affordances to enhance 
inquiry and modelling students’ competences. In particular, this paper focuses on the design, 
implementation and analysis of a teaching sequence based upon an archaeological context—the 
ruins of a Roman theatre discovered in Badalona (Catalonia, Spain) and how modelling became an 
essential tool to enquire into several questions that emerged from this extra-mathematical context, 
in order to progressively build up the necessary subject knowledge to provide and validate answers. 

As aforementioned, the sequence started with an initial situation that leads to the formulation of the 
specific initial question and became the core of the students’ research. The starting situation which 
is presented to students is the discovery of some Roman ruins in a Badalona’s suburb by the 
archaeologists’ team of the city Museum. The archaeological report that is provided explained that 
these ruins could belong to an ancient Roman building, but what kind of building could it have 
been? Could be a theatre? A circus? An amphitheatre? In order to face these questions, it is 
essential to make students unfold their inquiry and modelling competences and help teachers to 
guide student’s reflections and to organize inquiry activities so that (mathematical and historical) 
knowledge could emerge and be used.  

In the research we present, the codisciplinary context here considered for the design of the sequence 
—an archaeological context adapted from a real research— presents several advantages, which will 
be further developed in the following sections. On the one hand, requires that Mathematics and 
History work together to face most of the questions that appear in the teaching and learning 



 

 

sequence. This no so common complementarity between both disciplines allows us to provide 
authenticity (Vos, 2011) to the questions faced and to promote the blend of inquiry and modelling 
in different steps of the study, as also some previous investigations have shown (Sala, Giménez & 
Font, 2013; Sala,  Barquero, Font & Giménez, 2015). On the other hand, this codisciplinary context 
is enough close to students (as it is located in the same city that the school is) that facilitates that 
students can have access to the real ruins and to experts’ answers about their real investigations, 
providing legitimacy to their inquiry process and responses. After describing the main theoretical 
frameworks upon which the design of the teaching sequence was proposed and analysed, we present 
the main research questions about how the use of codisciplinary inquiry contexts can help to break 
disciplinary boundaries (in particular between Mathematics and History) and about how their 
interaction leads to a rich complementarity between inquiry and modelling.  

Theoretical framework and research questions 
The research we present in this paper considers different theoretical aspects. First, it is assumed the 
notion of basic competence considered in Catalan curriculum. More concretely, we are interested in 
the notion of inquiry competence that, following Sala (2016) and framed according to the Catalan 
curricula of Primary and Secondary school education, it is defined as:  

The ability to mobilise the suitable knowledge and the appropriate resources that facilitate the 
development and application of a logical and critical methods —under the teachers’ guidance— 
in order to look for and find answers to problematic questions or situations in some school  
and/or out-school context. (Op. Cit. 2016, p. 64) 

In the same line than Artigue & Blomhoj (2013) underlines, an important step in legitimising 
inquiry-based approaches was the publication of the National Science Education Standards (NSES; 
NRC, 1996), which called for students to do and know about scientific inquiry, and that teachers 
should foster the development of inquiry skills. When the inquiry-based approaches migrate 
towards mathematics, it seems important to consider approaches paying attention to establishing 
connections among mathematical and extra-mathematical world, such as modelling approaches. In 
this sense, some of the inquiry requirements (such as making observations, posing questions, 
examining sources of information, identification of assumptions, considering alternative 
explanations; NRC 1996, p.23) are closely related to some essential steps of the cycling process 
through which mathematical modelling is developed. So that, sometimes, it is difficult to find the 
differences between both processes (see for instance, the modelling and inquiry cycles presented in 
Blomhoj, 2004) and the linked competences. In particular, as pointed in Niss, Blum & Galbraith. 
(2007, pp.3-8), modelling constitutes a competence in its own right, which needs to be developed 
through appropriate modelling activities. From our viewpoint, to promote inquiry mathematical 
modelling should be placed at the core of the mathematical (and scientific) teaching and learning 
practices to ensure the right and rich development of important enquire abilities. Also, in the other 
way round, to promote and ensure mathematical modelling practices, inquiry should nourish some 
essential steps that may make modelling successfully progress. 

Second, we considered different theoretical elements to ensure that the sequence design could offer 
a rich and functional teaching and learning of mathematics. With this aim, the mathematical and 



 

 

didactic design quality is justified based on the three criteria of didactic ‘suitability’ —emotional 
suitability, ecological suitability and epistemic suitability— proposed by the onto-semiotic approach 
(Godino, Batanero & Font, 2007). Different aspects of its design considered justify the emotional 
suitability of the teaching sequence: the students could work with real data evidence —data from 
the research report of the discovery of real Roman ruins—; they could interact with the 
archaeologists’ team of the city Museum and could share their results with them, etc. In turn, 
ecological suitability was justified by the curricula of these secondary-school students having a 
competency-based approach. Likewise the implementation allowed students to unleash relevant 
processes of mathematical activity, in particular processes of mathematical modelling that justifies 
the epistemic suitability or mathematical quality.  

Finally, we also use the notion of research and study path (SRP) proposed in the framework of the 
anthropological theory of the didactic (Chevallard, 2015) and their main characteristics to design 
the sequence of tasks to achieve a high epistemic suitability (see also Sala et al., 2015). The SRP 
proposal emphasises the necessary dialectics between ‘research’ or ‘inquiry’ (facing open-
problems, problem posing, making observations, examining different media or source of 
information, etc.) and ‘study’ (attending teachers’ explanations to provide mathematical knowledge, 
building up models, testing the validity of mathematical tools, etc.). As underlined in Barquero, 
Serrano & Serrano (2013), mathematical modelling cannot be considered only as an aspect or 
modality of mathematical activity but has to be placed at the core of it. Modelling is not only as a 
way to make the functionality of mathematics visible, but also as a key tool for the functional 
construction and connection of mathematical and extra-mathematical knowledge. In this sense, 
inquiry and modelling have to be mutually enriched. On the one hand, modelling activity needs 
from more inquiry moments (posing questions, looking for external resources, looking alternative 
proposals, etc.). For instance, in the SRP the role of the questions and of question-posing is 
essential (as the starting point of an SRP with a generating question, powered enough to pose many 
derived questions) so that it is essential to help students develop some reflective inquiry gestures 
such as posing new questions along their particular study or using extra-mathematical context to 
validate mathematical models and make new questions emerge and thereby starting new loops in 
the modelling cycle. And, on the other hand, inquiry needs from modelling processes (when 
mathematical tools and models are build, used analysed, validate, etc.) to make the study progress.  

Research questions 

The aim of our research is to analyse if the implementation of the sequence we had designed, with 
features as the ones detailed above, could promote the inquiry students’ competences and how 
modelling could become an essential tool to enquire into the inquiry questions that were emerging 
in order to provide and to validate answers.. Therefore, our main research questions that we focus 
on are the following: 

Can a teaching sequence based on the study of an archaeological problem in a codisciplinary 
context help students to face an inquiry that needs modelling processes as an instrumental tool to 
find, test and validate answers? Which is the relationship between modelling and inquiry in this 
kind of teaching sequence?  



 

 

Design and implementation of the teaching sequence 
As it has been introduced, the starting situation is based on the discovery of certain Roman ruins, 
some years ago, in the centre of Badalona (a city next to Barcelona, Catalonia) by the 
archaeologists’ team of the Badalona’s Museum. They concluded that these ruins could have been 
an antique public building belonging to the classical Baetulo (the Roman old name of Badalona), 
surely a theatre, and they explained their research in an article (Padrós & Moranta, 2001).  

The sequence was named «What are these ruins hiding? Investigating the Roman ruins of Baetulo» 
and all the sources, devices designed, links recommended and the worksheets that they had to 
follow were available in the blog designed by the authors: http://ruinesdebaetulo.blogspot.com/ 

We implemented the teaching sequence with a group of a 30 students (12-13 year-old) of a 
Secondary school education in Badalona during two weeks of June in 2015. The selection of the 
participants was intentionally chosen due to the facility that the first author of the paper had to the 
school, and the age and syllabus adequacy of the group class. Students worked during all sessions in 
‘inquiry teams’ of three or four members, set up in the first session. They worked as real research 
teams, formulating hypothesis and doing tasks to validate them, discussing the partial results 
obtained during the process, finding points of agreement and writing an inquiry report to gather all 
the ideas, proofs and work done. Each team had on member in charge of explaining and defending 
their temporary report. Moreover, during all the study process, students got an inquiry guide to help 
them to progress in such a new activity.  

From the archaeological reality to the emergence of questions 

The didactic sequence was inspirited in a real archaeological investigation, a situation very close to 
a real extra-mathematical context, which was introduced to the students by the teacher and the first 
researcher paper signatory. The aim of the inquiry proposed to the students it is the same of the 
original aim research: discovering with which kind of building the ruins could be identified. In this 
sense, the context used to design the didactic sequence was an authentic situation (Vos, 2011) 
because the situation introduced to the students is clearly not created for educational purposes even 
though some elements are included for educational purposes.  

Therefore the students had to investigate —from real data, archaeological reports, and canons of 
Roman architects— what type of building the discovered Roman ruins could have been and its 
features. In the first session, they could explore the map of the zone where the ruins were located by 
the link in the blog. They also visited later the place of the discovery accompany by one of the 
archaeologists of the Museum of Badalona and asked questions, took photographs, and 
measurements. The current constructions in this zone, houses and streets, followed a curious curved 
shape—easily perceptible in the map. It indicated, surely, that all these constructions were built on 
top of the ancient structures. 

The role of the context in the students’ process of enquiring 

Students looked up and investigated information about the Roman architecture to find what type of 
buildings had a curved part of their perimeter. They found few buildings that showed this feature at 
least. For instance, theatres were circular, amphitheatres were elliptic or circuses had a part circular 



 

 

and other part quadrangular. This fact generated some other questions that promoted the developing 
of the inquiry process because the students could formulate their first hypothesis about that kind of 
building the ruins could below: Which Roman building (theatre, circus, amphitheatre, etc.) shape 
would concur with the shape of the part of the Roman wall found? What do the geometrical shape 
of the partial Roman wall discovered determine? 

In the first stage of the process, the problematic situation was introduced to the students by the 
History teacher and the first author. Then, first questions emerged and the students started to look 
up information about the public Roman buildings in the links, maps and books. At the end of this 
stage most of the students should have understood the context of problem. So, they could formulate 
their preliminary hypothesis and conjectures about which kind of public building the ruins could 
have been only based on the historical information found. So that, at this stage when they had only 
took into account this historical information, their assumptions included more than one building (all 
the buildings that could have a curved part). Each inquiry team had to write in their report the 
agreed hypotheses they reached. 

Actually, the inquiry was based on a mainly discovery: a part of a Roman curved wall, a metre and 
half high. This partial wall belonged to a building that was the centre of the inquiry. It was the 
external wall of the public building and determining it shape could mean to know which type of 
Roman building it was. The students had to follow their inquiry from the study of this element and 
the context where it was find. The number of types of Roman buildings existing limited the quantity 
of different type of shapes the students had to consider; but other information deduced from de 
context directly as the orography and the dimensions of the place where the ruins were discovered, 
or the dimensions of the curved Roman wall discovered, also limited the options that the students 
could choice in order to formulate their hypothesis about the building the ruins would fit with. In 
this case, the context influence on the inquiry helps students to deal with a problem that would be 
very difficult to resolve from an only mathematical point of view and completely unachievable to 
their level. 

Improving the first hypothesis: Building up models to systematise and mathematize the 
archaeological system  

The second stage started with an important session that had the objective of discovering the 
geometrical shape that the Roman wall described (a circumference, an ellipsis, etc.) and test their 
first hypothesis. From this stage the teachers of Mathematics, Technology and Catalan Literature 
had involved in the sequence management. The results obtained from this central task provided 
enough data that allowed formulate sufficient plausible hypothesis about the type of public building.   

The session in where the problematic situation began to be systematised and mathematized were 
placed on the public square next to the school, and was recorded and afterwards analysed. The 
students work with an exact representation of the part of the roman wall drawing on the ground. 
They could experiment with different ways to proof what was the geometrical shape that fit with the 
Roman wall. After few tasks in which students had to construct and drawing different curves on the 
ground, all the teams could check that the perimeter of the curve Roman wall fits with a 
circumference and so, they could conjecture about the building would have been a theatre. Also, 



 

 

this evidence lead students to think that it was necessary to find the radius of the circumference in 
order to know how large the building was. The students find the radius of the circumference (16 m.) 
with graphical methods, always on the ground of the square. Then they spread out on the square, 
drawing with their bodies the perimeter, to notice the likely real dimensions of the Roman theatre. 

After this session they returned to the classroom and tried to explain the experimentation in their 
reports but it emerge the necessity to get a tool to draw the theatre properly. Moreover, the teacher 
introduced the book by Vitruvius (available in the blog), classical Roman architect who wrote 
several canons that Roman people followed to construct each type of public building. In this stage 
the technology had an essential role in order to allow students drawing their geometrical model of 
the theatre following the Vitruvius’ instructions. The students constructed their model of the theatre 
using the software Geogebra.  

Interpreting and validating mathematical models within the archaeological context 

When each team had their model of the theatre finished could export the file as an image and pasted 
it on the map of the area studied, fitting it properly in the exactly site where the ruins was 
discovered (Figure 1). This task allowed students interpret their model considering the specific 
context and verify if their construction and hypothesis were suitable. 

   

 

 

 

 

 

 

Figure 1. (a) Application the theatre model, which is construct with Geogebra, on the map studied 
from one of the inquiry teams report; (b) Detail enlarged 

To do the tasks in this second stage the students had to deal with information from the Mathematics 
—data related of geometrical shape of the wall, extracted from the activity on the square—and from 
the History —considering the features of the context in where the ruins were discovered—. 
Modelling, in that moment, became an essential tool that facilitated find answers. 

Then, when the students were became competent researchers yet, it started the third stage of the 
sequence. They arrived at that point with an important collection of questions and doubts but in the 
following session they had the opportunity, firstly, to share it with other groups and, thereupon, 
preparing an interview to ask the archaeologist of the Museum. During this interview students could 
contrast and validate their results about the model selected. It was another especial time you could 
notice that in the real world different disciplines interacts in a natural way to find solutions of real 

a.
. 

b.
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problems. After the session outdoors talking to the archaeologist, they could apply their geometrical 
model construct with Geogebra on maps with other ruins of theatres in Europe and thus could check 
how the same model fits there, too. The model also was useful counting how many people would fit 
in the theatre, the last task of this stage. Finally, the students finished writing the final report of their 
inquiry describing their process, the mathematical tools used, the result of verifying their 
hypothesis, new opened questions, etc.  

Conclusions 

We would like to stress the importance that the context and the initial question studied had to 
deeply involved students in the inquiry activity. Moreover, the possibility to work with real data, 
the facilities to get access to the ruins and to other real archaeological investigation facilitated that 
students faced the inquiry questions from a wider approach. What the design and implementation of 
the activity shows is that the context easily offered different kind of information, such as the one 
coming from the history, from orography, from geometrical models used to measure and drew 
plans. It facilitated that students considered all these kind of different nature information and tried 
to systematise it and to work with it in order to provide answers.  

On the one hand, we have shown how the enquiring process carried out in the implementation nests 
a sub-process of modelling that appears as a tool to contemplate information emerged from the 
context that could become mathematized (such as: the measure of the curved wall, of the ratio, of 
the building perimeter or the possible use of the Vitruvius canon) in order to be able to progress in 
looking for specific answers. Thus, at some stages, mathematics appears as an essential modelling 
tool to look into systems, build up mathematical models, simulate and test them.  

More concretely, in the task done on the square next to the school, students wondering how could 
know the geometrical shape of the whole Roman wall from the partial wall in the map. But this is a 
difficult mathematical problem to resolve—to find the geometrical curve from a part of it— because 
there could be a lot of solutions. Besides, the methods to finds these solutions only from the 
mathematical point of view, are totally beyond the powers of secondary school students’.  

On the other hand, the dialogue with History limits the possible answers because the Roman 
buildings only had three relevant shapes: ellipsis (amphitheatre), circle (circus) or semi-circle 
(theatre). Due to the contribution of the historical information the problem became achievable at the 
students’ level of mathematical knowledge and allows the beginning of modelling.  

Last but not least, it was also very important the possibility that students know about the experts’ 
work (the real research of archaeologists) and to realise that the process they follow are quiet 
similar to the process of enquiring and modelling that they were following. It also had an important 
impact on their motivation and on the perception they had about the usefulness of Mathematics and 
of modelling. The interaction with the archaeologists allowed students to validate their whole 
process of enquiring and their results.  
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A profound level of reading comprehension is essential for solving modelling problems, as a 
problem solver has to understand the real-life situation presented in the task in order to construct 
an adequate situation model, real model, and mathematical model. The aim of this paper is to 
present the theoretical grounds and a sample learning environment for fostering reading 
comprehension. In the first part of this article, we summarise research on reading comprehension 
while solving modelling problems, report on research on two strategies (text highlighting and self-
generated drawing) that can help learners comprehend a modelling problem, and describe ways to 
implement both strategies in the classroom. In the second part, we present a learning environment 
that can be implemented to foster reading comprehension in the lower secondary classroom.  

Keywords: Modelling, strategies, reading comprehension.  

Introduction 
Reading comprehension is important for learning in school and for students’ everyday lives. As each 
school subject offers students different kinds of texts, fostering subject-specific reading 
comprehension strategies is necessary for learning and problem solving. In math classes, students 
have to read different kinds of texts such as proofs or word problems. We address word problems, 
which, in order to be solved, require a demanding transition from the real world to mathematics as 
modelling problems (Blum, Galbraith, Henn, & Niss, 2007). To solve a modelling problem, students 
need a profound understanding of the task, as a superficial combination of the numbers given in the 
task is not sufficient for finding a solution to a modelling problem. In this paper, we characterise the 
role of mathematical reading competency for the solution of modelling problems, summarise 
research on two strategies (highlighting and self-generated drawings) that might improve reading 
comprehension, and present a learning environment for fostering these strategies in the classroom. 

Theoretical background for reading comprehension and modelling 
Reading comprehension while solving modelling problems  

Analyses of the cognitive processes that people engage in during mathematical modelling have often 
distinguished the following activities in the solution process: (1) The problem solver constructs a 
situation model on the basis of the information presented in the task and on his or her prior 
knowledge. The situation model reflects the learner’s mental representation of the given situation. A 
profound level of reading comprehension is essential for constructing the situation model if a 
problem is partly or completely represented as text. (2) The situation model is then simplified and 
structured to obtain a real model that contains only the information necessary to solve the task. The 
problem solver needs a deep understanding of the problem to separate relevant from redundant 
information. (3) Mathematising the real model leads to the mathematical model. (4) Working 



mathematically then serves to produce a mathematical result, which is then used to refer back to the 
real situation given in the task by interpreting and validating the real result. In the following, we 
concentrate on understanding and simplifying/structuring, for which reading comprehension is 
critically important.  

Understanding and simplifying/structuring are expected to be essential for solving the entire 
modelling problem. These expectations were supported by the results of the study by Leiss et al. 
(2010). In this study, the strategies that students used in the construction of an adequate situation 
model and real model were found to have a positive influence on their modelling competency. 
Therefore, we conclude that it is important to support learners’ reading comprehension by the use of 
strategies. Two strategies suitable for fostering reading comprehension in modelling problems are 
presented in the following chapter. 

Highlighting and self-generated drawings for reading comprehension 

Highlighting. Highlighting is a cognitive strategy that aims at directing the learner’s attention to the 
specific words or sentences in a text. To highlight important information, the learner has to identify 
and select the relevant information.  

The prompt “Use the highlighting strategy” is not sufficient by itself to support the learner’s reading 
comprehension, as the quality of strategy use has been found to be important for effects on students’ 
performance. The use of highlighting has to be regulated by students in order to be efficient, 
otherwise the learner might highlight too many words in the text or might forget to highlight some 
important information. In a study of college students, Leutner et al. (2007) examined the effects of 
training the highlighting strategy with expository texts. They compared three groups: The first group 
did not receive any training and served as a control group, the second was given a strategy training 
in highlighting, and the third was given a combination of strategy and self-regulation training. The 
findings revealed that the third group outperformed the others in text comprehension. Thus, self-
regulation seems to be an important factor for strengthening the appropriate and purposeful use of 
cognitive strategies such as highlighting. The combination of strategy and self-regulation training 
included the following elements: First, the learning goal was presented. Second, the participants 
observed how a fictive person applied the highlighting strategy. Third, they were given a strategy 
training in which the steps of the highlighting strategy were presented and then applied. Fourth, a 
self-regulation training followed, in which the steps of the highlighting strategy were recalled, and 
then the steps of the metacognitive strategy (monitoring, self-evaluation, and reaction) were 
introduced and applied.  

Highlighting strategies can also be expected to be useful in the domain of mathematical modelling, 
as modelling problems with reference to real life often contain redundant information. In order to 
construct a situation model and a real model, students have to identify relevant information. In an 
exploratory case study by Leiss et al. (2010), some difficulties in the use of the highlighting strategy 
while solving modelling problems were observed. An analysis of students’ solutions showed that 
some students highlighted all numbers written in numeric form given in the task, including numbers 
that were not needed to solve the modelling problem. Further, some students did not highlight 
numbers written in word form, even when these numbers were essential for the solution. These 



observations demonstrate the limited quality of the highlighting strategy by students and emphasise 
the importance of improving the quality of the use of this strategy.  

Self-generated drawings. Another important cognitive strategy that can be applied to support a 
learner’s reading comprehension and problem solving is the creation of self-generated drawings. 
Whereas highlighting is aimed at selecting the most important information, drawings are aimed at 
organising and visually representing information given in the text.  

A study by Leopold and Leutner (2012) revealed the advantages of drawing activities for the 
comprehension of science texts. Students in grade 10 were instructed to read text paragraphs and 
then make a drawing that represented the main ideas of the paragraphs. To train the students to use 
the strategy, they worked on an example that demonstrated how to process the text with a related 
drawing. The results showed positive effects of the drawing instructions on students’ science text 
comprehension. Drawing activities encourage students to construct a mental model and seem to 
offer a useful strategy for facilitating students’ deeper understanding. In the domain of mathematics, 
positive effects of drawing activities were found on 3rd-grade students’ word problem solutions 
(Csíkos, Szitányi, & Kelemen, 2012). 

Drawing activities might also support the construction of a situation model in the context of 
mathematical modelling (Rellensmann, Schukajlow, & Leopold, 2017). Strategic knowledge about 
drawing was found to have a positive effect on modelling performance. This effect was mediated by 
the accuracy of the situational and mathematical drawings and emphasised the importance of the 
quality of the strategy for solving modelling problems. In addition, the study revealed that the 
accuracy of mathematical drawings is a strong predictor of modelling performance, whereas the 
situational drawing had only indirect influences on performance by facilitating the construction of a 
mathematical drawing. These findings suggest that self-generated drawings offer a strategy that is 
useful for fostering modelling. The most promising was found to be the generation of accurate 
mathematical drawings. Thus, when instructing students how to generate a drawing, teachers should 
pay special attention to the accuracy of the mathematical drawing (namely that it contains correct 
relations and all relevant numbers). Learners should be encouraged to generate a situational drawing 
if they do not succeed in drawing a more abstract mathematical model in their first attempt.  

Even though highlighting and drawing seem to be useful strategies for fostering reading 
comprehension during mathematical modelling, they need to be taught in rich learning 
environments. In the following chapter, we present some learning environments that are appropriate 
for teaching these strategies. 

Highlighting and self-generated drawings in learning environments for improving modelling 

Several studies have investigated the effects of different learning environments on students’ 
modelling competency. In the following, we present two studies that integrated highlighting and 
drawing strategies (among other elements) in their learning environments to foster modelling 
competency.   

Verschaffel et al. (1999) revealed the positive effects of a certain learning environment on 5th 
graders’ modelling and problem-solving competency. The learning environment contained the 
acquisition of an overall metacognitive strategy that involved five stages in the planning of the 
whole solution process. Eight strategies (e.g., “Distinguish relevant from irrelevant data” or “Draw a 



picture”) were embedded in the first two stages (Verschaffel et al., 1999, p. 202). The distinction 
between relevant and irrelevant data is related to the highlighting strategy, as appropriate 
highlighting aims to make this distinction. Another condition under which the results were acquired 
was the instructional technique used in this study. It consisted of systematic changes between 
whole-class discussions and small group work. In both phases, the teacher encouraged the use of 
strategies and encouraged the students to reflect on their purposeful use in order to stimulate the 
regulation of strategy use.  

A learning environment for modelling that included strategic elements was examined by 
Schukajlow et al. (2015). A scaffolding instrument called the solution plan with four steps was used 
in this study to support students’ modelling activities. Strategic prompts were assigned to each step. 
As a whole, the solution plan served as a metacognitive planning strategy that was designed to guide 
students through the process of solving a modelling problem. Fostering reading comprehension was 
not the sole focus of the solution plan, but it included cognitive strategies that were aimed at 
improving reading comprehension (e.g., strategies such as “Look for the data you need and, if 
necessary, make assumptions!” or the strategy “Make a sketch!”; Schukajlow et al., 2015, p. 1244). 
Although the highlighting strategy was not explicitly mentioned in the solution plan, it is closely 
connected to the strategy of looking for relevant data.  
The student-centred operative-strategic learning environment used in this study is characterised by a 
systematic change between individual work in groups and whole-class discussions. The whole-class 
discussions included presenting solutions and reflecting on the solution processes (Schukajlow et 
al., 2015, p. 1243). The study found that an experimental group that was taught the solution plan 
outperformed a control group that was not taught the solution plan in solving modelling problems. 
Furthermore, students in the experimental group reported more frequently using self-reported 
strategies than the control group.  
On the basis of the theoretical and empirical findings on the effects of highlighting and self-
generated drawing, we developed a learning environment for fostering reading comprehension. We 
describe this learning environment which will be approved in the next step of the project in the 
following section.  

Learning environment for fostering students’ reading comprehension while they 
solve modelling problems 
Based on the theoretical grounds presented in the first part of this paper, the following learning 
environment was developed to foster 9th graders’ modelling competence with special regard to the 
beginning of the modelling process, namely understanding, structuring, and simplifying. The aim of 
the learning environment is to improve students’ performance in these sub-competencies by 
fostering their reading comprehension via trainings in highlighting and the use of self-generated 
drawings. Similar to some other studies that implemented strategy trainings (see e.g., Leutner et al., 



2007, or Schukajlow et al., 2015), the duration of the teaching unit will be five lessons with a total 
of approximately 225 minutes1.  

The modelling problems that will be used in the present learning environment include text and can 
be solved by applying the Pythagorean Theorem as a mathematical procedure. The Pythagorean 
Theorem was chosen because of the importance of this mathematical procedure for national and 
international curricula. Before the beginning of the teaching unit that was designed to foster reading 
comprehension, students are expected to know the Pythagorean Theorem and to practise it on intra-
mathematical problems. A sample problem Reaction time is shown in Figure 1.   

Reaction time 
During the 2016 European Championship, Germany played against Slovakia in the round of the 
last sixteen. With goals by Boateng (minute 8), Gomez (minute 43), and Draxler (minute 63) the 
German team won with a score of 3 to 0. 

In the 14th minute, Germany was allowed a penalty kick after a foul by Slovakia. A penalty kick 
is shot from a distance of eleven metres from the goal, which has standard measures of 2.44 m in 
height and 7.32 m in width. The German penalty taker was Mesut Özil, and Matus Kozacik was 
in the Slovakian goal. 

Unfortunately, the penalty kick was stopped by Kozacik so that Özil missed the chance to have an 
early score of 2 to 0 for Germany. His penalty kick was shot a bit too feebly and flew just over the 
ground to the lower right corner where Kozacik was able to deflect it away from the goal.  
Although the penalty kick was not shot very hard, the goal-keeper didn’t have much time to react, 
as the football flew at a speed of about 80 km/h towards the goal. 

Calculate how much time the goal-keeper had after Özil’s kick to reach the position where 
he stopped the ball just before the corner of the goal. 

Figure 1: Sample modelling problem Reaction time 

In line with the solution plan study by Schukajlow et al. (2015) and the study by Verschaffel et al. 
(1999), the learning environment that we chose for our teaching unit includes systematically 
changing between individual work, group work, presenting solutions, and reflecting on the solution 
process as a class (Schukajlow et al., 2015, p. 1243).  

In the first lesson, both of the strategies of highlighting and using self-generated drawings are 
introduced. The students are given the modelling problem Reaction time (cf. Figure 1) and are 
requested to highlight important information and to generate a drawing while doing their own 
individual work in groups, but they are asked not to solve the problem. The task requires the 
application of both the highlighting and drawing strategies.  

                                                 
1 Schukajlow, Kolter, and Blum (2015) measured effects after 205 minutes of total treatment. Leutner, Leopold, and den 
Elzen-Rump (2007) used a time of 150 minutes. Verschaffel et al. (1999) used 20 lessons to teach eight strategies, so 
five lessons for teaching two strategies seemed appropriate for our teaching unit. 



After the individual work in groups, students present their highlighted texts and their drawings and 
describe how they proceeded in applying both strategies. To encourage a discussion about potential 
difficulties in the use of these strategies, the group that the teacher chooses to make the first 
presentation should be one that had difficulties with the generation of the highlighting or drawing. 
During the presentation and the subsequent reflection on the presented solution, the teacher should 
direct students’ attention to typical problems that result from the misapplication of strategies. The 
teacher should then present the learning goal of the teaching unit to the students, namely to improve 
reading comprehension and the ability to solve modelling problems.  

After that, the first two steps of the solution scheme (cf. Figure 2) are introduced. They save the 
results of the class discussion in written form and might also provide some advice that was not 
mentioned by the students. The solution plan by Schukajlow et al. (2015) was adapted to better fit 
the aim of fostering reading comprehension and to guide the application of both of the strategies of 
highlighting and producing self-generated drawings. The solution scheme with the reading strategies 
of highlighting (integrated in step 1) and the creation of self-generated drawings (integrated in step 
2) is shown in Figure 2. 

 
Figure 2: The solution scheme used in the learning environment 

The entire solution scheme serves as a planning strategy for the whole solution process. In step 1, 
the highlighting strategy is presented. First, students are told to skim the task. This means they 
should get an overview of the task, which might contain a title, text, questions, pictures, tables, or 
diagrams. While skimming the text, students do not need to understand each word in detail. After 
skimming the text, the students are prompted to imagine the situation presented in the task. This 
might help to activate prior knowledge about the topic and facilitate reading the text in detail in the 
next step. These activities stimulate the understanding of the real situation. The highlighting is 
prompted after they read the question again, as the selection of relevant data depends on the 
question posed in the problem. After they finish the highlighting, students evaluate whether they 
highlighted only the most important information in the task and revise their highlighting if needed. 
The highlighting is aimed at helping students to simplify the given information.   



In step 2 of the solution scheme, the students are asked to make a drawing and label it with relevant 
data from the text. These activities help them simplify and structure the information given in the 
text. During the following monitoring activities, students check whether their drawings contain all 
relevant data from the text and whether all mathematical relations are represented correctly. If 
students do not succeed in constructing an accurate mathematical drawing, they can first generate a 
less abstract situational drawing. At the end of step 2, students mathematise the information given in 
the drawing. In step 3, the students calculate a solution and obtain the mathematical result. They 
interpret, validate, and present the result in a final answer in step 3. The arrow pointing back 
towards step 1 indicates that the solution process might be restarted if the result does not fit.  

In the first two lessons of the teaching unit, the students are familiarised with only the first two steps 
of the solution scheme in order to train their reading comprehension strategies and the sub-
competencies of understanding, simplifying, structuring, and mathematising as part of the modelling 
process. In lessons 3, 4, and 5, students practise the entire modelling process by applying the entire 
solution scheme.  

In line with Leutner et al.’s (2007) study, the current learning environment contains the same main 
elements to stimulate self-regulation. First, goal setting is realised in the first lesson. Students are 
confronted with a modelling problem that requires a profound level of reading comprehension. The 
teacher explains that the aim of the teaching unit is to learn strategies that support reading 
comprehension and to solve reality-related modelling problems. Second, instead of observing the 
application of the strategy by a fictive person, students analyse their classmates’ highlighted texts 
and drawings in both the work done in small groups and the presentations involving the whole class. 
These practises are implemented in order to stimulate students’ activities in the classroom. Third, 
the strategy training begins with a presentation of the steps that are necessary for highlighting and 
drawing and is followed by an application of the strategies while solving modelling problems. In 
contrast to Leutner et al.’s (2007) study, the self-regulation training is integrated in the strategy 
training. If requested, the teacher gives strategic advice by referring to the relevant steps of the 
solution scheme and stimulates reflection on the use of strategies during the individual work in 
groups and during the whole-class discussion when solutions are presented and reflected on. This 
process helps to encourage the use of strategies and to establish the solution scheme as a scaffold for 
solving modelling problems. In order to stimulate the self-regulation of strategy use, we included 
the prompts “Check your marks and change them if necessary” in step 1 and “Check your drawing” 
in step 2 of the solution scheme. Further, the validation of the results of solution problems is 
stimulated by the prompt “Check if your result fits approximately” in step 3 (cf. Figure 2).  

Summary and future steps 
In the first part of this paper, we discussed the theoretical background for reading comprehension 
and modelling. Based on the theory, we presented in the second part of the paper a learning 
environment to foster students’ reading comprehension while solving modelling problems. This 
learning environment will be evaluated in a project for pre-service teachers. The pre-service 
teachers will obtain the material and instructions to implement the learning environment in their 
classrooms to gain practical experience in fostering reading comprehension in mathematical 



education. They will attend a seminar to prepare for the project and to reflect on the experiences 
they made while implementing the project.  
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The objective of this investigation is designing an activity research study in mathematical modeling 
for the training of future engineers in the subjects of linear algebra, and structural mechanics of 
composite materials, in an application of stress and strain calculation. Considering elements of the 
Anthropological Theory of Didactics (ATD) implementing a methodology within the mentioned 
theory. This allows the analysis of mathematical models in use, as basis for designing didactical 
activities, in order to create a link between these two subjects, showing the future engineers that 
mathematics can be used to solve problems in an extra-mathematical context. This took place in the 
Research Center for Applied Science and Advance Technology of the National Polytechnic Institute 
(CICATA-IPN) and in the School of Science of Engineering and Technology of the Autonomous 
University of Baja California (ECITEC-UABC). 

Keywords: Mathematical models, linear algebra, engineering training, ATD. 

Introduction  
The objective of this work is to design modeling activities for a mathematical training of engineers. 
The design is based on mathematical modeling analysis on specialty training courses, focusing on 
laminated composite materials. This collaborative work involves aerospace, mechanical engineers 
and mathematicians that teach in the carriers of Aerospace engineering and mechanical engineering, 
having an opportunity to analyze a real context of modeling; namely Calculation of stress and strain 
of composite materials. This project was proposed on a structural mechanics of composite materials 
course; because the students wanted to know where they could use the mathematics they were 
learning. For this work we have considered elements of the Anthropological Theory of Didactics 
proposing a methodology associated to this theory that permits the analysis of mathematical models 
in use based on the design of didactic activities. 

Elements of the Anthropological Theory of Didactic 
The ATD is an epistemological model that allows the study of human activity in its institutional 
dimension. An institution is a stable social organization that defines the human activities generating 
resources that make them possible. These materials or intellectual resources, which are made 
available to the subjects, have been produced by communities along the confrontation of problematic 
situations with the objective of solve them in a regularly and effectively way (Castela and Romo, 
2011). The classic praxeological model, proposed by Chevallard (1999), recognizes the praxeology 
[𝑇, 𝜏, 𝜃, Θ] as a minimal unit of analysis of human activity. Its four components are: the task type (𝑇), 
the technique (𝜏), the technology (𝜃); and the theory (Θ). The ‘task’ refers to what is to be done; the 
‘technique’ is how it is to be done; the ‘technology’ is a discourse that produces, justifies and explains 
the ‘technique’; while the ‘theory’ produces, justifies and explains the ‘technology’.  



The training of engineers through institutions 
The training of engineers can be seen through institutions, Romo (2009) distinguish three types: 
production of knowledge P(S), teaching of knowledge E(S) and use of knowledge or practices Ip. 
This distinction seeks to recognize the first vocation of the institutions and the production of 
knowledge correspond to scientific disciplines, such as mathematics or engineering sciences, are 
validated in these the existence of knowledge and the relations between them. The teaching of 
knowledge E(S) are responsible for displaying and disseminating praxeologies, meanwhile in the 
institutions of usage Ip, the praxeologies are used to solve problems of practice. This does not mean 
that within the institutions P(S) there is no teaching or usage praxeologies nor in teaching E(S) and 
practice Ip there is no production of knowledge. In this investigation linear algebra is considered an 
institution of teaching mathematics E(AL), and in teaching engineering, structural mechanics of 
composite materials E(MC) and connect them through a Study and Research Activity (SRA). The 
SRA constitute didactic devices for the construction of a praxeology through three didactic moments 
that are: first encounter with T, exploration of T and the emergence of the τ technique and construction 
of the technological-theoretical block, in this case coming from the structural mechanics of composite 
materials as outlined below 

 

 

 
 

 

Figure 1: The SRA as an element linking educatinal institutions 

In order to initiate the transition from the traditional paradigm in mathematics ”visitinng works” (to 
the teaching of pre-existing mathematical objects) to questioning the world according to inquiry-
based mathematics education (IBE).  

Didactical design methodology of an SRA 
The methodology initially proposed in Macias (2012) allows the design of SRA that involves non 
mathematical elements. Its four stages are: 1) Election of an extra-mathematical context; 2) 
Praxeological analysis and identification of a mathematical model; 3) Analysis of the identified 
mathematical model and their relationship with E(M) and 4) design of the SRA. 

Election of an extra-mathematical context 

To choose an appropriate extra-mathematical context for the design of an SRA, the following 
elements were considered. 

1) Generation of surveys aimed at teachers and students about mathematical needs of engineers in 
training: 

Students. Which of these subjects you thought more important, and why? Have you used or adapted 
a mathematical model? Which model and for what? 
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Teachers. In any of your subjects taught in an engineering career you use mathematics? Have you 
used a mathematical model or adapted one in any of your courses? Which model and for what? 
67 students from 3rd to the 7th semester were surveyed, finding that the most useful subjects are 
calculus and linear algebra. 54% recognizes the work with mathematical models. All teachers who 
teach subjects of MC, integral calculus CI and AL were surveyed, 92% of them recognize the use of 
matrices in their courses 

2) Interviews with the coordinator of the career of mechanical engineering, who noted that the subject 
of MC required early in the course of a review of linear algebra. 

3) Approach with MC teachers, who pointed out that in general, students do not recall procedures or 
operations previous courses, AL for example. 

4) Joint work with engineers-researchers in the area of materials. 

Praxealogical analysis and identification of a mathematical model 

The praxeology that is identified and analyzed is the calculation of stress, strain and elastic modulus 
in laminated materials. The type of task is to calculate the stress or strain of a laminated material, the 
technique is associated with the use of the matrix S (strain) or matrix Q (stiffness), the technology is 
Hooke's law and the theory is the mechanics of materials. The analysis is based on a technical report 
of basic mechanics of laminated composite plates (Nettles, 1994), suggested by an engineer-
researcher, who indicated it, as a heavily used reference material. In this section the theoretical 
technological-block is shown, which displays how the stiffness matrix associated with the technique 
of calculating the stress and strain is presented. This will provide the basis to show in the next section 
full praxeology from the analysis of an exercise presented in a class of structural mechanics of 
composite materials. 

Technology: Generalized Hooe´s law for anisotropic materials1 
Nettles explains that the relationship between stress and strain is independent of the direction of the 
force, and is provided by the constant of elasticity (Young's modulus), this is for isotropic2 materials. 
In nonisotropic materials it should use two elastic constants at least. The relationship stress / strain 
for isotropic materials appears as follows:   σ = Eε  (1) 

Where 𝜎: is the stress, E: Denotes the Youngs modulus and 𝜀: is the strain. 
For orthotropic materials 3, the direction must be specified in the stress/strain relationship:  
   𝜎1 = 𝐸1𝜀1;  𝜎2 = 𝐸2𝜀2  (2) 
where  
𝜎1: Denotes the stress in the longitudinal direction  
𝐸1: Denotes the stiffness in the longitudinal direction (Young´s modulus) 
𝜀1: Denotes the strain in the longitudinal direction 
𝜎2: Denotes the stress in the transversal direction 

                                                 
1 Anisotropic materials: is the material that its mechanical properties differ according to the load direction 
2 Isotropic materials: It is the material that has identical mechanical properties in all directions regardless of the direction 
of the load 
3 Orthotropic materials: is the material in which mechanical properties are different in three perpendicular directions 



𝐸2 : Denotes the stiffness in the transversal direction 
(Young´s modulus) 
𝜀2: Denotes the strain in the transversal direction 
𝐸1 = 𝐸𝐿 Defines the stiffness in the longitudinal direction 
and 𝐸2 = 𝐸𝑇  is the stiffness in the transversal direction. This law produces different techniques, 
Nettles initiated by the special orthotropic plates and is why we analyze them below.. 

Stress and strain for special orthotropic plates 
The author begins by explaining that on a plate, stress can be given in more than one direction. 
Immediately he defines Poisson's ratio as the strain perpendicular to a given loading direction, 
showing the relationship for different loads. 

For loading along the fibers: 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛´𝑠 𝑟𝑎𝑡𝑖𝑜 = 𝜈12 =
𝜀𝑇

𝜀𝐿
=

𝜀2

𝜀1
  (3a) 

For loading perpendicular to the fibers 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛´𝑠 𝑟𝑎𝑡𝑖𝑜 = 𝜈21 =
𝜀𝐿

𝜀𝑇
=

𝜀1

𝜀2
  (3b) 

The strain is equal to the difference between the stretched component deformation due to an applied 
force and contraction of the Poisson´s effect due to other forces perpendicular to the applied force, 
thus: 

𝜀1 =
𝜎1

𝐸1
− 𝜈21𝜀2    𝑦    𝜀2 =

𝜎2

𝐸2
− 𝜈12𝜀1  (4a) 

aplicando la ecuación (2) 

𝜀1 =
𝜎1

𝐸1
− 𝜈21

𝜎2

𝐸2
   𝑦    𝜀2 =

𝜎2

𝐸2
− 𝜈12

𝜎1

𝐸1
  (4b) 

Subsequently, the author considers the presence of shear forces. The shear stress and shear strain are 
related by a constant called shear modulus, denoted by G.      
   𝜏12 = 𝛾12𝐺12   (5) 

Where: 𝜏12: Shear stress, 𝛾12: Shear strain y 𝐺12: Shear modulus 

Equation (5) is similar to equation (1) it only considers shear stress and strain, where the indices 1-2 
indicate shear in the 1-2 plane. The author mentions that a relationship exists between the Poisson 
constant and the Young's modulus in both directions, in the longitudinal direction and the transverse 
direction to the material, and then it holds that: 

𝜈21𝐸1 = 𝜈12𝐸2  (6) 

Equations (4b) and (5) can be written in their matrix form obtaining 

[

𝜀1

𝜀2

𝛾12

] = [

𝑆11 𝑆12 0
𝑆12 𝑆22 0
0 0 𝑆66

] [

𝜎1

𝜎2

𝜏12

]  (7)  where, 

 

Here it is where we can see a relationship between the subjects of linear algebra and structural 
mechanics of composite materials as a matrix model for calculating stress or strain of laminated 
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𝐸1

= −
𝜈21
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materials whether they are isotropic or orthotropic. Calculating the inverse stress matrix S, we obtain 
the stiffness matrix Q turning out to be:  

[

𝜎1

𝜎2

𝜏12

] = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0

0 0 𝑄66

] [

𝜀1

𝜀2

𝛾12

]  (8) 

where,  

𝑄11 =
𝐸1

1 − 𝜈12𝜈21
 𝑄22 =

𝐸2

1 − 𝜈12𝜈21
 

𝑄12 =
𝜈12𝐸2

1 − 𝜈12𝜈21
=

𝜈21𝐸1

1 − 𝜈12𝜈21
 𝑄66 = 𝐺12 

We can appreciate in equation 7 to 8, the calculation of the inverse matrix was made, to switch the 
stress matrix to the stiffness matrix, with basic operations taught in linear algebra. The author 
explains, broadly, the mathematical model based on the algebraic work, having left the reader the 
task of verifying the connections between the different equations, until reaching the mathematical 
model that relates the stress, strain and Young's modulus (which are the elastic properties of the 
material). All this is the technological component of the praxeology. To illustrate the types of tasks 
that can be solved and the associated techniques to the praxeology, we analyze below a classroom 
exercise from the subject of structural mechanics of composite materials. 

Analysis of the identified mathematical model and its relationship with E(M) 

In the class of structural mechanics of composite materials (MC), where we analyzed and identified 
the praxeology of the stress calculation of a laminate material, with a task type T, calculate the 
modulus of elasticity of a laminated material in a particular direction, with two tasks, t1 y t2: 
t1: Calculate the modulus of elasticity of a laminated material in the X direction. 
t2: Calculate the modulus of elasticity of a laminated material in the Y direction. 
For laminate fiberglass polyester matrix that is laid up in a [452/−452 /0]𝑠 stacking sequence. 
τ1: Find the stiffness matrix of a laminate material, with the following information 

𝑬𝟏 = 𝟒𝟎 𝑮𝑷𝒂 𝑮𝟏𝟐 = 𝟐. 𝟖 𝑮𝑷𝒂 

𝑬𝟐 = 𝟗. 𝟖 𝑮𝑷𝒂 𝝂𝟐𝟏 = 𝟎. 𝟑 

[𝑄] = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0

0 0 𝑄𝑆𝑆

] 

[𝑄] = [
40.90 3.01 0
3.01 10.02 0

0 0 2.80
]  𝐺𝑃𝑎 

Determine the stiffness matrix of the lairs in 45°. 
Using the expressions for the calculation of the stiffness matrix, for any fiber orientation it can be 
written by: 

[𝑄] = [

𝑄̅𝑥𝑥 𝑄̅𝑥𝑦 𝑄̅𝑥𝑆

𝑄̅𝑦𝑥 𝑄̅𝑦𝑦 𝑄̅𝑦𝑆

𝑄̅𝑆𝑥 𝑄̅𝑆𝑦 𝑄̅𝑆𝑆

] 

xy axes: global axes; 1,2 axes : material axes. Thus the stiffness matrix turns to be: [𝑄] =

[
17.03 11.43 7.72
11.43 17.03 7.72
7.72 7.72 7.01

] 𝐺𝑃𝑎 



For the  −45° the stiffness matrix is [𝑄] = [
17.03 11.43 −7.72
11.43 17.03 −7.72
−7.72 −7.72 −7.01

] 𝐺𝑃𝑎 

Stiffness matrix in the flat tension of the laminate material 

[𝐴] = ∑ [𝑄]𝑖𝑖 ∙ ℎ𝑖where ℎ is the thickness of the material [𝐴] = [
218.04 97.46 0
97.46 156.28 0

0 0 61.68
] 109 ℎ

𝑁

𝑚
 

Normalized stiffness matrix in the plane stress of the laminate is written as [𝐴∗] =
[𝐴]

109 ℎ
=

[
21.8 9.75 0
9.75 15.63 0

0 0 6.17
]  𝐺𝑃𝑎 

𝝉𝟏: Applying a tensile stress in the X direction {
𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

} = {
𝑁𝑥

0
0

}. As mean stress acting on the 

laminate material {
𝜎𝑥

0

𝜎𝑦
0

𝜏𝑥𝑦
0

} = {

𝜎𝑥

0
0

}; The relation between the average stress and the strain of the material 

is given by: {𝜎} = [𝐴∗] ∙  {𝜀}; Calculating the strain state for the loading state. {
𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

} =

{
0.06362

−0.03969
0

} 109 𝜎𝑥 

In the direction of the X axes the relation between the strain and stress is given by: 𝜀𝑥 =

0.06362 (109) 𝜎𝑥, on the other hand the apparent elasticity modulus in the X direction is presented 
as 𝐸𝑥 = 1.572 𝐺𝑃𝑎 

𝝉𝟐: Applying a tensile stress in the Y direction 

Analogously the mean stress acting on the laminate material is 

{

𝜎𝑥
0

𝜎𝑦
0

𝜏𝑥𝑦
0

} = {
0

𝜎𝑦

0

} Therefore the strain state is {
𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

} = {
−0.03969
0.08874

0
} 109 𝜎𝑦 

Particularly in the Y axis direction the relationship between the stress and strain is: 𝜀𝑦 =

0.08874 (109) 𝜎𝑦. Furthermore the apparent elasticity modulus in the X direction is given by 𝐸𝑦 =

11.27 𝐺𝑃𝑎. The praxeological analysis of the technical report and the classroom exercise presented 
here very briefly, allowed to identify the matrix as a mathematical model for calculating strain of a 
laminate (isotropic, anisotropic and orthotropic) material. Also, the matrix operations and calculating 
the inverse of the matrix are used to determine the modulus of elasticity of a composite material, 
specifically laminated materials. 

SRA design proposed for a tactile sensorial therapeutic ramp (RTEST) 

For the SRA design, we considered the construction of a product that requested the use of a laminated 
material and calculating the stress and strain of the material to ensure the usefulness of the product. 
Therefore, it was intended that the use of the mathematical model appear the way it happens in 
engineering projects. Determining that for students in the early college years, more than a structure 
was necessary to think of a product consisting of plates, which also would be useful for the 



community. Thus, it came to the proposal of a tactile sensory therapeutic ramp (RTEST) with 
laminate material to help children from three to ten years to correct gait problems.  

Moment of the first meeting with T. To design the ramp students must develop three basic tasks, t1) 
design the ramp, t2) choose the laminate and stress calculations, t3) determine the type of material 
with which the ramp will stimulate the sensory part. Moment of the exploration of T and technical 
emergency τ. Students should find the technique or techniques to solve t1, t2 y t3. For t1, they should 
investigate the types of ramps, analyze and choose one. For t2, they should investigate laminated 
materials, choose one and make the stress calculation (the technic, p. (3-5)). And for t3, investigate 
the materials that promote sensory stimulation and choose one, justifying the reasons for their choice. 
Moment of construction of the technological-theoretical block. The third moment intersects with the 
second because here students must build the ramp, using drawings and stress calculations previously 
made, as well as the preparation of the composite material. In t2 students should know and apply 
Hooke's law, for the problem they are solving, they have to know how to build the stress matrix and 
determine the stiffness matrix. To perform these calculations students can use computer programs 
such as MathLab, Scilab and SolidWorks.  

First implementation of the SRA 
Presenting a first implementation of the evolution of the SRA of one team: 

 
Figure 2: Momentum schematics of the SRA 

The implementation with students of the core curriculum of engineering, designers and aerospace 
engineering; Of three different semesters (2, 6 and 7), trying to mimic the form of work of the 
industry: as different specialties as well as novices and experts engineers. The SRA was proposed to 
each teacher of the course to see if the assignment was pertinent to their subject and if they could 
make it part of their class and grade it. The development of the SRA was parallel to the classes of the 
teachers that agreed to work on the project assigning a certain time in each course for doubts they 
might have. A report was requested for each of the three phases. Phase 1: Proposal of a design for a 
RTEST ramp (3 weeks), phase 2: Strain calculation of the laminate material (3 weeks) and phase 3: 
Elaborate and choose materials for the RTEST ramp: Laminate materials and for the tactile and 



sensorial part of the project (4 weeks). The SRA had three phases associated with the first three 
moments described above.  

Conclusion 
The SRA is proposed within the framework of the paradigm of questioning the world in the training 
of engineers. In this SRA unlike the commonly proposed projects of engineering the mathematical 
topics are highlighted. In addition the engineering topics are shown in a more important roll in the 
mathematics subjects. The SRA involved students and teachers from different specializations. The 
design of the material and the RTEST requires the calculation of stress -matrix model-, knowledge 
of materials and design. To do this the students must investigate and study elements from different 
disciplines as well as practical knowledge, students learn to do research, model, use available 
knowledge to create new, teamwork, communicate their ideas and justify the practice with theoretical 
elements of different levels. The analysis of the development of the SRA would allow us to 
understand the institutional necessary conditions for designing SRA in a more complex environment. 
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For students working on realistic modelling problems as autonomously as possible the support by a 
tutor is indispensable. However, how this support can be realised is still not a sufficiently answered 
question. In the paper we describe a study in which students worked on complex, realistic, authentic 
modelling problems over three days supported by tutors. The tutors participated in a teacher training 
prior to the modelling activity. The focus of the study is the usage of heuristic strategies by students 
within modelling activities and the promotion of strategic help provided by the tutors. Based on 
videotaping of ten groups while they were working on the modelling problem of the optimal placement 
of a bus stop, the study could show that heuristic strategies are an indispensable basis for adequate 
decisions in the modelling process. Their promotion by the tutors seems to be highly adequate in 
order to foster modelling competencies under a broader perspective. 

Keywords: Mathematical modelling activities, heuristic strategies, modelling example.  

Introduction 
Modelling and applications are receiving increasing attention all over the world, modelling 
competencies are required internationally by many curricula. However, the complexity of real world 
examples and the according modelling process to tackle the problem leads to a strong discrepancy 
between the high relevance of these kinds of activities in curricula and their factual relevance in 
school. In the following we will present a study, which examines how tutors can foster the tackling 
of complex and authentic modelling problems by students in special learning environments, the so-
called modelling days. We will in particular focus on heuristic strategies from the problem solving 
discussion and their possible usage in modelling classrooms.  

Theoretical framework 
Mathematical modelling and modelling cycle  

In our research modelling is understood as a process where a ‘real situation’ from the ‘Rest of the 
World’ (Pollak, 1979) comes up and needs to be understood and simplified and transferred into a 
realworld model. The real world model is transformed into the world of mathematics, i.e. the 
formulated mathematical problem is (partly) solved and the solution is validated according to the real 
world situation. Often the first results do not answer the primary problem adequately, so the modelling 
cycle is run through again with an adjusted real world model. This process is repeated until a solution 
is produced which is adequate for the real situation from the standpoint of the modeller. The according 
process can be visualized with the following modelling cycle (figure 1).  
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Figure 1: Modelling cycle (Kaiser & Stender, 2013, p. 279) 

Fostering student’s independent modelling activities in cooperative learning environments 

If it is intended that students work as independent as possible on the modelling task in cooperative 
learning environments self-directed learning environments as required by many scholars in the 
modelling discussion (e.g. Kaiser and Stender, 2013, for an overview see Blum et al., 2007), the 
support by a tutor has to be adaptive. We use the definition given by Leiss (2007) of an adaptive 
intervention: 

Adaptive teacher interventions are defined as those kinds of assistance by the teacher to the 
student, which supports the individual learning and problem solving process of students minimally, 
so that students can continue to work at a maximal independent level. (Leiss, 2007, p. 65, own 
translation) 

As guidelines for teachers supporting students who need help in their work, we refer to a framework 
developed Zech (1996), who suggests a five step approach to realise adaptivity: (1) motivate, e.g. 
‘You will make it’; (2) feedback, e.g.: ‘Go on like this!’; (3) strategic help based on strategy what to 
do next, e.g. ‘Simplify the situation by making it as symmetric as possible!”; (4) content-related 
strategic help gives a strategic help with additional information to the problem, e.g. which aspect 
should be described as symmetric; (5) content-related help shows the students aspects of concrete 
steps to work on. 

If motivational and feedback support are not sufficient to enable the students to continue their work, 
strategic help is according to this framework the next step to support the students, as the students only 
get a possible way how to go on, but the students themselves still have to realise the work by their 
own. Important strategic helps are based on references to the steps of the modelling cycle: ‘Simplify 
the situation!’, ‘Try to transfer this into a formula!’, ‘What does the mathematical result mean in the 
real world?’, ‘Does the result answers the real world situation meaningfully?’ More specific support 
is offered by the use of heuristic strategies. 

Heuristic strategies 

The usage of heuristic strategies is a well-known approach in mathematical problem solving (e.g. 
Pólya, 1973), that can be used while tackling modelling problems as well. Based on the work of Pólya 
and others we distinguish the following heuristic strategies, which were formulated in the frame of 
ongoing empirical research in mathematical modelling (for details see Stender and Kaiser, 2015): 



 organise your material / understand the problem: change the representation of the situation if 
useful, try out systematically, (Pólya, 1973) use simulations with or without computers, 
discretize situations,  

 use the working memory effective: combine complex items to supersigns, which represent the 
concept of ‘chunks’ (Miller, 1956), use symmetry, break down your problem into sub-
problems),  

 think big: do not think inside dispensable borders, generalise the situation (Pólya, 1973), 
 use what you know: use analogies from other problems, trace back new problems to familiar 

ones, combine partial solutions to get a global solution, use algorithms where possible (Pólya, 
1973),  

 functional aspects: analyse special cases or borderline cases (Pólya, 1973), in order to 
optimise you have to vary the input quantity,  

 organise the work: work backwards and forwards, keep your approach – change your 
approach – both at the right moment (Pólya, 1973). 

Although these heuristic strategies are well-known in the problem solving discussion, there is only 
little empirical research known, how these heuristic strategies can be implemented in classroom 
teaching and how far these heuristic strategies can be transferred to other mathematical activities such 
as mathematical modelling. 

Research Question 

In our research study we aim to evaluate, how far heuristic strategies developed in the problem solving 
discussion can be transferred into the teaching and learning of mathematical modelling. Furthermore, 
we examine how far these heuristic strategies are appropriate strategic interventions for the tutoring 
of students who are working on complex, realistic and authentic modelling problems.  

Design of the Empirical Study 
Modelling Days as learning environment 

As this kind of work is not very common in usual classes we established modelling projects in schools 
as learning environment, called modelling days and offer these to schools as special, project-oriented 
activity organised in their school. The problems, on which the students work, are developed by the 
university research group. The tutoring of the students, who work in groups of four to six, is organised 
either by the teachers or future teachers within their master studies. Both groups receive a special 
training, in which they become acquainted with complex modelling examples and how to support 
students during their modelling activities. During the modelling days students of grade 9 (15 years 
old at the end of lower secondary level) work on one modelling problem for three full days in school. 
The students can choose the problem out of three problems presented by the research group.  

In the following we describe one example and describe exemplarily one possible solution.  

Modelling problem: The Bus Stop Problem – a possible solution 

We used the bus stop problem in two different versions within various modelling days: the more 
complex one asks for the best positions of the bus stops for the entire public transport system of the 



city of Hamburg. The simplified (but still complex) version only asks for the bus stops of one single 
bus line.  

A solution for the more complex version is based on the idea of covering the city with circles of the 
same diameter in a regular pattern where the centres of the circles are the bus stops. In a second step 
a rule is developed based on the adjustment of the bus stops to the requirements of the city-map. The 
diameter of the circles has to be calculated, which leads to the distance of two bus stops by a certain 
bus line. For this problem there are a lot of possible aspects that can be considered. One possible 
approach is to reduce the bus line to a straight line, where the bus stops all have the same distance to 
the next stop.  

 
Figure 2: Bus line 

In this solution the following aspects were taken into consideration: the average walking time from 
and to the bus station (velocity vF), the time the bus drives (velocity vB) over the distance s and the 
extra time (TH) each stop causes in between. An optimal bus stop distance shall minimize the total 
travel time T(x).  

This leads to the function  and setting the derivation as zero yields the 

following solution  These formulae now can be interpreted according to the 
situation, e.g. in respect of the influence of the distance s or the walking velocity. Students usually 
will not receive this general result using variables, but with set numbers and they often produce a 
graph like figure 3. For a more detailed version of this solution see Stender (2016). 

 
Figure 3: T(x): Travel time depending on the bus stop distance 

Data collection and data evaluation 

Within our study we videotaped ten groups of students who were working in five rooms at higher 
track school in Hamburg (so-called Gymnasium), overall about 40 students participated in the study. 
Over three days the students worked around 15 hours on this modelling problem. We transcribed the 
phases during which the tutor communicated with the students, including a short time before, so that 
we could identify the causes leading to the contact and a few minutes after the communication so it 
was possible to analyse the effect of the tutors’ intervention. In total 238 contacts between tutors and 
individual groups were transcribed and coded using qualitative content analysis (Mayring, 2015). 
Based on the analysis of the codes for the phases before, during and after the intervention the success 
of the interventions could be determined. Detailed findings were presented in Stender & Kaiser 



(2015). Interventions that were not successful or gave too strong content-related help were subject to 
a more detailed examination. In these cases we tried to formulate alternative strategic interventions 
for use in further teacher training. The solution processes of the students were reconstructed based on 
the work of different groups and hereby an idealised modelling process could be reconstructed (for 
more details see Stender, 2016).  

Results of the study 
The reconstructed and idealised modelling process is in the first part of the results section used in 
order to identify, which heuristic strategies students used either intuitively or by referring explicitly 
to the modelling cycle, to which they had been introduced explicitly using the example of the length 
of traffic light phases. All students had worked on this example as introduction. The second part of 
the results section identifies possible interventions by tutors, introducing the students to the usage of 
heuristic strategies or by using these heuristic strategies by themselves in order to support the 
students.  
Reconstruction of heuristic strategies in the solution process  
In the following we analyse this reconstructed idealised solution regarding the use of heuristic 
strategies, which are highlighted in italic. 
The first step of every modelling process is the exploration of the situation, that means as heuristic 
strategy organise your material / understand the problem. The students explored public transport 
maps and collected important places like schools or hospitals. It took a longer time to change this 
point of view to a more abstract representation of the situation, where the bus line is a straight line 
and special places do not matter. In this situation the more abstract representation is less complex as 
a lot of details from reality (traffic lights, curves, crossings, hills, …) are missing. So, here a heuristic 
strategy derived from the modelling cycle is applicable: simplify the situation as much as possible at 
the beginning! Describing the representation of a bus line as a straight line needs another heuristic 
strategy, namely to construct the situation symmetrically. Using this strategy leads to the assumption 
that the distance between two contiguous bus stops should be all the same. Figure 2 shows that even 
more aspects are symmetrical in this model. The transfer from the complete public transport system 
to one single bus line, that is used later to reconstruct the whole transport-system, uses as heuristic 
strategy to break down your problem into sub-problems! This is another way to simplify the situation. 
To understand the problem of the simple straight bus line two extreme cases should be analysed, a 
powerful heuristic strategy: If there are few bus stops, the bus can drive fast without being interrupted 
by time consuming boarding, but the walk to the next bus stop will be very long for many passengers, 
which leads to a high total travel time. The other extreme situation has many bus stops, e.g. every 50 
m. Now the walking time to the bus stop will be short for all passengers, but the bus will need a long 
time for a certain distance, because it is stopping every 50 m. So it becomes clear that between these 
two extremes there is an optimal distance between two bus stops that minimises the total travel time.  
For the students the situation was still too complex and they were not able to formulate a functional 
based approach as they did not have enough experience with these kinds of problems. Now several 
heuristic strategies were employed: use analogies, break down your problem into sub-problems, try 
out systematically or work on special cases. As already mentioned all groups had worked on the 
length of traffic light phases as introductory example, they therefore knew the formulae 21( ) 2s t at



and  ( )v t at  and how to calculate acceleration processes. They reduced complexity again by the 
heuristic strategy  simplify in the modelling cycle setting the distance between two bus stops a x = 
500 m. This heuristic strategy is related to the heuristic strategy of working backwards as x should be 
the result of the calculation but is used here as if the result is already achieved. Then the students 
calculated the driving time between the two bus stops using certain values for the acceleration and 
the velocity of the bus and using analogies from the traffic light problem as heuristic strategy. This 
can be described again as using the heuristic strategy of break down into sub-problems as the 
calculation was not done for the whole bus line, but only for the part between two bus stops. As the 
choice of x = 500 m was made as ad hoc decision it can be described as heuristic strategy of trying 
out a special case. The calculation itself that led to a certain driving time includes several steps and 
is mathematically challenging, but was achieved due to the use of the analogy from the traffic light 
problem. The result of this approach was the calculation of a certain traveling time that unfortunately 
was not the answer to the question of the best distance between two bus stops. So, in a second loop 
through the modelling cycle the students calculated the time for a longer distance of 12 km with a bus 
stop every 500m combining the partial results from above. Again this shows an interesting result but 
no answer to the initial question.  
The next step was to vary the number of bus stops on the 12 km journey using a heuristic strategy for 
optimisation you have to vary the input quantity. The travel time was calculated in the same way as 
before so an analogy was used. The calculation was realised using a spreadsheet and used the heuristic 
strategy trying out systematically different distances. This approach yields the result that with 
increasing number of bus stops the traveling time increases proportionally.  This was expectable as 
one of the crucial aspects – the walk to the bus stop – was not considered up to now. 
Based on this insight an average walking time to the bus stop was included in the calculation while 
the rest of the calculation was analogue to the previous one. This led to a result similar to figure 3, 
but the students still used as variable the number of bus stops, not the distance between two bus stops. 
With the heuristic strategy of a change of representation the students switched to the more meaningful 
variable, again the new calculation was analogue to the previous one. Still everything was calculated 
with a spreadsheet so it had the character of a simulation or just trying out special cases. Only few 
students were able to realise the next change of representation and combined the single steps of the 
calculation into one formula. They developed one function T(x) that included several steps of the 
calculation in one single mathematical term and T(x) works as a supersign, which is another, less 
discussed heuristic strategy. This approach opened the way to use the derivate and calculate a solution 
like it is shown above. This was done with concrete numbers instead of parameters (vF, vB, TH, s, r) 
by one group of students, but in another group there were students able to use parameters instead of 
concrete numbers, which again means the use of supersigns as each character stands for an infinite 
amount of numbers.  
The results from different traveling distances s were compared and it became clear as meaningful 
result that on shorter trips the bus stops may be closer together. This result was validated, a heuristic 
strategy from the modelling cycle, by analysing the map of the public transport in Hamburg. Near the 
city, where people often use the bus only for the short distance to the next metro station, the bus stops 
were much closer than in the outer parts of Hamburg. The calculated distances matched very well to 
the distances in the map. 



The subsequent step was to go back to the public transport network and cover the city with circles of 
a certain diameter. Now the results from the single bus line were used, which uses the heuristic 
strategy to combine partial solutions to get a global solution in order to choose meaningful diameters. 
These diameters were not the same over the whole city according to the previous results and in 
opposition to the initial idea.  
To summarise, the analyses of the modelling activities by the students showed an intensive usage of 
heuristic strategies, partly referring to the various phases of the modelling cycle and partly as intuitive 
usage.  
Heuristic strategies as strategic interventions 

The heuristic strategies that were used quite often intuitively by the students in the modelling process 
can be transferred into strategic interventions by tutors, if the students are not able to continue their 
work on their own. In the following examples for these activities are described, which were shortly 
included in the teacher training beforehand and which were used by the tutors, but not as intensively 
as wished, probably due to their low importance in teacher training.  
In each situation, where an analogue acting to previous work occurs, the following hints are possible: 
“This work is analogue to something you have done bevor!” or “Calculate this in the same way you 
did in the traffic light problem”. 
While constructing the real model the simplification of the situation is essential. “In your first 
approach build the real model as simple as possible – for this, it’s a good idea to describe the model 
as symmetric as possible!”   
The idea to break down the problem into sub-problems can be initiated by “For this problem you have 
to work on several steps – try to solve only one simple part at the beginning and then try to use these 
result for the next steps!” 
The idea of using special cases can be implemented as follows: “If you have no idea how to go on, 
select specific numbers and work with them! Just work on special cases in the beginning!” As shown 
above this strategic intervention is a powerful mean for modelling activities.  
The heuristic strategy For optimisation you have to vary the input quantity can be helpful for students 
who are not familiar with functional thinking. The following hints can be given:  “You calculated 
with 23 bus stops. What happens if you use more or less bus stops?” “Vary the number of bus stops!” 
“If you look for an optimal solution you have to make sure that a nearby situation is less good!” 
To summarise, these examples show how a heuristic strategy can be used to create a strategic 
intervention. Depending on the work of the students, more or less information on the concrete 
modelling problem can be included in the intervention in order to give a less abstract input to the 
students if necessary.  

Summary and conclusions 
The empirical study displays a great variety of heuristic strategies used by the students within their 
modelling activities, a few were developed intuitively, a few derived from the description of the 
modelling cycle introduced beforehand. 
An important result of the study is that strategic interventions often were successful when a tutor 
supported students working on complex modelling problems, because the usage of these heuristic 



strategies is not self-evident. Because the usage of adequate strategic interventions by tutors is very 
hard, it often only will be possible if prepared beforehand. In order to react on the students in class in 
an adaptive way the tutor needs a deep insight into the modelling process, the modelling problem, 
possible solutions as well as heuristic strategies and strategic interventions. 
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Metacognitive modelling competencies are an essential part of modelling competence. When 
working on a modelling problem in small groups, the metacognitive modelling competencies of an 
individual may be less important, but in particular those shared in the group are of major 
importance. In this paper, results of a pilot study are presented which clearly indicate that 
measuring metacognitive group competencies is challenging. Furthermore, it is shown that the 
measurement of metacognitive competencies of individuals is not sufficient to get insight in the 
students’ metacognitive behavior. 

Keywords: Modelling competencies, metacognition, group work. 

Introduction 
Solving complex modelling tasks in mathematics education in school in Germany is usually done in 
small groups, at least in tandems. The reason for this is not the promotion of skills for cooperative 
collaboration - basic skills in this regard are taken for granted. Rather, there is the conviction that 
such complex problems can only be solved by students, if the ideas and skills of many are shared. 
This does not only refer to the so called sub-competencies of modelling competencies, which are 
necessary for getting from one phase of a modelling cycle to the next, but also concerning 
overarching skills such as metacognitive modelling competencies. However, in recent years, 
research on modelling competencies has merely focused on individual students. Thus, group 
dynamics were often neglected. This paper presents first results of a pilot study, in which students’ 
perception and attitude towards metacognitive strategies used by themselves as well as by group 
members were measured by using different instruments for data collection. 

Theoretical background 
Modelling competence 

Working on modelling problems successfully and goal-oriented requires modelling competence. 
Although there is no in general accepted concept about which competencies are comprised, the 
definition of Maaß (2006) is widely accepted. According to her definition, modelling competencies 
include “abilities and skills to conduct modelling processes adequately and in a goal-oriented way; 
as well as the willingness to put these abilities and skills into practice.” (Maaß, 2006) Here it 
becomes obvious that those competencies, necessary for getting from one step of a modelling cycle 
to another, are surely part of modelling competence (Kaiser, 2007). Furthermore, the definition 
given above, indicates that appropriate beliefs and insights as well as comprehensive competencies 
such as working cooperatively in groups, communicating with each other and metacognitive 
competencies are necessary as well. 
Metacognitive competencies  

The concept of ‘metacognition’ is a fuzzy one. Schneider and Artelt (2010) define metacognition as 
“people’s knowledge of their own information-processing skills, as well as knowledge about the 
nature of cognitive tasks, and of strategies for coping with such tasks. Moreover, it also includes 



executive skills related to monitoring and self-regulation of one’s own cognitive activities.” This 
definition provides the most common distinction of metacognition into metacognitive knowledge 
from metacognitive skills (often called metacognitive strategies). Thus, metacognition comprises 
metacognitive knowledge about the specifics of modelling tasks, the knowledge about appropriate 
strategies for working on modelling tasks successfully and knowledge about person’s own skills 
and competencies and as well as those of other people involved the modelling activity. Furthermore, 
the procedural aspect of metacognition contains the use of strategies for planning, monitoring, 
regulating and evaluating the whole modelling process (see Vorhölter & Kaiser, 2016)  

For solving a modelling problem successfully and goal-oriented, both aspects of metacognition 
mentioned above are necessary: A complete lack or only a very low level of meta-knowledge about 
modelling processes and problems can result in considerable problems when working on such tasks. 
For transitioning between the stages of a modelling process and for dissolving cognitive barriers 
while working on them, meta-knowledge as well as metacognitive strategies are needed (Maaß, 
2006). Regarding problem solving processes, for example Schoenfeld (1992) points out the 
importance of planning the solution process. Furthermore, monitoring each other by reciprocal 
asking and answering metacognitive questions while working on a complex task can improve 
mathematical performance as well as metacognitive competencies at the same time (project 
IMPROVE, Mevarech & Kramarski, 1997). This finding is confirmed by the conclusion of Goos 
(1998): collaborative interactions deliver metacognitive benefits. However, not only metacognitive 
strategies referring to planning, monitoring and regulating the modelling process are of great 
importance for solving modelling problems: Blum (2015) points out that reflecting one`s own 
activities is crucial for transferring knowledge and skills from one task to another. 

Important metacognitive strategies for working on modelling problems in small groups 

The influence of metacognition on learning results was investigated in many studies, but the 
conclusions are ambiguous, as mentioned above. A reason for the ambiguity may be the fact, that 
metacognition is normally measured regarding a single person and correlates with her/his own 
mathematical performance. Solving modelling processes, however, is usually done in small groups. 
Therefore, one has to distinguish between the performance and metacognitive competencies of 
single team members and those of the group as a whole. But research on metacognition in the past 
has merely focused on individual processes. „By focusing on the individual student, researchers 
have failed to address the dynamics required for progressive knowledge building by collaborative 
learning groups“ (Chalmers, 2009). However, “team cognition emerges from the interplay of the 
individual cognition of each team member and team process behaviors.” (Cooke, 2004) So to solve 
a modelling problem successfully, not the individual, but the group competencies are crucial: 
Students have to share their knowledge and their competencies (Artzt & Armour-Thomas, 1992). 

Thus, for working on modelling problems successfully in small groups, metacognitive strategies are 
of great importance. In previous studies at the University of Hamburg the following strategies were 
identified as those, that were used by students as well as classified as useful or even necessary:  

 Strategies for planning:  
▪ P1: Subdivide the solution process in several steps, 
▪ P2: Allocate parts of work to different team members, 



▪ P3: Structure the solution process according to the time available, 
▪ P4: Choose useful solution strategies 

 Strategies for monitoring and, if necessary, for regulating the working process  
▪ M1: Identify different kinds of red-flag-situations 
▪ M2: Notice incomprehension 
▪ M3: Keep track of the time available 
▪ M4: Check the work habits 
▪ M5: Reconsider solution strategies  

 Strategies for evaluating the modelling process to improve it 

▪ E1: Evaluate the strategies used  
▪ E2: Reflect on the working habit 
▪ E3: Validate on the solution (cf. Schroeder, 2013) 

The identified strategies were used for developing instruments for measuring students’ use of 
metacognitive strategies while modelling, as shown in the next paragraph. 

Measuring metacognitive strategies  

In general, for measuring procedural metacognitive modelling competencies, two possibilities exist: 
Online-methods such as thinking aloud, observations, eye-movement or logfile registration enable 
process diagnostics concurrent to task performance. Thus, a deeper look into the metacognitive 
behaviour of students is possible without disturbing and influencing them too much. However, these 
methods cost a lot of time and money. Therefore, they can only be used for small samples. While 
using offline methods like (prospective or retrospective) interviews or questionnaires, the results 
rely on the students’ self-reports. These methods bear the risk that strategies may be used 
unconsciously or their use may be forgotten by the students. Furthermore, the item formulation may 
remind the students on the usefulness of certain strategies. Consequently, they will answer 
according to their metacognitive knowledge and not on basis of their behaviour. However, in 
contrast to observations and thinking-aloud-protocols, processes which were not verbalized because 
of different reasons can be measured with the help of questionnaires or interviews. In addition, 
questionnaires can be used for bigger samples. (Veenman, 2011). 

For obvious reasons, the development of a questionnaire is desirable. For doing so, the identified 
metacognitive strategies mentioned above were used as a basis. The questionnaire used in this study 
consists of 40 items divided into the sub-processes of planning, monitoring, regulating and 
evaluating, 27 of them concern individual metacognitive strategies, 13 items regard group 
strategies. Students are asked to judge their use on a five-point-scale. Furthermore, students are 
asked to judge their motivation to work on the task, the task difficulty and their satisfaction with 
their small group. To give an impression of the questionnaire, selected items and the relation to the 
coding guideline presented above are shown in Table 1. 



 

 

Item 

Relation 
to coding 
guideline 

1.1 I have thought about how to solve the Problem best on my own. P1 

1.2 We tried to recognize possible steps together. P1 

2.1 I questioned my own ideas. M5 

2.2 I questioned the others’ ideas. M5 

3.1 When we found a solution, I reconsidered the whole solving process.  E1 

3.2 When we found a solution, we were wondering what we can do better next time. E2 

Table 1: selected items of the questionnaire 

Research questions 
As presented above, metacognitive competencies seem to be necessary for working on modelling 
processes successfully. Therefore, teaching units for fostering these kinds of competencies are 
desirable. To evaluate these teaching units, instruments for measuring metacognitive competencies 
are needed. Thus, a questionnaire for measuring students’ individual metacognitive modelling 
competencies as well as those of a small group was developed. In the study presented in this paper, 
the students’ self-reports in the questionnaire were compared to experts’ ratings on the students’ use 
of metacognitive strategies while working on a modelling task and to students’ self-reports in an 
interview afterwards. Hence, the research questions of this study are: 

 For which metacognitive strategies – at an individual as well as at group level - do the 
students’ statements in the questionnaire correspond with experts’ ratings as well as with 
students’ statements in interviews?  

o Which metacognitive strategies can be measured more reliable by students’ self-
reports? 

o Is any further information required to interpret students’ self-reports? 
o Which metacognitive strategies can be measured more reliable by experts’ ratings?  

Design and methods of the study 
For answering these questions, students of grade nine of three different classes were introduced to a 
modelling cycle and then worked in groups of four on a modelling problem. The working process 
was videotaped. After working on the problem, the students were asked to fill in the questionnaire 
presented above. While doing so, they were not allowed to speak to each other and discuss the 
items. In the afternoon, students were interviewed using a stimulated recall-interview (Gass & 
Mackey, 2000). For this, selected scenes from the video were shown to them and they were asked to 
comment them. Afterwards, some questions about their attitude towards the importance of 
metacognitive strategies were posed.  

To answer the research questions, the videos as well as the interviews were analyzed using the 
items of the questionnaire as coding guideline, following qualitative content analysis (Mayring, 



2010). Those codings were compared with the answers in the questionnaires. In the next section, 
first results from the study of one of the small groups are presented.  

First results of the study 
The group consists of four girls, which are named Anna, Julia, Olivia and Lea in this paper; three of 
them were interviewed afterwards. Anna, Julia and Olivia all mentioned in their interviews that they 
were used to work together in this group; Julia indicates in the interview, that Lea is a new student 
and is not familiar with the other students. She assumes that this might be the reason for Lea not 
taking part during group work.  

In the following, special attention is paid to items that were answered very differently by the 
students within the small group or items for which the different sets of data provide different 
information. Thus, students’ statements in the questionnaire concerning selected items of the sub-
processes of planning, monitoring and evaluation will be compared with the respective statements 
in the interviews as well as with outcomes of the analysis of the videos. An overview of the 
students’ statements in the questionnaire is shown in Figure 1. 

Figure 1: selected students’ judgements in the questionnaire 

In the questionnaire, Julia and Anna indicate that they worked out a plan own their own before 
planning the solving process together, whereas Olivia only did this partly and Lea did not plan on 
her own at all. Their perception of developing a plan in the whole group differs (see Figure 1). 
Thus, questions on the causes of these differences arise. When analyzing the video, one can clearly 
identify a scene in the beginning, in which the group is discussing how to proceed. You can see that 
Anna is the one, who develops a plan, whereas Julia and Olivia are not convinced and ask several 
questions. Before their questions are answered satisfactorily and before they are convinced, Anna 
starts to work. This scene was shown to the girls during the interview. When asked to comment on 
the scene, Olivia did not say much about the planning process: 

Interviewer: How did you proceed in this situation? 

Olivia:  I don’t really know. Actually, Anna said we should use a scale and then we knew 
what to do. 



Only when asked about the necessity of having a plan, she talked about the importance of planning: 

Olivia: Most times, planning is better, because you then know this is the next step, and 
then that step.  

Anna on the other hand spontaneously commented her behavior: 

Interviewer:  In this scene, you have decided how to solve the problem. How did you decide? 

Anna:  I said how to, I don’t know. We have. I had the idea of scale and then, Julia 
wanted to calculate the volume. But then we decided for the scale. 

Summing up, the statements in the questionnaire express the level of conviction concerning Anna’s 
plan. This suggests that the students’ perspective on group planning was measured correctly, 
although the statements regarding group planning differ. 

Regarding the sub-process of monitoring, both Anna and Olivia state in the questionnaire that they 
have not or only to a very small extent questioned their own ideas, but to a higher extend others’ 
ideas (Table 1, 2.1 and 2.2). Comparing this data with those from expert ratings and from the girls’ 
statements in the interview, different reasons for these statements are revealed. By analyzing the 
video of the girls’ working process, Anna can be described as the one, who brought in the most 
ideas and managed the group in some ways. Although she wasn’t aware of doing so during group 
work, she recognizes her behavior in the interview when asked to comment the scene:  

Anna: I said that doesn’t matter, I took over power and blocked other’s suggestions and 
explanations. Seeing my behavior frightens me, I did not realize I was doing this.  

Thus, her statement in the questionnaire indicates that she was a group leader that did not approve 
of others’ ideas, because she was very convinced of her own. In contrast, Olivia did not participate 
with her own ideas or took over any other active responsibilities. However, it becomes clear from 
several statements that she was monitoring the whole process and questioned the process if 
necessary. But based on her statements in the interview, it becomes clear that she is not aware of 
doing so herself:  

Interviewer: And what about looking about one’s own shoulder? […]  

Olivia: I don’t think so. 

Interviewer: Why not? 

Olivia: I don’t know. We are a group that simply work. And then, ready. 

Thus, Olivia uses metacognitive strategies of monitoring unconsciously. This makes clear that it is 
sometimes necessary to have further information about the group processes and the different roles 
of the students. One possibility are ratings by experts. However, those are not sufficient solely, as 
one can see in regards to Lea. She did not say a word while working on the problem, but states to 
have monitored the whole process. If her judgement is right, it cannot be proved. But as the answers 
from the questionnaire do not count regarding marks and it was clear to the students that their math 
teacher will not get their judgements, you can state that Leas statements are correspondent with her 
perception of her own behavior. 



The students’ statements about evaluating the whole modelling process correspond and match with 
the researchers’ analysis completely: The group did not evaluate their working process significantly 
(except of Julia). 

Conclusion and outlook 
The selected results of the pilot study presented above illustrate in a considerable way the 
importance of sharing metacognitive competencies in a group: Presumably, none of the girls would 
have solved the task on their own. Even Anna, the “group leader”, needed Julia and Olivia for 
monitoring and validating the modelling process. However, it also becomes clear that measuring 
students’ metacognitive competencies is challenging. Measuring metacognitive group competencies 
is even more challenging. In this study, different methods for measuring the use of metacognitive 
strategies while working on a modelling problem in small groups were used: students had to fill in a 
questionnaire and were interviewed. Furthermore, their behavior was judged by researchers.  

The presented results clearly show that some answers in the questionnaire are not consistent with 
statements in the interviews or with the analysis of the students’ working process. In addition, 
students’ judgements about incidents during group work differ. 

As presented above, almost all differences could be explained by consulting not only one, but 
different items or by using all three datasets. However, not all students, who take part in the main 
study (about 600), can be interviewed nor can their group work be analyzed. Therefore, it should be 
analyzed next, if there are any key or filter-items in the questionnaire that give information about 
how to judge other items. In accordance, the items have to be identified that can be rated by experts 
better than by students themselves and it has to be analyzed whether this is a question of special 
items in general or a question of students and the role of the students in small groups.  
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Introduction 
Beginning with the first Pisa study in 2000 (OECD, 2001) there is a worldwide discussion of an 
appropriate education in the so-called STEM subjects. One cause was the alarming fact that in many 
countries the majority of secondary school students fail to reach proficiency in math and science 
(Kuenzi, 2008). One significant reaction to the above mentioned debate was to strengthen the role of 
mathematical modeling in teacher training and the curricula. In Germany, this can be seen from the 
fact that mathematical modeling is mandatory in most of the recently introduced master programs 
for mathematics teachers. Moreover, there is a strong increase in the number of publications on 
mathematical modeling of real-world, realistic or authentic problems over the past decade. The 
following definition is due to Bock & Bracke (2013): 

Definition 1: An authentic problem is a problem posed by a client, who wants to obtain a solution, 
which is applicable in the issues of the client. The problem is not filtered or reduced and has the full 
generality without any manipulations, i.e. it is posed as it is seen.  A real-world or realistic 
problem, is an authentic problem, which involves ingredients, which can be accessed by the 
students in real life.  

Real-world problems and authentic problems are used and studied in many different modeling 
activities such as the TheoPrax method (TheoPrax), modeling weeks and modeling days, the Junior-
Engineering Academy (Bock & Bracke, 2013), Fraunhofer-MINTeC1 Talents (Bracke et. al., 2015). 
Especially in TheoPrax and also the modeling activities in vocational education (e.g. Wake, 2014) 
the activities aim towards a specified product from the beginning. In product management a product 
is a deliverable or set of deliverables that contribute to a business solution. In (Kotler et.al. 2006) it 
is defined as “anything that can be offered to a market that might satisfy a want or need” (p. 230). In 
the client-provider situation the product thus is the good sold to the client by the provider. It, 
therefore, is directly related to the needs of the client meaning the task the client gives to the 
provider. In the real world, e.g. in industry, an actual client is not really interested in mathematical 
models – very unfortunate to most of mathematicians - but mostly in a tool or a strategy he can 
directly use for his purposes. In our opinion for modeling activities having real-world or authentic 
problems this is a dimension which is to be included into the existing modeling process. For 
authentic and real-world problems we therefore define the notion of a product. 

Definition 2: In a mathematical modeling situation (with an authentic and real-world problem) a 
product is a deliverable in the language of the client which satisfies the needs incorporated in the 

                                           
1 See also:  Fraunhofer MINT-EC Talents programme. http://www.fraunhofer.de/de/jobs-karriere/nachwuchsfoerderung 
/mint-ec-talents.html  and MINT-EC e.V. http://www.mint-ec.de 

 



task given by the client to the provider in such a way, that the client can use it directly for his 
purposes.  

Research questions 
At the University of Kaiserslautern modeling activities including products have been performed for 
years. Even in the first modeling week in 1993 one can find in 3 of 8 projects concrete products 
such as computer programs and strategies. It is planned to study how modeling tasks and the 
development of products changed during this time based on the reports of past modeling activities. 
It is to expect that both changed with the introduction of computers and the increase of 
programming skills. For this purpose we intend to analyze existing material from the past 23 years 
on how strong the focus on project orientation in the modeling tasks have been. The use of 
computers during the modeling weeks is well documented, however the data is not enough for 
empirical studies. Thus for a more involved study we plan to gather material from other universities 
involved in modeling weeks. Furthermore we want to investigate how the client action during the 
modeling process changes the whole process of the modeling cycle and the product itself. A product 
can in reality be produced without a modeling cycle; on the other hand the modeling cycle can be 
performed without producing a product. However the quality of the product can be improved by an 
iterated mathematical modeling process in most cases. The client in this case plays the role of an 
external control in the sense that he/she will accept or not the product. He/she can also ask for new 
features or ask for specific extensions.  To study this we plan to apply different approaches (with 
client/without client) to different but similar groups in modeling activities. The performance of the 
group should be investigated via video analysis, such that we can estimate how often a modeling 
cycle was performed. 
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In the Mathematical Working Space (MWS) model, an epistemological plane and a cognitive plane 
are introduced with a focus on their interactions related to semiotic, instrumental and discursive 
dimensions (Figure 1a). The model is devoted to the analysis of mathematical work with, 
specifically, paradigms guiding and orienting the work. Numerous researches are based on the 
MWS model and the reader may refer to special issues in journals such as Bolema 30(54) and 
ZDM-Mathematics Education 48(6) in which an introduction to the model is given in the survey 
paper. Nevertheless, until now, few studies on modeling tasks have been based on the MWS model 
and we want to highlight recent researches, in particular coming from PhD studies within our team. 

Based on the modeling cycle (figure 1b) proposed by Blum and Leiss (2005), we suggest, in the 
poster, some adaptations which help to understand how MWSs can be used. The whole modeling 
process is not taken in its whole, and we focus more on how the analysis can be refined, mostly 
between phases 3 and 5 of the cycle, in relation to activity in different mathematical domains. 

 
Figure 1a: MWS diagram; Figure 1b: modeling cycle (Blum & Leiss, 2005) 

Nechache (2016) suggests describing the modeling work in probability situations, with the MWS 
framework. She identifies the importance of the theoretical referential of the MWSProba in the 
constitution of the real model. Then, for the analysis of the mathematical part, she fully uses the 
MWSProba. In the same way, the MWS model can be used for studying other mathematical domains. 

Derouet (2016) proposes a similar type of use for the mathematical part, but she associates sub-
phases to the stages of the cycle in order to investigate the progress of the modeling process. She 
isolates a part of the cycle containing “real model” and “real results” that she names pseudo-
concrete. It allows her to identify, in a modeling situation related to continuous probability, a work 
within the MWSProba in various working paradigms. 

In these studies, the MWS model allows to refine the analysis of the mathematical part by taking 
into account a first horizontal mathematization followed by a second vertical mathematization 
allowing to strengthen the mathematical model. Other types of change, or transition, are possible, 



like the change of MWS or mathematical domains. In his study in relativist kinematics, Moutet 
(2016) suggests an extension of the MWS model to take into account a change of matters. He 
considers a second epistemological plane for physics, and he studies the interactions between these 
two planes and the cognitive level. 

In these studies, simulation associated with digital models can also be considered as an important 
stage of the modeling process. It plays two different roles. The first one is in relation to the 
development of the real model with a simulation close to the initial situation (urn model or a 
calculator which proposes rolls of dice or coin, in probability). The second role presupposes a 
stronger mathematical expertise in the MWS of the domain at stake as, for example, the 
implementation of an algorithm of dichotomy in analysis. 

Hence, the use of the MWS framework can enrich and strengthen the analysis of the modeling 
process based on the study of a cycle (figure 1b) in connection with a first resolution of the problem. 
It constitutes a first interaction between MWS and the modeling cycle, as a first cycle1: The 
modeling problem has been mathematized and it is possible to identify the epistemological and 
cognitive components of the MWS in relation to the student’s activity and realization in the 
different domains and paradigms. But we can also, in a more didactic way, think of a second cycle 
aiming at a better understanding of the model and of the mathematical objects introduced to solve 
the problem by students. In that case, the modeling task proposed by a teacher aims not only at 
solving a real problem but more deeply at exploring and understanding the numerous uses of a 
mathematical notion, enriching the MWS, in particular the theoretical referential. This is what we 
are developing in a work on progress on the exponential function. 
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The research aims at introducing modeling tasks with an ultimate goal to engage students more 
actively into learning mathematics through tasks that are biologically ‘colored’. My focus is on the 
individual progression (if any) of students’ mathematical competencies during a sequence of 
modeling sessions as part of their first year mathematics. My goal is to explore the nature of 
progression within the competency profile of participating student, the relation between modeling 
processes and this progression and what transformations are applied in these sets of competencies. 
 
Keywords: Mathematical modeling, mathematical competencies, tasks, progression. 
 
Short description of the research topic 

The literature provides documentation of learning benefits by engaging students in mathematical 
modeling: educational benefits (Kaiser et al., 2006); students engaged in modeling may develop a 
deep understanding of the content and an ability to solve novel problems and that it can bring 
students into alignment with the epistemic aims of science and help them develop more 
sophisticated ideas within the area of study they are focused on. I adopt a design based research 
approach in which an iterative process of design, implementation and analysis takes place. 

The research questions 
 
RQ_1) What is the nature of progression in a student’s competency profile through the course of the 
mathematical modeling unit? 

RQ_2) Considering a set of competencies (competency profile) as a body of knowledge, what 
transformations are applied in the course of the modeling sessions? 

Theoretical and methodological framework 
My theoretical approach is informed by the anthropological theory of the didactic (Bosch & Gascón 
2014) and, in particular, by the distinction between four bodies of knowledge: scholarly knowledge; 
knowledge to be taught; knowledge taught; and knowledge learnt. A significant work on 
mathematical and modeling competencies has been done by many researchers (e.g. Maaß 2006; 
Blum & Kaiser 1997) while Niss (2003) created an 8-fold (KOM project) system of mathematical 
competencies. I decided to proceed to an adaptation of the KOM model adjusted to the above 
mentioned literature and the specific context I am working on: students of a Biology Department. 
Part of my analysis will be based a 3-D (radius of action, degree of coverage and technical level) 
model of progression for each competency from Niss and Højgaard (2011). I have also constructed 
a coding system in order to “attach” specific students’ expressions to a certain mathematical 
competency. These constructs form a first set of tools for data collection and analysis.



The context and methods for data generation and analysis 
The context (or arena) of this study is the Biology Department of a Norwegian university and a 
mathematics course for first year Biology students. My main study took place with first year 
Biology students. Modeling sessions occur weekly during the first semester. These sessions (for 
groups of 3 to 4 students) are 50 minute in length and supplement lectures to the whole cohort of 
students. Tasks in the sessions are designed in five 2-week blocks focused on a subset of 
mathematical competencies that students should bring into action in order to complete the task. 

To address RQ_1 I will, as above, explore selected students’ small group discourse activity. Data 
were collected through audio-visual recordings of students working on tasks synchronized with 
their writing (using Smartpens which records audio and visual data accompanying written data). At 
RQ_2 

I am addressing the question: what is the “offered body of competencies” (an a-priori analysis). For 
the next three steps I will use my data to provide answers or useful directions. A task-design 
analysis, for example, can provide what the existing literature provides on population dynamics and 
exponential growth (scholarly knowledge) but also which task was finally decided to be presented 
(knowledge to be taught) and this will happen for every different modeling block. 

Potential significance and contribution 
 
My research will contribute to the following areas (1) dynamic competencies profiles for students, 
(2) a critique of Niss’ (2003) 8-fold system of mathematical competencies, and (3) a description, in 
the context of mathematical modeling in the Biological Science, of ATD’s four bodies of 
knowledge. 
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Improving the learning of students has been a concern in research in Mathematical Education. 
Consequently, didactical aspects and tools for teaching of a successful mathematic, have received a 
growing attention in different studies. The Didactical Analysis (DA) is considered by Rico, 
Lupiañez & Molina (2013), as (a) a tool for teaching training; b) an instrument for curricular 
innovation; and (c) a methodological and research tool, this latter considered in this study. The DA 
is a cyclic process which implies four sub analysis: content analysis, cognitive analysis, instruction 
analysis and performance analysis (Gómez, 2002). In the content analysis, we find the 
Phenomenological Analysis (PA) of a concept, that consist of "describing what are the phenomena 
for which (the concept) is the means of organization and what relationship has the concept or 
structure with these phenomena" (Puig, 1997, p.62). Freudenthal (1983) names didactical 
phenomenology to the phenomenology that is characterized by consider the concept as a cognitive 
process, as a subject of teaching and to be learned by students, that beside organizes phenomena in 
the student`s world and proposed in the teaching of concept. For this author PA’s aims is to serve as 
the basis for the organization of mathematics teaching. 

The intention of this poster is to present results of a PA of line concept on the Cartesian plane, 
based on the DA of this concept, to answer: what is the knowledge related with the line used for? 
The data were collected between 2013 and 2014 through a books selection of mathematical and 
didactics texts of secondary level. The PA of the line was carried out by documental analysis of 
these texts and its construction was realized in three phases: (i) define mathematical substructures of 
line concept on the Cartesian plane (mathematical-world), (ii) define the phenomena that each 
mathematical substructure organizes (real-world), (iii) establish the relationship between 
substructures and phenomena.  

Our proposal consists to show that from this PA, mathematics teachers can organize the teaching of 
the line on the Cartesian plane promoting the mathematical modelling process of Borromeo Ferri 
(2006), where phenomena and mathematical substructures are part of different sets, but they are 
related each other according to the proposed steps in the modelling process. In our study, we 
identified four contexts that lead to this modeling process, each one referring to phenomena and 
substructures of how organize the contents of line: (C1) the slope of a linear trajectory with respect 
to a fixed reference line, (C2) the linear relationship that occurs between two magnitudes, (C3) the 
behavior between two or more linear relationships, (C4) the distance between two or more objects. 

For instance, in C1, a possible real-world model related to the mathematical substructure of the 
slope of the line is as follows: 



The picture presents the information of a car when climbing p a road. In this one is 
showed the position of the car in two 
different moments, when it has moved 50 m 
and 350 m respectively. 
What is the slope and angle of inclination of 
the road?  
What is the relationship between the slope 
and the tangent of the angle of inclination? 

In relation to C2, a possible real-world model related to the mathematical substructure of the linear 
equation of two variables (or the equation of two variables of first degree) is the following: 

Carlos has a bank account where he earns 0,5% interest from the initial savings each 
month. If Carlos opened the account with 2000€ ten months ago, how much money will 
Carlos currently have? How many months are needed to have 8000€? 

In the poster, we would present examples of each context, highlighted the details to consider them 
like starting points to promote the modelling process in the learning of the line in the Cartesian 
plane.  
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Introduction 
This chapter introduces the contributions discussed during the working sessions of the TWG8 
“Affect and mathematical thinking” in CERME 10.   

In this edition our TWG has been enhanced by the inclusion in the group and the contribution in the 
discussion of the researchers from the TWG7 “Mathematical Potential, Creativity and Talent”. 

The quantitative data about the participation to our group confirms the interest toward affective 
issues in the field of Mathematics Education: 41 manuscripts were initially submitted to the groups, 
26 were accepted for the discussion, and finally in these proceedings 24 papers and 2 posters are 
included.  

Moreover, our group confirms its spirit of inclusion: 12 different countries were represented and 11 
newcomers welcomed. 

The papers (24) and the posters (2) were presented and collectively discussed in the first six 
sessions. Presenters had 10 minutes (5 minutes for posters) to introduce the key-ideas of their 
papers, then we developed a 10 minutes discussion. At the end of each session, 20 minutes were 
used to discuss the main aspects emerged in the section. 

In the fourth section, one hour has been devoted to the presentation of the ERME Chapter about 
affect: the draft of the chapter was been sent to all participants before the conference, and each 
participants had to share two questions, comments or criticisms about this draft. The collected 
comments are been the thread of the discussion related to the chapter. 

In the seventh and last session, we discussed the main themes emerged during our previous work, 
developing the structure of the report for the final day.  

The issues emerged in TWG8 at CERME10 and the related discussion  
The analysis of the affective focus of the papers discussed in our TWG reflects the current diversity 
of interests and approaches inherent in the field of affect research. Many different affective 
constructs emerged: beliefs, motivation, values, emotions, needs, relaxed, memory, aesthetic, 
confidence, meta-affect, identity, self-efficacy, meaning, motivation, values, images, views, flow, 
perseverance, tolerance, interest. 

It is important to underline as many of these constructs are clearly related, sometimes – and this is a 
well-known critical aspect in the affective research – different labels are used to indicate the same 
constructs, and vice versa. Sometimes the same term is used in a very different meaning by different 



researchers. As we will underline later, this communicative issue is particularly critical for the 
emotions. 

In our discussions, we underlined the lack of conceptual clarity again, and called researchers to use 
a clear definition in their studies and to label the constructs appropriate.    

Despite this variety, we recognized five recurrent and crucial dimensions involved in the discussion 
of our group: students, problem solving, self-concept, emotions and context.  

In the following, we briefly discuss some aspects related to these five dimensions.  

Students 

Enriched by the contribution of researchers from the TWG7, we have long debated about the so 
defined “achievement problem”, discussing around the following clearly related questions: 

 Looking at school transitions: what are the effects of these transitions on school 
achievement? How and why do the parameters of the school achievement change 
dramatically from a school level to the next?     

 What is the relationship between school achievement and mathematical talent? 
 What is the distinction between low and high achievers in mathematics apart from the 

grade? 

We also argued as it would be interesting to develop research around the above themes, looking at 
students who are studying mathematics in different contexts (for example modelling, IT 
environment, etc.). 

Problem solving  

There is a known and long tradition of research about affective construct and problem solving. This 
kind of research it is particularly important for our field, since it shows two crucial aspects: the strict 
relationship between affect and cognition (problem solving activities surely involve cognitive 
aspects but also strong emotional reactions); the relevance and peculiarity of the research on affect 
in the specific context of mathematics: indeed problem solving is one of the main activity for 
mathematicians. 

As usual, one of the main issues is how teachers can create the context in order to develop the 
appropriate mathematical activities and environment for positive affect, increasing motivation and 
also performance. In several discussions within our group, it emerges as problem solving is not only 
an essential activity for developing the mathematical competence, but it has also the potential to 
draw attention and to motivate students, because – in some sense – problem solving is one of the 
beautiful side of math (the eminent mathematician Ennio De Giorgi used to say: a nice problem, 
even if you do not solve it, accompanies you).  

Many papers presented in our group stressed the relevance of two aspects in order to take advantage 
of the affective potential of problem solving.  

The first one is related to the setting: here setting is understood in a broad meaning, on the one hand 
we mentioned the classroom climate – a positive climate is needed to develop significant problem 
solving activities, in particular it appears crucial to not identify problem solving activities and 



assessment – and the context (for example the spatial organization of the classroom). On the other 
hand, we mentioned the organization of the problem solving activities with the promotion of 
collaboration and discussion among students.    

The second one is related to the choice of the mathematical problem. It is confirmed as only 
cognitive demanding (and not routine) problems can foster students’ engagement, but, above all, 
can challenge students shifting their attention from products to processes. In particular, it is also 
crucial the monitoring of the possible imbalance between skill and challenge that student can 
experience during problem solving. In this setting, problem solving can be a tool to involve high-
achievers, but also low-achievers, in mathematical activities and increase positive affects towards 
mathematics.  

Self-concept 

The fact that students/teachers self-concept strongly affects their choices, the effort they devoted and 
their perseverance in doing some specific activity is one of the fundamental points in our field. 
Therefore, it is not a surprise that many discussions in our group focus around self-concept and 
related constructs, such as: self-efficacy, self-perception, self-regulation, identity, personal meaning.  

In particular, three aspects related to the self-concept have been analysed and discussed in this 
edition of the TWG8:  

 How students’ self-concept influences their interpretation of the mathematical environment; 

 How the context affects the self-concept, in particular it emerges the idea that context 
provides available identities; 

 The connection between the self and the emotions (in the context of mathematics education). 
Self has seen as a filter for interpreting experiences. 

Emotions  

Obviously the study and the discussion around emotions is a must in the group of affect.  

In particular, we discussed some crucial dichotomy related to the concept of emotion:  

 Emotions sometimes are a cause for some didactical outcomes, but sometimes are a 
symptom. In the first case, we see positive emotions as an educational goal, in the latter 
emotions are an indicator; 

 Emotions have a double nature: more rapidly changing state-aspect and more stable trait-
aspect. The study of state, as opposed to trait, is necessary to give a more detailed 
description of emotional experiences in the mathematical teaching-learning process; 

 Emotions can be the cause for opposite pathways during problem solving, or more in general 
mathematical activities (go on vs. give up). 

As usual, we also discussed how deal with two classical critical issues in the research about 
emotions: one related to the observation and the other related to the communication. 

Emotions, in truth as many other constructs, are not directly observable, therefore we never observe 
emotions, but we infer them from some indicators. Sometimes we collect information about 
emotions through self-reports, and – already at this stage – communication issues intervene; studies 



developed in different countries stress the level of emotional illiteracy of a large part of the 
population: it is difficult to reflect about emotions, and it is more difficult to have the dictionary to 
communicate them.  

The communication problem involves the field of the research not only for the difficulties related to 
the emotional illiteracy, but also for the internal communication (the communication between 
researchers): as a matter of facts, the labels for emotions have different shades in every language, 
and sometimes they are associated to a different meaning.  

Context  

Affective issues are mainly social for their nature: as we have seen, context plays a crucial role in 
the development of affective reactions. For this reason, context is always been one of the leading 
actors in discussion within TWG8. 

A still open problem is the exact definition of context: what is the context? We are convinced that 
the context is dynamic in nature (it depends on the group/individuals), and this dynamicity makes 
more complex to circumscribe it. 

In the group discussion was observed that in the context of emotion, the term ‘culture’ needs to be 
‘unpacked’ and broached not from the assumption that cultures are uniform, but rather from more 
dynamic conceits such as put forward by identity theories. 

Some studies in this edition focus on the difficulties related to the transition from a context to 
another one (for example in the school transition), analyzing how and how much these context-
transitions change affect. 
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Mathematics education researchers utilize different theoretical frameworks to study the role of 
affect in learning mathematics. This paper utilizes a discursive framework (Evans, Morgan, & 
Tsatsaroni, 2006) to study middle-achieving students' emotions in learning, utilizing technology, the 
topic of 'the quadratic function as a product of two linear functions'. The students' learning was 
videoed and then transcribed to be analyzed according to the discursive framework. The research 
results indicate that members in the middle-achieving groups claimed the collaborator positioning 
in order to learn the mathematical topic using mainly behavioral, social and cognitive processes. 
Leaders claimed their positioning through carrying out processes related to the different aspects of 
learning, mainly the cognitive, metacognitive, meta-emotional, social and linguistic aspects. 
Dominant emotions in the groups' learning were frustration, enjoyment and content.   

Keywords: Discursive framework, positioning, emotions, middle-achieving students. 

Introduction 
The affective aspect is a growing area in educational research due to its relationships with other 
aspects of students’ learning, especially the cognitive one.  In the present paper, we study middle-
achieving students’ emotions in relation to their positionings when they learned the quadratic 
function as a product of two linear functions using dynamic software. In a previous research, we 
examined students’ positioning and emotions in one group learning geometry (Daher, Swidan & 
Shahbari, 2015), where the group consisted of two high-achieving students and one middle-
achieving student. Following that study, we wondered how emotions and positioning are 
experienced by groups consisting of only middle achieving students. This paper intends to examine 
this issue, using the discursive framework (Evans, Morgan, & Tsatsaroni, 2006).  

Emotions in mathematics education  

Polya (1957) addressed the necessity to consider emotions as they influence the problem solving 
process. Later, especially in the 1980’s, researchers considered affect as a significant component of 
students' mathematical problem solving (e.g., McLeod, 1988; Schöenfeld, 1985). Emotion is one of 
the fundamental elements of the affective aspect (Hannula, 2004). Hannula (2004) describes 
emotions as connected to personal goals. Furthermore, emotions, when managed appropriately, 
become a potential tool for effective thinking rather than a disturbance to this thinking (Antognazza, 
Di Martino, Pellandini, & Sbaragli, 2015; Salovey & Mayer, 1990). In the present research, we 
intend to study, by using the discursive emotions and positioning framework, middle-achieving 
students' emotions when they utilize technology to study Algebra.  



The discursive positioning framework for studying students' emotions 

Positioning is defined as “the discursive process whereby people are located in conversations as 
observably and subjectively coherent participants in jointly produced storylines” (Davies & Harré, 
1999, p. 37). Evans, et al. (2006) suggest this discursive positioning framework for studying 
students' emotions. This framework assumes that meaning making occurs in social practices, using 
semiotic resources. Social practices have an emotional dimension that helps maintain social identity. 
Moreover, empirical data in this framework is seen as text, the analysis of which demands attention 
to its context(s). This analysis entails a combination of structural and textual phases that each 
informs the other. The structural analysis considers the positions available to or claimed by the 
participants. Positions are associated with power in relation to others, as well as with differing 
values within the discourse, which creates spaces within which emotion may arise. Usually, there is 
more than one available position for a participant, either within a single discourse or several 
competing discourses. Evans, et al. (2006) describe the positionings taken care of in the structural 
analysis: Helper and seeker of help, collaborator and solitary worker, director of activity and 
follower of directions, evaluator and evaluated, insider and outsider. 

The textual analysis considers the exchange of meanings. This phase has two functions (Evans, 
2006): (a) showing how positionings in social interactions are actually taken up by the participants, 
and (b) providing indicators of emotional experience. The textual analysis has two stages. In the 
first stage, the focus is to identify the interpersonal aspects of the text that establish the positions of 
the participants. Indicators at this stage include reference to self and others, reference to valued 
statuses (e.g. claiming understanding or correctness), modality (indicating degrees of un/certainty), 
hidden agency (e.g., passive voice) or repetition. For example, leadership is indicated by 
demonstrating knowledge or meta-emotional behavior (e.g., trying to change the negative emotions 
of the group members). The collaborator position is indicated by the activity of a group member, as 
answering questions or doing actions in response to events occurring during the group learning. 

The second stage of the textual analysis attends to (a) indicators of emotional experience that 
include: direct verbal expression (e.g., ‘I feel anxious‘), use of particular metaphors (e.g. claiming to 
be ‘coasting’ ), emphasis by words, gesture, intonation, or repetition, body language (e.g., facial 
expression); (b) indicators suggested by psychoanalytic theory, as indicators of defenses against 
strong emotions like anxiety, or conflicts between positionings (as ‘Freudian slips’), surprising error 
in problem solving, behaving strangely (as laughing nervously), denial (e.g., of anxiety). 

Research rationale and goals 

In spite of mathematics education researchers' acknowledgement of the role of affective aspects in 
mathematical education in general and mathematical problem solving in particular, research related 
to this aspect is still not widespread (Antognazza et al., 2015).  We intend to study emotions in 
problem solving using the discursive framework developed by Evans, et al. (2006). In more detail, 
we intend to analyze the positionings taken by ninth grade students and their related emotions when 
learning in groups, with the help of GeoGebra, the quadratic function as a product of two linear 
functions. Doing so, we introduce to the discursive framework the different aspects of learning; as 
the meta-cognitive and meta-emotional aspects. This will shed more light on the factors that 
influence middle-achieving students' experiencing of positioning and emotions.  



Research question 

- How are positionings taken up by middle-achieving ninth grade students, working in a group to 
learn the quadratic function as a product of two linear functions, in the presence of technology? 

- How are middle-achieving ninth grade students’ emotions associated with the positionings that 
they claim, when learning with technology the quadratic function as a product of two linear 
functions? 

Methodology 
Research setting and participants  

In a previous research (Daher et al., 2015); we analyzed the affective aspect of one group's learning 
of mathematics, where the members were both high and middle achieving students. We wondered 
how the affective aspect would be affected in just middle achieving or high achieving groups of 
students. In the present research, we analyze this aspect in three groups of grade 9 middle-achieving 
students (ages between 14 and 15 years). One group consisted of three female students (Sana, Amal, 
Asil), and two consisted of two female students and one male student each (Fairouz, Noura, Salim) 
and (Alaa, Siham, Amin). All the participating students had not worked with GeoGebra before, and 
they were introduced to it in two hours’ session before learning the quadratic function topic. 
Furthermore, the students had learned some issues in the topic of the quadratic function (the 
function's maximum or minimum, the vertex of the function and the domain of 
increasing/decreasing), but not the quadratic function as a product of two linear functions. The third 
author taught the three groups in a middle school in Israel.  

Data collecting and analyzing tools  

We collected our data using observations of the learning of the three groups. We also conducted 
interviews with their members. Every group's learning was videoed and at the end of each lesson, 
the three students in each group were interviewed individually regarding their positionings and 
emotions during learning. We analyzed the two types of collected data using the discursive analysis 
framework presented above. Moreover, we combined the analyses of the data collected by the two 
tools (observations and interviews). The findings section in this paper sheds light on this method.  

Learning material  

The three groups of ninth grade students worked with a sequence of activities; all related to the 
quadratic function as a product of two linear functions.  Following is an example of these activities. 

In the same coordinate system, we want to draw the three functions: y=x, y=x 2+  and y=x(x+2).  
- What are the algebraic characteristics of the linear function: y=x? 
- What are the graphical characteristics of the linear function: y=x? 
- What are the algebraic characteristics of the linear function: y=x+2? 
- What are the graphical characteristics of the linear function: y=x+2? 
- What are the algebraic characteristics of the linear function: y=x(x+2)? 
- What are the graphical characteristics of the linear function: y=x(x+2)? 
- What are the similarities and the differences between the characteristics of the two above linear 

functions and the characteristics of the quadratic function? 



Note: Algebraic characteristics are related to the parameters of an equation, while the graphical 
characteristics are related to the intersection points with the axes, increasing or decreasing of a 
function, etc. 

Findings 
The present research aimed at characterizing middle-achievement students' positioning and 
emotions when learning algebra with technology. Doing so, we found that mainly the students had 
the leader and collaborator positionings during a lesson. We will describe how the students in the 
middle-achieving groups claimed each of the positionings and experienced their emotions and/or 
reported them in each positioning. Doing so, we will address the following aspects of learning that 
the positioning is related to: behavioral, cognitive, meta-cognitive, social and linguistic. The 
emotional aspect of learning will be considered in light of the taken positioning.   

Collaborator's functioning  

The middle-achieving groups utilized collaboration to learn the new mathematical ideas. This is 
exhibited in that generally the members of each of the participating groups claimed the collaborator 
positioning to pursue, with the help of the mathematical software, their learning of the quadratic 
function. This claiming resulted in making the group's members learn enthusiastically to understand 
the appropriate mathematical relations. This resulted in the group's members enjoying the activity 
and being content when arriving at its solution. Thus the collaborator's positioning helped make the 
students' emotions concerning their learning experiences positive ones. 

To claim the collaborator positioning, the group members were involved with behavioral processes 
(working with GeoGebra), social processes (group discussions), as well as cognitive processes 
(mathematical reasoning). These three types of processes, not only helped the group members claim 
the collaborator positioning, but at the same time, supported their attempts, as described above, to 
perceive the new mathematical ideas. In the interview, the students associated their behavioral 
processes with positive and negative emotions: enjoyment of their work when the software helped 
them solve the mathematical problem, and frustration when finding difficulty to operate the 
software. Excerpt 1 shows this claiming the collaborator's positioning. 

A1 Sana We need to find the intersection with x for the three functions. 
A2 Amal What's the first function?  
A3 Asil 3x-2 
A4 Sana [drew the first function in GeoGebra] 
A5 Amal What's the second function? 
A6 Asil 2x+3 
A7  Sana [drew the second function in GeoGebra] Let's find the intersection points with x. 

Excerpt 1: claiming the collaborator positioning 

Excerpt 1 shows the claiming of the collaborator's positioning as connected with the behavioral 
aspect of the group's learning. This aspect is expressed by the students’ action with the Geogebra 
software (A4, A7). However, this positioning also involves the meta-cognitive aspect. The 
utterances of Sana (A1, A7) are concerned with regulating the processes of the problem solution. 



Leader's functioning 

The leader's positioning in the middle-achieving groups was claimed by directing the learning of the 
group, as well as to advance this learning towards the solution of the mathematical problems and the 
sharing of the new mathematical ideas. Moreover, leaders in the middle-achieving groups claimed 
their positioning through carrying out different types of processes, mainly cognitive, metacognitive, 
meta-emotional, social and linguistic processes. Below, we elaborate on these processes. 

The group leader's cognitive functioning was actualized through demonstrating knowledge during 
carrying out the mathematical activity. For example, Fairouz, a leader in one middle achieving 
group, argued that they only needed to know the intersection points of the two linear functions with 
the x axis in order to draw the resulting quadratic function.  

The group leader's metacognitive functioning was actualized through asking questions during the 
group learning as means to decide upon the method of solving a problem. Moreover, the group 
leader's meta-emotional functioning was actualized through trying to change the negative mood of 
the group when encountering a difficulty. For example, Alaa, a leader in a middle-achieving group, 
tried to lessen the anxiety of group members by saying: "Don't worry. It's O.K. Sure we made a 
mistake. Let's read again our solution to find it". 

The group leader's social functioning was actualized through answering other members' questions, 
asking questions and requesting actions from the group members to keep the group learning going. 
Regarding the linguistic aspect of the leader's functioning, the leaders in the middle-achieving 
groups used the first person plural pronoun to talk about the mathematical actions that they needed 
to perform, which showed them as collaborators with the other members of the group. This indeed 
happened in the middle-achieving groups but not numerously (See for example excerpt 2).  

The leader's functioning resulted in different emotions, but generally speaking this functioning 
resulted in frustration, when unable to find a way for solving a mathematical problem, enjoyment 
during the successful solution process, and content when finally solving the activity.   

Difficulties in claiming the positions of leaders and collaborators 

The members of the middle-achieving groups, due to the lack of appropriate previous knowledge in 
the subject matter and sometimes in GeoGebra manipulation, encountered difficulties in claiming 
the positions of leaders and collaborators during the process of the mathematical problem solving. 
This led to their experiencing some negative emotions. Moreover, the members of the middle-
achieving groups experienced calmness, anxiety and confusion in accordance with their leader.  

Working with GeoGebra, the members of the middle-achieving groups encountered at the beginning 
difficulties related to working with a new technological tool, which could be related to the 
behavioral aspect of the group's learning.  Excerpt 2 describes such a difficulty, where Salim, Noura 
and Fairouz wanted to draw the function (2x-9)(3x-4) in GeoGebra [B1], but found difficulty doing 
that due to not writing correctly the appropriate number of brackets [B2-B6].  

B1 Fairouz We should write 3x-4 multiplied by 2x-9.  
  [Noura started to write the expressions] 
B2 Salim Perhaps the brackets can be put afterwards, wait Noura, wait, it keeps moving. 
B3 Fairouz Write it from the beginning.  



B4 Salim No, no [He takes the mouse from Noura who seemed annoyed by the act of Salim. 
Salim works on GeoGebra] O.K. Now write it again.  

B5 Noura [Noura puts her hand on her mouth with boredom] 
B6 Fairouz [Fairouz worked on GeoGebra, then she said with annoyance] something wrong 

with the brackets. 
B7 Teacher Don't get anxious. At the beginning, brackets are tricky. Everything will get O.K. 

Excerpt 2: Students' difficulties in working with GeoGebra and related emotions 

Excerpt 2 shows some of the difficulties encountered by the middle-achieving groups, as a result of 
their behavioral functioning; specifically when working with a technological tool. Fairouz, in the 
interview, said they felt out-of-control and thus frustrated not being able to draw from the beginning 
the graph of the function f(x)= (2x-9)(3x-4) in GeoGebra. Salim pointed at the teacher's 
interference as supporting them in getting back control over their work with GeoGebra, which made 
them satisfied with their work on the mathematical problem.  

Encountering difficulties in learning the new topic, not only influenced students' positioning and 
emotions, but also colored the linguistic aspect of their learning, especially their use of pronouns. 
This is the case in excerpt 3, where the difficulty is related to simplifying an algebraic expression. 

C1 Siham We want to draw the quadratic function y=(2x-9)(-x-4). 
C2 Amin Multiply first the brackets. 
C3 Alaa (-x-4)(2x-9)= -2x2+9x-8x+36, Now we compute +9-8. 
C4 Amin -17 
C5 Siham Minus 8 plus 9. 
C6 Amin Minus 17, plus ..  [He seemed anxious, not sure of his computation] 
C7 Alaa What? 
C8 Amin Minus one or plus one 
C9 Alaa What? 
C10 Siham Plus 1. 
C11 Alaa Write -2x2+x-36. 

Excerpt 3: Having difficulty in simplifying an algebraic expression 

Excerpt 3 shows that confronting difficulty constrained the group's sense of control and produced 
anxiety. In this situation, singular pronouns or no pronouns were used.   

Discussion and conclusions 
Research of students' emotions in mathematics learning is growing (e.g., Antognazza et al., 2015; 
Daher, 2011; Hannula, 2004). The present research aimed at characterizing grade 9 students' 
positioning and emotions when learning algebra with technology. The research findings indicate 
that to claim the collaborator positioning, members of the middle-achieving group were involved 
with behavioral processes (working with GeoGebra), social processes (class discussions), as well as 
cognitive processes (reasoning). These processes helped them reach their learning goal, thus 
resulting in positive emotions. It could be said that collaboration was associated mainly with 
positive emotions as enjoyment and content, though negative emotions as anxiety were experienced 
when having difficulty in solving the mathematical problem; i.e. in arriving at the learning goal.  



To claim the leader positioning in a middle-achieving group, the member was involved with 
different learning processes, as demonstrating knowledge, which was also reported in Evans, et al. 
(2006), but their functioning was distinguished from the other group members by performing 
metacognitive and meta-emotional processes, as reported in Daher et al. (2015). These processes 
helped plan, monitor, evaluate and take decisions regarding the group learning, especially in time of 
difficulty in arriving at the learning goals. Thus, these processes helped maintain the leader 
positioning (Black, Soto & Spurlin, 2016), as they supported the leader in advancing the group 
learning.  

In addition, the leader metacognitive functioning was actualized by asking questions as means to 
decide upon the method of solving a problem. This decision making could be looked at as a social 
process (Vroom & Jago, 1974) with the goal to advance the group learning. Moreover, it seems that 
critical thinking skills, actualized in decision making, were needed to claim the leader's positioning. 
Furthermore, the goal of the leader meta-emotional functioning was to change the negative mood of 
the group when encountering a difficulty, which motivated the members' work (Leithwood, Louis, 
Anderson & Wahlstrom, 2004). So, we argue that the leader positioning was claimed by paying 
attention to different aspects of the group learning, especially the metacognitive and meta-emotional 
aspects. This leader's functioning resulted in different emotions related to the difficulty and success 
in performing the mathematical task, which could be associated with Goldin's (2000) emotional 
pathway, where generally frustration preceded enjoyment and enjoyment preceded content. This 
emotional pathway included the three dominant emotions in the groups' learning, i.e. no singular 
emotion was dominant but the emotional pathway was thus. Furthermore, the group members' 
emotional experience was influenced by that of the leader, which could be related to the emotional 
contagion suggested by Hatfield, Cacioppo and Rapson (1993), where there is tendency to converge 
emotionally with others. We say this is especially true in group learning when the other is the leader.  

Students encountered sometimes difficulties in learning the new topic. This encounter, not only 
influenced students' positioning and emotions, but also their linguistic use of pronouns. This was 
expressed in their use of singular pronouns or no pronoun at all when getting anxious for not being 
able to proceed with the carrying out of the activity.  

Future studies are needed to compare the positioning and emotions of different achievement-groups 
in solving mathematical problems. Furthermore, research is needed to verify the effect of prior 
positions of the group members on their current positioning, which the present research did not 
target.   
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The tertiary transition between secondary school and university appears to be an insurmountable 
struggle for many students. This is also the case, surprisingly, in a certain sense, of students 
enrolled in Mathematics degree courses, and therefore students considered “gifted” with respect to 
mathematics. This case seems particularly interesting from an affective point of view: these students 
often live failure in mathematics as a tragedy, and – above all – initially they are not able to 
interpret their failure. For these reasons, it appears crucial to investigate which role is played by 

emotions in the emergence and management of this crisis, and how the students’ view of 

mathematics and their self-perception develop in the tertiary crisis period. 

Keywords: Mathematics failure, affect, gifted student, theories of success in mathematics. 

Introduction and theoretical background 
As Nardi (2008) underlines, the teaching and learning of undergraduate mathematics is a relatively 
new field of mathematics education research.  

The most part of the research about this topic focuses on cognitive aspects, highlighting the 
difficulties related to the learning of advanced mathematics (Artigue, 2001). In particular, Tall 
(1991) discusses the students’ difficulties in conceptualizing some specific mathematical constructs 
(for example the notion of limit of a function), and in using the formal definitions of these 
constructs.  

Other scholars focus on the specific difficulties related to the tertiary transition, discussing the 
enormous gap between secondary and tertiary mathematics (De Guzmàn et al., 1998; Wood, 2001) 
in terms of cognitive, metacognitive, linguistic and also practical demands.  

Alcock and Simpson (2002, p. 33) underline how “certain reasoning strategies are inadequate when 
applied to university mathematics, although they might be efficient and sufficient in non-technical 
contexts and in the kind of reasoning with specific objects required by school mathematics”. 
Schoenfeld (1985) analyzes the undergraduate students’ difficulties in managing with non-routine 
tasks. Ferrari (2004) discusses the linguistic difficulties related to the shift from an informal 
approach to mathematics to a formal one. De Guzmàn and colleagues (ibidem, p. 756-757) 
underline how “many students arriving at University do not know how to take notes during a 
lecture, how to read a textbook, how to plan for the study of a topic, which questions to ask 
themselves”. 

All the scholars describe the mathematical tertiary transition as a very challenging moment for 

students: Tall (1991, p. 25), points out that it “involves a struggle (...) and a direct confrontation 

with inevitable conflicts, which require resolution and reconstruction”.  



Nevertheless, affect appears to be the ‘great absent’ in this overview about the factors playing a role 

in this transition: for example, in the previous editions of CERME, there are no reports of the TWG 

about affect related to the undergraduate level (with the exception of the study related to the 

undergraduate course needed to become a primary teacher). 

In particular, Clark and Lovric (2008), drawing on anthropological theories, describe the tertiary 

transition in mathematics as a three-stages rite of passage that includes: separation (from secondary 

school), liminal (from secondary school to University) and incorporation (into University). This rite 

of passage is characterized by a real crisis in which the consolidated routines are suddenly 

interrupted, changed and distorted.  

As Bardelle and Di Martino (2012) underline, this crisis appears to be particularly challenging for 

mathematical high-achievers in the secondary school level: it can be difficult for these freshmen to 

understand why the reasoning strategies that worked in their previous mathematical experiences 

suddenly stop working at university level. 

Therefore, it becomes interesting to investigate which role emotions play in the arise and 

management of this crisis, and how the high-achiever students’ view of mathematics and their self-

perception develop during this crisis period.  

In other words, considering the TMA-model for attitude developed by Di Martino and Zan (2010), it 

is interesting to study the development of students’ attitude towards mathematics during the tertiary 

crisis. 

With this aim, in the AY 2014/15 we developed a narrative study involving different categories of 

current and ex-students of the Bachelor in Mathematics in Pisa:  

1) freshman: to collect the voice of the subjects during the crisis period;  

2) expert students, i.e. students enrolled in the third year of the Bachelor: to understand what they 

remember about their transition difficulties, their idea about the causes of such difficulties and 

about how they overcame them;  

3) dropout students, i.e. students that have left the Bachelor in Mathematics without obtain the 

degree in Math: to collect their memories about the crisis period, in order to reconstruct their 

emotions, the motives of their resignation, their theories of success (Nicholls et al., 1990) and 

causal attributions (Weiner, 1986).   

Context and methodology 
Context. The Bachelor in Mathematics in Pisa is one of the most prestigious in Italy, the majority of 

its students is considered excellent in math during secondary school. This fact is confirmed by data 

collected for our research. We analysed data from AY 2009/10 to 2012/13: Table 1 shows the 

percentage of the high-rated students in final exam of secondary school (we define high-rated a 

mark between 90/100 and 100/100). It compares the situation in Pisa with the average from all 

Italian Bachelors in Mathematics.  



 

 2009/10 2010/11 2011/12 2012/13 

Italy 45% 42.4% 44.5% 40.1% 

Pisa 73.6% 58.6% 65.7% 60% 

Table 1: Percentage of high-rated students in the Bachelor in Mathematics, in Pisa and nationalwide. 

The percentage of high-rated students in Pisa is much higher than the global one. However, the 

dropout rates of the Bachelor in Pisa are within the national average range. 

The high concentration of above the average students and the presence of difficulties, as witnessed 

by the failure rates, make the Bachelor in Mathematics in Pisa the ideal contest for our research. 

Procedure. The study was conducted in two different phases.  

In the first phase, we developed and administered three online questionnaires (one for each category 
of the involved students) including open and close questions about the mathematical experience at 
the University and, in particular, the difficulties encountered. Students were requested to answers in 
an anonymous way: respondents were invited to share an e-mail address in order to participate in the 
second, non-anonymous, phase of the research. The participation to this study was voluntary. At the 
end of this first phase we had collected: 26 answers by freshmen; 75 by students enrolled in the third 
year of the Bachelor; 52 by students that had left the Bachelor.  

In the second phase, 40 students (3 freshmen, 27 expert students, 10 dropout students) were 
interviewed by the second author of this report. The time for the interviews varied in a range from 5 
to 90 minutes. The interviews were audio-recorded and then fully transcribed. 

We will quote the students’ answers using an alphanumeric code: F, E or D (which mean freshman, 
expert student or dropout student, respectively); a serial number (it indicates the order in which the 
student completed the questionnaire); Q and I (which mean questionnaire and interview, 
respectively). 

Rationale. We developed a narrative approach because we wanted students to feel free to express 
what they consider important, using the words that they consider more appropriate. In particular, we 
considered the open-ended questionnaire and the interview to be two complementary narrative 
instruments: according to Cohen et al. (2007), an open-ended question can catch the authenticity, 
richness, depth of response, honesty and candor which are the hallmarks of qualitative data. On the 
other hand, questionnaires have their limitations: they are one-way compared with interviews.  

Discussion 
In the students’ stories the difficulties are often linked to strong and negative emotions, persisting 
over time. Both questionnaire and interview had specific questions about emotions; for example, a 
question in the questionnaire was: “Write a feeling that is linked to your experience at the Bachelor 
in Mathematics”. E69Q, despite he was able to overcome the initial difficulties, reports: 
“unfortunately, now [after having dropped out of the Bachelor in Mathematics] I like math a lot 
less, or rather, it still fascinates me but it is now linked to very negative emotions that ruin it all”.  



The percentage of students who indicate negative emotions changes drastically depending on the 
category of interviewed students. Only 32% of the freshmen report having bad feelings relating to 
their experience at the Bachelor in Mathematics and to their difficulties and failures. This fact may 
be connected with some characteristics of the sample: the questionnaire was published at the end of 
the academic year, when the students with serious difficulties have already left the Bachelor. The 
percentage of students that report having bad feelings increases among the expert students: as many 
as 52% write about bad feelings and emotions. Predictably, the percentage increases among the 
dropout students: 75% of these students link difficulties and the experience at the Bachelor in 
Mathematics with very negative feelings. 

Different types of bad feelings are reported, we have identified some categories: anxiety/ distress/ 
anguish; frustration/ despondency/ hopelessness; fear/ apprehension; sadness/ sorrow/ depression; 
inadequacy/ insecurity. 

The majority of bad feelings are related to the anxiety caused by the Bachelor in Mathematics: “for 
the first two years I was in a permanent state of anxiety and distress” (E6Q), “[my experience in 
Pisa has been] angsty” (E8I). This topic is reported by all three categories of students. 

The frustration and despondency category appears despondency among the expert students, but also 
among the dropout students. Many students report they are not been able to reach their goals via 
techniques and mechanisms that had been successful in the recent past. The persistence of such a 
situation forces many students in a state of frustration and it brings them to reevaluate their skills: “I 
realized that I would go to class and not understand a word of what was being explained. 
Therefore, I felt some frustration and I thought that I was not intelligent enough, that I was 
inadequate” (D49Q). 

The category of sadness and sorrow characterizes particularly the students who left the Bachelor in 
Mathematics. The decision of leaving the Bachelor in Mathematics seems to be linked to a strong 
sadness: “I remember [of that period] just a lot of tears” (D39Q).  

Also the category of inadequacy and insecurity is strongly linked to the experience of difficulties, 
and in particular to their lasting and to the failure in overcoming them. These feelings are new for 
the students, they never felt them before because they have always been good at math. The 
consequences, in these cases, can affect the students’ self-esteem and his or her learning abilities: “I 
think that my experience at the Bachelor in mathematics left me with less confidence in my ability to 
study” (D10Q), “as far as I’m concerned, low self-esteem kills any productive drive” (E8Q).  

The emotions reported by the interviewed are often felt as negative because they are unexpected: the 
student shifts suddenly and in unexpected ways from a mathematical welfare to a mathematical 
malaise, and he doesn’t understand the causes of the shifts. The persistence of the difficulties causes 
the growth of bad feelings and the sense of helplessness (“there were a lot of difficulties and 
disappointment… I felt like there was no way out”, E29Q), contributing to foster a downward spiral. 

In our study a special attention has been given to the students’ attributions for their difficulties. The 
students both spontaneously or answering specific questions, have made causal attributions. The 
narrative data collected have permitted us to identify the more frequent causal attributions, and to 
organize them in categories:  



 Transition aspects: differences between secondary school and University (contents, 
organization, teaching styles, assessment, …); 

 Low preparation: insufficient secondary school prerequisites; 

 Low ability: lower math ability than they thought, inadequate mindset (these factors are 
often attributed to a faulty way to assess in secondary school);    

 Comparison aspects: many of these students were considered (and perhaps they really were) 
the best math-students in their school, and for the first time in their life they are “one of 
many”. This impacts with their self-perception in math. 

The students blame an important part of their failures to the great differences (related to math) 
between secondary school and University. These differences and the subsequent difficulties often 
cause significant changes in the students’ view of math, and in particular of what it means to be 
good in math. In particular, most of the students point out that they got good grades in secondary 
school without significant efforts: “[in secondary school I considered myself good at math] because 
I could avoid studying it and still get the highest grades” (F14Q) and “I realized that the high 
learning speed was due to the easiness of the topics we studied in high school, rather than to an 
above the average skill” (D51Q). The secondary school’s math is regarded as a simplified and 
procedural math, surely not as the math studied at the University: they seem two completely 
different subjects! (“Math you do in high school is not the one you do in your first year in 
University”, E52Q). Students recognize that in University more formalism, abstraction and proofs 
are required: math switches from numbers and figures (a practical mathematics) to structures, like 
vector spaces or groups (a theoretical mathematics), and it involves a radical and hard cognitive 
shift. Despite the connected difficulties, the discovery of this new math usually is welcomed (“I 
think I like the subject even more than I did in high school. I’ve found topics that I find fascinating”, 
E65Q), but sometimes it isn’t (“I’ve changed Bachelor since I couldn’t find the practical math I was 
expecting”, D6Q).  

Anyway, the crucial point seems to be that this discontinuity in the subject is typically unexpected 
by the students: they choose Mathematics with a clear idea of what it is and of how much they are 
good in math, and suddenly they have to compare with a new reality.  

Among the transition aspects, teachers and style of teaching have a predominant role. There is a 
shared perception amongst students that at the university level there is not a particular attention to 
the students’ difficulties: it is interesting to underline that this perception is often shared also at 
secondary school level by students with difficulties in math (Di Martino & Zan, 2010).  

Students also underline the fact they are left alone from the beginning: “in University they gave for 
granted many notions, or they didn’t focus enough on topics they deemed to be easy, creating 
enormous doubts and flaws” (D41Q). So students feel abandoned and powerless against apparently 
insurmountable difficulties, unable to find successful strategies.  

From our data, it emerges that students blame responsibility to secondary and university teachers for 
their transition difficulties. In their view, secondary school teachers did not teach them what math 
really is and how it needs to be studied, and university teachers do not pay attention to the natural 
difficulties in the transition.  



In this framework, math is seen (often for the first time for these students) as intrinsically 
complicated, and the transition aspects seem to add up further difficulties. Many students thought, 
and continue to think, a particular mindset is required to succeed in math, and this “math mindset” 
is innate (“from birth you are not cut out for it, as you would need to be”, E45I).  

The great amount of difficulties in the transition and this belief represent an explosive mix: 
according to the students’ narrations, it is one of the main causes of resignation (to be good in math 
you need to have an innate talent; now, with the real math, I’m not good in math; so I don’t have the 
innate talent and I can’t do anything to improve, because I’m not talented).   

The above explosive mix is also strongly affected by the comparison with peers. Most of the 
interviewed were the best of their class, or even of their school, during secondary school. At 
University, the context is completely different: you are one of many, and – above all – there is a 
natural reluctance in sharing personal difficulties (this reluctance appears to be linked to the 
emotional reactions to the difficulties we have commented before). The consequence is the spread 
of a feeling of loneliness, a lot of students stated that they thought to be the only ones in that context 
with difficulties: they believed that most of their peers understood all without difficulties. This 
(wrong) perception affects and quickens the change in the math related self-perception of the 
students, creating doubts about their own brightness. This has strong effects on the emotional side: 
“I have really downsized the opinion of myself I had by seeing that there were way more capable 
people than myself” (D33Q), “I had begun to think that maybe I wasn’t so good as I had thought 
and that it had all been an illusion. Moreover, I saw geniuses that new everything and understood 
everything right away and so I felt like an idiot” (D44Q).  

Despite a lot of common themes, there are also some significant differences between the causal 
attributions for difficulties of the expert students and those of the dropout students. 

In particular, most of the dropout students claimed that, despite a hard and extensive study, or even 
despite the supposed sufficient comprehension of math, they failed the exams. In their opinion, the 
reasons for the lack of success is therefore linked to their natural inability or even stupidity: they 
seem to think that a kind of innate ability is needed to succeed in mathematics. Other respondents 
said that one of the reasons for failure was that some professors seemed to teach only for the 
excellent students, without taking care of the bulk of the average students. So, the exceptional 
students’ presence is seen as a problem, as much as the exams’ scale of evaluation.  

In the final analysis, the dropout students used especially external and uncontrollable causal 
attributions. 

Also the freshmen and the expert students used external causal attributions but, they reported that 
after of an initial period in which the difficulties were perceived as uncontrollable, they found a way 
to turn them in to something controllable. In particular, they refer to a shift in their theories of 
success or to a change in the strategy they adopted to deal with their pre-existing theories of success. 

The students report of some strategies or changes that have led them to the overcoming of their 
difficulties; the most frequent reasons are relative to the quantity and quality of their study and 
relative to their study habits. A lot of the interviewed spoke about the cooperation with peers as of 
being of great help: “obviously a relevant part of my success is due to the people that have 
supported me” (E44Q) and “Personally it was group study that allowed me to go on” (E7Q). Peers, 



especially better students, also helped to find the right study habits and to create the necessary 
mindset to succeed in math: “the older students helped me by convincing me that it was all about 
getting settled with new ways of reasoning” (E44Q). 

So, as a student said, “challenging one’s study habits” (S63I) is important; the first step is to 
understand that the study habits are amendable and this happens especially after failures and through 
the comparison with peers or teachers. From this quote, as from many others, it appears that the 
personal awareness of what is going wrong and what can be improved is a necessary step towards 
overcoming one’s difficulties. “Seeing the teachers in action has been fundamental for me, in the 
sense that it helped me adopt the right mindset. By just studying on the books, I would have never 
obtained the same results” (E52Q). Teachers are also fundamental for their emotional support: 
“some teachers were fundamental in the process of overcoming my difficulties! In my opinion it is 
important that the professor lets you know that he believes in you, that he is aware you spent 
months preparing for the exam, that he is sorry if he fails you and that you are not just a number!” 
(E28Q). Moreover, lots of students have found the meetings with peers or teachers very useful, 
overcoming the fear of the professor’s judgment, which is instead very common in secondary 
school. Finally, great study and effort are necessary: “I overcame my difficulties by endeavor and 
maximum commitment” (E44Q). 

Conclusions 
From our study there thus emerges a path that seems to characterize the experience in the Bachelor 
in Mathematics. A student which was a high-achiever in high school enrolls in the Bachelor in 
Mathematics; almost always, in an unexpected and abrupt manner, he faces difficulties; these 
difficulties are linked to strong negative emotions (such as anxiety, frustration, sadness…) and are 
combined with a reevaluation of the previous scholastic experience and of one’s skill in math; math 
is seen under a new light: it is, in some sense, new and it is taught differently; the student produces 
theories of success and causal attributions: these can be internal or external, but the difficulties are 
initially almost always perceived as uncontrollable.  

Up to this point in the student’s path, most of the stories we have heard agree, regardless of the 
interviewed student’s category. But from now on there is a definite distinction between the 
experience of who has abandoned the Bachelor in Mathematics and who has succeeded in 
continuing his or her studies. The comparison of the experiences of the subjects from different 
categories has in fact provided us with precious information: those who, for possibly emotional 
reasons, persevere in producing uncontrollable causal attributions or in implementing the same 
strategies to reach success, will eventually drop out of the Bachelor in Mathematics; on the other 
hand, changing one’s theories of success or one’s causal attributions or just identifying them as 
controllable allows one to overcome difficulties and failure. Our study seems to suggest that what 
makes the difference between dropping out and overcoming the difficulties are one’s success 
theories and causal attributions, and in particular the ability to modify them and identify controllable 
factors. 

It thus seems that the processes that leed to changes in the students’ success theories and causal 
attributions, which bring to light the controllable aspects of one’s difficulties, is worthy of a deep 
investigation. 
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The issue of what teachers need to teach mathematics effectively has been widely dealt with in the 
past decades; nevertheless, there are still few studies focusing on what future teachers think they 
need in order to be effective. In order to get a deeper understanding of future teachers’ viewpoints 
about what they need to learn, a narrative study concerning primary future teachers’ expectations 
on a course on Mathematics Teaching was developed. Issues about a lack of connections between 
theoretical notions provided by university courses and teaching practice were raised, as well as 
problems about affective dimension in mathematics learning and about mathematics itself. 

Keywords: Future teachers, expectations, mathematics teaching, professional development.  

Introduction and theoretical framework  
What do teachers really need to teach mathematics effectively? In Mathematics Education this 
question has been mainly addressed by studying the relationship between teachers’ knowledge, 
behavior and attitude, and students’ achievements (Ball et al., 2008). Other studies highlight several 
aspects perceived by different figures (students, administrators, teachers) as necessary for the 
teacher to be effective, e.g. competence in the subject, teaching style, enthusiasm for teaching, care 
for students’ difficulties and interest in students’ lives outside of the classroom (Stronge, 2007). 

It emerges that people have different ‘ideals’ of good mathematics teachers, and this is true in 
particular in the case of future teachers. This case is interesting because this ‘ideal’ strongly affects 
how a future teacher approaches learning opportunities (Liljedahl et al., 2015). From this viewpoint, 
teachers’ development can be seen as an ongoing process nurtured by teachers’ desire to “fill the 
gap” between their current developmental stage as teachers and the “ideal” mathematics teacher 
they want to become (Sfard & Prusack, 2005). In particular, future teachers’ development depends 
not only on the training planned by teacher educators, but also on individual needs and aims: 
“teachers do not come to professional learning opportunities as blank slates. Instead, they come to 
these settings with a complex collection of wants and needs” (Liljedahl, 2014, p. 1). This is crucial 
for primary level teaching, in which involved people are not specialized in mathematics. 

In this framework, it appears relevant to collect future teachers’ opinions about what they want to 
learn in their professional development, and, above all, what expectations they have about the 
mathematics courses they have to attend. In fact, in the field of mathematics education, 
expectations are quite an unusual focus even for research concerned with affective issues: more 
often, research regarding the implementation of educational courses or workshops takes into 
account future teachers’ a posteriori evaluation of whether their expectations have been fulfilled or 
not (Bartolini Bussi, 2011).  

For these reasons, this paper focuses on a study on narrative data collected from future teachers at 
the beginning of a course dealing with mathematics teaching, in order to bring out future teachers’ 



expectations and hopes about their education in mathematics teaching before they participate in a 
specific educational course. 

Methodology 
Population and procedure. This study concerns the analysis of the answers to one of the questions 
of a questionnaire that was administered in February 2016 to a class of future teachers during the 
first day of the course of the third year in Mathematics Teaching (Bachelor’s Degree in Primary 
Teacher Education, University of Modena and Reggio Emilia, Italy; the duration of the whole 
degree course is 5 years). The answers were collected from a class made up of 49 future teachers. 

The choice to consider a class attending the third year of degree course is not irrelevant, because it 
was strictly related to one of the purposes of the inquiry, which was to study the story of future 
teachers’ relationship with mathematics, paying attention to their perception of the value of their 
university education. From this viewpoint, a third year class was interesting because future teachers 
in this university must attend two courses in Mathematics in the first two years and a course in 
Mathematics Teaching in the third year: in particular, they cannot take the exam for this last course 
until they take both Mathematics exams. Furthermore, the course in Mathematics Teaching is also 
the last compulsory course they must attend regarding mathematics. So, it was interesting to 
investigate what these future teachers expected about this course after two compulsory courses on 
Mathematics.  

In order to pursue this goal, an open questionnaire was specifically developed. It was composed of 
three questions, where the first two aimed to investigate future teachers' relationship with 
mathematics and its changes during the years of university and pre-university education; the last 
question on the other hand – “What are your expectations about the course on Mathematics 
Teaching?” – was aimed to grasp also future teachers’ viewpoints about their own wants and needs 
regarding their education as teachers. This last question is the focus of this paper. 

The questionnaire was presented and administered at the beginning of the first lesson of the course; 
the time available to fill it in was about 30 minutes. Since the questionnaire is part of a bigger 
project aimed to study the development of future teachers’ beliefs throughout the years, future 
teachers were asked to write their I.D. numbers, but it was explained them that it was impossible for 
the researcher to match these numbers with their personal details. 

Rationale. Results obtained by previous narrative studies show that the analysis of narratives is a 
very powerful tool, especially for the purpose of research on future teachers’ beliefs, identity and 
attitudes (Kaasila, 2007). A narrative approach, in fact, permits respondents to focus on the aspects 
they consider most important, and to explain their own thinking with the words they consider the 
most appropriate. This way, the variety of answers produced provides the researcher an amount of 
details and information that has an enormous value for the purpose of qualitative studies (Cohen et 
al., 2007). 

Regarding more specifically the method chosen to collect narrative data, in this case it was essential 
to make future teachers not frightened of being penalized for their real opinions. So, the most 
suitable inquiry tool was undoubtedly an open questionnaire, because it allows respondents to 



remain anonymous – a possibility that other inquiry tools, such as oral interviews, do not permit. 
This is also the reason why future teachers were assured of the confidentiality of their answers.   

The data were analyzed adopting a content-categorical approach – e.g. the analysis was focused on 
the content of collected answers, not on their form, and the unit of analysis was single utterances 
isolated from the rest of the discourse, and not the whole narrative (Lieblich et al., 1998). This 
approach, in fact, has been proven to be very appropriate to study phenomena common to a group of 
people (Kaasila, ibidem). 

In the discussion, we will use the acronym FT (Future Teacher), followed by a progressive number 
from 1 to 49, to quote excerpts of protocols. 

Results and discussion 
The first interesting feature of the collected data is that there were no answers such as “I don't 
know”, and no answers left blank: future teachers had something to declare about their expectations 
on the course on Mathematics Teaching. The overall feeling emerging from the answers is a 
compelling need for courses focused on teaching practices, rather than lessons about theories of 
teaching (“[…] I hope that we will deal with things that are more inherent to our future profession, 
because some courses of our degree course deal with many notions that are difficult to employ in 
practice”, FT16). This feeling is well reflected in the high rate of respondents – 40 on 49, around 
82% – asking for teaching methods (“[…] I hope that methods to employ once in class will be 
illustrated as much as possible”, FT44), or more generally asking for a course to learn “how to 
teach mathematics at primary school” (“I expect a course to understand what and how to teach 
when I will be faced with children at primary school”, FT3). 

However, after a closer examination of the answers, it emerges that expressed expectations involved 
mainly two dimensions, the pedagogical one and the affective one, so that it was possible to 
distinguish with enough clarity two kinds of expectations: those related to pedagogy and 
pedagogical content knowledge (according to Shulman’s definition, 1986) and those about affective 
issues. Since most of the expectations fell in one of this two categories, the few ones that were not 
directly related to pedagogical or affective issues were grouped into a third category that we called 
other expectations concerning mathematics or mathematics teaching. In order to give to the reader a 
clearer explanation of the features of each category, they will be analyzed one by one in the 
following subsections.  

Expectations related to pedagogy and pedagogical content knowledge 

As one could expect, this is the most recurrent category, since every answer involves at least one 
expectation related to pedagogical knowledge or pedagogical content knowledge. In most cases, as 
it was anticipated earlier, the respondent makes a generic wish to expand his/her knowledge about 
methods and means for teaching mathematics. In particular, our future teachers mainly seek 
methods that are efficient (“I hope that […] alternative methods will be proposed to us […] [that 
are] significant and efficient for children’s learning”, FT46) and possibly fun (“I hope to learn 
practical and fun methods to teach mathematics in primary school”, FT2). In many cases, 
respondents seem to wish to learn a sort of recipe for good teaching, e.g. which method works best 
according to the situation (“I expect to learn several methods for teaching mathematics that are 



suitable for the various difficulties that a child can encounter in learning mathematics”, FT31). 
Many answers even talk about learning “the best method to teach mathematics” (“I hope to face 
more topics, for example the best way to teach mathematics in order to make children appreciate 
it”, FT34). Sometimes the list of notions the respondent expects to learn is so extensive that it can 
even be hard to believe that a single course would be enough to fulfill all these expectations (“I 
expect to learn to understand children’s learning processes, strategies to adopt to present this 
subject, which methods should be used, how to organize the lessons and the topics”, FT4). 

In some cases, as previous excerpts show, future teachers’ main concern is about the real teaching 
practice: this is also confirmed by the rate of answers (17 answers on 49 – around 35%) stressing the 
practical and concrete nature of the notions that future teachers would like to learn (“I hope that in 
the course we will talk not only exclusively about theory, but, on the contrary, mainly about 
PRACTICE. Practice and advice about how to facilitate [children’s learning] and make our way of 
teaching more efficient”, FT41, capital letters in the original). Some of them ask more specifically 
for some practical examples from real experiences of in-service teachers (“I hope that […] [the 
course] will be focused on efficient methods for teaching this subject, perhaps also those based on 
real experiences of teachers”, FT32). These answers perhaps point out a lack of connections to 
didactics of mathematics in previous mathematics courses.  

A slightly different kind of expectation regards the enhancement of respondent’ competencies as a 
teacher. In some cases, in fact, future teachers seem to be more concerned with personal 
improvement, rather than with learning a set of “ready-made” methods (“I hope to join my 
enthusiasm for the subject to the competencies that are necessary to teach it step by step”, FT11). 
However, what competencies they refer to is not clear from these answers. There’s just one case 
where the competencies that the respondent would like to gain are sufficiently clear to be described 
as organizational competencies, competencies in explaining, and diagnostic competencies (“[…] I 
expect that [the course] will be useful from a practical viewpoint, so that […] I will know how to 
organize the lessons, how to explain and how to help those who have more trouble”, FT4). The last 
competence in particular seems to be quite an important one for our future teachers, since many of 
them underline their need to learn more about children’s learning processes and difficulties, and 
about ways to make children overcome such difficulties – as can be seen from some of the previous 
excerpts. It is noteworthy that none of the respondents talks about issues regarding creation of tests 
and assessment of tests’ results – suggesting that, in our sample, future teachers are more concerned 
with making children understand mathematics, rather than assessing their learning. 

Expectations about affective issues 

This category of expectations includes those ones referring to emotional aspects related to the 
relationship with mathematics. We can distinguish in particular two kind of expectations, according 
to the subject of this relationship: in some case this subject is the future teacher itself, whereas in 
other cases the subject is the class, e.g. the pupils that the future teacher imagines to have.  

The first kind of expectations refers to those answers that express the desire to reconcile with 
mathematics and the hope that the course on Mathematics Teaching could facilitate such 
reconciliation: such answers correspond, in fact, to narrations of difficult or fluctuating relationships 
with mathematics in the other answers of the questionnaire. A clear example is given by FT46, who 



affirms: “I hope to stop being stuck with this subject, and to be able then to learn and employ useful 
strategies to teach this discipline at best”, and in the other answers tells about her fluctuating 
relationship with mathematics, and in particular about her rejection for solving problems when she 
was a young student. In these cases, mathematics is described as far from future teachers’ interests, 
and a course focused on mathematics teaching, not on the subject itself, seems to be an opportunity 
to come closer to mathematics (“I hope that this course will let me come closer to a discipline that 
has always been too distant from me, but I hope above all that I will be able to look at it and 
perceive it in a different way”, FT37), as highlighted also in the investigation by Coppola et al. 
(2013) on the “math-redemption” phenomenon. It is possible that, beyond the sense of utility of 
studying teaching rather than the subject itself, for these future teachers plays a role their hope that 
studying how to teach topics could be also helpful to clarify their doubts from primary school. Only 
in a couple of cases did future teachers claim to expect to continue improving their relationship with 
mathematics, even if it is already a very good one (“My expectations are varied. First of all, I hope 
to renew my interest in the subject”, FT16).  

The second kind of expectations, on the other hand, regards future teachers’ need to learn how to 
support the growth of a good relationship with mathematics among their future students. The 
request to learn how to support pupils’ emotional involvement in doing mathematics is quite 
widespread: it is detectable in 17 answers out of 49 (around 35%). In particular, there are four main 
emotional responses to mathematics that future teachers wish to elicit into their future students – 
listed in order of increasing intensity:  

 No hate for mathematics (“I hope that it will teach me how to teach mathematics in order to 
make sure that children don't hate it”, FT17); 

 Having fun when doing maths (“I expect to acquire competencies to teach mathematics […] 
in a way that my children learn it as adequately as possible, perhaps also having fun”, 
FT8); 

 Feeling a real interest in the subject (“I hope to discover new methods to revive children's 
interest in mathematics [...]”, FT35); 

 Being passionate about mathematics (“I hope to learn, or at least to get hints and advice 
[…] about how to make children passionate about mathematics, and to engage those who 
have more troubles or feel aversion for this discipline”, FT5).  

As we can see from the above quotations, even if these emotional responses could all be interpreted 
as ways to make pupils have a good relationship with mathematics, they do not seem to have the 
same importance in future teachers’ eyes. For example, in the answers that talk about having fun, it 
is not clear if future teachers are interested in an amusing emotional climate in the classroom per se 
or if they are just looking for fun methods for teaching mathematics – i.e. if establishing a good 
emotional climate for them is an aim to reach when teaching, or a means to facilitate the 
understanding of some mathematical content (“Through this course I hope to learn instruments that 
are necessary to explain mathematics to children. It is not an easy discipline, and I would like to 
discover methods to make it fun, easy and efficient at the same time”, FT22). In fact, the importance 
of the influence of pupils’ emotions on their learning seems to be underestimated in the answers that 
talk about avoiding making children hate mathematics: the feeling the reader gets is that the quality 



of the climate to create in the class stops at a sort of “peaceful coexistence” between the pupils and 
the mathematics to be learnt – as we can see in the excerpt by F17 above. If so, a “peaceful” 
emotional climate could be seen not as an aim or as a means for teaching, but rather as a constraint 
for the learning to occur.  

Other expectations concerning mathematics or mathematics teaching   

Regarding mathematical contents of the course. Since the course is expected to address teaching 
practice, most of the answers do not mention expectations about its mathematical contents. “Less 
mathematics and more practice” could be a good motto to summarize some claims (“I hope that 
there will be less numbers and less formulae with respect to the previous courses, and that it will be 
focused on efficient methods of teaching this subject”, FT32). However, when a respondent refers to 
some mathematical content, generally he/she expresses the need of a course focused more 
specifically on mathematical contents to be treated in primary school, rather than on new topics (“I 
expect that the focus will be on the topics that we will have to teach to children, rather than on 
topics that actually we will never deal with at primary school”, FT39). Just in one answer we can 
find a demand for the explanation of new mathematics topics, but also in this case new knowledge 
is hoped to be useful in practice (“I hope to come into contact with topics, materials and teaching 
methods we have never dealt with, that will constitute a new part of knowledge that I could employ 
in my future profession”, FT16). 

Regarding the view of mathematics to communicate. Another group of answer express the wish to 
learn to teach in a way that communicates a particular view of mathematics (since the focus is not 
on teaching methods per se, this answers were not included among expectations regarding pedagogy 
and PCK). It could be possible to identify three main kinds of such demands, which can be 
summarized as: I hope I will learn how to teach mathematics in order to make it… 

 …“reality-based”. Some people ask for teaching methods that will make them able to make 
pupils recognize and use mathematics in real-life situations (“In this course I'd like to 
discover new methods and ways of teaching that start to talk about mathematics from the 
real world, from everyday life”, FT19). 

 …“cross-cutting”. This feature is emphasized in particular in FT1's answer, where she 
describes her will to set her future lessons in a way to link mathematics to other scholastic 
subjects: “[...] But above all I hope that [this course] will help me to understand how I can 
develop a course on mathematics that crosses other disciplines”. 

 …neither mnemonic nor mechanical. A couple of answers express the will to learn to teach 
mathematics discouraging a view of it as a subject merely based on memory (“[...] I'd like it 
if children could receive an approach to the learning of mathematics which is not 
mnemonic”, FT33) or on mechanical techniques (“[...] I hope to receive hints to dispel the 
myth of mathematics as a strict and mechanical subject”, FT46). 

Regarding the reasons for teaching mathematics. To conclude, I would like to report one answer 
which is particularly original. In this case the respondent expresses her hope to improve her 
mathematics education, because she seems to seek for a more complete and interrelated overview of 
mathematical topics, and for an explanation of the reasons why they are taught at primary school: 



[…] I hope to reach a more organized and coherent way of thinking about mathematical 
contents. But above all I hope to understand the reasons why we study mathematic, in order to 
return it to the children of my future classes. […] Obviously acquiring competencies in the 
management of tools and communication techniques is important but is secondary; the main 
goal remains to know why one is studying a certain discipline. [FT10]  

Conclusions 
In the introduction we underlined how long researches in Mathematics Education has been pursuing 
the goal of establishing what do teachers need to teach mathematics effectively. Initially the efforts 
were directed to defining aspects related to knowledge – as in the work by Ball et al. (2008). More 
recently, research has widened its perspective to other aspects as well, as affective aspects of 
teachers’ education (Coppola et al., 2013). Another aspect investigated just in recent years is what 
future teachers think they need to teach mathematics effectively: as Liljedahl (2014) underlines, it 
does matter “what the results [of the research] say about teacher autonomy and the role that 
workshops play in the professional growth of teachers”.  

These considerations also suggest another direction of inquiry: future teachers’ expectations about 
courses for professional development. This aspect was the focus of the present study. The results 
obtained are obviously context-bound, since we are concerned with one class of a specific Italian 
university; nevertheless, there are some observations rising from our findings that seem to be more 
apt to be generalized and discussed here. 

The first one concerns the shared judgment about the compulsory courses on Mathematics: courses 
focused only on mathematical contents are generally considered to be too theoretical – sometimes 
even beyond future teachers’ capabilities – and scarcely connected with teaching practice. On one 
hand, as suggested by Boero and Guala, it could be advisable to incorporate the study of 
mathematical content with tasks “clearly related to crucial educational issues” (Boero and Guala, 
2008, p. 232) aimed at stimulating a deep reflection on mathematics as a social and historical 
product; on the other hand, we believe that poor preparation in mathematics cannot adequately 
support the development of knowledge for teaching, e.g. a certain level of content knowledge is 
absolutely necessary for the development of pedagogical content knowledge. The challenge for 
teacher educators is to make future teachers aware of the importance of a strong preparation 
regarding content about this sense.  

Another general aspect concerns future teachers’ expectation about learning mathematics teaching 
methods that take into account also affective aspects. This consideration highlights two other issues 
for teacher educators: one is to develop workshops aimed to restore future teachers’ relationship 
with mathematics; the other is to develop courses providing some space for reflections about 
affective issues, without losing the connection to mathematical content. The main risk, in fact, is to 
draw future teachers’ attention to children’s amusement, and thereby neglecting the activities’ 
mathematical relevance. In our viewpoint, mathematical significance has to come first, and 
moreover, the focus should be not on fun activities, but rather on the ideal emotional conditions to 
make the activities work, making children feel free to express their thoughts and make mistakes. 
The analysis of future teachers’ expectations raises serious challenges for us, both as researchers in 



mathematics education and as teacher educators: accepting them is the further direction of this 
paper. 

References 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it 
special? Journal of teacher education, 59(5), 389–407.  

Boero, P., & Guala, E. (2008). Development of mathematical knowledge and beliefs of teachers: 
The role of cultural analysis of the content to be taught. The international handbook of 
mathematics teacher education, 1, 223–244. 

Bussi, M. G. B. (2011). Artefacts and utilization schemes in mathematics teacher education: Place 
value in early childhood education. Journal of Mathematics Teacher Education, 14(2), 93–112. 

Cohen, L., Manion, L., & Morrison, K. (2007). Research methods in education. London: Routledge 
Falmer.  

Coppola, C., Di Martino, P., Mollo, M., Pacelli, T. & Sabena, C. (2013). Pre-service primary 
teachers' emotions: The math-redemption phenomenon. In A. M. Lindmeier & A. Heinze (Eds.), 
Proceedings of the 37th Conference of the International Group for the Psychology of 
Mathematics Education (Vol. 2, pp. 225–232). Kiel, Germany: PME. 

Kaasila, R. (2007). Mathematical biography and key rhetoric. Educational Studies in 
Mathematics, 66(3), 373–384. 

Lieblich, A., Tuval-Mashiach, R., & Zilber, T. (1998). Narrative research. Reading, analysis, and 
interpretation. London: SAGE Publications. 

Liljedahl, P. (2014). Approaching professional learning: What teachers want. The Mathematics 
Enthusiast, 11(1), 109–122. 

Liljedahl, P., Andrà, C., Di Martino, P., & Rouleau, A. (2015). Teacher tension: Important 
considerations for understanding teachers’ actions, intentions, and professional growth needs. In 
K. Beswick, T. Muir & J. Wells (Eds.), Proceedings of the 39th Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 3, pp. 193–200). Hobart, Australia: 
PME. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 
researcher, 15(2), 4–14. 

Sfard, A., & Prusak, A. (2005). Telling identities: In search of an analytic tool for investigating 
learning as a culturally shaped activity. Educational researcher, 34(4), 14–22.  

Stronge, J. H. (2007). Qualities of effective teachers (2nd ed). Alexandria, VA: ASCD. 



Regression trees and decision rules applied to the study of perplexity: 
Issues and methods 
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This paper explores the use of the CRT (Classification and Regression Tree) methodology to 
analyse data from a fuzzy rating scale-based questionnaire. Based upon a questionnaire to assess 
the state of perplexity in mathematics undergraduate students, the rule structure obtained from the 
CRT analysis is reported. We anticipate these findings may be of interest both to evaluate the 
interplay between cognition and affect as well as to researchers in the Fuzzy Logic field. 
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Introduction 
In this paper, we will focus on perplexity in mathematics. In the studies concerning determination of 
affective pathways during the solving of problems (Goldin 2000; Gómez-Chacón, 2000, in press), 
the state of perplexity or puzzlement is considered to be one of the interesting emotional states into 
which the individual can drift along positive or negative pathways when solving the problem. 
Perplexity does not in itself have unpleasant overtones—but bewilderment, can include 
disorientation and a sense of having “lost the thread”. If problem solving continues, a lack of 
perceived progress may generate frustration, where the negative affect becomes more powerful and 
more intrusive, but where there is still the possibility that a new approach will move the solver back 
to the sequence of a predominantly positive affect. The studies mentioned above show the need to 
understand and to know, in depth, the benefits that this state can achieve for the teaching and 
learning of mathematics.  

A big challenge today is to improve the methodological tools for evaluating affect detection 
systems. This need is motivating studies in trying to explain this gradualness in the processing of 
affective mechanisms. Further research is necessary to reference the identification, discrimination, 
and the unclear boundary between the cognitive and affective processes. This paper explores the use 
of decision trees to analyse data from a fuzzy rating scale-based questionnaire. Thus, here we will 
report our results in the form of a tree structure providing rules to assess the state of perplexity in 
mathematics undergraduate students, built upon the basis of the previous questionnaire. 

The present research is primarily exploratory for two reasons: 1) perplexity has been scantly 
analyzed in mathematics and educational psychology; and 2) the use of the CRT methodology to 
analyse data from a fuzzy rating scale-based questionnaire is a new development. The theoretical 
background and empirical studies related to perplexity need to be developed.  

Theorists of science and mathematics (Lakatos 1976) claim that mathematical reasoning and 
complex problem solving are typical cognitive tasks in which perplexity is directly involved. 
However, an analysis of the psychological (cognitive and affective) processes involved in it lacking, 
in order to clarify the definition. (.Studies about confusion (Silva 2010) indicate an appraisal 
structure of this emotion of novelty-complexity that is reflected in a state of uncertainty and 
comprehensibility, reflecting an inability to understand. Smith and Ellsworth’s (1985) appraisal 



model maintains that in order to differentiate emotional experiences some dimensions are key 
(pleasantness, attentional activity, control, certainty, goal-path obstacle and anticipated effort). 
Taken together in this study, these dimensions and mathematical cognitive processes could provide 
information about perplexity, a knowledge emotion that is rarely studied, and illustrate the 
relationships between these cognitive variables and emotion in order to deepen understanding of its 
nature.  

The following hypotheses guided the work: (1) the emotions associated with the perplexity state 
could be positive, negative, or neutral; (2) those participants with more positive ability to cope with 
the situation (control), better ability to predict, or with a wider understanding, are those who will 
better handle their state of perplexity in the reasoning. 

Fuzzy rating method for questionnaires 
The method of fuzzy rating scale applied in this research was introduced by Hesketh, Pryor, and 
Hesketh (1988) and subsequently developed in various studies by Gil et. al., (2015). The fuzzy 
approach is based on the idea that, in some cases, it is not reasonable to say that an object has to 
either verify a property or not verify it (Zadeh, 1975). Objects or people may exhibit some 
properties only partially—i.e. up to a certain extent or degree. In many of the conducted researches 
the evaluation of the emotion parameters is qualitatively performed through reports, interviews, 
recording observations or, if it is quantitative, through Likert scales. In the case of Likert scales 
(based on an implicit subjacent numerical continuum), such kind of imprecise information is lost, 
since finally just a single category has to be chosen (which excludes the representation of a potential 
hesitation between categories).  

   
Fig. 1. Examples of Fuzzy sets valuating emotion Fig. 2. Fuzzy sets modelling 

linguistic variable 

In this sense, fuzzy logic allows relaxing this constraint by admitting valuations to be given in the 
form of fuzzy numbers over the subjacent numerical scale. That is, in this setting each possible 
numerical evaluation is assigned a degree of membership or verification, between 0 and 1, 
representing the validity of such number as a measure of the observed emotional phenomenon 
(Fig.1). 

The idea of using these fuzzy sets to describe imprecise terms is closely linked to the concept of 
linguistic variable introduced by Zadeh (see Zadeh, 1975). A linguistic variable is considered one 
that takes linguistic values, which is less accurate than the use of numbers. For example, a linguistic 
variable used to evaluate ‘confidence’ may take the (linguistic) values: never, rarely, sometimes, 
often and always. Each of the linguistic terms that can take the variable is modeled by a fuzzy set 
(see Fig. 2, and notice the subjacent numerical scale that accompanies the linguistic descriptions). 
There are values of the variable that can be assigned up to a degree to two of these fuzzy sets (e.g. 
through disjunction) and, therefore, the boundaries between two consecutive linguistic values can be 
made flexible. 



In this study, trapezoidal fuzzy sets (or fuzzy numbers) were used to perform evaluation on a 
continuum, assigning a membership degree between 0 and 1 to each point of the interval [0,100] 
(see Fig. 2 again). Notice that trapezoidal numbers allow representing a continuum of prototypes 
(i.e. elements that are assigned membership degree 1) with a linear decay. 

Regression trees  
The CRT methodology is a data mining approach widely employed to develop ‘IF-THEN’ rule 
models in order to explain the behaviour of a variable of interest (the dependent variable) in terms 
of logical conditions over a set of explanatory or independent variables (see Breiman et al., 1984). 
As such, classification and regression trees have been successfully applied to different data-analysis 
tasks, such as segmentation, stratification, forecasting, data reduction, variable selection, etc., in 
wide variety of practical contexts (see Strobl et al., 2009).  

Particularly, the CRT methodology allows determining a subset of the available independent 
variables as well as a set of conditions over these variable’s values that separate the data into groups 
as homogeneous as possible in terms of the values of the response or dependent variable. To this 
aim, the CRT method performs successive dichotomous splits of the data by identifying both the 
independent variable and its cut-point that provide the greatest variability (i.e. variance) reduction at 
the split data groups verifying either condition (i.e. being greater or lower than such cut-point). This 
process starts at the root node containing all the available data, and is iterated at the resulting nodes 
or groups until some stopping criterion (usually concerning the depth or number of splits or the 
sample size in the undivided nodes) is reached. The nodes that are left undivided at the end of this 
process, usually known as leaves, provide conditional response-variable distributions (assumed to 
be as homogeneous as possible) given the conditions or premises formed by the conjunction of the 
different branches (i.e. splits) that separate each leaf from the root node.  

Notice that CRT is a data analysis methodology with almost no assumptions, and particularly that it 
is a non-parametric and distribution-free model-building method (e.g. no normality or independence 
assumptions are made). For these reasons, CRT is especially useful as an exploratory tool allowing 
to uncover some relationships and patterns in the data that may be expressed in logical form. 

In this work we apply this regression tree methodology to develop a rule model capturing the 
relationships between a numerical dependent variable, measuring either the intensity of perplexity 
or pleasure experienced by students while solving a mathematical problem, and a set of independent 
variables measuring the intensity of other emotions that may appear in consonance with perplexity. 
Our aim, at least in a first stage, is basically exploratory; that is, we do not pursue a complex 
mathematical model of those relationships of perplexity with other emotions, but rather a simple 
model describing the most significant relationships in terms that may be checked intuitively. In this 
sense, we found that the CRT methodology fitted this aim quite well. 

Research questions and methodology  
Research Questions 

We particularly pursued the following research questions: Research question 1: What emotions and 
cognitive appraisal processes have more influence on the state of perplexity? Research questions 2: 



How pleasant is being in the state of perplexity? What variables are related to the dimension of 
pleasantness? 

Participants and instrument 

Data was collected in 2014 from 100 (56 women and 44 men, aged between 22 and 23) Caucasian 
undergraduates working toward a BSc. in mathematics. All of the participants were in their last year 
of academic study, and were distributed into three training groups established by the academic 
institution. They were following advanced courses in several areas of geometry, algebra, probability 
and analysis. With regard to solving problems, the students had been introduced to the problem 
solving heuristics and they received training as students and in one subject related to advanced 
professional knowledge, practice and relationship skills relevant to teaching. They had not received 
any special training about backtracking heuristics. 

The work dynamic was individual work and began with a paper and pencil resolution of four tasks 
(problems), each of one hour and a half duration. One example problem, the results of which will be 
analysed later in section of results, is shown below: 

Paths: How many paths consistent in a series of horizontal segments and / or vertical can be 
counted in the figure below (Fig. 3) (where we have indicated a possible path) so that each 
segment links a pair of consecutive numbers, to form, from the beginning to the end the 
number 1234567? 

 
Figure 3. Possible Path 

In this session, students were given the problem and asked to describe their approaches to resolving 
the problem using protocols including: steps in the resolution, explanations of the difficulties they 
might face, and strategies they would use. Afterwards, each problem was followed by a 
questionnaire based on the measure of fuzzy rating scales and focused on heuristics related to 
backwards thinking and the difficulties that are generated during the process of solving problems 
and emotions and cognitive processes (Gómez-Chacón, in press).  

The questionnaire is based on the measure of fuzzy rating scales that used a scale of free fuzzy 
numbers, in which the respondent represents the same fuzzy number that most closely matches their 
assessment of an interval (Fig. 4). The questionnaire has two parts, one referring to the cognitive 
dimension and the other, the affective dimension. The cognitive dimension refers to the 
characterization of the personal meanings of the subjects on the cognitive dimension of heuristic 
backtracking, or backward reasoning, and the cognitive appraisal processes of the interaction with 
emotion. The studied emotions were: confusion, uncertainty, hesitation, surprise, frustration, 
bewilderment, boredom, and confidence. And the cognitive appraisal dimensions to differentiate 
emotional experiences were pleasantness, attentional activity, control (self-other 
responsibility/control, situational control), certainty, goal-path obstacle, anticipated effort and 
mental flexibility.  

 



Data analysis 

Both qualitative and quantitative methods were used to address the subject of this study. This paper 
presents the quantitative analysis performed on the undergraduate students’ written responses to the 
questionnaire. The first step of the analysis was the defuzzification of data. This refers to converting 
the trapezoidal numbers provided at the student’s responses into usual numbers that can be handled 
by the CRT methodology. For the purposes of our study, the average centre (also known as the 
centroid) defuzzification method was used. With such defuzzicated data, different regression tree 
analysis were performed with SPSS to uncover the prescriptive nature of the variables. Two of these 
regression trees, together with their associated rule models, are reported next. 

 
 

Fig. 4 Examples of some items from the questionnaire: Perplexity and backwards reasoning processes 
(Gómez-Chacón, in press) 

Results  
Research question 1. For the interpretation of the classification tree, we should go looking at the 
nodes and branching them until the final leaves. First, we look at the root node 0 that describes the 
dependent variable: Perplexity of students to solve the problem (P2). It indicates that the group 
mean is 49.040. Then, note that the data is split into nodes 1 and 2 depending on the variable 
Bewilderment (P19), indicating that this is the main predictor variable. Node 1 indicates that 22% of 
students who feel Bewilderment <= 21.37 has a mean of 25.04 perplexity (P2). This node 1 is again 
split up into nodes 3 and 4 depending on variable P8, Ability to influence (i.e. Control). We note in 
node 4 that the students who had Control > 67.87 experience perplexity with an average intensity of 
40.28, while students at node 3 have a lower ability to influence and experience a mean perplexity 
intensity of 16.33. These two nodes 3 and 4 are leaves that allow us to infer rules 1 and 2 below. 



Particularly, each path from the root of a decision tree to one of its leaves can be transformed into a 
rule simply by conjoining the conditions along the path to form the antecedent part, and taking the 
leaf’s mean as the rule prediction or consequent. Similarly, in order to define the rest of the rules, 
node 2 and the following ones are studied. The profile of students who experience perplexity is 
defined by nodes 3, 4, 5, 9, 10, 11 and 12 through the following variables: Ability to influence (P8), 
Bewilderment (P19), Confusion (P13), Boredom (P21) and the ability to solve simpler problems 
and also goal-path obstacles (P11). The inferred rules are the following: 

Rule 1 (node 3): IF ((Bewilderment (P19) <= 21.37)) AND (Ability to influence (P8) <= 67.87) 
THEN the prediction of perplexity (P2) is = 16.33, with a support of 14% (i.e. 14% of the 
participants verify the premise of this rule). 

Rule 2 (node 4): IF ((Bewilderment (P19) <= 21.37)) AND (Ability to influence (P8)> 67.87) 
THEN the prediction of perplexity (P2) is = 40.28, with support 8%. 

Rule 3: (node 5): IF ((21.37 < (Bewilderment (P19) <=64.6)) THEN the prediction of perplexity 
(P2) is = 48.84, with support 48%. 

Rule 4 (node 9): IF (Bewilderment (P19)> 64.6) AND (Confusion (P13) <= 64.87) AND (Boredom 
(P21) <= 12.62) THEN the prediction of perplexity (P2) is = 67.15, with support 5%. 

Rule 5 (node 10): IF (Bewilderment (P19)> 64.6) AND (Confusion (P13) <= 64.87) AND 
(Boredom (P21)> 12.62) THEN the prediction of perplexity (P2) is = 55.65 with support 5%. 

Rule 6 (node 11): IF (Bewilderment (P19)> 64.6) AND (Confusion (P13)> 64.87) AND (the ability 
to solve simpler problems and goal-path obstacles (P11) <= 80.75) THEN the prediction of 
perplexity (P2) is = 66.99, with support 15%. 

Rule 7 (node 12): IF (Bewilderment (P19)> 64.6) AND (Confusion (P13)> 64.87) AND (the ability 
to solve simpler problems and goal-path obstacles (P11)> 80.75) THEN the prediction of perplexity 
(P2) is = 78, with support 5%. 

In summary, the perplexity is closely linked with the emotions of bewilderment and confusion. The 
bewilderment could generate a fork towards a positive path depending on the ability to influence on 
the problem and the ability to influence the process of resolving. The perplexity state may stem 
entail only high novelty, reflecting a state of uncertainty but may entail a searching of understanding 
when perplexity may share with appraisal dimensions linked to the ability to influence (self-control 
dimension) and the perception of overcome obstacles and the ability to solve simpler problems. 

Research question 2. Pleasantness. Pleasantness is considered as an important dimension. It is a 
function of two appraisals—appraisals of what one wants in relation to what one has, and these are 
intrinsically pleasant or unpleasant. The mean of the group with respect to pleasure (P5) 
experienced during the state of perplexity is 40.92. From the classification’ tree (Fig.6) can infer the 
following rules: Rule 1 (node 2): IF Confidence (P15) >55.75 THEN the prediction of pleasure 
(P5) = 48.07, with support 58%. Rule 2 (node 3): IF Confidence (P15) <= 55.75 and Understanding 
(P9) <= 38.37 THEN the prediction of pleasure = 16.63, with support 13%. Rule 3 (node 4): If 
Confidence (P15) <= 55.75 and Understanding (P9) > 38.37 THEN the prediction of pleasure (P5) = 
37.5, with support 29. In summary, a state of perplexity could not only be a mental perturbation or 
anxiety, but a pleasure experience given sufficient levels of confidence and understanding. 



 

 

Fig. 5. Regression tree for variable ‘Intensity of 
perplexity’ (P2) 

Fig. 6. Regression tree for variable 
Pleasure (P5). 

Conclusions and discussion  
The discussion and conclusions are structured around the objectives of the research, and 
methodological effectiveness in the use of regression trees for establishing rules. 

Relative to the interplay between cognition and affect in the perplexity state the perplexity is closely 
linked with the emotions of bewilderment and confusion. The degree to which students associate 
state of perplexity with an emotion of pleasure is linked to the levels of confidence and the 
understanding of the problem. Likewise the perplexity state shares cognitive appraisal dimensions 
linked to the ability to influence (self-control dimension) and the perception of overcome obstacles 
and the ability to solve simpler problems. The relationship shown between cognitive appraisal 
dimensions and the emotions that make up the state of perplexity highlights conditions about 
learners who have the ability to appropriately manage their perplexity. This study shows the central 
role of impasse in mathematics, perplexity it is not a negative event to avoided by intellect, it is 
responsible for the activation of thinking (Lakatos 1976, Goldin 2000; Gómez-Chacón, 2000). 
Regarding the methodological adequacy of the present study, the use of a non-parametric, 
assumptions-free data mining model as regression trees provides a solid basis for the kind of 



exploratory analysis aimed at this work. Particularly, this model allows for robust variable selection, 
as significant variables are identified through a greedy process in which the effectiveness of all the 
available variables in reducing the variability of the response variable is checked, and that obtaining 
the greatest reduction (or improvement) is selected. This assures that the selected variables that 
conform the premises of the obtained rules are relatively good explicative factors of the studied 
response variables.    
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Impact of long-term regular outdoor learning in mathematics – The 
case of John 
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This paper reports on a longitudinal study investigating the impact of long-term regular outdoor 
learning in mathematics in the school-grounds. An interview-based case study of John, a lower 
secondary school student, will be analysed. The case study will describe John’s perceived experience 
of long-term regular outdoor learning in mathematics and its impact on affective and academic 
factors. The findings emphasise the positive outcomes of long-term regular outdoor learning in 
mathematics, indicating enhanced cooperative learning, reduced mathematics-related stress and 
anxiety, changed self-concept, and enhanced mathematical proficiency.  

Keywords: Outdoor learning, mathematics anxiety, self-regulation, mathematical proficiency.  

Introduction 
The constant focus on textbooks and formal mathematical practice might invoke a view among 
students that mathematics is abstract, distanced and only useful in a classroom context, working only 
in the textbook (Boaler, 1998). If students are not given the opportunity to engage with real-life 
problems in mathematics they will encounter problems applying their knowledge in an outside school 
context (Desforges, 1995). Mathematics taught in the classroom will have limited value if it is not 
transferable to students’ everyday life and future academic and career endeavours. Current research 
on outdoor learning in mathematics demonstrates positive affective outcomes and possible academic 
benefits (Daher & Baya'a, 2012; Moffett, 2011; Noorani et al., 2010). In this paper, by analysing 
John’s perceived experiences of long-term (3 year period) regular outdoor learning in mathematics, 
we explore any possible impact on both affective and academic factors. By affective factors we mean 
mathematics-related stress and anxiety, and motivation. With academic factors we refer to possible 
academic outcomes such as application and understanding of mathematical knowledge, enhancement 
of mathematical proficiency, learning strategies, self-regulation and self-concept. 

Theoretical background 
Outdoor learning 

Outdoor education can be referred to as organised learning that takes place in the outdoors and is 
drawn up on the philosophy and theory and practises of environmental as well as experimental 
education. The embodied and multisensory experiences provided by well-organised outdoor learning 
are believed to enhance the individual's learning and understanding within a subject, in this case, 
mathematics. The variation of context between the indoor classroom activities and the outdoor 
activities enables rich opportunities for cooperative learning in real-life situations (e.g. Jordet, 2007).  

Mathematical proficiency 

In the present paper we use the framework of mathematical proficiency presented by Kilpatrick, 
Swafford, and Findell (2001). According to Kilpatrick et al. (2001), mathematical proficiency has 
five strands: conceptual understanding (comprehension of mathematical concepts, operations and 



relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently, and 
appropriately), strategic competence (ability to formulate, represent and solve mathematical 
problems), adaptive reasoning (capacity for logical thought, reflection, explanation, and justification) 
and finally, productive disposition (habitual inclination to see mathematics as sensible, useful, and 
worthwhile, coupled with a belief in diligence and one’s efficacy) (Kilpatrick et al., 2001, p. 116). 

Mathematics anxiety, motivation, self-regulation and self-concept 

Mathematics is highly valued by society, and proficiency in mathematics has become increasingly 
important in order to become a fully functioning citizen, with resulting financial empowerment, 
making the ability to use mathematics in an out-of-school context even more important (OECD, 2004; 
Peterson, Woessmann, Hanushek, & Lastra-Anadón, 2011). A variety of studies have shown that 
many students have negative attitudes towards mathematics, which sometimes results in 
mathematics-related stress and anxiety (Ashcraft, 2002; Maloney & Beilock, 2012). Within a student, 
engaged in a mathematical activity, an on-going unconscious evaluation of the situation with respect 
to the student’s self-concept and personal goals is taking place. Depending on the individual’s 
evaluation of the outcome, the student may become emotionally affected being either motivated or 
not for further mathematical activities (Hannula, 2002; Pintrich, 2004). According to PISA (OECD, 
2013), Ryan and Deci (2009) and Wigfield, Tonks, and Klauda (2009) two forms of motivation to 
learn mathematics within self-regulative skills exist. The two forms are intrinsic motivation and 
extrinsic motivation. Intrinsic motivation is the motivation to perform mathematics merely for the joy 
gained from doing mathematics. While extrinsic motivation is the motivation to perform mathematics 
due to its importance in society, usefulness and the fact that mathematical knowledge will aid future 
career prospects and further academic studies. An individual with mathematics-related stress and 
anxiety is emotionally affected in a negative sense and tends to have a low self-concept (self-related 
cognitions of ability that can explain as well as predict achievement related behaviour, belief in one’s 
abilities) as well as low levels of self-efficacy (a student’s belief that he/she has the capability to 
perform a given mathematics task at a designated level) (Bandura, 1994; Bong & Skaalvik, 2003). 
Furthermore, these individuals also tend to lack the ability to self-regulate, resulting in avoidance 
behaviour and a decline in mathematics performance. As a consequence they are assigned lower 
grades and tend to have limited choices of possible future academic and non-academic career paths 
(Wu, Barth, Amin, Malcarne, & Menon, 2012).  

One important factor to promote learning is students’ capability to self-regulate (Pintrich, 2004). If 
students’ are provided with guidance on how to self-evaluate their own learning process and how to 
develop suitable strategies to promote their own learning during formal schooling, such guidance will 
enable acquired knowledge to remain updated after leaving school and to be used in an outside school 
context (Pintrich, 2004; Zimmerman, 2002). Self-regulation refers to the degree in which students are 
active participants in their own learning. It is an individual’s ability to set mastery goals, mobilizing 
the efforts and resources the individual will need in order to achieve these goals. To reach these 
mastery goals, students use a wide range of self-regulatory processes and display a number of 
adaptive motivational factors such as self-efficacy and self-concept, where moderate levels of 
mathematics-anxiety may actually facilitate learning as well as performance (Pintrich, 2004). 



Cooperative learning 
Procedures in cooperative learning are designed to engage students actively in the learning process 
through inquiry and discussion with their peers in small groups, which need to be well organised with 
a clear structure to promote cooperative participation and learning (Davidson & Worsham, 1992, p. 
xii). Cooperative learning provides students with academic factors such as positive effects in 
mathematics performance and student achievement (Whicker, Bol, & Nunnery, 1997). Cooperative 
learning is a preferable method when helping individuals with mathematics-related anxiety to reduce 
their stress and anxiety. Furthermore, it is also an important feature of self-regulated learning because 
active participation is a crucial element of the self-regulation construct (Clark, 2012; Daneshamooz 
& Alamolhodaei, 2012).  

Focus of the study 
The aim of the study was to investigate John’s perceived experience of long term (three years) regular 
outdoor learning in mathematics in terms of possible impact of integrated outdoor mathematics 
activities on affective and academic factors.  

Methodology 
This paper is a part of a larger intervention research project aiming to explore the possible impact of 
outdoor teaching and learning in lower secondary school (Fägerstam, 2012). Outdoor teaching and 
learning was implemented on a regular basis as a complement to ordinary classroom teaching during 
the entire lower-secondary school period of three years. The focus of this paper is to explore the 
possible impact of long-term regular outdoor learning in mathematics, and the case of John is 
presented as an example of its possible impact. The research is exploratory to its nature because there 
are few longitudinal studies on outdoor learning in mathematics. John is 15 years old, attending his 
third and final year of lower secondary school. John is a fictitious name that has been given to ensure 
the individual’s anonymity. John’s class had one of their four weekly mathematics lessons outdoors 
on a regular basis during the entirety of lower secondary school. The same mathematics teacher taught 
John during the three years of the intervention project. The school to which John and his class belong 
was situated in the suburbs of a medium-sized (approx. 85000 inhabitants) municipality in Sweden. 
The school, grade 7 to 9, was a normal sized school with approx. 450 students in six parallel classes. 
John was interviewed using semi-structured interview as a method. The interview was audio-recorded 
and transcribed using verbatim. Data was analysed thematically to identify recurrent patterns and 
commonalities using thematic coding (Boyatzis, 1998). Aspects of self-regulation skills were 
analysed based on concepts originally used in the PISA survey (OECD, 2004), namely intrinsic and 
extrinsic motivation, self-concept and mathematics anxiety. Representative illustrative quotes will 
describe the possible impact of regular outdoor learning in mathematics on self-regulation in 
mathematics and mathematical proficiency as well as John’s perceived experience. The ethical 
guidelines and directives stipulated by The Swedish Research Council regarding good research have 
been followed (Hermerén, Gustafsson, & Pettersson, 2011). 

The case of John 
John is a fifteen-year-old boy who has had severe difficulties with learning and understanding 
mathematics since he started school. John was selected as a case due to his low levels of mathematics 



self-concept, expressed mathematics-related stress and anxiety and low levels of mathematical 
proficiency, which were reflected in his mathematical performance.  

John’s overall experience: Well-planned lessons, structure, intelligibility, and time 
John emphasises the importance of well-planned lessons, structure and intelligibility. It is important, 
he says, that one knows what is expected and that everyone knows what to do.  

It is of importance that everyone knows what he or she is supposed to do. It is important that the 
teacher gives a thorough briefing before the outdoor lesson. It is important that the teacher presents 
a well-organised picture of the task. You need to have a check before you start as well so you know 
what to do and that you do not just start directly and miss out on something that is of importance 
when solving the task that is presented to you and your group. 

Through well-organised lessons and well-made tasks, it is easier to understand the mathematics and 
what is expected of you. John continues: 

It is crucial that you understand what you are supposed to do, what kind of theory you need in 
order to solve the task that is presented to you. If the lessons are not well organised, the head, the 
brain, you get so, you disconnect, you start to think of other things.  

Time is another aspect of John’s experience of the long-term regular outdoor learning. He thinks that 
the teacher who teaches mathematics provides time to work with mathematics outdoors. However, he 
questions why other teachers in other subjects do not provide time and prioritise time to have some 
of the weekly lessons outdoors.  

I think that you should have outdoor lessons in other subjects too. Take biology for example. In 
biology there are so many “outdoors and environmental issues” so it would be a great possibility 
to work more outdoors. But, we are never outdoors during our lessons in biology, which I think is 
strange. 

According to John, outdoor learning in mathematics provides more time and space to understand what 
and why you do things.  

Indoors you seldom receive any help from the teacher. Often you just sit there for like ten minutes 
waiting for the teacher to have the time to help you. This results in you not raising your hand to 
ask for help, because it is quite meaningless. On the contrary, during the outdoor lessons in 
mathematics the group could either help each other or if the group needs assistance from the 
teacher, the teacher helps the whole group at the same time, which is really great. 

Impact on affective factors 
John experienced and expressed a change in self-concept. 

Outdoor lessons in mathematics make it easier for you to remember what you do and why. When 
you have your lesson in mathematics outdoors, the teacher explains clearly what to do. You are 
given a clear picture of what is expected of you and what the task at hand is about and what the 
aim of the lesson is. You will better understand what you do and why you do it. 

Moreover, it seems like the change of learning environment reduces the mathematics related stress 
and anxiety.  



It is relaxing to work on a regular basis with mathematics outdoors. I get really stressed during the 
regular indoor lessons in mathematics and suffer from mathematics-related panic attacks. 
However, during the outdoor lesson in mathematics I really enjoy myself, I am more relaxed and 
do not suffer from mathematics-related anxiety attacks.  

John experiences that he is enjoying himself and feeling more relaxed during the regular outdoor 
lesson in mathematics. 

John also indicates that his extrinsic motivation has a tendency to hamper his achievement and 
performance in mathematics. He brings up the pressure to perform and the stress and anxiety the 
national tests in mathematics cause. However he also brings up a sense of changed perception of 
himself and emphasises the positive outcomes of variation of context for the learning of mathematics. 

It makes you understand everything much better. You become more engaged and motivated. 
Regular outdoor lessons in mathematics provide you with more input and understanding of 
mathematical concepts. In addition, you feel better and enjoy the mathematics lessons more.  

John appears to address the idea of losing one’s self-confidence, which will lead to low self-concept.  

John emphasises the importance of feeling engaged and motivated. To be extrinsically motivated 
tends to have a negative impact on understanding and learning mathematics. It rather makes you give 
up because you feel like a loser who cannot manage mathematics. However, by working to engage 
with real-life problems in mathematics with regular outdoor lessons in mathematics solving these 
real-life problems together with others provides, according to John, the possibility to become aware 
of one’s true mathematical proficiency and that it might be enhanced. As demonstrated, John 
experienced that he began to enjoy mathematics more. He changed from being extrinsically motivated 
to become more intrinsically motivated and was more ready to face new, more challenging tasks 
because he started to believe in yohisur own abilities.  

Impact on academic factors 

John also stated that he had difficulties with negative numbers when using them and understanding 
the concept of them. During one of the outdoor lessons in mathematics they had worked with negative 
numbers. Before this outdoor lesson they had, during the indoor lesson, talked about negative 
numbers and worked with them in the textbook. 

Well, we had one lesson when we worked with negative numbers, you know plus and minus and 
that kind of stuff. We did this exercise where you were supposed to run and put a piece of paper 
next to another on one of these big long things that looks like a row, and then there were also, you 
know, numbers in between and at the far end there was perhaps minus something and in the middle 
was zero. After a while you started to realise that it was kind of a huge thermometer. It was almost 
like the numbers became connected with each other. The visual picture and the practice of actually 
building the thermometer gave you a better understanding of the concept. It is strange but you 
actually need lots of self-confidence when it comes to learning and understanding mathematics. 

As seen, working more visually and practically with negative numbers, strengthens John's conceptual 
understanding of negative numbers.  



John emphasised the gain of cooperative learning. During the outdoor lessons in mathematics the 
students were supposed to collaborate when solving different problems they were given. During the 
outdoor lessons in mathematics, John was given a feeling of participation.  

The class cooperated better when working with mathematics outdoors than indoors. Indoors the 
class seem to be more divided into certain groups. There is that group with the smart kids, who are 
good at mathematics, then the rest of us who are kind of left behind. During the outdoor lessons 
there tends to be more cooperative work, because all of us know that you must first begin to solve 
the given mathematics task on your own to begin with and then help the group by discussing the 
problem together. It is important that everyone can join in, participate and be given the possibility 
to explain how to solve the task at hand. Everyone should be given the opportunity to show his or 
her proficiency and share one’s knowledge with others. It is a way to better understand how a 
given task can be solved. You become more engaged and motivated if you are allowed to 
participate and speak your mind regarding how you believe that the task at hand can be solved. 

John emphasises that cooperative learning opens up opportunities for and development of adaptive 
reasoning. Through the outdoor lessons in mathematics, the students are given the possibilities to 
reason with each other. They have the opportunity to explain and try out their logical thoughts as well 
as justify their thoughts and chosen solution to the task at hand by reasoning with others. 

Productive disposition 

John expressed experiencing that he began, thanks to the regular outdoor lessons, to recognise and 
realise the importance of mathematics and that it is worthwhile to make the effort to understand the 
concepts of mathematics. Through cooperative learning he realised that he actually possesses a certain 
level of proficiency in mathematics. He realised that a task can be solved in several different ways. 

You need self-confidence in mathematics and if you enjoy mathematics then you become more 
confident and more motivated. Indoors you just sit and understand nothing. But when you work 
with mathematics outdoors you understand how it all works.  

Discussion 
John’s perceived experiences of regular outdoor learning in mathematics indicate that it is reasonable 
to assume that students can benefit from regular outdoor learning in mathematics. We may conclude 
that long-term regular outdoor learning in mathematics shows a tendency to have an impact on 
affective factors by altering the individual’s self-concept, reducing mathematics-related stress and 
anxiety and resulting in a more engaged and motivated student, which is supported by the findings of 
previous studies (e.g. Moffett, 2011). In addition, long-term regular outdoor learning in mathematics 
shows a tendency to have an impact on academic factors and one major feature was the importance 
of variation of context. It is reasonable to assume that the possibility to work more visually and 
practically with real-life problems, which had first been presented theoretically during the indoor 
lessons, might be a key factor for enhanced conceptual understanding (Kilpatrick et al., 2001). We 
may conclude that engagement and motivation for learning mathematics is enhanced. Accordingly, 
students tend to become more engaged and motivated by regular outdoor learning in mathematics. 
Cooperative learning is a prominent part of outdoor learning in mathematics and is emphasised by 
John as a key feature for the enhancement of his adaptive reasoning (Kilpatrick et al., 2001). Previous 
findings have indicated that cooperative learning tends to help mathematics- anxious individuals 



reduce their stress and anxiety for mathematics (Daneshamooz & Alamolhodaei, 2012). The main 
feature of cooperative learning is the opportunity to discuss and reason with others and justify one’s 
mathematical thoughts on how to solve different mathematical problems. John stresses that 
cooperative outdoor learning in mathematics tends to make students aware of their true mathematical 
proficiency by being given the possibility to observe that a task at hand can be solved in more than 
one way and that more than one “right” solution to the problem may exist. John experienced that 
when mathematics became less abstract and more transferable to his everyday life, learning 
mathematics becomes more joyful resulting in a more positive attitude towards mathematics making 
him engage instead of avoid learning mathematics (e.g. Maloney & Beilock, 2012). Long-term 
regular outdoor learning in mathematics gave John the possibility to develop the ability to self-
regulate his learning (Wu et al., 2012). Finally, it is reasonable to assume that if a student is provided 
with a sense of control, that student may enhance the levels of self-concept and reduce mathematics 
related stress and anxiety. 
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This article presents conceptions of social-emotional needs of mathematically gifted adolescents of 
certain Finnish educators. The article is based on a qualitative research study conducted with the 
methods of semi-structured interviews and participant observation in a Finnish high school that offers 
a special programme for mathematically oriented students. The study shows that the educators 
considered the most essential social-emotional needs of mathematically gifted students to be the need 
to be respected as unique personalities, to meet other gifted, to feed and guide the intrinsic motivation. 

Keywords: Mathematical giftedness, gifted students, social-emotional development. 

Introduction 
The purpose of this study is to present and analyse the conceptions of the social-emotional needs of 
mathematically gifted students held by certain educators who work in a mathematically oriented high 
school in Finland. The research is conducted in a unique Finnish school community that is focused 
on educating students who exhibit particular interest in mathematics. The data of this research was 
collected by interviewing five educators of the school and by participant observation in the school. 
The research context provides valuable knowledge as it brings together the practices and theories of 
research on gifted education (Ambrose et al., 2010; Laine et al. 2016). 

Giftedness is a very complex concept and varies both qualitatively and quantitatively within gifted 
persons (Passow, 2004), and multiple definitions of giftedness have been written over the decades 
(Ambrose et al., 2010). This chapter presents the theoretical fundamentals on mathematically gifted 
adolescents and summarises former research on teachers’ conceptions of giftedness and gifted 
education. 

Being gifted means possessing promising potential in a certain domain of giftedness and being able 
to develop this potential into actual high performance. This domain, e.g. mathematics, is the field and 
the context in which the gifted activity occurs (Cross & Coleman, 2014). Mathematical giftedness in 
particular means the ability to abstract numbers, variables and functions and the relations between 
them. For a mathematically gifted person, it also means courage, persistence and intrinsic motivation 
to go further and deeper in such mode of comprehension (Gardner 1983; Reis & McCoach, 2002; 
Movshovitz-Hadar & Kleiner 2009; Subotnik, Pillmeier, & Jarvin, 2009). The development of such 
person is not only affected by personal characteristics, but also by the structure and properties of the 
individual’s particular domain of talent (Coleman & Cross, 2000). 

Mathematically gifted students need mathematical activities, and with the support of their 
surroundings, they are able to take an active role in their own learning and develop into professional 
mathematicians (Cross & Coleman, 2014; Usiskin, 2000). They have also certain social-emotional 
needs… A gifted person is able to fulfil his whole potential only if his intrinsic abilities, the support 
of his social surroundings and the social-emotional dimensions are in balance (Subotnik et al., 2009; 



Usiskin, 2000). Exceptionally gifted adolescents often experience dissimilarity and even unpopularity 
among their schoolmates (Mönks & van Boxtel, 1985; Rimm, 2002), especially when the giftedness 
takes place in the domain of mathematics (Pettersson, 2008). 

Many professional educators still view giftedness as a fixed and innate characteristic of a person 
(Laine, Kuusisto, & Tirri, 2016). Some of teachers even consider the gifted as students who actually 
do not need training or instruction (Laine et al., 2016). However, recent theoretical definitions of 
giftedness have shifted towards contextual and malleable conceptions (e.g. Ambrose, VanTassel-
Baska, Coleman, & Cross, 2010; Cross & Coleman, 2014). Various researches illustrate this gap 
separating the theoretical knowledge of giftedness from the conceptions of professional educators 
(Ambrose et al., 2010). Research further shows that there is also a gap between the teachers’ 
conceptions of gifted education and the educational practices they conduct. Therefore there is need 
for in-depth research to further our understanding of teachers’ conceptions of giftedness (Laine et al., 
2016). 

Teachers’ conceptions have a significant role in supporting young gifted students in advancing their 
talent (Mann, 2006; McNabb, 2003; Pettersson, 2008). Teachers tend to favor quite traditional 
conceptions of giftedness (Moon & Brighton, 2008). Generally, according to teachers, the most 
determining characteristic of a gifted student in the school context is a specific difference from others, 
which presents itself as the gifted student’s capability to perform fast, intelligent and creative learning 
(Kaya, 2015; Laine et al., 2016; Mattsson, 2010; Moon & Brighton, 2008). It is interesting to note 
that teachers also associate mainly positive social-emotional characteristics with giftedness, such as 
enthusiasm, sensitivity and curiosity (Kaya, 2015; Laine et al., 2016; Mattsson 2010). 

There seems to be a gap between the theories and teachers’ traditional conceptions of giftedness. 
Therefore, the purpose of this study was to examine the educators’ conceptions of the social-
emotional needs of the mathematically gifted adolescents in a school with successful practices. We 
were especially interested in the conceptions that were also enacted in their practices. 

Methodology 
In this qualitative research the data was collected by interviewing all the teachers who had regularly 
supervised the summer schools (two mathematics teachers, the biology teacher) as well as the 
principal and the healthcare officer. Additionally… by observing, filming and participating in the 
mathematics classes in the autumn of 2011 and an overnight school session in January of 2012. A 
qualitative semi-structured interview technique was used in order to give the interviewees the 
possibility to conceptualize and describe the topic in the way they prefer.  

The researcher spent time with the student participants of the overnight school and participated in the 
social and mathematical activities of the event. Short informal discussions were conducted with the 
students while participating. As the data was collected in the authentic environment of the research 
subjects by means of participant observation, this study contains characteristics of ethnographic 
research (Delamont 2004; O’Reilly 2005). 

The data was transcribed and analysed with inductive content analysis. Inductive content analysis 
means categorizing and combining units of the analysis into larger aggregates (Elo & Kyngäs, 2008). 
A whole statement was chosen to be the unit of the analysis. The whole statements included one 
thought, conception or opinion varying in length from a couple of words to several sentences. These 



units were first categorized into codes. After that, as is done in inductive content analysis (Elo & 
Kyngäs, 2008), the codes were connected into categories and such categories into main categories, 
and finally the results were interpreted in the light of the theoretical background of the study. 

Results 
The purpose of the school is to gather together and educate adolescents interested in mathematics. 
The students of the school are offered a wide range of instruction in mathematics and diverse learning 
environments such as the Night of Mathematics and an annual summer school in Lapland. The 
educators interviewed in this study generally described their students as gifted. They defined 
mathematical giftedness as the ability to picture, learn and remember mathematical causations rapidly 
and with clarity. They described two types of giftedness appearing in the school: students with 
multiple talents and those with a single exceptional talent. The students with multiple talents were 
interested in societal influencing and social activities. On the other hand, the exceptionally talented 
tended to impress their teachers with their commitment to studying and with their high level of 
mathematical reasoning skills. 

Principal: Roughly speaking there are those Renaissance talents who are widely talented and 
then those exceptionally gifted, who focus on the area of their deepest interest. 

The uniqueness of the school’s students was emphasized in the interviews. The interviewees were 
unwilling to stereotype the students and rather described their personalities, interests, social skills and 
profiles of giftedness as very individual.  

Principal: I don’t want to give any stereotyped answer here. I don’t want to say that they are this 
kind or that kind. 

According to the educators, many of the students have experiences and memories of feeling different 
and isolated during elementary school. Sometimes a change of school climate can be essential for a 
gifted adolescent. 

Mathematics Teacher2: And we offer a community where you can discuss the Schrödinger equation 
during a break without being sneered at. 

Biology Teacher: I just received a message where the parents were thankful because it has been so 
great [for him]. To be accepted in the group and let him be himself and encouraged 
and so on. 

According to the interviews, the students with exceptional mathematical giftedness had more 
challenges in terms of social skills than those who were gifted in various fields. Moderately gifted 
students are usually relatively popular among their school mates and age peers, while the 
exceptionally gifted are more prone to being left alone (Gross 2002; Rimm 2002). Any school 
environment requires various social skills from students (Payton et al. 2008). According to 
Mathematics Teacher 1, both “social sharks” as well as those who have “obvious problems in that 
respect” could be found among the students of the school. 

Biology Teacher: Some of them have very poor social skills. …It is often related to this narrow field 
of giftedness. 



Every student was welcome to participate in the social activities of the school to the extent of their 
own preferences. According to the interviews, one important social skill for the students is tolerating 
of all kinds of personalities. In the interviews, the diversity among the students was seen as an 
important part of the school’s social climate. 

Mathematics Teacher1: Of course one can choose to enjoy small groups or solitude.  

Mathematics Teacher1: We have a vast variety of personalities and a tight community, which means 
that it becomes a tolerant community.  

To study and associate with other gifted students was considered one reason behind the distinctive 
solidarity of the school community. These views are congruent with the literature (Gross 2002; Rimm 
2002). Even though a variety of social skills existed among the students of the school, the common 
interests made social interaction easier. 

Health-care officer: To find congenial people. And I know how the teachers describe, how they [the 
students] make experiments in the physics lesson or somewhere, the burning 
enthusiasm they show.  

According to the interviewees, the students of the school were able to form close friendships with 
each other. The class-based structure and diverse range of informal activities formed the basis for the 
development of friendships at the school. 

Biology Teacher: And then across the groups of each year’s class, because on Mondays [when extra 
courses in mathematics are taught] and at overnight schools, they spend time together, 
there are no boundaries. 

Associating and studying with other gifted students are emphasized both in these results and in the 
literature (e.g. Subotnik et al. 2009; Rimm 2002). The positive social climate of the school was 
constructed upon acceptance of the dissimilarities of students, diverse social interaction, shared 
experiences and interest in learning mathematics. These features were also seen as suitable for 
enhancing giftedness.  

Intrinsic motivation is one of the most essential social-emotional characteristics for the development 
of mathematical giftedness (e.g. McNabb, 2003; Subotnik et al., 2009). The importance of motivation 
was also emphasized by the mathematics teachers interviewed in this study. 

Mathematics Teacher2: They are very motivated. And that is more determining than giftedness. Of 
course they need some kind of giftedness. But with some kind of basic giftedness you 
can go very far.  

Even though motivation is often seen as a person’s inner characteristic (Subotnik et al. 2009), the 
interviewees highlighted the significance of peer support in connection with maintaining motivation. 
The shared motivation and interest in mathematics was also apparent in the overnight school, where 
groups of students solved mathematical problems together while demonstrating amazing enthusiasm. 

Health-care officer: It is the passion for [mathematics] that creates common good things in the class 
or the group or among the students.  

Mathematics Teacher2: The social pressure can influence them one way or another… They support 
each other very much in studying.  



The observations of the overnight school showed that the students were able to discuss their 
perfectionism, too. The conversation was humorous, and the participants were laughing at their 
perfectionistic characteristics. 

Student1: I am not a workaholic at all! 

Student2: No you’re not. You only scared all the freshmen with your stories last year. 

Sometimes high motivation comes with negative phenomena such as unbeneficial perfectionism. The 
biology teacher and the healthcare officer had seen that achieving certain objectives or failing to do 
so may cause stress and exhaustion.  

Principal: It [exhaustion] does not occur often, but someone every year.  

Health-care officer: Often great giftedness and striving for perfection and achievements are a part of 
the personality. There is a risk of stress and fatigue and exhaustion.  

The interviewees tended to see perfectionism as a practical problem of the educational system rather 
than a problem in the adolescents. The perceptions of the interviewees were summed up by the 
healthcare officer. According to her, negative perfectionism can be prevented and treated by guiding 
the students, being adaptive and offering constant care to the students. 

Health-care officer: Flexibility and a flexible education system are what secure the path of the 
adolescents somehow. And also the caring, in particular, daily care.  

Studying with the other gifted students in a supporting school climate was described to help the 
adolescents to form a realistic self-image and a strong self-confidence as people and mathematicians. 

Mathematics Teacher1: It is easy to obtain perspective, [because] some really are incredibly good. – 
– But nobody is the best of all.  

Health-care officer:  It is amazing to notice how they somehow gain self-confidence. 

The gifted students were described as both ordinary and special at the same time, as they encounter 
the common social-emotional challenges of adolescence but also have special characteristics and 
needs due to their mathematically oriented and ambitious environment. The influence of the domain 
of mathematics on the development of mathematically gifted adolescents cannot be ignored. 

Discussion 
All qualitative research should be subject to realistic reflection on its general reliability (Lincoln & 
Guba 1985). In this particular study, the use of triangulation of data collection increases the validity 
of the research. Nevertheless, a longer participatory observation could have offered more profound 
information on the social interactions of the students. Additional reliability was achieved by 
presenting the interviewees with the results of this study. 

This research studied educators who possess particular experience in the context of Finnish education 
on teaching students who are recognised as gifted. Therefore its results differ from earlier studies on 
conceptions of giftedness of Finnish teachers (Tirri & Kuusisto, 2013; Laine et al., 2016). The 
interviewees of this study described giftedness as advanced performance and a modifiable 
characteristic of a student as well as of the whole school community. Finnish teachers tend to relate 
gifted students only with positive social-emotional characteristics, such as creativity and high level 



of motivation (Laine et al., 2016). The interviewees of this study were prone to discuss also social-
emotional challenges related to lives of the gifted adolescents. Still, the positive attitude to giftedness, 
enthusiasm for teaching and pride of their students were easily heard within the interviews. Research 
has also noted that the amount and especially the quality of cooperation with gifted students 
determines the teachers’ conceptions of and approaches to giftedness (Kaya, 2015). 

The concept of dissimilarity is widely included in definitions of giftedness as well as in the 
conceptions of giftedness commonly held by teachers. If someone is thought to be gifted, she is also 
seen as somehow, although often positively, different from others (Shani-Zinovich & Zeidner, 2009). 
In this research, the school was described as a meeting place for mathematically gifted students who 
are, in some way, different from many other adolescents. Therefore it is significant to understand the 
difference as a subjective experience of a gifted adolescent. Although the society, parents and teachers 
usually appreciate giftedness, exceptional talents often experience isolation within their age group 
(Gross, 2002; Rimm, 2002). 

The organization and the curriculum of national school systems should meet the needs of every 
student including the gifted ones (Cross & Coleman, 2014; Kaya, 2015). The school investigated in 
this research does not represent a common high school in Finland. Neither does it reflect general 
Finnish attitudes toward special education of highly performing adolescents (Laine et al., 2016; Tirri 
& Kuusisto, 2013). A person’s individual growth and particular social environment determine the 
social-emotional challenges of a mathematically gifted child instead of the mathematical giftedness 
per se (Wilson, 2015). Finnish teachers are highly qualified and skilled at differentiating learning 
contents both for fast and slow learners (Laine et al., 2016). However, this research shows that even 
the most devoted and competent teacher cannot replace the need of meeting, studying and making 
friends with other congenial peers. As a conclusion, when planning education for gifted students the 
social-emotional aspects of gifted education and the gifted students’ need for meeting congenial 
adolescents should be considered. 
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There are some discussions about the relationship between creativity and the aesthetic sensibility.  It 
has been a characteristic of mathematician and mathematical gifted that the aesthetic sensibility has 
a generative characteristic. On the other hand, some studies demonstrated that the generative 
characteristic also was available even by the non-mathematician or non-mathematical gifted. The 
purpose of this paper is to clarify the process to produce qualitative differences in the generative 
characteristic of the aesthetic sensibility through the analysis of learners’ problem solving. For this 
purpose, two pairs of high school students and one pair of college students were observed during 
problem solving. As a result, it was clarified that it is critical whether learners have their own goal 
other than the given one to evoke the generative characteristic. Moreover, it was suggested that the 
difference of one’s own goal is associated with qualitative difference in the generative characteristic. 

Keywords: Aesthetic, generative, creativity, problem solving, qualitative study. 

Introduction 
There are two directions for the term “mathematical creativity” used widely: extraordinary creativity, 
known as big C, or everyday creativity, known as little c (Sriraman, Haavold & Lee, 2014, p.110). 
Everyday creativity also is important for mathematics educators. Silver (1997) said, 

Although creativity is often viewed as being associated with the notions of “genius” or 
exceptional ability, it can be productive for mathematics educators to view creativity instead as 
an orientation or disposition toward mathematical activity that can be fostered broadly in general 
school population. (Silver, 1997, p.75) 

In today’s national curriculum in Japan, developing all students’ creativity is one of the objectives in 
high school mathematics education. So, this paper uses the term “mathematical creativity” or 
“creativity” as the meaning used by Silver: everyday creativity.  

Since Poincaré (1908/2003) pointed the importance of the aesthetic sensibility in mathematical 
discovery, the interest in the relationship between creativity and the aesthetic sensibility has risen in 
the field of mathematics education. Some studies have claimed that the aesthetic sensibility is one of 
characteristics of mathematician or mathematical gifted student (Dreyfus & Eisenberg, 1986; Hardy, 
1956/1992; Krutetskii, 1976; Poincaré, 1908/2003; Silver & Metzger, 1989). As the bases for such a 
claim, these studies had drawn attention to the process that the aesthetic sensibility worked (Dreyfus 
& Eisenberg, 1986; Krutetskii, 1976; Silver & Metzger, 1989). In particularly, Silver & Metzger 
concluded that there were several characteristics of aesthetic sensibility during mathematical problem 
solving only by mathematicians.  On the other hand, other studies disagree with above claims in that 
general learner, non-mathematician or non-mathematical gifted student, can have the aesthetic 
sensibility and their aesthetic sensibilities have the similar characteristics with mathematician or 
mathematical gifted student (Papert, 1978; Sinclair, 2006a). These studies demonstrated that the 



generative characteristic of the aesthetic sensibility, which works as a guide in decision making 
during mathematical discovery, could work in general learners’ mathematical problem solving. 

If the difference of such a characteristic is not due to the mathematical talent, the questions have 
remained unanswered what critical factor causing difference is or how such difference is caused. The 
purpose of this paper is to clarify the process to produce qualitative differences in the generative 
characteristic of the aesthetic sensibility through the analysis of general learners’ problem solving. 

Theoretical background 
The characteristics of the aesthetic sensibility in problem solving 

There is not a clear and widely accepted definition of the term “aesthetic” in mathematics education. 
Poincaré (1908/2003) explained using both the form of mathematical objects and the sense of the 
perceiver as following: 

It is the harmony of the different parts, there symmetry, and their happy adjustment; it is, in a 
word, all that introduces order, all that gives them unity, that enables us to obtain a clear 
comprehension of the whole as well as of the parts. (Poincaré, 1908/2003, pp.30-31) 

Hardy (1956/1992) and Dreyfus & Eisenberg (1986) defined it using subjective qualities like 
“economy”, “simplicity” and “surprise”. Without referring to its subjectivity, Hardy argued that 
mathematician would share them. In contrast to the above studies, Wells (1990) claimed that the 
aesthetic qualities are subjective and context-dependent.  

On the other hand, some studies paid attention to the working process of the aesthetic sensibility, 
which is the ability to appreciate and respond to aesthetic qualities of mathematical objects, rather 
than strictly defining the term “aesthetic” (Papert, 1978; Silver & Metzger, 1989; Sinclair, 2006a, 
2006b). Though claims about what the aesthetic is are various, the discussion about what 
characteristics the aesthetic sensibility have is a convergent as below. Papert (1978) was focused on 
the process of creation explained by Poincaré. Papert regarded the aesthetic widely and observed 
non-mathematicians’ proving process. As a result, Papert concluded non-mathematician also could 
be guided by the aesthetic sensibility. Silver & Metzger (1989) classified the role of the aesthetic 
sensibility into two categories. First is “the guidance of decision making during problem solving” (p. 
62). The viewpoint of this category can be regarded as the same as Papert’s. Second is “the evaluation 
of the elegance of a completed solution” (p.62). In addition, Silver & Metzger observed 
mathematicians’ problem solving and identified these roles in their problem solving. Similarly, 
Sinclair (2006b) classified characteristics of the aesthetic sensibility into three categories: the 
evaluative characteristic, the generative characteristic, the motivational characteristic. Moreover, 
Sinclair (2006a) observed learners’ problem solving and problem posing and identified these 
characteristics of the aesthetic sensibility. Sinclair’s generative characteristic and evaluative 
characteristic can be regarded as the same as Silver & Metzger’s two roles.  

The above results demonstrate that whether the aesthetic sensibility does work in problem solving is 
due not to only mathematical talent but also to something else. The existence of this “something else” 
is consistent with the claim of Papert. However, there has been not enough study done concerning this 
point. In particular, few studies have attempted to observe learners’ generative characteristic of the 
aesthetic sensibility.  



Based on the above background, this paper defines the generative characteristic of the aesthetic 
sensibility (GCA) as a guide in decision making during mathematical discovery, and clarifies the 
process to produce qualitative differences in the GCA.  

Four categories of the generative characteristic of the aesthetic sensibility.  

Poincaré (1908/2003) regarded the aesthetic sensibility as a thing working in the unconscious level. 
In contrast, some studies limited the discussion to the conscious level (e.g. Papert, 1978; Silver & 
Metzger, 1989; Sinclair, 2006a). This paper also limits a discussion to the conscious level. 

Papert regarded reasoning without conviction or logic but with pleasure as “the problem of guidance” 
(p.109) by the aesthetic sensibility. Sinclair (2006b) associated such non-conviction reasoning to 
intuition as “capitalising on intuition” (p.94). Moreover, Sinclair (2006b) identified additional three 
categories of the GCA based on the mentions by mathematicians. First category is “playing with or 
‘getting a feel for’ a situation” (p.94). This means exploration “in that the one playing is seeking to 
identify organizing themes and structures and to arrange the objects being played with in a 
meaningful, expressive way” (p.95). That is, it can be interpreted as pursuing these goals without 
depending on the goals of the given problem. Second category is “establishing intimacy” (p.94). This 
means, for example, to give a name to the considered subject. Third category is “enjoying the craft” 
(p.95). This is interpreted as consideration using mastered tools. Although the question remains 
whether it is reasonable that intuition is regarded as one of the aesthetic generating, this classification 
by Sinclair (2006b) can be used as viewpoints for extraction of the GCA from one’s behavior in 
problem solving. 

A study on the generative characteristic of the aesthetic sensibility in general 
learners’ problem solving 
Participants 

Two pairs of high school students and a pair of college students, who had several mathematical 
knowledge and mathematical experience, were selected as participants, and observed during solving 
a problem. One pair of high school students belonged to 10th grade (Pair H1), another pair belonged to 
11th grade (Pair H2). One of college students belonged to third year and another belonged to fourth 
year of mathematics teacher-training course (Pair C). Although they were all better than the average 
learners in Japan, they were not so good as mathematician or mathematical gifted student. 

Pair H1 and Pair H2 belonged to the same high school in Japan. Pair H1 had learned double radical 
signs. However, they had learned about a particular type like which could be transformed 
into other form without a double radical sign. In addition, they had not learned the relationship 
between the roots and the coefficient of the quadratic equation. The other hand, Pair H2 had learned 
same type double radical signs with Pair H1. This pair had learned the relationship between the roots 
and the coefficient of the quadratic equation.  

Pair C did not belong to the same high school with Pair H1 and Pair H2. They had learned double 
radical signs and the relationship between the roots and the coefficient of the quadratic equation. 
Although a student belonged to third year had never “studied” mathematics in college, another 
student belonged to fourth year had “studied” mathematics in college for a half year. So, fourth grade 



student was expected to have experienced mathematical discovery and to show the experience in the 
process of problem solving. 

Procedure of the study 

Because the GCA is “involved in the actual process of inquiry, in the discovery and the invention of 
solutions or ideas” (Sinclair, 2006b, p.93), participants were observed their problem solving behavior 
in following process. 

Each pair calculated in order to clear some concrete double radical signs like  as warm-up. 
Then, observer showed another type which cannot be cleared double radical signs like . 
After that, each pair solved a problem about an abstract double radical sign (it is shown below). After 
they finished to solve, they were interviewed about how to solve it.  

In order to analyze verbal report during solving problem as data, participants were asked to solve a 
problem while consulting in pairs. By this setting, it was expected to provide simultaneous and nature 
verbal report. All participants’ verbal report was recorded on a IC recorder. (Only Pair H2 was 
recorded on a video camera, too.) 

A problem   

In this study, a following problem was chosen.  

Find the conditions for clearance of a double radical sign from .  However, and  

belongs in positive rational number. Moreover, is not the square of rational number. 

There are multiple conclusions in this problem as following. The participants were not informed what 
conditions were appropriate as the conclusion. Therefore, they were also asked value judgments for 
determining their finding as a conclusion. In contrast to that the multiple solution problems need 
participants to solve problem by more than one way — general learners usually do not so, such 
open-ended problems need participants’ value judgments more naturally.  

(Conclusion 1): If a double radical sign can be transformed into following expression:  

 
 then right side of above equation can be transformed into following expression: 

 
From the above transformations, a necessary condition for clearance of a double radical sign 

from  is the existence of belonging to positive rational number such that 

 and  Conversely, if belonging to positive rational number such that 

 and exist, then the double radical sign of  can be clear as following: 



 

 
(Conclusion 2): Existence of belonging to positive rational number such that  
and is equivalence with that  are the roots of the quadratic equation  
in . From this, the latter condition is also a conclusion of above problem. 

In the following,  expresses the discriminant of the quadratic equation. If , then  

 
From this, if  can be expressed as the square of rational number like ( , then 

 has positive rational roots in . Conversely, if  can be expressed as ( 
, then the two roots of quadratic equation  are 

 
These sum and product are 

 
From these, 

 

 
From above, if  can be expressed as ( , then the double radical sign 

of  can be clear. 

(Conclusion 3): Looking back at the conclusion 2 can provide next developmental conclusion. That is, 

the conditions for clearance of a double radical sign from  is that  can be expressed as ( 

, too. 

(Conclusion 4): Moreover, seeing  as  can provide another perspective. That is, if  

in the  is replaced to , then a conclusion of finding the conditions for clearance of a 

double radical sign from  is that  can be expressed as ( . 

 



Results 

Overview of three pairs’ problem solving is shown in Table 1.  

 Pair H1 (H1-1&H1-2) Pair H2 (H2-1&H2-2) Pair C (C1&C2) 

Conclusion 1 04:00 H2-1 02:20/ H2-2 06:02 08:16 
Conclusion 2 16:20 H2-1 05:37/ H2-2 06:59  

Conclusion 3, 4    

Finish 16:20 51:16 38:00 

Table 1: Overview of three pairs’ problem solving 

In Table 1, each of the values show the time participants spent to get to the conclusion shown to far 
left, and diagonals show that participants did not arrive at the conclusion. Each participant of Pair H2 
had got to the conclusion on their own before they started to consult each other. Therefore, each time 
of Pair H2 was shown in Table 1. Line of the “Finish” shows the time which each pair had spent 
solving problem. For instance, Pair H2 and Pair C kept pursuing more exact condition than their 
conclusion in cooperation each other. Solving process of each pair are as follows. However, the 
symbols used below are the same as those used by participants. 

(Pair H1) 

After confirming the question, each immediately got to the relationship: . H1-1 
continued more investigations from the reason that "  and  cannot be found when these are the large 
numbers. I want another one easily puts out with only  and .", and continued for a further inquiry. 
In addition, H1-2 said "it is not good to use the new  and ", and continued to explore. H1-1 
associated the factorization from the above equation, and flashed that it will go well if he can factorize 
as following: . H1-1 started to think about that H1-2 had been 
questioned: the case has the rational solutions. H1-1 paid attention to the 
discriminant of the quadratic equation, but dismissed this idea. H1-1 dazzled that if the root in the 
quadratic formula could be clear, it will go well. H1-2 agreed this. They established conclusion that 

 is square number, and finished the solving. 

(Pair H2) 

After confirming the question, H2-1 and H2-2 went ahead the discussion using a specific example. 
However, they did not use the peculiarities of example, generalized immediately once outlook was 
obtained. Up to this point, they worked on the problem at each, and got to a conclusion 2 through the 
conclusion 1. However, they had not been convinced that the condition they got was the one they 
sought for. When the observer was urged to check the progress of each other, they decided to consider 
in cooperation about the conditions with the  and , which H2-1 had considered. H2-1 was looking 
for a simple conclusion than conclusion 2. Ultimately, they made out that can be expressed as the 
square of rational number is necessary and sufficient condition for clearance of a double radical sign 
without deriving another “simple” conclusion. 

(Pair C) 



After confirming the question, C1 remembered following condition as a formula: . 
Then, they considered they could regard this formula as conclusion. They made sure that 

, and could regard the formula as conclusion. By the "intervention" of the observer: 
asking them about example, they began to consider whether concrete double radical signs can be clear 
based on above "conclusion". C1 noticed that  were rational number when a double radical sign 
could be cleared, and he said, "I guess I should add another conditions". C2 considered that the 
example which could not be clear a double radical sign was really not able to clear through a specific 
calculation. As a result, they confirmed that it could not clear. In response to the results, they 
concluded as following: 

Condition (ⅰ): . 
Condition (ⅱ):  
Condition (ⅲ):  are rational number. 

The analysis 

The analysis was carried out in the following procedure. First, making transcripts of participant's 
problem solving process. Next, judging whether some of the four GCA proposed by Sinclair (2006b) 
can be seen through the observation of problem solving behavior and the interpretation of the 
intention of the behavior. The interpretation of the intention is based on the transcripts of the problem 
solving process and the explanations of their process that the participant did after solution. Finally, 
comparing the GCA of each pair. As a result, the GCA were seen as following Table 2. 

the GCA Pair H1 Pair H2 Pair C 

Removing new symbols (for Conclusion 2) ○ ○  
 Pursuit of exactness (for Conclusion 2)  ○ ○ 

Pursue of simplicity (for other Conclusions)  ○  
Table 2: The GCA of three pairs in problem solving process 

Discussion: The qualitative differences in the generative characteristic of the 
aesthetic sensibility 
From a comparison of the three pairs, mainly three of qualitative differences in the GCA in problem 
solving were observed. First is the point whether they attempt to remove new symbols  and . Both 
Pair H1 and Pair H2 discussed about this point, but Pair C did not. Second is the point whether they 
confirm the exactness of the conclusions. Pair H1 did not check it, and the remaining two pairs did. 
However, there was a difference in the method used by pair H2 and pair C. Pair H2 was showed 
exactness by considering that the found condition was necessary and sufficient condition. On the 
other hand, pair C confirmed the exactness by considering a concrete example. Third is the point 
whether they attempt to further improve the conclusion that could be expressed as the square of 
rational number. This had done only pair H2. However, this pair could not obtain conclusion. 

From above results, it can be presumed that the qualitative difference of the GCA in problem solving 
depends on participants’ goal in problem solving. For instance, pair H1 wanted not only to find 
condition, but also find condition without new characters  and . Pair H2 also had this goal, but pair 
C did not. As a result, only pair C did not pursue another conclusion. Therefore, in order to evoke the 
GCA it is critical whether learners have one’s own goal other than the given one. In addition, even if 



learners have same goal such as exactness, the difference in means of the “exactness” can cause 
qualitative differences of the GCA. 

From above discussion, if we can make learners to have one’s own goal, it is possible that we can 
evoke learners’ GCA. However, it is not clear in this paper that what kind of goal is desirable for 
mathematical creation, and how can we make learners to have one’s own goal. Therefore, a further 
study of these points should be conducted.  
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Identifying subgroups of CERME affect research papers 
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Research in mathematics related affect uses a variety of theoretical frameworks. Three different 
dimensions have been suggested as significant to characterize concepts in this area: (1) emotional, 
motivational, and cognitive aspects of affect, (2) state and trait aspects of affect, and (3) 
physiological, psychological, and sociological level of theorizing affect. In this study, we used the 
information in reference lists and graph theory to identify Graph Communities (coherent clusters) of 
research papers published in the affect groups of CERME conferences. The four main Graph 
Communities identified in the analysis were Foundation (beliefs, attitudes, emotions), Self-Efficacy, 
Motivation, and Teacher Development. There were six smaller Graph Communities that may suggest 
emerging new frameworks: Academic Emotions, Metacognition, Teacher Beliefs, Resilience, 
Meaning, and Identity. These results suggest that of the three possible dimensions to structure the 
area, the distinction between cognition (beliefs), motivation, and emotions is the most important one. 

Keywords: Affect, educational theories, graphs, literature reviews. 

Introduction 
The affect group in CERME has spent a lot of time and energy discussing the conceptual framework 
and terminology, leading to more extensive theorization of the area. Three theoretical frameworks 
have been especially influential in CERME for structuring the area of affect. The first is McLeod’s 
1992 framework that identified three main topics of research in mathematics related affect: emotions, 
attitudes, and beliefs. Moreover, the framework suggested that emotions are the most intensive, the 
least stable, and the least cognitive of the three, while beliefs are at the other end of the continuum 
and attitudes are in the middle.  

An important synthesis of discussions in the group was Op ‘t Eynde’s graphic representation of the 
conceptual field at CERME 5 (Hannula, Op ‘t Eynde, Schlöglmann & Wedege, 2007, Figure 1). This 
model identifies some new constructs that had been then discussed in CERME affect group: most 
importantly, the model identifies motivation as a dimension separate from affect, and meta-affective 
constructs. Moreover, the model highlights the local (classroom) and socio-historical contexts. 

The model was discussed and developed by Hannula in his CERME plenary (2011) and further 
elaborated in the CERME special issue of RME (2012). This cube model (Figure 2) identified three 
dimensions that are relevant when discussing affective constructs. The first dimension addresses 
cognitive, affective, and motivational types of constructs. The second dimension separates the rapidly 
changing state-type constructs and more stable trait-type constructs. The third dimension identifies 
three levels of theorizing affect: psychological, social and embodied theories. 

These distinctions identify separate research areas of mathematical affect. But how separate are they? 
Do the studies on attitudes, emotions, and beliefs form three separate research traditions or even 18 
separate research areas, as Hannula’s cube model suggests? Perhaps the studies on state and trait type 
affects are separate? Or are the different topic areas partially overlapping with diffuse borders, as Op 
‘t Eynde’s figure depicts it?  



 
Figure 1. A graphic representation of the different dimensions of mathematics-related affect and their 

relationships, presented at CERME 5 (Hannula et al., 2007, p. 204) 

 

 
Figure 2. Hannula’s (2011; 2012) cube model of the three dimensions for affective constructs  

One way to analyze the question empirically is to analyze the references different research papers 
share. We are aware that there is a lot of cross-referencing between authors of CERME affect papers 
and that there are some fundamental articles that keep being cited often. However, there has not yet 
been any systematic analysis on the cohesion of the research papers. We are going to make a network 



analysis of CERME papers in this research area. With this analysis we can identify whether there are 
some clusters of different research traditions within the CERME affect group. Moreover, we expect 
to identify important foundation works for each research tradition. 

Our research questions are: (1) What possible subgroups can we identify among CERME research 
papers on affect when analyzing the cited authors of each paper? (2) What are the defining 
characteristics of each subgroup of papers? 

Methods 
Corpus and measures 

Our corpus for analysis were the 100 research reports published in the affect groups in CERME 
conferences four to nine. The first two CERME conferences did not have an affect group and 
CERME3 one was left out because of some difficulties in the formatting that we did not have time to 
solve. We excluded from our analysis affect papers published in other groups, for example in groups 
of teacher beliefs or comparative studies.  

Knowing the CERME publications in affect group, we knew that some authors had published papers 
that might fall into different research traditions. For example, many researchers have published papers 
both on teacher affect and student affect, and it could be possible that these fields would be 
empirically separate clusters. Therefore, we decided to search for clusters of papers published in 
CERME rather than identifying clusters of researchers. 

When analyzing the lists of references, we had two basic options to identify links between papers. 
We could identify whether the same reference appeared in the reference lists of two papers, or we 
could link them whenever they had papers by the same author in their lists of references. Because our 
data corpus was modest in size, there was high probability that papers using the same theoretical 
framework might not share the same exact references even if they use papers by the same authors. 
Therefore, we decided to use the authors in the reference lists rather than the exact references as the 
method of connecting papers. 

As a conclusion, our data consisted of research reports published in the proceedings and the authors 
appearing in their reference lists. For each of the papers, we created a connecting link from the paper 
to each of the authors mentioned in the references. For analyzing the connections between papers, we 
identified CERME papers and cited authors as vertices of a graph. Edges of the graph are the links 
that connected each CERME paper with the authors mentioned in the list of references, allowing 
multiple edges when a paper had several references by the same author. Hence, we produced a graph 
connecting all papers to their cited authors and this was then subjected to a mathematical analysis. 

Analysis 

The analysis included two stages: (1) To identify Graph Communities, and (2) to identify 
commonalities within the papers and authors of the selected Graph Communities. 

We identified related papers using the FindGraphCommunities algorithm with modularity-based 
clustering to identify how papers and cited authors are related (Wolfram Alpha LCC, 2016). The 
modularity approach was originally developed by Newman and Girvan (2004) and the algorithm used 
in Wolfram Alpha is based on Fortunato’s article (2010). 



The input for the algorithm was the graph connecting research reports to authors cited in these papers. 
The output was subgraphs called Graph Communities, each of which consisted of some of the 
research reports and authors. The algorithm chooses only one Graph Community for each of the 
graph’s vertices. In other words, although the same author may originally appear in the reference lists 
of papers from many graph communities, in these subgraphs each cited author belongs exclusively to 
one Graph Community. This accentuates the differences between Graph Communities, especially 
with respect to those authors who are cited in papers in several communities. In addition, we are 
aware that the current method does give additional weight to authors cited several times in a paper. 

The next stage of analysis was to identify which Graph Communities to include in further analysis. 
This stage was based on a visual inspection of Graph Communities to see how well they are 
connected. The five biggest Graph Communities are presented as graphs (Figures 3 – 6), all affect 
papers published in CERME are represented as vertices with multiple edges. However, authors may 
have either one or multiple edges, depending on how many times they appeared in references. Another 
six Graph Communities are described but due to space limitation their graphs are no presented.  

In the last stage of the analysis, we examined which papers and authors were represented in each of 
the Graph Communities. 

Results 
The algorithm identified 21 Graph Communities. We shall describe nine of them.  

The first Graph Community 1 (29 papers; Figure 3) we call Foundation. It was the largest and the 
most cited authors in it included arguably the most influential researchers in the area of mathematical 
affect: McLeod (e.g. 1992), Schoenfeld (e.g. 1992) and Goldin (e.g. 2002). The most frequently cited 
authors in Foundation were active participants of CERME affect group: Hannula, Zan, Pehkonen, 
and Di Martino. Foundation is perhaps the most difficult to describe and may be best done by 
contrasting it with other Graph Communities. The Foundation’s papers represent a large scope of 
research topics and theoretical frameworks, including papers that focus on beliefs, attitude, affect 
during problem solving, and emotions. This group also contains several papers that deal with 
dynamically changing affective states. 

The second Graph Community (11 papers, Figure 4,) was given the label Self-efficacy. It had papers 
mostly from Cyprus and Turkey (e.g. Arslan & Bulut, 2015). The shared theoretical framework of 
self-efficacy was indicated by numerous references to Pajares and Bandura. 

The third Graph Community (11 papers, Figure 5) we named Motivation. Philippou and Pantziara 
were influential authors in this Graph Community. Seven of the papers included at least one of them 
as the author (e.g. Pantziara & Philippou, 2011). Also Wæge appeared three times in this group as an 
author. This group shared motivation theory framework, and the most cited authors were well-known 
motivation theorists Midgley, Deci, Ryan, Pintrich, and Elliot.  

 



        
Figure 3. The Graph Community Foundation  Figure 4. The Graph Community Self-Efficacy 

The Fourth Graph Community (8 papers, Figure 6) collected together papers on Teacher 
Development. Liljedahl was an important author in this group with four papers and the most cited 
authors include Liljedahl and Ball.  

                         

Figure 5. The Graph Community Motivation  Figure 6. The Graph Community Teacher Development    

The following six Graph Communities were smaller, each including 3 to 5 papers. Due to space 
limitations, these will be described only briefly. The four papers in Academic Emotions share 
Pekrun’s (e.g. Pekrun, Goetz, Titz, & Perry, 2002) academic emotions framework and all these papers 
have been published in CERME8 or CERME9. All four papers in Metacognition were authored by 
Panaoura (citing e.g. Flavell, 1987). Teacher Beliefs had three papers from CERME8, citing, e.g. 
Fives & Buehl (2008). Resilience included 5 loosely connected papers without any frequently cited 
author. Meaning (citing e.g. Skovsmose, 2005) included four papers, and Identity (citing, e.g. Sfard 
& Prusak, 2005) four papers.  

The remaining 14 Graph Communities included one or two papers each, altogether 16 papers. Nine 
of these papers were by authors who have ever published only once in the CERME affect group. Yet, 
these included also papers by frequent CERME participants (e.g. Hannula and Philippou).  

Discussion 
The analysis identified nine groups of CERME affect publications. Their defining features were a 
shared theoretical framework and often a research team. The largest group, Foundation, did not hold 
a theoretical framework clearly separating it from other groups. Rather, this group seemed to rely 



more on the seminal works in the field of mathematics related affect and cover a variety of research 
topics indicating that there is much cohesion in this research field. 

How much are these identified groups of papers determined by having the same authors? Most 
researchers with several papers in the analysis had most of their papers in a single community and 
only Philippou appears in three different Graph Communities. Often, having publications in different 
Graph Communities seems to be explained by supervisors co-authoring their students’ papers that 
may often have quite different theoretical frameworks than their own papers. 

The current method did not allow overlapping of Graph Communities, which made it difficult to 
identify possible authors who have a cross-cutting importance across several graph communities. 
However, looking at the total numbers of citations across all Graph Communities we found some 
such authors. The clearest examples were Ernest, who was cited 12 times in total, but not more than 
four times in any Graph Community, and Mason, who was cited 10 times but not more than twice in 
any Graph Community. Also, most authors described above as defining a Graph Community are cited 
in many papers of other communities. This suggests that results might identify groups more clearly, 
if we defined connections through specific cited research papers rather than cited authors. However, 
our current corpus might not be sufficiently large for that kind of analysis. Such analysis would be 
recommended when using a data corpus of at least a few thousand articles. 

There are some methodological issues that we are aware of. We realized that summaries of the affect 
group from the previous CERME proceedings were cited often, inflating the number of citations by 
their authors. A more fundamental question is, that we have no measure for the reliability of The 
Graph Community analysis. With the current data corpus, our first analysis included an error that 
excluded 11 of the 100 papers. This was enough to produce a significantly different result: A subgroup 
of Foundation papers (Pehkonen and his students) was identified as a separate Graph Community and 
Teacher Development was not identified as a Graph Community. This suggests that the results of the 
analysis are quite sensitive to changes in data. 

The first author of this paper has published several synthesizing articles on research in mathematics 
related affect. Using the graph analysis was an attempt to overcome possible personal biases in 
perceiving the structure of the research area. Our method of connecting CERME publications by 
authors appearing in their lists of references seems to have worked. It confirmed research on 
motivation research as a specific research domain. The analysis also identified specific research 
traditions on self-efficacy and academic emotions. While earlier reviews (e.g. Hannula, 2011), 
identified beliefs and emotions as two areas within mathematics-related affect, the current analysis 
identified research on beliefs in three different groups: Foundation, Self-Efficacy, and Teacher 
Beliefs. Similarly, the current analysis identified Academic Emotions as separate group while most 
emotion papers were part of Foundation. These results suggest that in the Hannula (2011; 2012) 
model, the distinction between cognition (beliefs), motivation, and emotions is the most important 
one. On the other hand, one small Graph Community, Identity, can be considered to be characterized 
by its theoretical background being sociological. A possible new characterizing feature for research 
could be focus on the dynamics of change, exemplified by the research traditions Teacher 
Development and Resilience. 
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Tracing mathematics-related belief change in teacher education 
programs 

Çiğdem Haser1 and Işıl İşler2 
1Middle East Technical University, Turkey; chaser@metu.edu.tr 
2Middle East Technical University, Turkey; iisler@metu.edu.tr 

Understanding mathematics related belief change in teacher education programs has been a concern 
due to the information it presents about the effectiveness of program experiences. The present study 
investigated how preservice mathematics teachers’ (PMTs) mathematics related beliefs changed 
through a teacher education program by implementing a belief scale to a cohort of PMTs 12 times 
during 6 consecutive semesters. Comparison of mean scores for different time periods showed that 
the cumulative effect of the teacher education program is more detectable than year-long or semester-
long effects. While such implementation is likely to provide a perspective for monitoring belief change 
and possible effects of courses, it might also address that the contents of the courses should be 
connected to ensure the best cumulative effect of the programs.  

Keywords: Mathematics related beliefs, preservice mathematics teachers, tracing beliefs. 

Beliefs and teacher education programs 
Training teachers with knowledge, skills, and disposition to practice the reform-oriented teaching has 
been a major goal for teacher education programs as teachers are the key to the success of the reforms 
aiming constructivist and student-centred mathematics instruction at schools (Handal & Herrington, 
2003). Hence, initiating and strengthening mathematics related beliefs parallel to the reform 
movements have been a concern for teacher education programs (Raymond, 1997). This study aimed 
to identify possible key courses and experiences in teacher education programs that influence PMTs’ 
beliefs by monitoring the changes in beliefs for three years in a four-year middle grades mathematics 
education program. The other aim is to gain perspective on the information that continuous 
monitoring of beliefs can provide. We adopted the identification of beliefs which Muis (2004) used 
for students’ mathematics related beliefs and considered PMTs’ beliefs as availing if they had the 
potential to help PMTs to achieve the reform-oriented goals of the teacher education program and 
middle school mathematics curriculum, and nonavailing otherwise.  

Preservice teachers generally start teacher education programs by nonavailing mathematics-related 
beliefs (Szydlik, Szydlik, & Benson, 2003) for their learning in the program. Although programs aim 
to initiate and strengthen availing beliefs to reach program outcomes and teach through reform when 
PMTs become teachers, availing beliefs are initiated and developed to a limited extent (Clift & Brady, 
2005). However, nonavailing beliefs are carried to the student teaching and teaching profession and 
they influence teachers’ practices and implementation of reform principles in classrooms (Szydlik, et 
al., 2003). Therefore, teacher educators face the challenge of understanding PMTs’ beliefs in the 
beginning of programs and organize tasks and experiences to develop and strengthen the availing 
beliefs (Swars, Smith, Smith, & Hart, 2009). This requires monitoring PMTs’ beliefs throughout 
programs and the possible influence of program experiences.  



Several studies investigated the effects of teacher education program experiences on PMTs’ 
mathematics related beliefs mostly by emphasizing a single course or set of courses such as the 
methods courses and student teaching. These studies have shown that course experiences had limited 
effect in terms of the extent and the duration of the developed beliefs (Szydlik, et al., 2003). 
Longitudinal studies which documented changes in PMT beliefs through a set of courses are rare. 
Swars, et al. (2009) investigated 24 preservice elementary teachers’ mathematics teaching and self-
efficacy beliefs, mathematics anxiety and specialized content knowledge through 3 semesters of a 4-
semester teacher preparation program. They implemented the belief instruments at the beginning and 
end of the 2nd semester (1st methods course), at the end of the 3rd (2nd methods course) and 4th (student 
teaching) semesters. The analysis showed that preservice teachers’ scores significantly increased after 
the 1st methods course, decreased non-significantly at the end of the 2nd methods course, and 
significantly decreased at the end of student teaching. Yet, there was a significant increase from the 
1st implementation to the 4th showing that preservice teachers gained more cognitively aligned beliefs 
(as targeted by the program) at the end of the 4 semesters.  

The present study attempted to trace PMTs’ beliefs through a teacher education program beginning 
from the semester they were enrolled in the initial pedagogical content knowledge courses (beginning 
of the 3rd semester) until they graduated (end of the 8th semester). PMT beliefs were monitored by 
implementing a belief instrument for 12 times in 6 consecutive semesters. In this paper, we report 
and discuss the changes based on timing of the implementation through the following research 
questions: (1) How do PMTs’ mathematics related beliefs change through the 2nd, 3rd, and the 4th year 
of a 4-year mathematics teacher education program (a) in the long term (between academic years and 
throughout the three years); (b) in the short term (within the academic years)? (2) What kind of 
information does timing of belief instrument implementation offer about mathematics related belief 
change for teacher educators? 

Method  
A longitudinal survey design was employed and data were collected from the same group of PMTs 
for 6 consecutive semesters to capture the possible changes in their mathematics related beliefs.  

Participants and context 

Turkish education system is centralized at the national level with national curricula implemented at 
all grade levels at all contents. All students have to take a national examination at the end of high 
school to attend 4-year degree programs at universities including teacher education programs. The 
context of the study was a four-year middle grades (grades 6-8) mathematics teacher education 
program (EME) at a Turkish public university. EME program had three mathematics education 
faculty members at the time of the study and was placed under the Department of Elementary 
Education with 10 faculty members. The program had mathematics courses offered by the 
Department of Mathematics in the first four semesters. Mathematics education courses started in the 
3rd semester and were offered by the program faculty and pedagogical courses were offered by the 
Department of Educational Sciences. The participants of the study were a total of 33 female and 10 
male PMTs who started the EME program in 2006, referred here as the “cohort”.  

EME program started in 1998, was renewed in 2006 and the cohort was the first to study the renewed 
program. The changes in the EME programs were due to a major constructivist curriculum reform in 



the national mathematics curriculum in Turkey in 2005. Previous EME program offered a mandatory 
minor degree in science education which was removed in the renewed program. School Experience 
course in the 2nd semester and Textbook Analysis course in the 8th semester were removed, and 1-
semester Methods of Teaching Mathematics course was renewed as a 2-semester course, which 
allowed the dense content be covered in more time and depth. Methods of teaching course content 
was combined with curriculum issues content in a new course. Two new courses on research methods 
and nature of mathematical knowledge, and two statistics courses from the Department of Statistics 
were added to the renewed program. Mathematics courses, field experience courses in the 7th and 8th 
semesters and most pedagogical courses were maintained. The previous program experiences were 
based on constructivist approaches, however, the renewed program provided more opportunities for 
widened and deepened experiences for PMTs.   

Two studies investigated the belief change in the previous EME program. Haser and Star (2009) 
conducted a cross-sectionally longitudinal study through interviews with 2nd, 3rd, and 4th year PMTs. 
Their findings revealed that PMTs’ mathematics related beliefs did not change much throughout the 
program. However, methods of teaching mathematics course provided PMTs a different 
understanding of teaching and learning mathematics, which they did not experience in their pre-
college education. Haser and Doğan (2012) investigated how mathematics related beliefs differed 
among PMTs in different year levels. They first surveyed a total of 100 PMTs who were at the 
beginning of the 2nd, 3rd and the 4th year. Their analysis showed that PMTs who just started the 4th 
year in the program had significantly higher belief scores. Then, they focused on the effect of the 
general methods of teaching course in the 3rd year of the program on PMTs’ beliefs. 

The major changes in the EME program and the opportunity to monitor the 2006 cohort from the 
semester they started to take courses from the Department enabled us trace the possible influence of 
the renewed EME program experiences on PMTs’ mathematics related beliefs.  

Data collection instrument 

The belief scale used in this study was developed and used in the previous study (Haser & Doğan, 
2012) in order to investigate Turkish PMTs’ beliefs about the nature of mathematics and teaching and 
learning mathematics. Mathematics-related belief scale (MBS) included 38 five-point Likert type 
items asking PMTs’ agreement with belief statements with responses ranging from totally disagree 
(1) to totally agree (5). Higher scores in MBS indicated existence of more availing mathematics 
related beliefs. Some of the MBS items are as follows: “Problem solving should be used as a teaching 
method within mathematics education”, “The aim of mathematics education is to obtain correct 
answer by using the ways previously shown in the course” and “Visual and concrete materials are 
used in order to set up an environment for students to investigate their ideas”. The Cronbach’s alpha 
coefficient for MBS was calculated as .85 in the earlier study.  

Data collection and analysis  

MBS was implemented for 12 times at the beginning and the end of each semester in the 2nd, 3rd, and 
4th year in one of the courses PMTs attended. However, the number of PMTs who took the MBS in 
each implementation varied due to the number of PMTs present at the implementation time. PMTs 
completed the MBS in about 15 minutes in each implementation. 



Data were analysed to investigate both long-term and short-term changes in mean MBS scores, 
therefore, separate analyses were conducted. Long-term changes were investigated by comparing 
mean MBS scores of PMTs in the beginning of 2nd, 3rd, and 4th year, and at the end of 2nd, 3rd, and 4th 
year by one-way repeated measures ANOVA. Mean MBS scores in the beginning of 2nd year and at 
the end of 4th year were compared through paired-samples t-test. Short-term changes were 
investigated by comparing PMTs’ mean MBS scores at the beginning and the end of each year and 
semester by paired-samples t-test. Cronbach’s alpha coefficient was calculated for each 
implementation and ranged between .74 and .95. 

Results  
The results are presented for long-term and short-term changes. First, for long-term changes, 
beginning of 2nd, 3rd and 4th year scores were compared to see the belief change based on the 2nd and 
3rd year experiences. Then, end of 2nd, 3rd and 4th year scores were compared to see the change after 
3rd and 4th year experiences. When there is a significant change in the MBS scores, it is interpreted as 
the effect of the EME program. MBS scores at the beginning of 2nd year and end of 4th year were 
compared to see the cumulative effect of the 3 years in the program. “Cumulative effect” refers to the 
effect of all program experiences until the mentioned implementation. Short-term changes were 
explored by comparing beginning of year/semester scores to end of year/semester scores. The aim 
was to detect possible influence of course experiences on PMT beliefs. The comparisons helped us 
discuss the information that the timing of the implementation might provide.  

Long-term changes 

In order to identify possible change in PMTs’ beliefs at the beginning of the academic years through 
the program a one-way repeated measures ANOVA was conducted to compare scores on MBS at the 
Time 1 (beginning of the 2nd year), Time 2 (beginning of the 3rd year) and Time 3 (beginning of the 
4th year). A total of 19 PMTs were common at all Time 1, Time 2, and Time 3 of MBS 
implementation. The means and standard deviations are presented in Table 1. 

Time (beginning of year) N M SD 

Time 1 (beginning of the 2nd year) 19 3.81 .237 

Time 2 (beginning of the 3rd year) 19 4.00 .246 

Time 3 (beginning of the 4th year) 19 4.08 .318 

Table 1: Descriptive statistics for PMTs’ MBS scores at the beginning of the 2nd, 3rd and 4th years 

There was a significant effect for time, [Wilk’s Lambda = .550, F(2, 36) = 10.379, p < .05, 
multivariate partial eta squared = .366]. Pairwise post-hoc comparisons with Bonferroni adjustment 
(p < .05) showed that there was a significant mean difference between Time 1 and Time 2, and Time 
1 and Time 3. The difference between Time 1 (beginning of 2nd year) and Time 2 (beginning of 3rd 
year) indicated that 2nd year experiences in the EME program had a significant effect on PMTs’ 
mathematics related beliefs. Similarly, the difference between Time 1 (beginning of 2nd year) and 
Time 3 (beginning of 4th year) indicated that a possible cumulative of 2nd and 3rd year experiences in 
the EME program had a significant impact on PMTs’ mathematics related beliefs. 



We wanted to explore if the effect of the program differed for academic years through the program 
when the program experiences were rather recent for the PMTs by conducting another one-way 
repeated measures ANOVA to compare mean scores on MBS at the end of the academic years as 
Time 4 (end of the 2nd year), Time 5 (end of the 3rd year) and Time 6 (end of the 4th year). A total of 
21 PMTs were common at all Time 4, Time 5, and Time 6 implementations of MBS. The means and 
standard deviations are presented in Table 2. 

Time (end of year) N M SD 

Time 4 (end of the 2nd year) 21 3.86 .197 

Time 5 (end of the 3rd year) 21 4.03 .251 

Time 6 (end of the 4th year) 21 4.01 .239 

Table 2: Descriptive statistics for PMTs’ MBS scores at the end of the 2nd, 3rd, and 4th years 

There was a significant effect for time [Wilk’s Lambda = .543, F(2, 40) = 5.919, p < .05, multivariate 
partial eta squared = .228]. Pairwise post-hoc comparisons with Bonferroni adjustment (p < .05) 
showed that there was a significant difference between Time 4 and Time 5, and Time 4 and Time 6. 
The difference between Time 4 (end of 2nd year) and Time 5 (end of 3rd year) indicated that 3rd year 
experiences in the EME program had a significant impact on PMTs’ mathematics related beliefs. 
Similarly, the difference between Time 4 (end of 2nd year) and Time 6 (end of 4th year) indicated that 
a possible cumulative of 3rd and 4th year experiences in the EME program had a significant effect on 
PMTs’ mathematics related beliefs. There was no significant difference between Time 5 (end of 3rd 
year) and Time 6 (end of 4th year), which might indicate that the 4th year experiences did not have a 
significant effect on PMTs’ beliefs. Indeed, mean MBS scores were slightly lower at Time 6. 

The effect of the teacher education courses through the three years of the program was investigated 
by comparing the MBS scores between Time 1 (beginning of 2nd year) and Time 6 (end of 4th year) 
by a paired-samples t-test. A total of 25 PMTs were administered the MBS at Time 1 and Time 6. 
There was a statistically significant increase in mean MBS scores from the beginning of 2nd year (M 
= 3.76, SD = .174) to the end of 4th year (M = 4.05, SD = .235), t(24) = 5.868, p < .001 (two-tailed). 
The eta squared statistics (.59) indicated a very large effect size. This showed that a possible 
cumulative of 2nd, 3rd, and 4th year experiences in the EME program had a significant effect on the 
mathematics-related beliefs of PMTs. 

Short-term changes 

Three paired-samples t-tests were conducted to investigate the possible effects of year-long 
experiences on PMTs’ mean MBS scores by comparing the beginning-of-year and end-of-year scores 
for each year. Table 3 presents paired-samples t-test results and the number of PMTs who were 
common for in both implementations of MBS for each year.   
  



Year N Paired-samples t-test results 

2 27 No significant difference between the beginning (M = 3.82, SD = .256) and end of 
2nd year (M = 3.88, SD = .222), t(26) = 1.035, p > .05 (two-tailed). 

3 25 Statistically significant increase from the beginning (M = 3.93, SD = .230) to the end 
of 3rd year (M = 4.07, SD = .262), t(24) = 2.755, p < .05 (two-tailed). The eta squared 
statistic (.24) indicated a large effect size. 

4 27 No significant difference between the beginning (M = 4.07, SD = .302) and end of 4th 
year (M = 4.05, SD = .240), t(26) = -.381, p > .05 (two-tailed). 

Table 3: Paired-samples t-test results for MBS scores and the number of PMTs for each year 

Comparisons of beginning-of-year and end-of-year mean MBS scores showed that only 3rd year 
experiences had a significant effect on PMTs’ MBS scores. The scores did not significantly change 
from the beginning to the end of the 2nd and 4th year of the program. However, the mean MBS scores 
increased in each implementation until the beginning of the 4th year.   

A series of paired-samples t-tests were conducted to investigate the possible effects of semester 
experiences by comparing the PMTs’ mean MBS scores at the beginning and end of the semester for 
each semester. Table 4 presents paired-samples t-test results and the number of PMTs who were 
common in both implementations of MBS for each semester.  

Semester N Paired-samples t-test results 

3 

 

29 Statistically significant increase from the beginning (M = 3.83, SD = .216) to 
the end of the semester (M = 3.95, SD = .246), t(28) = 3.027, p < .01 (two-tailed). 
The eta squared statistic (.25) indicated a large effect size. 

4 

 

26 No significant difference between the beginning (M = 3.86, SD = .233) and end 
of the semester (M = 3.92, SD = .211), t(25) = -1.849, p > .05 (two-tailed). 

5 

 

28 No significant difference between the beginning (M = 3.96, SD = .225) and end 
of the semester (M = 4.00, SD = .259), t(27) = -.973, p > .05 (two-tailed). 

6 32 No significant difference between the beginning (M = 4.02, SD = .230) and end 
of the semester (M = 4.05, SD = .263), t(31) = -1.041, p > .05 (two-tailed). 

7 

 

32 No significant difference between the beginning (M = 4.07, SD = .284) and end 
of the semester (M = 4.05, SD = .271), t(31) = -.747, p > .05 (two-tailed). 

8 

 

26 No significant difference between the beginning (M = 4.06, SD = .253) and end 
of the semester (M = 4.03, SD = .244), t(25) = .656, p > .05 (two-tailed). 

Table 4: Paired-samples t-test results for MBS scores and the number of PMTs for each semester 

Results showed that semester-long changes in mean MBS scores were not significant except for the 
3rd semester, while mean MBS scores generally increased at the beginning each semester. 



Summary of the analyses and information given by the timing of implementation 

Analyses showed that there was a general trend of increase from the beginning of the 2nd year to the 
end of the 4th year of the EME program with slight decrease in the 4th year. This increase was 
significant for long-term comparisons and showed that EME program courses and experiences 
seemed to help PMTs develop or strengthen availing beliefs through the years. 

When the analyses focused on short-term differences, the increase in mean MBS scores was not 
statistically significant in most of the comparisons. The comparison of mean MBS scores for the 
beginning and end of each academic year revealed significant increase only for the 3rd year of the 
program. On the other hand, semester-long comparisons of mean MBS scores addressed significant 
results only for the 3rd semester. These results showed that belief change might not always be 
significantly detectable in shorter periods. PMTs might not fully internalize course experiences only 
in one semester. The significance of the 3rd semester comparisons might show us that the first course 
on mathematics education was effective on beliefs, probably because it included methods of teaching 
PMTs had never experienced. The significance of the 3rd year comparisons pointed the effect of the 
2-semester Methods of Mathematics Teaching courses, whose effects on preservice teachers’ beliefs 
have often been investigated in the literature. Indeed, studies conducted in the previous program 
showed that courses on methods of teaching and mathematics teaching have influenced PMTs’ beliefs 
in a more availing way (Haser & Doğan, 2012; Haser & Star, 2009). Although the decrease in MBS 
scores from the beginning of the 4th year to the end was not significant, it might signal for the rather 
undesired effect of the student teaching experiences on soon-to-be-teacher PMTs’ beliefs due to the 
reality of classroom environment, differences in students, and lack of support from program 
instructors at the classrooms (Swars et al., 2009). These findings showed that detecting belief change 
for shorter time periods provided rather limited knowledge, but it raised issues about the effects of 
the program experiences for semesters or years.   

The analyses reported here were conducted based on the number of common PMTs in the analysed 
implementations. When we compared the mean MBS scores at each point of time to the mean scores 
in the repeated measures ANOVA (Table 1 and Table 2) as well as the paired-samples t-tests (Table 
3 and Table 4), we observed minor mean score differences between the mean scores of the PMTs 
who were common across the implementations and all the PMTs who were administered the survey 
at that implementation. These results are not given here due to space limitation. Hence, we concluded 
that missing cases did not impact the results of the study. Yet, it should be kept in mind that the 
analyses were not conducted with all PMTs for all implementations.  

In summary, the results of the analyses showed that change in PMTs’ mathematics-related beliefs 
were more detectable when the change was investigated in the long-term, throughout the program. 
The nature of the increase in MBS mean scores suggested a cumulative effect of the program as PMTs 
progressed. The short-term investigations did not give much significant results, yet they might give 
us clue about how courses might influence PMTs’ beliefs. The significant results have addressed the 
possible influences of certain courses that should be investigated in detail. 

Discussion 
The long-term and short-term change analyses results showed that while PMTs seemed to benefit 
from program experiences and develop more availing beliefs through the years in the program, 3rd 



year experiences seemed to contribute to the belief change the most. Course experiences were not 
investigated in-depth in this study, therefore how PMTs made sense of these experiences and how 
these experiences helped them in forming rather availing beliefs were remained unexplored in this 
study.  

The results suggest that teacher educators should investigate change in beliefs through the teacher 
education programs in different ways. The first teaching related course in the program, methods of 
mathematics teaching courses, and student teaching courses might have relatively more weight (either 
positive or negative) within the cumulative effect of the teacher education programs. Considering the 
significant cumulative effect of the program, it is possible that this cumulative effect might get 
stronger when the program experiences are meaningfully related to each other to support the availing 
beliefs and related practices. 

References 

Clift, R. T., & Brady. P. (2005). Research on methods courses and field experiences. In M. Cochran-
Smith & K. M. Zeichner (Eds.), Studying teacher education: The report of the AERA panel on 
research and teacher education (pp. 309-424). Mahwah, NJ: Lawrence Erlbaum Associates. 

Handal, B., & Herrington, A. (2003). Mathematics teachers’ beliefs and curriculum reform. 
Mathematics Education Research Journal, 15(1), 59−69. doi:10.1007/BF03217369 

Haser, Ç., & Doğan, O. (2012). Preservice mathematics teachers’ belief systems. Journal of 
Education for Teaching, 38, 261−274. doi:10.1080/02607476.2012.668336 

Haser, Ç., & Star, J. R. (2009). Change in beliefs after first-year of teaching: The case of Turkish 
national curriculum context. International Journal of Educational Development, 29, 293−302. 
doi:10.1016/j.ijedudev.2008.08.007 

Muis, K. R. (2004). Personal epistemology and mathematics: A critical review and synthesis of 
research. Review of Educational Research, 74(3), 317−377. doi:10.3102/00346543074003317 

Raymond, A. M. (1997). Inconsistency between a beginning elementary school teacher's mathematics 
beliefs and teaching. Journal for Research in Mathematics Education, 28(5), 550−576. 

Swars, S. L., Smith, S. Z., Smith, M. E., & Hart, L. C. (2009). A longitudinal study of effects of a 
developmental teacher preparation program on elementary prospective teachers’ mathematics 
beliefs. Journal of Mathematics Teacher Education, 12, 47−66. doi:10.1007/s10857-008-9092-x 

Szydlik, J. E., Szydlik, S. D., & Benson, S. R. (2003). Exploring changes in pre-service elementary 
teachers’ mathematical beliefs. Journal of Mathematics Teacher Education, 6, 253–279. 
doi:10.1023/A:1025155328511 
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The purpose of the present study was to investigate whether teaching self-regulation strategies via 
“Solve it” to students with learning disabilities could affect their problem-solving performance in 
mathematics. The mathematical problems involved four mathematical operations with natural and 
decimal numbers. Also, the present study investigated the effect of “Solve it” instruction on students’ 
self-efficacy and value related to mathematics. It was a single-subject design with a pre-test, four 
repeated post-tests and a maintenance test. The results indicated that the students’ problem-solving 
performance was improved and their self-efficacy and value attributed to mathematics were 
increased.        

Keywords: Self-regulation strategies, mathematical problem solving, LD, self-efficacy, value.   

Introduction         
Learning how to solve mathematical problems plays the most important role in the promotion of 
mathematical thinking. Mathematical problem solving process is especially complex as it requires 
the use of cognitive and metacognitive strategies as well as emotional management in case of a failure 
(Freeman-Green, O’Brien, Wood & Hitt, 2015; Rosenzweig, Krawec & Montague, 2011). Some 
researchers argue that many students with LDs face difficulties in solving mathematical problems due 
to their deficits in metacognitive processes, such as prediction and evaluation as well as difficulties 
in using metacognitive strategies in order to monitor and control their learning (Babakhani, 2011; 
Rosenzweig et al., 2011). A recent learning approach that combines the selection and use of cognitive 
and metacognitive strategies, motivation for learning and successful control of emotions is called self-
regulated learning (Wirth & Leutner, 2008).      

This paper is part of a larger study which was conducted for the requirements of a Master’s Degree 
and explores whether teaching self-regulation strategies with the program “Solve it” can influence 
problem-solving performance of students with LDs. This program includes the use of seven cognitive 
strategies and three metacognitive strategies. In this paper, it was investigated if the use of seven 
cognitive strategies and three metacognitive strategies in combination with self-assessment which 
plays the role of motivation to students can improve problem-solving performance of two students 
with LDs in order to reach the mastery criterion of the program. In addition, it was explored if teaching 
problem solving process with these strategies can affect these students’ self-efficacy and value 
attributed to mathematics. Also, the study tried to shed further light on the metacognitive and self-
regulated learning processes and their interplay with motivation in students with LDs in mathematics.       

Theorεtical framework and research questions       
It is accepted that learning how to solve mathematical problems plays the most important role in the 
promotion of mathematical thinking. According to van Garderen & Montague (2003, p. 246)  



mathematical problems are challenging problems set in realistic contexts that require 
understanding, analysis, and interpretation. They are not simply computational tasks embedded in 
words; instead, they require appropriate selection of strategies and decisions that lead to logical 
solutions.   

Over the last 20 years, a new approach called self-regulated learning has been developed aiming 
among others at improving problem solving skills. This approach has been successfully implemented 
in developing problem solving skills as it examines metacognitive, motivational and affective aspects 
of problem solving activity. A lot of researchers have tried to define the composite construct of self-
regulated learning (Wirth & Leutner, 2008). Self-regulated learning is defined as  

a learner’s competence to autonomously plan, execute and evaluate learning processes, which 
involves continuous decisions on cognitive, motivational, and behavioural aspects of the cyclic 
process of learning. (Wirth & Leutner, 2008, p. 103)    

Research reveals that many students and especially students with LDs in both primary and secondary 
education face difficulties in solving mathematical word problems (Rosenzweig et al., 2011). Before 
proceeding to the description of these difficulties, a definition of the term “learning disabilities” 
should be provided. Under the Individuals with Disabilities Education Act of 2004 (IDEA), the 
federal law that protects students with disabilities, a specific learning disability is defined as   

a disorder in one or more of the basic psychological processes  involved  in  understanding  or  in 
using language, spoken or written, that may manifest itself in an imperfect ability to listen, think, 
speak, read, write, spell, or to do mathematical calculations, including conditions such as 
perceptual disabilities, brain injury, minimal brain dysfunction, dyslexia, and developmental 
aphasia. The term does not include learning problems that are primarily the result of visual, 
hearing, or motor disabilities, of mental retardation, of emotional disturbance, or of environmental, 
cultural, or economic disadvantage. (34 C.F.R.300.7[c][10])   

These students have difficulties in using metacognitive strategies in order to monitor and control their 
learning (Babakhani, 2011; Rosenzweig et al., 2011).  

International contemporary research has shown that teaching self-regulated learning strategies is 
associated with the improvement of problem solving performance of students with LDs (Babakhani, 
2011; Freeman-Green et al., 2015). A self-regulation program that has been successfully implemented 
in interventions in order to improve problem solving performance of students with LDs is called 
“Solve it” (Montague, 1992). This program was introduced by Montague (1992) and it combines the 
use of three self-regulation strategies: self-instruction, self-questioning and self-monitoring with the 
following four major instructional techniques: problem solving assessment, explicit instruction of 
problem solving strategies, process modeling and performance feedback. The program includes the 
following seven cognitive strategies which correspond to seven instruction phases (Read, Paraphrase, 
Visualize, Hypothesize, Estimate, Compute and Check). Each of these strategies, including three 
self-regulation strategies: self-instruction, self-questioning and self-monitoring are taught. These 
strategies rely heavily on metacognitive processes. “Self-instruction implies telling oneself what to 
do before and while performing actions” (Montague, Warger & Morgan, 2000, p.111). “Self-
questioning means asking oneself questions while engaged in an activity to stay on task, regulate 
performance and verify accuracy” (Montague et al., 2000, p.111). “Self-monitoring requires the 



problem-solver to make certain that everything is done correctly throughout the problem-solving 
process” (Montague et al., 2000, p.111).                  

The “Solve it” program includes seven instruction phases and it is separated into eight lessons 
(Montague et al., 2000). Lesson one includes an overview of “Solve it” and a description of the 
cognitive strategies. In lesson two students are tested for the mastery of seven cognitive strategies. 
Lessons three, four and five include metacognitive strategy instruction and students solve one 
mathematical problem in each lesson. For example, for the cognitive strategy “Reading” there were 
three self-regulation strategies that had to be implemented (SAY, ASK, CHECK). The students said 
to themselves “Read the problem. If I don’t understand, read it again.”, asked themselves “Have I 
read and understood the problem?” and checked by saying “Check for understanding as I solve the 
problem”. The criteria for moving to lesson six are three: remembering cognitive strategies, 
remembering metacognitive strategies (SAY, ASK, CHECK) and solving problems with relevant 
confidence. In lesson six, students solve ten mathematical problems and they can consult the diagram 
with the strategies which had been given to them in lesson one and think aloud. Each problem-solving 
process is modeled by the students or by the teacher after it has been solved. Lesson seven requires 
the students to solve all 10 problems before modeling the correct solutions for the problems. Lesson 
eight is the first Progress Check (test of ten problems). Students plot their “grade” on their 
performance graph and then model the solutions. From then on there will be more tests and students 
will plot their performance. Student progress graphs show whether students can make constant 
progress and move toward mastery. It is important to engage students in assessing their own progress 
by having them chart their performance in diagrams which motivate them to continue trying 
(motivation) (Montague et al., 2000). The mastery criterion of the program, which is the ultimate 
goal, is solving 7 out of 10 problems correct on four consecutive tests (Montague et al., 2000).    

It should be noted that this program is more frequently used in secondary education (students with 
and without LDs) with great success (Montague, 1992; Montague, Krawec, Enders & Dietz, 2014) 
for solving one-, two- and three-step problems with natural and decimal numbers but as Montague 
(1992) states, this program can be used with younger students provided that adaptations should be 
made in processes and materials. In the studies where the program was implemented with younger 
students, they did not manage the mastery criterion as there were no adaptations. As the participants 
of this study were sixth grade students of an elementary school, some adaptations regarding “Solve 
it” were required in order to manage the mastery criterion of “Solve it”. In addition, acronyms were 
used for the description of the strategies in order to be remembered by the students. The acronyms 
came from the first letter of each strategy in Greek language. Furthermore, it should be noted that 
there is no clear exploration of the effects of teaching self-regulation strategies via “Solve it” to LD 
students’ self-efficacy sense and value attributed to mathematics so this is the novelty of this study.       

Consequently, the purpose of this study was to investigate whether teaching self-regulation strategies 
with “Solve it” could affect students’ with LD mathematical problem solving performance, their 
mathematics self-efficacy and value. Therefore, the following 4 research questions were stated as 
follows: 1) Will sixth grade students with LDs improve their mathematical problem solving 
performance in problems with four mathematical operations with natural and decimal numbers after 
the implementation of “Solve it”? 2) Will students’ self-efficacy related to mathematics and problem 
solving activity change after the implementation of the intervention? 3) Will students’ value attributed 



to mathematics and problem solving activity change after the implementation of the intervention? 4) 
Will students with LDs maintain their improved performance one month after the intervention with 
“Solve it”?                                   

Method 
The present study was a single-subject design as two students with LDs participated in the study. In 
addition, an experimental design with one experimental group (two students with LDs) was 
implemented. A pre-test and four repeated post-tests took place. One month after the last post-test, a 
maintenance test was implemented. In this experimental design, the independent variable was the 
intervention with the program “Solve it” and the dependent variables were the following three: 
mathematical problem solving performance, self-efficacy in relation to mathematics and the value 
which was attributed to this school subject.     

Participants  

Two students (a male and a female) with LDs took part in the present study. The students were 
identified as having learning disabilities based on psychoeducational evaluations from an outside state 
agency. Specifically, the boy encountered specific learning disabilities of dyslexic type and speech 
problems and the girl learning disabilities in reading, writing and mathematics. Both students were 
studying in the 6th grade of an elementary school, in North-West Greece and they had difficulties in 
mathematical calculations and mathematical problem-solving. Moreover, they attended the subjects 
of Mathematics and Greek Language in a general education classroom and they additionally received 
resource room support on these subjects from a special education teacher. Parental consent was given 
for both participating students.     

The students’ teacher (first researcher) taught the self-regulation strategies. The teacher implemented 
“Solve it”, designed the tests with the mathematical problems, administered and collected the 
questionnaires. The teacher was 25 years old female and she had met the children six months before 
the beginning of the intervention. She had completed her practicum with these children in the context 
of earning Master’s Degree so she had already been acquainted with the students and that was the 
reason why they were selected to be the sample of the study.          

Procedure  

The intervention of the present study began in November 2015 and finished in December 2015.The 
maintenance test was implemented on 15th January 2016. The boy attended 18 sessions and the girl 
23 sessions that lasted 35-40 minutes. One week before the beginning of the intervention, the pre-test 
was implemented. The pre-test included 10 one-, two- and three-step word problems (Montague et 
al., 2000). Also, the two students responded to the 2 questionnaires assessing mathematics self-
efficacy and value attributed to mathematics. Afterwards, “Solve it” intervention began and included 
8 lessons. The 8th lesson was the first progress check (post-test) and three additional posttests 
followed. In the last post-test, students responded again to the two questionnaires on mathematics 
self-efficacy and value. Additionally, as it was mentioned previously, an adaptation took place. 
Specifically, for the better interpretation of the strategies, the strategies were visualized. Specifically, 
each of the seven cognitive strategies was displayed with words and small pictures that showed the 
steps of action implied by the strategy. For example, the strategy “Read” was presented verbally, in 
a diagram and with this icon.                   



Data collection  

The mathematical problem solving performance was measured with tests which were designed by the 
researcher by following the suggestions offered by the creator of “Solve it”. Each test included 10 
mathematical one-, two- and three-step word problems which were based on the mathematical 
problems that students had been taught in their classroom (e.g. two-step word problem: ‘Nick wants 
to buy three car-miniatures. Each of them costs 3.6€. He has already collected 8€. How much money 
does he need in order to buy them?’).    

Despite the small number of participants, quantitative methods for the data collection regarding self-
efficacy and value were used, as the time for the completion of the intervention was limited and the 
school principal could not give extra teaching hours for an interview. However, some verbal questions 
were done for clarifications of some of the students’ answers in the questionnaires. The data 
concerning self-efficacy regarding mathematics learning were collected with the use of a 
questionnaire. The questionnaire was developed by Dermitzaki and Efklides (2002) and assessed 
students’ reported self-efficacy in mathematics with 5 items (e.g. ‘I believe I will have a better 
mathematical problem-solving performance this year’). Answers were given on a five-point scale 
from 1-‘Not at all true for me’ to 5-‘Totally true for me’. Because of the students’ difficulties in 
reading comprehension, the questions were being read by the researcher and students were asked to 
circle the answer that was true for them. After the completion of the questionnaires, the students were 
verbally asked some questions in order to clarify some of their answers (“mini interview” for 
clarifications). These answers were written down by the teacher-researcher at the same time.                    

The data regarding value which was attributed to mathematics and mathematical problem solving 
were also collected with the use of a questionnaire which was made by the researcher based on Ames’ 
scale (1983). This scale assessed students’ value beliefs about mathematics as a school subject. The 
questionnaire included 3 items (e.g. ‘Learning how to solve mathematical problems is…..’) and the 
answers were given on a five-point scale from 1-‘Not at all important’ to 5-‘Highly important’. Each 
question was asked verbally by the researcher and the students had to circle the answer that was true 
for them. After the completion of the questionnaire, the students were asked to clarify some of their 
answers (“mini interview” for clarifications) which were written down by the teacher-researcher at 
the same time.       

Data analysis                 

The quantitative data that were collected from the tests were not statistically analyzed because of the 
small data number. However, a diagrammatical representation with Microsoft Office Excel 2010 was 
made. The quantitative data that were collected from the two questionnaires and mini-interviews were 
qualitatively analyzed. Because of the small number of questionnaires, a statistical analysis could not 
take place. The careful data reading and the description of the data had as a result two categories 
deriving from each questionnaire. Two categories were developed based on the first questionnaire. 
The first category included self-efficacy regarding mathematics and the second included self-efficacy 
regarding a problem solving activity. Similarly, two categories were derived from the second 
questionnaire. The first category included value attributed to mathematics and the second category 
included value attributed to a problem solving activity.                



Results  
Regarding to the first research question, the progress graph showed that both students’ mathematical 
problem solving performance improved significantly. Specifically, the boy increased his performance 
from 2.6/10 on pre-test to 9.65/10 on the first post-test and the girl increased her performance from 
0.5/10 on pre-test to 7.89/10 on the first post test. Additionally, both students achieved the criterion 
of solving at least 7 out of 10 word problems correct on four consecutive word problem tests which 
is the ultimate goal of “Solve it” according to Montague et al. (2000).  

Concerning the second research question, the results showed that both students increased their self-
efficacy regarding mathematics and mathematical problem solving activity. The boy reported that he 
was feeling a little efficacious in solving mathematical problems and towards mathematics before the 
beginning of the intervention. However, he reported that he felt very efficacious about solving 
mathematical problems and confident towards mathematics after the end of the intervention. The girl 
reported that she felt a little efficacious about mathematics and very efficacious about solving 
mathematical problems before the intervention. When the researcher asked her while she was 
completing the questionnaire “Why do you think that you will be more efficacious in solving 
mathematical problems?”, she answered “I will read more, I will attend carefully the lessons and I 
will learn how to solve mathematical problems. ” After the intervention, she reported that she felt 
very efficacious about mathematics and solving mathematical problems.   

Additionally, both students attributed important value to mathematics and to the problem solving 
activity after the intervention with “Solve it”. The boy reported that both mathematics as a school 
subject and problem-solving as a mathematical activity were of little importance for his life before 
the intervention. After the intervention, he thought that mathematics was highly important and 
problem solving was very important for his life. The girl attributed very important value to 
mathematics but she thought that solving mathematical problems was not an important activity for 
her life before the intervention. When the teacher asked her while she was completing the 
questionnaire “Why mathematics is very important for you?”, she answered “Because learning the 
multiplication table is very important for our lives”. After the intervention, she thought that both 
mathematics and problem solving activity were highly important for her life.  

It should be underlined that both students expressed that they had developed more positive emotions 
such as happiness, when they solved mathematical problems after the intervention. That happened 
because according to them, they felt safety with the use of the strategies as the last ones had proved 
to be very helpful in order to solve a mathematical problem.  

Finally, regarding the fourth research question, both students maintained their improved performance 
on the maintenance test one month after the intervention. The score for the boy was 9.6/10 and for 
the girl 9.05/10. It seems that the girl not only maintained her performance but also improved it more 
in relation to the last post-test. This finding has not been found in other studies.      

Discussion                 
This study aimed to investigate whether teaching self-regulation strategies via “Solve it” affected 
students’ with LDs mathematics problem-solving performance, their maths self-efficacy and reported 
value of maths. The results of the present study are very encouraging. In agreement with other studies 
(Babakhani, 2011; Montague, 1992; Montague et al., 2014) both students’ mathematical problem 



solving performance was considerably improved. Also, they seemed to achieve the ultimate goal of 
“Solve it” (7 out of 10 problems correct on four consecutive tests). This was a surprisingly good result 
as there was not such a result in other studies which used “Solve it” with elementary school students. 
As Montague (1992) states, the sixth grade students have not easily reached the mastery criterion. 
However, in this study students appeared to maintain this performance on the maintenance test a short 
while after; maybe as the result of the visualization.  

 Furthermore, both students reported increased self-efficacy in relation to mathematics as a school 
subject and in relation to problem solving activity. Additionally, both students attributed higher value 
to mathematics as a school subject and to problem solving activity after the intervention. As 
Chatzistamatiou, Dermitzaki, Efklides & Leondari (2015) state, there is a positive relationship 
between the use of self-regulation strategies and self-efficacy and between the use of these strategies 
and value attributed to mathematics by typically developing students.  

Although, the effect of teaching self-regulation strategies on students’ emotions regarding problem-
solving activity was not examined in this study, it is important to mention that both students reported 
they felt happier when they solved mathematical problems after the intervention with “Solve it”. More 
particularly, the boy said “Now I do not feel so stressed when my teacher tells me to solve a 
mathematical problem and I feel happy when I do it, even if I cannot find the solution”. A future 
research could examine in more depth whether and how self-regulation strategies could influence 
students’ emotions during problem-solving activity.           

In conclusion, this study showed that “Solve it” can improve problem-solving performance not only 
in older but also in younger students with LDs provided that some adaptations will take place. 
Furthermore, “Solve it” seemed to affect positively students’ self-efficacy and value attributed to 
mathematics. However, there are some limitations such as the limited generalizability of the results 
(case study), the different characteristics of the two students, the short time in which the study was 
carried out and the absence of a control group. Future studies could use “Solve it” in other 
mathematical domains such as geometry which students with LDs find quite challenging and difficult. 
In addition, a future study could test how teaching self-regulation strategies would influence LD 
students’ emotions in relation to mathematics. Such data would be actually illuminative for 
educational research and practice.    
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To err is human. The management and emotional implications of 
teacher error  
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Research into errors in mathematics classrooms is often centred on student error. Whilst 
investigating teacher emotional expressions, using data from experienced teachers and affective 
pathways, I encountered examples of teacher mathematical error occurring in association with 
expressed emotions. Similarly, I have observed instances of new teachers making errors and hence 
have begun exploring the implications of teacher error management. In this paper, after describing 
illustrative examples, I suggest a model based on a continuum of affectively driven strategies that are 
likely to be familiar to secondary mathematics teachers. Each affectively driven strategy has 
implications for teacher student relationships and for the learning of mathematics. I discuss some of 
these implications in terms of longer term affective impact on classroom climate and for students. I 
offer the model for further discussion in relation to developing growth mindsets. 

Keywords: Error handling, emotions, classroom, expertise. 

Introduction 
There is no doubt that we all make errors and human instinct is to avoid errors as unpleasant 
experiences. Yet brain analysis research suggests error, however unpleasant, is essential for effective 
learning; for creating neural connections. Moser et al. (2011) through studying the neural mechanisms 
when making numerical mistakes shows that this activity fires synapses. There seem to be two 
synaptic responses. Firstly, when the brain experiences conflict, without awareness, there is an 
increase in electrical activity. Secondly, brain signals act to draw conscious attention to the error. 
Conflict (such as recognising an error), also triggers emotions which means making a mistake triggers 
an observable emotional response. The emotions may be exaggerated as error provides not only a 
trigger for emotions, but also requires the person experiencing the error to engage in some form of 
minimising or regulation. Such a positive view of errors is supported by Boaler (2015) and others 
who suggest we should go further than just avoiding error; that errors should be attended to as part of 
addressing misconceptions and hence are necessary for learning. In mathematics teaching errors can 
take many forms, often numerical. Boaler suggests creating a culture where students are comfortable 
with handling error is beneficial for learning mathematics. Such a culture depends not only on how a 
teacher addresses student error, but also on how they model addressing their own errors. There seem 
to be international and cultural differences that merit discussion in terms of how errors are seen and 
addressed by teachers, from commonly using error as a teaching tool through to avoiding errors and 
associated discussion as damaging to self-esteem (Santagata, 2005). 

Researchers investigating error focus on teacher responses to student error, and a few explore how 
students respond to teacher error (e.g. Borasi, 1987, Heinze, 2005; Ingram, 2014b; Santagata, 2005; 
Steuer et al., 2013; Tainio & Laine, 2015). There is less research on the role of error or how teacher 
error management occurs in the classrooms of experienced teachers. If error triggers an emotional 



response, this has implications for classroom relationships and for students who may not notice error. 
This is important in mathematics as there are perhaps, more opportunities for error. 

The definition of ‘error’ used here, interchangeable with ‘mistake’, is that error is a mismatch. A 
mistake demarcates the distinction between norms (such as usual behaviours) and a deviation (Borasi, 
1987), (the unexpected or different) thereby defining what is false and what is correct (Heinze, 2005). 
Using the classic constructivist definition of emotion as a response evoked by recognition of a 
disparity (Mandler, 1989), it seems error cannot occur without an emotional association. This 
association implies that patterns of individual emotions in mistake situations is indicative of 
classroom culture. For this reason, Steuer et al. (2013) asked students about their teacher’s handling 
of mistakes. In addition to identifying ‘mistakes friendly’ environments, they found that perceived 
mistakes friendly environment resulted in increased effort. Yet as recently as 2014, research suggests 
that UK teachers still predominantly give the message that errors are to be avoided, often through a 
variety of teaching strategies that rarely indicate an incorrect solution. “These strategies all give the 
interactional message that errors are to be avoided, or that errors are undesirable even when the 
teacher does not explicitly say this, or in fact explicitly states the opposite” (Ingram et al., 2014, p.40). 
In terms of beliefs, a teacher’s stance on error may be revealed by their response to incorrect answers, 
but more indicative is their response to public revealing of their own errors. Such responses model 
expected emotional responses to error for that class. Tainio and Laine (2015) consider this in relation 
to emotional contagion where “Emotional contagion means that in interactions, emotions are usually 
shared by participants after one participant has offered public forms of emotion for others to attend 
to” (p.84). Further, students will mimic or synchronise (Hatfield, 1994) with their teacher’s publically 
expressed affective pathway. According to Goldin (2000), people experience a series of emotions as 
they pass through the process of problem solving in mathematics. The result is an error climate. Steuer 
et al. (2013) see what I refer to as affective pathways as a predominantly positive (adaptive reaction) 
or negative (maladaptive) patterning which, if public, means displaying certain emotions enhances 
learning. 

Primarily, an adaptive reaction pattern is distinguished from a maladaptive pattern: An adaptive 
reaction pattern following errors and failure maintains learning motivation and functional 
affects such as joy; a maladaptive pattern decreases learning motivation and increases feelings 
of shame and hopelessness. (Steuer et al., 2013, p.197) 

Examples of transcript and identified affective pathways (Table 1 & 2) from the classrooms of 
experienced teachers (> 10 years) illustrate encountering and managing of error. I examine the data 
from the lens of affective pathways (Goldin, 2000) as a potentially useful model to examine the 
illustrative examples. A pathway structures the interpreted emotional journey by labelling emotions 
from identifying a problem through to either resolution or abandonment. Examining teacher 
modelling of how to deal with error in conjunction with how a teacher emotionally manages error 
may assist in interpreting the affective impression given to students. Mandler (1989) suggests that 
using and modelling emotional responses to error inculcates a tolerance for error that benefits learning 
mathematics. How a teacher frames the handling and recovery from error can shape student 
experiences, and indicated preferred attitudes to error management (Santagata, 2005) especially if we 
consider error as a stimulus to action (Borasi, 1987). 



It seems we need errors to learn, whilst teachers can support learning and affect classroom 
environments by modelling positive responses to error. The question addressed here is whether 
developing a model of error management examining how teachers model error is useful. To address 
this question, the data presented below is from a larger study on teacher expressions of emotion in 
the classroom. Both extracts are drawn from episodes of emotional expression, deemed as such 
through observation, measurement of galvanic skin response (GSR), (used to roughly indicate internal 
emotions) and confirmed in post observation discussions. They represent how experienced teachers 
might manage error. Other strategies, such as used by novice teachers, are drawn from the literature, 
collaborated by my own experience of working with teachers. 

Modelling dealing with mathematical error (Adam and Bertha)  
In these examples, both Adam and Bertha successfully address a small numerical error, one type of 
mathematical error. Both express emotions (the dominant emotion is determined by the observer, 
using standard emotion classifications (Scherer, 2005)), yet differ in pathway from recognising 
discrepancy to resolution, showing the teachers’ disparate ways of modelling error management.  

In the first example (Table 1), Adam accidently writes 2 for the difference between 4.5 and 3.5 when 
demonstrating upper and lower bounds for 5 – 4. As he reads the four possible answers aloud, 
‘2,0,2,1’, he slows, quietens his voice and movements, pauses with pen poised, whilst his head moves 
from side to side scanning. He then steps back and looks, appearing absorbed. Once he has identified 
the error, he utters the sound ‘uhh’, interpreted as ‘never mind’. He then engages in an exchange of 
silly noises with a student, corrects the error, rewards a student who is quick to align, and continues 
in a faster pace, as at the start of the episode, quickly moving on from the error. 

T You can either do for 5..., 4.5 or 5.5, they’re your two options, because that’s the 
lower and the upper bound. So what I have written out on the board is all four 
different combinations of what can happen. 

Confident 
 

 Ok… [pause] Uneasy 
 I’m going to work out all of them. So I am going to get 2, 0, 2, 1.                      [GSR 

PEAK] 
ERROR 

S1 Blast-off…  
S2 It should be 1.5  
 Right, think about this. [pauses] Confused 
 The question was saying upper bound, the upper bound for 5 minus 4. That number 

is going to be as big as possible.      [emphasis and shift in pace into regular time beat 
1- and-2- and-3- and-4-] 

as big as Pos-si-ble 

Re-
establishing 
certainty 
Interested  

 Hm. [Pause with pen ready, his head moves as scans writing and then steps back] 
Looks like 2. [Pause] …  Which 2 is it going to be?  
Well here... [ pauses again, this is in a quieter voice] 

Doubt  
Uncertainty 
Thoughtful  

 Oh, that’s right, I’ve done that wrong, that should be 1, uhh, [faster pace resumed] Satisfaction  
 Who picked up on that? [HANDS UP] Chris [S3]? Gold star[smiling] Pleased  
S2 How about me? Oh. Uh   
 Uh Humorous  
S2 Uh I said one though sir  
 Sorry, that’s a 1. The biggest number is 2. How did I get 2? I took the biggest number 

possible here for 5, but the smallest number possible for 4. That made the difference-
as-big-as-possible. 2. [firmly stated] Upper bound. 

Confident  
 

Table 1: Affective Pathway from Adam’s lesson, where he makes an error 



Bertha uses a well-known mathematics website to produce questions on the area of a circle (Table 2). 
Following the students finding the area for a given radius, Bertha enters a volunteered answer, but the website 
rejects this answer. As Bertha has already calculated the answer herself, agreeing with the student, the website 
rejection brings an unforeseen problem; she thinks she has made an error but has not. The discrepancy is 
between using π or 3.14, so it relates to the degree of accuracy.  

S1 254.46 [student is providing answer to question on the board]  
T .46 Neutral   
S2 I’ve got .34 [Different answer which legitimises other students who also have 

different answer and they start calling out as well] 
 

T Ok. Whoa, whoa, whoa, whoa, whoa.  Uneasy  
 Does anybody disagree with the 254 bit? Neutral 

Many No, yes, [some hands up]  
T NO? Right. Can anybody think of a reason... Neutral  
 ...Oh, I don’t think if we can... yeah, we have.                                   

 [GSR PEAK] 
Uncertain 

 Can anybody think of a reason why you might have different, very slightly different 
answers? [Terry among others raises his hand] Terry... 

Confident  

Terry Is it because like one of us...um...were like... we weren’t... um.... I don’t know if it’s 
right or.... 

 

T [Frowning]Well just, Terry, just say it, have more confidence in yourself 
sweetheart... 

Hopeful  

Terry ...some people pressed the... the pi button and some people didn’t.  
T Absolutely brilliant, well done you.  Pleased 

 That’s exactly right.  Satisfied  
 When you press the pi button on your calculator, it uses a really accurate version of 

Pi. If you just put in um... 3.14, [writing something on wall behind teacher desk] 
then that’s not so accurate... 

Neutral  

 ...and that’s the only reason.  Satisfied  
 But anyway, it’s coming up and telling us we’re wrong. Uneasy   
 So, it says use the area of the square, we’ve got the area of the square as 9x9, and 

then multiply it by 3.14... [Does this on a calculator] 
Neutral 

S2 It’s 254.34  
S4 Error  
T ... 3.14 .... (yeah) 254.34 .... Satisfied  

Many Yes!  
S4 Error  
T ...2...5...4....point... oh I see, point 3 4. Let’s try it again [enters answer which is 

shown on the projector] Yeah! 
Confused 
to satisfied 

ALL Yeah!   
T OK Satisfaction  

Table 2: Affective Pathway from Bertha’s lesson, where she makes an error 



A proposed model of teacher error 
Drawing attention to teacher error informs discussions about how such error should and could be 
managed, as this is not the same as when a student makes an error. Firstly, that there are emotional 
implications of the choices made by a teacher, including the degree of emotional labour required. 
Secondly, that the choices are indicative of how a teacher perceives error, both for themselves and 
for their students. And thirdly, that repeated over time, modelling by the teacher of error management 
sets the climate for students in terms of their own error management. If it is desirable to challenge 
behaviourist views of learning mathematics (Boaler, 2015), then discussion of error management 
provides an accessible route to address teacher beliefs. To support such discussions, the following 
continuum of error management strategies is proposed. This is derived from both the literature on 
error and the above data. The continuum moves from negative (associated with a mistake unfriendly 
environment and maladaptive error patterns) through to positive, and similarly from strategies with 
perceived reduced benefits, through to those which may have longer term positive impact for learning 
(mistakes friendly environment and adaptive patterns). 

To compare and contrast with the examples above, I draw from research on and observations of 
trainee teachers. In this cohort, I observed embarrassment at making an error, ignoring the error, even 
when noticed, and errors on the whiteboard left uncorrected. I also observed surreptitious correcting 
when the students were engaged in another task. There is ample anecdotal and observable evidence 
that teachers hide numerical errors. They may later notice and leave it, or notice and amend privately. 
The communicated message is that errors are dispreferred (Ingram et al., 2014), and should be hidden. 
Similarly, public error can evoke teacher embarrassment or be correctly rapidly, where the teacher 
‘steps out of’ rather than ‘stepping into’ learning through addressing the error. ‘Stepping out’ attaches 
a negative emotional association to error making. A teacher may respond to revealed error by faking, 
as in “I meant to do that” and publically amend. Although positive in avoiding misunderstanding 
resulting from the error, this choice can be negative emotionally, in that frequent repetition erodes 
trust in the teacher. A further response is to associate self with the error through self-depreciation. A 
teacher might say something like, ‘What a silly error!’ The effect may be that students view all error 
as silly, and to be laughed at. This may be positive or negative as context specific, but students may 
reduce contributions if they feel they may be laughed at.  

There are suggestions in the literature on error that using deliberate error as a teaching strategy can 
be effective. This assumes a constructivist view, that the place of error is a learning opportunity, 
rather than a culturally located behaviourist view, that errors should be avoided (Santagata, 2005). In 
constructivist terms, viewing error as a learning opportunity is an ideal, yet how a mathematics 
teacher might cultivate such an ethos needs further research. Research from Ingram et al. (2014) 
found examples aimed at this ethos, but that in most cases the errors are still managed as something 
to be avoided. They identify a role for further strategies when positioning error in this way. They 
suggest either distancing self from the error since the purpose is for students not to make the same 
errors themselves, or apologising for an error. A more positive management might dismiss the error, 
but go on to associate with an emotionally positive outcome, such as thanking the student for pointing 
out the error. The emotional message is that criticism will not follow from error identification. 
However, taking the error handling strategy further, the identification may be made into an event 
through provoking a discussion, or may be acted out. There are many possible options, such as 



expecting error due to rapid engagement in doing mathematics or that error is just to be expected. The 
event could show that corrections are fine, that corrections are neither good or bad, and are just a 
learning opportunity. The attribution of value to the error communicates a positive message. 

In the examples from Adam and Bertha there is a mixture of the above that tend to the emotionally 
positive end of the continuum. What was not apparent either in the examples of data collection was a 
view that ‘I never make mistakes’. Although both examples are public, Adam notices his own error 
as part of the next step, whilst Bertha’s attention is claimed by rejection of her answer by an online 
website. What may be significant is the emotion work in both cases to turn the event to a positive 
learning experience. As for similar examples from Tainio & Laine (2015), the teachers take affective 
stances that display affiliation and humour (p.73). They also evoke emotionally positive responses 
for the students. Both show happiness in resolution of error, and give praise albeit located differently. 

Bertha tells in a later interview of an occasion when a formal observation that went wrong because 
the questions on the website changed. A repeat experience, when again being observed, albeit for 
research purposes, is likely to re-evoke emotions associated with insecurity, and a need to check 
solutions with a form of authority, in this case the website answer. Modelling a need for accuracy, 
for rechecking, reinforces a product orientated ‘feel’ in the example, where correctness takes 
precedence. There is also modelling of internal thought processes. In Bertha’s case public thinking 
out-loud for self, “[muttering quietly] ...2...5...4...point...oh. I see, point 34. Let’s try it again.” 
Possibly this indicates Bertha seeking mathematical correctness. This corresponds with what she says 
in interview,  

I don't see myself as a mathematician. I see myself as someone who is good at maths and you 
can teach me anything in maths and eventually get it, which does again sounds obnoxious but 
that's...you know... it might take me a lot longer with some of the things. (Bertha)  

Seeking confirmation of correctness perhaps indicates a belief that ‘real’ mathematicians do not make 
errors. This example shows an intention to model what she thinks a teacher should be doing, 
indicating a disparity between real and aim more commensurate with trainee teachers. In contrast, 
Adam models shifting ownership of error by repositioning from ‘we’ to ‘I’, modelling that gives an 
impression that it is ok to err. He positively manages the error, moving sequentially from a point of 
uncertainty into exhibiting positive emotions using humour via exchanging noises and giving praise, 
which acts to restore lesson balance. His modelling of how to deal with error includes distraction of 
attention and shifting attention via assigning a social reward for correction of error. In the episode, 
the error becomes an object unassigned, before it is quickly shifted into a positive outcome. As an 
observer, it felt as if he was pinning the error somewhere distant from self. However, he included 
students in his happiness at resolving the error, and hence was rewarded. Either interpretation is a 
modelling that downplays error. As he says afterwards,  

Oh, yeah, did I put a mistake on the board to start off with? (Yeah) Yeah...I’m not fussed with 
that. It happens quite a lot. I always say to the students... I’ll make mistakes, and they’ll make 
mistakes...and there it goes...(Adam)  

Both teachers seem to experience cognitive conflict, observable in the lesson as uncertainty, and 
resolve the error for themselves. They both resolve positively for their students, stepping into the 
error again as part of positive modelling. The data confirms that it is not the error itself but how it is 



managed that has implications. Public teacher error has more impact, whereas perhaps students are 
expected to make errors. Underlying the difference between the examples and trainee teachers lie the 
issues of confidence and risk with the subsequent implications to learning climate of handling error 
after and during public exposure. We assume that expert teachers have confidence, but the examples 
show that the use of emotions is part of the restorative process, perhaps as a distraction. This seems 
to warrant further investigation, as does the disparity between the expert (who makes no mistakes) 
and Adam’s declared and enacted position on error. Mandler (1989) suggests emotions activate other 
mental contents to deal with situations perceived as being a mismatch between what is intended and 
what occurs.  

Conclusion and implications 
In the above I have used two short episodes to illustrate teacher error management, since the research 
suggests that modelling of error responses plays an important role in construction of positive 
emotional climates in a mathematics classroom. Based on this initially small sample, the use of 
affective pathways seems to support exploration of the adaptive/maladaptive reaction patterns. There 
may be potential in exploring adaptive patterns with teachers as part of professional development. It 
may also be useful, in conjunction with ideas such as positive mindsets (Boaler, 2014), to consider 
how students might participate in error management to a greater degree, for example as springboards 
as suggested by Borasi (1987). The different responses of the teachers, although both successfully 
resolved in that student reward is given as restorative praise in both cases, have different longer term 
impressions. Adam says, ‘gold star’ for a student and quickly moves on, whilst Bertha draws attention 
to the correct answer, and to rewarding the student. The impact on students of repeated modelling of 
‘not my error, let’s move on’ (process interruption only) compared to ‘we must get this right’ (product 
orientation) may be significant. Shifting attention acts to distance the teacher from the ownership of 
error, modelling addressing error as positive. This distancing compares to a negative impact that 
models dealing with errors as an annoying problem, one owned by both teacher and students. There 
is inevitably a degree of uncertainty in relation to error management. These examples represent 
extremes of a management continuum from valuing error as a learning experience (modelling an 
expectation of error into learning), to a belief that errors are obstacles to avoid. Indeed, an emotional 
risk to a teacher may be in not using positive emotions to manage error.  
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A questionnaire survey was conducted as part of a study investigating post-primary students’ images 
of mathematics in Ireland. A definition of ‘image of mathematics’ was adopted from Lim (1999) and 
Wilson (2011). Students’ images of mathematics were proposed to include attitudes, beliefs, 
motivation, self-concept, emotions and past experiences regarding mathematics. This paper focuses 
on one aspect of the study; the relationship between students’ images of mathematics and parents’ 
occupation. Some emergent findings regarding this relationship are presented and discussed. 

Keywords: Image of mathematics, affect, parents’ occupation. 

Introduction 
Mathematics education researchers have come to realise in recent decades the significance of 
mathematics-related affect, with consequential effects on mathematical engagement and performance 
(Hannula, 2016; Hannula, Ryans, Philippou & Zan, 2004; Lane, O’Donoghue & Stynes, 2014, 2016; 
Lim, 1999; McLeod, 1994, OECD, 2016). Affect in mathematics education has also been seen to be 
influenced by various factors including, but not limited to, gender, teachers, parents, peers, society 
and prior achievement (Frenzel, Goetz, Pekrun & Watt 2010; Hannula et al, 2004; Lane et al, 2014, 
2016; Lim, 1999; Morgan, Thornton & McCrory, 2016, OECD, 2016). 

There are various constructs investigated by mathematics education researchers in the field of affect. 
In this study, we focus on the construct ‘image of mathematics’.  

Although there is no universal definition of ‘image of mathematics’, there appears to be a general 
consensus that the term comprises several affective constructs such as: attitudes, beliefs, emotions, 
self-concept and past experiences regarding mathematics (Brown, 1995; Ernest, 2004; Lane et al., 
2014; Lim, 1999). This paper derives from the author’s PhD study that examined the image of 
mathematics held by post-primary students in Ireland (Lane et al., 2014; 2016). No previous research 
in Ireland had extensively examined second-level students’ mathematics-related affect, although 
studies such as the Programme for International Student Assessment (PISA) have reported on 
particular aspects such as students’ attitudes and confidence (Perkins, Shiel & Merriman, 2013). Lane 
et al. (2016) found that, similarly to the international context, statistically significant differences 
occurred for Irish students’ images of mathematics with regards to gender, prior achievement and 
past experiences. Students’ image formation was also reported to be influenced by their teachers, 
parents and peers (Lane et al., 2014). In this paper, one particular aspect of parental influence is 
examined, with the aim to establishing whether there exists a relationship between parents’ 
occupation and students’ images of mathematics. In particular, the author highlights parents’ 
occupations with a strong mathematics base as a distinct occupation category, hypothesizing that 
these parents would hold positive views of mathematics e.g. in terms of value, and this paper aims to 
examine whether this positivity would appear to manifest itself in their children.  



Theoretical framework 
In her study on the public image of mathematics in the UK, Lim (1999) examined the influences on 
a person’s image of mathematics. She found that images were influenced by four external factors, 
namely: teachers, parents, peers and society (listed in descending order of reported influence). While 
the relationship between students’ mathematics-related affect and their teachers/the way in which 
they are taught, as well as the importance of peers and peer-learning in relation to affective issues, is 
evident in the literature (Dweck, 1986; Frenzel et al., 2010; Hill, 2008; OECD, 2016; Pantziara, 
2016), the relationship between students’ mathematics-related affect and parents/family is less 
visible. 

Parents’ occupation 

The role of parents as an influence on students’ mathematics-related affect and achievement has 
received some attention in the literature (Fennema & Sherman, 1976; Frenzel et al., 2010; Lane et al., 
2014; Lim, 1999; OECD, 2014). Parents’ influence can be explained by three underlying mechanisms 
according to Bosco & Bianco (2005), these being: socialization, modelling and resources. As part of 
these mechanisms, it is suggested that parents’ values, attitudes etc. can be passed to their children, 
with obvious connotations with regards to students’ images of mathematics. Lim (1999) and Lane et 
al. (2014) found parents to be the second most common influence in forming an image of 
mathematics. This influence occurs chiefly in the form of support and encouragement, but also 
indirectly from parents’ own images of mathematics. In Frenzel et al. (2010), students’ ‘interest’ in 
mathematics was found to be higher when his/her parents expressed higher levels of mathematics 
values. Similarly, ASPIRES (2013) found that a key factor affecting young people’s science-career 
aspirations was the amount of ‘Science Capital’ a family has. Which includes science-related 
qualifications, understanding, knowledge, interest and social contacts. 

With regards to the role of parents’ occupations, this aspect has been found to indirectly impact on 
children’s occupational choices, through their interests and skills (Lawson et al., 2015). The influence 
of parents’ occupation on students’ mathematical performance was examined in PISA 2012. Results 
indicated that across most countries, children whose parents worked as professionals (in health, 
teaching, science, business or administration) had the best results in mathematics (OECD, 2014) 
indicating a relationship between students’ socio-economic background and their mathematics 
achievement. Furthermore, PISA results indicate that students from disadvantaged backgrounds tend 
to have a more negative mathematical self-concept than advantaged students, likely linked to lower 
mathematical achievement (OECD, 2016). Given the influence of parents in terms of students’ 
mathematics-related affect (Frenzel et al., 2010; Lane et al., 2014; Lim, 1999) and also the 
relationship between affect and achievement in mathematics (OECD, 2016), parents’ occupations 
may impact on student achievement not only in terms of students’ socio-economic background, but 
also in terms of students’ images of mathematics. 

In this paper, we adapt the definitions of Lim (1999) and Wilson (2011) for her study, with ‘image of 
mathematics’ conceptualized as follows: a mental representation or view of mathematics, presumably 
constructed as a result of past experiences, mediated through school, parents, peers or society. This 
term is also understood broadly to include three domains: 



 The affective domain dealing with attitudes, emotions, and self-concept regarding 
mathematics and mathematics learning experiences. 

 The cognitive domain dealing with beliefs regarding mathematics and mathematics learning 
experiences. 

 The conative domain dealing with motivation regarding mathematics and mathematics 
learning. 

The theoretical framework for the author’s study is outlined in more detail in Lane et al. (2014). 

Methodology 
A mixed-methodology was employed to investigate the image of mathematics held by 5th-year 
ordinary level mathematics students in second level education in Ireland. The main method used to 
examine students’ images of mathematics was a questionnaire survey. The questionnaire contained 
both quantitative fixed-response items and qualitative open-ended questions. The quantitative aspect 
incorporated eight pre-established Likert scales, with a total of 84 items, to examine students’ 
attitudes, beliefs, emotions, self-concept and motivation regarding mathematics – see Table 1. As no 
single scale existed to measure image of mathematics, the scales were selected that most closely 
resembled the elements comprising our ‘image of mathematics’ construct and also that fit with the 
other scales concisely in terms of length and layout. The five open-ended questions sought to gain 
further insight into students’ images in terms of their influences, prior experience, use of mathematics 
in everyday life and their causal attributions for success/failure in mathematics. However, this paper 
aims to address only one aspect of the study with the following research question: 

Is there a relationship between image of mathematics and parents’ occupation for 5th year, ordinary 
level mathematics students in Ireland? 

In order to address this question, we focus on the quantitative data, with students’ scores on the eight 
Likert-type scales examined with respect to parents’ occupation. 

Author Scale Image of 
Mathematics 
Element 

Aiken (1974) Enjoyment of Mathematics Attitude 
Aiken (1974) Value of Mathematics Attitude 
Fennema & Sherman 
(1976) 

Attitude Toward Success in 
Mathematics 

Attitude 

Fennema & Sherman 
(1976) 

Effectance Motivation in Mathematics Motivation 

Fennema & Sherman 
(1976) 

Anxiety about Mathematics Emotions 

Fennema & Sherman 
(1976) 

Mathematics as a Male Domain Beliefs 

Gourgey (1982) Mathematical Self-Concept Self-concept 
Schoenfeld (1989) Beliefs about Mathematics Beliefs 

Table 1: Image of Mathematics Scales 

A random stratified sample of 60 schools was selected for this study, although only 23 of these agreed 
to participate. A total of 356 students completed the questionnaire survey. The students were aged 



between 15 and 18 years and were all studying ordinary level (intermediate level) mathematics for 
the Leaving Certificate (end of second level state examination). The author decided to focus on 
ordinary level students as it was hypothesized that students in this cohort would provide a wider range 
of images. In addition, a majority of students (72.14% at the time of the study) took the ordinary level 
mathematics examination for the Leaving Certificate. 

Findings 
In this section, findings are presented in relation to parents’ occupation and the relationship with 
students’ images of mathematics. The quantitative data were analyzed using Statistical Package for 
the Social Sciences (SPSS) (version 19). In acknowledgement of the debate among researchers as to 
whether parametric or non-parametric methods of analysis should be applied to Likert scales 
(Jamieson, 2004), both methods were employed with similar findings (see Lane et al., 2014). The 
internal reliability of the eight scales was examined using Cronbach’s alpha, with six scales found to 
have values above 0.8. The Value scale scored above 0.7, still a good internal consistency but the 
Beliefs scale was found to have a very low Cronbach’s alpha of 0.21, possibly due to the short length 
of the scale – six items. The 84 items in total – referred to here as the combined image of mathematics 
scale – had a very high internal consistency of 0.94. Correlation was carried out on the scales, with 
each scale correlated with all other scales and also with the combined scale. The relationships between 
the scales was also examined using partial correlation, controlling for the effect of each individual 
scale on the relationship between the other seven scales. A Principal Components Factor Analysis 
and Multiple Regression Analysis were also employed. The analyses indicated that the Attitude 
towards Success in Mathematics Scale and the Mathematics as a Male Domain Scale were not found 
to correlate highly with the other scales used in this study and so the author has decided to not address 
these scales here. The median scores on each of the remaining six scales are examined according to 
parents’ occupation. A higher score on any of the scales indicates a more positive attitude, belief, 
emotion etc.    
As parents’ occupation was an optional item on the questionnaire, this item received the lowest 
response rate out of the entire questionnaire with just over half of students providing an answer 
(n=179). Reported parents’ occupations were qualitatively reviewed and grouped into categories. 
Occupations were grouped similarly to Lim (1999) in her study on the public image of mathematics. 
Due to the fact that the author wished to acknowledge occupations involving a significant knowledge 
of mathematics, i.e., financial banking, accountancy, mathematics teacher etc. it was decided to 
include a sixth category relating to this. Initially, parents’ occupation was explored with categories 
that differentiated between one or both parents’ occupations being provided. However, as some of 
these categories contained very few students, groups were collapsed into the 6 categories of: 
Professional; Managerial and Technical; Skilled (both manual and non-manual); Unskilled and 
Partially skilled; Mathematics; and Others (unemployed, retired and unclassifiable occupations). 
Median scores for these categories are also compared with those for students who did not provide 
their parents’ occupations (Not Given). 

Enjoyment of mathematics  

The re-grouped categories of the parent(s)’ occupation variable were first examined with regards to 
students’ enjoyment of mathematics. The highest possible score for this scale was 55. Students with 
the highest median score for enjoyment of mathematics (40.5) had parents whose occupation involved 



mathematics. The lowest median for enjoyment of mathematics (27.0) was found to be students 
whose parents’ occupations were categorized as ‘other’. There was little difference between the 
medians for the other 5 categories. 

Value of mathematics 

Parents’ occupation was examined in relation to students’ value of mathematics (highest possible 
score being 50) but the range of medians for the Value of Mathematics Scale was quite small with 
the highest median (38.0) being for students with parents grouped as Managerial and Technical as 
well parents grouped as Mathematics, and the lowest median (33.0) being for students whose parents’ 
occupations were classified as Other. 

Motivation in mathematics 

The highest median score for motivation in mathematics (39.5 out of a possible 60) was found for the 
Managerial and Technical category. This was closely followed by the Mathematics grouping with a 
median score of 39.0. The lowest median score on the Motivation scale (30.0) was recorded for 
students’ whose parents’ occupations fell within the Other classification. 

Beliefs about mathematics 

For the Beliefs scale, the range of median scores was small for the parents’ occupation categories. 
The highest median score on the Beliefs about Mathematics Scale (20.0 out of a possible 30) was 
found for students whose parents’ occupations were classified as either Managerial and Technical or 
Other. The lowest median score (18.0) was recorded for students’ whose parents’ occupations fell 
within the Skilled grouping. 

Mathematical self-concept 

It was found that the students with the highest median score for the Mathematical Self-concept scale 
(43.5 out of 60) were those with parents in the Mathematics category. The lowest median score for 
the Self-concept scale (33.0) was recorded for students whose parents were classified as Professional. 
This was the first instance of the Professional grouping scoring the lowest on a scale. 

Anxiety about mathematics 

Finally, the parents’ occupation variable was examined with regards to the Anxiety about 
Mathematics Scale. Students with parents who work with mathematics had a much higher median 
score for the Anxiety scale (43.0) compared with all other groups (meaning these students reported 
the lowest anxiety levels). The lowest median score for the Anxiety about Mathematics Scale (34.0) 
was recorded for two groups of students, those with parents in the Skilled and Other classifications. 

Discussion 
The most significant finding with regards to the relationship between parents’ occupation and 
students’ image of mathematics may be with regards to students whose parents are involved in 
mathematics-related occupations. For most of the scales, and also for the combination of the scales, 
the Mathematics category of parents’ occupation showed the highest median scores and, in some 
situations, was set apart considerably from the other categories. Students with parents in the 
Mathematics classification of occupations were found to report the highest enjoyment of 
mathematics, the highest value of mathematics, a high motivation regarding mathematics, the highest 



mathematical self-concept and the lowest anxiety levels with regards to mathematics. Given the 
suggestion in the existing research that parents can influence students’ mathematics-related affect and 
possibly, their achievement in mathematics (Frenzel et al., 2010; Lane, 2013; Lim, 1999), it is perhaps 
to be expected that parents employed in mathematics-related occupations will have children with a 
more positive image of mathematics. In particular, it is not surprising that students whose parents 
work with mathematics would report a positive value of mathematics, but it would not necessarily be 
anticipated that these students would report higher enjoyment, higher self-concept or lower anxiety. 
While the PISA findings (OECD, 2014) indicate a relationship between parents’ occupation and 
achievement in mathematics, the occupation category linked with higher achievement in that study 
was not specific to mathematics, although it would include mathematics related work. Their findings 
relating to parents’ occupation and achievement are likely due to the better educational opportunities 
afforded to students whose parents are classified as professionals (the resources aspect of parental 
influence seen in Bosco & Bianco, 2005), but for the students in this study, there was no significant 
difference between students’ reported images with regards to the type of school attended (Lane et al, 
2016). Therefore, it can be hypothesized that the differences come from the parents themselves, and 
not from the educational opportunities afforded by parents. This ties in with the socialization and 
modelling aspects of parental influence (Bosco & Bianco, 2005). The significance of this finding lies 
in the important role parents play in positively influencing their children’s mathematics-related affect. 
Another possibility is that parents involved in mathematics-related careers are more able to provide 
help with mathematics homework. This extra home support may also positively influence these 
students in terms of their image of mathematics. Similar findings were observed in the ASPIRES 
study (2013) in relation to parental influence and engagement with science and science careers. 
Whatever the case, parents who work in mathematics related occupations would seem to have 
children with a more positive image of mathematics, and while the possibility of other factors should 
be acknowledged, the relationship between parental influence and student affect with regards to 
mathematics is clearly one that requires attention. That students whose parents were employed in 
mathematics based occupations reported the highest self-concept and lowest anxiety regarding 
mathematics is particularly of note, as Pantziara (2016) highlights the predictive role of students’ self-
efficacy in their current and future education and course selection. Thus, the potential benefits of 
positive parental influence in terms of mathematics-related affect are far reaching. 

Conclusion 
Findings from this study suggest a relationship between parents’ occupation and students’ self-
reported images of mathematics exist. The positive image of mathematics found to exist among 
students whose parents are employed in mathematics-related careers, may offer an insight into the 
role of parents in the formation of a student’s image of mathematics, particularly in terms of the 
socialization and modelling aspects of influence (Bosco & Bianco, 2005). Parents with positive 
attitudes, beliefs etc. about mathematics, may pass this positivity to their children, thus creating a 
cycle of positivity and engagement with mathematics. These parents are likely to be in a better 
position to provide additional support with mathematics work. Given the role played by parents in 
terms of their children’s education and future occupations (ASPIRES, 2013; Lawson et al., 2015), the 
influence of parents in students’ image of mathematics formation (Lim, 1999; Lane et al., 2014) and 
the link between affect and future course selection and achievement (OECD, 2016; Pantziara, 2016), 
it is essential to recognize the part that parents may play in influencing students’ engagement with 



mathematics education and mathematics related careers. Due to the small number of students in this 
study with parents involved in mathematics based careers, these findings cannot be taken as 
conclusive and indeed further research would be necessary to clarify the relationship between parents’ 
occupation and students’ images of mathematics, and also the role of parents in influencing students’ 
mathematics-related affect and indeed their current and future engagement in mathematics.  
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This paper reports on a study into the motivations and emotions of prospective primary school 
teachers and how they change before, during and after a problem solving task. The results highlight 
the need to build the emotional intelligence or cognitive-affective competences, resources and 
strategies to overcome negative emotion and to scaffold learning. 

Keywords: Motivation, emotion, problem solving. 

Background 
The link between emotion and the experience of learning mathematics has long been recognised  
(Buxton, 1981). In particular, negative experiences, leading to negative emotions, are seen to inhibit 
or disable the learning of mathematics. Buxton’s study provided evidence of the damaging effect of 
lack of confidence and competence that motivation and emotion play in the learning of mathematics. 
Skemp (1977) also described the part played by a range of emotions in successful and unsuccessful 
strategies for learning mathematics. Yet until recently, much research on emotion and mathematics 
has focussed on anxiety, and particularly test anxiety (Hembree, 1990).  Evans (2000, p. 108) claimed 
“there is still little or no explicit acknowledgement of the importance of the affective – feelings of 
anxiety, frustration, pleasure and/or satisfaction which attend the learning of mathematics.” More 
recently, there have been attempts to classify emotions related to learning mathematics (Pekrun, 
Frenzel, Goetz, & Perry, 2007). This characterisation does not account fully for the wide range of 
emotions reported in other research (Schorr & Goldin, 2008). Schutz and DeCuir (2010) point out the 
tendency of research to characterise emotion as trait, and that this in turn tends to promote more 
reductionist interpretations. They note the methodological problems in the attempt to study emotions, 
since they happen ‘in vivo’, and in the moment. Although not specific to mathematics, Meyer and 
Turner’s (2010) review of emotions in classroom motivation research argues for the key role of 
emotions in learning, using terms such as ‘essential’ and ‘pivotal’.  

In relation to emotion and disaffection with school mathematics, there have been few studies.  One 
such is Skinner, Furrer, Marchand and Kindermann. They view disaffection as negative engagement, 
or, more specifically (2008, p. 767): “the occurrence of behaviours and emotions that reflect 
maladaptive emotional states.” Amongst the emotions accounted for are boredom, anxiety, anger and 
shame. The framework takes account of these emotions, but offers no theoretical account of their 
genesis. Lewis  (2016), using a Reversal Theory structure, has attempted to widen the range of 
emotions studied, and has reported on the existence of a range of negative emotions that inhibit or 
disable learning. 

Emotions, then, have received less attention than other affective constructs. In particular, emotion-
as-state has been under-researched. The importance of state, as opposed to trait, or to more stable, 
cognitively-mediated constructs such as attitudes and beliefs, has been pointed out by Hannula. He 
says (2012, p. 155): “There is a clear imbalance in favour of studies that focus on traits over studies 
that focus on states.”.  He goes on to say (ibidem, p. 155): “In particular, studies that focus on the 
dynamics of emotional or motivational states in classroom or other learning community are still rare.” 



More recently, researchers have begun to pay attention to this deficit. The Cerme community, at 
Cerme 9, 2015, saw a number of papers address issues of emotion, and focussed on emotion-as-state, 
in rather innovative ways. Liljedhal  (2015) collected data from 38 prospective mathematics teachers 
after an intensely negative experience. The results contribute to work in mathematics education that 
anchors emotions in a theoretical framework and links them to other constructs in the affective 
domain, particularly motives. Di Martino and colleagues (Antognazza, Di Martino, Pellandini, & 
Sbaragli, 2015) look at if, and how, young students’ emotions change during problem solving, the 
factors behind the change, and the potential impact of certain emotional changes on mathematical 
activity. They investigate young students’ problem-solving difficulties, and the links between 
affective and cognitive factors in context. They note that intrinsic causes seem to be attributed by 
students to positive emotions, and extrinsic causes to negative emotions. 

Despite there being a number of significant differences between the studies, they share a number of 
features that help to address the difficulties of studying emotion ‘in-situ’. They both involve polling 
participants before, during and after the performance of mathematical tasks, and both make creative 
use of open-ended responses. These studies can be taken together to form a conversation within the 
research community, where researchers respond to identified gaps in the field, and cooperate to move 
the research on at each stage. A number of points seem to me to be particularly worth exploring 
further. The first is the interaction between affect and cognition, which research is only now beginning 
to explore. Secondly, as pointed out above, we need to understand more fully how affective and 
emotional states help to facilitate or inhibit learning. Further evidence is needed of the dynamic 
progression of motivational and emotional states through the problem solving process, how these 
interact with cognition and cognitively-mediated constructs such as attitudes and beliefs. 

The study 
The aim of the study, then, is to investigate the motivations and emotions associated with the 
performance of a problem solving task. More specifically: 

What are the motivational and emotional pre-dispositions of prospective primary teachers to 
performing a problem solving task? How do these change during the process of the task, and how are 
they interpreted after completion of the task? What is the role of self-regulatory skills in mediating 
negative emotions? How do motivations and emotions interact with cognition in the undertaking of 
the task? 

Prospective primary school teachers on initial teacher training represent a category of whom many 
members are lacking in confidence and a facility in mathematics (See Liljedahl, 2015). There is a lot 
of interest in this group for this reason. Looking to take and adapt the methods and protocols from 
the studies outlined above, I ran a session with a group of primary PGCE students in which these 
ideas can be explored. The protocol involves presenting them with mathematics problems, and polling 
them both prior to working on them and after the task, about their affective dispositions. The task was 
actually a set of graduated questions involving working out terms in series in which they were given 
the first few terms. By using a graduated set of tasks, I was hoping that there were tasks that were 
simple enough for everyone to get some right, but also some that would stretch the most 
accomplished. 



Seventeen students on the Postgraduate Certification of Education (PGCE) programme for 
prospective primary school teachers at a UK University volunteered to attend a lunchtime session. 
They were informed only that I was interested in researching affect in mathematics education. All but 
two of the volunteers were women, and they were split equally between those who considered being 
mathematics specialists, and those who did not.  

At the beginning of the session, students were briefly shown the task, and then given a questionnaire. 
Prior to the task, they were asked to rate the difficulty of the task on a 5-point scale from easy to 
difficult. They were also asked how they felt about the task, what they were thinking, and why. They 
then undertook the written task. After completion of the task, they were asked how well they did on 
the task, to describe their emotions and thoughts and feelings as they undertook the task, and about 
their most negative emotion, and how they dealt with it. The data was content analysed according to 
the categories of responses, as reported below. 

Results 
Initial thoughts and feelings 

Ten respondents assessed the task as quite easy, and no one assessed it as difficult. Consistent with 
the Antognazza et al. study, students who rated the task easy or quite easy felt positively about the 
prospect of doing the task. When asked how they felt about the prospect of the task, prior to 
undertaking it, a range of positive feelings were expressed: 

I like a challenge; Excited; Confident; Relaxed; Curious; Anticipation 

These all reinforced the apparent perceived simplicity of the task. However, there were a few other 
responses (and these all came from volunteers who rated the task as of medium difficulty): 

It makes me feel excited because I want to get it correct, but scared because I might get it wrong 
(sc) 

I think I will be able to do the first ones and then they will get harder and I probably won't be able 
to do them so anticipation (ja) 

When asked what they were thinking, and why, most volunteers reflected confidence and excitement. 
The two exceptions were those again, who judged the task to be of medium difficulty. 

How can I get it right and not look silly. (sc) 

I'm thinking that although maths isn't my strongest subject, I'm not being judged and marked so I 
feel more relaxed (an) 

In terms of the task itself, volunteer scores were evenly distributed between scores of 4, 5 and 6 out 
of 6, reflecting their evaluation of the task as fairly easy. After the task, volunteers were asked how 
well they thought they did, and most seemed to judge that they did quite well. What is clear from the 
narratives is that the motivation to succeed at the tasks was strong. There are multiple mentions of 
determination and perseverance. 

I really wanted to get the answer …… I didn’t want to be defeated (ce) 

My main emotion was one of determination (rp) 



I was just determined to get the right answer (cp) 

Added to this, not only is getting right answers important, but speed in doing so is also seen as a 
requirement. Thus we hear: 

How quickly I could work it out.. (cp) 

I wanted to get through it quickly (sj) 

I was quite upset when I took a little bit longer to do the last one (id) 

Fine until I felt rushed due to time (cw) 

A number of responses suggests that getting ANY answer wrong is unacceptable, and causes negative 
emotion. 

I didn't do well because I was unable to answer the last two questions (an) 

Post task reflection 

Although the questionnaire prompts participants to distinguish between emotions on the one hand, 
and thoughts and feelings on the other, including how they dealt with their most negative emotion, 
the responses seem to represent a ‘package deal’ in which the emotions and cognitions are conflated, 
thus demonstrating how intimately connected they are. In terms of emotions, a range of words and 
terms are used. They include: confidence; stress; panic; confused; happy; confident; uncertainty; 
worried; feeling worse; frustration; anger; annoyed; irritated. 

This list seems to indicate quite a narrow range of primary emotions, comprising variations of anxiety 
and anger, on the negative side, and happiness and confidence on the positive side. Confusion and 
uncertainty appear to be cognitive conditions with negative valence, that result in negative emotions 
such as anxiety. 

Again, as with Antognazza et al., making progress and getting right answers are seen as a vital 
condition of satisfaction. 

I was just determined to get the right answer, each time I solved one I was happy (cp) 

Mainly joy at being able to do the task relatively easy (gh) 

The sense of satisfaction and positive emotion continues until the prospect of getting the answer right 
is perceived to be at risk, when the emotion turns negative. Getting answers right, and then not being 
able to get an answer, is expressed in emotional dualities: 

Happiness, success, proud I could do it. Annoyed when I had to take a few looks at the last one 
(id) 

The negative feelings seem to easily initiate more deep seated negative and disabling thoughts: 

I felt quite happy and relaxed at the beginning when I was able to complete the sequences but later 
on I felt inadequate as everyone else seemed to know the answers (an) 

I began to doubt myself (nd) 

Frustration stimulating a negative thought process that I am not that great at maths (ao) 



I was happy and confident until I reached 'E'. At this point my uncertainty about maths re-surfaced. 
I have never been confident in maths and so the fact that I struggled on the last 2 questions made 
this emotion re-surface  (nd) 

Other categories of narrative expression also emerge from the data. One category relates to the 
mathematical or heuristic strategies employed by the volunteers either in the search for pattern or 
answers, or in response to negative emotional conditions. Examples include: 

My prior knowledge of sequences helped (cs) 

My confidence went up and down as I used trial and error, once I'd figured out the pattern that was 
fine (cp) 

Try out a variety of methods until I found the one that worked (id) 

My most negative emotion was before the last question when I worried 'whoa' not sure I can do 
this, but I dealt with it by trying to think about the problem from a different perspective and take 
a different approach as I had with other questions (ce) 

I approached it very methodically, wrote things down to help remember what I was processing 
mentally. As I cracked each pattern I felt more willing to try the next (rp) 

I was thinking about the possibilities of how to work each one out. What different methods may I 
need to use? (hr) 

Since the tone of emotion changed from pre-task to post-task, and from mainly positive to mainly 
negative, it is interesting to examine how these students deal with the negative emotion. There is 
evidence here of significant self regulation, which is often mediated by self-talk: 

Can I do it? Can’t I do it? (sj) 

I had to tell myself that I had tried my best (nd) 

Come on you can do better (cp) 

It’s not a test so it is ok if and when I get it wrong (ja) 

Self talk also plays a part in the negative case: 

I couldn’t find the sequence and therefore must be rubbish at maths (sc) 

The following example illustrates such a negative pathway or series of responses: 

I was confused as soon as I couldn't find an obvious pattern and consequently panicked and 
guessed. That made me feel inadequate (sc) 

Note the sequence (with comments in parentheses): 

1. I couldn’t find an obvious pattern… [searching for pattern is a cognitive strategy – in this case 
unsuccessful] 

2. This made me confused…[ lack of success leads to lack of solution and the cognitive condition 
leads to high arousal] 

3. Therefore I panic…[this induces negative emotion] 



4. When I panic I guess…[ this leads to a poor behavioural response] 

Many of the accounts talk about confusion leading to panic, and the panic relates to the very strong 
(but unsatisfied) need for progress, often leading to inappropriate strategies for quick solutions: 

I felt panicked to try and find a solution as quickly as possible (sc) 

Motivational and emotional pathways in mathematical problem solving 

By assembling the evidence, it is now possible to propose a model for the possibility space of the 
pathways for this motivational-emotional-behavioural nexus. To do this, I will draw on the reversal 
theory framework, but instantiated by data from this study, and consistent with data from other, 
similar studies. More details about the eight motivational states, and their associated emotions can be 
found in Lewis (2016). 

The motivational state combination determines how the experience or engagement in the task will be 
evaluated against the needs of the active states. If the need is satisfied, or if satisfaction is anticipated, 
it will lead to positive emotion. If not, it will lead to a feeling of frustration, and negative emotion 
determined by the specific state combinations active at the time. In this case, there is a behavioural 
dilemma which can be resolved in two ways. Illustrated visually, the space comprises the following 
pathways: 

     Positive outcome/  Continue (A) 

     Emotion   

 

Activity-outcome  

           Continue (B) 

Negative outcome/ 

     Emotion    Avoid or withdraw (C) 

In the serious self-mastery state combination, which evidence suggests is the dominant motivational 
disposition of students in problem solving contexts, achieving progress, getting right answers 
(quickly) and the associated feeling of power or competence, is necessary for a positive affective 
outcome. The likely behavioural response is attraction, leading to the desire to continue (A). 

If progress or positive outcome is not achieved in the serious self-mastery motivational disposition, 
this will result in anxiety, anger (serious), or humiliation or helplessness (self-mastery, losing), 
whereas in paratelic (playful) state combinations, boredom or sullenness will result if arousal is low 
and excitement is unavailable. 

From this situation, the student has choices available. One choice is to use strategies to override or 
mitigate the negative emotions. One such approach is the learnt behavioural response to ‘call down’ 
mathematical strategies or heuristics, as evidenced above. Another available resource is the 
application of metacognitive skills such as determination or perseverance. This allows the student to 
continue, even if it is painful or uncomfortable to do so. 



There is also another process that appears to take place. Negative emotions such as anxiety, anger, 
(possibly in conjunction with helplessness or humiliation) seem to induce a strong need for meaning, 
significance or explanation for the failure. Since this is unavailable in the situation, it appears to 
initiate a search of cognitively-mediated constructs (such as attitudes or beliefs) in order to satisfy 
this need. This search for meaning seems to be strongly mediated by self-talk, and may result, as the 
evidence shows, in evaluations of self and capability (‘You can do it’ or, ‘I am dumb’), or evaluations 
or attributions related to the situation (‘these questions are too hard’, ‘mathematics is useless’). But 
as Antognazza et al. point out, negative emotion is more often associated with explanations extrinsic 
to the problem at hand. 

If such evaluations about self or the situation are positive and enabling, they provide a kind of 
behavioural override to the negative emotion, and encourage further qualified or reluctant attraction 
and engagement, as expressed, for instance, in ‘come on, you can do better’, as illustrated in path (B). 
If, on the other hand, such evaluations are negative, they result in repulsion and avoidance or 
withdrawal from the task, as in path (C). We can see this last option in operation in statements of the 
form ‘I am no good at maths’, ‘I feel less intelligent than the others.’  

Since all students will, at times, encounter negative emotions, it is important to understand in more 
depth what influences the choice between pathways B) and C). It seems clear that having a range of 
cognitive-affective resources are the key to the likelihood of students choosing pathway C). The 
evidence here suggests that these resources and strategies fall into three categories: 

 A repertoire of mathematical or heuristic processes to enact in seeking progress in tasks and 
problems. 

 Meta-cognitive and self-regulatory resources such as determination and perseverance in order 
to continue with a task when it is affectively uncomfortable or painful to do so. 

 An architecture of positive or enabling cognitively-mediated structures or representations 
such as attitudes or beliefs, that provide a frame of confidence in which otherwise 
psychologically risky situations can be tackled. 

Discussion 
This study, then, has attempted to contribute to the understanding of affect, and particularly negative 
emotions and their effect on learning or not learning, mathematics. A number of interesting points 
arise. Firstly, further evidence to the Liljedahl study of just how prevalent negative emotion is among 
prospective primary teachers. Secondly, the evidence here shows just how intimately connected affect 
and cognition are in undertaking mathematical tasks, and the influence of affect on learning, or not 
learning mathematics, and indeed, the reciprocal influence of learning on affect. I have proposed a 
model of the mechanisms by which emotion and cognition interact when students are engaged in 
mathematical tasks, and in particular, ways that aspects of cognition and behaviour can be used to 
mitigate negative emotion, such that it doesn’t disable learning. 

This is a modest study which has a number of limitations, especially related to the small sample, and 
the fact that they were volunteers. Because of this, no attempt has been made to make quantitative 
generalisations from the data. 



One of the key points to emerge that should inform teaching practice and pedagogy is that explicit 
focus and attention is needed to help students to build the emotional intelligence or cognitive-affective 
competences, resources and strategies to overcome negative emotion and to scaffold learning.  
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On the edges of flow: Student engagement in problem solving  
Peter Liljedahl, Simon Fraser University, Canada; liljedahl@sfu.ca 

Engagement in mathematical problem solving is an aspect of problem solving that is often overlooked 
in our efforts to improve students' problem solving abilities. In this paper I look at this construct 
through the lens of Csíkszentmihályi's theory of flow. Studying the problem solving habits of students 
within a problem solving environment designed to induce flow, I look specifically at student behavior 
when faced with an imbalance between their problem solving skills and the challenge of the task at 
hand. Results indicate that most students have perseverance in the face of challenge and tolerance in 
the face of the mundane, and use these as buffers while autonomously correcting the imbalance.  

Keywords: Flow, engagement, perseverance, challenge, tolerance. 

 
Flow 
In the early 1970's Mihály Csíkszentmihályi became interested in studying, what he referred to as, 
the optimal experience (1990), 

“a state in which people are so involved in an activity that nothing else seems to matter; the 
experience is so enjoyable that people will continue to do it even at great cost, for the sheer sake 
of doing it.” (Csíkszentmihályi, 1990, p.4) 

In his pursuit to understand the optimal experience, Csíkszentmihályi (1990) studied this 
phenomenon among musicians, artists, mathematicians, scientists, and athletes. Out of this research 
emerged a set of nine characteristics common to every such experience (Csíkszentmihályi, 1990) – 
the first three of which are characteristics external to the doer, existing in the environment of the 
activity, and crucial to occasioning of the optimal experience. 

1. There are clear goals every step of the way. 
2. There is immediate feedback to one’s actions. 
3. There is a balance between challenges and 

skills. 

The last of these – balance between challenge and 
skills – is central to Csíkszentmihályi's (1990) 
analysis of the optimal experience and comes into 
sharp focus when we consider the consequences of 
having an imbalance in this system. 
Csíkszentmihályi found that if the challenge of the 
activity far exceeds a person's ability they are likely 
to experience a feeling of frustration. Conversely, if their ability far exceeds the challenge offered by 
the activity they are apt to become bored. When there is a balance in this system a state of, what 
Csíkszentmihályi refers to as, flow is created (see fig. 1).  

Flow is a powerful ways for us, as mathematics education researchers, to talk productively about the 
phenomenon of engagement in general, and the three aforementioned elements of flow gives us a way 
to think about the potential environments that occasion engagement in our classrooms in particular.  

 

Fig. 1: Graphical representation of the 
balance between challenge and skill  



 

Williams (2001) used Csíkszentmihályi's idea of flow and applied it to a specific instance of problem 
solving that she refers to as discovered complexity. Discovered complexity is a state that occurs when 
a problem solver, or a group of problem solvers, encounter complexities that were not evident at the 
onset of the task, is within their zone of proximal development (Vygotsky, 1978), and occurs when 
the solver(s) "spontaneously formulate a question (intellectual challenge) that is resolved as they work 
with unfamiliar mathematical ideas" (p. 378). Such an encounter will capture, and hold, the 
engagement of the problem solver(s) in a way that satisfies the conditions of flow. What Williams' 
frame-work describes is the deep engagement that is sometimes observed in students working on a 
problem solving task during a single problem solving session.  

Extending this work, I argued that engagement was an affective experience and used the notion of 
flow to look at situations of engagement extended over several days or weeks wherein students return 
to the same task, again and again, until a problem was solved (Liljedahl, 2006). The results of this 
work showed that although flow was present in each of the discrete problem solving encounters, what 
allowed the engagement to sustain itself across multiple encounters was a series of discovered 
complexities in each session linking together to form what I referred to as a chain of discovery.   

More recently, I looked at the practices of two teachers through the lens of flow in general and their 
ability to set clear goals, provide instant feedback, and maintain a balance between challenge and skill 
in particular (Liljedahl, 2016a). From this a number of conclusions emerged. First, thinking about 
flow as existing in that balance between skill and challenge, as represented in figure 1, obfuscates the 
fact that this is not a static relationship. Flow is, in fact, a dynamic process. As students engage in an 
activity their skills will, invariably, improve. In order for these students to stay in flow the challenge 
of the task must similarly increase (see fig. 2).  

   

Fig. 2: Balance as a dynamic 
process 

Fig. 3: Too fast an increase in 
skill 

Fig. 4: Too great an increase in 
challenge 

In a mathematics classroom, these timely increases of challenge often fall to the teacher. But this is 
not without obstacles. For example, if a student's skill increases either too quickly or too covertly for 
the teacher to notice that student may slip into a state of boredom (see fig. 3). Likewise, when the 
teacher does increase the challenge, if that increase is too great the student may become frustrated 
(see fig. 4). How teachers manage these situations of boredom and frustration is important. In 
Liljedahl (2016a) one of the teachers managed such situations synchronously, either giving hints or 
extensions to the class as a whole, usually after three groups finished or she got three of the same 
questions respectively. For most groups the timing of these hints and extensions was off, and not 
helpful in maintaining flow. The second teacher, however, managed these situations asynchronously, 
dealing with groups individually as they got stuck or completed a problem. Student engagement in 



 

the second teacher's class was visibly higher as he was maintaining flow through the constant and 
timely maintenance of the balance between ability and complexity for each group.  

What I did not learn from this aforementioned research is how students cope with imbalance when 
the teacher does not provide help or extensions in a timely fashion. In the research reported here I 
look closely at exactly this phenomenon in general, and student autonomous actions and reactions in 
such moments of imbalance in particular.  

Methodology 
To get at this behavior I chose to observe students in a problem solving settings where student work 
was easily visible. To this end I strategically selected two senior high school classrooms belonging 
to two different teachers (Cameron and Charmaine), both of whom conducted their classrooms 
according to a teaching framework designed to shape their classroom into a space "that is not only 
conducive to thinking but also occasions thinking, a space that is inhabited by thinking individuals as 
well as individuals thinking collectively, learning together and constructing knowledge and 
understanding through activity and discussion" (Liljedahl, 2016b, p.364).  

My earlier empirical work (Liljedahl, 2016b) on the design of such classrooms had emerged a 
collection of nine elements that offer a prescriptive framework to help teachers build such spaces. For 
the research presented here, five of these elements are particularly salient: 

1. At the beginning of every class, students are assigned to a visibly random group (Liljedahl, 
2016b, 2014) of two to four students.  

2. These groups work collaboratively to solve a number of problems (usually) right from the 
beginning of the lesson.  

3. This work is done with groups working at vertical non-permanent surfaces such as 
whiteboards, blackboards, or windows (Liljedahl, 2016b).    

4. Students' flow is occasioned and maintained through the teacher's judicious and timely use of 
hints and extensions (Liljedahl, 2016a, 2016b).  

5. At some point within this sequence of tasks the teacher brings the students together to debrief 
what they have been doing – either by going over one or more of the students' solutions or 
working through a new problem together with the class as a whole. This is timed so that every 
group is able to participate in discussion and benefit from the reification.  

Taken together, both of these classrooms offered the affordances for me to easily observe students 
working within and an environment designed to occasion flow. The teachers were both managing 
engagement through the timely use of hints and extensions to maintain a balance between the 
challenge of an activity and the ability of each group. The student work was visible and there was 
enough autonomy afforded in the room that the students could take some kind of action when they 
found themselves in a situation where challenge and ability may be out of balance.  

Data for this research were collected in Cameron's grade 12 Pre-calculus class and Charmaine's grade 
11 pre-calculus class. Each class was visited five times over a seven week period in the middle of the 
second semester.  



 

The data 

Because the collection of video data creates such a narrow field of view, I instead used a variant of 
noticing (van Es, 2011) to scan the classrooms. Csíkszentmihályi (1990) characterizes flow as 
enjoyment, fluidity, and focus. These characteristics manifest themselves in the physicality of 
individuals and groups in flow and allows for the easy identification of flow and the absence of flow 
in a classroom. As per my research question, what I was looking for, then, were moments where an 
individual or a group was out of flow and where that individual or group was left to cope with this on 
their own. Once such a moment was identified I would focus in on that individual, or that group, 
taking detailed field notes and occasional photographs. When these moment seemed to wane I would 
conduct short, in-the-moment, interviews. 

Csíkszentmihályi's theory of flow (1990) predicts that lack of flow is the result of a group of students' 
abilities exceeding the challenge of the task (see fig. 3) or the challenge of the task exceeding the 
abilities of a group (see fig. 4), resulting in the groups quitting, respectively, out of boredom or 
frustration. As such, flow served as the initial framework for analyzing the data. As it turns out, the 
theory was far from adequate for explaining all of the students' actions and reaction in the data. As 
such, I also used analytic deduction (Patton, 2002) to look more closely at students' actions and to 
group these actions into themes.   

Results and analysis 
From this analysis a series of six nuanced themes emerged, each marked by a different type of student 
action or reaction to being out of flow. In what follows I present cases exemplifying each of these 
themes as well as some general comments about similar cases.  

When skills exceed challenge: The case of quitting  

As mentioned, Csíkszentmihályi (1990) found that if a person's ability exceeded the challenge they 
are apt to become bored, and then quit out of this boredom. I found evidence of such behavior in 
Cameron's and Charmaine's classrooms.   

Researcher I notice you are not working on the assigned questions. What's up? 
Mikaela We did some of them.  
Researcher I saw that. I noticed that you did two very quickly. Took a little break from the math 

and then went back and did another one. I was sort of waiting to see if you would 
get back to it.  

Allison This stuff is easy. I'll finish it at home on my own.  
Mikaela It's actually too easy. I don't even think I will bother finishing it at home.  
Allison … Yeah. I probably won't either.   

During the ten lessons I observed in Cameron's and Charmaine's classes I only managed to capture 
three other instances that I would say fall into the same category – quitting because the students were 
bored by seemingly too easy a collection of tasks.  

When skills exceed challenge: The case of seeking increased challenge  

Quitting out of boredom was not the only reaction to a situation where the skills of a group or of an 
individual exceeded the challenge of the task at hand. Some students opted, instead, to autonomously 



 

seek increased challenge. To exemplify this I look at a case from Cameron's class captured while 
students were working at the whiteboards in randomly assigned groups. During this part of the lesson 
Cameron moved around the room helping groups that were stuck (or had made a mistake) and giving 
more challenging questions to groups that were done. Before a group would get his help or the next 
question, however, he engaged the group in conversation to assess where the group's thinking was. 
This took time and sometimes groups that were done were left waiting.  

Researcher So, I notice that you guys are now on question 5 and your teacher has not visited 
you once. How are you getting your questions? 

Ameer We just look around and see what the next question is and do that one.  
Researcher What would your teacher say about that? 
Carl Um … he'd probably want to check to see that we got the previous one before giving 

us the next one … 
Ameer … but we are doing that. 
Researcher Why don't you just wait for your teacher to get here and give you the next question? 
Carl We're on a roll. And sometimes we have to wait a long time.   
Researcher Do you realize that you are doing the problems out of sequence from the order your 

teacher is giving them? 
Colton Oh really? That’s probably why some were so hard.  

This was a very common reaction in both Cameron's and Charmaine's classrooms. Rather than wait 
for their teacher to give them the next questions groups were opting, instead, to move forward on 
their own by pulling the next question from groups that were ahead of them. This was facilitated by 
the visible nature of the work on the vertical surfaces.  

When skills exceed challenge: The case of tolerance in the face of the mundane 

An altogether different reaction to being tasked with doing easy and redundant questions is to just do 
them – without quitting and without seeking to increase the challenge. I observed such behavior in 
the case of Jennifer, who always worked at her desk on her own at the end of Charmaine's lessons.   

Researcher I have been watching you while I have been here. I notice that you always do a lot 
of questions. Can you tell me about that?  

Jennifer Yeah. I like to do a lot of questions. It's good practice. It's how I learn. 
Researcher So, are you looking for harder and harder questions to challenge yourself? 
Jennifer Not really. I just do all of them. So, if the teacher asks us to do 4a, I will also do 

4bc and d and so on.  
Researcher Do you find them easy?  
Jennifer Yeah. 
Researcher How many do you do? 
Jennifer I just work the whole time at the end of class and then for maybe an hour at home.  

I came to call Jennifer's behavior tolerance for the mundane. In my time in Cameron's and 
Charmaine's classes I saw two other girls who I suspect were very much like Jennifer in their approach 



 

to learning and their tolerance for the mundane. These girls also worked alone in their desks in the 
last part of every lesson.  

When challenge exceeds skills: The case of quitting 

Csíkszentmihályi's framework (1990) predicts that sometimes students quit out of frustration. I found 
three cases of this in Cameron's classroom – all near the beginning of class.  

Researcher I have been watching your group for a bit and I notice that you aren’t working? 
Robert We gave up. This question is stupid.  
Katrina We tried, but we weren't getting anywhere. So we gave up. 
Researcher What do you think the problem is? 
Shannon This question is too hard.  
Robert … too hard. We don't get it.  
Katrina And the teacher hasn’t come over to help us.  
Researcher What kind of help are you looking for? 
Shannon You know, a hint or something.  
Researcher What would a hint do for you? 
Shannon Help us understand the question.  
Katrina … or remind us a little bit about how to do it.  

For this group the question they have been asked to solve exceeded their abilities and without any 
help from the teacher they gave up. Interestingly, the help they were seeking was not only to reduce 
the complexity of the task (understand the question), but also to increase their ability (remind us of 
what we have done in the past). In the ten lessons I observed, I only managed to capture four instances 
of a group giving up out of frustration.  

When challenge exceeds skills: The case of seeking help 

A much more common reaction to facing too great a challenge was for students to seek help. What 
this looked like, however, was much more subtle than simply asking the teacher for help.  

Researcher I notice that you have been moving about the room a bit. Why? 
Michael  Oh. We were just stuck so we went over there to get some ideas.  
Researcher Did it help? 
Michael  Oh yeah. We got it now.  

This sort of behavior was endemic in both classrooms with too many occurrences for me to track. 
The vertical and visible work spaces facilitated the ability for groups to check their answers and get 
ideas. The random groups created the porosity (Liljedahl, 2014) that made the more active 
interactions and movement of ideas possible.  

When challenge exceeds skills: The case of perseverance in the face of challenge 

But not all groups sought help when they were stuck.  

Researcher Question #5 was a tough one, huh? 
Oliver Yeah, that one took us a while.  



 

Connor In the end it wasn't that hard though. We were just missing something.  
Researcher Oh really. How did you figure it out?  
Connor We just kept at it and then we saw it.  
Researcher I noticed that your teacher came over to help. Did she help you? 
Oliver No, we wouldn't let her. We knew how to do it and we wanted to figure it out 

ourselves.  
 

In all the lessons I observed I captured four instances where a group or an individual opted to not seek 
help, either from the teacher or the groups around them. I called this behavior perseverance in the 
face of challenge.  

Discussion 
The aforementioned six nuanced student reactions to being out of flow show that for different 
individuals and different groups the transitions from flow to boredom or frustration has variable 
immediacy. Some groups became bored or frustrated and quit.  For these groups, Csíkszentmihályi's 
(1990) original representation of flow holds (see fig. 1).  

For others, this transition was not as abrupt. Jennifer showed a great tolerance for the mundane as she 
spent long periods of time within a space where her ability far exceeded the challenge posed by the 
tasks she was working on. Likewise, Connor and Oliver demonstrating great perseverance while 
working on a task that presented too great a challenge for her ability. Taken together, these two cases, 
and the cases like them, indicate that for some students the boundary between flow and boredom and 
frustration is not as thin as Csíkszentmihályi's (1990) theory of flow would imply and is buffered by 
tolerance and perseverance (see fig. 5).  

Other students used this buffer to avoid frustration or boredom as they sought to correct the imbalance 
between skill and challenge that they were experiencing. Carl, Ameer, and Colton used the groups 
around them to check their own answers and to seek out more challenging tasks when they were done. 
Similarly, Michael's group used the groups around them to access help when they were stuck. These 
groups, and the groups and individuals like them, managed to autonomously maintain the balance 
between challenge and ability. When their ability was too great they autonomously sought to increase 
the challenge (see fig. 6) and when the challenge was becoming too great they autonomously sought 
to increase their ability or decrease the challenge (see fig. 7). The highly visible and collaborative 
environments created by the use of vertical non-permanent surfaces and visibly random groups were 
shown by the data to be instrumental in facilitating these autonomous actions. 

  



 

 

   

Fig. 5: Modified representation 
of flow 

Fig. 6: Reaction to too great an 
ability 

Fig. 7: Reaction to too great a 
challenge 
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There is not much research on emotions of mathematics teachers other than the wide research on 
mathematics anxiety of mathematics teachers and pre-service teachers in elementary school. With 
the goal of beginning to fill this gap, this research pursues the aim of identifying the daily emotions 
in a classroom of a high school mathematics teacher. Data was gathered through audiotaped self-
reports where the participant reported his emotional experiences during 13 mathematics classes. The 
data analysis show that the participant experienced diverse emotions such as satisfaction, 
disappointment, appreciation, happy-for, sorry-for, reproach and anger. The triggering situations 
for the cognitive appraisals are about the achievement of the planned activities for the lessons. The 
belief of the participant on the “good attitude” of students – perceived as students’ “collaboration”, 
“independence” and “participation”– supports the appraisals. 

Keywords: Teachers’ emotions, cognitive appraisal, self-reports of experience. 

Teachers’ emotions in mathematics education 
In the field of mathematics education, most of the research on teachers’ emotions focuses on 
mathematics pre-service elementary teachers. There is also some research on elementary teachers. 
Mathematics anxiety—“a set of negative emotions about a state of discomfort, occurring in response 
to situations involving mathematical tasks” (Bekdemir, 2010) — is the most widely emotional 
phenomenon studied in pre-service elementary school (e.g. Bursal & Paznokas, 2006; Di Martino, 
Coppola, Mollo, Pacelli, & Sabena, 2013; Di Martino & Sabena, 2011; Hodgen & Askew, 2007). 
These investigations show that “mathematics anxiety is a common phenomenon among pre-service 
elementary school teachers in many countries and it can seriously interfere with students becoming 
good mathematics teachers” (Hannula, Liljedahl, Kaasila, & Rösken, 2007, p. 153). For example, , 
Harper and Daane (1998) found that mathematics anxiety persists in prospective elementary school 
teachers, enrolled in a U.S. midsized south-eastern university, and that often, the anxiety was 
originated in elementary school. Causes for these students’ mathematics anxiety included an emphasis 
on right answers and the right method, fear of making mistakes, insufficient time, word problems and 
problem solving. 

Some other research focused in the study of specific emotions in elementary school teachers (Bibby, 
2002; Di Martino et al., 2013). For example, Bibby (2002) found the presence of shame [a reaction 
to other people’s criticisms and an emotional response to knowing and doing mathematics] related 
with epistemological beliefs about the nature of mathematics: absolutist/product conceptions of 
mathematics provide ideal opportunities for experiencing shame. Bibby found statements relating to 
the fear or anticipation of judgement against those standards they felt they had to measure up: “These 



comments feature notions of trust, lack of trust and self-doubt, doubt, all of which indicate a fear of 
shame: a fear of (imagined or real) criticism, ridicule or rejection by others” (Bibby, 2002, p. 710)..  

The research of teachers’ emotions in mathematics education outlined here shows the strong presence 
of negative affect towards mathematics on elementary education teachers. There is a consensus 
among researchers that the main cause of all negative emotions is that most elementary and pre-
service elementary teachers are not specialists in mathematics and often had negative experiences 
with mathematics as mathematics students in elementary or middle school (Coppola, Martino, Pacelli, 
& Sabena, 2012; Di Martino et al., 2013; Hodgen & Askew, 2007; Philipp, 2007). The appearance of 
mathematics anxiety in the first years of school is linked with the way in which mathematics is 
presented to pupils, with the teacher playing a central. Under these negative affective circumstances 
it is generally recognized that changes in mathematics education is a difficult and sometimes painful 
process (Hannula et al., 2007; Hodgen & Askew, 2007).  

The previous review shows that most of what we know on teachers’ emotions from different scholar 
levels is almost limited to mathematics anxiety. The intention of this research is to start filling these 
gaps by following the aim to identify the daily emotions experimented by a high school mathematics 
teacher in classroom. 

Theory of cognitive structure of emotions 
The theory of cognitive structure of emotions Ortony, Clore, & Collins, 1988)—known as “OCC 
theory” for the initials of the surnames of the authors—is an appraisal theory structured as a three-
branch typology, corresponding to three kinds of stimuli: consequences of events, actions of agents, 
and aspects of objects. Each kind of stimulus is appraised with respect to one central criterion, called 
the central appraisal variable. An individual judges: (1) the desirability of an event, that is, the 
congruence of its consequences with the individual’s goals (an event is pleasant if it helps the 
individual to reach his goal, and unpleasant if it prevents him from achieving his goal), (2) the 
approbation of an action, that is, its conformity to norms and standards, and (3) the attraction of an 
object, that is, the correspondence of its aspects with the individual’s likes. In terms of the distinction 
between reactions to events, agents, and objects, we have three basic classes of emotions: “being 
pleased vs. displeased (reaction to events), approving vs. disapproving (reactions to agents) and liking 
vs. disliking (reactions to objects)” (Ortony, Clore, & Collins, 1988). 

OCC theory describes a hierarchy that classifies 22 emotion types. The hierarchy contains three 
branches, namely emotions concerning consequences of events, actions of agents, and aspects of 
objects. Additionally, some branches combine to form a group of compound emotions, namely 
emotions concerning consequences of events caused by actions of agents. OCC theory provides 
specifications for each emotion type with three elements: (1) The type specification provides, in a 
concise sentence, the situations or events that elicit an emotion of the type in question, (2) a list of 
tokens is provided, showing which emotion words can be classified as belonging to the emotion type 
in question.  

For example, ‘frighten’, ‘scared’, and ‘terrified’ are all types of fear (of course, ‘fear’ is also a type 
of fear): (1) TYPE SPECIFICATION: (displeased about) the prospect of an undesirable event and 
(2) TOKENS: apprehensive, anxious, cowering, dread, fear, fright, nervous, petrified, scared, 



terrified, timid, worried, etc. In Table 1 we summarized the type specifications of all 22 emotion 
types. 

Appraisals 
in terms of 

Group of 
emotions 

Types of emotions (sample name) 

GOALS 

Fortunes-
of-others 

Pleased about an event desirable for someone else (happy-for) 
Pleased about an event undesirable for someone else (gloating) 
Displeased about an event desirable for someone else (resentment, 
envy) 
Displeased about an event undesirable for someone else (sorry-for) 

Prospect-
based 

Pleased about the prospect of a desirable event (hope) 
Pleased about the confirmation of the prospect of a desirable event 
(satisfaction, joy) 
Pleased about the disconfirmation of the prospect of an undesirable 
event (relief)  
Displeased about the disconfirmation of the prospect of a desirable 
event (disappointment, frustration) 
Displeased about the prospect of an undesirable event (fear, worry) 
Displeased about the confirmation of the prospect of an undesirable 
event (fears-confirmed) 

NORMS Attribution 

Approving of one’s own praiseworthy action (pride) 
Approving of someone else’s praiseworthy action (appreciation, 
admiration) 
Disapproving of one’s own blameworthy action (self-reproach, shame) 
Disapproving of someone else’s blameworthy action (reproach, 
rejection) 

NORMA/ 
ATTITUDE 

Well-
being/ 
Attribution 

Approving of someone else’s praiseworthy action and pleased about a 
desirable event (gratitude=admiration + joy) 
Disapproving of someone else’s blameworthy action and displeased 
about an undesirable event (anger = reproach + distress) 
Approving of one’s own praiseworthy action and pleased about a 
desirable event (gratification=pride+ joy) 
Disapproving of one’s own blameworthy action and displeased about 
an undesirable event (remorse = shame + distress ) 

Table 1: Emotion types according to the OCC theory (an extract) 

Research question 
Considering the above theoretical considerations, in this research we have chosen to identify the 
emotional experiences (the individuals’ explicit positive or negative appraisals of the triggering 
situations) of a high school mathematics teacher. Thus, the research question arising from the aim of 
our investigation —identify the daily emotions experimented by a high school mathematics teacher 
in classroom— is: What are the daily individual emotional experiences of a high school mathematics 
teacher in classroom? 



Methodology 
Participant and Context 

Christian, our participant and fourth author of this paper, was 35 years old by the time of the data 
gathering. He studied Communication and Electronic Engineering and has a master degree in 
mathematics education. From 2010, he ventures into mathematics teaching gaining 5 years of 
experience in teaching at the university and at a technical high school. High school where Cristian 
works is part of the national high school Mexican system, which has a dual system: it prepares 
students for university studies but is also engaged with those who need to enter the labour market and 
require a technical certificate.  

Data gathering 

The source of data was the daily self-informs of Christian’s experiences in his high school Integral 
Calculus course. The diary methods “involve intensive, repeated self-reports that aim to capture 
events, reflections, moods, pains, or interactions near the time they occur” (Iida, Shrout, Laurenceau, 
& Bolger, 2012, p. 277). Christian’s self-reports of experiences in class followed an event-based 
protocol (Iida et al., 2012). The focal experience of the participant that triggered the data collection 
is the emotional experience of teaching a mathematics class. After each of the 13 lessons (from 
October 14 to December 4, 2015) of his Integral Calculus course Christian send an audio with a 
smartphone to the second author of this paper via WhatsApp™  with his answers to the questions: (1) 
Name and date of the report, (2) What course does this report attend?, (3) What mathematics topics 
did you work at class today?, (4) How did you design your class?, (5) How were your students 
intended to learn?, (6) What emotions and feelings did you experiment today at class?, (7) Tell us 
about the positive experiences you lived today at mathematics class, why were they positive 
experiences? and (8) Tell us about the negative experiences you lived today at mathematics class, 
why were they negative experiences?  Questions 3, 4 and 5 were designed to understand Christian’s 
expectations and goals in each class. Questions 6, 7 and 8 were designed to know the experimented 
emotions of Christian in each class. The running time of the self-reports of Christian were among 
1:40 y 2:54 minutes. 

Data analysis  

The data was completely transcribed and repeatedly read for several times. Christian did not 
participate in the analysis of the data but agreed that the final report adjusted in general to his 
experience in class. He did not propose any significant change in the interpretation made by the first 
three authors but made some observations on the interpretations of some fragments of his self-reports 
and interviews. He also suggested new elements to detail the context of the research. 

Following OCC theory, we considered two aspects to identify the type of emotion: (1) Concise 
phrases that express the triggering situations of the emotional experiences. We highlight them with 
italic bold, and (2) emotional words or phrases that express the emotional experience from the 
participants words or phrases that indicate the appraisal of the triggering situations. We highlight 
these words or phrases in italics. Rn (n from 1 to 13) denotes the number of the participant’s report. 

For the analysis we only consider excerpts that express emotional experiences; this means that it must 
contain at least one explicit positive or negative appraisal of the triggering situation. We interpret the 



positive or negative valence according to the question reported by Christian (the valence is negative 
if it corresponds to questions 8 and it is positive for question 7).  For example, in:  

Christian-R2: [The emotions and feelings I experimented in class were] Being happy because the 
students managed to structure answers to different doubts of their classmates {satisfaction-
appreciation}. [The positive experience I lived was] the interest of the students in helping their 
classmates {appreciation} [I consider this experience as positive] because of the reflected attitude 
during the class, it was to help them {happy for-appreciation}. 

We interpret “the students managed to solve doubts” as a triggering situation (‘the students managed 
to solve doubts’) of a satisfaction type of emotion (Pleased about the confirmation of the prospect of 
a desirable event).  We interpret “the interest of the students to help their classmates” as a triggering 
situation (‘the students help their classmates’) of an appreciation type of emotion (Approving of 
someone else’s praiseworthy action). Sometimes in the same emotional experience we identify two 
types of trigger situations and two types of emotions. In “being happy because the students managed 
to structure answers to different doubts of their classmates” we interpret as a triggering situation (‘the 
students managed to solve doubts’) of a satisfaction type of emotion and a triggering situation (‘the 
students help their classmates’) of an appreciation type of emotion.  

We build a table with all emotional experiences for each report. The second and third author of this 
paper identified the triggering situations and the types of emotions for each self-report on separate 
analysis but using the same table based on the 22 types of emotions proposed the theory of cognitive 
structure of emotions. They worked the consensus of the triggering situations and the types of 
emotions with the participation of the first author of this paper. Table 2 shows an example of these 
analyses. 

Emotional experience Type of emotion 
Triggering 
situation 

Being happy because the students managed to structure 
answers to different doubts of their classmates 

Satisfaction 
 

The students 
managed to 
solve doubts 

Appreciation 
The students 

help their 
classmates 

[Positive experience] the interest of the students to help 
their classmates 

Appreciation 
The students 

help their 
classmates 

[Positive experience] because of the reflected attitude 
during the class, it was to help them 

Happy for 

The students 
have a positive 

attitude in 
class 

Appreciation 
The students 

help each other 

[Happiness and joy]when I realize they answered the 
doubts 

Satisfaction 
The students 
solve their 

doubts 



[Happiness and joy] because of the participation and 
enthusiasm of the students 

Satisfaction 
The students 
participate in 

class 

Appreciation 

The students 
show 

enthusiasm in 
class 

[Positive experience]because of the interest showed by the 
students helping their classmates to solve their doubts, 
letting them to move on and understand the integration 

techniques 

Satisfaction/ 
Students solve 

doubts 

Appreciation 
Students help 

their 
classmates 

Happy for 

Students 
understood the 

integral 
techniques 

[What I learn in class today] I consider that the help 
received from their classmates, in the sense that they 

shared different knowledge about the integration 
technique studied and this allowed their classmates to 

advance on the topics of the class. 

Appreciation 
Students help 

each other 

Happy for 
Students make 
progress in the 

topics 

Table 2. Types of emotion and triggering situations of R2 (an extract) 

Results 
We identified 95 emotional experiences from 7 different types corresponding to 4 groups of emotions 
(Table 3). We found that Christian experimented emotions of satisfaction, disappointment, 
appreciation, happy-for, sorry-for, reproach and anger triggered by the cognitive appraisal of 6 types 
of triggering situations: (1) on the achievement of the planned activity, (2) on the students’ 
participation, (3) on the students’ collaboration, (4) on the students’ attitude, (5) on the students’ 
independence, and (6) on the students’ learning and understanding. During the data analysis, we 
identified the importance of Christian’s the notion of “students’ (good) attitude”. We asked Christian 
specifically about his. We found that the supports the appraisals is the his belief about the “good 
attitude” of students— perceived by Christian as students’ “collaboration”, “independence” and 
“participation”— is a necessary condition to achieve participant’s goals in class and for the students 
to learn. 

Christian’s most common experimented emotions were satisfaction (F=36), appreciation (F=26) and 
disappointment (F=16). These emotions represent 82% of his emotional experiences. More than half 
of the emotional experiences are Satisfaction (pleased about the confirmation of the prospect of a 
desirable event) and disappointment (displeased about the disconfirmation of the prospect of a 
desirable event). This means that they are the result of the appraisal of situations in terms of the goals 
Christian expressed for his lessons. On the other, appreciation (approving of someone else’s 
praiseworthy action) represent more than a fourth of the emotional experiences. This highlights the 



important role Christian attributes to his students’ behavior (“good attitude”, “participation” and 
“independence”) to achieve their goals. 

Types of emotion Total F Triggering situations 

Satisfaction 36 21 Students solve exercises 
6  Students participate in class 
4 Students solve doubts 
2 Students propose methods 
2 Students understand 
1 Students must be independent while solving 

Appreciation 26 10 Students help their classmates 
6 Students participate in class 
5 Students are independent in solving processes 
4 Students must have good attitude 
1 Students solve doubts 

Disappointment 16 8 Students do not do the planned activity. 

3 Students cannot enter the correct results in the platform 
3  Students do not participate in class. 
2 Students do not understand. 

Note: F denotes the amount of times we identified the triggering situation. 

Table 3. Types of emotion and triggering situation (the most frequent) 

Discussion 
Table 4 presents the types of triggering situations. As we said before, Christian considers the “good 
attitude” of a student in terms of “independence”, “participation” and “collaboration”. Therefore, we 
include all the triggering situations expressed in these terms in only one type of triggering situation 
named “students’ attitude”. In this way, we obtained that most of the triggering situations (95%) are 
divided in two types: (1) Students’ attitude (52%) and (2) achievement of the planned activity (43%). 
This means that the success of an activity depends on his students’ attitude above all. 

Our results are consistent with those investigations that focused on teachers’ emotions based on 
appraisal theories (e.g. Frenzel, 2014; Schutz, 2014). We believe that this consistency results from 
the hypothesis that emotions are the result of cognitive appraisals about what happens in class, 
realized in terms of goals. Our research shows that the appraisal of students’ behavior, conceptualized 
as “good attitude”, is the main triggering situation of Christian’s emotional experiences. This is also 
highlighted in the Frenzel’s (2014) “reciprocal model on causes and effects of teacher emotions”. We 
propose the thesis that the emotional experiences of other mathematics teachers could mostly be 
triggered by the mathematics behavior of their students. 
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The suitability of rich learning tasks from a pupil perspective 
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The construction of tasks is important to challenge pupils, but the exploration of pupils’ perceptions 
connected to their work with tasks, is rare. This paper presents the results of a study using a tool 
aimed at measuring pupils’ perception of joy and interest connected to ‘rich learning tasks’ by 
comparing the views of mathematically promising pupils and others. Two tasks were pre- and post-
evaluated, the first by 139 and the second by 106 pupils from grade 4-9. The results indicate that the 
tool is suited for the exploration of pupils’ views, especially as it can be deduced from the comparison 
that mathematically promising pupils perceived both tasks more positively than the other pupils, and 
that the non-identified pupils became more positive after working especially with one of the tasks.  

Keywords: Mathematically gifted, mathematically promising, rich tasks, pupils’ perception. 

Introduction 
One of the main goals in research on mathematical giftedness is to identify and foster mathematically 
promising pupils (Käpnick & Benölken, 2015). The construction of mathematical tasks is seen to be 
important for both purposes (Fuchs & Käpnick, 2009; Nolte, 2012). It is a consensus that tasks 
suitable to identify and foster mathematically promising pupils should, for example, be challenging, 
open-ended, encourage creativity and engagement, and promote enjoyment (Fuchs & Käpnick, 2009; 
Nolte, 2012; Sheffield, 2003). In Sweden there is no differentiation among students, every classroom 
is diverse and includes pupils of all abilities. Therefore, it is interesting to explore how the work with 
specific tasks are perceived by all pupils in the classroom. Of special interest is the perception of the 
mathematical promising pupils since in a diverse classroom there is a risk that they not are given 
opportunities to be challenged (Leikin & Stanger, 2011). A task suitable to implement in the whole 
class should offer a challenge to pupils at every level, which for example rich learning task are said 
to do (Sheffield, 2003). However, it is rare that the assessment process of the tasks appropriateness is 
explored, especially from the pupils’ perspective. This leads to the question how tasks aimed to 
support mathematically promising pupils can be evaluated by the pupils. Against the background of 
this question this paper presents a study aiming to explore a tool in development that investigates 
pupils’ perception of joy and interest connected to specific tasks. 

This paper gives a theoretical background on tasks suitable to challenge mathematical promising 
pupils and other pupils. Further, the aspect of perceived joy and interest for pupils connected to work 
on mathematics is elaborated. The study and its results are presented and thereafter the tool used and 
the interpretation of the results are discussed. 

Theoretical background 
Pupils in a diverse classroom naturally have different levels of knowledge. Engström and Magne 
(2006) showed that in Swedish classrooms the mathematical knowledge of the 15 percentage lowest 
achieving pupils in grade nine are on the level of a grade four pupil. Also in a mathematical classroom 
there is a mix of pupils, some are highly motivated while others lack motivation, some are high 
achieving and others are low achieving (Boaler, 2006). All pupils should be given opportunities to 
learn and develop, and on task level there are ways to differentiate education to meet and challenge 



all pupils. One way is for example through the use of rich learning tasks, which also fulfills the criteria 
for tasks seen to be suitable to identify and foster mathematically promising pupils (Sheffield, 2003). 
Because of the Swedish context with the diverse classroom the aim is to meet and develop all pupils, 
however, the mathematically promising pupils are of particular interest in this study. Therefore, it is 
important to elaborate on what is important in a task for a mathematically promising pupil as well as 
for pupils in general. 

First, considering the mathematically promising, it is important to give them challenging tasks to help 
them develop according their mathematical potential (e.g. Benölken, 2015; Koshy, Ernest, & Casey, 
2009; Nolte, 2012). Open-ended tasks, like rich learning tasks, are examples of tasks known to be 
challenging for mathematically promising pupils (Nolte, 2012; Sheffield, 2003). In addition, the joy 
factor is stated as important in the development process for the mathematically promising (Fuchs & 
Käpnick, 2009). The importance of joy in working with mathematics is further consolidated by being 
strived for in activities aiming to support and foster the mathematically promising, such as for 
example math clubs (Benölken, 2015).  

Second, considering pupils in general, Taflin (2007) states that it is important that pupils perceive the 
problem solving process of a task as positive, challenging, and that it stimulates their creativity. Taflin 
actually writes that if they do not perceive this, then it is better not to implement the tasks. As to the 
perspective of joy, Mellroth (2014) showed that tasks aiming to evoke joy make some pupils achieve 
highly, even though they do not achieve highly on traditional mathematics tests. In addition, to further 
strengthen that pupils’ enjoyment in mathematics is important, Chen and Stevenson (1995) showed 
that positive attitudes and interest are significantly related to mathematical achievement. And the 
results of Skaalvik, Federici, and Klassen (2015) show that pupils’ self-efficacy in mathematics is 
positively and strongly related to intrinsic motivation which they directly connected to pupils’ 
enjoyment when working with mathematics.  

Based on the theory it can be assumed that pupils’ perception of interest and their positive attitudes 
towards the task have effect on their motivation on working with the task. This is valid for both 
mathematically promising pupils and for others. Therefore, it is interesting and important to explore 
how pupils perceive working with specific tasks, especially by comparing promising and other pupils. 
A developed tool, easy to use, could help teachers choosing tasks that challenge and interest all pupils. 

Aim 
The aim of the presented study is to investigate how to identify mathematical tasks that can stimulate 
all pupils in a diverse classroom, including the mathematically promising. Utilizing a pupil 
perspective, which stresses the importance of pupil interest and joy when working with mathematics, 
the study provides a comparison of data from promising children and others. 

The study is conducted in Sweden within the frame of a professional development program on 
mathematical promise for seven in-service teachers, teaching mathematics for pupils from grade 4 to 
9 (Mellroth et al., 2016).  

Method 
Two tasks that fulfilled the criteria of rich learning tasks were implemented in seven classrooms, i.e. 
all pupils in “regular” classes worked with the tasks aiming to solve them. The pupils went in grade 



4 (age 10) to 9 (age 15), all grades covered. The tasks considered to be suitable to challenge all pupils, 
specifically mathematically promising, were chosen (Sheffield, 2003), see Figure 1 (Task 1) and 
Figure 2 (Task 2). In the first intervention Task 1 was implemented: 139 pupils responded on the 
evaluation of the task, among them 32 pupils were identified as mathematically promising1.  

 

Figure 1: Example from Task 1, named Where am I? (Sheffield, 2003). 

In the second intervention Task 2 was implemented: 106 pupils responded, among them were 20 
pupils identified as mathematically promising. All pupils did the interventions in the same order i.e. 
Task 1 first and Task 2 second. 

 
Figure 2: Example from Task 2, named Field of dreams (Sheffield, 2003); The number in a circle, 

denotes the total number of students in all adjoining fields. 

The pupils involved in the two interventions all came from the same seven classes, 44 pupils did Task 
1 but not Task 2 and 11 pupils did Task 2 but not Task 1. Therefore 95 pupils participated in both 
interventions, 20 of those were identified as mathematically promising. Since the suitability of the 
tasks in the classroom was of interest, evaluations from all participating pupils were used in the 
analysis for each intervention. 

Within the frame of the professional development program a tool how to measure pupils’ perceptions 
on interest and joy connected to working with specific tasks was developed. In the development 
process experts on motivation and attitudes in mathematics education, and in educational psychology 
were consulted. The tool resulted in a pre-evaluation that utilized an emoji-note, Figure 3, and a post-
evaluation, in which the emojis were changed to words, Figure 4. The reason for the change from 
emojis to words was to decrease the risk that pupils would chose the same emoji twice due to the 
short time, the time of one lesson, between the pre- and post evaluation. 

                                                 
1 Selected through a synthesis of different tools, see Mellroth et al. (2016). 



To collect data each teacher presented a power point slide with a picture related to each task2 in their 
specific classes, without revealing the actual task. Before the task was handed out to the pupils, they 
were asked to mark how they felt about the task by choosing an emoji on a paper given to each one 
of them, see Figure 3. Thereafter the pupils were given time to work with the task. 

Your teacher has presented a mathematical problem. 
Which emoji best matches your feeling about this problem? 
 

 

Figure 3: Evaluation note before starting to work with the task, adapted from Mellroth et al. (2016). 

When the teacher ended the pupils work with the task, but before the task was discussed orally in the 
whole classroom, pupils were asked to evaluate the task again. This time by choosing words, see 
Figure 4. 

What words best describes how you felt about the task while working with it?  
 
Very interesting 
Interesting 
Neither or 
Uninteresting 
Very uninteresting 

Figure 4: Evaluation note after completing working with the task (Mellroth et al., 2016). 

Data from all classes were collected and summarized. For the summary process pupils identified by 
the teachers as mathematically promising were separated from the non-identified pupils. The 
evaluations, see Figure 3and Figure 4, were translated to numbers from 1 to 5, where 1 was the most 
positive evaluation and 5 the most negative. Thereafter, a descriptive analysis was conducted. For 
further details of the method see Mellroth et al. (2016). 

Results 
The results from each task are presented in Figure 5 and Figure 6: the graphs show the distribution of 
pupils’ perception of the task before they started to work on it. Each bar in the graph is also split to 
show pupils change in perception of the task after they completed working with it. For example, in 
the left-hand graph in Figure 5, the bar on number 2 shows that 12 pupils, identified as mathematical 
promising, chose the second most positive emoji before they started to work on Task 1. Further, the 
same bar shows that of those 12 pupils, five gave the task a more negative judgement, two gave it a 
more positive judgement and five still gave them the second most positive judgement after they 
completed the work with the task. 

                                                 
2 The process of choosing and analyzing the tasks are described in Mellroth et al. (2016) 



 
Figure 5: Pupils evaluation of Task 1, before starting their work on the task and after they completed 

their work (Figure adapted from Mellroth et al, 2016, p. 19). 

 

Figure 6: Pupils evaluation of Task 2 before starting their work on the task and after they completed 
their work (Figure adapted from Mellroth et al, 2016, p. 19). 

As both Figure 5 and Figure 6 show, through the concentration of the bars to the left, pupils identified 
as mathematically promising perceive both tasks more positively compared to the non-identified 
pupils before they started to work with the tasks. Considering Task 1, the two groups of pupils, 
identified and non-identified, did not differ much in how they changed their evaluation of the task 
after they completed it. 28 percent compared to 33 percent judged the task more positively after they 
completed it, 28 percent compared to 24 percent judged it more negatively, and 44 percent versus 43 
percent judged it the same as before. As to Task 2, and the results of comparing identified and non-
identified pupils and how they changed their evaluation of this task after they completed it show: 15 
percent compared to 33 percent gave a more positive judgement afterwards, 25 percent compared to 



19 percent gave the task a more negative judgement afterwards and 60 percent compared to 49 percent 
did not change their judgement of the task. 

Interpretations and discussion 
The aim of the study was to investigate how to identify mathematical tasks that can stimulate all 
pupils in a diverse classroom, including the mathematically promising. The two tasks used in the 
study were chosen because they were rich learning tasks and said to be suitable to challenge all pupils, 
including the mathematically promising (Sheffield, 2003). The positive evaluation given by 
especially the mathematically promising pupils were expected, therefore the results can be seen to 
verify the developed tool. 

For Task 1 the results show that the majority of the mathematically promising pupils, before starting 
to work on it, evaluated it as more positive: 63 percent choose the most, or the second most positive 
emoji, compared to 40 percent of the non-identified pupils. For Task 2 the comparable percentages 
are 85 and 63 respectively. This indicates that the mathematically promising, especially, perceived 
the tasks interesting and joyful already before they knew the associated question. The results show 
that Task 2 has this effect to a higher extend for all pupils, also the non-identified. The post evaluation 
of Task 2 shows a relatively large shift to a more positive judgement of the task for the non-identified 
pupils, Figure 6 right graph. Altogether the results indicate that considering pupils’ perception of joy 
and interest, Task 2 is suitable for all pupils in the diverse classroom, including mathematically 
promising pupils.  

The results also indicate that Task 1 is not as suitable for all pupils. However, even if Task 1 is not as 
good as Task 2 according to the results, the mathematical promising pupils perceived it relatively 
positively before starting to work on it. In addition, just as many of them judged the task more 
negatively as those who judged it more positively afterwards. Also slightly more pupils of the non-
identified judged it more positively after the completed work compared to the number that judged it 
more negatively. Therefore, Task 1 might also be a suitable task in a diverse classroom even if it is 
not as good as Task 2. 

According to the chosen frame for this study, tasks challenging and stimulating for mathematically 
promising pupils lead to that they feel joy and develop learning (Fuchs & Käpnick, 2009; Nolte, 2012; 
Sheffield, 2003). The identified pupils positive evaluation of the tasks, especially Task 2, can be a 
sign of that they felt the tasks challenging and stimulating. The results for the promising pupils can 
also be interpreted as an indication of that the developed tool fulfills its purpose to measure pupils 
joy and interest in a rich learning task. Furthermore, it is indicated that the tool can grade the 
suitability of different tasks, concerning joy and interest, in this case Task 2 is perceived slightly more 
positive than Task 1.  

It has been found that teachers rarely provide mathematically promising pupils with learning 
opportunities that benefit them in the diverse classroom (Leikin & Stanger, 2011), and also that 
positive attitudes towards working with mathematics make pupils achieve better (Chen & Stevenson, 
1995). Based on this, the results show that the tasks might provide mathematical learning 
opportunities for all kind of pupils. Further development and verification of this tool can provide 
teachers with a simple way to find tasks that provide learning opportunities for all pupils in the diverse 
classroom, also for the mathematical promising. 



Even if the simple tool has proven its use in principle, there are, of course, several limitations in this 
study, the investigation is simple and the tool used is not statistically verified. Nor does the 
investigation consider in depth how joy and interest is perceived by the pupils. In this study, pupils’ 
motivation to work on a task is assumed to be connected to the perceived joy and interest. The 
teachers’ evaluation of how the pupils worked with the implemented tasks is another important aspect, 
which this paper does not address. Within the frame of the professional development program the 
teachers observed and interviewed some pupils connected to their work with the investigated tasks; 
inclusion of this data would have strengthened the results (Mellroth et al., 2016). Also, to be able to 
compare different groups of pupils like for example mathematically promising and others (non-
identified), teachers need knowledge on how to identify the different groups. In this study the teachers 
who collected the data participated in a professional development program on mathematical promise, 
their knowledge on how to identify those pupils can be considered as relatively deep. But it is needed 
to highlight this for someone who wants to repeat the study.  

If further research is done to develop and validate the tool used here, it could provide in-service 
teachers with an easy and quick way to evaluate the suitability of tasks from a pupil’s perspective. In 
turn this might result in mathematically promising pupils being presented with tasks that help them 
to develop according to their potential. In addition, complex single-case studies might explore specific 
aspects of tasks that are assessed highly by the pupils applying the tool presented in this study. 
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This study investigates grade 10-12 mathematics teachers’ beliefs about their roles as mathematics 
teachers through metaphors. These mathematics teachers’ metaphors were analysed using the 
categorization developed in the context of NorBa-TM project. Most of these mathematics teachers 
described their teaching role as didactics experts. A closer investigation of these mathematics 
teachers’ metaphors and their teaching experience revealed some variation although not 
statistically significant. 

Keywords: Upper secondary education, mathematics, teachers’ metaphors. 

Introduction 
The study of mathematics teachers’ beliefs and their influence on their teaching practices has gained 
considerable research attention.  Research on teachers’ thinking reveals that teachers hold coherent 
educational beliefs that shape their teaching practices (Handal, 2003; Thompson, 1992; Zhang & 
Morselli, 2016).  

Metaphors offer insights into beliefs that are not obviously or consciously held (Oksanen & 
Hannula, 2012). A teachers’ creation of a metaphor could be the result of his/her attempt to 
conceptualize his/her teaching. As Martinez, Sauleda and Huber (2001) state there is a need for a 
“shared system of interpretation and classification” of the metaphors teachers and prospective 
teachers hold, in order to communicate these metaphors and thus to develop them further. 

Recent studies in mathematics education (Haser, Aslan & Celikdemir, 2015; Oksanen & Hannula, 
2012; Oksanen, Portaankorva-Koivisto & Hannula, 2014) have used the extended model of 
Beijaard, Verloop and Vermunt (2000) to investigate pre-service and in-service mathematics 
teachers’ (grades 7-9) beliefs as expressed through their metaphors.  The present study aims to 
explore whether the extended model suggested by Löfström et al. (2010) can be used to describe 
and categorize Cypriot mathematics teachers’ beliefs expressed through metaphors.  

Theoretical framework 
Mathematics teachers’ beliefs 

Teachers’ mathematical beliefs refer to those belief systems that teachers hold regarding the 
teaching and learning of mathematics (Handal, 2003). These beliefs seem to be derived from 
personal experience, experience with schooling and instruction, and experience with formal 
knowledge (Zhang & Morselli, 2016).  

Studies have shown that each teacher holds a specific belief system which consists of a range of 
beliefs about teachers, learners, teaching, learning, school settings, resources, knowledge and 



curriculum. The importance of them is that they act as a filter through which teachers make their 
decisions and they do not rely solely on their knowledge about pedagogy and curriculum (Handal, 
2003). 

Beliefs and metaphors 

An important trend on research regarding teachers’ mathematical beliefs is the issue of teacher 
belief change (Zhang & Morselli, 2016). Researchers suggested a variety of methods and activities 
in order to investigate teachers’ beliefs and also to support teachers reflect upon their experiences. 
One efficient way is through metaphors. Cooney et al. (1998) found that reflection played a 
significant role in prospective secondary teachers’ growth. Researchers aiming to capture the 
meaning teachers ascribed to their educational experience, assessed preservice teachers’ beliefs by 
collecting multiple data, including teachers’ choice and responses to metaphors (e.g. a mathematics 
teacher is like an entertainer, a doctor, a gardener, a coach etc.). 

Metaphors 

Metaphors provide a unique way to represent the world by helping people frame the meaning of 
their experiences (Kasten, 1997; Zhao, Coombs & Zhou, 2010). As Martinez et al. (2001) state, 
metaphors are not just “figures of speech” but compose an important mechanism of the mind. The 
word “metaphor" is derived from the Greek word 'metaphora' (transfer) (Kasten, 1997). Metaphors 
refer to the understanding of one kind of object or experience in terms of a different kind of object 
or experience which is more familiar, concrete or visible (Lakoff & Johnson, 1980; Zhao, Coombs 
& Zhou, 2010).  As Lakoff and Johson (1980) emphasized, a major part of the human conceptual 
system is structured by metaphorical relations, which are rich and complex.  

In educational settings, educators are “unconsciously guided by images and metaphorical patterns of 
thought as recurring in the field, which can be seen as “archetypes” of professional knowledge” 
(Martinez et al., 2001, p. 966). In this way, metaphors reflect teachers’ understanding of teaching 
and learning which is difficult to access in a verbatim language providing a deeper and more 
profound insight into teachers’ beliefs and affect in relation to their teaching and the wider social 
context (Zhao, Coombs & Zhou, 2010).  Teachers’ beliefs about teaching and learning are 
associated with teaching roles and in this way metaphors are used to encapsulate the teaching roles 
(Kasten, 1997).  

Categories of metaphors 

Löfström et al. (2010) investigated university students’ metaphors in Estonia using the Beijaard et 
al. (2000) model of teacher identity. This initial model identifies three distinct knowledge bases of 
teacher knowledge reflecting teachers’ professional identity. According to the model, teachers’ 
professional identity can be described in terms of the teacher as a subject matter expert, the teacher 
as a pedagogical expert and the teacher as a didactics expert. The results of the study indicated that 
the model by Beijaard and colleagues could be expanded to include three additional categories. Self-
referential metaphors, contextual metaphors and hyprids. A description of each category of this 
extended model of teacher identity follows: (a) A teacher as a subject matter expert: The teacher has 
a deep and full understanding of his/her subject area and is a transmitter of knowledge to the 
students. (b) A teacher as a pedagogical expert: The teacher is someone who supports the child’s 
development as a human being.  Emphasis is on relationships, values, and the moral and emotional 



aspects of children development. (c) A teacher as a didactics expert: The teacher has knowledge 
about how to teach specific subject-related content so that students can capitalise on their learning. 
This kind of knowledge is referred to as knowledge of didactics, and it is discipline- and subject 
specific in nature. (d) Self-referential metaphors: Self-referential metaphors do not refer to acts 
central to teaching, students or classroom instruction. These metaphors focus on what teaching 
represents for the respondents as individuals. They describe features or characteristics of the 
teacher’s personality, with reference to the teacher’s characteristics (self-referential) without 
reference to the role or task of the teacher. One might say that these metaphors describe who the 
teacher is. (e) Contextual metaphors: These metaphors describe features or characteristics of the 
teacher’s work/work environment or in other ways refer to characteristics of the environment 
(contextual). (f) Hybrids may include elements of more than one of the above categories.  

The above categorization was employed in recent studies investigating teachers’ beliefs through 
metaphors. Specifically, Oksanen and Hannula (2013) used this categorization to investigate 70 
Finnish 7-9 grade mathematics teachers’ beliefs regarding teaching and teachers as expressed 
through metaphors. The results revealed that the teacher as a didactics expert was the most 
frequently used metaphor (49%). The results showed no statistical significant associations between 
metaphors and age or gender. In the study by Oksanen et al. (2014) including 72 Finish pre-service 
teachers and 65 Finish in-service (grade 7-9) mathematics teachers, the most common metaphor 
used by pre-service teachers was self-referential (46%) while the most frequently used metaphor by 
in-service teachers despite their teaching experience was the category didactics expert (51%). The 
researchers explained that as in-service teachers gain more teaching experience, this does not affect 
the metaphor they use to describe their mathematics teachers’ role. Finally, in the study by Haser et 
al. (2015) with 249 Turkish pre-service students, 29.6% used didactic expert metaphor while 26.5% 
used self-referential metaphors to express their beliefs. 

The purpose of the current study was to explore if the categories included in the model by Löfström 
et al. (2010) can be used to categorize upper secondary school teachers’ beliefs expressed through 
metaphors in Cyprus and whether the categories proposed in this model are exhaustive enough to 
cover all metaphors.  

Context  

According to the Annual Report of the Cyprus Ministry of Education and Culture (2014) the Public 
Secondary General Education in Cyprus is offered to students between the ages of 12 - 18, through 
two three-year levels - the Gymnasium (Grades 7-9) and the Lyceum (Eniaio Lykeio) (Grades 10-
12). The curriculum includes common core subjects, such as Modern Greek and Mathematics and 
Optional Subjects. Some subjects are interdisciplinary such as Health Education and Environmental 
Studies. In the academic year 2000 - 2001, the institution of the Eniaio Lykeio was introduced in all 
public secondary schools in Cyprus. All subjects in Grade 10 are common core subjects. In Grades 
11 and 12 students attend common core subjects and at the same time select optional subjects for 
systematic and in depth study. In Cyprus there are 38 Lycea and 7 joined Gymnasia and Lycea. 
Approximately 280 mathematics teachers work in Lycea. These mathematics teachers are also 
responsible for the preparation of students for their entrance exams in the public University of 
Cyprus and the public universities in Greece. 



Methodology 
Data collection, instruments and participants 

Data for this study was gathered from mathematics teachers working in Lyceum (Eniaio Lykeio) 
during the school year 2015-2016. The study was conducted in the context of the international 
comparative study New Open Research: Beliefs about Teaching Mathematics (NorBa-TM) 
investigating mathematics teachers’ beliefs in more than 15 countries.  

A questionnaire was developed and culturally adapted in the participating countries in the context of 
the project NorBA-TM. The questionnaire comprised of seven parts: one of them qualitative and six 
quantitative (86 items). The current study used data only from two parts of the aforementioned 
questionnaire: Part A, that collected data on teachers’ background variables (age, gender, education, 
teaching experience, teaching maths at Lyceum etc.) and Part H that collected data on metaphors. 
Specifically, Part H included two questions that invited the teachers to think and write down a 
metaphor characterising themselves as upper secondary level mathematics teachers and to explain 
their metaphor:   “As a mathematics teacher I am like……” and “My brief explanation of the 
metaphor is as follows:….”. We assume that the metaphor research is a useful social science 
methodology that can be used for generating authentic case study evidence in a certain field. 

Data collection took place in June 2015. First, informative letters along with the questionnaire and 
prepaid envelopes were sent to mathematics teachers in all Lyceums inviting them to participate in 
the study on a voluntary basis. Teachers who wished to participate in the study completed the 
questionnaire and returned it to the Cyprus Pedagogical Institute without disclosing their personal 
data (name and school). A total of 147 out of 280 (53%) mathematics teachers completed and 
returned the questionnaire. Out of these 147, only 49 (33%) completed Part H by presenting a 
metaphor and providing an explanation. 

Data analysis was performed using the categorization of Löfström et al. (2011) which was explained 
in detail in the manual developed for the NorBa project. The metaphor categorization was judged on 
a case-to-case basis using three independent raters whose coding were compared at the end. The 
raters compared their codes and discussed their differences. In the majority of cases, agreement 
between the three raters could be reached. In three cases though, consensus between raters was not 
reached and external researchers with experience in mathematics teachers’ metaphors were 
involved. 

Results 
Categorizing teachers’ metaphors  

The distribution of metaphors used by the Cyprus in-service mathematics teachers is presented in 
Table 1.  

Teacher as a 
subject matter 
expert 

Teacher as 
didactics 
expert 

Teacher as 
Pedagogical expert 

Self-
referential 

Contextual 

 

Hybrid 

 

8 (16,3%) 12 (24,5%) 6 (12,2%) 9 (18,4%) 7 (14,3%) 7(14,3%) 

Table 1: Distribution of metaphors used by Cypriot mathematics teachers 



Teacher as didactics expert was the most common metaphor used (24,5%).  Mathematics teachers in 
this category used metaphors like “a coach”, “a builder”, “an electrical wire”, “a gardener”, “a 
playmate, play-maker”. In their explanations, teachers emphasized their role as facilitators of 
students’ learning process, as mediators between students and the discovery of the new 
mathematical knowledge, as contributors to the construction of the new mathematical ideas. They 
referred to the communication of ideas and the team spirit, emphasizing a more constructivist view 
of learning and teaching. They made also reference to the active role of the students in the learning 
process.  

As a mathematics teacher I’m like a playmate in a team game that usually has the role of the 
play-maker. I’m trying to arrange the learning activities because we function as a team with a 
preset schedule of the game. I encourage initiatives but I control for the application of certain 
rules. 

Self-referential was the second most common metaphor used (18,4%). Mathematics teachers in this 
category used metaphors like “a painter”, “a musician”, “a hard-working bee”, “a perfect circle”, 
“an angle”. In their explanations these teachers refer to their individual characteristics and their 
personality traits without reference to the role or task of the teacher.   

As a mathematics teacher I’m like an angle. Sometimes acute, sometimes obtuse, sometimes 
convex and sometimes non-curved. 

Teacher as Subject matter expert was used by 16,3% of the teachers. Mathematics teachers in this 
category used metaphors like “a machine of knowledge”, “a guide in a journey”, “a vocation 
backpack”, “a well of knowledge”. In their explanations these teachers refer to their teaching role as 
transmitters of ready-made knowledge to the students and organizers of routines. Mathematical 
knowledge is conceived as predetermined knowledge that can be delivered by the teacher. 

As a mathematics teacher I’m like a well of knowledge. When I’m in class I find ways and 
examples to transmit the mathematical knowledge to students.  

A percentage of 14,3% of the teachers provided metaphors that fell within the category Contextual. 
Mathematics teachers in this category used metaphors like “an actor”, “a salesman”, “the guy for 
every job”. In their explanations these teachers refer to the characteristics of the teachers’ work, or 
the characteristics of the environment the teacher works stressing that it is too demanding and 
multifunctional. They refer to the teacher in a social context but they do not refer to any specific 
aspect of the teachers’ professional knowledge or teaching. 

As a mathematics teacher I’m like a guy for every job. Mathematics teachers are like ping pong 
balls. They are involved in many tasks and processes in the school setting but these efforts do not 
lead to something recognizable or efficient. 

A percentage of 14,3% of the teachers provided metaphors that fell in more than one category  thus 
they were categorized as Hybrid. Most of the metaphors in this category include the didactics 
expert’s characteristics along with another category. The following metaphor was categorized as 
both didactics expert and contextual metaphor. 



As a mathematics teacher I’m like a director who writes a movie and participates in it. As a 
mathematics teacher I design the teaching of a lesson, I decide for the way to implement it in 
different faces and last like as an actor I perform different roles. 

Finally, 12,2% of the teachers provided a metaphor that fell in the category teacher as pedagogical 
expert. Mathematics teachers in this category used metaphors like “a parent”, “a mother”, “and an 
eagle”, “a priest”. In their explanations these teachers emphasized the values, the moral and 
emotional aspects of students’ development. They reveal a more affectional relationship and 
communication with the students. 

As a mathematics teacher I’m like a spiritual father (e.g. a priest). I believe that my main goal is 
to advice students that with hard work, healthy competition and honesty they can be better in 
mathematics and in society. Just by hard work.  

Metaphors and background characteristics 

No statistically significant differences were detected between gender, teaching experience and 
metaphors. Table 2 presents the distribution of metaphor used according to teaching experience. 

Teaching 
experience 

n Subject-
matter expert 

Didactics 
expert 

Pedagogical 
expert 

Self-
referential 

Contextual Hybrid 

0-10 
9 

2 (22.2%) 2 (22.2%) 3 (33.3%) 1 (11,1%) 0 (0%) 1(11.1%) 

11-20 
26 

2 (7.6%) 9 (34.6%) 3 (11.5%) 4 (15.3%) 5 (19.2%)  3 (14.2%) 

21 and 
more 

14 
4 (28.5%) 1(7.1%) 0 (0%) 4 (28.5%) 

2 (14.2%) 
3 (21.4%) 

Table 2: Teaching experience and categories of metaphors 

As it can be observed, the most common category for teachers with the least years of experience is 
the teacher as pedagogical expert. The most common metaphor category for the second group of 
teachers is the teacher as a didactics expert. For the group of mathematics teachers with 21 years of 
experience and over, the most common categories are teacher as subject matter expect and self-
referential metaphors. Contextual and hybrid categories are most frequently met in teachers with 
more years of teaching experience than those with 0-10 years of experience. 

Discussion 

The results revealed that the model proposed by Löfström et al. (2010) can be applied to categorize 
the metaphors provided by the in-service Cypriot mathematics teachers in upper secondary 
education (Grades 10-12) and that the categories included in the extended model were collectively 
exhaustive. The results showed that these teachers prioritize didactics knowledge, self-reference and 
subject matter metaphors. In particular, the findings showed that the teacher as didactics expert was 
the most common metaphor provided. This finding is in line with the results of other similar studies 
(Oksanen & Hannula, 2013; Oksanen et al., 2014) which reported that this category was the most 
common among mathematics teachers teaching Grades 7-9. However, in the current study the 
percentage of teachers who used metaphors which described them as didactics expert  (24.5%) was 
not as high as in the other two studies (46% and 51% respectively). Self-referential metaphors were 
also used by participants of the current study (18.4%). This percentage is higher than the 



percentages reported by the other studies in the literature, which state that this category reflects the 
multi-functionality of teachers’ role (Oksanen & Hannula, 2013; Oksanen et al., 2014).  The 
emergence of hybrid metaphors has been explained in other studies (Oksanen & Hannula, 2013; 
Oksanen et al., 2014) by the complexity of a teachers’ job. 

The investigation of these teachers’ metaphors in relation to their teaching experience revealed no 
statistically significant differences similar to the results of the study by Oksanen et al. (2014). In that 
study the researches described that that the most common metaphor for all groups of teachers was 
the teacher as didactics expert. In the current study, pedagogical expert and didactics expert were the 
most common metaphors for the group of mathematics teachers with the least years of experience, 
didactics expert was the most common metaphor for the group of teachers with 11-20 years of 
experience and subject matter expert and self-referential were the most common metaphors for the 
group with 21 and more years of experience. However, these relationships were not statistically 
significant. Modifications in mathematics education at the university level, as well as modifications 
in the work context related to the Cyprus Educational Reform of 2011 could by associated with 
these groups of teachers’ perceptions about their roles as teachers of mathematics.  

The results indicated that the model suggested by Löfström et al. (2010) is a useful model that can 
be used to categorize teachers’ metaphors. These teachers’ metaphors mapped their current practice 
and understanding of teaching and learning and revealed what they are and how they feel about their 
work (Zhao et al., 2010). But how stable are these imageries provided? Will these teachers provide 
the same metaphor if they are asked again under different conditions, working in different school 
with other students or if they are under the pressure of their students’ entrance exams or at the end 
of a stressful day? How the methodology used could be developed to include teachers’ current state?  
Further studies investigating the stability of these metaphors are needed. Moreover, further studies 
could investigate the relation between mathematics teachers’ beliefs and mathematics teachers’ use 
of metaphors.  
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Multiple solutions for real-world problems, and students’ enjoyment 
and boredom  
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Emotions are important for learning. In a previous study, we found that students who constructed 
more solutions for real-word problems with vague conditions reported higher enjoyment and lower 
boredom (Schukajlow & Rakoczy, 2016). In the present study, we had students construct multiple 
solutions by applying multiple mathematical procedures to real-world problems, and we 
investigated effects on the enjoyment and boredom. 307 students were assigned to the experimental 
or control group. Students in the experimental group applied two mathematical procedures, and 
students in the control group applied one mathematical procedure to solve real-world problems. 
During the lessons, they were asked to report their enjoyment and boredom. Contrary to our 
expectations, the results revealed no effects of the intervention on students’ enjoyment or boredom. 

Keywords: Emotion, affect, modelling, word problems, multiple solutions. 

Introduction 

Emotions are important for learning (Zan, Brown, Evans, & Hannula, 2006). Although students’ 
academic emotions are prerequisites, mediators, and outcomes of the learning process in 
mathematics (Schukajlow & Rakoczy, 2016), they were neglected for decades. Thus, except for the 
emotion of anxiety, we do not know much about students’ emotional development. Moreover, there 
is a lack of research on how teaching methods influence emotions. As there have been several calls 
for intervention studies, we decided to conduct a study that was aimed at clarifying the impact of 
constructing multiple solutions for real-world problems on cognitive and affective outcomes. We 
chose this teaching method and this kind of problem because constructing multiple solutions and 
solving real-world problems are emphasized in curricula in different countries. In the present paper, 
we taught students to construct multiple solutions by applying different mathematical procedures to 
solve real-world problems, and we investigated how this process affected enjoyment and boredom.  

Theoretical framework and hypotheses 
High-quality mathematics teaching implies that students should develop multiple solutions and 
compare these solutions in the classroom. Empirical evidence for the effects of constructing 
multiple solutions on cognitive outcomes comes from international comparative studies (Hiebert et 
al., 2003) and from experimental studies (Levav-Waynberg & Leikin, 2012; Schukajlow, Krug, & 
Rakoczy, 2015). However, the impact of constructing multiple solutions on affect is an open issue. 
For high-quality mathematics teaching, both cognitive and affective outcomes have to be taken into 
account. As we determined in the project MultiMa1 (Multiple Solutions for Mathematics Teaching 
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Oriented Toward Students’ Self-regulation Learning), apart from students’ achievements and 
strategies, there is also a need to consider their self-regulation, interest, motivation, and emotions. 

Multiple solutions and real-world problems 

Previous research on multiple solutions was conducted for the most part on intra-mathematical 
problems in different content areas such as geometry (Levav-Waynberg & Leikin, 2012) or early 
algebra (Star & Rittle-Johnson, 2008). Students’ ability to solve real-world (or modelling) problems 
was not previously the focus of research on multiple solutions so far. Solving real-world problems 
first and foremost involves demanding transfer processes between reality and mathematics (Niss, 
Blum, & Galbraith, 2007). As real-world problems often include vague conditions and allow 
students to construct different mathematical models and apply different mathematical procedures, 
we distinguished between three categories of multiple solutions (Schukajlow & Krug, 2014b). The 
first category of multiple solutions are typical of real-world problems with vague conditions. In 
solving this type of problem, students make different assumptions about vague conditions and 
therefore arrive at different outcomes or results. Another type of multiple-solution problem occurs 
as a result of applying different mathematical procedures or strategies, a process that typically leads 
to the same mathematical outcome. The third category combines the first two categories. In the 
current paper, we explored the effects of applying multiple mathematical procedures while solving 
real-world problems for the topic of linear functions. We would like to illustrate this type of 
multiple-solution problem with the sample problem “BahnCard” (cf. Figure 1), which was 
developed in the framework of the MultiMa Project. 

 

Figure 1: Real-world problem “BahnCard” (Achmetli, Schukajlow, & Krug, 2014) 

The problem solver is asked to read the problem “BahnCard,” and identify the important values: 
price per year for each card and the amount of a round-trip journey that would be paid with each 
card. After mathematizing the problem, different mathematical procedures can be applied.  

One mathematical procedure that can be applied is called “differences.” In order to solve the 
“BahnCard” problem by using differences, students first have to calculate differences in the prices 
per year and for each round trip for owners of each card. Whereas the “BahnCard 50” is 181 € (= 
240 € - 59 €) more expensive than the “BahnCard 25,” each round trip with the “BahnCard 25” is 
25 € (= 50 € - 25 €) more expensive than with the “BahnCard 50.” The open question is how often 
Mr. Besser has to take a trip with the more expensive “BahnCard 50” until the cheaper prices for the 



journeys pay off. This is exactly after 7.24 (= 181 € ÷ 25 €) journeys per year. This result has to be 
rounded up, interpreted—for example, “For up to 7 journeys per year, the ‘BahnCard 25’ is 
cheaper”— validated, and the recommendation has to be wrote down.  

Another way to solve this problem is to apply a mathematical procedure “table.” To apply this 
procedure, students must compare the costs for owners of the “BahnCard 25” and the “BahnCard 
50” for different numbers of journeys per year (e.g. 1, 3, 6…). By performing this comparison 
systematically, they can identify that the “BahnCard 25” is cheaper for up to 7 journeys. If the owner 
makes 8 or more journeys, the “BahnCard 50” is preferable for him/her. Finally, students need to 
validate their result and write down their recommendation. 

Enjoyment and boredom as achievement emotions  

Emotions are typically defined as complex phenomena that include affective, cognitive, 
physiological, motivational, and expressive parts (Pekrun & Linnenbrink-Garcia, 2014). In the 
academic context, researchers are interested in achievement emotions, which occur in learning 
settings and are related to epistemic processes. Research on emotions in mathematics education has 
emerged from different philosophical traditions (Hannula, 2015) and has categorized emotions 
according their value (positive or negative), level of activation (activated or deactivated), or other 
characteristics. For example, enjoyment is one of the positive activating emotions (Pekrun, 2006). 
Students who enjoy problem solving are expected to report pleasant feelings. Moreover, when 
students enjoy mathematics, they feel activated excitement while working on a problem. The 
opposite behavioral and cognitive patterns are expected for the emotion of boredom. Boredom was 
suggested to be a negative deactivated emotion because boredom is accompanied by unpleasant 
feelings, and if students feel bored, they experience a state of deactivating relaxation. Following 
these considerations, a positive relation between enjoyment and performance and a negative relation 
between boredom and performance were hypothesized and confirmed in two empirical studies in the 
domain of mathematics (Schukajlow, 2015; Schukajlow & Krug, 2014a). Moreover, enjoyment but 
not boredom was found to predict students’ performance in a longitudinal interventional study 
(Schukajlow & Rakoczy, 2016). 

According to the control-value theory of achievement emotions (Pekrun, 2006), emotions are 
strongly determined by control and value appraisals, which arise in learning situations. In order for a 
positive emotion such as enjoyment to emerge, students should (1) perceive their problem solving 
activities as controllable and be confident that they can influence the learning situation and (2) 
ascribe the problem solving activities a high value. If students think that they do not have any 
influence over their problem solving activities, or if they view these activities as meaningless, 
negative emotions will emerge. For example, boredom arises if students ascribe a low value to their 
activities. The relation between boredom and control appraisals is complex and is proposed to be a 
curvilinear U-shape. This relation implies that boredom occurs when perceived control is very high 
(i.e. task demands are very low) or when perceived control is very low (i.e. task demands are very 
high). However, in the context of problem solving activities, students do not have to deal with 
routine tasks. Thus, a negative linear relation between control appraisals (e.g. assessed via students’ 
performance or self-efficacy beliefs) and boredom was expected and confirmed in most empirical 
studies (e.g. Schukajlow, 2015).  



Enjoyment, boredom, and multiple solutions for real-world problems 

On the basis of theoretical considerations from control-value theory, we expected to find that 
constructing multiple solutions would increase students’ control appraisals when solving real-world 
problems. Higher appraisals should increase students’ enjoyment and decrease their boredom. 
Positive effects of constructing multiple solutions on enjoyment and negative effects on boredom 
were confirmed in our previous study. Students who constructed more solutions enjoyed their 
classes more and were less bored (Schukajlow & Rakoczy, 2016). In the current study, we sought to 
confirm these findings for the other type of multiple-solution problem and investigated the effects of 
applying multiple mathematical procedures for real-world problems on enjoyment and boredom.  

Hypotheses 

The hypotheses we addressed were: 1) Constructing multiple solutions by applying multiple 
mathematical procedures for real-world problems has a positive effect on students’ enjoyment of 
mathematics; 2) Constructing multiple solutions by applying multiple mathematical procedures for 
real-world problems has a negative effect on boredom in mathematics. 

Method 
Sample and procedure 

Three hundred seven German ninth graders from four schools with three middle-track classes each 
(48.26% female; mean age=14.6 years) participated in the present study. Before and after the 
teaching unit, students were asked about their enjoyment and boredom. The teaching unit consisted 
of two sessions with two 45-minute long lessons each. Each of twelve classes was divided into two 
parts with the same number of students in each part in the way students’ mathematical achievements 
did not differ between the parts. Further, the number of males and females was approximately the 
same in each part. Eight of twenty-four groups were randomly assigned to the one-solution 
condition “differences” (OS1), eight groups to the one-solution condition “table” (OS2), and eight 
to the multiple-solutions condition “differences + table” (MS), taking into account that in each 
school, there had to be the same number of groups assigned to each condition, and the students in 
each class had to be assigned to different conditions (more details about the procedure can be found 
in Achmetli, Schukajlow, & Rakoczy, manuscript submitted for publication). Each group was 
taught separately by one of six teachers (three female, age: 27 to 60) who participated in the present 
study. The teachers taught the same number of groups in each condition in order to minimize the 
differences between conditions that might result from the influence of teacher personality on 
students’ learning. All of the teachers received instruction manuals that included the lesson plans, 
problems for the students, and the solutions to these problems.  

Treatment 

The three treatment conditions implemented in the present study (OS1, OS2, and MS) were based 
on the positively evaluated student-centered learning environment for teaching modelling problems 
(Schukajlow, Kolter, & Blum, 2015). This student-centered learning environment was 
complemented by direct instruction at the beginning of the teaching unit. For the purpose of 
maintaining comparability between the conditions, the same order was implemented for all three 
treatment conditions. In the first lesson, the teacher demonstrated how real-world problems could be 



solved by applying one mathematical procedure (in the OS conditions) or multiple mathematical 
procedures (in the MS condition). In the three lessons that followed, the students solved real-world 
problems by applying the demonstrated procedures according to a special procedure for group work 
(alone, together, and alone), presented their solutions, and discussed these solutions with the whole 
group in the classroom. At the end of each lesson, the teacher summarized the key points of each 
treatment condition. In the multiple-solutions condition, the teacher encouraged the students, 
further, to compare and contrast the two mathematical procedures and the mathematical results.  

Students first solved four similar tasks in the one-solution conditions and in the multiple-solutions 
condition. The only difference between these four problems was that students in the one-solution 
conditions were required to apply one mathematical procedure (“table” or “differences”), whereas 
students in the multiple-solutions condition were required to apply both mathematical procedures 
(“table” and “differences”). The sample problem “BahnCard,” which was given in the one-solution 
conditions, is presented in Figure 1. In the multiple-solutions condition, the problems were modified 
by adding the following sentence: “Use two different mathematical procedures to solve this 
problem.” As the discussion of the connection between mathematical procedures required additional 
time in the MS condition, one additional task was offered in each OS condition. Thus, in sum, 
students in the MS condition solved six and students in the OS conditions solved seven problems.  

Measures 

Enjoyment and boredom during the teaching unit were measured after the second and fourth lessons 
with a 5-point scale ranging from 1 (not at all true) to 5 (completely true). Both scales included 
three items each (see Table 1).  

Scale Item 

Enjoyment I enjoyed task processing. I was happy during task processing. Task processing was 
great fun for me. 

Boredom Task processing was boring. I got so bored during task processing that I had 
problems staying alert. I did not want to continue my work because it was so boring. 

Table 1: Items used in the study to assess enjoyment and boredom 

The scales were adapted from the well-evaluated Achievement Emotions Questionnaire (Pekrun, 
Goetz, Frenzel, Barchfeld, & Perry, 2011). The Cronbach’s alpha reliabilities were .80 and .79 for 
enjoyment and .81 and .83 for boredom for Sessions 1 and 2, respectively. 

Treatment fidelity 

To ensure the fidelity of the treatment, we videotaped the teaching unit, observed the lessons, and 
analyzed the students’ solutions. The analysis confirmed the treatment fidelity (Achmetli et al., 
manuscript submitted for publication). For example, we found that students in all classes worked on 
the respective version of the problem (MS vs. OS) and all teachers implemented the intended 
methodical order in their lessons. More specifically, we found that students in the MS condition 
developed significantly more solutions than the students in the OS conditions (MS vs. OS1: effect 
size Cohen’s d=4.97; MS vs. OS2: d=3.61).  



Results 
Preliminary results 

In order to simplify the analysis of the effects, we combined the OS1 and OS2 conditions into one 
OS condition. Combining the two conditions did not influence the results significantly, as our 
statistical analysis did not show a difference at the 10% level of significance between the two OS 
conditions for motivational variables such as self-regulation (Achmetli et al., 2014) or interest 
(t(186) = 0.182; p = .856). Further, in order to ensure that the two conditions were comparable, we 
compared interest between the MS condition and the combined OS condition as this construct is 
closely connected to students’ enjoyment and boredom (Schukajlow & Rakoczy, 2016). The 
analysis of interest at pretest revealed no differences between the MS and OS conditions (MS: M = 
2.39 (SD = .90), OS: M = 2.39 (SD = .96)). This result indicates that students’ emotional 
prerequisites were similar in the MS and OS conditions. 

Applying multiple mathematical procedures and students’ enjoyment or boredom 

We hypothesized that constructing multiple solutions by applying multiple mathematical procedures 
would increase students’ enjoyment and decrease their boredom. We tested both hypotheses by 
computing t-tests. The crucial assumption when using a t-test is that the variances are equal in the 
two groups. Levene’s test of equality of variances was significant for students’ boredom measured 
after the second and third lessons, indicating that the assumption of equal variances in the two 
groups had been violated (F(280) = 4.022, p = .046; F(279) = 4.851, p = .028). Thus, we used the 
adjusted degrees of freedom, t-values, and p-values for students’ boredom. The descriptive statistics 
are presented in Table 2. 

 Enjoyment  

first session 

Enjoyment  

second session 

Boredom     

first session 

Boredom  

second session 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

MS 3.42 (0.92) 2.96 (0.91) 2.24 (1.05) 2.53 (1.16) 

OS 3.43 (0.88) 3.00 (0.96) 2.03 (0.90) 2.30 (1.00) 

Table 2: Means and standard deviations for enjoyment and boredom 

Against our expectations, students’ enjoyment during the first and second sessions did not differ 
between the MS and OS conditions (first session t(280) = 0.75, p = .940, Cohen’s d = 0.02; second 
session: t(279) = 0.297, p = .767, d = 0.04). Thus, the enjoyment of students who solved real-world 
problems by applying multiple mathematical procedures was similar to the enjoyment of students 
who applied one mathematical procedure.  

We did not find support for the second hypothesis. Our analysis did not reveal benefits of 
constructing multiple solutions by applying multiple mathematical procedures for students’ 
boredom during the first or second session (first session t(165) = 1.67, p = .097, Cohen’s d = 0.22; 
second session: t(156) = 1.62, p = .108, d = 0.22). Moreover, there was a slight (but not significant) 
tendency for students in the multiple-solutions group to feel greater boredom than students in the 
one-solution condition.  



Discussion 
In this paper, we aimed to analyze how constructing multiple solutions by applying multiple 
mathematical procedures while solving real-world problems would affect students’ emotions. On 
the basis of theoretical considerations from the control-value theory of achievement emotions 
(Pekrun, 2006) and prior research that found that developing multiple solutions had positive effects 
on students’ enjoyment and negative effects on their boredom (Schukajlow & Rakoczy, 2016), we 
expected positive effects of the treatment on enjoyment and negative effects on boredom during 
learning. However, our analyses did not confirm these hypotheses. Enjoyment and boredom in 
solving real-world problems did not differ between the multiple-solutions and one-solution 
conditions. Moreover, boredom was slightly lower in the one-solution condition compared with the 
multiple-solutions condition. One explanation for this finding might involve students’ high control 
appraisals. In the previous study, the mean values for students’ experience of competence, which 
can be taken as an indicator of students’ control appraisals (sample item: “I felt confident about my 
knowledge of the topic today”; range from 1 to 5), were 3.85 and 3.65 in the MS and OS conditions, 
respectively (Schukajlow & Krug, 2014b). However, in the current study, the mean values for 
students’ experience of competence were nearly one standard deviation higher and close to the 
theoretical maximum of 5 (Achmetli et al., manuscript submitted for publication). As noted in the 
control-value theory, if students’ control appraisals are too high (or task demands are too low), they 
can have a negative influence on students’ emotions. Thus, a future research question might involve 
asking whether posing more demanding real-world problems that require students to apply multiple 
mathematical procedures can increase students’ positive emotions such as enjoyment and decrease 
their negative emotions such as boredom. Another research question that should be addressed in an 
experimental study is about the non-linear connection between control appraisals and students’ 
emotions. This assumption of the control-value theory needs more empirical evidence from 
randomized studies. More specifically, the corvilinear U-shape relation between control appraisals 
and boredom should be addressed in future longitudinal studies. Further, it might be the case that 
the type of multiple-solution problem makes a difference. Whereas students enjoy making different 
assumptions about missing information, constructing different solutions, and comparing their 
results, this enjoyment might not hold when they apply different mathematical procedures. Similar 
effects (low level of boredom for the first type of multiple-solution problem, but no difference in 
boredom for the second type of multiple-solution problem) were also found for students’ boredom. 
Another explanation for no effects of the intervention on emotions might be that students in the 
multiple solution condition were not offered to chouse their favorite procedure during three of four 
lessons. More efforts are needed to clarify the role of multiple solutions for affective measures and 
more generally, with respect to the effects of teaching methods on students’ affect. 
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Several studies have looked at either the effects of students’ Self-Efficacy Expectations (SEE) on their 
mathematics performance results, or the effect of previous mathematics performances on students’ 
SEE. Few studies have tested the theoretically proposed reciprocal relationship between mathematics 
SEE and performance in mathematics. Furthermore, previous studies have not included levels of 
difficulty, although this is an integral part of the definition of SEE. This study applied a new measure 
of SEE, which included both test taking facets and levels of perceived difficulty, to investigate their 
relationships with students’ performance on a national test in mathematics. Two models gave very 
good fit to the data, and supported the reciprocal effects model. These models provided estimates of 
the relationships between students’ test performance and their level and facet-specific SEE, 
respectively. 
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Introduction 
Self-efficacy expectations (SEE) are important because extensive research indicates they are related 
to student learning and performance (Zimmerman, 2000). Studies have demonstrated the effect of 
mathematics SEE on performance results (e.g. Pajares, 1996) and vice versa (e.g. Pampaka, 
Kleanthous, Hutcheson, & Wake, 2011), but the proposed reciprocal relationship between SEE and 
performance (Bandura, 1997) has received little attention. Investigating this relationship empirically 
is important in order to understand the relationship between SEE and performance in mathematics, 
and the process by which SEE may influence performance in mathematics and vice versa. Few studies 
have investigated reciprocal effects between SEE and mathematics performance with longitudinal 
data, and none that we know of in relation to national tests in Norway. 

Bandura (1997) argued SEE vary according to three dimensions, but we know of no studies that have 
included SEE level of difficulty to investigate reciprocal effects with mathematics. As we argued in 
Street, Malmberg, & Stylianides (2017), including level of SEE is important as it is an integral part 
of the definition of SEE (Bandura, 1997). We aimed to address this research gap by testing a 
reciprocal effects model including students’ level and facet-specific SEE, and their scores on a 
Norwegian national test. To this aim, we applied a recently developed measure of mathematics SEE 
that includes four facets of test taking as well as three levels of perceived difficulty. We included 
students’ SEE responses and test scores as they progressed from grade 8 to grade 9.  

Theoretical background 
Self-efficacy expectations (SEE) are individuals’ judgments about perceived capability to perform on 
future tasks (Bandura, 1997), for instance students’ expectations they are able to carry out the various 
facets involved with taking a mathematics test. Examples are problem-solving skills such as solving 



a certain number of problems or solving tasks of a certain challenge, or skills in self-regulation such 
as concentrating for a length of time or persevering through difficult problems.  

SEE affect future performance through mediating processes, influencing students’ behaviors and 
motivations. SEE may influence individuals’ tendencies to approach learning tasks, their effort and 
persistence while engaged in such tasks, as well as their self-regulatory processes (Zimmerman, 
2000). SEE have been found to predict mathematical problem-solving after controlling for factors 
such as cognitive ability, mathematics Grade Point Average, anxiety, and gender (Pajares, 1996). 
There is also empirical support for the influence of past performances on SEE (e.g. Pampaka et al., 
2011). According to Bandura (1997), SEE are formed through four sources, where mastery 
experiences is the strongest source. Mastery experiences stem from individuals’ appraisals of 
previous performance situations, for instance their experiences from a previous, similar test. 
Importantly, previous experiences do not influence SEE directly, but are interpreted and made sense 
of by the individual (Usher, 2009). 

A mutually reinforcing pattern of influence between self-beliefs and academic achievement is 
supported for several types of self-beliefs (Valentine, Dubois, & Cooper, 2004). Studies have, for 
instance, investigated reciprocal effects between self-concept and achievement (Marsh, Trautwein, 
Lüdtke, Köller, & Baumert, 2013), however only few studies have investigated reciprocal effects 
between SEE and mathematics performance. Williams and Williams (2010) proposed a reciprocal 
effects model, which fit the data well for PISA results from 26 out of 33 countries. They argued 
reciprocal effects might be a fundamental psychological process, however the data from Norway was 
excluded from the analyses due to little variation in the grade-level variable. Hannula et al. (Hannula, 
Bofah, Tuohilampi, & Metsämuuronen, 2014) investigated the dominant direction of effect between 
mathematics performance and SEE, as students progressed from grade 3 to grade 9 in Finland. Their 
results supported a reciprocal effects model, where the effect from performance on SEE (.30) was 
somewhat stronger than the effect from SEE on performance (.26). Both measures were also relatively 
stable over time.  

Measures of SEE have typically included SEE strength and SEE specificity (also called generality). 
While Bandura proposed a third dimension of SEE (1997), only few studies have included level of 
difficulty. Students’ SEE may vary between different facets of mathematics, and in regards to 
different perceived levels of difficulty. In relation to the task ‘naming uses for common objects’ 
Locke et al. (Locke, Frederick, Lee, & Bobko, 1984) found that SEE for tasks of medium to high 
difficulty were most predictive of subsequent task performance.  

Theoretical model and research questions 
In line with theory and empirical findings discussed, we propose a theoretical model (see Figure 1), 
where SEE and mathematics performance are reciprocally related. We included Norwegian students’ 
SEE responses and subsequent test scores to investigate this model. In the model, students’ SEE in 
grade 8 and 9 are related to their performance in mathematics in the same year. Furthermore, students’ 
mathematics performances in grade 8 predict their SEE in grade 9. Both SEE and mathematics 
performance are relatively stable (mathematics performance the most stable of the two), with the 
grade 8 constructs predicting scores in grade 9. We further propose level and facet-specific SEE have 
differential relationships with mathematics performance.  



 
Figure 1: Theoretical model 

RQ1: What is the relationship between SEE and performance on national tests in mathematics in 
grade 8, and SEE and performance on national tests in mathematics in grade 9? 

RQ2: Do the relationships between SEE and performance on national test differ according to levels 
or facets of SEE? 

Methodology  
Participants 

The participants were 95 students (44 female) in Norwegian secondary school who completed self-
report questionnaires and took national tests in mathematics at the beginning of grades 8 and 9 (13 
and 14 years old). The participants were part of a larger sample, selected for cross-sectional 
investigations (see Sørlie & Söderlund, 2015). Included in the study were schools where students had 
performed above and below what might be expected on national tests, considering measures of socio-
economic-status. For a detailed explanation of this strategy see Langfelt (2015). 

Measures 

The Self-efficacy Gradations of Difficulty Questionnaire was applied to measure SEE at the two time 
points (see Street et al., 2017, for a detailed analysis). This is a recently developed multidimensional 
measure of mathematics SEE, that includes four test taking facets (facet-specific SEE) related to 
problem solving (complete a number of problems, solve tasks of a certain challenge) and self-
regulation (concentrate, not give up), and three levels (easy, medium, and hard) of perceived difficulty 
(level of SEE). Each of the 14 items in the measure are related to one test taking facet and one level 
of difficulty within each facet (see Figure 2 for an example facet, ”concentrate”, with three levels of 
difficulty). For each item, students are asked to indicate their confidence (strength of SEE) on an 11-
point scale from 0 “not at all certain” to 10 “completely certain”. The structural validity of this 
measure was tested (Street et al., 2017), and the resulting best-fit measurement model included three 
latent (unobserved) level constructs, with correlated uniquenesses (correlated error terms) specified 
for each of the four facets. 



 
Figure 2: Example from the Self-Efficacy Gradations of Difficulty Questionnaire 

The performance measure was raw scores from national tests in numeracy (Norwegian Directorate 
for Education, 2016). “Numeracy” is similar to what researchers generally refer to as mathematics. 
Norwegian students sit these tests at the start of the school year in grades 5, 8 and 9. Students in 
grades 8 and 9 sit the same test, which involves 58 problems, scored as either correct (1) or incorrect 
(0). We used unique identifiers to link the national test scores with the questionnaire responses. 

Specification of empirical models 

Our modeling choices were informed by the previously established factor structure of our measure, 
as well as our theoretical model. Street et al. (2017) found that the best-fit models were those that 
accounted for the multidimensional nature of SEE, through correlated latent constructs and correlated 
uniquenesses. In order to estimate the relationships between latent constructs in our models we used 
item parceling technique. Parceling involves aggregating (taking the sum or average) two or more 
items to manufacture an indicator of a construct (Little, Cunningham, Shahar, & Widaman, 2002, p. 
152). While our measure of SEE is multidimensional, the factor structure has been tested and 
established in a previous study. Item parcels were formed to achieve “clean” latent constructs from 
each year, through aggregating items in such a way that the secondary loading was spread across 
parcels (Little et al., 2002). For example, the “easy” parcel contains all items related to the easy latent 
construct, across four facets. Similarly, the “concentrate” parcel includes all items related to the 
concentrate facet, across three levels of difficulty. As an example, the “concentrate” parcel in Figure 
2 is created through summing the scores of the three items included. 

Two reciprocal effects models were specified. Our hypothesized model (Model 1) includes national 
test scores and item parcels for SEE levels, representing the best-fit model from the previous study. 
The alternative model (Model 2) includes national test scores and item parcels for facet-specific SEE. 
In both models, SEE constructs in grade 8 are related to test scores in grade 9. Similarly, SEE 
constructs in grade 9 are related to test scores in grade 9. Correlations are specified rather than 
regression paths (see Street et al., 2017). SEE constructs in grade 8 are intercorrelated, as are SEE 
constructs in grade 9. Furthermore, corresponding SEE constructs are related across the two years 
(e.g. SEE easy in grade 8 predicts SEE easy in grade 9). Test scores in grade 8 predict test scores in 
grade 9. Finally, the reciprocal relationships tested are the path from test scores in grade 8 on SEE 
constructs in grade 9, and the paths from SEE constructs in grade 8 on test scores in grade 9. 



Analyses 

We analysed the data with structural equation modeling, using the maximum likelihood estimator in 
Mplus (version 7.31 for Mac: Muthén & Muthén, 2012). We used fit indices recommended by 
previous studies (e.g. Morin, Marsh, Nagengast, & Scalas, 2014; Schermelleh-Engel, Moosbrugger, 
& Müller, 2003), specifically we used the chi square (χ2/df =<3 acceptable), the Root Mean Square 
Error of Approximation (RMSEA <.08 acceptable), the Standardized Root Mean Square Residual 
(SRMR<.10 acceptable), the Comparative Fit Index (CFI) and the Tucker-Lewis index (TLI) 
(CFI/TLI > .90 acceptable). To assess improvement in fit between models, we used the following cut-
offs: RMSEA (.015), CFI (.010), SRMR (.030).  

Results 
Item cross-correlations for items from the same year were consistent with previous results from the 
same measure. The correlation matrix indicates items are related to two types of latent constructs; 
levels (easy, medium, and hard) and facets (no. of problems, solve tasks, concentrate, and not give 
up). Autocorrelations between items in grade 8 and the same item in grade 9 demonstrate two 
tendencies. First, autocorrelations are significant for all items, except for two cases, both associated 
with the easy level (no. of problems_easy, and concentrate_easy). Second, the magnitudes of the 
associations are consistently weaker for items associated with the easy level, than the medium and 
hard levels. To illustrate this: the strongest autocorrelation of the easy level items is .21, while the 
weakest autocorrelations of the medium and hard level items is .26 and .29, respectively. Thus, the 
cross-correlations for each of the years indicate support for a multidimensional construct, while the 
autocorrelations indicate that students’ scores on the medium and hard level items were more stable 
across time, than students’ scores on the easy level items. The non-significant autocorrelations 
between the grade 8 and grade 9 easy level items might be related to a lack of variability in scores. 
Most students were highly confident in relation to the easy level items.  

 Fit indices for confirmatory factor analyses      
  Model 2 p RMSEA CFI TLI SRMR 

1 
Correlated levels model, 
reciprocal relationship with test 
scores 

2
(6)= 4.397

p=.623  .000 1.00 1.02 .048 2/df=0.73 


2 
Correlated facets model, 
reciprocal relationship with test 
scores  

2
(12)= 10.890

p=.538 .000 1.00 1.01 .061 2/df=0.91 


Table 1: Results from structural equation models 

Results from the structural equation models are presented in Table 1. Both our proposed models 
resulted in excellent fit. The aim of the present study is not model comparison, but to test a reciprocal 
effects model, as well as to estimate the relationships between national test scores and level and facet-
specific SEE, respectively. Accordingly, parameter estimates from both models are reported (see 
Figures 3 and 4).  



 
Figure 3: Structural equation model, Model 1 (correlated levels model) 

 

Figure 4: Structural equation model, Model 2 (correlated facets model) 

As can be seen in Figure 3, results from Model 1 partially support a reciprocal effects model between 
levels of SEE and national test scores. Specifically, national test scores in grade 8 predict levels of 
SEE in grade 9 in relation to medium and hard, but not easy, tasks. The predicted relationship from 
SEE level constructs in grade 8 to national test scores in grade 9 is not supported. However, all three 
levels of SEE are associated with test scores the same year, including when previous test performance 
is controlled in grade 9. Two further relationships are nonsignificant: the path from SEE easy level 
in grade 8 to grade 9, and the path from national test scores in grade 8 to SEE easy level in grade 9.  

Model 2 results (see Figure 4) are generally consistent with results for Model 1. Test scores in grade 
8 predict three facets of SEE in grade 9 (not “concentrate”), while the paths from SEE facet constructs 



in grade 8 to test scores in grade 9 are nonsignificant. However, facet-specific self-efficacy constructs 
are related to performance results in each year, including in grade 9 (not “solve tasks”) when previous 
test scores are included in the model. Unlike the other facets, the magnitude of the relationship 
between “not give up” and test scores is very similar in grade 8 and 9. Similar to the easy level in 
Model 1, the relationships between “solve tasks” and “not give up” from grade 8 to grade 9 are not 
significant. Finally, we see that test scores are more stable over time than either level or facet-specific 
SEE. 

Discussion 
The current study lent empirical support to a reciprocal relationship between level and facet-specific 
SEE, and performance in mathematics (RQ1). It was demonstrated that students’ SEE were associated 
with scores on a test in the immediate future, while national test scores predicted their SEE one year 
later. All SEE items in our study are explicitly linked with the immediately upcoming test, thus it is 
reasonable the SEE constructs are associated with performance results of the immediately upcoming 
tests, but not with the tests one year later. In two previous studies, measures of SEE and performance 
were collected over the course of a single day (Locke et al., 1984) or three years apart (Hannula et 
al., 2014). Findings from both these studies indicated the dominant effect was from performance to 
SEE. The type of test, and whether it is considered important by the students, might influence the 
relationship between performance experiences and SEE. National tests are quite “talked about” in 
school in Norway, and students in grades 8 and 9 are likely becoming increasingly aware of upcoming 
exams (at the end of year 10). This might have provided a particularly memorable context for their 
test experiences. 

Furthermore (RQ2), differential relationships were found between national tests and easy, medium 
and hard levels of perceived difficulty. The associations with test scores were stronger for medium 
and hard levels of difficulty, which is in line with previous research (Locke et al., 1984). The 
relationships with test performance also varied between different facets of test taking, where “not 
give up” provided the strongest association. 

In our sample students’ SEE for medium and hard level tasks had both a stable (SEE regressed on 
SEE) and a dynamic (SEE regressed on test scores) component, while these estimates differed for the 
different SEE facets. For instance, in regard to ‘concentrate’, grade 9 SEE were predicted by grade 8 
SEE, while in regard to ‘not give up’, grade 9 SEE were predicted by grade 8 test scores. This 
indicates students drew on their previous test experiences to a larger degree when formulating their 
SEE for perseverance, as compared to concentrating. This implies it is important to consider how to 
support student perseverance, particularly after adverse test experiences.  

The current findings are limited in that we could not control for other factors that may have influenced 
students’ SEE and test performance. Also, while the measure of SEE provided interesting 
information, partitioning the effects of test taking facets and levels of perceived difficulty, further 
replications are needed with a larger sample, and in different cultural contexts.  
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Personal meaning, understood as the personal relevance of an object or an action (Vollstedt, 2011), 
seems to be closely related to motivation. However, the structural relationships between personal 
meaning and motivation are unexplored yet. Two motivation theories, self-determination theory (Deci 
& Ryan, 2002) and expectancy-value theory (Wigfield & Eccles, 2000), are used to work out these 
relations. The focus of this paper lies on theoretical considerations. 
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Introduction 
Students are in the need for meaning when dealing with mathematics in an educational context 
(Vinner, 2007). As Kilpatrick, Hoyles and Skovsmose (2005) point out, the notion of meaning is 
blurred in the mathematics education community: 

When we consider the question of meaning with respect to mathematics education, the issue 
becomes even more complex, since philosophical and non-philosophical interpretations of 
meaning can become mixed. Thus, on the one hand, we may claim that an activity has meaning as 
part of the curriculum, while students might feel that the same activity is totally devoid of meaning. 
(Kilpatrick et al., 2005, p. 2) 

This paper is interested in the perspective of the students and their individual attribution of personal 
relevance to deal with mathematics in an educational context. Vollstedt (2011) called this construct 
personal meaning. Theoretical considerations suggest a strong link between personal meaning and 
motivation drawing on the basic needs theory (BNT) and the organismic integration theory (OIT) of 
self-determination theory (SDT, Deci & Ryan, 2002) and expectancy-value theory (EVT, Wigfield & 
Eccles, 2000).  

Personal meaning 
With respect to the fuzziness of meaning, Howson (2005) suggests that 

one must distinguish between two different aspects of meaning, namely, those relating to relevance 
and personal significance (e.g., “What is the point of this for me?”) and those referring to the 
objective sense intended (i.e., signification and referents). These two aspects are distinct and must 
be treated as such. (Howson, 2005, p. 18) 

According to Howson (2005), one important interpretation of meaning is the personal one. Personally 
experienced meaning, again, has a wide notion of concepts: it can be understood as a personal goal, 
a value, an intention, a purpose, a reference, or a use that an object or an action may have for the 
individual (Vollstedt, 2011).  



Personally experienced meaning depends on the individual and a certain context (see below). It has 
an endogenous character, i.e. it cannot be provided by the teacher but, on the contrary, must be 
constructed out of the learner’s individual biography (Meyer, 2008). Regarding mathematics, the need 
for meaning cannot be fulfilled globally: for each mathematical learning content, personal meaning 
must be constantly interpreted and subjectively constructed (Fischer & Malle, 1985). Therefore, at 
the same time and in the same context, different students can give different meanings to the same 
mathematical content (Kilpatrick et al., 2005; Vollstedt, 2011). 

Vollstedt (2011) developed a model of personal meaning when learning mathematics and dealing 
with mathematical contents in a school context. In her theoretical framework (see Figure 1) she took 
the student’s perspective, as the following two main preliminaries influence the construction of 
personal meaning: Firstly, the personal background of the student describes aspects which cannot be 
influenced by himself/herself like his/her socio-economic or migration background. Secondly, 
personal traits. i.e. aspects that concern the student’s self, are relevant. They comprise concepts from 
various fields like educational psychology (self-concept, self-efficacy), education (developmental 
tasks), and mathematics education (beliefs). In addition to the individual preliminaries of a student, 
the situational context, i.e. context of the learning situation in terms of topic as well as classroom 
situation, is also a crucial factor for the construction of personal meaning. The theory of personal 
meaning developed by Vollstedt (2011) consists out of 17 different kinds of personal meaning. They 
were reconstructed based on interview data with students from lower secondary level from Germany 
and Hong Kong. These kinds vary between the duty to deal with mathematics because it is a school 
subject, the cognitive challenge that is contained in mathematical tasks, and the experience of 
relatedness among the fellow students. Note that the experience of the three basic psychological needs 
for autonomy, competence, and relatedness as described in the SDT of motivation (Deci & Ryan, 
2002; cf. Self-determination theory) turned out to be meaningful for students. Accordingly, they were 
also given the status of kinds of personal meaning. The various kinds of personal meaning can be 
distinguished with regard to the intensity of the relatedness to mathematics and to the individual 
respectively, giving rise to seven superordinate types of personal meaning (see Figure 2). 

Figure 1: Theoretical framework of personal meaning (Vollstedt, 2011) 



A relation between the theories of personal meaning and motivation seems likely due to the obvious 
link via the SDT of motivation. Other links may additionally be assumed (see Interplay between 
personal meaning and motivation for further details). The structural connections between personal 
meaning and motivation, though, are yet unexplored. 

Motivation  

Self-determination theory 

According to the SDT by Deci and Ryan (2002), learners have innate and constructive tendencies to 
develop an ever more elaborated coherent “sense of self” (Deci & Ryan, 2002, p. 5), i.e. individuals 
possess a tendency to promote growth or rather integration. They have the primary demand “to forge 
interconnections among aspects of their own psyches as well as with other individuals and groups in 
their social worlds”. This general integrative tendency is called the organismic metatheory of SDT. 
Besides, SDT includes the dialectical tendency, which focusses on the interaction between the active, 
integrating human nature and social contexts that either nurture or impede human’s effort to “integrate 
their experiences into a coherent sense of self” (Deci and Ryan, 2002, p. 27).  

Those contextual elements can be defined by the basic psychological needs for competence, 
autonomy, and relatedness, which support or rather thwart motivation, performance, and well-being. 

Figure 2: Model of personal meaning (Vollstedt, 2011) 



SDT embraces six sub-theories that all contain organismic and dialectic characteristics, two of which 
have a special significance for our study, namely the basic needs theory for competence, autonomy, 
and relatedness (BNT; Deci & Ryan, 2002, p. 22) and the organismic integration theory (OIT; Deci 
& Ryan, 2002, p. 14). These two sub-theories were formulated to clarify the interrelation between 
“motivation and goals to health and well-being” (Deci & Ryan, 2002, p. 10). 

In BNT it is supposed that the basic needs are universal, i.e. they are valid across time, age, gender, 
situations, and culture. When they are satisfied, they support well-being, however when they are 
impeded, they might interfere with psychological health.  

The OIT focusses on “internalization and integration of values and regulations (amotivated, external, 
introjected, identified, integrated, and intrinsic)” (Deci & Ryan, 2002, p. 14). Thereby, it defines the 
development and dynamics of extrinsic motivation in more detail. This process is characterized by 
“the degree to which individuals’ [sic] experience autonomy while engaging in extrinsically 
motivated behaviors” (Deci & Ryan, 2002, p. 9). This taxonomy of regulation is neither a 
developmental continuum by itself, nor do human beings have to proceed through each level of 
internalization. In fact, it is possible for humans to take in a regulation at any level, when the relevant 
prior experience and the immediate individual climate encourage the interpersonal basic needs. 

Expectancy-value theory 

A second theory of motivation that stems from different theoretical roots is the EVT (Feather, 1982; 
Wigfield, Tonks, & Klauda, 2016). In it, motivation is described as a consequence of an interaction 
of expectancy and value. Wigfield and Eccles (2000) conceptualize motivation following EVT in a 
school context. They argue that “individuals’ choice, persistence, and performance can be explained 
by their beliefs about how well they will do on the activity and the extent to which they value the 
activity” (Wigfield & Eccles, 2000, p. 68). Expectancy address the perceived likeliness of achieving 
a set goal or being successful on a task (self-efficacy). Value represents the extent to which a goal or 
an activity is desirable (Eccles et al., 1983; Wigfield & Eccles, 1992). 

Wigfield and Eccles (2000) describe four subjective task values: attainment value, intrinsic value, 
utility value, and cost. These are also referred to as the components of achievement value. Attainment 
value is described as the personal importance of doing well on a task, for example on a mathematical 
exercise. Intrinsic value is characterized by the sense of pleasure in doing that task. Utility value 
defines how a task suits one’s future plans or goals, such as making an effort during the mathematics 
lesson in order to be well prepared for an exam. Cost concerns how the decision of putting effort into 
an activity (e.g. doing mathematics homework) restrains opportunities for other activities (e.g. 
watching TV). The subjective task values serve the estimation of effort, the likelihood of task 
achievement, and emotional cost (Wigfield & Eccles, 2000). 

  



Interplay between personal meaning and motivation 
The conceptualizations of motivation introduced above contain various links to personal meaning. In 
a first approach, several networking strategies comparing, combining, coordinating, and synthesizing 
(Prediger & Bikner-Ahsbahs, 2014) were used to connect the different theoretical perspectives and 
construct an elaborated theoretical framework of the interrelation between personal meaning and 
motivation. This process is described below. 

Common similarities and differences between parts of theoretical approaches can be identified 
through the networking strategy of comparing (Prediger & Bikner-Ahsbahs, 2014). Comparing the 
three theoretical approaches shows that in general, the theories of personal meaning, SDT, and EVT 
all include organismic and dialectical components, i.e. they consider the learner’s biography in detail 
and the constant interaction with the learner’s social environment (Bruner, 1991; Deci & Ryan, 2002; 
Vollstedt, 2011; Wigfield & Eccles, 2000). This is an essential factor and forms the basis for further 
elaboration of the concrete interaction between these three theories. 

The networking strategy of combining makes it then possible to combine theoretical approaches even 
from different origin. As EVT-values and intrinsic and extrinsic constructs of SDT are examined from 
different theoretical perspectives they, thus, have different bases (Wigfield & Eccles, 2000; Wigfield, 
Tonks, & Klauda, 2016). Nevertheless, close relations could be extracted by combining the theoretical 
constructs of SDT and EVT: The intrinsic value of EVT is linked to the construct of intrinsic 
motivation as described in SDT. It refers to behaviors performed out of one’s own interest, enjoyment, 
and the pleasure inherent in these activities (Ryan & Deci, 2002). Utility value describes more 
extrinsic motives to put effort in a mathematical task, such as doing a task to attain certain outcomes. 
Accordingly, utility value can be connected to extrinsic motivation (Wigfield & Eccles, 2000). Hence, 
extrinsic rewards may also help to anticipate individuals’ own efforts (Spence & Helmreich, 1983). 
In addition, SDT points out that the regulation of motivation is important to pursue a certain goal or 
value. Thus, it differentiates between qualitatively different reasons for action, arguing that different 
types of motivation will lead to very different outcomes (Ryan & Connell, 1989). 

Through the networking strategy of coordinating it is possible to clarify empirical evidence by 
constructing a conceptual framework grounded in different theoretical ideas. Hence, the three theories 
were interwoven and synthesized to link equally solid theories in such a way that a new unit of theory 
arises into, for example, an elaborated new theoretical approach (see Figure 3 below). To begin with, 
personal meaning and SDT are linked in three ways (cf. also the section Personal meaning above): 
Firstly, the three basic psychological needs for competence, autonomy, and relatedness as described 
in BNT are part of Vollstedt’s (2011) theoretical background for the construction of personal meaning 
(see Figure 3 below). Secondly, their experience turned out to be meaningful for students so that there 
are three kinds of personal meaning closely related to the three basic psychological needs (see Figure 
2 above). Thus, these two aspects directly link the theory of personal meaning to SDT. Thirdly, there 
is an indirect link. One of the two overall-dimensions of the model of personal meaning, namely the 
intensity of the relatedness to the individual, describes the degree of one’s subjective involvement in 
the action or the content respectively.  
Vollstedt’s results (2011) suggest that the intensity of the relatedness to the individual is possibly 
interrelated with the types of regulation described in OIT. This results from the fact that the intensity 
of the relatedness to the individual focuses on the personal involvement of the individual with respect 



to the action or object in focus. Hence, this establishes a link to self-determined behavior and 
internalization (Vollstedt, 2011). 

 
Figure 3: The role of personal meaning in the generation of motivation according to EVT 

With relation to EVT, we also suppose a close link to the theory of personal meaning (see Figure 3 
above). We assume that the expectancy as described in EVT is part of the individual’s personal traits, 
i.e. they are contained in the crucial preliminaries for the construction of personal meaning (cf. the 
section Personal meaning). Besides, the subjective values of EVT are embodied in different kinds of 
personal meaning (cf. the section Expectancy-value theory). For instance, the particular nature of 
intrinsic value is inherent in those kinds of personal meaning which refer mostly to the relatedness to 
mathematics or the learning of mathematics (e.g. “Purism of mathematics”, see Figure 2 above). 
Another assumption that can be made refers to the relation between utility value and the kinds of 
personal meaning which have instrumental or functional character (e.g. “Vocational Precondition”). 
Furthermore, attainment value may relate to those kinds of personal meaning which refer to the 
knowledge of mathematics being important for one’s own identity (e.g. “Self-perfection”).  

These considerations suggest that motivation may be understood as a result from the interaction 
between expectancy being characterized by the preliminaries of an individual, and the values being 
embodied by the different kinds of personal meaning. The resulting motivation influences the 
consequence that results from the construction of personal meaning. Thus, depending on the kind of 
personal meaning and its related motivation, an action will follow that may but does not have to do 
with mathematics (e.g. doing homework instead of playing football – or vice versa). Hence, the 
inclusion of EVT may provide additional insight into the interplay between personal meaning and 
motivation.  

When looking at the interplay of personal meaning and motivation as a process, with reference to 
EVT we suggest to think of personal meaning as being constructed chronologically before motivation.  

In our understanding, personal meaning is the energizing factor (1st in Figure 3 above), which is 
significant for the students’ motivation (2nd in Figure 3 above). We even assume that personal 
meaning is necessarily required for motivation, i.e. that the individual must think that something is 



meaningful for him/her and, thus, is motivated to engage in an action that supports his/her goals and 
values. This suggestion gives personal meaning the status of a key factor for the theory of motivation 
in general (see Figure 3).  

Conclusion and further perspectives 
This paper provides the theoretical background to examine the relationship between personal meaning 
and motivation when learning mathematics. Hence, personal meaning is linked with motivation 
through the two motivation theories of SDT and EVT. The results of Vollstedt’s (2011) study may 
suppose connections between personal meaning and SDT, i.e. BNT and OIT (Deci & Ryan, 2002). 
Three of the subjective values of EVT (attainment value, intrinsic value, and utility value) may be 
embodied by certain kinds of personal meaning. As cost has a negative connotation, it is not related 
to personal meaning denominating personal relevance of an object or action. 

To conclude, we assume an interrelation between personal meaning and motivation as has been 
elaborated above. The model sketched above will be elaborated further in an empirical study. 

References 

Bruner, J. (1991). Acts of meaning. Cambridge, Staat: Harvard University Press. 

Deci, E. L., & Ryan, R. M. (2002). Handbook of self-determination research. Rochester, New York, 
NY: University of Rochester Press. 

Eccles, J. S., Adler, T. F., Futterman, R., Goff, S. B., Kaczala, C. M., Meece, J. L., & Midgley, C. 
(1983). Expectancies, values, and academic behaviors. In J. T. Spence (Eds.), Achievement and 
achievement motivation (pp. 75−146). San Francisco, CA: W. H. Freeman. 

Fischer, R., & Malle, G. (1985). Lokale, bedingte Sinn-Argumentation. In R. Fischer, & G. Malle 
(Eds.), Mensch und Mathematik: Eine Einführung in didaktisches Denken und Handeln (pp. 9−26). 
Mannheim: BI Wissenschaftsverlag. 

Feather, N.T. (1982). Introduction and overview. In N.T. Feather (Eds.), Expectations and actions. 
Expectancy-value models in psychology (pp. 1−14). New Jersey, NJ: Lawrence Erlbaum. 

Howson, G. (2005). “Meaning” and school mathematics. In J. Kilpatrick, C. Hoyles, & O. 
Skovsmose. (Eds.), Meaning in mathematics education (pp. 17−38). New York, NY: Springer. 

Kilpatrick, J., Hoyles, C., & Skovsmose, O. (2005). Introduction. In J. Kilpatrick, C. Hoyles, & O. 
Skovsmose. (Eds.), Meaning in mathematics education (pp. 1−8). New York, NY: Springer.  

Meyer, M. A. (2008). Unterrichtsplanung aus der Perspektive der Bildungsgangforschung. In M. A. 
Meyer, M. Prenzel, & S. Hellekamps (Eds.), Perspektiven der Didaktik: Zeitschrift für 
Erziehungswissenschaft. Sonderheft 9 (pp. 117−137). Wiesbaden: VS Verlag für 
Sozialwissenschaften. 

Prediger, S., & Bikner-Ahsbahs, A. (2014). Introduction to networking: Networking strategies and 
their background. In A. Bikner-Ahsbahs & S. Prediger (Eds.), Networking of theories as a research 
practice in mathematics education (pp. 117−125). Switzerland: Springer International Publishing. 

Ryan, R.M., & Connell, J.P. (1989). Perceived locus of causality and internalization: Examining 
reasons for acting in two domains. Journal of Personality and Social Psychology, 57, (749−761). 



Ryan, R. M., & Deci, E. L. (2002). An overview of self-determination theory: An organismic-
dialectical perspective. In E. L. Deci & R. M. Ryan (Eds.), Handbook of self-determination 
research (pp. 3−33). Rochester, New York, NY: University of Rochester Press. 

Spence, J.T., & Helmreich, R.L. (1983). Achievement-related motives and behaviors. In J. T. Spence 
(Eds.), Achievement and achievement motivation (pp. 7−73). San Francisco, CA: W. H. Freeman. 

Vinner, S. (2007). Mathematics education: Procedures, rituals and man’s search of meaning. Journal 
of Mathematical Behavior, 26, 1−10. 

Vollstedt, M. (2011). Sinnkonstruktion und Mathematiklernen in Deutschland und Hongkong. Eine 
rekonstruktiv-empirische Studie. Wiesbaden, Germany: Vieweg+Teubner. 

Wigfield, A., & Eccles, J.S. (1992). The development of achievement task values: A theoretical 
analysis. Development Review, 12, 265−310. 

Wigfield, A., & Eccles, J.S. (2000). Expectancy-value theory of achievement motivation. 
Contemporary Educational Psychology, 25, 68−81. 

Wigfield, A., Tonks, S., & Klauda, S. L. (2016). Expectancy-value theory. In K. R. Wentzel & A. 
Wigfield (Eds.), Handbook of motivation at school (pp. 55-75). New York, NY: Routledge. 



Mathematical memory revisited: Mathematical problem solving by 
high-achieving students  

Attila Szabo 

Stockholm University, Department of Mathematics and Science Education, Sweden 
attila.szabo@stockholm.se  

The present study deals with the role of the mathematical memory in problem solving. To examine 
that, two problem-solving activities of high achieving students from secondary school were 
observed one year apart - the proposed tasks were non-routine for the students, but could be solved 
with similar methods. The study shows that even if not recalling the previously solved task, the 
participants’ individual ways of approaching both tasks were identical. Moreover, the study 
displays that the participants used their mathematical memory mainly at the initial phase and 
during a small fragment of the problem-solving process, and indicates that students who apply 
algebraic methods are more successful than those who use numerical approaches. 

Keywords: High-achievers, mathematical memory, mathematical abilities, problem solving. 

Introduction and background 
Despite a growing emphasis on the identification and teaching of mathematically able pupils, much 
remains unknown about the abilities they display when solving mathematical problems. For reasons 
of social justice and equality, research has typically focused on low achieving pupils (Swanson & 
Jerman, 2006) while relatively few studies have observed the abilities of the gifted and high-
achievers (e.g. Vilkomir & O´Donoghue, 2009) or addressed those pupils’ memory functions during 
mathematical activities (Leikin, Paz-Baruch, & Leikin, 2013; Raghubar, Barnes, & Hecht, 2010). In 
particular, just a few studies (e.g. Krutetskii, 1976; Szabo & Andrews, 2017) examined the role of 
the mathematical memory in gifted and talented students’ problem-solving activities. 

Mathematical abilities 

Our innate ability to estimate quantities, known as the approximate number system, is extremely 
limited (Dehaene, 1997), but an active contact with the subject may, under favourable conditions, 
generate mathematical abilities that are both complex and structured (Krutetskii, 1976). The nature 
of mathematical abilities has engaged researchers for more than 120 years; already at the end of the 
19th century, Calkins (1894) presented, based on observations of Harvard students, significant 
information about the way mathematicians approached the subject. However, the research on 
mathematical abilities – mainly because of the dominance of psychometric approaches, and thereby 
considering abilities as innate and static – has not delivered widely accepted results during the first 
half of the 20th century (Vilkomir & O´Donoghue, 2009). Therefore, of importance for the present 
paper is the research of Krutetskii (1976), whose longitudinal observational study analysed the 
problem-solving activities of around 200 pupils. He concluded that able pupils’ mathematical 
ability, while complex and dynamic, typically comprises four broad abilities. These are 

 

 the ability to obtain and formalise mathematical information (e.g. formalised perception of 
mathematic material),  



 the ability to process mathematical information (e.g. logical thought, flexible mental 
processes, clear and simple solutions, generalized mathematical relations),  

 the ability to retain mathematical information, that is, mathematical memory (a generalized 
memory for mathematical relationships) and  

 a general synthetic component (mathematical cast of mind) (Krutetskii, 1976, pp. 350–351).  

However, while these abilities have frequently been associated with mathematical giftedness, 
Krutetskii (1976, pp. 67–70) argues they can also be displayed properly by high-achievers.  

Mathematical memory 

It is largely agreed that memory plays an essential role both in the learning of mathematics and in 
mathematical problem solving (e.g. Leikin et al., 2013; Raghubar et al., 2010). Thus, what seems to 
be crucial “is not whether memory plays a role in understanding mathematics but what it is that is 
remembered and how it is remembered by those who understand it” (Byers & Erlwanger, 1985, p. 
261). Calkins’ (1894) early study showed that the memories of mathematicians are more concrete 
than verbal, that mathematics students do not memorise facts more easily than other students and 
that, when performing mathematics, there is no difference between men and women. Some decades 
later, Katona (1940) found that rational methods are easier to memorise that random digits, while 
Bruner (1962) showed that simple interrelated representations are effective when recalling detailed 
knowledge. However, Krutetskii (1976) distinguished mathematical memory from the mechanical 
recalling of numbers or algorithms, by stressing that it is a memory consisting of generalized 
methods for problem solving. Hence, the mathematical memory does not retain “all of the 
mathematical information that enters it, but primarily that which is ‘refined’ of concrete data and 
which represents generalized and curtailed structures” (Krutetskii, 1976, p. 300). Moreover, he 
found that able students usually retain the contextual facts of a problem only during problem-
solving and forgot it instantly afterwards, but remember several months later the methods they 
applied. Conversely, low-achievers often remember contextual facts but rarely the problem-solving 
methods (Krutetskii, 1976). Cognitive psychology studies (e.g. Sternberg & Sternberg, 2012) 
indicate important distinctions between different memory systems; that is, long term memory can be 
divided into implicit and explicit memory, based on the type of the stored information. In a 
mathematical context, the implicit memory contains automatized procedures and algorithms, while 
explicit memory retains information about experiences and facts which can be consciously recalled 
and explained, such as schemas for problem-solving. Thus, according to the cognitive model, we 
may assume that mathematical memory, as defined by Krutetskii, is explicit. Besides, it is a memory 
formed at later stages (e.g. Davis, Hill, & Smith, 2000) based on the ability to generalize 
mathematical material, because at young able pupils “the relevant and the irrelevant, the necessary 
and the unnecessary are retained side by side in their memories” (Krutetskii, 1976, p. 339). 

The study 
The present study had two aims, both based on Krutetskii’s (1976) definitions of mathematical 
ability. The first was to identify the structure of mathematical abilities when high-achieving students 
solve non-routine but structurally similar problems. The second was to examine the role of 
mathematical memory during problem-solving activity. 



Participants 

Because young children and low-achievers rarely exhibit mathematical memory (Krutetskii, 1976), 
participants were 16-17 years old volunteers from an advanced mathematics programme in Swedish 
upper secondary school who had achieved the highest grade in the Swedish national test. Prior to 
data collection study, to familiarize students with the study, I spent 30 hours, over a period of four 
months, as a participant observer in their mathematics classroom. During this period, they came to 
trust me as an observer of their problem-solving activities. At the end of this process, after 
consulting their teacher, 6 students, 3 boys and 3 girls, were invited to participate. 

Tasks 

The theoretical background indicates that an appropriate way to identify the distinct structure of the 
mathematical ability is to analyse the problem-solving activities of the individuals (e.g. Krutetskii, 
1976). Moreover, the structure of a mathematical problem reveals the mathematical thinking which 
is required to solve it, because problem solving “is an activity requiring the individual to engage in a 
variety of cognitive actions, each of which requires some knowledge and skill, and some of which 
are not routine” (Cai & Lester, 2005, p. 221). However, able students typically forget the context of 
a problem shortly after solving it, but, as an impact of their mathematical memory, they are several 
months later able to recall the methods applied to solve it. Thus, in order to complete the aims of the 
study, the participants solved two problems approximately one year apart. At the first observation, 
in order to avoid as far as possible the influence of previous experiences, the main criterion was to 
select a challenging non-routine task, Task 1 (T1). When selecting Task 2 (T2) – in order to 
emphasize the role of the mathematical memory – the main criterion was to propose a task which 
was non-routine, but could be solved by methods similar to those used previously. 

Task 1: In a semicircle we draw two additional semicircles, 
according to the figure. Is the length of the large semicircle longer, 
shorter or equal to the sum of the lengths of the two smaller 
semicircles? Justify your answer. 

Task 2: In a square we draw two arbitrary contiguous squares, 
according to the figure. Is the perimeter of the large square 
longer, shorter or equal to the sum of the perimeters of the two 
smaller squares? Answer the question without measuring the 
figure. Justify your answer. 

 

Both tasks underwent substantial a-priori testing with corresponding groups of high-achievers, 
confirming that they were well-suited for the study and for the mathematical knowledge of the 
participants. This test confirmed that the students solved the proposed tasks with similar methods, 
that is, by applying the formulae for perimeters of circles and squares. 

Observations and interviews 

To avoid confounding factors during classroom interaction, which may affect pupils’ thought 
process (Norris, 2002), every participant was observed individually and, to avoid stress, given 
unlimited time to solve each task. T1 was solved and approximately one year later T2 was solved. In 



order to avoid participants’ memories being activated mostly because of recalling the circumstances 
for the first observation as an unusual element in their daily activities – that is, not because of 
recalling the previously solved task – I continued to interact with them during their mathematics 
classes between the two observations. The students were invited to solve the tasks in a think-aloud 
manner and encouraged to describe every step in the process. To minimise participants’ influence 
on each other, the tasks were solved during single days. The observations took place in a private 
room at their school and, when needed, supplementary questions were posed in order to facilitate 
the process. If a student neither wrote nor spoke for a while, the following questions were posed: 
What is bothering you? Why do you do that? What do you want to do and why? What are you 
thinking about? Pupils generally are not used to verbalise their problem-solving process (Ginsburg, 
1981), thus, in order to avoid the risk that essential parts of their cognitive activities would not be 
communicated, every observation was followed by a reflective interview. The purpose of the 
interviews was to display the hidden cognitive processes at problem-solving and to evaluate the 
levels of competence in those processes (Ginsburg, 1981). Each observation was recorded using a 
technology that digitises both speech and handwritten notes; the audio recordings were transcribed 
verbatim. Although they were given unlimited time, no participant needed more than 14 minutes to 
complete a single task. 

Data analysis 

The piloting of the tasks on corresponding groups of high-achievers indicated that the general 
synthetic component – a typical ability of gifted students (Krutetskii, 1976, p. 351) – was unlikely to 
be observed during problem-solving; consequently, this ability was excluded from the analysis. The 
analytical framework for this study contained the following abilities from Krutetskii’s framework: 
obtaining and formalizing mathematical information (O), processing mathematical information (P), 
generalizing mathematical relations and operations (G), and mathematical memory (M). 

The digital recordings resulted in an exact linear reproduction of the students’ actions, which was 
especially beneficial when performing qualitative content analysis of the material, inspired by van 
Leeuwen (2005). The participants´ actions were analysed by identifying, coding and categorising the 
basic patterns in the empirical content. This method highlighted the abilities that were directly 
expressed in the empirical material; each episode lasting at least one second in written solutions and 
verbal utterances was scrutinised for the presence of the focused abilities. Next, the data from 
observations were combined with data from the interviews. I exemplify this with data from Linda, 
who, when solving T2, didn’t say or wrote anything during the initial 62 seconds, before stating: 

Linda:  I would like to write down, start with writing a… some nice little estimations… 

After this episode she drew three squares with sides a, b and c, and wrote “a + b = c”. Thus, based 
on the observation, the presence of O was certain, but it was not possible to decide if other abilities 
were also present in the actual episode. Yet, the following sentences from the reflective interview 
proved that she recalled another task which could be solved with similar methods: 

Linda:  I got blocked until I remember similar tasks, because it’s a lot more difficult to 
solve this kind of tasks if one doesn’t have a determined way to approach it… I 
believe I will bring up the same task as last time, with triangles and squares. 



The utterances “a determined way to approach it” and “the same task as last time” indicate that 
Linda recalled a different task and its methods, thereby validating the presence of both O and M in 
the actual episode. In this way, the analysis revealed both the structure and the sequential order of 
the focused abilities, that is, every ability which occurred during the 12 problem-solving activities 
was displayed in a matrix. However, as exemplified above, some abilities (e.g. O and M) occurred 
closely interrelated during certain episodes and were extremely hard to differentiate. 

Results 
When asked, each participant confirmed that both tasks were non-routine, this being a prerequisite 
for the study. The analysis concluded in a matrix, with every episode of the process related to the 
focused abilities. As mentioned, certain abilities were closely interrelated during some episodes. As 
displayed (Table 1), M is present – solitary or interrelated – at 16% during the first and at 10.5% 
during the second observation. The most manifested ability is P, which increased from 53% to 67% 
a year later, while O, the second most exposed ability, decreased from 47% to 31.5%. 

 O O & P O & M P G M 

Task 1 31% 4% 12% 49% 0% 4% 

Task 2 20% 1.5% 10% 65.5% 2% 0.5% 

Table 1: Average time for the focused mathematical abilities in the problem-solving process 

According to the a-priori testing of the tasks, G could be revealed when numerical results – that is, 
solutions for particular cases – were developed into general, algebraic solutions. Thus, every student 
who offered purely numerical results – namely Erin, Sebastian and Larry – was encouraged to 
consider general solutions. Yet, when solving T1 and asked if their numerical results apply also for 
arbitrary semicircles, none of them could generalize (G) their findings: 

Erin: I don’t know how I should prove this … if I have to do some general method. 

Sebastian: I don’t know if I shall demonstrate that it should be the same thing there, for every 
measure. But now in my head it sounds like that it should be so. 

Larry: Yes, I suppose, but I don’t know how to confirm it, it only feels that way. 

Thus, the increase of G from 0% to 2% (Table 1) occurred because during the reflective interview 
connected to T2, when offered additional opportunities to reflect over the patterns in her numerical 
results, Erin performed a successful generalization of the obtained solutions, and stated: 

Erin: I’ve never made a general solution like this ... But it was fun ... Especially when it 
concluded in something. 

When concerning the efficiency of the applied methods, the analysis shows that Earl, Linda and 
Heather solved both tasks properly by applying general, algebraic methods. Conversely, purely 
numerical approaches didn’t lead to fully acceptable results. The most efficient solutions were 
offered by Linda, who applied the same algebraic model (and its identical steps) at both tasks. 

 



The role of mathematical memory 

The recalling of the applied methods several months after solving a problem is a typical display of 
mathematical memory (Krutetskii, 1976). Thus, another main criterion for the study was that both 
tasks could be solved with similar methods. However, only Earl and Larry associated T2 to T1: 

Earl: We got a very similar task last year, when we had the circle and that semicircle. 

Larry: We did a pretty similar task last time, when it was something like this, something 
with the radius or diameter on them. 

Earl and Larry applied identical methods at the individual level when approaching both tasks. That 
is, Earl solved both tasks by using the same algebraic method, while Larry approached both tasks 
with the same numerical method. However, Earl’s algebraic method gave accurate solutions while 
Larry couldn’t solve any task properly. The other four students said that they didn’t associate T2 to 
T1. But even though not recalling T1, they approached both tasks in identical ways at the individual 
level. For example, when Linda solved T2, despite stating that she didn’t think at all of T1, she 
applied the same general method as a year before: 

Linda:  I will bring up the same task as last time, with triangles and squares. It is a bit the 
same thing ... I connect very often geometrical tasks to that. I have written that 
solution many times and I can see every step in the process in front of me. 

As seen above, Linda refers to a generalized method which she associates to a geometrical task – 
about finding the side of a square drawn in a right triangle – which differs considerably from the 
proposed tasks. Yet, influenced by her mathematical memory (Krutetskii, 1976, p. 300) she states 
that “It is a bit the same thing” and applies the same method when solving both T1 and T2. 

Heather as well used identical algebraic approaches for both tasks a year apart: 

Heather (T1): I needed a common variable. Otherwise it will be difficult to calculate. 

Heather (T2): I needed some relation among these sides in that and the large square’s sides. 
Otherwise it will be difficult. 

Also the individual approaches of Erin and Sebastian were respectively identical; Erin approached 
both tasks by reasoning, testing numerical values and applying particular solutions, while Sebastian 
reasoned carefully before requesting the use of numerical values at both occasions. Thus, every 
participant approached both tasks identically at the individual level. The analysis also shows that M 
is displayed mainly at the beginning of the process, for recalling mathematical relations and 
problem-solving methods; moreover, none of participants modified the initially selected methods. 

Discussion 
One of the aims of this study was to display the role of the mathematical memory (M) when high-
achieving students solve non-routine tasks, which can be solved with similar methods. Despite its 
small proportion, M seems to play a pivotal role in problem-solving because the participants 
selected their methods at the early stages of the process and the methods were not changed later. 
Thus, by confirming earlier results (e.g. Szabo & Andrews, 2017), it seems that the choice of 
methods is directly influenced by M and it is critical for the success of the problem-solving. 



However, unexpectedly, only two of the six participants recalled the solution process to the earlier 
task, contradicting Krutetskii’s (1976) finding that able students recall the process but not the 
context of earlier problems. But even when not recalling T1, every participant approached both 
tasks in the same individual way. For example, Linda’s method, connected to a square in a triangle 
and apparently very different from what is predicted, is a general approach that she uses for non-
routine geometrical tasks. And even though the individual approaches of Erin, Larry and Sebastian 
were not successful when solving T1, they were repeated a year later. Thus, it seems that the 
participants rely on methods which appear to be inflexible and applied regardless of their success. 
The general structure of the participants’ mathematical abilities indicates that O and M decrease 
while P increases at the second observation. Hence, it is not unreasonable to assume that the 
displayed stability of the individual approaches made O and M more efficient at T2, and therefore 
students had a larger focus on P. And even if none of the students could generalize numerical results 
at the first observation, Erin generalized her results during the interview after T2. Thus, when 
additional opportunities were offered, by evolving the patterns in her numerical results, which may 
be interpreted as a form of convergent thinking (Tan & Sriraman, 2017), Erin could improve the 
quality of her problem solving. These findings may suggest that some participants are unlikely to 
have experienced teaching focused on methods of generalization, because the individual structure of 
the mathematical ability depends on received instructions (Krutetskii, 1976). However, by 
confirming earlier studies (e.g. Krutetskii, 1976), the methods of this study were not able to 
differentiate M from O during episodes when students did not say or write anything; thus, a better 
investigation of the mathematical memory requires further studies. In addition, the study shows that 
mathematical memory has a key role during the early stages of problem-solving (e.g. Szabo & 
Andrews, 2017) and that individual problem-solving methods seem to be very stable and apparently 
independent of their efficiency when high-achievers solve non-routine tasks. Finally, the study 
indicates that, if given additionally opportunities to reflect over their numerical solutions, some 
students might be able to display their ability to generalize mathematical relations and operations. 
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The present study aimed at investigating the mathematical values embedded in the Turkish Middle 
School Mathematics Applications Course Curriculum (MACC). For this purpose, MACC was 
carefully analyzed by considering main components of the curriculum. The findings indicated that 
all of the mathematical values, namely objectism, rationalism, control, progress, openness and 
mystery, were embedded in MACC. Although the balance among the embedded mathematical 
values in MACC was not equal, the findings clearly proved that the mathematical values were taken 
into consideration by curriculum developers, and thus it might be expected to raise awareness 
among mathematics teachers, students as well as textbook writers about the values in mathematics 
education. 

Keywords: Mathematical values, mathematics applications course, curriculum analysis.  

Background of the study 
In almost all field of human endeavor, astounding developments and advancements are indebted to 
mathematics to a great extent. Among the other disciplines, “… mathematics was considered the 
Queen of the sciences.” (Gregorian, 2009, p. ii). Mathematical literacy has always been at the heart 
of nations’ capacity for economic growth and social welfare. In other words, there is no doubt that 
mathematics is not only vital to economic prosperity; but also a fundamental skill for life. Thus, it is 
essential for all societies to provide learning opportunities in which students will possess and use 
the understanding of mathematics purposively and interactively. Although mathematics is 
considered as one of the crucial subjects of school, it is a well-known fact that “…many students 
leave school with negative attitudes towards mathematics; some dislike the subject, others feel 
inadequate about it, still others feel it is irrelevant in their lives. This is an unacceptable outcome of 
school mathematics.” (Education Department of Western Australia, 1998, p.9). In many classrooms, 
mathematics has delivered in a way that follows a textbook under the guidance of a teacher with 
little emphasis on affective side of mathematics. Thus, most of the students perceive mathematics as 
a non-creative, mechanical, value-free and teacher- or textbook writer-invented subject (Diamond, 
2001). Seah, Andersson, Bishop, and Clarkson (2016) argued that such negative perceptions held by 
many students are not due to the nature of mathematics itself. It is most likely as a result of 
developing and implementing a mathematics curriculum which is full of concepts, skills, and 
procedures but not explicitly include the values of mathematics and the values of mathematics 
education. Indeed, values are powerful tools for promoting cognitive and affective development in 
mathematics education since they lead teachers’ and students’ interests, thoughts, decisions, 
preferences and behaviors about mathematics (Bishop, 2008; Corrigan, Gunstone, Bishop, & 
Clarke, 2004). The values expressed by teacher either intentionally or unintentionally in the context 
of the mathematics classroom may root in his/her personality, pedagogical approach and 
instructional materials preferred to use, etc. However, the important point is here that “what kinds 



of values are embedded in the intended mathematics curriculum?” Because as a teacher, it is his or 
her responsibility to implement the curriculum as intended. Therefore, analysis of curriculum 
regarding mathematical values will shed lights on what kind of values that a teacher is expected to 
convey into instruction as well as what kind of an image of mathematics is going to be presented for 
students.  

Affective issues in mathematics learning and teaching have been a prolonged and persistent interest 
among researchers. McLeod (1992), attributed to as the pioneer in work on the affective dimension 
of mathematics education (Gil, Blanco, & Guerrero, 2006), identified three main constructs of 
affect as beliefs, attitudes and emotions “...representing increased levels of affective involvement, 
decreased levels of cognitive involvement…” (p. 579). The scope of the mathematics-related affect 
has broadened with the addition of a fourth construct – values (sometimes including morals /ethics) 
– by such leading works of Bishop (2001); De Bellis and Goldin (2006); Leder and Grootenboer 
(2005). Considering the studies on the affective constructs such as beliefs, motivation, anxiety and 
attitudes, research on values in mathematics education is still insufficient (Zan, Brown, Evans, & 
Hannula, 2006). Leder and Grootenboer (2005) stated that the field of affective domain has been 
dominated by the studies on beliefs and attitudes, yet there has been a few number of study 
concerned with values. Although different conceptualizations of values in mathematics education 
have been described in the literature, the Bishop’s (1988) classification of the mathematical values 
provides a widely-used framework while analyzing mathematical values (Hannula, 2012; Seah, 
1999). Besides, there is no doubt that mathematics is the sum of the human activities, and thus the 
Bishop’s framework (1988) not only gives room for discussing the values from the socio-cultural 
perspective but also corresponds to White’s (1959) three components of culture – ideology, 
sentiment, sociology. In this respect, the present study is primarily concerned with “mathematical 
values” and thus the Bishop’s framework was chosen to analyze the mathematical values. 
According to Bishop (1988), Rationalism-Objectism (the ideological component of mathematical 
values), Control-Progress (the sentimental component of mathematical values), and 
Openness/Mystery (the sociological component of mathematical values) are the mathematical 
values grouped as three pairs of complementary values. Table 1 summarizes each pair of 
mathematical values.  

During the past decade, there have been the bulk of theoretical and research-based arguments on 
values in mathematics education (e.g. Values in mathematics and science education by Bishop, 
2008; Identification of a learner’s value orientations in mathematics learning by Seah, Zhang, 
Barkatsas, Law, & Leu, 2014), yet the number of the studies on mathematical values embedded in 
math curricula is still very limited. In this respect, the present study aimed to is to explore the 
mathematical values embedded in the Turkish Mathematics Applications Course Curriculum 
(MACC) by addressing the following research questions: (1) What are the mathematical values 
embedded in the MACC? (2) Where are the mathematical values located in the components of the 
MACC?  



 
Three Pairs of Mathematical Values 

Rationalism Objectism 
Focuses on the development of students’ mathematical 
reasoning through discussions, explanations, evaluating 
their way of solutions etc.  (Bishop, 1988, p. 62). 

Focuses on concretizing abstract ideas through the use 
of symbols and objects, promoting to use different 
kind of representations  (Corrigan, et al., 2004) 

Control Progress 
Focuses on control ensured by the nature of mathematics 
for the problems related to both natural phenomenon and 
social environment through application of mathematical 
knowledge and favors stability (Seah & Bishop, 2000).  

Puts emphasis on change and progress in society by 
means of mathematical knowledge (Seah & Bishop, 
2000). 

Openness Mystery 
Focuses on transparency/verification aspects of 
mathematical ideas and conclusions through proofs 
(Corrigan, et al., 2004) 

Focuses on mystique and unclear origins of 
mathematics and puts emphasis on dehumanized 
knowledge, intuition, wonder (Corrigan, et al., 2004) 

Table 1: Three Complementary Pairs of Mathematical Values 

In 2012, a comprehensive change took in the Turkish educational system. The length of compulsory 
education was increased from 8 to 12 years and redefined the system into three levels (12-years 
compulsory education covering 4-years elementary, 4-years middle and 4-years high school) and 
this structural reform required for the curricular revision as well. One of the results of the curricular 
revision was the inclusion of more than twenty elective courses offered for the Turkish middle 
school students who can able to choose max.6 hours in a week. Along with the fact that 
mathematics is one of the core subjects of the curriculum, “Mathematics Applications Course” 
(MAC) is one of the elective courses for middle school students since 2013-2014 academic year. 
According to statistics, MAC is the most popular elective course among 5th-7th graders in 2014-
2015 academic year (Ministry of National Education [MONE], 2015). The main purpose of MAC is 
not only to improve students’ mathematical knowledge and skills but also to like mathematics and 
develop positive attitudes towards mathematics through the learning opportunities that allow 
students to practice mathematics (MONE, 2013).  

Keeping in mind that the concept of a value is associated with “what is desirable, preferable, 
worthy, important, right, or beneficial” (Bishop, Seah, & Chin, 2003, p. 723) by different scholars 
and they, as cultural products, depend on personal choices, preferences and decisions, the focus of 
the present study is on the mathematical values of the mostly chosen elective math course by the 
Turkish middle school students. In this respect, the present study might shed lights on what kind of 
values about mathematical knowledge and discipline that a teacher is expected to convey into 
instruction as well as what kind of an image of mathematics is going to be presented for students. 
Further, the results of the study might raise the awareness of curriculum developers, mathematics 
teachers, and textbook writers about the values in mathematics education. It is also expected that the 
results of this study may contribute to the math-related affect studies by giving an example from the 
values of mathematics in the Turkish Mathematics Applications Course Curriculum. 

Method 
This study was designed to explore the mathematical values in the MACC (5th-8th grade). For this 
purpose, data were collected through document analysis. The main data collection source of this 
study was MACC published by the MONE. In this respect, the focus of the present study is on the 
intended curriculum and limited to the MACC which is available on the MONE’s official website. 



Before the data analysis process, the framework for curriculum analysis was developed by 
considering the literature on the mathematical values and the structure of MACC as well as the 
research questions. In order to portray the mathematical values, namely “Rationalism-Objectism; 
Control-Progress and Openness-Mystery”, Seah’s outline of the major signals for the mathematical 
values was adapted (Seah, 1999, pp.110-111). Afterwards, MACC was examined carefully to find 
out what type of mathematical values embedded in which part of the curriculum. MACC consists of 
8 main chapters as (1) Introduction part; (2) Aims of MAC; (3) The developmental characteristics 
of middle school students; (4) The structure of core mathematics curriculum; (5) Explanations about 
the implementation process of MACC; (6) Basic principles of MAC; (7) Assessment and evaluation 
process and (8) Learning objectives of MACC. While locating and analyzing the data, the 
researchers independently read all chapters line by line and coded all instances of the mathematical 
value statements in MACC according to the framework. To establish internal consistency, inter-
coder reliability was carried out using the formula (Reliability= Number of agreements / Total 
number of agreements + Disagreements) proposed by Miles and Huberman (1994). A high 
agreement score (0.92) between the two coders (the researchers) was obtained. Then, the basic 
descriptive statistics including frequencies and percentages were carried out by means of IBM 
SPSS.23. 

Results 
The mathematical values in the Turkish Mathematics Applications Course Curriculum 

The major focus of the content analysis here was to identify all instances of the mathematical values 
in the written curriculum, namely MACC. The findings indicated that totally 39 value signals of the 
mathematics embedded in MACC. As given in table 2, it is obvious that objectism (f = 10) was 
emphasized more than rationalism (f = 6); progress (f = 8) was emphasized more than control (f = 2) 
and openness (f = 12) was emphasized more than mystery (f = 1). According to the results, while 
“openness” (f = 12) was the most-emphasized value; there is only one reference to the value of 
“mystery” (f = 1) in MACC. 

Mathematical Values Number of value signals (f ) Proportion (%) 
Rationalism 6 15.4  
Objectism  10 25.6  
Control 2 5.1 
Progress 8 20.5 
Openness 12 30.8 
Mystery 1 2.6  
Total  39 100 

Table 2: The proportional distribution of mathematical value embedded in MACC 

The place of the mathematical values in MACC  

The last research question of the study aimed to portray the parts of MACC in which the 
mathematical values are embedded. As given in Table 3, the results indicated that the mathematical 
values mostly located in the learning objectives (f = 14).  However, both in the introduction part and 
assessment part of MACC, only three statements referring to the mathematical values were found.  

 

 



 
Mathematical values Introduction Aims & Principles Objectives Teaching & Learning  Assessment  
Rationalism 1 2 1 1 1 
Objectism 0 2 6 1 1 
Control 0 0 1 1 0 
Progress 1 3 3 1 0 
Openness 1 4 3 3 1 
Mystery 0 0 0 1 0 
Total 3 11 14 8 3 

Table 3: Frequencies of the mathematical values embedded in the parts of MACC 

Considering the Introduction part, it was found that the value of rationalism was embedded in the 
statements explaining the importance of providing the learning opportunities to develop students’ 
mathematical thinking as well as finding reasonable, rational and logical solutions/answers for 
problems. It was also found that the value of openness was conveyed in the expressions about the 
importance of cooperative learning. In addition to rationalism and openness, the value of progress 
was highlighted in the introduction part through the statements putting emphasis on making 
connections with mathematics and daily life. Further, the value of rationalism, objectism, openness, 
and progress were included in part of the Aims and Principles of MACC. More specifically, the 
value of rationalism was embedded in such statements that underline the use of mathematical 
reasoning; focusing on symbolization and modelling portrayed the value of objectism; putting 
emphasis on group working, sharing/discussing ideas addressed to the value of openness; and the 
statements signifying the relationships between mathematics and the other disciplines as well as 
daily life were found as the indicators of the value of progress. It’s also noting worth that in the 
following statement, the attention aimed to draw on the mathematical values “…it is important for 
students to develop true values about mathematics” (p. 1). However, there was no explanation 
related to what are the true values about mathematics provided in this part of MACC. In order to 
portray the mathematical values, all learning objectives (totally 21) were analyzed in line with the 
framework. As given in Table 3, the mathematical values embedded in MACC were mostly located 
in the part of the Learning Objectives. The objectives putting emphasis on the use of appropriate 
mathematical symbols while solving problems were found as the indicators of objectism; asking 
students to discuss their solutions process through mathematical reasoning were the indicators of 
rationalism. Additionally, the learning objectives that put emphasis on the development of students’ 
problem solving abilities through daily life math problems were considered as the indicators of 
progress, and the objectives aimed to promote students’ procedural fluency through the tasks asking 
to test or evaluate the way of solution process were the signs of control. Further, the learning 
objectives aimed to improve students’ problem solving skills through sharing/discussing ideas and 
pose questions/problems were found as the indicators of openness. Considering the part of Teaching 
and Learning Approach, it was found that while the value of objectism was fostered through the 
statements suggesting the use of different kinds of representations in problem solving process, the 
value of rationalism was embedded in the explanations related to the characteristics of problems 
that should promote students’ mathematical reasoning. The indicators of control were found in the 
sample problem that required using of mathematical knowledge in an attempt to change the 
environment. The sample problem also indicated the value of progress by means of addressing the 
relationship between mathematics and daily life. The statements emphasizing the idea of sharing 
information and collaborative working were found as the indicators of the value of openness. 



Besides, the statement suggesting the use of interesting mathematical games was found as the only 
one indicator of mystery. In the last part of the MACC, Assessment and Evaluation Process, three 
types of mathematical values were found. The value of rationalism was embedded in the statements 
suggesting the development of students’ reasoning and logical thinking skills should be assessed by 
such methods as classroom observations, self-evaluation reports, etc. Besides the value of objectism 
was found in the statements that ask teachers to evaluate students’ ability to use different 
symbolizations while explaining their problem solving process. Finally, the value of openness was 
implied in the suggestions about the assessment of collaborative work.  

Conclusion and discussion 
The present study was designed to examine the mathematical values embedded in MACC which is 
the most popular elective course among the Turkish middle school students in 2014-2015 academic 
year. For this purpose, the written curriculum was analyzed by the researchers in a detailed manner. 
In general, it can be concluded that all of the mathematical values, namely objectism, rationalism, 
control, progress, openness and mystery, are embedded in MACC. Although the balance among 
these embedded mathematical values in MACC is not equal, the findings clearly proved that the 
mathematical values are taken into consideration by curriculum developers. Further, the results 
indicated that the value of openness was the mostly-embedded mathematical value in MACC and 
thus, it can be concluded that the democratic side of mathematics is intended to be promoted 
through communicating with the mathematical ideas and questioning the mathematical facts. In 
other words, the intended implementation process of MAC seems more likely to focus on the 
appreciating the role of public sharing and discussions in facilitating understanding of mathematics. 
On the other hand, a considerable amount of the signals were also placed on the value of rationalism 
and objectism in MACC. This situation might support a widespread image of mathematics as 
abstract, theoretical, ultra-rational discipline (Ernest, 2004).  

One of the more noteworthy findings to emerge from the present study is that both the value of 
progress and control were rarely mentioned in the curriculum. When considering one of the main 
aims of MAC that provide learning opportunities for students to experience mathematics through 
mathematical problems and to develop their mathematical knowledge, it is quite surprising. 
Besides, there was only one reference related to the value of mystery found in MACC. Such little 
emphasis on the value of mystery might limit the opportunities indicating the mystical, surprising, 
and fascinating side of mathematics. Taken together, the results of the present study indicated that 
the image intended to transmit through MACC might be mathematics as symbolized, open to 
discussion, theoretical and questionable discipline. What research has found about the mathematical 
values embedded in math curricula yielded the similar results with the present study (Clarkson & 
Bishop, 2000; Seah et al., 2016).  Moreover, the following statement “…it is important for students 
to develop true values about mathematics” (MACC, p.1) might be considered as evidence that 
explicitly mentioned “values about mathematics” in MACC. Nevertheless, it is too vague for 
teachers to interpret what are the true values about mathematics, so further explanation should be 
provided in the written curriculum.  

Considering the place of the mathematical values, the results indicated that the value signals were 
embedded in almost all parts of MACC. However, while the value of openness was placed in each 
part of the MACC, the value of mystery was only mentioned in the teaching and learning approach 



part. One of the main reasons behind this situation might be due to MAC itself. In other words, 
MAC mainly focuses on the development of students’ problem solving and mathematical thinking 
skills through the applications of mathematics. Thus, students are expected to learn collaboratively; 
to solve and pose problems from daily life and other areas of science; to share and discuss their 
ideas through mathematical reasoning and to test and evaluate their problem solving process rather 
than focusing on mystic and fascination sides of mathematics. Taken together, these results clearly 
indicated that the mathematical values were mostly embedded in the form of implicit statements in 
the different parts of MACC. Therefore, the reflection of these mathematical values from the 
intended to enacted curriculum might probably stay as hidden and vague. On the one hand, the 
image of mathematics embedded in the curriculum will shape students’ future choices and career 
plans about mathematics; on the other hand it will be shaped by the mathematical values hold by the 
curriculum developers. Therefore, it is essential to raise the awareness about the values in 
mathematics education as well as to conduct more studies on the mathematical values in the 
intended, enacted and attained math curriculum.     
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In this article, the mathematical thinking of four Finnish pupils is reported using two temporally 
different data sets: problem-solving processes and view of mathematics. While the pupils seem 
similar on the surface level (high achievers, successful problem solvers, enjoy mathematics, 
motivated to learn mathematics), a closer look at their problem-solving processes and view of 
mathematics reveal very different strengths and weaknesses in their mathematical thinking. Most of 
the similarities in this study were found in individual pupils’ problem-solving processes and view of 
mathematics. 

Keywords: Problem solving, view of mathematics, affect, metacognition, meta-affect. 

Introduction 
Developing mathematical thinking is one of the key tasks for mathematics instruction in the Finnish 
curriculum (FNBE, 2014, 2004). And indeed, Finnish pupils have succeeded well in international 
studies that assess pupils’ mathematical thinking (PISA and TIMSS; see e.g. OECD, 2014; Mullis, 
Martin, Foy, & Arora, 2012). However, the most recent national and international studies show that 
the mathematics performance of Finnish pupils is descending (e.g. Välijärvi, 2014; Rautopuro, 
2013). Additionally to the alarming trend in mathematics performance, we know very little about 
Finnish comprehensive school pupils’ mathematical thinking that go beyond paper tests. Thus, a 
quantitative research study was conducted with the aim of describing what characterises Finnish 15-
year-old pupils’ mathematical thinking. 

On the way to describe what characterises Finnish pupils’ mathematical thinking, the study reported 
in this article examines four high-achieving Finnish pupils’ mathematical thinking through the 
intertwined relationships of problem-solving processes and view of mathematics. While some of the 
results of individual pupils’ mathematical thinking have been discussed in previous publications 
(Viitala, 2013; 2015; 2016a), the purpose of this paper is to bring the results together, and answer 
what similarities and differences related to mathematical thinking can be found between these 
pupils. With this question, we can reveal some of the possible trends in skills and competences that 
the Finnish high-achieving pupils might have in their mathematical thinking. 

Theoretical framework 
Developing pupils’ mathematical thinking is in the heart of mathematics education, also according 
to the Finnish curriculum (FNBE, 2014). While research in mathematics education does not seem to 
have a common understanding of the meaning of mathematical thinking, Schoenfeld (1992) 
recognised five aspects that are important in a study on mathematical thinking: the knowledge base, 
problem-solving strategies, monitoring and control, beliefs and affects, and practices. Similar 
findings have also been found in connection to literature on problem-solving performance (Lester 
1994), and are also listed as part of final-assessment criteria in the Finnish curriculum (see FNBE 
2014, pp. 433-434). 



Similarly as the most recent theories on affect, mathematical thinking can be viewed through two 
temporally different aspects: state and trait (cf. Hannula, 2011; 2012). On one hand, mathematical 
thinking is always situational (state). Following Schoenfeld’s (1992) categorisation, it is influenced 
by the pupils’ knowledge base and heuristics, and guided by their metacognitive skills, affects and 
classroom practices. In this study, mathematical thinking is studied through problem-solving 
processes. In other words, ‘pupils’ activities, actions and explanations during problem solving are 
interpreted as visible signs or expressions of their mathematical thinking’ (Viitala, 2015, p. 138). 

Pupils’ problem-solving behaviour is influenced by pupils’ metacognition, affect and meta-affect 
that occur in a problem-solving situation. The successful application of problem-solving activities at 
the correct moment is a result of metacognitive skilfulness (e.g. van der Stel, Veenman, Deelen, & 
Haenen, 2010), affect influence the problem-solving situation for instance through the feeling of 
confidence, and meta-affect transforms individuals’ emotional feelings (DeBellis & Goldin, 2006) 
and directs problem solving behaviour (Carlson & Bloom, 2005). 

On the other hand, problem-solving situations can show patterns of thought that can be interpreted 
as signs of more stable ways of thinking. Some of these patterns can also be revealed through 
pupils’ view of mathematics (see e.g. Viitala, 2016a). View of mathematics draws from 
psychological theories. It is a mixture of cognitive, motivational and emotional processes that 
include for instance beliefs, attitudes, values, feelings and motivation (Hannula, 2011; 2012). In this 
study, view of mathematics is studied through four components: mathematics (as science and as a 
school subject), oneself as a learner and user of mathematics, learning mathematics, and teaching 
mathematics (Pehkonen, 1995, cf. Op’t Eynde, de Corte, & Verschaffel, 2002). 

Methods 
Data collection 

At the time of data collection, the four pupils (Alex, Daniel, Emma and Nora) were 15 years old and 
in their 9th and final year of compulsory school in Finland. Additionally, they were all high 
achievers (mathematics grades between 9 and 10 on a whole number scale of 4 to 10). 

The data was collected in three cycles over the course of three months. In each cycle, one 
mathematical task was solved in an ordinary classroom situation as a ‘main task’. The pupils solved 
the tasks individually but they were allowed to talk about the tasks with a friend or ask for help 
from the teacher. In each cycle, the pupils were video recorded while they solved the task(s) in class 
and their solutions on paper were collected. Below, there is an example of a main task (School 
Excursion, OECD, 2006, p. 87). 

A school class wants to rent a coach for an excursion, and three companies are contacted for 
information about prices. 

Company A charges an initial rate of 375 zed plus 0.5 zed per kilometre driven. Company B 
charges an initial rate of 250 zed plus 0.75 zed per kilometre driven. Company C charges a flat 
rate of 350 zed up to 200 kilometres, plus 1.02 zed per kilometre beyond 200 km. 

Which company should the class choose, if the excursion involves a total travel distance of 
somewhere between 400 and 600 km? 



In each cycle, the pupils were interviewed individually. The interviews took place either on the 
same day, or on the next day after solving the task in the classroom. The interviews contained two 
parts. The first part concentrated on affective traits and treated the following themes: pupil’s 
background, mathematical thinking, and pupil’s view of mathematics (following the categorization 
of Pehkonen, 1995; see example questions in Table 1, Viitala, 2016a, p. 1295). This part of the 
interview was semi-structured and focused (Kvale & Brinkmann, 2009). 

Theme Example questions 

Background Tell me about your family. 
Mathematical thinking 

Mathematics 
What does mathematical thinking mean? / How do you recognise it? 
What is mathematics as a science? / Does it exist outside of school? (How? Where?) 

Oneself and mathematics Is mathematics important to you? / Does it help you think logically? (How?) 

Learning mathematics How do you learn mathematics? / Is it most important to get a correct answer? 
Teaching mathematics Does teaching matter to your learning? (How?) / What is good teaching? 

Table 1: Interview themes and example questions. 

The second part of the interview was about problem solving. The classroom data was used as 
stimuli when the pupil’s problem-solving process was discussed. The pupils were asked to explain 
their thinking and actions during the problem-solving situation and additional questions were asked 
(e.g. what are you thinking now? Why are you doing so? What did you feel when you read the task? 
Did you think about your own thinking when solving the task?). 

Finally, in each interview, the pupils were asked to assess their confidence before, during and after 
solving the problem, as well as their confidence in school mathematics using a 10 cm line segment 
(scale from ‘I couldn’t do it at all’ to ‘I could do it perfectly’). All interviews were video recorded. 

Analysis 

Following the state and trait aspects of the study, the analysis was divided into two sections: 
problem solving and view of mathematics. The problem-solving processes were analysed first by 
going through the problem-solving phases introduced by Carlson and Bloom (2005): orienting, 
planning, executing and checking (cf. Polya, 1957). Then the results on problem-solving behaviour 
were complemented with metacognitive activities (orientation, planning, evaluating and elaboration 
van der Stel et al., 2010), affect (state and trait, as well as cognition, emotion, motivation; Hannula, 
2011; 2012) and meta-affect (DeBellis & Goldin, 2006) emerging in problem-solving processes. 
Finally, the pupils’ confidence to solve the problems was analysed. 

The first analysis of the pupils’ view of mathematics followed the themes of data collection 
(Pehkonen, 1995). After condensing the results, a pupil profile was created to be used as 
background information about the pupil. Pupil profile is a short description of the pupil that is based 
on the pupil’s mathematics grade, motivation to learn mathematics, and the core of his view of 
himself as a learner of mathematics (ability, success, difficulty of mathematics, and enjoyment of 
mathematics, following Rösken, Hannula, & Pehkonen, 2011). 

In the end, the results of problem solving and view of mathematics were compared to see if there 
are similarities in pupil’s problem-solving skills (state) and competences found through pupil’s 
view of mathematics (trait). More details of the methods used in the study are reported for instance 
in Viitala (in press). 



Results 
On a surface level, Alex, Daniel, Emma and Nora seem quite similar: they are all high achievers in 
mathematics, they enjoy mathematics, and they are motivated to learn mathematics (see excerpts in 
Table 2). They are also successful problem solvers, that is, they could solve all the problems given 
to them in the study and justify their answers and solutions. However, a deeper look at their 
problem solving and view of mathematics introduce four pupils with a very different skills and 
competences. In the following, the key results of each pupil will be introduced individually. 

Alex is very fluent and thorough mathematics learner and problem solver. He can move naturally 
between different phases of problem solving. He is aware of his own thinking and fluent in 
explaining and justifying his cognitive and metacognitive actions in problem solving. Similarly, 
when explaining his learning of mathematics, he says he is actively seeking for connections 
between new knowledge and prior knowledge, and he is able to spontaneously give examples of this 
behaviour. He says he trusts his own thinking more than his calculations, and shows to be able to 
direct his behaviour according to his affects in problem solving. He is confident in school 
mathematics but in the interviews, he constantly compares his abilities to mathematics as a science 
and recognises that there is much more than school mathematics (more results in Viitala, 2013; 
2016b). 

Whereas Alex seems to be very fluent in every aspect of mathematical thinking studied in this 
research project, from a similar starting point, Daniel shows somewhat different strengths in 
mathematics. Unlike any of the three other pupils, he is extremely confident in mathematics. He 
says that mathematics is easy for him, and he shows to be very aware of his success in mathematics. 
His confidence seems to guide also his problem-solving processes. He is able to move fluently back 
and forth between problem-solving phases and is skilful in performing metacognitive acts. 
However, even though (or because of) learning mathematics and solving problems are easy for him, 
he cannot explain the processes he goes through in or for learning, and he has problems in 
explaining his problem-solving actions after the problem-solving situation. An illustrative example 
of this situation is Daniel’s explanation about how he learns mathematics: pieces just click together 
or things become familiar (more results in Viitala, in press). 

Similarly as in Daniel’s case, also Emma’s learning of mathematics and problem solving are 
strongly influenced by her confidence in mathematics, or more precisely, her lack of confidence. 
Because of the uncertainty in mathematics, for Emma, learning takes time and effort. She says she 
learns every topic as a separate entity, and she is able explain the steps that are needed for her to 
learn a new thing. Similarly, she uses a considerable amount of time for orienting and planning in 
problem solving. After understanding the problem and the given data, she is able to follow her plan 
through and check her solution. It seems that Emma‘s uncertainty in mathematics makes her work 
harder, and through hard work, she succeeds in mathematics. Moreover, she says that succeeding in 
mathematics and understanding it, makes it worthwhile studying. On the other hand, affect can also 
be an obstacle in her problem solving, since she does not seem to have efficient tools to overcome 
the feeling of getting stuck (more results in Viitala, 2015; 2016a). 

Also for Nora, learning mathematics takes time and effort but after learning something, applying is 
easy. She says that she is quite confident in mathematics and likes learning mathematics very much. 



She is capable in explaining her thinking and problem solving, and connecting mathematics to her 
own life. She also has a diverse view of mathematics as a science. In problem solving, she is 
flexible in directing her actions based on the affective states occurring in problem-solving 
situations. She is also fluent in moving between orienting, planning and executing in problem 
solving. However, given the choices she had made while planning, she is happy with the first 
answer she gets, and does not check her results (more results in Viitala, 2015). 

 Ability and success Difficulty of mathematics Enjoyment of 
mathematics 

Motivation to learn 
mathematics 

Alex Confident in math; deserves 
the high grade: knows 
school math quite 
thoroughly 

Learning ‘a separate thing’ is 
easy, connecting it to ‘other 
things’ might take time 

Learning math is fun 
and interesting; 
routine learning is 
boring 

Good grade and 
future studies, also 
understanding the 
issue at hand 

Daniel Very confident in math; can 
do math well; deserves the 
high grade (active learner, 
succeeds in tests) 

Learning math is easy and it 
does not take much time or 
effort 

Math is enjoyable, 
even fun 

Math is needed 
through life; the 
most important 
school subject 

Emma Not confident in math; could 
not get a better grade in 
math 

Learning math takes time and 
effort 

Learning math is 
irritating and tiring; 
succeeding and 
understanding is fun 

Wants to succeed in 
mathematics and be 
proud of herself; 
future studies 

Nora Quite confident in math; not 
perfect in math but deserves 
the high grade in school 
math (active learner, 
succeeds in tests) 

Math can be easy or difficult, 
more on the easy side; 
learning takes time and 
effort, applying after that 
does not 

Learning math is 
interesting, likes math 
very much 

Good grade; wants 
to learn math 

Table 2: Examples of pupils’ own statements about their view of mathematics (cf. pupil profile). 

Some reflections of the results 

In addition to forming descriptions of pupils’ mathematical thinking, and showing pupils’ strengths, 
the study also revealed issues that pupils could work with in order to develop their mathematical 
thinking. For instance, even though Alex was fluent in problem solving and school mathematics, he 
did not relate the problems to real life and his view of mathematics outside school was quite limited 
(see Viitala, 2013, 2016b). Recognising mathematics more in his own life could enrich Alex’s view 
of mathematics, and through that, also his understanding of school mathematics might develop. 
Daniel, on the other hand, had problems explaining his thinking after the problem-solving situation 
and had similar problems with explaining his mathematics learning (see Viitala, in press). Problem 
solving and learning mathematics might be easy for Daniel in compulsory school, but what happens 
if (when) the situation changes? Becoming aware of his own learning and problem-solving 
processes could help him cope in new situations and develop his metacognitive skills not only in 
mathematics but also in other school subjects. 



Emma’s weak point was her uncertainty which she had turned into success in problem solving and 
learning of mathematics. She had overcome some of the uncertainty with the support of her family 
(see Viitala, 2016a). However, because she was not confident in mathematics, she learnt every topic 
in mathematics as its own entity, and did not connect it to prior knowledge. This might also hinder 
her learning. Hence, supporting Emma emotionally could open doors to more thorough learning and 
understanding of mathematics. Finally, Nora’s results were not always correct, and both her 
activities and explanations showed that she does not evaluate her problem-solving process or check 
her results (see Viitala, 2015). Supporting her to look back, and perhaps exposing her more to, for 
instance, open problems, might help her to become more reflective user and learner of mathematics. 

Summary and discussion 
The purpose of the paper was to answer the question what similarities and differences related to 
mathematical thinking can be found between the four Finnish high-achieving pupils. Mathematical 
thinking was studied through two temporally different data sets: problem-solving processes (state) 
and view of mathematics (trait). The results showed that the similarities between the pupils were 
found to be mainly on a surface level: all the pupils liked mathematics, were motivated to learn it, 
enjoyed doing mathematics and were successful problem solvers. However, after a deeper look into 
their problem-solving processes and view of mathematics, the study revealed a great deal of 
differences between the pupils, and showed different competences: Alex is a very conscious thinker 
and learner of mathematics, and excellent in justifying his thinking and actions in mathematics. 
Daniel is extremely confident and metacognitive skills are prominent in his problem solving. Emma 
is an unsure but very thorough problem solver and learner of mathematics. Nora is fluent in 
expressing her thoughts and connecting mathematics to real life. 

In addition to the strengths found in these four pupils, the framework also revealed some of their 
weaknesses. The strengths, together with the weaknesses can be used to support individual pupils’ 
development in mathematics. For instance, Alex seemed to see mathematics only as a tool to solve 
something and his view of mathematics outside school was quite limited (see Viitala, 2013, 2016b). 
This knowledge can be used to develop pupil’s mathematical thinking. Four years after the data 
collection of this research project, I met Alex again. At this point, Alex was as a university student. 
He explained that only after realising the tool value that mathematics had for him, and learning that 
mathematics is not just calculations but also ways of thinking, he began to see mathematics 
everywhere in his real life, and he began to use his mathematical thinking more creatively (see 
Viitala, 2016b). 

All in all, the results showed that even though the pupils seem similar on the surface level, on a 
closer look, they have very different skills and competences in mathematics. This is an indication 
that the framework allows different pupils to show different strengths, and also different 
weaknesses in problem solving and learning of mathematics. Hence, the framework could assist 
also teachers to pay attention to the aspects that pupils might need help with in developing their 
mathematical thinking, which in turn can help the pupils to recognise the knowledge, skills and 
affects that might need further developing (cf. FNBE, 2014, p. 377; Viitala, in press; see also 
Viitala, 2015). An example of how teachers can use this framework to support their teaching is 
presented in Viitala (in press). 
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Background 
Around four decades ago the use of programming as a medium for mathematical learning became 
the focus of research for some mathematics educators (Papert, 1980; Noss and Hoyles, 1992). The 
new computing curriculum in the UK with a strong focus on programming inspired the 
ScratchMaths project which rescues this idea and aims to exploit the potential of programming in 
Scratch to support mathematical thinking (Benton et al., 2016). Using this project’s designed 
materials the purpose of my research has been to investigate the kind of affective reactions that 
emerge from the experience of Year 5 children working with the activities during their computing 
lessons. Given the connection of the materials with mathematics, and the relationship between 
mathematical and computational skills, those children that underperform in both subjects have been 
of particular interest for my study. Three Year 5 classes (sixty 9-10 years old in total) from a 
primary school in London and taught by the same teacher were observed for sixteen weeks during 
computing lessons. 11 children were purposively chosen to participate in the research. 

Building mainly on the literature on affect and mathematics education (McLeod, 1992; Hannula, 
2012) and based on results from the pilot study, three categories concerning efficacy beliefs and 
emotions were explored: perceived efficacy, general emotion and emotion enjoyment. The three 
main research questions were: 

- What kind of experiences do participants have when working with the activities?

- What changes can be observed (positive/negative evolution of the learner’s perspectives)?

- On what might a positive or negative evolution of the learner’s perspective depend on?

Methodology 
The research used a case study approach and combined different methods for data collection: 
questionnaires (a short questionnaire administered lesson by lesson during 12 weeks and the 
attitudes towards Scratch questionnaire), field notes, students’ work and critical incident (CI) 
interviews. The short questionnaire allowed the researcher to capture systematic information along 
the three categories explored regarding different types of tasks. Indicators above 5 were considered 
positive reactions, below 5 were considered negative reactions, and equal to 5 were considered 
neutral. Key moments were identified and were then triangulated with data from other sources. 

Results  
Kim’s responses to the short questionnaire (Figure 1, left) suggest that for her, positive affective 
reactions tended to happen when the activities were of an exploratory nature and negative reactions 



 

when the activities had a more explicit mathematical focus (Figure 1, right). Nonetheless, she had 
positive or neutral experiences around 80% of the times that the questionnaire was applied. 

                         
Figure 1: On the left, graph of Kim’s response to the short questionnaire. On the right, examples of a 

task with mathematical focus (lesson 5) and a more playful and exploratory task (lesson 6) 

Data from the affect towards Scratch questionnaire administered in January and June of 2016 
indicates that she had had a negative evolution of perspectives as a learner in this context. Data 
triangulation from all sources suggests that Kim had noticed a connection between the activities and 
mathematics and that this connection might have played a crucial role in her learning experience. 
Children who struggle with mathematics may be in disadvantage when tackling some of the 
ScratchMaths activities on their own in classroom conditions. In the case of Kim, the involvement 
of mathematical skills in the activities seemed to trigger negative affective reactions and the belief 
that she just could not do it. However, when extra material and individual support was given during 
the lesson she was able to solve the task, help other students in the class, and moreover, she 
regarded that particular lesson as her best moment working with the activities. 
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Theoretical background 
The poster gives an overview of the research and theoretical background of an ongoing dissertation 
project the major focus of which is on metacognition in mathematics education. A central objective 
is the documentation of metacognition during mathematical activity in prospective mathematics 
university students and using the results of this study to expand upon existing category systems of 
metacognition – especially for the field of Calculus. 

Metacognition is generally understood as knowledge about and cognitive processes dealing with 
(one’s own) knowledge and cognitive processes (Flavell, 1976) as well as regulating those. 

Metacognition is usually divided into a declarative and a procedural component and their respective 
sub-categories. Declarative metaknowledge signifies available, explicable knowledge a person 
possesses about the workings of their own cognitive functions and knowledge. Further specifying 
the concept, declarative metaknowledge can be subdivided into the three categories person 
knowledge, task knowledge and strategy knowledge. Procedural metacognition on the other hand is 
focused on planning, cognitively monitoring, reflecting and evaluating cognitive activity as well as 
regulating the latter. (Schneider, 2010) 

It is expected here that in order to be metacognitively active during mathematical learning or 
problem-solving processes two or more of these (and possibly further) subcategories “interact”. 

The usefulness of metacognition (for learning and doing mathematics) has been documented in the 
past.  

On the mathematical side of the project, the field of Calculus/Analysis was chosen due to its 
potential for metacognitive activity. For example, developing a stable idea of the concept of limit 
demands for a change in perspective when dealing with its dynamic and static aspects and 
integrating them into a coherent idea. It seems likely that the ability to metacognitively reflect and 
regulate one’s own learning processes is beneficial to enable this change and for mathematics 
learners and practitioners in general.  

Research questions 
1) Which kinds of metacognitive activity can be observed in high school graduates/ prospective 

mathematics students when dealing with mathematics? 
2) Can these activities be fully described using existing category systems or can they be used to 

expand those? 



3) How and where can metacognitive activity be beneficial with regard to the field of
Calculus/Analysis? What will a category system look like that classifies the term
metacognition for that field and expands existing – and possibly more general – models?

Empirical study 
Prospective mathematics students’ pre-existing use of metacognition was documented via a 
qualitative interview study at Wuerzburg University. As a sample group, eleven prospective 
students from mathematics study courses were selected on a voluntary basis. Five participants were 
invited for a single interview (one participant, one interviewer) in order to avoid inhibitors between 
two or more participants (such as shyness, different levels of extroversion or different levels of 
(perceived) “competence”). Six participants were interviewed in pairs (two participants, one 
interviewer) to reduce inhibitors between interviewer and participant (such as shyness, artificiality 
of the situation or different levels of mathematical experience) and to give the students the 
possibility to interact with each other – such as mutually explaining ideas and one’s understanding 
of a mathematical concept, motivating each other to go on, detecting each other’s errors and 
correcting them, discussing strategies, etc.. A partially-structured interview design was chosen, 
focusing on metacognitive activities during high school and on developing problem-solving 
strategies for a Calculus problem at hand. The interviewer had a manual at his disposal to guide the 
participants through various metacognitive topics, but in order to reduce influencing effects direct 
questions were avoided and the conversation was mostly left to the participants. The resulting 
interview transcripts are currently being evaluated by means of Qualitative Content Analysis 
methods (Mayring, 2010).  

Perspectives 
It is the aim of the project to specify the term metacognition and its sub-categories with regard to the 
field of Calculus/Analysis, building upon existing category-systems and expanding them. It is hoped 
that such an expanded category-system can be used as a base for introducing metacognitive activity 
in Calculus classes (at school and university level) in a structured way and to precisely evaluate 
students’ metacognitive “abilities”. Documenting prospective mathematics students’ pre-existing 
metacognition should help to both further specify the afore-mentioned categories and possibly add 
more sub-categories to the system, as well as to gain information about which metacognitive skills 
students may already possess and actively apply in their learning practice and which kinds of skills 
need to be strengthened and/ or introduced into a “metacognitively-supported” curriculum.  
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Introduction 
Within the context of mathematics education research there is strong agreement on the importance of 
language for learning and thinking, and on the centrality of being able to communicate 
mathematically for learning and teaching school mathematics. These standpoints are particularly 
idiosyncratic of TWG09 and the group of papers presented therein on the occasion of CERME10. It 
is assumed that developing more knowledge about language and language processes can aid the field 
in terms of a better understanding of what is involved in mathematics learning, teaching and thinking. 
In the centre of important debates around which theories and conceptualizations of language to take, 
there is a growing awareness that dialogue between theories will help to refine our approaches to the 
various phenomena embedded in mathematics education and language research. Within the context 
of TWG09, this awareness has been present in many ways over the course of past editions (e.g. Planas, 
Chronaki, Rønning & Schütte, 2015; Rønning & Planas, 2013). Also in the TWG09 sessions at 
CERME10 participants did not restrict themselves to ‘defending’ their positions. They were interested 
in exploring common ground and opportunities to take the field forward.  

The T of TWG09 stands for a number of topics, themes and theories. As a group, we cover 
frameworks drawing on linguistics, cultural and social semiotics, sociolinguistics, positioning theory, 
functional grammar, theory of didactical situations, social interactionism, and content analysis, to list 
only a few. The main idea we want to share in this short introduction is precisely the possibilities of 
dialogue between theories opened up to the group and to the domain by the existence of such 
theoretical diversification –i.e., the fact that theoretical perspectives mostly construct their identities 
by differing from others. Biehler, Scholz, Strässer, and Winkelmann (1994) recommend talking about 
diversification instead of diversity. Dialogue is seen to be one of the positive and productive outcomes 
of diversification, which can keep the domain moving in several ways.       

Diversification and dialogue in TWG09 
In this section, we take the collection of TWG09 papers at CERME10 to illustrate the line of argument 
of a landscape of diversification and dialogue. By commenting on the joint discussions within 
different groups of papers, we will claim that both diversification and dialogue were present in our 
working sessions. Throughout these sessions, the emerging common themes showed that dialogue, 
even if it sometimes remains elusive, is worth pursuing. Dialogue between perspectives was actually 
made possible because people from different perspectives worked together.   



In the first session, we had a discussion of four classroom-based papers by: Brandt and Keuch; Häsel-
Weide; Ingram, Andrews and Pitt; and Tatsis and Maj-Tatsis. All these papers have in common that 
they represent studies of social interaction, each on the basis of different theories and methods. The 
number of differences visible in the use of terms competing with each other –e.g., deviations, mistakes 
and opportunities– turned into a collaborative search for common themes. One theme emerged 
regarding the relationship between long-term mathematics learning and short-term language accuracy 
in mathematics teaching and learning. Patterns of corrective responses and markers of authority, as 
reported in some of the papers, were viewed as indicators of discourses of language accuracy at the 
intersection with processes of meaning construction and negotiation, as reported in all four papers. A 
related issue in the discussion was the extent to which the suppression –if possible– of certain 
discourses of language accuracy was necessary for the development of mathematical activity in 
classrooms. Either explicitly or implicitly, the different analyses presented in the papers reveal this 
tension between mathematics learning and language accuracy.        

The second session brought many of the methodological issues explored by the group to the fore.  
Four papers by Farrugia, Schubert-Meyer, Ní Ríordáin, Flanagan and Brilly, and Wessel each 
highlighted the back and forth flow between conceptual development in mathematics and language 
learning within classrooms with varying degree of linguistic diversity. The papers were each offering 
a different perspective on the relationship between word  and use, including within which language 
the word is used, and learning mathematical ideas including subtraction, fractions, relative frequency 
and undergraduate mathematics. Again each of these papers drew from different theories and 
methods, and researched different settings, but each raised methodological questions at the core of 
language research within mathematics education. The discussion focused on how integrative 
frameworks can be developed that draw upon the different approaches that are grounded in the study 
of language in mathematics.  

The third session included five papers that focused on higher grades in mathematical education. The 
paper presented by Wille dealt with the topic of the shift from difference quotient to the derivative, 
moving from algebraic to analytic concept formation explored through imaginary dialogues. With 
this method, different perspectives (horizontal and vertical) could be identified with preservice 
teachers, which helped focus on the diversity of conceptions later in class. Related to this topic, 
Zweidar also worked with the topic of functions and its implicit meanings in the classroom. Her 
research focused on mathematics lessons through a lens that shows the invisible demands of 
mathematical discourse. Ulises pointed his research also in the direction of mathematical discourse. 
He examined the signs of vector quantities and their corresponding gestures in regard to novice 
teachers and he raised awareness of the semiotic dimension. Schlager examined the connection 
between language proficiency and achievement in mathematics with 10th grade students, who work 
on tasks with different linguistic characteristics. The results demand further research but suggest that 
extremely difficult linguistic structures should be avoided to reduce the achievement gap. Finally, 
Arce, Ortega and Planas researched students’ mathematical notebooks. They analysed comments into 
different groups of knowledge to later conceptualize them as a learning resource. Especially 
interesting in this session was the focus on higher grade mathematics education. These papers all 
showed that mathematics and language is not a topic that is solely important in early education. Ideas 
of interactionistic learning theories of mathematics (Krummheuer 2015; Schütte 2014) are not just 
about  building a foundation for later learning but also can be used in higher classes with exceptionally 



more complex topics. As all papers stated, research in the specific fields has to be extended to draw 
broader conclusions but the results look promising.   

All four papers presented in the fifth session deal, in various ways, with learning by participation in 
practices. Another theme, common to most of them, is that they are concerned with explanation and 
logical reasoning. Logic is central to mathematics but in the paper by Ludes and Schütte the authors 
take this out of the context of mathematics when they discuss a project which aims to include 
computer science in primary education. An important aim is to look for possibilities to integrate 
computer science and mathematics and in the paper, competencies in mathematics from the German 
core curriculum are listed alongside relevant competences from computer science. Carotenuto, 
Coppola and Tortora also report from a project which is about logic. In the project the students are 
working with logical riddles, which are not about mathematics but where logical reasoning is needed 
to solve the riddles. Erath is interested in how students learn to participate in mathematical practices, 
and in particular how they participate in explaining practices in whole class discussions. The paper is 
based in interactional discourse analysis and builds on data from grade five classes. The paper by 
Fetzer and Tiedemann is of a more theoretical nature. Their interest lies in reconstructing 
mathematical learning processes with a special focus on the interplay between language and objects. 
They discuss and compare three theoretical frameworks: by Aukerman on language and context, by 
Bauersfeld on domain-specific learning and by Latour on objects as actors.  

In the sixth session connections between the modality of the language used and the learning of specific 
mathematical concepts became the focus. The relationships between informal everyday language and 
formal mathematical language, between informal gestures and sign language, between visual, 
dynamic and verbal modes are explored, considering not only how the mathematics is learned, but 
also how the mode influences how the mathematics is conceptualised.  Here the links between 
diversification and dialogue are readily apparent.  Each paper draws upon different frameworks, with 
Ferrari drawing upon Systemic Functional Linguistics, Khalloufi-Mouza drawing upon the Theory 
of Semiotic Mediation, Krause drawing upon the Theory of Embodied Cognition, Mizzie drawing 
upon Cummin’s model of language use, and Rønning and Strømskag drawing upon the Theory of 
Didactical Situations, and indication of the diversification within the field. Yet the dialogue within 
the group focused on the commonalities between each of the papers, that is the relationship between 
the mode of language and the conceptualisation of the mathematics. 

Four posters were also part of our group. Using a meta-analysis, and a qualitative analysis of its 
results, Dyrvold investigates demanding textual features of mathematics tasks, and the relevance of 
these features to the mathematical content. Rauf and Schmidt-Thieme sketch the required linguistic 
competencies of mathematics teachers, and outline a “language curriculum” recently introduced for 
future mathematics teachers at the University of Hildesheim. Similarly, Krosanke presents a study 
investigating the effect of integrating inclusive language teaching into the education of mathematics 
teachers in Hamburg, using analysis of interviews and video-vignettes. Kenton, meanwhile, examines 
the role of metaphor and language in the development of individuals’ understanding of risk, 
confirming that this understanding is enhanced when probability is expressed in natural language. 



Old debates, contemporary challenges   
Debates regarding dialogue between perspectives are not new and are not unique to our research 
domain (Bikner-Ahsbahs & Prediger, 2014). In particular, in mathematics and language research, the 
risks of moving towards a fragmented domain cannot be underestimated. The last decades of 
increasing research on mathematics and language have provided a serious and valuable diversification 
of theories and lines of interest, inside (Morgan, 2013) and outside ERME (Pimm, 2014). We are 
progressively including work of a review nature in the agenda in order to recognize what different 
theoretical perspectives have in common. As a group, we are mature enough to know that the 
multiplicity and richness of theoretical positions go with articulation and dialogue.  

Throughout the reading of the following collection of papers, we invite you to look for common 
grounds emerging from contemporary ERME research on mathematics and language. Although it 
may be easier to grasp differences rather than commonalities between papers, careful attention to 
questions, approaches and methods will offer evidence of similar problems and theoretical challenges. 
Hopefully some of these challenges have been discussed in this introduction.        
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We illustrate and expand some findings from research on students’ mathematics notebooks in four 
classrooms (Arce, 2016). Through methods of interpretive content analysis, we discuss what we call 
comments and group them into a typology of three regarding whether they are primarily instances 
of: 1) conceptual knowledge, 2) procedural knowledge, or 3) practical knowledge in which it is 
difficult to recognize the exploration of either conceptual or procedural knowledge of mathematics. 
We indicate that comments are relevant in the investigation of: 1) How different they are according 
to the representation of mathematical knowledge, and 2) How influential they are according to the 
development of student mathematical activity. We anticipate that the analysis of comments may be 
essential in the conceptualization of notebooks as tools and resources.      

Keywords: Student mathematics notebook, written communication, student comments, texts. 

Introduction 
The mathematics notebook of the student (MN) is a common tool in many classrooms and has been 
an object of study in former CERME papers (see, e.g., Segerby, 2015). This is the material instrument 
in which lesson notes are taken, and mathematical work is developed and revised. In our study, we 
deal with contents that belong to the private domain of students (Fried & Amit, 2003). In their 
notebooks students produce a language for communication with themselves about the contents to be 
developed and learned, and they are the ones ultimately responsible for the small units of information 
that conform the written outcome. Thus, notebooks somehow act as windows into student work and 
understanding in the mathematics classroom. Despite this significance of notebooks, research on them 
is still rare (together with Segerby, 2015, some exceptions are Fried & Amit, 2003; Yau & Mok, 
2016), in part due to an expanded “illusion of transparency” (Villarreal & Borba, 2010). Notebooks 
are often seen as learning resources per se (i.e. MN represents information used in the student learning 
experience). Our study contributes to research on mathematical communication (Morgan, Craig, 
Schütte, & Wagner, 2014) by focusing on the under-researched idea of MN as a communicational 
tool in the relationship between learner and learning content.  

We follow up on a larger study with eleventh-grade students in four Spanish mathematics classrooms. 
The lessons in these classrooms consisted of the initial exposition of contents and tasks by the teacher, 
followed by student work on the resolution of tasks. A type of notes emerged as distinguishable during 
the processes of MNs content analysis. Regarding the teaching dynamics, it was expected that the 
students wrote down blackboard contents –from the stages of exposition and resolution of tasks– and 
oral contents dictated by the teacher. The students, however, wrote annotations that do not fit into the 
former types of content. These annotations constitute what we name comments (see Arce, 2016; Arce, 
Conejo & Ortega, 2015). Regarding comments, in this paper we address two research questions: 

- To what extent are comments different depending on the mathematical 
knowledge they represent? 



- To what extent do comments seem to have influence on the development of 
students’ mathematical activity?    

Framework for analysis of comments as texts 
Arce (2016) applied a complex system of ideas to analyse what students seem to be saying and 
communicating in their mathematics notebooks. In this section, we address the theoretical grounding 
for some of those ideas in order to cover the notions more directly linked to the present research 
questions. Before making sense of the students’ written comments from the perspective of their 
implications for learning, we need to organize the information represented in these comments.  

Arce (2016) makes use of the first two types of writing out of the three discussed by Britton, Burgess, 
Martin, McLeod and Rosen (1975): transactional, expressive and poetic. The transactional type is 
particular of public domains (Fried & Amit, 2003) in that it communicates meanings intended to 
inform and persuade an audience. In contrast, the expressive type is particular of private domains in 
that it communicates personal reconstructions of public meanings. Transactional and expressive 
writing relate to each other in the articulation of theoretical, algorithmic, logical, methodological and 
conventional contents (Shield & Galbraith, 1998). All these contents are modulated by the language 
used, either particularized or generalized, and procedural or descriptive. What we have in comments 
are all sorts of combinations of contents and forms in the writing.  

Types of writing, contents and forms intersect with types of knowledge, namely, conceptual and 
procedural knowledge of mathematics (Hiebert & Lefevre, 1986). This is a distinction that emerged 
as fruitful in the analysis of how, and how much mathematical concepts and procedures are present 
and related in MNs. Due to the complex overlap involved, we consider these two types of knowledge 
as critical in the analysis of comments. By the conceptual type, we refer to mathematics knowledge 
that is rich in semantic relationships between concepts and propositions, while by the procedural type 
we refer to mathematics knowledge that is rich in syntactic relationship, often expressed by means of 
rules and algorithms. Again, what we have in MNs and particularly in comments are all sorts of 
combinations of types of writing, contents, forms and types of knowledge.  

In his analysis of comments in MNs as representational texts, Arce (2016) adds the differentiation of 
issues not strictly related to the communication of mathematical knowledge. We strategically put 
these multidimensional issues in one group because they all fit into a type of comments where the 
focus on either conceptual or procedural mathematical contents is difficult to recognize. All these 
issues are grouped under the name of practical knowledge to provide visibility to and promote 
discussion of the use of comments that may be facilitating their role in student learning even though 
they do not primarily address conceptual and procedural contents particular to mathematics.   

Context, background and methods 
For the examination of comments under the conceptual-procedural-practical framework in line with 
the first research question, we scanned data from the MNs of 41 volunteering students that had been 
collected in four high school classrooms chosen by availability. We selected contents of the teaching 
units on functions, limits of functions, and derivatives. With inspiration on deductive methods of 
manifest content analysis (Krippendorff, 2004), the first two authors examined comments according 
to types of mathematical knowledge (i.e. conceptual and procedural), contents involved in the writing 
(i.e. theoretical, algorithmic, logical, methodological and conventional), forms involved (i.e. 



particularized, generalized, procedural, descriptive), and other issues regarding organizational, 
pedagogical and personal aspects. These were the codes useful in the initial stage of the current 
research in order to get a first general picture of comments as tools. 

In line with the second research question and together with the findings about differences across 
comments, the collaboration with the third author helped to rethink the previous analysis with data 
from eight interviews with pairs of participant students. The selection and pairing of students followed 
criteria, decided in the context of the larger study, about comparison and contrast among MNs in 
terms of written contents. By applying inductive methods of interpretive content analysis (Ginger, 
2006) to MNs and interview data, some possibilities of comments as sources of mathematical activity 
for the production of mathematical texts in notebooks were preliminary inferred. When there is 
mention of or allusion to the comments’ impact on either the development of MN contents or the 
performance of mathematical activity, the third author mentioned the possibility of comments playing 
a role in the development of student mathematical activity. In the next section, we present some 
instances of comments to reproduce partially the analyses.  

Are student comments more than texts? 
The groups of comments below are not exclusive of each other. The groups may occur in various 
combinations although we present them separately by choosing comments that more clearly illustrate 
the dominance of some particular features over others. With their characterization, we want to make 
the argument that they must be taken into account in student written communication. Moreover, these 
groups of comments are sufficiently important to be included in the investigation of relationships 
between the knowledge communicated by students in their writing and the mathematics learning 
opportunities created and eventually explored by them.    

Comments related to conceptual knowledge of mathematics 

There are comments in which we find the name of the concept, a more or less formal narrative for its 
definition or an explanation about the concept definition. Figure 1 shows two instances of this: on the 
left, a generalized comment on the definition of the absolute minimum of a function; on the right, a 
particularized comment on the definition of constant function applied to f(x)=-3.  

 
Figure 1: Examples of conceptual comments on definitions 

There are other comments from this group with an emphasis on relationships between concepts, 
properties and rules like those in Figure 2: on the left, a comment on a relationship between different 
kinds of asymptotes; on the right, a comment on the relationship between the derivative of the identity 
function and the power rule. In this last case, and different from the comment about asymptotes, as 
the rules had been independently presented by the teacher, we see expressive writing.      



 
   Figure 2: Examples of conceptual comments on relationships  

Other conceptual comments are centered on the requirement and justification of conditions for a 
specific process to be applied, and in this way they may express attention to logical aspects of 
mathematics. Still some other comments anticipate the need to introduce a new concept or technique, 
and therefore communicate broader networks of concepts and relationships.  

In all these comments of a conceptual type, the overall focus becomes student work on concepts and 
eventually on relationships between concepts involved in the construction of mathematical 
knowledge. Different uses of these comments by the students emerged in the interviews. Some 
students said that comments are useful to “clarify”, “evoke” or “remember” concepts, as well as to 
“support their study at home.” Similarly to the reflections made by Morgan (2005), we see in some 
of these texts (e.g. Figure 2, on the right) the reconstruction and use of mathematical concepts in ways 
that allow students to learn mathematics. This is confirmed in the interviews in which students refer 
to this type of comments as an aid for developing their learning of concepts and relationships.   

Comments related to procedural knowledge of mathematics 

In this group, we place the comments in which we see procedural knowledge of mathematics, that is, 
comments about recalling or clarifying the application of procedures such as algorithms, rules and 
techniques, as well as the conventions around them. There is an emphasis on algorithmic aspects 
when mentioning steps or actions that constitute a procedure such as: the calculation of the domain 
of a function, the resolution of limits with indeterminate forms and the representation of elementary 
functions. Figure 3 shows on the left, two comments of a student recapitulating how to solve two 
indeterminate forms, specifically “→0/→0” and “→∞/→∞”, and on the right, the comment of another 
student who indicates the steps to be followed to examine any function.  

 
 Figure 3: Examples of procedural comments on methods 

There are comments with verbal and symbolic marks that recall or clarify mathematical properties 
applied in the development of the steps of a procedure. Figure 4 shows two instances of this kind: on 
the left, a comment recalling the calculation of the cube root of any real number; on the right, some 



marks by means of arrows clarifying how to operate in a quotient of fractions. In all these comments 
of a procedural type, the overall focus becomes student work on methods and eventually on the 
symbolic and formal representation of properties and procedures. As said by the students in the 
interviews, they provide different uses to their procedural comments, namely: highlighting and 
clarifying procedural aspects found more difficult (Figure 4), and acting as an aid in order to 
“mechanize” a mathematical procedure (Figure 3, on the right). 

 
Figure 4: Examples of procedural comments on properties 

Together, conceptual and procedural comments point to an important presence of expressive writing 
with modifications and connections to the mathematics communicated by the teacher in the lesson. 
We interpret the engagement with expressive writing as evidence of some mathematical work. 
Drawing on this, these comments may be acting as resources in that they develop written 
representations of student understanding. One could possibly expect to see in representations of 
understanding at different moments some traces of different learning stages.  

Comments related to practical knowledge   

The third group of comments does not directly refer to contents about types of mathematical 
knowledge communicated in the notebooks; instead, it refers to contents that privilege pedagogical 
and organizational knowledge, among others. This is a “big” group of comments in this report whose 
detailed deconstruction in codes can be found in Arce (2016).     

Some comments record texts that teachers said during the lessons concerning the organization of 
curricular issues and other forms of pedagogical support. On the left of Figure 5 there is an instance 
of an indication about the school time for a curricular content to be considered. Other comments 
highlight processes that are “tricky” as said by a teacher in a lesson; here we find rules of action as 
ways to manage difficulty. On the right of Figure 5 there is an instance of a rule for the generation of 
a table of values in order to represent a function with three positive and three negative values.  

 
Figure 5: Examples of practical comments on organization 

There is also practical knowledge in comments about the forms and contents of evaluation in the 
subject. This is clear in the two instances of Figure 6 with references to an exam and to the expected 
contents to appear in it. Comments such as those in Figures 5 and 6 are difficult to be recognized as 



representations of mathematical understanding. They also contain/are mathematical texts. Some sort 
of practical knowledge with purposes of optimization of opportunities as learner is communicated.   

 
Figure 6: Examples of practical comments on evaluation 

Similarly to the instances in Figures 5 and 6, the texts in Figure 7 do not provide evidence of the 
creation of opportunities for mathematics learning, but rather seem to indicate the creation of 
opportunities for the student writer as learner. In Figure 7 we find question marks on the left, and 
sentences to indicate doubts and uncertainty on the right. Other comments documented in Arce (2016) 
use impersonal forms of language to recommend “reviewing”, “studying”, or “asking”.  

 
Figure 7: Examples of practical comments on cognition 

There is some evidence of personal meta-cognition and control over the learning process in all these 
comments. We found in the interviews that some students add comments like those of Figure 7 in the 
resolution of tasks to focus and increase their attention when the teacher makes corrections in the 
classroom or to ask directly the teacher about a doubt. However, except for Figure 7 (on the left), 
there are no concrete initiatives in the MNs aimed at exploring or clarifying what has been indicated 
as mathematically difficult to understand.  

We claim that all these practical comments are also valuable; they communicate part of the knowledge 
that the student needs to develop, together with particular mathematical knowledge, in the 
mathematics classroom. These comments provide an opportunity for students to make their own 
judgments on, for example, what needs to be known (i.e. what is to appear in the exam, what is 
planned for another school year) and who they are as knowers of mathematics (i.e. what is not 
mathematically clear to them, which learning requires revision).     

Rethinking comments as more than texts 
We are in the position to adventure some initial thoughts and questions about the conceptualization 
of student comments as resources. Conceptual and procedural comments like those exemplified in 
this report (Figures 1 to 4) facilitate the exploration of mathematical knowledge, even though there 
may be some instances of a routine writing activity enabling the development of reproductive or 



imitative patterns (also studied by Yau & Mok, 2016). However, our analysis of comments includes 
one more practical function about prescriptions of what is to be learned (Figures 5 and 6) and about 
judgments on what is not known (Figure 7). It is not easy to elucidate whether the learning process 
would be similarly facilitated if particular types of comments were not present. We anticipate that all 
types of comments –conceptual, procedural and practical – are necessary in order to create learning 
opportunities oriented to both the creation and communication of mathematics learning.  

We agree with Fried & Amit (2003) that there is a need to further investigate the role and use of MNs, 
and not only of comments, as a learning resource in the mathematics classroom. A significant question 
for which this area of investigation might provide understanding is why some notebooks are better 
facilitators of opportunities for mathematics learning. This is an issue related to the broader question 
of the role of mathematical writing in mathematics learning. As noted already with the analysis of 
comments, the written elaboration of conceptual and procedural knowledge of mathematics seems to 
indicate work relevant for the development of student mathematics learning. However, these 
comments alone may not be enough in the construction of mathematics learning. Other types of 
comments, like those that constitute what we have called practical knowledge, may be required in the 
process that goes from student written communication to mathematical understanding and from here 
to student written communication again. Especially important may be the ways in which all these 
types of comments appear combined and related.  

Acknowledgement 

Project EDU2015-65378-P, MINECO/FEDER has funded the collaboration in this research.   

References 

Arce, M. (2016). Análisis de los cuadernos de matemáticas de los alumnos de bachillerato: 
Percepciones, perfiles de elaboración y utilización y rendimiento académico [Analysis of high 
school students’ mathematics notebooks: Perceptions, elaboration and usage profiles and 
mathematical performance] (Unpublished PhD dissertation). Universidad de Valladolid, Spain.  

Arce, M., Conejo, L., & Ortega, T. (2015). A case study comparing the comments written by two 
students on their mathematics notebooks. In K. Krainer, & N. Vondrová (Eds.), Proceedings of 
the Ninth Congress of the European Society for Research in Mathematics Education (pp. 
1525−1526). Prague: Charles University and ERME. 

Britton, J., Burgess, T., Martin, N., McLeod, A., & Rosen, H. (1975). The development of writing 
abilities (11-18). London, UK: MacMillan.  

Fried, M., & Amit, M. (2003). Some reflections on mathematics classroom notebooks and their 
relationship to the public and private nature of student practices. Educational Studies in 
Mathematics, 53, 91−112. 

Ginger, C. (2006). Interpretive content analysis. In D. Yanow & P. Schwartz-Shea (Eds.), 
Interpretation and method: Empirical research methods and the interpretive turn (pp. 341−349). 
New York, NY: Sharpe. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An 
introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge. The case of 
mathematics (pp. 1−23). Hillsdale, NJ: Lawrence Erlbaum.   



Krippendorff, K. (2004). Content analysis: An introduction to its methodology. Thousand Oaks, CA: 
Sage Publishers.  

Morgan, C. (2005). Word, definitions and concepts in discourses of mathematics, teaching and 
learning. Language and Education, 19(2), 102−116. 

Morgan, C., Craig, T., Schuette, M., & Wagner, D. (2014). Language and communication in 
mathematics education: An overview of research in the field. ZDM, 46, 843−853. 

Segerby, C. (2015). Writing in mathematics lessons in Sweden. In K. Krainer, & N. Vondrová (Eds.), 
Proceedings of the Ninth Congress of the European Society for Research in Mathematics 
Education (pp. 1490−1496). Prague: Charles University and ERME. 

Shield, M., & Galbraith, P. (1998). The analysis of student expository writing in mathematics. 
Educational Studies in Mathematics, 36, 29−52. 

Villarreal, M., & Borba, M. (2010). Collectives of humans-with-media in mathematics education: 
notebooks, blackboards, calculators, computers and … notebooks throughout 100 years of ICMI. 
ZDM, 42, 49−62.  

Yau, K. W., & Mok, I. A. C. (2016). Insights from students’ private work in their notebooks: how do 
students learn from the teacher’s examples? Educational Studies in Mathematics, 93, 275−292.  

 



 

 

The duck is the biggest – kindergartners talking about measurement 
and magnitudes  
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This paper deals with aspects of language learning in settings planned for mathematical learning 
by kindergarten teachers. Using qualitative and linguistic analysis tools, we reconstruct patterns of 
language use and the language sensitive organization of kindergarten teachers. We mainly focus on 
the children’s language use, particularly on semantic deviations in utterances in relation to the 
mathematical negotiation process. 

Keywords: Language usage, measurement, early childhood education.  

Introduction 
The importance of language for cognitive (subject-specific) learning processes is undeniable and 
well established with regard to research in early mathematics education. Scientific language 
proficiency is seen as an important factor for successful education and schooling. There are still 
unsatisfied needs for Germany to appropriately support children with disadvantageous starting 
conditions (for example migration, socio-economic background, developmental speech disorder), in 
order to give them an equal chance to participate in education processes (Gogolin & Lange, 2010).  

Early education in kindergarten, which puts emphasis on supporting language education, could 
provide a remedy. Prediger (2015) suggests that academic language education processes start as 
early as possible, to design them age-appropriately and to orientate it to specific contents. However, 
Germany is particularly lacking language education approaches that integrate subject-related 
learning processes and not only selective training single academic language terms. Rudd, 
Satterwhite and Lambert (2010) describe how mathematical learning and language learning can be 
combined in (natural) kindergarten situations. They introduce the concept of Math-Mediated 
Language (MML). This means that mathematical learning is embedded in dialogues, which include 
mathematical as well as linguistic knowledge (Rudd et al., 2010). They give examples for different 
mathematical topics, e.g. how to foster complex counting strategies by modeling them in concrete 
situations or by requesting them from children using corresponding questions. Even though the 
concept of MML emphasizes mathematical learning in kindergarten, it points to the need that 
kindergarten teachers consider both the mathematical context and linguistic effort involved in the 
dialogues – and address this connection in their planning as well as in spontaneous situations. Thus, 
MML deals with the integration of language education and subject learning in everyday activities 
for kindergartners.  

MML requires a certain amount of language awareness. For pre-service early childhood educators, 
Moseley (2005) found out that their perceptions of MML is restricted to technical terms and basic 
mathematical terminology. In our qualitative-empirical project, we are interested in kindergarten 
teachers’ language awareness in everyday situations. We put our focus on the support of language 



 

 

learning in settings planned for mathematical learning. This idea corresponds to the underlying idea 
of supporting language development within the subject (Leisen, 2013; Prediger, 2013; Prediger & 
Wessel, 2013) as it is discussed in the schooling context. Often, these concepts trace back to the 
Immersion Model for bilingual education for children with migration background in school contexts 
(e.g. Cohen & Swain, 1976).  

Kindergartners are not only ’subject learners’ but, independently from their language background, 
always ‘language learners’. Hence, they sometimes have difficulties expressing complex facts and 
their language productions often show deviations from the standard language (Volmert, 2005). In 
this paper, we want to deal with deviations from standard expressions that can have an impact on 
mathematical learning processes. Since we are dealing with spoken language, which often includes 
aspects of dialectal variation and language change phenomena, it is not always trivial or even 
possible to decide whether one utterance is correct or not. In German for example, there are nouns 
with locally varying genders (cf. der Joghurt: male or das Joghurt: neuter, both possible in standard 
German; and in eastern parts of Austria die Joghurt: female).1  

In principle, mistakes can be divided into lexical (neologisms and wrong pronunciation), syntactical 
(wrong conjugation or flexion, word order) and semantic (inappropriate choice or combination of 
words) ones. In this paper, we concentrate on semantic deviations, which we list as a separate 
category since the meaning of utterances does not always depend on the choice of single words or 
grammatical constructions alone. Meanings rather tend to exceed verbal boundaries, which also has 
to be taken into consideration when looking at inappropriate utterances (Brandt & Keuch, in Press).  

In particular, our aim is to reconstruct the empirical language in use, to detect aspects of language 
support, and to show the connection to specific meanings and concepts that are negotiated in certain 
situations. In our prior analyses, we found different kinds of language support and correction 
strategies (Brandt & Keuch, in Press). Similar to Moseley’s results (2005), when using language in 
everyday situations, kindergarten teachers put special emphasis on technical terms and only a 
limited focus on complex language structures.  Thus, in this paper we will concentrate on semantic 
aspects of the empirical language and the corresponding questions:  

 What kind of semantic deviations can we identify in the field of measurement? 
 Which impacts for negotiation processes about measurement can we deduce from these 

deviations? 

Research design  
The data basis for our analysis consists of mathematical situations designed by kindergarten 
teachers and taken from the project erStMaL (early Steps in Mathematical Learning) (Acar 
Bayraktar, Hümmer, Huth, & Münz, 2011). Methodologically, our project is based on grounded 
theory (Glaser & Strauss, 1967). We figure out the negotiation of meaning in the interaction 
processes through the interaction analysis (Krummheuer, 2007), which is a sequential analysis and 
is organized as an extensive turn-by-turn interpretation.  Further, we determine linguistic features 

                                                 
1 Duden, 2013; 26. Aufl., Dudenverlag, Berlin. 



 

 

that originate from a linguistic valence analysis (Herbst & Götz-Votteler, 2008) by looking at the 
relation between verbs and their objects (Brandt & Keuch, in Press)2. Our aim is to create a 
category system of difficulties and deviations, and their corresponding reactions and support from 
the kindergarten teachers. According to qualitative content analysis (Mayring, 2000), these 
categories are generated inductively. Based on these analysis methods, we will present case studies 
that point out the empirical language use in this partial corpus in the following paragraph.  

In this paper, we refer to five situations, which kindergarten teachers designed and realized to 
support mathematical learning. Besides the general topic measurement and the involved children, 
there were no content-related or structural prompts for the realization of mathematical situations.  

Situation Teacher Children  Magnitude  

A Doris 
(MA3) 

Nikola (f): 4;2 / BL4; Orania (f): 3:10 / L1  (Greek); Regina (f): 
4;4 / L1; Uwe (m): 3;11 / L1 

length 

B Sabine 
(MA)  

Mona (f): 5;5 / L1; Omara (m): 4;11 /L2 (Tamil); Sadira (f): 
5;11 / L2 (Urdu); Theresa (f): ? / L2; Oslana (f): 5;3 / L2 
(Croatian) 

length and 
volume 

C  Berna (L2 
/unknown) 

Bella (f): 6;0 / L1; Can (m): 6;0 / BL (Turkish); Denis (m): 6;0 
/ L1; Friedel (m): 6;0 / L1 

length 

D Johanna Ona (f): 5;6 / L2 (Turkish); Tamila (f): 4;10 / L2 (Pasto / 
Afghan) 

length  

E  Linda  Irvin (m): 5;0 / L1; Torben (m): 5;5 / L1  weight 

Table 1: Basic information on the focused situations 

Difficulties and deviations in language usage  
Example from situation D: The kindergarten teacher and the two girls are building towers with 
colored rods and building blocks of different sizes. One tower of the teacher’s construction falls 
down, which she comments on: “huu jetzt is es gefallen \” (huu now it has fallen). Ona takes up this 
structure: “deiner war nicht gut meiner hat nich gefalln.” (yours was not good mine has not 
pleased). Her utterance is grammatically correct. However, using the auxiliary “hat” (to have) 
instead of “ist” (to be) like the kindergarten teacher for the perfect tense, Ona expresses the 
meaning of ‘pleasing’ instead of ‘falling’. Certainly, this was not Ona’s intention. Thus, semantic 
deviation can only be determined by focusing one’s attention to the context. 

                                                 
2 For more details see our analyses in the next paragraph. 

3 MA: trained in mathematics. 
4 L1 means, the child learned and uses German as a first language; L2 means, the child learned another language than 
German as a first language, now learns, and speaks German as a second language; bilingual (BL) means, the child 
learned German and another language as first languages and now uses both languages at home. 



 

 

According to Bishop (1988), “measuring (...) is concerned with comparing, ordering, and with 
quantifying qualities” (p. 34). Comparing, ordering, and quantifying qualities ask for a 
differentiated language usage, including certain technical terms and grammatical structures. In the 
next sections, we illustrate semantic deviations in this context. That means we look for language 
productions that are syntactically correct but their initial meaning does not fit with the context of 
actions.  

Verbal constructions with to measure: Measuring (yourself) with something or someone  

In Brandt and Keuch (in press) we explain how linguistic valence (Herbst & Götz-Votteler, 2008) 
can be used to explain the emergence of a cognitive concept of measuring and the acquisition of 
case endings in relation to the verb to measure. With the verb to measure, you normally use a 
subject (someone who measures), something that is measured (the accusative object) and a tool you 
use for measuring (the dative object). There are, however, situations in which children as well as 
kindergarten teachers use this expression in a slightly different way.  

In situation C, measuring the children’s body lengths occupies most of the situation. The children 
lie down on the floor and have the position of their head and their feet marked with chalk on the 
floor. Subsequently, the distance between those two chalk lines is measured with different devices:  

Berna you can actually measure it with all those things here  
Can  wait . I measure it with the chalk \ here it starts  (draws a line from one 

limiting line to the other) 
Berna so Can / now wait \ 
Can  sooo \ (.) up to my line \ 
Berna up to your line 

While Can’s utterance is syntactically correct, his actions do not fit with its meaning. If he was 
measuring a certain length with the piece of chalk he carries in his hand, he would aim to find out 
how often that piece of chalk fits into that length. The group had used a building block before in a 
similar way. What he does, instead, is to draw a line from one point to another. Since he incorrectly 
uses the verb measure in this context, probably synonymously to draw or even connect, we consider 
his utterance as a semantic deviation.  

In German, as well as in other languages, certain words used as a collocation in combination with 
certain prepositions or complements can have a different meaning than the original word, often 
metaphorical or figuratively. For the verb measure, if used with a reflexive pronoun, it gets the 
meaning of competing with someone (in any possible way, not limited to magnitudes). In situation 
B, the kindergarten teacher Sabine asks Oslana to stand back-to-back with Sadira and compare their 
sizes. She accompanies her request with the words “Willst du dich jetzt mit der (.) Sadira messen?” 
[Do you want to measure yourself / compete with Sadira?]. Sabine does not seem to notice the 
ambiguity in her utterance on the one hand and the children do not seem to notice the figurative 
meaning on the other hand. In the course of the situation, Sabine leaves out the reflexive pronoun. 
She now asks Omara “Whom do you want to measure with?” While the meaning is probably 
relatively clear due to the unambiguous situation, the dative object is no longer a measuring tool but 
a person, which could lead to confusion. One could also argue whether the sentence is really any 



 

 

longer syntactically correct. Mona (the only child whose mother tongue is German in this situation) 
finally takes up Sabine’s sentence structure and says, “I want to measure with you”. In contrast to 
the usual valence, the dative object (“with you”) does not represent the measuring device but it 
rather works as an adverbial phrase, expressing the kind or manner how the activity of measuring 
shall be done.  

The use of personal pronouns with comparisons 

In almost all situations, the groups address (direct) comparisons of sizes. When it comes to 
someone’s own body length, competitive situations emerge quite often. For the children it is 
important to know “Who is taller than the other?” or “Who is the tallest?”. This aspect of rivalry is 
especially obvious in Situation E, when Irvin and Torben compare different things with a beam 
balance. The kindergarten teacher has prepared different building blocks and plastic figures, which 
possess certain weight proportions. The main idea of Linda’s arrangement seems to be producing 
balance with these special objects. Both children use one scale together and each child fills the 
balance pan on their side. In their first attempt, in Irvin’s balance pan there is one green stone and 
two blue ones in Torben’s balance pan. The scale is in balance. The kindergarten teacher asks the 
children to compare the stones:  

Irvin     ahh / that that is small and I am big /  
Linda     right \ this is a bit smaller / and this is a bit bigger \   

Irvin’s sentence structure is perfectly correct from a syntactic point of view and in principle as a 
statement as well, since Irvin really is big in contrast to the building block on the scale. However, 
he probably wants to express that the green stone on his side is “big” in contrast to the blue stone on 
Torben’s side. In this sense, Linda paraphrases his statement. She indirectly corrects his verbal 
expression (Brandt & Keuch, in Press), by formulating the relational connection “smaller – bigger” 
on the one hand, and the personalization “I’m big” connected with the pointing gesture to the actual 
object of comparison. While Torben uses correct possessive pronouns with corresponding 
comparisons (“then mine are / heavier\”), Irvin consequently uses the personal pronoun and 
therefore figuratively makes himself the object of comparison. Finally, Torben picks it up. With the 
following utterance, Irvin and Torben alike refer to the fact that the content of ‘their’ balance pan is 
heavier. Nevertheless, through the context of actions, both children are able to understand each 
other:  

Irvin  then I’m heavier \  
Torben now I’m stronger hihihaha \ 
Irvin  yooo I’m the strongest \ 
Torben no / I‘m stronger \ 
Irvin  there I’m heavier \ 

Using the words strong and the related forms of comparison stronger and the strongest, the children 
focus on the idea of competition. However, at least Torben would be able to express himself 
correctly in such situations. Irvin as well uses the correct possessive pronouns at the end of the 
situation to explain, why “his” balance pan with the smaller (and therefore lighter) piece of 
cardboard is up: “Because this is very big / and mine is very small \” – interestingly this is a 



 

 

situation in which he would not be the ‘strongest’. This competition, generated through language, 
gains momentum and prevents the original request to balance out the different objects through 
skillful placing.  

Scale values and their verbalization 

In most situations, the kindergarten teachers measure the children‘s body length and name and 
record them in different ways (some write them down, others document them with woollen strings, 
(Brandt & Keuch, in Press). When you capture body length with standardized measuring tools, you 
read the numbers on the measuring tools as a scale value. With measuring tools, the scale value 
indicates the corresponding measuring value based on a certain scale unit; for ordinary leveling 
boards or carpenter’s rules, that is centimeter.  

When using measuring sticks and carpenter’s rules, the kindergartners on the one hand are 
confronted with measuring units (meter and centimeter), whose meaning they rarely comprehend 
and only hesitantly take over into their active vocabulary (Brandt & Keuch, in Press). On the other 
hand, they also have to deal with numbers that exceed their actively mastered range of numbers. 
The kindergarten teachers seem to be willing to make the numbers consciously perceivable as scale 
values with different circumscriptions and complements. In the following example, the focus on the 
meaning of the scale becomes obvious, when Doris refers to the animal symbols on the leveling 
board: 

Doris  okay / look here \ one meter are you \ (.) hee \ one one meter one \ up to 
there \ [unintelligible] at the monkeys right \  

Nikola up to here \ 
Doris  exactly at the monkey \ and Uwe / (.) at what have you / [unintelligible] [at 

the sea lion\] 
The kindergarten teacher therefore uses the animal symbols here as scale values; the connection 
with the local preposition “up to there” points to the distance from the floor to the symbol as a 
representation of the body length. The children take up the animal symbols on the leveling board for 
their comparisons of size:  

Regina the biggest ehm \ 
Uwe  is the duck  

The generated verbal co-construction is a grammatically correct utterance: The duck is the biggest 
one in relation to a (not further specified here) selection of reference objects. This statement, 
however, is neither correct for the mentioned animal symbols (sea lion, monkey, duck) nor their real 
counterpart. Still, Uwe does not formulate a ‘wrong’ statement. A few minutes before, Nikola 
determined that the duck stands for the scale value 116 (Regina’s body length). Therefore, Uwe 
related with “the duck” to the corresponding scale value without using the corresponding local 
preposition. Regina is indeed the tallest child, as Doris confirms shortly after “Regina has 
[unintelligible] is the tallest”. The statement “The biggest is the duck” stands for the comparison of 
body length and gives an answer – at first with reference to the measured values – to the question: 
Who is the tallest? Concerning the linguistic means, Uwe treats the scale value ‘duck’ syntactically 



 

 

like a representation of the measured length: “The biggest is 116 centimeter.” Interestingly, we also 
find comparable deviations in the language usage of our kindergarten teachers:  

Sabine now I measure you \ that means the hand is now on this / (.) und you are one 
meter and ten centimeters \ look \ and you are exactly (.) as big as this red 
number is \  

Here as well Sabine is eager to make the numbers comprehensible for the children. On the 
carpenter’s rule used in this situation, the scale values are marked in red every ten centimeters, 
while all other numbers are black. The red number thus references the measured body length. 
Similar to Uwe, Sabine syntactically uses the red number as a representation for the measured size 
value 110 centimeters. 

Conclusion 
In this article, we looked at semantic deviations concerning verbal constructions with to measure, 
the use of personal pronouns in comparisons and the verbalization of scale values. Each of the 
analyzed sentences were syntactically correct, the semantic deviations, however, emerge from 
prepositions, pronouns; and additions and omissions of phrases. In everyday situations and action 
settings, these sentence constructions rarely lead to misunderstandings. In the analyzed situations 
too, the action flow is preserved. However, it remains unclear which conceptual understanding of 
measuring, comparing or scale values the children develop, which goes beyond the actual action 
context.  The vague and imprecise use of to measure immediately concerns the meaning of measure 
as an activity, as well as the associated behavior patterns in relation to measuring devices. 
“Measuring” becomes the hypernym for the whole situation and is not delimited from other 
activities. By means of personalization, the comparison in the balance beam situation becomes a 
competition, and the semantic deviation becomes a play on words with its own dynamics. For 
linguistically less competent children, the pun might not be accessible and therefore they do not get 
a chance to improve their linguistic competences. The negotiation process related to the 
mathematical content stays at the surface, since it is overlapped by the play on words.  

Ambiguity and change of meaning by using different prepositions as well as adding or omitting 
certain objects can lead to confusion in more in-depth negotiation processes. With regard to the 
development of less context-dependent language registers, one has to look critically at the observed 
reactions by the kindergarten teacher. Although all kindergarten teachers show pedagogical as well 
as didactic competences, in relation to our investigated difficulties and deviations we only observed 
minor language awareness. On the one hand, we just find a few reactions to semantic deviations in 
the children’s language productions. On the other hand, even our kindergarten teachers produce 
such deviations. Especially for learners of German as a second language, figurative language 
constitutes a specific problem. In this area, we still perceive a major challenge in order to establish 
educational equality via early education.  
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The focus of the paper is the analysis of written argumentation in solving logical-linguistic riddles 
by 6th and 7th grade students. This is part of a larger path dealing with the introduction of some 
logical contents, in which all the activities are immersed in a narrative framework. In analyzing 
students’ productions, we pay great attention to the interplay between logical-scientific thinking 
and narrative thinking, with the awareness that a rigorous mathematical argumentation can be 
obtained only at the end of a path starting from different, often not rigorous, forms of reasoning. 

Keywords: Language, written argumentations, logical riddles, narrative and scientific thought. 

Introduction 
In this paper we focus on the analysis of written argumentations produced by 6th and 7th grade 
students to solve logical-linguistic riddles. This kind of activities is part of a path carried out within 
a project in a secondary school near Salerno (Italy), during the year 2014-15. The aim of the whole 
project was to reconcile students with low level of mathematical skills with the subject. In 
accordance with the teachers of the school, the focus was on linguistic competences in a scientific 
environment, with particular attention to the development of the argumentative competence.  

The starting point was the didactic path described in Tortora (2001), consisting of 15 structured 
worksheets. Its aim was to bring the contents of classical propositional logic to the students, through 
a fantastic and attractive way. The innovation with respect to the initial idea, favoured by the 
introduction of the logical-linguistic riddles (Smullyan, 1978), is the great attention devoted by us 
to students’ reasoning. To give importance to students’ answers, we have let them naturally emerge 
from a learning set in which discussion had a central role. In analysing students’ productions, we 
can observe how their spontaneous reasoning is a first step toward the development of their 
argumentation skills. We are aware that a rigorous mathematical argumentation can be obtained 
only at the end of a long path that starts from different forms of reasoning, often not scientifically 
rigorous. This does not mean that different forms of rationality should be dismissed in favour of the 
specific mathematical rationality. We know that for each of us all the forms of rationality coexist 
more or less in our life, but what is important is the possibility given to all students as early as 
possible to acquire the special kind of mathematical rationality.  

This is the specific purpose of this work, where we analyse some of students’ productions in solving 
the riddles and we trace the development of their reasoning. Therefore, our main research question 
is to what extent, and by means of what specific didactic mediations, the use of logical riddles with 
their linguistic challenges, can favour the development of argumentative competences and of 
scientific language and thought. 

Theoretical background 
Language and in particular linguistic competencies are considered very relevant issues in 

mathematics learning. For example, Sfard (2000), to quote just a single seminal work, interprets 

thinking as a form of communication and considers languages not only as vehicles of pre-existing 



meanings, but as builders of the meanings themselves. These competencies are the basis of many 

cross abilities, argumentation, communication, problem solving and so on, recommended as 

essential in all the official documents (for example, MIUR, 2012, Italian Ministry of Education). 

In our works (e.g., Coppola, Mollo & Pacelli, 2010) we have often used logic in educational 

contexts, just because, in addition to being an important learning goal in itself, it has a special role 

in relation to language. In fact, logic appears as a privileged field for analysing the relation between 

language and interpretation, for identifying, studying and using linguistic manipulation rules and 

especially for the dual role of object and tool of investigation that language plays within logic 

(Ferrari & Gerla, 2015). The attention to the distinction between language and metalanguage is 

evident in our study, where the language is in the logical riddles and the metalanguage occurs in the 

discussions and the written argumentations used to solve them. However, no educational use of 

mathematical logic can be exhausted in its strictly disciplinary or formal aspects. These aspects may 

at most be considered a point of arrival, bearing in mind that in any case the way leading to the 

formalization is long and arduous. Along this road, the language takes on different forms and levels 

and the argumentations meet various needs. The importance of the contexts in which 

communication occurs and of the different forms of language has been widely recognized by the 

research that has put into the foreground the pragmatic aspects of language (Ferrari, 2004). 

In general, the topics of pragmatic are deeply connected to the critical points of the research on 

learning and teaching mathematics (Ferrari, 2004). In our study, we use these tools to interpret 

some of the students’ behaviors, elsewhere classified as ‘irrational’. On the contrary, according to 

(Zan, 2007), we believe that the behaviors of the subjects ‘getting wrong’ may appear consistent 

when considered in relation to contexts and purposes other than those strictly adhering to rigorous 

logical reasoning. For this reason, we prefer to speak of two forms of rationality, rather than counter 

the rationality of mathematics with other behaviors that obey to different pulses. For example, 

according to one of the central issues of the pragmatic (Grice, 1975), in a particular context it is 

possible to make interpretive inferences based on the belief that who speaks or writes respects the 

Principle of Cooperation, according to which the communication is a collaborative process among 

those who are involved. These inferences, called conversational implicatures, differ by the logical 

implication, which relies only on the semantic content. Moreover, in making inferences in a certain 

context, it is frequent and legitimate to resort to one’s own encyclopedic knowledge, that is the 

general knowledge of a person about the world (Zan, 2007).  

The aspects of language brought to the fore by the studies on pragmatics are intertwined with the 

Bruner’s distinction between two kinds of language or thought, the narrative and the scientific ones 

(Bruner, 1986). The scientific thought categorizes reality, recognizes the order of things, and 

produces demonstrative argumentations. It comes up in linguistic forms which are typically 

impersonal and timeless. Narrative thought, instead, interprets human facts: actions, intentions, 

desires, beliefs and feelings. It comes up in linguistic forms in which actions are performed by 

individuals and are accomplished in time. The acquisition of the first kind of thought and language, 

necessary for the understanding of science and mathematics in particular, is slow and it requires a 

careful didactic mediation, whereas the narrative way is more spontaneous and within everyone’s 

means. For this reason, in many researches there are several suggestions for using narrative forms 

or even invented stories as a way to present mathematical contents (see, e.g. Zazkis & Liljedahl, 



2009). Hence our decision to use a fantastic setting to introduce abstract concepts and present 

logical tasks. Our choice also depends on other reasons. It prepares the students themselves for 

using narrative modes. This establishes a working setting in which teachers and researchers can use 

and interpret students’ answers in order to guide them through the gradual acquisition of forms of 

scientific language. Moreover, a third reason, regarding the logical contents we introduce, led us to 

design a fantasy narration. In fact, we agree with what Eco (2009) says about the relationship 

between narration and the notions of true and false: 

“[…] every statement in a novel draws and constitutes a possible world whence all our 
judgments of truth or falsity will refer not to the real world but to the possible world of that 
fiction [...] The epistemological function of such fictional statements is that they can be used as a 
litmus paper for the irrefutability of any other statement. They are the only criterion that we have 
to define what the truth is” (Eco, 2009, translated by the authors). 

It is only in the context of an invented story that true and false are incontrovertible: for example, 
Rome could stop being the capital city of Italy, but Juliet will never stop loving Romeo. 

Methodology  
The study involved eighty 6th and 7th grade students of the same school with medium-low level of 
mathematical skills for about two months. The activities were carried out outside school time, in the 
presence of a mathematics teacher and a researcher (one of the authors of this paper). In a 
Vygotskian perspective, according to which the reasoning ability increases in the interaction among 
peers under the guidance of an expert (Vygotsky, 1934), the children participated in the activities 
working in small (2, 3 or 4 people) cooperative groups. Moreover, in accordance with the notion of 
didactical cycle (Bartolini, Bussi, & Mariotti, 2009), the activities were carried out with the 
alternation of different phases: exploration of the artefact, problem solving and collective discussion 
guided by the researcher. In our case, the artefact is the text of the riddle, so a linguistic artefact.  

The students alternated their work with structured worksheets and with logical riddles. All the texts 
are adapted from the tales of “the knights and knaves island” (Smullyan, 1978): an imaginary island 
populated by two kinds of inhabitants, the knights who always tell the truth, the knaves who always 
lie. The activities on the structured worksheets, already used in the original path (Tortora, 2001), 
were proposed in the first part of every lesson. Their aim was to introduce in each lesson some of 
the basic elements of logic, e. g. the notion of proposition, the truth values, the distinction between 
simple and compound sentences, the logical connectives. The worksheet activities also gave to the 
researcher the opportunity to involve students in reflections about the differences between 
mathematical logic and common sense, as well as about the relativity of the notions of true and false 
and their dependence on the available information, the context and in some cases the judgment of 
the evaluator. The second part of every lesson was devoted to the solution of logical-linguistic 
riddles, as an application of the notions and the abilities acquired. From a formal point of view, the 
resolution of this kind of riddles requires that the students succeed in determining the only model1 

coherent with the dialogues in the text of the riddle.  

                                           
1 We use here the term ‘model’ to mean a correspondence that assigns to each character in the story the category he 
belongs to (knaves or knights). 



All the collected data, that is, the students’ written argumentations and the audio-recordings of their 
interaction within the group, have been analyzed. Here we refer only to the analysis of some written 
protocols, produced as answers to a single riddle. The task we examine is the solution of the first 
riddle, proposed at the end of the first lesson, after having introduced the notions of logical 
proposition and true values. We find this task the most interesting in order to reflect on how the 
students switch from one kind of thought and language to another, since in this first phase they were 
totally free from the influence of any didactic contract in solving linguistic riddles. Protocols have 
been examined on the basis of the awareness that different contexts and aims activate different 
forms of rationality and different linguistic styles (narrative vs. scientific). This aspect is crucial 
since we required students to logically solve linguistic riddles situated in a narrative environment.  
The analysis was carried out recognizing students’ behaviors just on the basis of these categories. 

The task that we examine is the solution to the riddle described in Figure 1. 
Team: 

Riddle 1 
Oreste is in the knights and knaves island and he meets 
two persons, Alberto and Bernardo. 
Alberto claims: “One of us is a knave, at least” 
What can we say about Alberto and Bernardo? Can we 
establish which kind of inhabitant is Alberto? Can we 
know what kind of inhabitant is Bernardo? Discuss about 
this with your team mates. Then, write your reasoning. 

Figure 1: Riddle 1 - The right answer is: Alberto is a knight and Bernardo is a knave 

Analysis of protocols 
We report four protocols2, which seem to be meaningful and representative. We have selected them 
among the others, to show a spectrum of resolutions starting from a completely narrative approach 
until a prevalently scientific one. In them we have found also many interesting examples of 
conversational implicatures. 

Protocol G1 (Fig. 2) gives us an example of completely narrative resolution of the riddle, without 
any explicit argumentation. In the first part, the students attach to Alberto the identity of a knight: 
probably, since Alberto speaks with Oreste, they affirm that “he seems sincerer”. From that they 
deduce that Alberto is a knight and Bernardo is a knave. 

 
Figure 2:  Protocol G1 - Answer: Alberto is a knight and Bernardo is a knave 

 
G1: [First part] I think that Bernardo is the knave and Alberto is the knight because he 

seems sincerer. [Second part] In a certain way one of the two has got a 
particularity, but they should be 2 knaves. 

                                           
2 The labels G1, G2,…indicate the protocols of the different groups (Group 1, Group 2,…). In Figures 2 to 5 we show 
the original protocols (including some erasures), and then just below we report our English translations.  



Many groups attribute conversational purposes to knaves and knights. In particular, here students 
seem to believe that the knaves prefer not to intervene in the dialogues, because they do not want to 
risk, exposing themselves to reveal their nature, whereas the knights speak freely, because they 
have nothing to hide.  

In Protocol G2 (Fig. 3), the possibility that Alberto be a knave is excluded on the basis of 
encyclopedic knowledge: in fact, the group imagines that in that case Alberto would have said 
something different. Thus we have an example of narrative thinking, with an argumentation.  

 
Figure 3:  Protocol G2 - Answer: Alberto is a knight 

G2:  Alberto is a knight because, if he were a knave he would have said the opposite 
i.e., thatbothneither of them was a knave. 

Very often the students’ priority in solving their first linguistic riddle seems to be to preserve the 
coherence of the story, based on their daily life experience. In this protocol, for example, we note a 
change of script, which is one of the most frequent phenomena we found in the first approaches to 
the riddles. By this we mean an argumentation used to exclude cases that appear to the students 
inconsistent with the narrative. When the students judge a case as inadmissible, they try to make 
examples of what the characters would have said in a case coherent with the narration (“this case is 
not possible, because otherwise the character would have said so…”). This change of script is in 
accordance with the cooperative purpose often attributed to the knaves. 

Nevertheless, already within the activity of resolution of the first riddle, it is possible to notice the 
emergence of a different form of rationality. In many protocols, there is a transition from a first 
response, corresponding to an involvement of only the narrative thinking, to subsequent responses, 
in which the students bring into play simple forms of logical-scientific thinking. This evolution was 
supported by collective discussions, which took place during the activity. For example, in Protocol 
G4 (Fig. 4), we can read three successive different kinds of resolutions: exactly what we intend for 
a complete spectrum of different approaches to the riddle resolution. 

 
Figure 4:  Protocol G4–First version answer: Alberto and Bernardo are both knaves. 

Second and third versions answers: Alberto is a knight and Bernardo is a knave 



G4:  [First version, erased in the protocol] Alberto and Bernardo are both knights 
knaves, because, after that saying, Bernardo does not rebut, therefore this means 
that the proposition is true. 

  [Second version, erased too] Alberto is a knight and Bernardo is a knave, because, 
saying what he says Alberto affirms that one of them is a knave and so, among 
them, there is necessarily a knave. 

  [Third version] Let us suppose that Alberto is a knave. By saying this, his 
sentence will be true. But, since he is a knave, he should not tell true things. 
Therefore Alberto is a knight; and Bernardo is a knave. 

In the first version the answer is wrong and the argumentation seems ascribable to a totally narrative 
approach, with reference to personal encyclopedic knowledge. By saying “Bernardo does not 
rebut”, he wants to express that “Bernardo does not justify himself”: according to their life 
experiences the students interpret this attitude as an admission of guilt. In the second version the 
answer is correct. Nevertheless, in their attempt to argue, the students only explain the meaning of 
the sentence pronounced by Alberto, with special attention to the crucial expression “at least”, 
which was examined during a short collective discussion. Finally, the third version, which 
maintains the correct answer, contains a “scientific” argumentation. It comes after a longer 
collective discussion, in which the researcher, comparing the productions of the different groups, 
pursued two principal objectives: to support students in re-situating the activity in the mathematical 
context, introduced in the first part of the lesson; and to build a shared more rigorous language. It 
can be said that the discussion favored the appearance of words like “sentence”, “true”, “true 
things” and, at the same time expressions like “let us assume”, “but”, “since” and “therefore”, in 
this way supporting a complete “reductio ad absurdum” form of reasoning. A similar evolution can 
be found also in other groups, as we can see in Protocol G7 (Fig. 5). 

 
Figure 5:  Protocol G7 - The answer in both versions is: Alberto is a knight and Bernardo is a knave 

 
G7: [First version, erased] Alberto is a knight because if he were a knave he would tell 

the false and if he were a knave he would say that one of them is a knight. 
Consequently Bernardo is a knave. 
[Second version] Going by cases, we can deduce that: they cannot be both 
knights, otherwise they would not say that one of them is a knave, since the 
knights say the truth; they cannot be both knaves otherwise they would have said 



to be both knights; if Alberto was a knave it cannot be that Alberto is a knave 
otherwise he would have said to be a knight. Therefore by exclusion Alberto is a 
knight having told the truth and consequently Bernardo is a knave. 

In both versions the answer is correct. In the first argumentation, we can notice a clear 
predominance of the narrative thinking over the logical one, leading to a change of script, coherent 
with the conversational purposes attributed to the characters. On the contrary, in the second one, 
which comes after the long collective discussion, we notice the use of a scientific language, while 
the content is at the same time narrative and logical. In fact, the possibility that Alberto and 
Bernardo are knights is ruled out by means of a logically correct argumentation. The other two non-
admissible cases, instead, are excluded on the basis of narrative argumentations, through changes of 
script. For example, the change of script “they cannot be both knaves otherwise they would have 
said to be both knights”, is based on the conversational purpose that the knaves team up to hide. 

Discussion and conclusions 
It is well known that the logical formalism, although necessary, to a certain extent, for a full 
acquisition of mathematical notions, may constitute a difficult obstacle for students, due to its 
distance from common sense and to its exasperated exactness. The awareness of this risk was the 
starting point of our research and experience. For this reason, a first decision was to introduce the 
didactic activities by means of riddles, which are a sort of game. Secondly, these puzzles were 
immersed in a fictional context, using explicitly a narrative mode. But in the experimentation 
analysed in this study, the role of narrative has been twofold. On the one hand, as we have said, 
following a well-established research trend, we have benefited from the context of an invented story 
and its appeal to introduce some not easy logical-mathematical concepts; on the other hand, we 
have paid special attention to the narrative mode adopted by students in their oral and written 
productions. It seems to us that our experimentation has brought some interesting results. First, the 
path supported the students toward a strengthening of the metalinguistic control over the texts, 
spurring a reflection on the relationship between language and metalanguage. In our context, the 
object language corresponds to the sentences pronounced by the knights and the knaves, whereas 
the metalanguage is the one used in group discussions and in the production of written 
argumentations. Thus the students became aware of the dual role of language, as a communication 
tool and an object of manipulation. In addition, our way of introducing the activities allowed the 
students to grasp a first sense of the logical formalism, although deliberately not rigorous. 
Addressing the proposed activities, the students were gradually able to experience directly how a 
rational management of statements, at a first glance uninformative, could be very efficient. The 
narrative dimension has played a key role in providing a criterion of truth, which was naturally 
accepted by the students and which allowed to (partially) approach what logicians call a ‘model’. 

During the steps towards the resolution of the riddles, alternated with the collective discussions 
about the students’ argumentations, it seemed to emerge a gradual evolution from a purely narrative 
approach toward an approach where some form of scientific thinking appears. Even in the solution 
of the first riddle, where the two kinds of rationality are intertwined, it emerges a shift towards a 
more conscious management of the two forms of thinking, spurred by the resolution of the logical 
tasks. This kind of evolution is supported by the emergence of a more and more rigorous language. 



Our further step will include a deeper analysis of the oral discussions among the students, in order 
to try to better understand if and how the peer discussion, the comparison of different views and the 
necessity to write down the shared conclusions favour the transition toward a more and more 
sophisticated use of a scientific language. If this will be the case, there will be room for designing 
and experimenting further didactic proposals also in order to observe whether, in a longer period of 
time, there are positive repercussions on mathematical competences. 
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Participation in mathematical practices is widely accepted as important for students’ meaningful 
learning of mathematics. But how do students learn to adequately participate in these practices? 
This paper addresses the question for the specific case of oral explaining practices in whole class 
discussions. The study is theoretically based on merging an interactionist and an epistemological 
perspective to describe explaining practices as interactive processes in a classroom microculture 
while simultaneously keeping in mind the development of the broached mathematical content. The 
identified implicit and explicit processes of establishing explaining practices are exemplified and 
discussed with respect to ambivalences in the differing learning opportunities they offer. 

Keywords: Explaining practices, student participation, discourse, interaction, implicitness. 

Introduction 
This study is based on the assumption that students’ learning is inseparably linked to participation in 
classroom interaction, which is mainly based on verbal communication. Therefore, learning of 
mathematics is conceptualized as “a process of enculturation into mathematical practices, including 
discursive practices (e.g., ways of explaining, proving, or defining mathematical concepts)”  
(Barwell, 2014, p. 332). In this study, the discursive practice of explaining in whole class discus-
sions is further investigated. Erath, Prediger, Heller, and Quasthoff (submitted) show that explaining 
is the most frequent discursive practice in German grade 5 mathematics classrooms. Furthermore, 
explaining has an important role for the meaningful learning of mathematics since it serves to com-
municate about more isolated pieces of knowledge, including talking about meanings and connec-
tions (Prediger & Erath, 2014). But how do students learn to participate in explaining practices and 
the corresponding epistemic processes? This question is investigated in this paper on the level of the 
interactive processes of establishing explaining practices in four microcultures. 

Theoretical background: Explaining as practices of navigating through differ-
ent epistemic fields 
Following Interactional Discourse Analysis, explaining is understood as multi-turn units which are 
interactively co-constructed, contextualized and serve to convey or construct knowledge (Erath et 
al., submitted). This definition is extended and intertwined with an interactionist and an epistemo-
logical perspective from mathematics education: From an interactionist perspective, explaining can 
be conceptualized as a mathematical practice (Cobb, Stephan, McClain, & Gravemeijer, 2001) that 
is interactively established in a classroom microculture and that allows talking about collective 
mathematical development. Here, this concept is used descriptively to talk about identified ways of 
collective explaining processes in whole class discussions that are interactively established by  
students and the teacher. But not every explanation constitutes an own practice. To clarify this point, 
the notion of mathematical practices is enriched by the following definition from general education-
al science: “Practices are […] understood as rule-governed, typecasted, and routinely recurring  



activities” (Kolbe, Reh, Fritzsche, Idel, & Rabenstein, 2008, p. 131; translated from German by the 
author). Therefore, mathematical explaining practices are conceptualized as recurrent ways of ex-
plaining that are treated as matching the classroom microculture from the participants’ perspective. 

The epistemic matrix was derived from research in mathematics education from an epistemological 
perspective (Prediger et al. 2014) and is used to further specify the notion of ‘recurrent ways of ex-
plaining’. Different possible objects of explanations in mathematics are systematized in the lines of 
this matrix (not readable in Figure 1 that focusses on the depicted pathways), called logical levels 
(from top to bottom): Concepts, propositions, representations, and models (conceptual logical lev-
els) and conventional rules, procedures, and concrete solutions (procedural logical levels). Each of 
these mathematical aspects can be explained by different means that are distinguished in the col-
umns of the matrix (Prediger & Erath, 2014), called epistemic modes (from left to right): Labeling 
& naming, explicit formulation, exemplification, meaning & connection, and purpose & evaluation.  

   
Figure 1: Three explaining pathways contributing to the practice of explaining ‘good’ representations  

On the one hand, the epistemic matrix is used to characterize the utterances of students and teachers 
in explanations by analyzing which cells (called epistemic fields) of the matrix they address. On the 
other hand, the matrix is used to depict the explaining pathways that are interactively established by 
mapping these characterizations of utterances in the matrix (see Figure 1): Students’ utterances are 
depicted as rectangles (including turn number and name), the teacher’s utterances as circles with 
turn numbers. These pathways give access to the underlying mathematical structure of explaining 
sequences, which are especially characterized by the teacher’s navigations through different episte-
mic fields (indicated by arrows in the pathways). Therefore, the matrix is used as tool of analysis 
and at the same time the associated language of ‘explaining pathways’ serves to specify the defini-
tion of explaining practices: Altogether, explaining in mathematics classrooms is conceptualized as 
practices of navigating through different epistemic fields, which are identified by building catego-
ries of pathways with similar structures (Erath, 2017). Hence, different practices are constituted by 
different defining patterns of their pathways describing the ‘recurrent ways of explaining’. For ex-
ample, all three pathways in Figure 1 have entries in the lines of “representations”, “procedures” and 
“concrete solutions” in common and after working in the column of “purpose & evaluation” (more 
on the right) the teacher navigates towards the column of “explicit formulation” (more on the left). 
This recurring pattern defines the practice of explaining ‘good’ representations in one classroom: 
“navigating from the evaluation of a student’s concrete solution and suggestions for improvement to 
deriving more general hints for drawing and characteristics of good representations”. 

But how do students learn to adequately participate in these interactively established explaining 
practices? Studies on the establishment of related norms in mathematics education (e.g. Yackel & 
Cobb, 1996) and discourse analysis (Heller, 2015) identify implicit and explicit processes as oppor-



tunities for students learning how to explain in their classroom. This work is extended to the pro-
cesses of establishing explaining practices in this paper. 

Methodology of the study 
Larger data corpus. In the larger project INTERPASS, video data was gathered in 10 x 12 mathe-
matics and language lessons (each 45-60 min.) in five different grade 5 classes (age 10-11 years) in 
an urban area of Germany. Eight lessons were observed in the beginning of the school year directly 
after the transition from primary school since it could be expected that processes of establishing 
practices are more explicit in this time of getting to know each other. Further four lessons each were 
gathered in the middle of the school year in order to get a long-term impression.  

Sampling for the case study of this paper. The presented study builds on data of four mathematics 
classrooms chosen due to the following different characteristics in order to observe a broad range of 
interactions (Erath, 2017): Two higher tracked secondary schools (German: “Gymnasium”) and two 
normal secondary schools (German: “Gesamtschule”) and within each of these subgroups one class-
room with students from a privileged and one with students from an underprivileged quarter. 

Data analysis. This paper is based on analyses done for the PhD thesis “Mathematical discursive 
practices of explaining in different classroom microcultures” (Erath, 2017) enrooted in the larger 
project INTERPASS. In this context, all explaining sequences in whole class discussions were tran-
scribed and analyzed by means of the epistemic matrix resulting in explaining pathways for each  
sequence. In a second step, explaining practices were identified in each classroom by developing 
categories of pathways with similar structures. In this way, three to five different explaining  
practices were explored in each of the four classrooms. In order to answer the question “How do 
students learn to adequately participate in the explaining practices of their classroom?” the inter-
active processes of establishing practices were further investigated. More precisely, it was explored 
if these processes were explicit or implicit and which turn teachers use in order to express their  
expectations and if this makes any difference for students learning opportunities. 

All presented transcripts were translated from German and simplified (capital letters indicate 
stressed words, round brackets indicate phrases difficult to understand in the video data). 

Empirical results: Processes of establishing explaining practices 
The investigation of processes of establishing explaining practices in four German grade 5 class-
rooms (Erath, 2017) shows that there are some explicit but primarily implicit processes that contri-
bute to the establishment of explaining practices. Furthermore, it comes to the fore that teachers 
(implicitly or explicitly) explicate their expectations in the turn of demanding an explanation as well 
as in the turn of responding to a student’s utterance.  

Explicit processes 

Out of 16 identified explaining practices, only the practice of “explaining a concrete solution by 
means of a conventional rule” in Mr. Maler’s classroom is recurrently established in an explicit way. 
The following transcript from the sequence “rounding on tens” (see Prediger & Erath, 2014 for a 
longer extract of the sequence) exemplifies how the teacher explicates his expectations for a ‘good’ 
explanation in his response to Kosta’s explanation why 63 can be rounded on 60: 



8 Kostas: °hhh [articulated clearing his throat] Well, if you are rounding DOWN the 
sixty-three on TENS; then it comes, it gets, there must be ALWAYS a zero 
at the end, it MUST be, 

9 Teacher: [hm_hm                          ] 
10 Kostas: [when you are rounding.] 
11 Teacher: On TENS yes. 
12 Kostas: And then there, if you take AWAY the three and shift the ZERO to it. So, 

you could DO that, but actually it’s WRONG. You just have to round down 
and nea.. nearest number with a ZERO you have to write there. 

… 
20 Teacher: […] and you already implied WHY; but does any of you know a RULE, 

HOW one has to proceed here, and when one here, when the ten stays the 
SAME? In this case, and the place BEHIND, which is rounded, goes to 
ZERO? Ha; [4.5 sec. break] Katja. 

21 Katja: With zero one two three FOUR you are rounding down and with five six 
seven eight NINE you are rounding (up). [3.5 sec. break] 

22 Teacher: Did EVERYBODY understand that? 
23 Class: YES [affirms in choir] 

Kostas explains his solution by referring to the meaning related model of distance and closeness on 
the number line. This is implicitly rejected as a matching explanation by the teacher in #20, immedi-
ately followed by questioning the class about a rule that could be applied to explain the solution. In 
this way, Mr. Maler explicates his idea of a ‘good’ explanation of a concrete solution, which is un-
derlined by his reaction to Katja’s formulation of the corresponding rule. This sequence is an exam-
ple of explicating expectations in responding to a student’s explanation by navigating to the epis-
temic field (explicit formulation of a conventional rule) that would match for an explanation from 
the teacher’s perspective and directly demanding an answer in this epistemic field. Another con-
ceivable possibility would be that the teacher explicitly talks about which mathematical aspect of an 
explanation he values or which part did not match from his perspective. 

These kinds of explicit processes can also be observed in Mr. Maler’s demands for explaining a so-
lution. The following extract from “rounding on thousands” in the context of a homework on round-
ing the length of rivers illustrates the case of explicating expectations in the turn of asking for an 
explanation by pointing to the expected epistemic field (explicit formulation of a conventional rule): 

6 Tabea: SIX thousand 
7 Teacher: GOOD; but now my QUESTION is, HOW did you arrive at this six thou-

sand? Since we also want the RULE 
8 Tabea: Because from e:r, 
9 Teacher: to be CLEAR 
10 Tabea: Well up to five, well up to four, you have to round DOWN, and from five 

six seven eight nine you have to round UP. 
11 Teacher: EXACTLY. […] 

After naming the right number (#6), Tabea is asked by the teacher in #7 to explain her solution. In 
this turn of demanding an explanation he directly states that she should refer to the conventional 
rule (shortly interrupted by Tabea): “HOW did you arrive at this six thousand? Since we also want 



the RULE […] to be CLEAR” and in this way explicitly points to the expected epistemic field. 
Tabea follows this navigation (#10), which is explicitly evaluated positive by Mr. Maler in #11. 

In both ways, the teacher explicates his expectations and reveals the recurring, typical structure of 
explaining a concrete solution by means of stating the related conventional rule. That is, this struc-
ture is made accessible to all learners and not only to those who can interpret the implicit processes 
of establishment (see below). Hence, the teacher’s explication of expectations in the turns of deman-
ding for and responding to an explanation are major learning opportunities for explaining a concrete 
solution adequately in this classroom (this must not hold for other classrooms since every microcul-
ture establishes different practices). Especially the way of explicating in the demand for an explana-
tion seems to be important: This allows all children to contribute in the subsequent explanation even 
though they might not yet recognize the recurrent pattern of the underlying practice. 

Implicit processes 

Explicit establishments (see above) have only been found in rare cases in the data corpus. Instead, 
processes take course implicitly. Three different ways of implicit processes contributing to estab-
lishing explaining practices were identified and are exemplified in the following: (1) marking match 
or mismatch in responding to a student’s explanation without giving reasons for the evaluation, (2) 
picking up only particular aspects of a student’s explanation without explication, and (3) navigating 
recurrently to specific epistemic fields without revealing the underlying (intended) pathway. 

An example for evaluating a student’s explanation without further comments is the sequence “dis-
tinguish lists” from Mrs. Bosch’s classroom. During revision at the beginning of the lesson, students 
are asked to distinguish the concepts of tally sheets and frequency tables. 

12 Teacher: […] Now, WHAT was tally sheet, WHAT was frequency table, this PART, 
Barbara, 

13 Barbara: Tally sheet is where you did strikes; and frequency table is er [4.0 sec. 
break] er- 

14 Teacher: Can you HELP Maria? 
15 Maria: YES, when you did it all count up and then wrote it DOWN with numbers 
16 Teacher: EXACTLY. Well CAUGHT. […] 

Mrs. Bosch marks Maria’s explanation explicitly as matching (#16) but does not reveal the under-
lying pathway in her response: The analysis of several sequences on explaining concepts in this 
classroom unfolds that in this microculture a concept is adequately explained by means of address-
ing an epistemic field on the level of procedures, which means formulating an instruction for gener-
ating a representation of the concept. Therefore, the sequence is an example of an implicit process 
that contributes to the establishment of an explaining practice by marking an explanation as match-
ing or mismatching without commenting on the reasons for the evaluation. 

The second kind of implicit processes (picking up only particular aspects of a student’s explanation 
in a response without explication) is concretized by the sequence “function of diagrams” from Mr. 
Schroedinger’s classroom in the context of talking about different ways of presenting data.  

1 Teacher: […] WHY they’re doing quite frequently in printed media but also um on 
TV in the news, um why they’re not giving a LIST like that […] 



2 Nikolas: um because maybe because this CATCHES one’s eye much faster and um 
well that you can SEE this faster; so that something is BIGGER; because 
this is also bigger from its SIZE. So it’s MORE because it’s BIGGER from 
its size. 

3 Teacher: [nods] [Markus        ] 
4 Marcus:            [Because you] can CATCH it very fast. For example um now up 

RIGHT I think there are such PERCENTAGES; because (that they) CATCH 
that well it’s actually even BETTER than this; (also how many) PEOPLE; 

5 Teacher: hm_[hm  ] 
6 Marcus:        [How] many SIBLINGS they have, because then in parts they would 

maybe have to always go THROUGH our classroom that small. 
… 
9 Teacher: THIS exactly meets the point, these two utterances. THEREFORE you nor-

mally do it in the form of such diagrams, because of the clarity actually […] 
In his evaluation in #9, the teacher explicitly marks that the students’ answers match but in his sub-
sequent summary, only specific aspects are picked up: The teacher takes on the aspects related to 
functionality but he does not refer to the further issues of meaning (#2, “it’s MORE because it’s 
BIGGER”) or examples (#4/6, number of siblings) addressed by the students. This selection is in 
line with the practice of explaining that is established during several sequences: In Mr. Schroeding-
er’s classroom, concepts are adequately explained by referring to purposes and functionality.  

The third way of implicit processes contributing to establishing a practice is the teacher’s repeated 
steering to specific epistemic fields without revealing the underlying (intended) pathway. This di-
rectly refers to the definition of explaining practices that forms the basis of this study. Figure 1 
shows three pathways of sequences that show the same regularities. These kind of pathways are 
identified five times in Mr. Schroedinger’s classroom in the context of explaining how ‘good’ rep-
resentations are designed. But, as with the two ways illustrated before, the underlying pathways are 
not revealed. The following extract from the sequence “lists of pets” exemplifies the navigation 
from evaluating a concrete solution to formulating hints for generating ‘good’ representations. 

1 Teacher: What would you SAY which ADVANTAGES, DISADVANTAGES [break 
1.3 sec] have these particular ways of writing it down; […] 

34 Büsra: Well, in my POINT of view number two is BEST [break 1.7 sec.] 
35 Teacher: WHY; [break 1.2 sec.] 
36 Büsra: Yes because it doesn’t that much TIME and em like Monir-Zohir already 

SAID em it only takes you like two MINUTES or so- 
37 Teacher: hm_HM, [break 1.3 sec.] But with number two TOTALLY obvious- some-

thing is MISSING in order to make it as clearly arranged as POSSIBLE […] 
WHAT is missing TOTALLY obvious with number two so you can SAY 
yes THIS makes somehow sense- this there you need LITTLE time- this is 
SOMEWHAT clearly arranged 

…   
40 Uwe: the NUMBERS; [break 1.7 sec.] 
41 Teacher: SAY again- WHY does it make sense to write numbers behind it? 
42 Uwe: So that you don’t always have to count THROUGH; 



43 Teacher: [writes on the transparency] EXACTLY; […] 
Mr. Schroedinger initiates (#1) the evaluation of the representations and after some students stated 
pros and cons for the different representation, he navigates to formulating suggestions for improving 
the lists (#37), which helps clarifying how good lists should be designed. By repeatedly starting 
from a student’s concrete solution and navigating from its evaluation and suggestions for improve-
ment to deducing more general hints for drawing and characteristics of good representations this 
explaining practice is established across several sequences. 

Although the three presented ways of establishing explaining practices must be characterized as im-
plicit processes, they serve as opportunities to learn how to participate adequately in whole class 
explanations, at least for some learners. But the examples also show how challenging it is for other 
students to interpret these implicit processes (see e.g. Gellert, 2009, for further discussion of diver-
gent learning opportunities related to implicitness). In the cases of marking matches and mismatches 
or picking up particular aspects without further comments, it might be challenging for students to 
follow since they must relate the teacher’s evaluation to a classmate’s utterance that is not present 
any more. The third way (recurrent teacher’s navigations) allows all students to contribute in the 
explanations as long as the teacher explicitly demands for the shifts of epistemic fields. However, it 
probably takes students several sequences of one practice to recognize that there is a pattern and that 
knowing “how explaining works” is important for adequately taking part in whole class discussions. 

Conclusion and discussion 
The distinct dominance of implicit processes found in the qualitative analysis of the video data cor-
pus is in line with research that identifies criteria of “successful participation” and “expected student 
contributions” (Gellert, 2009, p. 131, translated from German by the author) as often staying implic-
it. The presented study deepens these findings for explaining practices. Furthermore, the epistemic 
matrix offers a possibility to talk about mathematical aspects of ‘good’ explanations and to make 
the hidden regularities visible and discussable by means of the pathways. The dominance of implicit 
processes also suits the observation that explaining (as well as oral communication in general) is not 
treated as an explicit learning goal by the teacher (Erath, 2017). Instead, explaining serves as learn-
ing medium that is used without talking about adequate participation beyond general social behav-
ior, i.e. the mathematical aspects of ‘good’ explanations. Moreover, it becomes apparent that learn-
ing how to adequately participate in whole class explanations is a learning process (across several 
sequences and lessons) and hence especially not a feature that students bring to the classroom but a 
competence that can be acquired in the interaction of collective explanations guided by the teacher. 

The explicit and implicit processes of establishing explaining practices relate to different learning 
opportunities for students as explicated above: More explicit processes are eligible since they reveal 
the underlying patterns of the pathways and provide more students access to this mathematical as-
pects of participation, not only those who are able to also interpret the implicit processes. However, 
this does not imply a call for direct instruction: Talking about language on meta-level while simul-
taneously talking about mathematical content may ask too much especially from weaker students. 
Instead, it is about making the criteria for matching and mismatching utterances in relation to a 
practice accessible in responses to explanations or in the turn of demanding for explanations. There-
to, teachers need to be sensitized for the role of oral explaining as a learning goal in order to be able 



to deliberately initiate particular practices. But as a first step, research in mathematics education 
should further specify which explaining practices are reasonable (also related to general discourse 
acquisition) or rather necessary in which grade in order to help teachers to enable even more stu-
dents to actively participate in oral explanations and the corresponding epistemic processes. 
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I describe a teaching experience I carried out in Malta with a class of 5-year-old children of different 
language groups. The language of instruction was English and the topic subtraction. I explicitly 
taught mathematical expressions and sentence frames and planned class and paired activities 
wherein the children themselves would use the language to express the concepts at hand. The 
theoretical framework underlying my interpretation of the children’s efforts is learning-as-
participation. More specifically, I used Krummheuer’s empirical model designed for interpreting 
classroom interaction in terms of producers and recipients. My teaching experience illustrates that 
with careful attention to both mathematics and language objectives, young learners in plurilingual 
Maltese classrooms can appropriate and use mathematics discourse within structured activities. 
However, more research is needed with regard to how students might use this language to author 
novel contributions.  

Keywords: Learning-as-participation, mathematical discourse, subtraction, elementary education.  

Introduction  
Atlhough the academic language for mathematics in Malta (an ex-British colony) is English and 
written texts are in English, interaction in classrooms is usually conducted through both Maltese and 
English. However, the number of non-Maltese students in classrooms in increasing over time, 
prompting teachers to use more English during lessons; although English may not be the non-Maltese 
children’s home language, it is more likely that they would familiar to some extent with English rather 
than Maltese. Anecdotal evidence suggests that teachers generally view this situation to be 
problematic, as they need to cater linguistically for Maltese and non-Maltese children. I carried out a 
study in the form of a teaching experience with a mixed language group of children  with the aim of 
encouraging students to learn and use topic related language. My reasons for carrying out the study 
were (1) to apply to the Maltese context, the recommendation from the field of mathematics education 
for teaching mathematics language explicitly; (2) to focus on specific aspects of the mathematics 
register. I hoped that the reflections would aid me in my discussions with local colleagues, trainee-
teachers and policy-makers on medium-of-instruction issues. My research question was: How can 
children of different language groups be supported to learn English mathematical language? By 
‘learning’ I mean that the children would be able to express mathematical ideas through appropriate 
language during and after a series of lessons wherein specific language structures were emphasized.   

Learning mathematical discourse 
Several researchers, among them Gibbons (2015) and Murray (2004), make a strong case for teaching 
students explicitly how to talk about mathematics. Learning the language of mathematics allows 
individuals to express the ideas and concepts that form the discipline of mathematics, and by learning 
the language pupils begin to be enculturated into it (Lee, 2006). Thus, children learn the discourse of 
the discipline. This includes more than just learning subject specific vocabulary. Rather, it involves 



learning  - and using - the ‘ways of saying’ particular to the subject. For example, Sammons (2011) 
states that students need to learn how to formulate questions, make inferences and predictions; Murray 
(2004) and Gibbons (2015) recommend reflective journal writing as part of learning mathematics 
while Gerofsky (2004) considers word problems to be a genre forming part of the discourse. Whereas 
learning mathematical discourse is important for all learners, second-language learners have the dual 
task of learning the second language and content simultaneously (Bresser, Melanese & Sphar, 2009). 
Consequently, the teacher of second-language learners faces the challenge of not only making the 
mathematics lessons comprehensible for students, but also of ensuring that the students have the 
language needed to express their grasp of mathematics concepts. Coggins, Dravin, Coates and Carroll 
(2007) and Melanese, Chung and Forbes (2011) offer suggestions for classroom activities to support 
these students in learning ‘academic’ language, while Gibbons (2015) suggests that when planning 
lessons, both subject and language objectives should be listed. 

In her consideration of mathematical language as a ‘register’, Morgan (1998) highlights grammatical 
features such as the imperative (command) and nominalization (nouns derived from verbs like 
rotation and construction), the passive voice (e.g., a line is drawn), being concise and the use of 
symbols. Whereas Morgan refered to written mathematics, these features also contribute to spoken 
mathematical discourse. Prediger and Wessel (2011) link the verbal register with what they call non-
verbal registers including concrete, graphical and symbolic-numerical representations. They note that 
cognitive development of mathematical concepts is deeply connected to the ability to relate concepts 
in different representational modes. In this study, particular features of the register were addressed 
and developed by using them alongside non-verbal represenations.  

Theoretical framework 
Lave and Wenger (1991) proposed that learning can be considered as participation in a community 
of practice. As students progress in their learning of an apprenticeship, they move from what Lave 
and Wenger call ‘peripheral’ to ‘full’ participation (p. 37), which involves learning the tools of the 
activity and gaining autonomy. Dealing with a similar theme of apprenticeship, Rogoff (1995) writes 
about two concepts: guided participation and participatory appropriation. The former refers to the 
mutual involvement of individuals, including communication, in a collective valued activity. 
‘Participatory appropriation’ refers to the process by which individuals transform their understanding 
of, and responsibility for, activities through their own participation. In the context of the mathematics 
classroom, ‘learning’ may be taken to be the participation in the practice of the discourse of 
mathematics. Krummheuer (2011) has queried how the sensitizing notion (Blumer, 1954) of learning-
as-participation can be described or represented on an empirical level and he proposes a framework 
for this purpose. He widens the dyad ‘speaker/listener’ to multiple roles so as to account for the 
multiple individuals normally participating in a group conversation such as that of a classroom 
context (ibid, pp. 84-85). For participants who are listening (recipients), he proposes the following 
roles; the first two refer to direct participation, while the latter two to indirect participation: 

• Conversation partner (addressed by the speaker); 
• Co-hearer (unaddressed by the speaker); 
• Over-hearer (tolerated by the speaker); 
• Eavesdropper (excluded by the speaker). 



For participants who are speaking (producers), Krummheuer suggests these roles:  

• Author (responsible for the content and the formulation of an utterance); 
• Relayer (not responsible for either content or formulation; echoes the author); 
• Ghostee (takes over the identical formulation and uses it to try to express an original idea); 
• Spokesman (expresses the same idea with his or her own formulation). 

As Krummheuer points out, this model has the advantage of accounting for the process of moving 
from ‘legitimate peripheral participation’ (as evidenced by the roles of eavesdropper, over-hearer, co-
hearer and relayer) to ‘full participation’ (role of author), through the intermediate stages of 
spokesman and ghostee. Using this model, it is possible to interpret classroom interaction and 
participation, and hence learning, in a more specific way. Whereas Krummheuer (2011) used the 
model to interpret a small-group discussion, I apply it to a whole-class setting.  

Research context and method  
An ethnographic approach was considered suitable since I wished to describe the practices of an 
educational community. Since my focus was the details of a teaching/learning context, I considered 
the case study method to be appropriate (Yin, 2014). I approached a school where the Head of School 
was an acquaintance of mine, and she put me in touch with a Grade 1 teacher, whom I call Ms Jenny. 
Most of her children were 5 years old at the time of the study. The class comprised 22 children and 
exemplified a ‘superdiverse’ context (Barwell, 2016). There were nine children of whom both parents 
were Maltese; seven children had one parent Maltese and the other non-Maltese, namely Australian, 
Irish, Bulgarian, Serbian, South African, two Libyans. Five children’s parents came from  varying  
countries: Italy, Greece, Hungary, Ecuador, South Africa. One boy had a Finnish father and a Kenyan 
mother. All the non-Maltese children understood English with different levels of confidence; I am 
not in a position to know their exact language experiences through which they learnt English, but 
from the conversations I had with some of the children it transpired that those who had one Maltese 
parent used English with this parent. Some of the non-Maltese children understood some Maltese and 
could say a few words. The Maltese children spoke Maltese fluently and understood English, but their 
speaking proficiency varied. Ms Jenny’s class situation prompted her to use English as the medium 
of instruction. Some of the Maltese children used Maltese when communicating on a social level.  I 
did not hear any of the other languages during my time in the classroom, although I cannot exclude 
that the two Libyan children might have used Arabic to communicate outside the classroom.  Ms 
Jenny and I agreed on the topic to be taught: Subtraction. 9 one-hour lessons were given and these 
were video-recorded. The focus of this paper is on the 5 lessons on subtraction as separation or ‘take 
away’. Parental and the child’s own consent was sought for children to show up on the cameras. If 
either withheld consent, the child was placed out of camera view. I interviewed some children 
individually before the lessons, asking them about the languages they spoke; I also confirmed that 
Subtraction was going to be new to them as a school ‘topic’. Three days after the lessons ended, I 
spoke to the children again, asking what they recalled. Children were chosen on the basis of consent 
obtained from both themselves and their parents; six were interviewed prior to the lessons, seven 
after. The interviews were audio-recorded.  

I wished to present the children with mathematics/language and to see if, and how, they would 
appropriate the targeted discourse. The mathematical objectives of the lessons were: subtraction as 



separation using pictures, blocks and fingers; symbolization (5 – 2 = 3) and translating story problems 
into subtraction operations.The related language objectives included the following structures: making 
statements using specialist vocabulary with regard to items (“Five [blocks] take away one is four”), 
using the imperative (“Take away two!”), asking a mathematical question (“How many left?”), 
‘reading’ consicely symbolization (5 - 1 = 4 read as “five minus two equals three”), and formulating 
story problems orally (“ Ms Jenny has 5 cookies. She eats 2 cookies. How many are left?”). Resources 
included a story book, pictures, blocks and fingers. As suggested by Bresser et al (2009), I modelled 
sentence frames during whole-class discussion, then set paired tasks during which the children were 
encouraged to use similar language. Some pairs (based on consent) were recorded using an audio-
recorder. Individual worksheets were also set, of which photos were taken after the children 
completed them. In order to analyse the data, I studied the lesson, pair-work and interview recordings 
in detail, together with the completed worksheets. I focused especially on children’s contributions, 
now interpreting my original, general aim of getting children to use mathematical language in terms 
of Krummheuer’s framework.  

Teaching and learning subtraction as separation 
Classroom interaction is a complex acitivity, with participants’ roles interweaving. However, for the 
sake of presentation, I here tackle the roles separately. Names are pseudonyms. In the transcripts, the 
language is presented as stated by the children, and so in some cases may differ from standard English.  

Teacher as author, children as recipients and relayers 

In order to introduce the children to the new expressions, I first authored them myself within a whole-
class discussion. In these situations, the children took the roles of either conversation partners or co-
hearers, since I could not interact with all children simultaneously. In a typical ‘whole-class’ style of 
interaction, I sometimes drew on particular children (“This one’s for Andrea”) while at other times I 
selected children with raised hands, or allowed a chorus answer. 

The following is an illustration of how I introduced an expression and encouraged the children to 
relay it back. The conversation follows Ms Jenny’s reading of the story ‘Monster Musical Chairs’ 
(Murphy & Nash, 2000) during which I had used statements such as “Three monsters take away one 
monster leaves two monsters”, while showing up large number cards.  

MTF: (Refering to the monster pictures attached to the whiteboard). I’m going to say 
something important: “Six take away one leaves five”. (MTF simultaneously 
removes one card). Now I need Dragan to say “five take away one leaves 
four”.  

Dragan: 
(Serbian/ Maltese) 

(As MTF removes another card). Five take away one leaves four.  

(…) (A short while later with reference to three attached monster cards).  
David (Maltese) Take away … 
MTF: (Indicates the three cards attached to the whiteboard). First say how many 

there are. (Slowly) Three – take –away – one – leaves – two. 
David: (Saying it with me). Three take away one leaves two.  
Children: (Some children in the class say it with myself and David).  
MTF: I want to hear you say it. 
Children (chorus): Three take away one leaves two.  



For some children, relaying was not a trivial matter. For example, in the second lesson I introduced 
the question “How many left?” or “How many are left?” During this lesson, Lili (Hungarian) relayed 
this as “How many is?” but the following day I overheard her ask the question correctly to her task-
partner. Initial difficulty may be due to the fact that English might not be a child’s first language. Age 
may also have an impact on how quickly a child might pick up a new expression; these young children 
were still developing general language communication skills. Once a key phrase was practised a 
number of times, I encouraged children to offer their own examples, thus giving them the opportunity 
to act as ghostee or spokesman. 

Children as ghostees and spokesmen  

Taking the role of ghostee (identical formulation, original idea) first occured during class discussions. 
For example, in the second lesson I showed up picture cards, starting with six, decreasing to zero, 
each time asking a child to express what we had observed during the monster story. By this stage in 
the lesson, we were using both expressions take away leaves and take away is.   

MTF: What shall I do with the picture?  
Kylie:(Australian/Maltese) Take away!   
MTF:  So what shall I say? 
Kylie: Three take away one is two!  

Although Kylie’s idea was not ‘original’ as such, I still consider that Kylie had progressed a step 
ahead of simply repeating after me, or with me. By Lesson 3, the children had picked up a lot of 
confidence, sometimes using the formulation to ‘jump the gun’. For example, in one activity I was 
asking children to show up a certain number of fingers, then take away (put down) a number of them. 
I had previously set two examples, guiding them with questions. 

MTF: OK, another example. Seven fingers…  
Child 1 (unseen): Take away four!  
Sofia (Bulgarian/Maltese): It’s three!  
MTF: Listen carefully!  
Child 2 (unseen): Five! Five! 
Child 1 (unseen) No, four!  
Children (chorus): Seven take away four is/leaves three.  

Another context in which the children took the ghostee role was during a structured paired activity. 
For example, in the excerpt below Sofia and Lennie were using monster pictures.  

Sofia (Bulgarian / Maltese) (Puts out six pictures, removes one). Six take away one is five.  
Lennie (South African/Maltese) (Removes a picture). Take away / 
Sofia: (Interrupts). FIVE take away. 
Lennie: Five take away one is four.  
Sofia:  (Removes a picture). Four take away one is three.  
Lennie: (Removes a picture). Three take away one is two.  

It took some time for some children to get accustomed to stating the original number; as Lennie did, 
they might say “Take away two is three”. I drew their attention to stating the first number; this was 
important as a preparation for the standard symbolization 5 – 2 = 3 that was introduced in Lesson 4.  



It is not possible, nor necessary, to insist on identical formulations when working with mathematical 
discourse, since it would render the language-use artificial. Indeed, taking the role of spokesman 
(same idea, varying formulation) played a crucial part, since it allowed the children to express 
themselves freely and to draw on English as they knew it to express the mathematics at hand. This 
helped create an inclusive context, build up their confidence in English and mathematics, and allow 
me to gauge their understanding.  For example, during a paired activity with blocks, the children were 
required to give an instruction to their partner (use of imperative, e.g. “Show six blocks”), then ask 
“How many (are) left?” Some children asked the question differently, for example: “How much is 
there?” (Sofia, Bulgarian), “How much is there now?” (Andrea, Ecuadorian), “How many blocks 
there left?” (Shania, Maltese) and “How many is the answer?” (Ritienne, Maltese).  During the paired 
activities, Ms Jenny and I had monitored the children’s work, using the new expressions as we 
interacted with them and, through questioning, encouraged them to use the expressions themselves. 
Plenary sessions in which we reviewed a lesson also allowed the children to express themselves as 
they wished, while using the new expressions.  

MTF: What was that special word we were using today? 
Ian (Maltese): We were taking away.  
MTF: Can somebody remember what we were doing when we were playing 

teacher?  
Sven (Finnish/Kenyan) We was … we was …we was asking to show … to show …to show ten 

blocks.  
MTF: Good! We were asking our friend to show blocks. And then, Sven, what 

did we ask them to do? 
Sven:  To … to … to … to take away.  
MTF:  And then what did we ask our friend? … Luca? 
Luca (Italian): How many there left?  
MTF: Very good! How many are left? 

A number of the children had another opportunity to take the role of ghostee or spokesman during 
informal individual interviews I carried out with them. In this context, I asked  open questions like 
“Tell me what you remember”, prompting them to use the language – or similar - that we had focused 
on in the lessons.  Following are two examples. In relation to word problems, Dragan used the story 
problem formulation to offer an example about himself, while Mohammed articulated a story sum 
with varying formulation, drawing on his knowledge of English as best he could.  

Dragan  Dragan has five cookies and he ate three, and it’s two. 
MTF: Do you remember that question we were asking? 
Dragan: Yes. ‘How much are left?’ 

 

Mohammed: Ms Farrugia is, have a … like … eleven biscuits and he eats … em … six biscuits.   

Children as authors 

The role of ‘author’ is one that implies original input by the speaker and hence the role implies a 
certain autonomy. In the lessons on subtraction as ‘take away’ I did not recognize instances when 
children acted as authors in the sense of them coming up with novel input that could shape the 



discussion, or influence other chidlren’s learning of subtraction. I believe that the reason for this was 
the structured nature of the activities. Due to my intention to stress and develop specific mathematical 
language, the whole class conversations were shaped by myself. Furthemore, the paired activities had 
particular instructions to follow. Although children offered their own subtraction examples on the 
worksheets, including drawings of their choice, I would still say that they were following quite closely 
the structures I had taught them. Of course, the children did digress in their talk during the pair work 
and as they worked out the written examples on the sheet. However, this alternative talk tended to be 
social talk, such as “Look, my monster is green” or “Hey! Don’t take our blocks” and so on, as one 
might expect from children this age.  

Conclusion  
From a researcher perspective, my study served the purpose of supporting international research that 
highlights the benefits of giving explicit attention to academic/English language with non-English 
speakers. It provides an example of focusing on specific features of the register. My study also 
illustrates an attempt at addressing mathematical language in a plurilingual classroom, and an 
application of Krummheuer’s (2011) framework. From a teacher perspective, I concluded that the 
strategies I had planned had been effective in reaching my aim which was to enable the children to 
use features of mathematics discourse, namely specialist vocabulary, the imperative, asking 
questions, interpreting symbolization and the story problem genre. Thus I went some way in guiding 
a group of children with very different language backgrounds and differing proficiency levels of 
English to appropriate the ‘academic’ mathematical discourse and hence to increased participation in 
the discipline (Lave & Wenger, 1991). However, according to Krummheuer (2011), full participation 
in the practice is achieved through authorship. Due to the structured nature of the class activities, I 
cannot say that the children fulfilled the role of authors; it is likely that open-ended style activities 
are required to allow for authorship opportunities.  

In conclusion, I note that on one hand the explicit attention to language can help to set up a reciprocity 
of conversational English and mathematical discourse, with potential benefit for both aspects. This 
would seem to be an important teaching strategy for mixed-language groups. On the other hand, the 
attention to language in itself can be restricting unless further opportunities are provided for more 
open-ended tasks. In the latter tasks, one might hope that the language expressions learnt during 
structured activities might then be utilized as students offer novel ideas. This would result in students’ 
authouring by using the mathematics register - surely the ‘fullest’ verbal participation that one can 
expect from mathematics learners. Of course, appropriating mathematical discourse is not something 
that can be achieved over a few lessons, especially in the case of very young children learning 
mathematics in a second or foreign language. The next stage in my line of research is to explore how 
newly learnt language structures can be encouraged in a plurilingual classroom to author original 
contributions to the development of the mathematics at hand. 
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The paper reports an investigation about undergraduates’ argumentations to justify answers to 
elementary calculus problems involving the recognition of relationships among graphs, verbal texts 
and formulas. The examination of the texts produced over more than ten years highlights serious 
language difficulties and suggests that we cannot exclude that language is a key factor for the quality 
of arguments. The main goal of this study is to gain a better understanding of how language 
difficulties (depending on both competence and attitudes) affect argumentations.  

Keywords: Language, problem solving, register, argumentation. 

Introduction 
The paper focuses on how undergraduates justify their answers to elementary calculus problems 
involving relationships among graphs, verbal texts and formulas, in the frame of an introductory 
mathematics course delivered in Italian to biology freshman students. The course is short (48 hours 
of lectures and 24 hours of optional tutoring sessions) and taught by two instructors, one of whom is 
the author. It is usually attended by more than 400 students, coming from various regions of Italy and 
Eastern Europe. The students’ language competence is much varied. Due to the goals, the attendance, 
and the lack of time, I did not develop a standard course moving from the basic definitions of Calculus 
to get to theorems and applications, but focused instead on a few concepts such as graph symmetries 
and slope. Most of the tests administered as working material or examination papers require the 
linking of different representations of functions (symbolic expressions, graphs, verbal texts, tables of 
numbers). Through these activities participants are systematically asked to explain and justify their 
answers in writing, even informally. This requirement is aimed at discouraging guessing or rote 
learning and help the students to better understand the concepts involved. Morgan (1998) provides a 
description and discussion of the ‘writing-to-learn’ paradigm, and highlights the benefits of the use 
of writing as a means for learning. Very appropriately, she suggests (with the expression ‘learning-
to-write’) that nobody needs to assume that students of any age have achieved the level of linguistic 
competence required in order to produce texts adequate to their goals, and challenges the assumption, 
more or less implicit in a number of studies, that language naturally develops and there is no need for 
deliberate language teaching (Morgan, 1998, pp. 37-49).  

The scrutiny of the papers written by students over the years highlights serious difficulties with 
language and suggests that we cannot exclude at all that language competence is a key factor for the 
quality of arguments. If we admit that there is a link between language and thought, there is no reason 
at all to rule out the hypothesis that the quality of the texts a subject can produce or interpret could 
deeply affect the quality of her/his thinking, and thus of the arguments s/he can produce.  

An investigation of this topic requires dealing with the texts involved as objects, not only as means 
to develop a discourse within a given context. The focus should be on the organization of the texts, 
not just on the corresponding communication process.  



The main goal of my research is to get a better understanding of how language difficulties (depending 
on both competence and attitudes) affect the production of arguments by undergraduates. In this 
specific study I focus on problems involving graphs. 

Theoretical framework 
Research on argumentation has produced a large number of papers from a wide range of perspectives. 
Some researchers, such as Crawshay-Williams (1957) and van Eemeren et al. (1996), in different 
ways, have underlined the role of context in argumentation and the links between argumentation and 
language.  Crawshay-Williams (1957, p.3), for example, claims that his work on argumentation 
“enquires how we use language as an instrument of reason” and argues that “[i]t is only possible to 
determine whether an empirical statement is true or false if the context of the statement is known.” 
On the other hand, van Eemeren et al. (1996) relate the theory of argumentation to the pragmatic 
theory of speech acts (Austin, 1962), which takes into account not just the propositional content of a 
statement (i.e. the part of its meaning, based on vocabulary and grammar, that allows the receiver to 
identify the referents and possibly to establish whether the statement is true or false), but also the 
speech act (i.e., the fact of expressing a proposition in a specific context, which conveys also 
speaker’s (or writer’s) beliefs, attitudes and commitments, possibly influencing the hearer’s (or 
reader’s) ones. Toulmin’s framework (2003), on the contrary, although it is widely adopted in 
research on argumentation in the context of mathematics education, seemingly pays very little 
attention to language and context.  

As far as language is concerned, I adopt Halliday’s (2004) account of the relationship between 
scientific language and science and his Systemic Functional Linguistics (SFL) (Halliday, 1985, 2004; 
Leckie-Tarry, 1995; O’Halloran, 2005). Halliday, whose research is in the field of pragmatics started 
by Austin (1962), argues that there is no learning of science without some learning of its language 
(2004, p. 160). The adoption of the SFL framework is justified by the opportunity of focusing on the 
functions of language in mathematics education, where the needs for effective representations of 
concepts and their relationships and  algorithms is unavoidably at odds with those of effective 
communication. Multisemioticy is an important feature too, as the interplay among verbal, figural 
and symbolic representations is stronger in mathematics than in other fields. 

In order to analyze the protocols, I am using the idea of register as a linguistic variety related to use 
(Halliday & Hassan, 1990). An enlightening discussion on registers in an SFL framework has been 
provided by Leckie-Tarry (1995). Morgan (1998) and Ferrari (2004) have applied this idea to 
mathematical language. Any individual has at her/his disposal a range of registers that s/he uses 
according to circumstances. The most relaxed registers, used in spoken (but sometimes also written) 
everyday communication are classified as colloquial, while those adopted in written (but sometimes 
also spoken) communication among educated people, for example in institutional, educational, 
literary, research contexts are referred to as literate. 

Colloquial registers, in short, are characterized by their strong dependence on the context of situation 
(i.e., according to Leckie-Tarry, 1995, the space and time in which the exchange takes place, the 
participants…), which allows participants to negotiate meanings and makes it unnecessary to produce 
accurate and unambiguous statements from the beginning. Literate registers are less related to the 
context of situation. In colloquial registers the meaning of words is mainly taken from previous 



experience, and most often much precision is not required to achieve the goals of the exchange, 
whereas in literate ones words have precise meanings, based on definitions (the so called 
lexicalization). In colloquial registers syntax is customarily relaxed, while in literate ones it is tighter. 
In colloquial registers there is an extensive use of iconicity, i.e. the analogy between the form or 
organization of a representation and its meaning. Iconicity is opposed to arbitrariness and can involve 
factors such as order (the order of facts matches the sequence of the representations). In literate 
registers representations are less iconic and more conventional. As a consequence, the interpretation 
and production of texts and representations in colloquial registers are quite unstable, since they 
depend on factors difficult to control (how the subject is accustomed to use words, how s/he interprets 
images, the mental models s/he uses in place of the definitions, the personal experiences s/he tries to 
recall, …). In literate registers, the lesser dependence on the specific situation, the reference to defined 
meanings (thus more objective and verifiable) and the role of syntax (objective and verifiable too) 
make the interpretation and production of texts more stable. 

Even a quick analysis of what is described above should make it clear that most of the registers used 
in mathematical settings share the features of a literate register in an extreme way: in mathematical 
registers the interpretation of a text depends little on the context of situation in which it is produced. 
I am not referring to the processes of learning or communicating mathematics, but on the organization 
of mathematical texts, as they can be found in any mathematics textbook from primary to graduate 
schools. The dependence of mathematical language on the context of culture (any kind of systems of 
knowledge related to the participants and the topics of the exchange), on the contrary, is very strong 
(think of definitions, conventions, theorems…), as well as lexicalization and conventionality (there 
are not many other semantic domains where definitions play as important a role as in mathematics). 
The same holds for syntax: in a mathematical text, either symbolic or not, a minor variation (e.g., the 
displacement of a parenthesis or of a comma) can change its meaning. The interpretation of texts in 
mathematical registers is stable: in some cases it can be performed automatically. The use of 
colloquial registers is essential for learning as well: nobody could ever learn anything if s/he should 
use literate registers only. So, in learning mathematics the trouble is not the use of colloquial registers, 
but the failure to adopt literate ones when necessary. 

Methodology 
A large number of argumentative texts produced by freshman students to justify their answers to 
problems involving the interpretation of graphs, both in examinations and in tutoring sessions 
(including online ones) have been scrutinized. In this paper I take into consideration only texts 
produced for one specific examination. To understand the argumentations it is necessary to regard 
them related to the problem-solving context they are produced within, considering the solutions 
produced as well. This study is not aimed at testing a particular model but rather at understanding the 
difficulties of a relevant number of students with different backgrounds, cultures, attitudes, and levels 
of competence, also in order to improve our teaching and tutoring strategies. For these reasons I have 
used a large number of protocols taken from a real examination, as most often the weakest students 
are not willing to take part in other activities, such as special tutoring sessions. 

Some of the participants have been interviewed after the test. For each participant I tried to classify 
answers and errors, if any, such as: use of pseudo-rules or of mathematically inappropriate models, 
wrong reading of the data, miscalculations, and language errors. I have also classified the kind of text 



produced (basically, the register adopted, by means of the indicators suggested by Leckie-Tarry, 
1995) to see if and how linguistic competence might have affected the answers. In some of the 
excerpts both the original Italian text and an English translation are given. The kind of analysis I want 
to carry out does not allow me to refer to an English translation only, which, even if it may convey 
with fair approximation the ideational component of the text, unavoidably it cannot but fail in 
conveying other aspects of the text, such as register or improper uses. 

It is never easy to understand whether an error depends on the language (e.g., a proper idea wrongly 
expressed), on contents (e.g., a wrong idea truly expressed) or on both. For example, the (wrong) 
claim that function g below is decreasing in [0, 10] might depend on a poor understanding of the 
definition, or on the improper use of ‘decreasing’, or even on a wrong interpretation of the graph. 
This in turn might be affected by the everyday use of the same words. The analysis of cohesive 
devices (i.e., the linguistic resources used to link the parts of the text), as carried out by Alarcon and 
Morales (2001) is a classical way to deal with argumentation in a SFL setting. In the analysis of the 
protocols, I have applied two criteria: the appropriate use of cohesive devices (contrasted to improper 
use or no use at all) and the vocabulary (lexical vs colloquial use of words). 

The problem 
Here I focus on problems involving graphs, such as problems requiring to associate a formula to a 
graph, or a graph to a formula, or to link the graph of a function to the graph of its derivative. All the 
protocols (about 200) used in this study come from the following problem. 

Consider the graphs A, B, C, D drawn below 
and choose three of them which, in the 
interval displayed, do not correspond to the 
derivative of the function g drawn on the 
right.  
Justify your answer. 

g 

 
A)  

 

B) 

 

C)  

 

D) 

 

Table 1. The problem 

The problem is in negative form, as participants are required to identify three graphs that do not 
correspond to the derivative of the function g. It is manifest that in a problem of this sort it is not 
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possible, from the scrutiny of the graphs only, to decide that a graph does correspond to the derivative 
of a given function. On the other hand, it is possible, in many cases, to decide that a graph does not 
correspond to the derivative of a function. Considerations of this kind hold for a great deal of 
mathematical problems involving graphs. The negative wording of the problem has proved a source 
of trouble although it explicitly refers to the need for excluding three graphs. 

I have regarded as acceptable all answers excluding the three appropriate graphs with appropriate 
justifications, i.e. argumentations where the properties of g and of the graphs the answer is based on 
are explicitly mentioned. For example, a text like “g is increasing in (0, +), so its derivative must 
be positive in the same interval, so I exclude graph A, which is partly negative in the same interval”, 
has been considered a sufficient justification in order to rule out graph A, although the student has 
made no explicit reference to any theorem or rule. It is uncommon among freshman students to find 
explicit reference to some general property to justify an inferential step.  

Outcomes 
Although this is not a quantitative study, I often give some quantitative indication about the size of 
the groups adopting some behaviors. It might be interesting, from a teaching perspective, to know if 
a behavior is adopted by a small group of students or it is more general. 

Correct answers equipped with acceptable arguments usually range from 20 % to 40 %, according to 
the sample and the task. In this experiment correct answers have been a bit less than 25 %.  

Student A02 marks the graphs A, B, D and gives the following argument: 

“Non corrispondono, perché g è in positivo mentre A, B, C sono sia in positivo che in negativo.” 

[“Do not match, because g is in positive while A, B, C are both in positive and in negative.” ] 

The argument, which seems aimed at ruling out graphs A, B, C, is inconsistent with the marks on the 
diagram, which rule out graphs A, B, D. The argument adopted seems to fit graph D better than graph 
C, and one can imagine that the subject wrote ‘C’ in the argument by mistake. Errors of this kind are 
quite frequent. Second, the subject only deals with what s/he is looking at and makes no reference to 
mathematical properties connected to the problem, nor any attempt to link to each other the data s/he 
has mentioned. In other words, the argument is completely bounded within the context of situation, 
with no attempt to put it in a framework of knowledge, i.e., in a context of culture. Third, the text is 
inaccurate: the main verb has no subject, the expressions “in positivo”, “in negativo”, which are 
circumstantials of (spatial) location, are used in place of the more correct attributes (‘positivo’, 
‘negativo’) and the expression “sia in positivo che in negativo” is vague.   

Student A03 marks graphs B, C, D and produces the following argument: 

“in x>0 la fne della derivata dev’essere positiva quindi non è sicuramente la B, in x<0 la fne della 
derivata dev’essere negativa (decrescente) quindi non può essere la D e la C non è sempre 
crescente nell’intervallo (0,+). Penso sia il grafico a.”  

‘fne’ is an informal abbreviation for ‘funzione’ (function). In order to help reading, I translate it as 
the whole word. 



 [“in x>0 the {function} of the derivative must be positive so surely it is not B, in x<0 the 
{function} of the derivative must be negative (decreasing) so it cannot be D and C is not always 
increasing in the interval (0, +). I think it is graph a.”] 

In this text some connection is hinted at but not developed, the student states (in her/his way) that the 
derivative must be positive for x>0 and negative for x<0 but s/he does not explain why. S/he 
seemingly identifies “increasing” with “positive” and (explicitly) “decreasing” with “negative”, as 
s/he rules out graph B which is positive for x>0 but not increasing in most part of that interval. 
Moreover, s/he inconsistently does not rule out graph A, which is the only one with negative values 
for some x>0. The identification of “increasing” with “positive” and “decreasing” with “negative” 
may depend on poor understanding of the subject matter, but most likely it has linguistic roots, as this 
student seemingly makes no distinction between the words and most likely s/he refers to everyday-
life uses, according to which “positive trend” might mean “increasing trend”.  

Student A36 marks graphs A, B, C (with some erasures) and writes: 

 “La funzione tra [0, +[ f(x)>0 quindi la funzione è crescente quindi la B non è crescente. [erased 
words] funzione g(x) è tutta positiva da da ]-,0] è decrescente mentre da [0,+[ la funzione è 
crescente l’unico che cresce sempre di più è la D.” 

 [“The function between [0,+ [  f(x)>0 so the function is increasing so B is not increasing. [erased 
words] function g(x) is all positive from from ]-,0] is decreasing while from [0,+ "[ the function 
is increasing the only one that always increases is D.”] 

The linguistic quality of this text is very poor. There is a bad coordination between the verbal and 
symbolic parts, the given function is referred to as ‘f ’ instead of using its proper name ‘g’, the 
conjunction “quindi” [“so”] is used twice inappropriately, in the second occurrence to introduce some 
data taken from a graph. There are a number of erasures and repetitions, and some of the last clauses 
are linked neither by discourse markers nor by punctuation. 

Student A39 marks graphs A, C, D and writes: 

“Escludo la C perché nell’intervallo (10; 0), la funzione decresce perciò la sua derivata dovrà 
essere negativa. Escludo la D perché la funzione è pari mentre il grafico D è dispari. Escludo la A 
perché la funzione g è crescente nell’intervallo [0;10) e quindi il grafico A dovrebbe essere positivo 
mentre è negativo per x[0;3].” 

[“I rule out C because in the interval (10; 0) the function decreases so its derivative will be 
negative. I rule out D because the function is even whereas graph D is odd. I rule out A because 
function g is increasing in the interval [0; 10) and so graph A should be positive, whereas it is 
negative for x[0;3].” 

In this case the choice of graphs is the correct one. Most likely in the expression (10;0) the subject 
has forgotten to write the sign ‘-’ before ‘10’ (although other participants wrote reversed intervals 
too). The motivation to rule out D is inappropriate, for it would have been necessary to recall that the 
derivative of an even function, if any, is an odd function and that graph D does not correspond to an 
odd function but it is neither odd nor even). On the contrary, the subject proceeds by analogy (f even 
 f’ even), missing the classification of graph A: s/he claims it is odd. Maybe s/he means that it is 
not even, but is misguided by the meaning of odd/even in the frame of integers. 



Student A17 marks graphs A, C, D and writes: 

“Non corrispondono i grafici A-C-D. Possiamo escludere il grafico C perché per esempio 
nell’intervallo (-10;0), la nostra funzione g risulta decrescente mentre in quel tratto il grafico C 
risulta positivo (dovrebbe invece essere negativo). Possiamo escludere la A perché per esempio 
nell’intervallo (0;3), la funzione g risulta crescente mentre il grafico A in quell’intervallo è 
negativa anzi ché positiva. Escludiamo anche il grafico D perché nella funzione g la concavità è 
verso il basso tra (1;5) quindi nello stesso intervallo il grafico dovrebbe essere decrescente mentre 
la D è crescente.”  

[“Graphs A-C-D do not correspond. We can rule out graph C because, for example in the interval 
(-10; 0), our function g results decreasing while in that stretch graph C results positive (it should 
be negative instead). We can rule out A because, for example in the interval (0;3), function g 
results increasing while graph A in that interval is negative instead of being positive. We rule out 
graph D too because in function g the concavity is downwards between (1; 5) so in the same 
interval the graph should be decreasing, while D is increasing.”] 

This excerpt underlines the difference between those who can use language in a mathematical setting 
and those who cannot. The text of A17 is not perfect, but language for her/him is a tool good enough 
to understand the problem, find a solution and justify it. The text is explicitly organized with 
conjunctions and discourse markers (“while”, “so”, “for example”, “instead”) and each statement is 
equipped with its own domain of validity (“…in the interval (-10; 0) …”). The general properties the 
argument is based on are not explicitly mentioned, but the subject adds some remarks that highlight 
the connections between the parts of her/his argumentation and make it unambiguous (“… it should 
be negative …”, “… while D is increasing.”). Although the subject does not write down some general 
rule or property, s/he underlines the critical points of her/his argumentation and uses language 
(including grammar) to organize and clarify her/his answer. 

In the optional interviews performed in the week following the experiment, subjects A02, A03, A36 
and A39 could not reconstruct their thinking and explain their answers. This is a general behavior: a 
great number of students cannot reconstruct the meaning of the text they have produced, even if they 
have it before them and are given time to read it with no pressure.  

Discussion 
The protocols examined have been chosen as representatives of diffused patterns of argumentation. 
In particular, the lack or improper use of connectives and discourse markers (i.e., of cohesive devices) 
is a serious problem: the links between the clauses are not made explicit or are expressed in a vague 
and improper way; even if the subjects, while writing down, may have some nice idea in mind, the 
lack of an explicit and effective objectification through language, prevents them from reconstructing 
and developing it afterwards. Behaviors of this kind are common. 

Some students (such as A02) seem not to be able to recall the necessary pieces of knowledge and 
work on the data of the problem by creating pseudo-rules (e.g., g increasing/positive/even  g’ 
increasing/positive/even). Models of this kind are very robust. It is possible that these models are 
consequence of the practice of not interpreting the text of a word problem in order to reconstruct the 
problem situation, but to search for keywords that might suggest the proper. 



The difficulties mentioned above all increase the instability of the processes of interpretation and 
production of texts, which might explain some apparently inconsistent behaviors; an example is 
protocol A39: the student answers correctly and correctly rules out graphs A and C reasoning on the 
basis of known properties of functions; to rule out D as well, s/he properly focuses on the evenness 
of g, but, probably in the attempt to apply the pseudo-rule “g even  g’ even” claims that D is odd; 
a number of students (more than 30 % of the sample in this experiment) correctly rule out A and C 
but use wrong or inconsistent arguments to rule out D too; the fact that in order to rule out D some 
‘rule’ different from “g increasing  g’ positive” is required is enough to trouble the subjects and 
induce them to provide wrong answers. 

Although much research is needed to determine the exact role of language in argumentation 
processes, it seems to me that the outcomes of this study suggest that it cannot be disregarded at all, 
in spite of the fact that a number of current studies on argumentation do not take the role of language 
into account. On the other hand, SFL seems a promising framework to better understand students’ 
linguistic behaviors in a mathematical setting, disregarding neither the factors related to interpersonal 
communication nor those related to the specific features of mathematical language. 
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Both language and objects seem to play an important role in mathematics learning. In our 
research, we focus on their interplay: How do language and objects support students’ development 
of mathematical ideas? In order to develop a framework of ‘talking with objects’, we draw on three 
approaches. First, we adopt the idea from Bauersfeld that learning is a domain specific process. It 
is always bound to a very specific situation and context. Second, Aukerman’s approach of re-
contextualization supports our insight in the link between language and context. Third, Latour’s 
Actor-Network-Theory helps us to better understand, how concrete objects take part in the process 
of constructing social reality in mathematics lessons.  

Keywords: Language, objects, recontextualization, domains of subjective experience (DSE). 

Introduction 
Children are supposed to learn what a ‘number’ is or what we mean by ‘addition’. The challenge of 
mathematics learning is to construct abstract mental objects that can neither be touched nor seen. 
Even if we cannot see the mathematical objects themselves, there is a lot acting and handling of and 
with concrete objects to be observed in everyday mathematics classes: Children write, read, and 
work with different concrete objects like bead frames, hundred boards or Dienes blocks. And they 
speak: They ask questions, explain their ideas and discuss about different mathematical 
interpretations. Obviously, both objects and language play an important role, when students are 
learning mathematics. Children and teachers use physical representations of mathematical objects in 
order to clarify what they are talking about and what they are referring to. These physical objects 
help to coordinate children’s mathematical communication and their learning processes (Sfard, 
2008, p. 147). 

As mathematics educators, we see already quite clearly that language is an important aspect of 
mathematics learning. But how do objects come into play? And how do language and objects 
interact as means of representation? These questions lead our main research interest. In our research 
project, we intend to reconstruct mathematical learning processes with a special focus on the 
interplay of language and objects (Fetzer & Tiedemann, 2015). To begin with, we concentrate on 
primary school children who learn arithmetic in different German primary schools. We collect data 
in several schools so that we cover different social and cultural backgrounds and get an impression 
of our research topic that is as broad as actually possible.  

Theoretically, our study is based on two main assumptions. First, we assume, together with many 
other researchers, that mathematics learning is a social process (Bauersfeld, 1988; Jungwirth & 
Krummheuer, 2006; Miller, 1986). Children do not construct abstract mathematical objects without 
any suggestions from their environment, but rather in permanent exchange with it. In processes of 
social interaction and collective argumentation, mathematical objects are constructed, negotiated, 
and clarified. In this sense, children create abstract mathematical objects on the basis of social 



processes. But who are the players in these social processes? Usually, mathematics educators think 
of students and teachers as actors. However, concrete objects influence the ongoing interaction, too. 
And, in our opinion, it will mean missing important opportunities to support mathematics learning if 
we neglect them. Especially in primary classes, objects play an important role in the process of 
abstraction.  

Second, we conceptualize mathematical abstraction as a process of becoming aware of similarities 
in different experiences (Skemp, 1986). According to that assumption, children have to grasp the 
similarities in different representations, which they encounter in the context of arithmetic. To make 
this clear, we can consider children playing with little game figures. Four are sitting in a train and 
two more are getting on. What do these little figures have to do with the drawing of a number line, 
with six fingers of our hands, with the arithmetical task “4+2” written on a sheet of paper or with 
specific arrangements of didactical material in mathematics classrooms? (Compare Fig. 1) 

 

 

 

 

Figure 1: Different representations of 4+2  

In order to express what is similar in all those representations and to come to a social agreement on 
those similarities, children and teachers need language. It is a tool, which allows individuals to share 
their interpretations of reality with each other. They can express what they ‘see’ in a certain 
representation and can, in this way, develop a shared interpretation. Within that interplay of 
language and objects, children construct their concepts of addition or number. It is for that reason 
that children have to develop appropriate language skills in mathematics classes, i.e. that their 
language has to become suitable for describing similarities in different representations.    

We present the theoretical framework that we have developed so far for our research project. It 
consists of three parts. First, we refer to Bauersfeld’s (1988) framework of domains of subjective 
experience (DSE). He points out that learning is a domain-specific process, i.e. that children’s 
mathematical constructions are always bound to the situation in which they were developed. 
Second, we focus on the aspect of language and our fundamental assumption that every linguistic 
utterance, how concrete or abstract its content may be, always refers to a context (Aukerman, 2007). 
Third, there is the question of objects and the role that they may play in the process of mathematics 
learning. In this regard, we refer to Latour’s Actor Network theory (ANT) (2005) which offers a 
new perspective on objects and their contribution to mathematical communication.  

On domain-specific learning: Bauersfeld (1988) 
Bauersfeld’s (1988) approach of Domains of Subjective Experience (DSE) elaborates how 
individuals organize their construction of mathematical knowledge. He assumes that children do not 
organize their remembrance of experiences in a hierarchical way, but rather accumulatively in 
separate domains. Each experience is stored with reference to the very specific and complex 
situation in which it was made and, accordingly, in its own domain. These different domains of 



knowledge are called “domains of subjective experience (DSE)”. They include their own meaning, 
language, actions and objects. To illustrate this approach, Bauersfeld (1983, p. 3) reports from 
Ginsburg’s (1977) work about eight-year-old Alexandria. She is not able to solve the task “8:4=” 
which is written on a piece of paper, She only suggests 0 or 1 as possible solutions. But, 
surprisingly, she can solve another task without any apparent effort: “Imagine you have 5 dollars 
and there are four children. How many dollars will each child get?” In fact, this second task is more 
difficult from a mathematical point of view. So we might ask why Alexandria did not transfer the 
initial task “8:2=” to the money-world herself. Why did she not solve it with reference to the 
domain that is obviously much more familiar to her? Bauersfeld’s answer points to an important 
characteristic of DSEs: They are not linked automatically. Thus, from Alexandria’s point of view, 
two different DSEs are affected which are unconnected up to now. In the paper-world, you have to 
cope with mathematical signs that are written on a piece of paper. In the money-world, you have to 
cope with banknotes and coins and think about buying attractive goods. Language, actions, objects, 
but also interests, motivations and feelings are fundamentally different in both DSEs. For that 
reason, Bauersfeld (1983, p. 6) doubts fundamentally, whether Alexandria regards the number word 
‘eight’ which appears in both domains as the same at all.  

According to Bauersfeld, mathematics learning can be understood as a process of constructing, 
deepening and connecting DSEs. However, how can those separate domains be linked? How does 
mathematics learning proceed? Bauersfeld (1983, p. 31) describes that individuals cross the borders 
of a DSE by trying, creating and negotiating. In order to link two different DSEs, they have to build 
a third DSE that exclusively aims at comparing the two already existing ones. Solely in such 
comparative DSEs, it becomes reasonable to develop a comparative language. In fact, it is this 
comparative language that allows students to talk about similarities, which they ‘see’ in different 
representations. This means that all parts of a DSE, including language and objects, can help 
children to link DSEs and to get access to abstract mathematical objects. In the following paragraph, 
we focus on the language at first.   

On language and context: Aukerman (2007) 
Aukerman (2007) points out that it is quite misleading to talk about a ‘decontextualized’ language 
because no “text, and no spoken word, ever exists without a context” (p. 630). This approach puts 
the main emphasis on the content level of a linguistic utterance: Every utterance refers to a context, 
no matter whether this context is concrete or abstract, close or far, accessible to observation or only 
hypothetical. It is important to notice that Aukerman does not make any statement about the setting 
in which language is used or how language is used in it, but rather about the point of reference. 
Utterances in mathematics classes may be produced in many different ways, e.g. with gestures or 
not, with a parallel action or not, with pointing at something in the closer environment or not, etc., 
but they are all produced with the intention of talking about something. Subsequently, we always 
talk and listen to others with regard to a specific context. We think about a specific context and 
produce an utterance. We hear an utterance and interpret it against a background that we deem 
appropriate. Thus, no matter whether we are the ones who speak or the ones who listen, we relate 
every utterance to a context that we regard as adequate at that very moment. Aukerman (2007) 
refers to the process of connecting utterances with contexts as recontextualization. In the process of 
recontextualizing, speaker and listener have to agree to a certain extent on the context of their 



conversation: What are we talking about? Thus, when students are expected to talk about 
mathematical objects, they have to re-contextualize their language and match it with rather abstract 
contexts. Seen from that perspective, the question is no longer, whether a student is able to 
decontextualize his or her language, but the question is whether students and teachers succeed in 
finding a shared context: Do their recontextualizations fit together sufficiently? 

On objects as actors: Latour (2005) 
When students and teachers are negotiating a shared context for their constructions of DSEs, they 
can get help from concrete objects, which have a lot to offer. Objects as actors? This 
conceptualization appears to be unfamiliar at first sight. Nevertheless, we think that it can be very 
useful to adopt Latour’s (2005) sociological proposal for accepting objects as actors in the course of 
action. According to him, they participate in the emergence of social reality. 

Latour (2005) goes beyond the traditional understanding of the social, widens the perspective and 
redefines the notion of ‘the social’. He takes a closer look on who and what assembles under “the 
umbrella of society” (p. 2). As a consequence, he defines sociology as „the tracing of associations“ 
and thus “reassembles” the social (p. 5). In his view, the social refers to any kind of networking: 
humans with humans, but also humans with any kind of things. Heterogeneous elements that are not 
necessarily social themselves associate in different ways. According to Latour, all these different 
associations create social reality. Thus, in his Actor Network Theory (ANT), he extends the list of 
potential actors in the course of action fundamentally and accepts all sorts of actors: “Any thing that 
does modify a state of affairs by making a difference is an actor” (p. 71). Consequently, objects 
participate in the emergence of social reality, too. In this sense, Latour asks for a broader 
understanding of agency. “Objects too have agency” (p. 63). They are associable with one another, 
but only momentarily. To say it with Latour’s words, they “assemble” (p. 12) as actor entities in one 
moment and combine in new associations in the next one. Following Latour, there are no longer 
stable and pre-defined associations and actor entities.  

Again, following Latour (2005), objects participate in the emergence of classroom reality. In fact, 
this is true for all sorts of objects: Paper and pencil, as well as manipulatives or even the bottle of 
water on the table. Should we as researchers in mathematics education not focus on a certain kind of 
object, on didactical material? From a theoretical as well as from a methodological point of view, 
we clearly deny that restriction. Just imagine that the bottle was open, and would drop. Not only the 
table, but also the paper would get wet, the pencil might fall on the floor. This would surely 
influence any process of social interaction. “Any thing” (p. 71), a human or non-human actor, might 
become associated with other actors in the course of action, but only momentarily. The association 
might be dissolved the next minute. However, in that very moment these actors, no matter who and 
what they are, contribute to the ongoing process of social interaction.  

Looking through Latour’s sociological glasses, we can see clearly that concrete objects do play a 
role in the emergence of social reality. This appears to be especially true for manipulatives and other 
didactical material. They participate in the negotiation of a shared context and, in this way, offer 
help in the social process of constructing and connecting DSEs. However, how do they contribute? 
Earlier research revealed different modes of participation that objects might take or have in ongoing 
classroom interactions (Fetzer, 2013). Our current research on the interplay of language and objects 



goes one-step further. Now, we try to get hold of objects’ contributions on the content level. In our 
opinion, their most important contribution is to offer various contexts for re-contextualisation from 
which students and teachers may choose. A short example that we could observe in a second grade 
class might illustrate this variety of possible offers. The students and the teacher talk about the 
question what the diagonal might be on their hundred board. On that special hundred board 
(compare figure 2), the numbers from 1 to 100 are covered with red and blue pieces of paper.  
 

 
Figure 2: Hundred board covered with red and blue pieces of paper 

Here are some of the offers that the students accept and express in linguistic utterances - always in 
association with the hundred board in front of the classroom:  

1) “The diagonal runs from 10 to 91.”  

2) “The diagonal runs from one corner of the hundred board to the opposite one.” 

3) “The diagonal runs from one corner of a square to the opposite corner.” 

We see that the hundred board suggests a wide variety of contexts, which might be suitable for re-
contextualization. Most important to us is the fact that those offers range from “concrete” to 
“abstract”. Thus, on the one hand, objects support the opportunity to construct new DSEs because 
they make a very concrete offer. They are concrete in nature so that students can associate with them 
and refer to their rather concrete offer: The 10 is at the top right, the 91 is at the bottom left. On the 
other hand, they make offers that appear to be suitable for comparing. The hundred board has 
properties that other geometrical forms have as well. It is a square and in every square, “the diagonal 
runs from one corner […] to the opposite corner.” However, in order to grasp that similarity in 
different representations, you have to construct a DSE of a specific square at first and then a 
comparing DSE, which aims at comparing different geometrical forms. Those offers of objects may 
support the construction and connection of DSEs and may support the language development which 
goes along with it, too.  

Integrating the concepts: Talking with objects 
According to Bauersfeld (1988, p. 178), the subjective realization of a mathematical object remains 
always bound to the context of experience, i.e. to the objects and language used in the situation of 
construction. This approach gives us a clue that we will understand mathematics learning better, if 
we concentrate not only on language or on objects but on the interplay of both. How do language 



and objects interrelate in the process of mathematics learning? How can we talk with (the help of) 
objects? Aukerman’s (2007) approach of re-contextualization and Latour’s (2005) Actor Network 
Theory seem to be useful background theories to tackle these questions.  

According to Aukerman, every spoken word in mathematics classrooms refers to a context and is re-
contextualized by the recipient. In order to achieve a shared understanding, the interlocutors have to 
agree on the ‘right’ context. What can serve as a solid ground, which a linguistic utterance can be 
related to? At this point, objects come into play. According to Latour, humans and non-humans 
associate with one another and create social reality. In terms of mathematical learning processes, 
children and objects interact in the social process of learning. Objects make offers that students and 
teachers can accept and refer to in order to coordinate their mathematical communication. The 
“steely quality” (Latour, 2005, p. 67) is a solid ground that allows individuals to experience reality. 
Objects are not a mere tool in students’ hands that can easily be manipulated. Objects are 
participants in their own social right and contribute to the ongoing classroom interaction: Objects 
make offers and students ‘listen’ to those offers. Students talk to objects, and become associated 
with one another. At this point students ‘talk’ together with objects in a combined action.   

But how does that work? Objects are concrete in nature. Nevertheless, in their concreteness they 
prove to be not a limitation, but a chance for development of (mental) mathematical ideas. Indeed, 
objects offer a variety of possible contexts for re-contextualization ranging from concrete to 
abstract. Sometimes, objects may provide the context for very specific experiences. In these cases, 
objects can help to construct a new DSE or to deepen already existing DSEs. At this stage, students 
try to find words with which they can express the particularity of this specific context and to 
negotiate it with others. Language is probably the most important tool for such a negotiation: What 
do I ‘see’ in that object? What do you ‘see’? In a second step, students have to become aware of 
similarities in different experiences. They are in permanent exchange with their social environment. 
They listen to as well as talk to and with participating actors. In doing so, they construct new DSEs 
that aim at comparing already existing DSEs. Again, objects profoundly contribute. They offer a 
context for comparisons: What do I ‘see’ as the same in different objects (or in different actions 
with objects)? What do you ‘see’ as the same? Where are differences? Do we agree? In this sense, 
objects help not only to coordinate mathematical communication, but also to develop language more 
and more. Students are challenged to match their language with a concrete experience at first and 
with a comparison afterwards.  

On closer inspection, we see that objects are actors that students can talk to and talk with. In fact, 
objects contribute to the process of negotiating mathematical meaning. In most interactional 
situations, it is not only the child who is responsible for a linguistic utterance. Words are not the 
only means to negotiate mathematical meaning. Instead, students and objects often associate and 
convey a mathematical idea together. In these cases, the object actor takes over part of the act of re-
contextualization (Fetzer & Tiedemann, 2016). Students talk together with objects. The boundaries 
between language and objects almost seem to merge.  

Discussion 
The theoretical framework that we have sketched in this paper raises awareness of some aspects that 
are not new in mathematics classes, but that are new in our thinking about content-related language 



use. When students want to express their mathematical interpretation of reality, they are not 
restricted to the words they have at their disposal. Thus, they can accept one of many offers that the 
objects in their close environment make. In this process of assembling, the objects achieve two 
things. They offer their help, but at the same time, they challenge the children to move further in 
their mathematical development and in their improvement of content-related language use.  

For that reason, the framework does not only make us sensitive to the importance of objects in the 
process of language development, but it points in a direction that might be productive for our further 
research. We have not only to analyze objects that we use in mathematics classes, but we have to 
analyze children’s associations with them, too. Which offers do the children accept? Moreover, how 
do these offers support their language development in mathematics classes? These are the questions, 
which will lead our further steps in that project about the interplay of language and objects.    
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When learning mathematics, mistakes can serve as productive occasions if a mistake is followed by 
a process of negotiation and insight. This paper addresses the question of the extent to which the 
informal occasion of a “mistake” leads to productive interactions in inclusive mathematics 
classrooms. Within the context of the project LUIS-M video-based qualitative analysis of cooperative 
learning situations in inclusive classrooms are made with focus on formal and informal occasions 
for productive interaction. In the paper the negotiation processes which follow mistakes are 
exemplified and discussed with respect to opportunity for learning processes.  
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Introduction 
Learning mathematics requires interaction; cooperative learning leads to interaction. This is the hope 
which is associated with cooperative learning in teaching mathematics. Therein, learning is 
understood as a co-construction process in the context of social processes and/or interactions. As 
such, not only social learning objectives but also cognitive learning objectives are of importance in 
cooperative learning. From a mathematical-didactical point of view the epistemological learning 
processes based on the exchange of different interpretations are of interest (Steinbring, 2005). 

Cooperative forms of learning also gain in importance in the context of fostering teaching, both for 
children with and without (mathematical) learning weaknesses. Meta analyses in the elementary 
school area prove that cooperative forms of learning and peer-supported learning show stronger 
effects with respect to subject matter performance than traditional forms of teaching (Rohrbeck, 
Ginsburg-Block, Fantuzzo & Miller, 2003). However, the effects are dependent on both the 
composition of the pairs as well as the degree of structure of the cooperative learning environment. 

For the inclusive teaching of mathematics, the expectation being associated with cooperative learning 
environments is that children support and correct each other. Further it can be assumed that children 
with a lower learning performance develop their own interpretations due to the more elaborated 
interpretation of other children.  

This report focuses on the question of in which way children’s mistakes in cooperative learning 
settings of inclusive mathematics teaching can serve as an occasion for productive interactions. For 
this, transcribed interaction flows are analysed in the sense of a qualitative research paradigm, and 
theoretical insights are derived in an abductive process. However, before the research design and the 
results are presented, the essential theoretical foundations and empirical insights will be outlined.   



Theoretical and empirical starting points 
Cooperation and interaction in mathematics education 

When students learn mathematics, they can benefit from sharing their ideas with their peers, 
especially when their peers have a different point of view. Several studies mention that differences 
between students' explanations and procedures can increase mathematical understanding and create 
new insights (Pijls, Dekker, & van Hout-Wolters, 2007). However, not every interaction leads to new 
insight, the interaction must take place in a productive discourse. Dekker and Elshout-Mohr (1998) 
work out that verbalising, explaining, defending, asking and arguing are key activities for productive 
learning processes. Cooperative learning situations seem to be suitable to make such key activities 
come up. It is expected that children associate ideas, discuss solution possibilities and discover 
mistakes when they work in small groups.  

Especially, it seems to be productive to develop ideas collaboratively and to find a common way for 
problem solving. In these phases of cooperative learning a high frequency of communication can be 
observed and the interacting partners change within the group (Brandt & Tatsis, 2009). It can be 
assumed that the children show a high rate of key activities like verbalising, asking or arguing by 
sharing ideas. Therefore, the cooperative learning situation should be based on tasks and problems 
which allow a range of solution procedures, so that children need to verbalise and argue with their 
partner. This could be achieved when the problem is complex and the students do not have a routine 
which allows them to solve the problem easily (Dekker & Elshout-Mohr, 1998). Open problems, 
which allow solutions on different levels, can lead to many key activities as well.  

In an epistemological view Nührenbörger and Schwarzkopf (2015) mention that it is helpful to use 
tasks which create a “productive irritation” concerning the experiences of the children. While working 
on the tasks the children discover something surprising which then becomes an amazing phenomenon. 
As a consequence, the children may provide phenomena that they do not expect, so that “they have 
to reflect on the given structures and see the need to re-interpret the experienced mathematics behind 
the problem” Nührenbörger et al. (2015). Activities like »comparing« and »sorting« can help initiate 
such processes e.g. when children reason about the criteria for sorting (Häsel-Weide, 2015). Only if 
children feel the need or the pleasure to share ideas, mathematical communication takes place.  

In addition to the cooperation processes initiated through the cooperative learning technique, the tasks 
and the work assignment, mistakes can lead to interactions and discourse between children (Götze, 
2014; Häsel-Weide, 2016). Götze analysed interaction processes of children in so-called “math 
conferences”, where the children share and discuss their solutions. She points out, that a suggestion 
of a wrong solution can induce an exchange of arguments and a verbalisation of prior statements - as 
such key activities take place, that are initiated by the incorrect solution. In my own study regarding 
the replacement of persistent counting strategies, the children verbalised different interpretations of a 
structure initiated by mistakes. This interaction had a productive effect and enabled new insights for 
some children (Häsel-Weide, 2016). The expectation, furthermore, is that non-comprehension or non-
knowledge leads to questions and then, as a result, to explanations, and therefore moments of »gaps« 
and/or »helping« become productive.  



Cooperative mathematics learning in inclusive beginners' classes 

Inclusive teaching always is in between the poles of common ground and individualisation. It is 
necessary to take the individuality of each child into account, his/her competences and difficulties, 
and to foster it individually. At the same time, inclusive teaching has the objective of joint learning, 
i.e., an objective of participating in content, of the joint learning of mathematics that goes beyond 
[just] being a part of a class.  

In order for children to be able to work together on content, the learning environment must allow 
working on different levels. At the same time, a joint focusing on a core idea that can be worked on 
by all children and that is at the centre of the exchange is necessary. Concepts of cooperative learning 
furthermore recommend a significant methodological structuring as well as the creation of a positive 
dependency between the cooperating children, e.g. through role distribution, limiting of the material, 
or time allowances (Johnson, Johnson, & Holubec, 1994). As such, a field of tension exists between 
a limitation and a common focus for a successful outcome of cooperative processes and the enabling 
of working on an individual level. In addition, the mathematical competences and verbalising and 
presenting interpretations, as well as interpersonal competences such as a constructive dealing with 
conflicts that are necessary for the interaction and cooperation must first be learned.  

Objective and design of the study 
In project “Learning environments for inclusive mathematics teaching –LUIS-M”, learning 
environments were developed for the entry phase of elementary school and tested in six classes of the 
first and second school year (children age 6 to 8). The focus in each class is on a cooperative learning 
environment which is processed in partner work and accompanied by other offers for individual and 
cooperative learning. Thematically, the learning environments pick up the basic mathematical topics, 
which means in the first and second school year the presentation of numbers and operations. Children 
with different competences in mathematics are supposed to interact and cooperate with each other. 
Two objectives are being pursued by this: in the spirit of mathematical didactics as a design science 
(Wittmann, 1995), learning environments are developed for and with teachers and scientific insights 
are gained via the analysis of the learning processes of the children. We are interested to explore if 
and how children work together, which different levels of understanding can be reconstructed, and 
which occasions during the cooperative learning lead to a productive interaction. In this paper the 
following questions are discussed: 

How can aspects and moments causing a productive discourse be characterised? In what way do 
mistakes induce productive interactions? 

The teachers were asked to choose pairs with different competences in order to work together. Two 
pairs were video recorded in each of the six participating classes. Chosen for the video were pairs of 
children where one child shows low mathematical competences. The corresponding transcripts were 
interpreted by a group of researchers. The analysis was compared in an interactive way with empirical 
findings of other studies and theoretical approaches. As a result, insights about the communication of 
children in heterogeneous groups could be constructed. This procedure allows the development of 
new theoretical elements analysing individual cases.  



Analysis of episodes 
In the following two examples are presented and analysed where it was possible to reconstruct 
mistakes. Based on the interpretation of the examples, the theoretical conclusions are being worked 
out and subsequently presented, going past the examples. In this, analyses of additional scenes are 
included in the development of a theory.  

Case 1: Jana's incorrect interpretation of the dot-strip image  

The episode is from the second school year and was recorded during the introduction to the 
multiplication tables. The children work in a learning environment that aims at comprehension of 
multiplication as repetition of equal groups, and the connection between addition and multiplication. 
The children lay out dot images with strips of two, four, and eight dots and interpret them additively 
and multiplicatively. For each dot image only one type of strip may be used. The children work 
focused on each other, i.e., one child lays out a dot-strip image and the other child states the matching 
addition and/or multiplication task. These are jotted down and then sorted in a second step. In this 
process the children can already recognise first relationships between the tasks.  

In this scene, Kadir – in accordance with the assignment – lays out two strips of eight in the following 
dot-strip image. Jana is now required to state the task.  

1 Kadir: (lays out 2 strips of eight) 
2 Jana: (counts the dots individually). Sixteen.  
…. 
  Okay, sixteen times two. 
3 Kadir: (lays his head on table) 
4 Jana: (laughs) Sixty times two? 
5 Kadir:  Oh God! You can't read that. Five (points to the first five dots of the strip of 

eight) plus three (points to the last three dots of the strip of eight) two times 
the eight, oh God. 

6 Jana (notes down 2 · 8) 
In her first statement, Jana mentioned the total number of dots, “sixteen”, and the multiplication, 
“times two.” Since she determined “sixteen” dots by counting, she appears to link the number of dots 
with the operation in her phrasing. In this, she is phrasing a typical sequence of »number operation 
number«. Kadir – probably as a reaction to Jana's statement – lays his head on the table. Jana seems 
to interpret this as a sign that he considers her statement to be incorrect. She then corrects herself and 
states “sixty times two”. She does not change the structure of her statement, but rather the number.  

Jana is able to determine the number of dots correctly and seems to know the sentence structure of a 
multiplicative phrase. Besides, she shows a behaviour that is typical for children with mathematical 
learning difficulties: She determines the quantity by counting in ones, but she seems to have 
difficulties to find a fitting multiplicative expression and to distinguish between the number words 
sixteen (“sechszehn”) and sixty (“sechzig”) (Anghileri, 1989; Gaidoschik, 2015).  

Kadir's statement (5) makes it clear that he considers Jana's interpretation to be incorrect and 
furthermore shows that he is applying a different way of reading (“You can't read that”) the strips 
than Jana. As such, a disagreement exists between Jana’s interpretation and his own. Kadir now 
interprets the dot-strip image himself and in the process phrases a matching multiplicative 



interpretation. At first glance, this approach seems to be of little help. Kadir does not provide Jana 
with any indications how she can correct her interpretation, but rather solves the task himself. 
However, taking a closer look at his remark, it becomes apparent that he formulates two aspects that 
can be a learning opportunity for Jana in the spirit of co-construction.  

First, he explicates a structured way of grasping the number of dots on a strip. Jana has determined 
the total number by counting them in ones. Kadir points out to Jana the power of five in the strips, 
because he separates the dots in the five dots on the left hand side of the mark and the three dots on 
the right. So he explicates the part/whole structure 8=5+3. He demonstrates and verbalises an option 
of the structured grasping of the quantity. Through his gesture he additionally makes it clear that only 
the number of dots on one strip needs to be grasped since these are strips of equal magnitude. In the 
second part of his statement, Kadir formulates the multiplicative structure and phrases “two times the 
eight”. With the nominalisation, he emphasises the two elements “number of strips” (multiplier) and 
“number in each strip” (multiplicand).   

Therefore, at second glance, it becomes apparent that Kadir is not only providing the correct result, 
but that there are opportunities of insight for Jana located in his verbalisation and his gesture. The 
key activities of verbalisation, explaining, and pointing out, described as productive by Plijs et al. 
(2007), can be reconstructed in the case of Kadir. He shows an understanding of multiplication and 
an elaborated strategy in the grasping of the quantity. His statement is caused by Jana’s solution, 
which he recognises as being incorrect, and which he introduces in the interaction. To what extent 
Kadir's interpretations are picked up by Jana cannot be identified in this scene since Jana notes down 
the solution without it becoming apparent to what extent she is exclusively translating the 
verbalisation into a term or to what extent she can comprehend it with respect to the dot-strips.  

Case 2: Marie suspects a mistake in Milene's solution 

In the first school year, the children were given tasks to create “simple” subtraction problems with 
the subtrahends 1, 5 and 10. In this, the children freely select the minuend, by laying down 
corresponding dots in the field of twenty, draw an action card, »minus 1«, »minus 5«, or »minus 10«, 
solve the problem by removing the number of dots or mentally, determine the result and note down 
the problem on a card. After a while, the cards are sorted in accordance with self-selected criteria, 
which could be e.g. the minuend or the subtrahend or the size of the numbers. The relationships 
between the problems become apparent by sorting them, e.g. according to the minuend, the 
subtrahend, the difference or the size of numbers. So, on the one hand, the focus is on the basic topic 
of »simple subtraction problems«, on the other hand the structure between problems can be 
discovered and described. Both the activity of sorting, as well as the potential discoveries are suited 
to stimulate productive interactions. The step to find the problems can be worked on either 
individually by each child or the children work with distributed roles. In this case, one child specifies 
the minuend with dots while the other does the subtraction by taking away one, five or ten dots and 
notes down the term. Working while focused on each other allows for more cooperation between the 
children and for a direct reaction in case of erroneous solutions or questions, but also leads to a 
limitation of the individual level of processing.  

Marie and Milene are working on the assignment with distributed roles based on the division of 
labour, i.e. one pupil lays out the minuend on the field of dots and draws the card with the subtrahend 



(c.f. Figure 1); the other pupil finds the difference and notes down the task. Maria has already placed 
a strip of 10 and 3 chips on the field of twenty in the following way:  

 
Figure 1: Depiction of the assignment situation  

1 Milene:   (lifts away the third dot from the bottom row of the field of twenty)  
2 Marie: Now you have to guess how much that is  
3 Milene:  One, two. Twelve! (looks at Marie, puts the chip back onto its original spot 

on the field of twenty) So, and now I write down the assignment (takes a piece 
of paper and a pen) 

4 Marie:  (4sec) (shakes her head) You got this wrong, you misunderstood. 
5 Milene: (notes down the task 13-1=12 on the piece of paper) Thirteen minus one 

equals twelve. (places the piece of paper on the stack with the other tasks) 
6 Marie:  (5sec) (points with the finger to the dots) That equals thirteen (grabs Milene 

by the arm and points to the 3 dots in the bottom row of the field of twenty). 
That equals thirteen. 

7 Milene:  (lifts away the third dot from the bottom row slowly once more, directly looks 
at Marie, and nods) 

8 Marie Oh (turns away from the field of twenty). 
9 Milene:  Understood? 

Milene, in accordance with the action card, »minus 1«, takes one dot away from the field of twenty, 
holds it in her hand and states the correct difference (1 & 3). She then places the dot back onto the 
field of twenty so that thirteen dots lie on the field once again. Marie voices the suspicion that Milene 
has made a mistake (4) and phrases “That equals thirteen” (6) which probably traces back to the 
thirteen dots lying on the field. In this situation, there is disagreement between the children.  

Both pupils defend their interpretation in the further process: Marie grabs Milene's arm, maybe in 
order to be heard, repeats her interpretation, and points to the dots in the field of twenty. By taking 
away one dot, Milene seems to illustrate the operation »minus 1«, looks at Marie and nods and thus 
demonstrates that the difference of the task is twelve. The sequential carrying out of the actions 
corresponds to the process of subtraction so that Marie potentially recognises that the 13 dots 
represent the minuend, one dot was taken away correctly, and the difference of 12 dots was 
determined. However, due to the replacement of the dot (3) it was not the difference that was visible, 
but rather the minuend. Marie seems to be able – through the gesture of Milene (7) – to comprehend 
that the difference was determined correctly, nevertheless. Her statement “Oh” and her turning away 
from the task could be a sign of agreement and an acceptance of the result.  

The suspected mistake with respect to the solution of the subtraction task leads to the connection 
between quantity, change, and result being demonstrated on the material. The trigger of this 
elucidation was the dissent between the interpretation of the 13 dots that Milene considered to be the 
minuend whereas Marie saw the difference in the field of dots. Here, the supposed mistake leads to 
negotiation and defence of different interpretations. Both children show key activities, pointing out 



and verbalising their interpretations of the material. In this way, they appear to defend their respective 
point of view and to negotiate the correct interpretation.  

Interpretation and conclusion 
Both scenes exemplarily show that mistakes and suspected mistakes can cause verbalisations, 
demonstrations, and defensive actions. If (supposed) mistakes are recognised in the interaction, they 
appear to not only be corrected but key activities also take place in the negotiations (Table 1). The 
children utilise, for example, the material to illustrate something, or (re)phrase it so that other aspects 
become clear. In this way, (supposed) mistakes function as a trigger for a productive interaction 
process. Therefore, it does not seem to matter whether a mistake was actually made or if this was 
only suspected. The children not agreeing in their interpretation – meaning that there is dissent – is 
of central importance. In this, two cases could be distinguished. (1) One solution is incorrect and this 
is recognised by the partner child who in the context of the cooperation has therefore solved the task 
himself (correctly). (2) A correct solution is interpreted as incorrect by the partner child. Here too, 
the partner child must solve the task herself. Prerequisite is, in this case, that both partners solve the 
task and arrive at different results. 
 

 

 

 

 

 

Table 1: Productive interaction triggered by a mistake  

The activities in the negotiation are gestures and verbalisations which are utilised as justifications and 
defences. Properly formulated chains of reasoning are not observed in the inclusive beginners' classes. 
This could be because the children are not yet equipped with respective competencies or also because 
this does not correspond to the interaction of children among each other and requires a focusing and 
moderation by a teacher (Gellert & Steinbring, 2012). 

Regarding inclusive mathematics teaching, it can also be assumed that the cooperation of children is 
productively becoming an informal learning occasion through mutual helping and correcting. The 
analyses show that children in the first and second school year not only take corrective action but also 
display key activities in their correction which can lead to learning processes for themselves and also 
potentially for the partner children. This, however, requires that mistakes are recognised during the 
learning process. Yet, this prerequisite does in no way always exist, not even when pairs of children 
with different competences work together. On the one hand, the children are in part simultaneously 
busy with their own tasks, while on the other hand even in case of working focused on one another 
not all mistakes are being recognised and explored. As such, it is not sufficient to trust in informal 
occasions. Productive interaction should rather be stimulated through suitable activities and through 
phenomena yet to be discovered.  

  

Trigger Prerequisite 

Effect 

Occasion for 
negotiation 

Negotiation 

(supposed) incorrect 
statements or 

approaches are being 
verbalised 

recognising the 
(supposed) mistake in 
one's own / parallel 
solution of the task 

verbalising the 
irritation / non-

agreement 

explaining, defending, 
demonstrating the 

point(s) by one (both) 
child(ren) 
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The ways in which teachers and students interact about mathematics in lessons can be more powerful 
in influencing learning than the materials and resources that teachers use. Interactional patterns 
structure all interactions and there are many such patterns that occur frequently in mathematics 
lessons. This paper focuses on one such pattern, the funneling pattern, which is widely discussed in 
the literature. Three distinct examples described in the literature as a funneling pattern are examined 
in order to examine the different roles sequences of closed questions can have and the opportunities 
these patterns can provide or constrains to students in the learning of mathematics. 
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Introduction 
The aim of this paper is to contribute to the discussions around the roles different interactional patterns 
have in the teaching and learning of mathematics. The simplest, and most prevalent, pattern that is 
discussed widely in the mathematics education literature is the IRE pattern of teacher initiation, 
student response, and teacher evaluation (Mehan, 1979). Many authors describe this pattern as doing 
little to encourage students to reason, give explanations or articulate their thinking (e.g. Cazden, 1988; 
Nystrand, 1997). Yet the discussion has now moved on, with authors pointing out that it is not the 
IRE pattern itself that is the issue, but rather how it is used. This IRE pattern continues to dominate 
classroom interaction because it enables students to know when to speak, how to speak and about 
what to speak (Ingram, 2014; Wood, 1998). This pattern can be used by mathematics teachers to 
convey and establish different norms. It creates opportunities for students to communicate in 
classroom interaction, but it is largely teachers who can both constrain or enhance their students’ 
opportunities to communicate mathematics or to communicate mathematically.  

This paper focuses specifically on another interactional pattern called the ‘funneling’ pattern 
(Bauersfeld, 1980; Wood, 1998) that comprises of a series of IRE sequences. Four extracts that have 
many of the features of the ‘funneling’ pattern are discussed with a view to illustrating here that again 
it is not the pattern itself that focuses student thinking on “trying to figure out the response the teacher 
wants instead of thinking mathematically himself” (Wood, 1998, p. 172), but rather it is the way that 
it is used by the teacher that can affect student thinking. 

The funneling pattern 
The funneling pattern was initially described by Bauersfeld (1980, 1988) and consists of a series of 
teacher questions and student responses that has particular features. The sequence follows an incorrect 
answer from the student, or some other form of difficulty with the mathematics. The teacher uses 
“more precise, that is, narrower, questions” (Bauersfeld, 1988, p. 36) to lead the student to the correct 
answer. This narrowing effect of questions towards a particular correct answer (hence the term 
funneling) contrasts with sequences of questions that leads students step-by-step through a process 
(e.g. Herbel-Eisenmann, 2000), however both invite students to do little more than complete the 



teacher’s sentences (e.g. Franke et al., 2009). These different examples have led to further terms, such 
as leading questions (Franke et al., 2009), guiding questions (Moyer & Milewicz, 2002) and 
scaffolding (Wood, Bruner, & Ross, 1976), becoming associated with funneling. The distinction 
between these terms and the precise relationship with funneling is often not made but we believe it is 
an important one as we outline below. As a result, funneling has become used more broadly in the 
literature to describe any sequences of IRE patterns that lead students through a series of specific 
narrow questions, often only requiring short factual response from the students. 

Particular concerns have been raised about the implications of such funneling interactions. For 
example, Brousseau (1984) refers to the Topaze effect in which the sequence of ‘funneling’ questions 
disguise the mathematical knowledge that is being targeted by the interaction as a whole. Indeed such 
interactions in which students do not need think about mathematical relationships, patterns or 
structures in order to answer the teachers’ questions (Wood, 1998) the most frequently cited 
instantiations of ‘funneling’ patterns. Wood (1998) argues that in funneling patterns of interaction 
students are only responding to the surface linguistic patterns in order to respond appropriately to the 
teacher’s initiations. However, Temple and Doerr (2012) have shown how this aspect of the funneling 
pattern can be used by mathematics teachers to activate prior knowledge and offer them opportunities 
to talk about newly learned concepts. This indicates the possibility that the funneling pattern can have 
a variety of roles within the classroom, some of which support students’ learning and communication 
of mathematics. Wood also connects funneling to “certain beliefs about the nature of mathematics 
and the relationship between teacher and students” (p. 175) but we would suggest that it is not the 
pattern itself that indicates these beliefs, but how it is used by teachers. 

Data and methods 
The data used in this paper to illustrate the different functions of a funneling pattern of interaction 
comes from two sources. The first is transcripts from two videos of mathematics lessons collected as 
part of a larger project looking at the role and use of language in mathematics teaching and learning. 
Both lessons were from the same school, a small inner-city comprehensive secondary school with 
high levels of students in receipt of free school means and over 50% of the students with English as 
an additional language. The lessons are taught by two different teachers and the students are aged 11-
12 years old. The second source is transcripts from a published article (Drageset, 2015) focusing on 
categorizing language use in mathematics classrooms that also uses conversation analysis as its 
methodology. A conversation analytic approach is taken in the analysis of the transcripts, which is an 
approach that focuses on the identification of patterns of interaction. Conversation analysis (CA) 
looks specifically at what participants are doing in their turns at talk through a careful analysis of how 
the turn is designed, both in terms of its content but also in terms of how it is spoken, i.e. quickly, 
hesitantly, emphasizing particular words. A key feature of any analysis based on CA is the reflexivity 
of turns at talk. Each turn is designed in response to the turns that it follows and affects the turns that 
follow. This makes it a particularly useful approach for examining the relationship between teacher 
questions and student responses.  

The roles of funneling 
In this paper we will outline three distinct patterns of interactions described in the literature as 
funneling. The first is used by the teacher to make assumed knowledge publicly available. The second 



offers students the opportunity to use recently introduced vocabulary. The third involves two extracts 
that are used in combination to draw attention to structures within a sequence of mathematical 
interactions. 

Making assumed knowledge publicly available 

The funneling pattern of interaction does not occur very often in the lessons collected as part of the 
larger project, which contrasts with other studies looking at mathematics classrooms (e.g. Temple & 
Doerr, 2012; Franke et al. 2009). Yet using a conversation analytic approach in the analysis of this 
pattern reveals that each instance of the pattern is doing different things. For example, in the first 
lesson the students have discussed the meaning of some key words on the whiteboard associated with 
probability. The extract in Figure 1 follows this discussion and then is followed by an activity where 
students are tossing a coin twenty times and then combining the results. No connection is made 
between this interaction and the tasks that came before it or after it. 

 
Figure 1: Calculating the probability of getting an even number 

See Jefferson (2004) for details of the transcript conventions used here 

The teacher asks a series of questions requiring short factual answers, which are given by the students. 
These questions lead the students through a step-by-step process for calculating a probability. The 
fact that these responses are given hesitantly, as indicated by the pauses, ums and phrasing the 
response as a question, is ignored by the teacher. The sequence of questions focuses on the 
identification of the numerator and the denominator when identifying the probability and this is 
emphasized through the teacher’s choice of accepting the answer three sixths rather than the half, 
which is acknowledged but not treated as the answer to the probability of rolling an even number. 



The interaction ends with the teacher checking that the students are happy with this process and 
treating them as such by moving on to the next task. Yet there is little in the interaction to indicate 
that the students as a whole could calculate the probability themselves. This is a feature of the 
funneling pattern that Wood (1988) draws attention to: that it can give the impression of learning 
even though it is the teacher that has done the cognitive work. However, what the teacher has done 
through this interaction is explicitly to make the process public and has involved the students in this 
process (as opposed to just telling them how to calculate the probability). The ability to calculate the 
probability of an event is taken as assumed knowledge in the following task where the students have 
to calculate the relative frequency of getting a head when tossing a coin. So, whilst there is no 
evidence that the students are doing more than responding to the immediate initiations, the funneling 
pattern of questions and responses does make public knowledge that is needed later in the lesson. So 
the teacher’s questions are doing something other than just assessing whether students have the 
required knowledge. This is demonstrated further in other examples where incorrect responses are 
ignored such as the second student’s suggestion of larger in the second extract (Figure 2), which 
comes from a lesson focused on solving linear equations. 

Opportunities to use terminology 

The majority of the lesson on linear equations is spent with students working independently through 
a set of differentiated exercises. At the start of the lesson a student asks a question about the difference 
between an expression and an equation and the extract follows this question. Again, the teacher leads 
students through a series of closed questions requiring short factual responses from them. This 
example shows the teacher using questions that offer students opportunities to talk about newly 
learned concepts and new terminology in a similar way to the example offered by Temple and Doerr 
(2012). The questions serve to support the students in recalling processes and words introduced in 
previous lessons such as simplifying and collecting like terms. Each use of a technical word is 
connected to the specific example, 3x + x becoming 4x, and 3x + x = 4x being an expression is 
contrasted with 4x = 12 being an equation. Throughout the interaction student responses that do not 
fit with the use of the language the teacher is focusing on are ignored or built on by the teacher who 
turns them into a form that does fit. This sequence of questions again is doing other than assessing 
students’ knowledge. The questions are providing students with the opportunity to use mathematical 
terminology and hear it used in a mathematical way by the teacher. This sequence could be considered 
a form of scaffolding (Wood, Bruner & Ross, 1976) if the support the teacher is giving, through his 
questioning and phrasing of his responses, is withdrawn over time until the students are using the 
language in their own descriptions of their work on mathematical tasks. 

  



Figure 2: The difference between an expression and an equation 

Drawing attention to regularities 

The last two transcripts are taken from Drageset (2015) and have been coded as “closed progress 
details” which is one of the “main elements of funneling” (Drageset, 2014). In each extract the teacher 
takes a step-by-step approach in posing questions and students are only required to give short factual 
responses to the question asked immediately before: 

Teacher: How much is one of… one-fifth then of … of twenty-five? 

Student: Five. 

Teacher: It is five, yes. How much is two-fifths? 

Student: …ten. 



Teacher:  Then it becomes ten. How much is three-fifths 

Student:  Fifteen. 

Teacher: How much is four fifths? 

Students: Twenty. 

Teacher: And how much is five fifths: 

Students:  Twenty-five. 

Student: One whole. 

Teacher One whole, yes. Yes, good. Great. 

Extract 1: Extract 1 from Drageset (2015, p.260) 

Teacher:  Yes. So if I have thirty chips here and then divide them into six equal piles, then 
how many are there in each pile then? 

Student1: There are five (hold up five fingers). 

Teacher: Five. But how much is two-sixths of thirty, then? 

Student2: Ten. 

Teacher: Ten. How much is three-sixths? 

Student2: Fifteen. 

Teacher: And four sixths? 

Student2: Twenty-five. 

Student1: Twenty, twenty 

Teacher: and f…six sixths? 

Student 2: Thirty. 

Teacher: Yes. And… six sixths, how much do I have then? 

Student2: One whole. 

Teacher: One whole. And then, this time the entire quantity was? 

Student2: Thirty. 

Teacher: Thirty yes. 

Extract 2: Extract 5 from Drageset (2015, p. 265)  

Extracts 1 and 2 are not just narrowing sequences of questions, but are also specific, structured, and 
lead to a mathematical regularity within the sequence of questions itself. It is also the repetition of 
the pattern of interaction itself that offers students an opportunity to see the relationship between the 
fractions and the quantities. This is pointed to by the teacher in their penultimate turn with the phrase 
“and then, this time”. So, whilst the teacher does not explicitly talk about the meaning of ‘one whole’ 
the sequence of questions identifying each of the fractional parts goes in order, and stops when one 
whole is reached. The teacher does not ask what seven sixths is, and also does not stop at four sixths 



for example. In both extracts the total number, twenty-five and then thirty, is said alongside one 
whole. The sequence of closed questions is leading students through a process in a similar way to the 
example offered by Herbel-Eisenmann (2000, p. 182). However, it is also the repetition of the 
sequence that makes this process more explicit and affords students’ attention to be drawn to it. 

Conclusion 
In this paper we have explored three different interactional patterns referred to in the literature as a 
type of funneling pattern: one example of a narrowing pattern, one example of step-by-step pattern, 
and one example of connected step-by-step patterns. Each pattern includes a sequence of closed 
questions requiring short factual responses from the students. Each sequence is leading the students 
to a particular answer. However, we question whether the mathematical knowledge is always being 
disguised (c.f. Brousseau, 1984). Each pattern is doing something different to the other patterns and, 
in the final example the repetition of the pattern itself can be used to support the students’ thinking. 
We have shown the possibilities for how teachers can use these sequences of questions to make 
assumed knowledge publicly available for subsequent work, offer opportunities to use technical 
vocabulary, and perceive regularity in mathematical processes. Each of these functions is an 
important part of the teaching and learning of mathematics. Whilst in each of the examples offered it 
is the teacher who is controlling the content, in is possible to imagine situations where the teacher is 
using a similar sequence of closed questions about a student’s idea. The funneling pattern can and 
does have a role in the teaching and learning of mathematics but it is how it is used, rather than the 
structure of the pattern itself, that can offer or constrain opportunities for students to engage in 
mathematical thinking and communicating. 
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Constructing mathematical meaning of the cosine function using 
covariation between variables in a modeling situation in Cabri 
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Many studies argue that dynamic features of the technological artifact Cabri may function as 
instruments of semiotic mediation. Our study is situated in this perspective and aims to analyze the 
impact of the artifact Cabri on the construction of the mathematical meaning. Using the theoretical 
approach of the semiotic mediation, a teaching experiment was designed with the aim of introducing 
the notion of trigonometric function as a covariation. Assuming that the use of a semiotic system in 
social interaction as the natural language contribute to the emergence of internal process (such as 
concept formation), this paper analyses the verbal signs elaborated and used by the students and the 
teacher in order to describe the evolution from students’ personal meanings to mathematically shared 
meanings of the trigonometric function cosine.  

Keywords: Verbal signs, semiotic mediation, covariation, collective discussion, Cabri.  

Introduction and research problem 
The notion of trigonometric function is related to three mathematical domains: trigonometry, algebra 
and function. Understanding the idea of a trigonometric function requires students to realise the 
relationship between the length of an arc and the measure of the angle that is subtended by the arc, 
the relationship between the real line and the unit circle, the covariation between a point moving on 
the unit circle and its projection on one of the axes, and the idea of the graph of a function (Khalloufi-
Mouha, 2009, Khalloufi-Mouha & Smida, 2012). 

From a historical perspective, the idea of the functional relationship between the real line and the unit 
circle is related to the notion of motion as a variation in the space and time. (Falcade, Laborde & 
Mariotti, 2007) So, this idea could be understood from a dynamic perspective, referring to the 
wrapping of a line around the unit circle and to the variation of a moving point. Many studies (e.g., 
Laborde, 1999; Laborde & Mariotti, 2002) claim that the key to understand the dynamic aspect of 
function is the notion of trajectory. According to Laborde (1999) the graph of a function could be 
considered as the trajectory of a moving point, representing the dependent variable according to the 
variation of a variable point on the axis of abscissas, so, the covariation of these two points becomes 
a relationship between two variations depending on time. Adopting a teaching approach based on the 
idea of covariation in the semantic field of space and time, Laborde et al. (2002) and Falcade (2006) 
assume that the teaching and learning of the notion of function should start in a dynamic environment. 
They claim that the use of Cabri allows access to the ideas of variation, functional relationship and 
covariation through the movement of a point on the screen. According to the Vygotskian (1978) 
perspective of semiotic mediation, Laborde et al. (2002) and Bartolini Bussi and Mariotti (2008) 
argue that some of Cabri’s features can be viewed as potential tools of semiotic mediation carrying 
mathematical meanings. Cabri’s tools can be thought as external signs referring to a specific 
mathematical meaning, and may become tools of semiotic mediation Laborde et al. (2002). 

Following these studies, we propose a teaching experiment integrating the technological artifact 
Cabri, aiming to introduce the trigonometric function cosine as covariation. 



Theoretical framework 
According to Vygotsky (1978), human intelligence is defined by the ability to use various types of 
tools with signs playing the role of mediators. Vygotsky distinguishes between tools (technical tools) 
and signs (psychological tools). Tools are externally oriented and aimed at controlling the process of 
nature. Signs are internally oriented and aimed at mastering the individual’s behavior and cognitive 
processes. Vygotsky claims that, through the process of internalization, a tool may be transformed in 
a sign, and then may function as a tool of semiotic mediation. Vygotskian theory supposes that the 
development of behavior and cognitive processes is the product of activities practiced in the social 
institutions of the culture in which the individual grows up. For Vygotsky, language is the most 
important semiotic mediator allowing the passage from the interpsychological level to the 
intrapsychological level. The theory of semiotic mediation (TSM), developed by Bartolini Bussi and 
Mariotti (see, for instance, Bartolini Bussi & Mariotti, 2008), is situated in the Vygotskian 
perspective. Two key notions support this theory, the zone of proximal development and the 
internalization. Vygotsky introduces the concept of the zone of proximal development as “the 
distance between the actual developmental level as determined by independent problem solving and 
the level of potential development as determined through problem solving under adult guidance or in 
collaboration with more capable peers” (Vygotsky, 1978, p.86). This concept models the learning 
process through social interaction. In fact, the collaboration between one individual, whose cognitive 
attitude has the potential to facilitate change, and another individual (or group) who intentionally 
cooperate to accomplish a task or to pursue a common aim may generate a possible development 
(Bartolini Bussi & Mariotti, 2008). The transposition of this concept in the school context is possible 
thanks to the intrinsic asymmetry of the relationship between students and teacher in terms of 
knowledge. Therefore, the teacher’s actions should be within this zone for achieving a didactic 
objective through the use of the signs and tools as semiotic mediators. In this zone of proximal 
development, cognitive development is modelled by the process of internalisation. 

According to the TSM, the social use of an artifact in the accomplishment of a task leads to the 
emergence of signs expressing students' personal meanings, i.e. “the conscious sense created by each 
individual to express the direction of his or her action” (Bartolini Bussi, 1998, p.69). The evolution 
from personal meanings towards mathematical meaning, i.e, what describes the properties of the 
concepts under scrutiny inside a system of theoretical knowledge (Bartolini Bussi, 1998, p. 81), is an 
educational aim that can be realized promoting the evolution of signs, expressing the relationship 
between artifact and tasks, into signs expressing the relationship between artifact and knowledge 
(Bartolini & Mariotti, 2008). The teacher can guide this evolution through collective discussions. 

Rationale for the teaching experiment 
Our teaching experiment aims at constructing the meaning of the cosine function and of its graph 
using the notion of covariation (Khalloufi-Mouha & Smida, 2012.) The experiment has four parts. 
The first two parts use the situation A rope on a wheel (Genevès, Laborde & Soury-Lavegne, 2005), 
which is a modelling situation in Cabri: a thread that can be wound around a wheel through the 
Dragging tool. The experiment involves description and prediction tasks intended to provide students 
with opportunities to realise that in the unit circle the length of an arc is equal to the measure (in 
radian) of the angle that it subtends. In addition, wrapping the thread on to the wheel aims to make 
students construct, for a given real x, the point M on the unit circle with the arc 𝐼𝑀̂ = 𝑥. Thus, they 



could realise the functional relationship between the real line and the unit circle. Mathematically, this 
relation is interpreted by the existence of a surjective group homomorphism between the set of real 
numbers and the unit circle. Throughout these activities the role of the teacher is crucial. He has to 
establish strategies fostering the development of meanings of functional relationships and variation. 
The third and fourth parts of the experiment aim to analyse how the Dragging tool, the Measurement 
tool, and the Trace tool function as semiotic mediators for the ideas of variation, the functional 
relationship and covariation. The cosine function is introduced as a relationship between two 
variations depending on time, and its graph as the trajectory of a moving point.  

The teaching experiment involves different typology of activities aimed to develop different 
components of the complex semiotic process: working in pairs and collective discussions generally 
initiated and guided by the teacher. When working in pairs, students use the artifact to accomplish 
the given tasks. This type of activities promotes social exchange through the use of verbal signs (both 
oral and written), gestures, drawing... Consequently, this provides students with opportunities to 
construct personal meanings linked to the mathematical target concepts. Students’ personal meanings 
may evolve to the shared mathematical meanings through collective discussions. These discussions 
involve all students and allow the confrontation between their personal meanings and the 
mathematical meanings. These collective discussions may reach the status of mathematical 
discussions, in the sense of Bartolini Bussi (1996), and can also involve phases of institutionalization 
(Brousseau, 1998) and the introduction of new formal notations. The analysis of the verbal signs used 
by the students and the manner in which the teacher exploits them can highlight the evolution process 
from the students’ meanings towards mathematical meanings. According to the TSM, the status of 
the signs belonging to the different categories vary in the evolution process, they can be used as an 
index of the move from personal sense to mathematical meaning. (Bartolini Bussi & Mariotti, 2008). 

Methodology 
The sample of this study consisted of 16 students from a class of 2nd year (16-17 years) in a high 
school in Bizerte, Tunisia. The students were familiar with analytic trigonometry and they regularly 
used computer software in class. The teaching session was carried out in the computer laboratory. 
Students were grouped in pairs and asked to produce a shared written answer on a worksheet. The 
discussions within pairs and the collective discussions have been audio-recorded.  

The analysis is based on several kinds of data that were collected: protocols produced from the student 
working in pairs (audio-recording, texts, and drawings), audio-recordings of collective discussions 
and the teacher's and observer's notes. 

The impact of the use of Cabri on the construction of mathematical knowledge was analysed by 
identifying the development of the students’ and the teacher’s verbal signs related to the target 
mathematical concepts. We distinguish the two types of signs identified by Falcade (2006): simple 
signs and complex signs. Simple signs are "easily recognizable by representations of almost atomic 
type (words or specific formulations)" (p.202). For example, the word “circle” is a simple sign. 
Amongst the simple signs Falcade (2006) distinguishes three types, i.e. artifact-signs (arising directly 
from the use of the artifact, their meanings are personal and commonly implicit. The artifact-signs 
are strictly related to the use of the artifact to accomplish the task), mathematical-signs (referring to 
the culture of mathematics and constitute the goal of the semiotic mediation process.), and pivot-signs 
which play a pivotal role between the semantic and mathematical fields. “The characteristic of these 



signs is their shared polysemy, meaning that, in a classroom community, they may refer both to the 
activity with the artifact; in particular they may refer to specific instrumented actions, but also to 
natural language, and to the mathematical domain.” (Bartolini Bussi & Mariotti, 2008). 

The complex signs refer to relationships between families of relatively ‘simpler’ signs. For example, 
the sentence “the set of points that are equidistant from a given point” is a complex sign that refers to 
the mathematical-sign circle. Complex signs are subdivided into four categories: characterisations, 
definitions, interpretations and instantiations. Characterizations tend to highlight some characteristics 
that could be interpreted in mathematical terms. Nevertheless, characterizations are not real 
definitions because in the mind of the speaker the statement is not precise. A definition for an object 
provides a "boundary in words" which was until then unknown or little known. They are not 
definitions in the mathematical sense, but can be considered as being part of the process towards a 
mathematical definition. The interpretations concern explicit links between two families of signs 
which belong to two different semantic fields. Instantiations are signs which concern the 
establishment of an interpretative link between artifact-signs and mathematical-signs. Falcade (2006) 
elaborates that “Instantiations are of the same nature as the interpretations. However, the latter 
concern universal, while instantiations refer directly to the specific activity in Cabri” (p.210). 

In our analysis of the development of students’ and teacher’s verbal signs, all the relevant 
mathematical notions and all the different signs used were identified. The classification of Falcade 
allows us to analyse the development of students’ personal meanings. Every evolution from an 
artifact-sign to a pivot-sign will be interpreted as a step towards the construction of personal 
meanings. The use of complex signs of the type characterization or instantiation will be interpreted 
as an attachment to the artifact. The use of the complex sign interpretation will be interpreted as a 
step in the process of semiotic mediation. Finally, the complex sign definition will be interpreted as 
a step in the process of internalisation of a mathematical definition of the object. 

Findings and discussions 
The first two parts of the teaching experiment focus on the situation "a rope on the wheel".  
 

 
Figure 1: The situation A rope on the wheel 

 

From the first task, when working in pairs, students used a large number of artifact-signs related to 
the ideas of motion and numerical domain, such as "to unwind", "to turn", "to move", "to increase", 



and "to decrease". For some students, we identified initial pivot-signs related to variation such as "to 
change" and "to vary", and related to the meaning of functional relationship such as "depends on" and 
"being a function of". The pair discussions indicate that the use of the artifact facilitated students’ use 
of complex signs of the instantiation type: “If the length of the arc changes, the point N will change”, 
and of the interpretation type: “Then the length of the arc varies as a function of the angle”. These 
complex signs show the construction of personal meanings of the relationship between the length of 
an arc, the measure of the angle and the radius of the wheel. The collective discussions initiated by 
the teacher led to the use of these signs in the process of constructing mathematical meanings. The 
role of the teacher was crucial in the collective discussion. Taking into account individual 
contributions, the teacher engaged students through juxtaposing their personal meanings, and 
encouraged them to disregard the artifact and then to focus on the mathematical concepts. 

The second part of the experiment aimed at exploring the metaphor of the winding of the real line 
around the unit circle. During the working in pairs, we observed artifact-signs such as "put the point", 
"move the point", and pivot-signs as "length of the arc". This characterizes a first step related to the 
recognition of the numerical and geometric variation. Students used also mathematical-signs “For 
every x, we can construct a point” and interpretations of the functional relationship between the real 
line and the unit circle. This can be interpreted as a second step: the identification of the covariational 
relation at a perceptual level. During the collective discussion, the teacher used the rope as a semiotic 
mediator to introduce the idea of the functional relationship between the set of real numbers and the 
points of the unit circle. The collective discussion highlights the use of mathematical-signs such as 
“for every real x in ..”, “symmetry”, “absolute value” and “a function of”. In addition, we also observe 
an interpretation of the idea of the functional relationship: “For every positive real x we can construct 
a point on the unit circle”. It seems that students found themselves in a familiar mathematical 
environment and had no difficulties in generalising the use of the artifact. They were engaged 
spontaneously in the intended process of mathematical meaning construction. 

A definition of the cosine function 

The third part of the teaching experiment focused on the ways the Cabri-tools Dragging, Measurement 
and Trace function as semiotic mediators for the development of the definition of the cosine function 
as a covariation, (i.e. the relationship between two variations depending on time), and the construction 
of its graph as a trajectory of a moving point. 

Students were asked to construct a point N on the x-axis (1,0) with abscissa x. Using the Measurement 
tool, they should then construct the point M of the unit circle such that 𝐼𝑀̂ = 𝑥. Finally they should 
construct the point K on the x-axis(1,0) with the same abscissa as M, and the point H on the y-axis 
(0,1) with the same ordinate as M. Using Dragging tool, students were asked (a) to describe the 
relationship between the points N, M, H and K when N is moving, (b) to determine the values taken 
by the abscissa of M when the point M is moving on the unit circle and (c) to identify the relationship 
between x and the abscissa of M. 



 
Figure 2: The figure related to the third part of the teaching experiment. 

The evolution of the verbal signs elaborated and used by the students and the teacher attest the 
existence of four steps towards the definition of the trigonometric function cosine. 

1st Step: Recognition of numerical and geometric variation 
The use of the artifact to accomplish the task promoted the emergence of verbal signs related to the 
idea of motion. The first step is characterised by an important use of atifact-signs stressing the 
attachment to the activity with the artifact. In fact, students used verbs of action as “to move”, “to 
vary”, “to turn”, “to change”.... and used expressions as “we draw the point M on the unit circle and 
we move it” or “we can choose different values for x...” 

2nd Step: Identification and recognition of covariation at a contextual level 
This step is characterized by the emergence of complex signs “interpretation” linking two variations. 
In these signs the reference to space and time was eliminated and we noticed the use of expressions 
related to the indirect variation and to the simultaneity of variations such as “When X varies then Y 
varies” or “If X varies then Y varies” 

3rd Step: Interpretation of covariation as a functional relationship. 
This step is characterized by the use of pivot-signs “depend on”, “a function of” and “relation 
between” to replace the expressions “When X varies then Y varies”. Students identify the functional 
relationship as a relation between two variations. This was interpreted as an evolution of students’ 
personal meanings related to the notion of function. 

In the collective discussion the teacher used the artifact to promote the emergence of the students’ 
simple and complex signs related to the ideas of functional relationship and covariation “T : Well. 
Now what is going to change if you move N?” The artifact is used as a semiotic mediator supporting 
the transition of signs expressing the artifact-tasks relationship into signs expressing the artifact-
knowledge relationship. As a result of the guidance of the teacher, students expressed mathematical-
signs such as “the function which associates M to N”, and others related to the idea of covariation. 

4th Step: The mathematical definition of the notion of cosine function 
When exploring the relationship between x and the abscissa of M through the use of Dragging, we 
observed students’ interpretation of the movement of point K as a variation of the abscissa of M and 
the description of the functional relationship between M and its abscissa. 

The use of mathematical-signs related to the meaning of the cosine function illustrates the 
development of personal meanings related to the mathematical meaning of the cosine function as 
covariation. The collective discussions, guided by the teacher, allowed for the construction of the 
accepted mathematical meaning, i.e. the mathematical definition of the cosine function. (Khalloufi-
Mouha, 2012) The main goal of the teacher’s actions in the collective discussion is managing the 



students’ discourse, in order to support them to move from the artifact and place them in a 
mathematical environment which allows the recognition of the cosine function. The discussion shows 
a large commitment of students to the process of meaning construction. By using many mathematical-
signs, they succeeded in linking their mathematical and physical knowledge. In this case, we can say 
that the artifact was a powerful resource for the construction of the mathematical meaning based on 
the activity with the artifact. 

Conclusion 
The epistemological importance of introducing the notion of trigonometric function as covariation to 
make the link between trigonometry and trigonometric functions led us to design and experiment a 
teaching sequence integrating the artifact Cabri. The analysis of the process of constructing the 
mathematical meaning of the cosine function, through the analysis of the verbal signs, allowed us to 
identify that this process begin by a first step related to the recognition of the numerical and geometric 
variation. This step is characterized by an important use of the artifact-signs and an attachment to the 
task with the artifact. The second step is the identification of the covariational relation at a perceptual 
level. The third step marks a mathematical interpretation of the activity with the artifact following the 
collective discussions orchestred by the teacher. The process is carried out following the interventions 
of the teacher, by the mathematical definition of the notion of cosine function. 

The teacher’s role is very important in the process of constructing mathematical meaning among 
students using a technological artifact. The teacher has to use the semiotic potentialities of Cabri and 
orchestrate the discussions in order to guide this process towards the construction of mathematical 
meaning. For this reason, further investigations into the role played by the teacher are required for a 
better description of the process of construction of mathematical meaning among students using a 
technological artifact. 
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DeafMath: Exploring the influence of sign language on mathematical 
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Sign languages are performed in a modality other than spoken languages, using the entire body in a 
spatial-visual-somatic way. With reference to spoken language, performance of the language in 
terms of articulation, but also perception and interpretation, changes in the medium of sign 
language as a visual means of expression. Considering mathematical discourse and social 
interaction as an important factor in the learning of mathematics, this paper discusses theoretical 
approaches of a research program, currently underway, that aims at getting a better understanding 
of how the use of sign language may influence the learning of mathematics. From this a more 
profound basis shall be derived for developing didactical strategies responding to the special needs 
of deaf learners and understanding the role of bodily language in mathematical conceptualization. 

Keywords: Sign language, deaf learners, gestures, mathematical discourse and social interaction. 

Introduction 
Research in the area of Deaf studies and Deaf education points at the special challenges deaf 
students face when learning mathematics. Their lack of basic mathematical skills—deaf children 
lack several years on average behind hearing peers (Nunes, 2004; Traxler, 2000)—is considered to 
be mainly caused by social and linguistic aspects. 

Deaf children do not ‘pick up’ informal knowledge (Ginsberg, Klein, & Starkey, 1998) about 
mathematical concepts in early childhood as easily as hearing children do, due to growing up in an 
environment that is primarily aligned to auditive social experience (Nunes & Moreno, 1998). For 
example, everyday phrases of “mathematical conversation” (Gregory, 1998) just as ‘It is five to 
twelve’ or ‘Turn right in three quarters of a mile’ can provide a first contact to numbers that is not 
accessed ‘en passant’ by deaf children. Not necessarily growing up in a deaf community, they may 
also lack everyday interaction with peers that may initiate first instances of problem solving in 
playful situations, e.g. dividing a quantity in equal parts. Furthermore, deaf learners struggle with 
reading, understanding and processing written word problems (Hyde, Zevenbergen, & Power, 
2003).  Their challenges are partly explained by a decreased short term memory in serial recall of 
linguistic material, by a problematic comprehension of certain language structures like conditionals, 
comparatives, inferentials and lengthy passages (Rudner, 1978), and by the semantic understanding 
of the written language as a second language (Barham & Bishop, 1991; Traxler, 2000).  

Hence, and probably as no surprise, language is considered a main factor influencing the learning of 
mathematics for deaf learners. However, language has mostly been considered a problematic 
condition that impedes deaf students’ learning rather than investigated as an integral part of the 
learning process itself. As a spatial-visual-somatic language, the sign language used by the Deaf 
provides access to mathematical ideas different than that of spoken language. But what exactly does 
this mean for the learning of mathematics? And what can we learn from looking at how learning 
under these special conditions takes place?   



 

The approach presented takes into account the specificity of sign language to encounter the peculiar 
characteristics of mathematical discourse and social learning processes in the deaf classroom. 
Furthermore, I support the claim that the modality of language not only affects how mathematics is 
learned, but that it also influences how mathematical ideas become conceptualized by impacting the 
structure and process of thinking (Healy, 2015). This contribution therefore outlines theoretical 
approaches and possible implications of a new research program that aims at developing a better 
understanding of how mathematics is learned using the medium of sign language.   

Sign language(s) and gestures 
Sign languages are visual languages that are formed by several components such as the 
configuration, movement and orientation of the hands and their location in space, body posture, 
facial expression and the viseme (or ‘mouthing’: the movement of the mouth). These aspects shape 
what is considered the utterance in sign language and are, just as spoken language, more or less 
conventionalized. These conventions distinguish the manual expression from the gestures defined in 
the style of McNeill. While he defines co-speech gestures as “idiosyncratic spontaneous movements 
of the hands and arms accompanying speech” (McNeill, 1992, p. 37), I adapt this definition for an 
understanding of co-sign gestures as being ‘idiosyncratic spontaneous movements of the hands and 
arms’ accompanying the signed discourse. Signers use non-conventionalized gestures in addition to 
the signs and both types of gestural expression can hardly be distinguished (see also Healy, Ramos, 
Fernandes & Botelho Peixoto, 2016). Being performed in the same visual-gestural modality, signs 
and gestures are deeply intertwined in their use and in their interpretation, probably even more 
intertwined than in the case of spoken language.1 

Cognitive aspects of the influence of sign language on the learning of 
mathematics 
Embodied cognition 

Following the theory of embodied cognition, our (mathematical) thinking is deeply influenced by 
how we experience the world as physical beings (Lakoff & Núñez, 2000). How we act in and 
perceive the world structures our thinking and shapes to large extent our conceptual understanding: 

Human concepts and human language are not random or arbitrary; they are highly structured and 
limited, because of the limits and structure of the brain, the body, and the world. (Lakoff & 
Núñez, 2000, p. 1) 

A slightly more cautious claim is stated by Wilson and Foglia in the embodiment thesis:  

Many features of cognition are embodied in that they are deeply dependent upon characteristics 
of the physical body of an agent, such that the agent's beyond-the-brain body plays a significant 

                                                 
1 This also becomes a methodological issue. It is almost impossible to translate from sign language to written language, 
even if using lexemes for the notation. Gestures contribute naturally to the interpretation of the utterance such that the 
analytical distinction between which aspects are signed and which are gestured cannot be made as clear as analytical 
distinctions between the spoken and the gestured. Neither can be considered separately. 

 



 

causal role, or a physically constitutive role, in that agent's cognitive processing. (Wilson & 
Foglia, 2011, paragraph 3) 

More precisely, Wilson and Foglia distinguish three roles the body can play in cognition: It can 
constrain cognition, distribute cognitive processing and regulate cognitive activity (Wilson & 
Foglia, 2016, paragraph 3). In sum, “such determinate forms of the Embodiment Thesis can ascribe 
the body either a significant causal role, or a physically constitutive role, in cognition” (Wilson & 
Foglia, 2016, paragraph 3).  

However, the “body as constraint” is not to be understood with a merely negative connotation as 
one may get at first sight, taking into account two further implications provided by Wilson and 
Foglia (2016): 

 Some forms of cognition will be easier, and will come more naturally, because of an 
agent's bodily characteristics; likewise, some kinds of cognition will be difficult or even 
impossible because of the body that a cognitive agent has. 

 Cognitive variation is sometimes explained by an appeal to bodily variation. (paragraph 
3) 

This view on embodied cognition is coherent with the approach taken by Healy and colleagues who 
understand bodily organs as tools in the sense of Vygotsky, influencing structure and process of 
thinking (Healy, 2015). As instrumental tools, the sensory organs can be substituted among each 
other, which “is expected to cause a profound restructuration of the intellect” (p. 299).  

Such a substitution comes into play for deaf learners, where the lack of auditive perception becomes 
substituted by other sensory experiences. In the hearing classroom, information and ideas are shared 
to a large extent verbally while deaf students acquire information and interact by means of visual 
modes of expression, just as sign language. Following the theoretical approaches laid out, such a 
variation concerning the process of learning mathematics should alter cognitive structures and 
thinking processes, perhaps also leading to differences in conceptualization of mathematical ideas. 

Features of sign language 

Research in the field of Deaf Studies in fact indicates that deaf people ‘think differently’ (Grote, 
2010, 2013). Grote emphasizes that the modality of language—whether it is communicated in vocal 
language or in sign language—influences processes of conceptualization. She identifies two 
features of language modalities with such influences: Articulation and iconicity. 

While information is strung together sequentially and linearly in vocal language, sign language 
offers the possibility to represent different aspects of the utterance simultaneously. This can 
compensate for the greater time required by spatial articulation in sign language over that of verbal 
articulation (Bellugi & Fischer, 1972; Grote, 2013). However, sign language can represent only 
those concepts simultaneously that stand in a syntagmatic relationship, that is, concepts that consist 
of several aspects connected through linguistic contiguity. Signs that bundle these aspects by using 
a particular handshape to express additional information are sometimes called polycomponential 
signs (Grote, 2013), classifier predicates, or depicting verbs (Liddell, 2003). In contrast to this 
stand the representation of concepts from the same paradigm, e.g. concepts that are connected in 
hierarchy (see Fig. 1). 
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Fig. 1: Example for paradigmatic and syntagmatic relationships (following Grote 2013, p. 313) 

These paradigmatic (or ‘associative’ (Saussure, 1983)) relationships need to be articulated linearly, 
just as in verbal language (Grote, 2010, 2013). Grote (2010) claims that this may lead to a 
preference for communicating those ideas that stand in a syntagmatic relationship and gives 
empirical evidence that this preference may engender the establishment of a stronger link between 
these relations over paradigmatic ones. 

Furthermore, gestures often show a certain resemblance with what they signify; they evoke an 
iconic relation to its referential object. This relationship, however, needs to be established since it is 
not self-evident. Related to the process of conceptualisation, Grote claims that  

assuming that epistemic processes are processes inherently mediated by signs, the similarity 
that forms the relationship between icon and referential object is constituted actively. This 
means that in the process of iconisation, there is a focus on specific features of the semantic 
concept which probably become stronger linked and get an exposed position in the semantic 
net. (Grote, 2010, p. 312, translated by the author) 

When conducting verification tests, she found remarkably shorter reaction times for those pictures 
that showed the feature that was iconically reflected in the sign. This pointed to a stronger semantic 
link between this feature and the signed concept and provided evidence that “those features that are 
reflected in the iconic moment of sign language get a specific relevance for the whole semantic 
concept” (Grote, 2010, p. 316, translated by the author).  

So what might this mean for the learning of mathematics? 
Learning mathematics is not perceived as a purely cognitive phenomenon but can be understood as 
a social process in which individuals co-construct mathematical meaning and knowledge within the 
social interaction that is constituted by the use of signs. These signs can be of written, spoken, or 
gestural form or anything else that can be considered a semiotic sign, performed in any modality. In 
this sense—and taking into account the embodied approach outlined earlier—learning is understood 
“as a multimodal process” (Arzarello, 2006, p. 1), influenced by production and perception of signs 
within social interaction. The use of sign language plays part in both, production and perception.  

Based on this, possible issues that can arise are the following:  

 A preference of communicating syntagmatic relationships may lead to place special 
emphasis on these when carrying out social epistemic processes in social interaction and 
therefore, may lead to make syntagmatic relations conceived as being more important for the 
related mathematical concept. 



 

 Knowledge about which relations are ‘linked’ linearly and which simultaneously can 
influence teaching methods. While in the learning of deaf students there needs to be 
emphasis on developing paradigmatic inner-mathematical relations, the use of co-speech 
gestures may support strengthening syntagmatic links also in the regular classroom. 
Theoretical foundations for such an approach are provided by the results on gestural 
specification of the verbal utterance in processes of constructing mathematical knowledge in 
social interaction, as described in Krause (2016).  

 Providing ‘mathematical signs’ as nonverbal terms to students, it needs to be noted that the 
iconicity of the sign may lead to an exposed position of the aspects that become visually 
reflected in it. Oftentimes, official and conventionalized ‘mathematical signs’ do not exist or 
are not known so that a ‘suitable’ mathematical sign may develop hand in hand with the 
knowledge during the learning process in the mathematical classroom (see also Fernandes & 
Healy, 2014; Krause (2018)). To support the conceptualization of mathematical ideas, it is 
therefore important to take a closer look at which aspects of a mathematical idea are 
reflected iconically in a mathematical sign, and how meaning develops in the respective 
signs in a process of iconization while the ideas become encountered. Within this process, 
the iconicity of the gesture may inform about the signer’s current conceptionalization of the 
mathematical idea. This may be used for the purpose of assessment and fits the development 
of the ‘associated gestures’ found in hearing learners’ social processes of constructing 
mathematical processes (Krause, 2016). 

 Many mathematical concepts are shaped metaphorically so that the mathematical concepts 
are understood through something familiar or more illustrative (Lakoff & Núñez, 2000). 
These metaphors cannot be represented iconically in a direct way, the developing 
sign/gesture rather refers to an ‘underlying’ meaning (see again Fernandes & Healy, 2014). 
Gestures developed by deaf students while constructing mathematical knowledge in social 
interaction may therefore indicate possible approaches to these ideas and concepts. 
Knowledge about these approaches can also help in cases of learning mathematics in a 
second language since linguistic approaches to metaphors may not be accessible. 

The research program “DeafMath" 
These considerations motivate my research program in which I investigate the influence of sign 
language on the conceptualization of mathematical ideas, focusing on two main aims: 

 Contributing to the development and further elaboration of a theory on the role of the body 
in the conceptualization of mathematical ideas,  

 Providing theoretical foundations for developing didactical methods and strategies that 
involve the body in processes of teaching and learning. 

Furthermore, another goal lies in the development and evaluation of methodological approaches 
that take into account the specificity of the research setting when working with deaf children. The 
crucially different characteristics of sign language as a visual-gestural language, as well as the 
students’ difficulties with written language, demand an adaption of methods for collecting, 
preparing, and analysing data. This becomes especially important with respect to qualitative studies 
that follow interpretative and reconstructive methods since the holistic representation in sign 



 

language cannot be captured merely in written form that can only reflect linear and segmented 
language. A (more) suitable methodological approach might place a greater emphasis on the 
coordination of written transcripts, pictures, and videos for means of analysis, but also for the 
documentation of the results. 

Potential long-term goals with respect to implications on teaching methods and strategies concern 
the following aspects: 

 The identification of challenges that are specific to deaf students and countering them in 
their core: Is one challenge grounded in their understanding of (some) mathematical 
concepts as deviating due to the deviating modality of their language? 

 Understanding the inclusion of deaf learners and their way of communicating as actual 
surplus in the inclusive classroom. Results gained from these studies can point out how an 
actual inclusion of hearing-impaired students can enrich the entire classroom. 

 Using representational gestures in a goal-directed way as didactic means. In Krause (2016) I 
describe how the use of representational gestures can influence the collective formation of 
mathematical concepts in a beneficial way by its various representational functions. Results 
derived from the here described study may give insights in how these representational 
gestures may look like. 

This program therefore considers ‘barriers and chances’: While the different kind of communication 
may lead to specific challenges when learning mathematics, taking into account these differences 
entailed by the spatial-visual-somatic and embodied medium of sign language might help to 
“become better able to respond to their particular needs, but also build more robust understandings 
of the relationships between experience and cognition more generally” (Healy, 2015, p. 289). 
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Digitalization is a topic that is ubiquitous in everyday life. The technological revolution progresses 
with high pace. Technology/web/mobile companies all over the world are flourishing but primary 
schools (in Germany) do not follow the economy’s development and has not made computer science 
part of its curriculum yet. This is either due to technical equipment limitations or to the inability or 
insecurity of teachers to include technology and the underlying principles in their classroom. 
Furthermore, it is not officially integrated into the core curriculum which prohibits the 
implementation of a universal standard for computer science competences that have to be taught in 
primary schools. The paper will present the underlying project and the development of specific 
learning environments that are designed to nurture cooperation and interaction between participants 
to have a closer look at the in-between, where learning occurs. This will help to solidify the claim 
that computer science in primary school has a right to exist. 

Keywords: Computer science, interaction, mathematical competences, digitalization. 

Introduction 
Computer Science, digitalization or technology are only three out of many other terms concerning 
the digital age that ubiquitous in today’s society. Nearly every professional branch has to deal with 
technology and digitalization at some point. Employees have to learn how to deal with these digital 
structures mainly on their own, because they never experienced a fundamental education in computer 
science. Many schools in Germany offer Computer Science only as a subject in secondary school 
although coding is seen as the language of the 21st century. Whoever is able to “speak” a programming 
language will be understood all over the world. Many IT unicorn businesses have their roots in a 
teenager’s room or the parents’ garage. Often, these businesses came to be because exceptional skill 
and auto didactical training come together. The masses only seem to use the technology that emerges 
from these businesses without understanding the basic underlying structures that enable the creation 
of a product. No matter which idea came to be, it has almost certainly been realized through 
programming. The choice of programming language is rather secondary as they all follow the same 
basic rules. Children, from first grade onwards, know about digital technology and computers in 
different shapes and formats, but when they enter school, these digital tools often cease to exist. 
Therefore, a responsible use of these technologies and learning in computer science is not fostered in 
primary schools. Tablets, laptops, smartphones and gaming consoles are at least present once in every 
household. According to the KIM study, most families own more than one of these devices and use 
them more than once a week (e.g. the percentage of smartphone/laptop ownership is 97%). In fact, 
41% of children from 6-10 own a smartphone themselves. Children learn from an early age how to 
use e.g. tablets. The functions of these devices are often self-explanatory. The underlying structures, 
e.g. how is software developed, what rules does a computer follow or how to troubleshoot problems, 
are not that clear to most children although these structures are relatively similar across all digital 
devices, this also is true for most teachers, who did not grow up with technology and are now 
supposed use it in the classroom and teach its responsible use. Compared to mathematics this would 



be similar to learning specific calculations with specific numbers or materials but not understanding 
how to transfer and apply e.g. long division to other tasks. The paper does not aim to defy media 
competences and how they can be accomplished, it is rather a claim to go further and to embrace 
computer science itself into primary education and see where and when interaction and negotiation 
of meaning between children occurs and how it fosters the learning of computer science and 
mathematics competences. This would empower children to accomplish much more with their 
knowledge about media and their use (knowledge, they undoubtedly gained while growing up in a 
digital world). 

Status Quo: Media competences, a watered-down term 
Computer Science is a topic that is present in almost every secondary school, either as a mandatory 
or a facultative subject. Either way, the subject is taught by teachers, who have a higher education 
degree in computer science. To become a primary school teacher in Germany, as in many other 
countries, the selection of specific subjects is not necessary, as the primary teacher is trained to teach 
all subjects that are part of the primary school curriculum (although many universities offer the 
opportunity to choose a core subject (e.g. mathematics) that will give the student the ability to enjoy 
an even more focused education in this specific area. Computer Science as a subject is not present in 
either primary school or primary school teacher education. Future teachers rather can archieve 
something that is often called media certificate or media training. Mostly, this is integrated into the 
courses that are already taken at university. E.g. one course would include a topic like “use of digital 
media in geometry in primary school”. This is neither standardised, nor does it aim at specific 
competences. It is rather a subject specific realization of the use of technology for a certain topic. 
Today, most schools decide themselves how and when to use digital media and often one feels that it 
is mostly aimed at helping teachers to keep up with what children already know. If they decide to do 
so it is often done under the term of media competency. Krauthausen (2012) mentions that the term 
“media competences” is colorful and can be interpreted very differently according to specific 
interests. For some schools media competency means that the teacher uses e.g. an iPad, for others that 
the children learn how to use word processing software. Other projects try to foster the use of specific 
types of media such as podcasts to facilitate learning process for mathematics (cf. Schreiber, 2012). 
This is far away from being similar to what computer science would request children to learn. 
Computer science is considerably more than just knowing about the functions of a computer. It is 
learning about logic, about algorithms, about programming & robotics and (late-breaking) 
cryptography. Questions like: What is an algorithm? What is logic? What technology can I use to 
facilitate my work? can be answered by young children to improve their learning. But not only will 
the acquisition of such skills foster the expert knowledge, it will also nurture competences that can 
be interdisciplinary used. This is important, as we have to ask whether our traditional cultural 
competences are still sufficient in a more and more digitalized world or whether we need to teach 
computer science as well. Some projects try to accomplish this, e.g. Herper and Hinz (2009) through 
computer science education in primary school and Weigand (2009) with his project: “Algorithms in 
primary school” (title translated by the author). Weigand especially shows that to work on basic 
principles of computer science (in this case algorithms) a computer itself does not necessarily have 
to be available, as he uses pen and paper to work on algorithmic processes. Primary schools do not 
offer the subject of computer science and it will not be easy to implement it into the curriculum as an 
independent subject. To achieve this goal, a back door has to be found to sneak computer science into 



primary school. Then, once its benefits have become obvious the step from being part of another 
subject to being an independent subject is only a small one. The answer to the question what subject 
should be used to include computer science in its contents could not be answered more easily. 
Mathematics seems to be the ideal candidate, as competences in both subjects are similar right up to 
identical. We will now focus on these similarities in more detail. 

Competences in Mathematics and Computer Science 
The German core curriculum provides two types of competences for the subject of mathematics: the 
general mathematical competences and the content-related mathematical competences (KMK 
Bildungsstandards, 2005). General mathematical competences include arguing, problem solving, 
communicating, modelling and the presentation of mathematics. Although these competences will 
equally be taken into account, the main focus here will be placed onto the content-related 
mathematical competences, which are numbers and operations, space and shape, pattern and 
structures, sizes and measurement and data, frequency and probability. These content-related 
mathematical competences provide the framework for the contents of the learning environments. To 
justify these contents, a side by side comparisons of some chosen content-related mathematical 
competences and where to find them in computer science will be done. The mathematical 
competences will be presented as written down in the German core curriculum, then computer science 
content that also matches these competences will be provided. 

Mathematics Computer Science 

Understand the relationship 
between and the representation of 
numbers, Understand and master 
calculations 

Algorithms use calculations, Loops 
have to be counted, Sorting 
algorithms, Types of variables 
integer, float, double 

Table 1: Competences in Mathematics and CS: Numbers and Operations 

Mathematics Computer Science 

Spatial orientation Program robots, Define an area of 
movements,Plan with obstacles and 
predict motion sequences 

Table 2: Competences in Mathematics and CS: Space and Shape 

Mathematics Computer Science 

Recognize and characterize 
regularities 

Structure and plan algorithms, Plan 
processes and translate them into a 
programming language, logic, 
Sorting algorithms 

Table 3: Competences in Mathematics and CS: Pattern and structures 

  



 

Mathematics Computer Science 

Have the ability to imagine sizes, 
Have the ability to use sizes in 
specific situations 

Determine the step range of a robot, 
Determine run time 

Table 4: Competences in Mathematics and CS: Size and Measurement 

Mathematics Computer Science 

Understand the relationship 
between and the representation of 
numbers, Understand and master 
calculations 

Algorithms use calculations, Loops 
have to be counted, Sorting 
algorithms, Types of variables 
integer, float, double 

Table 5: Competences in Mathematics and CS: Data, Frequency and Probability  

(KMK Bildungsstandards, 2005) 

This selection of competences from the core curriculum shows that to each content related 
mathematical competence a related topic in computer science can easily be found. This is highly 
interesting, as it suggests that mathematical competences are similar to those that are required to 
perform tasks in computer science. Thus, mathematics can fulfil the requirements to integrate 
elements of computer science into its curriculum. To prove this claim, it would hardly be possible to 
modify the existing mathematical lessons to include this content. Rather, specific learning 
environments have been developed to show that learning computer science topics nurtures the 
competences that are necessary for both mathematics and computer science. 

The pilot project 
Partner school 

The search for partner schools was far from easy. Many schools were not interested. One school on 
the other hand was immediately willing to participate and upon further information managed to 
interest 19 children from grade four to take part in the project. As we did not expect such an 
overwhelmingly large number of participants from one single school, we cancelled all further efforts 
to acquire more schools and decided to work exclusively with the just one partner school. The school 
was very open to our project and supported us from day one. The first feedback suggests that all 
children are highly enthusiastic and motivated. A claim that we can only support after our first three 
weeks. In agreement with the school, we chose two time slots of 90 minutes in the afternoon twice a 
week (Tuesday and Thursday) over the course of six weeks. During the time slots the children worked 
on the learning environments in pairs (some tasks required two groups to come together to discuss) 
supervised by a student from the seminar or Peter Ludes. 

Learning environments 

To examine whether certain competences are used during working with tasks, specific learning 
environments have been developed that have a computer science topic as a core topic. The learning 



environments have been developed during one of Peter Ludes’ empirical seminars for future 
elementary school teachers. The students developed the first draft of the learning environments on 
their own and after a review process finalized them collectively during the seminar. The main topics 
are: logic (general and propositional), algorithms, cryptography and programming/robotics. The main 
challenge for the students was to develop learning environments with core topics that are not (yet) 
part of their actual studies, as computer science is not a topic that is taught in elementary school. 
Therefore, an extensive introduction into the field of computer science has been necessary.  

A second demand that had to be kept in mind during the development has been a focus on interaction. 
The tasks should be designed in a way that -at least partially- fosters interactional processes between 
the participants as we focus on learning through collective argumentation and participation 
(Krummheuer, 2011). The first learning environment focused on the topic of logic. The primary task 
always aims to get a first impression of what the participants already know (or think to know) about 
the concept. This very open question (e.g. What does logic mean? or When does a person have to 
think logically?) provides a wide variety of possible answers without any pressure for right or wrong. 
The supervising students are always advised to let the children speak freely as much as possible, 
unless a lively discussion does not occur, general questions or guidance is to be avoided. Although 
the content is important, the actual focus for this pilot project is not to survey content learning, but 
rather the learning that occurs between individuals whilst discussing and arguing about the specific 
topic. Learning in primary school is initially dialogical learning. That is, learning is seen as a 
dialogical process in contrast to learning as a monological process, which would be rooted in the 
individual (cf. Miller, 1986). The learning of mathematics can be seen as an increasing autonomous 
participation in collective argumentations that are produced and nurtured collectively by the group 
itself (Krummheuer, 1992; Voigt, 1995). This idea of learning can be transferred to the learning of 
basic competences in computer science. To build upon this concept, all ways of communication and 
interaction between the children has to be supported as much as possible. To ensure an efficient way 
to videotape the children working on the learning environments, we designed the environments to be 
worked on in pairs or groups of three, sometimes with a closing task, that included a larger group 
discussion in groups of up to six children. Working in smaller groups for us provides the advantage, 
that single children are not able to extract themselves from group tasks or discussions but rather 
encourage them to participate. Every learning environment is designed to cover three timeslots of 90 
minutes. Here, two sessions of 90 minutes are planned for the actual content-related activities and 
one session of 90 minutes reserved for documentation and evaluation of learning processes though 
tools like learning diaries, wikis and storyboards. Learning diaries can e.g. be used to recapitulate the 
learning process, correct misconceptions and enables the child to visualize what learning progress it 
has made. We chose the storyboard as an adequate tool for the programming/robotics learning 
environment. This environment will be realized with LEGO Mindstorms EV3 Educations sets. The 
main goal after developing and building the robot itself will be to program its specific actions. These 
actions should be planned beforehand because the children can choose from a variety of actions and 
sensors with endless combinations. For this task, a storyboard is the ideal candidate as it enables the 
children to structure their thoughts and plan the movements and sequences that the robot has to fulfil. 
It also makes trouble-shooting rather easy as the children can always compare their plan to the robot’s 
actual movements and actions. 



Analysis 

The analysis of the results of the work on the learning environments is based on methods of 
interpretive classroom research, such as interaction analysis. As we place much importance onto 
interaction, cooperation and discussions this method seems most appropriate to us. It helps to find 
more suitable tasks that help children to collaborate in a productive way. The negotiation of meaning 
is a key element that has to be focused (cf. Krummheuer, 1992). How does the negotiation of meaning 
in collective processes of argumentation occur and how can it be supported thought the task itself? 
According to our perception, learning does not occur inside the individual but during the interaction 
between individuals, whilst discussing, talking, arguing and also justifying the own answers and the 
answers of others (cf. Krummheuer, 1992). The underlying concept is founded on the ideas of the 
symbolic interactionism (cf. Blumer, 1969) that will allow us to examine learning as the increasing 
autonomous participation in collective argumentation in computer science discourse. Possibly this 
could lead to the definition of participation profiles (cf. Brandt, 2004) for different students, 
specifically tailored to the computer science classroom. This could not only benefit primary 
education, but also computer science classrooms in secondary schools. If a specialized and 
standardized computer science education in primary school was mandatory, secondary schools would 
have a contact point and a profound basis on which they could build and focus their curriculum. 

First impressions  

The first impressions of the pilot project are consistently positive. One major question during the 
development process was whether children could be unchallenged or overwhelmed with the tasks as 
they work with topics that are not being taught in primary school and are therefore unfamiliar. The 
individual knowledge of the children concerning this specific topic could therefore be developed very 
differently. The children engaged immediately with the tasks and lively discussions occurred. In the 
very beginning, a certain insecurity was noticeable. This was expected as the children naturally try to 
give correct answers. This was not possible as most questions are designed in a way that multiple 
answers and also very individual answers are possible. After the first sessions, the children got more 
and more used to the types of tasks and felt more comfortable when joining the discussions.  

Interestingly, mathematical discussions occurred very often, whether they were planned or not. One 
example where a rather simple question led to a lively discussion occurred during the learning 
environment: logic. The children had to decide whether a statement is right or wrong. One of the 
statements claimed: If something is round it is not pointy. Right or wrong? The children then engage 
into a discussion, where they have to decide what qualifies as being round: 

S1: If something is round it is not pointy\ [reads] 

 That does not have to be true\ 

S2:  (It is not\) [laughs]. 

S1:  That does not have to be true maybe it is so to say a pointy circle\ 

I:  How does a pointy circle work?\ 

S1:  So . wait (4) [draws into his folder] 

S2:  [looks into S1’s folder] 



S1:  Like this and so on and on \ [points at the drawing in his folder] 

S2 Yes, but if something is round [draws a circle into the air with his pen] so this here  

 [points at S1’s drawing] that is not round\ that is pointy\ 

S1:  Yes, it is roundly but fi it is round then you are right\ 

First, S1 states that he is not convinced that this statement is true and he tries to find a shape that is 
pointy and round. He therefore draws a shape that has corners but is not just one straight line, similar 
to a part of a polygon. S2 then looks at the drawing and defines the shape as pointy because it has 
corners. S1 then again discusses the word round and seeks for a better word to describe his drawing 
and proposes the word roundly for something that is not a straight line but follows the form of a circle 
part although it has corners. S1 and S2 clearly have a dissent in what qualifies as being round and 
then shift this disagreement into a consensus through the introduction of a new vocabulary. It is rather 
interesting that the S1 and S2 discuss to find a consensus and the questions remains, what would 
happen if they could not find one. Here, the material itself proposes a research question: How do 
consensus and dissent influence cooperative learning. Is learning through collective argumentations 
also possible on the basis of a dissent or does a consensus have to be reached in order to 
complete/move on with the task itself? The structures in cooperative learning opportunities could be 
fundamentally different if the necessity of reaching an agreement would not be mandatory. This 
question will be focused during further analysis as the concept of computer science learning 
environments provides a perfect frame: It has clear and visible connections to mathematics but is 
fundamentally new and different, so that children can learn a new topic in which they do not have 
prior knowledge to build on.  

Prospects 

The learning environments with the topics cryptography, algorithms, programming/robotics are also 
completed by now. The videos and writings of the children are being extensively analysed using 
methods of interpretive classroom analysis. The analysis will enable us to look at the negotiation 
processes in more detail and determine, where the learning of individual computer science concepts 
and understandings occurs and how meaning is negotiated during the task itself also in regard to 
cooperative learning and the underlying structures.  Through this, it will be possible to rework the 
learning environments to tailor them even more specifically to their purpose. The reworked learning 
environments will then be used in a more extensive main study to examine our claims and to 
strengthen the position of computer science as a key part of a profound and forward-thinking 
education that will not only benefit children’s abilities in this specific subject but also strengthen their 
mathematical competences 
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On the nature of spatial metaphors: Dimensions of spatial metaphors 
and their use among fifth graders  
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This paper reports on a study about the use of spatial metaphors among students solving spatial 
tasks. The aim is to describe the nature of spatial metaphors and analyze the use of spatial 
metaphors under consideration of other factors, such as students’ language proficiency and spatial 
ability. Sixteen fifth grade students, chosen according to a theoretical sampling, were required to 
describe to other students how to build a pre-designed spatial object made up of building cubes. 
The data was analyzed and different dimensions of spatial metaphors were identified and described. 
Whereas the overall frequency of use of metaphors in spatial discourse does not differ substantially 
among different groups of students, findings show that the use of spatial metaphors might differ if 
one analyzes the functions and the conceptions of the underlying metaphors.  

Keywords: Language, metaphors, spatial ability, geometry. 

Introduction 
Metaphors and their role in shaping the teaching of mathematics has been an area of research in the 
domain of language and mathematics education for a long time (e.g. Lakoff & Núñez, 2000). 
Further research is required to show the individual use of metaphors among students learning 
mathematics. The aim of this paper is to show the nature and diversity of spatial metaphors by 
describing and illustrating the different dimensions involved when students use spatial metaphors to 
verbalize their spatial thinking. The use of the spatial metaphors among different students chosen 
according to background factors (language proficiency and spatial ability) will also be an object of 
discussion in this paper. Hence, the research questions of this paper are as follow: 

1. What are the different dimensions of metaphors used by students in their spatial discourse?  

2. Does the use of spatial metaphors differ significantly among students with different 
background factors (language proficiency and spatial ability)?   

 

Theoretical considerations 
Language in mathematics classroom 

Several researchers of language in mathematics education have pointed out the different planes of 
language which co-occur in the learning and teaching of mathematics. A bi-planar model about the 
use of language has been developed by Cummins (2000), who differs between Basic Interpersonal 
Communication Skills (BICS) and Cognitive Academic Language Proficiency (CALP). BICS 
describes the use of language in everyday-life context, for instance, in order to communicate with 
friends or family. In contrast, CALP refers to the language used for academic purposes, which 
includes a more complex syntax and specific vocabulary, used to describe abstract ideas, such as 
mathematical concepts. There are no clear-cut boundaries between BICS and CALP, since both can 



influence each other. Hence, both planes should be visualized as a continuum of language in the 
mathematics classroom, rather than as separate entities.    

Metaphors 

Metaphors play an important role in constructing mathematical discourse and are present in the 
language of mathematics. Lakoff and Núñez (2000) use the term conceptual metaphors, which are 
metaphors used to understand abstract ideas by referring to concrete objects or experiences. In their 
notion of metaphors, properties are transferred from the source object to a target object. If one 
considers the metaphor “container”, which is an object of everyday use, it can also be used to 
describe the notion of class in mathematical language. Therefore, certain characteristics are 
transferred from the source (“container”) to the target domain (“class”) (Lakoff & Núñez, 2000).     

Spatial ability and spatial language 

Along with language proficiency, spatial ability is another factor which plays an important role in 
mathematics performance (Büchter, 2011). From a psychological perspective, spatial ability or 
knowledge is considered to include all abilities needed to navigate through space, visualize objects 
from different angles, and recognize space and spatial characteristics and other abilities needed to 
solve spatial tasks (Gardner, 2006). The solving of spatial tasks requires several cognitive 
processes, such as perception of figure and ground, which is the ability to identify a figure in space, 
spatial relations, which is the ability of identifying the spatial relation between two spatial objects, 
and position in space, which deals with the identification of the object’s position in space under 
consideration of one’s own body (Maier, 1999).  

From a mathematics education perspective, spatial ability is incorporated in geometry teaching and 
is considered an important domain for successful acquisition of geometrical understanding. This is 
the case in Pinkernell’s (2003) spatial ability model, which consists of three main categories of 
abilities which play a major role in solving spatial tasks: spatial-visual operations, which concerns 
mental and real actions performed on spatial objects, geometrical thinking, which refers to the 
abilities of recognizing and describing spatial objects by referring to their geometrical properties, 
and visual abilities, which includes the abilities of constructing different forms of representations of 
spatial objects and being able to interpret them in space.  

When analyzing the notion of spatial language and the different ways of representing spatial 
objects, Mizzi (2016) states that spatial metaphors play an important role in shaping students’ 
language when describing the construction of spatial objects. Spatial language can be described as 
the language required for talking about spatial objects and their underlying spatial characteristics. 
An analysis of spatial language can reveal more about the students’ spatial thinking and their spatial 
concept images (Landau & Jackendoff, 1993).  

Conceptions of mathematical notions 

Sfard (1991) states that mathematical concepts have a dual nature – the structural and the 
operational conceptions. In the former, a mathematical concept is treated as an abstract object and is 
mostly likely to be conceived as a static entity. In the operational conception, the individual “speaks 
about processes, algorithms, and actions rather than about the objects” (Sfard, 1991, p. 4). Hence, 
mathematical objects can be perceived as objects with static properties, which should be denoted as 



static conception, or as a sequence of actions on the mathematical object, denoted as dynamic 
conception. An integration of both conceptions is considered to be important for concept formation 
in learning and teaching of mathematics.    

Methodology 
Task design 

In order to analyze spatial metaphors, a method is needed to investigate the interplay between 
language and spatial abilities, and to allow the verbalization of students’ spatial thinking. The 
reconstruction method, a data collection method in which two or more learners seated in a back-to-
back position communicate with each other to solve a task using learning manipulatives, was 
chosen. In this data collection method, one learner (the describer) is given a spatial object, designed 
by the researcher and he/she must describe to the second learner (the builder) how to build the same 
object, as in the following student instructions given by the researcher: 

In this experiment you [the describer] will be given an object made up of these building blocks, which can 
be put together. You must give him/her [the builder] instructions on how to build this object, so that 
he/she [the builder] can reconstruct the same object. The colour of the building blocks is not important 
and whilst you [the describer] are describing you can also touch and move the object as you like, but the 
object structure needs to remain unchanged. At the end, the objects’ structure must be identical.  

The above spatial task and instruction required an appropriate spatial object which should be 
described by the describer. In order to possibly obtain as many metaphors as possible, two spatial 
objects were used in the study. 

                                                                   
                                 Figure 1: Spatial object I            Figure 2: Spatial object II 

The criteria for spatial object design included three-dimensionality (a requirement to describe along 
three dimensions), breakdown (different possibilities of breaking down the object) and specific 
spatial relations between parts of the object. Both objects consisted of building cubes (see Figure 1 
and Figure 2), which were provided for the builder to build the described object.                                                                   

Data collection and analysis 

Thirty-two students attending the fifth grade were chosen to participate in this study. In order to 
consider different factors which might play a role in solving the task, a theoretical sampling was 
used for choosing the describing students based on two dichotomies (since the describers are 
considered to be the ones mostly contributing to the spatial discourse in the underlying spatial task): 
high vs. low language proficiency (LP+/LP-) and high vs. low spatial knowledge (SK+/SK-). The 
students’ language proficiency and their spatial knowledge were assessed using C-Tests and Pencil-
and-Paper tests (Büchter, 2011), respectively. These dichotomies were established after considering 
which factors could possibly influence the solving of spatial tasks, which created four sample 
groups, each consisting of four describers, as illustrated in Table 1.  



 LP+ LP- 

SK+ Group 1 (four students) Group 3 (four students) 

SK- Group 2 (four students) Group 4 (four students) 

Table 1: Theoretical sampling under consideration of two student’s background factors  

Sixteen other students were chosen to act as builders for the sixteen describers chosen according to 
the theoretical sampling. The describers were given the first spatial object (Figure 1) and the 
instructions were given by the researcher. The task was repeated by using the second spatial object 
(Figure 2). The students were video recorded and their discourses were transcribed for the data 
analysis. Based on an interpretative qualitative approach, the collected data was analyzed to 
establish categories for metaphors based on the theoretical considerations about language and 
spatial abilities. The frequency of the metaphors identified in the spatial description of both spatial 
objects was analyzed in terms of the students’ language proficiency and spatial knowledge. 

Results and discussion 
About the nature of spatial metaphors 

Spatial metaphors can be described as metaphors in terms of Lakoff and Núñez (2000), whereby 
target objects are spatial objects. The spatial metaphors used among students to describe the spatial 
objects in the reconstruction method can be characterized by three dimensions: the linguistic, the 
spatial and the conceptional. In the linguistic dimension, spatial metaphors are characterized by the 
use of everyday (E), letter-based (L) or mathematical (M) language. Everyday language denotes the 
use of language from everyday situations (based on BICS). Letter-based language is the use of 
symbols or letters from written language in spatial discourse. Mathematical language denotes the 
use of mathematical terms or concepts in spatial discourse, which are more likely to be acquired in 
mathematics classroom (based on CALP). Again, these three categories should not be considered as 
entirely separate, but rather as a movement along a continuum with two poles from “concrete” to 
“abstract” (E – L – M respectively) and vice versa (M – L – E).    

The spatial dimension of spatial metaphors involves the function which the metaphors serves from a 
spatial content perspective. The functions are: structure (ST), spatial position (SP) and spatial 
relations (SR). In the third dimension, conceptional, the spatial metaphors can either be of a static 
(S) or of a dynamic (D) nature regarding the conception of spatial objects. In Figure 3 spatial 
metaphors and their dimensions are represented in a three-dimensional coordinate system. 

 
Figure 3: Representation of spatial metaphors and their three dimensions 



In the following, I will give some examples of spatial metaphors which can be represented as 
different points in the coordinate system visualized in Figure 3. Consider the following transcript of 
a student during his/her description of spatial object I:   

Student A: “Do an L only with one, two, three, four, (…), six pieces. (…) And then do again 
one, two, (…), five, do five again, so that it looks like an L”.  

The spatial metaphor ‘L’ used by student A can be categorized as letter-based on the linguistic 
dimension of spatial metaphors, because the properties of a capital letter in the Latin alphabet 
(source domain) are transferred to the spatial object (target domain) (however, Student A does not 
mention “capital” in the reconstruction method). If one thinks of the distinction between everyday 
language and mathematical language as a continuum in terms of abstraction and of specific 
knowledge acquisition, the use of symbols from written language could conceivably be located in 
between, because symbols represent abstract thinking in terms of lines and distances between them, 
which are, nevertheless, used in everyday life. From a spatial meaning perspective, Student A uses 
the spatial metaphor to describe the structure of internal parts of the spatial object and can therefore 
be assigned to the rather static conception of the object in terms of the conceptional dimension. 
Therefore, Student A’s spatial metaphor ‘L’ can be assigned to the vertex (L, ST, S) in Figure 3. A 
more explicit trigger of use of letter-based spatial metaphor (‘H’) is given by the structure of spatial 
object II, which has proven students’ strong emphasis on spatial metaphors for describing spatial 
objects rather than on other spatial-geometrical characteristics, such as dimensions etc.      

The following transcript excerpt shows another example of the use of spatial metaphors when 
describing spatial object I:  

Student B: “And now do three steps at the other staircase which you have done. Place it in a way 
in front of you as if you would walk up (…) and then (…) and now take the other stairs which 
you have done now, and set it in the most front (…) in a way as if you would walk up at the front 
and then go down again the other staircase”.   

The first spatial metaphor used by Student B is ‘staircase’ and can be assigned to the everyday 
language to describe the structure of the spatial object and to the static conceptional dimension (E, 
ST, S). The next spatial metaphor used by Student B is ‘walking up or down on the stairs’, which is 
used to rather describe the spatial position of the object, so in which position the ‘staircase’ is in 
space under consideration of the subject’s own body. In contrast to spatial metaphor ‘staircase’, the 
student includes his body in the description to perform an imaginary action on the spatial object. 
Since the spatial metaphor of ‘walking up and down on the object’ consists of actions and 
processes, this metaphor can be described as having a dynamic conception, hence it can be assigned 
to the vertex (E, SP, D) in Figure 3.  

Another example of a spatial metaphor coded from the mathematical language in the linguistic 
dimension can be observed in the following transcript excerpt: 

Student C: “At the right. And then make this one to the foursome like a triangle to it (…)”.  

In the above utterances, Student C uses the spatial metaphor ‘triangle’, which conceivably 
originates from mathematical language, to describe spatial object I. Student C states that an internal 
part of the spatial object should be linked to another (the foursome) like a triangle, which indicates 



that the spatial metaphor ‘triangle’ primarily describes the spatial relation between both parts. The 
student seems to refer to a type of triangle (right-angled triangle), using its properties to describe the 
spatial relation between the two internal parts of spatial object I. Since the spatial relation of the two 
objects is rather fixed in this context, this particular spatial metaphor ‘triangle’ can be assigned to 
the vertex (M, SR, S). More examples of spatial metaphors can be found in Mizzi (2016).   

Use of spatial metaphors in spatial discourse 

Spatial metaphors are characteristic elements of spatial language and they are used very frequently 
among students in description of spatial objects, as can be observed in Figure 4.  

 
Figure 4: Frequency of use of spatial metaphors in students’ spatial discourse among the four groups 

At a first glance on Figure 4, one can see that the use of spatial metaphors in the students’ discourse 
has the largest variation among the four students in Group 4. However, on average (represented by 
the squared light grey dots in Figure 4), spatial metaphors tend to be used on average in 
approximately 36 % to 40 % of the total phrases of the spatial discourse by the students regardless 
of their assigned group. So the general use of spatial metaphors among the students do not differ 
significantly among the different four groups.  

Use of language and spatial metaphors in students’ spatial discourse 

The type of language used in spatial metaphors by students is worth looking at. The underlying 
hypothesis is that the use of the linguistic dimension of spatial metaphors differs among students 
with different language proficiency. Students with high language proficiency may use more spatial 
metaphors, since they may have more vocabulary (in mathematical language) at their disposal.   

 
Figure 5: Use of language and spatial metaphors by students’ language proficiency 

Figure 5 presents the different uses of language in spatial metaphors among students with low and 
high language proficiency. It shows that students with high language proficiency use slightly more 
spatial metaphors from everyday and mathematical language, and slightly less letter-based spatial 
metaphors than students with low language proficiency.  



Functions of spatial metaphors in students’ spatial discourse 

The next step is to analyze the functions of the used spatial metaphors among the different students. 
Figure 6 shows the number of spatial metaphors used in relation to the average students’ total 
number of phrases by their spatial functions: ST, SP, and SR.   

 
Figure 6: Frequency of the used spatial metaphors classified according to their function 

According to Figure 6, most of the spatial metaphors were commonly used to describe the structure 
of the spatial objects. On average, every metaphor with ST-function occurs in at least every third 
phrase of the student’s discourse. Students in Group 4 relatively used relatively less spatial 
metaphors to describe the spatial position of spatial objects. Moreover, one can notice the relatively 
higher use of spatial metaphors with SP function in comparison to SR, especially among students 
with high spatial knowledge (students in Groups 1 and 3). In contrast, spatial metaphors with SR 
function were very rare and if used they tend only to describe the spatial relations between two 
object parts after breaking down the spatial object in the description.  

Conceptions of spatial metaphors in students’ spatial discourse 

Consider the conceptions of the spatial metaphors used by the students, which were based on the 
theoretical framework of Sfard (1999). It is worth mentioning that although most utterances were 
action-based and therefore of a dynamic nature, spatial metaphors were analyzed as distinctive 
elements conveying an idea which is either of static or dynamic nature. The former tends to be more 
property defining or transferring, whereas the latter entails a movement in the spatial metaphor 
itself. Considering the conceptional nature of spatial metaphors used by the participants, one can 
conclude that most of the spatial metaphors used are predominantly static in nature, regardless of 
the two dichotomies in the theoretical sampling. The high occurrences of static and the low 
occurrences of dynamic spatial metaphors seem to be linked to the function of the underlying 
metaphors. Since most of the students used spatial metaphors to describe the structure of the spatial 
object (see Figure 6), the corresponding nature was static. Whereas, if more spatial metaphors were 
used to describe the spatial position of the spatial object, then there is a higher tendency of the 
spatial metaphor being dynamic. However, this does not imply that all the spatial metaphors of S 
and SP function are static or dynamic respectively, as the following transcript excerpt of Student D 
describing object I shows. 

Student D: “At first it not much far, and then forth and forth. And at the other edge as well, and 
then they meet each other at the top. It is almost four cubes to the top and four steps”. 

Student D uses the spatial metaphor of ‘meeting’ to describe the structure of the spatial object, 
which she has broken down in two parts (two ‘edges’). The metaphor ‘meeting’ is used to convey 
the convergence to one point of the structure of the object created by the two parts or ‘staircases’. 
Hence, this metaphor is of a dynamic nature and an example for the vertex (E, ST, D) in Figure 3.  



Conclusion 
This paper has offered an insight into the nature of spatial metaphors which fifth grade students use 
when describing particular spatial objects. The different dimensions of spatial metaphors reflect the 
integrated language and spatial content learning which is important in mathematics education 
research. The analysis of groups of students according to theoretical sampling shows that spatial 
metaphors are common features of spatial language. Regarding the function of spatial metaphors 
used, spatial metaphors were prevalently used to describe the structure of the spatial object. 
However, on average, students with high spatial knowledge tended to use more spatial metaphors to 
describe the spatial position of an object or its parts. In terms of conceptual dimension, most spatial 
metaphors used by the participants were of static nature, which is consistent with the finding that 
most spatial metaphors were used to describe the structure of the object. These findings about 
spatial metaphors reveal some characteristics about fifth grade students’ spatial thinking, i.e. the 
predominant role of associations from everyday-life and the preference of static conception of 
spatial concepts to master spatial tasks which require verbalization. These results provide an initial 
step toward understanding the under-researched relationship between spatial thinking and language.        
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Given the nature of investigating bilingual mathematics learners and learning environments, a key 
concern is how we can ensure that the rigor of our research is matched by the rigor of 
methodological frameworks and approaches employed. Our goal is to develop a theoretical 
framework and associated methodology and methods, in practice, in order to ascertain their 
suitability for investigating bilingual mathematics learners in an educational context. Moschkovich 
(2016) identified four key recommendations for conducting research on language: utilising 
interdisciplinary approaches, defining central constructs, building on existing methodologies, and 
recognizing central distinctions. Utilising Moschkovich’s framework, this paper provides an 
appraisal of the methodology and methods to be employed in a research project examining 
bilingual mathematics learners.  

Keywords: Methodology, methods, bilingualism, discourse, framework.  

Introduction 
Investigating mathematics and languages is a complex process. Therefore, the authors argue that 
there is a need to develop appropriate research methods in order to investigate language use and its 
impact on mathematics learning. In particular, we believe that the role of language(s) should be 
examined within mathematical activity and in situ (Barwell, 2016). This paper draws from the 
researchers’ current study, which explores the potential for developing a coherent and integrated 
interpretive theoretical framework to examine whether differences in languages, and their use, by 
bilingual mathematical learners have a differential impact upon cognitive mathematical processing, 
while recognizing the social aspects of learning. The project, entitled ‘M²EID: Mathematical Meta-
level developments in English and Irish language Discourses’, is a mixed-methods study, 
comprising video-recorded observations, questionnaires and cognitive interviews. The research 
project is being undertaken with first year, undergraduate students, who choose to study 
Mathematics through a bilingual approach (English and Irish) during their first year of 
undergraduate education at the National University of Ireland, Galway (NUI Galway). This option 
runs parallel to its English-medium counterpart, which typically receives a large intake (at least 150) 
of students. Four weekly lectures are provided in the Irish language with all terminology given 
bilingually. In addition, lecturers may opt to describe more complex concepts (such as limit of a 
function) bilingually. The lectures are supplemented by the provision of a weekly workshop in 
English in addition to an Irish-medium workshop. 

Given the nature of investigating bilingual mathematics learners and learning environments, a key 
concern of this paper is to describe and discuss how we can ensure that the rigor of our research is 



matched by the rigor of methodological frameworks and approaches employed. It is imperative to 
review epistemology and associated underlying assumptions in order to make meaningful the 
methodology and methods of the research being undertaken in a bilingual mathematics education 
context. Grix’s (2004) definitions of ‘method’ and ‘methodology’ are valuable for interpreting these 
constructs. A ‘method’ refers to the procedures or processes by which data is gathered; whereas, a 
‘methodology’ refers to both the theory applied to inform the research and the data analysis 
strategies employed as appropriate to the data collected (via the specific methods). While Grix’s 
definitions regulate our M2EID research study, this paper focuses on possible methodological 
constructs that can frame such practice-based and context-driven bilingual classroom research. 
Consequently, the purpose of our paper is to describe and discuss the M2EID research methodology 
and methods utilising Moschkovich’s (2016, p.1) recommended constructs for conducting research 
on language use and learning in mathematics. These are: (1) using interdisciplinary approaches, (2) 
defining central constructs, (3) building on existing methodologies, and (4) recognising central 
distinctions while avoiding dichotomies. The paper is structured in accordance with these four 
recommendations and outlines their application to the main research study (M2EID).   

Using interdisciplinary approaches 
Research on language and mathematics needs to consider interdisciplinary approaches in the 
development of methodology and methods and should be grounded in classroom discourse as well 
as language and bilingualism (Moschkovich, 2016). Therefore, this necessitates the development of 
integrative frameworks for examining, in situ, both the cognitive and social constructs of 
mathematics learning through and with languages.  

In terms of the mathematics as a composite register comprising content, languages (e.g. English and 
Irish) and shifts between everyday and subject-specific registers, the authors emphasise the social 
and interpersonal aspects of language use and bilingualism in mathematics. Such aspects include the 
use of modes and gestures for communicating understanding and in particular, engagement in the 
situated and sociocultural practices of mathematical Discourses (Gee, 1996; Moschkovich, 2002). 
Further, the M2EID study is aligned with the perspective that learning mathematics is essentially a 
discursive activity in which learners form and actively participate in a community of practice (Lave 
& Wenger, 1991; Lemke, 1990). Therefore, learners develop unique sets of mathematical practices 
and modes of communicating with each other using all of the social, cultural and cognitive 
resources available to them. Consequently, a democratic process of learning emerges through a 
continuous cycle of negotiations in relation to views, beliefs, knowledge and meaning making 
(Moschkovich, 2002).  So, by adopting this comprehensive sociocultural perspective of learning and 
language use in mathematics, this study requires an interdisciplinary approach to research within 
this educational field.  Based on the sociocultural nature of mathematical concepts and how we 
understand and communicate this nature, it is vital to consider how various disciplines contribute to 
mathematics education. In order to address the aims of this study we will draw on the principles of 
Discursive Psychology, Cognitive Psychology, Semiotics, Pedagogy and Anthropology to progress a 
unified approach to researching learning and language use within mathematics. Due to the multi-
ontological nature of this grounding framework for the M2EID research project, it is essential to 
develop a dynamic and multifaceted methodological approach to the research, data collection and 
analysis strategies, which this paper focuses upon.  Drawing on the body of relevant literature in this 



regard, the authors designed a methodology for investigating bilingual mathematics learners that is 
underpinned by Sfard’s (2008) commognitive framework for examining learning.  This framework, 
described later in this paper, is founded on the premise that thinking is a form of (interpersonal) 
communication, and that learning mathematics entails extending one’s discourse.   

Defining central constructs 
Moschkovich (2016) emphasises that research studies need to be clear and explicit in relation to the 
key constructs utilised. Considering the centrality of discourse to the commognitive approach, it is 
important therefore, that our perspective of discourse is outlined first. Discourses encompass more 
than verbal and written language and the use of technical language; discourses also involve 
communities, points of view, beliefs, values, and pieces of work (Gee, 1996). Accordingly, we 
perceive mathematics as a discourse and a complex form of communication (Sfard, 2012). Gee’s 
concept of Discourse will inform the examination of conceptual mathematical development of 
bilingual learners, linking both the cognitive and social aspects of language use.  

Equally difficult and demanding is the task of defining bilingualism and in particular defining 
whether a person is bilingual or not. To illustrate these concepts further we employ Grosjean’s 
(1999) model of a continuum of modes with monolingual and bilingual occupying opposite 
endpoints; this continuum reinforces an understanding of bilinguals using their languages 
independently and jointly depending on the context/purpose in which the language(s) is being 
employed. Appropriately then, we support a non-deficit view of bilingual learners, combining 
everyday and mathematical registers and view language(s) as a resource and a support for learning. 
Our research is particularly concerned with the role of bilingual students’ languages in mathematics 
teaching and learning. We consider mathematical language as a distinct ‘register’ within a natural 
language and each language will have its own distinct mathematics register, encompassing ways in 
which mathematical meaning is expressed in that language. Specifically, we are concerned with 
conceptual mathematical activity. This encompasses a knowledge of what it means to understand a 
concept and an appreciation of how such an understanding can be constructed by a student, thus 
providing a model of cognition for the concept (Asiala et al., 1996). Given that language influences 
thought and thinking and that each language will have its unique manner of constructing the 
concept, it is critical to develop an insight into the role and effect of bilingualism/languages on 
conceptual mathematical learning. In addition, language(s) facilitate the development of a student’s 
mathematics register and participation in discourse. Consequently, it is an essential instrument of 
thought and it is vital for understanding and combining experiences and for organising concepts 
(Vygotsky, 1962). We propose that there are differences ‘between linguistically distinct versions of 
“the same discourse”’ (Kim, Ferrini-Mundy & Sfard, 2012, p. 2) which correspondingly impact on 
mathematical learning. Therefore, it is the use of language as an instrument of thinking that is of 
importance, as well as its effect on cognitive processing.  

When examining bilingual mathematics learners, it is important to address the social use of 
language within the learning context, not just its role in cognition. As previously noted, 
Moschkovich (2012) emphasises the importance of learning being illustrated within the 
sociocultural practices of a certain setting. These practices involve a process of describing learners 
and communities and considering culture as a set of practices, which actively involve participants 



(Gutiérrez & Rogoff, 2003). Hence, bilingualism is described in terms of learners’ participation in 
and use of language(s) for different purposes and particularly in the context of mathematical 
discourse. Similarly, Moschkovich (2012) emphasises the importance of discerning between the 
conditions of learning and the processes for learning, and the importance of describing the 
curriculum, courses/programmes and teaching and learning approaches utilised that yield successful 
outcomes for different groups of learners.  

Due to the multifaceted process of investigating bilingual learners’ use of language in mathematics 
education, it is vital that an extensive research methodology is developed to facilitate examination 
of central constructs such as discourse, bilingualism, and language use.  

Building on existing methodologies 
Research examining the development of mathematical learning and its relation to language draws on 
multiple theoretical frameworks to support investigations and accordingly methodological 
approaches (Moschkovich, 2016). Adopting Sfard’s (2012) commognitive approach, data collection 
and analysis must adhere to its five methodological principles. These principles have been 
expounded upon to reflect our investigative framework and are 1) Operationality, 2) Completeness, 
3) Contextuality, 4) Alternating Perspectives and 5) Directness. First, Operationality refers to the 
provision of a balanced account of the process through the sharing of practical, unambiguous stories 
that emerge from the study. Second, Completeness of the research emphasizes that the unit of 
analysis must comprise the entire discourse related to the topic. The researchers extended this 
principle for M²EID to include the documentation of such discourses (plausible developmental 
trajectories) in both the English and Irish languages. Third is Contextuality, which encompasses the 
premise that all interaction can be characterized as a learning event. We extend this, in the given 
context, to the need to examine when and how bilingual students/researchers use their language(s) 
in interactions. The fourth principle is that of Alternating Perspectives and explains the 
interchangeability of the researcher’s insider/outsider methods of using words. This is intensified 
within a bilingual context because consideration must be given to both languages, their use within 
the given context as well as the possibility of significant differences between researcher and 
participant discourses. Fifth, the principle of Directness affirms that all descriptions of the study 
should commence with the specific raw data from the participants rather than the researcher’s 
interpretation of that data. The application of these distinctive methodological standards will 
provide unique insights into the processes of bilingual mathematics learning and potentially 
contribute to the development of an empirical research base to ensure rigor in examining whether 
differences in languages, and their use, by bilingual mathematical learners have a differential impact 
upon cognitive mathematical processing. 

Further to adopting Sfard’s approach, it is vital to consider that epistemological assumptions inform 
methodology, which subsequently engender the methods employed to collect data. Therefore, 
aligned with the interdisciplinary foundations of the M²EID research project, the following are the 
proposed methods to be utilised in the study in order to ensure that a robust methodological 
framework and approaches support our inquiry.  

1. Discourse models: This study will map the plausible developmental trajectories in both the 
English and Irish languages with respect to students’ learning in various mathematical topics 



–e.g. functions– as consistent with the NUI Galway undergraduate module. The purpose of 
discourse models is to examine how language nuances and use affect learning (Kim et al., 
2012).  

2. Videographic evidence: This study will identify and explore when and how bilingual 
learners at NUI Galway employ each language (English and Irish) when engaged in 
mathematical learning. Specifically, the research will examine the cognitive functions of 
code switching and language use within a natural educational context, while also providing 
for the social aspects of learning. Videography is an effective method of examining teaching 
and learning experiences in naturalistic contexts and the affordances of modern technologies 
provide opportunity to document, share and analyse cases of particular practice (Derry et al., 
2010). All lectures and tutorials relating to the bilingual mathematics module in NUI 
Galway will be recorded and analysed as appropriate.  

3. Questionnaire: The purpose of the first part of the questionnaire is to gather participants’ 
background data. The second part of the questionnaire will engage participants in discourses 
related to particular mathematical topics (linked to the developed discourse models) with the 
option of utilising English or Irish or both languages. The Cognitive Aspects of Survey 
Methodology (CASM) model will guide participants in an activity series involving thinking-
aloud their thought processes as they recall prior knowledge and experiences of 
mathematical discourses while answering the questions (Desimone & Carlson Le Floch, 
2004). The focus will rest on conceptual mathematical activity based upon a variety of 
constructs, both familiar (such as functions and their analysis) and new (such as logical 
form, equivalence relations and classes, and related number theoretic constructs). A primary 
mathematical objective of the first year module in NUI Galway is to facilitate and develop 
advanced mathematical thinking.  

4. Video-recorded Cognitive Interviews: Cognitive interview methods will be employed to 
explore respondents’ explanations of the answers in order to acquire comprehensive 
knowledge about how well respondents comprehend, appreciate or even misinterpret the 
specific mathematics concepts central to the study (Desimone & Carlson Le Floch, 2004). 
Participants will engage in paired discussion of mathematical tasks (the same as in the 
questionnaire) and justify their answers where appropriate.  

It is proposed that the combination of the above methods facilitates a progressive and incorporative 
investigation into the cognitive aspects of bilingual mathematics learning and to evaluate the impact 
of languages on mathematics learning in practice.  

Recognizing central distinctions while avoiding dichotomies 
With Sfard’s (2008) commognitive framework undergirding the approach, the following are key 
aspects of the methodological framework under investigation (Ní Ríordáin & McCluskey, 2015): 

 Discourse changes: If assuming the premise that mathematical learning involves initiation 
into the discourses of mathematics, then learning mathematics involves substantive 
discursive changes for learner. Sfard (2012, p. 3) distinguishes between two types of 
mathematical learning (change in discourse) as follows: object-level learning (expansion of 



what is known already and is mainly accumulative) and meta-level learning (change of 
meta-discursive rules and is a more radical and complex change). Within the proposed 
framework, development refers to a change in discourses. Accordingly, we refer to the 
development of students’ mathematical discourses as opposed to the development of the 
students themselves. 

 Sociocultural perspectives: Discourse is more than just language. We utilize Gee’s (1996, 
p. 131) work which refers to Discourse as incorporating both talk and non-talk modes of 
participation such as gestures and artifacts, as well as participation in a social group. The 
employment of this definition synchronises with the concepts of discourses inherent within 
the sociocultural and Community of Practice perspectives.  

 Community of practice: Within the framework, thinking can be defined as the activity of 
communicating with oneself. Accordingly, mathematical thinking can be viewed as a 
discourse, which in turn is a form of communication and involves being part of a 
mathematical community. Taking this view, the language or languages in which 
mathematics is being learned becomes an important issue for consideration.  

 Conceptual learning: Given that language influences thought and thinking (Vygotsky, 
1962) and that each language will have its own way of constructing the concept, insight into 
the role and effect of bilingualism/languages on conceptual mathematical learning is critical. 
We consider languages and registers as vital resources and skills for learning and language 
use in mathematics. Grosjean’s (1999) concept of a continuum of modes will be employed 
to trace bilinguals’ use of languages in situ.   

 Linguistic relativity hypothesis: It is the use of language as an instrument of thinking that 
is of importance, as well as its effect on cognitive processing. The linguistic relativity 
hypothesis proposes that the vocabulary and phraseology of a particular language influences 
the perceptions and thinking of speakers of that language (Whorf, 1956). Accordingly, each 
language (e.g. English or Irish) has a different cognitive system that influences concept 
formation and development. The study adopts the premise that a language influences, rather 
than determines, our mathematical thinking, and is cognisant of the impact of linguistic 
distinctions in a particular discourse on mathematics learning (Kim et al., 2012).  

 Meta-discourses: The proposed framework is primarily concerned with meta-level 
developments in mathematical discourses. Since our focus is on bilingual mathematics 
learners, it is important that an analysis of the language(s) in which the discourse is taking 
place is conducted. In particular, the successive meta-discourses relating to mathematical 
topics of interest will be documented and compared between languages. 

 In situ research: Since the development of discourses is essentially a product of collective 
human actions, the specific contexts must be acknowledged. Hence, learning and language 
use in mathematics will be analyzed within the social, cultural and cognitive practices of the 
particular learning context (Moschkovich, 2012).  



Conclusion   
Utilising Moschkovich’s framework, this paper has provided an appraisal of the methodology and 
methods to be employed in the M²EID project, which is concerned with examining bilingual 
mathematics learners in situ. We assume that methodology is inclusive of both theory and methods. 
Accordingly, it is of importance to outline the underlying theoretical assumptions relating to the 
M²EID project, as well as how we plan on documenting, describing and explaining these 
phenomena. Hence, a core consideration for our project is what data to collect and how to collect 
such data. Therefore, a key aim of the M2EID research project is to evaluate the proposed 
methodology and methods in practice in order to ascertain their suitability for investigating bilingual 
mathematical learners in an educational context. In particular, the project will evaluate whether 
differences in languages, and their use, by bilingual mathematical learners have a differential impact 
upon cognitive mathematical processing, when engaged in conceptual mathematical activity.  

Acknowledgment 
The M2EID research project is funded by the Irish Research Council - New Horizon’s Research 
Grant (REPRO/2015/53). 

References  

Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1996). A 
framework for research and curriculum development in undergraduate mathematics education. In 
J. Kaput, A. H. Schoenfeld, & E. Dubinsky (Eds.), Research in collegiate mathematics 
education, II (pp. 1−32). CBMS Issues in Mathematics Education, Vol. 6. Providence, Rhode 
Island: American Mathematical Society. 

Barwell, R. (2016). Mathematics education, language and superdiversity. In A. Halai & P. Clarkson 
(Eds.), Teaching and learning mathematics in multilingual classrooms: Issues for policy, 
practice and teacher education (pp. 25−39). Rotterdam, Netherlands: Sense Publishers. 

Barwell, R., Barton, B., & Setati, M. (2007). Multilingual issues in mathematics education: 
Introduction. Educational Studies in Mathematics, 64, 113−119.  

Derry, S. J., Pea, R., Barron, B., Engle, R. A., Erickson, F., Goldman, & R., Sherin, B. L. (2010). 
Conducting video research in the learning sciences: Guidance on selection, analysis, technology, 
and ethics. Journal of the Learning Sciences, 19(1), 3−53.  

Desimone, L. M., & Carlson Le Floch, K. (2004). Are we asking the right questions? Using 
cognitive interviews to improve surveys in education research. Educational Evaluation and 
Policy Analysis, 26(1), 1−22.  

Gee, J. P. (1996). Social linguistics and literacies: Ideology in discourses (3rd ed.). London: The 
Falmer Press. 

Grix, J. (2004). The foundations of research. London: Palgrave Macmillan. 

Grosjean, F. (1999). Individual bilingualism. In B. Spolsky (Ed.), Concise encyclopedia of 
educational linguistics (pp. 284−290). London: Elsevier. 

Gutiérrez, K., & Rogoff, B. (2003). Cultural ways of learning: Individual traits or repertoires of 
practice? Educational Researcher, 32(5), 19−25.  



Kim, D. J., Ferrini-Mundy, J., & Sfard, A. (2012). How does language impact the learning of 
mathematics? Comparison of English and Korean speaking university students’ discourses on 
infinity. International Journal of Educational Research, 51-52(3), 86−108.  

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York: 
Cambridge University Press. 

Lemke, J. (1990). Talking science. Norwood, NJ: Ablex. 

Moschkovich, J. (2002). A situated and sociocultural perspective on bilingual mathematics learners. 
Mathematical Thinking and Learning, 4(2-3), 189−212. 

Moschkovich, J. (2012). How equity concerns lead to attention to mathematical discourse. In B. 
Herbel-Eisenmann, J. Choppin, D. Wagner, & D. Pimm (Eds.), Equity in discourse for 
mathematics. Theories, practices and policy (pp. 89−105). New York: Springer. 

Moschkovich, J. (2016, July). Recommendations for research on language and learning 
mathematics. Paper presented at the 13th International Congress on Mathematical Education, 
Hamburg. 

Ní Ríordáin, M., & McCluskey, A. (2015). Bilingual mathematics learners, conceptual 
mathematical activity and the role of their languages. How best to investigate? In K. Krainer, & 
N. Vondrová (Eds). Proceedings of the Ninth Conference of European Research in Mathematics 
Education (pp. 1468−1474). Prague: Charles University and ERME. 

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and 
mathematizing. Cambridge, UK: Cambridge University Press. 

Sfard, A. (2012). Introduction: Developing mathematical discourse – Some insights from 
communicational research. International Journal of Educational Research, 51-52(3), 1−9.  

Vygotsky, L. S. (1962). Thought and language. Cambridge, MA: MIT Press. 

Whorf, B. L. (1956). Language, thought and reality. Cambridge, MA: MIT Press. 

 

 



Entering the mathematical register through evolution of the material 
milieu for classification of polygons  

Frode Rønning and Heidi Strømskag 

Norwegian University of Science and Technology, Department of Mathematical Sciences, 
Trondheim, Norway  

frode.ronning@math.ntnu.no   heidi.stromskag@math.ntnu.no     

This paper is based on classroom observations from Norway with 7-8 years old children working 
on geometrical shapes. The intention is that the children shall classify different polygons according 
to their number of edges. The observations are part of a teaching sequence that is designed using 
principles from Brousseau’s Theory of Didactical Situations (TDS). From the teaching sequence we 
identify certain challenges in the children’s development of scientific terms and the observations 
allow us to conclude that these challenges to some extent are connected to specific semantic 
features of the Norwegian language. The use of TDS is instrumental in revealing the challenges that 
occurred and explaining what was changed to overcome them.  

Keywords: Register, language of nearness and distance, polygons, adidactical situation, milieu. 

Introduction 
This paper reports on a teaching sequence within the project Language Use and Development in the 
Mathematics Classroom (LaUDiM)—an intervention study carried out in collaboration between 
researchers at the Norwegian University of Science and Technology and two local primary schools 
in the period 2014-2018. The main objective of the project is to study pupils’ development and use 
of mathematical language in order to gain knowledge that will help the teachers to develop their 
teaching—aimed at pupils’ increased proficiency in expressing mathematical ideas, mathematical 
reasoning, arguing and justification. Teaching sequences are designed in collaboration between 
researchers and teachers, where the design is guided by principles from the theory of didactical 
situations (Brousseau, 1997).  

In this paper we study a teaching sequence at one of the project schools including pupils from 
Grade 2 (7-8 years old) and their teacher. The main aim of the teaching sequence—consisting of 
three sessions—is that the pupils shall develop their language use about polygons, with the specific 
aim that they shall be able to classify polygons based on seeing visual images and that they can 
discern different parts of a polygon (vertices and edges). The classroom observations (recorded on 
video) give insights into pupils’ evoked concept images (Tall & Vinner, 1981) of vertex and edge, 
and how discrepancy between these and the scientific definitions of them constrains the teacher’s 
goal of the first session. Further, we show how this is resolved by the teacher in the subsequent 
sessions.  

Theoretical framework 
According to Halliday a register is “a configuration of meanings that are typically associated with a 
particular configuration of field, mode and tenor” (1985, pp. 38-39). Halliday compares register to 
dialect and states that “dialects are saying the same thing in different ways, whereas registers are 
saying different things” (Halliday, p. 41). So changing between registers can mean that the same 



word gets a different meaning. The mathematical register is characterised by the property that 
words have very precise meanings and sometimes the same word may be used in the mathematical 
register and in the register of everyday language but with different meaning. This feature is 
language specific in the sense that for a given word it can be present in one language but when this 
word is translated to another language it may lead to one word in the everyday register and another 
word in the mathematical register.  

Koch and Oesterreicher (1985) make a distinction between language being conceptually oral or 
conceptually written. They refer to the first category as a language of nearness, where the 
interlocutors are in direct contact and can comment on each other’s utterances and directly refer to 
the given situation, for instance by using gestures. The second category they refer to as a language 
of distance, where the sender and the receiver are not necessarily in contact and the language 
therefore has to be more precise. The mathematical language is in its nature conceptually written 
because of the way it strives for precision and unambiguity. However, much of the communication 
in the mathematics classroom has many of the features characterising a conceptually oral language, 
a language of nearness. In particular, when working with young children the communication is 
characterised by dialogue, face-to-face interaction and a desire to avoid complexity, features 
characterising a language of nearness. However, one of the aims of schooling is to develop the 
mathematical language into a language characterised by greater precision, compactness, density of 
information, features characterising a language of distance Koch et al., 1985, p. 23. 

The theory of didactical situations in mathematics, TDS (Brousseau, 1997) is a scientific approach 
to the problems related to teaching and learning of mathematics, where the particularity of the 
knowledge taught plays a significant role. Its methodology—for a targeted piece of mathematical 
knowledge—is based on creating a situation with a problem to be solved, where the knowledge 
aimed at is the optimal solution to the given problem. In the following, based on Brousseau (1997), 
we explain some concepts of TDS that are relevant for our analysis.  

An adidactical situation is a situation in which the student takes a mathematical problem as his own 
and tries to solve it without the teacher’s guidance and without didactical reasoning (i.e., not trying 
to interpret the teacher’s intention with it). The milieu models the elements of the material and 
intellectual reality on which the students act when solving a problem—these elements are 
conditions for the students’ actions and reasoning. The milieu may comprise: the problem to be 
solved; material or symbolic tools provided (artefacts, informative texts, data, etc.); students’ prior 
knowledge; other students; and, arrangement of the classroom and rules for operating in the 
situation (determinative of who is supposed to interact with whom). The milieu of an adidactical 
situation is called an adidactical milieu. An appropriate adidactical milieu provides feedback to the 
students, whether their responses are adequate with respect to the knowledge at stake.  

After devolution, a phase where the teacher has (temporarily) transferred responsibility for solving 
the problem to the students, four situations (or phases) follow: Situations of action, formulation, and 
validation are (intentionally) adidactical situations, whereas the situation of institutionalisation is a 
didactical phase. The situation of action is where the students engage with the given problem on the 
basis of its inner logic, without the teacher’s intervention. The students construct a representation of 
the situation that serves as a “model” that guides them in their decisions. This model is an example 
of relationships between certain objects or rules that they have perceived as relevant in the situation. 



The situation of formulation is where the students’ formulations are useful in order to act indirectly 
on the (material) milieu—that is, to formulate a strategy enabling somebody else to operate on the 
milieu. In this situation the teacher’s role is to make different formulations “visible” in the 
classroom. The situation of validation is where the students attempt to explain some phenomenon or 
verify a conjecture. In this situation the teacher’s role is to act as a chair of a scientific debate and 
(ideally) intervene only to structure the debate and try to make the students use more precise 
mathematical notions. The situation of institutionalisation is where the teacher connects the 
knowledge built by the students—through adidactical interaction with the milieu—to the scholarly 
and decontextualised forms of knowledge aimed at by the institution.  

Methodical approach 
Each teaching sequence in the project starts with a planning session where teachers and researchers 
work together to plan the activities for two classroom sessions, and in particular set the learning 
goals for the classroom sessions. Activities and actions are planned according to the phases of TDS, 
devolution, action, formulation, validation, and institutionalisation (Brousseau, 1997). Some days 
later, the first classroom session takes place, immediately followed by a reflection session, where 
experiences from the first classroom session are discussed and adjustments are made for the second 
session, taking place yet a couple of days later. Researchers are also present in the classroom. 
Observations from all sessions (planning, classroom implementation and reflection) are recorded on 
video, and additional audio recording is used to secure the quality of the sound. In the classroom 
sessions selected pupils working in groups (2-3) are video recorded, as is the teacher in whole-class 
sessions. Tasks given to the pupils in the observed sessions and written material produced by the 
pupils are also data sources. After completing a cycle of planning, reflection and classroom 
sessions, teachers and researchers meet to watch parts of the video recordings from the classroom. 
This represents the first step in analysing data, where interesting sequences from the classroom are 
identified. In the planning session and the video session, teachers from both schools are present.  

This paper is based on a teaching sequence on geometrical shapes, consisting of three classroom 
sessions1. Data from the teaching sequence form the basis for answering the following research 
question: What conditions enable or hinder pupils’ opportunities to categorise polygons according 
to their number of edges? 

The utterances reproduced are excerpts from a transcript of the video recorded whole-class 
discussion in the second session. The camera faces the teacher at the board and it captures the 
dialogue between the teacher and the 14 pupils who are sitting in a semi-circle close to the board. 
Parts of the dialogue between teacher and pupils have been transcribed and translated from 
Norwegian into English. In cases where it is important for the analysis to emphasise the meaning of 
a particular word in Norwegian, the Norwegian word is included in square brackets in the transcript.  

Our analysis is based on ethnomethodological conversation analysis, focusing on the thematic 
development of an interaction rather than on its structural development (Holstein & Gubrium, 
2005). This gives the possibility to analyse the relationship between language and the figures with 
                                                 
1 The analysed teaching sequence consists of three sessions (instead of two which is common in the project). The third 
session involves pupils’ interaction with a milieu designed so as to give feedback in the devolved adidactical situation.  



their components while teachers and students negotiate mathematical meaning (Fetzer & 
Tiedemann, 2015).  

The teaching sequence analysed here is chosen because: (1) it illustrates how the phenomenon of 
words having different meanings in the mathematical and everyday registers constrains pupils’ 
conceptual development; and (2) it illustrates how an evolution of the milieu gives a rationale for 
using the target knowledge.  

Analysis of the teaching sequence 
First session—classification 

In the first session of the teaching sequence, pupils work in pairs on sheets of paper showing 12 
shapes, as presented in Figure 1 (one pupil has blue, the other has red figures). The task they get is 
that each pupil shall (individually) sort the figures into groups (cutting the individual figures from 
the sheet) and give a name to each group (ACTION). Then they are supposed to compare (in the 
pairs) how they have sorted the figures and agree on a way to sort them and also agree on a name 
for each group (FORMULATION). The final result from each group is a sheet of paper on which 
the pupils have glued on figures from the same group and with the text “These are <__> because 
<____>” and the pupils have filled in the blanks (VALIDATION). After the session the teacher 
collects the worksheets and she uses them as background for a whole-class discussion in the second 

session (INSTITUTIONALISATION).  

In Norwegian, polygons are named literally after the number of edges, using the 
standard Norwegian number words, so that a triangle is called a “three edge” 
(trekant), a quadrilateral is called a “four edge” (firkant), and similarly for the 
others. An accepted name for the generic concept polygon is ‘mangekant’ which 
literally means “many edge”. Learning names of polygons, and understanding the 
reason for the names, is therefore not considered to be a challenge for Norwegian 
students. 

Figure 1: Shapes to be classified 

This is in contrast to the situation in English where it is not obvious from the everyday language 
that for instance a pentagon is a shape with five edges. The teacher has seen from the collected 
worksheets that all groups have given names to the shapes based on the number of edges and they 
have written for instance “these are ‘five edges’ because they have five edges”.  However, from the 
discussion in pairs she has observed that even if all the pupils talk about edges (kanter), the way 
they point at the figures indicates that some counts the edges but others count the vertices. The 
Norwegian language has no precise scientific word for vertex, the word which is used is ‘hjørne’, 
which (also) means corner.  

Second session—the meanings of edge and corner 

In the institutionalisation phase the teacher asks pupils to come to the board and explain their 
reasoning. She has observed Oliver and Amelia counting the vertices and Thomas, Daniel and 
Sophie counting the edges. Among the figures is a quadrilateral with three acute angles and one 

reflex angle (Figure 2), where we have inserted the letter A for reference in the 
dialogue. Although Oliver and Amelia have grouped this among the quadrilaterals, 

A Figure 2: Non-convex quadrilateral 

 



Oliver expresses some doubt when he is called to the board to explain how he and Amelia have 
thought.  

 

Oliver: If we had pulled this out a little (pointing to vertex A with the reflex angle) it 
would have been a “four edge” [firkant]. 

Teacher: OK, but still you have grouped this among the “four edges”. 
Oliver:  One, two three, four (pointing to the vertices). 
Teacher:  So what is an edge? 
Oliver: That is the pointed parts [spissene]. 

When Thomas is called to the board he uses a rectangle as his example and clearly points to the 
edges, counting “one-two-three-four”.  

Teacher: What is the difference between what Oliver did and what Thomas did? 
Megan:  Thomas counted the lines [strekene] and Oliver counted the pointed parts 

[spissene]. 
Teacher:  So actually we did not quite agree on what an edge really is. 

The dialogue above reveals that there are different opinions among the pupils as to what the word 
‘kant’ means. All the pupils claim that they are counting the edges but when asked to explain what 
they have counted, Oliver points to the vertices and Thomas points to the edges. Megan makes the 
observation that the two boys have actually counted different parts of the polygon.  

The teacher has in many sessions talked about “what mathematicians do” and that they for instance 
decide and agree on what names to give to mathematical objects. At this stage the teacher says that 
now we have to agree on something—as the mathematicians do—so that we have a common 
understanding of what an edge is. The teacher has also observed that some pupils use the word 
‘hjørne’ and she draws their attention to this. One pupil, Jessica, says that they had talked about 
‘hjørne’ but they did not know what it was, so they had written ‘kanter’. The teacher asks the pupils 
to explain what a ‘hjørne’ is and encourages William to come to the board. 

William: That inside is a corner and those outside are edges. 
Teacher: Can you show us? 
William:  This is a corner (points to vertex A with the reflex angle in Figure 2) and that is an 

edge (points to one of the acute angles). 
Teacher:  But what about this (points to the rectangle)? 
Oliver: Edge, edge, edge, edge (points to each of the four vertices). 

Then the pupils continue to discuss the inner and the outer angle at a vertex, and that one is a 
‘hjørne’ and the other is a ‘kant’. Thomas says that “the corners are inside and the edges are 
outside” and Chloe agrees that the corner is inside but she refers to the outside as the “pointed 
parts” (spissene). William is making a distinction between the vertex at the reflex angle of the non-
convex quadrilateral (Figure 2), which he refers to as a ‘hjørne’, and the vertices at the acute angles, 
which he denotes by the word ‘kant’. Oliver, using the rectangle as his reference context, refers to 
all the vertices by the word ‘kant’.  



To get the pupils to agree on one name for the same object the teacher 
brings in a reference context from their everyday life, a mini-pitch. The 
picture in Figure 3 is shown on the whiteboard. Using this picture as the 
reference context, the teacher asks questions like “If I say that you 
should place yourself on the edge of the mini-pitch, where would you 
be standing?” or “…place yourself at the corner, where would you go?” 

Figure 3: The mini-pitch   

There is still some confusion among the pupils, so the teacher says that she will tell them “what the 
mathematicians have decided”. She holds up a rectangular sheet of paper (A4) and says:  

Teacher: Corner (vertex), that is where two sides meet. When we talk about edge, we can 
also call this the side-edge [sidekant], and where two edges meet, that is a corner 
(vertex). There is the corner (points to a vertex of the sheet). 

The last part of the session was completed at the mini-pitch in the schoolyard, where they played 
the game of the teacher telling where to go—by using the concepts of edge and corner—and the 
pupils went to a place which (supposedly) fulfilled the teacher’s command. 

The teacher’s reference to “work like mathematicians” and that this entails giving precise 
definitions indicates that she intends to introduce her pupils to the mathematical register. However, 
the communication is hindered by the fact that some of the words have different meanings in the 
mathematical register and the everyday register. In particular this is the case for the word ‘hjørne’ 
which can mean vertex (mathematical register) as well as corner (everyday register). In everyday 
language the corner is a spacious area, somewhere you can stand, but in mathematics it is a point, 
the intersection between two lines. The word ‘kant’ has the same connotation as English edge, and 
in everyday language this is used as something that is sharp. This may explain why ‘kant’ is used to 
denote both the side, or edge, and the vertex when it is approached from the outside.  

Third session—a milieu that affords feedback 

As a follow up, a game with 12 tiles was developed. On one side of the tile 
was depicted a polygon where the edges had one colour and the vertices were 
marked with another colour. On the reverse side was written “<name of 
shape> with <colour> edges” or “<name of shape> with <colour> vertices”. 
An example is shown in Figure 4. On the back of this was written “Pentagon 
(femkant) with blue edges”. 

Figure 4: Pentagon with blue edges 

This game was played in pairs of pupils both having the full set of tiles. One pupil reads the text and 
the other one is supposed to pick the correct shape. After picking he/she can turn the tile and read 
the text to see if the correct shape has been picked.  

Discussion 
The target knowledge of the teaching sequence was that the pupils should develop the scientific 
language for naming 2D shapes and become aware that these names are based on the number of 
edges in the shape. To know the difference between edges and corners (vertices) will then also be 



part of the target knowledge. A condition that hinders pupils’ opportunity to categorise polygons 
according to their number of edges, is the ambiguous use of the concept of edge. Many of the pupils 
thought that edge (‘kant’) referred to corner/vertex, and since the number of edges equals the 
number of vertices it gave meaning to classify polygons according to the number of corners.  

The material milieu in Session 1 did not have an adidactical potential for categorisation according 
to the number of edges, since it was possible to solve the task apparently correct, without the pupils 
having a common understanding of what is an edge and what is a corner/vertex. There was no 
feedback from the milieu that could have told them whether they used the desired concept to 
classify: In action they counted either edges or corners (which gave the same answer); in 
formulation they compared their categorisations (and if they had a figure that was categorised 
differently, they used either edges or corners as a basis for categorising jointly and agreeing); in 
validation, if they reasoned on the basis of different attributes (edges or corners), they concluded 
that it did not matter which attribute to use.  

During Session 1, the teacher realised that the pupils had other connotations of edge and corner/ 
vertex than the scientific ones. In institutionalisation (Session 2), the teacher let the different 
connotations be displayed, and—with reference to mathematicians—she introduced the scholarly 
meaning of the concepts, in the mathematical register. Further, she connected them to the pupils’ 
everyday register, through the mini-pitch context.   

Based on results from Sessions 1 and 2, the teacher designed a new material milieu (tiles) that has 
an adidactical potential (see Figure 4). The game will produce a win if the pupil uses the scholarly 
meaning of edge and corner, and a loss if not. Hence, the pupil will need the target knowledge to act 
on the milieu—a principle at the core of TDS’ instructional design. The evolution of the milieu 
described here is a condition that enables the pupils’ opportunity to categorise polygons according 
to their number of edges.  

The teacher’s desire to introduce precise mathematical terms also points to introducing a language 
of distance. However, the situation is such that the pupils are able to express themselves clearly 
using gestures together with oral language, thereby using a language of nearness. However, in the 
game with the tiles it is necessary to use a language of distance in order to pick the correct tile. 
Hence, the intended language development is stimulated by the activity’s adidactical potential. 

It has been observed earlier that Norwegian children focus on the vertices when naming polygons 
(Rønning, 2004) but the observations made in this paper show that they may use different words 
depending on whether they approach the vertex from the inside or from the outside. We have also 
seen that they may use different words within the same shape, as with the non-convex quadrilateral 
in Figure 2. This shape is also interesting in the sense that it is not really accepted by Oliver as a 
quadrilateral but it would have been if “we had pulled this [the vertex with the reflex angle] out a 
little”. We interpret this as Oliver’s inclination to distinguish between convex and non-convex 
polygons. In future learning of geometry, the concept of a convex polygon will be introduced and 
this example indicates that early exposition to non-convex shapes can be important for making 
pupils familiar with these shapes.  

Distinguishing between edges and vertices can also be seen to be important for future learning. For 
polygons, the number of edges is equal to the number of vertices so to name a polygon one may just 



as well count the number of vertices instead of the number of edges. However, for polyhedra the 
number of vertices, edges and faces are not the same, and the naming is based on the number of 
faces.  

The results presented here are relevant for mathematics teachers and teacher educators: They 
present challenges and affordances related to teaching of properties of polygons—with emphasis on 
language and characteristics of the milieu with which the pupils interact when solving a problem. 
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This article presents the analysis of the discourse of a novice teacher when he tries to clarify what 
the sign of a vector quantity is. The elements considered for the analysis are language (speech and 
gesturing) and reference system concept as mediators within the process of meaning-making. Our 
analysis shows the novice teacher has difficulties promoting the understanding of the (negative) sign 
of a vector quantity and its relationship with the convention used to solve problems of motion of 
objects. The results shown here are part of a wider ongoing research concerning discourse analysis 
and teaching practice in grade 11 of two teachers with different profiles, expert and novice, from the 
theoretical approach of semiotics–the theory of objectification.  

Keywords: Novice teacher, classroom communication, objectification theory, sign of a vector 
quantity, semiotic approach. 

Introduction 
From the discussion on the state of research in mathematics education which arose during the 10th 
International Congress on Mathematical Education (ICME-10), and as different works indicate (e.g., 
da Ponte & Chapman, 2006; Adler, 2000), there is growing attention to the teaching practices 
compared to what occurred in the past, when such practice was not a primary concern. Sfard (2005) 
states that it was particularly during the first decade of the 21st century when there was a decisive 
change towards the study of teachers' practices. From the works presented in the work group of 
mathematics and language in the past CERME9, and related with the interests of this research, it is 
of great importance to point out the interest on communication and interaction in the mathematics 
teaching and learning processes. In these processes, the use of gestures is included both in a 
communicative role and as a resource during teaching practice. Thus, we must highlight the works 
by Nachlieli and Tabach (2015), who show the elements of teaching practice that promote learning, 
and the work by Farsani (2015) on the role that deictic gestures play as a communicative tool. There 
are the works regarding the way in which meanings are produced in the classroom and the role of 
gestures as mediators of such process (e.g. Miranda, Radford & Guzmán, 2013). In this way we seek 
to contribute to the discussion on the relevance of interaction and communication on teaching and 
learning processes from an analysis perspective of semiotic orientation. 

Research problem 
Da Ponte and Chapman (2006) agree that, in the 90s, Vygotsky’s work came to prominence and 
evolved in a number of research lines with respect to teaching practices. Considering Vygotsky’s 
concept of semiotic mediation –defined as usage of means [artifacts and signs] by which the 
individual receives the action of social, cultural and historical factors, and acts upon them (Vygotsky, 
2009)–, Mariotti (2009) conducted a research with the aim of observing the teacher’s role and the use 



the teacher gives to artifacts in order to develop mathematical signs in the students during the 
teaching-learning processes. Mariotti considers that the teacher, playing the role of cultural mediator, 
is responsible for introducing specific terms and using his or her judgment to recognize what may be 
referred to as mathematical concepts. Morgan (2006) considers that: “An important starting point for 
a social semiotic perspective is the recognition that meaning making occurs in social context and 
language use is functional within those context.” (p. 220). In the same work, the author emphasizes 
the multimodal characteristic of communication in which, besides language, gestures and the use of 
other resources are found. In this sense, Arzarello, Paola, Robutti and Sabena (2009) highlight the 
dynamic process that takes place during the multimodal semiotic activity of the subjects. 

Then, the research firstly goes back to the interest on teacher’s practice (a novice teacher data are 
reported here), and additionally it considers the use of a sociocultural approach of semiotic orientation 
to observe teachers’ practices. Our objective is to analyze the teacher’s discourse at the moment when 
he talks about the sign of a vector quantity in a physics class, in which the use of language and gestures 
is essential during the process of meaning making and awareness. Therefore, we pay close attention 
to the semiotic means of objectification [language, gestures and signs] that the teacher uses and 
encourages in the interaction with the students. 

Conceptual framework 
The research is supported by the theory of objectification (Radford, 2014; 2008) that includes 
Vygotsky’s notion of semiotic mediation as well as the importance of the use of artifacts and gestures 
in the processes of knowledge production. Radford (2014) considers that the main objective of the 
theory of objectification (TO) is that of mathematics education as: “[A]s a political, social, historic 
and cultural effort with the aim of creating ethical and reflective individuals who take a critical 
position in mathematics practices historically and culturally constituted.” (Radford, 2014, p. 135–
136, free translation). Thus, this formation of the individual involves an analysis between being and 
knowing in which both of them are closely interrelated. The principle of labor or activity represents 
the fundamental principle of the TO (Radford, 2014). It is through labor that the individuals are 
developed and continuously transformed and that we find the Other and the world in its conceptual 
and material dimensions. Through labor we find the systems of ideas of culture (systems of scientific, 
legal, and artistic ideas, etc.) and cultural forms of being as well. Radford and Roth (2011) introduce 
the concept of joint action, which implies more than a spatial notion where the interaction takes place. 
It represents the place in which the students and the teacher think and act together in pursuit of a 
common goal. It is important to emphasize that from TO approach, what mediates is the activity. 
Where both students and teacher are immersed. However, artifacts and signs continue play a relevant 
role. They are also part of the activity and are defined as semiotic means of objectification; which 
are: “These objects, tools, linguistic devices, and signs that individuals intentionally use in social 
meaning-making process to achieve a stable form of awareness, to make apparent their intentions, 
and to carry out their actions to attain the goal of their activities” (Radford, 2003, p. 41). 

This approach also revisits the notion of consciousness as something concrete; it is a subjective 
reflection of the world. Then, any consideration regarding learning must also comprehend the field 
of consciousness in which the students’ thought and emotional orientations are included. 
Consciousness can be captured through its manifestations: discourse, gestures and all the other 
sensual actions. In order to recognize the forms of expression, action, and reflection, that are the 



mathematical objects, the student goes through a social and physical process of awareness, which is 
mediated, in turn, by the activity; and where the artifacts y signs both physical and psychological 
belong to this activity (Radford, 2014; 2008). Therefore, gestures and artifacts act as important 
elements of the activity and are essential to the reflection processes. In this way, in TO, knowing and 
individuals are produced in the classroom through labor or activity. One way of identifying how 
meanings of mathematical objects are produced is through language and gestures.   

Within the aim of this work, we include the teacher’s practice to seek to characterize how the novice 
teacher promotes the objectification of the sign of vector quantities. In other research works, the role 
of gestures and the character of artifacts and signs as mediators has been developed; Roth (2000) 
particularly points out the importance the use of gestures has in the relationship with speech and in 
the road towards the scientific language. Roth indicates that, in the absence of an appropriate scientific 
discourse, gestures help to explain and describe the phenomena among the students. Additionally, he 
stresses that, during the emergence of the [scientific] discourse, both the iconic and the deictic 
gestures precede the spoken words associated with them. For their part, Moreno-Armella and 
Sriraman (2010), consider that the access to [mathematical] objects is not direct, but through 
mediation. The way in which we interact with our environment and the rest of the people—for 
instance, through language—is part of our symbolic nature. They state that: “Only humans possess, 
(…) what can be termed explicit cognition that allows us to go from learning to knowledge. Explicit 
cognition is symbolic cognition. The symbol refers to something that, although arbitrary, is shared 
and agreed by a community.” (Moreno-Armella & Sriraman, 2010, p. 216). 

Method 
This is a qualitative research performed through a case study. The pilot study was carried out in a 
high-school (grade 11) from Mexico City. The participants were two teachers (expert and novice) 
who teach physics and who have over 20 years and 2 years of experience, respectively. This article 
reports the data collected from the novice teacher. The instrument to collect the data was non-
participant observation of the Physics I classes. In the classes, the teacher addressed mechanics topics, 
specifically, Newtonian dynamics. The teacher considered the concepts of force, displacement, and 
interpretation of Cartesian graphs. The classes lasted two hours (twice per week) and one hour (once 
per week). We observed 12 sessions and obtained 20 hours of recording. We used two cameras 
controlled by the researcher. One camera remained fixed and was directed to the board while the other 
was moved to focus on the interactions during the students’ participations. In addition, we used a 
voice recorder placed on the teacher to obtain audio recordings of the classes. After the data were 
collected, we watched the videos from the classes to identify moments when key concepts had been 
addressed. Once the moments (class segments-excerpts) were identified, we transcribed what 
occurred in those segments. Our analysis is based on those transcriptions. 

Analysis and discussion of results 
Below we present excerpts that show the discourse of a novice teacher who tries to clarify the purpose 
of using the sign in a vector quantity on a free fall problem. In its entirety, the teacher’s discourse 
lasts around 10 minutes. To carry out the analysis, we identified three main excerpts that deal with 
the teacher’s discourse regarding the concept of a vector quantity. The excerpt starts after a student 
[who does not take part in the dialog] goes to the board to write a response and uses the value of 



acceleration of gravity (“g”) with a positive sign (see Figure 1-Photo 2). It is two students (S1 and 
S2) have a question about the sign that the teacher’s explanation starts. The excerpts correspond to a 
class in Spanish, in such a way that a translation in English is presented, trying to maintain dialogues 
fidelity.  

Excerpt 1- Is gravity negative? 

S1: Teacher, is gravity negative? 

Teacher: It is negative. 

S2: Is it? 

Teacher: Gravity will always be negative, right? But in this case (…) I’d told you that 
acceleration was a vector, right? Then, for example, if you want to speak in, let’s 
say, a vector manner, you must express gravity with its negative. Because it will 
always point down [makes a gesture; see Figure 1-Photo 1], right? But in this case, 
if you place it like this, in a scalar manner (…) we’re only looking at the magnitude 
of the gravity. Which would be 9.8. I mean, gravity will always go down [A student 
says: “but not now”] on the axis and down. Let’s leave it at that for now [with the 
positive sign]. 

  

Figure 1: Photos of gestures used by the teacher to represent the sign of gravity in two moments 
(Photo 1-left; Photo 2-right). 

The intention of the teacher is that the students understand the sign of g; that is to say, the students 
have to be aware of the meaning of the sign of gravity. The teacher seeks to encourage this awareness 
through a speech in which he includes gestures. However, from this point it is evident there is no 
articulation between the teacher’s verbal arguments and his gestures. The teacher stressed that g “will 
always be negative.” However, the argument the teacher uses gesturally links g with the type of 
motion (free fall) and not with the mathematical relationships of the function of motion (position with 
respect to time). When he says “Because it will always point down”, the teacher does not explain that 
“down” —or “up”, given the case—depends on a frame of reference involving a starting point (origin) 
from which measurements and directions (orientations) are taken to obtain numerical values. That is, 
the set of conventions used is arbitrary.  

Excerpt 2- The system of reference 

S3: And if I did it using the minus nine point eight? [referring to g = –9.8m/s2]. 

Teacher: If you did it with the minus, that means that, what does it mean? That when you 
were talking about this problem… [He is interrupted by another student]. 

S1: But you said that it was if it was falling, then…  



Teacher: I’m telling you “g” will always be negative, right? [See Figure 2-Photo 1] Now, 
you will take a point of reference (…) [the teacher draws a system of coordinated 
axes; see Figure 2-Photo 2]. If you take a point of reference here. Here, it would be 
y [vertical], x [horizontal], right? Then, if you take the point of reference there, what 
is the value of this point? [pointing at the origin of the Cartesian system he drew] 
It is the origin, what is its value? [S1 answers: “zero, comma zero”] Right now, we 
are only acting on y, then the value will always be zero at x. Then, if this [the stone] 
is falling towards here [simulates the fall of the object with respect to the diagram; 
see Figure 2-Photo 3], that is why we have a negative value in y. Because y that 
goes down is negative. (…) Because the point of reference, we are up here [points 
at the origin of the Cartesian system] and we are measuring how the little ball falls 
down, but from my point of reference [makes a gesture using both hands; see 
Figure 2-Photo 4]. Which would be from the bridge. I won’t be measuring this in 
the water, right? Then, that’s why it is negative in this case [the distance (height)] 
and that’s why I’m telling you that this [acceleration of gravity] is negative. 

    

Figure 2: From left to right, photos of gestures used by the teacher to represent: the phenomenon 
(Photo 1), the system of reference (Photo 2), the motion of the object with respect to the system of 

reference (Photo 3), and the measurement of the distance (Photo 4). 

S1 goes back to the notion that the sign and the values obtained depend on the direction of the motion 
observed. Later, the teacher incorporates a conceptual resource he considers necessary to understand 
the sign of g, that is, the concept of system of reference. It is observed that the teacher determines it 
[system of reference] from the system of coordinated axes (Cartesian graph) and its usual directions 
(positive: up and to the right; and negative: down and to the left). At this point of his speech, the 
teacher mainly uses the mathematical concept of system of reference. His use of the language makes 
him focus on conveying the mathematical meaning of the problem while he uses gestures only when 
addressing the physics phenomenon. What is observed is that it considers mathematical thinking and 
physics separately. For instance, the teacher seems to use gestures to exemplify frames of reference 
oriented negatively down only. The meaning of his gestures only depends on the particular motion of 
the object (Photos 3 and 4). Thus, the teacher is explicit when he says: “That is why we have a 
negative value in y. Because y that goes down is negative.” Therefore, with respect to the language 
used by the teacher in this excerpt, it is unclear how students can be aware of the sign of g from the 
use of reference systems when the teacher includes the system of reference in his speech. 

Excerpt 3- Two signs for the same problem 

S3: But I still don’t understand the thing about gravity. 



Teacher: I’m telling you that, in this case, the acceleration is a vector. And if the acceleration 
is a vector, the acceleration of the gravity will also be a vector, ok? Then, this here 
[points out at the sign in Figure 2- Photo 1], the negative of the gravity is indicating 
where gravity is always directing to. Then, it would be something like this [draws 
an arrow pointing down on the board]. It will always be directed downwards. Now, 
this will always be [writes: “g = –9.8m/s2], this will never change. Now, if you do 
not want to express this to me [referring to the acceleration of gravity], then give 
me the scalar, I mean, give me the magnitude of your gravity. Then, if you give me 
the magnitude, it would only be this here [see Figure 3-Photo 1], yes? I mean, 
without the negative, 9.8. If you tell me where it is headed to, you’re giving me the 
direction [see Figure 3-Photo 2], which is downwards, really. And in that same 
way, to get the distance covered. If you tell me, are you going to say it in distance? 
Or are you going to say it in displacement? Displacement is supposed to be a vector, 
too. (…) Then, when you get the magnitude, it will always be a magnitude like this 
[covers the negative sign of the acceleration of gravity again], positive.  

 

   

Figure 3: Photos of gestures used by the teacher to represent: the magnitude of a vector (Photo1-left) 
and the direction of a vector (Photo2-center); additionally, a photo of the board (Photo 3-right) 

What S3 says at the beginning of the excerpt indicates that, so far, the “relativity of the sign” has not 
been understood and that it depends on the frame of reference used to analyze the physics 
phenomenon. The teacher goes on with the discourse, explaining that knowing the sign of a quantity 
means knowing the direction of the motion, and says: “the negative of the gravity is telling [us] where 
gravity is always directed to.” However, gravity does not go “upwards” or “downwards”, but to the 
core of Earth, which to our perception is “falling down”. The difficulties arise when trying to explain 
why. Then, the teacher focuses his attention on the magnitude of a vector (see Figure 3-Photo 1). 
Again, using a gesture, he hides the negative sign of g to refer to a probable positive value, yet he 
relates such value to a scalar quantity and not to the direction of the vector in a system of reference. 
The teacher implies that one can make reference to the two signs in one quantity in the same problem, 
which results in an ambiguity to the student.  

In teacher discourse, it is important to realize the use he makes of the board, it is noteworthy saying 
the teacher only writes numbers, symbols (Cartesian graph, vectors) and formulas, but fails to write 
a single word; and that creates a gap between his discourse (spoken language and gestures) and 
symbolic language. The students are used to writing down what information is on the board, without 
adding elements from the spoken language. Therefore, when they go back to check their notes, they 
can hardly remember the exact words the teacher used, instead, they only see abstract symbols. Thus, 
reconstructing both the discourse and the discussion that unfolded can be difficult for them. Thus, it 
would be convenient to carry out research aimed at an analysis of the use of resources by the teacher.  



Conclusions 
In this work, we observe the roles language and gestures play in a novice teacher’s discourse and the 
difficulties he faced when trying to stabilize awareness on the meaning of the sign of g. Then, the 
way in which the meanings of the mathematical concepts are displayed and understood involves the 
mobilization of gestures and signs. This is because gestures, artifacts, signs, and the process of 
meaning making in the classroom, have a semiotic nature. We observed the complexity and the 
importance of articulating language and other semiotic resources as gestures and concepts—system 
of reference—in the processes of meaning making. Particularly, we observed there was no 
satisfactory coordination between the teacher’s gestures and language. While the teacher consistently 
used gestures to point out the negative sign of the gravity when the object “falls down”, he was vague 
when trying to explain why the sign was negative from its vector character. Then, the teacher focused 
his language only on the mathematical characteristic of the problem, but he focused his gestures on 
the physics description of the problem. We observed, however, an attempt to coordinate language and 
gestures in the excerpt in which he includes the use of the concept of system of reference. It follows 
that determining the system of reference to solve a given problem in advance is essential. Therefore, 
the system of reference used as a semiotic resource may allow this articulation between the 
mathematical meaning and the physics motion of objects to be understood. And this motivates us to 
conduct further research on this line.  
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In Germany, as in other countries, language proficiency impacts the achievement in mathematics. 
Linguistic features may constitute possible obstacles for students solving word problems. This study 
explores the interplay of language proficiency and achievement in mathematics with tasks in which 
linguistic characteristics were varied experimentally. 640 10th grade students solved the tasks. An 
analysis of the shift in difficulty of linguistically varied tasks indicates an irregular scheme: Only 
tasks with extreme variation of linguistic aspects, for example many nominalizations, show a 
significant shift. Data collected from student interviews using the think-aloud method show that 
linguistic aspects can be obstacles and therefore have an impact on the solution process, even if 
these linguistic aspects may not have an impact on the results in the quantitative part of the study.  

Keywords: Language proficiency, difficulty level, item analysis, language obstacles, mathematics 
achievement. 

Language and mathematics 
Impact of language proficiency on mathematics achievement 

Research on the relationship between language and mathematics has a long tradition in Germany 
and internationally (Barwell et al., 2016; Maier & Schweiger, 1999). In Germany, research on 
differences in achievement in mathematics due to background factors is relatively new when 
compared to research in Anglophone countries. Internationally, the strong influence of language 
proficiency on mathematics achievement, especially for word-problems and tests that follow the 
literacy approach, has been an issue for decades (Abedi, 2006). International surveys, such as PISA, 
show that there is a strong connection between mathematics achievement and family background in 
Germany, especially regarding the socio-economic status and the first language (Gebhardt, Rauch, 
Mang, Sälzer, & Stanat, 2013). In a recent German study, Prediger and colleagues have identified 
that “language proficiency is the background factor with the strongest connection to mathematics 
achievement, among all social and linguistic background factors” (Prediger, Wilhelm, Büchter, 
Gürsoy, & Benholz, 2015, p. 77; see also Prediger, Wilhelm, Büchter, Gürsoy, & Benholz, 2013). 

Linguistic aspects causing difficulty in mathematics  

For English, Abedi and Lord (2001) showed that word problems with low linguistic complexity can 
reduce the achievement gap evoked by differences in students’ language proficiency. However, 
Martiniello (2008) reports that research about effects of linguistic features is inconsistent. For 
example, items with many polysemous words, pronouns or prepositions are difficult only in some 
grades and the number of subordinate clauses and passive-voice sentences had no significant 
effects. In her own study, she highlights complex sentence structures with embedded adverbial and 
relative clauses, long noun phrases and limited syntactic transparency on the syntactic level and 



 

unknown or polysemous words on a vocabulary level as linguistic features creating difficulties 
(Martiniello, 2008).  

For the German language context, there are only a few studies about linguistic obstacles. For 
example, noun phrases and the number of academic language words seem to be difficult. The 
identified obstacles of word problems in the study by Prediger et al. (2015) included prepositions, 
complex syntax and nominalizations. The obstacles did not only occur in the context of reading, but 
more often they were related to conceptual understanding. In this study the specific linguistic 
features which made the text complicated could not be isolated as they interacted with each other as 
well as with the mathematical content. With the experimental approach in our study, we strived to 
address this issue. For the specific context of the German language, we wanted to specify to what 
extent linguistic aspects could explain the achievement gap between students of higher and lower 
language proficiency by investigating the questions: 

Q1. What impact do different linguistic aspects have on the achievement in literacy-based tests? 

Q2. Which linguistic aspects are difficult for (lower language proficient) students? 

Research design and methods for the mixed-methods study 
Context of the study 

The mathematical tasks of the study were oriented towards the literacy-based high stakes exam 
“Zentrale Prüfungen am Ende der Klasse 10 (ZP10)” [central examinations at the end of 10th grade] 
of North-Rhine-Westphalia (NRW), the most populous federal state of Germany. The ZP10-exam is 
designed by QUA-LiS NRW, the “Qualitäts- und UnterstützungsAgentur – Landesinstitut für 
Schule NRW“ [Quality and support agency – Institute for school NRW] that supports the Ministry 
of Education and lifelong learning in NRW. The exam does not only assess mathematical 
competencies acquired in 10th grade, but also the competencies acquired during grade 5 to 10. For 
that reason, our tasks are required to illustrate different mathematical levels.  

Design for the quantitative part of the study 

The sample consists of 640 students from ten different comprehensive schools in the metropolitan 
area of Rhine-Ruhr. As independent variables, we collected information about students’ language 
proficiency, cognitive capabilities and family background (cf. Table 1). Another important variable 
was the linguistic variation in the tasks. The dependent variable was mathematics achievement. 

Language proficiency was measured using a standardized C-Test. Cognitive capabilities were 
measured by the extended standardized German adaption CFT-20R of culture fair intelligence tests. 
Information about family background (socio-economic status, immigrant status, languages spoken 
at home) was collected by questionnaire.  

The mathematics test was designed referring to the ZP10-tests. Members of QUA-LiS NRW 
assured that our test would be acceptable for the high-stakes exam. The 90 minutes long test 
contained the typical topics of ZP10 – functions, descriptive statistics and percentage calculation – 
which appear in the exam every year. These tasks were also chosen since the study of Prediger et al. 
(2015) revealed many language obstacles in tasks about these topics. These observations are 
supported by results of Martiniello (2008) who identified data analysis, statistics and probability as 
topics that were difficult for English learners with Spanish as native language in the US.  



 

The test was presented in three versions (A, B and C) with six identical anchor tasks (21 items) and 
six tasks with linguistic variation (13 items). The tasks with variation always existed in three 
different versions; the context and mathematical content remained unchanged at all times. In the 
initial version, we avoided difficult linguistic structures in the tasks, especially those structures that 
were varied in the other versions. Besides this initial version, the tasks were varied using two of the 
four linguistic features context vocabulary, verbs followed by prepositions or separable verbs, 
nominalization and density of the text, and reference structure, which were chosen out of possible 
linguistic obstacles in word problems reported in Prediger et al.’s study (2015). 

On the word level, we chose the criterion “context vocabulary”, which often causes problems but – 
in contrast to technical terms – can be changed without having influence on the mathematical 
content. Concerning the syntactical level, interviews in the study of Prediger et al. (2015) confirmed 
the linguistic supposition that it is difficult for students to connect information given in sentences 
with separated separable verbs or between a verb and its preposition. Since Uesseler, Runge and 
Redder (2013) also state that separable verbs influence the understanding negatively, we selected 
these two features as a variation-category. As mathematical texts are often very dense and their 
length and density play an important role in student’s understanding, the feature “density of the 
text” was chosen. This goes hand in hand with the feature “nominalization”, because a dense text 
implies (in German) the use of many nominalizations which have a negative effect on the 
understanding (Uesseler et al., 2013). Therefore, these two features form one variation-category on 
the text-level. As mathematical texts try to avoid repetitions, the reference structure is often unclear. 
This led to consideration of “reference structure” as another category on the text-level. An example 
of a varied task will be presented later.  

The groups of students sitting for the tests A, B or C were systematically formed based on the 
results from the C-Test and the CFT-20R. The variations were dispersed equally to the three 
versions of the test. There were no statistically significant differences between the groups 
concerning language proficiency, cognitive capabilities and mathematics achievement.  

For data analysis, different statistical analysis procedures were applied. We split the group in half 
depending on students’ results on the C-Test into groups of students with lower (C0) and higher 
(C1) language proficiency. The mathematical items were scaled using a Rasch model. An analysis 
of variance (univariate ANOVA) and a regression analysis were used to identify the background 
factors with the highest impact on mathematics achievement and to determine the explained 
variance. The shift in difficulty from the initial version of a word problem to its linguistic variation 
was determined by an analysis of the change of the WLE for these items on the Rasch scale.  

Design for the qualitative part of the study 

The purpose of this part of the study was to gain a deeper understanding of the quantitative results 
through a qualitative approach. For this reason, four tasks were presented to N=32 students with 
different levels of language proficiency from different comprehensive schools. The students were 
required to solve the designed tasks independently using the think-aloud method. Once the students 
solved the task, there was a discussion about the task between interviewer and student. All 
processes and discussions were videotaped, transcribed, and analyzed interpretatively with respect 
to whether the linguistic variations created difficulties for the students. 



 

Examples of linguistic variation of tasks 
An example of the linguistic variation of a particular task is represented in the translated initial 
version (1) and its variation “nominalization/dense structure” (2) of the task “Bathtub”.  

(1) A bathtub has one cold water tap and one hot water tap. The bathtub can be filled with 135 
liters of water. If both water taps are open, it takes 9 minutes until the bathtub is filled 
completely. If only the cold water tap is open, it takes 7.5 minutes more than with both water 
taps open. How much water runs out of the opened cold water tap per minute? Note your 
calculations. 

(2) A bathtub with one cold and one hot water tap can be filled with 135 liters of water. 
Opening both water taps, the filling of the bathtub takes 9 minutes; exclusively opening the 
cold water tap, it takes 7.5 minutes more than by opening both water taps. Which amount of 
water runs out of the opened cold water tap per minute? Note your calculations. 

The bolded words or phrases show the variations in the task for this article. The translation of the 
tasks can only give an idea of the linguistic aspects that have been changed during variation, 
because most characteristics are inherent to the German language and sentence structure. For 
example, if you try to nominalize “the cold water tap is open [der Kaltwasserhahn ist geöffnet]” into 
“opening the cold water tap [Öffnung des Kaltwasserhahns]”, in German, it implies the genitive 
case of “the cold water tap” tagged by an additive “s” at the end of the word [“Kaltwasserhahns”]. 

The variation of the items was not possible in every case, because of the structure of the German 
language. Sometimes it was impossible to use alternative formulations using the defined categories 
and employing them at positions in the text that are significant for the mathematical solution. The 
variations were limited due to the common use of language, the context and the linguistic 
realization of mathematical concepts. In addition, we had to accept the fact that variation of isolated 
linguistic aspects is almost impossible. In the German version of “If only the cold water tap is open 
[Wenn nur der Kaltwasserhahn geöffnet ist]”, we find the participle II of the verb “open [geöffnet]” 
(in the English sentence it has the function as an adjective) because of the use of passive voice “is 
open [ist geöffnet]”. This has to be nominalized. In the nominalized version, it is linguistically not 
possible to continue to use the familiar adverb “only [nur]” but necessary to use the less frequently 
used adjective “exclusively [ausschließlich]”, which imposes another possible lexical obstacle. 

Selected results 
Impact of background factors 

To check if linguistic features can explain the achievement gap due to different levels of language 
proficiency, we first analyzed the impact of background factors in our study. The results provide 
additional support for evidence of the impact of language proficiency on mathematics achievement. 
Students with higher intelligence or higher language proficiency, without immigrant status, and 
students who only speak German at home had statistically significant better results in the 
mathematics test (see Table 1, the number of the test persons varies because not all students gave 
the questioned information). 

Regression analysis shows that language proficiency and cognitive capabilities as isolated 
background factors have the highest impact on mathematics achievement. They both explain about 



 

15 % of the variance. The other background factors explain much less: Univariate variance analysis 
showed only low explanation potential of immigrant status (12 %), languages spoken at home (8 %) 
and socio-economic status (1 %). As language proficiency has such a high impact in our study, we 
investigated if it is possible to explain the achievement gap by the introduced linguistic obstacles. 

Background factor Specification of 
groups 

Distribution 
of groups 

Mean score 
(WLE), m(SD) 

Significant 
differences  

Students  10 schools n=640 -1.37 (1,16) - 

Version of 
mathematics test 

version A 
version B 
version C 

219 (34.2 %) 
214 (33.4 %) 
207 (32.3 %) 

-1.28 (1,16) 
-1.49 (1,14) 
-1.34 (1,16) 

- 

Socioeconomic status 
(SES) 
(n=626) 

low SES 
medium SES 
high SES 

187 (29.9%) 
174 (27.8%) 
265 (42.3%) 

-1.52 (1,12) 
-1.34 (1,17) 
-1.24 (1,16) 

high&low: 0.046 

Cognitive capabilities 
(CFT-20R) (n=577) 

lower scores 
higher scores 

289 (50.1%) 
288 (49.9%) 

-1.68 (1,13) 
-1.00 (1,09) < 0.001 

Immigrant status 
(n=568) 
  
  

1st generation 
2nd generation 
3rd generation 
no 

42 (7.4%) 
287(50.5%) 
56 (9.9%) 
183 (32.2%) 

-1.64 (1,12) 
-1.72 (1,07) 
-1.17 (1,09) 
-0.83 (1,09) 

2nd& 3rd:  0.007 
no & 1st: <0.001   
no & 2nd: <0.001  

Languages spoken at 
home (n=616) 

1: German + x 
2: no German 
3: only German 

269 (43.7%) 
106 (17.2%) 
241 (39.1%) 

-1.58 (1,17) 
-1.75 (0,95) 
-0.94 (1,08) 

2 & 3: < 0.001 
3 & 1: < 0.001 

Language proficiency 
(C-test, n=578) 
  

low proficient  
high proficient 
all C-tests 

289 (50.0 %) 
289 (50.0 %) 
578 (100 %) 

-1.76 (1,08) 
-0.94 (1,11) 
-1.35 (1,17) 

< 0.001 
 

Table 1: Distribution and differences among groups 

Shifts in difficulty due to linguistic variation 

All results for the different variations have been scaled in a Rasch model. Shifts in difficulty due to 
the linguistic variation were identified especially in Item 6 “Bathtub”. In the initial version, 69 % of 
the C1-students and 48 % of the C0-students solved the item correctly. This shows that the initial 
version was easy for C1-students and common for C0-students. In the nominalized version with 
dense structure, half of the C1-students solved the item correctly compared to only 37 % of the C0-
students. The varied version was common for C1-students and difficult for C0-students.  

Figure 1 depicts the shift in difficulty for the variations in comparison to the initial version. In 
comparison to the initial version, the denser text containing nominalizations became 0.6 WLE more 
difficult on the Rasch scale, comparable to three out of 34 correctly solved items in our study. Other 
items of this variation had no significant shift in difficulty (see Figure 1, left side). Students who 
only did tasks formulated like Item 2b would solve one item less correctly (0.2 WLE = 1 item); 
students who only had tasks formulated like Item 2a or 8a would solve the test basically the same. 
One explanation for the increasing difficulty of “Bathtub” is that this item is linguistically more 
difficult than others with the same linguistic variation, as the Flesch-Reading-Ease index shows. 

The variation “reference structure” equally evoked a shift of 0.6 WLE for Item 6 “Bathtub”. Other 
items with variation showed inconsistent shifts. Some items became more difficult, other items less 



 

difficult. A possible explanation is the higher relevance of mathematical content in contrast to 
language in particular items. For example, language has less effect in Item 8a, “What is the 
median?”. In this case it is more important that the concept of median has been taught in 
mathematics classroom. Similar irregular shifts are visible for the other variations. 

 
Figure 1: Shift in difficulty compared to initial version (in WLE) 

In summary, linguistic variations make word problems more difficult, when applied often and when 
the general difficulty for understanding the word problem (cf. Flesch-index) increases greatly 
because of the application of these variations. In these cases, we talk about “extreme variations”. 
Slight variations with only few modifications, which do not increase the difficulty for 
understanding, do not have statistically significant shifts. As the effect fluctuates substantially 
between different items, we can presume that the topic of a task is very important. 

Linguistic variations as source for mathematical difficulty 

The fact that the difficulty does not increase significantly for all items (with linguistic variation) 
does not imply that linguistic variation does not evoke obstacles for students, as our qualitative 
analysis highlights. Furthermore, we have observed that linguistic aspects do not create difficulty on 
their own, but in combination with other characteristics of the task as illustrated below. 

In addition to the quantitative data, 16 tenth grade students solved the item “Bathtub” in the version 
“nominalization/dense structure” during the interviews. In particular, students with lower language 
proficiency had difficulties in understanding the word “exclusively [ausschließlich]”, which had to 
be used due to the nominalization. While reading the text aloud, several students were puzzled by 
this word and explained they would never use it. This problem has already caused wrong solutions 
in the tests. One student wrote: “I do not understand the question. Does ‘exclusively opening the 
cold water tap’ mean that only the cold water tap is used?” He knew the correct meaning of 
“exclusively” but he was not sure about it. Probably, this was the reason he did not solve this item. 
The nominalization “Opening [Öffnung]” of “to open [öffnen]” and the following genitive case of 
“the cold water tap [der Kaltwasserhahn]” also caused understanding problems, as the genitive case 
of “cold water tap [Kaltwasserhahn]” finishes with an ‘s’ “[Kaltwasserhahns]” which in German is 
sometimes also a cue for plural of a word. In this case, the plural would be [Kaltwasserhähne]. 



 

Student: I was confused by the word “Kaltwasserhahns”. Does it mean two water taps or 
only one?  

Apart from the linguistic variation, we identified other difficulties in our interviews. In particular, 
students with lower language proficiency had problems in understanding the relation “more than” 
and made wrong calculations. One student thinking aloud said (after three minutes of task solving):  

Student: Ah, now I made a wrong calculation […] I thought that … the filling takes 7.5 
minutes, but it takes 7.5 minutes MORE. I have to do a new calculation. 

In the final discussion, many students could identify the relevant information “more than” and 
“exclusively opening the cold water tap” on their own or after a question from the interviewer. This 
shows that, even if there are difficulties in understanding the text, most of the students could solve 
the task if they had enough time and could verbalize their thoughts aloud. In contrast, in the tests, 
students often stopped solving a task because of uncertainty concerning their understanding. 

Conclusion and consequences 
Our outcome concerning Q1 is that linguistic variations had significant impact when the task varied 
in an extreme way. The fact that in German isolated variations have no overall significant impact 
evokes the hypothesis that they create difficulty in combination with each other or with other 
characteristics of the tasks. This hypothesis is supported by the qualitative results showing that not 
only the linguistic feature itself, such as nominalizations, but also the linguistic structures evoked by 
this feature, such as genitive cases, create difficulty. However, this has to be analyzed further. 

In the context of Q2, in German, nominalization/dense structure, academic words such as 
“exclusively [ausschließlich]” or genitive cases are obstacles for several students, especially those 
of lower language proficiency. This was, for example, prominent in the results of lower language 
proficient students for the item “Bathtub”. Students struggled in understanding these structures, 
which sometimes lead to not solving the task. When students had a lot of time and could speak out 
their thoughts, they reflected on these difficulties.  

Consequences of this study for test construction are that high stakes tests should try to avoid 
extremely difficult linguistic structures, e.g. due to the frequent use of nominalizations, to reduce 
the achievement gap. Our study also showed that linguistic difficulties cannot always be avoided 
because there are constraints in the language. A consequence for mathematics classrooms that has 
emerged from students’ ability to overcome linguistic difficulties by talking about them in our 
interviews, would be to explicitly address language issues and not to avoid linguistic difficulties. 

The fact that our results pertaining to the effects of linguistic variations cannot explain the 
achievement gap, entails further and deeper research on the interplay between language proficiency 
and mathematics achievement in order to determine the nature of this correlation. A hypothesis that 
came up in our study and will be investigated is that the selection of strategies by students and their 
processes of solving tasks differ according to their language proficiency. 
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Multilingual learners’ opportunities for productive engagement in a 
bilingual German-Turkish teaching intervention on fractions 
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A teaching intervention should provide learners with opportunities for productive engagement with 
mathematics. Teaching learning situations are organized in patterned ways along culturally shared 
expectations of how these situations unfold. However, in multilingual classrooms, expectations of 
language learning can compete with mathematical expectations. Drawing on positioning theory, I 
will reconstruct these expectations – storylines – in a bilingual Turkish-German teaching 
intervention, specifically for the case of two learners, Akasya and Ilknur. I will show how the teacher 
establishes two expectations, one of “deciding who has downloaded more gigabyte” and one of 
“giving a Turkish explanation”. After some effort on forming an explanation, Ilknur’s and Akasya’s 
shift their activities towards fulfilling the second expectation, which results in them being less agentic 
for the mathematics at hand. Instead, Ilknur and Akasya focus on the form of their explanation.  

Keywords: Mathematics education, multilingualism, positioning theory, agency.  

Introduction 
As learners construct mathematical knowledge by participating in social practices, they need to 
engage in interpretations and reflections on the meaning of mathematics, rather than being mere 
“receivers of predetermined knowledge” (Boaler & Greeno, 2000, p. 179). Productive engagement is 
an engagement in the classroom where learners are making each other understandable and where the 
students are responsible for the mathematics at hand, in ways that allow the learners to actively 
develop their interpretations of knowledge involved in a teaching-learning environment (Turner et 
al., 2013).  

Multilingual mathematics learners are especially at risk to not engage productively. For example, it 
has been documented that many multilinguals do not actively engage in classroom discussions 
because of the demand to speak in the language of instruction (Planas & Setati, 2009) or that a focus 
on correctness in the language of instruction excludes multilingual learners and interrupts the 
engagement with mathematics (Planas & Civil, 2015, p. 47). Such mechanisms of inclusion and 
exclusion from productive engagement can be understood with positioning theory, where individuals 
in a conversation dynamically take up specific roles – positionings – and act according to the duties 
and rights that come with these positionings. To make sense of their positionings and their rights and 
duties, learners relate to storylines, where storylines stem from culturally shared patterned ways in 
which conversations are organized (Wagner & Herbel-Eisenmann, 2009). For example, in a storyline 
where the teacher asks questions and evaluates students’ answers, the teacher is positioned to evaluate 
these answers. The learners are positioned with the duty to give answers, but also with the right to 
not contribute for a certain time. When the learners perceive this storyline as “I may be negatively 
evaluated”, they may refuse to contribute, and might be less productively engaged with mathematics. 

This study addresses two questions: How does the use of two languages in a bilingual teaching 
intervention influence the learners’ positionings, and how does this affect their productive 
engagement with mathematics? Accordingly, the paper presents the here employed theoretical 



framework of positioning theory; analyzes data from a bilingual Turkish-German teaching 
intervention on fractions, specifically the case of Ilknur and Akasya; and shows that by switching the 
understanding of the storyline of the intervention “giving a Turkish explanation” towards “giving an 
answer with the form of an explanation”, the learners are less agentic for the mathematics at hand. 

Positioning theory for investigating productive engagement in multilingual 
settings 
In a teaching-learning situation, teacher and students fluidly take up certain roles, similar to the roles 
actors take up in a stage play, where these fluid roles are called positionings. “Positioning […] is the 
discursive process whereby selves are located in conversations as observably and subjectively 
coherent participants in jointly produced storylines” (Davies & Harré, 1990, p. 48) The individual in 
a conversation will take up, resist or reframe positionings as it tries to be subjectively coherent in his 
or her actions. At the same time, the actions of the individuals become intelligible to the others as 
they assume that the individual’s actions are coherent with his or her position (Langenhove & Harré, 
1994, p. 362). The theoretical construct of positioning resonates with classical interactionist 
perspectives on classroom interaction in its assumption that learning, identities and even competence 
are a result of social interactions (e.g. Cobb & Bauersfeld, 1995). Positioning theory has been used 
in mathematics education to investigate classrooms in regard to issues of opportunities to participate. 

Storylines are jointly produced, they “stem from culturally shared repertoires” (nurse/patient; 
coach/athlete) (Wagner & Herbel-Eisenmann, 2009) and the culturally shared patterned ways in 
which conversations are organized. Different storylines provide learners with different means for 
productive engagement (Herbel-Eisenmann & Wagner, 2015). The use of more than one language 
reinforces these issues, because it brings more diverse storylines to the classroom – for example of 
the political value of languages or storylines of language learning – that might affect mathematics 
learning. Studies on multilingual mathematics learning from the perspective of positioning theory 
suggest which storylines might lead to productive engagement, and which not: in his research with 
Latino learners in the US, Domínguez (2011, p. 325) shows that students’ home language “figures as 
a language to discuss, argue, take risks, and learn with others, whereas English tends to be reserved 
for enacting more traditional schoolwork”. Storylines that allow learners to position themselves as 
mathematically competent while relating to everyday experiences tend to lead multilinguals to 
productive engagement (Moschkovich, 2002). Norén (2015) gives an example where multilingual 
students are productively engaged because the teacher establishes a storyline that allows for talking 
in non-formal ways and making use of out-of-school-experiences. On the other hand, multilingual 
students may position themselves and others based on storylines from previous classrooms where 
they have been positioned as less proficient language learners (cf. Civil & Planas, 2004).   

As storylines are a product of the individuals’ interpretations in a conversation, more than one 
storyline can coexist in a given situation. These different storylines mirror themselves in the different 
positionings that are on the one hand assigned, and on the other taken up by the individuals: while in 
a teaching learning situation the storyline of teacher/learner is jointly produced, the individuals in the 
conversation might have different notions of what this storyline is and how they are positioned in it. 
In this paper, I will analyze the storylines that are jointly produced and the notions the students have 
of this storyline. I investigate the question: How does a jointly produced storyline in a multilingual 
teaching intervention influence the students’ productive engagement, and hence, their agency?  



A bilingual teaching intervention on fractions 
The here presented case study is part of the research project MuM-Multi which investigates how to 
foster multilingual learners in the mathematics classroom. A multilingual Turkish-German teaching 
intervention on fractions was conceived. The teaching intervention builds on a previous project 
(Prediger & Wessel, 2013) in that it combines a conceptual learning trajectory with a language 
learning trajectory. Furthermore, it builds on the relating registers approach (Prediger, Clarkson & 
Bose, 2016). In this approach, the mathematical-technical-register, the academic-school-register and 
the everyday register are continually interlinked. For example, the multilingual students are asked to 
reflect on the Turkish way to express fractions as ‘5 de 3’ (‘5 therein 3’) (Turkish mathematical-
technical register) for which they are asked to employ the graphical representation of a fraction bar 
and the activated everyday contexts (sharing a bar of Baklava-cake). The relating registers approach 
serves as a heuristic tool for designing activities and learning opportunities in which the multilingual 
learners can access their multilingual resources for developing conceptual understanding of fractions.  

Each session of the teaching intervention starts with an everyday, out of school contexts that connect 
in culturally sensitive ways to the multilingual experiences of the learners. For example, the first task 
starts with a short story about a traditional Turkish figure, the “Nasrettin Hoca” and children sharing 
a Baklava with him in an unfair way. The following tasks in a teaching intervention are then anchored 
in the culturally sensitive out-of-school context, so that the students can relate to their everyday 
experiences while working on the mathematical tasks. During all sessions, the fraction bar is 
implemented as a central graphical representation. All worksheets are given in both Turkish and 
German, assigned by the teacher.  

41 multilingual students in grade 7 with low mathematics achievement and heterogeneous German 
and Turkish language proficiency participated in eleven small groups in the bilingual teaching 
intervention lasting five sessions of 90 minutes each. The intervention was conducted by four 
specifically trained bilingual Turkish-German teachers who were sensitized for specific affordances 
of teaching in multilingual settings, for example strategies of revoicing. However, the teachers were 
not aware of the specifics of positioning students in conversations.   

The eleven groups of the bilingual intervention were videotaped over the course of the intervention, 
and specific groups and sessions were selected for transcription based on considerations of key points 
in the learning trajectory that occur after the students got familiar with speaking Turkish (Sessions 2 
- 4). The video material was transcribed and, where necessary, translated into German. The data is 
analyzed qualitatively in a turn-by turn analysis of the learners reflective positionings and the teachers 
interactive positioning, that is, the positioning of learners themselves within a conversation 
(reflective) and the positioning of the learners by the teacher in the conversation (interactive) that 
affects how the learners position themselves (reflective). 

I illustrate the case of Akasya and Ilknur, as examples of students who successfully engage with 
mathematics in Turkish language in the last intervention session. I employ a positioning analysis that 
focuses on the students’ reflective positioning in reaction to the teachers’ interactive positioning in 
the unfolding mathematical conversation. By investigating the positionings the storylines of learners 
and teacher can be reconstructed. Productive engagement is analyzed with the construct of agency, 
according to which students are coded as productively engaged in moments when they are  



• influencing the direction of the discourse  

• asking for clarifications or clarifying  

• taking charge of ideas  

• establishing competence  

This analysis allows investigating in which storyline the students are highly productively engaged, 
and when less. The analyzed transcript belongs to the first task of the second teaching intervention 
(Figure 1), in which ordering fractions for different referent wholes is approached by the everyday 
context of downloading movies.  

 

Downloading movies 

Selin and Bleda are downloading two 
movies in the internet, with different 
sizes.  

– copying monster.mp4 to “movies” – 

– copying horsedream.mp4 to “movies” – 

a) Where has more GB (gigabyte) been 
downloaded  

b) Why is Selin's fraction bar longer even 
though she has downloaded fewer GB?  

Figure 1: First task of Session 2 of teaching intervention 

Analysis: Storyline of Turkish speaking and less productive engagement 
Two girls, Akasya and Ilknur, work on the first task in Session 2 of the intervention. Briefly, I will 
refer to another group of two students who work separately at another table on the same task. I will 
show here how the teacher changes and refines the storyline that guides his actions over the course 
of the task. As storylines are jointly produced, the students have to actualize their storylines in line 
with how they perceive this changed storyline. While Ilknur adapts her notion of the storyline to the 
newly established storyline of the teacher, Akasya seems to subsume this change under her notion of 
the storyline as “the teacher guides the discourse and will give the resolution of the task in the end”.  

Episode 1: The teacher changes the storyline 

The teacher introduces the subtask b) to the students, and with it, also changes the previous storyline 
of “deciding who has downloaded more”. The students have signaled, by hand signal, that they have 
a solution to subtask a). The teacher now establishes a storyline which is not centered on finding a 
solution anymore, but one where explanations in Turkish are valued.   

In the following transcript, the teacher comes to Ilknur and Akasya, after he talked to the other two 
students at another desk. His utterance marks the first change of the storyline:  

75 Teacher    [coming back to Akasya] Ben size  I have you, ehm, something wrong, no,  
  ehm yanlış, hayır hayır yanlış var  no, you don’t have to be afraid if it is  
  mı diye hiç korkmana gerek yok.  wrong. You just have to write down  



  Sen sadece düşünceni yazacaksın.  your idea.  
  Tamam? Yani siz Bleda kazandı  Okay? So, when you say that Bleda  
  diyorsanız Bleda kazandı yaz ve  has won, then write down that Bleda 
  neden kazandığını düşündüyünü  has won and justify why he has won.  
  yaz. Tamam?  Okay? 

The teacher metadiscursively addresses the rules of the conversation. In this way, he positions 
Akasya, and implicitly Ilknur, as competent regardless of the correctness of their solution, as long as 
she writes down her ideas, and justifies “who has won“. The students are explicitly positioned as 
explainer of their mathematical thinking in line with a storyline of “formulating a written explanation 
of your decision”. This is in contrast to the previous storyline of the teacher, where the students were 
asked to cooperatively decide whether Bleda or Selin has downloaded more.   

In the following utterance, sometime after the previous transcript but still in the beginning of the work 
on subtask b), the teacher gives a reason why the students need to explain their thinking:   

83 Teacher Aber das ist gut, weil dann lernt ihr  But that is good, because then you  
  auch. Dann könnt ihr euch auch  also learn. Then you also could think 
  überlegen, wie ihr das auf Türkisch  about how to write that in Turkish. 
  schreibt. Das ist eine gute Sache.  That is a good thing.  

The teacher asks the students to think about how to “write [their explanation] in Turkish”. Again, he 
makes the rules of the mathematical discourse explicit by valuing the Turkish language and adding 
“That [Turkish] is a good thing”, which he repeats in the next turns. Valuing the Turkish language is 
a recurring theme in this storyline (turns 69, 83, 85) and is tightly interlinked with working on subtask 
b). In summary, by explicitly positioning the students in these ways, the teacher establishes a storyline 
where students are required to explain their thinking in (written) Turkish, perhaps best described as 
“Solving subtask b means giving a Turkish explanation of your solution”.  This is a refinement of the 
new storyline. 

Episode 2: Ilknur takes over the teacher’s storyline 

Ilknur seems to adopt the storyline established by the teacher. She makes several attempts to explain 
why, from her standpoint, Bleda has downloaded more. Her choice of language, her pauses and by 
“ehm”, suggest that she specifically tries to explain her thinking in Turkish:  

86 Ilknur Çünkü o .. on gigabyte [...] Because he ... ten gigabyte 
88 Ilknur   ehm yaptı  um, he did  

Ilknur attempts an explanation in Turkish, positioning herself in a way that acknowledges the position 
offered by the teacher (see turn 75). At first, she seems to be uncomfortable with explicitly using only 
Turkish – previously she only spoke Turkish in a mixed German-Turkish mode with focus on German 
– which is indicated by the hesitant way in which she forms her explanation. All her following task-
related utterances after this turn are in Turkish (105, 108, 110), which suggests that she positions 
herself as Turkish speaker and that the storyline “giving a Turkish explanation” guides her actions.  

Episode 3: Students agency and potential for productive engagement 

In engaging in Turkish, the students Akasya and Ilknur do not appear as agents for the content of their 
explanation. Ilknur explicitly positions herself as less competent with the Turkish language: When 
discussing which language their worksheets should have, Ilknur explicitly wants German worksheets, 
and she positions herself as being more proficient in French than in Turkish (94). This is reinforced 
by Ilknur and Akasya’s expressing the amount of effort it takes them to form a Turkish explanation 



(see turns 86-88 and linguistic markers “Üfff“ (Boah), “Heh?“ in turns 106, 110). Above that, Ilknur 
and Akasya’s struggles also make them less competent in the eyes of the teacher. On the one hand, 
the teacher addresses those students who have already generated a Turkish explanation and positions 
them as competent by praising their solutions. Ilknur and Akasya, on the other hand, are addressed 
with “He şimdi kızlar (So, now, gals)” (turn 107) as a result of them not yet having generated a written 
explanation, this way positioning the students as being behind in the group. 

In the following episode, Ilknur and Akasya seem to explicitly give up on their position as Turkish 
mathematics learners, and take up a position where they are responsible for the form of their solution. 
It seems that they give up their position because of mathematical difficulties, not language difficulties. 

113 Akasya Aber zehn ist doch mehr.  But ten is still more. 
114 Ilknur Ist so. Ich weiß überhaupt  Its like that. I don’t know at all, wah  
  nicht, baah  
115 Akasya Ich schreib einfach was. I will just write something. 

When Ilknur and Akasya do not make progress in generating a Turkish explanation, they explicitly 
position themselves as learners who struggle with their task. This goes hand in hand with Ilknur 
switching back to German (turn 114). Akasya, in line with her storyline where the teacher guides the 
discourse, assumes that the teacher is likely to correct them in the end, so that only the form of their 
explanation matters, but not the content. It might be that in accordance with this storyline, Akasya 
and Ilknur will take up positionings where they exercise less agency for the mathematics at hand.  

In summary, over the course of working on subtask b), the students have less capacities to engage 
with the mathematical content of the task within the storyline “giving a Turkish explanation”. They 
position themselves as insecure and less Turkish proficient, while they receive no help from the 
teacher or their peers, but are instead positioned as being behind the group. As Ilknur and Akasya 
have not yet written down their explanations, and as the teacher was not present, their efforts are not 
valued. In this sense, turns 114 and 115 can be read as a way to reclaim their agency: Within the 
teacher’s storyline of generating a Turkish explanation, the students change their activities towards 
writing “something” that conforms with the form of an explanation, but give up improving the content 
of the explanation. This is consistent with Akasya’s take on the storyline - in which the teacher is the 
guide of the conversation and responsible for the content of the explanations - seems to be taken up. 
The potential for productive engagement, that is, the potential for becoming responsible for the 
mathematical content, diminished in subtask b) as Ilknur and Akasya did not engage with finding a 
mathematical explanation in the task, but instead reclaim their agency with producing a Turkish 
sentence that complies with the form of an explanation. The storyline of the teacher allows for this, 
as the teacher gave a loophole with saying that “you don’t have to be afraid if it is wrong” (turn 75). 

Discussion 
In order to be coherent with the teacher’s expectations of giving an explanation in Turkish, the 
students in the episodes try to form a Turkish explanation. This leads the students to focus solely on 
forming a correct Turkish sentence with adequate formal words, while the mathematics behind the 
explanation is not in focus anymore. As the students are not successful in forming a Turkish 
explanation, the students might take up a position of being less agentic for the content, resulting in 
less productive engagement with mathematics. It seems that the teacher, by asking for a Turkish 
explanation and by valuing the Turkish language, and the students, by taking over these positionings, 



jointly produce two foci: one on the mathematical content in Turkish and one on the form of a Turkish 
explanation. In shifting to the second focus, the students lose their focus on the content of the 
explanation – which interestingly goes hand in hand with a code-switch back to German. It may be 
that the two foci are a product of valuing Turkish without giving the students the support they seem 
to need for talking about the content of the task.  

Positioning theory and storyline analysis here proved to be a useful tool to reconstruct the 
participation of multilinguals and the opportunities for productive engagement and mathematics 
learning, especially in regard to the multilingual teaching-learning situation. However, it is an open 
question whether the students multilinguality is a resource for the students in regard of what the 
storylines tell us in this research. Data suggest that difficulties with mathematics led Akasya and 
Ilknur to move the focus of their activity away from the content of the explanation. Previously, 
however, Ilknur struggles with the Turkish language. It is an open question whether Turkish might 
have added to Ilknur’s mathematical difficulties in form of increasing cognitive-load, or if Ilknur is 
in a natural translanguaging mode where her choice of language is not relevant and where her 
difficulties would have remained if she had used German instead of Turkish.  
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In the paper we draw on the authority structures that were observed in preservice teachers’ talk while 
working with collaborating pairs of primary school pupils. We have found some interesting structures 
that emerged, especially when the preservice teachers had to consider the goals of their working 
sessions with the pupils, as conceived by them. Particularly, the preservice teachers switched to a 
more authoritative stance, usually when there was time pressure. 
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Introduction 
In any learning environment when there are more than one participants present, various interactions 
take place. Among these, the verbal ones have been the focus of numerous studies in the last decades. 
Most – if not all – of these studies originate from linguistics; in one the first papers that explicitly 
refer to the relationship between language and mathematics we read that “the processes of learning 
and communication are closely inter-related and both present the investigator with problems of 
bewildering complexity.” (Austin & Howson, 1979, p. 162). Today, almost 40 years since that 
statement was made, researchers in mathematics education are still struggling to interpret the 
complexities of learning and communication. However, the main interests of research remain on how 
students learn (at the same time, what constitutes learning may be by itself the topic of investigation) 
and what (can) teachers do to enhance their students’ mathematical thinking. In our view, 
mathematical thinking relates to effectively participating in the mathematical classroom community 
(Yackel & Cobb, 1996). This in turn requires a particular distribution of authority in the classroom: 
the teacher is expected to “step back” from the official role and give room to the students to make 
conjectures, pose problems and generally think like mathematicians (Mason, Burton & Stacey, 2010).  

Based on the above assumptions, we designed our study with preservice mathematics teachers. We 
engaged them in a research-type activity: they were asked to find a mathematical problem and use it 
as a tool to enhance pupils’ creative thinking. Our main interest was in the ways these preservice 
teachers will manage the interactions and particularly their authority in order to achieve that aim. Our 
theoretical framework is presented in the next section, followed by our methodology. 

Theoretical framework 
Language use in the mathematics classroom – or, more generally in mathematics learning contexts – 
can convey various aspects of the interactions or the mental processes that occur. There are at least 
two ways that we can view and analyse language use: at an object level, we may focus on the 
mathematical register and its use among the students and the teacher. From a teacher education point 
of view, this can be also related to mathematical knowledge (Rowland & Ruthven, 2011). Then, if 
we move to a meta-level, we realise that “sense-making in school mathematics is not solely a matter 
of private interpretation within some absolute, secure reality of ‘real’ objects (‘people’ and the like); 
it is also one of linguistic enculturation, of initiation to discursive practice”. (Walkerdine, 1988, p. 



128, as cited in Rowland, 2000, p. 194). Mathematics learning is thus seen as a social process, 
regulated by rules and norms (Yackel & Cobb, 1996), in which the participants are continuously 
negotiating meaning by exercising their agency (Cobb et al., 2009). This requires a distribution of 
authority by the teacher. This is because verbal interactions between teachers and students are usually 
characterised by the teacher’s authoritative stance: the teacher represents the mathematicians’ 
community, thus s/he is an authority because of his/her content knowledge; at the same time, s/he is 
in authority, because of position (Wagner & Herbel-Eisenmann, 2014). Thus, depending on the 
didactical approach, the students may only have to follow the teacher’s guidance, or they may be 
given space to actively participate in the learning process. For the purpose of the present paper we 
adopt the following definition for authority: 

Authority concerns the degree to which students are given opportunities to be involved in decision 
making about the interpretation of tasks, the reasonableness of solution methods, and the 
legitimacy of solutions. Authority is therefore about “who’s in charge” in terms of making 
mathematical contributions. (Cobb et al., 2009, p. 44) 

The analysis of authority can be done by the use of positioning theory (van Langenhove & Harré, 
1999) as implemented by Wagner & Herbel-Eisenmann (2014). According to this, there are some 
pervasive “lexical bundles” (i.e. speech patterns) in classroom talk, which are related to participants’ 
positioning and authority. The main categories of these are: personal authority, discourse as authority, 
discursive inevitability, and personal latitude. Personal authority, which is the most common in the 
classrooms, relates to teacher’s own authority; in other words, the students are expected to follow 
(the authority of) their teacher. A characteristic case of personal authority is when the teacher says, 
e.g., “I want you to solve this equation for me”. Discourse as authority relates to the rules which must 
be followed in the interaction, “which come from outside personal relationships, [and] may be 
attributed to the discipline of mathematics (or perhaps school mathematics).” (Wagner & Herbel-
Eisenmann, 2014, p. 873) An example of discourse as authority is the utterance “We need to follow 
the multiplication rules”. Discursive inevitability relates to events or actions that are verbally 
presented as inevitable; as Wagner & Herbel-Eisenmann (2014) note: “there is no explicit reference 
to obligation, but rather a sense of predetermination” (p. 873) An example may be the utterance: “We 
are going to calculate the average of the given values”. Finally, personal latitude relates to the students 
making their own decisions during the interactions, thus exercising their own authority; this is related 
to conceptual agency (Cobb et al., 2009) and mainly expressed by students’ questions. 

The above are usually accompanied by other verbal strategies; speakers sometimes feel the need to 
convey other messages related to power or solidarity. Politeness strategies (Brown & Levinson, 1987) 
have been the focus of a number of studies, either solely (Tatsis & Rowland, 2006) or juxtaposed 
with authority structures’ analysis (Tatsis & Wagner, 2016); these studies stress the fact that students 
and teachers continuously interpret each other’s actions, in order to perform their own actions. 

Summing up, although various verbal patterns coexist in the mathematics classroom, there are 
situations in which particular patterns are prevalent – these patterns characterise the interactions and 
influence its outcome to a significant degree. Thus, in our study we were expecting to locate and 
identify such patterns in preservice teachers’ discussions with pupils. Our methods of analysis are 
described in the next section. 



Context of the study and methodology 
Our research was based on the work of six preservice teachers, at the third year of their studies in 
mathematics. They already had three weeks of practice in a primary school, during which they had 
taught for 18 hours per week. They had attended – among other courses in pedagogy, psychology, 
psychology of mathematical thinking, and didactics of mathematics – a course led by the second 
author of the paper in problem solving, during which they solved problems and analysed pupils’ 
solutions and discussions; they had also watched and analysed a video with a study that involved a 
pair of young children (see Maj-Tatsis & Tatsis, 2015). 

For the purpose of the present study, the preservice teachers were asked to find an interesting 
mathematical problem (the only clue given was it should offer the possibility for mathematical 
explorations) and give it to a pair of pupils from the class that they had already taught. The ages of 
the pupils varied from 10 to 12 years. There were no restrictions on how to choose the pair; this 
resulted in pupils from varying backgrounds and of various mathematical attainment. Other 
instructions provided to the preservice teachers were related to the distribution of their authority: they 
were asked to let the pupils talk and, generally to try not to impose their own way of thinking. The 
sessions lasted from 20 to 45 minutes and were videotaped. Then, the preservice teachers were asked 
to transcribe their sessions and analyse them, according to whether they had achieved their aim (as 
perceived by them) and the possible reasons or events that were responsible for that – including their 
own decisions and actions. 

For the purpose of the present paper, we mainly focused on preservice teachers’ transcribed 
discussions with the pupils; this data was complemented by their interviews given to the second 
author of the paper, after the completion of the sessions. Our analysis was a meta-level analysis 
(Rowland, 2000), since we focused on utterances related to the participants’ interactions and we 
searched for manifestations of authority structures. Following Wagner & Herbel-Eisenmann’s (2014) 
framework we located utterances or exchanges that accounted for personal authority, discourse as 
authority, discursive inevitability, and personal latitude. Particularly, personal authority “was 
identified by the presence of first- and second person pronouns together” (Wagner & Herbel-
Eisenmann, 2014, p. 873). Discourse as authority was identified by the presence of modal verbs such 
as “need to” and “have to”, which explicitly express a strong obligation; it was also identified by the 
use of “they”, which refers “to a non-specified entity or group who have potentially made decisions 
about the mathematics students encounter” (Wagner & Herbel-Eisenmann, 2014, p. 873). Discursive 
inevitability was identified by utterances like ‘you are going to’ and ‘it is going to’. Finally, personal 
latitude was mainly identified by the presence of questions by the pupils. These initial categories were 
then utilised in order to establish the various authority structures; these were not predetermined, but 
established during the course of the analysis. 

Additionally, we looked into other verbal phenomena, such as the use of personal pronouns, such as 
“we” and “you” (Rowland, 2000). During our analysis, there were instances when we had to “make 
a step back” into an object level analysis, by looking into the mathematical concepts and processes 
that were discussed and established during the interactions; this was deemed necessary in order to 
fully comprehend the participants’ actions and to study their effect on the authority distribution. 



Results 
As we mentioned in the previous section, our analysis focused on the verbal interactions of the 
preservice teachers with the pupils. We will firstly present the analysis of the interactions between 
Tomek and two grade 6 boys (12 years old). We present this case because it demonstrates in a clear 
way the authority structure which was the most prevailing among the cases we analysed. 

The case of Tomek: Problem posing that leads to generalisation 

The situation given to the pupils by Tomek included the following text:  

John is creating “chairs” by using chips: 

The text was followed by these drawings (Figure 1): 

 
Figure 1. The “chairs” made by chips. 

Below we read the initial discussion1 between Tomek and Pupil 1:  

1 Tomek:  OK, the task is simple: firstly, read it. Have you ever seen something like 
this?  

2 Pupil 1:  Hmm, no, but I know how to do it. 
3 Tomek:  OK, so now think up of some questions. What questions would you ask? 

[small break] Usually, there are ready questions, and here… 
Then, the pupils started working on making questions for the given situation. In turns 4-35, Tomek 
talked only four times, and among these only the next was related to the problem posing process: 

10 Tomek:  Just write your ideas. 
In the next turn there is the following exchange: 

35 Pupil 2: Do we have to answer every question? [which they have posed] 
36 Tomek: Hmm, later we will choose two questions which we will answer. 
37 Pupil 1: For example, what would be the sum of the second and the third figures? 

What would be the sum of the chips of the second and the third figures? 
38 Pupil 2: [He writes Pupil 1’s question to their worksheet] 

                                                 
1 All the discussions were translated from Polish by the second author of the paper. 



39 Tomek: You can always draw more figures. 
40 Pupil 1 or 2: Aha. 
41 Tomek: You are not limited to three [figures] only. 

Then, until turn 59 the two pupils are working without any intervention by Tomek; they are making 
figures and discussing on the pattern. Then they draw the fourth chair shown in Figure 1. 

60 Tomek: Are you sure about that chair? 
61 Pupil 1: Why not? 
62 Tomek: Calculate once again. 

The preservice teacher started his research by asking pupils to put questions to the presented situation. 
By such way of guiding the process he gave them the possibility to engage in problem posing by 
formulating their own questions. Although his request is an expression of discursive inevitability, it 
resulted in the pupils being interested in the task and eventually the authority was passed to the pupils 
(personal latitude). Up to turn 59 Tomek did give space to the pupils, by letting them discuss. By his 
question in turn 60 he exercised personal authority, he used direct formulation “are you sure?”, and 
then asked them to correct it (62). We may claim that it was a good moment for an intervention, since 
the pupils had made a mistake and this would result in an improper rule and generalisation. However, 
that could be done in a less explicit way, e.g. “how did you know how many chips should be in the 
fourth chair?”. After the boys corrected the mistake, Tomek gave them again space to work, in other 
words, he let them exercise their personal latitude.  

In turn 70 Tomek suggested: “So maybe let’s do the second question [which was formulated by the 
pupils and written at their worksheet: “How many chips will the next chair have?”] because I think it 
is the most interesting”. In this utterance we can find two different authority structures: personal 
latitude (inclusive imperative) and personal authority (“I think”). By that intervention Tomek directed 
the work of pupils into generalisation. But still the question was formulated by the pupils so it can be 
considered as an appraisal of their work. 

The next intervention of Tomek took place when the pupils put a false hypothesis: 

96 Pupil 1: So we can conclude from it [the number of chips in chairs 1, 2, 3 and 4 were 
calculated by the pupils as follows: 5, 9, 14, 17 – note that 14 is incorrect] 
that every figure increases by 4. So, the next figure will have 21. And so on. 

97 Tomek: So, for example, how many will be in the tenth chair? 
98 Pupil 1: 21 times 2 equals 42. Because it is times two. Because it is the fifth chair 

[number 21]. 
99 Tomek: Are you sure? 
100 Pupil 1: Yes, for sure. Yes, right? [calculating] 21 times 2 is 42, the tenth chair is that. 

So, it’s like that. 
101 Tomek: [movement by his head that it is wrong] 
102 Pupil 1: No?! But how, if it is… 
103 Tomek: Calculate precisely. 

In the above transcript we see that Pupil 1 has formulated the assumption that the number of chips 
increases proportionally to chair’s number, thus the number of chips of the tenth chair is double the 
number of chips of the fifth chair. This incorrect assumption was formulated despite Pupil 1’s correct 



observation that “every figure increases by 4 [chips]”. Tomek decided to resolve that situation by 
offering a counter-example, which falls into the discursive inevitability category: 

111 Tomek: So, in that case, chairs 2 and 4 should… so, the fourth should be twice bigger 
than the second.  

112 Pupil 1: Oh! That’s right. Something went wrong (…) 
It is obvious that Tomek’s intervention helped the students realise their false assumption. Generally, 
the previous excerpts demonstrate the prevailing authority structure in Tomek’s verbal actions: he 
mainly let the pupils exercise their personal latitude and he exercised his personal authority and 
discursive inevitability structures only at crucial moments (according to him, but also according to 
our interpretation). In other words, if he did not intervene at these moments, the pupils could have 
spent much time in explorations that would not lead to the desired generalisation. However, this 
authority structure changed significantly in the 16th minute of the session, when the person who was 
handling the video camera (who was Tomek’s colleague) informed him that it is the 16th minute (turn 
171). Tomek switched his behaviour to a more authoritative structure, by asking closed questions, 
prompting the pupils and generally drastically increasing his interventions. This is eloquently 
demonstrated in Tomek’s own account of his actions: 

Generally, making such a research was very tiring. Despite my earlier preparations I did not expect 
that it will go in such a way. I expected that they [pupils] will calculate chair x just by adding. And 
they started multiplying from the beginning. I made many mistakes, it could be conducted in a 
better way. Thankfully, the children liked it. Close to the end, more or less at the 14th minute, I 
started prompting them too much because I was afraid that I will not manage in time. Because of 
that [prompts] I limited their mental actions. 

Tomek’s case demonstrated how we performed our analysis over the six chosen cases. The following 
authority structures were identified: 

a) Structure 1: Personal latitude accompanied with mainly personal authority and discursive 
inevitability; followed by a blunt switch to personal authority, eventually accompanied with 
discursive inevitability. 

b) Structure 2: Personal latitude accompanied with mainly personal authority and less frequently 
with discursive inevitability. 

c) Structure 3: Personal authority. 

The above structures are presented according to their frequency; the first one was found in four cases, 
while the other two appeared in one case each. 

Conclusions 
Our study was inspired by studies on the authority structures that can be identified in the mathematics 
classroom (Wagner & Herbel-Eisenmann, 2014); we were interested to see whether similar structures 
would appear in preservice teachers’ talk. Our results have shown that the preservice teachers of our 
study initially had been less authoritative, thus allowing the pupils to work collaboratively and 
exercise their personal latitude. However, during the interaction, and due to some events, they 
switched into more authoritative structures. One of the basic reasons for that switch was the time 
pressure together with the obligation to fulfil the request of their educators. The interesting thing was 
though that all of them were aware of this switch, as it was expressed during their interviews. 



Following Cobb et al. (2009), we agree that the distribution of authority is closely linked to the ways 
that students exercise their agency in the mathematics classroom, including, as our study has shown, 
collaborative work. Thus, the teacher should be aware of that fact, in other words, s/he needs to know 
when it is time to exercise authority, and when s/he can deviate from the lesson plan; this is related 
to the notion of contingency as presented in Rowland, Huckstep and Thwaites’s (2005) “knowledge 
quartet” framework. Particularly, the teachers’ responses to students’ ideas as well as their ability to 
deviate from their agenda affect the knowledge construction in a significant way. These 
considerations should be discussed and analysed in pre- and in-service teachers’ training courses, 
preferably by involving teachers in self-monitoring with regards to the distribution of authority during 
their interactions with the students. 

In our study, the preservice teachers’ awareness of the nature and the effect of their own verbal actions 
was a clear result of their training courses. However, this did not stop them from exercising their 
personal authority at particular moments. Thus, there is still lots of work that needs to be done in the 
field of authority distribution by mathematics teachers in order to establish an active learning 
community in their classrooms. 
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In order to enhance students’ proficiency in the academic language, building up more formal 
language on the basis of individual and everyday language is claimed as a fruitful approach. 
However, there is little empirical research on how students adopt and develop lexical means of the 
academic language. This paper addresses this field of research for the case of concept-specific lexical 
means for relative frequencies by presenting the applied design principles for learning opportunities 
as well as empirical insights into initiated concept- and language development processes. 
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Introduction 
Due to the cognitive and epistemic function of language, the academic language can be challenging 
for many students (Schleppegrell, 2004). These challenges are also relevant for mathematical 
learning, as shown in various empirical studies. Thus, studies in mathematics education concentrate 
on designing and researching learning environments that integrate mathematics and language learning 
(Prediger & Wessel, 2013; Prediger & Pöhler, 2015).  

For the field of understanding relative frequencies, the presented study relies on analyses of design 
experiments in small group settings focusing on one lesson within the larger intervention study of the 
DFG project MUM-MESUT (Grant PR 662/14-1 to S. Prediger). Detailed analyses of students’ 
conceptual development and language development against the background of intertwined conceptual 
and lexical-discursive learning opportunities serve to structure the relevant lexical means and give 
insights into how students become proficient in the academic language for relative frequency. 

Theoretical background: Design principles for learning opportunities 
Academic language proficiency has repeatedly been shown to influence achievement in mathematics 
and this general finding also applies for the mathematical topic of understanding fractions (Wessel, 
2015). As a consequence, some current design research studies focus on developing and investigating 
content- and language integrated instructional approaches for fostering students with low language 
proficiency (Prediger & Wessel, 2013). The following paragraphs deal with the major design 
principles that were implemented in the presented design research study.   

Design principle “Macro-scaffolding”. The general structure of intended lexical learning trajectories 
is well described in the principles of macro-scaffolding, namely from students’ everyday resources 
to academic and formal technical registers (Gibbons, 2002). However, its topic-specific realization is 
still an urgent need of research, as well as explorations of students’ individual learning pathways 
(Prediger & Wessel, 2013). Previous research shows the relevance of phrases and syntactical 
constructions needed to express the meanings of a mathematical concept in view, which is also 
relevant for understanding the concept of fraction (ibid). Wessel (2015, p. 327) shows the importance 
of understanding how macro-scaffolding and interactional moves on the micro level relate to each 
other for moving students beyond their zone of proximal development. Here, the principle of macro-



scaffolding by coordinating conceptual learning opportunities with well-structured language learning 
opportunities on the lexical level is applied. 

Design principle “Pushing students’ output by realizing discursive practices”. Given the 
sociocultural perspective on the learning of mathematics as participating in mathematical practices, 
mathematical activity is to a great extent mediated by language and interaction. In the context of 
mathematics learning of English language learners (ELLs) and with a perspective on extending 
academic language proficiency, Moschkovich (2013) stresses the relation between the lexical and 
discursive level of language: “The question is not whether students who are ELLs should learn 
vocabulary, but rather how instruction can best support students to learn vocabulary as they actively 
engage in mathematical reasoning about important mathematical topics” (Moschkovich, 2013, p. 46). 
This theoretical assumption leads to an extension of the design principle so that we use the principle 
of macro-scaffolding by coordinating conceptual learning opportunities with well-structured 
language learning opportunities on the lexical level in addition to rich demands and language 
initiation on the discursive level. 

Design principle “Relating registers”. Pushing the students’ output and applying scaffolding 
strategies can be supported by the design principle of relating registers, according to which the 
graphical, the symbolic and the different verbal registers (everyday, academic, and technical register) 
are related systematically to achieve conceptual understanding (Prediger, Clarkson & Bose, 2016). 
For the lessons of the presented intervention, activities of relating registers have been realized with 
the fraction bar and bar board as a prominent graphical representation. In order to activate students’ 
individual and everyday language resources, typical contexts of downloads, fair share and soccer 
competitions have been implemented (for detail see Prediger & Wessel, 2013). 

In their combination, the formulated design principles allow to integrate theoretical aspects on 
developing learning opportunities on the conceptual, lexical and discursive level. However, while the 
integrated analysis of initiated learning processes on conceptual and discursive levels are well-
established in mathematics education research, only rarely empirical studies reconstruct lexical 
learning processes (exceptions e.g. Prediger & Pöhler, 2015, for the field of percentages). That is why 
Schleppegrell (2010, p. 107) demands more respective research which goes beyond analyzing short 
interactional sequences: “More research is needed that takes a developmental approach (…). We need 
rich studies of how language and ways of talking about mathematics evolve over a unit of study, 
focusing on more than brief interactional episodes and fragments of dialogue”. The presented study 
aims at minimizing this research gap for the field of relative frequency. 

Research questions  
On the basis of the theoretical background and the research gaps listed above, the developmental 
work and analyses of the learning processes are guided by the following two questions: 

1) On the level of design outcome: How can conceptual and lexical-discursive learning 

opportunities for understanding relative frequency be intertwined and designed in a sequence 

of rich mathematical activities? 

2) On the level of initiated learning processes: Which lexical means do students activate and 

how are those lexical means intertwined with individual conceptual development when 

working on the learning opportunities towards relative frequency? 



Methodological framework and research context 
The research was conducted in the methodological framework of topic-specific didactical design 
research (Prediger & Zwetzschler, 2013) in which the analysis of teaching-learning processes takes 
place in carefully designed teaching experiments. The design outcome, namely the consolidated 
intertwinement of conceptual and lexical-discursive learning opportunities, is next described.  

Design outcome: Learning opportunities towards relative frequency (research question 1) 

In order to combine conceptual, lexical and discursive learning opportunities according to the design 
principles described above, the larger intervention with five lessons for fostering conceptual 
understanding of students with diverse language proficiency in the language of instruction aiming at 
enhancing understanding of fractions was designed. For answering research question 1 the designed 
learning opportunities towards relative frequency as a design outcome are presented in the following 
section. 

The intended conceptual learning opportunities were adapted from Prediger (2013). It starts with 
students’ individual approaches and everyday experiences to compare three groups with different 
relative frequencies in the context of a soccer competition (see Table 1, Task 5). It then proceeds to 
constructing meaning of the given relative frequencies by introducing the bar board (Task 6). At this 
point, students’ informal strategies for comparison are elaborated by focusing the need for normed 
referent wholes (here fraction bars of normed length) and the necessity of including every group’s 
number of shots (not only number of strikes) to refine the concept of relative frequency which finally 
aims at the flexible use of relating number of shots and number of strikes.  

The intended lexical-discursive learning opportunities focus on the vocabulary required for the con-
ceptual learning process of thinking in relative frequency which is mainly the prepositional “of- or 
thereof construction” (“to score … of … shots”, “… shots, thereof …”) (see Table 1), which can be 
conceptualized from the so-called ‘basic meaning-related vocabulary’ (Wessel, 2015). Students are 
asked to give reasons in the setting of discussing ways of fair or unfair strategies to rank the three 
groups. It starts from students’ individual resources as well as with offering the relevant “of-
construction” already in Task 5. 

Conceptual learning 
opportunities 

Tasks and mediator bar board Lexical-discursive learning 
opportunities 

Initiation of individual 
approaches for comparing 
relative frequency 
conceptualized as strike 
rates in soccer competition 

5. Who scored best? 
In class 7c three groups took part in a soccer 
competition. 
The group of boys scored 4 of 5 shots.  
The group of girls scored 8 of 10 shots.  
The group of teachers shot 20 times and didn‘t score 4 
times. 

a) Who won the competition? Write your 
answer on a card.   

b) Put your cards in the middle of the table. Do 
you agree? Give reasons for your answer. 

Initiation of discussing 
individual approaches and 
giving reasons  

Introduction of lexical 
means “to score / not score 
… of … shots”  

 

Investigation of individual 
hypotheses in the bar 
board: 

Comparing with fraction 
bars of normed length 

6. Who scored best? 
Use the bar board in order to commonly find out 
whether one group scored better. 
The boys have already been marked. Add the results 
of the girls and the teachers as well as the speech 
bubbles.  

Reflecting and discussing 
fitting of fraction bars and 
groups (“This bar fits to the 
boys because …”) 



Necessity of including 
number of shots (not only 
number of strikes) to 
refine concept of relative 
frequency 

 

 

Activating lexical means for 
marking strike rates in the 
bar board focusing number 
of shots as a referent whole, 
number of strikes and strike 
rate 

Systematize and deepen 

understanding by giving 

reasons for all groups 

scoring equally well 

7. And the winner is... 

In the bar board you have found out how well the 

different teams scored.  

Which group won the competition? 

Give reasons for your answer. 
 

Written reasoning on 
equivalence of relative 
frequency in the three groups 

Applying introduced lexical 
means  

Table 1: Conceptual and lexical-discursive learning opportunities (not necessarily strictly sequenced) 

The tasks in Table 1 illustrate how conceptual and lexical-discursive aspects are intertwined. On the 
discursive level, students are encouraged to verbalize and discuss their own ideas and structures. The 
vocabulary for these discussions is bound to the bar board as well as the context of the scoring 
situation, which always allows students to relate the vocabulary to its meaning. In Task 7 the students 
are free to note their reasons either with reference to the bar board, to the context or to the formal 
level of expanding and reducing fractions.  

Methods for data gathering and selection: Design experiments  

Design experiments were conducted and video-taped within the larger research project MuM-
MESUT with N = 343 mathematically low-achieving mono- and multilingual students in grade 7. For 
the detailed analyses in this paper, a group of three students was selected according to their German 
language proficiency (measured with a German C-test) and language background (mono- or multi-
lingual, operationalized by “speaks at least one other language than German with a parent or 
grandparent”), with the aim to have a linguistically heterogeneous sub-sample for conducting case 
analyses (in total the below presented method of analysis was applied in detail to n=16 students). Due 
to the larger study, we can also draw on fraction test scores of the students (Wessel, 2015).  

Methods of data analysis for reconstructing conceptual and lexical development 

In order to qualitatively reconstruct the students’ lexical pathways and how their lexical means relate 
to the initiated discourse and individual concept development (research question 2), the following 
three steps were applied: 
Step 1. Conceptual analysis. For reconstructing the students’ conceptual development, strategies for 
comparing the given three groups of girls, boys and teachers and steps on the pathway to understand 
the concept of relative frequency have been identiefied by analysing transcripts and video data.  

Step 2. Trace analysis. Concept-specific lexical means (words and phrases) which the students 
activated were inventoried and coded whether the students used them in oral or written language and 
whether they self-initiated the use or whether they adopted them from the material, the teacher or 
another student (for detail of the method “trace analysis” see Prediger & Pöhler, 2015). In this paper 
the focus is on oral language. 

This bar fits 

to the boys 

because 

………………………

………………………

……………………….

.……………………… 

 

………………………. 



Step 3. Relating conceptual development and language. On the basis of step 1 and 2, the results of 
conceptual and language analysis were related and contrasted to reconstruct prototypical learning 
pathways and critical steps on the pathway under the perspective of different language backgrounds. 

Empirical insights into the initiated conceptual and language learning processes 
On the level of initiated learning processes, research question 2 asks for lexical means that students 
activate and how these lexical means are intertwined with individual conceptual development. By 
contrasting the inventory of lexical means of two students the first part of the research question is 
addressed in the next paragraph.  

Concept-specific language production: Qualitative overview and comparsion 

Makbule and Kiran (working in a group of three together with Vehbiya) are multilingual learners in 
year 7 of a German secondary school. In a German C-test Makbule’s score is at percentile rank 37 
and Kiran’s at 84. In the fraction test Makbule’s score is at percentile rank 7 and Kiran’s at 15 
(percentile ranks for both tests for full sample of N=1124 seventh graders). While Kiran is the more 
language proficient student according to the C-test results, Kiran and Makbule started at comparable 
low levels of fraction proficiency. 

In Table 2 the actual orally activated concept-specific lexical means in the analyzed transcript (23.46 
minutes of video data) of Kiran and Makbule are contrasted. While Makbule activates 26 different 
concept-specific lexical means in the course of the process and 76 in total, Kiran activates 15 different 
concept-specific lexical means and 21 in total. As Makbule generally talks the most in this lesson, 
relating these numbers to each student’s individual rate of participation will be a further step in the 
data analysis.    

It becomes apparent that Kiran uses all lexical means correctly, which fits to his high percentile rank 
in the German C-test and which is not always the case for Makbule. Also, while Makbule uses many 
of the lexical means various times (which leads to the high number of lexical means in total), the list 
of Kiran can give a hint at the possibly sufficient language for working on the given tasks and 
developing the concept of relative frequency. 

Makbule  Kiran 

Concept-specific lexical means in oral language production in chronological order of first use in process, 
(frequency in brackets, semantically not correct lexical means in italics) 
#14 best (1) 
#15 won (5) 
#25 because (9) 
#25 had … shots (4) 
#25 did not score … times (3) 
#25 scored (2) 
#58 scored ... times (3) 
#76 … of … (1) 
#95 bar (13) 
#101 ... times shots (1) 
#101 shoot … times (2) 
#103 took … shots and scored  
… of them (1) 
#125 tie (1) 
#141 similar (2) 

#143 stripe (9) 
#151 similar won (1) 
#151 this big (1) 
#151 to divide in the 
middle (1) 
#151 divide small (1) 
#153 shoot similar (1) 
#180 similarly big (2) 
#180 normal big (4) 
#180 separated in the 
middle (5) 
#186 separated (1) 
#188 line (1) 
#188 the same (1) 

#26 had … shots (2) 
#26 did not score (1) 
#28 score (2) 
#34 won (2) 
#60 fraction (2) 
#67 took … shots and 
scored  … of them (1) 
#104 score … times (1) 
#124 tie (1) 
#128 the same (1) 
#175 bar (3) 
#175 fits to (1) 
#175 because (1) 
#175 as good as (1) 
#177 as long as (1) 

#182 divided in the 
middle (1)  

Table 2: Variety of concept-specific lexical means in comparison 



However, the transcript analysis of Makbule’s conceptual development indicates that the additional 
lexical means like “to divide in the middle”, “normal big” and “separated in the middle” in Makbule’s 
inventory are of great importance for her learning process towards understanding the idea of 
expanding fractions as refining the structure in the fraction bar. As a first conclusion, the comparison 
of the results from Makbule and Kiran shows that the question of the required language seems to vary 
between the students and demands further analyses of different cases. 

Makbule’s process of adopting concept-specific lexical means when relating registers 

As a conceptually relevant step in the learning process, it is important to move from the strategy of 
comparing the three groups’ results (girls, boys and teachers) on the basis of the absolute number of 
strikes to experiencing the necessity of and applying the concept of relative frequency as a fair 
strategy for comparison (Prediger, 2013). How this pathway can be related to the activated and 
required lexical means becomes apparent in the following two excerpts taken from the corresponding 
learning process initiated by Task 6. The transcripts were translated from German and shortened to 
relevant utterances of Makbule which are needed for tracing those concept-related language means 
in focus (// indicates interruption).  

When answering Task 5 (see Table 1), Makbule focuses on the three groups’ absolute numbers of 
strikes and claims that the teachers won the competition. When working on Task 6, the following 
process was initiated by reflecting on why the chosen fraction bar of fifths fits to the boys group: 

Excerpt I: Kiran stresses the idea of relative thinking  

56 Teacher: So why does this fraction bar fit to the boys, the one that is marked? 
58 Makbule: Because they, because they took yes, ehm, five shots and have only scored 

four times. 
59 Teacher: And why does the fraction bar fit? 
61 Makbule: Because it’s four fifths. 
66 Makbule: Because they// 
67 Kiran: //took five shots and scored four of them. 

On the lexical level, Makbule uses the coordination “and” to relate the number of shots and the 
number of strikes to each other (#58). As the teacher again asks why the fraction bar fits, Makbule 
focuses on the representation of rates as fractions, namely “four fifths” (#61). When starting an 
additional explanation (“Because they”, #66) she is interrupted by Kiran, who finishes the sentence 
with “took five shots and scored four of them” (#67). This utterance in #67 is assumed to be a relevant 
trigger for the following discourse in the group, which becomes clear in the next excerpt. 

Excerpt II: Makbule adopts Kiran’s “of them” construction  

70 Makbule: reads her written answer: because they took five shots and scored only four 
of them. 

73 Teacher: So now the girls and the teachers. Where do we mark them?  
74 Vehbiya: The girls in the bar of tens. 
75  Kiran: Eight tens. 
76 Makbule: so 8 of, 8 of 10. 
99 Makbule: Because they took ten shots and have scored eight times.  



101 Makbule: So they have yes, ehm, they had 20 times to shoot, so could shoot 20 times. 
And they only, so they had, so they didn’t score four of them. 

In #70 Makbule reads out her written answer in the speech bubble next to the bar of fifths. She adopts 
Kiran’s mathematically more adequate construction for the relation of shots and strikes by using the 
prepositional sentence structure (“take … shots and score ... of them”). Further in the process, 
Makbule also adopts the “of-construction”, which had been introduced by the material in Task 5, in 
order to reason the fitting of the bar of tens to the results of the girls (#76). Considering Kiran’s 
utterance of the fraction in #75, it can be assumed that Makbule purposefully links the fraction with 
its meaning-related conceptualization “8 of 10”. In #99 and #101, when reasoning the fitting of the 
bar of tens and bar of twentieths, she once again uses the coordination “and” as well as the 
prepositional “of-structure”. However, in her written products she constantly applies the 
mathematically preferred “of-structure”. Thus, it can be assumed that thinking relatively as well as 
having lexical constructions for expressing relative frequency meaningfully anchored in her mental 
lexicon was successfully achieved for Makbule. It is assumed that Kiran’s introduction of the sentence 
structure “take … shots and score ... of them” was supportive for Makbule’s conceptual and lexical 
learning pathway. 

Conclusion 
To summarize, the empirical insights show how rich and demanding discourse practices can be 
initiated in small group settings by means of the design principles of macro-scaffolding and relating 
registers. The dual focus of the applied macro-scaffolding on the conceptual learning opportunities 
intertwined with language learning opportunities on the lexical level has to be emphasized as this 
builds the basis for the analysis of the initiated lexical learning processes. On the developmental level 
the presented design outcome thus helps to answer the question of how instruction can support 
students to learn vocabulary as they engage in mathematical reasoning (Moschkovich, 2013), here 
with a focus on relative frequencies. Moreover, the case of Makbule implies that offering and relating 
various mathematically intended lexical constructions could be supportive for becoming more 
proficient in the formal language of schooling. This can be implemented more prominently in the 
material by activities of reflecting and discussing concept-specific lexical means, which again would 
be an intertwined conceptual and lexical-discursive learning opportunity. 

So far, analyses of learning processes on the lexical level are quite rare in mathematics education 
research. Applying the method of trace analysis (Prediger & Pöhler, 2015) reveals details of students’ 
language production and development on the lexical level. For Makbule and Kiran differences with 
respect to which and how concept-specific lexical means have been activated and adopted became 
apparent. However, further insights into the processes of the other groups are necessary to ensure the 
first empirical results and formulated hypotheses. 

References   
Gibbons, P. (2002). Scaffolding language, scaffolding learning. Teaching second language learners 

in the mainstream classroom. Portsmouth, NH: Heinemann. 

Moschkovich, J. N. (2013). Principles and guidelines for equitable mathematics teaching practices 
and materials for English language learners. Journal of Urban Mathematics Education, 6(1), 45–
57. 



Prediger, S. (2013). Focusing structural relations in the bar board – A design research study for 
fostering all students’ conceptual understanding of fractions. In B. Ubuz, C. Haser, & M. A. 
Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society for Research in 
Mathematics Education (pp. 343−352). Antalya, Turkey: METU.  

Prediger, S., & Pöhler, B. (2015). The interplay of micro- and macro-scaffolding: An empirical 
reconstruction for the case of an intervention on percentages. ZDM, 47(7), 1179−1194 

Prediger, S., & Wessel, L. (2013). Fostering German-language learners’ constructions of meanings 
for fractions – Design and effects of a language- and mathematics-integrated intervention. 
Mathematics Education Research Journal, 25(3), 435−456.  

Prediger, S., & Zwetzschler, L. (2013). Topic-specific design research with a focus on learning 
processes: The case of understanding algebraic equivalence in grade 8. In T. Plomp, & N. Nieven 
(Eds.), Educational design research: Illustrative cases (pp. 407−424). Enschede: SLO, 
Netherlands Institute for Curriculum Development. 

Schleppegrell, M. (2004). The language of schooling: A functional linguistics perspective. New York: 
Routledge. 

Schleppegrell, M. (2010). Language in mathematics teaching and learning: A research review. In M. 
Moschkovich (Ed.), Language and mathematics education. Multiple perspectives and directions 
for research (pp. 73−112). Charlotte, NC: Information Age Publishing. 

Wessel, L. (2015). Fach-und sprachintegrierte Förderung durch Darstellungsvernetzung und 
Scaffolding: Ein Entwicklungsforschungsprojekt zum Anteilbegriff. Wiesbaden, Germany: 
Springer. 



Conceptions of the transition from the difference quotient to the 
derivative in imaginary dialogues written by preservice teachers 

Annika M. Wille 

Alpen-Adria-Universität Klagenfurt, Austria; annika.wille@aau.at 

The transition from the difference quotient to the derivative is a step from the algebraic to the 
analytic concept formation. The aim of this article is to analyze the conceptions of this transition 
that can be traced in preservice teachers’ imaginary dialogues, a form of mathematical writing. 
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Introduction 
An often formulated critique of the teaching of analysis in school is that syntactical calculus is used 
too early and there is a need for more content-related understanding of central concepts (cf. e.g. 
Hahn & Prediger, 2008). Therefore, there is a need to sensitize preservice teachers to this issue and 
strengthen their own understanding of analytical concepts.  

The course “Didaktik der Analysis” at the Alpen-Adria-Universität Klagenfurt in 2015/2016 
addressed this purpose. The preservice teachers often reflected on central concepts of elementary 
analysis, their relations and their meaning for classroom teaching. The reflections were written 
down as imaginary dialogues, a form of mathematical writing where a single student composes a 
written dialogue between two protagonists who discuss a mathematical task or question (Wille, 
2008). This article focuses on one reflection task that addresses the transition from the difference 
quotient to the derivative. The preservice teachers’ imaginary dialogues will be analyzed in order to 
determine their conceptions of this transition. 

Theoretical framework and research questions 
Within Anna Sfard’s theory of commognition (Sfard, 2008) thinking is seen as self-communication, 
an individualized version of (interpersonal) communication. The term commognition is used for 
both, the processes of thinking and communication, which are considered as two “manifestations of 
the same phenomenon” (p. 296). In commognitive research the discourses are precisely the main 
unit of analysis (cf. p. 276). Discourses are different types of commognition that “draw some 
individuals together while excluding some others” (p. 91). Sfard names as a precondition for 
learning the “recursivity of linguistic commognition” (Sfard, 2008, p. 116). An example of 
recursivity is communicating-on-communicating, such as “reports on what somebody else has said, 
remarks on her own thoughts, or reflects on other interlocutors and their communicative actions" (p. 
103). The recursivity allows for a look from the outside in order to reflect, abstract and reason.  

Conceptions of central concepts of elementary analysis have been described in various studies (e.g. 
Thompson & Thompson, 1994; Hahn & Prediger, 2008; Roh, 2008; Greefrath, Oldenburg, Siller, 
Ulm & Weigand, 2016). Danckwerts and Vogel (2006) list interpretations of the difference quotient 
and the derivative in overview tables (p. 57 and p. 85). Figure 1 shows an adapted and translated 
version of these tables. 



 
Figure 1: the transition from the difference quotient to the derivative 

Here, the vertical dashed line denotes the transition from the algebraic to the analytic concept 
formation, which is, according to Danckwerts and Vogel, particularly difficult to realize in the 
mathematics classroom (p. 85).  

In the author’s view, this is why it is particularly important for the preservice teachers to develop a 
profound understanding of this transition from various perspectives. Therefore, the focus of this 
paper is not on a single analytical concept, but on the whole figure, in particular on the arrows going 
from left to right in Figure 1. Thus, the focus is on the conceptions of the transition from the 
difference quotient to the derivative that can be traced in the preservice-teachers’ imaginary 
dialogues. The main question is: What are the aspects of the preservice teachers’ conceptions of the 
transition from the algebraic to the analytic concept formation? 

In the light of the framework of commognition, in order to initiate preservice teachers’ reflection 
processes and investigate their conceptions of elementary analytical concepts and relations, a form 
of communication seems appropriate that allows for a “look from the outside”. Imaginary dialogues, 
where one person writes what two protagonists are discussing, is such a form of communicating-on-
communicating. Furthermore, imaginary dialogues are written works of a single student (or 
preservice teacher), but they consist of written oral dialogues. Therefore, imaginary dialogues 
display characteristics of both, written and spoken language (cf. Wille, 2017). In particular, the 
processuality of spoken language comes into play and students tend to write how they understand 
something instead of only what. Therefore, imaginary dialogues are one appropriate method to 
approach research questions that concern a transition process. Another reason is practicability: by 
using imaginary dialogues it is possible to receive reflections of each student of a course several 
times within the semester, which – although they are written – contain attributes of oral language. 
Moreover, the lecturer can react to the reflections within the course.  

Method 
Altogether 40 preservice teachers participated in two parallel courses “Didaktik der Analysis” at the 
Alpen-Adria-Universität Klagenfurt in Austria in the winter term 2015/2016. The content of the 
course was oriented on the book “Analysis verständlich unterrichten” (translation: teaching analysis 
comprehensibly) by Danckwerts and Vogel (2006). Five times within the course lectures, exercises, 
and reflections alternated. As reflection tasks the preservice teachers were given written initial 
dialogues that each of them had to continue in the form of an imaginary dialogue. In the following, 



the second reflection task, the transition from the difference quotient to the derivative is in the 
focus. The initial dialogue given to the preservice teachers was the following: 

 
Figure 2: Initial dialogue task (the original German text was translated by the author)1  

Of all participants, 30 preservice teachers wrote an imaginary dialogue by continuing the initial 
dialogue above. These written texts serve as the data material for the analysis. In the following the 
research questions that will be addressed are how the preservice teachers describe the transition 
from the algebraic to the analytic concept formation, and in particular, what the aspects of their 
conceptions of the transition are. The percentages named below are meant only as informative 
“mini-statistics”, because of the small number of participants. Within the data analysis categories of 
aspects were built inductively. In a second step these aspects were categorized two perspectives. For 
a discussion regarding the depth of the preservice teachers’ reflections, see Wille (2016). 

Findings 
Within the imaginary dialogues of the preservice teachers several aspects of the previous named 
transition can be detected. In what followed they will be explained and exemplified (all examples 
were originally written in German and translated by the author). 

A1: The calculus aspect – describing the calculation of concepts with formulas 

Eleven preservice teachers (31.4%) described with formulas how to calculate concepts from the left 
or right side of the transition. For example, a preservice teacher, Lydia, describes in her imaginary 
dialogue how the difference quotient and the derivative can be calculated with the help of formulas: 

“The next step is to build the difference quotient. As the numerator you calculate: 0( ) ( )f x f x  
and as the denominator  x  – 0x . The result is the relative change in the time span from 0x to x . 
The relative change is also denoted by rate of change. 

                                                 
1 “schwupp” in the sense of “voilà” 



And now the derivative comes into play. You build 0( )f x . Now, 0( )f x  is the limit ( x   
approaches 0x ) of the rate of change. The result is the momentary or local rate of change at the 
time of 0x .” 

In a similar way Paul writes about the calculation of the rate of change: 

“Okay. Now, we can determine the rate of change by a formula. The formula you can find in your 
documents, of course.” 

Or Maria writes about the momentary rate of change: 

“Now, we reached the last step. The momentary rate of change at the time of 0x . That is the first 

derivative, thus, 0( )f x
0

lim
x x

 0

0

( ) ( )f x f x
x x



.” 

This aspect – i.e. describing the calculation of concepts with formulas – will be denoted as calculus 
aspect (A1), similarly to the calculus aspect of variables (cf. Malle 1993). 

A2: The concept identification aspect – different concepts are identified 

In the writings of Lydia and Maria another aspect becomes apparent: They are identifying concepts 
by their language use. Lydia identifies the concepts “difference quotient”, “relative change”, and 
“rate of change”. Afterwards she identifies the concepts “derivative” and “momentary or local rate 
of change”. Similarly, Maria identifies the concepts “momentary rate of change” and “first 
derivative”. Altogether 16 preservice teachers (45.7%) identify concepts likewise. 

Identifying different concepts is denoted as the concept identification aspect (A2). 

A3: The limit aspect – the right side of the transition is described as a limit 

17 preservice teachers (48.6%) describe concepts of the right-hand side as a limit, sometimes with 
mentioning a process of approaching (see aspect A4), sometimes as a “finished product”2. The first 
case (including the description of a process of approaching) appears in Elena’s imaginary dialogue: 

“S1: I see. Now, I understand it and now it is clear for me why one writes  . 
While letting ∆ x  tend towards 0, or x  towards 0x , respectively, while choosing the interval 
steadily smaller (note: here she crosses out “choosing it that small to be almost 0”) one obtains 
the local rate of change, thus, the momentary speed at a certain point of time, if one brings the 
limit into play at this point.3”  

Likewise, the process of building a limit is expressed by Jan: “Thus, the secant becomes, so to 
speak, a tangent by building a limit.” In contrast, as a “finished product” the limit is used in the 
following writing: “And in step 3 the tangent slope will be calculated as a limit.” 

Describing the right side of the transition as a limit is denoted as the limit aspect (A3). 

                                                 
2 For distinguishing mathematics as a product with mathematics as a process (Danckwerts & Vogel, 2006) or concerning 
the duality of processes and objects (Sfard, 1991). 

3 The German original text is: “wenn man an dieser Stelle den Grenzwert ins Rennen führt”. 



A4: The approach aspect – the transition is described as a process of approaching  

More than the half of the preservice teachers, 20 (57.1%) described the transition as a process of 
approaching. This can be seen for example in Elena’s imaginary dialogue above (“While letting ∆ x  
tend towards 0, or x  towards 0x , respectively, while choosing the interval steadily smaller”, see 
aspect A3) or in Patrick’s imaginary dialogue below (“we let the secant become shorter and shorter 
until it vanishes completely for 0x x ”, see aspect A6).  

This aspect – i.e. describing the transition as a process of approaching – will be denoted as the 
approach aspect (A4). It is not a subaspect of A3, because there are students who describe a process 
of approaching without describing the right side of the transition as a limit and the other way round. 

A5: The distinction aspect – distinctions between the left-hand side and the right-hand side of 
the transition are described 

17 preservice teachers (48.6%) described various distinctions between the left-hand side and the 
right-hand side of the transition. For example, the distinction of having first 0x x and then 0x x  is 
described as follows: 

S2:  Think about it: You let x  come closer and closer to 0x . What will happen then? 

S1:   They are equal eventually. 

In another two examples the distinction between having a secant at first and then a tangent is 
described and additionally, having first two points and then only one on the function graph: 

“From the secant it arises a tangent that does not intersect the function any longer, but touches it 
now in one point.” 

“(...) you don't want to have the slope of the secant between two points, but the slope of the 
tangent in only one point.” 

Finally, the distinction of having at first two points in time (in order to measure speed) and then one, 
a preservice teacher describes with these words: 

“(...) we see that the secant expresses time intervals and we calculated within those the average 
rate of change4. The point P that we approach, is therefore the momentary rate of change at a 
certain point of time.” 

This aspect – i.e. describing distinctions between the left-hand side and the right-hand side of the 
transition – will be denoted as the distinction aspect (A5). 

A6: The problem aspect – distinctions are considered problematic 

Out of the 17 preservice teachers who described distinctions between the left-hand side and the 
right-hand side of the transition, 10 preservice teachers (28.6%) considered these distinctions as 
problematic (in their language use). For example, Patrick uses phrases like “we claim that it would 
be a smart result” or the adjective “mysterious”:  

                                                 
4 Original German text: “sehen wir, dass die Sekanten die Zeitintervalle ausdrücken und wir in diesen die mittlere 
Änderungsrate berechnen.” 



“S2: (...) Now, we have 2 problems, for one thing we begin our observation with 0x x , but 
afterwards we set 0x x  and claim that it would be a smart result. Secondly, we let the secant 
become shorter and shorter until it vanishes completely for 0x x , but we claim that it became 
that way an infinitely long tangent (...) that is a somehow very mysterious and at least not 

illustrative (...)”5  

Another preservice teacher let one protagonist face the impossibility of covering a distance at a 
point of time. 

S2:  How many seconds or minutes, respectively, had passed at the point of time?  

S1:  Well, none, that is why one names it POINT of time. 

S2:  And how can you cover a distance in 0 seconds? 

S1:  That was mean! Okay, nearly no time had passed, or rather so little time that it 
makes no difference. 

This subaspect of A5 – i.e. considering the described distinctions problematic – will be denoted as 
the problem aspect (A6). 

One could go more into depth at this point to differentiate the conceptions of the preservice 
teachers. For example, it is interesting to see which words are used to describe the process of 
approaching. But this would exceed the size of this article and therefore is left for a further and 
more detailed analysis. Similarly, misunderstandings that occurred in the imaginary dialogues 
cannot be addressed here, because of the length of the article. Instead, the detected aspects shall be 
compared and evaluated. Table 1 gives an overview of the aspects discussed above: 

A1 calculus aspect the calculation of concepts is described with formulas 

A2 concept identification aspect different concepts are identified 

A3 limit aspect the right side of the transition is described as a limit 

A4 approach aspect the transition is described as a process of approaching   

A5 distinction aspect distinctions between the left-hand side and the right-hand 
side of the transition are described 

A6 problem aspect (a subaspect 
of A5) 

distinctions are considered problematic 

Table 1: aspects of the preservice teachers’ conceptions 

Discussion – vertical and horizontal perspectives  
The aspects of the preservice teachers’ conceptions detected above indicate two perspectives, a 
vertical and horizontal perspective regarding Figure 1. The aspects A1 to A2 are oriented vertically, 

                                                 
5 This argument already goes back to Newton’s academic teacher Isaac Barrow (1630-1677) (Danckwerts & Vogel, 
2006, p. 48). 



meaning that concepts or formulas are vertically linked (A1) or different concepts are identified 
either on the left-hand side or on the right-hand side (A2). Additionally, aspect A3, i.e. describing a 
limit, is oriented vertically, if the limit is seen without regarding the process of approaching. In 
contrast, the aspects A4 and A5 have a horizontal perspective, as does A6 as a subaspect of A5. The 
left-hand side of Figure 1 is linked with the right-hand side, when the transition is described as a 
process of approaching (A4), when describing distinctions between the left-hand side and the right-
hand side of the transition (A5), or when considering those distinctions problematic (A6). 

In the author’s opinion, those texts that display the aspects A4 to A6 show a content-related 
understanding by the preservice teachers. In particular, when omitting the aspects A4 to A6, the 
understanding of the transition seems reduced to a temporal “and then” in the sense of: “first you 
calculate this and then you calculate that”. Regarding the reflection depth of the imaginary dialogues 
(Wille, 2016), exactly those preservice teachers whose imaginary dialogues did not indicate 
horizontal-oriented aspects (31.4% of the participants) displayed the shallowest reflection depth.  

In the course “Didaktik der Analysis” with the help of the imaginary dialogues, it was possible to 
react to imaginary dialogues, aspect diversity and misunderstandings during the semester. 
Additionally, some participants themselves regarded the time exposure negative, but mostly they 
perceived the writing of the imaginary dialogue positive as one preservice teacher wrote in a 
comment: “It was positive that first, while writing the reflection, it became really clear whether a 
topic was understood or not.”  

In summary, the method of imaginary dialogues turned out to be helpful to detect different aspects 
of the conceptions regarding the transition from the difference quotient to the derivative. In the 
author’s opinion, a profound understanding of preservice teachers should display various 
perspectives, horizontal and vertical, in order to be able to address the diversity of the students’ 
conceptions later in class.  
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What is the role of the implicit in teaching and learning functions? Functions are a central topic in 
mathematics classrooms in Germany. The mathematical concept of a function is typically 
represented by graphs, tables of data, algebraic expressions or by verbal descriptions. Formal 
definitions of functions only play a minor role in school mathematics. This is one reason why the 
mathematical content of what a function is, remains implicit when teachers and students talk about 
functions. Another reason for being implicit about functions in classroom conversation is inherent 
in the structure of language: in many utterances the implied meaning differs from the literal 
meaning. I use Swan’s (1982) model of translation skills and Grice’s (1975) concept of implicatures 
in order to analyse videotaped classroom conversation in a unit on functions. In this paper, I sketch 
the concept of implicitness in mathematics lessons. 

Keywords: Functions, classroom conversation, discourse analysis, implicit meaning, implicature. 

Introduction 
In my research on the implicit in classroom conversation about functions I seek to describe the 
discourse of learners and teachers in order to reveal the hidden, the unsaid, the implied meaning that 
has to be decoded to create and follow lessons sensibly. I want to characterize the interplay between 
the implicit in the mathematical object and the implicit in language when talking about functions. 
My research questions are: How are functions brought up in classroom conversation? And: What is 
the role of the implicit in classroom conversation in a unit on functions? 

It is common sense that language is important for all school subjects. Mathematics is no exception 
(see for example Meyer & Prediger, 2012) – it is needed to get access to mathematical matters and 
to express mathematical concepts. Participating in classroom conversation and getting access to the 
mathematical content of mathematics lessons can become difficult for the participants on different 
levels. Apart from obstacles that are immanent in mathematical concepts there may be vocabulary or 
grammar difficulties, difficulties in the semantics as well as difficulties in a pragmatic sense when 
learning new contents. In my work, I focus on a pragmalinguistic perspective on classroom 
conversation about functions. This perspective takes into consideration that not only words or 
sentences are meaningful when talking but also the context of an utterance. Looking at language that 
way promises to reveal an unsaid meaning that can be found between the lines. The idea of making 
the unsaid or the unsayable come to the surface by analyzing the classroom discourse seems 
conveniently suitable to approach the processes in mathematics classrooms when abstract objects 
like functions are tried to be made accessible. 

Didactical analysis 
In order to link my language analysis to the mathematical content, I analyze the lessons and 
especially the classroom conversation on a didactical level at first. I seek to figure out what is 
presumably intended to be taught and learned about functions when working on different tasks and 
when talking about them. 



The mathematical object function is very abstract. Looking at the historical development, the 
understanding of what a function is demonstrates how much functions are attached to their 
representations (Malle, 1996). Till today in German classrooms functions are a central topic in the 
curriculum where traditionally the representations like algebraic expressions, graphs, tables of data 
and (realistic) situations of functional dependencies play an important role. Swan (1982) developed 
a model to describe the different activities, the so-called translation skills that have to be performed 
when transforming one representation into another. In my work, I categorize the classroom activities 
into sequences according to those translation skills. I focus especially on the skills that afford 
translating a representation of a function from or into situations that are generally closely linked to 
verbal descriptions. The activities when a representation is transformed from a situation can be 
summarized as modeling skills and activities when a representation is transformed into a situation 
can be summarized as interpretation skills. 

Furthermore, different aspects of a function can become central in different tasks: you can classify 
the thinking about function into the following categories (Vollrath, 1989): functional dependency as 
a point wise relation, functional dependency as a dynamic process and functions viewed as objects 
or as a whole. The point wise relation takes into consideration that one independent element of a set 
gets mapped to one dependent element of a set, the dynamic process stands for the change that is 
produced in the dependent values when changing the independent values and functions as objects 
look at the given or produced correlation as a whole. Each activity or rather each translation skill 
can be performed on all of these three levels and form the second dimension for the didactical 
analysis of the lessons in my investigation. 

In The example, I demonstrate how I work with this analysis in combination with the linguistic 
analysis in order to get a description of the implicit in the classroom conversation on functions. 

Linguistic analysis 
For the linguistic analysis, I use Grice’s theory of conversation (Grice, 1975) as the background 
theory. Central in his theory are so-called implicatures – very generally speaking an implicature is 
existent when something that is literally said by an utterance differs from what is meant by that 
utterance. An implicature analysis, as for example suggested by Hagemann (2014), reveals the 
implicit and what is likely to be meant and understood by the participants. Pimm (1994) claims that 
Grice’s implicatures are also relevant in classroom discourse and Rowland (2002) presents analysis 
of students’ utterances in mathematics discourse using Grice’s ideas as a starting point for his 
theoretical framework. 

Grice’s concept of implicatures is based on the cooperation principle: 

Make your conversational contribution such as is required, at the stage at which it occurs, by the 
accepted purpose or direction of the talk exchange in which you are engaged (Grice, 1975, p. 45). 

Under this assumption nothing that is uttered by a participant of a conversation is assumed to be 
meaningless and the speaker of the utterance supposes that the conversation partners can decode the 
utterance meaning. The cooperative principle is formulated very general and leads to more specific 
aspects about how understanding is produced in conversation. These aspects are the so-called 



conversational maxims. Grice formulates twelve maxims1 that are categorized into the maxims of 
quantity, quality, relation and manner. Whenever one of the maxims is violated this is a hint at the 
actual meaning of an utterance. While talking the flouting of maxims is an intuitive process that 
leads to understand an utterance in a specific way. An implicature analysis explains how a particular 
intuition is evoked. The following example illustrates the formation of an implicature by infringing 
the maxim of relation be relevant: The setting of the following conversation between two students is 
a lesson at school. The students are supposed to write down a solution to a textbook task. 

(1) A: I do not have a pencil. 
 B: My pencil case is on the table over there. 

In example (1) A implicates that she or he needs a pencil and B implicates that A can find one in the 
pencil case on the table. Both utterances only indirectly hint at the presumably intended meaning. 
The literal meaning is simply that one student does not have a pencil and that there is a pencil case 
on the table. The literal meaning is not very likely to be the intended meaning as this meaning 
would not be relevant in the given context. 
To confirm the presence of a conversational implicature in Grice’s sense implicatures need to have 
two characteristics – non-detachability and cancelability. These attributes can be tested as follows 
(Korta, 1997): the implicature is non-detachable if you find synonym ways of saying the utterance 
without changing the implicature. In example (1) you could change A’s utterance into “I do not hold 
a pencil.” The implicature then remains that A needs a pencil. And the implicature is cancelable if 
you can neglect the implicature without producing a conflict with the literal meaning. For A in 
example (1) it is possible to say: “I do not have a pencil, but I do not mean that I need one. In fact, I 
do not want to write something down.” 
Both utterances in (1) could have been expressed explicitly, for instance by the following exchange: 

(2) A: Please lend me a pencil. 
 B: You can use one of my pencils – take one out of my pencil case on the table. 

In this case, the literal meaning and the intended meaning coincide and no implicature is used in this 
excerpt. 
Hagemann (2014) formulates an implicature analysis that refers to Grice’s theory of conversation. It 
follows three steps, which I also use for my analysis: Firstly, contextual elements such as 
disambiguation and referent assignment have to be determined. Secondly, suspected implicatures 
have to be tested on cancelability and detachability. Thirdly, a sequence analysis confirms what 
implicatures are most likely. In example (1) the implicature could be as already suggested above “I 
need a pencil”, but it could also be “I cannot (and I do not want to) write down my solution to the 
textbook task”. The answer of B allows both possible implicatures, but depending on further 
reactions that may follow this little conversation it can be that one or the other is more plausible. In 
other words: in the third step you look at what happened before and after the utterance to find out 
what is most likely intended and understood.  

                                                 
1 Grice’s (1975) maxims of conversation: make your contribution as informative as is required, do not make your 
contribution more informative than is required, try to make your contribution one that is true, do not say what you 
believe to be false, do not say that for which your lack adequate evidence, be relevant, be perspicuous, avoid obscurity 
of expression, avoid ambiguity, be brief, be orderly.  



The example 
In the following paragraph, I want to demonstrate how I analyze sequences of lessons in order to 
give a detailed description of what remains implicit in classroom conversation on functions. 

The setting of the discussion 

Participants in the presented classroom conversation are the members of a course in secondary 
school with 29 students and their mathematics teacher. The students are in the 11th grade on a high 
level, preparing for the last two school years in order to get the Abitur2. The classroom is equipped 
with a black board that is used frequently during lessons by the teacher as well as by the students. 
Tasks are generally handed in in written form on worksheets. The teaching methods and the social 
forms vary depending on the task. The researcher participates during the lessons only as an observer 
and does not interfere. The lessons are designed by the teacher without any collaboration with the 
researcher in order to observe lessons as close as possible to usual lessons. 

The task – Walking functions 

The task walking functions and the excerpts of the conversation on that task are taken from the first 
lesson in a unit on functions in the course introduced above. 

 

 

Figure 1: The task – walking functions 

The task walking functions requires transforming a graphic representation of a function into a 
suitable realistic situation. That means given graphs have to be interpreted. In the setting when a 
group presents its movements also the reverse is required for the observers: movements have to be 
referred to graphs. In this task interpretation skills are in the focus while modeling skills only come 

                                                 
2 The Abitur is the highest graduation in the German school system that forms the general qualification for university 
entrance. 
 



up to a lesser extend. The transformation of a graph into a movement demands to have a view on the 
function as a whole and not only on a certain point of the underlying function. In the example above 
(see Figure 1), the meaning of straight lines, the meaning of the intersections between the graphs 
with the ordinate as well as meaning of the parallelism of the graphs must be considered. Also the 
change of distance to the chair in relation to the change of time has to be taken into account. 

When having two representations of a function, it is not immediately obvious that those two 
representations stand for the same function. In this example it can only be seen implicitly by making 
clear what certain characteristics of a graph mean in the context of the movement in relation to the 
chair. The second part of the task asks to give an explanation why the group decided on their 
specific movement. It is asked to make the relation between two representations explicit. 

In my analysis of the classroom situation I seek to reconstruct what is made explicit and what 
remains implicit when an accepted interpretation of the translation from graph into a situation is 
debated. 

The conversation about the task 

During the lesson the students worked in groups of three on the task walking functions for about 15 
minutes. After working on the task in the groups, three different presentations of movements and 
explanations were performed. All three groups had different ideas: 

In the first group, two students started their movement a few meters away from the chair and walked 
constantly to the chair. One of them stopped at the chair, the other one stopped at the same time but 
at some distance to the chair. Their explanation was the following: “Well, we did it that way- well, 
Paula was the one and Paula started to walk a little earlier because the graph does not start at the 
zero point. And then Luna came along and then they walked in parallel because they run parallel.”3 

In the second group, two girls both started in line with the chair and walked vertically to that 
imaginary line away from the chair keeping the same distance between them. They commented on 
their movement. A: “Well, not the way that we walk apart, but parallel. But it goes (up) then.” B: 
“[… ] Because we thought that the x-axis is sort of the position of the chair.”4 

In the third group, two students walked one after another constantly away from the chair. They 
started and stopped their movement at the same time and explained: “Well, firstly they did not start 
at the same point because ehm well you have you see on the y-axis that someone starts further 

                                                 
3 Translated from the German transcript by me. Original: “Also, wir haben die so gemacht weil- also Paula war die eins 
und Paula ist ein bisschen früher losgelaufen, weil der Graph ja nicht im Nullpunkt startet. Und dann ist Luna 
mitgekommen und dann sind die parallel gelaufen, weil die parallel verlaufen.” 

4 Translated from the German transcript by me. Original: A: “Also so halt nicht, dass wir auseinanderlaufen, sondern 
parallel. Aber es geht dann (hoch).“  B: Weil wir gedacht haben, dass ja die x-Achse sozusagen die Positon vom Stuhl 
ist. Dann geht das ja davon weg.” 



ahead, well that he is further away from the chair. […] And they walked at the same speed because 
the graphs run quasi parallel against each other.”5 

In the sequence outlined above the students discuss different aspects of the functions in the task. At 
that point it is not clear which movements and explanations are accepted as a correct translation 
from the graphic representation into the movement. Subsequently to the presentations, a classroom 
conversation starts and it is clarified what is considered to be a correct solution to the task. At the 
end of the discussion, the third group is considered to have presented the best matching movement. 

In the following paragraph, I try to reconstruct the process to come to this conclusion and thereby I 
focus on what remains implicit. The expressions in curly brackets are my interpretation of the 
intended meaning or rather the implicatures of the utterances. 

Finding a suitable movement for the graphs in Figure 1 is not distinct and the different presentations 
show that the students pick out some characteristics of the graphs and refer them to the movement.  
All three groups relate the parallelism of the graphs. The first states: “[…] they [the girls] walked in 
parallel because they [the graphs] run parallel.” Presumably they implicate “they [the two girls] 
walked in parallel because {that is the meaning when} they [the graphs] run parallel.” The second 
group also points out that walking in parallel is the correct transformation: “Well, not the way that 
we [the two presenting girls] walk apart {by mistake}, but parallel.” The third group is the first that 
relates walking at the same speed to the parallel running graphs: “And they [the two presenting 
students] walked at the same speed because {that is what is meant when} the graphs run quasi 
parallel against each other.” In all three explanations they mention different characteristics of the 
functions apart from the parallelism. That is a hint that they see the function as a whole even though 
not entirely as they miss mentioning some of the functions’ relevant characteristics that could be 
observed in the graphic and situational representation. By their performances and their utterances, 
the groups made clear what they assume to be the correct relation between the representations. They 
claim this connection without making explicit why that relation is supposed to be correct. 

After these three presentations the teacher asks several questions: “What is the origin of the 
coordinate system? What is on the x-axis? What is the y-axis? And what does parallel mean?”6 The 
teacher seems to pick out the characteristic of the functions she considers to be relevant in this task. 
When looking at the conversation after these questions you can identify the implicatures: “What is 
{the meaning of} the origin of the coordinate system {in relation to the situation}? What is {the 
meaning of} the x-axis {in relation to the situation}? What is {the meaning of} the y-axis {in 
relation to the situation}? And what does parallel mean {in this context}?” She implicitly focuses 
the conversation on the relations between the representations. The relations between the 
representations are discussed for about four minutes. Then the teacher also brings a new possible 

                                                 
5 Translated from the German transcript by me. Original: “Also erstmal, ähm, sind die Beiden nicht vom gleichen Punkt 
gestartet, weil ähm, ja weil hat man halt auf der y-Achse sieht, dass jemand weiter vorne startet, also dass er weiter vom 
Stuhl entfernt ist. Und dann halt so bald neben dem Stuhl. und die sind beide gleich schnell gelaufen, weil die ehm 
Graphen halt quasi parallel aneinander laufen.” 

6 Translated from the German transcript by me. Original: “Was ist der Ursprung des Koordinatensystems? Was ist auf 
der x-Achse? Was ist auf der y-Achse? Und was heißt das mit dem Parallel?” 



relation not mentioned before into the discussion: “The graphs go up. That means you walk away 
from the chair. But it [the movement] is getting faster because {that is meant when} it [the graph] 
goes up. What do you think of this argument?”7 This utterance brings the students to see the rising 
of the graph as the speed of the movement and finally to declare that the movements of group three 
are best matching to the graphs. At no point in the discussion the parallel graphs are related to 
movements with the same speed again as suggested by group three at the beginning. Although the 
parallelism is brought into discussion several times the relation between the parallel graphs and the 
movements with the same speed remains implicit till the end of the conversation sequence about the 
task walking functions. 

Conclusion and discussion 
Such a dense description of the activities in the classroom with the focus on the implicit has the aim 
to make the implicit accessible. It can be seen as an objectification of the assumptions and 
normative demands that resonate subliminally in the lessons. In the presented classroom 
conversation, the convention that parallel running lines in a path-time diagram stand for movement 
at the same speed is initiated. This relation between the two representations is declared correct by 
employing many implicit relations and implicatures. This shows that decoding the implicit in the 
classroom conversation is relevant. An analysis as demonstrated above can help to understand the 
demands on teachers and students in the classroom to create and follow lessons sensibly. 

This analysis of the episode in this paper is just the beginning of my research, my starting point of 
looking at mathematics lessons with a specific lens – with a lens, which seeks to make invisible 
demands in mathematics discourse visible. Comparing the analyses of different situations with a 
similar mathematical content can reveal how the implicit is used in mathematics classroom 
systematically and give insight into the role of the implicit in teaching and learning of functions. 
With the help of these analyses I want to develop a local theory on implicitness in classroom talk on 
functions that links Grice’s vast theory of implicatures to the mathematical topic of functions in 
mathematics classrooms. Whether the evolving theory holds will not be part of this research, but 
should be probed by using it for broader classroom observations for example.  

Didactical implicatures for mathematics lessons deriving from insights in the meaning of the 
implicit cannot be given at this point of my research. Only as a final result of further analyses ideas 
for teaching and learning may be devised. For now, I can conclude that implicatures play a role in 
classroom conversation on functions and that I am curious about finding out more about the 
relevance of the implicit in mathematical classroom conversation. 
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Despite the digital revolution much of the mathematics practiced in schools is still tightly bound to 
two-dimensional texts. This emphasis on text is neither surprising, nor inadequate, since mathematics 
has developed through a long history with the use of written text, consisting of natural language, 
mathematical notation and images. Natural language is our native language consisting of letters and 
words (see e.g., www.oed.com). Different features of the mathematics text are also important in 
written tests, since reading the text is part of the assessment. If the text is hard to read, that difficulty 
can be relevant as part of assessing the communicative competence in mathematics. Crucial is, 
however, whether potentially difficult textual features are part of what the assessment aims at. This 
issue is investigated in the current study, using a synthesis of statistical results and qualitative analyses 
of task text. 

A critical question is where to draw the line between necessary and unnecessary reading demand and 
how to judge which textual features are irrelevant and therefore should be avoided in mathematics 
assessments. In the current study this aspect of reading demand is addressed through a small meta-
analysis of four studies where different textual aspects in task text are analyzed in relation to task 
difficulty and task reading demand. The theoretical starting point for the current research is an 
understanding of language as an essential part of mathematics. It has been argued theoretically that 
the understanding of a mathematical object develops as the student develops her or his discourse on 
that object (see e.g., Sfard, 2008). An understanding of mathematics discourse as part of what 
mathematics is, is in line with the theoretical interpretation of the statistical measure for demand on 
reading ability (DRA) used in the studies included in the meta-analysis conducted in the current study. 
DRA is a measure of the unnecessary reading demand in a mathematics task, and within this 
interpretation lays also an assumption of a kind of reading demand that is relevant in mathematics 
tasks (see also Dyrvold, Bergqvist, & Österholm, 2015). The purpose of the study is to contribute to 
the knowledge about which textual features in tasks are demanding and whether that difficulty is a 
mathematics relevant difficulty. The research questions are: i) what conclusions can be drawn 
regarding reading demand in mathematics tasks in relation to textual features?, and ii) how can the 
conclusions based on statistical analyses be interpreted in relation to a qualitative analysis of 
mathematics task text with a high reading demand? 

The study consists of a meta-analysis and a qualitative analysis of tasks that stand out in the 
quantitative analysis. Only four studies are included in the meta-analysis but even such a small meta-
analysis do contribute to the development of knowledge since the analysis enables conclusions to be 
drawn that would not be possible to draw with-out such an analysis. The qualitative analysis has a 
systemic functional perspective (Halliday & Matthiessen, 2014) and includes also images and 
mathematical notation. 



The meta-analysis focuses on textual features in relation to two quantitative measures; task demand 
on reading ability (DRA) and task difficulty. Results in relation to those variables (difficulty and 
DRA) are relevant to interpret together since they represent different aspects of how a task can be 
demanding. The measure DRA is obtained through a principal component analysis (PCA) on students’ 
results on PISA reading and mathematics tasks. The result of the PCA is several components that 
explain different parts of the results on the tasks. The components are statistically disjoint, and 
therefore the DRA represents demand on a reading ability that is not part of a mathematical ability 
(see also Dyrvold et al., 2015). Through the analysis, every PISA mathematics task obtains a loading 
value on that component, a value interpreted as the tasks DRA.  

The results reveal several features of the natural language that distinguishes tasks with a high DRA, 
but also that the images are more tightly integrated with the sentences in tasks that have a low DRA 
but are difficult to solve. For tasks with high DRA, the sentences are knitted together through the 
Themes (the topic of the sentence) and Rhemes (what is presented in relation to the theme) something 
that is not as pronounced in task with low DRA (Theme and Rheme are explained by e.g., Halliday 
and Matthiessen, 2014). One example of that can be found in the following sentences. The Themes 
are underlined. “The sculpture is a half circle with the radius 2m. The half circle is inscribed in a 
square.” Those sentences represent a linear progression since the Rheme of the first sentence becomes 
the Theme of the next sentence.  

The results from the meta-analysis reveal other features than the natural language (words and letters) 
that are related to difficulty but not to DRA. Tasks with high DRA and tasks with low DRA are alike 
when it comes to presence of natural language, images, and symbols but for tasks with a low DRA 
there are more references within natural language and between natural language and images or 
symbols. In summary, the textual analyses reveal features of the text in tasks with high DRA that 
enlighten what the high reading demand may stem from, since the textual analyses indicate that the 
progression between Themes and Rhemes can be a distinguishing feature for tasks with high DRA, 
whereas references to images may not play such a role.  
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Recent studies on adult literacy and numeracy raised several key issues some of which are (a) over 
the last 20 years there has not been significant improvement in adult literacy and numeracy in 
Canada; (b) regions within Canada will not have enough post-secondary graduates with sufficient 
literacy skills to fill the jobs created by the Canadian economy; (c) declining numeracy may be due 
to gender discrimination and skill mismatch in the workplace which in turn, contributes to the 
shrinking pool of skilled labour; and (d) currently, there are no existing numeracy programs for non-
STEM students at the postsecondary level to address the issue of innumeracy or risk illiteracy 
(OECD, 2013). Like statistical literacy, risk literacy requires familiarity and comprehension of the 
statistical and risk lexicon that is often confused and/or misused in the public sphere. Bolton (2010) 
remarks that published statistics are inappropriately used when they are presented without context, 
use confusing terminology, and misuse or use ambiguous terms. He adds further that, the concept of 
uncertainty is often “lost, forgotten or ignored by authors” creating misleading and/or inaccurate 
estimates that do not reflect the entire scenario.  

Theoretical framework 
Mathematical instruction and comprehension of abstract concepts such as risk, are executed through 
language and use conceptual metaphor. Language clarifies meaning, making meaning more precise, 
and executes an operative (process) role in thinking. According to Jurdak, Vithal, de Freitas, Gates, 
and Kollosche (2016), any level of mathematics instruction is mediated through language. Nunez 
(2007) explains that, mathematics is predominantly metaphorical and to make abstract mathematical 
concepts concrete requires the use of conceptual metaphors which are language and cognitive 
devices. He defines a conceptual metaphor, as a “cognitive mechanism that allows us to reason 
about one kind of thing as if it were another”, more specifically it is a “grounded, inference-
preserving, cross-domain mapping, neural mechanism that allows us to use the inferential structure 
of one conceptual domain (e.g. geometry) to reason about another (e.g. arithmetic)” (pp .4-6). The 
instructional resource examines language and conceptual metaphors used in risk instruction focused 
on developing skills in decoding and understanding publicized risk in legal, social, financial or 
medical contexts. 

Methods and findings 
The methodology of this study was guided by McTighe and Thomas (2003), Understanding By 
Design (UbD) framework for curriculum planning and design that is to (a) identify the desired skills 
or outcomes required (b) determine the assessment evidence and (c) plan the experience or 
instruction. The content of the instructional resource comes from the results of literature review and 
web research, information interviews, document analysis, government publications, curriculum 
documents, expert critique and informal information gathering from practitioners in the field. 
Cumulative and summative assessment rubrics in the resource were developed based on Facione 



(2011) critical thinking assessment. A small group of independent reviewers examined a lesson on 
risk and were asked to provide independent written feedback to the lesson questionnaire. The 
resource was further revised with respect to its structure, content and recommended instructional 
methodology and reviewer feedback was included in the pilot lesson. 

Reviewers commented that the instructional resource was relevant, well-constructed, and raised 
awareness of risk miscommunication. Respondents agreed the lesson had a logical flow, 
demonstrated progression and that the background information was indeed necessary to provide 
context, to follow presented arguments, and to comprehend and make sense of data. All respondents 
agreed with the type and appropriateness of the lessons assessment also remarking that the self-
assessment was very important to verify their own understanding. The findings from this 
development study confirmed that basic risk comprehension can be achieved by rephrasing risk and 
expressing probability as a natural frequency within a specified context. 
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The state funded project ‘Professional teaching practice to promote subject-related learning under 
changing social conditions’ (ProfaLe) aims at improving teacher education at the University of 
Hamburg at various levels: One objective is to sensitize future mathematics teachers to language 
difficulties in mathematical learning processes and tasks as well as to promote professional 
competence in helping students to tackle possible learning barriers based on language difficulties. For 
this purpose, courses, which integrate aspects of language learning into mathematics education, are 
going to be developed and their effects will be evaluated in an ongoing PhD study using video-
vignettes and interviews.  

International large-scale studies like PISA and TIMSS and other studies have repeatedly shown that 
a connection between the first language, language proficiency and the mathematical performance of 
students exists. Especially skills referring to a language register described by Gogolin (2009) as 
academic language (so-called ‘Bildungssprache’) have proven to be vital for educational success. In 
mathematics classes different language registers are needed and used: everyday language, 
‘Bildungssprache’ and mathematical language. Halliday defines register as “a variety according to 
use; a register is what you speak at the time, depending on what you are and the nature of the activity 
in which the language is functioning” (Halliday, 1978, p. 31). Consequently there is no translation 
from one register into another without shifts in meaning and function, but it is often not possible to 
make a clear separation between the registers. The concept of ‘Bildungssprache’ refers to the ability 
to employ language skills in order to access knowledge and participation in education discourse 
(Gogolin, 2009). Language in mathematics teaching and learning has not only a communicative, but 
also a cognitive function (Maier & Schweiger, 1999) and is for instance very important for developing 
mathematical concepts. Although teachers should promote language skills according to the German 
national standards, language is seldom addressed explicitly in ordinary classroom activities (Schütte 
& Kaiser, 2011) and future mathematics teachers at the University of Hamburg are currently not 
obliged to attend courses focussing on the subject-specific role of language in teaching and learning. 
For this reason, elements of inclusive language teaching are going to be developed, tested and 
implemented into two consecutive courses at the master studies in mathematics teacher education.  

The first course refers completely to the role of language in teaching and learning mathematics and 
offers opportunities to learn about linguistically diverse students from the perspective of intercultural 
education, applied linguistics and language teaching. The second course accompanies the school 
internship and, therefore, is more general about mathematics education and pedagogical aspects such 
as classroom management, nevertheless continuously considering language and its learning. The 
future mathematics teachers will be enabled to recognise different registers and related to that 
potential language barriers in written mathematics texts as well as in text-production tasks. For that 



aim future teachers analyse mathematical tasks and text-vignettes as well as video-vignettes 
displaying mathematical solving processes of students. The future teachers will be familiarised with 
the approach of Scaffolding (Gibbons, 2002), which has proven to be effective for language-based 
learning difficulties and plan lessons or parts of it combining language and mathematics learning. In 
the second course the future teachers are developing even more awareness of the role of language by 
reflecting their own or joint classroom observations i.a. in the accompanying course at the university.  

The ongoing PhD project aims at examining the changes concerning noticing and beliefs of the future 
teachers. The main research question is: to what extent can relations be reconstructed concerning the 
awareness of the role of language in mathematics teaching before and after an intervention? Before 
and after every of the two courses semi-structured interviews will examine which beliefs about the 
relationship between language and mathematics teaching the future teacher hold and how these beliefs 
may change. Based on the situated approach for measuring competencies by Blömeke, Gustafsson 
and Shavelson (2015) and the concept of noticing (Sherin, Jacobs & Philipp, 2011) the project 
presented here aims at coming closer to the measurement of the performance of the future teachers 
by evaluating situation-specific skills with a video-vignette. Interviews (pre-and-post) based on a 
video-vignette will provide data which linguistic aspects of teaching and learning mathematics future 
teacher notice, how they would decide to react in a specific situation and how this may change due 
the two courses. All data will be analysed by qualitative text analysis (Kuckartz, 2014).  
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Teaching and learning mathematics is based on the use of language: for introducing and defining 
new mathematical objects, discussing different ways of calculating, documenting the results of a 
proof or explaining how to handle teaching materials, different representations are used, but almost 
always accompanied by language. Language as a medium and an aim of mathematics lessons at 
school is a well-known object of didactic research. In the last years one can observe a focus on 
differentiations and transitions between different languages (or registers of one language) used in 
mathematics (Duval, 2006) or questions of teaching in multilingual classrooms (Ahrenholz, 2010; 
Prediger, Clarkson & Bose, 2016). On the other side, the professional knowledge of teachers, and 
questions on how this can be developed in pre-service and in-service lessons gained considerable 
interest. Beside others “Explaining” was recognized as an important factor of effective instruction 
(Kunter et al., 2013; Vogt, 2009). Bringing this together, the question is, which language-related 
competencies a teacher has to have as part of his professional knowledge and when, where and how 
he can achieve this. Therefore, several universities in Germany designed and developed exemplary 
trails in preservice teacher-studies in the last years. In most of the cases these are extra, but 
obligatory courses on “German as second language”. Another approach is followed for example by 
a project called “Umbrüche gestalten – Sprachen bilden Niedersachsen” (languages educate Lower 
Saxony) (http://www.sprachen-bilden-niedersachsen.de/index.php/projekt.html) of all universities 
with teacher education in Lower Saxony. 

A “Language Curriculum” (SuM_MaSt) 
Following the approach of the project “Umbrüche gestalten” we developed a pre-service “language 
curriculum” for teachers of mathematics (based on experiences of the implementation of language 
studies in teacher studies mentioned above) following four assumptions for learning opportunities 
(used to guide the curriculum):  Learning tasks should: 

(a) be spread from the beginning to the end of the academic studies, like a vertical spiral 
curriculum, 

(b) be integrated in mathematical lessons, for the technical language of mathematics is best learned 
by doing mathematics; certainly, there are also a couple of explicit language-related courses, 

(c) evoke an active and reflective handling with language in learning situations and be applied and 
tested in authentic situations,  

(d) include individual feedback and allow some comparative measurements.   

And in addition: It should be transferable to other designs of academic studies for teachers at other 
universities and to other subjects. 



Among the language and language learning competencies are the ability to use the language of 
mathematics and some of the other languages used in schools (e.g. colloquial language or 
“Bildungssprache”). This needs to be done adequately to learners and learning situations. After 
some pre-studies the design based research project SuM-MaSt started fully 2016 at the University 
of Hildesheim. Around 20 learning task were implemented: 

 tasks integrated in mathematical lectures, for example using different registers and
representations while explaining main topics, verbalize formulas and write down
explanations for pupils, deal with historical sources in the original language
(feedback/evaluation (qual.): correctness of the mathematical content and adequacy of
language)

 explicit courses about “Language and Mathematics” contenting representations of
mathematical objects and concept building, communication and argumentation, language
sensitive teaching material; (feedback/evaluation: analysis of the results during the lessons)

 theoretical inputs in lectures, for example “Explaining” in the lecture “arithmetic”
(feedback/evaluation (qual.): describing the development of linguistic competencies)

 practical exercises in schools.

Beside further designing, implementing and evaluating of language-focused tasks in the mathematic 
curriculum in the next terms we will take first steps to a transfer of these tasks to other subjects, 
beginning with the natural sciences.  
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Scope and focus 
Thematic working group 10 is interested in discussing diversity and mathematics education within 
the realms of the societal, the cultural, and the political. In the work of the group, mathematics 
education is assumed to refer to more than the encounter between an individual and a mathematical 
object and is considered to occur in wider contexts than just classroom settings. The group is 
specifically interested in discussing research that addresses how diversity affects students´ 
possibilities to learn in mathematics education. Diversity also occurs in relationship to who is doing 
the research and who is being researched, posing methodological issues of an ethical nature. Hence, 
multiple diversities intersect, and in so doing pose challenges to intended and actual learning and 
teaching practices in their multiple forms. 

Organisation of TWG 10’s work 
In the seminars during CERME10, papers were presented in a similar way to what had occurred 
previously, in that the authors did not present their own paper. Instead each paper was presented by 
another author giving a description of the main ideas from the perspectives adopted in the paper. 
The author(s) then had a few minutes to add to or comment on the presentation, with the possibility 
of pointing out or emphasising important aspects. In the end of each session, there was time for 
discussing the presented papers. These discussions firstly occurred in small groups and then were 
shared in the whole group. A poster session with 5 posters was held, in addition to the general 
CERME poster session. Here each author had 3 minutes to describe the content of their poster. The 
poster authors then positioned themselves next to their respective posters to engage in discussions 
with group members. 

The papers discussed 
Below are the papers presented during our sessions with the respective presenter(s).  

Papers and authors Presenter 

How Sámi teachers development of a teaching unit influences their 
self-determination by Anne Birgitte Fyhn, Tamsin Meaney, Kristine 
Nystad, Ylva Jannok Nutti 

Anette Bagger 

Importance and possibility of integrating gender competence as a 
key qualification in mathematics teacher education by Anina 
Mischau, Katja Eilerts 

Helena Roos 

Cultural diversity as a resource or an obstacle for teaching practices Tamsin Meaney 



in multicultural milieu: Experience of a training course for Italian 
teachers about Chinese Shuxue by Benedetto Di Paola, Giovanni 
Giuseppe Nicosia 

Table 1: Session 1.  
 

Integrating critical theory and practice in mathematics education by 
David Swanson, Laura Black 

David Kollosche 

Incepted neoliberal dreams in school mathematics and the Chilean 
experience by Melissa Andrade-Melina 

Anne Birgitte Fyhn 

Towards cultural responsiveness in mathematics education by 
Swapna Mukhopadhyay, Brian Greer 

Hilary Povey 

Content-related and social participation in inclusive mathematics 
education by Judith Jung, Marcus Schütte 

Colin Jackson 

Social class and "ability" grouping in mathematics in English 
secondary schools: A review by Colin Jackson 

Sabrina Bobsin 
Salazar 

Table 2: Session 2 
 

Subjective theories of teachers in dealing with heterogeneity by 
Elisa Bitterlich, Judith Jung, Marcus Schütte 

Benedetto di Paola 

"No, it just didn't work": A teacher's reflections on all-attainment 
teaching by Colin Jackson, Hilary Povey 

Javier Díez-Palomar 

The socio-politics of teacher explanation in mathematics education 
by David Kollosche 

Elisa Bitterlich 

Diversity in an inclusive mathematics classroom by Helena Roos John Keogh 

“It is only a test”: Social aspects of displaying knowledge in 
mathematics for Second Language Learners (SLL) by Anette Bagger 

Melissa Andrade-
Melina 

Table 3: Session 3 
 

Polish parents and mathematics education in Swedish preschools by 
Dorota Lembrér 

Judith Jung 

(Wanting to do) Ethical research in a shifting context by Andrea 
Eikset, Trude Fosse, Troels Lange, Johan Lie, Magni E. H. Lossius, 
Tamsin Meaney, Elena Severin 

David Swanson 

Mathematics at the enterprise: Industry, university and school 
working together to facilitate learning by Hans Kristian Nilsen, 

Brian Greer 



Anne Vegusdal 

The context of workplaces as part of mathematics education in 
vocational studies: Institutional norms and (lack of) authenticity by 
Lisa Björklund Boistrup, John Keogh 

Alex Montecino 

Table 4: Session 4 

School mathematics education through the eyes of students in 
Ghana: Extrinsic and intrinsic valuing by Wee Tiong Seah, Ernest 
Kofi Davis, Monica E. Carr 

Anina Mischau 

Teaching practices in a mathematics classroom and their connection 
to race and racism in the United States by Sabrina Bobsin Salazar 

Dorota Lembrér 

Exploring Roma learning Mathematics: A sociomathematical view 
by Javier Diez-Palomar 

Wee Tiong Seah 

The mathematics teacher’s quasi-Darwinism. Problematizing the 
mathematics education research by Alex Montecino 

Hans Kristian Nilsen 

Table 5: Session 5 

Themes discussed in the TWG 
As at previous CERMEs, TWG10 discussed political aspects of mathematics education intensively. 
One way of addressing political aspects of diversity in mathematics education is by assuming 
research as always, in one way or another, constituting political acts. This assumption rejects a naive 
idea of research as politically neutral, providing objective data that is used to rationally guide policy. 
An example is Fyhn, Meaney, Nystad and Nutti (this volume) who address cultural responsive 
teaching of mathematics in relation to Indigenous (Sámi) teachers’ self-determination. The 
acknowledgement of the political nature of research constitutes a recognition of how the issues we 
write and talk about as researchers are inextricably political and framed by world-views. Political 
aspects also concern how the broader political context of mathematics education, as it is performed 
in a variety of contexts, affects the teaching and learning of mathematics. Two papers looked at the 
intersection of school and workplace and the impact of mathematics education (Nilsen & Vegusdal, 
Boistrup & Keogh). Kollosche (this volume) discusses the role of teacher explanation for student 
passivity, also in relation to the discipline of mathematics. Another example of addressing political 
aspects derives from Sweden, where Bagger (this volume) addresses the effects from national 
testing on students “in special need”. Political aspects present in TWG10 also concern how diversity 
among learners may have consequences in terms of unequal access to the learning of mathematics. 
This research may include critical investigations of the impact of socio-economic or cultural 
backgrounds, as well as other background factors, as grounds for unequal mathematics education, 
because of a sorting of students so they receive different learning opportunities (e.g. Salazar, this 
volume). A tension here is previously presented research to the group which confronts “the official 
discourse, which posits inclusion and equity as fundamental goals of mathematics education” 
(Straehler-Pohl & Pais, 2013, p. 1792, see also Valero, 2013). There are more recent papers 



addressing ways of overcoming such tensions in research through collaboration between researchers 
adopting complementary perspectives, with teachers and students (Black & Swanson, this volume), 
hearing the voice of parents (Lembrér, this volume) or bringing individuals’ voices to the 
discussion, highlighting potential opportunities to overcome such tensions (Díez-Palomar, this 
volume). Still, the work in the TWG, with its developments and tensions, can be viewed as 
constituting part of a resistance to a rampant global homogenization that is central to the neoliberal 
agenda, which stands in ideological opposition to the group’s commitment to valorizing diversity 
(Mukhopadhyay & Greer, this volume).  

The ethics of doing research, in relation to diversity of various forms, has been addressed in the 
TWG (e.g. Eikset et al., this volume). The TWG is united in a strive for social justice, inclusivity 
and variety. Consequences of an engagement in ethical considerations is reflexivity in research, 
where also the researcher’s acts are critically observed (Montecino, this volume). Ethics also 
includes the impact of our actions within the context in which we are conducting our research and 
many addressed that we must pay attention to the consequences of our research on the end-users’ 
(students, teachers, families, etc.) opportunities to improve their chances to learn mathematics 
and/or to legitimize their own social and cultural knowledge about mathematics (Mukhopadhyay & 
Greer, this volume). Diversity as a concept, and the connotations hereof, were problematized in the 
TWG (e.g. Roos, this volume). One aspect here is that diversity as a concept may assume a norm 
that there is something normal from which, for example, diverse students deviate, while “diversity” 
instead should be viewed as the norm itself. A connected matter here are words that mean 
something similar to diversity, but perhaps with other connotations; difference, heterogeneity, 
multiplicity, variety, and connected words: democracy, inclusion/exclusion, segregation/integration, 
empowerment. With an interest in the broader context of settings for mathematics education, the 
political times of today with neoliberal agendas affecting the framing of mathematics education, has 
been part of the work of the group during the last CERMEs (e.g. Andrade-Melina, this volume). 
Aspects here are political decisions governing towards mathematics education to be effective and 
market based, which are forces where diversity among students may be disturbing, rather than part 
of the responsibility of the system. We expect such issues to be elaborated more during future 
meetings, while also addressing the roles of mathematics education in times where populistic policy 
making is becoming more common. 
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This work aims at portraying a rhizome of circulating naturalized truths about who citizens should 
be and how they should act within neoliberal governmentality. It does this by a historization of an 
incepted belief entangled in diverse social spheres. It unfolds how the ideas of human capital and 
welfare become a top right in mathematics education. The ‘Chilean experience’ is used as an example 
to construct a rhizomatic historization of events, strategies and technics of government that enabled 
the inception of neoliberal dreams into school mathematics. 
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Introduction 
An idea. Resilient... Highly contagious. Once an idea has taken hold of the brain it’s almost 

impossible to eradicate. An idea that is fully formed—fully understood—that sticks; right in there, 
somewhere (Dominic Cobb, Inception). 

It is intriguing how highly perceived the Chilean models are—economy, education or health 
systems—to other countries. According to Taylor (2003), Chilean systems have been taken as models 
‘worthy of emulation’. Is Chile doing something marvellous? The country has been seen as an 
example of organization and ‘proper’ policies for economic progress and welfare (Silva, 1993). Its 
policies are considered as trendsetters among privatized pension systems (see Mesa-Lago, 2012), 
among health care reforms (see Bruce, 2000), and it was one of the first countries implementing 
neoliberalism as a framework in education (Aravena & Quiroga, 2016). The results in PISA, 
particularly in mathematics literacy, have progressively increased over the years—2000 (384); 2006 
(411); 2009 (421); 2012 (423). And so, Chile has risen to be seen as one of the most developed 
countries in Latin America (Gregorutti, Espinoza, González, & Loyola, 2016). Chile is considered, 
by the World Bank’s annual reports on development, the proven example of the benefits embedded 
in ‘conforming’ to a neoliberal approach to social policy.  

[Chile] is often viewed as a trendsetter in introducing fundamental and far-reaching neoliberal 
reforms […] the Chilean example as been heralded as proof of the success to be gained from an 
uncompromising commitment to neoliberal policy prescription (Taylor, 2003, pp. 21-22) 

But… it is not all sunshine and roses! By building on Foucault’s work, this paper aims at portraying 
how neoliberal discourses about mathematics education have been (re)produced and how they have 
circulated amongst diverse spheres of human interaction, (re)shaping citizen ways of being and acting 
in the world. It does this by taking “a critical attitude towards those things that are given to our present 
experience as if they were timeless, natural, unquestionable” (Rose, 1999, p. 20). This paper deploys 
a historization of the present of entangled historical events, strategies and techniques that made 
possible to incept the neoliberalism into school mathematics in Chile. This narration is not a critique 
about the implementation of educational policies in Chile; rather it is the tracing of naturalized truths 
in mathematics education as an assemblage of diverse governmentality techniques (Foucault, 1991). 



These naturalized truths are traced in five moments. First, regarding the introduction of neoliberalism 
as a set of political movements. Second, regarding neoliberalism as a system of reason for economic 
improvement. Third, regarding the specific type of citizen that the new economy requires, a consumer 
of goods. Fourth, regarding the productive subject of schooling for the market, a competitive subject. 
And finally, regarding how school mathematics becomes the vehicle to shape the desired subject for 
economic growth.  

The plot of the movie “Inception” inspires the style of writing of this paper. In this movie a series of 
dreams are unfolded. Each dream should be understood as a new and deeper dream occurring inside 
the previous one. The dreams do not follow a chronological arrangement. It is not a lineal story; it is 
a rhizomatic construction. A rhizomatic network allows a non-hierarchical multiplicity of entryways, 
of dimensions, lines; it has no beginning or end, but always a middle: “The rhizome is altogether 
different, a map and not a tracing […] The map is open and connectable in all of its dimensions; it is 
detachable, reversible, susceptible to constant modification” (Deleuze & Guattari, 1987, p. 12). 
Hence, all dreams are connected not as a sequence of events, but as continuities and discontinuities. 
All narrations are entangled, even in different times, even in different spaces, and even in different 
voices. The paper is written in this form in alignment with Foucault’s rejection of causality.  

We consider the understanding of the way one event succeeds another as a specifically historical 
issue, and yet we do not consider as an historical issue one which in fact equally so: understanding 
how two events can be contemporaneous […] History is quite frequently considered as the 
privileged site of causality […] But we have to rid ourselves of the prejudice that history without 
causality would no longer be history. (Foucault, 1999, p. 92)  

First dream: The Cold War and the neoliberal revolution 
It is the late 60s, in a country apparently far from the War, but close enough to be in the spotlight. 
There is the danger of it becoming the first socialist nation in South America, and this is threatening 
for the US. Silent voices were saying: “under no circumstances should Allende be elected!” But, he 
was… Salvador Allende became the first democratically elected socialist president in the Western 
hemisphere. What a revolutionary! Fighting for the people! Chile has begun to increase its role in the 
provision of social services. 

By subsidising the reproduction of the labour force through allocating resources to the 
development of state systems of health, education, housing, staple-food subsidies and social 
insurance, universalistic social policies tended to reinforce the purchasing power of wages thereby 
expanding domestic markets for industrial goods. (Taylor, 2003, p. 23) 

Something is starting to go extremely wrong in Chile. Suddenly there commenced a crisis that led to 
most of the population clambering for improvement. The, so-called, socialist experiment “united 
capitalists, landowners, the middle classes, and their political party allies against labor, peasants, and 
leftist part” (Silva, 1993, p. 535). Apparently the US government, also pressuring the World Bank 
and the Inter-American Development Bank to do the same, minimized the aid they provided to 
Chile… And so, Chilean foreign reserves plunged from $400 to $13 million in one year (Moreno, 
2008). Discontent people wanting the president out are growing in number. It is socialism versus 
capitalism… “$7 million channelled to anti-Allende groups”, according to a report of the US senate 
(Moreno, 2008, p. 93). And he was overthrown on September 11th 1973, by the military force 



commanded by General Pinochet. Now, neoliberal ideas are being forced into Chilean minds that are 
afraid all the time, afraid for their lives, afraid to raise their voices. Meanwhile, those in favour of the 
new regime are enjoying the pleasures of the new order (Salazar, 2003).  

Second dream: The Chilean experiment, Friedman and the School of Chicago 
The year is 1950; the place, Chicago. Milton Friedman is developing a new approach to economy 
theory. This new theory is in opposition to socially conscious economies, which have been prominent 
in Western governments after 1929. Friedman believes that “economic benefit could best be 
optimized if the individual has the autonomy to pursue his or her own self-interest” (Moreno, 2008, 
p. 92). This new theory was the hope for a group of technocrats that moved to Chicago, the “Chicago 
Boys” (García & Wells, 1983). In the 70s, Pinochet decides to leave the economical management of 
Chile on the hands and knowledge of the Chicago Boys. This is going to be the first time that a group 
of Friedman has “an opportunity to influence governmental policy and put their theories into practices 
[…] They already have a complete programme aiming to re-structure the economy and to reverse 
Allende’s social reforms” (Moreno, 2008, p. 94). The military regime and the Chicago boys 
established neoliberal economic and social policies here (Salazar, 2003). “[T]he market supplanted 
state intervention in the economy, except in labor relation” (Silva, 1993, p. 527). 

Within the first six years of dictatorship, the ‘shock therapy’ was the only approach to curb social 
policy and state expenditure (Huber, 1996). Chilean reform “has been led by both the advocates of 
monetarism, located principally in US institutions and universities, and by the Chilean reformers 
themselves” (Taylor, 2003, p. 22). Neoliberal ideas were taken as a sort of ‘second independence’ 
and, also, an entrance to the first world of developed countries (Salazar, Mancilla, & Durán, 2014).  

Third dream: Consumerism as the ever-growing economy  
Here, in this place of earth, everything could be marketed, everything could be sold, and most people 
would feel the urge to buy it. Health and education are, by constitution, social rights to every citizen. 
But here, those basic social rights fade into consumer goods. Public and private enterprises competing 
with each other, providing services for customers willing to pay for them, after all it is their choice 
(Taylor, 2003). Parents have the opportunity to choose freely the type of school—municipal, 
subsidized private or fee-paying private schools—and the type of education they want for their 
children (Mizala & Romaguera, 2000). Free choice… if they can afford it!  

Public against private institutions… In a place where private institutions have the right to charge in 
excess to ensure better and better quality. Private schools enjoy, without any guilt, “having greater 
resources, enabling a stronger quality of education to be taught, and thereby reinforcing the desire of 
parents with available income to send their children to such schools” (Taylor, 2003, p. 34). After all, 
the more you pay the better you get; the less you pay the worst you obtained. In a time and place 
where education policies are transformed into economic policies of education (Castiglioni, 2001). 

Fourth dream: Competitiveness in schools, education and freedom of choice 
After the introduction of ‘welfare’ as a method to increase efficiency, “the element of competition 
and the response of enterprises to public desires as indicated by market forces were suggested to 
create an optimal allocation of resources throughout welfare provision” (Taylor, 2003, p. 26). The 
reform of the 80s, under the military regime, changed Chilean education system. Decentralization 



was key to encourage private providers to enter the market (Mizala & Romaguera, 2000). And there 
was more, so much more than that. This reform involved a reformulation of the interplay between 
state and schools, a voucher system that indirectly funded schools by assigning the resources to 
students (Parry, 1997). This measurement left schools receiving financial aid depending “on the 
number of students that they could attract […]. If schools were unable to compete in this new 
marketplace environment, they would be allowed to fail and face dissolution” (Taylor, 2003, p. 33). 
A highly competitive system generated by an educational market and by the policies aiming at 
improving the quality of education (Mizala & Romaguera, 2000) was shaped. And so, state 
accountability systems were able to reward and/or punish schools by allocating resources regarding 
the performance of each school (Elacqua, Martínez, Sontos, & Urbina, 2012). A system in which, 
schools, teachers, students are constantly competing and being assessed. 

Fifth dream: The sky is the limit! Mathematics to the people 
Welfare and mathematics, always hand by hand. Here, mathematics has been granted with a great 
importance and status. In the 60s, logic was taken as the foundation of every science, reasoning 
accurately and rigorously was the core of any argumentation and of critical thinking (Diaz & Giudici, 
1970). Mathematics was the one that helped to develop reasoning and logical thinking and reading 
proficiency was thought as a tool to better understand mathematical instructions (Ministerio de 
Educación & CPEIP, 1967). In the 80s, the military regime reformed the curriculum and school 
textbooks to reflect the regime’s doctrine: “education was recast to promote studies functional to the 
new productive structures of Chilean society, whereas traditional arts and humanities studies were 
discouraged” (Taylor, 2003, p. 32). It was indispensable to embody in individuals certain knowledge 
skills—mathematical knowledge—, and attributes to facilitate the creation of personal, social and 
economic well-being (OECD, 2001). Economic growth was about human capital. 

National assessment started to be taken as the key to achieve economic progress, on the one side, to 
test current policy changes, on the other, as a mean to set standards. And so, competitiveness and 
accountability, within school mathematics testing, led to higher performances, higher incomes, higher 
social mobility and welfare (OECD, 2014). Nowadays, by knowing students’ numeracy proficiency 
in PISA it is possible to predict, amongst many others, their likelihood of being employed or to 
calculate how different their hourly earnings would be (OECD, 2015). And so, the promised state of 
welfare is side by side with mathematics proficiency. Mathematics is now the key for a brighter future, 
all students have to do is to be good at math and the sky will be their only limit! [End of dream 5] 

The standardized test SIMCE has been a key element to promote competitiveness and pressure to the 
system. Since its results are publicly published, it becomes an objective indicator to assess school 
performances (Mizala & Romaguera, 2000, p. 393). It also enables parents, as consumers, to demand 
better services for their children (Meckes & Carrasco, 2010), for students to be successful and 
entrepreneurs. [End of dream 4] 

School mathematics is now an investment! Reforms have shaped education into a capitalist 
marketplace, by promoting entrepreneurial profit-minded investment and by remodeling education to 
consolidate the productive structures of economy (Taylor, 2003). [End of dream 3] 

And the so-called ‘economic miracle’, product of the economic growth in the late 70s, helped raising 
the prestige of neoliberalism “under the banner of ‘the Chilean model’” (Taylor, 2003, p. 25). By 



now, Chile has become famous for its neoliberal restructuring followed under General Pinochet 
(Silva, 1993; Aravena & Quiroga, 2016). [End of dream 2] 

This is it! Chile is no longer an underdeveloped country (Salazar et al., 2014). Chile is now part of 
the first world, the “tiger” of Latin America (Teichman, 2016). [End of dream 1] 

Incepted neoliberalism 
You create the world of the dream. You bring the subject into that dream and they fill it with their 

subconscious (Dominic Cobb, Inception) 

From a Foucaultian perspective, conduct is governed through diverse techniques, strategies, and 
devices (Foucault, 1991), within a space of government that “is always shaped and intersected by 
other discourses” (Rose, 1999, p. 22). In doing so, each individual conducts him/herself by 
(re)shaping his/her own modes of being and acting in a space of ‘regulated freedom’ and under a 
promised state of welfare. In this sense, “people are governed by and through their own interests” 
(Cotoi, 2011, p. 113). This is precisely the idea behind the ‘inception’ of a neoliberal mentality. A set 
of naturalized truths circulating amongst diverse times and places, knitting a web to govern the self 
and to regulate habits and desires of cultural and historical subjects through school mathematics. 
These discourses help governing productive citizens, in the sense that intend to insert subjects in 
regulatory practices that (re)shape their conduct “without interdicting their formal freedom to conduct 
their lives as they see fit” (Rose, 1999, p. 23). Reforms, according to Dussel (2003, p. 94), “have to 
be understood as part of government technologies that intend to shape the way people are to act, think, 
and feel about the world, that combine the old and the new in unique ways”.  

One possible narrative to understand the success of neoliberalism in Chile could be grasped through 
the articulation of certain discourses about consumerism and competiveness. SIMCE in mathematics, 
for example, became the first step of knowledge consumerism and of a marketable education/society. 
SIMCE’s results are publically published in national newspapers and widely discussed through other 
means of public communication, so parents and society could judge schools by their performance in 
standardized tests. ‘Judge’ in the sense of deciding which school is the best option for their children’s 
future. This marketing of schools and teachers leads to the most utopian non-sense practices. For 
example, within the belief that welfare is only achieved by a high quality education, parents, in order 
for their children to be enrolled in those schools with “higher quality”—with good scores in national 
tests—are willing to stay all night in line, outside a school, to submit the admission application. Figure 
1 shows a Chilean newspaper, Las Últimas Noticias, reporting the news: “Parents slept on the street 
under -3,6o Celsius because of enrolment. They are trying to enroll their children in pre-school for 
next year in Santa María School in Osorno”. One of the parents, who waited in line for 12 hours said: 
“It is demeaning but what else can we do. This school is good and affordable. I have three kids and 
they all need to study”. 



 
Figure 1: News about parents staying all night outside a school 

These discourses are not isolated from the ones of school mathematics. The importance that 
mathematic literacy has within OECD’s indicators help move research to be about how to improve 
students’ performances in mathematics. For example, in order to be successful in SIMCE, students 
should not be allowed to miss classes. If students are “absent 9 days during the school year (the 
sample average of absences) reduced performance by at least 23% of the standard deviation of the 
score on the SIMCE mathematics test” (Paredes & Ugarte, 2011, p. 199). Welfare can also be 
measured in relation to students’ performances in national tests, by correlating SIMCE scores in 
mathematics to predict a student’s future income (Bharadwaj. Giorgi, Hansen, & Neilson, 2012). 

The Chilean Ministry of Education released the “Learning standards” in school mathematics to help 
teachers evaluate “what students should know and are able to do for displaying, in national tests, 
appropriate levels of achievement” (MINEDUC, 2013, p. 4, my translation). These learning standards 
categorized students in three levels of achievement that, at the same time, predict their future outcome 
in SIMCE in mathematics. So, if students do not want to be label at the lowest level, they have to 
engage in regulatory school practices, they have to compete with their classmates and with 
themselves. In this fashion, SIMCE in mathematics also operates as a technique to generate ‘self-
entrepreneurs’, “individuals that self-regulate, self-direct and are continuously in a process of 
redefining their competences” (Cotoi, 2011, p. 116).  

As portrayed within the dreams, Chilean neoliberalism have been (re)producing discourses that 
circulate within diverse time and places in order to obtain economic growth, progress and welfare 
through school mathematics. School mathematics, since it was thought to shape productive citizens, 
was taken as the key for Chile to become a developed country. Mathematics needed to be a good that 
people wanted and were willing to consume. With marketable school mathematics, whomever 
wanting to achieve welfare would have to pay for higher quality. And, therefore, Chilean economy 
should increase. This would not have occurred without the dictatorship and Friedman thoughts: 
Economy would be best optimized if people have the freedom to pursue their own self-interest. 
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This article discusses social dimensions connected to assessment in mathematics for second language 
learners in Sweden. The data consist of two semi-structured interviews with students in the ninth 
grade of compulsory school. Foucault’s thinking on discourse and positioning was advocated as a 
frame for analysis. The units for analysis were students’ statements about caring and the other in 
connection to the display of knowledge in mathematics. Results show that caring of and for others 
are important resources in managing assessment and believing in the future. 

Keywords: Second language learner, assessment in mathematics, opportunity to display knowledge. 

Introduction of the problem area  
Measures of achievement are often situated as measures of quality in education (Lundahl & Tveit, 
2014) that promote striving towards high quality, yet also threaten equity at times (Llewellyn & 
Mendick, 2011). An example of this are recent educational reforms including earlier and extended 
testing in Sweden (Regeringen, 2006). These reforms have led to an enhanced focus on the measures 
of knowledge, while at the same time school agencies generate reports on inequalities in the measured 
knowledge and grades in mathematics between schools and groups of students. Differences are 
connected to gender, class and ethnicity (e.g., Skolverket, 2015). Achievement in national tests is 
central in grading as the results of the national tests in mathematics often are used to indicate students’ 
grades (Skolverket, 2016). Not having an approved grade in mathematics at grade nine in Sweden 
means that a student does not have access to public programs at the upper secondary school in the 
following year. The opportunity to display knowledge then becomes a critical point of departure for 
the individual’s possibilities for positive development and positioning in mathematics. This turns the 
assessment grade in mathematics into a gatekeeper to get access to higher education, and is a 
gatekeeper that keeps out second language learners (SLL) more often. 

This portrayal of circumstances alludes to societal, historical, social and political discourses 
influencing an individual’s mathematical development and life-choices by making some positions 
available and other positions not available. Researchers are currently engaged in issues of for whom 
education functions and thereby which students can have access to success in education and life (Au, 
2008; Peters & Oliver, 2009). The focus on disadvantaged groups of students then affords new ways 
of understanding and approaching mathematics education (Gutiérrez, 2013). Alternative ways of 
relating to and understanding assessment are needed and in this, listening to the students as opposed 
to only labelling them, are of core importance (Hodgen & Marks, 2009). Research that is paying 
attention to students’ stories also contributes to knowledge about the lived and social dimensions of 
assessment that needs to be paid attention to according to Black and Wiliam (2010).  

In this article, I strive to recognize and study the production of (in)equity in connection to grading 
and national assessment in mathematics. I highlight aspects that might be foreseen in the general 
debate and work in the area of mathematics education. Through this, I contribute to the identification 
of possible resources that could promote paths for increased equity. In regard to the concept of equity, 



I draw on Boaler’s (2006) concept of relational equity. In a school where participants (do not) learn 
to respect differences and each other in the mathematics classroom, relational equity is (not) lived 
and taught. This understanding can be applied on both the micro-, meso- and macro-levels of 
education and opens up studying equity beyond the gap-gazing of diverse achievement levels in 
mathematics (e.g., Gutiérrez, 2008; Rodrigues, 2001) something that actually might counteract equity 
and hold disadvantaged groups of students behind (Gutiérrez & Dixon-Román, 2011). Following 
from this point of departure, resources for producing equity are to be found in lived, diverse, relational 
and social aspects in the process of assessment and displaying knowledge. I contribute to the 
identification of some of these resources through the study of social and relational aspects connected 
to assessment and the opportunity to display knowledge in mathematics for SLL. In this paper, I 
specifically contribute to the act of listening to and exploring experiences of students within 
subordinated groups by highlighting experiences of SLL in connection to displaying knowledge in 
mathematics. The purpose of this paper is to contribute to knowledge about social dimensions of 
displaying knowledge for SLL in mathematics and how this can be related to future prospects 
connected to the subject. The investigation examines three research questions: Q1) How do 
statements about the other and caring appear in talk of displaying of knowledge? Q2) How do 
statements about the other and caring appear in talk of future prospects connected to the subject? Q3) 
What discourses are activated and what positions are available in the students’ talk? Here, caring 
refers to both care for oneself and for/from others. 

Theoretical framework 
A statement works as a mediator of knowledge and truth that exists in a field of power-relations and 
is embedded in discursive formations with other statements (McIlvenny, Klausen & Lindegaard, 
2016). Discourses are understood as governing and positioning individuals through power and 
knowledge (Foucault, 1994), and positioning is understood as “the discursive process whereby selves 
are located in conversations as observably and subjectively coherent participants in jointly produced 
story lines” (Davies & Harré, 2001, p. 264). Therefore, analysing students’ statements will reveal 
discourses that are activated in connection to the display of knowledge and assessment in 
mathematics. In order to capture social aspects of displaying knowledge in mathematics, the role of 
others and caring for/by others are used in this project (Black, Solomon, & Radovic, 2015). Black et 
al. (2015) have shown that these phenomena may be powerful cultural resources in shaping a positive 
identity in mathematics. Black et al. (2015) have drawn on Bakhtin. Instead, I use the concepts as 
signal-words, which reveal the representation of a social and lived aspect of displaying knowledge in 
mathematics. 

Method and selection  
This paper presents the analysis of two interviews with SLLs. Their names are fictional. Amina and 
Ahmed are 15 years old and have both struggled with their learning in mathematics since third grade. 
They did not pass several of the goals in mathematics in their third and sixth years and have had 
special support during this time. Amina achieved the lowest passing grade (E) in her ninth grade and 
was given support in the form of special instruction. In the ninth grade, Ahmed did not receive any 
special support or adaptions in mathematics and got a D, which is the average grade. The data were 
collected right before the final choice of program to the upper secondary school was made and the 
final grade in compulsory school was given. Amina and Ahmed had just finished their last national 



tests in mathematics. Interviews conducted on this occasion were assumed to contribute to a 
concentration of their experiences of displaying knowledge and assessment. This selection of students 
is meant to bring specific questions concerning assessment in mathematics for SLLs into the forefront.  

The interviews were semi-structured. This approach was used to promote the student’s possibilities 
to talk freely and to display as much of their understanding and experience as possible (Kvale & 
Brinkman, 2014). The students could talk about anything they chose in the areas of support, 
assessment, national tests, grades, mathematics and the future. For the most part, I asked open-ended 
questions to follow each theme. Questions were, for example: why do you take these tests; what did 
you think/feel; did you talk about it to anyone and how; was it possible to get help; if so, how? These 
open-ended questions were followed up with more specific questions connected to what the 
participant had expressed, in order to get as good an understanding of and rich information about their 
experiences as possible. The positions and activated discourses were constructed through analysing 
statements about caring and the other in the context of displaying knowledge in mathematics. Key 
markers in students’ talk were statements involving others as for example peers, friends, family and 
school-staff and statements regarding caring about or being cared for by others. These statements also 
had to relate to assessment and/or displaying knowledge in mathematics. An interpretative reading of 
statements was done back and forth in order to identify the discourses and positions involved. For 
this purpose, an adaption of Foucault’s (2011) description on how to find discursive formations was 
used: 1) First, statements regarding caring and others were identified. 2) Secondly, the form of these 
statements was described. 3) Thereafter, the relations between these statements were described and 
the correlations and contradictions between these statements were explored. 4) Then, the statements 
were grouped and the correlations and contradictions between these groups were explored. 5) In the 
final step of the analysis, the discourses were construed. 

Ahmed and Amina: Interview data  
The interview data connected to the first two research questions are presented here. This presentation 
derives from the first four steps of the analysis. Overall, these statements concerned family or peers, 
and notably teachers were not mentioned at all in connection to statements concerning caring and the 
other. 

Statements about the other and caring in talk of displaying of knowledge  

The students talked about care of and from others primarily in relation to peers and as peers as a point 
of reference for the achievement or possibilities to succeed. Ahmed mentions that the girls talked 
about when the tests were, and, in a way, that could make each other nervous: “The girls are like: it 
is mathematics (national test) tomorrow, tomorrow! They mentioned it several times” (transcript 
005). But he was not nervous himself but rather preferred to take it all in time and put the test into a 
larger context of living: “If I make it, I make it... There is no point in worrying, life will continue 
anyway” (transcript 005). Even if he was at ease, he expressed concern about a friend who did not 
manage Swedish well enough in relation to the support given and the construction of the tests. The 
friend was very good in mathematics in his homeland but after coming to Sweden he almost did not 
pass: “He is not so good at Swedish so he thought it was a Swedish word he asked for help with. The 
teacher could not do anything but read it aloud again. In his homeland, he had like a high grade and 
here he barely passed” (transcript 005). Ahmed talks about care of himself in relation to effort and 



outcome on the tests: he is at peace himself with not being able to solve all the tasks, since they are 
constructed for all levels of difficulty. This circumstance also makes it hard for him to know if he 
passed the test, “I might think it is hard but I am on an E, the ones being on an A may not think it is 
so difficult. So, I would say it was ok, even if it was hard for me” (transcript 005). In this way, Ahmed 
refers to peers as a point of reference. Ahmed says that he made a deliberate choice not to study before 
the test: “I have myself to blame if it went bad, I accept my choices” (transcript 005). Amina talks 
about care of herself in relation to her knowledge in the subject, her effort and grades. She thinks 
mathematics is hard but does not think the grades reflect her experience of the subject as interesting 
and of herself as someone who is interested, learns and works hard: “I think math is easy, or easy, it 
is hard but I think it’s fun. What comes out shows in the grade… I put a lot of effort in math but I do 
not get good results. It does not show in the grade. It makes me feel disappointed, but at the same 
time it challenges me” (transcript 002).  

Statements about the other and caring in talk of future prospects 

The students’ statements regarding the future prospects are often connected to the family’s care about 
them. Both students expressed that parents and relatives had high expectations and beliefs in them 
and their engagement in mathematics. Amina connects the big expectations she has for herself to her 
parents’ expectations: “I think my expectations come from mum and dad, they expect big things from 
me” (transcript, 002). The family stressed that they should do what they could to enter upper 
secondary school. For example, if Ahmed did not get the lowest approved grade, the family would 
encourage him and not let him give up: “They would be grumpy with me and they would think that I 
should go back and keep on fighting and not stop” (transcript 005). In particular, Ahmed’s brothers 
had given him advice on how he should choose a program at the gymnasium in relation to 
mathematics and also had given him a good trust in upper secondary school, the mathematics involved 
in the program he chose and the teachers: “I have lots of expectations since I have a family from 
whom I have taken like a lot of advice. All have said very good things about the school and the one 
(brother) who studied construction has said a lot of good things about a teacher working there” 
(transcript 005). He also compared and talked about his siblings and how they succeeded and what 
they had done in their time at the upper secondary school: “You know, my brother, he says that there 
are three days of practice a week and that you get to learn a lot out in the field. Three weeks before 
finishing school he was offered an employment… He is 19 and he has a job” (transcript 005). 
Motivation was in this way connected to talk about parents’ and relatives’ anticipation of and belief 
in them and their engagement in mathematics. Although Ahmed could feel that they nagged at him, 
he understood and appreciated the advice to put effort into the learning in mathematics: “I understand 
their arguments and so and I really appreciate that they help me there and I understand the point. It 
seems to be important to get a grade in math” (transcript 005). 

Statements about the other and caring in talk of future prospects  

Care about themselves in connection to the future were expressed in relation to belief, struggle, 
worries and seriousness. Ahmed worried about the test a great deal afterwards, if some of the harder 
tasks would deprive him of his grade, his time in the upper secondary school and stop his journey in 
life and companionship with friends: “This is life, this is it. I would be very disappointed if I did not 
pass. Then I will miss a whole year… I do not want to wait a whole life for life to continue” (transcript 
005). The students meant that future choices may be limited depending on their knowledge, which 



made them both choose a program at the upper secondary school with a low level of mathematics. 
Statements about expressing care for others concerned peers and primarily gatekeeping functions in 
the assessment in mathematics, but also their own learning in positive anticipation regarding their 
ability to develop. Amina talks about her peers as participants in discussions about the grades, 
something that has been intensified over time as it is connected to mathematics as the gatekeeper to 
the upper secondary school: “We did not talk as much about it (earlier) but more later. That it is the 
grades that decide if we get into upper secondary school” (transcript 002). Here, Ahmed points 
towards the gatekeeping function in the national assessment of mathematics, which is worrying: “If 
you fail in math, then you are done… That is why I have been lying awake at night and thought about 
the test” (transcript 005). Both students anticipate that math will be hard in the upper secondary school 
but they are confident that they will learn. Amina says she is eager and ready to take on the challenge: 
“I am going to study at the upper secondary school and I have to be prepared that mathematics is the 
hard thing. I am very excited” (transcript 002). Both Amina and Ahmed are very confident that they 
can learn the mathematics they need when they finally begin the upper secondary school. Ahmed for 
example states “but I think that when I finally go to the construction program I will learn it, how to 
count with area and stuff” (transcript 005).   

Analysis 
The analysis answers the third research question and explores the discourses that are activated and 
the positions available. A discourse on managing assessment (connected to statements about peers), 
a discourse on progress (connected to statements about family), a discourse on future challenges in 
mathematics (connected to care about oneself) and a discourse on fairness (connected to care about 
oneself), were construed from the analyses of statements connected with caring and the other in 
connection to displaying knowledge and mathematics. The activated discourses led to some available 
positions for the students.  

The discourse on managing assessment concerns support, comparison and monitoring of support, 
grades and tests. Ahmed talked more about his peers and talked overall more than Amina. Amina 
referred to peers as a help in focusing on the grades and Ahmed expressed care for others. He then 
positioned both himself and his peers as disadvantaged test-takers due to language and the settings 
and construction of the national test. He also positioned girls as more nervous in their monitoring of 
test occasions.  

The discourse on progress circles about responsibility, advice and expectations stemming from the 
families. Expectations were then blended with demands on focus and progress. Hard working and 
you can if you want to were positions connected to the family discourse. These positions had 
connotations of personal responsibility, achievement and future prospects.  

The discourse on future challenges in mathematics held statements in which caring about oneself was 
connected to a position in which limitations in knowledge blended with striving to learn and the 
outcome that learning was to be conquered.  

The discourse on fairness connects the student’s individual responsibility, effort and knowledge to 
the achievement and assessment in mathematics. If the effort is made, the knowledge should be 
retrieved and following from that, the grades should be accordingly high or low. In the discourse on 
future challenges in mathematics both students positioned themselves as capable of trying and 



working on improving, although within certain limits. A position of struggling while learning was 
identified, this position is possible to connect to the hard-working and you-can-if-you-want-to 
positions in various combinations. In the discourse on fairness, a position of choosing your 
achievement was shown in Ahmed’s talk as he chose not to study and accepted the consequences. 
Amina also spoke out from a discourse of fairness as she questions the grade, and that the hard work 
should have been seen in the grade. At the same time, she capitulates and says that it is hard for her 
to learn and remember for example the methods to use – so the grade may be fair after all. This could 
be described as a position of being unable to succeed. 

Discussion 
The semi-structured interviews contributed to a trustful and open climate for conversation. This made 
it possible for the two students to display important social dimensions of displaying knowledge and 
learning mathematics. One example of this was when Ahmed talked about how his brothers and 
family supported him: “I took their advice… It seems to be important to get a grade in math” 
(transcript 005). This happened on an occasion when he was actually skipping school for a day and 
hanging out with his brothers. This occasion proved to be an important moment in his positioning as 
a mathematics learner. The main concepts in the analysis were statements about the other and caring 
(also see Black et al., 2015. In many ways, it is possible to assume that there are many differences 
between Roz, the adult mathematician in Black et. al.’s (2015 study and the two students in this study 
when it comes to opportunities to learn and display knowledge. What they have in common is that 
the female mathematician and immigrant students are groups both governed by different types of 
gatekeeping functions in their access to the subject. Interestingly, the same socio-cultural resources 
as found in Black et. al.’s (2015 study, seem to work well in illuminating prerequisites for a positive 
development of identity in mathematics among students that have struggled with their learning. The 
statements about assessment in mathematics and the future were in many ways a narrative drawing 
on the community of the family and the peers. This could be a sign that relations outside school, in 
families or between peers, are important resources in the building of a positive identity in and a 
relation to the subject mathematics.  

Both students in this study were willing to learn and develop their skills in mathematics, although 
they knew that they were in some way limited because of their lack of knowledge at some times. 
Although struggling with mathematics, they still had a positive way of approaching the subject, which 
is not always the case for students in need of support in mathematics after nine years in school. The 
families’ expectations and talk with their children about the future and the role of mathematics in it 
may have contributed to a discourse about struggling when learning. This discourse could contribute 
to a positive identity in mathematics rather than devaluing the struggling student as a learner in 
mathematics. This research contributes to knowledge about the social dimensions of testing for SLL. 
Social and lived dimensions of assessment may get lost in translation if the measures on achievement 
are interpreted without taking the social, cultural, political and relational contexts into account. 
Conclusions from assessment that mainly focuses scores and levels of achievement might reveal 
differences and tendencies of segregation or lack of knowledge but without affording means to 
counteract these inequalities. Therefore, more research in the socio-political area of mathematics 
education is needed. This paper joins the socio-political research in mathematics education as I 
contribute to knowledge about social dimensions of displaying knowledge in mathematics for 



disadvantaged groups of students. The aim was to identify valuable resources in providing access to 
and success in mathematics for all students. I also emphasise an alternative way of understanding 
assessment beyond measures of knowledge and quality, namely as a means of promoting social and 
relational aspects of becoming more mathematically able. Since, as the students’ statements revealed, 
it is (not) only a test of knowledge but also an occasion of caring about oneself, caring for others, and 
being cared about by others. 
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This article presents initial results of a research project which investigates subjective theories and 
typical action strategies of teachers and student teachers in dealing with heterogeneity in school 
with a focus on the subject mathematics. These results are ultimately intended to contribute to the 
development of future teaching approaches. To reconstruct subjective theories of teachers and 
student teachers, group discussions were carried out. The initial results show the aspects of 
heterogeneity the participants deem important and the possible actions they discern for coping with 
pupil diversity.  

Keywords: Diversity, heterogeneous grouping, teacher beliefs, group discussion.  

Fundamental theoretical considerations 
The fact that children and young people often differ in terms of their needs and preconditions for 
learning, and that this heterogeneity of learners sometimes presents teachers with significant 
challenges, are not new phenomena (Trautmann & Wischer, 2011). The heterogeneity of learners 
relates to different dimensions, such as cognitive performance, age, gender, linguistic-cultural 
background, social class and many more (Hinz, 1993). In accordance with current political 
discourses and social developments, these different dimensions are given unequal attention in 
pedagogical discussions. The impetus for a renewed focus on heterogeneity in Germany was 
provided by the results of international comparison studies (in particular PISA, 2000), which 
highlighted especially the sizeable differentiation in pupil achievement, the alarmingly high number 
of very-low-achieving pupils, and a close relationship between social background and academic 
success (Trautmann & Wischer, 2011). The UN-Convention on the Rights of Persons with 
Disabilities, which came into force in Germany in 2009, made the inclusive schooling of children 
with and without disabilities the subject of renewed debate. In addition, the phenomenon of 
increased linguistic-cultural differences among learners has come into focus in the last two years by 
the increased number of refugees entering Germany. For most student and practising teachers the 
heterogeneity of learners represents an important problem area in planning and teaching lessons 
which seems to be complex and fundamental. Askew (2015) expounds that the teacher’s ways of 
thinking and talking about heterogeneity impact how they react to the differences that learners bring 
to the mathematics classroom. The following questions arise: “Why have so many, essentially well-
founded pedagogical ideas not been realised? What prevents teachers from seeing heterogeneity as 
enriching, and dealing with it productively?” (Trautmann & Wischer, p. 9, translated by the 
authors). In order to answer these questions and create concepts for future seminars, not only a 
scientific reflection of this topic is supposed to be considered. Especially the perspective of those 
facing heterogeneity daily in their pedagogical work is to be included by analysing their subjective 
theories about heterogeneity, too.  

In the framework of the Germany-wide “Qualitätsoffensive” for the improvement of teacher 



training, the project “Synergistic teacher education in an excellent framework”1 at the TU Dresden 
includes the sub-study “Heterogenität in der Lehrerbildung von Anfang an” (Heterogeneity in 
teacher training from the start). Based on qualitative questionnaires, group discussions, and 
participatory observations of everyday teaching in schools, subjective theories2 and predominating 
patterns of action among teachers and student teachers will be surveyed in different kinds of school. 
On the basis of the survey results, the project intends to develop concepts for teaching events to 
make student teachers sensitive to the different facets of heterogeneity.  

The concept of ‘Heterogenität’ (heterogeneity) is defined in various ways in the relevant German-
language scientific literature, and indeed is often used without specific definition. A number of 
terms are used synonymously, ranging from ‘Vielfalt’ (plurality) to ‘Unterschiedlichkeit’ 
(difference), ‘Unbestimmbarkeit’ (indeterminableness) and ‘Beliebigkeit’ (arbitrariness), or English 
words like ‘diversity’3. In many scientific articles, the focus is placed on only one aspect of 
heterogeneity (such as language, culture, gender, or disability), and the relevant definitions insinuate 
a polarisation between ‘normal people’ and ‘the others’. However, authors like Prengel (2006) and 
Krüger-Potratz (2011) articulate a different understanding of the concept of heterogeneity. We share 
this understanding of the concept of heterogeneity, which finds placing the focus on a few 
‘dominant’ characteristics to be a reductive approach (Krüger-Potratz, 2011). 

Diversity education is based on the ‘indeterminability of people’; it is therefore unable to 
diagnose ‘what somebody is’ or ‘what shall become of somebody’. It [diversity education] 
opposes all reification in forms of definitions of what a girl is, or a boy, a behavioural deviant, a 
Turkish woman… If people must be characterised, then this must be based on their dynamic 
development and the context of their environment. (Prengel, 2006, p. 191, translated by the 
authors) 

To analyse teachers’ subjective theories, and to develop concepts for teaching events that are based 
on the teachers’ views, against our understanding of the concept it nevertheless appears sensible to 
establish a theoretical categorisation of some of the individual facets of heterogeneity. Some of the 
existing studies on ‘beliefs’, as well as on teachers’ implicit or subjective theories about 
heterogeneous contexts in school, show a focus on selected individual aspects of heterogeneity in 
this way. On the aspect ‘heterogeneity’, in an interview study on belief systems of primary-school 
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tend to use only “heterogeneity”. But in some more actual publications we can see that “diversity” is more and more a 
common term for describing the plurality of pupils. 



teachers working with children with special educational needs concerning cognitive development, 
Korff (2014) identifies a central challenge for didactic activity in mathematics teaching in the 
establishing of links between different approaches and varying levels of representation. On the 
aspects of gender and ethnicity, the ProLEG study4 addresses the question of how ethnic-cultural 
and gender-related perceptions influence teachers’ educational activity (Winheller, Müller, 
Hüpping, Rendtorff & Büker, 2012). The results show that the respondents overwhelmingly see 
questions of children’s gender as unimportant and considered themselves to be sufficiently 
competent in this area. In relation to ideas about ethnicity, the respondents attached equally low 
importance to ‘Intercultural Education’.  

Topics such as ‘Individual Support’, ‘Social Learning’, and ‘Inclusivity’ are given primary 
importance, while culturally sensitive approaches have the lowest priority, followed by ‘gender-
aware education’. (Winheller et al., 2012, p. 10, translated by the authors) 

However, Zobrist’s (2012) investigation attempts to approach heterogeneity from a broad 
perspective, without restriction to particular aspects of the concept. Using semi-structured 
interviews and ‘simulated recall’ in addition to teaching observation, the author attempts to produce 
a comprehensive view of the ways teachers deal with heterogeneity in mathematics teaching in 
secondary school. The results show that teachers tend to define heterogeneity especially in terms of 
different preconditions for learning and different kinds of social behaviour. Furthermore, special 
educational needs assessment is seen as highly relevant in dealing with diversity, but personal 
competences in this area are considered inadequate. Schönknecht and de Boer (2008) point out that 
in describing heterogeneity student teachers often seem influenced by an idea of polarisations and 
dichotomisations, as well as a limited perspective focusing on supposed ‘problem children’. Also in 
relation to perspectives on the dimensions of heterogeneity, little differentiation is evident, with the 
use of a number of generalising (stereo)types (e.g. ‘normal’ and migrant children). They summarise: 

Thus, addressing the construction of normality contributes to dealing with heterogeneity and 
difference, and can be a significant building block towards realising equality of opportunity in 
school. (Schönknecht & de Boer, 2008, p. 258, translated by the authors) 

Regarding to Garmon (2004), both dispositional factors (like openness to diversity as well as 
receptiveness to others’ arguments and ideas, self-awareness and self-reflectiveness, and 
commitment to social justice) and experiential factors (like intercultural experiences, support group 
experiences with individuals who encourage another person’s growth and educational experiences) 
influence teachers’ attitudes towards diversity.  

Method 
In order to gain a first impression of student teachers’ ideas about the concept of ‘heterogeneity’ in 
the school context and to discover how they encounter diversity among children, a qualitative 
questionnaire with three questions requiring written answers was distributed to around 80 student 
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teachers training to teach mathematics. The students answered the following questions in their own 
words in running text or bullet points: What does the word ‘heterogeneity’ make you think about in 
the school context? To what extent have you addressed this topic (in your studies)? To what extent 
do you feel prepared to deal with heterogeneity in the school context?  

In addition, we held group discussions with student teachers5 on the topic of ‘heterogeneity’. The 
group discussions were video recorded and transcribed and evaluated using the documentary 
method (Bohnsack, 2010). Group discussions can help to identify and analyse the implicit or tacit 
knowledge of the participants while they talk about a specific topic (e.g. heterogeneity). Between 
three and seven participants talked about a given topic for around 60 minutes. They have some 
special experiences in common or commonalities in their history of socialisation, thus sharing a 
“conjunctive space of experience” (Mannheim, 1982). The momentum of the discussion process, 
uninterrupted by the researcher, is important to discover these conjunctive spaces of experience, 
which become visible through “focusing metaphors” in which the group adjusts itself to those 
specific topics that are most relevant in their common experience (Bohnsack, 2010).  

Concerning group discussions, the immanent meaning comprises that stock of knowledge which 
is made explicit by the participants themselves. This has to be distinguished from knowledge of 
experience, which is so much taken for granted by the participants that it must not and often 
cannot be made explicit by themselves. The participants understand each other because they hold 
common knowledge without any need to explicate it for each other. (Bohnsack, 2010, p.103)  

Results 
For reasons of space, this article will highlight a few clear results of the qualitative questionnaires as 
well as extracts from the overall transcript of the group discussions with teacher students. 

Qualitative questionnaire 

The students gave highly diverse answers to the question “What does the word ‘heterogeneity’ make 
you think about in the school context?” While one respondent (female, 23 years, fourth semester) 
answers only with a few key words (“diversity, differentiation, boys and girls, high-achieving, low-
achieving”), other students give more complex answers, making clear their awareness of the 
unbounded, indefinable nature of the concept:  

Every class is different (age, background, etc.). Every child therefore has different preconditions 
for learning, which one should include in the teaching. Differentiation is important (natural 
differentiation, internal differentiation, external differentiation). The application of learning 
environments to enable different approaches (with different difficulties/materials, etc.). (female, 
21 years, sixth semester).  

This student’s response also suggests how she would deal with diversity among children and where 
she thinks particular emphasis should be placed. On the question of how well prepared the students 
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or two years before receiving their final teaching license and students who want to become a teacher and who still have 
lessons in university. 



feel to deal with heterogeneity in the school context, the majority of responses are sobering. Most of 
the students complain about a lack of practical experience, stating that although the university 
education in many respects provides a lot of theory, there are few opportunities to reflect upon the 
ideas and to try them out in practice. Furthermore, it is criticised that not enough attention is paid to 
the topic of heterogeneity (overall) in the study course; it is often covered quickly as a “marginal 
topic”, but not “dealt with in depth” (female, 22 years, fourth semester). On the basis of their 
experiences in the course of their studies, several of the students differentiate between the different 
teaching subjects; for example, one female student (21 years, sixth semester) remarks: “I feel better 
prepared in maths than in German. For example, by the ‘(Maths) Learning Under Conditions of 
Heterogeneity’ course”. 

Extracts from the group discussions 

The participants in the group discussions presented below were student teachers in training for 
primary-school and high school with the subject mathematics. The students are in the middle to last 
phase of their studies or have finished their university degree and are in training before receiving the 
final teaching license, meaning that all have already completed placements in schools. During the 
60-minute discussion on the topic “What experience do you already have of diversity respectively 
heterogeneity among children in school and in teaching?” it becomes clear that those facets of 
heterogeneity that are dominant in the social discourse, such as native language, disability, social 
status, achievement and migration background also dominate the students’ discussions.  

After a group of five female teacher students for primary school have talked about topics such as 
German as a foreign language and the meaning of academic language, one of the participants turns 
to the topic of inclusivity and the schooling of children with special educational needs in regular 
teaching. The following extract is a part of the discussion that develops on this point. The following 
transcript extract (the original version is in German) shows how the students encounter diversity 
among children, the challenges and opportunities they see in such diversity, and what experiences 
they have already gained in dealing with it. 

Tina:  I also think it’s very important how children gain another view of what is actually 
normal. A person sitting in a wheel chair is just as normal and can also move 
around. And that simply this acceptance and tolerance can develop amongst each 
other. That you simply know how to deal with the person and that it becomes 
natural from an early age on. 

Bianca:  I think this is also easier for children. I also always like that about children that 
they very openly go to other children who are a little bit different. I also think that 
this should be encouraged but it is also a fact that there are also mentally disabled 
children. I don’t know if they are also affected by inclusion? 

Sarah:  Yes. 

Bianca:  Well, I think that is difficult. Well, I was at a school for children with special 
needs and sat in on classes and I thought it was really bad. 

Sarah: Well, otherwise, in front of the same class plus children with special needs that is 
not possible, I think. Then also structurally things would have to be changed. 



Diana:  Well, for all of us it is a challenge to stand in front of a class after finishing our 
studies. Even if they are top-performing and are all a relatively homogenous 
group.  

Tina:  But you will never have this homogeneous group (smiles and shakes her head). 

Diana:  (nods) Yes. You also don’t have that in society. The whole society is extremely 
heterogeneous. 

Extracts from a discussion between four female student teachers for high school shows a similar 
view on heterogeneity, however with a greater focus to specific problems of the subject 
mathematics.  

Wiebke:  The heterogeneity of the teachers also effects the lessons and what the children 
learn in the end. Therefore, also the teacher’s competence of explaining.  

Nathalie:  (Laughs) Yes, especially in mathematics. 

Tamara:  And I also think what attitudes the teacher has towards heterogeneity. Meaning, is 
my attitude that I take everyone along or do I only take the top 50 percent along? 
Or drastically said, what is my opinion about somebody from a migrant 
background? That also plays a huge role. 

Vera:  Yes, that’s true. 

Wiebke:  I mean, at the university this is addressed but how I should really deal with it … It 
is nice to say that you need difficult tasks for those who are good and easy ones 
for those who are not so good at it. Yes, but in the end, all of them take the same 
test and are marked according to the same grading system. 

A third extract is from a group discussion of four female primary-school student teachers which 
have already been in training at school for a few months. This brief passage of the discussion shows 
that student teachers who are already teaching in school seem to be more aware that there are 
differences between the theory they have learned in university courses and the dealing with 
heterogeneity in real life. Additionally, they critique some aspects of the education in university. 

Linda:  The only option is individualized teaching, if you want to give every single child 
the chance to take part in the lesson and to have fun.  

Beate:  And you have to accomplish this without straining oneself.  

Isabel:  Exactly! And I would like to know, how that can work (laughs). How can I 
differentiate without constantly feeling stressed at home?  

Linda:  Well, when I was at university, I often thought, „Bla, bla, heterogeneity, 
differentiating. How can this work?“ They [the university teacher educators] 
always treated this like a big cloud but they never told us specifically. And then, in 
school, you think, “Well, how does this work?” And only through experienced 
teachers you understand “Oh, this is how you can approach this!” And it doesn’t 
always have to be three different worksheets. A more open form can work as well. 



But I think that in university it was something which existed somewhere up high 
in the universe but which cannot be implemented.  

Denise:  In my point of view, such opened instruction was seen [in university] as a kind of 
sanctuary and I always thought, „No. I can’t do it. I somehow am not able to do it 
at all!“ Because it is a Utopia to do this. But in the end, it is somehow possible 
and [at university] one should have used that as a starting point. Even though we 
heard keywords like “weekly schedule work”, we never spoke about this in depth. 
It was more like scratching the surface. 

Isabel:  Then we received lots of academic texts about this which we were supposed to 
read. Afterwards I knew as much as beforehand because the time to really 
understand the content was too short. This was easier with conversations. But I did 
not have a concrete plan either.  

Beate:  But now, in the courses for trainee teachers, we recognized that we all open our 
lessons. We do not carry out frontal teaching as we always imagined. That’s why 
it is helpful to have somebody with experience, who has stood in front of children 
for many years and who was able to teach this to us in a normal way.  

It becomes clear during the group discussions that the students are aware of the problem of how to 
judge children fairly despite potentially enormous diversity. They principally discuss the questions 
of how fairness can and should look in the school context, how it can be realised, and which 
obstacles and problems can exist in its realisation. They argue that differences play a secondary role 
for children and that “it is easier for children” to accept and tolerate each other because they are “a 
lot more open in that”. The participating students seem to agree that it is important to develop a 
broader perspective of what is ‘normal’ as early as possible. At the same time, they consider it to be 
difficult to hold collective lessons for ‘normal’ children and children with the need for special 
education, especially when there is only one teacher in class. Furthermore, they are aware that there 
is a dilemma between the need to differentiate in school and the society being extremely 
heterogeneous. While in a school context, every child is supposed to receive the best possible 
support suitable for its own needs, in society, diversity is nearly never considered or discussed.  

Perspective 
The results collected so far already provide initial insights into student teachers’ subjective theories 
and guiding ideas on heterogeneity in the school context. Further group discussions will be carried 
out in the near future, and questionnaires distributed. The framework will be expanded to include 
practising mathematics teachers in different kinds of school in Saxony. Thus, data on teachers’ and 
student teachers’ subjective theories on diversity in pupil populations will be available for 
comparison. Consequently, individual teachers who participated in the group discussion will be 
selected to receive classroom visits. Through participatory observation we hope to be able to 
undertake a comparison between the collective opinion emerging in the group discussion and the 
models of activity that are actually applied by teachers for dealing with diversity. All these data will 
ultimately serve the development of concepts for events for student teachers with the aim of making 
them more sensitive to heterogeneity and more prepared to deal with it.  
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In this paper I introduce critical realism to investigate the relationship between a mathematics 
classroom and the broader social context in which it is inserted. To ground the new approach, I focus 
on race and racism, and use critical race theory to guide the use of critical realism in this 
investigation. This is a report in an ongoing study about the work of teaching and social change with 
respect to race and racism in the United States. Data comes from a laboratory mathematics 
classroom held every summer by a large research university in the United States. Although more 
analysis is still necessary, initial results reveal how broader social context can influence and be 
influenced by broader structures of race and racism. Moreover, the framework shows potential to 
illuminate the relationship between classroom interactions and social systems of inequality. 

Keywords: Racism, teaching practices, critical race theory, critical realism. 

The problem 
This study starts from a perspective that education and schooling play a role in our society that can 
serve both to sustain and reproduce dominant social structures or to challenge them and promote 
change (Freire, 2015). It is generally accepted that our social world is unequal and unjust, and under 
such a view, education is frequently seen as a source of and/or a solution to social inequalities. It is 
therefore important to educational research, mathematics education research in particular, to better 
understand the relationships between educational and schooling practices and the broader social 
context they are situated in. 

In this study, I want to zoom in on classroom practices and investigate how mathematics classroom 
practices can reproduce or challenge macro social systems of inequalities, which I understand as 
social structures that privilege certain social groups over others. Racism in the United States is for 
example generally characterized by a set of social privileges rather than by individual acts of hate or 
prejudice (Bonilla-Silva, 2006). Even though individuals being overtly racist still exist, I am referring 
to a different problem, in which Whites enjoy better social opportunities only because they are White, 
such as African Americans being incarcerated in disproportionately higher rates than Whites (Barish, 
DuVernay, & Averick, 2016), and Latinxs having disproportionately fewer opportunities to obtain 
higher educational levels in comparison to Whites (Yosso, 2006). 

The main purpose of this paper is to report the application of critical realism in an ongoing study to 
offer new possibilities to understand the relationship between classroom interactions and the broader 
social context they are inserted in. I am particularly investigating race and racism in this first 
exploratory study, because it brings interesting dynamics between local social situations and broader 
social institutions. Such dynamics come from the fact that racism is deeply ingrained in American 
society (Ladson-Billings, 1999). I hope that a critical realist lens can help to illuminate how racism 
occurs within classroom interactions, specifically I want to investigate how racism can be challenged 
or disrupted in mathematics classrooms through teaching practices. In this study, I am particularly 
trying to answer the research question: How can the critical realist concept of norm circles help us 



better understand how teaching practices in a mathematics classroom (can) challenge and/or disrupt 
structural racism? In this paper, I will present the framework, describing a few core concepts of 
critical realism and critical theory and discussing how these two theories can be combined to better 
explain the connection between classroom teaching practices and structural racism, and then I will 
illustrate the use of the framework with initial findings. 

Conceptual framework 
Mathematics education research has focused its interest on the social and political dimensions of 
mathematics and education for quite a while now. To better understand such dimensions, some 
researchers are now foregrounding power relationships in research and using a variety of critical 
perspectives and methods in what has been called a sociopolitical turn (Gutiérrez, 2013). In her 
argument, Gutiérrez (2013) describe some of the theories used by critical scholars to address power 
relationships in society. Critical realism is not directly indicated in her article, but it is a possible 
sociopolitical theory. Critical realism is a philosophy of science originated out of the need for better 
theories to understand the social world; in particular, critical realism explores power relationships in 
the social world. Specifically the focus of this study, critical realism proposes a new approach that 
can illuminate the relationship between social structures and micro social interactions by elaborating 
an analytical mechanism that focuses on the interaction between individual agency and social 
structure (Elder-Vass, 2010). Such a mechanism has its foundation in the critical realist concept of 
emergence and is operationalized in terms of norm circles. These theoretical constructs however, are 
not tied to any specific method to conduct research though under a Critical Realist approach. What I 
expect in this study is that Critical Race Theory can provide theory and methods to investigate the 
relationship between mathematics instructional practices and racism, and that Critical Realism can 
complement CRT supporting the explanation of mechanisms of (re)production and disruption of 
racism. 

Critical realism 

The basic premise of critical realism is that the world is made by real things that have real causal 
powers (Bhaskar, 2008). Phenomena are interpreted as outcomes of causal powers of such real things. 
At a first glance these ideas look very similar to positivist ideas, but they are not. In positivism 
phenomena can be completely determined by scientific laws, whereas in critical realism, phenomena 
are only influenced by scientific laws. The main idea is that these laws impose constrains and prevent 
possibilities otherwise available, describing a tendency rather than a certain outcome. The example 
cited by Bhaskar (2008) is that the path of his pen does not violate any law of physics, nevertheless 
it is also not determined by such laws (p. 95). There is a limitation of what a pen can do that is 
described by the laws of physics, yet such laws do not determine what is being traced by the pen. 
What is important in these basic ideas is that the world, which includes the social world, is made by 
real things; and that scientific laws, even social laws, describe tendencies rather than determination. 

One concept that is central for critical realism and that will be very relevant for this study is the 
concept of emergence. Here, I am particularly adopting the compositional version of emergence as 
described by Elder-Vass (2010). In this version, the real things in the world can be combined in a 
way that, because of their structure and not only its individual properties put together, a new thing 
emerges in the world. Elder-Vass (2010) also refers to this new thing as an ‘entity’ or whole, and it 



possesses “properties or capabilities that are not possessed by its parts” (p. 4). The idea is that the 
whole is not just the sum of its parts, but it is something else, with a new causal power that is, of 
course, derived from the individual properties of its parts, but not only this, the way the parts interact 
and relate with each other is also responsible for the emergence of the new thing.  

The concept of emergence is what forms the layered or laminated view of the world under the critical 
realist perspective. A particular whole is said to be in a higher level or layer than its parts. The same 
whole, however, can be a part of another emergent structure; in this case the whole is in a lower level 
than the new emergent structure. In our social world, an individual can be interpreted as the lowest 
level, and the whole society as the highest level, with many intermediate levels in between, such as 
social institutions. The immediate higher level to an individual is, in Elder-Vass’ (2010) definition, a 
norm circle. The norm circle is defined by the group of individuals who hold a normative belief of 
endorsing a social practice. By endorsing, he means that each individual in the norm circle acts to 
reinforce the norm and discourage behavior that does not conform to the norm. Elder-Vass (2010) 
argues that the shared endorsement of a norm 

when combined with these sorts of parts, provide a generative mechanism that gives the norm 
circle an emergent property or causal power: the tendency to increase conformity by its members 
to the norm. The property is the institution and the causal power is the capability that the group 
has to affect the behaviour of individuals. That causal power is implemented through the members 
of the group, although it is a power of the group, and when its members act in support of the norm, 
it is the group (as well as the member concerned) that acts. (p. 124) 

With this argument, Elder-Vass (2010) is explaining why the norm circle is actually an emergent 
structure rather than only a group of people. He is explicitly pointing out what is the new causal power 
by showing the tendency it describes: to increase conformity to the norm. 

Particularly relevant for this study is how agency is viewed in this critical realist account of the social 
world in which the social wholes with causal powers are norm circles. It is important to consider that 
causal power in critical realism describe tendencies, so the fact that a norm circle enforces compliance 
with a particular norm indicates that someone in this norm circle will have the tendency to act in 
conformity to such norm, but this is not determined. With respect to the focus of this study, race and 
racism, and the guiding provided by critical race theory, a central aspect of this investigation will be, 
in a context of racialized circumstances, the situation of an individual being in different and 
conflicting norm circles, i.e. individuals that are part of norm circles that enforce opposite norms, and 
how the study of this conflicting positions can reveal routes for social change. 

Critical race theory 

Critical race theory is a theoretical framework for research that foregrounds race, racism, and 
racialized experiences. Critical race scholars ground their argument in the idea that racism is a social 
construction and is different than individual prejudice. Gloria Ladson-Billings (1999) reports that 
race is a complex social construct that goes beyond the color of skin, citizenship, and individual acts 
of prejudice, forming what can be called a system of racial inequality usually hidden under a 
colorblind discourse (Bonilla-Silva, 2006). To overt the practices of colorblind racism, critical race 
scholars anchor their work on five tenets: permanence of racism, Whiteness as property, interest 
convergence, critique of liberalism, and counter-storytelling (DeCuir & Dixson, 2004). I will briefly 



describe three of these tenets because they will be more salient to the preliminary results to be 
presented later on this paper. 

Whiteness as property refers to the idea that that Whiteness can be viewed as a set of social 
(privileged) possessions, that can operate similarly to property in a capitalist society. In the context 
of education, Whites have some sort of control of what is valuable knowledge and who gets access 
to it, which can be interpreted as a kind of intellectual property. Critique of liberalism is a direct 
critique to liberal economic-based ways of understanding and living in the world, grounded in free-
market ideologies, under which people believe that best outcome for all is achieved when there is no 
external regulation of the market. Meritocratic and individualist discourses are frequently associated 
with liberalist discourses (Solomona, Portelli, Daniel, & Campbell, 2005). Counter-storytelling is the 
main methodological strategy used by critical race scholars to challenge inequality and White 
privilege. One important aspect of counter-storytelling is the double-consciousness or angled vision 
attributed to individuals living in the margins of society (Anzaldúa, 1999) that is going to be one of 
connections between critical race theory and critical realism. 

Before I discuss the issue of marginality in society in light of critical realism and critical race theory, 
I will briefly elaborate in another connection between the two theories. Such connection will not be 
the focus of this study, yet it is necessary to understand why the two theories are compatible and 
suited to be thought together. Ladson-Billings (1999) says that racism describes a norm in current 
American society and “because it is so enmeshed in the fabric of our social order, it appears both 
normal and natural to people in this culture” (p. 12). This idea is the gist of permanence of racism. 
So, in a critical realist account of it, there must be a norm circle enforcing and endorsing racist 
practices. To present one example of a norm in this circle, I will need to unpack the idea of discourse 
within the critical realist framework. 

Dave Elder-Vass (2012) elaborates on the concept of discourse as discussed by Michel Foucault 
(1969). He emphasizes the idea that Foucault is concerned with the content of what we express using 
language norms. Moreover, he refers to Foucault asserting that there are normative practices that 
dictate what we can say and what we should not say, and, in some way, they also dictate how we 
should act. Elder-Vass (2012) constructs a realist ontology explaining how discourse in this sense can 
have causal powers. He argues that discourse is shaped by the normative rules enforced by members 
of a discursive circle through the discourse such members produce. Discourse, therefore, is the means 
to what the causal power of a discursive circle exerts causal effect. 

With this idea of discourse, I will point the emergence of a racist norm circle to the slavery system in 
the colonial period. As an example of a racist norm originated in the colonial United States, I point 
to the normative discourse that says “African American are less than Whites”. Specifically in 
educational contexts, such a discourse is reported in the autobiography of the former slave Frederick 
Douglass (1892) as a way to justify slavery. Once the norm circle reinforcing this discourse had 
emerged, it started to operate downwards, constraining the individuals in the circle to act accordingly. 
The way the discourse is reinforced has changed throughout time. For example, in the beginning of 
20th century, IQ tests (Karier, 1986) helped to disseminate the idea that Blacks were less intelligent 
than Whites; and recent research reports such as Robert Berry (2008) reveals that African American 
boys are more likely to be placed in lower track courses in mathematics, in comparison to their White 
peers, as they advance their studies. 



Critical race scholars ground their argument in this kind of normative racism in opposition to 
individual and overt prejudice. Theoretically, they understand this kind of racism as a social 
construction that brings real consequences to people of color (Chapman, 2013). This view gains a 
total new meaning under a critical realist perspective: Social constructions are real and have real 
causal powers. 

Now, focusing on norm circles and searching for routes for social change, I will discuss the double-
consciousness or angled-vision usually explored through counter-storytelling by critical race theory 
(Anzaldúa, 1999). This is usually a characteristic attributed to individuals that live in the margins of 
society. This place is viewed as a space of conflict of identity, a space of belonging and not belonging 
at the same time (Anzaldúa, 1999). In a critical realist perspective, I interpret the angle vision as a 
product of participating in conflicting norm circles. It is at this conflicting space that critical realism 
leaves room for human agency to act in a way that might not conform to a social norm. Elder-Vass 
(2012) discusses that when an individual participates in two or more conflicting norm circles, the 
outcome in terms of individual behavior can be very poorly predicted in the sense that the individual 
can decide for either norm, or can even create an innovative action to escape the ambiguous situation: 

In contexts of complex normative intersectionality, skilled social performances depend upon the 
possession by the individual of a sophisticated practical consciousness of the diversity, 
applicability and extent of the normative circles in which they are embedded, and indeed of others 
to which they are exposed, even though they may not be parts of them. Whether or not they are 
able to articulate this consciousness discursively, members of such societies depend upon it 
whenever they act. (Elder-Vass, 2010, p. 133) 

My idea in this study is to explore the norm circles with respect to race and racism that exist in a 
mathematics classroom environment. Particularly I want to investigate what are the norm circles the 
teacher participates in, what are norm circles created in the context of the classroom interaction, and 
how particular teaching moves are interpreted in light of agency within complex normative 
intersectionality. 

Methods 
I am conducting my research as a secondary case study on a summer program held by a large research 
university in the United States, in which an experienced teacher publicly teaches lessons to a group 
of elementary students. This summer program serves different purposes: one is to be a site of learning 
for practicing teachers and teacher educators, because of the nature of the public teaching and the 
professional development sessions that follows it; another is to be a site of research for both student 
learning and teaching practices. 

The student body of the laboratory is composed by a sampling of students from one school district in 
the Midwest United States. It is made to represent the demographic distribution of this district. Its 
composition counts with students of different ethnicities, but mostly are African American; all (or 
most) students come from low-income households; the students have different levels of English 
proficiency; and their mathematical proficiency is homogenously low. 

Because the EML is a site of research for student learning and teaching practices, different types of 
data are collected by the research team organizing the EML. The data set includes video records of 
instruction, video records of pre-brief and de-brief meetings with learning teachers, copies of students 



notebooks, pictures of classroom records such as charts, lesson plans, etc. Since I am analyzing data 
already collected, I did not engage in a relationship with the participants. I am observing and 
respecting their voices the best way I can by triangulating different sources of data. The data corpus 
is composed by video records of classroom interaction (approximately 2.5 hours per day across 10 
days), detailed lesson plans for each class, copies of student work (notebooks, homework, and 
assessments), and photos of every collective record produced in classroom (such as charts and white 
board records). The high quality documentation of the laboratory classes allows detailed observation 
of classroom interaction that are usually not possible in regular school settings. Also, the composition 
of the student body, the qualification and experience of the teacher, and the laboratory setting provide 
a fruitful environment for the existence of multiple norm circles operating in this same space, which 
is important for this research. 

I am following an analytic induction approach (Erickson, 1986) to code and interpret the data. The 
videos are being watched with a focus on interactions that involve students of color. Written records 
similar to fieldnotes are produced and used to identify episodes. Each episode is then re-watched; 
better-detailed descriptions are produced and interpreted according to the conceptual framework. In 
the next section I will illustrate how the episodes are interpreted in light of the conceptual framework. 
I will focus particularly on episodes that feature three Black girls. 

Illustrating the framework 
The initial analysis was focused on the interactions involving three Black girls, and findings show 
they can engage in mathematics discussions, and are interested in learning mathematics. These 
findings firstly challenge the idea that girls, specifically Black girls, are not suited for mathematics. 
In one example, one Black girl is behaving in a way that could have been interpreted as if she was 
not listening to what the teacher was discussing about the conditions of a problem they were about to 
work on. She was not looking to the teacher at the board and she was not quiet in her seat, but she 
promptly raised her hand when the teacher asked for a “wrong answer”. She correctly shared a 
solution to the problem that violated one of the conditions, making it a wrong answer. This example 
reveals a Black girl accessing mathematical content, usually a White intellectual property (Moses, & 
Cobb, 2001). This girl, however, was only accessing such content because the teacher ignored her 
apparently disruptive behavior and believed in her raised hand. The calling of the student to share her 
answer was a choice of the teacher; she had other students with raised hands to call at that moment, 
still she decided to call on that Black girl. She was at that particular moment deciding her action based 
in different norm circles, one that told her the student was not paying attention to the lesson, and 
another that told her the student knew something and wanted to share with the class. 

Initial findings also reveal that the teacher consistently engages in what Boaler (2008) calls assigning 
competence. This means that the teacher calls a student to publicly share an answer to a problem to 
raise their mathematical status among their peers. To do that, the teacher specifically points to an 
aspect of the proposed solution and indicates why that aspect is mathematically relevant. In one 
example, the teacher called on a Black girl to share how she had recorded an answer to a mathematics 
problem in her notebook. The teacher focused in how she wrote the answer using complete sentences, 
and that writing complete sentences foster writing clearly and is an important mathematical practice. 
This girl was not positioned as a competent mathematics learner or doer, other students in class 
frequently did not listen to what she was publicly sharing. In this example, the teacher had to intervene 



so all students were actively listening while she was showing her notebook. The students were also 
asked to comment what was good in her answer. With this move, the teacher raised her status as a 
mathematics learner and doer among her peers. The teacher was actively pushing back some kind of 
liberalist practice in classroom. In a liberalist practice, the teacher might pursue a meritocratic ideal 
and let the classroom “regulate itself”, without intervening in the social relationships being 
(re)produced there. By raising the mathematical status of some students, in particular two Black girls, 
the teacher might be changing the power relationships being established among students, which can 
promote some sort of local socio-mathematical justice. By consistently engaging in assigning 
competence, this teacher is actively challenging liberalist norm circles. 

Concluding comments 
The implementation of this new framework still brings methodological challenges. As it stands, the 
framework shows potential to illuminate the relationship between mathematics classroom practices 
and the broader context they are inserted in. The theoretical articulation of critical race theory and 
critical realism can help to refine both theories, providing methodological tools to apply critical 
realism in empirical research, and providing new analytical tools to understand how racism can be 
challenged. Particularly, the first example showed how the concept of norm circles was helpful to 
interpret a teacher action that counter racist discourses, and the second example show how a teaching 
practice can be used to counter liberalist practices that promote racism. I expect that such initial results 
can be elaborated with the further development of this study, providing more refined analysis. Finally, 
I expect that this study, when completed, can provide a more detailed description of classroom 
interactions in light of the social context they are inserted in. 
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This paper presents an analysis of institutional norms and the authenticity of out-of-school contexts 
that are reflected in a film about mathematics teaching in a comprehensive in-service vocational 
studies programme. The analysis was performed through the lenses of a theoretical framework of 
learning in different contexts and an empirically derived framework of mathematics as part of 
workplace complexity. The comprehensive in-service programme, which is available on internet, 
aims to improve mathematics teaching and learning, nationwide in Sweden. Through our analysis, 
we highlight a dissonance between the pedagogical approach displayed in the film, and how its 
authenticity may be compromised from the perspectives of our analytical frameworks. 
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Introduction 
A key assumption in this paper is that school, as an institution, has much to learn from workplaces. 
We adopt the view where mathematical notions are not only applied at workplaces but also are 
developed in workplaces (Wedege, 2013). One argument presented is that the context of any 
workplace stands in stark contrast to a formal mathematics classroom, where calling on authentic 
everyday experience may inhibit school mathematical sense-making (Gellert & Jablonka, 2009). 
Simultaneously, the performance of different jobs may be underpinned by the similar mathematics 
concepts as in the school context, but often interwoven in complex activities. The difference is not 
only in the type of work done, but in the sophistication of their contexts, such that unproblematic 
transfer of knowledge and skills may be highly unlikely. From an educational perspective it is rather 
about recontextualisation (Bernstein, 2000, see also FitzSimons & Boistrup, 2017). Through 
recontextualisation, a practice (for example mathematics) is transformed, rather than transferred, to 
an education context. In support of professional development for mathematics teachers in vocational 
programs in upper secondary school, Skolverket (Sweden’s Education Authority), produced, among 
articles and the like, a number of short films, each demonstrating ways of teaching and, in the case 
of this paper, taking relations between contexts of school mathematics and workplaces into account. 
Our contribution is concerned with how the institutional norms present in one such film may restrict 
authentic meeting points between workplace mathematics and school mathematics, and the possible 
implications for such a film. Our research question was: “What institutional norms may be 
construed through analysis of such a film, and what are the implications for vocational students of 
mathematics as part of their future work?” Through a description of our analysis, we highlight the 
dissonance between the pedagogical approach displayed in the film and how its authenticity may be 
compromised from the perspectives of our analytical frameworks. 



Literature on mathematics: In work and in school  
That the mathematics knowledge, skills and competence that underpin work may be denied, or 
dismissed as common sense may be a testament to its invisibility rather than its absence from the 
workplace (Boistrup & Gustafsson, 2014; Keogh, Maguire, & O'Donoghue, 2014; Williams & 
Wake, 2007). Mathematics may be something that workers use to solve problems or manage 
mathematics-containing situations, and may be observable as numerate behaviour (e.g. Gal, van 
Groensteijn, Manly, Schmitt, & Tout, 2003). In contrast, school mathematics is topic-specific, 
determined by curriculum, shaped by prescribed text, built on layers of escalating complicatedness, 
taught to the rhythm of the semester, and formally assessed as a passepartout to the next level of 
complicatedness. Whether its transferability is enabled by the context in which it is learned or 
contained by it, is disputed (Evans, 2000; FitzSimons & Wedege, 2007). The introduction of ‘real-
world’ mathematics to the classroom offers the prospect of easing the transformation from formal 
mathematics learning to its application in work situations . Nevertheless, it is often constrained and 
reduced to mathematics word-problems surrounded by ‘real world’ conceits, that may be 
“inauthentic... fragmented, static bits of tasks.. that are neither contextualized nor intellectually 
challenging” (Wiggins, 1989, p. 711).  

In Keogh, Maguire, and O'Donoghue (2016), a Workplace Context Complexity Protocol (WCCP) is 
presented. It identifies workplace competence, in relation to mathematics, as being shaped by 
strands such as familiarity and stressors. The ability to capture and calibrate the features of many 
workplaces, informed by the students, may enable teachers to build a platform to establish authentic, 
credible and familiar workplace contexts in which to set and explain mathematics as part of 
workplace complexity. In Boistrup (2016), a case of a nursing aide is presented drawing on different 
sociological frameworks, indicating connected notions as in Keogh et al. (2016). In the analysis of 
the study presented in this paper, we drew on findings from these two studies. 

Analytical framework 
Selander (2008) presents a design theoretical perspective of learning when he explains how learning 
may take place in relation to its communicative constituents and associated processes, and where the 
design of a setting affects possible learning. This perspective is underpinned by Institutional Theory 
(e.g. Douglas, 1986), which emphasizes how society is surrounded by institutions which condition 
the actions that are possible to take. The perspective is similarly influenced by multimodal social 
semiotics as described by Van Leeuwen (2005) and others, where emphasis is put on the ways in 
which communicative resources are used, such as speech, artefacts, gestures displays and the like, 
and the roles they might occupy in the setting. From this perspective, learning is considered to take 
place in all kinds of settings, for example, the situation as reflected by the learning required to buy a 
bus ticket in an unfamiliar city. It could also encapsulate a workplace, where, typically, the main 
institutional norm is to “get the job done”, part of which includes some learning.  

 

 

 



Selander (2008) also specifies this theory in terms of a formal setting of learning, such as a 
mathematics lesson. In this paper we draw on the following selection of facets of this theory, 
highlighted in italics: 

 We analysed the institutional framing of the lesson of the film, and the purpose of the 
chosen curriculum. We also paid attention to the learning resources that were present. 

 We analysed the social interaction between teacher and students in terms of displayed 
interest in the communication, informal assessment acts and teacher interventions. 

 We analysed how, and through which communicational resources (e.g. speech and hand 
gestures), teacher and students presented the processes undertaken during a problem solving 
activity. In addition, we analysed how, and with what focus, students were meta-reflecting, 
i.e. reflecting on their own actions. 

In the analysis, we adopted the WCCP protocol by Keogh et al. (2016), using attributes from the 
strands comprising the model, e. g., accountability, clarity, familiarity, stressors and volatility, to 
capture the matrix of factors that are thought to define, enable and constrain performance in work.  

Methodology: Case study and analysis 
This is a case study (Yin, 1984) wherein the primary data source is a film that is part of a ‘module’ 
on mathematics in vocational studies, upper secondary level, within a larger nationwide in-service 
program. The vocation of the students participating in the film is not made clear. However, as the 
context is introduced by the teacher as being concerned with a patient and her medication, we found 
it reasonable to infer that the students in the film are prospective nursing aides. We do not seek to 
analyse what the teacher is saying and doing per se, but rather to examine the messages being 
projected by the Swedish Agency for Education to teachers, albeit through the medium of an 
abridged video provided for teachers in the agency’s official website. Secondary data, analysed for 
interpreting the film’s message from its institutional context, stem from a discussion template to 
guide  teachers’ in discussing the film, an interview with a home-caring nurse, potential parts of the 
module where the vocation of home-caring nursing aides are described, and the national syllabus for 
mathematics in upper secondary school, vocational studies (Skolverket, 2013). 

The design theoretical perspective of learning was used in the analysis of the different processes in 
the film, which helped both in describing the lesson, and in the construal of institutional norms as 
reflected through the filmed lesson. The theory offers a framework with which to analyse learning 
with a particular focus on instances of institutional norms that are ‘there’ from the ‘beginning’, 
shaping, and perhaps containing the possible setting and learning activity. The perspective does not 
focus, specifically, on the content being taught and learnt. In our analysis we coordinated the design 
theoretical perspective with the framework by Keogh et al. (2016) in order to address how the 
teaching objective being illustrated, e.g. relations between workplace mathematics and general 
mathematics, is presented. 

We transcribed the film multi-modally (Van Leeuwen, 2005), documenting what was being said and 
done, by whom, and identifying the artefacts that were being used and how. In the first step of 
analysis we both analysed the data through the two different frameworks i.e. Selander’s perspective 
and Keogh’s WCCP (Selander, 2008; and Keogh et al., 2016) separately. In this analysis, we 



compared the transcript of the film with the concepts of the frameworks and with the secondary set 
of data. In a second step of analysis, we focused specifically on institutional norms while building 
on the findings from the previous analysis. The kind of institutional norms that we construed 
concerned relations between school mathematics and workplace mathematics. In this paper, we  
account for our analysis of the teacher’s introduction and our analysis of the first student’s 
contribution and whole class discussion.  

Analysis and findings: A mathematics lesson claiming to draw on workplace 
‘reality’ 
This section describes our first step (description and analysis) and second step (construal of 
institutional norms) of analysis while indicating elements in the analytical frameworks using italics. 

Description and analysis of film title and the teacher’s introduction 

The purpose of curriculum, in this case the topic claimed by the title of the film, is to go from the 
particular workplace mathematics to general mathematics. One central learning resource in the 
lesson is a screen at the front of the classroom where the teacher’s computer is mirrored. In the 
beginning there is a picture of, and a short text about, a patient, called “an Irma” by the teacher. The 
problem is presented in writing as follows: 

Irma who is 90 years old has high blood pressure. In order to lower the blood pressure, Irma 
takes medicine with the active substance bendroflumetiazide. She has been prescribed 15 mg, 
which she should take each morning. 

Each morning, she should take 9 pills in total. Help Irma to fill the ‘dosett’ [a dosage unit]: 
HOW MANY PILLS OF EACH KIND SHOULD SHE TAKE? 

The teacher checks with the students whether they are familiar with the active substance (social 
interaction).  The students do not respond to this, and there is no sign of communicated interest in 
the topic from the students. There is more evidence of engagement when the teacher asks them to 
say the name of the dosage unit. There is not much assessment communicated to the students in this 
first part.  

When we analysed the data with the WCCP framework (Keogh et al., 2016) one main point to 
consider was familiarity. The familiarity strand of the framework refers to how specific an activity is 
and to what extent the activity is a regular or irregular occurrence. In our interpretation, the context 
in which the problem is set is totally unfamiliar with regard to the students’ future vocation, 
especially in connection to potential accountability. Firstly, it is not a nursing aide’s responsibility 
to distribute pills into dosage units. Secondly, it is not feasible to restrict the patient to an exact 
number of different types of pills. This kind of decision making is not authentic. Thirdly, the way 
the teacher in the film begins his introductions, by referring to the picture of the patient as “an 
Irma”, is not interpreted as reflecting any familiarity. This way of objectifying patients is not 
authentic from the perspective of a nursing and caring workplace (see also Boistrup, 2016). 

Institutional norms construed from the title of the film and the teacher’s introduction 

The institutional norms that frame the setting of the lesson are construed from the title of the film 
and from how the teacher introduces the work. One institutional norm is construed as (1) “It is 



important to introduce general mathematical methods based on particular workplace problems”. The 
basis for this construal is the title of the film, which is presented at the agency’s website where 
teachers are invited to find and use the film. A second institutional norm is construed as (2) “It is 
important to find mathematics in the context of the students’ future vocations and build on that”. 
This norm is construed from the teacher’s way of starting the lesson with the patient, Irma, where he 
describes the problem with her pills. This norm is part of the institutional framing also, since it is 
stated in the national syllabus that mathematics in vocational upper secondary school should be 
strongly influenced by the future vocations of the students (Skolverket, 2013). A third institutional 
norm is construed as (3) “It is not really important to secure the authenticity of contextualized 
tasks”. The basis for this is described above in relation to Keogh et al. (2016) and Boistrup (2016), 
where it is clear that this is an example of un-familiarity with a workplace context, rather than a 
lesson where the mathematics teacher is making an effort to acknowledge the context of future 
workplaces of the students. 

Description and analysis of first student and whole class discussion 

After the introduction the teacher starts a new sequence (teacher intervention), where he invites the 
students to discuss, in pairs (social interaction), possible solutions to the problem. At this point, the 
teacher is still standing at the front of the classroom, looking at the students. The students are 
looking to their front. The teacher repeats the problem and tells the students to discuss it for 30 
seconds. The resources the students are offered to use are speech, writing, and calculators etc.   

The teacher intervenes and initiates a whole class session. The teacher asks a student to present how 
she solved the problem. The student represents her previous solving of the problem with resources 
as speech and gaze when presenting her solution to the teacher and the class. Her first meta-
reflection occurs when she says that her answer may not be correct. She then presents that she 
doubled the pill with 1.25 mg substance, to make 2.50 mg comprising 2 pills. She then added one of 
the 2.50 mg pills, to make 5 mg comprising 3 pills. She then took this times 3 which makes 15 mg 
and 9 pills, as required in the problem. In the film there is no further discussion. Instead the teacher 
intervenes telling the class, while pointing at the screen, “The method that Jasmine mentioned here 
is building on those numbers being easy”. He elaborates for 10 seconds on this and continues, “but 
there is a general method. And this we call a system of equations, i.e. to set up a system of 
equations.” This can be viewed as feedback, which constitutes an implicit assessment. 

When analysing with the framework by Keogh et al. (2016) one point was again familiarity. The 
student in focus solves the problem in a way that could be the case for a nursing aide (Boistrup, 
2016). (Here, briefly, we assume that the problem is authentic.) Accountability attributes are present 
in her reasoning, for example she takes the initiative and she uses the concreteness that suits this 
particular situation. The teacher stresses theoretical concepts and abstract thinking while stressing 
that the student’s method only works with “easy numbers”. 

Institutional norms construed from first student and whole class discussion 

The instance of the first norm regarding the high relevance of introducing general mathematical 
methods, is construed as present in the end of the sequence described. Implicitly, we regard the third 
norm, i.e. the lack of relevance to secure authenticity, to be apparent in the sequence. The teacher 
indicates that the student’s solution is not good enough since the method would not work well with 



other numbers. However, it was taken for granted that a problem with a certain number of pills was 
relevant in the presumed context. We also construed a fourth institutional norm: (4) “All relevant 
power and knowledge resides with the teacher”. The basis for this construal derives from the way 
that the teacher assessed the student’s answer, seemingly dismissing her practical and correct 
solution to the problem as posed. In addition, the teacher did not allow much opportunity for the 
students to meta-reflect and discuss during the whole class session.  

Conclusions and discussion 
The findings derive from our analysis of a filmed lesson, which is part of a library of resource 
material for in-service training for mathematics teachers. Authenticity is key from the vocational 
mathematics learner’s point of view. In summary, we conclude that the workplace context presented 
in the instructional video is transparently contrived, dehumanised and shaped by an unrealistic aim, 
e.g. that a patient should be required to take exactly 9 pills. Furthermore, it is not the nursing aid’s 
job to decide medication. That this description of the setting is patently false to the students, risks 
discrediting the underlying content and, ultimately, may undermine the intended learning outcome.  

In the film, a teacher introduces how vocational students can use a system of equations when 
solving problems in their future work as nursing aides. From our analysis and findings, we conclude 
that the film depicts a mathematics lesson where little time is spent on student interaction and 
student meta-reflection. The teacher is the most active person who intervenes most often. The 
overarching content promotes the benefits of solving workplace problems with formal school 
mathematics. Our analysis and findings reveal that the claimed workplace context, in fact, is not 
authentic to any significant extent. Nothing of the workplace complexity, shown in previous 
research (e.g. Keogh et al., 2016), is present and the teacher does not use the students’ knowledge 
about the work as nursing aide as a help to achieve authenticity. 

We view the construed institutional norms as a series of essential messages (from the National 
agency to mathematics teachers), that can be interpreted from the film as: 

1. It is important to introduce general mathematical methods based on particular workplace 
problems 

2. It is important to find mathematics in the context of the students’ future vocations and build 
on that 

3. It is not really important to secure the authenticity of contextualized tasks 
4. All relevant power and knowledge resides with the teacher. 

To a large extent the construed institutional norms coincide with a typical school mathematical 
discourse as described in Gellert and Jablonka (2009). Looking at the first norm, we argue that it is 
important not to exclude vocational students from general mathematical methods, but whether it is 
always important to build on workplace problems or not may be disputed. If it is essential to 
acknowledge the complexities of mathematics in work, as described in the first sections of the 
paper, it may be more suitable to introduce systems of equations intra-mathematically rather than 
drawing on inauthentic problems. The inherent risk of inauthentic contexts is it may serve to 
undermine rather than support the learning outcome. Regarding the second norm, there are a number 
of studies (e.g. FitzSimons & Wedege, 2007) revealing that in order to secure the authenticity of 
workplace mathematics, a way forward is enabled by cooperation between the stakeholders, 



including mathematics teachers, vocational students, and workplaces. Such projects may create 
opportunities to find relevant pathways from workplace problems and ways to solve them with 
general mathematical methods. 

The primary data source of our analysis was a filmed example for a module on mathematics in 
vocational studies within a larger nationwide in-service program. The film is used in this study as a 
starting point for a discussion. Our analysis acknowledges that there is not much in the module, as a 
whole, that reflects a balanced account of the work done by nursing aides. Hence, we find it hard to 
see that a teacher-discussion based on this film alone, without, for example, alternative films for 
comparison and contrast, would challenge a school mathematical discourse, where out-of-school 
contexts are not meant to be taken as ‘real’ (cf. Gellert & Jablonka, 2009). Rather, we see a risk that 
a film like this perpetuates existing institutional norms. We concur that much more work is needed 
in the future, both in terms of professional development and research, to enable and facilitate mutual 
learning opportunities between school practice and workplace practices. In such work, our use of the 
design theoretical perspective of learning (Selander, 2008) may be of use in the analytical 
description of mathematics lessons with an interest in institutional norms, teacher interventions, 
communication and roles of modes. In addition, the framework is useful for comparisons within and 
between workplaces since the perspective also includes informal and semiformal settings, such as 
workplaces. Additionally the WCCP framework (Keogh et al., 2016) may be useful for identifying 
authentic mathematics with reference to the complexities of workplaces with an interest in the 
factors that define, enable and constrain performance in work. 
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In this paper, I discuss six case studies of Roma people who have overcome inequalities to learn 
mathematics. I explore which elements may explain their success, as well as which ones appear to be 
barriers that makes learning more difficult for students belonging to an ethnic minority. I draw on 
their testimonies using a qualitative methodological approach. The analysis of the data reveals that 
social representations about Roma have a major impact on these six Roma people attitudes and 
beliefs towards mathematics and schooling, which also affects their strategies to learn mathematics. 
The six narratives that I discuss in this paper suggest that success happens when Roma children are 
not segregated from the mainstream, but receive the same mathematics curricula as their peers.  

Keywords: Roma, mathematics learning, successful learning trajectories. SLT. 

Roma within the literature on mathematics education 
In the field of mathematics education there are few studies about how Roma children perform in 
mathematics (Chronaki 2005, 2008; Stathopoulou & Kalabasis, 2007). Stathopoulou and Kalabasis 
(2007) analyse the relation between Romanó (Roma language) and the learning of mathematics in 
Greece. According to them, language is a form of cultural identity for Greek Roma children, and they 
use it to resist the homogeneous discourse of the school. Stathopoulou and Kalabasis define the 
academic Roma culture as an “oral” culture, which they use to justify reputing the claim about a “lack 
of written Roma language”. Starting from this statement, they argue that Roma children are proficient 
at oral calculation methods connected to their cultural roots, because Roma culture is mainly based 
on oral tradition.  

Chronaki (2008) suggests introducing hybrid practices1 as a way to break with the hegemonic 
discourse of the school (Matusov, 2009). Drawing on Bakhtin’s (2010) concept of polyphony, 
Chronaki argue that we need to develop dialogic practices to include the voices of all students in the 
classroom, including students from minority groups, not only the ones who share the monologist 
hegemonic discourse. 

There is a lack of scientific literature on the type of actions performed by Roma children that appear 
to be successful in terms of achieving academic success and developing, what I call, successful 
learning trajectories (SLTs). Drawing on previous research (Flecha, 2014), I define SLTs as the set 
of practices and interactions conducted by an individual to pass his/her exams, successfully obtaining 
his/her school certificate(s). I use the “grading of a test, exam or any other assessment procedure” as 
indicator of success, for the lack of a better indicator of “learning.” According to the European 

                                                 
1 Hybrid practices has been used in linguistic and cultural studies to characterize situations within the school (or the 
classroom) in which participants draw on different social and cultural backgrounds (Gutierrez, Baquedano-López & 
Tejada, 1999). It includes formal practices (school like practices) and practices related to what Luis Moll calls funds of 
knowledge (Gonzalez, Moll and Amanti, 2006). Chronaki (2008) uses the term in that sense, in the context of Roma 
culture.  



authorities in education, the minimum level of education expected for everyone is compulsory 
education (goals of the Horizon 2020 Program), generally up to age 162. For this reason, “early 
leaving” and “dropping out” of compulsory education is considered “failing” in this approach.  

Methodology 
This study was part of a larger research project investigating the response of individuals from ethnic 
minorities to overcome the social inequalities they face in the formal educative system when learning 
mathematics. This research interest emerged in the frame of analysing how children at risk of facing 
these inequalities can find their way to gain successful scores at school. The data was collected in 
Barcelona and its metropolitan area. When conducting this study, I realized that Roma people 
developing SLT (in mathematics) made use of strong support from their relatives. In order to better 
understand their process of learning, I decided to conduct a series of interviews with six Roma 
individuals, previously identified as “successful cases” in the sense that all of them had obtained good 
grades in mathematics during their academic trajectories (until the last course taken) (see table 1).  

Pseudonym Year of birth Academic trajectory Current situation 
Federico 1984 University degree PhD candidate 
Joana 1990 University degree PhD candidate 
Joaquim 1988 Elementary degree Access > 25 years old 
José 1979 VET degree Access > 25 years old 
Antonio 1978 Secondary degree Access > 25 years old 
Aroa 1996 Upper secondary degree Working  

Table 1: Description of the participants in the study 

To collect the data, I used personal interviews, an instrument with questions oriented to identify the 
elements that explain participants’ success in learning mathematics, according to their personal 
(subjective) point of view. Drawing on Chase (2005),  

Contemporary narrative inquiry can be characterized as an amalgam of interdisciplinary analytic 
lenses, diverse disciplinary approaches, and both traditional and innovative methods –all revolving 
around an interest in biographical particulars as narrated by the one who lives them. (p. 651) 

This method of inquiry is rooted in previous work, of researchers such as Thomas and Znaniecki 
(1918/1927), Garfinkel (1967) and Mills (1959). It involves collecting the testimonies of participating 
people using a number of instruments of data collection, including life stories, self-reports, oral 
biographical memoires, testimonies, in-depth interviews, recorded narratives and life review 
(Mertens, 2009). This method of inquiry starts from an epistemological approach of individuals as 
primary sense-making agents (Giddens, 1991; Riley & Hawe, 2005). Personal narratives allow us to 
see first hand the interpretations made by the protagonists of their own life experiences. As Bruner 
(1990) claimed, we understand our world through the lenses of personal narratives. In addition, we 
also make meaning (and even build meaning) through those narratives. This type of method (inquiry) 

                                                 
2 Almost in one of three European countries “compulsory education” goes up to 16 years old. For more information, see: 
http://eacea.ec.europa.eu/education/eurydice/documents/facts_and_figures/compulsory_education_EN.pdf  



led me to include the voices of the participants within the wider study. All information was transcribed 
for further analysis. 

I selected six participants for the purposes of this paper. All met the requirement of having developed 
a SLT. As we can see in table 1, two of them are now enrolled in PhD programs. Three more, Joaquim, 
José and Antonio, are preparing to access university degrees, through the exams set up by the 
Government for people over the age of 25. Finally, Aroa is a girl (the youngest one in the group) who 
after finalizing her studies in the high school, decided to start working.  

In order to analyse the data, I used narrative and discourse analysis (Mertens, 2009), drawing on a 
communicative methodological approach (Aubert 2015, Sánchez, Yuste, de Botton, & Kostic, 2013). 
This approach focuses on the analysis and interpretation of the discourse from the dialogue with the 
participants, using validity claims (Habermas, 1984). The interpretation is organized in two different 
dimensions of analysis: transformative and exclusionary. Transformative dimension includes all 
aspects that will enable the subject of the study to answer positively to the research question. 
Exclusionary dimension has the opposite meaning: it includes all aspects that will avoid (or make 
more difficult) answering the research question. For the study reported in this paper, the 
transformative dimension includes all aspects leading the participant to achieve a SLT, whereas the 
exclusionary dimension refers to all aspects making difficult (or even avoiding) the subject to achieve 
a SLT. 
  Attitudes Beliefs Contents Strategies Social Representations 
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E** 16 17 18 19 20 
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C
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m
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T* 21 22 23 24 25 

E** 26 27 28 29 30 

* Transformative dimension 
** Exclusionary dimension 

Table 2: Coding categories for data analysis 

Interviewers and interviewees established a dialogue to explore the data collected, which allowed us 
to identify meaningful topics regarding interviewees’ learning trajectories. In a subsequent interview, 
I asked them to further clarify those topics. Drawing on this dialogue I elaborated a key to codify all 
data collected (see table 2).  

The categories (codes) emerging from the discussions include: attitudes, beliefs, content, strategies 
and social representations. The first two concepts were defined in McLeod’s (1992) terms. Content 
is referring to the mathematics itself (the curriculum). Strategies are defined in Maehr’s (1983) terms 



(see also Ames & Archer, 1988). Social representations correspond to the Moscovici’s (1981) 
definition. 

Discussion 
Next I provide first an inductive analysis of the data collected through the interviews. Then I try to 
create a tentative model to make sense all the relevant variables identified by the participants in the 
study, explaining their ‘learning process’.  

First step: Inductive analysis 

Federico provides a good example illustrating the type of answers obtained from all six Roma 
interviewed. He claims:  

In my case, the key aspects were, one I was passionate [about mathematics] and I really like 
science, so my motivation was somehow ‘natural’, or ‘intrinsic’. In addition, my teachers of 
mathematics and biology used to give me extra homework. I remember that in 4th grade - ESO 
[secondary education – middle school] I used to solve problems of 1st grade - Bachillerato 
[secondary – high school], and this was very motivating for me. It was the opposite in Catalan or 
English, teachers used to reduce my tasks so I could pass them [with no work]. Not the case for 
Spanish: I also used to get difficult homework to do in the classroom or at home. (Federico) 

In his words, we can see that aspects particularly positive in his academic career include effort, a 
challenging curriculum, a personal motivation (passion) for some of the academic topics (such as 
mathematics or biology), whereas no enthusiasm at all is devoted toward other ones (Catalan or 
English). From a very tentative entry point, we can infer here that ‘motivation’ is, somehow, 
connected to ‘grading’ (as learning ‘indicator’), given that Federico (for example) got excellent 
grading in mathematics and biology and, in fact, he started ‘biology’ for his minor at the university. 
But he also declares that his family (specially his mom), took a relevant part in his learning process.  

In an informal way, my mom taught me mathematics in the kitchen, or when shopping. Topics like 
volume, arithmetic, counting, prices, change, […] My dad, as he was in the construction sector, 
taught me how to calculate budgets, how to calculate the price for square meters, how much does 
it cost the staff, rates. (Federico) 

He and Aroa, Antonio, José, Joaquim and Joana as well, explain that their good grades in mathematics 
were consequence, mainly, of their family involvement. Their parents were the ones teaching them 
to develop mental calculation skills, estimation skills, etc., which were highly valued in the school 
framework. Stathopoulou and Kalabasis (2007) also provide clear examples in the case of Greek 
Roma, confirming this finding. However, this is not a main strategy for learning mathematics for any 
of our six cases. What they claim is that in order to obtain good grades in mathematics, they basically 
had to study hard, to put a lot of effort, using academic strategies to better learn: outlines, summaries, 
use of key words, or other mnemonic strategies, practice, problem solving, homework every day, etc.  

However, drawing on the data that I collected, it seems that certain social contexts could become 
sometimes a barrier limiting the opportunities of some Roma individuals to successfully perform in 
their grades. Joana, for instance, felt isolated from the ‘Roma world’, whereas Joaquim resists and 
rejects school because “[school] it is not Roma”. Teachers are crucial. According to Federico, some 
teachers really do not help Roma students because they feel that Roma are not interested in education. 



Joana holds a similar view. She explains how for many of her Roma friends teaching was just a matter 
of “being happy attending the school”, rather than “being a place for expand their learning”. 
According to Joana, that was the consequence of some teachers’ prejudices against Roma children: 

Not always, but in some cases, yes. It was not the case with me; my teachers always encouraged 
me to continue studying. But most of the times they did not identify me as Roma, and I have come 
to hear some pejorative comments towards my people from my teachers. In the classroom, I never 
had so many Roma peers. But I know other Roma girls who explain to me that, in their high 
schools, teachers, instead of teaching them the lesson, they lead them to see the telenovela [soap 
operas on TV]. I guess that it is the easiest solution and they think that doing so, the girls would 
be happy of attending the school every day. But I think that it is the opposite in fact, because the 
girls and their families know that they are not learning anything, so attending the school is useless. 
If things are like that, then they can stay at home and see the telenovela over there. (Joana) 

Looking at the testimonies of the six individuals interviewed, what they highlight as the most 
exclusionary factor is segregation, the separation of Roma students from the mainstream. This is due 
either to stigmatization from some teachers, or because genuine wishes of some teachers to better 
help them, hence they use “separation into homogeneous small groups” as a way to ‘concentrate’ 
additional support. However, according to Federico and Joana, those efforts are useless, since taking 
Roma children away from the mainstream does not help them to better learn mathematics, but the 
opposite; this practice leads the Roma students to be labelled by their peers and teachers, creating a 
stigmatized social representation about Roma. Therefore, this process somehow “announces” the 
academic performance of Roma children even before they conduct the tests. It is like a “self-fulfilling 
prophecy”. This perverse effect has been proved many times in the field of mathematics education 
research with children from vulnerable groups (Secada, Fennema, & Byrd-Adajian, 1995; de Abreu, 
Bishop, & Presmeg, 2001). When the school creates ability groups to segregate vulnerable groups 
children from the mainstream, creating low level groups, or designing segregated paths tracking, the 
consequence is that these children fail. 

Second step: Creating a model of analysis 

Drawing on the analysis of these testimonies, after coding them with the qualitative software package 
Atlas.ti, I produced a tentative model to describe SLT. I called this scheme Learning Core Matrix 
(LCM), as in figure 1, drawing on the variables identified by McLeod (1992), Maehr (1983) and 
Moscovici (1981), as reported earlier in this paper. The sum of all these components forms what I 
call LCM. I use this scheme to understand how every SLT works. On the subjective level of analysis, 
personal attitudes are shaped by social representation of being Roma. Social representations include 
values, ideas, metaphors, and beliefs (in the sense of Moscovici’s notion) related to learn mathematics 
being Roma. Strategies refer to the practices that individuals (Roma students, teachers, etc.) perform 
to teach, learn, resist or avoid mathematics. Attitudes include positive or negative evaluation of 
people, objects, events, activities, ideas, etc. in the frame of teaching and learning mathematics.  



 

Figure 1: Components of the Learning Core Matrix (LCM) associated to a SLT 

Beliefs include personal mental states regarding people, objects, events, activities, ideas, etc. Finally, 
contents refer to the mathematics curricula. According to the data collected, it seems that a ‘positive’ 
social representation of Roma may explain why some teachers do not segregate Roma addressing 
them to low-achievement groups with poor content (in mathematics), whereas other teachers holding 
‘negative’ social representations about Roma use segregation strategies with them, lowering the 
curriculum, for instance. It is also the case that the same teacher may also project good expectation 
in one particular Roma student, whereas segregating other ones. Having a positive or negative social 
representation depends on the teacher attitude towards Roma identity, which is closely interlinked to 
teachers’ personal beliefs. From the student point of view, the model works accordingly: confidence 
in the school (positive belief) is attached to a positive attitude in the classroom, as well as to the use 
of a variety of strategies to learn mathematics (such as prepare exams some days ahead, do homework, 
look for extra work, etc.). This is associated to a teacher’s positive social representation of Roma as 
successful learner (in mathematics), as well. The individuals who show positive components in this 
LCM use to hold SLTs more likely than the ones who, at some point of their lives, had a (mainly) 
negative LCM.   

Conclusion 
The six narratives I have discussed here suggest that success happens (or is more likely to happen) 
when they have had positive LCMs. When all of the five components of the LCM (or most of them) 
are positive, then it is more likely that an individual would develop a SLT. On the contrary, when the 
negative component is prevailing, then is hard to see SLT as a result. Joaquim, for instance, at some 
point of his life dropped out the school because he was feeling resistance against the school institution. 
According to him the main reason to explain such attitude was his negative social representation of 
“school” as something alien to his identity. This feeling could be, somehow, the result of being 
segregated by certain teachers holding negative expectations towards Roma students.  

The role of the family plays a crucial role to overcome the difficulties and barriers that some Roma 
students face along their school trajectories. A significant amount of these barriers is connected to 
prejudice and negative social representations about Roma. Family may be a resource. However, 



sometimes this is not true because the members of the family did not have any opportunities or 
possibilities to study themselves. For this reason, they cannot become ‘resources’ to help their 
children to solve their mathematics assignments. But, according to Hoover-Dempsey et al. (2005), 
the families can look for further resources to reinforce their children’s learning. Recent studies 
suggest that family engagement in the school has major impact on learning than just appointing family 
members in the school to ‘report’ on children’s behaviour (Díez-Palomar, Santos, & Alvarez 2013).  

LCM may have the potential to explain both Roma’s SLTs or the failure of many Roma children in 
the school, as narrated by Joana, Federico, Joaquim and the rest of their peers. In their narratives, they 
explain how many of their Roma peers used to be re-allocated to low-level classrooms, how teachers 
use to decide to lower the grades for them, cutting down on the curriculum, or asking them to do 
naive work (like painting) rather than problem solving or other high-mathematics-oriented tasks. 
However, examples like the narratives by Federico or Joana may help us to understand how holding 
a positive identity connected to showing positive attitudes in the school, using different strategies to 
overcome the difficulties related to mathematics itself (epistemological, ontological, etc.), combined 
with high quality curricula and classroom organization, may end in the development of SLTs.  

The model that I presented here is not generalizable. We need further quantitative studies to either 
accept or reject this approach. This would be the next step in the near future.  
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This paper describes the features of ethical research and how we attempted to undertake this kind of 
research. Our contention is that the aim of ethical research should be to produce action for change. 
Our understandings of ethical research led us to pause our negotiations for setting up two new 
projects, in kindergartens in Norway. By taking seriously our potential collaborators’ concerns, we 
were alerted to how kindergartens were simultaneously seen as both the cause and the salvation for 
several issues. In media discussions, which often originated with the Minister for Education, there 
was a perception that there was a need for more learning, particularly of mathematics and language, 
to overcome difficulties that children, especially immigrant children, may have when they begin 
school. These discussions were often contradictory with kindergartens being placed in an invidious 
position of navigating these discussions for their work with children. 
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Ethical research 
In August 2016, we were in the early stages of setting up two projects involving dialogue between 
ourselves, as mathematics education researchers, and the parents and teachers of multilingual children 
in kindergartens in Norway. As described in the next section, our initial discussions with an 
organisation about one project made us stop and reconsider what we wanted to do and why. To do 
this, we clarified our ideas about the kind of research, ethical research, which we wanted to undertake. 
In this paper, we discuss how implementing its principles resulted in us investigating the shifting 
landscape of priorities in Norwegian kindergarten policies. 

Our definition of ethical research includes a number of aspects, some of which are inspired by critical 
research. Critical research has a social justice aim and as such requires researchers to be comfortable 
with the ambiguity connected to working against oppression. Proposing bricolage as way of 
conceiving the range of research methodologies needed for conducting critical research, Kincheloe, 
McLaren, and Steinberg (2011) stated that “comfortable with the ambiguity, bricoleurs as critical 
researchers work to alleviate human suffering and injustice even though they possess no final 
blueprint alerting them as to how oppression takes place” (p. 173). We consider that ethical research 
involves more than evoking sympathy for participants. Like Harris (2013), we want to work with 
participants to produce “action for change” (p. 87). Nevertheless, we are aware that concerns about 
misinterpreting interactions and situations have led some researchers to withdraw from “action for 
change” research in case it produces undesirable outcomes, due to a lack of knowledge about the 
context in which they worked (Sultana, 2007). 

Thus, we consider that to design research that would produce action for change, academic researchers 
need to negotiate the research process with participants (Potts & Brown, 2005). In accepting this 
requirement, we recognise that this may make us uncomfortable. Operationalising social justice as 
action for change means we must live with ambiguity associated with how data should be collected 
and analysed. Our uncomfortableness with this ambiguity is likely due to preconceptions that research 



should provide definitive responses to issues; a reflection of the discourses that surround us as 
academics. It is also due to how we operate within the power relationships connected to being 
researchers, who tell the stories of participants (Etherington, 2007; Harris, 2013). Ethical research 
requires us to interrogate these power relationships and not assume we know the truth. 

Therefore, reflecting on our decision-making in the research, both with and without our participants, 
is an important component in ethical research. Reflexivity has been promoted as important in that it 
makes transparent any dilemmas in the research. 

Reflexivity is … an ability to notice our responses to the world around us, to stories, and to other 
people and events, and to use that knowledge to inform and direct our actions, communications, 
and understandings (Rennie, 1998; Wosket, 1999). When we extend that skill [reflexivity] into the 
practice of reflexive research, we need to be aware of the personal, social, and cultural contexts in 
which we (and others) live and work and to understand how these affect our conduct, 
interpretations, and representations of research stories. (Etherington, 2007, p. 601)  

In summary, ethical research is connected to action for change, but to achieve it we need to negotiate 
with participants what the research should be and how it should be conducted. This requires us to 
have a rich understanding of the context surrounding the site of the research. We must also accept 
uncertainty and be reflexive about our roles so that the power imbalance in our relationship with 
participants does not result in a covert control. We have a responsibility as researchers to find out 
about the relevant contexts and not just expect our collaborators to be the ones to inform us. We must 
also be aware that the negotiation can result in the research being “productive failure” (Harris, 2013, 
p. 89), rather than the change that we jointly want to work for. 

Unease and the project proposal 
In the negotiation of new projects with organisations that we had not previously worked with, our 
understandings of ethical research made us pause when some unease was shown. In the projects, we 
wanted to work with kindergartens teachers and parents of multilingual children. In one project, we 
hope to develop and trial playful mathematical apps that would encourage children to discuss them 
with kindergarten teachers in Norwegian and with their families in their shared languages. The change 
that we want to produce through having children engage with the apps is for them to develop both 
their Norwegian and home language(s) for discussing mathematical ideas. 

However, in the initial meeting, the complexity, connected to combining ICT, through mathematical 
apps, with the development of children’s mathematical register in more than one language as well as 
a request to involve immigrant parents, seemed to overwhelm those we talked to. The response was 
positive in that they felt the kindergartens would want to participate, but there was a constant stream 
of questions about what would happen and what the teachers would have to do. Although we tried to 
explain our aim of negotiating the project with the teachers and the parents, there was unease about 
why we did not have a clear plan for what we wanted (the teachers) to do. This unease made us reflect 
on the context of kindergartens in Norway, to determine what might provoke a need for certainty. 

Our reflection indicated that the projects came at a time when those working with kindergartens face 
much uncertainty and it became important to identify the features of the shifting landscape which 
affect kindergartens teachers’ work. We considered that an increased awareness of this landscape 



would support us to be more respectful of the circumstances and improve our possibilities to negotiate 
with kindergarten teachers and parents about how the projects should be implemented.  

The shifting landscape 
In this section, we present our understandings of some of the features of the shifting landscape 
including discussions about changing the role of kindergartens as one of preparing children for school, 
through supporting children to learn better mathematics and Norwegian and by incorporating ICT 
into children’s play. Each issue has been the subject of much debate over the last few years. Our 
investigation indicated that in discussions about kindergartens, teachers were often positioned both 
as responsible for the problems and simultaneously also the solvers of the very same problems. 

Changes to curricula philosophy for early childhood 

In Scandinavian kindergarten curricula, the focus has traditionally been on the whole child, 
emphasising their integration into society (Bennett, 2005). A revision of the Norwegian curriculum 
for kindergartens, the so-called Framework Plan (Kunnskapsdepartementet, 2011), that sets out their 
responsibilities has been ongoing for some years. However, in 2016 the Minister for Education 
rejected the draft, which followed the philosophy of play-based learning, proposed by contracted 
early childhood professionals. In particular, this delay to revising the Framework Plan seemed to 
result in our potential collaborators being uncertain and frustrated. However, the Minister had decided 
that his department would write the Framework Plan (Kunnskapsdepartementet, 2016a; Støbakk, 
2016) in line with a white paper that he had commissioned about providing “better content” in 
kindergarten (Kunnskapsdepartementet, 2016b). Although this suggestion has received significant 
criticism from those working in the field, the Minister continues to talk about kindergartens needing 
to prepare children for school. As noted in some of the critiques (Bae, 2016), play – although in the 
title of the white paper (Kunnskapsdepartementet, 2016b) – is almost completely missing from the 
discussion with the attention being on what children are to “learn”. This indicates a deliberate change 
to situating kindergartens’ primary role as preparing children for school. This interpretation was 
reinforced with the revelation that Norway was to participate in the first round of PISA tests for 5 
year olds starting in 2017/2018 (Moss et al., 2016). In Norway, five year olds attend kindergartens 
and comparing them on international tests will emphasise the importance of school knowledge. 
Mathematics will be one of the knowledge areas assessed in these International Early Learning 
Studies (Moss et al., 2016).  

Mathematics and the “realfag” strategy 

In a series of initiatives contributing to shifting the focus of kindergarten away from the social policy 
pedagogical tradition (Bennett, 2005), another report, specifically about improving mathematics and 
science subjects, “realfag”, in kindergartens and schools, was commissioned by the Minister and 
released in August 2015 (Kunnskapsdepartementet, 2015). The Minister in justifying and promoting 
this policy had linked Norway’s future financial well-being to a need for more focus on mathematics 
in kindergartens (Lange & Meaney, 2016). This prompted discussion about whether moving more 
towards a “readiness for school tradition” and away from the “social policy pedagogical tradition” is 
appropriate for Norwegian kindergartens. Like the white paper about better content in kindergartens 
(Kunnskapsdepartementet, 2016b), this report and its recommendations have been criticised by those 
working in the field even before it was published (see for example, Pettersvold & Østrem, 2014; 



Schaanning, 2015). A question arises about what improving the content in kindergarten means when 
the current Framework Plan (Kunnskapsdepartementet, 2011) already contains goals for providing 
mathematical learning opportunities to children (Digranes, 2014). The implication was that 
kindergarten teachers were not doing enough to support children to learn the necessary mathematics 
knowledge for school. For kindergarten teachers and the administrative leadership, there remains 
uncertainty about how to implement the “realfag” strategy while they wait for the Framework Plan to 
be finalised. Although the outcomes are clearly connected to “improvement”, perhaps assessed 
through tests of 5 year-olds, the lack of information for kindergartens about how to work with this 
report remains a source of frustration.  

Multilingual children in Norwegian kindergartens 

Alongside discussions about the role of mathematics within kindergartens, there have also been 
discussions about the children needing to learn “good” Norwegian language. These discussions are 
diverse and in some ways contradictory. Some of them refer to the white paper on better content in 
kindergarten (Kunnskapsdepartementet, 2016b), which includes the push by the Minister to introduce 
mandatory language testing of kindergarten children, such as in Fladberg (2015), and to the legislate 
requirements for Norwegian language skills of employees in kindergarten as noted by Haugsvær 
(2016). The Minister’s justification for the testing was that a significant proportion of children begin 
school without good Norwegian skills (Svarstad, 2015). Although the suggestion for mandatory 
language testing was rejected by the parliament in June 2016, uncertainty about how kindergartens 
should work with children’s language development remains (Fyen, 2016; Schaanning, 2016).  

Connected to these discussions, although often implicitly, is the issue of immigrant children and their 
learning of Norwegian so that they would be ready for school (Redaksjonen, 2016). Children who 
have another language than Norwegian as their home language are given the same tests as those who 
have Norwegian as their home language. Unsurprisingly perhaps, the results generally indicate that 
multilingual children are not as competent as children who speak Norwegian at home. However, in 
this debate, the kind of language development seems to be implicitly about ensuring conversational 
language. Language to discuss mathematics is not specifically mentioned either in discussions about 
more mathematics in kindergartens or in discussions about improving language development. 

Linked to the issue of multilingual children’s Norwegian language skills is a long running debate 
about family payments that parents can use for children to attend kindergarten or to look after them 
at home (Rosa, 2007). Recently, attendance by immigrant children in kindergartens has increased 
(Barne-‚ ungdoms- og familiedirektoratet, 2016), providing them with increased opportunities to 
learn Norwegian. The discussion about insufficient Norwegian for school has been linked to children 
who are kept at home during the kindergarten years, although the Minister rarely acknowledges this. 
Still, there is some evidence that children may not be learning conversational Norwegian while in 
kindergartens. The responsibility for improving the situation lies with the municipalities which 
oversee kindergartens.  

At the same time, there also has been criticism about the lack of effort by kindergartens to achieve 
the Framework Plan’s (Kunnskapsdepartementet, 2011) requirement to develop all of the children’s 
languages (Sundby, 2016). Nevertheless, it is acknowledged that it is difficult for kindergarten staff 
to do this if they are not be fluent in these other languages (Otterstad, 2016). Again, kindergartens are 



situated as being responsible for not doing enough but with no clear pathway for how they could 
improve their possibilities for supporting children’s home language skills. There is no discussion 
about using home languages for discussing mathematics. 

ICT and kindergartens 

ICT is an area that children in kindergarten are also supposed to have experiences with, according to 
the Framework Plan (Kunnskapsdepartementet, 2011). Yet the discussion about whether or how to 
incorporate ICT in kindergartens continues to circulate, partly because of the constant changing of 
hardware and software. For example, the rapid increase in the use of touch-screen devices by children 
at home (Hardersen & Guðmundsdóttir, 2012) has not been matched by their use in kindergartens 
(Bølgan, 2012). As well, research in information literacy skills connected to ICT has shown that older 
students who speak other home languages than Norwegian are likely to have less of these skills than 
those who speak Norwegian at home (Hatlevik & Guðmundsdóttir, 2013). 

In seeming contradiction to the Framework Plan’s requirements, the Minister has been critical of the 
unbridled enthusiasm for ICT in kindergartens and schools, suggesting that there is limited research 
evidence to show that ICT contributes to children’s learning (Todal, 2015). During a visit to a 
kindergarten, he described his fondness for paper books over digital ones (Ruud, 2016). For 
kindergartens deciding how to use ICT with children, there are mixed messages about if and how 
they should integrate ICT into possible learning opportunities for children. 

What did we learn from mapping the landscape? 
Although as researchers we were aware of the debates raging around kindergartens, it was not until 
we investigated them that we understood how they may be affecting the possibilities our potential 
collaborators saw for negotiating with us. As teacher educators, we also face major changes to our 
working environment, initiated by the Minister of Education. However, our standing as academics, 
which provides us with recognition and discussions beyond our immediate working environment, 
perhaps made us blasé about the impact that uncertainty had on kindergartens’ perceptions of what 
they could do. Kindergarten staff, even though many have a Bachelor degree, are often not given the 
same status as those working in universities or even schools by the general public. By investigating 
what was being discussed and in what ways, we better understand the uncertainty that kindergarten 
staff saw in how we presented the potential project to them. 

The debates, around kindergartens and what their focus should be, situate kindergarten teachers and 
administrative leaders as being both responsible for the problems and also their solutions. As 
discussed in the previous section, kindergarten staff were being presented in the media debates as not 
preparing children well enough for school. Official reports situated them as not developing the 
children’s, especially multilingual children’s, language(s). They were also not providing children 
with the mathematical understandings that they needed to be successful at school and this was 
endangering Norway’s economic well-being. Within these debates, kindergarten staff were 
positioned as not being competent, with kindergarten assistants’ Norwegian language skills needing 
to be tested. 

Simultaneously, the debates constantly shifted and changed, providing contradictions and no clear 
guidelines about what kindergarten staff should focus on and how they should implement any of the 
reports. Instead, they may have felt their competence was further being tested by whether they could 



work out appropriate solutions to these issues. Having been judged as contributing to the problems, 
they are now being judged on whether they could become the kindergartens’ saviours through finding 
solutions to those exact same problems. Being the focus of so much media attention, with limited 
possibilities for responding and positioning their work in positive ways, may have affected their 
willingness to engage with us, as outside researchers. It is not surprising that they seemed to want a 
specific plan for their participation in the proposed projects. Following someone else’s plan not only 
would allow them to show they were working on solving the issues, but if the plan did not work then 
we would be responsible.  

Yet ethical research demands that we negotiate with kindergarten staff and parents if action for change 
is to be achieved. Our investigations showed us that we needed to accept their concerns as genuine 
and be mindful about how we situated them in our negotiations. Recognising this shifting landscape 
provided some indication about how we could be respectful of their contexts. Still there remains 
significant ambiguity for us on how to conduct, not just the negotiation, but also the project itself.  
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Five teachers from a Sámi lower secondary school participated in two workshops on culturally-
responsive mathematics teaching. During the first workshop, the teachers chose to focus on 
developing a unit about lávvu, the Sámi tent, to be taught between workshops. Their experiences are 
analysed with respect to Self-Determination Theory, which claims that all humans have a basic need 
for autonomy, competence and relatedness to others. The analysis of teachers’ written notes reveals 
that the need for autonomy appeared as a need for inspiration and for courage. The need for 
competence concerned relating mathematics teaching to the two community resilience factors i) Sámi 
language competence and ii) traditional ecological knowledge. The need for relatedness to others 
was linked to Indigenous peoples, other teachers at their school, and teachers at other Sámi schools.  

Keywords: Sámi, teacher, self-determination, indigenous, culturally-responsive teaching. 

Introduction 
This paper explores teachers’ perspectives on culturally-responsive mathematics as it is imagined and 
utilized in the design and implementation of a teaching unit on the Sámi1 tent, lávvu. This artefact, its 
design and its building, carries important connections to the Sámi people’s intangible cultural heritage 
by embodying cultural traditions and ceremonies as well as rules for behaviour. To many 
Scandinavians, however, the lávvu is merely a tent; a cone-like building made with some poles that 
are covered by cloth. In modern Sámi societies, traditional knowledge of lávvu is not necessarily 
widespread as people use modern, factory-made lávvut with metal poles. Reindeer herding families 
use lávvu regularly and often are more familiar with traditional knowledge about lávvu than other 
Sámi. The younger Sámi generation consists of a variety of people with different interests.  

Guovdageainnu nuoraidskuvla is the lower secondary school in the village Guovdageaidnu, 
Kautokeino, in Norway. North Sámi is mother tongue of more than 90 % of the students and it is the 
school’s official language. The teaching is translated into Norwegian by an assistant teacher for 
students who do not understand Sámi well. The school follows the Sámi curriculum, which is 
equivalent to the national one. The school’s teachers realised that reahpen, the north Sámi word for 
the smoke hole in the lávvu’s top, was considered a strange word by many grade 10 students. In order 
to increase students’ cultural and mathematical knowledge, the teachers developed a culturally-
responsive teaching unit about lávvu. The teaching unit was carried out in the period between two 

                                                 

1 The Sámi are an Indigenous people of the Arctic. They live in the northern parts of Norway, Sweden and Finland and 
on the Kola Peninsula in Russia. The Sámi is a heterogeneous group of people with different occupations.  



workshops about culturally-responsive mathematics teaching. At the first workshop, the teachers 
planned the teaching, and, at the second workshop, they presented the outcomes. We consider this 
work to contribute to this group’s self-determination as an Indigenous group. 

Smith (1999/2006) highlights the importance of self-determination for Indigenous people, by 
describing it as the aim of a non-linear developmental process that departs from survival and recovery. 
We consider that self-determination is important in understanding Indigenous mathematics teachers’ 
motivations for developing and implementing culturally-responsive teaching. Previous research about 
teachers’ reflections about Sámifization of school mathematics identifies several important issues. 
Jannok Nutti (2013) noted teachers’ ability, drive and possibility, while Fyhn, Jannok Nutti, Nystad, 
Sara Eira and Hætta (2016b) describe relations between teachers’ autonomy and their development. 
Fyhn, Jannok Nutti, Sara Eira, Børresen, Sandvik, and Hætta (2015) point to the importance of 
including teachers from other subjects, when the context for the teaching is related to their area. 
According to Kirmayer, Sehdev, Whitley, Dandenau, and Isaac (2009), self-determination also relates 
to resilience, as general discussions of identity tend to underemphasize the role of social action or 
collective agency in the production of well-being. Nystad, Spein, and Ingstad (2014) investigated a 
Sámi society in Northern Norway and identified community resilience factors including Sámi 
language competence, use of recreational and natural resources, and traditional ecological knowledge, 
such as reindeer-husbandry-related activities. These cultural factors appear to strengthen adolescents’ 
ethnic identity and pride. Knowledge about lávvu and skills in how to raise a traditional lávvu are 
examples of traditional ecological knowledge in Sámi societies. Kirmayer et al. (2009) point out that 
resilience has a collective as well as an individual dimension. 

Self-determination theory has provided empirical support for the proposition that all human beings 
have fundamental psychological needs to be competent, autonomous and related to others (Deci & 
Ryan, 2012). Autonomy refers to the perceived origin or source of one’s own behaviour; it concerns 
acting from interest and integrated values. Relatedness is the psychological sense of being with others 
in a secure community. Autonomy is emphasized in traditional Sámi child rearing (Hoёm, 1976; Balto, 
2005) and Balto (2005) highlights autonomy as a Sámi value. Relatedness to others is connected to 
holistically sharing and developing knowledge and so it is also considered an Indigenous value. The 
theoretical framework is constituted by the three categories competent, autonomous and related to 
others. Following Glaser (2001), we identified subcategories connected to each category by 
comparing incidents and named them using the teachers’ own words. In this paper, we analyse five 
teachers’ expectations and experiences of the two workshops. Our research question is, how does 
teachers’ self-determination appear in their workshop notes? 

Culturally-responsive teaching  
Before discussing the workshops, we briefly describe culturally-responsive teaching which was the 
inspiration for the workshops. Gay (2013) described culturally-responsive teaching as “using the 
cultural knowledge, prior experiences, frames of reference, and performance styles of ethnically 
diverse students to make learning encounters more relevant to and effective for them” (pp. 49-50). 
Gay suggests that as part of culturally-responsive teaching, teachers conduct their own analyses of 
textbooks, the Internet and other sources. The investigation should include how different knowledge 
sources affect teaching and learning and reconstruct or replace existing presentations of issues and 
situations in the various resources with cultural knowledge and insights. This approach is in alignment 



with Smith’s (1999/2006) description of self-determination. Gay (2013) considered that 
interdisciplinary work with teachers of other subjects supported collaboration and provided different 
insights. Nevertheless, implementing culturally-responsive mathematics teaching needs to be done 
with care so that cultural artefacts are not simplified, to the detriment of both the culture and the 
mathematics. An example of simplification is to claim that the tipi, which is similar to the Sámi’s 
lávvu, is a cone:  

That is surely wrong; the tipi is not a cone. Just look at a tipi with open eyes. It bulges here, sinks 
in there, has holes for people and smoke and bugs to pass, a floor made of dirt and grass, various 
smells and sounds and textures. There is a body of tradition and ceremony attached to the tipi, 
which is completely different from and rivals that of the cone. (Doolittle, 2006, p. 20)  

According to Doolittle, there is a risk that Indigenous students who are presented with such 
oversimplifications feel that their culture has been appropriated by a powerful force for the purpose 
of leading them away from their culture. Thus, a teaching unit about lávvu has to respect the tradition 
and ceremony attached to it. Traditionally, a lávvu consists of two cloths that are wrapped around a 
set of poles and is a place for sleeping, working, relaxing, storytelling and even more (Nergård, 2006). 
It is easy to set up and take down and its permanent material, cloth and skins are transported when 
the family moves between living places. Other materials are gathered from the area where the lávvu 
is placed, making it local as well as mobile. There are rules for where to sit in the lávvu for parents, 
grown up children, workers and smaller children. In the old days, the innermost area was sacred and 
only the bear hunter returning from a successful hunt was allowed there (Petterson, 1905/1979). He 
entered from the back bringing the bear meat with him. Nowadays, people sleep anywhere and in 
modern lávvu, the floor is covered with carpets and stoves are used for cooking. Still, the tangible 
and the intangible cultural heritage remain important. 

The workshops 
Teachers from two Sámi schools participated in two two-day workshops, with six months in between. 
The workshop participants were a) teachers from the three subjects Sámi language, mathematics and 
duodji, Sámi handicraft at Guovdageainnu nuoraidskuvla, b) all teachers for grades 1-10 from a small 
Sámi school in another municipality, and c) some pre-service teachers from Sámi University College, 
who had a practicum at Guovdageainnu nuoraidskuvla. The teachers joined the workshops so they 
could contribute to the further development of culturally-responsive teaching in their schools. 
Guovdageainnu nuoraidskuvla had already started developing culturally-responsive mathematics 
teaching (Fyhn et al., 2015; Fyhn et al., 2016b) and the principal is one of the mathematics teachers. 
The two workshops included lectures and school-based group work. The group work was about the 
culturally-responsive mathematics teaching done in the period between the workshops. At the first 
workshop, the mathematics teachers who participated in the earlier project (Fyhn et al., 2015) 
presented their work. In addition, researchers presented theoretical perspectives connected to 
Indigenous mathematics education, mainly through examples from Sámi and Māori classrooms. The 
second workshop continued with theoretical perspectives and included an online lecture with two 
Indigenous mathematics teachers and researchers from New Zealand. At the first workshop, each 
school chose a theme for the culturally-responsive mathematics teaching and started the planning. 
The schools presented the results of their culturally-responsive mathematics teaching at the second 
workshop. Guodvageainnu nuoraidskuvla focused on lávvu and eight teachers from this school co-



authored a paper about their work (Fyhn, Sara Eira, Hætta, Juuso, Skum, Hætta, Sabbasen, Eira and 
Siri, 2016a). 

The teaching unit about lávvu  
During workshop one, the Sámi language teachers suggested to focus on lávvu, because many 
students did not know the names of central parts of the lávvu. The mathematics teachers agreed that 
lávvu would provide possibilities for teaching mathematics, among other things by having the 
students make a small lávvu model. Students could discuss different aspects of mathematics related 
to lávvu. Consistent with cultural symmetry (Trinick, Meaney, & Fairhall, 2016), the teachers 
designed the teaching unit so that it started with a history section that discussed lávvu and goahti 
(another common Sámi housing) and central concepts regarding these. The teachers highlighted the 
different parts of the lávvu construction and how each part functioned. Each part was connected to 
specific traditions and the students had to learn the North Sámi words for them. In this way, the 
teaching valorised the local culture, as recommended by Trinick et al. (2016) and Doolittle (2006).  

The mathematical aspects of the unit focused on the three válddahat, the structural poles, the location 
of árran, the fireplace, and the size of the floor. The válddahat have a Y-shape in one end and are the 
first three poles raised. This triangular construction is common for Sámi frameworks; as constructions 
made by three sticks are stable and reliable (Fyhn et al., 2016a). Locating the árran can be done 
through eye estimation, which includes trial and error for those who are not skilled. Árran may also 
be located just below a skerttet, a special iron hook that hangs in a chain from the top of the lávvu.  
Locating árran can be connected respectively to a numerical approach or a geometrical approach, 
with both providing appropriate answers. The size of the floor depends on how many people are to 
stay in the lávvu; the steeper the walls are, the smaller the floor’s area. In earlier times, people could 
determine from a distance how many people lived in a lávvu, based on the angle between the wall 
and the ground. The lávvu floor is covered with layers of duorggat, twigs in appropriate length that 
are cut from willow or birch. Eye measuring is used to estimate the amount of duorggat needed. The 
students used a trial and error approach to determine this, while skilled people fetch the correct 
amount first time.  

The students raised a lávvu near the school. The teachers focused the students’ attention on the three 
válddahat. The students also made a mini lávvu, which became a gift that the students enjoyed giving 
to an old people’s home. The model’s scale was 1:8. Afterwards the teachers regretted that they had 
chosen this scale, because the task would have required more mathematics if the students had to 
decide the scale themselves. Still the model proved mathematically challenging for the students, who 
had to choose materials and decide how to make everything in correct proportions. 

Method 
Five teachers from Guovdageainnu nuoraidskuvla participated in both workshops and their responses 
to the workshop are analysed in this paper. They work in a school where North Sámi is main language 
and were educated as Sámi teachers. The five teachers Bigga, Duiri, Vide, Sire and Aile are north 
Sámi native speakers and experienced teachers who teach two, three or four subjects each. Two of 
them teach duodji, four of them teach mathematics, and four teach Sámi language. The work between 
the workshops contributed to strong cooperation between the teachers in these three subjects. Sámi 
language and duodji are subjects that, among other things, aim to strengthen the students’ cultural 



identity. At the bequest of the researchers, the participants wrote about their expectations and 
experiences of the workshops at the beginning and end of each day. Fyhn et al. (2016b) studied 
relations between teachers’ autonomy and their development of a culturally responsive mathematics 
exam. In this study, we chose to focus on more aspects of self-determination. In alignment with self-
determination theory (Deci and Ryan, 2012), we analysed the teachers’ writings in regard to a) being 
competent, b) being autonomous and c) being related to others. Designing and implementing a 
culturally-responsive teaching unit about lávvu requires the teachers to have the necessary 
competence about how to integrate cultural knowledge with mathematics teaching; this is an example 
of what Kirmayer et al. (2009) call community resilience. As well, the teachers need a capacity for 
and a desire to experience autonomy; that the work is regulated by themselves and that their integrity 
is kept through the work. When teachers from one school work together as a group, they are related 
to others and not alone in facing possible resistance or other difficulties in implementing a culturally-
responsive teaching unit. 

The teachers’ experiences of self-determination during the workshops 
The teachers’ expectations and experiences are analysed with respect to the three issues autonomy, 
competence and relatedness to others (see Table 1). Competence was identified as the ability to 
include two community resilience factors i) Sámi language competence and ii) traditional ecological 
knowledge in the teaching of mathematics. Relatedness to others could be separated into three 
categories, relatedness to other teachers at their school, relatedness to teachers at other Sámi schools 
and relatedness to (teachers from) other Indigenous peoples. Before the workshops, the teachers’ 
expectations mainly concerned their individual autonomy and competence, but during the workshops, 
most of their discussions of their experiences focused on relatedness to others. The analysis of the 
written notes reveals the teachers’ need for autonomy manifested itself as a need for encouragement 
and for ideas or inspiration. These findings are in line with Fyhn et al (2016b).  

Autonomy Competence Relatedness to others 

Inspiration/ideas from others  
Becoming encouraged 
Awareness about competence 

Include resilience factors:  
a) Sámi language and  
b) traditional ecological 

knowledge in mathematics 
teaching 

Other teachers at their school 
Teachers at other Sámi 
schools 
Other Indigenous peoples 

Table 1: Framework 

The first morning, the teachers expressed their expectations towards the workshops. Sire and Aile 
referred to a need for supported autonomy, “I hope that I dare to do more interdisciplinary work”, 
(Sire, expectation notes, March 2, 2015) and “Hope it motivates to more interdisciplinary work”, 
(Aile, expectation notes, March 2, 2015). Vide, Aile and Duiri expected to hear about experiences 
with including resilience factors in mathematics teaching, “to get some ideas and hear about some 
experiences with culture-based mathematics”, (Duiri, expectation notes, March 2, 2015). Aile 
expected ideas about how to connect different subjects, and Vide (expectation notes, March 2, 2015) 
wrote “To get input from other teachers about how to integrate more subjects in an interdisciplinary 
work where all subjects feel included”. The teachers’ references to interdisciplinary work are in line 
with Gay (2013), who points out that interdisciplinary work leads to collaboration, plus expectations 



about knowledge. Interdisciplinary work in this setting means mathematics that treats Sámi traditional 
knowledge with dignity and respect. Nystad et al. (2013) identified traditional knowledge as a 
community resilience factor. Ability to integrate resilience factors was among Bigga and Sire’s 
expectations. Bigga (expectation notes, March 2, 2015) expected to “be able to base more of the 
subject mathematics on culture”.  

In the experience notes, four of the teachers explicitly referred to a lecture about other Indigenous 
people, “We have learned about others’ challenges, Indigenous thinking and perspectives”, (Duiri, 
experience notes, March 2, 2015). This is categorized as relatedness to other Indigenous peoples, “we 
have learned that other Indigenous peoples have many things similar to us, the same challenges”, 
(Sire, experience notes, March 3, 2015). Four of the five teachers had experiences that concerned 
their relatedness to other teachers at their school, like “the final part with concrete reflections and 
discussion/talk about duodji/mathematics at our school was very useful.”, (Bigga, experience notes, 
March 2, 2015) and “good to focus on culturally based mathematics again, so that we can coordinate 
it in our school’s plans”, (Vide, experience notes, March 2, 2015). The second day of workshop one, 
the notes mainly concerned relatedness to other teachers at their school and to other Indigenous 
peoples, “the group work constitutes a basis for further work at our school. Informative to see that 
other Indigenous people have similar thoughts about this work. We see that they have similar 
challenges” (Aile, Sire, Duiri and Vide, experience notes, March 3, 2015). Bigga also noted that she 
experienced relatedness to teachers at the other Sámi school.   

None of the teachers referred directly to being competent, but three of them made implicit references 
to this: “Alan Bishop’s six fundamental activities makes us teachers more aware of our actions, 
teaching and thoughts about mathematics and language”, (Duiri, experience notes, March 3, 2016), 
“I become more aware of my solid knowledge about Sámi culture. I can base more of my teaching 
on this knowledge… The theoretical part was more useful this time” (Sire, experience notes, March 
2, 2016). Three of the teachers referred to supported autonomy, which was caused by the increased 
awareness about their competence and the fellow teachers’ positive attitude and contributions to the 
workshop. These are examples of overlap between the basic needs autonomy and competence; the 
three basic needs do not constitute distinct categories.  

The analysis of the second workshop’s experiences mainly reveal competence and relatedness to 
others. Four teachers pointed at competence, Aile wrote, “the lecture about language and mathematics 
was very interesting, because I could see relations between Sámi language and mathematics”, 
(experience notes, October 21, 2015). “I become more and more conscious about my own solid 
knowledge in Sámi culture, I can use this in my teaching”, (Sire, experience notes, October 21, 2015). 
All five teachers pointed to the importance of relatedness to others. “The sessions where each school 
worked together, was very developing for us… The sharing of experiences was useful, between 
schools as well as within each school” (Vide, experience notes, October 21, 2015). Sire wrote, “It has 
been informative to learn about the international, and gives a wider spectre to think about other 
people’s situations”. The teachers had to start the last day one and a quarter hours earlier, in order to 
have a Skype meeting with two Māori mathematics teachers/researchers in New Zealand. The Skype 
meeting took place the day after the workshops’ final conference dinner and the early morning 
attendance confirmed the participants’ commitment to talking with the Māori teachers/researchers. 
They really looked forward to this meeting. The analysis reveals that three of the teachers experienced 



relatedness to other Indigenous people from the Skype meeting: “This day has been useful in many 
ways … what Uenuku [Fairhall] said about the importance of how you teach mathematics … throw 
away the textbooks and teach mathematics at theme level :-)”, (Aile, experience notes, October 21, 
2015).  

Conclusion 
The teachers expected increased competence and supported autonomy when they joined the 
workshops. They had no expectations regarding relatedness to others, but this seemed to become their 
most characteristic way of describing their experience. The analysis of the teachers’ needs for 
autonomy, competence and relatedness to others identified the ways in which these needs appeared. 
Subtypes of the three needs revealed information about the important factors that the teachers 
considered that they needed to succeed in developing their self-determination. Regarding autonomy, 
the teachers expected and experienced inspiration and being encouraged. They experienced 
competence in regard to relating mathematics teaching to the two community resilience factors i) 
Sámi language competence and ii) traditional ecological knowledge. Relatedness to others was linked 
to: Indigenous peoples; other teachers at their school; and teachers at other Sámi schools. The 
teachers’ notes also revealed that they would have benefitted from group work related to the 
introduced theory, but this was not fulfilled. They wanted and expected to learn more about how to 
integrate culture in their mathematics teaching; culturally responsive mathematics teaching.  

The use of self-determination theory as a methodology for understanding teachers’ perceptions about 
culturally-responsive mathematics teaching reveals that the teachers’ development is influenced by 
several cooperating factors; inspiration and encouragement, working with theory and experiencing 
relatedness to other Sámi teachers as well as to other Indigenous people. Future workshops need to 
link culturally responsive mathematics teaching more closely to teachers’ group work. 
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Class, ‘ability’ groups and mathematics in English secondary schools: 
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In an age where neoliberalism reigns, the predominance of ‘ability’ grouping as an organizational 
strategy in mathematics classrooms in England is now virtually unchallenged: it is seen as natural 
and ‘common-sense’ by the population at large and by the vast majority of mathematics teachers. 
This is despite the large volume of research which shows it has no effect on attainment overall but 
has a deleterious effect on the well-being of many children. ‘Ability’ grouping is a social justice issue 
as it always disadvantages someone. In this review, I examine how it continues to disadvantage 
working-class children in England. 

Keywords: Ability, ability grouping, all-attainment. 

Preamble: Class, schooling and the legitimation of inequality in a neoliberal age 
Why does education, “increasingly positioned as the new panacea for the masses”, lead to the majority 
of working-class students feeling “a sense of educational worthlessness?” (Reay, 2006, pp. 296–297). 
To answer this question we must first understand that since the mid-seventies, particularly in the UK 
and the USA, neoliberalism has been the dominant governmental discourse. Neoliberalism is a 
political ideology that seeks to reduce and limit the role of government in all areas including in the 
public sector, believing that markets result in greater efficiency and “inequality is a result of 
individuals’ inadequacy” (Hursh, 2005, p. 4). Neoliberalism has appropriated the desire to want to 
“get on” translating it into “aspiration”, a device that disguises the social and economic barriers that 
hinder the working class from doing so, shifting the responsibility for “people’s opportunity to 
succeed or fail from the state onto individuals” while replacing “political concepts such as class, 
democracy, exploitation, solidarity, justice, dignity and rights” (Tyler & Bennett, 2015, p. 6). Thus 
students, lacking an alternative, come to accept as natural the unequal way that society is structured. 
This process, termed the legitimation of inequality by Bowles and Gintis (1976), leads those at both 
the top and bottom of society “to see themselves as largely responsible for their own places in it”. 
Reay (2006) sees class as  

everywhere and nowhere, denied yet continually enacted […] while the privileged, for the most 
part, continue to […] ignore its relevance to lived experience. (p. 290) 

The education system currently works in favour of the middle classes and is underpinned by their 
values (Zevenbergen, 2001). Reay (2006) says working-class students are frequently positioned as 
inadequate learners with inadequate cultural backgrounds: she says ‘ability’ grouping is used to “fix 
failure in the working classes while simultaneously fixing them in devalued educational spaces”, 
making some students “feel stupid” (p. 298). It is ‘ability’ grouping which is the focus of this paper.  

Introduction 
In England, only around the top 60% (Ofsted, 2012) achieve a ‘pass’ grade at age 16. Working-class 
students are significantly over-represented in the other 40% (Gillborn & Youdell, 2000). Further, 
only 24% of white working-class boys on free school meals gain five good GCSEs (the public 



examination at 16) including mathematics (Wigmore, 2016). This matters not least because, 
intentionally or otherwise, mathematics is used as a filter to many vocations and academic institutions 
(e.g., Stinson, 2004). One major barrier to achievement is putting students into ‘ability’ groups.  

The aim of the study on which this paper is based was to explore the available research on ‘ability’ 
grouping and included reports on overall attainment and personal and social outcomes. In the main, 
the study focussed on research and reviews of research undertaken since the start of the eighties 
although important research studies from earlier periods were also included. The review included 
both quantitative and qualitative studies. The review was initially conducted using Google Scholar 
and the British Education Index database. The references of relevant articles were then scrutinised 
systematically for further pertinent references which were similarly scrutinised and followed up. The 
arguments and conclusions presented in this paper draw on the whole study; limitations of space mean 
that only a minority of sources can be cited. 

Research on ‘ability’ grouping indicates that it has little, if any effect, on attainment overall but has 
long term detrimental effects in terms of personal and social outcomes (Nunes, Bryant, Sylva, & 
Barros, 2009; Boaler, 2005). Moreover, the social effects of ‘ability’ grouping “exact a social price, 
as ability levels largely overlap with socioeconomic differences” (Cahan, Linchevski, Ygra, & 
Danzinger, 1996, p. 30): It is inequitable and needs to be challenged. As Slavin (1990) argues, 
‘ability’ grouping can be seen as an affront to basic ideas of democracy. ‘Ability’ grouping is a social 
justice issue because it always disadvantages somebody; and in England, amongst others, it 
disadvantages working-class children: this is what I explore here in the context of secondary 
mathematics. 

Class and ‘ability’ 
On arrival in secondary school, many middle-class children are already academically more advanced 
than working-class children as their education-conscious middle-class parents will have endeavoured 
to ensure their children have secured a place in the best performing junior schools (Lacey, 1970, p. 
35). In addition, teachers' beliefs frequently lead to lower expectations of working-class children 
(Zevenbergen, 2003). Working-class students lack the social and cultural capital that the middle 
classes possess. This difference in capital legitimates the failure of working-class students with 
middle-class students’ success being seen as the result of hard work or natural ‘ability’ rather than 
class-based inequalities (Bourdieu, 1992). Hence many working-class children start school at a 
disadvantage compared to many of their middle-class peers as they are less well equipped with the 
tools necessary to do well in school. One pattern of response to this is that of rebelling against a 
system that predisposes them to do badly, committing themselves to behaviour patterns which means 
that their work will stay poor (Lacey, 1970, p. 58).  

One important effect of grouping by ‘ability’ is that middle-class children have minimal contact with 
those working-class children who are less well behaved (Ireson, Clark, and Hallam, 2002). Students 
who lack the social knowledge for what is seen to be appropriate behaviour (Zevenbergen, 2003) by 
teachers will tend to populate the lowest sets. Those who do succeed in making it into the higher 
‘ability’ groups soon discover that to succeed in school they must conform to the accepted middle-
class behaviour norms; failure to do so causes a descent into the lower attaining groups. Thus there 
is a self-correcting mechanism for dealing with children who do not conform. 



Underlying the issue of ‘ability’ are issues of power and culture and hence whose ways of knowing 
are dominant. ‘Ability’ grouping is not a neutral disembodied organisational practice. ‘Common 
sense’ conceptions of ‘ability’ and intelligence are at the heart of schooling and the ‘ability’ discourse 
is part of an ideological battle defining children with lower socio-economic status (SES) as being 
expendable (Oakes, Wells, Jones, & Datnow, 1997): Attainment grouping serves purposes in schools 
other than that of teaching and learning. Schooling is designed to reproduce the current social, 
political and economic systems rather than to provide a meritocratic route to success in adult life 
(Oakes, 2005). Further the performativity regimes (Ball, 2003) imposed on schooling have created a 
climate whereby failing to conform to prevailing discourses carries huge risks to schools and to 
individual teachers. ‘Ability’ grouping measured by some form of assessment is seen as risk free and, 
in mathematics, is virtually unquestioned (Hallam and Ireson, 2003). 

Contemporary English society assumes that middle-class values are superior to working-class values 
and hence the working classes need to ‘aspire’ to join the middle classes (Jones, 2011). The values 
that working-class children bring to school are neither recognised nor valued by schools while the 
abilities they bring to school are ignored at best and indeed are thought to be detrimental to a good 
education (Delpit, 2006). This feeds into the informal judgements about intellectual ‘worth’ noted 
above. In addition, in general, working-class students will not understand the mechanisms required 
to succeed in the curriculum as they will not have the cultural capital to ‘play the game’ that is 
involved in the learning of mathematics (Bourdieu & Passeron, 1990). 

Student attainment and the idea of ‘ability’ 
‘Ability’ is currently used as a proxy for intelligence (Wilkinson & Penney, 2014) and ideas that 
would normally be discarded are taken as ‘common sense’ when the discourse is about ‘ability’ rather 
than intelligence. Viewing ‘ability’ as innate has been a long established presumption, held to be true 
by the general population and by many teachers (Marks, 2016). This ‘common sense’ view leads 
directly to putting children in groups of the same predetermined ‘ability’ in order to teach them 
effectively (Francis et al., 2016). For many children this approach is damaging academically and 
socially; it is damaging nationally and is contrary to the stated aim of raising overall attainment. 

Dweck (2000) has challenged this view of fixed ability, showing that a belief in growth mindsets, 
that progress is in large part down to effort and is not restricted to those with ‘ability’, enables students 
to make more progress and achieve higher. Grouping students heterogeneously is supported by a very 
large body of research which indicates that it improves educational outcomes (e.g., OECD, 2013). 
Despite this the current climate is unfavourable to all-attainment teaching. Indeed, it is often viewed 
as inimical to good teaching. The pressure on schools to conform to this view coupled with the 
tendency of teachers to replicate how they have been taught ensures that ‘ability’ grouping is almost 
universal in mathematics classrooms in England in contrast to much of the rest of the world.  

‘Ability’ grouping sends a clear message that only some can do mathematics and that this is due to 
some type of ‘natural ability’ (Marks, 2016), a message some children (currently about a third) receive 
as early as age 4. Early research reviews (e.g., Sukhnandan & Lee, 1998) found that studies on 
‘ability’ grouping produced few conclusive or consistent findings but recent research (OECD, 2013) 
indicates that where students are highly stratified, as in the case of setting, there is a wider range of 
achievement than when they are taught in heterogeneous groups. Hoffer (1992) reports that “the 



conditions under which [‘ability’] grouping benefits all students (or at least helps some and does not 
hurt any) do not generally exist” (p. 223).  

Comparisons between countries may be misleading and in analysing the effects of ‘ability’ grouping 
it can be difficult to separate out factors. Nevertheless, research carried out in England and in the 
USA does show significant similarities: in the USA students in high tracks gain more than students 
in lower tracks (Slavin, 1990) while, in England, there is a consistent tendency for children of all 
‘ability’ levels who are placed in lower sets to attain less than if they had been in heterogeneous 
groups (Bartholomew, 2001). A consensus is emerging that, whilst not necessarily raising the level 
of outcome for higher attainers, all-attainment teaching does not significantly supress it (Francis et 
al., 2016). 

Allocation of children to ‘ability’ groups 
Early grouping by ‘ability’ has long-term implications for children’s educational opportunities 
(Boaler, 2005). Once a child is placed in a particular group it is very difficult to change because of 
differences in curriculum content and the pace of teaching (Wilkinson & Penney, 2014). The 
allocation of children to ‘ability’ groups is claimed to be objective with children being allocated on 
the basis of their prior performance; the process is portrayed as highly refined with children accurately 
allocated. However, in English secondary schools, although perceived ‘ability’ is found to be the 
main predictor of set, it is a relatively poor one. Schools have multiple reasons for the allocations, 
many informal and based on insubstantial evidence. Children with higher SES and/or ambitious 
middle-class parents are more likely to be assigned to higher sets. Children seen as disruptive or 
poorly behaved, the perception of which is linked to class (Bartholomew, 2001), are more likely to 
be in bottom sets (Muijs & Dunne, 2010). Boaler, Wiliam, and Brown (2000) found that working-
class students in the UK tended to be placed in a lower group than would be expected on the basis of 
their attainment alone as a result of the school’s desire not to alienate the most powerful (and highly 
valued) constituencies of parents (p. 130), a pattern also found in schools in the USA (Oakes, 2005). 

‘Ability’: Beliefs and practices of teachers 
In Britain, many teachers are philosophically opposed to mixed ‘ability’ and even where children are 
in mixed ‘ability’ classes the teachers practice in-class grouping (Marks, 2016). Oakes (2005) 
suggests that people unquestioningly continue the practice of ‘ability’ grouping because it is seen as 
being part of the ‘natural’ order of schools (p. 191). Lacey (1970) reports that the teachers gave the 
following reasons as justification for the introduction of streaming in Hightown grammar: It would 
make the teaching 

more efficient and […] facilitate the learning process for all […] [working in] the best interests of 
the individual pupil, even when relegating him to the bottom stream. [If he remained in the same 
group he would] either hold them up [higher attaining pupils] or […] become demoralised, and 
fall further behind. […] He would be able to proceed at a more suitable pace […]. (pp. 74–75) 

Oakes (2005) evidences that the assumptions on which ‘ability’ grouping is based are unjustified, 
while teachers’ perception that “teaching is easier when students are grouped homogeneously” may 
be because this is the classroom organisation they are used to. If they embraced the use of different 
organisational structures where the students cooperate they might similarly find teaching is easier in 
heterogeneous classes. Moreover, she says “these [classroom] differences are institutionally created 



and perpetuated by tracking” (p. 194). Most of the benefits of ‘ability’ grouping are benefits for 
teachers and schools whereas most of the disadvantages concern the negative effect on students 
(Hallam and Ireson, 2003). Teachers treat children differently depending on their conception of their 
‘ability’ (Bartholomew, 2001). Low attainers and high attainers who produce work of a similar 
standard find their work viewed quite differently (Marks, 2016). Higher attainers are constructed as 
well motivated, hardworking, well behaved and capable of independent working and thought whereas 
low attainers are constructed as poorly motivated, badly behaved (Wilkinson & Penney, 2013), 
incapable of independent working and thought and in need of repetitive tasks which require lots of 
practice (Watson & De Geest, 2005). In addition to this, there is a tendency for teachers assigned to 
high ‘ability’ groups to be both more competent and more motivated. 

Hence the set a pupil is in can be crucial to their attainment. Students in top sets are expected to work 
faster covering work in more depth while pupils in low sets have a reduced curriculum where there 
is less discussion, more repetition and more structured work including merely copying off the board 
(e.g., Boaler et al., 2000) with lower attainers being deprived of role models of more successful 
learners (Hornby & Witte, 2014). Lower attainers find it more difficult to acquire ‘basic’ knowledge 
in sets compared to non-setted groups (Fuligni, Eccles, & Barber, 1995) while high level content may 
only be made available to high attainers (Cahan et al., 1996). Lower expectations of low attainers are 
communicated through a number of mechanisms. They are given easier work which they frequently 
repeat and the work they are given is broken down in smaller steps so they cannot make for themselves 
the connections needed to understand the mathematics they are doing. Their teachers talk about them 
differently and talk to them differently. They are described as being incapable of concentrating and 
teachers adopt a more authoritarian mode of talking to them (Watson & De Geest, 2005). Moreover, 
behaviour is constructed very differently in high attaining and low attaining groups. Bartholomew 
(2001) and Marks (2016), for example, report that teachers’ focus on learning in high attaining groups 
while in low attaining groups they focus on behaviour.  

‘Ability’ grouping: Concluding remarks 
Four main conclusions emerge from the literature review. Summing up: 

1. ‘Ability’ grouping remains a class issue as working-class students are disproportionately placed 
in lower sets (Bartholomew, 2001) becoming demotivated and underachieving as a result. The 
preponderance of middle-class children in the upper sets show that grouping by ‘ability’ favours 
the middle class. In a socially just world all students would have the opportunity to attain equally, 
unrestrained by external factors such as perceived ‘ability’. It is the case that when children from 
the working class have the same opportunities as middle-class children they can attain as highly 
(Boaler, 2005) though lower attaining students may need additional support so they can reach the 
higher expectations (Rubin & Nogura, 2004). 

2. The beliefs and practices of teachers may be key to improving the outcomes for working-class 
students. They need training in order to teach all-attainment classes effectively. Teachers who hold 
conventional conceptions of ‘ability’ and intelligence may be the greatest obstacles to reform as 
they actively resist changes to the curriculum. Their beliefs can lead to resistance to change 
(Hynds, 2010) and they may enlist the support of parents who are part of the dominant class and 
who fear change will disadvantage their children (Oakes et al., 1997). 



3. If ‘ability’ grouping worked as its supporters claim it works, then social class would be of no 
import, a child’s behaviour would be irrelevant and each child would be able to develop 
appropriately. Allocation to ‘ability’ groups would be commensurate with students’ current 
attainment and they would be constantly monitored and re-assigned to the correct group 
throughout their school careers with a mix of working-class and middle-class children reflecting 
the profile of the intake. However, as well as middle-class children having more economic capital 
they also have more cultural and social capital than working-class children. Middle-class 
children’s understanding of the rules of the game that is school is much more profound and they 
can use the rules much better to their advantage. 

4. ‘Common sense’ conceptions of ‘ability’ are at the heart of schooling. A technicist approach to 
reform will not work as it assumes resistance to changing ‘ability’ grouping is rational. ‘Ability’ 
grouping is an ideological battlefield. Teachers in the main are, unsurprisingly, convinced by the 
powerful dominant discourse of individualisation accompanied by a natural ordering produced by 
‘ability’. Alongside, powerful high-SES parents use issues of intelligence, ‘ability’ and merit to 
exercise power and control enabling them to secure high ‘ability’ groups for their often less than 
qualified children. A wholescale restructuring of school expectations and culture is required 
(Oakes et al., 1997) in order to succeed in providing a more just experience for working-class 
students in secondary mathematics classes in England. 
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In the 1980s, the WHO presented a differentiated model of disability. The central feature of disability 
according to this model is not the impairment but the resulting limitation in social participation. The 
UN Convention on the Rights of Persons with Disabilities (CRPD) goes a step further by demanding 
that persons with disabilities must have access to an inclusive school education together with persons 
without disabilities. From our point of view, not only social but also content-related participation is 
important for an inclusive school education. The following theoretical paper seeks to explore a 
theoretically grounded concept of participation in mathematics classes for a planned exploration of 
how these forms of participation are implemented in inclusive mathematics education in Germany. 
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Introduction 
In Germany, most children first attend primary school from the age of five or six to nine or ten and 
are then separated by a supposedly achievement-based selection process into different school forms. 
This is a system that has long been criticised in several respects (Muño , 2007). Furthermore, from 
the mid-18th century a parallel branch of schooling for children with special educational needs was 
established alongside primary school and the four types of secondary school. The special needs school 
system continued developing into the 2000s, with different schools specialising in particular needs, 
e.g. social-emotional development, learning, language, vision, hearing, or mental development. In the 
2009 school year in Germany, a total of 483,267 pupils with special educational needs went to school. 
Of these, 387,792 (80.24%) were schooled at special needs schools and 95,475 (19.76%) in regular 
schools (Sekretariat der Ständi en Konferenz der Kultusminister der Länder, 2016a). 

With the EU’s ratification of the UN Convention on the Rights of Persons with Disabilities, this praxis 
of the separated school system came under renewed criticism and also its legality came into question. 
The UN Convention requires that persons with disabilities should not be excluded from the general 
educational system because of their disability (CRPD, 2007, article 24). This legal right surpasses the 
mere freedom of choice to attend a regular school. According to the UN Convention, adequate 
arrangements have to be made within regular schools in order to ensure the educational success of 
each individual. Though the ratification of the Convention potentially necessitated little change in 
other countries, in Germany it opened a political and social discussion on structural changes to the 
school system. Since 2009, a policy of inclusion  in the sense of integrative schooling of pupils with 
special educational needs in the regular school system  has been implemented in the German states. 
Thus, in the 2015/16 school year, 322,518 (62.34%) out of the 517,384 pupils with special educational 
needs attended a special needs school and 194,866 (37.66%) a regular school. The ratification of the 
convention therefore appears to have led to a thorough implementation process, as the number of 
children with special educational needs in regular schools has doubled in only six years. However, 
looking at the figures on the background of demographic developments, which have seen a reduction 
in pupil numbers, the proportion of pupils with special educational needs in the total number of pupils 



in Germany clearly rose between 2009 (6.17% of all pupils between Years 1 and 10) and the 2015/16 
school year (7.1%). Thus, the proportion of pupils with special educational needs who are taught at 
special needs schools has barely fallen. Above all, children who were attending regular schools in 
any case are now more commonly being given special educational needs status (Sekretariat der 
Ständi en Konferenz der Kultusminister der Länder, 2016a, 2016b; Klemm, 2013). 

So, it seems there is still a long way to go to achieve a school system that can be described as inclusive. 
We follow Katzenbach (2012) in holding that there is little difference between the terms integrative 
and inclusive in school life. However, there are some clear conceptual differences: the idea of 
integration depends on a categorisation of people. There are “normal” people and “the others”, the 
non-disabled and the disabled who need to be brought together. The concept of inclusion, however, 
is based on the premise of diversity. Disability is only one characteristic among many, and school is 
a place where people with extremely different characteristics intermingle. Following UNESCO’s 
(2005) understanding of the concept, inclusion can be understood as an ongoing process to find better 
ways of responding to diversity.  

Towards providing an empirical base for this process of changing a traditionally strongly separated 
school system such as that in Germany, in respect to content-related  here mathematical  learning 
conditions, this paper discusses some theoretical considerations on mathematical learning and 
learning under inclusive conditions, and synergises these for a planned research project. According 
to Prediger, Bikner-Ahsbahs and Arzarello (2008), different networking strategies can be used to 
connect theories. The first strategy they mention, “having an understanding of the different theories”, 
can be seen as the starting point for all other strategies, allowing them to be compared, combined or 
integrated in a further step. Therefore, in a first step we will present specific theories for mathematical 
learning and inclusion theories separately before we coordinate them with each other. This can be 
done because the theoretical concepts have consistent assumptions. The coordination creates a 
conceptual framework that helps in identifying the students’ participation in inclusive settings and 
learning in mathematics. 

Mathematics learning from an interactionistic perspective 
For our understanding of content-related learning in school we refer to Miller’s (1986) antagonistic 
differentiation between the research traditions of genetic interactionism and genetic individualism 
(Schütte & Krummheuer 2012). However, this is with the goal of bringing the two positions closer 
together. According to Miller (1986, p. 17), learning can either be anchored in the individual as a 
process of monologue, in the sense of genetic individualism1, or be understood as a process of 
dialogue between individuals, in the sense of genetic interactionism2. Miller considers genetic 
interactionism, in contrast to genetic individualism, to have a more convincing empirical and 
theoretical base, at least in relation to learning processes in the early development of individuals, 

                                           
1 Genetic individualism is in the tradition of the later Piaget and Kohlberg (Miller, 1986, pp. 15 ff.). 

2 Genetic interactionism draws from the basic assumptions of sociological and psychological studies such as those of 
Durkheim, Mead, the early Piaget and Vygotski. These studies see social cooperation or interaction as fundamental to 
individual learning processes (Miller, 1986, pp. 15 ff.). 



which he considers “fundamental”3. Above all, in primary school, where young learners come 
together, Miller sees learning processes taking place which are primarily collective and based on 
dialogue. Miller (1986, p. 223) describes individualised learning processes as “autonomous learning” 
and attributes them to the later development of the individual, locating these processes in moments 
of reflexive consolidation of things originally learned collectively. From a social-constructivist 
perspective, learning cannot be seen as a primarily internal cognitive restructuring process. Rather, it 
is a dualistic process which takes place both within the individual, in the sense of cognitive 
restructuring, and within interaction processes in which the person participates, which go before these 
restructurings (Sfard, 2008). 

This kind of sociological or social-constructivist consideration of learning processes has in recent 
years gained increasing influence in the theoretical design of content-related learning, and has been 
taken up and further developed in mathematics education research (Lerman, 2000). Both nationally 
and internationally, mathematics has increasingly come to be seen as a cultural tool, constructed and 
mediated through language (Schüt e, 2014). Since the mid-1980s interactionistic approaches of 
interpretive (classroom) research in mathematics education have engaged with the sociologically 
based social-constructivist perspective on learning processes (e. g. Bauersfeld, 1988; Krummheuer, 
1992) using theories of symbolic interactionism (Blumer, 1969). With this kind of basic theoretical 
understanding of content-related learning the concept of collective argumentations gains central 
significance in the analysis of mathematical learning processes. According to Krummheuer and 
Brandt (2001), pupils are usually engaged in interaction processes in the classroom conversation, 
producing an argumentation in the totality of their actions. In this way, participation in a collective 
argumentation concerning statements about (mathematical) content, terms and/or methods creates the 
basic conditions for learning opportunities. This interplay of individual and social constituents is 
difficult to describe. If participation in collective argumentation provides orientation and 
convergence, then learning success can be seen as the improved coordination between individual 
attributions of meaning and the results of the interactive negotiation of meaning in the respective 
group. On an interactional level, this is manifested in an increasing adaption of the (verbal) acts of 
the learners to argumentations established collectively over the course of several interactional 
situations. The coordination of an individual’s interpretations and actions can be reconstructed 
empirically as the increasingly autonomous adoption of steps of action within the collective 
argumentation. The learning of mathematics can thus be described as the “progress” of participation 
in mathematical collective argumentations. This idea of learning through participation can be linked 
back to the notion of equal opportunities for participation in educational institutions, according to the 
Convention on the Rights of Persons with Disabilities. Thus, the following will seek to explain how 
participation in learning processes in school can be understood from an inclusive-educational 
perspective.  

Increasing participation as a goal of inclusion 
Among the goals that are being set by the increasing implementation of the inclusion concept in 

                                           
3 These kinds of learning processes concern the development of “rationality, or rational knowledge structures” (Miller, 
1986, p. 15). 



teaching, ignoring for a moment the thoughts outlined above on the different understandings of the 
learning of mathematics, it can be noticed that providing all pupils with equal opportunities for 
participation in learning processes occupies a central position. This reflects UNESCO’s principle 
whereby  

Inclusion is seen as a process of addressing and responding to the diversity of needs of all learners 
through increasing participation in learning, cultures and communities, and reducing exclusion 
within and from education. (UNESCO, 2005, p. 13)  

This principle, formulated in the framework of the UNESCO “Guidelines for Inclusion”, is reflected 
in the UN Convention on the Rights of Persons with Disabilities (CRPD), ratified by Germany in 
2007. The Convention states:  

Persons with disabilities are not excluded from the general education system on the basis of 
disability. Persons with disabilities can access an inclusive, quality and free primary education and 
secondary education on an equal basis with others in the communities in which they live. (CRPD, 
2007, article 24) 

In addition, the Convention asserts that children/persons with disabilities should be supported within 
general education, according to their needs, to best progress their education. A “full and equal 
participation in education” (CRPD, 2007, article 24) should be made possible for them. Some years 
previously, Booth and Ainscow (2002) already published an “Index of Inclusion”, which is intended 
as a tool to support an inclusive school development and contains a detailed description of how 
barriers to learning and participation for all learners can be dismantled. Here, too, the goal of a 
“greater participation of students in the cultures, curricula and communities of their schools” is cited 
(Booth & Ainscow, 2002, p. 2). In summary, according to the mentioned literature inclusion can be 
understood as an unending process of increasing learning and participation for all students (Booth & 
Ainscow, 2002; UNESCO, 2005)  and thus also as an ideal, which will never be fully realised but 
is already applied with the start of the process of increasing participation. However, it seems 
necessary to clarify at this point what is understood by full and equal opportunities of participation. 
Therefore, in the following the concept of participation in learning processes is developed. According 
to Booth and Ainscow (2002, p.3), participation can be understood as “learning alongside and in 
collaboration with others in shared learning experiences”. They see participation as demanding active 
involvement in learning processes and the opportunity to express one’s own learning experiences. 

Adopting a broader definition developed to consider social structures, according to the German 
sociologist Bartelheimer (2008) five requirements can be distinguished for a sufficiently defined term 
of participation. These five requirements for a general social concept of participation can be 
transposed onto teaching processes in the classroom as follows. First, Bartelheimer states that 
participation is only to be understood as historically relative. Transposed onto the school situation, 
participation in processes that enable learning is to be understood only in relation to the given 
education system and fundamental features of the educational processes and paths that currently 
predominate. Secondly, participation is multidimensional and there are always different forms of 
participation. One approach to consider participation in teaching processes in various dimensions is 
provides by Roos (2014), who distinguishes a spatial, social and didactical/content-related dimension. 
Thirdly, participation does not describe a simple in or out; rather, there are always gradations of 



unequal participation. Furthermore, participation appears as a dynamic concept, rather than a 
condition at a given moment. Lastly, Bartelheimer (2008) emphasises that participation is active, that 
is, it is striven for and realised through action and in social relationships. Summarising the last three 
points of Bartelheimer’s participation concept for teaching processes, an exclusively quantitative 
description, that is, a definition of participation in the sense of “takes part/does not take part”, appears 
inadequate. As far as possible then, the description of participation must be considered qualitatively 
over a longer time-frame, and might only be valid for the respective participating individuals within 
this time-frame, since this is a question of a dynamic concept that is constantly changing.  

The underlying research project is concerned with describing scenarios from the process of 
progressing inclusion in German schools, and on this basis to design steps to further this process. To 
enable a description of this process the concept of participation in inclusive mathematics learning 
needs to be rendered more precisely, in order to open it to empirical description and analysis. For this 
purpose, in the next section the theoretical understanding of mathematics learning and the theoretical 
conception of participation in inclusive discourse, discussed individually above, are brought together.  

A theoretical concept of participation in mathematics education  
With the goal of describing the process of inclusion in mathematics learning in German schools using 
a participation-theoretical model, we take the above theoretical considerations on inclusion as a 
starting point and link these to our essential theoretical assumptions on mathematical learning. Taking 
Bartelheimer (2001) into account, it seems important to adopt a longer-term perspective on 
participation (cf. also Brandt, 2004). Although Krummheuer and Brandt (2001) go so far as to attempt 
an interactionistic theory of participation in mathematical learning, focusing also on individual 
learning using their system of categories, content-related learning and individual cognitive 
restructuring unfortunately seem to fall out of focus. Yet, our research is also and especially guided 
by looking at content-related learning. In this context, we are not trying to leave the basic 
interactionistic orientation. Instead we are trying to connect the ideas of learning and participation 
within interaction with individual learning. From an inclusion-theoretical perspective, realising 
inclusive teaching is a question of increasing participation. In order to make this useful for empirical 
investigations, Bartelheimer’s (2008) more general participation-theoretical model is taken as a basis 
and combined with the participation-theoretical understanding of mathematics learning (e.g. 
Krummheuer, 1992; Sfard, 2008). To be able to describe participation in inclusive mathematics 
learning in Bartelheimer’s perspective, one has to view it in relation to its historical context. The 
image of mathematics learning for all learners is taken to represent present conditions. Whereas at 
the end of the 1970s, national and international research on mathematics in primary schools was still 
focusing above all on the learning of skills and isolated concepts of a ‘complete mathematics’, with 
an emphasis on arithmetic, a shift took place around the mid-1980s. A new understanding of 
mathematical learning developed. According to this, children in school not only needed to acquire 
mathematical skills, but also to discover and understand the mathematical concepts behind them, and 
to argue and communicate with teachers and classmates using these concepts in order to ultimately 
be able to autonomously give reasoning for mathematical actions (Boyd & Bargerhuff, 2009). 
However, in adopting an orientation towards this image of mathematics learning we nevertheless 
acknowledge that it is (still) controversial for learners with special educational needs in special needs 
schools. The above-described changes in the understanding of mathematics learning can certainly be 



seen also in the area of special needs education in mathematics (Sullivan, 2015). But these changes 
are the subject of heated debate and are taking place in the context of a (tried and tested) teaching 
tradition which is characterised by a reduction of learning content, an isolation of difficulties and a 
“small-steps” approach with specified solutions to problems (Boyd & Bargerhuff, 2009). In addition, 
Bartelheimer describes participation as an active process. Participation is pursued and achieved 
through social action and within social relationships. Therefore, it is observable in everyday 
mathematics teaching as active participation in classroom interactions. Bartelheimer also describes 
participation as multidimensional, which we have linked to Roos’ (2014) spatial, social and 
didactical/content-related dimensions in the above theoretical section on inclusion. The spatial 
dimension of participation, according to Roos, relates fundamentally to how much time a student is 
spending in the same room as his or her classmates. However, in our perspective it also relates to the 
spatial configuration during time spent learning together in the mathematics classroom, for example 
in rotating through different tasks or group work. The social dimension focuses on social relationships 
(with fellow pupils, teachers and pedagogical staff) which emerge in mathematics teaching and which 
mediate to a great extent an increasingly autonomous participation in collective argumentations. The 
third dimension addresses participation in didactical/content-related negotiation. Didactical inclusion 
relates to pupils’ participation in subject teaching, focusing on their engagement with the teaching 
approach and content, as well as any explanations or material supplied by teachers to support the 
learning process. For the purposes of analysis of didactical/content-related participation, the 
approaches developed in mathematics education for determining participation in collective 
argumentations (Krummheuer & Brandt, 2001) can be made use of. With reference to Goffmann 
(1981), Krummheuer and Brandt (2001) distinguish two types of involvement in a lesson: the active, 
verbally productive act, and the passive, receptive non-verbal act. The aim is to identify the type of 
authenticity, originality and responsibility of speakers, and to identify for recipients the type of non-
active participation. This means that mathematical learning through active participation can be 
distinguished from learning through non-active participation, which explains “quiet” yet successful 
pupils. Learning situations become beneficial for learning, according to Krummheuer and Brandt 
(2001), when children participate increasingly in ways which permit a shifting from minor 
responsibility for content and form towards greater responsibility. In this way, participation in a 
collective argumentation concerning statements about (mathematical) content, terms and/or methods 
creates the basic conditions for mathematical learning opportunities in inclusive learning settings. 
Since this model remains more of a formal analysis of the content-related negotiation in the 
conversation, it will be complemented by the curricular concept of mathematical activities, developed 
by Bishop (1988), in order to approach also the mathematical content of the activity children 
participate in. Bishop (1988) differentiates six activities  counting, locating, measuring, designing, 
playing, explaining  which are used for the analysis of moments of subject-specific mathematical 
participation, following Brandt (in press) and Johannson (2015). In addition, Bartelheimer (2008) 
focuses on the principal dynamic, i.e. the changeability of participation over time, and the 
impossibility of a dichotomous categorisation of inside and outside, participation and non-
participation. These considerations are in tune with an interactive understanding of mathematics 
learning and are taken into account within the research project by the theories and methodologies 
being used. This theoretical conception of participation will be used to address the empirical aspect; 
the theoretical conception will be further developed through the interrelationship between theory and 



praxis, with the goal of enabling a description of participation processes in inclusive mathematics. 
This is while acknowledging that the goal of inclusion, which has the principle of egalitarian 
difference (Prengel, 2006) at its base, cannot be for all children to participate actively in class in the 
same way. The barriers to participation should be reduced for all children, and they should be given 
the opportunity for participation according to their abilities, so that they move forward in their 
mathematical learning process.  
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Despite efforts for a more student-centred teaching in mathematics education, data from interviewed 
German students suggest that teacher explanation is the most dominant form of introducing new 
knowledge and skills. From a Foucaultian standpoint and on the basis of the interview data, it is 
firstly argued that explanation belongs to an institutionalisation of mathematics education in which 
explanatory power is reserved for the teacher, leaving students with a passive role both towards 
learning and towards questioning mathematics as a discipline. It is secondly argued that such an 
organisation of teaching might be functional in identifying well-disciplined and fast-learning students 
through their achievements in mathematics. Thirdly, the point is made that the ignorance of research 
concerning the socio-political role of explanation is effective in the conservation of the socio-political 
functions of school mathematics. 

Keywords: Mathematics instruction, theory practice relationship, teaching styles, student interview. 

The role of explanation in pedagogical theory and practice 
Under ‘explanation’ I understand the verbal and embodied communication of knowledge and skills 
from one person to another with the purpose of enabling the other to do something which the first 
person is already capable of. This understanding of the term is narrow, as in a wider sense, for 
example, explanatory texts, recorded speeches, videos and other media, where experts explain 
something to an anonymous audience, might be considered explanation as well. This paper has an 
even narrower focus on the explanations which mathematics teachers provide for their students, and 
it is mainly based on the situation in German schools and in the German research community. 

Historically, explanation by the teacher had been a method central to any school teaching (Tenorth, 
1988/2000). For example, the German philosopher Johann F. Herbart (1806/1897) developed a 
teaching methodology based on explanation, exercise, application and abstraction. Its popularity 
among both educational theorists and practitioners of the 19th century elucidates the traditional 
importance of explanation within the pedagogical discourse. The discussions around Herbart’s 
pedagogy also stand exemplarily for the problems that modern pedagogy has developed with 
explanation. Claiming to follow Herbart’s tradition, a group of educators, now referred to as the 
Herbartians, reduced Herbart’s pedagogy to its methodological aspects and developed a strict 
teaching plan which was dominated by teacher presentations and copying by the student. The 
consequent critique of the Herbartian approach at the turn of the 20th century circled around the 
problems of the passive and obedient role of the learner, especially on the devastating effects on 
learning outcomes and democratic agency. Especially writers in the tradition of German 
Reformpädagogik such as Johannes Kühnel (1916/1950) considered the passivity that learners were 
introduced to as expressions and requirements of the civil obedience in the German Empire which 
allowed for the economic misery of the masses and the outbreak of the First World War in the first 
place. Ausubel (1968) argues that the fight against this passivity in learning has fuelled not only 
Reformpädagogik but many alternative pedagogical agendas up to that of discovery learning in his 
times, and that, over time, explanation has been increasingly denounced as a teaching method which 



supports despotism, ignores the individuality of learners and denies them the benefits of self-regulated 
learning. Explanation, suspected to conflict with the aims of liberal education, has gained a negative 
connotation. 

We run the risk that the condemnation of teacher explanation blocks the discussion of very different 
roles that explanation might have in teaching, reaching, for example, from introductory explanations 
followed by exercises over formalising explanations in the course of individual or collective 
explorations to summarising explanations at the end of learning activities, from whole-class talks to 
individual conversations, from short inputs to extensive presentations and so on. Recent 
developments in educational research however aim at a rehabilitation of explanation. Kathrin 
Krammer (2016, p. 76; all German quotes translated by D. K.) remarks in a teacher journal’s special 
issue on “teaching”: 

Many reform initiatives in the area of classroom development aim at the expansion and high-
quality arrangement of self-regulated learning. Which meaning is yet assigned to teacher-centred, 
instructive phases – do they disappear, are they preserved, or are they rediscovered and altered?  

In mathematics education research and educational policy, explanation as a teaching method is not a 
central field of study. The federal German educational standards for mathematics education in the 
grades 5 to 10 (KMK, 2003) may serve as an influential example of the discourse of educational 
policy. There, “explanation” is not mentioned once, nor are any other activities of the teacher. Instead, 
it is demanded that mathematics education provides “competences which students acquire in active 
involvement with manifold mathematical contents” and that it aims at “self-regulated learning” (p. 6). 
In the German academic discourse, recent introductions to mathematics education for prospective 
teachers (e.g., Bruder, Hefendehl-Hebeker, Schmidt-Thieme, & Weigand, 2015; Reiss & Hammer, 
2013) do not even address how to explain knowledge and skills to students, and the only German 
book on teaching methods for mathematics education (Barzel, Büchter, & Leuders, 2007) presents 
30 different methods but does not cover teacher explanations. The only recent studies in the German 
field discuss explanation from an epistemological (Wörn, 2014) and discursive (Erath, 2016) 
perspective, but could not be included in this study due to a lack of access to the publications. 

The marginal position of explanation in mathematics education research and educational policy is 
confronted by the dominance of explanation as reported in empirical studies. The TIMSS video study 
(Stigler & Hiebert, 1999) compared the national teaching “scripts” of the USA, Germany and Japan, 
showing that both in the USA and in Germany, teachers usually introduce new knowledge by 
explanation. Recent empirical data, which will be presented here, propose that, at least in Germany, 
the situation has not changed. Despite continuing efforts in mathematics education research and 
educational policy to change the classroom culture towards forms where the teacher and her 
explanations play a less central role, interviewed 9th grade students from a variety of German schools 
report consistently that new contents are usually introduced by teacher explanations. Thereby, teacher 
explanations are not only political as they tend to establish distinct hierarchies concerning the 
distribution of knowledge, they are also political due to the tension between their dominance in school 
and their taboo in research, resulting in a structurally fostered unpreparedness of prospective teachers 
and a lack of support by research on this form of teaching. In this contribution, these issues are studied 
through an analysis of the subjectivities which students express in relation to teacher explanations in 
the mathematics classroom. The leading question is what role explanation plays in the development 



of the students’ subjectivities and where the socio-political dimensions of these forms of subjectivity 
may lie. 

The student perspective 
As part of  a research seminar at the Universität Potsdam in 2016, master students orally interviewed 
23 students from grade 8 to 10 in regular public schools in and around Berlin. The interviews were 
conducted in school rooms in private, recorded and transcribed. All students but two, who went to 
the same class, attended different schools. The semi-structured interviews focussed on the students’ 
relationships to mathematics and included the prompt “Describe what a typical maths lesson looks 
like!” and question “How content are you with your maths teacher?”, which appeared in the interview 
as items 2 and 3 of 12 stimuli in total. These item triggered answers which mentioned teacher 
explanations. Although explanation was not a topic that was explicitly addressed in the stimuli, we 
found it surprising that all students reported that their teachers usually explain new topics to the class. 
Only four students stated that other ways of introducing new topics, such as solving problems 
individually, in small groups or in whole-class conversations, were frequent, but in all cases these 
approaches were said to be followed by teacher explanations as well. We were also surprised that 19 
students associated their confidence in their teachers with their qualities in explaining. 

For my argument, it will prove important to discuss the ontological status of the students’ reports and 
the epistemological approach taken in the analysis of the data. Here, I want to apply a Foucaultian 
view (Foucault, 1982, 1978/1991, 2011) to understand mathematics education as a disciplinary 
institution where teachers apply certain techniques for the conduct of the self and others in order to 
produce the expected behaviour in students, and where students, for their part, develop and enact 
certain technologies of the self in order to cope with these demands. The reports of school experiences 
and relations to mathematics cannot be understood as an objective account presented in a 
depersonalised language, but belong to distinct discourses around school mathematics, which are 
shaped by a shared knowledge of the actors. These discourses comprise values, interpretations and 
supposed truths whose paramount function is not to provide academic insights into any objectivity of 
the mathematics classroom, but to allow each individual to weave her experiences and relations into 
a meaningful web of explanations. Under these circumstances, each student’s report should not be 
read as a mere account of a real experience, but as the expression of a permanent struggle to articulate 
experiences and relations which, from our point of view, are usually scarcely verbalised.  

Given the incidental manner in which the topic of teacher explanation was touched in the interviews 
and the consequently low data base, this contribution will have to limit itself to the presentation, 
interpretation and discussion of a selected set of themes, and for that I chose to discuss the relations 
between teacher explanation, power relations in the classroom and the subjectivity of the learner. 

Explanation and power relations 
The central role which teacher explanation plays in all of the 23 interviews does not only provide 
insights in the unbroken dominance of a teaching method which large initiatives of pedagogues have 
fought against for decades, but first of all documents how students integrate the teacher into their 
narratives of success and failure in learning. Rebecca (all names changed while still indicating the 
original gender), a high-achieving 10th grader, describes her teacher as “really good”, “the absolute 
burner”, who “puts it across really well”, “tries to adjust and can explain really well”, and holds these 



attributes responsible for the learning success of her and her classmates. On the downside, the 
teacher’s explanation qualities are also considered the source of serious complication and failure: 

Interviewer: And how content are you with your maths teacher generally? 

Ingo: Huh, I would say it could be better. Well, I find, some things he doesn’t explain 
well at all. Then at home, I have to sit down and look in my book. Yeah, he does 
not really explain it. So, when I hear what other classes tell, they have better 
teachers, they all understand. 

Interviewer: Is there something you’d like to change in your mathematics classes? […] 

Ingo: [If I were the teacher] I’d adapt myself to my students much more than my current 
maths teacher does. So, I’d go to them and ask if there’s anything they don’t 
understand, I’d do difficult exercises with them, those you need for exams […]. 

Apparently, students such as the 9th grader Ingo find their learning troubled by insufficient 
explanation. They also show awareness that the quality of explanation varies from teacher to teacher. 
Rebecca and Ingo follow a narrative in which their learning and achievement depend directly on the 
quality of their teachers’ explanations. Ingo is not content when his teacher leaves him with difficult 
exercises after having explained the easy ones; he demands series of explanations which also cover 
the most difficult tasks. Simon, also a 9th grader, is even more explicit concerning these demands: 

Simon: The teacher should, when he comes to the students, when he sees from the front that 
students have problems, then he should go to the students or the students to him and 
ask. The teacher should try to explain as simple as possible, so easy, perfectly easy, 
so that the student understands very quickly, so that he can go on with the exercises. 

Patrick, another 9th grader, says that he was “actually very content” with his teacher, who “can explain 
well, so that we actually all understand”, but later he adds that the difficulty of the contents has been 
increasing since primary school: 

Patrick: I believe that what he does is actually really good, our teacher, but we, with us it’s 
simply, no idea, that we simply don’t understand when he tells something. And in 
front, well, there are a few of our students who understand and try to somehow 
explain it to the others, but that doesn’t help either. 

The position that teacher explanations hold in the narratives of the students has specific consequences 
for the power relations between teachers and learners. The dependency of Rebecca’s and Ingo’s 
learning on the quality of teacher explanation documents the monopoly of expertise which lies with 
the teacher. Especially, the students do not report any other promising sources for understanding such 
as textbook study, collaborative work or learning videos. In Patrick’s case, the students of his class 
apparently attempted to support each other, but failed. Indeed, in the narratives the teacher is 
presented as the only agent the students can turn to in their struggle to understand. This narrative puts 
the teacher in the position of an exclusive ‘knower’ without whose expertise and goodwill no learning 
is possible, and thus it releases the students into passivity. The student, whose only hope is to be 
presented an understandable explanation, cannot do anything but wait for that explanation. Ingo’s and 
Simon’s cries for ever better explanations show the lack of alternatives they see. 



From the perspective of traditional critique as brought forward already by the Reformpädagogik, we 
could argue that these experiences simply give empirical evidence that the traditional teaching 
methodology of explaining and exercising leads to passive and obedient students who are denied the 
flexibility and effectiveness of self-regulated learning and socialised into passive and obedient social 
agents. From the perspective of Foucauldian governmentality, we could add that the institution of 
mathematics education is successful both in channelling the conduct of the students into a form where 
their learning is totally dependent on the teacher, and in establishing a discourse in which this 
organisation of the learning of mathematics is considered inevitable. Here, it is interesting to note that 
both teachers and learners are constantly reproducing this organisation and narrative. At this point it 
is only possible to guess where the motivation for this behaviour come from: While the teacher may 
be led by the will to be the social centrepoint of the classroom collective, channelling all power on 
herself, the students might eventually enjoy their passivity. Ingo’s reluctance to “have to sit down and 
look in my book” indicates that students may indeed resist to take a more active position in their 
learning. This resistance is connected to a constantly reinforced economy of learning in which students 
aim to “go on with the exercises” and pass “exams” with as little effort as possible. 

Apart from the traditional critique of teacher explanation focussing on its consequences for learning 
and democratic agency, the exclusiveness of approaching mathematics through the teacher leads to a 
specific relation to the discipline of mathematics itself. In the reports of the students, mathematics is 
not presented as a discipline which can be approached and understood individually, but as a discipline 
whose understanding depends on the support of experts. The presentation of mathematics as a 
discipline which is only mastered by experts and cannot be fully understood by laymen, despite all 
efforts of specially trained teachers, adds to the construction of mathematics as an obscure, elitist and 
indisputable discourse which may be used as a tool of power throughout our society. Mechanisms 
leading to this image of mathematics have been identified before (Dowling, 1998; Skovsmose, 2005; 
Kollosche 2014), but to my knowledge they had not yet been associated with distinct styles of 
teaching. 

Subjectivities of listening 
Changing the focus from the teacher to the learner opens up a wide field of experiences of receiving 
explanations. Christian, a 9th grader, excels in some subjects but has problems in mathematics: 

Interviewer: What do you think is different in maths; what’s the reason you don’t like it that much? 

Christian: Well, I’ve never liked maths. Maths was never what I was good at, I always had my 
difficulties there. Though my parents think I’m somewhat lazy, which is true for 
the most part, it also gets more and more difficult and I seldom keep up with it, also 
because the teacher is bad at explaining. 

Interviewer: How does a typical maths lesson look like at your place? Can you describe it? 

Christian: Yeah well, the teacher comes in. Consequently, it’s noisy of course, because she 
can’t assert herself. In between, you’re also getting distracted, and I’m no different, 
I admit I’m also getting distracted, doesn’t let you work well, doesn’t let you pay 
attention. […] Everything depends on paying attention deliberately. 



It may be argued that it is the teacher’s task to establish the quiet environment necessary for the 
students’ understanding of any teacher explanation. But apart from the fact that such a narrative 
reproduces the active role of the teacher (who has to tame the students) and the passive role of the 
students (who have to be tamed), this narratives does not consider the subjectivities necessary to 
follow this form of teaching. “Paying attention deliberately” is a technique which students have to 
master, not only to follow teacher explanation individually, but to establish a fruitful learning 
environment in the classroom in the first place. Consequently, mathematics courses which build on 
teacher explanation give advantages to self-disciplined learners, especially when grouped together in 
socially segregated schools. The privileged school marks, which such advantages may result in, may 
then be taken as indicators for the self-discipline of an individual. In this sense, the pervasiveness of 
teacher explanation in mathematics education may have an underestimated economic function. 

Yet of course, concentrated listening does not guaranty understanding. Students also have to be able 
to understand the presented contents in the pace in which the ideas are presented. Anna, a 9th grader, 
claims that her teacher’s explanations are too fast for her to understand: 

Anna: […] And I just find maths difficult, I don’t understand it that fast. And of course, 
she [the teacher] does not have the patience for so many students to explain that to 
everybody separately. And some are simply faster in understanding concerning 
maths exercises, and I need a little longer and don’t understand that fast. 

Interviewer: […] If your teacher realises that several students put up their hands, will she then 
explain it again for all of you? 

Anna:  She is somewhat strange in this respect. She just says that she explains in a way that 
we all have to understand, and then we have to cope with the exercises somehow. 

Anna realises that structural constraints in the organising of her teacher’s approach hinder her to offer 
every student an understandable explanation. But instead of questioning the methodology of teaching 
altogether, some teachers succeed in hiding the problem. In Anna’s case, the teacher’s imperative that 
the students “have to understand” leaves the problem with the students, who do not seem to know 
how to cope with it. In the case of Emma, an 8th grader, the teacher asks the students to put up their 
hands if something is unclear, but “as we just know that she somehow cannot explain it properly”, 
nobody would put up a hand. 

In contrast to that, 9th grader Laura explains that her mathematics teacher has successfully taught her 
to indeed raise questions if something is unclear: 

Laura: I had her in the fifth, sixth and seventh [grade]. I liked her. She was my favourite 
teacher. She’s retired now. She has taught me to raise questions again and again, 
and that’s it. Or to become more self-confident, because you don’t know the others, 
you don’t know the teachers. You still have some respect for them. […] 

Interview: What do you believe the teacher could do against it [students not daring to ask]? 

Laura: Oh god, that’s difficult. He could pose questions, answer questions. But some don’t 
really dare to ask. They have their private afternoon lessons, but actually this is also 
like a teacher. I think it’s this collective. In class, you always have a position to 
fulfil. You are either the cool one or the somewhat quiet one or the class clown. 



[…] You also notice that when fewer students are in class, the class is quieter and 
can work better. I believe, this also depends on the fact that you do not have to 
prove yourself and that you can rather concentrate on your stuff. 

Laura’s story documents that there are slight variations in the forms in which teacher teach through 
explanation, and that these variations can have severe consequences. In opposition to Emma’s report 
of her classmates not asking in order to avoid further explanation, Laura has learned to demand further 
explanation if she is not confident with the explanation presented. Thus, her teacher enabled her to 
take a more active part in her learning and to add elements of conversation to teacher explanations. 
In addition to that, Laura outlines a sociological explanation for problems with explanatory phases. 
Exposed to the whole class, students may have an intense urge to fulfil their social role within the 
learning group, and that role might hinder them to engage in a lively discussion on mathematical 
contents. 

Discussion 
The findings presented first of all shed light upon black spots in mathematics education research. 
Firstly, the prevalence of teacher explanation shows that decades of academic and political initiatives 
aiming at changes in teaching and learning arrangements have hardly affected the reality of the 
mathematics classroom. Although several nation-wide and regional projects have focussed on 
introducing learning environments focusing on active learning in Germany, teacher explanations are 
still reported to be dominant in the mathematics classroom. Considering the apparent ineffectiveness 
of previous interventions, it would be useful to dedicate more research to the understanding of the 
didactical and social role of teacher explanation before any new interventions are planned. Secondly, 
in light of the central role of teacher explanation in the mathematics classroom, the marginality of the 
topic in mathematics education research leads to blind spots in our understanding of teaching practice. 
Especially the socio-political dimensions of teacher explanation, which might prove antagonistic to 
pedagogical ideals and nevertheless functional in a systemic sense of society, deserve further study. 
Deeper insights could lead the way to a teaching practice which incorporates teacher explanation 
without constructing the student as a passive subject to mathematics. Apart from that, it may be wise 
to critically prepare prospective teachers for the role that they apparently assume anyway, namely 
that of the explaining authority. 

Further research should also focus on the psychology and the socio-politics of teacher explanation. 
Firstly, why would teachers contribute to the narrative that it would be possible to allow a large 
proportion of the students an understanding through central explanation, while counter-arguments are 
obvious in teaching practice and have been discussed in literature for decades? Why would students 
contribute to that narrative against all obstacles they experience in their learning and in spite of the 
passive role they have to assume in this learning arrangement? And secondly, how does teaching 
through explanation contribute to the narrative that the understanding and mastery of mathematics is 
reserved to higher authorities, who can share their knowledge and skills to the extent they wish and 
whose expertise has to be trusted in due to the lack of approachable alternatives?  
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This paper describes the results of a survey of Polish immigrant parents’ views on mathematics 
education in preschool. In alignment with the Swedish preschool curriculum, the results show that 
parents viewed learning as being connected to play. The parents to a large extent see similar 
frequency of mathematical activities occurring at preschool and at home. Parents often commented 
on children’s involvement in collaboration when playing. Swedish preschools’ pedagogical 
practices about learning through play seem to have been adopted by parents. The findings suggest 
that parents, like children, can be socialized into the norms and values of Swedish preschools 
through their children’s attendance of them. 

Keywords: Immigrant parents, mathematics, preschool, socialization. 

Introduction 
Mathematics education, as a part of everyday life, is embedded within a variety of settings. These 
settings include institutions, such as schools and preschools, but also homes. Within each setting, 
there are structures and expectations which contribute to the development of norms and values 
(James, Jenks, & Prout, 1998). Therefore, Swedish preschool as being framed by institutional norms 
and values (Skolverket, 2011), must also be considered as shaping society’s understandings about 
the world of children and their families. As James et al. (1998) state: “Childhood diversity considers 
the infinite variety of the social context in which children live, leading to a deconstruction of 
childhood’s conventional, singular and reductive form” (p. 34). As a consequence of migration, 
culturally diverse societies can represent different views of what kind of childhood is available and 
thus the learning that children should receive in Swedish preschools. Therefore, newcomers’ 
perspectives on mathematics education in preschool can contribute to a better understanding of the 
variety of children’s childhoods, when those views are recognized as legitimate. As part of a wider 
project investigating this topic, I aim in this paper to provide insights into Polish parents’ views 
about mathematics in Swedish preschools. In 2012 Polish immigrants were the third largest group 
of immigrants in Sweden (Statistics Sweden, 2012), yet their views on education have rarely been 
investigated. My research question is: How do Polish parents view mathematics activities in 
Swedish preschool and at home? 

Socialization and parents’ views on mathematics education 
The theoretical framework for this study is socialisation, through which people who inhabit a 
society create it (James et al., 1998). Socialisation processes have two components, the production 
and reproduction of (1) norms and values and (2) skills and knowledge. Socialisation processes 
situate society members as needing to acquire relevant knowledge to sustain society over time and 
involve reproducing culture from one generation to another. As well, as the milieu in which a 
society operates changes, a need arises to produce new ideas and culture. Ebrahim (2011) stressed 
that social interactions contribute to the production and reproduction of rules and structures within a 
society. 



Children acquire the understanding, skills and awareness of different mathematical concepts, 
through their experiences outside educational institutions (see for example, Brenner, 1998). This 
provides opportunities for children’s own experiences to be the basis for developing their 
mathematical thinking in preschools (Lembrér & Meaney, 2015). In the Swedish preschool 
curriculum (Skolverket, 2011) four goals are related to mathematics: one is connected to content; 
while three require preschools to provide opportunities for children to develop mathematics skills, 
abilities and concepts. It also suggests that children should use their interests and experiences when 
acquiring mathematical knowledge and skills in preschool.  

However, the institutional values and norms of Swedish preschools may constrain immigrant 
parents from being able to recognize experiences from their country of origin as being valued in the 
new setting (Lunneblad, & Johansson, 2012). This may have long term implications for families’ 
involvement with educational institutions in new countries. For example, Giovannini and Vezzali 
(2011) focused on how contact between teachers and immigrant parents affected children in 
elementary schools. They found that parents’ views about their role in the relationship with school 
can define boundaries of that role. The education institution has a role in changing those boundaries. 
In Goodall and Montgomery’s (2014) study, parents’ reflective involvement in their relationship 
with schools was strengthened by an acknowledgement of their contribution to children’s learning. 
Yet language differences may impede these possibilities. Civil, Bratton and Quintos (2005) 
suggested that the dominant language spoken in school, can affect children’s interest in identifying 
with their home language. As a result, children can have difficulties talking with their parents about 
their school work. 

With an increase in immigration, there can be challenges around gaining the active participation of 
immigrant parents into the education system. Kaur (2010) suggested: “creating strong links between 
families and early childhood settings extends children’s learning, fosters a sense of community and 
acknowledges the expertise of families” (p. 53). It has been found that when refugee and immigrant 
parents are included in education systems, there are academic benefits for their children (Krasteva, 
2013). Yet, Whyte and Karabon (2016) found that relationships between home and school are often 
built on one–way communication, with information going from school to home. This creates 
boundaries between families and school. Wager and Whyte (2013) investigated how preschool 
teachers valued children’s home experiences of mathematics. They found that preschool teachers act 
in two different ways to children’s home mathematical experiences. The first involved only 
recognizing activities already familiar to the preschool teachers. In this way existing norms and 
values are recreated. The second integrates children’s home experiences into new activities, 
providing opportunities to create new norms and values. Wager and Whyte’s study raises a question 
about whose ideas are used in mathematical activities, also how these ideas are recognized as 
valuable. Understandings about socialization indicate that institutions need knowledge of immigrant 
parents’ norms and values. Otherwise, opportunities offered by institutional settings and 
arrangements focus on integrating into the existing Swedish societal norms and values and not 
considering possibilities for creating new norms and values to match the changing milieu. 
Preschools have the opportunity be influenced by parental views, which could contribute to 
widening the variety of mathematics activities that can be based on children’s own interests. 



Method 
The data were collected through a digital survey, consisting of 16 questions in August, 2016. The 
survey was provided in Polish and Swedish. Participants were identified through a snowballing 
approach (Cohen, Manion, & Morrison, 2000). First a Polish organization and an internet forum for 
Polish citizens living in Sweden were provided with a link to an anonymous online questionnaire. 
People who completed the digital survey were then asked to share the link with others. All 
participants had a Polish linguistic and cultural background and were immigrants to Sweden. They 
had children who had attended preschool in Poland and/or in Sweden. The participants were a 
convenience sample and cannot be considered representative of the population of Polish parents in 
Sweden. As such, the survey results can provide information (Coyne, 1997), which can be 
investigated in more in-depth studies at a later date. At the time of the survey, the participants had 
lived in Sweden between 2 and 19 years. 31 participants responded to the survey (1 male, 30 
females), aged between 22 and 47 years. Participants were described in the study as: P1–P31.  

The survey’s questions were divided in three parts. The first part consisted of demographic 
information: gender; age; number of years living in Sweden; if participants’ children attended 
preschool in Sweden (30 did, 1 did not); and if participants themselves had attended preschools in 
Poland (23 did, 8 did not). In the second set of questions, participants were asked to describe their 
experiences of learning mathematics, including their experiences of learning mathematics in 
preschools in Poland (Question 6). Question 7 asked about the experiences of both themselves and 
their children. Questions 8 and 9 asked about situations in which children could learn mathematics 
at home and at preschool in Sweden. The next question was about possible mathematical situations, 
in Polish preschools. However, only one participant had children attending preschool in Poland so 
this data were excluded from the analysis. The third part used multiple-choice questions (Questions 
11 and 12) to investigate parents’ perspectives of mathematics activities. Five activities were 
suggested as occurring at preschool and at home and these were based on what had been found in 
research by Bottle (1999) of observations, at home and outside home. In Bottle’s research, parents 
talked about mathematics activities such as: number and counting; doing puzzles; making towers; 
putting things in and taking them out again and things like full, empty and half full. The multiple-
choice responses in the questions about parents’ perceptions of mathematical activities were: 
counting rhymes; jigsaw puzzles; counting things; playing with sand and water; and building with 
blocks. Participants were also asked to express what was important for them based on their own 
experiences of mathematics (Questions 6, 13 & 16) and to describe the importance they attached to 
their children learning language and mathematics (Questions 14 & 15). The final question was 
open-ended and provided parents with a possibility to share something about their children’s 
learning of mathematics with teachers in preschools. 

Two analyses of collected data were done. The initial quantitative analysis was of parents’ views 
about mathematics activities at home and at preschool. The second, qualitative analysis used the 
socialisation components of production and reproduction of societal norms and values (James et al., 
1998), to understand parents’ views about mathematics in preschool. By analyzing the parents’ 
responses, it was possible to identify the norms and values that parents held about mathematics in 
kindergarten and consider how these were related to production and reproduction. 



Quantitative analysis 
Asking about particular activities was seen as a way of concretizing what could be considered 
mathematics for the parents. The questions were “Which of these things do you do at home, which 
you think might help children learn mathematics?” and “Which of these things do your children do 
at preschool, which you think might help them learn mathematics?”. The parents could provide 
more than one answer. 

 

Figure 1: Frequency of home or preschool activities 

Figure 1 shows which activities been chosen by parents as being present at home and at preschool. 
From most parents’ perspective, the children engaged in similar types of activities at home and at 
preschool which would contribute to them learning mathematics. For example, 27 out of 31 
participants considered that Activity C: counting things, was something that parents considered 
children would do at preschool and home and would support their learning of mathematics.  

The only significant difference between perceptions of what kind of mathematics activities are 
present at preschool and home was for activity D: playing with sand and water. Parents did not 
chose this activity, as something their children engaged in at home. Although more research on this 
is needed, a simple explanation may be that they did not have the facilities at home for it. Similarly, 
none of the participants, when they responded to question about describing their own ideas about 
how and when children learn mathematics, suggested playing with sand and water. 

Qualitative analysis 
In this section, I describe parents’ views about mathematics education for their children, as 
expressed in the survey. Analysis highlights why parents considered it is important for children to 
engage in mathematics activities in preschool and at home. The focus is on parents’ perceptions of 
the institutional norms and values in Swedish preschool through their responses to the survey 
questions. 

Parents’ experiences, from their children attending Swedish preschool, seemed to have shaped their 
views about mathematics activities. This is clear in statements, such as the one made by P2, where 
mathematical experiences seemed to be transferred from preschool to home. 



P2: Children learn basic shapes while playing. Shapes are used in different situations 
and aspects. My child comes home and continues asking us about different shapes 
"which is a shape of"? (in relation to various everyday objects). 

It would seem that P2 in this statement is reproducing the norms and values about the importance of 
children knowing about shapes and about learning through play. Learning through play situates 
children as being active participants in the socialisation processes. It is unclear whether P2 had the 
same set of norms and values before her contact with Swedish preschools, but it is possible to claim 
that they are in alignment with the Swedish preschool curriculum (Skolverket, 2011).  

The parents’ reflections of their experiences from the institutional practices of the preschool in 
Poland, were evident in some of their answers. For example, P11 referred to ways of learning in 
preschool by saying: 

P11: They (her children) attended (Polish preschools) and learnt exactly the same ways 
as I did at their age. 

P11’s perception was that Polish preschools had not changed in the generation since she had 
attended preschool. This suggests that she did not see Polish preschools as sites for producing new 
norms and values, just of reproducing the same ones across time. 

The milieu in Swedish preschool was seen as a source of knowledge and learning of mathematics 
for children. 

P21: It seems to me that the Swedish preschool have a big focus on mathematics. There 
is always enough mathematical activities, children usually have access to lots of 
toys/games which also are developing their mathematical skills. 

The emphasis on preschool materials focusing on mathematics is viewed positively. P21 highlighted 
the mathematics that could be learnt through playing with toys at preschool. Opportunities for 
learning mathematics are in the environment and children have the possibility to explore them, as 
active agents reproducing societally-valued understandings about mathematics. However, it is 
unclear what the responsibility of a preschool teacher is, apart from making activities and toys 
available to children. It is unclear how the children learnt that what they are doing is mathematics. 

P28 made reference to how everyday situations could support children’s curiosity. Like many of the 
parents, points such as these were linked to the importance of children playing. The norm of 
Swedish preschool is for children to play and interact together. Play is considered as a stimulus for 
learning in interactions. Children’s own knowledge can initiate interaction in play and, as Ebrahim 
(2011) stated, children can bring in imaginary characters during play. In this way, children produce 
and reproduce knowledge and understanding about their lives. 

P28:  Children learn through play with toys and friends in everyday situations. Children 
should be allowed to use their curiosity and discover new things so they can learn 
more easily. 

A particular aspect of play that parents highlighted was that children could make their own 
decisions, situating them as active participant in the socialisation process. P13 expressed how much 
she valued this aspect of Swedish preschools. 



P13: I like it here (in Sweden), that children have a lot of freedom in choosing and 
directing their play activities. 

Responses such as this are in alignment with values expressed within the institutional practices of 
preschool (Skolverket, 2011). Children being active participants in activities, which they design or 
adapt, seems to be a shared value in Swedish society about what is normal for childhood. Children 
are socialised into this shared norm while engaging in these activities. 

Parents’ views of how children should learn mathematics through play is in alignment with the 
Swedish preschool curriculum (Skolverket, 2011). Parents mentioned play explicitly as an approach 
which was beneficial for learning generally, including the learning of mathematics. 

P29: In preschool, play is the main form of learning. Children are enthusiastic and learn 
about the world around them through play. They should receive many interesting 
incentives in order to actively gain knowledge about the world in general, as well 
the mathematical world. 

In responding to the final open-ended question in which they could share something about their 
children’s learning of mathematics, the parents highlighted the importance of mathematics in 
everyday activities, such as: counting things; classifying objects; doing arithmetic; recognizing 
numerical symbols; building with Duplo. P30 reported that children gained a better understanding 
of mathematics while playing, but seemed to equate counting with mathematics. 

P30: Through play children learn to count and get to know the numbers. I think that 
play is a good way to learn mathematics. 

Counting objects during play, can be about making sense of existing knowledge. Awareness of this 
knowledge (counting) involves an active process of interpretation of this activity as mathematical. 
Similarly, P11 referred to everyday activities and emphasizing the value of learning mathematical 
terms and problem solving. 

P11: Learning mathematics, vocabulary and mathematical concepts is necessary for 
children. They develop their abstract thinking, analyzing, reasoning and decision-
making processes. 

P11 emphasises what children need to learn, and why that is important. This indicates what this 
parent considers to be the valuable knowledge that children need to reproduce. What is interesting is 
that these practices reflect the goals and guideline in the curriculum, “develop their ability to 
distinguish, express, examine and use mathematical concepts and their interrelationships; develop 
their mathematical skill in putting forward and following reasoning” (Skolverket, 2011, p. 10). As 
in the first example in the results, it is unclear if this parent held these views of mathematics before 
coming to Sweden, but the fact that they are so closely aligned indicates that more research is 
needed to investigate this further.  

These parents viewed play as a vehicle for learning and children’s participation in mathematics 
activities as an active form of play. This is in alignment with the Swedish preschool curriculum 
(Skolverket, 2016), which state that play should be a stimulus for children learning and 
development. By expressing children’s possibilities to make choices and decisions, parents show 
that they accept that children should be active participants in the socialisation processes. They also 



had expectations that their children would have opportunities to engage in a variety of mathematics 
activities. They exemplify activities that promote the learning of knowledge of mathematics which 
is socially-valued. Within this perspective, socialisation appears as a process of recreating 
knowledge. 

Conclusion 
In this paper, I have presented the views of a set of Polish parents about the mathematics activities 
their children engage in at Swedish preschools. The findings suggest that, in alignment with 
thewedish preschool curriculum (Skolverket, 2011), the parents emphasized that young children’s 
engagement in mathematical tasks in preschools should focus on learning through play. However, 
whether the parents’ views had changed since they arrived in Sweden is unclear. It is also unclear if 
this group of parents can be seen as representatives of Polish parents in general, living in Sweden. 
Therefore, more research is needed to investigate if and how parents’ views of mathematics in 
preschools are before and how opinions change once their children begin preschool in Sweden.  

We need to gain a better understanding of how immigrant parents align with the pedagogical 
structures in the new country of resident. Much of the research based on work with immigrants’ 
families (e.g. Civil et al., 2005; Giovannini & Vezzali, 2011), show gaps and struggles with parent’s 
involvement with educational institutions. The group of Polish parents in this study show the 
opposite. This article gives a very brief indication of what is the potential for the group of 
immigrants from Poland. Their views are interrelated with their children attending preschool. They 
seem to interpret and adopt the Swedish preschool norms and values, through their children 
participation in preschool.  

The educational structure, in which both children and parents adopt the norms and values of the 
society in their present country of residence, can be seen through processes of socialisation. Parents 
become learners of educational and pedagogical practices by using their experiences to recognize 
and work towards an understanding of the present. Socialisation is a complex and dynamic process 
with range of interconnected aspects operating simultaneously. Thus, more research is needed to 
understand the complexity of this process. 
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The mathematics teacher’s quasi-Darwinism: Problematizing 
mathematics education research  
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This paper discusses the configuration of a quasi-Darwinian view of mathematics teachers, where 
the survival of the fittest is the cornerstone of a network of practices and discourses. It aims to 
contribute to the problematization of how mathematics education research and its discourses have 
effects of power in the fabrication of mathematics teachers’ subjectivities, by unpacking naturalized 
truths of research – truths regarding a productive and successful mathematics teacher. It deploys a 
Foucault-inspired discourse analysis, and it argues how the research on the mathematics teacher 
becomes a practice that governs mathematics teacher’s subjectivities through the enunciation of the 
desire subject, a productive, successful and effective teacher. 

Keywords: The mathematics teacher, effects of power, quasi-Darwinism. 

Introduction 
Providing quality mathematics education has been a concern within the mathematics education 
community, research on education and international agencies. It is argued that the quality of 
education and the development of mathematical knowledge is essential for society and social 
development (Gellert, Hernández, & Chapman, 2013; OECD, 2010b). The idea is circulating that 
success in school mathematics is a prerequisite for personal and social success. Nowadays, it is 
considered that mathematics is a powerful mean to understand and control one’s social and physical 
reality (OECD, 2010a), by being a tool and skill that helps people to undertake diverse tasks and 
problems of everyday life, and of their contexts (OECD, 2014b). However, according to OECD 
(2014a), modern societies valorize individuals not for what they know, but for what they can do 
with what they know, in other words, by their mathematical literacy: 

Mathematical literacy is an individual’s capacity to formulate, employ, and interpret mathematics 
in a variety of contexts. It includes reasoning mathematically and using mathematical concepts, 
procedures, facts, and tools to describe, explain, and predict phenomena. (OECD, 2010b, p. 4)  

Research in the field of mathematics education is seeking to modify reality – in the frame of social 
changes – through its findings, proposing rationalities, knowledge, and ways of improving 
education practices – for ensuring the quality of teaching and learning of mathematics. Furthermore, 
OECD (2014a) stated that “[h]igher educational achievement benefits both individuals and society, 
not only financially, but in the well-being with which it is also associated, such as better health 
outcomes and more civically engaged societies” (p. 104). In this fashion, the mathematics teachers 
become relevant, since they are considered as a central element in the establishment of quality 
education (Jong & Hodges, 2015; Luschei & Chudgar, 2015; OECD, 2005, 2014b). Several studies 
have argued on the relation between the quality of the mathematics teacher and the shaping of 
successful students (cf. Castro-Rodríguez, Pitta-Pantazi, Rico, & Gómez, 2016; da Ponte & 
Chapman, 2008; Hemmi & Ryve, 2015). Also, it is argued that the teacher is open to policy 



influences, whereas factors regarding students and the classroom context are not open to the same 
policy influences, at least in the short run (OECD, 2005).  

All the aforementioned, the circulating discourses around ‘success’ in mathematics, are positioning 
a way of thinking and understanding mathematics education through the configuration of valid 
methods of doing research and of arguing about the diverse issues involved in the teaching and 
learning of the mathematics. For example, “[a]ll research is built around a set of assumptions about 
the world and how it should be understood and studied” (Jablonka, Wagner, & Walshaw, 2013, p. 
41). Thus, this paper problematizes mathematics education research and its effects of power on 
teachers’ subjectivities and fabrication. A discourse analysis, inspired by Foucault’s ideas, is 
deployed to unpack the naturalized truths and discursive formations about the effective and 
competitive mathematics teacher.  

Movements to examine the mathematics teacher as a discourse formation  
According to Pais and Valero (2012), mathematics education research produces languages and tools 
that shape what researchers see and say in the world of education and of mathematics education. 
Mathematics research as a field of inquiry is not an innocent or a neutral activity (Halai, Muzaffar, 
& Valero, 2016); it has been considered a “social institution which is inseparably linked to power” 
(Jurdak, Vithal, de Freitas, Gates, & Kollosche, 2016, p. 10). In this fashion, mathematics 
education, and also its practices, is considered to be political because it operates within 
governmentality techniques. Hence, by building on these techniques of government, this paper aims 
to understand how mathematics education research fabricates the mathematics teacher’s subjectivity 
through regulatory practices embedded within naturalized truths. In other words, it addresses how 
research sees and talks about the mathematics teacher, by establishing regimes of power/knowledge. 

According to Foucault (1972), “[w]e shall call discourse a group of statements in so far as they 
belong to the same discursive formation” (p. 117). Hence, discourse as a group of statements, 
provides a particular language and knowledge, assembling regimes of truths. Circulating discourses 
describe rules and enunciations of a particular body of knowledge from specific spatiotemporal 
conditions (Arribas-Ayllon & Walkerdine, 2008). This paper deploys a “research on research” (Pais 
& Valero, 2012) strategy built on Foucault’s discourse analysis. This analytical strategy helps to 
unpack naturalized truths within research, that seek to generate a productive and successful 
mathematics teacher, and, at the same time, to trace the power effects on the fabrication of 
mathematics teachers’ subjectivities. So, by problematizing the discourses, it is possible to 
understand research as a practice that governs subjectivities through the enunciation of the desired 
subject.  

First, repeated statements about the ‘must be’ of the mathematics teacher are identified. Second, 
these statements are analyzed to trace their knowledge/power relationships, and their continuities 
and discontinuities amongst each other. It does this by analyzing published studies about teaching 
and learning of mathematics. The empirical materials consist of research about mathematics 
teachers released within the last four years of three journals: Journal of Mathematics Teacher 
Education, ZDM Mathematics Education, and Educational Studies in Mathematics.  

Finally, it problematizes how research and its discourses have effects of power in the fabrication of 
mathematics teachers’ subjectivities. It does this by portraying how certain rationality is circulating 



within research in mathematics education. As will be described, such rationality promotes a quasi-
Darwinism, in which the survival of the fittest and the idea of evolution are the cornerstone of a 
network of practices and discourses. 

The mathematics teacher research and the survival of the fittest 
In navigating through the discourses that are circulating about the mathematics teacher, amongst the 
materials analyzed, it is possible to identify some enunciations that are continuously repeated. By 
following a Foucaultian chain of thought, these particular enunciations constitute statements about 
how mathematics teachers are supposed to act and be within their practices, their ‘must be’. Such 
statements respond to concerns raised by research in the field of mathematics education. For 
example, who is taken as valid for arguing about mathematics teachers, what does a mathematics 
teacher ought to do, and how to seek for the improvement of the teaching and learning of school 
mathematics. From the analysis, some discourses about the ‘must be’ of the mathematics teacher are 
configured as truths. These truths are advertised as desired features that teachers should have if they 
want to perform successfully, namely: a high knowledge (Fauskanger, 2015), an updated repertoire 
of techniques (Subramaniam, 2014), and a personality consistent with their practices – personal 
aspects such as beliefs or attitudes (Jacobson & Izsák, 2015).   

These discourses are naturalized under a competition and comparison system of reason. 
International standardized testing – PISA and TIMMS –, and its reports are examples of how 
competition and comparison become part of society, by shaping social discussions, decisions, 
efforts, and initiatives. At the same time, through those tests’ outcomes, diverse countries could 
monitor themselves to improve the weakest areas, since “[a]ll countries are seeking to improve their 
schools, and to respond better to higher social and economic expectations” (OECD, 2005). In this 
fashion, a variety of studies, that seek to improve the teaching of mathematics (see Boston, 2013; 
Lewis, 2016; Pang, 2016), are aimed to identify how mathematics teachers could achieve a 
successful practice by analyzing their students’ achievement on national and international tests. But, 
as discussed elsewhere, what is taken, by research, as a successful practice leads to a system in 
which teachers compete against others teachers, against what is considered as a desired teacher, and, 
also, against themselves (Montecino & Valero, 2016). So, research discourse is raising comparison 
as a mean for knowing the characteristics of competent and effective teacher – the fittest teacher –, 
effective practices or successful experiences. Within these discourses, it is possible to see 
statements such as: 

By comparing and contrasting the practices of LS [Lesson Study] in mathematics in different 
countries, it will be possible to explicate the local theories of teaching and learning of 
mathematics, highlight educational values in each culture, and understand why and how these 
values support certain teacher development processes that are unique to the culture. (Huang & 
Shimizu, 2016, p. 394) 

In the unpacking of naturalized truths of the analyzed materials, it is possible to see that some 
statements highlight mathematics teachers’ deficits and flaws. These statements pay attention to 
what teachers need to improve in their lessons for increasing students’ achievement (Spitzer, 
Phelps, Beyers, Johnson, & Sieminski, 2011). On one hand, by emphasizing that teachers need to 
achieve a higher expertise on school mathematical topics (e.g. Karakok, Soto-Johnson, & Dyben, 



2015; Magiera, van den Kieboom, & Moyer, 2013). On the other hand, by focusing on the need for 
developing more effective teacher’s practices (see Lee & Kim, 2016). This type of research 
acknowledges that mathematics teachers have a ‘responsibility’ for students’ performances and, 
therefore, teachers ought to be highly trained. Alongside the statements about what needs to be 
improved, other statements exist that pay attention to what teachers lack, in other words, to skills 
that teachers are required to develop to reach what those studies perceive as ‘successful professional 
development’: on the one hand, studies regarding teachers’ belief system (e.g. Conner, Edenfield, 
Gleason, & Ersoz, 2011; Cross Francis, 2015); on the other hand, studies regarding teachers’ 
attitudes (e.g. Hannigan, Gill, & Leavy, 2013; Jong & Hodges, 2015).  

According to some research, “[h]ow teachers perceive and adapt their roles will have great impact 
on overall classroom interactions, such as the teachers’ questioning strategies or feedback patterns” 
(Lee & Kim, 2016, p. 366). This implies that teachers’ decisions have an impact on students since it 
is believed that students’ intellectual autonomy could be favored by teachers’ practices (Goldsmith, 
Doerr, & Lewis, 2014). And so, the decisions made by the mathematics teacher have a high impact 
not only on students but also on their learning (Stockero & Zoest, 2013). This type of research 
shows that mathematics teachers should be constantly seeking to improve their professional 
development, practices, knowledge and skills not only for themselves but also for the sake of their 
students (Afamasaga-Fuata’i & Sooaemalelagi, 2014). Since professional development has been 
understood as a form of lifelong learning in which mathematics teachers are responsible for their 
own development and achievements, these types of statements, from a Foucaultian approach, are 
tracing the ways in which the mathematics teacher should become an effective and competitive 
teacher, through processes of self–regulation.  

According to these studies, teachers should aim at improving, by themselves, diverse personal and 
technical aspects. Such aspects are supposed to encourage the development of a more effective and 
competent teacher, by recognizing their own deficits and flaws with the goal of overcoming them. 
This naturalized truth resonates not only within research but also amongst other discourses on 
education. For example, OECD (2012) states that effective teachers are a key to close achievement 
gaps between advantaged and disadvantaged students. And, therefore, the aim should be to (re)train 
and (re)shape teachers to become the desired effective teacher. In this regard, research is tracing a 
sort of ‘evolutionary line’ for mathematics teachers, in which at the end of the line rests the desired 
mathematic teacher. Teachers should evolve when they achieve the desired levels of knowledge and 
skills established by society, becoming the productive, successful and effective teacher. However, 
these desired levels are in constant movement, being redefined by new social interests, concerns, 
desires and demands as well as new mathematical knowledge that the modern citizen should have. 
This means that mathematics teachers have to govern themselves into a constant process of change, 
of (re)training and (re)shaping. As Deleuze (1992) asserts, currently nothing is considered to be 
finished; all is in a constant becoming. 

The idea of the ‘evolutionary line’ helps to tell the narrative of the becoming of the mathematics 
teacher as the survival of the fittest, since research in the field highlights the features of the ‘fittest 
subject’. This portrays that the survival of the fittest – the desired mathematics teacher – involves 
practices of self-regulation, but also of competition against other teachers, practices that could lead 
to the exclusion of certain teachers labeled as ‘inferior subject’, unproductive, unsuccessful, and 



inefficient. For example, Lee and Kim (2016) have argued that mathematics teacher training 
programs “should include more specific investment in the effective use of classroom dialogue for 
learning” (p. 378), a ‘fittest subject’ should evolve in an effective classroom communicator whereas 
the ‘inferior subject’ will not evolve as a classroom communicator, and, will therefore be taken as 
ineffective. Consequently, the survival of the fittest governs the self and conducts mathematics 
teachers’ practices towards the desire to evolve, (re)shaping the research about mathematics 
teachers within a system of reason rooted in a quasi-Darwinism, since it traces the paths for teachers 
to increase their abilities to survive, compete and evolve. 

Quasi-Darwinism of mathematics education research and its effects of power 
The analysis deployed has pointed to the existence of statements on the desired mathematics 
teacher, a self-regulated and evolved subject. These statements have been (re)producing certain 
truths about who the effective teacher is. For example, mathematics teachers should perceive 
themselves as responsible for others – i.e., their students’ performances –, as promoters of social 
change – i.e., by closing achievement gaps –, and also, as responsible for themselves – i.e., tracing 
their professional development and learning the best possible way. These statements are building a 
quasi-Darwinian view of mathematics teachers; an ‘evolutionary line’ that is embedded within the 
above discourses and shapes the fabrication of the fittest subject.  

The quasi-Darwinism (re)shapes mathematics teachers’ ways of being and acting at a particular time 
and place, through discourses that are produced and reproduced under certain regimes of 
power/knowledge (Foucault, 1982). The naturalized truths are constituted, on the one hand, within a 
particular regime of knowledge, which delineates who is the one to discuss about the mathematics 
teacher and how, and in what way the knowledge regarding the teacher should be generated. On the 
other hand, within a regime of power which defines what understanding is meaningful to be studied 
– what discourses are taken valid regarding certain issues or aspect of the mathematics teacher – and 
which practices, knowledge and techniques should be targeted. Therefore, a quasi-Darwinian view 
(re)produces what the mathematics teacher should be – the becoming – towards the development of 
the ‘human capital’ (OECD, 2001). Human capital voices the value that subjects have in correlation 
with their knowledge, skills, education and preparation for the future, which translates into personal, 
social and economic well-being. Alongside, a quasi-Darwinian view (re)shapes a discourse aimed at 
optimizing the becoming of the teacher. Moreover, the research on mathematics teachers seeks to 
minimize all aspects that could lead to an ‘inferior subject’. In order to be the fittest, teachers should 
engage in practices that turn them into accountable and measurable agents. 

In this regard, it is possible to state that research in the field of mathematics education becomes a 
technology of the self (Foucault, 1997) that regulates mathematics teachers’ conducts towards the 
shaping of the desired mathematics teacher. By promoting ‘cultural thesis’ (Popkewitz, 2008) about 
the desired mathematics teacher, the analyzed research has effects of power on teachers 
subjectivities, meaning how mathematics teachers understand themselves and their becoming. Only 
the ‘fittest subject’ is the one able to develop the skills and knowledge that society demands and 
requires, is the only one who can evolve in a ‘superior subject’; subjects able to adapt themselves to 
the new social and professional demands. In other words, teachers are to evolve in subjects that 



have the tools, skills, and knowledge to survive to all social changes and challenges; becoming a 
successful, effective, competent and fittest subject. 

Thus, within the circulating discourses is configured a narrative in which if the mathematics teacher 
does not adapt or evolve, he/she is excluded or labeled as deficient. The teacher who survives 
through social changes and challenges is neither the knowledgeable teacher, nor the successful 
teacher, nor the most intelligent teacher; rather he/she is the most adaptable to change. 
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We describe ongoing work on the Culturally Responsive Elementary Mathematics Education 
(CREME) project, in which we work with teachers and students in two schools with contrasting 
student populations and communities. We present core principles of our emergent theoretical 
framework as we partner with the teachers and students to realize (in both senses of ‘understand’ 
and ‘make happen’) what culturally responsive elementary mathematics education might be. The 
backdrop for this activity is the educational/political arena within the United State, in particular in 
Oregon where we work, and in the schools themselves. We outline future development of CREME, 
and end with what we see as the implications of our experience with CREME for the ethical and 
political responsibilities of educational researchers. 

Keywords: Culturally responsive, mathematics education, multiculturalism, educational politics, 
assessment. 

Introduction 
As an extension of the paper presented at CERME9 (Mukhopadhyay & Greer, 2015) we describe 
our continuing work on the Culturally Responsive Elementary Mathematics Education (CREME) 
project, at the core of which is a long-term exercise in teacher development, embedded in the 
schools and their communities.  

We are not doing research in the narrow sense of stating research hypotheses, gathering data, 
conducting analysis. On the one hand, the paper provides a “thick description” (Geertz, 1973, pp. 5-
6) of the evolution of a community of practice (Lave & Wenger, 1998), and, on the other, describes 
an effort to actualize a conception of culturally responsive elementary mathematics education 
(Greer, Mukhopadhyay, Powell, & Nelson-Barber, 2009) in a particular environment. As such, it 
can be characterized as raw material contributing to an emerging theory, elements of which we 
describe. As a development from the CERME9 paper, we devote more attention to educational 
politics within the United States, in particular the state of Oregon, making the argument that 
research cannot be considered politically neutral, and we raise meta-theoretical issues about the 
ethical and political responsibilities of researchers. 

Principles and values of CREME 
CREME is very much work-in-progress, but many influences are clear. Within mathematics 
specifically, we acknowledge Critical Mathematics Education (albeit fuzzily defined), and 
Ethnomathematics as major inspirations. Within critical education more broadly, we have worked to 
establish the centrality of mathematics (not always recognized) within multicultural and 
intercultural education (e.g., Greer & Mukhopadhyay, 2015). 

Of particular relevance is the concept of “Funds of Knowledge” (Gonzalez, Moll, & Amanti, 2005) 
which is “based on a simple premise: People are competent, they have knowledge, and their life 



experiences have given them that knowledge” (Gonzalez et al., 2005, p. ix). As an example, we 
studied Sandoval-Taylor’s (2005) account of her development of a curriculum module for a second 
grade bilingual class composed mainly of Native American and Hispanic students, on the theme of 
local building construction. We later had the opportunity to talk about this work with her when she 
visited our class. 

More recently, a related concept termed “Funds of Identity” has been developed (Esteban-Guitart & 
Moll, 2014), introduced by the authors thus (p. 31): 

We use the term funds of identity to refer to the historically accumulated, culturally developed, 
and socially distributed resources that are essential for a person's self-definition, self-expression, 
and self-understanding. Funds of knowledge – bodies of knowledge and skills that are essential 
for the well-being [sic] of an entire household – become funds of identity when people actively 
use them to define themselves. 

This statement provides a concise rationale for the emphasis we put on identity work in CREME 
and in this paper.  

From the above, it will be appreciated that CREME, both in terms of the development of a 
theoretical framework and as a form of political activism, is very much work-in-progress, guided by 
beliefs and values, such as a commitment to asset pedagogy and to valorizing diversity in all its 
forms (Mukhopadhyay & Greer, 2015). The very different natures of the two schools described 
below is illustrative of the diversity pointed out by Skovsmose (2012), relating not only to ethnicity, 
class, language, forms of life, and so on, but also to: variety of sites for learning mathematics (in 
contrast to the stereotype of the prototype mathematics classroom (p. 345); variety of forms of 
mathematics in action; variety of educational possibilities. The two schools represent two examples 
of the demographic and sociopolitical variety in schools within the US and, mutatis mutandis, 
anywhere else. Accordingly, the concept of culturally responsive mathematics education (Greer et 
al., 2009) must be adapted to the particular contexts of schools and communities. In the case of 
School A, one major focus of our work is support of cultural identity for the children who are recent 
immigrants, often as refugees. We have become acutely aware of the tensions for immigrants 
between the pressing issues of adapting to a new society and the practicalities of day-to-day 
existence, and the maintenance of cultural identity. (Other kinds of tensions for non-dominant 
groups in relation to dominant groups were discussed in Mukhopadhyay and Greer, 2015). In 
School B, two important aims are to enable the children who are White to become more aware of 
cultural diversity, and to model the use of mathematics as a tool for addressing issues of social 
justice. These contrasting foci are illustrated in activities being carried out at the two schools, as 
discussed below. 

National political background  
In Mukhopadhyay and Greer (2015), we sketched the political landscape for mathematics education 
globally and within the United States. No matter where you are, developments within the US are 
likely relevant because of the extent to which they directly or indirectly influence what is happening 
in your country. One point of this paper, accordingly, is to offer an example of how mathematics 
education and realpolitik interact within a particular context. Readers will recognize parallels with 
what is going on in their own contexts. 



The importance of demographic changes within the United States is made clear by the fact that 
White children (as officially defined) now constitute less than 50% of the school population – while 
it is still the case that about 80% of the teachers are White. The legislation called No Child Left 
Behind that was passed in 2001 did address diversity among students in that it required the reporting 
of performance on standardized tests broken down by ethnicity, a major change welcomed by, for 
example, African-American organizations as a means to identify and then address inequity. 
However, the subsequent information on differences in standardized test scores (generally referred 
to as “achievement gaps”, a term that connotes a blatantly deficit model) was instead used to label 
schools, teachers, and students as “failing” without providing resources to reduce the differences; 
instead, the data provided fodder for denigration of teachers and the furtherance of privatization 
(encrypted as “choice”). Now NCLB were has been replaced by the Every Student Succeeds Act 
(ESSA), a change that can be characterized as rebranding (Karp, 2016), with the continuing 
requirement to administer standardized tests to all students each year from Grade 3 to Grade 8. At 
the same time, there is a growing national movement against the excessive, inappropriate, and 
expensive use of standardized testing (Hagopian, 2014).  

An overwhelming political fact is the increase in wealth and income inequality over recent decades 
in the United States and many other countries (OXFAM, 2017; Piketty, 2014). Education, far from 
the conception that it should act as a force to reduce such inequality through offering something like 
equality of opportunity, is now acting as an accelerator, as has been clearly shown in the United 
States by the statistical analysis carried out by Reordan (2011). In the period 1979-2009, the gap in 
academic achievement (as conventionally measured) between poor and rich children grew by about 
40%. 

For many reasons, the election of Donald Trump as president magnifies all of these issues, 
particularly given his choice as Secretary for Education of a billionaire supporter of the privatization 
of schools. All indications are that education will become, to an even greater extent, a driver of 
economic inequality and a generator of corporate wealth.  

Local political background  
One potentially positive aspect of ESSA is that it grants more power to states to make decisions. It 
remains to be seen whether this degree of autonomy will be sufficient to counteract federal policy 
under the new president. 

In 2014, the Oregon Department of Education (ODE) issued a call for proposals for the Culturally 
Responsive Pedagogy and Practices Grant whose stated mission was to work towards formation of 
a culturally responsive teaching force in the state. CREME was the only project funded within this 
initiative focused on mathematics.  

In June 2015, an extremely progressive and constructive statement on assessment, titled A new path 
for Oregon was published (Oregon Education Investment Board, Oregon Education Association, & 
Oregon Department of Education, 2015). This document represents the work of a very broad 
coalition that worked together over an extended period of time and consulted widely with teachers 
and others. It clearly shows the influence of Stiggins (2014), who acted as consultant.  



From our perspective, A new path for Oregon is particularly notable in the attention it pays to 
“culturally responsive assessment”. It is stated unequivocally (p. 8) that: 

A successful system of assessment should not simply highlight problems or generalize about 
groups; nor should it ignore conditions that influence performance. Instead, a successful system 
of assessment recognizes the myriad strengths of various learners within their respective 
communities and within the collaborative nature of the classroom. In addition, such a system is 
culturally responsive, and implemented by teachers who are assessment literate. (Emphasis 
added). 

As just indicated, the report also highlights the concept of “assessment literacy”, not just for 
teachers and students, but also for families, community members, educational officials and policy-
makers, and – perhaps most importantly of all – politicians. The Oregon Education Association 
(teachers' union) is actively leading further efforts to develop quality assessment, and we anticipate 
working with them and other important actors in exposing and undoing the negative effects of 
excessive standardized testing, and in developing culturally responsive assessment. Mathematics is 
of particular importance in these efforts, given the prominence that it is accorded within 
standardized testing. 

At the time of writing, a bill is being promoted in the Oregon Senate that would require educational 
state agencies to ensure that educators are providing culturally responsive education. 

CREME schools, students, and teachers  
The project is based in two urban schools in Portland, Oregon. Though less than three miles apart, 
the schools are contrasting in many respects. One (which will be referred to as School A) serves a 
very diverse population of children speaking more that twenty languages at home, many of whom 
are recent immigrants and came to the US as refugees, with indications that many have experienced 
trauma (Sottile, 2015). The other school (School B) is a public charter school within the Portland 
Public Schools system. Unlike many charter schools that are corporate, this school adheres to the 
original concept of charter schools as test beds of alternative approaches to education. It is based on 
a progressive set of principles such as constructivism and democratic education and serves mainly 
White children, not particularly affluent. 

School A is required to follow the prescribed textbooks and other instructional materials adopted by 
the district, and adhere to strict testing requirements. As a result, as CREME teachers have testified, 
there is excessive emphasis on test preparation. Although the children are smart and creative, as 
evidenced in many of their open-ended projects, their performances in tests do not reflect that. And 
although the teachers from School A are kind, caring, and full of creative ideas they are compelled 
to follow the curriculum and testing regime thrust upon them.  

For School B, not only is the demographic different, the curriculum and pedagogy are also in stark 
contrast. The teachers have intellectual freedom in designing their curricula, with minimal emphasis 
on performance on standardized tests. The teachers design and develop project-based curriculum 
spanning weeks at a time. Thus, while the students were learning how to respond to standardized 
test items in School A, their peers in School B were learning about election and democracy in a 
national program called Every Kid Votes 2016 (https://www.studiesweekly.com). 



The participating teachers contribute to the richness of diversity of the project. They differ 
ethnically and linguistically, and in years of teaching experience. CREME is a teacher development 
project that differs in major respects from many endeavors labeled as such. It is not formulated as a 
group of researchers/academics proscribing, as experts, curricular content or teaching styles for 
teachers to follow. Rather, over two years and continuing, it is a collaboration founded on mutual 
respect wherein the mathematics educators propose ideas to the teachers, while the teachers and 
their students educate the academics about the realities of the circumstances in which they are 
teaching and learning. In the slow and organic development towards the idea of teachers as 
intellectuals, the teachers have had the opportunity to interact face-to-face and electronically with 
the advisors for the project, Marta Civil, Geneva Gay, and Danny Martin, and other scholar 
activists. And they are beginning to attend and present at conferences and to write papers. 

What happens in CREME 
We present here some examples of activities that we have collectively carried out (see Ford et al., 
(in press) for more details). 

In School A, a very simple exercise with powerful effect has been to ask children to record, on 
paper and audio, numbers from 1 to 20 in their home language. Ongoing discussion was related to 
the large world map that hung in the room: In which part of the world is this language spoken? 
Where else is this language spoken? The list of languages spoken at home was long: Arabic, 
Bulgarian, English, Fulani, Kirundi, Korean, Oromo, Portuguese, Russian, Spanish, Sudanese, 
Swahili. (For a similar activity in Greece, see Chronaki, Mountzouri, Zaharaki, & Planas, 2016).  

As a more general approach to identity work within an asset pedagogy, the children at both schools 
record, on strips of paper, lists of what they can do, including but not confined to school 
achievements. These lists are place in ‘talismans’, old medicine bottles that are decorated by the 
children. Recently, all the children and their teachers wrote autobiographical poems based on the 
prompt “I am from”, and drew self-portraits. A compilation has now been published as “We are 
from”, and the book was launched in the library at School A with children reading their poems and 
the self-portraits on display. 

Another aspect of identity that we work on is that of being a potential college student. In School A, 
in particular, students tend not to have a clear notion of what college is like. Accordingly, we have 
organized field trips for students to Portland State University, during which children interacted with 
students and faculty in Architecture, Engineering, and Earth Sciences. 

In School B, an example of teaching to make students aware of other cultures is that the teacher, 
having covered a standard account of the Lewis and Clark Expedition of 1804-1806 that opened up 
the West to colonizers, then presented an account from the perspective of the Native Americans. We 
have also connected teachers, through visits to the Portland Art Museum, to Native American 
artifacts that illustrate the richness of design that serves as a context for the study of geometrical 
concepts, in particular symmetry. 

School B has a tradition of working through Storyline projects, an approach in which students, 
together with their teacher, explore a theme in depth through creating characters within that theme. 
Koopman (in press) describes such a project that began by students looking at the labels on their t-



shirts to see where they were made. The places were recorded with pins on a world map. Koopman 
reports that looking at the concentrations of pins in particular areas came as a revelation even to 
him. From there, the class collectively did extensive research about factories in the early 1900s 
where t-shirts were originally made. They used extensive arithmetic in calculating, based on 
historical data such as the prices of groceries and payscales at that time, the cost of living of a 
family in relation to the pay. They took on roles of workers and factory owner, and acted out 
situations of conflict. Koopman (in press) related the conflicts enacted by the students to his own 
experiences during a teacher strike when he was coerced by the school district to substitute for 
striking teachers. Later the principal of the school joined in the activity. The project culminated with 
research into contemporary conditions for workers in sweatshops in countries such as Bangladesh. 

Another such project involved students building models of food carts (for which Portland is 
famous). Students created characters for the cart owners and operators, and devised detailed 
business models. They filled in actual forms relating to hygiene requirements, for example, for these 
simulated businesses. The teacher posted reviews on Yelp. 

In these and similar projects, a great deal of arithmetic was done in context, illustrating how, in 
elementary school, students may: 

(a) Be introduced to the conception of mathematics as a tool for interrogating sociopolitical issues, 
thus appreciating at an early age a sense of agency that will stand them in good stead as citizens. 

(b) Consolidate computational and planning skills in complex contexts that afford relevance, 
interest, and motivation. 

(c) Learn and practice mathematics integrated with other school subjects (science, obviously, but 
also art, social studies, language arts) – something that elementary teachers are in the best position 
to do. 

Future of CREME 
At the time of writing, we have submitted proposals for further funding to continue CREME, but it 
is a measure of the group solidarity that the teachers are keen to keep the project going even without 
funding. As we continue, we plan to pay more attention to explicit mathematical content, always 
within the framework of culturally responsive pedagogy (see Ford et al. (in press) for more details). 
We also plan to explore and expose cultural biases in assessment, including the more subtle ways in 
which they are manifested. In light of the extremely encouraging political developments within the 
state, we are developing links with important actors within educational politics in Oregon. And we 
will continue to foster identity, agency, and autonomy in the CREME teachers, and to help them 
develop into mentors of new teachers joining the project. 

Final comments: Ethical and political responsibilities of researchers  
The naive conception of research and researchers as politically neutral, providing systematic 
objective evidence for the guidance of state educational policy, if ever viable, is certainly not 
sustainable in the circumstances that pertain in the United States, as a neoliberal agenda is pursued – 
as, in the face of global corporatization and economization, is happening in many parts of the world 
(Spring, 2015). The experiences described in this paper makes clear that as educators we are 



confronting issues of ethnic and cultural diversity, inequity, massive social engineering through the 
mechanisms of mass testing, the characterization of education as a market with huge profits to be 
made, the use of education as a means to maintain and even exacerbate economic inequality. The 
role of mathematics in all of these issues is particularly important, and we hold to a vision of 
mathematics education as providing people with tools for understanding and acting upon issues 
important in their lives and those of their families and communities. Along with mathematicians and 
mathematics teachers (D’Ambrosio, 2009), mathematics education researchers cannot absolve 
themselves from ethical and political responsibilities.  
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Based on a pilot study, this paper reflects upon how the industry, university and school can work 
together to facilitate learning of mathematics. Through a project called MathEUS (Mathematics at 
the Enterprise, University and School) a modern energy recovery enterprise, Returkraft, the 
University of Agder and a school collaborated to offer pupils (in 8th and 9th grade) an opportunity to 
engage with mathematics contextualized at an enterprise. Through comparing the 2015 edition with 
our re-design in 2016, we discuss the outcome of the project. In particular, we focus on the factors 
necessary for such a project to succeed. Findings suggest that mathematics contextualized at an 
enterprise as an isolated event has limited value. Further, findings seem to indicate that working 
together with the enterprise over time, by including a pre-project, strengthens pupils’ experience of 
mathematics as a relevant subject. 

Keywords: Diversity, relevance, authenticity, out-of-school contexts, enterprise. 

Introduction 
Diversity in mathematics education relates to political, cultural and linguistic aspects. In this paper, 
the issue of diversity will be addressed in terms of different sites where mathematics education 
potentially could take place. Meaney and Lange (2013) emphasize the importance of transitions 
between different contexts and that such transitions “can be a fairly minor issue for learners if they 
perceive similarities in what knowledge is valued and how learners and others should interact together 
and with the mathematical content” (p. 169).  Throughout the decades, a growing body of research 
has been carried out, focusing on the learning of mathematics in different contexts (Masinglia, 
Davidenko, & Prus-Wisniowska, 1996). By linking mathematical tasks to an enterprise, we hope that 
the pupils experience mathematics as important, also outside the classroom, and in turn this influences 
their motivation for learning mathematics at school. In Norway, there has been an increased focus on 
how mathematics could be taught in ways that is perceived by pupils as relevant and more related to 
their own reality and experiences (Det Kongelige Kunnskapsdepartement, 2011). Diversity in 
teaching methods and arenas of learning has been important issues in this debate (Norges offentlige 
utredninger 2015, p. 8). Pupils in Norway are mixed together heterogeneously until grade 10 and with 
the curriculum focus being academic, offering pupils few perspectives on, for example, vocational 
and professional practice. In the attempt to diversify such experiences, we found that the processes 
going on at the energy recovery enterprise, Returkraft, bear the potential of visualizing mathematics 
at a working place. Further, Mathematics at the Enterprise, University and School (MathEUS), in 
some sense should be regarded as a response to the identified need of moving the teaching of 
mathematics in a more practical and vocationally-oriented direction. The last two years (2015 and 
2016) funding from Regional Research Fund Agder enabled research to be carried out on the 
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MathEUS project. In this paper, we pose the following research questions: 1) Which factors are of 
importance in the collaboration between school and industry for the pupils to experience the 
mathematics involved as relevant and authentic? 2) What might prevent the pupils for experiencing 
the project as relevant and authentic? Our discussions focus on the differences in outcome between 
the first year and the redesigned project run in the second year.  

Theoretical background 
The idea that learning is situated within a certain context and practice was in many ways coined by 
Lave and Wenger (1991) and in mathematics education, research has shown that the environment in 
which activities takes place is of great importance for the outcome (Nunes, Schliemann, & Carraher, 
1993). In the MathEUS project, mathematics is contextualized and linked to the activities at an energy 
recovery enterprise, Returkraft. Situated in this case alludes both to the physical environment at 
Returkraft (which surrounded the pupils while they were doing their activities) and to the 
mathematical content, which was consequently linked to the enterprise. By establishing this link 
between content and context, it is our aim that the mathematical tasks and activities provided appear 
more relevant and authentic to the pupils. When applying the concept of relevance, we draw on the 
work of Hernandez-Martinez and Vos (submitted) where the main point is that “it involves a judgment 
of value that is made by a person involved in the activity” (p. 26) and that the “judgment is connected 
to the motive or object that drives the activity” (p. 26). Nyabanyaba (1999) and Dalby (2014) point 
to the complexity of the relevance concept in mathematics by listing a number of different ways 
mathematics could be conceived of “relevant”, depending on contextual, content-related and affective 
factors. Authentic has to do with the nature of the activity and has several somewhat distinct 
definitions. In the case of MathEUS, we find the definition from Gulikers, Bastiaens and Martens 
(2005) to be useful, “An authentic learning environment provides a context that reflects the way 
knowledge and skills will be used in real life” (p. 509). Here both the contextual aspect and the use 
value are emphasized, which is fully in line with the purpose of the MathEUS project. To achieve the 
goal of authentic tasks, considered relevant to the pupils, we aimed also to overcome some of the 
typical challenges that guided tours of enterprises often entail. Recent research, both national and 
international, shows that the “classical” excursion day, where pupils use a day to visit an enterprise 
in terms of a guided tour, is often disconnected to what they normally do at school and leads to some 
didactical challenges. The pupils easily become passive, engaging in artificial and low-quality tasks 
(like memorizing and duplicating information posters) due to the lack of preparatory and follow-up 
work (DeWitt & Storksdieck, 2008; Remmen & Frøyland, 2014).  

Methods 
In 2015, two schools were participating, each with one secondary class of 9th grade pupils (14-15 
years old).  

The implementation of the MathEUS project 

The schools’ visiting day at Returkraft took place in March on two different days, one day for each 
class. Before the day of visit, student teachers completing a master degree at the university had 
designed and prepared mathematical tasks for the pupils. After a guided tour at Returkraft, the student 
teachers constructed the tasks over a period of two weeks, and during this period staff from Returkraft 
was available for helping them with information concerning the enterprise. Teachers from the 



participating schools were also available for commenting on their suggestions. The premises for these 
tasks were that they should in some way be linked to the enterprise at Returkraft. These tasks were 
given to the pupils on their day of visit, and they were given approximately two hours to work with 
the tasks in groups of four to six pupils. The tasks were solved in a ‘classroom’ at Returkraft. 
Following an evaluation of MathEUS as it had been carried out in 2015, we decided to make some 
changes in an attempt to improve the project (see also the section “results and discussion”). We 
wanted to strengthen the quality of the tasks so that the pupils experience them as more relevant. In 
addition we wanted the pupils’ experience with Returkraft and the mathematics they engaged with to 
be more than just an isolated event. Aiming towards this, we invited the class to take part in a pre-
project (lasting for six weeks), with a representative for Returkraft coming to their class early in the 
semester to initiate the following assignment: “How can we improve peoples’ habits, when it comes 
to sorting their garbage for recycling?” To solve this assignment, the pupils developed questionnaires 
and went out to different geographical locations to interview people about their sorting habits. Due 
to the lack of responses during oral interviews the pupils posted the questionnaires on social media, 
and the number of response escalated rapidly. Their empirical data were treated in spread sheets, 
resulting in different diagrams, and the results were presented at the university in front of an audience 
consisting of both the student teachers and employees from Returkraft. In turn, this pre-project served 
as an important source for the student teachers when they designed the tasks for the pupils. In 2016, 
one secondary class of 8th grade pupils (13-14 years old) participate in the project. 

Methods and data collection 

We (the authors of this paper) were responsible for carrying out research and at the same time we 
planned the implementation of the project together with the participating schools and employees from 
Returkraft. We also provided the framework conditions for the student teachers’ elaborations of the 
tasks. The pupils, the student teachers, the teachers (at the participating schools) and the employees 
at Returkraft all served as informants for our research. In this paper, we mainly focus on data from 
the pupils. Conducting research at the same time as we are responsible for carrying out the project 
situates us within the domain of action research. Bryman (2012) describes this as “an approach in 
which the action researcher and client collaborate in the diagnosis of a problem and in the 
development of a solution based on the diagnosis” (p. 709). We conceive of this definition to be in 
line with our agenda, where we use data from our experiences to discuss, develop and improve the 
forthcoming editions of the project.  

To measure parts of the outcome of the MathEUS project, we developed a web-based questionnaire 
which the pupils should answer after the project was carried out. Except from minor changes and 
some reformulations, we used the same questionnaires both years of research, for the sake of 
comparison. The questions were mainly statements that the pupils were asked to scale from 1 to 6, 
based on their “degree of agreement” and in total there was 34 statements to be evaluated. Mainly 
these statements aimed to inform our research questions mentioned earlier in terms of measuring the 
pupils’ own experience of their learning outcome, their motivation and beliefs and whether they 
consider the project meaningful and relevant. In addition, some open ended questions were posed 
where the pupils had the possibility to comment on these aspects. Since two school classes were 
involved in 2015, and just one in 2016, the sample size varied and in 2015 there was 44 respondents 
to the questionnaires, while 23 responded in 2016. But in 2016 we collected some additional data by 



including a semi-structured interview with three of the pupils. These pupils were randomly selected 
among those who volunteered when we visited the class. In this interview, we went deeper into the 
pupils’ own experiences related to the project, and to the content of the tasks and activities provided 
for them by the student teachers. Both in 2015 and in 2016, interviews involving representatives from 
the three collaborators (the enterprise, the university and the schools) were conducted, mainly 
focusing on the outcome of the project. Both years we made observations and voice recorded all the 
group work sessions at Returkraft. As part of our research, we also conducted interviews with some 
of the student teachers responsible for designing the tasks.  

Results and discussion 
Since the scale on our questionnaires ranges from 1 to 6, we sort the results in two halves for the sake 
of overview. The “low achieving” half ranges from 1 to 3 and the “high achieving” half ranges from 
4 to 6. Figure one gives an overview of some of the questions we consider as most significant.  

 
Figure 1: Pupils scaling (in per cent) in 2015 compared to 2016 

One can observe from the first columns in the diagrams (1a) that the majority of the pupils both years 
felt that they understood the mathematics being taught. About half the pupils felt that they discovered 
new aspects of mathematics in the 2016 edition of MathEUS, a slight improvement compared to 2015 
(1b). An improvement related to the experience of mathematics used in a real-life setting is visible 
(1c), while the experience of mathematics as being meaningful is almost unchanged (1d). Finally, 
there is a clear improvement on almost 20 per cent related to the appreciation of mathematics as a 
consequence of the MathEUS project (1e). Since the number of pupils forming the basis of these 
results is limited and varying one should be careful to draw strong conclusions only from this data 
set. But since statements in the questionnaires consequently were higher rated in 2016 compared to 
the year before, a positive trend could be suggested. In addition to the scaling of different statements, 
there was also a possibility for the pupils to add comments and give some additional justifications for 
their scaling. In 2015, about half the pupils wrote critical comments, especially related to the question 
of whether or whether not their expectations had been fulfilled. “I thought they would try to make 
this fun”, “it was extremely boring, tiring and difficult maths” and “I thought we would learn more. 
The tasks were just like a typical maths tests”, serve as examples of such comments. Despite that 43 
out of 44 pupils in 2015 expressed themselves positively about learning mathematics at a working 
place, about half of the pupils responded in negative terms related to the question about the fulfilment 
of expectations, in line with the previous quotations. These comments mainly implied that a negative 
experience with the content of the tasks. Even though the tasks were designed with the purpose of 
being relevant, in terms of creating a link between school mathematics and the enterprise, the pupils 
did not seem to perceive this the same way. Dalby (2014) emphasizes that even though a realistic 



context is provided, the impact on pupils can vary since “the context itself is often no more than a 
metaphor to illustrate an aspect of pure mathematics rather than authentic use of a scenario as a source 
of mathematics” (p. 90). In the aftermath of MathEUS in 2015, we saw that several of the student-
designed tasks could represent examples of contextualized tasks, but with little authenticity.  

 
Excerpt 1: Excerpt from task, 2015 

The task above serves as an example of a task where the context was reduced to serve only as a 
metaphor, rather than an authentic use of Returkraft as a source of mathematics.   

When revising MathEUS 2015, we wanted to improve especially on two aspects: 1) Make the content 
of the tasks more relevant and authentic for the pupils and 2) Engage the involved pupils and student 
teachers earlier in the process, so that the visit to Returkraft became something more than just an 
isolated event. In this process, we build on DeWitt and Storksdieck’s (2008) “boarder visions on 
field-trips” (p. 181) and their research-based conclusions that field trips and out-of-school context 
ought to be embedded in teaching, more holistically. Even though their focus was on natural sciences, 
we found these ideas to be relevant for mathematics and in the 2016 edition of MathEUS we included 
a pre-project (as described in the “methods” section). Due to the pre-project, the student teachers 
designed tasks were also used earlier in the process. 

From the web-based questionnaires, illustrated in figure 1, there are some indications that pupils’ 
experiences in general were more positive in 2016 compared to 2015. Interviews with some of the 
pupils, also involved statements that could be interpreted as having to do with relevance and 
authenticity. 

Interviewer: Earlier in the interview, you said something about “mathematics in practice”…was 
this something which characterized the tasks at Returkraft, or did you feel that you 
just as well could have done this at school? 

 […] 

Pupil: Since we had been to Returkraft and the content was about Returkraft, and the 
numbers used were the same as we had learned about…the numbers weren’t just 
made up, in a way. 

This pupil emphasizes the experience of working with “real” tasks, in terms of pointing to a close 
connection between the context and the content of the tasks. Since the student teachers had followed 
their pre-project and had access to all their results and data, they were also able to build on pupils’ 
own data from the pre-project when designing the tasks, and in this case provided a more authentic 
context. 



       
Excerpt 2: Excerpt from task, 2016 

By using numbers from the pupils own pre-project, this task illustrates how one student teacher 
applied these data to discuss statistical issues. Based on observations from the pupils engaging with 
this task, we see this as an example of successfully creating a link between the context and the 
mathematics involved. Pupils judged this as “relevant” since an authentic connection between the 
mathematics involved and the context is provided in terms of linking the task to something familiar, 
namely their pre-project. 

From this relatively brief analysis, we suggest that pupils’ experience of relevance, and the 
authenticity of tasks provided in an out-of-school context not only depends on the tasks themselves, 
but also on the pupils’ possibilities to relate to the content. For the context to “reflect the way 
knowledge and skills will be used in real life” (Gulikers et al., 2015, p. 509) a preparatory phase, were 
pupils are offered the possibility to become familiar with the context seemed to be advantageous. 

Conclusions 
Providing out-of-school contexts like excursions and field trips are, unfortunately, often being carried 
out as isolated, stand-alone events (DeWitt & Storksdieck, 2008; Remmen & Frøyland, 2014). There 
are few reasons to believe that this is different in mathematics. Our findings tend to show that if 
mathematics in out-of-school contexts is treated like stand-alone activities, the outcome when it 
comes to authenticity and pupils’ experiences of relevance is limited. Pupils’ experience of relevance 
changed in a positive way when a preparatory phase in terms of a pre-project was implemented. 
Nyabanyaba (1999) argues that pupils and teachers’ conceptions of relevance often differ. In line with 
this, we suggest that even though mathematics in out-of-school contexts through excursions days at 
enterprises as stand-alone activities is carried out with good intentions from teachers, such activities 
ought to be more substantiated in teaching. Authenticity entails reflection on knowledge and how it 
could be used in real life (Gulikers et al. 2015) and for such a reflection to happen, Meaney and Lange 
(2013) point to the necessity of being able to make transitions between these different contexts. From 
our experience a pre-project substantiates the out-of-school context and better prepare the pupils for 
the subsequent visit to the enterprise. Hence, the connection between the mathematical content and 
the context provided are perceived by pupils as more relevant. “Making connections between 
mathematics and life that appear authentic and convincing for students” (Dalby, 2014, p. 91) serves 
as core criteria in the question of relevance and learning, also when it comes to the subject of 
mathematics.  



Implications and possibilities 
From a societal and political perspective, this paper addresses issues concerning the contextual nature 
of mathematics teaching and learning. One aspect is the pupils’ outcome of experiencing mathematics 
in an out-of-school setting, but in a boarder perspective, MathEUS also contributes to strengthen the 
bond between school and industry, which according to Sjaastad (2013), is “too weak” (p. 16).   

The results and reflections in the wake of the two previous editions of MathEUS serve as a basis for 
further developing our collaboration strategies. We found that by involving the enterprise at an early 
stage, pupils to a larger extent were able to make connections between the context and the 
mathematical content. The pre-project also entailed interdisciplinary activities, where mathematics 
became an important contributor and ICT was applied by the pupils as a crucial tool in the process of 
visualizing their findings. The interplay between mathematics and natural sciences in particular 
played a significant role in the pupils’ activities, both during the pre-project and at their visiting day 
at Returkraft. The topic concerning recycling of garbage also links our project to local and global 
environmental issues. People’s attitudes towards recycling of garbage, were a valuable outcome also 
for the enterprise, as Returkraft aims to reach out to the public with messages concerning the 
importance of such issues. These are all, from our point of view, valuable synergistic effects worth 
looking deeper into. Task-design is a topic of research on its own, and the process of developing tasks 
and activities within this particular context could also be worth mentioning as potential, forthcoming 
research.     
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Setting – the practice by which learners are allocated to different classes on the basis of perceived 
ability – is a social justice issue. Despite overwhelming evidence that, overall, setting is 
educationally harmful and in discriminatory ways, the practice is almost universal in English 
secondary mathematics classrooms. To gain insight into this apparent contradiction, we offer the 
story of a single teacher‘s ultimate rejection of all-attainment teaching. 
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Introduction 
In this paper we begin by arguing that setting by ‘ability’ is a social justice issue. Despite 
overwhelming evidence that, overall, setting is educationally harmful and in discriminatory ways, 
the practice is almost universal in English secondary mathematics classrooms. In order to 
understand this apparent contradiction, we offer the story of a single teacher who, early in his 
teaching career, embraced all-attainment teaching1; continued to think in fixed ability ways and 
therefore supposed that there should be differential teaching for different levels of ‘ability’; found 
himself overwhelmed by such a task; and finally abandoned all-attainment teaching because “it just 
didn’t work”. We conclude with a brief discussion. 

Setting and ‘ability’ thinking2 
English education in terms of both policy and practice currently takes for granted hereditarian 
assumptions; and a discourse of ability is used very widely to place children in sets for mathematics 
in secondary schools (Wilkinson & Penney, 2014). The belief in fixed amounts of ‘ability’ and the 
consequent grouping of children according to how much they are perceived to ‘have’ is taken as 
natural and common sense (Francis et al., 2016). The idea that ability is a given and that only some 
students can be high achievers discourages many students (Boaler, 2005) and communicates and 
reinforces damaging fixed mindset beliefs (Boaler, 2013). 

In almost all instances the methods used to allocate children to sets are claimed to be objective and 
based solely on their prior performance. However, in practice, in English secondary schools prior 
attainment is found to be a relatively poor predictor of set. A wide range of social factors come into 
play which privileges those with greater cultural power and systematically disadvantage others 

                                                 
1 We use the vocabulary of “all attainment” rather than the more common “mixed ability” to avoid endorsing so-called 
“ability thinking” (see, for example, Boylan & Povey, 2014). 

2 In this section, we draw substantially on Jackson (2017).  



(Muijs & Dunne, 2010; Bartholomew, 2003; Hallam & Parsons, 2013; Ireson, Clark, & Hallam, 
2002; Macqueen, 2013; Wilkinson & Penney, 2014). 

Teachers’ expectations of children in lower sets tend to be low and these pupils are usually offered a 
restricted, narrow and instrumental curriculum which further inhibits performance. They are 
constructed as poorly motivated, badly behaved and incapable of independent working and 
independent thought and therefore in need of repetitive tasks which require lots of practice (De 
Geest & Watson, 2004). In contrast, those in the top set are constructed as well motivated, 
hardworking, well behaved and capable of independent working and independent thought and are 
given a more demanding curriculum and much richer opportunities to succeed (Bartholomew, 
2003). Thus setting and ability thinking construct that to which they claim to be responding. 

While ‘ability’ grouping has been shown to have little consistent effect on attainment (Francis et al., 
2016), it is known that it has detrimental effects in terms of personal and social outcomes (Nunes, 
Bryant, Sylva, & Barros, 2009). The effect of setting continues into adulthood resulting in more 
limited horizons and stunting life opportunities (Boaler, 2005). Thus, as Slavin (1990) argues, 
‘ability’ grouping can be seen as an affront to basic ideas of democracy. Involved here are issues of 
power and culture: ‘ability’ grouping is not just a neutral organisational practice. Oakes, Wells, 
Jones, and Datnow (1997) maintain that common sense conceptions of ability and intelligence are at 
the heart of schooling and, in regimes where neoliberalism holds sway, the ability discourse is part 
of an ideological battle defining children from lower social and economic status groups as 
expendable (Oakes, 2005). Further, the performativity regimes (Ball, 2003; Povey, Adams, & 
Everley, 2016) imposed on schooling have created a climate whereby failing to conform to the 
common sense view of the world carries huge risks to schools and to individual teachers; and 
grouping children by ‘ability’ as measured through some form of assessment, endorsed by policy 
makers, is seen as risk free. 

A technicist approach to reform will therefore not work as it assumes resistance to changing 
‘ability’ grouping is simply a rational choice by relatively free agents. We offer here a story of a 
single teacher, Jim, and his changing relationship to setting. (Pseudonyms are used throughout and 
some details have been changed to protect participant anonymity.) Before doing so, we consider 
very briefly the role of storying in the construction of knowledge. 

Telling stories 
We are telling this story about Jim, much of it in his own words, because we believe that stories 
help us understand more about the world. There is an “unavoidable moral urgency” (Clough, 2002) 
in stories which fits our purpose in this paper. Jerome Bruner (1986) wrote about two different 
kinds of knowledge: paradigmatic knowledge and narrative knowledge. Whilst the former is 
expressed through logical propositions, the latter is expressed through stories. He argues that it is 
characteristically human to think in stories and that they provide us with a way to make sense of 
experience. Stories imply, and attempt to lay bare, intentional states, that is, to offer insights into 
why we do what we do. 

In constructing this story, it is, of course, our categories, concepts, constructs and so on which frame 
and shape the work. However, we have tried to stay as faithful as we can to Jim’s own 
constructions, accounts and perspectives as far as we have been able to elicit and hear them. We 



have also tried to offer sufficient detail to allow others to test out the trustworthiness or otherwise of 
the account and to judge, for example, whether the intentions suggested make sense. 

Jim’s story - or our story about Jim 
Jim is a highly committed, very hard working teacher who has the interests of his students very 
much in the forefront of his thinking. On a personal level, he is open and his stance towards visitors 
to his school and department is always one of welcome. He has kept in touch with the university 
where he completed his initial teacher education and continues to work frequently and supportively 
with its current students. He agreed to be interviewed (with a close colleague). The interviews were 
recorded and transcribed. Working with the transcripts in variety of ways, we began to be compelled 
by Jim’s story as honest, contradictory and telling about teachers’ relationships to the issues of 
setting; we tell a version of this story below. 

Jim’s final teaching practice at McVee High had not been a happy one. He had clear ideas about 
how mathematics should be taught and wanted to create his own lessons and his own resources. He 
wanted the scope to try out different and novel approaches and to avoid the routine use of an 
indifferent textbook. 

I don’t know what I was expecting. I didn’t really enjoy working at that school at all and I was 
really glad to leave. The head of department didn’t like me. He didn’t like my teaching … He’d 
get a face on if I wanted to move the tables around, even just move them anywhere. He just 
wanted them where they were and if I didn’t want to use a textbook he would have a face on 
about that as well. Like “Why are you not using that page?” – “Because I’ve made this instead”. 
He didn’t like that. It was Lock Maths and all you did was you started on page one and the 
scheme of work was just … go through the book. And if you didn’t go through the book, then 
you were an idiot apparently. But that was how it was and it was just a waste … I didn’t practice 
being a teacher at all. You’d practise administering “Do page 12.” 

Part of the way through Jim’s initial teacher education course, his tutor, Barry, left in order to take 
up the post of head of mathematics at Broadbent School. Broadbent serves a large, white working 
class, social housing estate in an ex-industrial town with overall attainment below the national 
average. The mathematics department had had a chequered past and when Barry was appointed 
there were vacancies in the department. Barry and Jim kept in touch and Barry approached Jim to 
ask him to come and have a look round the school with a view to starting his teaching career there. 
After the visit Jim was offered a post at Broadbent School as a newly qualified teacher and accepted 
the offer. 

I didn’t want to work in a posh school. I didn’t want to do that … Like Our Lady’s where the 
kids are all little robots. I didn’t want to work there. I wanted to work in a bit more challenging 
area and I already knew Barry as well … I’d always said that I would start my career in a more 
challenging school and probably end in an easier school because I just wouldn’t have the 
energy… 

Broadbent offered Jim six week’s work in the second half of the summer term preceding his 
permanent appointment in September so he could get to know the school and the pupils a little. It is 
clear that Jim was already confident about his mathematics teaching and keen to begin practising. 



It was intended I think that we were supposed to come and like just have a look about and 
observe and stuff, but I couldn’t do that in the end because I was spending most of my time with 
a woman called Marion, who’d got a full-time maths timetable but she had no real maths 
qualification at all. She was an art teacher and I was just watching her teach all these lessons and 
just thought “I can’t really let her do it because she’s doing it wrong.”  So I just ended up 
teaching for six weeks … I just said “I’ll do them for you and you can go and do something else.” 
… She couldn’t teach them. She was just teaching them drawing. They were drawing things and 
she would let them sit there and do nothing while she would like paint portraits of them and I 
was like no, we can’t be having that. 

Jim had wanted to be a secondary mathematics teacher for longer than he could remember and he 
looked inward to his own thoughts and backwards to his own experiences as a school pupil to frame 
and understand his practice. For him, Broadbent offered the freedom to develop in his own way as a 
practitioner, a freedom he highly valued, and one which was “quite liberating actually”. 

I didn’t enjoy going to university at all. I didn’t even want to do anything there. I just hated the 
whole experience. And I didn’t like going to college, didn’t like doing my [school exams]. I just 
wanted to be a maths teacher and I just wanted to get there, so it was quite nice to get there and 
have your own classroom and then actually start teaching. I’d wanted to be a maths teacher since 
I was [a child]. So everything just seemed like in the way of trying to get there … 

Thus, Jim did not respond to and make use of the mathematics education approaches and 
understandings offered to him by his university tutors during his initial teacher education. At a 
slightly later date, when offered a professional development opportunity linked to a local university, 
he asserted with confidence that he had “never read a book”. This seemed important to him in 
constructing his way of describing himself in the world. 

He had a complex and contradictory relationship to his school experiences of mathematics. 

All my maths teachers had been rubbish. Every last one … I wasn’t really taught maths because I 
always followed the … [resource based] scheme of work … never did a teacher really stand at 
the front and say “This is how you do this.” 

Despite this, Jim had kept all his mathematics books from school “because I knew I was going to be 
a teacher” and he remembered working together as a whole class on investigations, material which 
he was continuing to use at Broadbent. Not only that, at school he had “just really enjoyed maths 
and always have”. In the context of this paper, two things stand out about Jim’s account of his 
school experiences. First, he had been taught in all-attainment groups using an individualised 
scheme and, despite his assertion that all his teachers were “rubbish”, he said that “everybody did 
well because you had appropriate tasks”. This “completely differentiated” approach seemed 
fundamentally to inform his thinking about all-attainment teaching. Second, he spoke about himself 
as having a fixed level of mathematical ability and he linked his understanding of his own 
competence as a mathematician entirely to external markers. 



I’ve never been like really good at it, but I just really enjoy doing it. I mean I only got a level 5 in 
my primary school SATs and I got a level 7 in my secondary school SATs and I got a B at 
GCSE. I got an E at A Level … 3 

This was echoed in the way Jim talked about the Broadbent pupils. Throughout the interview, the 
pupils were referred to by Jim in a variety of ways all of which seemed predicated on fixed ability 
thinking: “lower foundation type students”; “the very brightest students”; “ten kids that should 
definitely do high maths”; “their [SES] data … regardless of social context that is the grade they 
should get based on [results from primary school] … regardless of whether their mum’s on drugs or 
they’re on free school meals”. 

Coinciding with Jim’s arrival at Broadbent, Barry introduced all-attainment teaching for the first 
year classes. 

We all knew what Barry was about … it’s not like he kind of hides it under a bushel. He would 
say in meetings what was his kind of pedagogy and what he wanted to achieve. 

But this claim seems to have related to using a more open and problem-solving approach rather than 
providing any sort of challenge to fixed ability thinking. Barry prepared packs of materials which 
were full of ideas that offered a more investigatory approach than the one with which the teachers 
were familiar organised around broad topics. When asked for an example, Jim said 

… the first half term … you would do a unit on triangles and you’d do a unit on cubes … and 
you could do them in whichever order you wanted to. [But] you didn’t have to use any of it. You 
could use none of it, some of it, all of it, your own stuff … Some of the resources I didn’t like so 
I didn’t use them … [I used] a combination. We had textbooks, so sometimes I’d use those, 
sometimes I’d make my own and sometimes they’d do it off the board and sometimes … just 
find something on the internet and re-purpose something if you like. 

Towards the end of the year, Barry asked his department if they would like to continue working in 
this way with the pupils during the following school year, thus extending his all-attainment project 
into the first two years of the school. 

Did we want to continue the kind of thematic approach? Did we want to continue the mixed 
ability approach? And we all said yes. We enjoyed it. We enjoyed doing it, so we said yeah. 

However, for Jim, teaching all-attainment groups was synonymous with providing differentiated 
materials. On occasions he was able to make this work effectively for him and his class: 

If you really wanted to differentiate, particularly when we used to teach mixed ability and we 
were doing fractions … I just had the [levels of difficulty] on the board and they would just pick 
whichever one they wanted … most people just try and go for the one that’s quite challenging. 
Some of them knew that there was no point in trying the level 8 one because they were a level 4 

                                                 
3 These are all public examinations in the English school system. The curriculum and the associated SATs were 
structured into levels. Jim’s results are mostly above average but not excellent. The final school leaving mathematics 
grade is lower than average for those who take the examination. 



kid or something, but they didn’t go for the easy option. They went for an appropriate level one 
and I think they quite enjoyed it. They liked it … and I think they liked having the choice as well. 

But overall the task of trying to provide differentiated materials across the attainment range, rather 
than adopting a fundamental pedagogy for attainment for all, proved overwhelming and undoable. 

My experience of [the second year groups] was at that point the difference between the highest 
and the lowest had increased dramatically and it was becoming a strain … They’d all made 
progress, but the higher ones had made more progress and so I was having to differentiate more 
and then do the same for my new first years … it was becoming very fraught and time consuming 
and I wasn’t doing it as good as I could have… No, I wasn’t teaching as well as I should have 
been teaching because I was spending too much time doing too much differentiation … I just 
couldn’t do it effectively … there was just so much planning and I was kind of making do I think. 

Jim did not give up easily and shortly afterwards when Barry had moved on and Jim was given 
responsibility for the department, he even extended the all-attainment teaching to a third year. 
However, and unsurprisingly, this did not last. 

The kids bottomed out, teachers were over stressed, over worked. I don’t understand why I did it 
in the first place … I mean I can look back now and think “You stupid idiot!” I obviously already 
knew that it was really difficult to differentiate across two different year groups and it was a lot 
of planning, so I don’t understand why I did it. 

It is interesting to follow how Jim justified and explained the policy reversal when looking back 
several years later. The initial cohort of students who had had two years of all-attainment teaching – 
and experienced all the initial commitment and enthusiasm – had done remarkably well in both the 
high stakes, external tests they took, one at the end of their third year and one at the end of their 
fifth. The following year group was a much more challenging cohort and were problematic 
throughout the school. But the difficulties Jim and the department experienced were not seen in this 
light. Rather, they became the basis for a rejection of an all-attainment approach. And we see again 
the role that all-attainment teaching as individual differentiation played in making life impossible. 

It just didn’t work. The kids weren’t getting the grades or the marks or the levels, whatever, and 
behaviour was awful. No, it just didn’t work ... you could physically see that there was more 
stress on teachers’ faces because not only were you having to deal with challenging behaviour, 
but you were trying to deal with trying to get X to get a level 8 and Y to try and count up to 5 in 
the same class and it was too hard. It was too hard and it didn’t work. It failed. Everybody was 
more than happy [to go back to setting] … The year after we taught just setted by ability and they 
got much higher results. 

Jim is now firmly of the opinion that, at least in a school like Broadbent, there is no place for all-
attainment teaching: 

I would just set them. I’m definitely now not a mixed ability fan in a challenging school. It’s just 
too much. 



Discussion 
Our aims in this paper are modest. We do not expect stories like this to have any traction with 
policy makers and we very much welcome alternative approaches that may have the “requisite 
symbolic power” (Francis et al., 2016, p. 13) to do so. Here our purposes are rather different. Our 
intention has been to tell a story of a single teacher which illustrates how “powerful discursive 
productions of the ‘obvious’, ‘real’, and ‘natural’” (Francis et al., 2016, p. 10) work in practice to 
shape this teacher’s thinking about ability. Jim is striving to make sense within this discursive 
framework. He conceives the pupils as simply being such and such a level person in mathematics 
and so inherently needing a differentiated approach to learning: the pupil’s essence determines 
within fairly narrow limits what she or he can do. With such a view, offering a more open 
curriculum in which the unpredictable is expected makes no sense and the task of all attainment 
teaching becomes simply unmanageable: Jim is led to validate practices with respect to pupil 
grouping that reinforce inequalities despite the honourable intentions to do otherwise. 

If fixed hierarchies exist - of who can understand and achieve what in mathematics - and there is a 
predicted and predictable limit to what can be expected from any particular individual, as current 
policy technologies insist, then the possibility of creating a pedagogy where all can succeed, and 
where success is attributed to the learning community rather than to individuals, is precluded: 

the production of hierarchies of ability via a discourse of ‘natural order’ acts as a technology of 
privilege, and renders alternative accounts (including research evidence) unintelligible. (Francis 
et al., 2016, p. 12) 

Knowledge, discursive practices and both deep and espoused beliefs all interact in complex and 
layered ways in shaping how we think and what we do. A two-fold argument follows from Jim’s 
story. First, changing practice alone is unlikely to engender ways of being in the world that 
challenge established ‘natural’ hierarchies. Second, there is a need for research-informed, counter-
hegemonic knowledge and understandings to be foregrounded, alongside curriculum innovation and 
the re-imagining of pedagogy, if the dominant and unjust practices of grouping by ‘ability’ are to be 
effectively countered in the countries in which they currently prevail. 
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This paper reports on a study exploring inclusion in mathematics education from a student 
perspective. The theoretical and analytical approach in the study is discourse analysis. The results 
presented in this paper are based on 8 interviews with students from lower secondary school and 4 
observations of mathematics lessons. The teachers describe the students as students in special needs 
in mathematics (SEM). The results show that, from a student perspective, the teaching and learning 
of mathematics in an inclusive classroom is complex and diverse. At the same time, as these 
students are similar in that they are SEM-students, they are different when it comes to how they 
themselves want to be included in the mathematics. These differences regard both the organization 
and the content. Thus, diversity among students demands diversity in the mathematics education.  

Keywords: Inclusion, diversity, equality, access to mathematics. 

Introduction 
A growing body of research in mathematics education is focusing on access and equity. This can be 
seen in some of the research books that have been published in recent years, for instance Diversity 
in mathematics education: Towards inclusive practices (Bishop, Tan & Barkatsas, 2015), Towards 
equity in mathematics education (Forgasz & Rivera, 2012), and Mathematical literacy: Developing 
identities of inclusion (Solomon, 2009). In addition to this, at school-level, the issue of the need to 
meet every student’s needs in the mathematics classroom according to the preconditions and needs 
of each and every one has been recognized (Roos, 2015). This task, to be able to meet all students’ 
needs and create opportunities to learn, is not at all an easy task. Some teachers even say that it is 
impossible to meet every student’s needs in an inclusive classroom because of the diversity. On the 
other hand, one could look upon teaching diversity as Frederickson and Cline (2009) do, claiming 
that teaching is interesting because of the diversity among students, but it is only possible because 
of the similarities among students. This implies that even if there is diversity among students in our 
mathematics classroom the teaching does not have to be different for each and every student, but by 
being aware of the diversity as a teacher you can develop a sensitivity towards equality in the 
teaching. In that sense, you put the students’ needs at the forefront in the explanations and tasks 
given.  

In mathematics education one of the motivations to strive for inclusion and access to mathematics 
for all is that it is a human right to know mathematics to achieve participation in society 
(D’Ambrosio, 2010). Most often inclusion is discussed and researched from this ideological 
perspective even though it is often used as a method in schools. Hence, there is a need for studies 
investigating inclusion in practice, which this research aims at. This leads to the research questions 
of this paper, which are: how do students experience an inclusive mathematics classroom and when 
do they express having optimal opportunities to learn mathematics?  



Diversity and Inclusion 
What does diversity and inclusion in mathematics mean? It seems that when scholars talk about 
diversity in mathematics, they almost always speak of inclusion in the same breath (e.g., Bishop, 
Tan & Barkatsas, 2015), indicating the two notions are closely related. When investigating further, 
inclusion, if used as a tool in classrooms, can be seen as a way of meeting diversity, supporting all 
learners within a local community (Booth, Nes and Strømstad, 2004). Diversity on the other hand is 
not often defined, but used together with gender and culture (e.g., Forgasz & Rivera, 2012). It is 
also used together with specific subject area in mathematics and students’ performances within this 
area (e.g., Hopkins & de Villiers, 2015); hence diversity is here connected to some kind of ability in 
mathematics. Accordingly, diversity can be connected to different things. In this paper diversity is 
connected to inclusion on the level of optimising students’ performance in mathematics.  

An inclusive classroom is in this paper defined as a classroom that is not grouped by ability but 
instead as a classroom in which students struggling with mathematics as well as students in need of 
more challenges in mathematics are taught working with similar tasks and the same mathematical 
content. Hence, diversity from an ability perspective is prioritized. This puts demands on the 
teacher, being aware of the diversity (Solomon, 2009), to have equitable instructional quality. This 
quality can be seen in the teachers’ mathematical knowledge and their preparation for the teaching 
of mathematics as well as their beliefs about and skills in teaching diverse students (Allexsaht-
Snider & Hart, 2001). So, in having equitable instructional quality, students’ opportunities to learn 
mathematics might increase. But according to Rousseau and Powell (2005), there are factors that 
can work as barriers for increased opportunities to learn mathematics: large class sizes, high-stake-
standardized tests, absenteeism and mobility of students and a lack of a high-quality curriculum. All 
these issues arise from a teaching or organisational perspective. Hence, it becomes important to also 
listen to the students’ voices, enabling teachers to understand processes of exclusion and inclusion 
in the mathematics classroom like Solomon (2009) highlights. 

One important issue arising when talking about the ability of individuals is labelling. There are 
many teachers that claim that in order to be able to meet the diversity of students they have to 
“label” them in some way. Though, Askew (2015) claims that meeting diversity does not imply that 
we have to label the students, because labelling might perpetuate exclusion instead of promoting 
inclusion. One way to meet diversity and create an inclusive classroom is to support cooperative 
learning (Askew, 2015) by building a sense of belonging and safety where diversity is valued (Reid 
& Valle, 2004). This implies that the teacher and the pedagogy the teacher uses in the classroom are 
really important to create this learning community. Then, as Liasidou (2012) points out, pedagogy is 
an important dimension of inclusion. All this implies that diversity and inclusion are intertwined, 
and if striving for inclusion one has to respect diversity (Booth, Nes & Strømstad, 2004). 
Accordingly, in this study the objective is to investigate diverse students’ experience of an inclusive 
mathematics classroom. 

The current study 
The focus in this research is on students in special educational needs in mathematics (SEM-
students). Special educational needs are here defined as a need of another teaching then the regular 
mathematics teaching. This is not unproblematic, since it signals a labelling of students in the 



research. To be vigilant in terms of that issue, the teachers in the study have made the selection of 
students. In this research, inclusion in mathematics is investigated from two different SEM-
directions: students struggling with mathematics, and students in need of more challenges in 
mathematics. This kind of selection is information-oriented and used to “obtain information on 
unusual cases which can be especially problematic or especially good in a more closely defined 
sense” (Flyvbjerg, 2006, p. 230).   

An ethnographic approach is used, meaning the researcher participates directly in the social setting 
collecting data without meaning being imposed on the participants (Brewer, 2004). The 
ethnographic approach also offers in-depth study (Hammersley & Atkinson, 2007), which can be 
used to follow a process in a particular case, such as to be included in mathematics teaching and 
learning. An ethnographic study usually investigates people’s actions and accounts in an everyday 
context. In this study, a Swedish lower secondary school (students are 13 to 16 years old) that sets 
out to work inclusively is observed. That is, the school strives to have all students in the classroom, 
even the students assumed to be in special educational need of any kind. To be able to meet all 
students’ needs, they strive to have at least two teachers in the classroom for each lesson. The 
school is an urban school with about 500 students, located in the outskirts of the city. 

One grade 7 and one grade 8 class were observed. The mathematics teachers in a discussion with the 
researcher selected the classes and the students. Grade 7 was selected based on the criteria that 
working inclusively might be new for them. Grade 8 was selected since they have been working 
inclusively for a year. Students from grade 8 and grade 7 that struggled with mathematics as well as 
students that needed more challenges were chosen and interviewed several times. Ethical 
considerations were made both before and during the process. Both the students and their guardians 
gave written consent. As a researcher, I reflected on what ways I affected the students and the 
research. Another aspect was that the students in the classes would be able to handle a researcher in 
the classroom.  

Methodology 
The approach used in this research is Discourse Analysis (DA) and the data consists of observations 
from two classes.  

Discourse Analysis 

Discourse Analysis is chosen as approach because of the power of DA to focus on language in 
interaction and language above or beyond the sentences (Gee, 2014a) and its explanatory power of 
social contexts and meaning making. The focus of DA is on language and text, what we actually can 
see, hear and read. In this study, ethnography was applied together with DA in order to make 
students’ expressions of mathematics teaching and learning visible. DA and the ethnographic 
approach complement each other in this research; DA provides theoretical and analytical notions, 
while ethnography provides a way to conduct research.  

In this paper, DA is used from the perspective of Gee (2014a, 2014b), since this focus is descriptive 
and I intend to describe how students want to participate in an inclusive mathematics classroom to 
be able to have optimal opportunities to learn. From Gee’s perspective, DA covers all forms of 
interaction, both spoken and written, and he provides a toolkit for analysing this interaction. These 



tools put focus on the communication and ask questions of the text. Hence, in this research, the 
toolkit is used as a methodological tool.  

Gee (2014a, 2014b) also provides theoretical notions, such as big and small discourses (henceforth 
referred to as Discourse with capital D and discourse with lowercase d), where Discourse is looking 
at a wider context, social and political. Discourses are always embedded in many various social 
institutions at the same time, involving various sorts of properties and objects. For example, a 
Discourse can be “assessment in mathematics.” Discourses are always language plus “other stuff” 
(Gee, 2014a, p. 52). This other stuff compromises actions, interactions, values, beliefs, symbols, 
objects, tools and places. Small d discourse is focused on language in use, what stretches of 
languages we can see in the conversations or stories we investigate (Gee, 2014a). In this research, 
big and small discourses will be the theoretical perspective. Hence, DA is used both as a theory and 
a tool and provides a set of methodological and theoretical lenses. 

Procedure 

During one semester (January to June 2016) I observed the two classes at the chosen lower 
secondary school. I was present at least one mathematics lesson each week for each class doing 
observations. After observations, I conducted interviews with the selected students. Since I had both 
ethical and organisational issues to take into consideration, the interviews were done when the 
students wanted to and had time, and the teachers allowed it (they did not want me to interview 
them when they had their ordinary lessons). The interviews took place in a room next to the 
classroom when the students had “class time” once a week. The interviews were based on the close 
in time observations; hence, they were situated and narrative. I asked questions about situations and 
tasks and showed photos of tasks on the blackboard. We also looked at tasks in their textbooks. The 
first and the last interview were based on a questionnaire about their mathematics education.  

Data analysis 

In this paper, eight interviews and four observations have been used in the analysis, two interviews 
with a student in grade 7 named Billy and two interviews each with three students in grade 8, 
Edward, Ronaldo and Jeff. The teachers perceive Ronaldo and Jeff as students in struggle with 
mathematics and Billy and Edward as students in need of more challenges in mathematics. In the 
interviews the students got questions about what they wanted from the teaching in mathematics, 
how they learned mathematics best and also got questions arising from the previous mathematics 
lesson, which were the four observed lessons. The observations were used as contextualisation for 
the interviews as well as for supporting identification of big Discourses. When analysing the data by 
asking questions to the text, both small and big discourses appeared. That is, while examining the 
text, I used Gee’s toolkit by asking specific questions. Depending on the type of text, different 
questions were asked. For example, when using the subject tool, I asked, “What are they talking 
about here, and why?” When using the deictic tool, I asked, “What is pointed out in the text, and 
what is the listener assumed to already know?” When applying the fill-in tool, I asked, “What needs 
to be filled in to achieve clarity? What is not being said overtly, but is assumed to be known or 
inferable?” Then, stretches of language(s) appeared when finding answers to the questions, which 
signalled for small discourses. When adding analysis of the data from the observations, such as text 
on the blackboard and the actions of the teachers, big Discourses could be identified.  



Result and analysis 
In the analysed data, three themes, or using Gee’s (2014b) terminology, three “stretches of 
languages” emerged. The first theme was about how students wanted to participate from an 
organisational perspective. The second theme was about tasks they did or did not like and the third 
theme was how the student wants a mathematics lesson to be like for an optimal learning 
opportunity. 

Organisational aspects 

In the interviews, stretches of languages about organisational aspects were showing. In the first 
interview Ronaldo says, “We are starting to go outside [the classroom] into small groups, like we 
did not do before, and it feels much better now. I am concentrating a lot better [in a small group] 
and like that.” He also explained why it felt better to be in a small group: “It feels better actually, 
you get peace and quiet and then… like me… if they talk a little there [inside the classroom] I lose 
concentration right away and listen to what they [the other students] are saying; when it’s smaller 
groups I am able to concentrate better and learn more.” In Jeff’s first interview he also highlights the 
possibility of being able to go outside the classroom: “… if it’s a test or something I would rather be 
outside [the classroom] since I am more focused then.” Edward also talks about the organisation, 
but within the classroom when he is discussing cooperation. “It is not very easy, since I have often 
come a long way, so I always explain to them, it never gets to a discussion for me… I mean, with 
somebody else, that we discuss and so on […].” When the researcher asks Edward if it is hard to 
discuss with everybody he says, “It depends on whom I am sitting next to.” He also expresses that 
he does not sit next to someone who can challenge him, and says that he would like to do that more. 
“I think I would get more out of it.”  

Tasks 

Other stretches of languages showed talk about tasks. Billy explicitly talks about his need of more 
challenging tasks in the classroom. “I like those [tasks] which are harder, those that challenge you.” 
“[I would like to have] more challenges […] at the lessons.” He explicitly talks about problem 
solving tasks as something challenging: “I like it when we have problem solving. You get to think 
for yourself and then talk to friends [about it].” Ronaldo also talks about problem solving but in a 
rather different way. “I hate problem solving tasks more than anything! I just cannot do it.” He also 
describes why he does not like it: “It is hard with reading comprehension and like that, and to 
connect it with like the task and the text, it gets too much. It is often that kind of task I fail at on the 
tests.” Jeff talks about tasks that he likes. These are tasks he knows “how to calculate and tasks that 
I understand.” He mentions geometry tasks as tasks he likes. The type of tasks Edward likes the 
most is Algebra tasks. “To be able to find out all the variables, it is fun to figure out what it is.” 
Here we can notice a difference to how Ronaldo thinks about algebra tasks when he states that he 
thinks that it is hard with “like all this with X and Y and everything … it is terrible.”  

A good mathematics lesson 

A third stretch of language is the talk about what the students want from a mathematics lesson in 
order to be able to learn mathematics the best. Jeff states that what is most important for him in a 
mathematics lesson is “if they [the mathematics teachers] explain good … and thorough, if they 
write step by step.” He also says if he knows what to do it “feels good, I know what to do and I get 



on with it right away.” Meaning, for him the thoroughness and structure in the instructions is 
important. Ronaldo likes to have a lesson when you “first work a little [by yourself] and then some 
‘going through’1 and then you work a little by yourself and then you do some group work with those 
you sit with […]. It is more fun when you are in a group and cooperate.” Edward on the other hand 
thinks that it is hard to cooperate and “extremely hard to get something from the others in the class.” 
Instead, he like lessons “with variation so that you don’t get tired.” He also likes “a going through 
or something like that, gladly a game or something. You should [also] count a little by yourself I 
think.” Billy thinks that the lessons are best “when you get to explain to others [students] how you 
have done it.” He likes when “we have like problem solving.” He also stresses that he wants “more 
challenges at the lessons.”  

Identified discourses and Discourse 

The three themes appearing in the data – organisational aspects, tasks and a good mathematics 
lesson – can be interpreted as small discourses (Gee, 2014a) in the students’ talk of their 
mathematics education. There are aspects in this talk from the different students that overlap, such 
as wanting to be in a small group sometimes, which both Jeff and Ronaldo stressed. Another aspect 
that overlaps is collaboration. Both Billy and Ronaldo highlighted collaboration, but Edward on the 
other hand felt that his peers did not challenge him in the discussions, but he said that he thought he 
would get more out of it (meaning the discussions) if he sat by a peer that had the possibility to 
challenge him. There are aspects that diverge, such as what type of task they want to have. Billy 
says he wants more problem solving and Ronaldo “hates” problem solving. Edward likes algebra 
tasks and Jeff likes geometry; hence there was no consensus on types of tasks or mathematical 
content they prefer. Another aspect that appears in the students’ talk was the organisation of the 
lesson. To attend a structured lesson, with both explanations by the teacher and work by yourself or 
together with others seemed to fit them all. Jeff is more explicit about his wishes for structured 
lessons, indicating a need of structure to explain what to do. Even though all these small discourses 
contain diversities, they together indicate a big Discourse. When looking at the observation notes 
from the lessons you can identify support to this big Discourse, in terms of talking about tasks, 
organisational aspects such as “talk to your neighbour” or when the special teacher attending the 
classroom walks outside the classroom with some students; also, the type of task being addressed at 
the blackboard, and the way the teachers structure the explanations at the blackboard and the talk of 
what to include in an explanation. This big Discourse can be named “mathematics in school”: what 
mathematics in school is or means for the students and what they want from the mathematics to be 
able to learn best. 

Summary of results 

The result shows both overlapping and diverging issues regarding how students experience an 
inclusive mathematics classroom and having optimal opportunities to learn mathematics. Regarding 
organisational aspects, Jeff and Ronaldo stressed the need of being in a small group outside the 
classroom from time to time even though the school promotes physical inclusion, and Billy and 
Edward highlighted collaboration in order to have opportunities to learn. Diverging aspects are type 

                                                 
1 Going through is “genomgång” in Swedish, which is when the teacher is explaining something on the blackboard.   



of tasks; for example, where Billy wants challenging tasks in the form of problem solving, Ronaldo 
hates problem solving. How the students want a mathematics lesson both diverges and overlaps: 
thoroughness and structure in the instruction; work a little by yourself and then in a group; lessons 
with variation and explain to others were expressed as good ways of learning. 

Discussion 
A diverse picture of how students want to participate in an inclusive mathematics classroom to be 
able to get optimal learning opportunities appears in this research. Although this is not unexpected, 
it is important to highlight this diversity and address the question of how the organisation and the 
education can support this diversity in order for students to be included in mathematics. This is not 
just only spatially included, but is also included in the teaching and learning of mathematics. The 
diversity of how students want to participate in the mathematics classroom that appears in this 
research stresses the need for diversity in mathematics education at school. One thing that is striking 
is that students expressed a need of being in a small group outside the classroom from time to time. 
The school promotes physical inclusion, and it did not seem to always benefit these students. You 
might say that diversity among students demands diversity in mathematics education. But, as 
Fredickson and Cline (2009) stress, even though students are different, teaching is only possible 
because students are similar in some ways. This research supports this, because even if the results 
showed diversity among the students (both within and between students that are perceived as 
students in need of more challenges in mathematics and students that are perceived as struggling 
students in mathematics), the results also showed similarities between the students. These 
similarities are something the teaching can take advantage of, in the organisation and planning of 
the mathematics education in order to get equitable instructional quality. However, barrier factors 
such as large class sizes, high-stake-standardized tests (Rousseau and Powell, 2005), etc. can be 
prohibitive to the work of equitable instructional quality. If the organisation is responsive to the 
diversity among students and is aware of barrier factors it might be dynamic and adjust accordingly 
to improve access to mathematics and an increased inclusion in mathematics.  
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1256 students from 18 primary and secondary public schools across urban and rural settings in the 
Cape Coast Metropolis of Ghana responded to the “What I Find Important (in my mathematics 
learning)” questionnaire. The data analysed suggested that students in Ghana valued in their 
mathematics learning: achievement, relevance, fluency, authority, ICT, versatility, learning 
environment, strategies, feedback, communication, fun, connections, engagement, applications, and 
accuracy. The students’ embracing of these attributes is explained by reflecting on the societal and 
pedagogical norms in Ghana. When compared to high performing economies in East Asia, it was 
found that most of the Ghanaian attributes represent extrinsic (versus intrinsic) valuing. 
Implications and suggestions for policy-making and for classroom teachers are provided.  

Keywords: Values, Ghana, extrinsic/intrinsic valuing, East Asia, WIFI. 

Mathematics education in Ghana 
Students value attributes of mathematics learning (e.g. practice and understanding) differently, with 
implications for the quality of mathematics learning that takes place (Matthews, 2001). The extent 
to which a student values understanding, for instance, may influence how relational understanding 
may be preferred over instrumental understanding, the extent to which the development of 
algorithms is important, and indeed, the extent to which s/he is interested – and perseveres – in 
knowing how these algorithms or formulae came about. In other words, what and how much an 
attribute of (mathematics) learning and teaching is valued influences a student’s development and/or 
application of cognitive knowledge and skills, as well as the maintenance of affective states.  

Drawing from relevant seminal literature, Smith and Schwartz (1997) have argued that, while values 
are abstract concepts, they are not so abstract that they cannot motivate behavior. The ability to 
identify, review and facilitate/modify what students value in their mathematics learning should 
optimise the cognitive and affective-based pedagogical strategies that support learning.  

This paper reports on Ghana’s participation in a 19-country study on what students valued in their 
mathematics learning experiences. Focussing on this West African country, and analysing and 
interpreting the data collected there, was aimed at achieving an understanding of the Ghanaian 
mathematics education system, both in its own right and also through comparisons with other 
countries. This is especially significant, since Ghanaian students’ mathematics performance has 
been low by global standards (Enu, Agyman & Nkum, 2015). For example, in the TIMSS 2011, 
Ghanaian eighth grade students ranked last amongst 45 participating countries in mathematics 
achievement (Mullis, Martin, Foy, & Arora, 2012).  

Ghanaian students’ transitions between school and out-of-school mathematics have not been 
without its issues. In the home context, the units of measurement of money and of capacity are 
different from the metric ones being taught in schools. The schools’ language of instruction from 



Grades 4 and above is also different from the languages used by students at home and outside in 
public. A further complexity when considering school mathematics education in the Ghanaian 
context is in the way students there experienced fractions differently in school and in out-of-school 
contexts. For example, 

the majority of the students were able to identify half in the out-of-school activity perhaps due to 
that fact that it is the only unit fraction that has local name (fã). However “fã” does not mean 
equal halves, it means about mid point. Thus three-fifths may also be categorised as “fã”. 
Students’ difficulty in naming the other units fractions may be due to the fact that in out-of-
school setting they do not differentiate unit fractions. Thus with the exception of half which 
could mean about midpoint all the fraction are described as less than whole (sin). (Davis, Seah, 
& Bishop, 2009, p. 69) 

Values in Mathematics Education 
Values are “the principles and fundamental convictions which act as general guides to behaviour, 
the standards by which particular actions are judged as good or desirable” (Halstead & Taylor, 2000, 
p. 169). Essentially, then, values reflect what we think are important to us, and are thus distinct from 
beliefs, which reflect what we think are correct. Values can be viewed as a form of culturally-based 
tools with which we mediate our actions and behaviour in the learning process. 

In the field of mathematics education, we adopted Seah and Andersson’s (2015) definition that 

values are the convictions which an individual has internalised as being the things of importance 
and worth […]. Valuing provides the individual with the will and determination to maintain any 
course of action chosen in the learning and teaching of mathematics. They regulate the ways in 
which a learner’s/teacher’s cognitive skills and emotional dispositions are aligned to 
learning/teaching in any given educational context. (p. 169) 

What are valued by the individual, as these are shaped and refined by life’s experiences (including 
classroom learning experiences), impact on subsequent decisions and actions. They do so by 
affecting the ways the individual reasons and feels about the task or problem at hand. As the quote 
above suggests, this volitional force can be quite powerful, manifesting themselves in the form of 
will and determination.  

When the individual interacts with others (e.g. teachers interacting with their students in the 
classroom), it is inevitable that there would be differences in what each person values. Such 
differences can potentially lead to conflicts, and one or more of the people involved will seek to 
negotiate and resolve these differences, achieving a level of cognitive harmony that is acceptable by 
most if not all involved. 

In terms of the types of attributes of mathematics learning and teaching valued, Bishop (1996) had 
categorised these into mathematical values (i.e. regarding the mathematics discipline), mathematics 
educational values (i.e. regarding the pedagogy of mathematics), and general educational values (i.e. 
regarding the moral and civic virtues). Earlier, Bishop (1988) had conceptualised 3 pairs of 
complementary mathematical values, namely, rationalism and objectism, control and progress, and 
openness and mystery. 



Prior to 2010, research of values and valuing in mathematics education had focussed on small-scale 
studies of what teachers valued (e.g. Chin & Lin, 2000). The setting up of the Third Wave Project in 
2008 not only brought together a group of researchers internationally to support – and collaborate 
with – one another on research studies into valuing, but it also shifted attention to the examination 
of what students value in their mathematics learning (e.g. Seah & Wong, 2012). 

On the other hand, much research related to PISA and TIMSS had been conducted by or with 
education systems which have performed relatively well in these tests, with relatively little research 
attention paid to mathematics education systems at the other end of the performance spectrum. Yet, 
the experiences of these countries can also serve as an important reflection on what (else) contribute 
to effective mathematics learning. As such, a study named “What I Find Important (in mathematics 
learning)” (WIFI) was designed to investigate what students in 18 different economies value when 
they were studying mathematics, Ghana being one of these economies. This paper reports on the 
Ghanaian data of the WIFI study, and how the findings address two of the research questions posed 
to guide the Ghanaian study, namely: 

1. What did school students in Ghana find important when learning mathematics? 

2. How might the valuing amongst the Ghanaian students be similar to or different from what their 
peers elsewhere in the world valued? 

Methodology 
The first research question suggested a need to ‘map the scene’ for Ghana (and indeed, for the other 
participating economies too). As such, the questionnaire survey method was adopted. The validated 
WIFI questionnaire has four sections. A Likert-type scoring format was used for the first 64 items in 
Section A, in which students were asked to indicate how important mathematics pedagogical 
activities such as small-group discussions (item 3), connecting mathematics to real-life (item 12), 
and mathematics homework (item 57) were to them. A five-point scoring system was used, ranging 
from absolutely important (1 point) to absolutely unimportant (5 points). Section B consisted of 10 
continua dimensions, each related to two bipolar statements and respondents were asked to indicate 
along the continuum the extent to which their valuing leans towards one of the two statements. 
Section C consisted of four scenario-stimulated items; and Section D items asked for students’ 
demographic data. The English language version of the WIFI questionnaire was administered, 
English being the medium of instruction in Ghana. In this paper, only the responses to Section A 
will be presented. 

Student participants were sourced from public schools at the primary, junior high and senior high 
levels in the Cape Coast Metropolis of Ghana. Stratified random sampling procedure was used to 
select students from a mix of schools, by achievement levels and by rural versus urban settings. In 
all, 1256 research participants comprising 414 primary four, five and six pupils, 426 junior high 
school pupils and 416 senior high school students from 18 schools participated in the study. 

In line with the data analysis conducted by the other 18 participating economies, a Principal 
Component Analysis (PCA) was performed. 



Results 
The data gathered from the 64 Likert-scale items of the WIFI questionnaire was cleaned prior to 
data analysis. They were first analysed to identify any missing values. The eleven missing responses 
identified out of the total possible 80,384 (i.e. 64 X 1256) was acceptable, and each of these was 
replaced with the value “9”. 

The Kaiser-Meyer-Olkin (KMO) (Kaiser, 1970) measure of sampling adequacy was 0.947 and 
Bartlett’s test of sphericity (BTS) (Bartlett, 1950) was significant at the 0.001 level and so, 
factorability of the correlation matrix was assumed, which demonstrated that the identity matrix 
instrument was reliable and confirmed the usefulness of the principal component analysis. 

Principal component analysis 

A principal component analysis (PCA) with a varimax rotation and Kaiser normalization was used 
to examine the questionnaire items. The significance level was set at 0.05, while a cut-off criterion 
for component loadings of 0.45 was used in interpreting the solutions. Items that did not meet the 
criteria were eliminated. According to the cut-off criterion, 23 items were removed from the original 
64. The analysis yielded 15 components with eigenvalues greater than one, which accounted for 
52.73 % of the total variance. Each component can be considered to be an attribute that were valued 
by the students in Ghana, with the relevant questionnaire items regarded as describing the 
characteristics of the attribute. Accordingly, the three researchers discussed and agreed on the value 
labels for the 15 components based on the nature of the corresponding items. 

The first component consisted of 17 items that together accounted for 13.31% of the total variance. 
Questionnaire items included in this component included “doing a lot of mathematics work” (item 
37), “knowing the steps of the solution” (item 56), “knowing which formula to use” (item 58), and 
“understanding why my solution is incorrect or correct” (item 63). Guided by our Ghanaian 
collaborator’s recommendation, we subsequently labelled this component as achievement. 

The second component is made up of 6 items which together accounted for 6.64% of the total 
variance. The questionnaire items included ”stories about mathematicians” (item 61), ”explaining 
where rules / formulae came from” (item 40), ”mystery of mathematics” (item 60), ”stories about 
recent developments in mathematics” (item 18), and ”using concrete materials to understand 
mathematics” (item 48). Given these items, we propose to name this component as relevance. 

The third component is made up of 2 items which together accounted for 4.35% of the total 
variance. The questionnaire items were ”explaining my solutions to the class” (item 19) and 
”practicing how to use maths formulae” (item 13). So, we named this component as fluency. 

The fourth component is made up of 3 items which together accounted for 3.40% of the total 
variance. The questionnaire items were ”learning maths with computer” (item 23), ”learning maths 
with internet” (item 24) and ”explaining by the teacher” (item 5). It was named authority. 

The fifth component is made up of 2 items which together accounted for 3.04% of the total 
variance. The questionnaire items were ”using calculator to check the answer” (item 22) and ”using 
calculator to calculate” (item 4). Given these items, we named this component ICT. 



The sixth component is made up of 2 items which together accounted for 2.75% of the total 
variance. The questionnaire items were ”looking for different possible answers” (item 16) and 
”being lucky at getting the correct answer” (item 27). We named this component versatility. 

The seventh component is made up of one item which accounted for 2.69% of the total variance, it 
being ”mathematics debate” (item 9). It has been named learning environment. 

The eighth component is made up of 2 items which together accounted for 2.69% of the total 
variance. The questionnaire items were ”shortcuts to solving mathematics problems” (item 55) and 
”given a formula to use” (item 38). Given these items, we named this component strategies. 

The ninth component is made up of one item which accounted for 2.50% of the total variance. The 
questionnaire item was ”investigation” (item 1). We interpreted this component as feedback. 

The tenth component is made up of one item which accounted for 2.22% of the total variance, 
which was ”outdoor mathematics activities” (item 34). We named this component communication. 

The eleventh component is made up of one item which accounted for 2.00% of the total variance. 
The questionnaire item was ”mathematics games” (item 25). It was given the label fun. 

The twelfth component is made up of one item which accounted for 1.92% of the total variance: 
”relationship between maths concepts” (item 26). We named this component connections. 

The thirteenth component is made up of one item which accounted for 1.80% of the total variance: 
”stories about mathematics” (item 25). We named this component engagement. 

The fourteenth component is made up of one item which accounted for 1.77% of the total variance: 
”looking out for mathematics in real life” (item 39). We named it applications. 

The fifteenth component is made up of one item which accounted for 1.66% of the total variance: 
”getting the right answer” (item 50). Given this item, we named this component accuracy. 

Discussion 
1256 primary and secondary school students from 18 public schools located in both urban and rural 
areas of the Cape Coast Metropolis had responded to the WIFI questionnaire, thus allowing us to 
map the attributes of mathematics pedagogy that were valued by these students. The PCA has led to 
the identification of 15 attributes which the students valued in their mathematics learning in 
Ghanaian schools, explaining 52.73% of the total variance. These attributes are achievement, 
relevance, fluency, authority, ICT, versatility, learning environment, strategies, feedback, 
communication, fun, connections, engagement, applications, accuracy. 

Most of the students in Ghanaian schools come from a farming background, where all available 
helping hands are needed on the farms especially during the harvesting periods. That the 
respondents of the WIFI questionnaire were still in school might explain why achievement was so 
highly valued by these students. For them and their families, it is thus not surprising that relevance, 
applications, engagement and connections of what is taught at school in relation to the knowledge 
and skills that are needed at home and in the farms are valued. Given the frequent use of expository 
teaching in schools (Enu et al., 2015), the students have probably learnt to value authority, fluency 
and accuracy. Yet, this dominant teaching style is not likely to meet the expectations of students 



and their families if they have chosen to continue staying in school. Novel and effective learning 
styles will be important, and these are likely to involve the valuing of ICT, versatility, learning 
environment, strategies, feedback, communication and fun. 

These 15 values may be compared with the attributes of mathematics learning that students in high 
performing PISA2012 economies which took part in the WIFI study valued (e.g. Zhang et al., 2016). 
Students in these high performing economies (all of whom are East Asian, since Finland did not 
participate in the WIFI study) valued connections, understanding, communication and recall. 
Though students in Ghana also valued connections and communication, they were less valued than 
at least 9 other attributes, such as achievement, relevance and fluency.  

This distinction above had invoked in us the notions of intrinsic and extrinsic motivations. 
Emerging from the analysis we were reminded of Ryan and Deci’s (2000) assertion that 
“intrinsically motivated behaviors […] are performed out of interest […] [whereas] extrinsically 
motivated behaviors […] are executed because they are instrumental to some separable 
consequence” (p. 65). In the context of our data here, we can interpret the top performing East Asian 
economies’ valuing as being intrinsic to mathematics itself (connections and understanding, for 
examples, deepen the students’ mathematics knowledge), and that the top values that were held by 
the students in Ghana to be more extrinsic to the mathematics discipline. Although achievement, 
relevance, fluency and authority were also attributes of mathematics learning and teaching, they 
were not so much about what was important about mathematics, but rather, what was important 
about what can be done with mathematics.  

The contrast thus seems to be that of extrinsic versus intrinsic valuing. The top performing East 
Asian economies are located in places where mathematics study has traditionally been taken up for 
its own sake, and where problem solving and the study of proofs are regarded as tasks that maintain 
one’s mental agility. Against this sort of tradition, then, it would not be surprising that East Asian 
students appreciated the structure and form of the discipline, and grew to value aspects of 
mathematics which reflect the nature of the discipline. On the other hand, education systems such as 
Ghana’s might emphasise the utility function of the mathematics discipline, perhaps to satisfy the 
needs of local economies. Thus, the aspects of mathematics learning that are regarded as important 
would reflect this utility function and extrinsic valuing. 

Given the large sampling size in this Ghanaian study, the findings above raised the question of the 
extent to which Ghanaian students’ extrinsic valuing of mathematics and mathematics pedagogy 
might affect their mathematics performance. At the same time, how might the students’ intrinsic 
valuing in places such as Shanghai, Hong Kong, Korea and Singapore be related to the high level of 
mathematics performance shown in TIMSS and PISA? To what extent might the attributes of 
mathematics education valued in the international assessment exercises be aligned with intrinsic 
valuing associated with the East Asian students? 

Conclusion 
Primary and secondary public-school students across both urban and rural settings in the Cape Coast 
Metropolis of Ghana valued achievement, relevance, fluency, authority, ICT, versatility, learning 
environment, strategies, feedback, communication, fun, connections, engagement, applications, and 
accuracy in mathematics learning. Comparing these against what students in high performing East 



Asian countries valued, we propose that many of the attributes that were valued by Ghanaian 
students represented extrinsic valuing (versus intrinsic valuing in East Asia). Might the Ghanaian 
students’ valuing of extrinsic attributes in part explain their relatively poorer performance in 
mathematics? Further analysis is being carried out, such as to investigate how the valuing differed 
according to student gender and school locations. 

These and other related questions will be especially meaningful for Ghanaian policy-makers to 
consider. If extrinsic/intrinsic valuing is indeed a key variable of mathematical performance and 
achievement, the inculcation of intrinsic valuing amongst students would require strong and 
determined leadership at all levels of the society to model these values across the intended, 
implemented and attained curricula. In the meantime, the classroom teacher can be more mindful 
about espousing the intrinsic valuing of mathematics education. For example, teachers often do not 
sound very convincing to students that the content taught in class can be applied in life. Instead, it 
may be worthwhile for teachers to explain how the experience of learning mathematics might instill 
in students such attributes as rationalism. openness (see Bishop, 1988) and/or understanding. These 
are the very things which can be applied in life. 

This knowledge should also be valuable to overseas (including European) researchers/experts who 
are involved with development work in Ghana, such as the British government’s Transforming 
Teacher Education and Learning Project. Not only does it lead to a greater understanding of the 
local context, understanding what Ghanaian students value can also develop meaningful 
perspectives upon which culturally-appropriate and effective programs are designed and delivered.  
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Recent years have seen many valid and important critiques of mathematics, mathematics education 
and mathematics education research (M, ME & MER). However, we also discern in some of these 
critiques a tendency toward one-sidedness and passivity. Unrelenting stress on the negatives of M, 
ME and MER can lead to a dismissal of the possibility of improving ME and a dismissal of those 
who attempt to do so. The separation of critical theory from critical practice which follows is then 
in danger of rendering critique sterile, becoming a mere pseudo-radicalism. As an alternative, we 
explore here the mutual relation between critical pedagogy and critiques of society, and the 
relationship between reform and more radical change, in wider society and ME. We argue that this 
analysis encourages a stress on joint activity, between individuals and organisations with a wide 
range of perspectives on what change is needed, to tackle the problems a critical perspective raises.  

Keywords: Critical mathematics education, theory and practice. 

Introduction 
A growing body of research in mathematics education has explored critically the socio-political 
function of school mathematics in terms of its role in the mobilisation and production of capitalism 
(e.g., Kollosche, 2014; Pais, 2013, 2014; Swanson, 2016; Williams, 2012) leading to the 
reproduction of inequalities in education along the lines of social class, gender and ethnicity (e.g., 
Jorgensen & Niesche, 2008; Solomon, 2008; Black, 2004; Noyes, 2007). This work suggests that 
school mathematics (and associated qualifications) serves as a ‘gatekeeper’ in that it enables society 
and its dominant institutions (e.g., universities, employers etc.) to select and sort individuals under 
the rationale that ‘mathematical ability’ is a valued source of human capital. This critique is highly 
relevant to the current situation of mathematics education in England, where a new, more 
challenging curriculum has come into play since 2014 which serves to further substantiate the elitist 
position of mathematics in schools. At the same time, there is widespread concern in policy and in 
the mathematics education research community about achievement gaps (i.e. between rich and poor, 
or the most and least deprived) – a concern which has been said to further produce social 
inequalities – Gutiérrez (2008) refers to this as “gap gazing”.  

Whilst such critiques of mathematics and mathematics education are important and necessary to 
challenge dominant ideologies (including those pertaining to education more broadly), at the same 
time, we argue, there is a need to propose an ideologically grounded alternative. This paper presents 
a case for an alternative way forward by first looking at the potential mutual relation between 
critical pedagogy and critiques of society. We then examine the relationship between reform (i.e. 
improvement whilst remaining within the same overall framework) and more radical change, in 
terms of wider society, education and mathematics education. What follows from this exploration, 
we argue, is the need for activity which tackles the problems a critical perspective raises. In 



particular, it suggests joint activity between those with a wide range of perspectives on what, and 
how far, things need to change. We then look briefly at the Stand Up for Education campaign in the 
UK, which brings together trade unionists, teachers, academics and parents, to show that what we 
outline here is not a purely abstract or ideal position. Spaces for the much required interrelation of 
critical theory and research with practice can and do exist, and we conclude by discussing why that 
matters for critical researchers. 

What might a critical perspective on education look like? 
We begin by looking at the relationship between critiques of education or society and critical 
mathematics pedagogy1. Arguably the most radical perspective here is to imagine and work towards 
a society beyond capitalism (e.g. Bowles & Gintis 1976; Counts, 1978; Freire, 2005) i.e. a change 
that involves a complete transformation of society. Discussions of what form education would take 
in such a society face certain limitations however. For instance, if we assume, as we should, that 
moving beyond capitalism entails the democratic collective control of society by the majority, then 
we who are so shaped by, and operate in, capitalist society are not best placed to either decide or 
predict what may happen. Nevertheless, we can speculate on how an alternative future education 
might work by taking the reverse of the features of capitalist education which are seen to lead to 
negative consequences today, for example the individual-competitive exam system which produces 
‘losers’ who internalise their failure as objective qualities of themselves (for others, see Swanson, 
2016). Then, we can combine these with the aspects of education that others have fought for (e.g. in 
school student strikes against corporal punishment, oppressive uniform policies or privatisation, see 
Lavalette & Cunningham, 2016) and at times, implemented (e.g., the banning of homework and 
exams in revolutionary Russia, see Karp, 2012).  

Among the features we might expect to see are i) democratic collective control of education by 
teachers, students and other education workers, within the wider framework of its democratic 
shaping for society’s needs; ii) much greater control by individuals over their own learning within 
that, but with an emphasis on social rather than individually competitive learning; iii) an end to 
exams and their production and reproduction of societal inequalities; iv) an equivalent end to the 
performativity culture of continual measurement to judge teachers and other education workers, v) 
an increase in societal resources (such that, for example, class sizes reduce to the levels seen only 
within private education in this society), and vi) a closer integration of education with wider life, 
reducing both the formal detachment of schooling from the world outside, and the artificial 
separation of subjects from one another. 

The perspective above can loosely be termed the revolutionary perspective in education. We would 
define reformist perspectives, and these are far more common than revolutionary perspectives2, as 

                                                 
1 We use pedagogy here and throughout to mean teaching and learning combined due to the lack of an adequate single 
word in English. 

2 This is true even when reformist political organisations are weak or non-existent. However recent years have seen an 
important revival in reformist organisation with new parties such as Podemos in Spain, or around individuals in existing 
organisations, such as Corbyn in the UK and Sanders in the U.S. 



those which may agree with some, many or even all of the elements above but which are accepting 
of greater limits as to how much things can change, for example limiting the possible changes to 
within one classroom, or to what is possible within capitalism. Although this covers an enormous 
range of possible beliefs (e.g., the free schools movement in the U.S., see Miller, 2002, or on a 
small scale, Boaler’s work on reform pedagogy in the US, Boaler & Staples, 2008) and in Australia 
(Sullivan, Jorgensen, Boaler, & Lerman, 2013), in general we view such perspectives as radical and 
important. Fighting for fewer exams or less influence of exams on education clearly overlaps with 
fighting for no exams. We explore the general relationship between reform and revolution in a later 
section, but first we look at the relationship between the radical perspectives discussed so far and a 
particular type of reform, that of improving mathematics pedagogy. 

The relationship between critical mathematics pedagogy and (active) critiques 
of society  
We can see within critical mathematics pedagogy (in the broad sense of the term critical) parallels 
of many of the more general demands of radical educationalists. For example, we see pedagogies 
which aim to promote: a more active role for students in learning through open problem solving 
(e.g. Barron et al. 1998); teaching for understanding rather than for grades (e.g., Schoenfeld, 1988); 
an emphasis on dialogue and social learning (e.g., Lerman, 1996); and a more meaningful 
mathematics connected to the world outside of school and student experiences and concerns (e.g., 
Gainsburg, 2008). In doing this, pedagogy acts to counter some of the worst effects of capitalist 
education, even if it cannot overcome them fully. Here we argue, perhaps contra to some 
perspectives in critical MER, that it is worthwhile to subvert spaces, such as the classroom, as much 
as one can in these directions. Various forms of critical mathematics education which attempt to 
provide curricula and pedagogies which offer ‘use value’ to low status, disadvantaged or ‘poor’ 
learners and communities (e.g., Skovsmose & Greer, 2012; Gutstein, 2006) have much to offer. 
They can potentially challenge the ‘gatekeeper’ role of mathematics described above and can maybe 
transform the function of education, that is, rather than the learner serving the school/education 
system, education can begin to serve the community/learner (Williams & Choudry, 2016). Perhaps 
more importantly, attempts at developing critical thinking within the mathematics classroom have 
the potential to be generalised and transferred to other aspects of life, for example, to a pupil’s 
future life in the workplace (see Black et al., 2010). The experience of critical thinking, of 
challenging everything, of weighing up arguments can assist in developing the confidence to do so 
elsewhere. 

The possible connections between critical pedagogies and critical perspectives on society can work 
in the other direction too. The real limitations which schooling imposes on such pedagogy means 
that it is difficult to sustain critical educational activity if it is solely limited to the individual 
classroom. Teachers attempting to develop or sustain attempts within their classroom will come up 
against obstacles. For example, a head of department on a professional development course led by 
one of the authors was instructed by management to reverse pedagogical changes because students 
were now talking too much in class. However, arguably, the experience of these obstacles can make 
teachers open to looking beyond their immediate situation to help them achieve the changes they 
want. If teachers are connected to networks which challenge how schooling is generally organised 
and which also show sympathy for progressive forms of pedagogy, they may potentially move 



towards engaging in critical activity outside the classroom, whether still directly related to pedagogy 
or beyond that. Such networks can also give teachers the confidence to persist with their efforts in 
their own classroom. (e.g., Volosinov, 1976, on the relationship between an individual’s critical 
ideas and collective agency in such circumstances). 

Taken together these points mean: Firstly, that it is in the interests of those who are critical of 
society to encourage meaningful activity in the classroom and to work alongside others who wish to 
do this, and, secondly, it is in the interests of those who want more meaningful activity in the 
classroom to work with those who have a critical perspective on society, precisely because they 
bring an understanding of the obstacles, and, usually, experience in organising networks to 
overcome these obstacles. A central task therefore for those who are critical of society and who 
work within mathematics education, is to help create, develop and shape organisational forms which 
encompass both these components.  

Reform, revolution and the united front 
The relationship between the particular reform, of developing more meaningful pedagogy in a 
classroom, and wider social struggles, rehearses similar arguments to that which can be made about 
the general relationship of reform to revolution. In general, reform and revolution are clearly 
different perspectives. As Luxemburg (1986) puts it: 

[T]hose who pronounce themselves in favour of the method of legislative reform in place of, and 
in contrast to, the conquest of political power and social revolution, do not really choose a more 
tranquil, calmer and slower road to the same goal, but a different goal. Instead of taking a stand 
for the establishment of a new society, they take a stand for the minor modification of the old 
society. (p. 56) 

However, many of the elements key to a revolutionary strategy— for example, maximising active 
involvement and democratic control of movements; overcoming the division between purely 
economic and political struggles; attempting to connect up and generalise different struggles; 
developing an understanding of the interrelated nature of societal problems; and an emphasis that 
change comes from below, are not necessarily alien to those holding reformist ideas when they are 
engaged in struggles for particular demands (see, e.g., an account of the 2012 Chicago teachers’ 
strike in Gutstein & Lipman, 2013). At the same time, revolutionaries are also in favour of reforms. 
First because they improve immediate circumstances, but also because it is through the struggle for 
reforms that people develop the consciousness and confidence required to transform society: “The 
struggle for reforms is its means; the social revolution, its goal” (Luxemburg, 1986, p. 5). This 
overlap in immediate situational objectives, and the potentially shared belief in activity to achieve 
them, can provide a basis for joint activity. 

This joint activity between those who seek reform and those who aim for more fundamental change 
is central to a revolutionary approach and is termed the united front strategy. The strategy was 
explicitly formulated by the third congress of the communist international in 1922 as capitalism 
restabilised following the revolutionary wave around the end of the First World War. However, it 
has its roots in earlier practice. For example, during the Russian revolution of 1917, the unity of 
revolutionaries and reformists in repulsing Kornilov’s attempted coup was central to the 



development of the revolution, and the key organisational form of the revolution, workers councils 
or soviets, can be viewed similarly as a united front (see Trotsky, 1989).  

For revolutionaries, there are two key aims of the united front strategy. The first is simply to 
increase the likelihood of success of the particular struggle through uniting the maximum number of 
people and organizations. Secondly, it aims to convince those involved in reform activity of the 
need for more radical change through i) joint experience of the benefits of revolutionary methods, ii) 
joint frustration at the limitations of reformist strategies, and iii) exposure to revolutionary ideas in 
ongoing dialogue. For these strategies to work, the unity and dialogue must be genuine of course, 
with the possibility of reformists winning revolutionaries to their strategy instead (see Trotsky, 
1989). Although often from an alternative perspective, many with a reformist outlook on change 
equally see the importance of working together with others who hold different ideas to help achieve 
particular aims. 

Implications for critical mathematics educators 
Taken together, the arguments outlined so far imply the need for forms of organization which bring 
together various groups in mathematics education such as teachers, teacher educators, critical 
academics, parents, students and other education workers in common activity (a united front). This 
includes those who are particularly concerned with teaching and learning and those who are trade 
unionists; those who want to transform the world completely and those who just want to make 
things a little better. Through such activity radical mathematics educators can both assist in 
improving immediate circumstances in schools, classrooms etc., and also increase the numbers of 
those who see the necessity of more radical change (e.g., Gutstein & Lipman, 2013). We speculate 
that such an organization in relation to mathematics education is more likely to arise as part of, or 
emerging through, more general forms developed for the field of education as a whole. To illustrate 
that organisational forms such as this can exist, we now briefly describe the emergence of a 
network, local to the authors, which brings together the various forces described above.  

Stand up for Education 
The Stand up for Education campaign by National union of teachers (NUT) (2014) first emerged as 
a campaign launched by the National Union of Teachers (the largest teaching union in the UK), in 
the build up to the 2015 UK general election, to influence educational policy discussions and 
mobilise NUT members and others. Through that campaign, a network of academics supportive of 
the NUT’s aims was formed called Reclaiming Schools. Together Reclaiming Schools and the NUT 
jointly published a collection of short articles from academics and researchers in support of the 
campaign (see NUT, 2015). The Reclaiming Schools network continued, with a website devoted to 
putting research in accessible form for teachers and others campaigning to improve education, and 
with occasional meetings in local areas which bring academics and teacher activists together and 
promote the website’s activities. At one such meeting in Manchester, partly inspired by recent 
parent campaigns to remove their children from standardised testing (the Let Our Kids be Kids 
campaign, see https://letthekidsbekids.wordpress.com), the idea emerged for a local conference to 
be held which could pull together wider forces. NUT activists organised a follow up meeting, which 
included some parent groups and academics, to plan the conference. The primary aim of the 
conference was to share and develop understandings of key issues affecting schooling; to develop 



and expand the different networks involved (parents, teachers, teacher educators and other 
academics), and to bring those networks together to promote mutual activity and campaigning. The 
conference (see https://www.facebook.com/standupforeducationmcr) united precisely the range of 
people that this paper has outlined, and, importantly, it discussed questions of organised activity, 
political issues and pedagogy. In future work we will discuss this movement in more detail, and in 
particular explore its potential in relation to critical mathematics pedagogy in particular. But we 
describe it briefly here to show that such networks can and do exist and are not merely an abstract 
desire of the authors.  

Critical theory and critical practice 
So far we have argued that i) critiques of ME and MER also require ideologically grounded 
alternatives; ii) both ‘revolutionary’ and ‘reformist’ alternatives exist; iii) critical pedagogy in 
mathematics (a particular reform) can be an integral part of both perspectives; and iv) this inter-
relationship between reform and revolution is a general one. These last two together entail v) the 
importance, and possibility, of united front activity and organization within the field of mathematics 
education for all those who are to any extent critical of how things currently are, whether their initial 
motivation is teacher wages and conditions, less stressful exams for children, or more meaningful 
activity in the classroom.  

We conclude with the particular relevance of the above for critical mathematics educational 
researchers. Marx argued that “Practice without theory is blind. Theory without practice is sterile”, 
and this point is relevant for those who wish to criticise the world of mathematics education without 
attempting to change it. Arguably though, theory and practice always form an interrelated unity. No 
practice is uninformed by theory, (it may be unconscious of course). And no theory is unshaped by 
practice. The question for educational researchers is which practice shapes their theory – academic 
practice with its demands of publication and superficial novelty, or genuine critical practice and the 
needs of those trying to transform education. Critical theory detached from critical practice may 
provide useful insights, but ultimately its quality and usefulness will suffer from the separation. 
Uniting critical theory and critical practice, on the other hand, can enrich theory and research, and 
contribute to the development of the critical practice which can transform education. 
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Introduction 
This contribution, examining the increasing presence at school of East-Asian students and the 
related didactical complexity rising from the contemporary presence of Western and non Western 
cultural heritages, presents an experience of a training course for teachers (from Pre-Primary to 
Secondary school grades) about the didactical problematic of teaching in a multicultural context (in 
particular with Chinese students).  

Diversity as resource 
According to Bishop’s perspective, the notion of ‘Multicultural Classroom’ has to be interrelated as 
the place where a variety of cultures come together and mixes, creating hybrid identities, 
epistemological and linguistic conflicts (real or potential), and a range of ways of valuing or 
devaluing mathematics as an academic subject (Bishop, 1988). In this sense, in many cases, working 
in a multicultural context is seen by teachers as an obstacle! How to manage it? How to teach with 
different cultures and language’s students? These questions, for example, are often posed by 
western teachers of Chinese students. Their cultural reference system is in fact completely different 
from the western one (Bartolini Bussi, Di Paola, Martignone, Mellone, & Ramploud, 2016; 
Spagnolo & Di Paola, 2010) in language (as structure and as function in life), norms and social 
values and political references (Jullien, 2006). In the last ten years, researchers from all over the 
world have developed an ever increasing amount of work on the ‘comparison’ of student’s 
performance in mathematics (Di Paola, Battaglia, & Fazio, 2016), especially between American and 
far-eastern countries’ pupils such as Chinese, Japanese, and Korean ones (Leung, 2001). However, 
in Italy there is little research on this subject and all of them are aimed to deeply study the 
complexity of teaching/learning activities related to different cognitive processes emerging from 
different students’ cultural references (Chinese in particular) in classrooms, assuming diversity as a 
resource for learning (Bartolini Bussi, Sun, & Ramploud, 2013; Spagnolo & Di Paola, 2010). A 
small amount of this research is focused of the training teacher.   

A training teaching course as a need for mathematics multicultural classrooms   
Following these assumptions, working in conjunction with other colleagues from East and West of 
CTRAS (Classroom Teaching for All Students Research Working Group), we designed a training 60 
hours long course for Italian teachers (from Pre-Primary to Secondary school grades) which we 
implemented during the month of June 2016. It was organised almost entirely in small working 
groups, using activities with teachers and educators of different school grades (each one of them 



chose independently to attend the training course). Aiming to analyse how diversity is seen through 
the trainees’ eyes and trying to answer the research question posed before, we discussed with them 
some theoretical aspects related to their own epistemologies of the discipline. We then showed 
some experimental research conducted in Italian and Chinese classrooms, some Chinese textbooks 
strongly different from the Italian ones and finally some videotapes of some well implemented 
Italian teaching practices in multicultural contexts with Chinese students (K-12). According to our 
aim we discussed with trainees about the analogies and the differences coming out form these 
videotapes about the teaching/learning mathematic (Shuxue) in the two cultures. At the same time 
we tried to reflect with them on the possibility to ‘use’ this new knowledge to ‘transform’ the 
presence in classroom of ‘other’ cultures from an obstacle to a resource. All the proposed activities 
were videotaped and later carefully analysed. We can briefly say that the stimuli we offered 
permitted trainees to reflect on the complex situation of the simultaneous presence of Chinese and 
Italian students in their classrooms and to promote the desirable process of connecting different 
types of students solving strategies emerging from cultures. 
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Finding reflections of Fröbel’s ideas in Scandinavian ECEC 
My research project is about how Friedrich Fröbel and his ideas have been used across time and 
place to present different perspectives about mathematics in early childhood education and care 
(ECEC). Fröbel continues to have an important role in discussions about ECEC in Scandinavia, and 
is often referred to when people talk about ECEC. In his writings, he discussed the inclusion of 
mathematics, through activities connected to his ‘gifts’ (Balke, 1995). In my project, I will identify 
how adaptions of his ideas (that I refer to as reflections) have been used to support ideological 
discussion about mathematics in kindergarten. 

May (2016) used the metaphor of a swinging pendulum between two poles, to describe the history 
of early childhood education policy and pedagogy:  

Broadly the ‘poles’ characterise contesting paradigms of childhood: the child as nature whose 
holistic development is a natural process and who learns through play and discovery – 
construction. The child as a reproducer of knowledge, who as an empty vessel is filled with 
agreed knowledge, skills and cultural values – instruction. (p. 20)  

Over time, this pendulum swings between the two sides, construction and instruction, because of 
economic, political or professional factors (May, 2016). Meaney (2014) highlights how different 
ideologies affect what content, such as mathematics, in kindergartens could be. “In the last 15 years, 
the focus of early childhood centres on supporting children to learn through play has been replaced 
in some countries by a more formal preparation for school” (Meaney, 2014, p. 1007). By analysing 
how key elements from Fröbel’s theories, for example his ‘gifts’ or views of mathematical 
pedagogy, are reflected in discussions about ECEC I will be able to discuss where proponents of the 
reflections are situated on the pendulum swing. Identifying how Fröbel’s ideas have been used in 
different ways in the past and across countries will provide understandings about how rhetorical 
devices are used to promote ideologies.  

An example is how the Norwegian minister of education and research, Torbjørn Røe Isaksen, used 
Fröbel explicitly in a public debate in a Norwegian newspaper (Isaksen, 2014). Lange and Meaney 
(2016) argue that Isaksen uses Fröbel to promote mathematics in kindergarten as a common sense 
understanding which has always been a part of kindergarten. Thus, Isaksen uses a reflection of 
Fröbel and his mathematical ‘gifts’ to argue that having more mathematics in ECEC is a 
continuation of an existing tradition. By doing this, he tries to influence the trajectory of the 
swinging pendulum so that it swings more towards the pole of instruction and away from current 
kindergarten policy, which has been swinging more towards the constructive approach (Lange & 
Meaney, 2016).   



 

Another example is from Sweden at the end of the nineteenth century, from a magazine for women 
about their home life. In this example, Fröbel is on one hand, used to argue for readiness for school 
and working life but on the other hand his toy gifts can make the child able to bring gifts to their 
family (Cristel, 1892). The author of the article reflects Fröbel, his gifts and view of mathematics, 
into the article in a different way than Isaksen did in 2014. Cristel (1892) argues that families can 
purchase the boxes of gifts “and in that way let the ideas of this high-minded pedagogue into their 
home” (p. 244, own translation). This again creates a different trajectory for the pendulum.  The 
purpose of the gifts is presented here as a way of bringing the child closer to their family, and 
making them able to produce something by their own desire in their own lives. The pendulum here 
swings more towards the constructive pole.  

The aim of my project is to look for reflections of Fröbel in Scandinavian kindergarten history and 
to identify how these reflections have been used to create momentum for the pendulum that swings 
in different directions. By studying the relationship between production, form and reception of a 
discourse, I can investigate the myriad of effects around the discourse in question (Fairclough, 
2003). Initial investigations suggest that Fröbel is reflected in different ways, in order to argue for 
different agendas about how and why we should do mathematics in ECEC. As a mirror can reflect 
an image that is distorted or mostly correct, the reflections of Fröbel are more or less representative 
of his original views. However, this project is not about judging how valid the different reflections 
are. Rather by critically analysing the discourses on Fröbel and his ideas, I can identify factors that 
affect the paradigm shifts about mathematics in kindergarten.  
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Background 
In Saxony, predominantly in rural areas, social and political challenges are being posed by a declin-
ing number of pupils. To prevent especially younger pupils from having to travel long distances to 
school, organisational and curricular alterations are being considered. One suggestion is the merging 
of grades to establish multigraded classes. Multigrade education is also being discussed for its peda-
gogical advantages; for example, it can make the first phase of primary school more flexible by al-
lowing pupils to remain within the same multigraded class for either one, two or three years. How-
ever, even in learning groups which are homogeneous in age, the differences between pupils’ pre-
conditions for learning can be up to four years (Hirt & Wälti, 2008). Yet, when making learning 
groups heterogeneous in age, the diversity of learning preconditions increases, and with it also the 
necessity for differentiation through diverse tasks with various levels of difficulty. For a subject like 
mathematics, which is strongly guided by a systematic course, this often means extremely individu-
alised and separated learning (Nührenbörger, 2007). However, interaction is seen as foundational 
constituent of learning in early years (Miller, 1986; Schüt e, 2009) and should not be neglected. 
More specifically, for mathematical learning to occur it is of great importance for the pupils to par-
ticipate increasingly in collective reasoning within classroom interaction (Krummheuer, 2011). To 
enable individualised learning to take place in cooperation with others, substantial learning envi-
ronments hold great potential both for mathematics education in general and specifically in multi-
grade mathematics education because they offer the opportunity for natural differentiation, which 
means that learners all work on the same task and the differentiation is not predetermined by the 
teacher but chosen by the pupils themselves (Scherer, 2013). The possibility for students to learn 
with and from others by communicating and helping each other is also seen as one of the pedagogi-
cal arguments for purposeful mixed-age grouping (Wagener, 2014).  

Project 
The question this research project wants to address is how collaborative learning takes place in mul-
tigrade mathematics education at primary level. Therefore, firstly student teachers at the TU Dres-
den are asked about their experiences with multigrade education by using a questionnaire. Then, an 
interview study with individual teachers who teach in multigraded classes in Saxony will be con-
ducted in order to identify their attitudes and concepts concerning multigrade mathematics educa-
tion. Based on these empirical results, concepts and learning environments for multigraded learning 
within mathematics education for grades 1–6 will be developed in cooperation with teachers and 
student teachers in order to prepare them for the future challenges they will face when teaching 
mathematics in multigraded classes. Later these learning environments will be applied with pupils 



in practice to test the suitability of the tasks. The collaborative processes the pupils use to solve the 
tasks will be filmed, transcribed and then analysed from an interactionist perspective (Krummheuer, 
2011) to reconstruct constituent characteristics of successful multigrade mathematics education. 
This process will be accompanied by the development of seminars for student teacher concerning 
collaborative learning in multigrade mathematics education.  

Initial results 
The initial results of a questionnaire with student teachers at the TU Dresden show that less then 
40% have experienced multigrade education in some form (e.g. during an internship, while being a 
student themselves). Even though they are all able to reflect about possible advantages and disad-
vantages of multigrade education, many of them say that they would feel overwhelmed, unsure or 
not prepared to teach in a multigraded class during their traineeship. These results need to be as-
sessed in more detail but they emphasize the necessity of training teachers more specifically for 
multigrade education. 
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Language as a resource 
We have recently begun a project where we assume that digital games/apps have the possibilities to 
utilise family and kindergarten language resources to support multilingual children’s development of 
mathematical registers. In so doing, we adopt the perspective of “language as a resource” in which 
languages act as pedagogical resources in the learning of mathematics (Planas & Civil, 2013). 
Developing children’s fluency in their home language as well as Norwegian is an aim of the 
Norwegian Framework Plan, the early childhood curriculum (Kunnskapsdepartementet, 2011). 
Research suggests that in regard to learning and using content knowledge such as mathematics, 
multilingual children benefit from developing both their home language(s) and the majority language 
for discussing abstract ideas (May, Hill, & Tiakiwai, 2004). However, when children speak a different 
language at home to the one in their kindergarten, it is difficult for teachers who do not speak the 
children’s other languages to know how to provide support for developing the home language. Parents 
on the other hand have the language resources for developing the mathematics register in the 
children’s home languages, although their contribution to their children’s engagement with 
mathematics is often under-rated (Civil, Bratton, & Quintos, 2005).  

Digital games as prompts for mathematical language learning at home 
There is little research about using apps/games to prompt dialogue about mathematics among young 
children, however what there is suggests that affordances of digital games/apps can promote 
discussions (Lange & Meaney, 2013; Lembrér & Meaney, 2016; Palmér & Ebbelind, 2013). 
Plowman, Stephen, and McPake (2010) found that children’s engagement with digital tools at home 
were richer than those in kindergartens, partly because the children asked more questions and could 
learn from watching other family members using the devices.  

In order to find out what digital games/apps were being used in multilingual families and to gain some 
understanding from parents of multilingual children (aged 1-5 years) about what they considered to 
be the mathematical register demands and affordances of the apps/games, we set up an online survey, 
using a snowballing sampling method. The survey had 8 questions that asked about the age of the 
children, the languages that they spoke and the digital games/apps that they played with.  

56 parents identified the features of the digital games/apps that made them attractive to their 74  
children and what they would include in a digital game/app if they were designing one. The features 
of the digital games that the parents would include were not the same ones as they recognised that 
their children valued. Digital games were recognised as providing children with opportunities to use 
aspects of the mathematics register. Although puzzles was frequently cited as a digital game that the 
children played, this did not seem to result in the features of shapes being discussed to the same 



degree as other mathematical ideas (about half the number of parents considered their children talked 
about this as compared with attributes for classifying things).  

The parents identified that being successful or being surprised prompted children to talk about the 
digital game. Having features in new digital games which would produce such feelings in children 
appears likely to develop discussion with adults about mathematical ideas. As the language of the 
game can influence the children’s use of language, it seems best not to include any language so as not 
to restrict the choice of language. 
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Background 
Compared to boys, a small number of girls study higher mathematics optional course in Bangladeshi 
rural secondary madrasas beyond the requirement of compulsory mathematics. The overall 
participation rate of girls in higher mathematics is also low when compared to other optional subjects.  

Research questions  
1. How do Bangladeshi rural secondary madrasas influence children’s participation or non-

participation in higher mathematics optional course? 
2. How do these influences vary with respect to children’s gender?  

Research design  
Quantitative data have been collected from 500 children of grades 9 and 10 across eighteen rural 
madrasas using a Bangla translated version of the Fennema-Sherman Mathematics Attitudes Scales 
(Fennema & Sherman, 1976). Qualitative data have been collected from three case studies using focus 
group discussions with fifty children and semi-structured interviews with three principals, five math 
teachers and fifteen parents. Nine mathematics lessons have also been observed to capture teacher-
student interactions and their engagement. Purposive sampling process, rather than recruiting a 
representative sample, was used in order to reflect the aspect of diversity in the population and to 
carry out comparisons among different groups.     

Conceptual framework 
Following conceptual framework is adapted from Ker (2016) to present multiple levels of factors for 
mathematics participation and achievement (in Table 1). Selection of most of the factors is based on 
the suggestions from educational effectiveness literature. From the economic point of view, 
educational effectiveness is a production process of schools or madrasas, which is a transformation 
of inputs to outputs. The inputs include school resources, students’ characteristics and instructional 
hours. The process includes school factors, teacher factors and student factors as shown in Table 1. 
The outputs can be measured by the number of children participating in higher mathematics course 
and their achievement in the subject. Therefore, madrasa and classroom characteristics, student's 
background and home environmental support, time allocated for each subject, and teacher’s 
instruction to engage the students are very crucial to achieve the popularity of an academic course 
like higher mathematics.  
  



Table 1: A multilevel conceptual framework for mathematics participation (and achievement) 
School 
level 
→ 

School climate 
-School academic 
climate 
-School discipline & 
Safety 

School Resources/ Instructional 
Hours 
-Instruction affected by math 
resource shortage 
-Total instructional hours per 
week/year 
-Computer availability 
-School composition by student 
background 

  

Teacher 
level 
→ 

Teacher Preparation 
-Years of teaching 
experience 
-Career satisfaction 
-Confidence in 
teaching maths 

Instruction 
-Collaboration to improve teaching 
-Instructions to engage students  
-Math instructional hours per week 

Climate/Facility 
-Emphasis on academic 
success 
-Safe and orderly school 
-Working conditions 

 

Student 
level 
→ 

Student Background 
-Gender 
-Parents’ highest 
education level 
-Parents’ profession 

Environmental support 
-Home educational resources 
-Number of home study support 

Student’s school 
experience 
-Students engage in 
math lesson 
-Students bullied at 
school 

Motivation/ Attitude 
-Students like learning maths 
-Students value learning maths 
-Student’s confidence in maths 

Themes identified in preliminary analysis   
 There is a shortage of good professionally committed teachers for higher mathematics. Most 

of the mathematics teachers are engaged with private tuition as an extra earning source. 
Children have no other option than taking private tuition as the support from madrasa for both 
general and higher mathematics is inadequate. 

 Parents' religious belief is one of the reasons for sending their children to madrasas instead of 
usual schools. Parents wish some of their children to become an Imam, a teacher in a madrasa 
or an Islamic scholar. They want their daughters to learn Quran reading and hadith, pray Salah 
regularly and get married with a man of their choice as soon as possible. In doing so, studying 
higher mathematics is not in their priority list as their daughters and even sons can pass other 
subjects easily.   

 Children seem to have confusions and frustrations about the value of their madrasa education 
compared to the education from general schools as there are local discourses that government 
is less interested about their madrasa qualifications. 
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Background 
The relation between culture and mathematics education has been evident since long but taking 
advantage of pupils’ cultural identity to increase students’ engagement has not been focused much in 
Norway. Culture is closely interwoven with children’s routine. It can provide a gateway to connect 
mathematics and science education to their daily life experiences. Culture, in this project, is not 
mainly or only centered towards pupils’ ethnicity but will employ their personal cultural identity 
(interests, leisure activities, hobbies etc.) as a stimulating source for designing the teaching activities. 
Due to increased immigration, many different cultures have been introduced in Norwegian schools. 
Students having various cultural backgrounds may feel alienated in classroom activities and find it 
difficult to follow current classroom teaching. School leaders in Norway are also familiar with these 
increasing hetrogenous cultural issues and thus have began accepting and implementing culturally-
relevant changes in their respective school systems (Jacobson, Johnson, Ylimaki, & Jacobson, 2013). 

The LOCUMS (Local Cultures for Understanding Mathematics and Science) project aims at finding 
out how students’ engagement in mathematics and science gets affected when they themselves are 
asked to influence the starting point of teaching-learning process. Initiating their education process 
by first asking the students to provide relavant input about their own culture, for example, likes, 
interests and leisure activites to the teachers and researchers, they are assumed to get an autonomy, 
control and a part of responsibility of what they want to learn. Their desires will plausibly serve as an 
inspiration to the educators for designing the teaching-learning activities, and also as a possibility for 
the pupils to bring forward their own cultural identity in the class. Ascribed to the fact that 
commencement of teaching-learning situation would be derived by students’ interests and activities 
they want to learn more about, we consciously use the term culturally-inspired mathematics and 
science education to describe the attention of this project. This notion allows us to bring in culturally-
responsive mathematics and science teaching in the form of interactive cooperation between teacher 
and students in Norwegian multicultural classrooms.  

Theoretical framework 
The aim of my project is to study changes happening in the knowledge gaining process of pupils as a 
result of engaging them in culturally-inspired activities surrounded by intercultural context (students 
work in groups). Therefore, we find socio-cultural and cultural-historical activity theories to be 
relevant. In addition, we will draw on research related to ethnomathematics, culturally-relevant 
pedagogy and instruction (Ladson-Billings, 1994; Rajagopal, 2011), and culturally-responsive 
teaching (Gay, 2010), as they suggest an educational approach that advocates valuing students’ 
cultural background and prior experiences in the same way as socio-cultural theory. These themes 
favor cherishing cultural diversity present in the class to enrich the socio-cultural surroundings of 



diverse students so that they can learn effectively. Nevertheless, it does not mean that the teacher 
should teach in a “black” or “asian” way, but the level of educational activities should be reachable 
from and meaningful for students’ personal level of understanding. Simultaneously, involving their 
interests in planning the lessons can motivate them to learn using their own culture. Therefore, we 
belive that this literature would enrich and facilitate our project to enhance the learning experiences 
of diverse children in Norwegian classrooms. 

Methodology 
Being a problem driven pragmatic and empirical research, the aims to be fulfilled during the course 
of this project are justified by using a combination of design-based and action-based research 
methodology. The first student projects were designed and finalised with the cooperation of teachers, 
school leaders and students and, as the participators would be the practitioners as well, it shapes itself 
as action research. An iterative design cycle (3 repetitions) would be employed for each of the three 
planned student projects we plan to work out throughout the project. Until now, we have collected 
data from the first iteration of our initial student project. 

Plan of action 
Some of the classroom interventions are planned to be executed in a multicultural school in 
Trondheim. In the first trial, pupils’ input on their aspirations was collected through questionnaires. 
Accordingly, teachers and researchers planned and implemented the new teaching-learning strategies. 
The classroom activities were audio and video recorded. Teachers and researchers will now review, 
analyze and reflect those recordings to find and correct up eventual shortcomings in the first attempt. 
Further, two following iterations would adopt similar pattern as the first one and each part of data 
collected would be observed both before and after each student project to capture the changes in 
students’ engagement, participation and learning. Data analysis will be carried out in the light of 
socio-cultural and activity theories. 
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Introduction 
The debate on visual culture raises questions that have been stressed in the educational research, such 
as the role of the image in the process of subject-formation and the visuality as a form of knowledge. 
Visual Culture is an interdisciplinary field that combines arts, philosophy, anthropology, and cultural 
studies. The main point of this field is the question of visuality, which means focusing on the 
relationship between the seen and the seer. In short, the target of Visual Culture Studies is not an 
object at all, but it “consists of things we can see or whose existence is motivated by their visibility; 
things that have a particular visuality or visual quality that addresses the social constituencies 
interacting with them” (Bal, 2003). Thus, the term of visuality has become an important keyword for 
this field (Mirzoeff, 2006), because it refers to the vision and visuality are both socially and 
historically constructed.  

With regards to mathematics education research, Flores (2012) has proposed this perspective of 
visuality to investigate how images, particularly paintings, affect and are affected by Cartesian 
perspectivalism visual practices, as well as to grasp the fabrication of a certain mathematical 
rationality to look and to think within the realms of culture. The author has considered  

the term ‘visuality’ instead of ‘visualization’, because the former leads to a deconstruction of the 
founding principles of sense of vision and perception. In contrast, visualization is understood as a 
process of construction and transformation of mental images, whereas visuality is the sum of 
discourses that inform how we see. Thus, while the latter is concerned with learning geometry’s 
concepts and visual skills, visuality discusses visual practices in the context of history and culture. 
(p. 7060).  

Thus, at stake is a kind of mathematical thinking presents in contemporary school practices and that 
is provoked notably itself through images of arts (Flores, 2016).  

Going through infinity 
In response to this, we have been examining historically the artistic practices of infinity considering, 
particularly, those involving the discussions of perspective in renaissance painting. Furthermore, we 
have analysed modern paintings exhibiting characteristics of a classical system of visuality, which 
means using concepts of harmony, symmetry, parallelism and perspective. On a whole, we have 
found not only that our way of looking is shaped within an already built field of techniques and 
discourses, but also that mathematics ideas play an important role in the constitution of how we think. 

  



Being in the diversity 
In the methodological path of cartography, Schuck (2015) has developed an intervention plan with 
alcohol and drugs dependents in treatment on a Psychosocial Care Center in Florianópolis, Brazil, in 
2014. Four workshops were conducted and each one was centered on images suggesting the infinity 
idea. By focusing on discourse analyses, interpreting multi-faceted narrative, looks and affections by 
the subjects involved, it was possible to highlight the effects of looking at infinity rather than ‘truth’ 
per se. For instance, seen from the perspective of the people involved, the ways of looking at infinity 
deal with reflections situated between the mystical and the emotional experiences such as 
nothingness, emptiness, freedom. In this regard, we call attention to two points: “mathematical mind-
set” is not the sole result of a schooling regime; and subject’s visual subjectivities emerge in the 
entanglement of the individual in discursive formations. In order to discuss this, we, in the poster, 
displayed some information concerning on the visualization and visuality, the cartography as research 
methodology, the workshops itself, and the discourses about infinity staged by the people involved 
in the intervention mentioned above.   

Following Foucault’s assumptions, we consider that by a better understanding of how a certain kind 
of mathematical visualization has been constituted within the sociocultural practices might contribute 
not only teacher education but also mathematics learning practices. In sum, we bring under our 
attention that both mathematical rationality and visualization are staged and configured within the 
diverse sociocultural practices.  
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TWG11: Comparative studies in mathematics 
education 



Introduction to the papers of TWG11:  
Comparative studies in mathematics education 

Paul Andrews, Eva Jablonka, Miroslawa Sajka and Constantinos Xenofontos 

As with earlier CERMEs, TWG 11 adopted an eclectic perspective in its interpretation of comparison 
as referring to any study that documents, analyses, contrasts or juxtaposes cross-cultural or cross-
contextual similarities and differences across all aspects and levels of mathematics education. In this 
way the TWG aimed to encourage critical but supportive discussions around a number of 
predetermined and emergent themes. 

A recurrent but very productive aspect of this working group has been the relatively small number of 
paper presentations. This year ten papers and three posters created space not only for colleagues to 
share their research in detail but allowed participants to engage in lengthy and inclusive discussions 
on the nature of comparative mathematics education research and the means by which it can be 
meaningfully and rigorously undertaken. As is shown below, the different paper contributions fell 
naturally into four themes, each reflecting significant substantive and methodological variation.  

Firstly, two papers, with very different foci and methodological conceptualisations, framed a 
discussion on the importance of identifying an appropriate unit of analysis. This issue, while of 
importance in all research, is particularly foregrounded in comparative research. One of the two 
papers, Sajka’s eye-tracking examination of different response groups’ visual attention to the 
statement of a mathematical problem showed that such groups respond in culturally conditioned 
ways. The second of these two papers, Clarke, Mesiti, Cao and Novotna’s study of the culturally-
located variation in the vocabulary of the typical school mathematics classroom, foregrounded the 
importance of understanding that much mathematic didactics vocabulary may be culturally unique. 
Importantly, both studies exposed hitherto unconsidered demands with respect to what is actually 
being analysed. 

A second theme could be found in the three papers construed as having a tacit focus on beliefs. Firstly, 
Andrews and Xenofontos presented a quantitative analysis of Cypriot and Greek initial teacher 
education students’ understanding of a hypothetical solution to a non-arithmetical linear equation. 
They found considerable emphases on rote solution methods although Cypriot students were more 
articulate on the matter than their Greek colleague. Secondly, Koljonen’s case study of one Swedish 
teacher’s deployment of the teacher guide associated with a translated Finnish textbook showed how 
teachers’ responses to such materials, irrespective of any instructional material they contain, are 
interpreted by culturally-determined expectations of what is appropriate. Thirdly, Nosrati and 
Andrews interviewed Norwegian and Swedish upper secondary students about their experiences of 
school mathematics and found a dominant perception that the purpose of school mathematics is to 
prepare students for a successful economic engagement with the world. All three studies highlighted 
well the extent to which mathematics classroom participants’ perspectives are informed by culturally-
located beliefs. 

A third theme, also reflected in three papers, concerned mathematics teacher knowledge. In the first 
of these, Kingji-Kastrati, Sajka and Vula used an extant test to examine Kosovar and Polish teacher 
education students’ knowledge of fractions. In the second, Tchoshanov, Quinones, Shakirova, 



Ibragimova and Shakirova used a battery of TIMSS-derived test items to examine differences in US 
and Russian lower secondary teachers’ content knowledge. Both studies highlighted substantial 
differences in the content knowledge of the groups under scrutiny. Finally, Xeonfontos and Andrews 
examined Cypriot and Greek students’ didactical explanations of the same hypothetical solution to a 
non-arithmetical linear equation as discussed above. In this case, Cypriot students’ explanations were 
more didactically robust than their Greek colleagues. All three papers confirmed the extent to which 
mathematics content knowledge is a not the culturally independent body of knowledge assumed by 
international studies of student knowledge. 

The fourth theme drew on two papers framed by the anthropological theory of didactics (ATD). 
Firstly, Modeste and Rafalska’s drew on ATD’s of didactical transposition, or the transformation of 
academic knowledge to that knowledge taught, to highlight differences and similarities in the 
presentation of algorithmics in the curriculum materials of Ukraine and France. Secondly, Asami-
Johansson, Attorps and Laine exploited ATD’s concept of praxeology, which provides the methods 
for solving a domain of problems (praxis) and a structure (logos) on the discourse those methods, to 
compare the practices of case study teacher educators in Japan, Finland and Sweden. The two studies, 
in addition to highlighting substantial differences between the cultural groups under scrutiny, showed 
how different elements of ATD can be productively employed in cross-cultural studies. 

Finally, three posters, each with different foci and methodologies, were presented.  Haara, Bolstad 
and Jenssen, as preparation for a later Norwegian study, presented a research review on mathematical 
literacy in school. Istúriz, González-Ruiz, Diego-Mantecón, Recio, Búa, Blanco, González and Polo 
reported on an Erasmus project in which students in different countries develop activities to integrate 
art into STEM activities. Finally, Tesfamicael, Botten and Lundeby presented a comparative analysis 
of Norwegian and Ethiopian textbooks presentation of relations and functions. 

Overall, the papers and posters presented to the group reflected not only cultural diversity but also 
methodological pluralism. For example, studies included those that were informed by a priori 
theoretical assertions and those that were not. There were equal numbers of qualitative and 
quantitative studies focused on a range of aspects of children’s and teacher education students’ 
learning of mathematics. All studies confirmed the extent to which mathematics and its teaching and 
learning are culturally normative. 
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In this paper we examine aspects of beginning primary teachers’ understanding of linear equations. 
First-year teacher education students on a programme in Cyprus (12 Greek and 21 Cypriot) were 
shown a solution to the equation x + 5 = 4x – 1 comprising four rows of mathematically correct 
algebra but no commentary. They were asked to explain, in writing, the solution to α friend who 
had missed the lesson in which such equation solving processes had been taught. Analyses found 
almost all students, irrespective of nationality, writing about knowns and unknowns before offering 
a ‘change the side and change the sign’ rule. However, a major difference was that Cypriot 
students’ accounts typically included an objective for the equation solving process, which the Greek 
students’ did not. 

Keywords: Linear equations, comparative research, Cyprus, Greece, teacher education. 

Introduction 
The topic of linear equations occupies an important position in students’ learning. It “stands on the 
border between mathematics as concrete and inductive and mathematics as abstract and deductive”, 
offering “one of the first authentic opportunities for them to connect their understanding of 
arithmetic to the symbolism of mathematics” (Andrews & Sayers, 2012, p.476). Yet, it is a difficult 
topic to teach well, because when learning arithmetic, learners typically come to see the equals sign 
as an instruction to operate (Kaput et al., 2007). This operational perspective (McNeil & Alibali, 
2005) creates few problems with respect to arithmetical equations, with the unknown in one 
expression, because it supports a process of operation reversal (Herscovics & Linchevski, 1994; 
Kieran, 1992). However, non-arithmetical equations - the unknown in both expressions - requires a 
relational (Kieran, 1992) understanding of the equals sign as an assertion of equality between two 
expressions (Alibali et al., 2007; Filloy & Rojano, 1989) in order that they can operate on the 
unknown as an entity. In short, students find equation solving problematic because operational 
perspectives on expressions like 3x+1 prevent their being construed as objects subject to, in 
relational terms, operations themselves (Kieran, 2004). Furthermore, to compound students’ 
difficulties, teachers’ practices frequently collude in the maintenance of an operational perspective 
on the equals sign (Haimes, 1996; Harel et al., 2008; Stephens, 2008), highlighting a need to 
evaluate the equations-related understandings that beginning teachers bring to their courses. This 
reflects the aim of this pilot study and an atypical approach, which is described below. 

Perspectives on the teaching and learning of linear equations 
Typically, research on equation solving has focused on approaches to the solution of non-
arithmetical equations, not least because their solution poses few conceptual difficulties. In this 
respect, the most widely criticised is redistribution, a rote-learned, change the side, change the sign 
procedure (Nogueira de Lima & Tall, 2008), focused on transposing the equation so that the 



unknown finishes on the left-hand side and a value on the right (Filloy & Rojano, 1989). The 
unknown’s arbitrary leftwards movement perpetuates operational conceptions of the equals sign and 
fails to support students’ understanding that such movement does not change the equation’s equality 
(Capraro & Joffrion, 2006). Other approaches, like trial and improvement, support an understanding 
of the relational nature of the equals sign and the role of the unknown in context (Knuth et al., 
2005). However, while it may be an appropriate initial strategy in a teaching sequence, it is 
inefficient and does not support the learning of general equation solving strategies (Filloy & Rojano, 
1989). Other approaches(see Dickinson and Eade, 2004; Fong & Chong, 1995), present the equation 
as two rows of mathematical objects, one laid on top of the other, as in the representation of 2x + 10 
= 4x + 2 shown in Figure 1. Here, the authors claim, students can see easily how it reduces to 2x + 2 
= 10; an equation is amenable to an operation reversal procedure. 

 

Figure 1: A representation of 2x+ 10 = 4x + 2 

However, while such approaches be procedurally helpful and support students’ understanding of 
equations as manipulable objects, they may hinder students’ understanding of the invariance of the 
solution. Moreover, despite Dickinson and Eade’s (2004) optimistic arguments otherwise, they 
remain problematic with respect to negative coefficients (Marschall & Andrews, 2015). 

Finally, in studies of teachers’ unprompted approaches to equation solving, the balance scale has 
been the most widely reported, being the approach of choice in case studies from, for example, 
Canada (Haimes, 1996), Finland, Flanders and Hungary (Andrews & Sayers, 2012), New Zealand 
(Anthony & Burgess, 2014) and Poland (Marschall & Andrews, 2015). Here the solver manipulates, 
through addition or subtraction, weights on scale pans, while keeping the scales in balance. Its 
advocates argue that it helps students see the equation as a whole and not an instruction to operate 
(Warren & Cooper, 2005). Moreover, it supports an understanding of the need to do the same to 
both sides (Anthony & Burgess, 2014) and underpins the symbolic foundations of later algebraic 
formalisms (Andrews, 2003). Systematic attempts to evaluate the balance’s efficacy have shown 
that it helps students to understand the principles of equations, solve non-arithmetical equations 
with understanding, particularly from the perspective of doing the same thing to both sides (Araya et 
al., 2010; Warren & Cooper, 2005) and facilitates students’ acquisition of an appropriate vocabulary 
(Vlassis, 2002). Its critics argue that it cannot represent negatives in anything but a contrived way 
(Pirie & Martin, 1997), a criticism supported studies showing teachers simulating the tying of 
helium filled balloons to scales to counter the weight of objects in the scale pans (Anthony & 
Burgess, 2014). 

In this paper we explore how students following an initial primary teacher education programme in 
Cyprus construe non-arithmetical linear equations. Due to Greek being the language of instruction, 
the programme includes both Cypriot and a high proportion of Greek students. 

Methods 
Shortly after the start of their course and before they had been exposed to university mathematics 
teaching, students were shown a solution to the equation x + 5 = 4x – 1 and asked to write a short 



account of how they would explain it to someone who had missed the lesson in which it was 
introduced. The solution, with no additional narrative, was presented as follows 

x + 5 = 4x – 1 
      5 = 3x – 1 
      6 = 3x 
      2 = x 

A non-arithmetical equation was used for several reasons. Firstly, it could not be solved by means of 
a reversal of operations. Secondly, it should expose, in ways that an arithmetical equation could not, 
the underlying equations-related conceptions students bring to their courses. Thirdly, it would 
uncover the extent and depth of their equations-related procedural knowledge as, at each step, they 
would need not only to interpret and explain the solver’s hidden thinking but decide what would 
need to be made explicit to the unknown learner. It was believed that this would be a more effective 
means of uncovering students’ familiarity and understanding of the topic than a conventional test 
item and expose any pedagogical predisposition they bring to their course, as a result of their 
previous schooling. 

Analysis 
Students’ transcripts were subjected to a constant comparison analysis (Fram, 2013), whereby a 
transcript was read and re-read to identify different equations-related understandings. This was 
followed by the next transcript being read and re-read in order to find further evidence of the 
original codes and any new ones not seen in the first. If new categories were found then the earlier 
transcript was re-read in case they had been previously missed. This process continued for all 33 
transcripts, a number typically thought sufficient to achieve categorical saturation, and yielded seven 
categories of understanding, which can be seen in Table 1.  

With respect to demonstrating the emergence of these categories, we turn to Ekaterini, a female 
Cypriot student, who wrote that 

To solve this exercise we have to first set apart the known from the unknown numbers. The 
known numbers are the ones that don’t include a letter, as for example, 5 and -1. Unknown 
numbers are the letters or the numbers that are accompanied by a letter, for example, 4x and x. 

Ekaterini’s comment about separating the known from the unknown implies an implicit objective 
for equation solving; in essence, solving an equation entails precisely that. In the same sentence can 
also be seen evidence of her awareness of the unknown and its role in equation solving. In the 
second and third sentences she goes further and defines an unknown. She then wrote (her 
parentheses): 

To separate the two, the known numbers should be on one side of the equation, for example, on 
the left side, as we solved it in the class, while the unknown numbers should be on the other side. 
Later, I added 5 + 1 (whose sign has changed because it moved to the other side of the equation) 
and subtracted 4x – x (again the sign changed because x has moved to the other side of the 
equation and when there is x or y alone this means 1x or 1y). Finally, I reached 6=3x and so I 
divided 6 by 3 so that x is equal to 2. 



Throughout this paragraph runs a rote procedure for equation solving invoking two simple 
instructions. The first is that knowns must be moved to one side of the equation and unknowns to 
the other. The second is that when an object moves from one side of an equation to the other its sign 
changes. Finally, having achieved this objective, an understanding of the role of inverse operations 
is invoked to divide the total of the knowns by the coefficient of the unknowns. Within this 
procedure, as with many of the students’ suggestions, is evidence of flexibility in that it does not 
matter to which side of the equation which type of object travels, implying that it may be a matter of 
convenience.  

Articulating an awareness of the unknown 31 

Defining what is meant by an unknown 15 

Offering an implicit objective for equation solving 18 

Offering an explicit objective for equation solving 1 

Offering a rote procedure for equation solving 29 

Articulating an understanding of the role of inverse operations 26 

Offering an unspecified process for equation solving 4 

Table 1: The seven categories of understanding elicited from the data 

With respect to the remaining two categories, only one student offered an explicit objective for 
equation solving. In this case, Irene, a Cypriot female, wrote that the “question in this equation is to 
find ‘x’ and what value it has”. Finally, four students wrote of an unspecified procedure. For 
example, Moira, a Greek female wrote, “I would tell the student that we separate the known from 
the unknown numbers and then make the calculations”. From her comment we inferred three 
perspectives on equation solving; an implicit objective tied to separating the known from the 
unknown, an awareness of the unknown and an unspecified procedure. The seven categories of 
response, along with their respective frequencies, can be seen in Table 1. 

Results 
The figures of Tables 2 and 3 show which of the seven categories identified by the constant 
comparison analysis were found in the accounts of the Greek and Cypriot students respectively. 
From these can be inferred both similarities and differences. With respect to the former, several 
similarities were identified. Firstly, with a single exception in each country, students’ explanations 
showed an explicit awareness of the unknown. Secondly, a very high proportion of students from 
both countries - only four students did not - offered a rote procedure for solving the equation and of 
these, all focused on the mantra, change the side change the sign. Thirdly, only five students did not 
write in ways indicative of their understanding inverse operations, although this was typically seen 
with respect to explaining how the solution is reached from the point where 6=3x, as in Chloe’s 
comment that “after reaching 6=3x, we divided 6 by 3 so that x will be by itself”. Fourthly, around 
half of all students in each group defined what they meant by an unknown 



.  

 Greek student A B C D E F G H I J K L 12 
Aware of unknowns 1 1 1 1 1 1 1 1 1  1 1 11 
Defines unknowns  1   1 1   1  1 1 6 
Implicit objectives      1     1  2 

Rote procedure 1 1 1  1 1   1 1 1 1 9 
Inverse operations  1 1  1 1 1   1  1 7 

Unspecified process    1   1 1     3 
Explicit objectives             0 

 2 4 3 2 4 5 3 2 3 2 4 4 3.17 

Table 2: Distribution of Greek students’ equations-related insights 

With respect to differences, only two Greek students offered any sense of objective, albeit implicit, 
for the equation solving process compared with 17 of the Cypriot, of which only one, student F, 
offered an explicit goal. 

Cypriot student A B C D E F G H I J K L M N O P Q R S T U 21 
Aware of 
unknowns 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 20 

Defines unknowns 1  1 1    1       1 1 1  1  1 9 
Implicit objectives 1 1 1 1    1 1  1 1 1 1 1  1 1 1 1 1 16 

Rote procedure 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 
Inverse operations 1 1  1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 19 

Unspecified 
process    1                  1 

Explicit objectives      1                1 
 5 4 4 5 3 4 3 5 3 3 4 3 4 4 5 4 5 4 5 4 5 4.1 

Table 3: Distribution of Cypriot students’ equations-related insights 

The figures of Tables 2 and 3 show also that Greek students’ data yielded fewer codes per student, 
3.17, than their Cypriot counterparts mean of 4.10. Indeed, at the upper end of the spectrum the 
accounts of seven Cypriot students, A, D, H, O, Q, S and U, yielded five categories of response, 
compared with that of just one, F, Greek student. At the lower end, the accounts of four Greek 
students, A, D, H and J, yielded only two categories each, compared with zero Cypriot students. 
These differences were statistically significant in two ways. Firstly, a t-test showed differences in 
the mean number of codes were unlikely to be due to chance (t = 2.95, p = 0.006). Secondly, a chi-
square test performed on the data in Table 4 confirmed that variation in the number of codes yielded 
by each of the Greek students and Cypriot students respectively were unlikely to be due to chance 
(χ2 = 9.15, df = 3, p = 0.027). This difference in the codes, we argue is likely to be a consequence of 
differences in how the two systems introduced their students to linear equations; a possibility 
warranted by, for example, evidence that Cypriot students tended to specify objectives in their 
accounts in ways that their Greek colleagues typically did not. Finally, of the eight students whose 
accounts yielded five codes, seven yielded the same five. That is, they indicated an awareness of and 
defined the unknown; they offered implicit objectives and a rote procedure alongside an awareness 
of inverse operations related to division. In short, the most complete responses were typically the 
same. 



 
Number of codes per student 

 
 

2 3 4 5 
 Greek 4 3 4 1 12 

Cypriot 0 5 9 7 21 

 
4 8 13 8 33 

Table 5: Distribution of total number of codes per student per country 

Discussion 
The aim of this pilot study, the quantitative analyses for which are presented in this paper, was to 
explore the equations-related understanding primary teacher education students bring to their 
courses and, in so doing, evaluate the effectiveness of a simple to implement tool for later 
comparative use. In this instance comparison was made possible by the fact that courses in Cyprus 
are taught in Greek, making them accessible to Greek students. The results are methodologically 
encouraging but, acknowledging the fact that all respondents were prospective teachers, 
mathematically worrying, albeit with some qualifying strengths. 

Methodological encouragement stems from the evidence that students responded positively to the 
invitation and produced written accounts sufficient to expose their perspectives on or conceptions of 
linear equations. It was also encouraging that the tool was able to discriminate between the two 
cultural groups in its highlighting similarities and differences in students’ accounts that, we infer, 
reflect systemic differences in the ways in which linear equations had been experienced by these 
two sets of students as learners of school mathematics. In short, the tool proved fit-for-purpose. 

The mathematical disappointment derives in part from the lack of any evidence of students holding 
a relational (Kieran, 1992) conception of the equals sign, in that nothing said by any student 
indicated an understanding of the equals sign as an assertion of equality between two expressions 
(Alibali et al., 2007; Filloy & Rojano, 1989). Mathematical disappointment also derives from the 
very high proportion of students in both countries who seemed to construe equation solving as a rote 
process of ‘change the side and change the sign’. That is, the majority of students appeared to have a 
procedural rather than a conceptual perspective on equations in which symbols are moved around 
“with a kind of additional ‘magic’ to get the correct solution” (Nogueira de Lima & Tall, 2008, p.4). 
Indeed, even those students whose accounts yielded the most categories of response presented 
procedural perspectives with implicit objectives and rote procedures. However, in contrast with 
international research showing the balance as teachers’ preferred representation (Andrews & Sayers, 
2012; Anthony & Burgess, 2014; Haimes, 1996; Marschall & Andrews, 2015), no reference to the 
balance was made by any student. Indeed, with the exception of their implicit awareness of inverse 
operations, which we discuss below, nothing written by any student indicated a narrative based on 
performing the same action to both sides of the equation. 

Despite the negatives, there were some interesting positives. The majority of students, particularly 
the Cypriot, indicated an awareness of the role of inverse operations. In every case this occurred at 
the point in the solution where the step connecting 6=3x to 2 = x was discussed. Here, students 
indicated, albeit implicitly, an awareness that division was the inverse operation to invoke, insights 
that seem to confound the mechanical procedure of ‘change the side, change the sign’. Also, despite 
the highly procedural nature of their accounts, only two students, one from each country, did not 



demonstrate an awareness of the unknown. That is, students not only used an appropriate 
vocabulary but were generally aware of the function of the unknown in the equation solving 
process. Indeed, around half of all students from both groups offered a definition, typically 
implicitly, of the unknown, as in Carissa’s account in which she wrote, “I separated the known from 
the unknown numbers. Unknown x + 5 (known) = unknown 4x -1 (known)”. 

Finally, Cypriot students’ accounts yielded more response categories than their Greek colleagues, 
typically due to their tendency to offer objectives, again implicit, which their Greek colleagues did 
not. We speculate that such a difference may reflect cultural teaching norms; while the evidence of 
these students’ accounts indicates the outcome of procedural teaching this particular finding 
suggests that Cypriot teachers may warrant their procedural approaches to a topic in ways that their 
Greek colleagues may not. In sum, the responses from both sets of students indicated deep-set 
procedural perspectives on linear equations. It was clear that they had understood the task in that all 
their explanations were valid but, with both the Cypriot and the Greek curricula advocating that 
students learn a relational mathematics, the implications of this study for teacher education are 
profound. 
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In this study, we have observed three different teacher educators’ lessons, concerning area 
determination of polygons in primary school teacher training courses in Japan, Finland and 
Sweden. The aim of this paper is to investigate the main elements of the lessons and to compare the 
differences between the countries. We focus on how the teacher educators relate the didactic 
construction of the lessons for prospective teachers to the school mathematical and didactical 
organisations by applying Chevallard’s anthropological theory of the didactic (ATD). The analysis 
shows how the curricula and the different traditions of teaching practice in each country influence 
the mathematical and didactical construction of the lessons. 

Keywords: Teacher education, anthropological theory of the didactic, praxeologies, Japan, 
Finland, Sweden. 

Introduction 
The notion of didactic divide is introduced by Bergsten and Grevholm (2004) to illuminate the 
problematics within the teacher education in Sweden. They refer to Kilpatrick, Swafford and Findell 
(2001) stating that teacher education needs to provide opportunities for prospective teachers to 
connect different kind of knowledge, and if such connection is not realized, one may say there is a 
didactic divide between disciplinary and pedagogical knowledge of mathematics. Bergsten and 
Grevholm also illustrate the point of issue in teacher education citing Ball and Bass’s argument; 
“teacher education across the 20th century has consistently been severed by a persistent divide 
between subject matter knowledge and pedagogy”, a gap that “fragments teacher education by 
fragmenting teaching” (Ball and Bass, 2000 in Bergsten and Grevholm, 2004,  pp. 125-126).  

As an attempt to elucidate the phenomenon above within the teacher education in Sweden, we 
studied the lesson structures of mathematics education at the primary school teacher education 
programs, using a comparative study. For comparison, we chose Finland which had significantly 
high result in mathematical literacy among Scandinavian countries (OECD, 2013); and Japan, 
where teaching culture in mathematics seems to be more shared, compared to the US and Europe 
(Winsløw, 2012).  

The aim of this study is to investigate and compare lessons of three countries’ teacher education 
programs, type of teaching methods courses concerning area determination for teaching in school. 

Theoretical framework and research questions 
Chevallard proposed to study the mathematical knowledge in an institutional context; learning 
mathematics is extended to any other human activity and gives rise to the anthropological theory of 



the didactic (ATD). There, mathematics learning is modelled as the construction of praxeologies 
(Bosch & Gascón, 2007) within social institutions. A praxeology provides both methods for the 
solution of a domain of problems (praxis) and a structure (the logos) for the discourse regarding the 
methods and their relations to broader settings. Hence the praxis part includes types of tasks (T) and 
a technique (τ) to solve the task type and the logos part includes a technology (ө) which justifies the 
techniques and a theory (Θ), which further justifies the technology. The form of a praxeology is 
determined by a mutual interaction of a mathematical organisation (MO) and a didactical 
organisation (DO). The MO describes mathematical activities of the praxeology, and the DO 
describes the activities to support the learning or teaching of the MO.  

In the case of lessons of a teaching methods course in teacher education, types of tasks of the DO 
are usually to make prospective teachers (PTs) to learn the content knowledge and its teaching 
approaches. Teacher educators’ DOs promote the PTs to learn how to construct the praxeologies 
(the MO and DO) of their future lessons. We call the didactical praxeology of teacher education as 
the DOTE and school mathematical and didactical praxeologies encapsulated under the DOTE as 
MOSCH and DOSCH.  

DOTE 

↕ 

  (MOSCH ↔ DOSCH)            

The praxeologies (MOSCH ↔ DOSCH) demonstrated in the lessons are thus encapsulated in the 
teacher educators’ DOTE. 

To realize the aim of this paper, we addressed three research questions: 1.What are the main 
elements of each teacher educator’s didactical praxeologies in their lessons? In particular, (how) do 
they relate the didactic praxeologies of the lessons to school mathematical and didactical 
praxeologies relation to the area determination?  2. What are the main differences between the three 
lessons, concerning the research question 1? 3. What could be the wider explanations for those 
differences?   

In order to find out the answers to the research questions 1 and 2, it was necessary to identify the 
components of both the praxis and logos of the school praxeology (MOSCH ↔ DOSCH) presented in 
the lessons. Subsequently, we describe how the teacher educators’ DOTEs encapsulate the (MOSCH 
↔ DOSCH) in their lessons.  

To identify mainly the praxis part of the DOTE and the part of the encapsulated school praxeologies, 
video recordings were made; “Quantity and Measurement” by Mr. Matsui (Japan, with 53 PTs), 
“Area of Polygons” by Mrs. Laine (Finland, with 34 PTs) and “Area and Perimeter” by Mrs. 
Nilsson (Sweden, with 20 PTs). The teacher educator in Finland is the third author of this paper. 
The names of the educators in Japan and Sweden are pseudonyms. 

The questionnaire consists of eight questions and we consider that some of the questions may 
support to identify different components of the DOTE and (MOSCH ↔ DOSCH). For instance, Q1: 
“What do you intend the prospective teachers (PTs) to learn on this content (e.g. area of polygons)?” 
is related to identify the components of the logos part of the MOSCH and what is prioritized in the 
DOTE. Also, Q4: “Which kind of difficulties connected with teaching the content” and Question as 



Q7: “What are your teaching procedures and particular reasons for using these to engage your 
teaching?” gives an indication to identify the technology (ө) and the theory (Θ) of the DOTE. 
Studying the answers to those questions is also relevant to the research question 3, since the Q4 and 
Q 7 particularly may give us the picture of what kind of conditions and constraints in each context 
form the praxeologies in each country.  

Further, we studied each country’s curricula and textbooks concerning the chapter of measurement 
to reinforce the investigation concerning the research question 3. We selected the chapters 
concerning measurement, since the lessons in all three countries more or less deal with the 
introducing the area determination of rectangles using arbitrary objects 

Results and analysis 
Curriculum concerning measurement in each country  

In the Japanese guideline for the curriculum for grades one to six (MEXT, 2008), the determination 
of length, area and volume is described in an own chapter Quantity and Measurements, between the 
chapters of Arithmetic and Geometry. The contents for each grade are described in detail with 
concrete teaching proposals. As guidelines for teaching methods, it is stressed to build on pupils’ 
previously learned knowledge and their various ways of solving problems. The introduction of the 
chapter consists of four phases; direct comparison, indirect comparison, comparison using arbitrary 
objects, comparison using standard units. This order is clearly followed by Japanese textbooks 
(Miyakawa, 2010). 

The content regarding quantities, units and measurement are shortly described in the chapter 
Geometry and Measurements in the Finnish curriculum (Finnish National Agency for Education, 
2014) and in the chapter Geometry in the Swedish curriculum (Skolverket, 2011). These curricula 
do not give any practical guidelines for teaching the contents. In Sweden, textbooks are not 
controlled by the ministry. The presentations of those contents in the textbooks for grades 1-3 are 
often placed in sections covering Arithmetic (e.g. Brorsson, 2013), although the Swedish curriculum 
introduces them in Geometry. Unlike the Japanese curriculum, the four phases of the introduction of 
the concept of measurements are not known in Sweden, some textbooks introduce direct 
comparison and comparison using standard units at the same time (ibid.). Also, the problem that 
corresponds to the indirect comparison is not addressed in most textbooks1. Comparing these two 
contexts, we might state that the Japanese curriculum does not give much space for different 
interpretations of its contents. It provides a suggestion of a uniform teaching approach for textbook 
authors and the users. We assume the reason that many Swedish textbook authors locate the section 
of measurements in the domain of arithmetic, is to enable a natural connection between area 
calculations and the basic arithmetical operations. It indicates that different textbooks provide 
different teaching approaches in Sweden.  

Lesson observation “Quantity and Measurement” in Japan 

Mr. Matsui is the lecturer of the course “Arithmetic Education” in a state university located in the 
middle part of Japan. He has worked as a mathematics teacher in lower secondary school for 14 

                                                 
1 We have not completed the investigation of Finnish textbooks yet. 



years and as teacher educator at universities for 12 years. He explains the four phases in the process 
of pupils learning about measurement by referring to the curriculum guidelines and clarifies those 
different comparison methods for the class. Thereafter, he discusses how the above mentioned four 
phases are treated in digital textbooks for grades one to five. The second half of the class is spent to 
experience the structured problem solving approach. This approach emphasises learner’s active 
participation in mathematical activities, challenging problems and collective reflections (Stigler & 
Hiebert, 1999). Mr. Matsui lets the PTs find out several different methods for the determination of 
the area of parallelograms aiming to teach pupils of grade five. Four PTs draw pictures and explain 
their different solutions on the blackboard (see Figure 1). Mr. Matsui points out the different kinds 
of “shifts” used by the PTs, and categorises them in: using the sum of the squares (Figure 1 in the 
middle), “parallel translation” (top left), “rotation” (bottom left), “same area transformation” (top 
left and bottom left) and “double area transformation” (top right). Then, he explains the formula for 
the area of parallelogram as height times length since the geometric transformations shows that the 
width (or height) and length of the parallelograms corresponds to those of rectangles. In the same 
way, he gives a final problem to find out methods for determining the area of trapezoids, using same 
didactical approach, and concludes the formula for the area of trapezoid; (a + b) h/2. 

 

Figure 1: The solutions of the prospective teachers 

Findings: The (T) of the DOTE in this episode is to let the PTs experience what the MOSCH and the 
DOSCH of “determination of area of a parallelogram and trapezoid” can look like. There, (T) of the 
DOSCH is to encourage the pupils to find out different solving methods of determination of area of a 
parallelogram and trapezoid to lead to establish the formula. To anticipate how pupils in grade five 
would solve area determination, Mr. Matsui makes the PTs participate in an exemplary lesson using 
the structured problem solving approach. He let them follow up one of the (τ) of the DOSCH ‒ 
whole-class discussions, where the (ө) of the DOSCH ‒ applying the statement of pupils’ previous 
experienced MOSCHs – is demonstrated. Those components of the DOSCH promote to construct a 
praxeology where several local MOSCHs from the previous to the forthcoming grades are connected. 
The Guidelines is both the technique (τ) and  the technology (ө) of the DOTE, since it suggests 
different kind of fundamental didactical approaches; e.g. using pupils’ previous knowledge from 
grades one to six, and the use of  divers didactical terms of the measurements (direct, indirect, 
arbitrary comparisons, standard units) and area determination (e.g. “same area transformation”). 

Lesson observation “Area of Polygons” in Finland 

The observed lesson is a workshop using manipulatives in the course “Didactics of Mathematics” 
for prospective teachers for grades one to six in a state university located in southern Finland. Mrs. 
Laine, the lecturer of the course, has worked as mathematics teacher in primary and lower secondary 
school for 5 years, thereafter, as teacher educator for 16 years. Previously she explained 



classification of mathematical figures (e.g. set of squares belong to set of rectangles, and set of 
rectangles belong to set of parallelograms…), line symmetry and rotational symmetry, perimeter and 
the area of polygons, property of circle, concept of scale. Today, the PTs move between six different 
tables to work practically with above mentioned concepts. The PTs work in groups using a 
compendium giving them instructions how to demonstrate those mathematical concepts practically 
for pupils. The compendium is written by Mrs. Laine and she also moves between the tables to give 
advices to the PTs on to how solve the tasks the compendium suggests. In this paper, we focus on 
the workshops “Area of Polygons” and “Area and perimeter”.  

In accordance with the description in the compendium, one PT in a group plays the “teacher role”. 
As it is prescribed in the compendium, the “teacher” explains how to calculate the area of rectangles 
by using grid paper with squares of 1cm2. PT1 reads the text in the compendium and explains that 
the sum of the squares is equal to the area of the rectangle. In the compendium, it is emphasised that 
teachers shall promote pupils to use an inductive way of working/learning. It means, letting pupils 
experience how to calculate the area of different types of rectangles, and have them find out the 
formula “height times length”. The next task is to find out the formula for the area of a 
parallelogram. The compendium describes the method of parallel translation (however, these 
didactical terms like parallel translation and same area transformation were not observed in the 
lesson) and explains that the same formula as for rectangles can be applied. PT2 explains this 
method by drawing the figures for their colleagues. In the same way, the PTs explain to each other 
the method of area determination of triangles, by reflecting the instruction in the compendium: 
“make a parallelogram by drawing two similar triangles and let pupils notice that area of the one of 
the triangle is the area of the half parallelogram”.  

The next task “Area and perimeter” is to make different kinds of quadrangles with area 12 cm2. Ms. 
Laine encourages the PTs to make even irregular quadrangles with the same area. The PTs test to 
make several different shapes of quadrangles and eventually notice that the perimeter do not need to 
be the same even the area is same. Ms. Laine then asks the group that how a figure does look like in 
order to have big perimeter. PT3 makes a long slim rectangle and shows it to others. Then PT4 
wonders and asks Mrs. Laine, “why does it work in that way? Are there any rules to be able to 
describe?” then Mrs. Laine answers, “it has to do with the inductive way of working in lower 
grades. We can derive understanding toward this phenomenon by working with many single cases in 
the lower grades. That is good enough on these levels (lower grades)”. 

Findings: In the first episode, the task (T) of the DOTE is to let the prospective teachers learn 
“inductive way of teaching/learning” to make school pupils find out the formula of area of a 
rectangle. There, the description from the compendium with exercises (workshop) and role-play are 
the DOTE (τ) to let the PTs to experience the praxeology of the school lessons (MOSCH ↔ DOSCH). 
Using the compendium and the statement of (not mathematical) induction is the DOTE (ө) to justify 
the praxis of the DOTE. The compendium describes directly (MOSCH ↔ DOSCH) where e.g. the 
MOSCH (τ) is figures, counting of the grids and multiplication, also the (ө) are standard units and 
commutative property of multiplication. Consequently, the DOSCH (τ) is to let pupils try to count 
different kind of rectangles’ area to find out the formula by their own. Here, the use of the inductive 
way of thinking is an essential element of the didactic technology of both the DOTE and DOSCH 
about the teaching of concept of area determination. 



In the last episode, PT4 wants to know the theory level of the MOSCH regarding the area and 
perimeter. However, Mrs. Laine’s DOTE (τ) consistently aims to inform the prospective teachers the 
(ө) of the DOSCH –“derive the understanding toward this phenomenon through many single cases” 
and do not aim to create a technological discourse of the MOSCH.  

Lesson observation “Area and Perimeter” in Sweden 

The course Mathematics and Learning for Primary School, Grades 4-6 Teachers II, Geometry, in a 
state university located in middle of Sweden, treats the knowledge in mathematics and mathematical 
education in relation to the current Swedish curriculum. The lecturer Mrs. Nilsson has worked as a 
mathematics teacher in grades 4-7 in 13 years and as teacher educator in 12 years. To begin with the 
lesson, she asks the PTs to write down what are their “own perceptions of the area”. Then she gives 
five group-exercises concerning area and perimeter. The sixth exercise consists of determining the 
area of different polygons by using Geo-board. Mrs. Nilsson demonstrates a method for area-
determination of an isosceles triangle by using a rubber band around the triangle. She divides the 
rectangle into two squares which are in turn divided into two halves. Half of the area of the squares 
is subtracted from the each side. Now, the PTs ponder the method for area-determination of another 
isosceles triangle in groups.  

 

       2a    2b       2c   

 

Figure 2a: an isosceles triangle. 2b: with an auxiliary line. 2c: PT6’s figure 

Mrs. Nilsson then demonstrates PT5’s solution where the same method is applied as the one she 
explained. (See Figures 2a & 2b). 4 – 1 – 1 – ½ = 1½ (area units). Then PT6 asks if he can apply the 
formula of the area determination for a triangle. He explains; first, dividing the original triangle into 
two triangles with the base of 1.5 length units (see Figure 2c), and then adding the area of the two 
triangles. This gives the area, (1.5 ∙ 1)/2 + (1.5 ∙ 1)/2 = 0.75 + 0.75 = 1.5 (area units). Some of the 
PTs express that they do not grasp directly how it works. Then Mrs. Nilsson comments “one (a 
pupil) can understand (this method) if he/she has more mathematical skills”. 

Findings: The (T) of the DOTE is making the PTs to learn a teaching method regarding area 
determination of isosceles triangles with manipulatives, where the MOSCH (τ) is the division of 
figures and subtraction of area. However, the DOTE (τ) and DOSCH (τ) – using Geo-board – ensures 
actually several another mathematical techniques than Mrs. Nilsson has planned to apply. This 
caused a breaking of a didactical contract (Brousseau, 1999) when the PT6 proposed another 
technique. Mrs. Nilsson’s intention was to train the PTs’ algorithmic skills with one technique. She 
let PT6 explain his alternative technique, nevertheless, did not validate it. Her intention was not to 
discuss the viability of different mathematical techniques for the grade five class but to establish a 
certain technique which is possible for all prospective teachers to manage. The didactic theory of the 
DOTE is difficult to identify from the observation.  

The summarized answers to the questionnaires  

Mr. Matsui states that the PTs should learn area of polygons can be determined in various ways by 
using pupil’s previously learned knowledge. He stresses also that the prospective teachers should be 



able to use some mathematical terms; the terms describe the various methods for area 
determination. He mentions also that the PTs should know the flow of the problem solving closely. 

Ms. Laine’s intention in this lesson is, each method of area determination of polygons area is related 
to each other; the area of parallelogram is based on rectangles, and the area of triangles is based on 
parallelograms. She emphasizes the importance of the application of inductive ways of working to 
find a general result, by examining a number of specific examples. She describes her PTs’ 
fragmental knowledge of the formulas for area determination.  During her lesson, she often 
discusses pupils’ misconceptions of area and perimeter to let the PTs realise their own 
misconceptions of this content.  

Mrs. Nilsson remarks her PTs’ difficulties and limitations concerning geometrical figures. Some of 
them have learnt formula for area determination superficially and sometimes incorrectly. Also their 
perception, “geometry is a difficult subject” blocks their learning process. Furthermore, the PTs 
have not developed mathematical terms that allow them to explain their solutions. To deal with 
these difficulties, she uses manipulatives to give them concrete ideas of different mathematical 
concepts and train to establish their own interpretation of the concepts. To train their mathematical 
communication skills, she uses group discussions with workshops.   

Final discussion 
The detailed Japanese curriculum with sufficient specifications about the teaching approach, the 
tradition of the structured problem solving and the textbooks adopting the same teaching approaches 
‒ all these factors contribute to give practical hints about how to design the lessons with 
epistemologically connected praxeologies to a Japanese teacher educator. It becomes explicit for the 
prospective teachers how to construct mathematics lessons in which alternative techniques are 
assessed and a technological discourse is taking place. Also, as it is described in Mr. Matsui’s 
answer to the questionnaire, a didactical terminology that describes mathematical techniques such as 
“same area transformation” is collectively used. It leads to the knowledge of the MOSCH ↔ DOSCH 
being institutionalized in the community of teacher educators and prospective teachers.  

In Finland, the explicit didactical theory of the DOTE (the compendium applying the inductive way 
of thinking) supports the PTs to learn the knowledge of the MOSCH ↔ DOSCH. However, the 
analysis from the lesson observation indicates a limitation of the compendium as the (ө) of the 
DOTE to mediate the theory level of the MOSCH ↔ DOSCH. Even though the prospective teachers are 
interested in learning more about the theory level of the MO, the workshop with the compendium 
lacks a function to give them a space for the discussions to institutionalize the theory block of the 
praxeology. According to the questionnaire, Mrs. Laine’s DOTE aims to stimulate prospective 
teachers’ cognitive learning. Hence we might state that the institutional conditions which forms her 
DOTE are actually originated from a pedagogical level. Thus the compendium gives single 
techniques in the MOSCH to let the PTs to visit the praxeology of the school lessons.  

In the case of Sweden, a didactical theory of the DOTE is not clearly distinguished neither from the 
observation nor the results from the questionnaire. The lack of shared knowledge of the DOTE 
indicates that praxis part of the DOTE – presentation of how to construct the MOSCH ↔ DOSCH is 
individually designed by teacher educators in Sweden. The result from the questionnaire shows that 
Mrs. Nilsson’s focus is definitely on the pedagogy. The PTs’ fragmented mathematical knowledge 



and their anxiety for applying mathematics strongly influence her teaching strategies. Similarly to 
the Finnish case, neither the Swedish curriculum nor the customs of the lessons with manipulatives 
help the teacher educators to encapsulate the lesson sequences with complex praxeologies.  
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Use of English as the international language of educational research can mask the nuanced meanings 
of constructs that researchers working in languages other than English originally employed in 
framing their practice and their theories. Cross-cultural comparisons are framed in terms of 
constructs expressed in the language of publication, usually English. Attention has been drawn to the 
significance of the resulting validity-comparability compromise (Clarke, 2013). The Lexicon Project 
investigates the pedagogical naming systems used by educators in nine countries (eight languages). 
Drawing on examples from the Australian, Chinese and Czech lexicons, this paper outlines the 
project’s research design and addresses the implications of distinctive lexical features for 

comparative classroom research between communities employing different lexicons to describe the 
phenomena of middle school mathematics classrooms. 

Keywords: Professional language, mathematics education, international comparison. 

Introduction 
The Lexicon Project involves research teams from Australia, Chile, China, Czech Republic, Finland, 

France, Germany, Japan and the USA. The project aims to document the naming systems (lexicons) 

employed by different communities speaking different languages to describe the phenomena of the 

mathematics classroom. Such lexicons consist of words of locally agreed meaning in a single 

language that collectively accord to lexical norms and conventions characteristic of the language 

community (mathematics educators) of the particular country. 

The theoretical position adopted by this project is that our experience of the world, our engagement in 

socio-cultural practices, and our reflection on those experiences and practices are mediated and 

shaped by available language. The Sapir-Whorf hypothesis suggests that our lived experience is 

mediated significantly by our capacity to name and categorize our world. 

We see and hear . . . very largely as we do because the language habits of our community 
predispose certain choices of interpretation (Sapir, 1949, p. 162). 

Marton and Tsui (2004) suggest that categories “not only express the social structure but also create 

the need for people to conform to the behavior associated with these categories” (p. 28). In this project 

we examine this normative role of language in relation to classroom practice and research. 

While a professional language of teaching practice seems lacking in the USA (Lampert, 2000), such a 
language seems to be well-established among educators in China and Japan (Fan et al., 2004; 



Fernandez & Yoshida, 2004). Our interactions with classroom settings, whether as learners, teachers, 

or researchers, are significantly mediated by our capacity to name what we see and experience (Clarke 

et al., 2016). Speakers of one language have access to terms, and therefore to perceptive possibilities, 

that may not be available to speakers of another language. This has implications for international 

comparative research. 

Any claim that researchers speaking different languages are analyzing “the same classroom,” even 

when working from the same video records, can be usefully contested. In two published translations 

of Vygotsky, we find the Russian term, “obuchenie,” represented as “instruction” in one translation 

and “learning” in another. This is not merely a problem of mistranslation. The term refers to an 

activity in which teachers and students are jointly participant for which there is no equivalent term in 

English. The term offers a conceptualisation of classroom practice with profound implications for the 

theorization of classroom teaching/learning. Recognition of these implications is not afforded in 

English. Educational research increasingly employs English as the primary language through which 

theory is developed and disseminated. It is essential to recognise the constructs that other cultures 

have employed in conceptualising their practice and examine the consequences for research and for 

theory of those distinctive terms (and the designated constructs) that might otherwise be ignored by an 

international community restricted to communication in English. 

Research design 
In the Lexicon Project, local teams of researchers and experienced teachers in all nine countries 

viewed a common set of video records of one eighth-grade mathematics lesson from each 

participating country. Specific lessons were selected by each country team for the diversity of 

activities displayed rather than for their representativeness. The purpose of this activity was to 

stimulate identification of those terms in the local language of each team that constituted the national 

pedagogical lexicon with respect to the teaching of middle school mathematics (ages 11 to 14). It is 
via the medium of these terms that teachers plan, engage with, discuss, and reflect upon the 

mathematics classroom. It was assumed that the vocabulary available to researchers in each country 

included most terms employed by teachers, but that the researchers’ vocabulary would include other 

terms not necessarily locally derived, being translations or literal appropriations of terms generated by 

other educational communities. For that reason, because of the focus on the local language, it was the 

teachers’ lexicon that was the principal focus of investigation in each country. 

The key prompt used by all teams was: “What do you see that you can name?” Once a term was 
identified and endorsed by the local team, a consensus description was constructed of the specific 
classroom phenomenon to which the term referred and examples and non-examples identified to 
maximize effective communication of the term’s meaning and classroom referent. These 
descriptions, examples and non-examples were crucial to the communication between teams of the 
meanings of terms that originated in the local (predominantly non-English) language.  

But teams were not restricted to only those phenomena visible in the video material. For example, 
where observation of one type of classroom activity reminded the observer/s of another activity type 
not evident in any of the video material, that term was included in the lexicon, together with a 
description, examples and non-examples. It was anticipated that these terms would describe 
classroom practices, both structures (such as organizational patterns or activity sequences) as well as 



specific activities observable in the middle school mathematics classroom. The function of the video 
material was fundamentally catalytic, stimulating recall of the names of classroom phenomena 
present and absent in the classrooms filmed. However, the video material also assisted 
communication within and between the different teams, clarifying the meaning of terms. 

Local team consensus was required for the inclusion of a term in the lexicon and in problematic cases 
authority was accorded to classroom experience and the team members’ capacity to argue that the 
term was in current use by teachers. The essential point was to record single words or short phrases 
that were consistently and widely used by teachers within that country with a consistent and agreed 
meaning. Subsequently, a process of local and then national validation was pursued to refine and 
ratify each lexicon. The means by which this validation process was undertaken varied from country 
to country, but basically involved inviting a national cross section of mathematics educators to 
comment on the adequacy, accuracy, and clarity of the constructed lexicon for that country.  

Of course, such lexicons are continually evolving and a process of regular updating is anticipated. The 

international project team takes particular interest in the studying the connections between terms 

within a given lexicon and the consequent clusters of related terms that provide the structure for each 

country’s lexicon. Both teachers and researchers were involved in the identification of these 

connections. The Chinese example below illustrates one approach to the identification of such 

structures. Comparison of the emphases evident within each country’s lexicon reveals distinctive 

features of the different countries’ mathematics pedagogy and priorities of classroom practice. 

Lexicon selection for the purposes of comparison and contrast 
In this paper, one English speaking and two non-English speaking communities have been chosen to 

provide contrasting examples of the language that educators in Australia, China and the Czech 

Republic employ to describe the objects and events of the middle school mathematics classrooms in 

their countries. Structural aspects of the lexicons suggest underlying pedagogical principles or 

associations that shape the ways in which middle school mathematics teachers function and interact 

within the mathematics classrooms of that country. The lexicons also offer insight into the language 

available to researchers in each country, by which they study, classify, analyze, conjecture and 

theorize about the practices and the affordances of the mathematics classrooms of their country. 

The project identified both similarities and differences in the national lexicons, revealing significant 

differences in the way teachers and researchers from each country perceive the classrooms that are the 

focus of their professional activity. These differences raise the question of the extent to which the 

international community of mathematics teachers and researchers can meaningfully and productively 

share the wisdom of long-established pedagogical traditions of practice, where these are encrypted in 

the naming systems by which each community identifies those classroom activities that it considers to 

be significant. Discussion is provided of: (i) the implications for comparison of the lexicons, and (ii) 

the implications of the lexicons for other comparative classroom research. These two purposes are 

conceptually distinct but connected. 

In this paper, English is used to describe the content and structure of both the Chinese and Czech 
lexicons. This reflects the underlying purpose and challenge of the Lexicon Project: to identify and 
make accessible to the international community the pedagogical principles and distinctions encrypted 
in different lexicons. Examples from the original language are cited for purposes of clarification. For 



example, some terms can be approximated in English (e.g., “Teacher Feedback” adequately names 教

师反馈 which is “jiào shī fǎn kuì” in Chinese pinyin1) but there are those that have no simple 
equivalent English term or phrase but can only be represented in pinyin and an extended English 
description (e.g., 课堂生成 which in pinyin is “kè táng shēng chéng” and which refers to “when the 
teacher makes full instructional use of an unexpected event beyond the intended plan for the lesson”). 
Similarly, the Czech term “S cílem objevit” (literally, “with the aim to discover”) refers to the 
occasion when “by solving the problem students discover something new.” Examples are used, if 
needed, in the discussion that follows. The three lexicons: Australian, Chinese and Czech are used to 

illustrate respectively the methodological processes of Lexicon Identification, Structure and 

Interpretation. 

The Australian lexicon: Generic rather than discipline-specific terms 
The Australian National Lexicon consists of 63 terms that are familiar and in widespread use (e.g., 
Assigning Homework, Rephrasing, Worked Example). A description was constructed for each term, 
together with both examples and non-examples of the use of the term. Because of the role of video in 
stimulating the recognition of terms, many terms can also be illustrated with video examples.  

In consultation with practicing teachers, the lexical items were organized in five categories: 
Administration (8 terms); Assessment (11 terms); Classroom Management (6 terms), Learning 
Strategies (27 terms) and Teaching Strategies (50 terms). A lexical item appeared in more than one 
category if the Australian team decided on the basis of teacher advice that there was a strong 
association with each category. 

One feature of the Australian National Lexicon is that none of the 63 terms identifies a practice unique 
to the mathematics classroom. The terms all refer to general pedagogical practices. Also worthy of 
note is the prevalence of ‘gerunds’ (a verb form that also functions as a noun; “teaching” and 
“learning” are relevant examples) in the Australian National Lexicon. This duality provides both 
advantage and disadvantage: “learning” as a noun is explicitly the product of the activity of “learning” 
in a way that objectified “knowledge” is not, but this duality can also result in less precise 
communication due to the inherent ambiguity over what is being referred to: process or product. The 
duality of simultaneously invoking both object and activity is not available in some languages, 
highlighting the affordances of particular languages and the difficulties of translation.  

The generic character of the Australian Lexicon content suggests that the lexicon might also be 
applicable to other school settings besides the mathematics classroom. 

Integrating forms of connection to structure the Chinese lexicon 

In the Chinese Lexicon, 126 terms were identified as being used by Chinese middle school 
mathematics teachers in describing their classrooms. Within the lexicon, every term is related to some 
other terms, which makes the teacher’s language an organic entirety. The challenge for the Chinese 

                                                 
1 Pinyin is a phonetic rendering of Chinese characters using the Latin alphabet employed in English and four basic tonal 
annotations. 



team was to clarify the structure of teacher’s pedagogical language as encompassed in these 126 terms. 
A two-step process was employed by the Chinese team to do this. 

Step One: Three types of connections were identified between lexical items: Hierarchical, 
Coincident and Sequential. 

Hierarchical 
Level One: In the first level, the terms can be divided according to whether the term referred to 
Teachers, Students or to Teacher-student Interactions.  
Level Two: Terms within the category “Teachers” could be divided into: Classroom Management, 
Demonstration, Questioning, Feedback, Summarizing, Explanation, and Tutoring.  
The category “Students” included: Classroom Management, Demonstration, Questioning, Feedback, 
Summarizing, Doing Exercise, Collaborative Studying, Self-learning and Listening.  
The category “Teacher-student Interaction” had no sub-structure at this level.  
Level Three (only one example can be shown for reasons of space): “Classroom Management” 
included: Teaching Affairs Management and Order Management.  
Apart from the hierarchical links, it was clear that some activities can happen at the same time while 
others occur in a sequence. This provided two additional mechanisms for the clustering of terms. 

Coincident 
This category refers to terms used in a teacher’s pedagogical language that refer to activities that can 
happen at the same time. For example, Group Report and Student Listening — when a group is 
reporting their findings or answers, the other students must be listening carefully in the class. 

Sequential 
Teacher Questioning and Student Answering are an example of a pair of tasks that are intrinsically 
sequential — when the teacher asks a question of the class, this action is typically followed by an 
individual answering or the class answering together.  

Step Two: Using the three types of connections, it was possible to organize the terms in the Chinese 
Lexicon into a structured array. Experienced teachers were recruited from high achieving schools in 
different parts of China to identify the connections. In this way, regional variations in interpretation 
and association could be identified. This illustrates the value of the lexicon in helping to identify 
regional pedagogical variations in a country as large as China, while also highlighting common 
pedagogical elements. 

Differences between professional language communities: Teachers and 
researchers in the Czech Republic 

As for all the country lexicons, the Czech lexicon does more than simply describe the current 
pedagogical vocabulary of practising Czech mathematics teachers. It should also be considered as a 
way to understand the Czech “culture of education” by providing examples that illustrate how it is 
possible to think about education. The use of pedagogical terms varies according to the groups of 
users (authors in different fields of pedagogy, teachers, etc.). One purpose of the Czech lexicon at the 
national level is to provide teacher education with a tool for triggering and framing discussion among 
pre-service students and practising teachers to facilitate better understanding of lesson structure and 
classroom practice. 



The terms of the Czech Lexicon were classified using the following categories: Classroom 
Management; Introductory Communication; Explanation of New Topic; Revision of Previously 
Taught Topic; Solving of a Problem; Checking Individual Work; Institutionalisation; Summary; 
Non-mathematical Social Interaction; Assessment; Concluding the Lesson; Individual Consultation 
with a Pupil. The Czech lexicon is highly stratified. There are several sub-categories in each of these 
themes. One distinctive feature is the prevalence of student-oriented terms that reflect the importance 
attached within Czech education to the teacher-student relationship. For example, “shrnují na pokyn 
učitele” (student invited to recapitulate teacher’s instruction) and “vysvětlují na pokyn učitele” 
(student invited to explain teacher’s instruction) are distinctively student actions. 

When constructing the Czech lexicon, the research team identified particular characteristics. One 
characteristic concerned the difference between how the language was used and understood by 
different target groups. Practising teachers used few technical pedagogical terms and communicated 
mostly using words from the language of everyday life. Pre- and in-service teachers were more likely 
to make use of terms drawn from their lessons on mathematical didactics. For example, “Heuristický 
rozhovor” is an academic term meaning “heuristic dialogue,” but a practising teacher would be more 
likely to say, “řízená diskuse” meaning “guided discussion” to refer to the same classroom 
phenomenon. The Czech team’s concern was how to combine the two ways of using the Czech 
lexicon – as a tool describing the structure of Czech lessons and highlighting important parts of 
lessons and as a tool to facilitate discussion between different groups. This dilemma is accentuated by 
the relative paucity of Czech technical terms not only in the domain of didactics of mathematics but 
also in pedagogy. The Czech example illustrates the different uses of the lexicon for teachers, 
student-teachers and educational researchers and identifies the potential for the Czech lexicon to 
serve as a catalytic focus for discussion between these different communities. 

Discussion: Implications for comparison 
The key steps in lexicon construction of Identification, Structure and Interpretation have been 

illustrated with examples from the Australian, Chinese and Czech lexicons respectively. Each step 

offers insights into the pedagogical history encrypted in each lexicon and the potential value of the 

lexicon to the teaching and research communities in each country. In this section, we explore the 

question of comparison. Two forms of comparison warrant discussion: within-project comparison of 

the separate lexicons for the purpose of gaining insight into the pedagogical principles of each 

language community encrypted in the professional lexicon of middle school mathematics teachers; 

and, second, the broader implications for international comparative classroom research of the 

documented differences in how the phenomena of the middle school mathematics classroom are 

conceptualized within each language community. Each of these is discussed separately below. 

Comparing lexicons: Constructs as boundary objects 

The primary consideration in making comparison between any two lexicons is the mediating 

construct that forms the basis of comparison (Clarke, 2015). For example, comparison might be made 

between the agency accorded in one lexicon to the teacher or to the students. That is, what proportion 

of lexical terms refer to teacher actions and what to student actions (cf “Level One” in the Chinese 

lexicon), and what is the nature of the actions in each case: initiating or reactive (for example). The 

Australian lexicon makes a comparable distinction between Teaching Strategies and Learning 



Strategies. In this case, “agency” provides the boundary object by which the two lexicons might be 

compared. Clearly, “agency” need not be a term situated in either lexicon. Instead, it represents an 

organizing construct with comparable conceptual legitimacy within each lexicon. As such, it 

constitutes an acceptable boundary object for the purposes of comparison of the lexicons. Other 

boundary objects might name categories of lexical items, such as: assessment or management. The 

requirement for legitimate comparison would be that the organizing construct (say, assessment) has 

local validity within each lexicon as designating a cluster of lexical terms and cross-lexicon validity in 

characterizing conceptually the same shared attribute for each lexical cluster being compared. 

Comparison of the Australian and Czech lexicons is possible on this basis, with respect to either of the 

mediating constructs: agency or assessment. 

Comparative research: Validity-comparability compromise 

The documentation of the separate lexicons has the potential to heighten the legitimacy of 

comparative classroom research being undertaken across two communities. For example, application 

of a measure of participation to the comparative analysis of classroom data from two countries is 

problematic, unless it can be demonstrated that “participation” has the same cultural relevance within 

the pedagogical practices of each community. However, if participation is treated not as the basis for 

an imposed metric, but as a boundary object, then the question can be asked, “What forms of 

participation are legitimized within the lexicons of the two countries whose classrooms are being 

compared?” Analysis of the separate lexicons to identify those terms that characterize forms of 

participation in classroom practices would reveal both similar and different types of participatory 

activity. For example, choral response has been documented as a frequent form of participatory 

activity in mathematics classrooms in China and Korea, but not in classrooms in Australia and Japan. 

Reciprocally, student-student talk is a common form of participatory activity in mathematics 

classrooms in Australia and Japan but not in China and Korea (Clarke, Xu & Wan, 2013). Any 

comparison of student participation in classroom activity in these four countries can be undertaken 

with much greater validity, where attention is given to important distinctions between forms of 

participation as these are facilitated and named by teachers in each of the countries whose classroom 

practices are being compared. Utilization of the lexicons from each country to identify legitimate 

points of comparison would heighten both validity and comparability (Clarke, 2013). 

Conclusion 
The construction of national lexicons representing the naming systems employed by educators using 

different languages to “name what they see” in the middle school mathematics classroom represents 

the starting point for the deconstruction of pedagogical histories and norms of practice enshrined in 

the languages by which classroom phenomena are described, studied and theorized in different 

countries. The documentation of these lexicons has significant practical value to each participating 

community and to the international community of mathematics education practitioners and teacher 

educators. The focus of this paper, however, has been on the implications of such lexicons for the 

legitimacy of international comparative research and on the use of any named construct as a boundary 

object for the purposes of comparative research analyses. It is intended that the lexicons serve as tools 

to interrogate, enhance and advance comparative classroom research internationally. 
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The aim of this study was to examine Kosovar and Polish pre-service teachers’ knowledge of 
fractions. Thirty-three Kosovar and thirty-five Polish pre-service teachers participated in the study. 
They were asked to complete a fractions knowledge test, which was adapted from Cramer, Post, 
and del Mas’s (2002) study. The results identified substantial differences between Kosovar and 
Polish pre-service teachers’ knowledge of fractions. The differences between these two groups of 
preservice teachers’ knowledge of fractions appeared to be a consequence of the number of courses 
related to mathematics, the number of hours of lectures in mathematics during their studies and the 
structures of the programmes in both universities. 

Keywords: Pre-service teachers, fractions, mathematical knowledge. 

Introduction 
Fractions present one of the most important and, at the same time, most complex mathematical 
concepts of the elementary school curriculum (Behr, Post, Harel, & Lesh, 1993; Charalambous & 
Pitta-Pantazi, 2007) with applications to many other areas of mathematics. Researchers 
internationally have shown that in the context of primary school education, fractions are one of the 
most problematic concepts for both pupils and teachers (Cramer, Behr, Post & Lesh, 1997; 
Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981). The NCTM (2000) points out that secondary 
school students should possess an in-depth knowledge of fractions and be able to use them 
appropriately in the process of problem solving. Misconceptions that students have about fractions, 
both in terms of fractions (as numbers) and how to operate with fractions, relate particularly to the 
way fractions are represented and how they are taught (Barmby, Harries, Higgins, & Suggate, 2009). 
These difficulties begin in elementary school (Empson & Levi, 2011; Moss & Case, 1999), continue 
through secondary school (Smith, 2002) and high school and very often even at the level of higher 
education (Orpwood, Schollen, Leek, Marinelli-Henriques, & Assiri, 2011).  

There are few doubts that a deep understanding of fractions, both conceptually and procedurally, 
and the skills to solve word problems with fractions are necessary for mathematics teachers to teach 
effectively. They should not only experts from the point of view of mathematical content knowledge 
but they also need to know how to teach this content, considering their position as experts from a 
pedagogical content knowledge point of view.  

However, many studies have shown that teachers also have difficulties in understanding fractions 
and operations with them (Ball, 1990) and have stressed that teachers’ knowledge was not 
satisfactory (Charalambous & Pitta-Pantazi, 2007; Lin, Becker, Byun, & Ko, 2013). Therefore, 



closer attention must be paid to the future teachers, in order to help them improve children’s 
procedural and conceptual knowledge generally and fractions specifically. Such gaps in knowledge 
directly influence the learning of fractions by students (Charalambous & Hill, 2012; Hill, Rowan, & 
Ball, 2005). When working with fractions they encounter difficulties with respect to both teaching 
and explaining them, which poses a constant challenge for the teaching community of mathematical 
education. Therefore, it is important to pay closer attention to the subject matter knowledge of pre-
service teachers (Wilson, 2010), as well as pre-service teachers training concerning the issue. In this 
study, therefore, we focus on Kosovar and Polish pre-service teachers’ knowledge of fractions. We 
tested their conceptual and procedural knowledge of fractions, and their ability to explain their 
solution strategies to a variety of tasks, both standard and word problem. 

Theoretical background of the study 
The concept of fractions has been examined and discussed by many authors. Many of them have 
identified and discussed different ways of presenting the fractions (Behr et al., 1993; Kieren, 1976). 
Different theoretical models have been proposed for understanding of fractions (Behr et al, 1993; 
Charalambous & Pitta-Pantazi, 2007). Kieren (1976) was the first to propose that fractions should 
not appear only as a single concept model, recommending that they should be conceptualized as a 
set of interrelated sub-constructs: part-whole, ratio, operator, quotient, and measure. The 
presentation of fractions as part of a whole refers to division of an amount or a group of discrete 
objects into equal parts and comparing these pieces with the total value of quantity (Vula et. al., 
2015). The ratio sub-construct represents the interconnection between two quantities and usually 
appears as a:b or a/b. This way of presenting the fractions expresses a relationship between the two 
quantities. The operator is a function that transforms segments, figures or numbers (Behr et al., 
1993). Fractions as a quotient appear as a result of division of two integers and measure construct 
identifies fractions as numbers or associating fractions with the measure assigned to some interval 
(Kieren, 1976). To be able to teach fractions successfully, teachers require a comprehensive 
understanding of these different conceptualizations, the interconnection between them and a battery 
of teaching approaches (Behr et al., 1993). 

Purpose and research questions 
The main purpose of the research was to compare Kosovar and Polish pre-service elementary 
teacher’s knowledge of fractions. In so doing the study aimed to (a) assess and compare pre-service 
teacher’s knowledge of the different fractions’ concepts and their didactical representations and (b) 
analyze the ways in which pre-service teachers from both countries explain their rationale for a 
procedure. 

1. What are the main differences between Kosovar and Polish pre-service teacher’s knowledge 
of fractions? 

2. Are there differences in strategies used by Kosovar and Polish pre-service teachers?  



Method 
Participants 

The data were collected from 68 pre-service elementary teachers from the University of Pristina in 
Kosovo (N=33) and the Pedagogical University of Cracow in Poland (N=35). In Kosovo, 
elementary school teachers for grades 1-5 are generalist teachers. Consequently, all pre-service 
elementary teachers are trained in all school subjects, including mathematics. The elementary 
Bachelor’s degree program is a 4-year qualification. Three courses of elementary mathematics are 
taught in the first and second year of study (in total 514 hours) and the course on teaching 
mathematics (in total 178 hour) is taught in the last year of the study program.  

Teachers in Poland are generalist only for grades 1-3 of elementary school, and to teach for the next 
three grades they must specialize in a chosen subject. In order to teach mathematics from grades 4 
through 6 they should achieve Bachelor’s degree in mathematics with a teaching specialization (3 
years). They attend many theoretical courses in pure mathematics (in total 1239 hours) as well as 
courses designed for the teaching specialization (in total 893 hours) and others. Although, there is 
no subject like elementary mathematics, its main themes are discussed and practiced within the 
course named Didactics of Mathematics.  

Procedure 

Participants were asked to complete the fractions’ knowledge test, developed and administrated to 
measure their performance of fractions’ knowledge. The items of the test were used in previous 
studies (Cramer et. al. 2002; Charalambous and Pitta-Pantazi 2007; Lin, et al. 2013). The test was 
divided in three subsets of tasks and time for its completion was not limited. 

Methodology 

The first subset of tasks, drawing on Kieren’s (1976) model, includes fraction-related problems 
focused on pre-service teachers understanding of fractions as parts of a part-whole (tasks 1-2), ratio 
(task 3), quotient (task 4), operator (task 5) and measure (tasks 6-7). The second subset addresses 
how pre-service teachers explain the process of solving fractions problems. The third subset focused 
on fractions-related word problems and analyzed according to Vula’s (2006) model. 

Results 
First research question: What are the main differences between Kosovar and Polish pre-service 
teacher’s knowledge of fractions? 

Figure 1 shows the success rates, as percentages, of the two groups of pre-service teachers on each 
of task, with the Kosovar results being shown in the left-hand column and the Polish results in the 
right-hand column for each task. It can be seen, for example, that 100% of the Polish participants 
solved task 5 correctly (all with justification), while only 60.61% of the Kosovo participants solved 
this task correctly (although only 14 gave the justification). We also found notable differences on 
tasks 11, 13, 14. More than 60% of the Kosovar pre-service teachers failed to solve task 11, while 
66% of the Polish participants solved it correctly. Similar differences were identified on tasks 13 
and 14. In particular, the most significant differences were found with respect to tasks 7 (measure) 



and 15 (solving word problem with 3 steps). While more than half of all Polish students solved 
them correctly, 65.70% and 54.30% respectively, not one Kosovar students solved either. 

Figure 1: General success rate results 

Second research question: Are there differences in strategies used by Kosovar and Polish pre-service 
teachers?  

The figures of Table 1 show the number of participants who answered the different tasks correctly 
with justification, without justification or incorrectly. 

 

Table 1: Number of answers in both groups respectively in pairs (Kosovo, Poland) 

The majority of participants from both countries provided the correct answer to task 1, although 8 
students from Kosovo (Figure 2) and 4 from Poland (Figure 3) provided incorrect answers when 
asked to present a fraction as a part of an ‘irregular’ unit, assuming that the ‘whole’ would be a 
circle (the examples presented are chosen randomly). 

 
Figure 2: Task 1 sample answer, Kosovo 

Kind of answer 
(Kosovo; Poland) 

Whole-
part 

 
(Task 1) 

Whole-
part 

discrete 
(Task 2) 

Ratio 
 
 

(Task 3) 

Quotient 
 
 

(Task 4) 

Operator 
 
 

(Task 5) 

Measure 
 
 

(Task 6) 

Measure 
 
 

(Task 7) 

Correct with justification (15; 28) (26;30) (23; 34) (31; 34) (14; 35) (23; 34) (0, 23) 

Without justification (10; 3) (4; 4) (6; 0) (0; 0) (12; 0) - (0, 0) 

Incorrect  (8; 4) (3; 1) (4; 1) (2; 1) (7; 0) (10; 1) (33, 12) 



 

Figure 3: Task 1 sample answer, Poland 

For solving task 4 (quotient), different strategies were used by Kosovar and Polish pre-service 
teachers. Almost all Kosovar participants who completed the task correctly, converted fractions to 
decimal numbers or used “butterfly method” (cross multiplication) and explained which fraction is 
bigger. The Figure 4 provides an example how 1 student used two strategies for solving the task. In 
the first part it is shown the cross multiplication strategy and then explained why the second fraction 
is bigger. The second strategy used by this student is by converting fractions to decimal numbers. 

 

Figure 4: Task 4 sample answer, Kosovo 

The majority of Polish participants, 27 people, found a correct solution using the strategy of 
transferring given fractions into a common counter (3 people, common counter: 30) or common 
denominator (24 people), which was 126 (12 people) or 63 (11 people) and one person only 
described the method (without calculation). The second strategy used by 6 people was comparing 
the given fractions to ½ and noticing that the first is smaller and the second bigger than ½. Only two 
people used the method of solving the task by converting fractions to decimal numbers, and one of 
them only described the method but did not apply this (getting 0 points for that task). 

Strategies in 
group 

Common 
denominator 

Estimation 
(decimals) 

Estimation 
(comparing to ½) 

Kosovo 2 24 0 

Poland 33 3 1 

Table 2: Distribution between strategies used 

For solving task 5 three strategies were used from participants: strategy of common denominator, 
estimation strategy in the form of decimals and strategy of the comparison to half. Two participants 
from Kosovo and the great majority of 33 participants from Poland solved the task using a common 



denominator strategy, while 24 participants from Kosovo and 3 participants from Poland used an 
estimation strategy in the form of decimals. Table 2 shows the distribution of the strategies used by 
both groups. Two Polish participants used two strategies, providing apart from common 
denominator the estimation strategy - one in decimal form and the other comparing to ½.  

While in Poland only 2 students did not answer task 7, all of Kosovo students failed to solve given 
task (Figure 5). 23 Polish students calculated the distance between adjacent points marked on the 
number line (Figure 6). 

 
Figure 5: Task 7 sample answer, Kosovo 

 

Figure 6: Task 7 sample answer, Poland 

Discussion 
The purpose of this study was to (a) assess and compare Kosovar and Polish pre-service teacher’s 
knowledge of fractions and their representations and (b) analyze how they explain the process of 
solving fractions. To answer these questions, we analyzed test tasks completed by pre-service 
teachers from the two countries. In so doing, we identified substantial differences between Kosovar 
and Polish pre-service teachers’ knowledge of fractions, with Polish students being more 
procedurally successful on every task and typically able to offer better explanations. These 
differences were found across all fraction conceptualizations as discussed by Kieren (1976). 

There may to be several reasons for these differences. For example, the number of hours that 
students receive in mathematics courses and teaching methods in mathematics are much higher in 
Poland than in Kosovo. Also, because pre-service teachers in Kosovo are being trained to be 
generalist teachers from grade 1 to 5, they may not receive sufficient hours dedicated to 
mathematics and didactics in order to fulfill their needs for mathematics knowledge of pre-service 
teachers (Wilson, 2010). In addition, differences in the curricula and the ways in which fractions are 
represented in elementary mathematics textbooks (Vula et al., 2015), both sources on which pre-
service teachers draw during teaching practice, and their own previous learning as school students 



may also explain why Kosovar students performed less satisfactorily than their Polish colleagues. 
Therefore, the findings of this study should act as a springboard for further research into and 
discussion of how elementary teachers are prepared for their professional responsibilities. In this 
respect we argue that it is important for the instructors of pre-service teachers’ mathematics courses 
to provide adequate opportunities for their students to develop a knowledge of fractions that better 
prepares them for their future roles as teachers of children.  

In light of the above, our future aims are to investigate further not only Kosovar and Polish pre-
service teachers’ knowledge of fractions but also those of pre-service elementary teachers in other 
European countries. 
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Finnish teaching materials in the hands of a Swedish teacher:  
The telling case of Cecilia 
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A common perception in Sweden is that the best teachers do not rely on ready-made teaching 
materials. The position taken in this paper, building on socio-cultural theory, assumes that teacher 
materials can support teachers. Although there is an emerging body of research focusing on teachers’ 
use of teaching materials, cross-cultural studies on this are scarce. The current study addresses this 
gap by offering unique insight into how a Swedish teacher makes use of teaching materials originally 
from Finland but slightly adapted to the Swedish context. Based on teacher interviews and classroom 
observations, I studied how the teacher planned for and enacted lessons. Findings indicate that she 
fits the material to her pre-existing practice and, thus, does not follow the material’s original 
intentions. The results are compared with previous results on materials and their use, and finally 
some implications for Swedish mathematics education are presented.  

Keywords: Cultural scripts, educational context, primary school, teaching materials, telling case. 

Introduction  
Finland is known as a country with good learning outcomes in mathematics (e.g. OECD, 2013). 
Furthermore, since the 1980s the country has had a tradition of producing exhaustive teacher guides 
(TGs) in collaboration with teachers, teacher educators and other experts (Niemi, 2012). These two 
factors have likely increased the interest in applying commercially produced Finnish teaching 
materials, such as textbooks and TGs, in Sweden as well as other countries, such as Italy. Applying 
new teaching material from Finland in Sweden could be achievable, as there are many similarities 
between the school systems in the two countries – for instance, the inclusive nine-year compulsory 
basic education with no special tracking, and the national core curriculum that provides an overall 
outline for school education. In addition, primary school teachers in both countries often teach all 
subjects, and are free to choose which teaching materials to use. There are also differences between 
the countries’ educational systems; e.g., Swedish teachers at primary school level are seldom subject 
specialists while Finnish teachers are well educated, but also the widespread negative talk in Sweden 
concerning the use of ready-made teaching materials (Bergqvist et al., 2010), which does not occur 
in Finland. Swedish teachers’ orientation toward ready-made teaching materials most certainly affects 
how they engage with and use them (cf. Stein, Remillard & Smith, 2007). 

Swedish teachers seldom use TGs in planning and enacting mathematical instruction (Jablonka & 
Johansson, 2010). Instead, they rely mostly on the student textbook as their main source, a common 
feature of teachers in many parts of the world (Remillard, 2005; Stein et al., 2007). Also, Swedish 
compulsory school teachers have for the last two decades often organized individualized teaching, 
whereby students work individually in different areas and at their own pace (Bergqvist et al., 2010; 
Remillard, Van Steenbrugge & Bergqvist, 2016). The fact that students are taught largely according 
to the structure of their textbook has also resulted in less variation in teaching (Jablonka & Johansson, 
2010). However, Finnish teachers, especially primary school teachers in mathematics, trust and use 



commercially produced TGs extensively, and there are indications that Finnish teachers often 
organize whole-class teaching and use teaching methods other than individual seatwork. This has 
consequently led to a classroom practice that is different from the Swedish one (Jablonka & 
Johansson, 2010; Pehkonen, Ahtee & Lavonen, 2007). While there is growing interest in adopting 
and implementing mathematics materials in a new educational context, we know little about how 
imported mathematics materials are used or how they may influence classroom practice.  

Therefore, in this paper I aim to investigate the interplay between a Swedish teacher and the written 
curriculum as represented in the suggested lesson plans in a TG – Favorit Matematik (FM), originally 
from Finland. Moreover, I intend to show how this interplay may impact on enacted teaching. 
Teaching is viewed as a cultural activity, and cultural activities are represented in cultural scripts (cf. 
Stigler & Hiebert, 1999) and are consistent with the stable web of beliefs and assumptions within a 
cultural group. Scripts provide a background for interpreting behaviors; however, they do not 
describe, determine or predict the behavior of individual teachers (Stigler & Hiebert, 1999). Both 
teacher and teaching materials are significant participants and are situated in a socio-cultural context, 
a specific educational context. Through this, they both play a role in mediating that interplay, which 
is shaped by historical, social and cultural factors (Brown, 2009; Remillard, 2005). Since cultural 
scripts are deeply rooted in practices and are hard to see from within a given culture, I opted for a 
case study approach, allowing for a deep analysis. I therefore anticipate that a study on the use of 
teaching material from one culture by a teacher from another culture will advance our understanding 
of the cultural scripts in both cultures, and of the participatory relationship between teacher and 
teaching material.  

I have previously analyzed TGs from four Finnish textbook series in mathematics, and found that 
their structure, form and content were relatively homogeneous (Koljonen, 2014). In Koljonen, Ryve 
and Hemmi (under review), we captured what kind of mathematics classroom the Finnish guides 
promote. Recurrent cultural scripts of the classroom practices were found, comprising: keeping the 
class around a specific topic; keeping the teachers and students active; clear lesson goals are vital 
features; different recurrent activities; concrete material; and embedded differentiation. Due to these 
findings and the different classroom practices in Sweden and Finland, it is of interest to investigate a 
Swedish teacher’s interplay with Finnish teaching material as a way to compare the written and the 
enacted curricula grounded in two different cultural platforms. The research questions guiding this 
study are: 1) How does a Swedish primary school teacher, locally regarded as competent, interact 
with a Finnish teacher guide while planning and implementing teaching? 2) How does this interaction 
influence the classroom practice?  

Methodology 
This study is part of a larger cross-cultural project examining the interplay between Swedish and 
Finnish teachers using the same mathematics teaching materials. The data for this project are 
comprised of semi-structured interviews with four primary mathematics teachers from each country. 
The interview questions cover seven themes: teacher’s education; teacher’s experience; school 
settings; classroom culture; beliefs about mathematics and its teaching; TGs; and planning of lessons. 
Additionally, three consecutive mathematics lessons per teacher were videotaped. When videotaping 
during the lessons, I used two cameras: one teacher camera that captured the teacher’s actions and 
talk, and one whole-class camera focused on the students’ actions and talk. I conducted and 



transcribed the audio-recorded interviews (50-110 minutes) and the videotaped lessons (40-60 
minutes). FM (Asikainen, Nyrhinen, Rokka & Vehmas, 2015) includes references to the Swedish 
national core curriculum (Lgr 11), but does not describe how the lesson goals actually serve to prepare 
students to meet the curriculum goals. Earlier studies (Koljonen, 2014) revealed that FM lacks 
educative support (cf. Brown, 2009) for teachers as well. For example, the rationales behind its 
suggested lesson activities are rarely explicitly discussed, which is a critical component in teacher 
learning. Each lesson (4 pages) in FM has a similar structure, both visually and content-related; for 
instance, clear recurrent headings located in the same place on every page, and a variety of optional 
activities presented for each lesson. The activities are all linked to the central content and the lesson 
objectives, from which the teacher is to choose appropriate activities for their practice.  

As a starting point in the larger cross-cultural project, I selected one of the Swedish teachers, Cecilia 
(fictitious name), to exemplify a single case as this approach offers possibilities for deeper theoretical 
insights that would otherwise go unseen (Andrews, In press). Cecilia graduated in 2010 as a 
compulsory school teacher (F-6), and was prepared to teach all other subjects besides mathematics as 
well. Thus, she is not a mathematical subject specialist. However, one of the criteria for selecting the 
teachers was that they were regarded as locally competent (cf. Clarke, 2006). Among the other 
teachers, Cecilia is recognized and esteemed for her locally defined ‘teaching competence’ and has 
been nominated by the school’s principal and the municipality and is thus regarded as a local subject 
specialist. At the time this study was conducted, Cecilia was in her third year of teaching with FM. 
She teaches children in Grade 3; her 24 students come from a constrained socio-economic area, with 
mostly non-native speaking families. Cecilia volunteered to participate, knowing the study was on 
FM and its use.  

Data analysis 

Teaching is viewed as a cultural activity (Stigler & Hiebert, 1999) and a design activity, whereby 
teachers craft instruction, and do so with different degrees of artifact appropriation: offloading, 
adapting and improvising (Brown, 2009). Cecilia’s interaction with TGs is characterized through 
these three analytical constructs. Offloading emerges when a teacher follows material and assigns a 
great degree of authority to the teaching material. That is, the agency for the delivery of content lies 
in the material. Adapting, on the other hand, occurs when a teacher reflects when elaborating with the 
material. Here the agency is embedded in both the material and the teacher. Improvising, finally, 
relates to when a teacher does not closely follow the material. That is, the agency lies with the teacher 
as she relies on her own strategies for instruction, with minimal reliance on the material. The 
relationship is further characterized as participatory or non-participatory (cf. Remillard, 2005). When 
the teacher regularly and deliberately uses the material, and also looks at it critically, this provides an 
intimacy between teacher and material and is thus categorized as a participatory relationship. 
Meanwhile, if the teacher’s use of the material is more tacit and sporadic, it will lack intimacy and is 
thus categorized as a non-participatory relationship. My intention is to characterize Cecilia’s 
interaction with the material in use (FM) and to compare the written curriculum in FM and Cecilia’s 
enacted curriculum. I do not intend to evaluate which degree of interaction (offloading, adapting or 
improvising) or the relationship (participatory or not) is better than the other. However, I 
acknowledge that comparison and evaluation are intertwined (cf. Jablonka, 2015). Below, I present 



Cecilia as the telling case through some merged snapshots of from both interview and classroom 
recordings.  

The telling case of Cecilia 
During her interview Cecilia said that it is a waste of time making a written plan, because “if a lot of 
the students don’t understand today’s lesson, we would have to repeat it tomorrow and then my 
intended plan would crash if I’d written it down” (Cecilia, 9 Nov 2015). On the one hand, such 
comments indicate that Cecilia, as a locally competent teacher, trusts her ability to deliver the 
mathematical content with appropriate strategies for instruction. On the other hand, it can also be due 
to a lack of time that she does not write her plans, as she stressed that the ongoing national professional 
development program, Matematiklyftet, takes time away from all the things she has to do. Cecilia 
stated that she starts her planning for the introduction phase not by using the TG but the student 
textbook:  

I turn to the current page in the textbook and see that the next passage is about multiplication by 
9. Immediately, I have an idea about which strategies I want the students to know, and notice that 
the book is using the same strategy as me... but I prefer to create my own [instructions] using my 
own language. (Cecilia, 9 Nov 2015)  

Cecilia’s prospective mental plan is partially consistent with the textbook’s plan. However, here the 
agency stays with Cecilia, since she claims to have her own mental plan. Her use of and interaction 
with the textbook could be understood through the Swedish teachers’ context, in which they are not 
accustomed to using TGs in planning and teaching. In addition, the minimal support provided for 
how TGs may be used may compel Swedish teachers to turn to the textbooks instead. This and several 
other similar excerpts led me to infer that Cecilia is influenced by Swedish culture, as she states that 
she “prefers to create her own instructions”, reflecting a generally held perception of Swedish teacher 
competence. During the interview, Cecilia mentioned, due to lack of time, that she occasionally 
glances at the TG to get a skeleton plan for the lesson. She then looks at its “introduction box”, which 
suggests how to introduce the lesson’s topic on the board. Hence, from the interview I infer that she 
perceives the material as worth having in the classroom but not necessary for planning. I infer that 
she improvises when planning, and that the agency lies with her. I further infer that she has a more 
tacit than close relationship with the material, especially since she seldom uses the TG and hardly 
ever reflects on the material or its impact on the context. 

The video data reveal that, while mobilizing the teaching, Cecilia sequenced her lessons into four 
distinct episodes. The allocated lesson time of her lessons consists of: the introduction phase, taking 
approximately 22% (~10 min) of the lesson time; what to work on in the student textbook; the 
students’ individual seatwork, taking approximately 56% (~25 min) of the lesson time; and the 
closure of the lesson. Cecilia always starts her lessons by showing a strategy or method in the 
introduction phase that is applicable to that day’s pages in the student textbook, and by referring to 
textbook: “Hey, listen! Last Thursday we went over page 90 in the textbook, as we used these hands 
[pointing to the cut-out hands in fabric on the blackboard] as one strategy for multiplying by 9. Today 
we’ll revise it” (Cecilia’s L1, 9 Nov 2015). Here, Cecilia is simultaneously showing the textbook 
pages they have been working with. This revision is not included in the TG’s suggested lesson plan, 
and no elaboration or reflection is revealed. But this could also be due to the evaluation at the last 



lesson closure. Hence, I infer that Cecilia is improvising. Nevertheless, the video data frequently 
show that the delivery of the content is based on the material, as she offloads the agency to the 
textbook as she follows the textbook pages, lesson by lesson. Cecilia is very firm during the interview 
that the cut-out fingers she refers to are not from the TG but were instead an idea that simply came to 
her. During Lesson 1, she first shows two examples of the old strategy before introducing a new 
strategy for multiplying by 9: “Hey guys, listen! At the top of page 91, it says ‘Multiply and write in 
the table’… This is a different strategy… So, let’s try this too! Ehh, they want us to think like this... 
Can you give me a multiplication from the 9 table, Ali?” (Cecilia’s L1, 9 Nov 2015). This extract 
illustrates Cecilia turning to a rather close offloading to the student textbook – especially when she 
says they want us to think like this. The textbook lacks a description of how to deal with this task, and 
the fact that Cecilia does not explain to the students how “to think” indicates that she has not 
elaborated on this task beforehand. I infer that she shows this task since it is included on that day’s 
lesson pages in order to prepare the students for their individual seatwork. However, the TG offers 
some explanation, and recommends that they fill in this table together in the whole-class setting, 
which Cecilia has missed since she does not read the TG carefully or regularly. This displays that her 
relationship with the TG is rather tacit. The video data further reveal that after the introduction Cecilia 
always tells the students which pages to work with during the individual seatwork. She does this 
through the material’s website and the SmartBoard, where she shows the students the pages. She also 
writes the pages on the whiteboard. This procedure is not stated in the material, which confirms that 
Cecilia is improvising and maintaining the agency. The following is an example of how she 
transitions the students into their individual textbook work: “I think most of you managed to do both 
pages 90 and 91, and possibly also 92 or 93. On page 94 it says ‘We rehearse’, and these two pages 
are the goal of today’s lesson” (Cecilia’s L1, 9 Nov 2015). This extract additionally confirms that 
Cecilia is closely offloading to the textbook, as she assigns a great degree of authority to it. At no 
time does she present the lesson objectives, which are clearly visible in the TG. Instead, she mentions 
that the lesson goal is to do pages 94 and 95. Neither does she use the different recurrent activities or 
concrete materials included in the TG during any of these lessons. 

The video data further reveal that, during the individual seatwork, some students are working on other 
pages than the ones Cecilia had announced before they started working individually, and some are 
even working in a textbook for Grade 2. This is not in line with the material’s intention, as it offers 
embedded differentiation instead. As shown in the video data, Cecilia always closes the lessons with 
a blind evaluation to determine whether she can move on or if rehearsal is necessary.   

Now, close your eyes and answer YES to my question by raising your hand. If your answer to my 
question is NO … leave your hand on the table […] ‘I feel confident about the strategy of using 
my fingers to multiply by 9’ Okay, those of you who have your hands up can put them down. ‘I 
still think it feels a little hard to use this strategy, using my fingers to multiply by 9’ Thanks! ... ‘I 
feel pleased with what I did during the mathematics lesson today’ Great! (Cecilia’s L1, 9 Nov 
2015) 

This extract confirms that Cecilia does not just say she wants all her students to be on track but that 
she also checks this before ending the lesson. In so doing, she is checking their understanding of the 
“old” strategy for multiplying by 9, but not whether they understand the “new” strategy she has 
introduced, or the objectives displayed in the guide. Two of the questions are related to the 



mathematics, whereas the last is connected to students’ individual seatwork. There is no support in 
the material for how to end the lessons, so Cecilia trusts to experience and improvises the  evaluation. 
Hence, from the video data I deem that she uses the textbook for support for the students’ individual 
seatwork but not for her actions or events when mobilizing the teaching. The video data show that 
Cecilia improvises, but does not critically reflect on the material or its impact on the educational 
context, or make any changes in relation to the material. In addition, at several points, the interview 
and video data show collectively that Cecilia largely offloads the agency to the textbook and uses it 
on an ad hoc basis. Cecilia’s use of the TG is minimal. Thus, this settles her weak interaction with 
the material; i.e., having a non-participatory relationship with it. 

Discussion and conclusion 
In this paper, I present the telling case of Cecilia, a Swedish teacher, locally regarded as competent. 
The aim is to reveal her interaction with an imported TG from Finland when placed in her specific 
context. Thus, the material is sited in a new educational context. In the analysis I compare the written 
Finnish TG with Cecilia’s actual classroom practice. The analysis is therefore combined with in-depth 
descriptions and snapshots of events, and is thus in line with the telling case (cf. Andrews, In press) 
as an attempt to make visible how she interacts with the Finnish material and how this interaction 
may have affected her classroom practice.  

First, how does Cecilia interact with the Finnish material? My analysis revealed that Cecilia uses the 
student textbook when teaching, and that she offloads agency to the textbook. This interaction is 
categorized as non-participatory since it lacks intimacy. Her interaction with the TG is even weaker, 
and more sporadic and tacit than with the textbook, and is thus also non-participatory. When she trusts 
in her own knowledge and experience, improvising occurs, especially in regard to the repetition at 
the beginning of the introduction phase and the closure of the lesson with the blind evaluation. No 
adaptation was observed, since no equally embedded agency was found. Cecilia says she creates her 
lesson plans mentally. However, her focus is not on the entire lesson, since she only prepares the 
introduction phase. Even though she has chosen FM due to her judgment of its overall good quality, 
she does not seek support for teacher learning or to enhance the variety in her lessons through its 
recurrent activities. Second, is Cecilia’s classroom practice affected by her interaction with the 
Finnish material? My analysis revealed that Cecilia’s enacted classroom practice mirrors the “typical 
Swedish” practice, with short introductions and then individual seatwork most of the time (cf., e.g., 
Remillard et al., 2016). Cecilia does not keep the students together around a specific mathematical 
topic by using the embedded differentiation, and no concrete materials are used during these three 
lessons. No objectives are stated, either. These are all important parts of the cultural scripts found in 
Finnish TGs (Koljonen et al., under review). Thus, Cecilia’s classroom practice is in contrast to those 
promoted by the Finnish TG. I deem that Cecilia’s practice is marginally affected by her relationship 
with the material. This may be because it does not offer enough support for how to use it, or explain 
its intentions, therefore forcing Cecilia to follow the common norms of Swedish classroom practice; 
as well as the fact that it is challenging for teachers to change their teaching (Stein et al., 2007; Stigler 
& Hiebert, 1999). Further studies are needed to capture the essence of the Swedish classroom practice 
when using imported material.  

My conclusion is that the use of the originally Finnish material has not had the intended impact on 
the practices as promoted by the guides. Instead, Cecilia uses and confirms her preexisting culture 



rather than the intended one as in the Finnish TG (cf. Davis, Janssen & Van Driel, 2016; Stein et al., 
2007; Stigler & Hiebert, 1999). One possible implication of this is that it may be hard to implement 
material from other educational contexts, even if it is quite similar and is assumed to change or even 
improve the quality of teaching. Yet without targeted support for how to use new material it is hard, 
even if a teacher is regarded as competent, to independently conduct changed or improved teaching 
and simultaneously maintain or gain pedagogical autonomy. This is especially important since the 
Finnish material lacks educative support and, thus, is not regarded as educative material (Hemmi, 
Krzywacki & Koljonen, 2017; Koljonen, 2014). I argue that this requires that teacher materials be 
included in professional development programs, as previously argued for by Ball and Cohen (1996), 
in order to proficiently convey and highlight the principles of the materials and adjust them to the 
new context that is underpinned by the social and cultural practice. It remains to be seen whether 
subsequent case studies of the other teachers in the larger project reveal whether the above-mentioned 
tentative conclusions hold for the larger data set.  
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This article is focused on the teaching and learning of Algorithmics, a discipline at the intersection 
of Informatics and Mathematics. We focus on the didactic transposition of Algorithmics in 
secondary school in France and Ukraine. Based on epistemological and didactical frameworks, we 
identify the general characteristics of the approaches in the two countries, taking into account the 
organization of the content and the national contexts (in the course of Mathematics in France and 
in the course of Informatics in Ukraine). Our results give perspectives on understanding the place 
that Algorithmics can hold in the teaching and learning of Mathematics and Informatics. 
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Introduction 
Mathematics and Informatics1, as disciplines, have strong links. On one hand, Mathematics gives 
theoretical basis and instruments to Informatics, and on the other hand, Informatics enriches 
Mathematics with new objects and problems, and brought some changes in the mathematical 
activity. Many disciplines (Discrete Mathematics, Algorithmics, etc.) developed at their interface. 
Nowadays, there is an international movement towards including Informatics and these subjects in 
secondary education. Algorithmics is more and more present in secondary school in many countries. 
It can be involved in programs of Mathematics (as in France) or Informatics (as in Ukraine). This 
situation questions the goals of teaching and learning Algorithmics in secondary school, the 
contents of the curricula as well as the approaches and activities proposed to pupils. To contribute to 
the study of these issues, we propose a comparative study regarding the concept of algorithm and 
the contents of Algorithmics in secondary school in France and Ukraine. 

Algorithm is a central notion in Mathematics and Informatics. Algorithm in “classic” Mathematics 
is generally used with the meaning of a general effective procedure for solving problems. Since the 
origins of Mathematics, algorithms have been designed and used for solving problems (arithmetic 
operations with decimal numbers, solving equations, etc.). The use of computers and programming 
languages brought a new point of view on the notion of algorithm referring to the formalization of 
procedures, the automation of computations and the problem of data treatment. In this context, the 
notions of finiteness, iteration and recurrence play an important role (Chabert, 1999, pp. 6–7). 

As a reference, we retained the following definition of an algorithm given by Modeste (2012, p. 25) 
and based on the academic literature on the subject: “a procedure for solving a problem which, in a 
finite number of constructive, effective, not ambiguous steps, gives a result for any instance of the 

                                                 
1 We will use the term “Informatics”, a more faithful translation from the French and Ukrainian than Computer 
Science. 



problem”. We will delimit the discipline Algorithmics as the field that deals with algorithms, the 
problems they can solve, their design, their use, their analysis and their comparison.  

Research questions, theoretical framework and methodology 

To formalize our problematic, we have formulated the following research questions: 
 What is the place of Algorithmics in secondary school in France and Ukraine? 
 In what way the learning contents related to Algorithmics are organized? 
 What types of activities in Algorithmics are proposed to pupils in both countries? 
 What common points and differences appear? How can they be interpreted? 

Our study is based on the concept of didactic transposition (Chevallard, 1985) developed in the 
Anthropological Theory of the Didactic (Bosch & Gascón, 2014). The didactic transposition 
describes the processes of transformation between academic knowledge, the knowledge to be taught 
and the taught knowledge. It takes a step back from the curriculum and the content actually taught, 
to understand the role and the influence of the different institutions involved in these processes. 

In order to analyse the content devoted to Algorithmics in the curricula, to measure their distance to 
the academic knowledge, and to develop our comparative study, we lean on an epistemological 
framework, in accordance with a classical methodology in Didactics of Sciences and Mathematics 
(Artigue, 1990). Concerning the concept of algorithm and Algorithmics we used the epistemological 
framework developed by Modeste (2012; Modeste & Ouvrier-Buffet, 2011). The epistemological 
model distinguishes five fundamental aspects of the concept of algorithm: problem aspect (the fact 
that an algorithm is a tool to solve all instances of a problem, the notions of input and output); 
effectiveness aspect (all elements referring to the fact that an algorithm solves problems effectively: 
the notion of operator; the finiteness of instructions and executions, etc.); complexity aspect (all 
elements referring to the notion of complexity of algorithms and problems); proof aspect (referring 
to the links between algorithm and proof); theoretical models aspect (referring to the theoretical 
works in Logic and Informatics concerning the concept of algorithm). Among these aspects, 
problem and effectiveness refer to algorithm as a tool, whereas proof, complexity and theoretical 
models refer to algorithm as an object. This tool-object dialectic of the concept of algorithm will be 
useful to understand the points of view in different institutions. 

In this study, we analysed the official instructions, the official resources for teachers and particular 
textbooks (we focused on the knowledge to be taught, but our analysis of textbooks also informs 
about the taught knowledge). For this purpose (addressing the didactic transposition in a given 
institution), it is not sufficient to study the discourse about algorithms: it is essential to examine the 
algorithms selected by the institution, their representations and the activities involving these 
algorithms: this can reveal differences (and even contradictions) with the general discourse. To do 
this, for each resource, we answered to the following questions: 

 What kind of definition of algorithm is proposed? 
 What algorithms (or types of algorithms) have been selected? 
 What representations of algorithm are used? 
 What tasks (or types of tasks) in Algorithmics are proposed? 

Answering these questions brings elements that permit to address our principal question: 
 What aspects of algorithm are presented (according to the five fundamental aspects)? Do 

this aspect relate to algorithm as a tool or as an object? 



Our corpus of resources is described in Table 1. In the following, we present the results of our 
analyses and the answers to the research questions. As we cannot provide all details in this paper, 
we present only the main results of the comparison. Before that, it is necessary to give an overview 
of the situation in France and Ukraine, regarding the teaching of Algorithmics. 

Resources France Ukraine 

Official 
instructions 

and 
documents 

Official program of Mathematics for middle 
school; Official curricula of Mathematics for high 
school: grade 10, grades 11 and 12 (all paths); 
Official accompanying resources in Algorithmics 
for grade 10; Official program for the ISN option. 

Official program of Informatics for middle school 
(5-9 grades); Official programs of Informatics for 
high school (grades 10 and 11): standard, academic, 
professional and advanced levels. 

Textbooks 

Three collections of Mathematics textbooks 
(Indice, Bordas ; Math'x, Didier ; Transmath, 
Nathan) for grades 10, 11 and 12 (scientific, 
economic and humanities paths) ; Textbooks for 
middle school are not available yet. 

One collection of textbooks in Informatics (Ryvkind 
J.Ya. et al., 2011) for grade 11, standard and 
academic levels, part 'Algorithmics'; two collections 
of textbooks in Informatics (Morze N.V. et al., 
2014, 2015, Ryvkind J.Ya. et al., 2014, 2015) for 
grades 6 and 7, part 'Algorithmics'. 

Table 1: Analysed resources. 

Presentation of the contexts and evolutions of curricula in Ukraine and France 
Situation in Ukraine (organization, history and recent evolutions) 

The Ukrainian school system consists of primary school (grades 1-4, age of pupils – 6-9 years), 
middle school (grades 5-9, 10-15 years) and high school (grades 10-11, 16-17 years). In high school 
pupils make a choice between general or professional-oriented paths. Informatics has been taught 
since 1985 in secondary school in USSR. From the beginning, Algorithmics was a part of it. At that 
time, the course was mainly dedicated to writing algorithms in pseudo-code and executing them 
manually. Only two programming languages were used: Rapira (especially elaborated in USSR for 
teaching) and Basic. The major part of the first manual of Informatics in USSR is devoted to solving 
algorithmic problems. An algorithm is defined as “a clear and precise instruction destined to an 
operator to carry out a sequence of actions in order to reach a goal or solve a problem”. In this 
manual, the notion of operator plays a central role. It is also underlined that an operator executes an 
algorithm formally, i.e. it can carry out operations one by one in defined order without 
understanding the goal. A scheme for solving a problem with a computer is presented:  in brief, it 
consists of modelling the problem, constructing an algorithm, writing it in a programming language, 
executing it, and analysing the results. Many tasks require constructing algorithms for solving 
mathematical and physical problems with a computer, such as Horners' method or the 
approximation of the area under the graph of a positive function. 

Since 1985, Informatics has always been a mandatory subject in high school. In the programs 
published in 2008, Informatics can be taught at the following levels: standard (for general and 
humanitarian paths), academic (for science path), professional and advanced (for informatics and 
mathematics paths). The difference is the number of hours of Informatics per week (between 1 and 



5) and the contents. As a part of the subject, Algorithmics is studied at every level with a total 
amount of hours that varies a lot: Standard (5), Academic (28), Professional (175), Advanced (191). 
In 2013, Informatics also became a mandatory subject in primary (from grade 2) and middle school. 
Thus, at the moment, Algorithmics is also present in middle school (from grade 6). 

Situation in France (organization, history and recent evolutions) 

The secondary French school system consists of middle school (collège, grades 6-9, 11-15 years) 
and high school (lycée, grades 10-12, 16-18 years). In high school, professional, technical and 
general orientations are proposed, and the general orientation is divided into humanities, economic 
and scientific paths2. In this study, we will concentrate on the general orientation. Recently, many 
reforms happened in the French curricula, the last one was in 2016 and concerned middle school. 
Gueudet, Bueno-Ravel, Modeste and Trouche (to appear) give more details about the evolution of 
French mathematics curricula, including Algorithmics. Informatics appeared for the first time in the 
French curricula in the 1980's (Baron & Bruillard, 2011), with an introduction to Programming and 
Algorithmics in high school. It disappeared in the 1990's, replaced by the use of computer tools and 
new technologies. Recently, Informatics came back in secondary school. In 2012, an optional course 
was created in grade 12 in the scientific path (ISN: “Informatics and digital sciences”, 2h/week), and 
in 2015, an optional course appeared in grade 10 (“Informatics and Digital Creation”, 1h30/week). 
Starting from 2016, Informatics will also be taught in middle school (principally in grades 7-9) in 
the mathematics and technology classes. Few years before that (from 2009 for grade 10 to 2012 for 
grade 12), some contents of Algorithmics were introduced in the curricula of Mathematics in high 
school (Modeste & Ouvrier-Buffet, 2011). 

Comparison at high school level (grades 10-12, ages 15-18) 
Algorithmics in high school in Ukraine 

Through all grades and levels, a common approach to Algorithmics can be identified. It includes the 
presentation of the steps for solving problems using a computer and the role of algorithms in this 
process, distinguishing algorithms from programs, with an emphasis on the notion of operator. The 
activities involve various representations of algorithms (common language, flowchart and program). 
In the analysed textbooks the term algorithm is defined as a finite sequence of instructions that 
determines what operations and in which order to carry out for obtaining a goal. In this definition, as 
well as in the description of the properties of an algorithm (discreteness, certitude, feasibility, 
finiteness, effectiveness) given explicitly at all levels, we can identify the aspect effectiveness. The 
problem aspect is expressed in the property of “generality” of an algorithm, which says that an 
algorithm applies to a set of similar problems, which have the same question and solving procedure 
and differs only by the values of initial data. At the same time, the specific term “instance 
algorithm” is used in the textbooks to define an algorithm that solves only one case of a problem. 
Most part of the proposed instance algorithms are: algorithms of daily life (e.g., preparing meal), 
algorithms from others disciplines (e.g., geometrical constructions), algorithms implementing a 

                                                 
2 For details about French system: http://eduscol.education.fr/cid66998/eduscol-the-portal-for-education-
players.html 



strategy (e.g., the wolf, goat, and cabbage problem). The expected competence is to represent the 
solution of a problem in an algorithmic way (as a sequence of instructions) rather than to solve it. 

At standard level, many tasks concern the construction of algorithms for a given operator. The 
activity is centred on identifying the system of commands of an operator and writing an algorithm 
using only these commands. Although, most of the problems are quite easy and the goal of the tasks 
is to find the best strategy and present it in the required form. This concerns principally instance 
algorithms and refers to the effectiveness aspect. Generic algorithms (algorithms with many 
instances) mostly relate to solving mathematical problems (solving equations, evaluating the area of 
a polygons.) and computations (evaluation of simple expression). Pupils construct algorithms, 
describe them in the requested form (principally flowcharts) and execute them manually.  

At academic level, Algorithmics is based on Delphi, an object-oriented programming language:  
pupils get accustomed to Algorithmics by learning the instructions of Delphi. 65% of the tasks are 
about writing programs, executing and modifying them, 19% of tasks are devoted to object-oriented 
programming. Algorithms are mostly verified by testing the programs. Generic algorithms are more 
present than instance algorithms. Most of them concern computations (e.g., evaluation of simple 
expressions) (33 %) and solving mathematical problems (e.g., solving equations, primality test) 
(31%). A bit less tasks concern the computation of sequences, products, sums (11%) and data 
treatment (e.g., sorting, searching in an array) (17 %). The textbook includes many tasks where an 
algorithm is only used for formulating a procedure before programming it. One can also found tasks 
where algorithms plays the role of tool for problem solving (e.g., finding the divisors of an integer). 
In this case, the focus is more on the construction of algorithms than on writing and debugging 
programs. Although we found many generic algorithms, only the effectiveness and problem aspects 
are strongly present. The complexity aspect is only evoked concerning the binary search algorithm. 

At professional and advanced levels, an algorithm is presented not only as tool but also as an 
object. At professional level we found many “rich” algorithms, such as recursive algorithms, 
algorithms on graphs, algorithms of treatment of stacks and lists, etc. Expected competences for 
pupils are not only to understand some algorithms and write programs, but also to analyse 
algorithms’ efficiency and compare them. The complexity aspect is also evoked. At advanced level 
the theoretical models aspect is present (e.g., NP-complete problems). Expected competences 
concern the abilities to choose an algorithm appropriate to a problem, to compare algorithms 
according to their complexity, to analyse and compare algorithms. Algorithm is present as an object. 

Algorithmics in high school in France 

Programs of Mathematics for high school, for all levels, contain the same Algorithmics part, with 
a list of expectations for the end of high school: pupils must be able to “describe algorithms in 
natural and symbolic languages”, to “carry out some of them using a spreadsheet or a small program 
written in a calculator or a software” and “interpret more complex algorithms”. It is mentioned that 
“algorithmics has a natural place in all the mathematical subjects”. Pupils must learn elementary 
instructions, conditional instructions and loops. At each level, few specific algorithms are 
mandatory, e.g. plotting a curve (grade 10); solving equations of the type f(x)=0; simulating random 
experiments (grade 12, scientific path). Most of the algorithms in the programs deal with sequences, 
numerical methods and simulations in probability and statistics. Algebra and geometry are just 



mentioned as fields for algorithmic activities. Discrete Mathematics have a very little presence. The 
priority seems to be given to the implementation of algorithms in a programming language. 

The accompanying resource for grade 10 – that seems to have driven the approach to 
Algorithmics in high school (Modeste, 2012) – does not define the term algorithm, and does not 
even distinguish it from the term program. The activities are focused on language and rigorous 
expression of operations, and often aim at writing programs. It results in a confusion between   
program and algorithm that indicates a focus on the effectiveness aspect. A specific language to 
describe algorithms is implicitly developed, mixing pseudo-code and technical programming 
constraints – that we called paper-program (Modeste, 2012). Many instance algorithms are present, 
which confirms a confusion between writing algorithms and describing step-by-step operations. 

In the studied textbooks for all levels, we can see the strong influence of this accompanying 
resource. Most algorithms are described as “paper-programs” before being implemented (generally 
as immediate translation). Many exercises deal with interpreting, writing or translating algorithms in 
a given language. Algorithm is only shown as a tool, even the problem aspect has little presence. In 
the program for the ISN option, the approach differs. The program explicitly defines the notion of 
algorithm and mentions that it must be distinguished from the notion of program. Algorithmics is 
presented as a branch of Informatics and algorithms are not restricted to programming. The concept 
of algorithm appears as a tool and as an object (complexity and proof aspects are present). 

Comparison in high school 

In Ukraine as in France, the effectiveness aspect is central. In all levels, algorithm is used as a tool, 
but the problem aspect is more developed in Ukraine. Algorithm is treated as an object only at 
professional and advanced levels in Ukraine, and in the ISN option in France. We could have 
expected them to appear in the French scientific paths but it is not the case. In Ukraine, the approach 
to Algorithmics seems to be guided by the development of algorithmic thinking whereas in France 
the focus is on the programming and language skills. It appears clearly in the texbooks: in Ukraine, 
the concept of algorithm is defined and a list of its properties is given, whereas, in France, an 
algorithm is defined by the language that describe it. Although in France, Algorithmics is taught in 
the Mathematics class, the focus on programming seems to be stronger than in Ukraine for standard 
level, where programming is not required and the focus is on  elementary algorithmic thinking. In 
Ukraine, two features can be highlighted, probably inherited from historical context of teaching of 
Informatics in USSR: significant role of the scheme of problem solving (presumably influenced by 
the problem-solving theories) and the emphasis put on the notion of operator. In France, in 
Mathematics, algorithms are used to solve mathematical problems and are considered as a mean to 
deal with the mathematical concepts. The important presence of programs for simulations in 
probability or for embodying properties of mathematical objects attests to this point of view. The 
approach developed in ISN, in France, is close to the approach proposed at professional and 
advanced levels in Ukraine. They involve advanced concepts and aim at developing advanced 
algorithmic thinking, but we suspect a difference between the programs and the taught knowledge. 



Comparison at middle school level (grades 6-9, ages 11-15) 
Algorithmics in middle school in Ukraine 

In the programs for grades 6 and 7, the part devoted to Algorithmics is similar to the program for 
standard level of high school. Although the program declares programming as one of the pupils’ 
activities, it does not specify any programming language to use. In the textbooks for grades 6 and 7, 
an algorithm is defined as a finite sequence of instructions to be carried out for solving a problem. 
As we can see, in the given definition the effectiveness and problem aspects are on the first plan. At 
the same time, the fact that an algorithm solves all instances of a problem is not presented. The main 
part of proposed problems concerns the construction of instance algorithms for different operators. 
Both textbooks propose to program in Scratch. Pupils' activity is focused on developing programs 
and projects, using this programming environment. In grades 8 and 9, the Algorithmics part of the 
program is devoted to object-oriented programming. In grade 8, the notion of variable and different 
types of data are introduced. In grade 9, search algorithms in arrays are studied. The expected 
competences of pupils refer mostly to writing, modifying and debugging programs. The aspects 
related to algorithm as an object are not present.  

Algorithmics in middle school in France 

In 2016, Informatics appeared in middle school. Algorithmics contents essentially appeared in the 
Mathematics course, in the cycle 4 (grades 7-9), in the theme “Algorithmics and Programming”. 
Textbooks for this reform were not available at the time of the study, so we only analysed the 
programs. One general competence guides the program: “write, elaborate and execute a simple 
program”. Then, more specific competences are listed (decomposing a problem into sub-problems, 
designing a program to solve a problem; writing programs driven by events; and writing parallel 
programs)  and contents are specified: notions of algorithm and program; variables in Informatics; 
event-driven action, sequence of instructions, loops, conditional instructions; exchanged messages 
between objects. These contents are strongly oriented towards programming and, even if it is not 
declared, the software Scratch must be used to teach these notions. The chosen approach implies 
developing projects and games (in order to develop pupils' reasoning) and does not focus only on 
mathematical concepts. Effectiveness aspect of algorithm is present and problem aspect is more 
notable than in the high school curricula. Contrary to the approach proposed in Mathematics in high 
school, Algorithmics is introduced by programming (independently from mathematical contents). 

Comparison in middle school 

In France and in Ukraine, in middle school, algorithm is presented as a tool. The effectiveness aspect 
is dominant. Although the problem aspect is mentioned, the role of algorithms for problem solving 
and the place for generic algorithms are not clear. At this level, the complexity and proof aspects  are 
not proposed. Contrary to the curricula for high school, there are more similarities between the two 
curricula for middle school. Particularly, the notions of algorithm and program are distinguished; 
the introduction to Algorithmics includes event-driven programming in Scratch, and objects and 
variables are introduced later. The approach is based on solving concrete problems and developing 
projects in Informatics and in other disciplines. This could be explained by the influence of an 
international movement towards the teaching of Informatics in primary and middle school. 
Nevertheless, there are also important differences. In France, the most part of the proposed projects 



are in Mathematics (maybe because it will be taught by Mathematics teachers, not well trained yet 
in Informatics), and there is a strong focus on programming (in a different way from high school). In 
Ukraine, the notion of operator is still highlighted, representations of algorithms with schemes and 
flowcharts are requested and many examples of algorithms are taken from everyday life. This is 
directly inherited from the didactic transposition proposed in the 1980's and today in high school. 

Conclusions and perspectives 
On the one hand, this comparative analysis of the didactic transposition of the concept of algorithm 
and Algorithmics in secondary school in France and Ukraine brings out differences that reveal the 
impact of institutions, traditions and historical contexts on the curricula. The comparison of two 
contexts where Algorithmics is not a part of the same course (Mathematics versus Informatics) 
shows the influence of these disciplines on the contents, on the points of view on Algorithmics and 
on the algorithmic activity. On the other hand, in the two countries, we see general orientations in 
middle school that seem to be part of an international movement towards the teaching and learning 
of Informatics. This study contributes to understand and improve curricula, by taking into account 
the points of view of Mathematics and Informatics on Algorithmics. It gives perspectives to study 
the development of algorithmic thinking, and the teaching and learning of Algorithmics' concepts. 
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In this paper we investigate Norwegian and Swedish upper secondary students’ perspectives on the 
purpose of school mathematics. Students were group interviewed in various schools in both Norway 
and Sweden and the video recordings of those interviews fully transcribed. In each country 
transcriptions were subjected to a constant comparison analytical process that, coincidentally, 
yielded the same two dominant themes that we report here. Firstly, all students spoke about how 
learning mathematics facilitates being able to manage shopping, personal finances and other 
functional aspects of the real-world. Secondly, students spoke about how learning mathematics 
would facilitate their getting a job, including some Swedish students who saw mathematical success 
as a high status qualification preferred by employers.  

Keywords: Purpose of school mathematics, Norway, Sweden, student perspectives. 

Introduction 
Despite evidence that large scale assessments of mathematics achievement like the Organisation for 
Economic Cooperation and Development’s (OECD) Programme of International Student 
Assessment (PISA) have prompted curricular changes in many OECD member countries 
(Breakspear, 2012), the nature of school mathematics is not an unproblematic given and varies 
considerably cross-culturally (Andrews, 2016). Indeed, all curricula, which are based on a culture’s 
conception of an ideal person (Cummings, 1999), are rooted in substantially more than what can be 
inferred from official documents. Consequently, the ways in which teachers conceptualise and 
present mathematics varies from one cultural context to another, inevitably influencing the beliefs 
that students form about mathematics and its purpose (Cobb, 1985). 

Students’ beliefs about mathematics and its teaching have been the focus of much research for more 
than four decades, following Erlwanger's (1973) case study of Benny, a twelve year-old student who 
had come to see mathematics as invented rules, each for a particular type of problem, that work like 
magic. Benny’s beliefs about mathematics effectively laid the ground for the field, not only from the 
perspective of what students believe about mathematics and its teaching but also the ways in which 
teachers’ beliefs and practices are implicated in the construction of such beliefs. In short, the 
significance of this work draws on the premise that students’ beliefs are informed by, and inform 
how they respond to, their mathematics-related learning opportunities (Erlwanger, 1973; Callejo and 
Vila 2009). In this regard, “beliefs constitute, for the believer, current knowledge about the world” 
(Cobb, 1986, p.4).  

Over the succeeding years, research into students’ mathematics-related beliefs has addressed a 
variety of themes, which have been well summarised by Op ‘t Eynde and his colleagues (Op ‘t 
Eynde et al., 2002; 2006), which they present under three broad headings; beliefs about mathematics 



education, beliefs about the self as a mathematician and beliefs about the mathematics class context. 
Within these three broad headings, which space prevents us from discussing in depth, are located 
most aspects of mainstream beliefs-related research. However, a strand that has received less 
explicit attention the literature, particularly in the Scandinavian context, has been the beliefs 
students hold about why they are compelled to learn mathematics for so many years.  

The purpose of school mathematics 

In general terms, the reasons why children spend so many years studying mathematics are not 
always clear, although typically they seem to be tied to ensuring either the social, economic and 
political mobility of the individual citizen or the nation’s economic growth through preparing the 
next generation of employees (Schoenfeld & Pearson, 2009). Such perspectives are philosophically 
rooted in either personal emancipation or the reproduction of the existing social order respectively. 
That being said, while much philosophical research has addressed the general aims of education, 
“very little sustained work of this kind appears to have been carried out in mathematics education”, 
to the extent that “there is sufficient disagreement, lack of clarity and modesty to warrant further 
enquiry” (Huckstep, 2000, p. 8). It is on this that we next focus, confirming Huckstep’s concerns. 

Various scholars have considered the purpose of school mathematics. For example, Niss (1996) 
discusses the justification and the goals of mathematics education from both theoretical and 
historical perspectives. Davis (2001) adopts a largely philosophical standpoint in suggesting three 
distinct purposes, which he describes as the teacherly, the rhetorical and the hermeneutic. The 
teacherly purpose for teaching mathematics derives from a set of largely forgotten reasons tied to 
the belief that “knowledge of mathematics is necessary for every citizen of today's world” (p. 18). 
The rhetorical purpose derives from an “explanatory fantasy that is currently preferred to organize 
and structure experience” (p. 19). The hermeneutic purpose lies in beliefs that “there are moral and 
ethical imperatives that operate in the human and in the more-than-human realms” (p. 21). In a 
slightly more prosaic manner, Noyes (2007) writes of six broad purposes; mathematics for the 
academy, for employment, for general education, for citizenship, for the information age and, 
finally, critical mathematics education. Ernest (2016), in a not unrelated manner, describes seven 
purposes; functional numeracy, work-related knowledge, advanced specialist knowledge, problem 
posing and solving, mathematical confidence, social empowerment through mathematics and, 
finally, appreciation of mathematics itself. Finally, Watson (2004), in a manner that seems to 
summarise both Ernest and Noyes and mirror Davis (2001), proposes three broad purposes; 
mathematics as a set of useful skills and procedures, a support for the burgeoning mathematics-
related professional, and a tool that facilitates successful societal participation. In sum, as Huckstep 
(2000) indicated, mathematics is taught for various reasons tied to cultural norms and values. 
Interestingly, despite research discussing the purpose of mathematics from an outsider perspective, 
few studies have engaged with the insider; what do recipients of mathematics teaching think is the 
purpose of what they are taught? In this respect, it is salient to note that Brown, McNamara, Hanley 
and Jones (1999), when investigating beginning primary teachers’ understanding of mathematics 
and its teaching, found that “a sense of bafflement about the purpose of school mathematics 
permeated many accounts” (Brown et al., 1999, p. 305). That is, these students had completed 
school and still had no idea as to the purpose of school mathematics. In the light of such uncertainty 
and acknowledging the lack of research in the field, particularly in the context of Scandinavia, we 



examine the beliefs about the purpose of school mathematics of both Norwegian and Swedish upper 
secondary students. As in Brown et al.’s (1999) study, these students are close to the end of their 
school careers and should have formed clear ideas as to the purpose of mathematics. 

The study and its methods 
The data on which this paper is based derive from a comparative interview study of upper secondary 
students in Norway and Sweden. In broad terms the study set out to explore students’ perspectives 
on their many years of school mathematics. Students were interviewed in pairs or threes, and the 
interviews were structured around the following four questions, with follow-up questions where 
appropriate: 

1. How would you describe a typical mathematics lesson at school? 

2. What do you think is the purpose of compulsory school mathematics? 

3. What do you think mathematics as a subject has to offer to those who engage with it? 

4. If you could say something about the nature of mathematics education to those in charge of 
the educational system, what would it be? 

It is the answers to question 2 that we will be focusing on in this paper. 

The Norwegian data derived from 17 interviews involving 42 students from three schools. Two 
schools, one in Oslo and one in Trondheim, were high-achieving academic schools, while the third 
was a relatively low-achieving vocational school in Oslo. The Swedish data derived from 18 
interviews involving 50 students from four schools. These schools, from various parts of 
Stockholm, all offered a range of vocational and academic tracks. Consequently, we make no claims 
about schools’ representativeness nor do we seek to generalise. All participants were fully aware of 
the purpose of the research and of their rights to withdrawal.  

Interviews, undertaken at a time chosen by the students, were video recorded on laptop computers, a 
decision justified in four ways. Firstly, video, especially when participants talk over each other, 
simplifies transcriptions. Secondly, video captures non-verbal communication. Thirdly, due to their 
classroom ubiquity, laptops were expected to create less disruption than tripod-mounted video 
cameras. Fourthly, laptops record data directly to their hard-drives, simplifying data storage and 
analysis. All interviews were transcribed and, in each country, subjected to a constant comparison 
analysis whereby each transcript was read and categories of response identified. With each new 
category, previously read episodes were re-read to determine whether the new category applied to 
them also. The two data sets were analysed separately to ensure the cultural integrity of the findings. 

Results 
The data from both countries yielded a variety of themes. However, two closely related themes 
dominated the analyses in both contexts and it is these we turn to in this paper. These were related 
to being able to function in the real world and getting a job, and were present in every single 
interview in one form or other. Below we give a more detailed description of the two themes as well 
as exemplifying interview extracts from both academic (A) and vocational (V) students. Other 



themes, relating to mental training, appreciation, and uselessness were also present in the data 
(though much less so). However, it is beyond the scope of this paper to discuss those here. 

Mathematics enables one to function in the real world: Norway 

A large number of students emphasised the importance of mathematics in daily life, which typically 
seemed to consist of going to the supermarket or calculating one’s salary and taxes. In respect of the 
former, Line’s (A) comment was typical; “maths is a lot about everyday life… you wouldn´t be able 
to go to the store and buy goods if you didn´t have some maths”. Similarly, Robin (V) commented 
that “when you are going to buy food and stuff, you need to know how much things cost and stuff”. 

With respect to both shopping and income, Tania’s (A) comments were not atypical. She said that  

You need it in daily life and… you´re in the shop, you want to buy something, and then you must 
add… sum the price of the things you buy and stuff… like if you work, and if you want to know 
how much you earn and you want to know your net income... if you know it yourself you can 
double check if the person who does it has done it right and stuff. 

While Ruben (V) added that “you can calculate numbers and stuff… it helps you on in life... if you 
work you can calculate your salary and stuff”, before adding that “there is a lot of maths that you 
don´t need, but you need at least a part of it”. Others offered less specific statements regarding 
‘daily life’. For example, Amalie (A) commented that she hadn’t “thought that much about it” 
before adding that “you do at least have to know some maths… like in daily life, then maths is 
useful”. Interestingly, she then offered the observation that “when we are at high-school level then I 
don´t exactly think that all the maths I learn will be useful”. 

In sum, the Norwegian students were confident that knowing mathematics would support their 
functioning in the real world, although there were occasions when the manner of this support was 
vague and imprecise. It was also interesting to see Amalie’s and Ruben’s comments that while 
mathematics was a real-world support, much of what they learned was unnecessary in this respect. 

Mathematics enables one to function in the real world: Sweden 

In every Swedish interview students spoke about how they saw mathematics as preparing them to 
face a world beyond school, mathematics as supporting their real-world functionality. Within this 
utilitarian strand two major themes were identified. The first concerned personal finance and the 
management of money. Here, almost all students spoke about understanding interest, as with 
Jacob’s (V) comment that “percentages in terms of interest and loans and things like… that's very 
good to know because you might not really figure out in your head how much you can spend”. In 
similar vein Pedram (A) said that “amortization…, interest rates, interest costs, to be able to figure it 
out, it is important”. Others spoke more generally about the management of personal finances. For 
example, Mark (V) commented about the need to manage “larger sums, as well as your salary”, 
while Kenneth, in the same vocational track interview, added that “it becomes much easier to make 
financial plans… if one has several years of mathematics”. Finally, several students spoke of the 
need to avoid overextension, as in Göte’s (A) concerns with respect to “SMS loans and stuff, there 
are many who do not know how much you lose there” and Omar’s (A) worries that “there are too 
many adults today who do not really understand interest and how it works”. 



The second major theme relating to being able to function in the real world related to the mundane 
world of everyday shopping. Comments typical of others were like those of Alice (A), who said that 
“it's something you use in everyday life, it’s typical when you go shopping, it's just the basics”, or 
Mark (V), who said that “it's always good to have a base in maths. So, if you go shopping and have 
a hundred, then you cannot buy for more than a hundred”. Others offered a slightly different 
perspective. For example, Hanna (A) raised the overall mathematical expectation of such 
transactions by commenting that “if you've gone shopping and there is a discount and know how to 
do that or how to pay what you're gonna pay in. It is like useful to use maths like this”, while André 
(V) added that “you always look at the prices and compare them to the prices in another store”.  

Knowing mathematics enables one to get a job: Norway  

A number of students spoke about how they saw their learning of mathematics in relation to their 
future careers. In most cases students spoke hypothetically as few seemed to have considered their 
own particular career aspirations. For example, Sarah (A) said that 

I think that maybe we need to spend as much time on maths as we do because we don´t know 
who ends up as engineers or who maybe works with something that you maybe don´t need a 
lot of maths for... you can´t know in advance, so everyone has to learn everything... so that 
you can be what you want.  

In similar vein, Kristine (A) commented, after acknowledging “that is a bit of a difficult question”, 
that 

it depends a lot on what you plan to do after high school... if you have planned to take a fairly 
high education then it is clear that there is a lot of maths; if you, for example, are going to be a 
chemist or a physicist or... medical studies too... or generally medicine, if you are to calculate 
dosages for a pain killer it is a bit bad to get a really huge dose… but if you plan to work at 
Mc Donalds for example, then it is not so important. 

The comments of both students indicate an understanding that different professions will require 
different levels of mathematical competence. However, neither of them sees mathematics as an 
important component of education for everyone for its own sake. However, having observed that 
working in McDonalds does not require much by way of mathematical competence, Kristine added 
that “but how do we know from the start who will be a physicist and who will work at 
McDonalds?”  

Other students noted that they do mathematics for as long as they do because it is a formal entry 
requirement for higher education (even if that higher education is unrelated to mathematics). In this 
respect, Andreas (V), in a comment typical of others, noted that “actually it is an entrance 
requirement for the college I plan to go to later... but apart from that I don´t see any reason to know 
such advanced maths”. In such a comment, and those of Sarah and Kristine, lies a tacit concession 
that everyone has to spend twelve years learning mathematics just in case it might be useful, a 
conclusion summarised well by Gina (A), who said, “I think maybe you don´t notice the importance 
until later”. 

In a related manner, Malin (A) spoke of how mathematics supports the learning of other subjects. 
She commented that  



you need to use maths a lot in other subjects, so you have it in chemistry and physics and 
stuff... so maths is a very important tool… so it is not... if you look at the maths as a subject... 
just a subject, then it can be a lot of numbers and a bit like... but if you put it in the context of 
other science subjects, then it is the most important tool you have. 

Knowing mathematics enables one to get a job: Sweden  

Very few students did not, during the course of their interviews, refer to the ways in which learning 
mathematics would enhance their employment prospects. Within the Swedish data two major 
subthemes were identified. The first of these concerned students’ beliefs about the generic ways in 
which mathematical knowledge would prepare them for work. At its most basic, according to 
Andreas (V), “any job requires quite some math knowledge, in all cases, plus or minus, often times. 
… and that applies to the majority of all jobs”. More specifically, as in the comments of Thomas 
(V), “you get better chance of getting a better job with like higher level of mathematics”, while 
Alice (A) believed that “when one has read maths, one can study further and get … more 
opportunities for the future, one can say, more career choices”. Others still, saw beyond their first 
job, as with Kenneth’s (V) comment that “even when you think you have found out what you want 
to be, you might want to switch careers later and then maybe you need more knowledge in maths”. 
From the perspective of particular career routes, Dennis (V) commented that “as an electrician you 
need so this current, voltage, and everything like that, it requires maths for”, while Roxana (A) 
suggested that “if you're going to become an engineer for example you're gonna read a lot of 
mathematics”. 

The second, slightly cynical, theme found students discussing how being mathematically qualified 
gave them an advantage over those who were not. For example, Ted (V) commented that “I think 
that many who have not read maths will not get a job, for the employer will not hire those who 
cannot work in the same way”, while Jacob felt that the mathematically qualified “is more 
knowledgeable, that way he can solve the problem the less skilled cannot; he can see the big picture 
of things better”. Hanna’s (A) view was that such advantages stemmed from the fact that  

it might be like easy for that (mathematically well-qualified) person to think logically, to think 
outside the box and that kind of stuff. And the other (less well-qualified) person might have a 
few more problems with that, maybe… and probably it's easier for the person that's really good at 
math to excel in whatever they want to do… which is harder for the other person  

Most Swedish interviews also contained some reference to the ways in which mathematics was seen 
as a service tool to other forms of activity. Typically, these focused on the natural sciences, as in the 
comments of Adam (V), who said, “you use math well in other subjects like physics”, Mikaela (A), 
who believed that “I know … in chemistry or physics … I need maths. So I think to learn the 
physics or those things you need to learn, to know the maths first. So you can build on it” and Julio 
(V), who argued that “maths is the grounding for several subjects, so if you remove maths, it's not 
just maths skills that will be worse, but then it is physics, chemistry and yes science subjects just 
disappear, so maths is an important part”. Others’ comments were more general, as in Winston’s 
comment that mathematics “works well with other subjects that also need the maths, like they 
complement each other”, while Max commented that “sports is a subject where you use it 
(mathematics)”. 



Discussion 
In this paper we set out to uncover what Norwegian and Swedish upper secondary students believed 
was the purpose of school mathematics, particularly as it has been an ever-present compulsory part 
of their school careers. The results seem much removed from mathematics as a problem posing and 
solving discipline (Ernest, 2016) for which teaching aims to “lead students to appreciate the power 
and beauty of mathematical thought (Dreyfus and Eisenberg, 1986, p.2). Indeed, the two dominant 
themes, mathematics as a support for functioning in the real world and mathematics as an entry into 
employment, are as utilitarian as it is possible to be, showing no connection to mathematics as a 
cultural artefact to be appreciated as would be art, music or literature. Moreover, the themes were 
not utilitarian in the sense that students saw themselves as having been educated for citizenship 
(Noyes, 2007), made socially empowered (Ernest, 2016) or inducted into societal participation 
(Watson, 2004). They were utilitarian solely from the perspective of personal advancement. There 
was no evidence that these students, many of whom were expecting to go to university and study 
mathematics-related subjects, saw mathematics as part of the “moral and ethical imperatives that 
operate in the human and in the more-than-human realms” (Davis, 2001, p. 21). 

While such findings may be disappointing, we acknowledge that these students’ perspectives have 
not emerged by chance but from individually unique experiences of mathematics. These ten- and 
eleven-year experiences, located in different countries and schools, will necessarily have influenced 
the formation of individuals’ beliefs about the nature of mathematics and its purpose (Cobb, 1985), 
and yet their collective voice was close on deafening. So, are there any explanations? Well, the 
literature is not particularly expansive on such matters, although a recent case study may offer some 
insight. In their study of largely disaffected Swedish upper secondary school students, Andersson, 
Valero and Meaney (2015) motivated their students by means of tasks involving, inter alia, 
percentages related to personal economics. This approach, which was received positively by the 
students concerned, raises at least two important questions. The first is whether such an approach 
legitimates students’ perception that school mathematics is about preparing them for the real world. 
The second is whether students’ positive reactions were a consequence of the task meeting their 
expectations of school mathematics. In short, which came first, the chicken or the egg? 
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This study exploited eye-tracking technology to analyse the visual attention, while engaging with  
a multiple-choice mathematical task, of 103 participants with different levels of expertise and 
experience, including academics, university students and secondary school students. The majority of 
participants, irrespective of experience or prior knowledge, skipped or did not process all the 
information provided by the task. Important differences were discerned between how the academics 
and the two student groups attended to the different areas of the task’s presentation, highlighting the 
different problem-solving approaches of the experienced and the inexperienced. Moreover, a ‘hit 
ratio’ parameter allowed the identification of those participants who did not look at these important 
areas of the task. The research highlights methodological advantages and disadvantages of using 
eye-tracking and different ways of data analysis. 

Keywords: Eye-tracking, multiple choice task, comparative study. 

Introduction 
The use of eye-tracking for research in mathematics education is an emergent field, albeit still 
relatively rare. For example, during the ICME-13 congress, only 4 of 1952 papers and 533 posters, 
contained the phrase eye-tracking or its variants in their title. Most mathematical education–related 
eye-tracking research has been undertaken in laboratories, with classroom-based studies using head-
mounted eye-tracking device are rare (e.g. Garcia & Hannula, 2015; Hannula 2016). Examining 
visual attention not only shows where and how gaze is directed, but also constitutes a basis for further 
analysis of problem solving, reasoning, attention and mental images. (Just & Carpenter, 1976; 
Zelinsky & Sheinberg, 1995; Ball et al. 2003; Yoon & Narayanan, 2004). The measurement of the 
eyes’ fixations can provide reliable and sensitive insights into otherwise unavailable cognitive 
processes (e.g. Sosnowski, 1993).  

From the perspective of mathematical problem solving, researchers have used eye-tracking to 
distinguish between the behaviors of experts and novices with respect to the solving of linear 
equations (Susac et al., 2014), geometry problems (Epelboim & Suppes, 2001) and their interpretation 
of mathematical representations (Andrà et al., 2009), interpreting graphs (Wcisło et al., 2014), 
perception of Cartesian coordinates (Krichevets et al., 2014) as well as perception of  
a number line (Shvarts et al., 2015). 

Students need to learn how to read mathematical problems. Thus, in-depth knowledge of strategies 
for reading mathematical problems has important didactical consequences, although more needs to 
be known about how participants of different levels of education approach unfamiliar problems. In 
this paper I report an eye-tracking study of approaches to the reading and solving of a multiple choice 
graphical problem concerning motion. The relatively large sample of the current study, more than 
100 participants, is novel as the majority of previous eye-tracking studies in mathematics education 
have been case studies with small samples of fewer than 20 people. 



Methods 
The primary aim of the study was to use eye-tracking to investigate whether different groups of 
participants’ visual attention while reading and analyzing a mathematical problem varied with 
experience and problem-solving expertise. The first group, academics (A), comprised one professor 
of physics and three academics in mathematics, physics and computer science respectively. The 
second group, university students (U), comprised 75 university students at different stages of their 
courses in computer science, physics, mathematics and biology. The third group comprised 24 high-
achieving school students (ages 17-18 years) (S) who attended a so-called university class with an 
extended curriculum in mathematics and physics. Thus, study participants included people with 
widely differing experiences of mathematics. All participants were guaranteed anonymity and could 
withdraw from the study at any time.  

Task and apparatus 

Respondents were invited to solve a multiple-choice mathematical task (proposed by Prof. W. 
Blasiak) concerning the interpretation of a motion graph. The Polish mathematics curriculum 
introduces the interpretation of graphs of functions to students in grade seven (lower secondary 
school). Later, students aged 14-15 years old learn the concept of a function and use its 
representations. During both mathematics and physics classes they also learn the relationships 
between average speed, displacement and time as well as constant acceleration. Thus, the 
mathematical subject matter knowledge of every participant should have been sufficient to solve the 
problem. However, the task, shown in Figure 1, is complex, caused mainly by the simultaneous 
presentation of two time-velocity graphs. In addition, participants were asked to identify incorrect 
statement(s), what is not a standard request. Academics were invited to identify any incorrect 
statements, of which there were two, A and E. For the other participants the task was simplified to 
one incorrect statement A. 

Statement A is incorrect due to its assumption that the graphs represent trajectories. Statements B, C, 
D are correct. Answer B (and E) concerns the distance driven by the vehicles. Statement B can be 
verified in an elementary way, based only on the analysis of speed values: vehicle (I) moves in the 
time span 0-10 min. with higher speed than vehicle (II), so its displacement is greater. Statement C 
concerns only the interpretation of values of the functions for the argument t = 10 min. Statement D 
essentially requires a basic understanding of acceleration, although knowledge of the monotonicity 
of linear functions would be sufficient. Statement E is the most sophisticated, being true only at t = 
10 min. One can notice it comparing the area of respective figures: rectangle and triangle bounded by 
the graphs of the functions and x-axis (graphical interpretation of the distance at the motion graph). 
Concerning version for academics (see Fig. 1) for all positive t ≠ 10 statement E is incorrect, thus the 
general statement is also incorrect. The difficulty connected with statement E was specifically 
included to make a more challenging task for the academics. Other participants were asked to verify 
the statement for t = 10 minutes, therefore statement E for them was correct. 

To record participants’ eye movements, the Eyetracker Hi-Speed 1250 with iView X™ was used. 
The sampling rate was set to 500 Hz, monocular. The movements of the left eyeball were examined 
for every participant and the data obtained processed by the BeGaze software. The 13-point 
calibrations were accepted with an angular accuracy of less than 0.5º. All respondents sat at a distance 



of 50 cm from a 22-inch monitor. The duration of the experiment was not limited. Participants’ eye 
movement data, question responses and mouse clicking were recorded by Experiment Center 3.1. 
Additionally, respondents were asked to orally confirm their selected answers.  

 
Figure 1: The task translated from Polish 

Results  
The analyses were undertaken in several stages. 

Firstly, the figures of Figure 2 show the problem solving results for each group. It is interesting to 
note that while both the university and school students were not particularly successful, identifying 
many correct statements as wrong and not identifying the incorrect statement, the academics, with 
their amended statement E, failed to identify it as incorrect. 

Selected answers A B C D E 

A (4) 4 0 0 0 0 

U (75) 
24 

(32%) 
19 

(25%) 
8 

(11%) 
9 

(12%) 
15 

(20%) 

S (24) 
8 

(33%) 
5 

(21%) 
3 

(13%) 
0   

(0%) 
8 

(33%) 

Figure 2: Results of the task for each group 

Secondly, with respect to the eye-tracking analyses, participants’ eye movements were studied 
initially by five broad areas of interest (AOIs), as shown in the left hand side of Figure 3. These were 
the words comprising the task formulation (Wording), the key word within that text (Incorrect), the 
graphical diagram (Graph), the statements A – E (Statements) and, finally, the remainder of the slide 
(White Space). The right hand side of Figure 3 (right) shows the average data for each AOI for each 



group: the percentage dwell time, number of revisits, fixation time, fixation count and so called hit 
ratio, which informs how many participants looked at the AOI. 

 
 Figure 3: Definitions of broad AOIs (left) and their eye-tracking data in defined groups (right)  

The data presented in Figure 3 (and Figure 5) should be viewed with caution because of the 
calculation of average data. That said, some interesting differences can be discerned between the 
academics and the two student group. Firstly, academics responded to ‘Wording’ differently from the 
two students groups. They spent 24.5% of their total time on task dwelling on the words of the 
problem, in comparison to 14.5% (S) and 16.4% (U). Academics achieved a greater number of 
fixations (44,3) on ‘Wording’ than the student groups (33.2 (S), 37.5 (U)), indicating that the 
academics’ attended more to the words of the problem than students’ in either group. Academics 
addressed ‘Wording’ more attentively than did the students because their average number of revisits, 
1.8, was around half of that of the two students’ groups (3.3 (S) and 3.8 (U) respectively). Secondly, 
the reverse seemed to be true for ‘Graph’; the average number of fixations for academics was lower 
(38) than for in either group (58.5 (S) and 51.1 (U). Thirdly, Academics’ attention to ‘Statements’ 
was lower than that of the students (61.5 (A), 81 (S) and 79.5 (U)). Fourthly, academics’ dwell time 
was uniformly distributed between ‘Wording’ and ‘Graph’ (24.5% and 23.8% respectively) which 
was not the case for students. Fifthly, students revisited ‘Statements’ twice as many times as the 
academics. Sixthly, students made more than ten times as many revisits as the academics to ‘White 
Space’ and spent three times as much time on it, indicating that their visual attention was more located 
outside the defined parts of the slide. Finally, the hit ratio for showed that eight students (1 S and 7 
U) failed to look at the AOI “incorrect”, prompting one to ask, what question were they answering?  

In sum, academics not only spent a higher proportion of their time on the wording of the task than the 
participants of either student group but also made fewer revisits. It can also be seen that the academics 
made fewer fixations on and made fewer revisits to the graphs, the statements and the white space 
than did the participants of either of the other two groups, indicating that the time they spent on the 
words benefitted their problem solving.  



 
The third stage of the analysis was to examine more specific AOIs, which are shown in Figure 4. Ten 
additional areas were associated with task those characteristics that should be analyzed for the 
problem to be solved. These concerned the phrase “dependence of speed in time” (Dependence), the 
two axes (v-axis, t-axis), the graphs’ labels (I, II), the intersection of the graphs (Intersection) and the 
Statement A – E, separately. The chosen average eye-tracking data are presented in Figure 5. 

 
Figure 5: Eye-tracking average data in groups for chosen detailed AOIs presented in Figure 4. 

The figures of Figure 5 show both similarities and differences. It is interesting to note, for example, 
that the times spent by all three groups on the five statements were similar.  However, the academics 
focused proportionally more time on the v-axis and less on the t-axis than either student group, which 
is interesting as their number of revisits to the v-axis was comparable to the students but much greater 
with respect to the t-axis. It is also interesting to note that academics, despite their failure to identify 
the incorrectness of the statement, made fewer revisits to statement E than either student group. In 
such an instance, it is possible that the academics had drawn an over-confident conclusion. Finally, 
the hit ratio shows that while all the academics attended to all ten AOIs, students’ attention was 
complete only one occasion, when all school students fixed on statement A. 

Discussion and summary 
In general, the data indicate that academics were better focused on the task formulation than either 
group of students. Not only did they spend a higher proportion of their time on the wording of the 
task but made fewer revisits. They read each word carefully and did not revisit the same places as 
often as students. Academics also made fewer fixations on and made fewer revisits to the graphs, the 



statements and the white space than the participants of either of the other two groups, indicating that 
the time they spent on understanding and interpreting the problem benefitted their problem solving. 
Unsurprisingly, being academics, they understood what they read and knew where to look to analyse 
a problem. They were more competent than students in their graphical interpretation, being able to 
understand the key elements of the graph. In related vein, their visual attention was distributed 
uniformly across both the problem statement and the graph, and they were not distracted by irrelevant 
parts of the slide. Thus, while the conclusions are not surprising, the data highlight well differences 
in the ways in which experts and novices address mathematical problems. 

 
Figure 6: Sequence charts for all academics and two students per group 

As indicated above, the data presented here are the averages for each group on each AOI. Individually, 
there was an interesting variation within each group of participants. For example, Figure 6 shows the 
complete sequence of eye-tracking activity with respect to the broad AOIs for all four academics and 
the two extremes, the longest and the shortest, from each student group. It can be seen clearly that 
there was a tendency towards an academic homogeneity, particularly the first three who spent 
considerable amounts of time on the task wording. However, the variation within each student group 
was considerable. Indeed, the academics typically spent around a minute on the task, while university 
students’ time on task ranged from around seven seconds to two minutes and 40 seconds. In sum, 
while the study above has been helpful in showing some differences between expert and novice 
problem solvers, individual variation has highlighted the need for further research into how eye-
tracking can support our understanding of effective problem solving strategies.  

This paper has offered one analysis, based on average behaviours, focused on how eye-tracking data 
can support our understanding of the problem solving process. However, this averaging process with 
the atypically large numbers of participants may have masked individual differences, which 
themselves may prove insightful. Thus, focusing on individuals may be a fruitful direction as it may 
identify different factor implicated in either problem solving success or failure. For example, Figure 
7 shows the variety of the participants’ visual attention, presenting so called scan paths for an 
academic (left), a U student (middle) and an S student (right) respectively.  



 
Figure 7: Scan paths of a chosen participant form each groups: A (a), U (b) and S (c). 

Finally, it was interesting that none of academics questioned the correctness of Statement E. Here we 
faced the limitation of pure eye-tracking methodology – mixed methods with interviews or written 
questionnaires may have exposed the reasons. Thus, several months after the research, academics 
were asked to think again and solve the task, without eye-tracking. While solving the task again they 
confirmed answer A, read again all the other statements and eliminated them, treating again as correct. 
When asked why statement E is correct, they answered that the displacement can be counted as the 
area under the graph. They indicated t=10 min. After further questions they were surprised that “t=10 
min” was not written explicitly in the statement. The previous statements for t=10 min together with 
the graph and dashed line indicating the point (10, 10) caused their certainty that the statement E was 
also formulated for t=10 min. That was their tacit assumption, which could be provoked by the three 
factors. One of academics mentioned about the routine of solving multiple choice tasks, usually with 
the only one correct answer, therefore his inquiring mind was asleep after finding the correct answer 
A. 

Acknowledgment 

The study was run within scientific activities of Interdisciplinary Group of Cognitive Didactics at 
Pedagogical University of Cracow, of which I am a member. I would like to offer my thanks to the 
previous head of that group Professor Władysław Błasiak and the present leader Professor Roman 
Rosiek for the possibility to work on the data; to Dr. Anna Stolińska for the permission to use the 
device; as well as to all members of the group, especially to Dr.  Dariusz Wcisło, for their help. 

References 

Andrà, Ch. Arzarello, F., Ferrara, F., Holmqvist, K., Lindström, P., Robutti, O., Sabena, C. (2009). 
How students read mathematical representations: An eye tracking study, In Tzekaki, M., 
Kaldrimidou, M. & Sakonidis, C. (Eds.), Proceedings of the 33rd Conference of the International 
Group for the Psychology of Mathematics Education (Vol. 2, pp. 49−56). Thessaloniki, Greece: 
PME. 

Ball, L. J., Lucas, E. J., Miles, J. N. V., & Gale, A. G. (2003). Inspection times and the selection task: 
What do eye-movements reveal about relevance effects? Quarterly Journal of Experimental 
Psychology, 56A, 1053−1077. 

Epelboim, J. & Suppes, P. (2001). A model of eye movements and visual working memory during 
problem solving in geometry. Vision Research, 41, 1561−1574. 

García, E. M.-E & Hannula, M. S. (2015) Using gaze tracking technology to study student visual 
attention during teacher’s presentation on board. In Krainer & N. Vondrová (Eds.), Proceedings 



of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 
1393−1399). Prague: Charles University and ERME. 

Hannula, M. & Gaye, W. (2016). Silent gazing during geometry problem solving, insights from eye 
tracking. In C. Csíkos, A. Rausch, & J. Szitányi (Eds.), Proceedings of 40th Annual Meeting of 
the International Group for the Psychology of Mathematics Education (pp. 353−360). Szeged, 
Hungary: PME 

Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 
8, 441−480. 

Krichevets, A. N., Shvarts, A. Yu., Chumachenko, D. V. (2014). Perceptual action of novices and 
experts in operating visual representations of a mathematical concept. Психология. Журнал 
Высшей школы экономики (Psychology Journal of Higher School of Economics), 11(3С), 55−78. 

Shvarts, A. Y., Krichevets, A. N. (2015). The perception of the number line by adults and 
preschoolers: Eye-movements during the teaching process. Journal of Eye Movement Research, 
8(4), 37−37. 

Sosnowski, T. (1993). Metody psychofizjologiczne w badaniach psychologicznych. Warszawa: PWN. 
Susac, A., Bubic, A., Kaponja, J., Planinic, M., & Palmovic, M. (2014). Eye movements reveal 

students’ strategies in simple equation solving, International Journal of Science and Mathematics 
Education, 12, 555−577. 

Wcisło, D., Błasiak, W., Andrzejewska, M., Godlewska, M., Rosiek, R., Rożek, B., … Stolinska, A. 
(2014). Różnice w rozwiązywaniu problemów fizycznych przez nowicjuszy i ekspertów. 
Edukacja, Technika, Informatyka, 5(2), 361−367. 

Yoon, D. & Narayanan, N. H. (2004). Mental imagery in problem solving: An eye tracking study. In 
S. Spencer (Ed.), Proceedings of the Eye Tracking Research and Applications Symposium 2004 
(pp. 77−83). NY: ACM Press. 

Zelinsky, G., & Sheinberg, D. (1995). Why some search tasks take longer than others: Using eye 
movements to redefine reaction times. In J. M. Findlay, R. Walker, & R. W. Kentridge (Eds.), Eye 
movement research: Mechanisms, processes and applications (pp. 325−336). North-Holland: 
Elsevier. 



A cross-national study of lower secondary mathematics teachers’ 
content knowledge in the USA and Russia  

Mourat Tchoshanov1, Maria Cruz Quinones2, Kadriya Shakirova3, Elena Ibragimova3 and Liliana 
Shakirova3 

1University of Texas at El Paso, USA; mouratt@utep.edu 
2Universidad Autónoma de Cuidad Juárez, Mexico; titacq@hotmail.com 

3Kazan Federal University, Russian Federation; esandakova@mail.ru 

This study presents a quantitative analysis of middle school mathematics teachers’ content 
knowledge in two countries. The sample comprises lower secondary mathematics teachers from the 
US (grades 6-9, N=102) and Russia (grades 5-9, N=97). The instrument was designed to assess 
teacher content knowledge based on the cognitive domains of knowing, applying, and reasoning, as 
well as addressing the lower secondary mathematics topics of number, algebra, geometry, data and 
chance. Results indicate significant differences in teacher knowledge between the countries in 
content as well as in cognitive domains. The study results may inform the field on priorities placed 
on lower secondary mathematics teachers’ knowledge in USA and Russia.  

Keywords: Comparative studies, teacher knowledge, lower secondary mathematics.  

Introduction  
The motivation for the study is based on the 8th-grade mathematics portion of the TIMSS-2011 
results (Mullis et al. 2012). We identified two countries ranked closely to each other: Russia - in the 
6th position and the USA – in the 9th position. At the same time, a difference in the US and Russian 
students’ performance was revealing: the average score of Russian students in the content domain 
was 539 and of the US students 509, with Russian students gaining higher scores on Number (534 
vs. 514), Algebra (556 vs. 512) and Geometry (533 vs. 485) whereas US students outscored Russian 
students in the domain of Data and Chance (527 vs. 511). Russian students also outperformed the 
US students in each cognitive domain: Knowing (548 vs. 519) Applying (538 vs. 503), and 
Reasoning (531 vs. 503). These data triggered the following question: to what extent does US and 
Russian lower secondary mathematics teachers’ knowledge differ by content and cognitive 
domains?     

Cross-national studies of teacher knowledge 
Conducting cross-national studies allow comparing, sharing, and learning about issues in an 
international context which in turn helps researchers understand their own context, teaching 
practice, teacher knowledge, and student learning (Stigler & Perry, 1988). During the last decade, 
the number of cross-national studies on teacher education is increasing in order to understand 
differences in student performance on international tests such as TIMSS, PISA (Wang & Lin, 2005). 
Scholars have addressed these differences focusing on characteristics such as teachers’ perceptions 
of effective mathematics teaching (Cai, Ding, & Wang, 2013), teacher knowledge (Tatto & Senk, 
2011; Tchoshanov et al., 2017), among others.  



Few cross-national studies focused on teacher knowledge. A large-scale study conducted by the 
University of Michigan examined the mathematical content and pedagogical content knowledge of 
pre-service teachers from 17 countries including USA and Russia (Tatto & Senk, 2011). The nature 
of mathematics teacher knowledge, conceptual representation, and curriculum materials were 
examined by Ma (1999) to explain differences in students´ performance in the U.S. and China. An, 
Kulm, and Wu (2004) studied the PCK of middle school teachers in the U.S. and China. They found 
that mathematical PCK differs among the countries since Chinese teachers emphasize developing 
procedural and conceptual knowledge through traditional teaching practices while their counterparts 
in the U.S. focus on promoting creativity and inquiry through activities designed to develop 
students’ understanding of mathematical concepts. Sorto et al. (2009) administered a survey that 
measured teachers’ content knowledge in Costa Rica and Panama and found that teachers in both 
countries focus more on knowing rules and procedures than on making connections and reasoning.    

In the last several decades, the field of mathematics education is expanding its knowledge-base in 
understanding the role of teacher characteristics in student learning and achievement. The major 
shift in the field had happened with Shulman’s (1986) work on teacher knowledge that proposed an 
alternative approach to the educational production function perspective, which was concerned with 
examining proxies of teacher knowledge such as coursework/certification and its impact on student 
achievement (Charalambous & Pitta-Pantazi, 2016). Research on teacher knowledge initiated by 
work of Shulman (1986) has focused on teacher knowledge as a major predictor of student learning 
and achievement. Recently, the field benefited from numerous studies (Hill, Ball, & Schilling, 2008; 
Baumert et al., 2010) that substantially advanced the conceptualization of teacher knowledge and its 
association with student performance.  

Following up on this conceptualization, some scholars (Izsak, Jacobson, & de Araujo, 2012) 
examined different facets of teacher knowledge without explicitly emphasizing its connection to 
student learning. Other scholars stressed the importance of the kind of knowledge a teacher 
possesses because it impacts his/her teaching (Steinberg, Haymore, and Marks, 1985). Another line 
of research (e.g., Baumert et al, 2010; Hill, Ball, & Schilling, 2008; Tchoshanov, 2011) specifically 
targets the effects of different types of teachers’ knowledge on student achievement. Additionally, 
scholars have advanced the field by examining teacher knowledge in variety of domains including 
Number Sense (Ma, 1999; Izsac, Jacobson, & de Araujo, 2012), Algebra (McCrory et al., 2012), 
Geometry and Measurement (Nason, Chalmers, & Yeh, 2012), and Statistics (Groth & Bergner, 
2006). However, the field lacks cross-national research that provides a comprehensive analysis of 
the various facets of teacher knowledge (including content and cognitive domains) and its 
connection to student performance.   

Methodology  
The proposed study is based on the assessment framework used by TIMSS (Mullis et al. 2012). In 
this section, we will describe the study participants, the instrument as well as data collection and 
data analysis procedures.  

Participants 

The sample of this study consisted of lower secondary mathematics teachers from the US (grades 6-
9, N=102) and Russia (grades 5-9, N=97). The US teacher-participants were selected from urban 



public middle schools in the Southwestern part of the country. Teacher sample demographic 
information was self-reported by participating teachers. In terms of gender distribution, 55% of 
teacher participants were females and 45% - males.  Most of the US participants (64%) had 1-5 
years of teaching experience. Additionally, 62% of the teacher sample received their teaching 
certificate through traditional teacher preparation programs and 38% of participating teachers were 
certified through alternative programs. The Russian teacher-participants were selected from urban 
public secondary schools in the Volga region. Russian participating teachers had attained a 
secondary mathematics teacher preparation Specialist’s degree, which allowed them to teach in 
secondary schools (grades 5-11). The majority of participating teachers were females (89%). The 
sample was composed of 78% of teachers who have more than 10 years of teaching experience.   

Instrument  

The instrument used in this study was the Teacher Content Knowledge Survey which was developed 
using TIMSS framework (Mullis et al. 2012). It was designed to assess teacher content knowledge 
based on the three cognitive domains: Knowing, Applying, and Reasoning. The TCKS survey 
consisted of 33 multiple-choice items addressing main objectives of lower secondary mathematics 
curriculum: Number, Algebra, Geometry, Data and Chance. The instrument was piloted for 
construct and content validity as well as checked for the reliability. The alpha coefficient technique 
was utilized to evaluate the reliability of the teacher content knowledge survey. “The value of the 
coefficient of .839 suggests that the items comprising the TCKS are internally consistent” 
(Tchoshanov, 2011, p. 148). Examples of the TCKS items in Algebra domain across different 
cognitive types (Knowing, Applying, and Reasoning) are presented below. 

 

 Figure 1. Diagram to the TCKS item in Algebra domain  

Use the diagram above (see Figure 1) to answer the questions that follow. 

1. Knowing 

Which of the following equations best describes the function y3? 

A. y = ax2 + bx + c 

B. y = ax2 + bx + 1 

C. y = ax2 + 1 

D. y = x2 + 1. 

2. Applying 

The function y3 is translated 4 units left and 7 units down. Which of the following equations best 
describes the new function? 



A. y = ax2 + 11x + 28 

B. y = ax2 + 4x + 7 

C. y = ax2 + 8ax + c 

D. y = x2 + 28x + 11. 

3. Reasoning 

The diagram shows a family of functions in the form y = ax2 + bx + c. Which of the following 
statements best describes the changes in the values of the coefficients as the graphs transform from 
y1, to y2, to y3? 

A.   a is increasing, b = 0, and c is increasing 

B.   a is increasing, b = 0, and c is decreasing 

C.   a is decreasing, b is increasing, and c = 0 

D.   a is decreasing, b is decreasing, and c = 0. 

Data Collection and analysis  

Each teacher was given 90 min to complete the survey. In correspondence with the research 
question, data analysis was performed using non-parametric techniques (chi-square). This statistic 
was selected to measure the variance between independent groups of the same (not normal) 
distribution with arbitrary sample sizes of each group. The selection of this test was also based on 
the ranked nature of data for content and cognitive domains of teacher knowledge and student 
performance.       

Results  
In this section, we first analyze teacher knowledge data by content domain, then we examine teacher 
data by cognitive domain, and finally we discuss parallels between student and teacher performance 
within and between countries.  

Content Domain Mean SE SD Conf. level (95%) 

Number 623 20.3129 205.1512 40.296 

Algebra 563 23.2356 234.6679 46.093 

Geometry 514 25.4349 256.8802 50.456 

Data and Chance 593 20.9738 211.8252 41.606 

Table 1. US teachers´ means scores by content domain 

The results reported on teacher content knowledge show that the US teachers’ highest mean score 
was obtained on Number domain – 623 and lowest on Geometry domain - 514  (see Table 1).   

Russian teachers’ highest mean score was obtained on Algebra domain – 728 and lowest on Data 
and Chance domain – 387 (see Table 2). 



 
Content Domain Mean SE SD Conf. Level (95%) 

Number 656 106.5819 319.7456 23.873 

Algebra 728 82.8841 248.6523 30.648 

Geometry 586 72.7004 218.1013 45.505 

Data and Chance 387 125.0891 306.4044 35.844 

Table 2. Russian teachers´ means scores by content domain 

Moreover, we found that in the cognitive domain the US teachers’ highest mean score was obtained, 
as expected, on Knowing – 734 and lowest on Reasoning - 495 (see Table 3).  

Cognitive Domain Mean SE SD Conf. level (95%) 

Knowing 734 19.7673 197.6733 39.2226 
Applying 505 20.7101 207.1015 41.0934 

Reasoning 495 23.8130 238.1303 47.2502 

Table 3. US teachers´ means scores by cognitive domain 

Russian teachers’ highest mean score was obtained, as expected, on Knowing domain – 760 and 
lowest, unexpectedly, on Applying domain - 504 (see Table 4).  

Cognitive Domain Mean SE SD Conf. level (95%) 
Knowing 760 14.2486 135.1745 28.3117 
Applying 504 12.7961 121.3950 25.4257 
Reasoning 593 17.7406 168.3028 35.2503 

Table 4. Russian teachers´ means scores by cognitive domain 

Moreover, we identified that there is no significant difference between Russian and US teachers’ 
knowledge on Number and Geometry domains (Chi-square 0.347 p>.05 and Chi-square 1.293 
p>.05) (see Table 5).  

Content Domain  Number  Algebra  Geometry  Data and Chance  

Russia  656  728  586  387  
USA  623  563  514  593  

Chi-square (df=1) 0.347  6.311*  1.293  8.003**  

Table 5. Russian and US teachers’ knowledge by content domain (* p<.05, **p<.01) 

However, there is a statistically significant difference between Russian and US teachers’ knowledge 
on Algebra domain (in favor of Russian teachers; Chi-square 6.311 p<.05) and Data and Chance 
domain (in favor of US teachers; Chi-square 8.003 p<.05) (see Table 5). This finding closely 
parallels the US and Russian students’ performance on TIMSS on Algebra domain (in favor of 
Russian students) and Data and Chance domain (in favor of US students).  



Also, this study reported that there is no significant difference between Russian and US teachers’ 
knowledge on Knowing and Applying cognitive domains (Chi-square 1.707 p>.05 and Chi-square 
0.008 p>.05) whereas there is a statistically significant difference on Reasoning domain (in favor of 
Russian teachers; Chi-square 19.117 p<.05) (see Table 6).  

Cognitive Domain  Knowing  Applying  Reasoning  

Russia  760  504  593  
USA  734  505  495  
Chi-square (df=1) 1.707  0.008  19.117**  

Table 6. Russian and US teachers’ knowledge by cognitive domain (* p<.05, **p<.01) 

This finding parallels the US and Russian students’ performance on TIMSS’ cognitive domain.  

Discussion and conclusion 
This study confirms the differences between Russian and the U.S. lower secondary in-service 
teachers’ knowledge in the content domain as it was reported by the TEDS-M study that was 
focused on pre-service teachers (Tatto & Senk, 2011). At the same time, this study expands the 
examination of in-service teachers’ knowledge to the cognitive domain.  

Teacher preparation could be considered as the main factor contributing to the differences between 
Russian and US teachers’ knowledge. Overall, there is a tangible difference in secondary teacher 
preparation curriculum between the two countries: in average, Russia offers about 240 credit hours 
in teacher preparation programs compare to 120 credits in the USA. Furthermore, cross-national 
curriculum analysis shows that Russian lower secondary mathematics teachers have more extensive 
content preparation compare to their American counterparts. A number of contact hours for 
mathematical content knowledge, as well as pedagogical content knowledge and specialized 
mathematics knowledge offered at selected teacher preparation programs (e.g., the University of 
Texas at El Paso, USA and Kazan Federal University, Russia) in two countries, are presented in 
table 7.  

Country Mathematics Content 
Knowledge  

Pedagogical Content 
Knowledge  

Specialized Mathematics 
Knowledge  

Russia 1857 278 380 
United States 442 72 87 

Table 7. Contact hours in Mathematics related disciplines in teacher education programs in Russia 
and United States 

Numbers depicted in the table are compatible with the findings of the TEDS-M study (Tatto & 
Senk, 2011). Close examination of secondary teacher preparation curriculum in Russia shows that 
more emphasis is placed on an analytic and algebraic component of mathematics curriculum and 
less emphasis - on statistic and probability component compare to the US curriculum. Moreover, 
item analysis of standardized tests for the lower secondary schools in USA and Russia revealed the 
difference in selection and composition of algebra problems as well as problems related to data and 
chance in the test: while in Russia more emphasis is placed on algebraic problems and less emphasis 
on data and chance problems, in the USA – the emphasis is equally distributed among algebraic 
problems and data and chance problems. We observed another noticeable difference in the role of 



proof in the academic mathematics component of the teacher preparation program which could 
explain the difference in the reasoning domain of the teacher knowledge: Russian curriculum places 
a heavy emphasis on proof across the mathematics coursework including school mathematics 
whereas the US curriculum uses proof in selected mathematics courses primarily in academic 
mathematics coursework.      

We are cognizant of the limitations concerning the convenient sampling technique that influences 
generalizability of the study results. Moreover, there is no cluster matching between teachers 
participating in the study and students tested in TIMSS. However, the study main results suggest 
that student performance on international tests could be explained by teacher knowledge. The study 
also presents opportunities for comparing, sharing, and learning about issues in cross-national 
context in US and Russian teacher education, training, and development. Moreover, the reported 
cross-national study on teacher knowledge may inform the field on priorities placed on lower 
secondary mathematics teachers’ knowledge in USA and Russia by content and cognitive domains.  
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In this paper, as a proxy for their mathematical knowledge for teaching, we examine Greek-Cypriot 
(n=21) and Greek (n=12) first-year undergraduate teacher education students’ written 
explanations regarding a linear equations-related scenario. Qualitative analyses identified four 
broad themes permeating most accounts, irrespective of nationality, which were interpretable as 
either disciplinary explanations or instructional explanations. The themes concerned (a) definition 
of unknowns, (b) inverse operations, (c) presentation of objectives, and (d) rote procedure. The 
analyses indicated the weakness of students’ explanation, whether from a disciplinary or an 
instructional perspective, which was independent of their country of origin. 

Keywords: Mathematical knowledge for teaching, instructional explanations, disciplinary 
explanations, prospective teachers. 

Introduction 
The question regarding what kind of knowledge is needed to teach mathematics has preoccupied a 
number of scholars, while, at the same time, the association of mathematics teacher knowledge with 
instructional quality and student learning is considered to be complex (Charalambous & Pitta-
Pantazi, 2016). Over the last years, several conceptualizations of this kind of knowledge have been 
proposed. Drawing upon Shulman’s (1986) seven tentative categories for teacher knowledge, Ball, 
Thames, and Phelps (2008), for instance, developed the mathematics knowledge for teaching 
framework, which divides subject matter knowledge and pedagogical content knowledge into three 
further sub-categories each. From a different perspective, grounded in data-driven analyses of video-
taped lessons by prospective elementary teachers, Rowland, Huckstep, and Thwaites (2005) 
proposed the knowledge quartet, a framework comprising four units, namely, foundation, 
transformation, connection, and contingency. These units, the authors claim, can be found in every 
mathematics lesson and can be used for evaluating teacher knowledge during the course of teaching. 
More recently, Davis and Renert (2013) have written on profound understanding of emergent 
mathematics, arguing that teachers’ knowledge could be productively interpreted as a complex 
evolving form which is tacit and is better understood as a learnable disposition than a domain to be 
mastered. 

Several of scholars (i.e. Copur-Gencturk & Lubienski, 2013; Phelps & Howell, 2016; Hill, 
Schilling, & Ball, 2004) have urged for the development of effective measures of the knowledge 
required for teaching mathematics. Various approaches to this task have been have been undertaken  
(Charalambous & Pitta-Pantazi, 2016), including, paper-and-pencil tests, the use of lesson videos 
inviting teachers to critique and/or predict, as well as inviting post-instruction reflections on both 
lesson plans and the actual realization of the plan. Adaptations of such approaches, however, should 
be carried out with careful sensitivity to the cultural context, as teacher knowledge, of both in-
service (Andrews & Sayers, 2012) and pre-service teachers (Xenofontos, 2014), is conditioned by 



cultural expectations with respect to what mathematics is valued and how it is presented. For 
example, Andrews (2003) has highlighted how some cultures construe competent mathematics 
teachers as those who ensure their students complete a large number of tasks every lesson, while 
others see competence in the completion of a few. 

An important element of a teacher’s didactical repertoire is the explanation. Explanations, which 
typically draw on students’ prior knowledge (Leinhardt & Steele 2005), are manifestations of 
teachers’ depth of content knowledge (Inoue, 2009). Of Leinhardt’s (2001) four classifications of 
explanation, two are particularly relevant here; disciplinary explanations are domain specific and 
conform to the epistemological expectations of the relevant discourse, and instructional 
explanations, which are intended to teach some aspect of a particular subject matter to others, are 
“jointly built through a coherent discourse surrounding a task or text that involves the whole class 
and the teacher working together” (Leinhardt, 2001, 340). Therefore, in accordance with prior 
research that explanations may be a useful tool for measuring prospective teachers’ knowledge (see, 
for example, Charalambous, Hill, & Ball, 2011; Inoue, 2009), we present the results of a pilot study 
focused on the use of a single task as a means of evaluating Greek and Cypriot beginning teachers’ 
didactically-related mathematical understanding. The extent to which we consider our tool as 
effective is discussed in another paper of this TWG (see Andrews & Xenofontos, 2017). Here, we 
focus on the identification of similarities and/or differences between the two cohorts’ written 
explanations, which, we believe could offer better insights into the mathematical knowledge 
beginner teachers bring to teacher education and how we, as teacher educators, could build on or 
deconstruct this knowledge.  

The study 
Participants were first-year undergraduate students reading for a degree in elementary education at a 
private university in Cyprus. With Greek being the language of instruction, the programme includes 
both Greek-Cypriot and Greek students. Data collection took place before students had experienced 
any university instruction and involved 21 Greek-Cypriot and 12 Greek students. Students were 
shown, with no additional text, the solution to the equation presented below, and asked to write a 
short account indicating how they would explain it to someone who had missed the lesson in which 
it had been taught. Such a task has the advantage that it allows for both disciplinary and 
instructional explanations (Leinhardt, 2001). 

x + 5 = 4x – 1 
     5 = 3x – 1 

      6 = 3x 
       2 = x 

Data were analysed as single set by means of a constant comparison process (Fram, 2013). These 
analyses, as reported in Andrews and Xenofontos (2017, TWG11), yielded seven themes with 
respect to how participants explained the solution. Of these seven, four themes were present in most 
accounts and are here considered in depth. In the following, we present the results of this process, 
discussing each theme in relation to first the Cypriot and then the Greek students. All names are 
pseudonyms. 



Results 

Definition of unknowns  

A number of Cypriot students wrote statements interpreted as explicit definitions of the unknown. 
For example, Ekaterini wrote that the “known numbers are the ones that don’t include a letter, as for 
example, 5 and -1. Unknown numbers are the letters or the numbers that are accompanied by a 
letter, for example, 4x and x”. In similar vein, Carissa wrote, “I separated the known from the 
unknown numbers: Unknown x + 5 (known) = unknown 4x - 1 (known)”. Both comments, we 
argue, are structurally equivalent in their assertions that unknowns are represented by letters and the 
knowns by numbers. Other students’ definitions tended to the implicit. For example, Hermione 
wrote that “the first thing to do is to separate x from the numbers. In other words, to set apart the 
known from the unknown so that we can find what x is”. Likewise, Alexandra commented that their 
teacher had given “two expressions, each with an unknown (x) and which are equal to each other. 
She asked us to find out what the value of x is”. While neither student explained explicitly what 
they meant by the unknown, their comments present a tacit understanding of the unknown as the 
number represented by the letter x that has to be found. 

In ways similar to their Cypriot colleagues, Greek students offered either explicit or implicit 
definitions of the unknown. With respect to the former, Nina wrote that “we separate the known 
from the unknown numbers: known: 5, -1 and unknown: x, 4x”, while, in a slightly more fluid 
manner, Paraskevi commented that “I separate the known from the unknown. The known numbers 
are all numbers, unknown is whatever is a letter, for example, x, y, z, w”. Students explicitly 
distinguished between x, as a representation of the missing number, and numerical values separated 
from the unknowns. With respect to the latter, Callisto, having written of the need to separate 
knowns from unknowns, wrote that “all the ‘x’ are taken to the right and whenever ‘x’ is on the left 
part of the equation, you change the sign. On the left part, the known numbers enter while the 
unknown enter the right”. Similarly, Daphne commented that “the first unknown x is moved to the 
second part of the equation but instead of a plus we make it a minus”. In both cases, students offer 
instructions in which the x terms are afforded a treatment that distinguishes them from numerical 
terms in ways that indicate their understanding of the nature of the unknown and its significance in 
the equation solving process. 

Presentation of objectives 

The accounts of almost all Cypriot students included some statement regarding the objectives of 
equation solving. In most cases this was implicit and typically represented in statements concerning 
the separation of knowns from unknowns. The briefest such statements were as in Carissa’s “I 
separated the known from the unknown numbers” and Ioanna’s “we set apart the known and 
unknown numbers”. In such statements can be seen an understanding that the identification of the 
unknown was the objective. Even when such students wrote longer statements, the message was the 
same, as in Chloe’s “we separated known and unknown numbers, that is, 5 and 1 and 4x and x”. 
Here, the distinction between Chloe’s and the other two students’ statements is that she incorporated 
an implicit definition of the unknown, but offered no more than them with respect to her objectives. 
Other Cypriot students offered accounts with a slightly less implicit objective in that they also 
discussed the separating of the knowns from the unknowns but in so doing explicitly mentioned the 



role of x, which Chloe did not. For example, Medea wrote that the “first step is to set apart the 
known and the unknown numbers, that is, to bring ‘x’ to one side and the numbers to the other”, 
while Stamatia commented that “we separated the known from the unknown numbers, that is, the 
‘x’ and the ‘simple’ numbers.  

Four students wrote statements indicative of an explicit objective. Two of these were brief, as in 
Stefania’s “the aim is to find which number equals x” and Irene’s “the question in this equation is to 
find ‘x’ and what value it has”. The other two students wrote longer statements, as with Hermione’s 
“the first thing to do is to separate x from the numbers. In other words, to set apart the known from 
the unknown so that we can find what x is”. In all three statements, albeit expressed differently, can 
be seen an expression concerning the identification of the unknown, x. Finally, of the four students 
who offered an explicit objective, Alexandra’s statement also offered the only evidence of a 
relational understanding of the equals sign. She wrote that “the teacher gave us two expressions, 
each with an unknown (x) and which are equal to each other. She asked us to find out what the 
value of x is”.  

For the Greek students, the same three categories of response were identified. For example, with 
respect to implicit goals embedded in statements about separating the knowns from the unknowns, 
Pantelis wrote that “we part the known from unknown numbers”, while Moira wrote that “I would 
tell the student that we separate the known from the unknown numbers and then make the 
calculations”. As far as the second category is concerned, whereby students offered implicit 
objectives alongside an explicit mention of the role of x, Callisto commented that “we separate the 
known from the unknown numbers. For assistance, you can underline the ‘x’ from the numbers”, 
while Paraskevi wrote that “I separate the known from the unknown. The known numbers are all 
numbers, unknown is whatever is a letter, for example, x, y, x, w”. Finally, one Greek student 
offered an explicit objective. In this respect Panorea wrote that she “would explain to the student 
that it’s an equation whereby we are trying to find the unknown x. The data we have are the 
numbers. After, I would explain how to find x”.  

Rote procedure 

Few Cypriot students did not offer a rote rule for solving the equation and of those that did all 
alluded, either explicitly or implicitly, to the redistributive ‘change the side and change the sign’. 
With respect to those who discussed the rule explicitly, one of the more detailed accounts was 
offered by Irene, who wrote that  

Whatever moves to the other side changes ‘sign’. The ‘sign’ is (+) or (-).  We have x + 5 = 4x - 1 
and want to separate ‘x’ from the numbers, so we have to say 5 = 3x - 1. Why? 1x went to the 
right part and changed signs becoming -1x (since x is now 1x) therefore 4x - 1x = 3x (4 -1 = 3). 
‘x’ in common. Now we have to justify 6 = 3x. We have 5 = 3x - 1. Since (-1) is a number, it 
must shift to the left part of the equation and become plus, that is 5+1= 6. (It was -1 and since 
crossing over the = it becomes plus). So 6 = 3x. 

These, and other, students seemed both confident and clear as to the process involved in solving the 
equation. They offered rules whereby objects were moved from one side of the equals sign to the 
other along with a change of sign. Of course, the direction of such movement was determined by the 
solution presented to them but in no case did students offer any justification for the changing of the 



sign. Interestingly, and unique among students, Elina offered a no less unwarranted but general 
account. She wrote that 

At first we get an equation with letters and numbers. The first thing to do is to move all numbers 
to one side and all letters on the other. If a number has a minus (-) sign or plus (+) once they are 
moved to the other side their sign changes; in other words, from minus (-) it becomes plus (+). 
That’s how we deal with similar calculations.  

Several Cypriot students offered accounts, typically short, in which the movement and the changing 
of signs were implicit. For example, Hermione wrote that “[a]s you can see x and 4x have been 
joined and the same is true of 5 and 1. Therefore, x has become 3x and then 5 + 1 is 6”. In these, and 
other, cases neither the movement across the equals sign nor the changing of the sign were made 
explicit. Our interpretation is that students were familiar with the process and saw such properties as 
givens rather than something in need of either explanation or warrant.  

As with their Cypriot colleagues, Greek students typically offered a ‘change the side change the 
sign’ rule. Also, as before, the extent to which this was presented explicitly varied. For example, 
with respect to an explicit account, Daphne wrote that 

Since we have two unknowns on both parts of the equation, the first unknown x is moved to the 
second part of the equation but instead of a plus we make it a minus. Then we subtract it from 4x 
to get 3x. After getting -5 in the second part, we move it to the first, therefore 1 is not a minus but 
plus. Then we add 5 and 1 to get 6.  

In their accounts can be seen an understanding of the ‘change the side change the sign’ rule for 
solving equations. In neither case, however, can be seen evidence of a relational understanding of 
the equals sign as would be represented in statements justifying the described actions. There was no 
sense, for example, that students saw these actions as a consequence of adding or subtracting 
equivalent amounts from each side. In addition, as with the Cypriot students, one student offered a 
generalised account of the same process. In this respect, Callisto wrote that “[a]ll the ‘x’ are taken to 
the right and whenever ‘x’ is on the left part of the equation, you change the sign. On the left part, 
the known numbers enter while the unknown enter the right. Afterwards, we add the known to the 
known and the unknown with the unknown”.  

However, the majority of Greek students offered implicit summaries of the solution with which they 
had been presented. Typical of others, Panorea wrote that she would “shift the given numbers to one 
side and the unknown, x (or 3x) on the other side (e.g., 3x) and that way I would find the unknown 
x”. Similarly, Paraskevi wrote that “[a]t this stage, we carefully observe when to change (+) or (-). 
When they move from the 1st part to the 2nd, the sign changes from let’s say (+) to (-) and vice versa. 
Once we reach this point 6=3x”. In such statements can be seen different but equally incomplete 
accounts of the rote rule. For example, Panoreas’s account highlighted the bringing together of the 
knowns and unknowns respectively, leaving the reader to infer the changing of the sign, while 
Paraskevi’s emphasised the changing of the signs at the expense of her detailing the changing of the 
sides of like objects. In other words, both left significant elements for their readers to infer. 



The inverse operation  

In almost all cases, having articulated some sense of a rote rule, students from both countries 
invoked an operation reversal to explain the final line of the solution, whereby 6 = 3x became 2 = x. 
In this respect, eleven of the 21 Cypriot students offered, albeit implicitly, an understanding of the 
inverse operation necessary to transform the line 6 = 3x to 2 = x. Typical of these were the 
comments of Chloe, who wrote that “after reaching 6 = 3x, we divided 6 by 3 so that x will be by 
itself. I found x to be 2” and Hermione, who wrote “then I divide 6 by 3 and x is equal to 2”. Of 
these eleven students, two students offered more extended but no less implicit suggestions, as in 
Stamatia’s comment that “we take number 6 and equate it ‘=’ with 3x. Then we divide 6 by 3, i.e. 
6/3 equal to x1, “6/3 = x. 6/3 makes 2 and so x1 is equal to 2, ‘x = 2’ ”. In these cases, students’ 
comments about dividing by three seemed to us to reflect, at least implicitly, a recognition of the 
structural significance of the unknown’s coefficient that necessitated division.  

A further seven students offered accounts indicative of a better developed understanding of the role 
of the coefficient and its function with respect to inverse operations. For some this could be seen in 
the ways they reiterated earlier comments about isolating the unknown. This was seen in, for 
example, the writing of Perikles, who added that “arriving at 6 = 3x I divided 3x by 3 to get x alone, 
and 6 on the other side with the 3 before the unknown. So the answer is x = 2. Others in this group 
were more explicitly aware of the coefficient and its significance, as in Medea’s comments that 
“once the basic calculation was made, we divide both parts by the unknown’s coefficient and then 
get the result” or Vassiliki’s “I take the number in front of the x and divide both sides of the 
equation by it”. In such comments, focused on the coefficient of the unknown, can be seen.  

The Greek students’ comments could be categorised similarly, although a smaller proportion, three 
of the eleven, offered entirely implicit statements. Of these, typical was Crino’s “we have reached 6 
= 3x and consequently, we divide 6 by 3 to get the result”. Seven students, also a higher proportion 
than with the Cypriot cohort, presented accounts with an explicit reference to the coefficient, as with 
Ivy’s comment that he (the invisible teacher) “divided by the coefficient of the unknown 3 to get 2 = 
x” and Paraskevi’s note that “once we reach this point 6 = 3x, I must divide by the coefficient of the 
unknown to see what the value of x is, that is to say, to divide both the 1st part and the 2nd by 3”. 

Interestingly, two of these seven students offered accounts, albeit whose intentions were clear, that 
employed an incorrect vocabulary, as with Daphne’s “finally, we divide 3 by the fraction” or 
Nikoleta’s “we divide it by the denominator of x, namely, 3 and we arrive at the final result that 2 = 
x”. In such cases students’ intended meaning was clear. 

Discussion 
Our analyses provide substantial insights, both encouraging and discouraging, into the 
conceptualisation of mathematics these beginning teachers bring to their teacher education 
programme. In this respect, both sets of students appeared procedurally competent, recognising the 
equation for what it is and typically understanding how it had been solved. However, from a 
disciplinary perspective (Leinhardt, 2001), students’ explanations showed very little awareness of 
the epistemological underpinning of mathematical knowledge, almost without exception warranting 
their chosen procedures on the basis of their personal authority as teachers. Moreover, from the 
perspective of research on the solving of equations, students indicated no relational understanding 



of the equals sign, a prerequisite for learners confident solving of equations of the form above with 
the unknown on both sides (Alibali et al., 2007; Filloy & Rojano, 1989). From an instructional 
perspective (Leinhardt, 2001), students’ explanations typically alluded to a presentation of 
objectives and the importance of the unknown and its role in equation solving. However, the 
presentation of such a rule would typically allow little opportunity for learners to understand the 
reasoning behind it. Interestingly, although their rote rules never alluded to operations performed on 
both sides, many students were aware of inverse operations in relation to the unknown’s coefficient. 
In sum, and drawing on Skemps’s (1976) distinctions, our data showed that both Cypriot and Greek 
students were locked into an instrumental rather than relational understanding of mathematics, 
perspectives which their respective curricular traditions would not have encouraged. Finally, when 
framed against the mathematical knowledge for teaching literature, it seems that at this stage of their 
careers both sets of students showed evidence of Rowland et al.’s (2005) foundation knowledge, 
albeit problematic, but, as yet, none of transformation, connection or contingency. Moreover, if the 
goal of teacher education is to facilitate beginning teachers’ profound understanding of emergent 
mathematics (Davis & Renert, 2013) then much is still to be done.  
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Research in mathematical literacy has different emphases; whether the teaching and learning of 
mathematical literacy or the synthesis of results from worldwide studies that emphasises 
mathematical literacy (e.g. the PISA 2003 studies) to focus on the curricular implications. However, 
a comprehensive review of the current empirical research on the area is missing. The poster 
presentation focuses on what research brings attention to in empirical studies where mathematical 
literacy is highlighted. These are both quantitative and qualitative based projects, and include for 
instance articles with data collection where mathematical literacy is emphasised in the development 
of tools for the data collection or in what is being measured, and articles focusing more on teachers’ 
implementation of mathematical literacy in teaching and learning. The poster also focuses on what 
research finds to be implications for teaching and future research on mathematical literacy.  

The poster is based on our work on a review article, submitted to an international journal, that aims 
to address the research on mathematical literacy in primary and lower secondary school, by bringing 
together, comparing and synthesizing the diverse body of current research, emphasise implications 
for research on the area, and point to necessary areas for research to come. Through the poster we 
aim to inform about our review on research on mathematical literacy in school. The poster is used to 
present a systematic review of recent empirical studies through comparing, analysing, and discussing 
the body of articles in relation to the following key questions: 

1. What methodologies have been used to examine emphasis on mathematical literacy in primary 
and lower secondary school? 

2. How is mathematical literacy conceptualised? 
3. What is the focus of attention in research on mathematical literacy? 
4. What are the implications for primary and lower secondary school teaching, and 

recommendations for future research on mathematical literacy? 

We have applied methods well-known for review articles that aim to identify a state of the art within 
a field of research on school related issues, and to make suggestions for further research within the 
area at hand (e.g., Beltman, Mansfield & Price, 2011). This counts for the identification of parameters 
for the review, search in data bases based on the identified parameters, and selection of publications 
to form the basis of the review and analysis. The body of articles for the review consists of 28 articles 
that fulfil the selection criterions used. The studies were conducted worldwide, but with a clear 
majority of European and Asian contributions. 



Our findings show that the research is dominated by quantitative approaches, and do not focus on 
what goes on in the classroom. It focuses on the outcome of what goes on in school. The lack of 
identified attention to qualitative research on teaching for mathematical literacy seems to be due to 
four main reasons. The decision to apply existing data from PISA studies for more quantitative 
analyses on mathematical literacy related areas, application or even exploitation of the mathematical 
literacy concept in studies that are not directly focused on mathematical literacy, and tension between 
policy documents and practice in school on one hand, and tension between learning achievements 
and mathematical literacy on the other hand. This leads to lack of attention to best-practice projects. 
Hence, it seems that research in the future to a larger extent might report research based results on 
what schools and teachers ought to do in order to teach for mathematical literacy. Several of the 
articles use data from PISA test results, and are therefore obliged to acknowledge the prevailing 
OECD definition at the time of testing, because the attention to mathematical literacy in the PISA 
tests is based on this definition. In addition, some of the articles reviewed connect subject matter 
theories within mathematics education with the concept of mathematical literacy. A common factor 
for these articles is their interest regarding the teaching of mathematical literacy in school. Regarding 
implications for primary and lower secondary school teaching and further research on mathematical 
literacy, three main challenges were identified: both researchers and teachers are uncertain about how 
to develop students’ mathematical literacy, specific attempts to work directly with mathematical 
literacy through mathematics alone have not been successful, and teaching for mathematical literacy 
appears to require non-traditional methods for teaching mathematics. 

Furthermore, the subject of mathematical literacy is given extensive attention both at political and 
societal levels (OECD, 2009) and within mathematics education  research. In fact, Sfard (2014, p. 
141) urges the research community to address this issue: “The question of how to teach for 
mathematical literacy must be theoretically and empirically studied. When we consider the urgency 
of the issue, we should make sure that such research is given high priority.” The approach to such a 
quest seems to be through increased emphasis on qualitative research, for instance, through studies 
of best-practice and research projects involving practising teachers. Therefore, the research 
community’s attention needs to shift from nurturing data and findings that highlight student results 
on mathematical literacy tests to research on what to do in order to improve the students’ opportunities 
to develop mathematical literacy. A starting point for such a shift in focus could be to examine how 
mathematical literacy is understood, facilitated and experienced in schools. 
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STEAM  
STEM (Science, Technology, Engineering and Mathematics) is an educational approach based on the 
interdisciplinarity and applicability of scientific and mathematical knowledge to technology and 
engineering. STEAM integrates Art into STEM in order to promote children’s creativity (Fenyvesi, 
Téglási and Szilágyi, 2014). In many European countries, the number of graduates in science, maths, 
technology and engineering areas is clearly insufficient for the needs of their companies and 
industries. To stimulate students’ interest in these areas and art, the European Union has dedicated a 
lot of resources and effort, developing a large number of projects for pre-university classrooms. For 
a review, see Rocard, Csermely, Walwerg-Henriksson and Hemmo (2007). 

KIKS project 
KIKS, Kids Inspiring Kids for STEAM is a European Erasmus+ Project, which involves four 
European institutions: Metropolitan University of Budapest (Hungary), STEM Team East 
(Cambridge, United Kingdom), University of Jyväskylä (Finland) and University of Cantabria 
(Spain). The project started in March 2016 and its main aim is to promote secondary education 
students’ interest on the STEAM areas, by developing activities and presenting them to other students 
locally and internationally. Many students and teachers do not enjoy or have confidence in maths and 
STEM: they have anxiety even maths/technophobia and drop it as soon as they can. So we seek 
to promote the creativity and motivation for learning of these less confident students, working 
interdisciplinary, using technology, and fostering communication and the transfer of ideas/knowledge 
across cultures. From a research point of view, KIKS aims to compare cross-culturally the elaboration 
and resolution of STEAM activities at secondary education level. 

Development of activities 

Students, in teams of fives and led by at least one teacher, are asked to elaborated STEAM activities 
or projects under the following approach: How would you get your schoolmate to love Maths? The 
activities or projects can emerge from a teacher, a pupil, or a KIKS coordinator’s idea. Once the idea 
emerges, it is developed into an activity or project. It should involve different STEAM areas, but its 
duration and degree of difficulty can vary according to teams’ availability. Once an activity is 
elaborated, the team presents it to their local homologous (in face to face events) and to their 
international homologous (through video conferences). Schools from different countries are invited 



to participate in the project, at the moment we have more than 25 participant schools from different 
countries and backgrounds.  

Products to be developed by the students 

Each participant team has to elaborate a written document, an explanatory video, and a presentation 
of its work. (1) The written document (Word Doc or Power Point) has to include a presentation of the 
team members, and a description of the activity with the main results and the material used. (2) The 
edition of the video has to include the practical or technical aspects of activity, which are difficult to 
explain on paper. For example, the manipulative construction of objects, the use of measurement 
tools, etc. All the products have to be developed in the English language. The limited scope of this 
paper does not allow us to include here examples of the activities already developed by our teams, 
but they can be found at our website (http://www.kiks.unican.es/en/actividades/). 

KIKS support 

KIKS provides support to the teams through different platforms including Goggle Drive, YouTube, 
Facebook and a Website (www.kiks.unican.es). The Google Drive and Facebook platforms function 
as storages of information— where teachers and coordinators can exchange ideas— as well as 
repositories of documents elaborated by the teams. The YouTube Canal works as repository of videos, 
and the Website provides different and meaningful information about the ongoing process of the 
project. Apart from the above, KIKS provides support to the teams proposing activities, helping in 
aspects related to the English language, and furnishing technical support for video edition, online 
connections, etc. 

Evaluation 

Parallel to practical work of the project, we are undertaken a research study aiming to evaluate the 
strengths and weakness of KIKS. Firstly, this research aims to assess cross-culturally teachers’ and 
students’ perceptions about STEAM. Secondly, we aim to characterise the STEAM activities 
elaborated by the teams, according to the cognitive (competences, capacities, skills) and motivational 
(attitudes, emotions) dimensions they may develop in the learners. In short we seek to evaluate the 
impact of STEAM activities in the learning process. Tools for evaluating these two dimensions are 
currently under construction.   
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Introduction 
Comparative studies in mathematics include studies that document, analyze, contrast or juxtapose 
similarities and differences across all aspects and levels of mathematics education (Jablonka and 
Andrews, 2012). In this project, which is in an early phase, we intend to carry out such a study at 
the cross-national level. The rationale behind it is to identify similarities and differences between 
mathematics education in Norway and Ethiopia, to reflect on their practices in the light of 
international wisdom (Clarke, 2003), and to lay down grounds for further intervention studies, for 
example for the Norwegian NORHED project that will start in 2017. 
(https://www.norad.no/en/front/funding/norhed/news/). 

We have started comparing textbooks, since textbooks are the main resources used in mathematics 
classrooms (Pepin, 2010) in many countries including Ethiopia and Norway. Textbooks are tools, or 
instruments, that facilitate the daily work of teachers. They also contribute to the field of 
mathematics by preserving and transmitting skills and knowledge (Rezat, 2008a). In general, 
Mathematics is a subject that has long been associated with textbooks and curriculum materials 
(Remillard, 2005). Therefore, it is important to look at textbooks as a source of comparison.   

At this stage, emphasis is given to the teaching and learning of relations and functions as presented 
in the textbooks, partly due to students’ difficulties with learning these topics (Denbel, 2015). As 
teacher educators working with students preparing to work in primary and middle school in 
Norway, we have also observed that many student teachers struggle to grasp these concepts and 
hence to teach them.  

Method 
In this study we selected six textbooks in Norway and the one textbook from Ethiopia from lower 
secondary level which covers the concepts of relation and function. At this early phase of the study, 
definitions, examples, representations, exercises and problems, activities, group works, contexts and 
level of abstractions in the textbooks are being identified and compared.  

Findings 
As mentioned above, the purpose of this poster is to communicate the beginning of our project, 
which will enable constructive sharing of knowledge and experience about the teaching and 
learning of mathematics between the two countries, and we hope with the international mathematics 
education community in the coming years. We report our findings to date as follows.   



Among the selected textbooks, only two of them (one text from Norway and the textbook from 
Ethiopia) address the concept of relations directly by providing definitions, domain and range of 
relations and different representations, examples and exercises, without including the topic of 
function. The other Norwegian textbooks deal with the topic of function by taking for granted that 
students understand the concept of ‘relation’ in mathematics. Most of the books follow the teaching 
of functions by giving context-based definitions and examples, beginning with proportional 
relationships of variables, building to linear and then quadratic functions.  

In The Ethiopian textbook (M9) the definitions of relations and functions are provided in terms of 
subsets of a Cartesian product of two sets. Examples and problems are consistently abstract and 
unrelated to any real context. In contrast, we find no single definition and representation in the 
respective Norwegian textbooks. In addition, the Norwegian textbooks include many real life 
related contexts that are accessible by the students, and they are full of different representations 
(graphs, symbols, words, tables and physical figures) for both concepts.  With reference to this 
topic, the textbook M9 has a higher level of abstraction than its Norwegian counterpart. Symbolic 
and graphic representations are present in M9, but it is devoid of contexts and real life related 
examples and problems. 
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History of mathematics in mathematics education continues to receive much attention. However, 
empirical research and coherent theoretical/conceptual frameworks within this area have emerged 
relatively recently. The purpose of this TWG is to provide a forum to approach mathematics 
education in connection with history and epistemology dedicated primarily to theory and research 
on all aspects of the role, effect, and efficacy of history and epistemology as elements in 
mathematics education. 

TWG12 welcomes both empirical and theoretical research papers, and poster proposals related to 
one or more of the following issues: 

1. Design and/or assessment of teaching/learning materials using the history of mathematics, 
preferably with conclusions based on empirical data; all levels can be considered, from early-
age mathematics to tertiary education and teacher training. 

2. Surveys on the existing uses of history or epistemology in curricula, textbooks, and/or 
classrooms in primary, secondary, and tertiary levels; 

3. History of mathematics education; 

4. Relationships between, on the one hand frameworks for and empirical studies on history in 
mathematics education and, on the other hand, theories, frameworks and studies in other parts 
of mathematics education research. 

Even though the creation of this TWG is fairly recent – it started in CERME6 (2009) – it has deeper 
institutional roots within the maths education research community. Indeed, the HPM study-group 
(History and Pedagogy of Mathematics) was created at the 1972 ICME conference; it has been 
organizing satellite conferences to the ICME meetings since 1984, and has several active regional 
branches (HPM-Americas, European Summer Universities). In CERME10, 16 papers and 2 posters 
were presented in TWG12, for a total of 23 participants affiliated to this group, covering a large 
range of European countries (from Ireland to Russia) and beyond (Brazil, Mexico, the U.S.). A short 
survey showed this TWG attracts newcomers to the CERME community from the HPM 
community, since 9 participants were CERME first-timers, yet only two had never attended any 
HPM-related event.  

Before going into any details, it should be stressed that this TWG has four general but distinctive 
features which give these meetings their specific flavour. Firstly, its topic lies at the intersection of 



different fields of research – maths education research and history of mathematics – which requires 
versatility and methodological vigilance (Fried, 2001; Chorlay & Hosson, 2016). Secondly, the 
strength of the historical and the HPM community varies greatly among countries, and these 
meetings play a crucial role for researchers working in relative isolation, and with difficult access to 
resources in the field. Thirdly, the scope of TWG covers both history in mathematics education and 
history of mathematics education, which are two significantly different research topics (TSG 24 and 
25 in ICME13); connecting the two lines of investigations is a constant challenge. Fourthly, since 
the topic of TWG12 is neither specific to one level of the educational system (from primary 
education to teacher-training) nor to any single mathematical topic (be it fraction concepts, algebra, 
proof, etc.), the work in TWG12 intersects that of most other TWGs. This time, intersection with 
TWG1 (Proof and argumentation), TWG18 (Teacher education), and TWG22 (Resources and task 
design) was significant. It should be noted that, for this edition, there was little intersection with 
what was covered in TWG8 (Affects and mathematical thinking), TWG10 (Diversity and maths 
education), in spite of the fact that it is not uncommon for outsiders of the HPM research 
community – among which most policy-makers and curriculum-designers – to ascribe such goals to 
the historical perspective in teaching. 

These four features made this meeting not only useful but also challenging and exciting. As the final 
discussion made clear, the general feeling among the participants was that one of the main outcomes 
of this meeting is that we actually learned a lot from the one another, both from their papers and 
from the lively discussions. Let us now highlight some of the significant feature of the 2017 
conference. 

For quite some time it has been stressed that more attention should be paid to the actual effects of 
the use of historical sources, either in the classroom or in teacher training (Chorlay, 2016; Jankvist, 
2009). This year, at least two papers contributed to this line of research. For example, the 
Transforming Instruction in Undergraduate Mathematics via Primary Historical Sources 
(TRIUMPHS) project is a five-year project funded by the National Science Foundation in the 
United States, which will create and test 25 full-length Primary Source Projects (PSPs) and 30 one-
day “mini-PSPs.” Each PSP is designed to cover its topic in about the same number of course days 
as mathematics classes would otherwise. With PSPs, rather than learning a set of ideas, definitions, 
and theorems from a modern textbook, students learn directly from the original work of 
mathematicians such as Leonhard Euler, Augustin-Louis Cauchy, or Georg Cantor. The project 
includes an extensive “research with evaluation” study, which will seek to address several 
evaluation and research questions and enable both formative and summative evaluation of the 
project activities. Data sources to inform the research are pre- and post-course surveys (of both 
students and instructors), post-PSP surveys, student interviews, student PSP work samples, video 
captures of selected classroom instruction and audio captures of selected small group student work, 
and instructor post-implementation reports. By the end of the project it is expected that some 50 
instructors and over 1000 students will participate in undergraduate mathematics classrooms where 
PSPs are used. 

On a smaller scale, Areti Panaoura studies the manifold difficulties faced by an “ordinary” teacher 
attempting to use a textbook activity on Egyptian multiplication. It raises many questions for our 
research community to investigate further: as to the level and nature – mathematical, didactical, 



historical – of expertise required from the teacher; as to our (as researchers and teacher-trainers) 
criteria for assessing such teaching sessions; as to the relevant theoretical frameworks for the 
description and analysis of teacher-practice (in particular the use of pedagogical documents). Along 
with these questions, it shows the importance of leaving our comfort-zone, a zone in which the 
teaching sessions are implemented by the researcher who designed them or by teachers with a 
significant experience in the field.  

As is customary in HPM-related meetings, a large number of papers carry out detailed content 
analysis. Let us restrict ourselves to those dealing with numbers and early-algebra: Antonio Oller-
Marcén and Vicente Meavilla describe forms of argumentation about equations of the  
type in a 16th century Spanish treatise, and endeavour to make sense of what we would consider to 
be errors or flaws; Chorlay studies arguments justifying the rule for fraction multiplication in a 
Chinese treatise from the Han dynasty and compares them with arguments found in today’s 
textbooks; Maria Sanz and Bernardo Gómez devise a structural classification of sharing problems 
on the basis of a large historical sample, and complement this classification by showing the variety 
of methods – both arithmetic and algebraic – for solving them. Coming from a perspective of 
history of education, Rui Candeias discusses in details a pedagogical approach to operation on 
decimals, in a context which combines proportionality and magnitudes. Although this line of 
investigation may seem to be very content-oriented, its connections to didactical questions – be they 
theoretical or more applied – are manifold. First, it is hardly necessary to say that content-analysis is 
a central part of a priori analysis, and that – on a par with a purely mathematical analysis – 
investigations into the history of mathematical knowledge and mathematical practices provide key 
background data. Second, the work presented in some of papers is explicitly described as a first 
phase in a larger research project focusing either on learners (Sanz-Gómez) or teachers (Chorlay). 
Third, the content-analyses presented in these papers contribute to the general theoretical discussion 
on some important didactical concepts, such as “epistemological obstacle” (Oller-Marcèn) or 
“generic example” (Chorlay). 

As far as history of education is concerned, let us highlight the contribution of Katalin Gostonyi. 
Her comparative study of the works of mathematics educators T. Varga (in Hungary) and G. 
Brousseau (in France) shed light on the origins of theoretical frameworks which are still very much 
alive in mathematics education research.  

Finally, the paper of Liz de Freitas contributes to the ongoing work in the HPM community from a 
new perspective. Being a philosopher of mathematics, she draws on both her personal research – in 
the continental tradition of the philosophy of mathematics and mathematical practice – and her 
experience in the training of maths teachers to suggest a large number of research questions which 
are relevant for the historian and the maths education researcher alike. Here, we briefly mention two 
such issues which we feel would be worth investigating further.  A first series of questions bears on 
diagrams: the way they are drawn and read; their cognitive impact and their epistemological 
significance; the historical evolution of the meta-rules governing the use of diagrams, in themselves 
and in their relations to other elements of mathematical texts. A second series of questions bears on 
the image of mathematics maths teachers have, its impact on their teaching, and the way teacher-
training modules may impact this image. Investigating this second series of questions could bridge 
the gap between the maths education community and the science education community, a 



community in which research on the Nature of Science (NOS) is a central research topic (see for 
instance Abd-El-Khalick, 2013). 
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This article aims to analyze teaching programs, textbooks and journals of education in order to better 
understand the ideas that circulated in São Paulo, Brazil, at the end of the 19th century about the 
conceptualization and the utilization of problems for the teaching of mathematics in these documents. 
The research was conducted through a culture-historical approach (Chartier, 2002), which compels 
the researcher to have a questioning attitude towards the object of study. Thus, it was possible to 
observe that both the teaching program and the textbook valued the utilization of problems because 
both connect the concept of problem with activities presented through narratives in order for students 
to apply previous knowledge. On the other hand, the theme did not have the same value in the journal 
of education because it discussed that topic in only one article, which introduced the concept of 
problem as a synonym for a type of exercise related to calculations. 

Keywords: Arithmetical problems, primary school, intuitive method. 

Introduction  
In the state of São Paulo, Brazil, the end of the 19th century was marked by events that would bring 
significant changes to primary school over the next decades and that would also be a reference for 
other states. In the last decade of that century the foundations of school organization – time, space 
and curriculum structuring - were established. In addition, grupos escolares, which represented the 
idea of a modern and quality urban school, began to be introduced in the state of São Paulo in 1893 
(Souza, 2009). 

Since that was a period whose proposals and determination impacted primary school nationwide over 
the next decades, research on the history of mathematics education has great interest in understanding 
the ideas that circulated in that period regarding the teaching of mathematics. 

This paper aims to contribute to such understanding as it intends to analyze proposals for the 
utilization of problems in the teaching of mathematics by using textbooks1, journals of education2 and 
teaching programs3 from that period as sources. 

                                                 
1 Choppin (2009) observed the existence of several expressions to name school books. Names vary according to context, 
use or style. In this paper the expression “textbooks” is used to name all publications written in order to be used in 
Brazilian primary school classrooms. 

2 Publications that compiled articles written by intellectuals and teachers on themes related to teaching. 

3 Publications that provided guidance on school organization, content and methodology. 



Previous research done by the authors of this paper (Bertini, 2016a; Bertini, 2016b; Souza, 2016a; 
Souza, 2016b) shows the presence of arithmetical problems, or of proposals for their application, in 
several documents from different periods and with different goals. In this paper, the authors aim to 
conduct an analysis of these documents in order to better understand the ideas that circulated in São 
Paulo, Brazil, in the end of the 19th century about the use of problems for the teaching of arithmetic. 

In this study, the definition of problem is not presented a priori because that term is understood in 
different ways according to the historical period in question. Thus, one of the objectives of this 
research work is to identify what concept of problem the documents contain.  

Methodological and theoretical framework 
To develop the historical production in this study, all analyses took into account the historical 
moments and spaces in which the documents were produced as well as the interests involved in this 
production. Thus, we take a culture-historical approach as proposed by Chartier (2002), which not 
only encourages researchers to carry out descriptive work, but also compels them to raise questions 
about the documents studied in order to identify how a specific reality arises and establishes itself 
according to the place and time in which it emerges. According to De Certeau (2001, p. 35), a 
historian’s work is more connected to finding meaning and purpose than to simply narrating facts. 

From that perspective, the notion of appropriation is crucial for a significant historical production 
because it proposes the existence of creative invention in the process of reception (Chartier, 2002, p. 
136). Teaching programs, textbooks and journals of education will be analyzed based on that notion 
because, although in different manners, they all appropriated the ideas and determinations that 
circulated about the utilization of problems to teach arithmetic. Besides, throughout the process of 
creative invention, the authors will work to understand which ideas and determinations are produced 
in the documents about this utilization. 

Moreover, the notion of purpose, presented by Chervel (1990), will be harnessed once it is related to 
the options made for teaching. The historical study that involves the use of arithmetical problems in 
primary school will encompass the understanding of the purposes of their use. The authors will be 
guided by two questions when studying the documents: How were problems harnessed in these 
sources? Why were they suggested that way? 

It is important to emphasize that, according to Valdemarin (2004), in the 19th century the Brazilian 
educational context was influenced by ideas which arose from the intuitive method. She sustains that 
proposals for school activities included presenting a variety of objects to the senses so that ideas 
would be formed as a result of a rational, concrete and active teaching style. Two ideas are presented 
as paramount in the proposals that followed the intuitive method: first, the notion that observation 
leads to reasoning; second, the belief that work prepares individuals for the future (Valdemarin, 
2001). 

The proposal for educational renewal opposed the abstract and little useful character that teaching 
had had so far and comprised a new teaching method (the intuitive method). It started to be introduced 



in Europe, through Pestalozzi’s4 e Frëbel’s5 elaborations, and in the USA, where the work “Primary 
object lessons”, by Calkins,6 was first published, in 1861. Brazil was inserted in this refreshing effort 
in the 1880’s, when the country began to adopt the new intuitive teaching method. That movement 
was influenced by foreign ideas but it was also an attempt to meet political demands in the country 
due to the end of the Empire (Valdemarin, 2001, p.159). 

Dialogues with these productions on the History of Brazilian Education are considered necessary for 
harnessing the theoretical concepts here presented as an option for the construction of a historical 
narrative because it will contribute to the understanding of the context in which the documents were 
produced.  

Teaching programs, journals of education and textbooks 
The first teaching program in the state of São Paulo, as determined in Decree 248 of July 26th 1894, 
provided school management guidance and teaching instructions such as school organization, 
materials, students’ attendance, reports, disciplinary procedures, school-year calendar, curricular 
content and methodology. The Decree was signed by Bernardino de Campos and Cesário Motta 
Junior, who were respectively the President of the State of São Paulo and Secretary of the Interior. 

Nevertheless, besides being determined by law, all those instructions needed to be spread among both 
active teachers and future teachers. In that sense, journals of education were presumably a tool to 
transmit models of work that would help teachers appropriate the new educational proposals. In the 
last decade of the 19th century, the paulista journal “A Eschola Pública” was sponsored by the 
government and its editorial staff was composed of teachers, principals and school inspectors. 

In addition to teaching programs and journals of education, textbooks were another tool used to guide 
teachers’ work because they presented proposals of activities to be done by students in the classroom, 
as well as proposals for school organization (ordering of contents, quantity and style of activities). 

Finally, in this analysis we will articulate these different documents in order to generate understanding 
of the ideas that circulated in São Paulo, Brazil, in the end of the 19th century regarding the utilization 
of problems for the teaching of arithmetic. 

 The program of 1894 

Teaching programs are part of the norms that integrate school culture and help us understand it. 
However, we know that changes and innovations proposed by governments are the result of political 
disputes, which prevents them from happening naturally and passively (Souza, 2009, p.83- 84).   

In the paulista program of 1894 there is guidance on choosing a methodology: 

Article 9 – Lessons on subjects of any course year need be more empirical and concrete than 
theoretical and abstract, and should be conducted in order for children’s faculties to be developed 

                                                 
4 Johann Heinrich Pestalozzi (1746-1827), Swiss educator. 
5 Friedrich Wihelm August Frëbel (1782-1852), German educator. 
6 Norman Alisson Calkins (1822-1885), American educator. This work was translated/adapted to Portuguese by Rui 
Barbosa in 1886. 



in a gradual and harmonic manner. Article 10 – The teacher need aim, especially, to develop the 
faculty of observation by applying intuitive processes for this purpose. (São Paulo, 1894) 

The expressions “lessons... more empirical and concrete” and “intuitive processes” remind us of the 
educational trend that was disseminated at that time, i.e., the intuitive method. 

It is possible to notice that in the program some subjects are not present in every school year. 
Arithmetic, however, remains in all grades/years, with contents that are graded according to their 
difficulty level. 

Besides providing the list of subjects, the program included “more and more detailed prescriptions 
coming from teaching administration departments”. The 1894 program was extensive, according to 
testimonials by inspectors and principals of grupos escolares. Contents related to reading, writing, 
calligraphy and arithmetic were considered essential by teachers. On the other hand, the ones related 
to geography, history and science were of secondary importance (Souza, 2009, p. 84). 

For the teaching of arithmetic, the term problem appears in the content list in the following 
expressions: “Supplementary studies: problems and practical questions”, “Easy problems”, 
“Problems”, “Supplementary assignments: problems, practical questions”. 

It is important to emphasize that the term problem is present from the second year on, always in the 
end of the list of contents. As years/grades advance, the words “easy” and “practical questions” join 
the term problem in expressions. 

 Journal “A Eschola Pública” 

Journals of education are extremely rich and varied sources (Monarcha, 2004). The author reveals a 
chronological list of journals of education of São Paulo, which includes three titles that were 
published in the last decade of the 19th century. Out of those three publications, the UFSC Digital 
Repository7  has two: “Revista do Jardim da Infância” and “A Eschola Pública”, respectively 
Kindergarten Journal and Public School, in free translation. As this paper aims to analyze primary 
school, we will focus on articles published in “A Eschola Pública”. This journal of education was 
first published in 1893. Its early stage, which lasted until 1894, comprises eleven issues. The second 
publishing stage started in 1896, with its final issue published in the following year.  

This journal is the result of a council formed by people who had graduated at Escola Normal da 
Capital8 (Capital’s Normal School, in free translation) and actively took part in political and cultural 
movements at the time. After that publishing period, many of its council members held important 
offices in the government, for example Oscar Thompson, who was named General Manager of State 
Public Education (Diretor Geral da Instrução Pública do Estado), and Arnaldo Oliveira Barreto, who 
was a teacher at Escola-Modelo do Carmo (Carmo Model School, in free translation), in 1894, and 
the inspector of the associated schools of São Paulo. 

                                                 
7 Database fed by GHEMAT researchers, where theses, dissertations, articles, textbooks, education journals and students’ 
notebooks are available. Available in https://repositorio.ufsc.br/handle/123456789/1769 

8 First Normal School in the state of São Paulo, called Caetano de Campos today. It was founded in 1894 and prepared 
future teachers. 



According to Monarcha (2004), the publication had 21 issues. Nevertheless, only 18 issues are 
available at the UFSC Repository, whose digital database is fed by the GHEMAT researchers. All 
over the 18 issues, only 15 articles feature the teaching of arithmetic and only one, which was written 
by Arnaldo Oliveira Barreto in 1897, referred to the term problem. 

In addition to being a teacher at Escola-Modelo do Carmo, the first grupo escolar in São Paulo, in 
1894, Arnaldo Oliveira Barreto (1869-1925) reorganized Grupo Escolar de Lorena, São Paulo. In the 
period between 1902 and 1904, he was editor-in-chief of Revista de Ensino (Journal of Teaching, in 
free translation). He was also part of Sociedade de Educação de São Paulo (Education Society of São 
Paulo). Throughout his career, he produced several books, articles and guidebooks. 

In an article published in March 18979, the author provides suggestions regarding the order of the 
work a teacher needs to perform in the classroom: “write the exercises”, “students with their arms 
crossed”, “distribute all necessary material”, “ring the bell for work to start”, “divide your board” and 
copy “all problems and then do them” (Barreto, 1897, p.38). 

In this article, the author talks about the utilization of calculations involving all four fundamental 
operations whose results are not higher than 20. Some examples of calculations presented in the 
article are as follows: 3 + 2 =, 4 + 3 =, 6 ÷ 3 =, 4 – 2 =, 6 x 2 =  (p. 40). He also suggests two different 
correction procedures: individual and collective. For the collective correction, he recommends that 
each student reads his/her problem: 

- Three plus two makes five. 
- Four plus three makes seven. 
- Two and two are four. 
- A six has two threes, etc. (Barreto, 1897, p.39) 

To refer to the proposed calculations, the author alternates between the term “exercise” and the term 
“problems”, as we can observe in the final part of his article: “provide daily variation in the exercises, 
which is most convenient, and I emphasize that the problems should always be about the four 
fundamental operations” (Barreto, 1897, p. 39). 

 “School arithmetic” 

In the period between the end of the 19th century and the beginning of the 20th century there was a 
“close relation between the public primary expansion and the publishing expansion in the state of São 
Paulo” (Razzini, 2004, p. 1), which was originated with the establishment of the Republic in 1889. 
The textbook was set as one of the necessary aspects for implementing the proposal of grupos 
escolares. 

Costa (2011), in a study about arithmetic textbooks in grupos escolares in São Paulo, states that 
Ramon Roca Dordal’s work titled “Arithmetica escolar – exercícios e problemas para escolas 
primárias, famílias e collegios” (School Arithmetic – exercises and problems for primary schools, 
families and other schools, in free translation), which is composed of six books, circulated in public 
schools in the state of São Paulo in the end of the 19th century and beginning of the 20th century. The 

                                                 
9 Available in https://repositorio.ufsc.br/xmlui/handle/123456789/126750 



first four parts of his work were analyzed in this paper. However, after an extensive search, the two 
final parts could not be obtained. 

In addition to the title, a highlight to the fact that the work is composed of exercises and problems is 
also present in the introduction done by the author himself. Although there is no clear indication of 
what is understood by “exercise” or “problem”, the order of the activities featured in each lesson is 
pretty similar and seems to focus on the following: introduction of the rule, exercises and problems. 
Therefore, the term “problems” seems to be associated with a narrative of a daily life situation. 

Lesson XI from the second book, for example, introduces the rule “When the sum does not provide 
exact tens, one should write the exceeding units in the sum and the tens should join the following 
order” (p. 11), followed by operations (Figure 1). 

 

 

Figure 1: Operations featured in Lesson XI of the second book. 

Finally, problems are presented as a final part of each lesson: 

5th – A traveler has covered 25 leagues on a train, 14 leagues on a horse and 44 by ship; how many 
leagues has he covered? 

6th – From Santos to São Paulo there are 16 leagues, from São Paulo to Jundiaí there are 12 and 
from Jundiaí to Campinas there are 9; how many leagues are there between Santos and Campinas? 

Another point that Roca Dordal highlighted about the use of problems was that it was necessary to 
use easy problems, which should compose short lessons, so that children would remain interested and 
attentive, which is paramount for the success of the teaching process. 

The first three books feature all problems that involve the addition operation and the fourth contains 
problems which are all related to subtraction. The situations featured in the problems have as 
backgrounds mostly children’s everyday life situations (school, shopping, etc) and also adult life 
situations (distance between two cities, populations, etc).  

Conclusion: Ideas that circulated 
From observing the three sources selected for this study, it is possible to characterize some ideas that 
circulated in the state of São Paulo, Brazil, in the end of the 19th century about the use of problems in 
the teaching of arithmetic. 

In that historical period the use of problems in classrooms to teach arithmetic was highly valued, 
which is characterized by the presence of problems in almost every teaching program for primary 
school (except for the first year/grade) and also by the presence of the term problems on the cover of 
Ramon Roca Dordal’s work. Textbook covers somehow try to introduce some of the work contained 
inside so that it is more likely to be bought, adopted or used. Therefore, the presence of the term 
problem on the cover seems to endorse the notion that it was valued by those who would make use 
of it or recommend it (institutions or teachers). 

Despite the high regard observed in the teaching program and in the textbook under analysis, 
discussions over the utilization of problems do not seem to have been a serious debate topic in the 



articles featured in the journal that circulated in São Paulo at that time. The teaching of arithmetic 
was the theme of fifteen journal articles but the term problem was referred to in only one of them. 
Still that one article did not discuss effectively the understanding of what a problem actually is. In 
that article, the term problem was applied as a synonym for exercise and referred to the calculations 
proposed using numbers and operation signs. 

Nevertheless, a different understanding is expressed both in the teaching program and in the textbook. 
In these two documents, even though there is no clear exposition of what a problem is, they seem to 
be more related to proposals of activities based on narratives, which somehow approach daily life 
topics, just like the situations contained in the textbooks by Ramon Roca Dordal. The use of the 
expression “practical questions” alongside the term problem in the teaching program may also be 
related to everyday life or to the utilization of objects to be presented to the senses for the formation 
of ideas, once the program represents ideas based on the intuitive method. 

The recommendation to use easy problems is one more idea which is highlighted both in the teaching 
program and in Ramon Roca Dordal’s textbook. This aspect is clearly revealed in the way that the 
documents are written and also in how their utilization is suggested. In the teaching program, for 
example, there is no proposal for the use of problems in the first year/grade, which suggests that first 
children need to acquire knowledge of the four operations, know their signs and be able to perform 
calculations with objects or numbers before being able to make use of this knowledge to solve 
problems. Likewise, in the book by Ramon Roca Dordal, problems are introduced only in some of 
the lessons, which happens after children have exercised their knowledge of the operations. One needs 
to have knowledge of how an operation is done to be able to apply that knowledge in problem solving, 
which points to a suggestion that the purpose of the problems was the application of previously 
acquired knowledge. This interpretation is reinforced when we observe that all problems featured in 
the book are related to the topics contained in the lesson in which the problems are shown or in 
previous lessons. 
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This study aims to analyze Gabriel Gonçalves didactic proposal for the initial approach of rational 
numbers in primary education, published in the 1974 edition of Didactic of Calculation (Didática do 
Cálculo). At a time where modern mathematical ideas began to influence mathematics education in 
the early years, it is important to understand how mathematics was addressed in the pre-service 
education of teachers of this school level. Among the themes approached in this textbook, the choice 
of rational numbers was due to the many difficulties that primary students usually have with this 
subject matter, as well as the teachers in teaching them. The study was conducted with a historical 
perspective based on documents analysis. The proposal of Gabriel Gonçalves emphasizes the 
initiation of rational numbers through decimals instead of fractions and the different types of 
problems that should be presented to students in the initiation to decimals. 
Keywords: History of mathematics education, elementary school mathematics, decimals 
 

Introduction 
This paper is part of a broader work that aims to characterize, in a historical perspective, mathematics 
in the initial pre-service education of primary school teachers in Portugal.On the one hand, from the 
point of view of the centrally issued legislation, on the other hand fromthe analysis of textbooks for 
teachers, which constitute a point of view closer to the practices. This is a pioneering study that will 
focus the analysis of the teacher training textbooks on their approach to non-negative rational 
numbers. It is intended to select a set of representative authors from different periods, between 1844 
and 1986, and examine how the proposed initiation to non-negative rational numbers in the early 
years of schooling evolved. In this article, I selected a representative author of the beginning of the 
1970s, whose proposal of approach to rational numbers will be described.  

This paper analyzes the didactic proposal of Gabriel Goncalves, former teacher of the Primary 
Teacher Training School of Porto (Escola do Magistério Primário do Porto), for the initial approach 
to rational numbers presented in the textbook for teachers of the Special Didactic (Didática Especial) 
discipline of initial pre-service education of primary school teachers, entitled Didactic of Calculation, 
1974. The main questions in this paper are: What is the initial proposal for the teaching of non-
negative rational numbers presented by this author? What kind of representations are privileged? 
What kind of teaching materials are referred to? What importance does this author give to the 
definition of unity? What are the most used contexts for the display of decimal numbers? What kind 
of problems does the author propose to students?   

According to Chartier (1990), the pedagogy textbooks for teachers constitute a source for the history 
of teacher professionalization, and are a sample of what constitutes teachers professional knowledge. 
Pintassilgo (2006) considers these textbooks for teachers a major instrument of innovation and 



control, legitimizing certain ideas and practices, and simultaneously withdrawing this legitimacy to 
others. Moreover they are important resources in building a school culture and as guides in classroom 
and students management, as well as in the professional teacher development. 

The importance of research in the context of the history of mathematics teaching is not limited to the 
knowledge of the past. Chervel (1990) points out that, through the historical observation, we can 
bring this disciplinary models and operating rules whose knowledge and exploitation may be useful 
in discussions about teaching today. In this sense, Matos (2007) states that knowledge of the past may 
allow an action more grounded in the present. In this perspective, it is important to see how it was 
done the training of primary school teachers, in a mathematical topic as the rational numbers, at a 
moment when the Modern Mathematics Movement begins to emerge, favorable to an active 
construction of knowledge and the use of structured materials in mathematics teaching. The 
operationalization of the analysis of the work of this author was conducted as an historical study 
based on the collection and selection of sources as defined by McCullough (2004). At this stage of 
the work, the document was analyzed essentially in a descriptive way, trying to organize a scheme 
with the topics to be analyzed (Creswell, 2012). 

Pre-service education of primary school teachers during the New State regime 
(Estado Novo) 
In Portugal, the military dictatorship implanted in 1926, and later the New State regime that followed, 
changed the pre-service education of primary school teachers (Pintassilgo, 2012). In 1930, still in the 
transition from military dictatorship to the New State regime, the Normal Primary Schools (Escolas 
Normais Primárias) were replaced by Primary Teachers Training Schools (Escolas do Magistério 
Primário) involving a radical change in school organization, the curriculum framework and, later on 
the syllabi, in 1943. 

With the restructuring of the course in 1942, and the syllabi published in 1943, the mathematical 
content of the programs of the Primary Teachers Training Schools came to be centered on teaching 
and methodological dimensions of the primary content. In these 1943 syllabi, did not exist any 
discipline with mathematical content. The reformulation of syllabi in 1960 reinforced the discussion 
on teaching methodologies. These syllabi had no disciplines with mathematical scientific content, 
situation that remained until 1975 syllabi. It is in the context of these 1960 syllabi that the Didactic 
of Calculation, analyzed in this paper, was published. 

Decimal numbers in the teachers textbook of pre-service education of primary 
school teachers: Gabriel Gonçalves’ approach in Didática do Cálculo 
Didatics of Calculation (Didática do Cálculo), composed of two volumes published in 1972 and in 
1974 by Porto Editora, is part of a set of textbooks for teachers written from the 1960s to serve as a 
support to the discipline of Special Didactics B of the courses of pre-service education of primary 
school teachers. According to the author, Gabriel Gonçalves, former professor of the Primary 
Teachers Training School of Porto and inspector-advisor at the time of the edition of the manual, 
Didactics of Calculation was mainly intended for students-masters of the Primary Teachers Training 
Schools although it could also be used by all of those who were interested in education issues. 

From chapter VII to chapter XIII of the second volume of Didactic of Calculation, Gonçalves (1974) 
addresses the teaching of decimals. Due to space limitations, this article will not address the entirety 



of this author's proposal. This paper focuses on chapter VII which deals with general aspects of the 
teaching of decimals and chapter XIII dedicated to the concept of unit and its application to problems, 
which are important aspects of the teaching of these numbers. 

The chapter VII, entitled “Preparation of the study of decimals; measurements with linear units 
already known. Writing and reading of representative numbers of these measurements; using the 
decimal point” is organized into three main sections: 1) Goals; 2) General considerations and 3) 
Direction of Learning. In the goals, the author begins by pointing out that the aim is that the child 
expands his knowledge of decimal number system, extending it to tenths, hundredths and 
thousandths. These concepts would appear as an extension of the base ten numbering system. 

Gonçalves (1974) presents subsequently some general considerations about the teaching of decimals 
and fractions, starting by putting the question if the teaching of rational numbers should be done with 
decimals instead of common fractions. On this issue, Gonçalves (1974) presents two opposing trends. 
On the one hand, quotes methodologists1 that, according to Gonçalves (1974), claim that one should 
start with decimal fractions in its decimal representation, because it would be "as a continuation of 
the study of decimal number system, but with numbers lower than the unit "(p. 38). He presents the 
submultiples of length measurements, capacity and weight, as examples stating that: 

Each of these units contains ten units of the next lower order. So, we can operate 
in the written calculation as if they were natural numbers. And as the calculation 
with decimal is much easier than with fractions, it will be with the decimal 
fractions, in the form of decimal representation, which should start. "(Gonçalves, 
1974, p. 38). 

On the other hand, he presents the opinion of methodologists2 who claim that we should begin the 
study by the common fractions, of which the decimal fractions would be only a case. Then he 
forwards the arguments of these authors, stating that:  

The calculation becomes more intuitive and rational: the half, third, fourth, ..., are 
easier to understand than the tenth, the hundredth, ... The calculation of common 
fractions prepare better for the decimal than the contrary. (Gonçalves, 1974, p. 38). 

Given these two divergent trends, Gonçalves (1974) refers that he will follow the first, as it was 
prescribed in primary syllabi at the time3 that is, starting with decimals representation. In section 3 of 
this chapter, called the Direction of learning, Gonçalves (1974) shows what stood as the teaching of 
decimals in the primary education syllabi of the time. This topic was considered "the greatest obstacle 
to overcome in the 3rd grade" (p. 39). According to the primary syllabi, the approach to decimals 
should be made from the length measurements, placing students in situations that were necessary to 
measure with meter and decimeter. These measurements would express numbers in what was called 
mixed decimals, numbers with a whole part, that after a decimal point had a decimal part. After 
working with these mixed decimals, students should verify that the rules used with whole numbers 
also applied to decimal numbers, "the numbers continue to have an absolute value and a position 
                                                 
1 On this subject, Gonçalves (1974) quotes methodologists like Büttner, Tank or Pikel, but does not identify the works of 
reference of these authors. 
2 On this subject, Gonçalves (1974) quotes methodologists like Böhme or Hentshel, but does not identify the works of 
reference of these authors. 
3 At the time were in effect the syllabi approved in Decree No. 23,485, Government Daily, 167, 16.07.1968, 1019-36. 



value." (p. 39). After performing this work, situations that could lead them from mixed decimals for 
simple decimal numbers should be offered to students. 

Gonçalves (1974) establishes a relationship between the perspective in the previous two chapters of 
his manual, which addressed the metric system, with measurements only with positive integers, in 
the final part of his general considerations. In this chapter, he proposes to address measurements, 
using the decimal notation, with the decimal point. 

Gonçalves (1974) continues the chapter with section 3. Direction of Learning, with the suggestion of 
some techniques and activities for the introduction of the concept of the tenth, starting from decimeter, 
and the notion of the hundredth and thousandth, from notions of centimeter and millimeter. The author 
proposes the introduction of the tenth in eleven steps (table 1): 

1) Measurements, in which the meter is used 
a whole number of times; 

2) Measurement expressed a whole number of 
times in meters and decimeters (ex.: the picture 
measures 1 m and 2 dm); 

3) In the measurements, identification of the 
entire unit, the meter, and the tenth of the 
entire unit, the decimeter. Representation in 
conventional manner, with the decimal point 
and the identification of the position value. 

4) Identification that the rule that governed the 
whole numbers also apply in decimal numbers: "In 
a number, any digit at the right of other is order 
units ten times smaller than the first one" (p. 30); 

5) Measurements that result in mixed decimal 
representation. Registration in tables; 

6) Measurements that result just with decimal part. 
Lead students to understand that the zero to the left 
of the decimal point is the absence of whole units; 

7) Exercise that does not exceed the unit 

Ex.:  3 dm + 2 dm = 5 dm 

 0,3 m + 0,2 m = 0,5 m 

8) Exercises which form exactly the unit 

Ex.:  5 dm + 5 dm = 10 dm 

 0,5 m + 0,5 m = 1,0 m = 1 m 

9) Exercises that exceed the unit 

Ex.:  4 dm + 5 dm + 3 dm = 12 dm 

 0,4 m + 0,5 m + 0,3 m = 1,2 m = 1 m 
 + 0,2 m 

10) Exercises 

Ex.:  0,4 m = 0,1 m + 0,1 m + 0,1 m + 0,1 m 

  = 0,2 m + 0,2 m = 

  = 0,3 m + 0,1 m 

11) Application and verification exercises.  

Table 1. Proposal for an approach to decimal (Gonçalves, 1974) 

Chapter XIII, titled the “Expansion of the Unit Concept. Its application to solve problems with 
decimals” is divided into two sections: 1. Goals and general considerations and 2. Preparatory 
exercises. In a footnote at the beginning of this chapter, Gonçalves (1974) draws attention to the 
possible application in problems with common fractions4. The first section provides some general 

                                                 
4 The footnote with reference to common fractions is placed in the text by the author, because in later chapters, when it 
comes to addressing the common fractions, will present the same kind of problems. However, we will not address common 
fractions in this paper. 



considerations about the unit and its nature. Gonçalves (1974) begins by distinguishing the single 
units of the 1st or 2nd order units, such as ten or hundred, or units designated as decimals, as 0.1; 
0.01. Also distinguishes other composite units as the dozen or the quarter of a hundred or other sets 
as a basket of oranges that can be considered as a whole. For Gonçalves (1974), this expansion of the 
concept of unit "is the basis of an important branch, allowing you to easily solve questions that 
otherwise would be too complex" (p. 79) and therefore should be developed in children. Gonçalves 
(1974) points out that many problems with decimals have the following expressions: "the amount 
corresponding to the unit; the fraction5; the amount corresponding to that fraction or else their 
counterparts, the value of the unit (the whole); the fraction; the value of the part corresponding to the 
fraction "(p. 79). He points out that being given two of the above items is always possible to find the 
third, and stresses that this implies the possibility of formulating three groups of problems: 1) given 
the amount corresponding to the whole and the fraction, find the value of the part corresponding to 
that fraction; 2) given the fraction and the amount corresponding to that fraction, find the value of the 
whole; 3) given the value of the whole and the value of a part of the unit, find the fraction which 
corresponds to that part. 

The author presented several examples considered similar, for the first group of problems. The first 
problem, with a context of capacity measures, is to find the amount corresponding to the respective 
unit. For this type of problem is presented a resolution, first find the value of the decimal unit 0.1, 
and then multiplying by the number of times it is repeated, in this case, multiplying by three. 

1) Each liter of olive oil costs 18$00. How much 
will cost 0.3l of that olive oil? 

The problem can be solved, first finding the decimal 
value of each unit (18$00:10 =1$80) and then 
multiplying it by number of decimal units (1$80x3= 
5$40). (Gonçalves, 1974, p. 79) 

Soon afterwards a second example is shown. It is also an iterative situation that leads to the meaning 
of multiplication and can be considered a counterpart of the first: "2) Each liter of olive oil costs 
18$00. How much will cost 3 l of the same olive oil "(p. 80). The resolution is the multiplication of 
18$00 by 3, 18$00x3=54$00. Gonçalves (1974) believes that after children observe the resolution of 
the second problem they will eventually realize that the action in the first problem is also 
multiplicative, noting that multiplying by 0.3 is the same as dividing by 10 and multiply the result by 
3. He points out that the child will also conclude that" given the value of the unit, to know the amount 
(whether higher or lower than the unit), the action is multiplicative."(p. 80, italics in original). For 
this first group of problems are still presented other examples. According to Gonçalves (1974), the 
intention is to extend the concept of unit, to the concept of the whole. 

                                                 
5 Gonçalves (1974) uses the term “fraction”, in the sense of part of a whole and not in the sense of fraction representation 
of the rational number. 



In the second group of problems titled “given the fraction and the amount corresponding to that 
fraction, find the value of the whole” several problems are presented. The first two are in the context 
of capacity measures and the author intended that should be solved by analogy. 

1) They bought three liters of olive oil for 54$00. How 
much did cost one liter?  

 

 

2) Were purchased three deciliters (0.3 l) of olive oil for 5$40. 
How much did cost one liter? The meaning of the first problem 
is clearly partitive (54$00:3=18$00). (Gonçalves, 1974, p. 80) 

The first problem is associated with a partitive situation and the solution 
involves a division, 54$00:3=18$00. From this, the student should recognize that the second problem 
presents a similar situation, inferring that if you know the value of a certain amount, to know the unit, 
the meaning is to divide. For the second problem, another kind of solution is suggested: first 
determine the price of each tenth and then multiplying this result by 3. Other examples of similar 
problems are then presented. 

In the third group of problems, “given the value of the whole and the value of a part of the unit, find 
the fraction which corresponds to that part”, are initially presented two problems. 

 1) With 54$00, which portion of olive oil can we buy, whose price is 18$00 per liter? 

 2) With 5$40, which portion of olive oil can we buy, whose price is 18$00 per liter? 
(Gonçalves, 1974, p. 82) 

The first problem is considered to be the division quotative meaning, and the resolution proposed is 
54$00:18$00=3. The second problem is also framed in a similar reasoning and therefore should be 
solved similarly 5$40: 18$00 = 0.3. To Gonçalves (1974), these two problems comprise the quotative 
meaning. Gonçalves (1974) points out that "the fraction is given to us by the relationship (or ratio) 
between the value of the quantity and value of the unit." (p. 82, italics in original). It points out that 
learning these problems should not only be supported by the memorization of rules, or repetition, 
without be a prior understanding. Gonçalves (1974) considers that this understanding of work was 
previously done when they worked multiplication and division of decimals as a generalization of the 
basic rules of these operations with whole numbers. 

In section two of this chapter, entitled preparatory exercises, are suggested three different types of 
problems, 1. Recognize (or find) the fraction; 2. Find the value of the fraction; 3. Find the value of 
the unit (or the whole) which corresponds to the sorts of problems previously shown. Gonçalves 
(1974) begins by highlighting that for the understanding of the basics for learning problem solving, 
should be practiced some sensory exercises, called concrete phase, such as manipulation, paper 
folding, drawing, of which the preparatory exercises were examples. 

Concluding remarks 
In chapter VII of the manual in analysis, the first dedicated to the teaching of decimals, Gonçalves 
(1974) starts by discussing where to begin the study of rational numbers, by the decimals or by 



fractions. In his work, Gonçalves (1974) follows the indication of the primary school official syllabi 
of that time and primarily addresses the rational numbers by its decimal representation. Gonçalves 
(1974) also refers to arguments of different authors. Regarding the teaching of rational numbers, 
Brousseau, Brousseau and Warfield (2007) also present a discussion on the best way to introduce 
them to students considering that it is not necessary to know fractions to learn decimals. Rather, 
decimals can be understood at once as a decimal number, supported by the decimal measuring system, 
allowing that all practical measurement problems can be solved more easily. They consider that this 
solution has many advantages for teaching, especially in countries where children are already familiar 
to the use of metric measurements.  

The different syllabi of mathematics discipline for primary education in Portugal also seem to reflect 
this discussion. In the 1960s two syllabi to this level were in force. In both cases the rational numbers 
were discussed in the third grade from decimal numerals, with the use of linear measurements. The 
fractions were worked only in the fourth grade, but only the concept of fraction. In the syllabi for the 
school year 1974/1975 the introduction of rational numbers was still made with decimal 
representation and working with fractions was no longer part of the primary syllabi, happening the 
same in 1975 syllabi. However, in the 1978 syllabi, the chapter devoted to rational numbers deals 
first with the fractions and then the decimal representation. In the 1980 syllabi, rational numbers were 
again addressed exclusively by decimal representation. In 1990, the official syllabi for primary 
education began the work with rational numbers in the second grade, with the fractions, but only had 
an applied operator to a discrete set. Afterwards and until 5th grade rational numbers were worked out 
just with decimal representation. 

Gonçalves (1974) distinguishes different types of units, referred to as units of "various kinds". He 
defines the single unit, but ten and hundred are first and second order units, that means they are 
composed units. Other composite units are also presented, called set-unit as the dozen or a quarter of 
a hundred. Monteiro and Pinto (2009) highlighted the different types of unit as one of a major 
difficulty in the study of fractions in the early years.  

This unit concept is considered by Gonçalves (1974) as essential for solving problems with decimals, 
because of that definition results the possibility of grouping the problems into three distinct groups: 
1) find the value corresponding to a part of the designated fraction; 2) find the value of the whole 
giving a part; 3) find the part of a whole.  

In the presenting of the problems, Gonçalves (1974) emphasizes the symbolic representation, but also 
presents some problems, and the respective resolutions, illustrated with pictorial models. However, 
in the second section of chapter XIII, he highlights the importance of concrete phase, suggesting the 
use of sensory exercises using the manipulation, paper folding and drawing. However, no structured 
didactic materials are referred.  

Synthesizing, in this proposal of Gonçalves the importance attributed to the work with the decimals 
stands out by the affinity with the calculation with the natural numbers that the students previously 
worked. This option is based on the curriculum that was in force in Portugal at the time, but 
methodologists from other countries who support this option were also mentioned. As the works of 
the mentioned methodologists are not mentioned, it is not possible at this moment to attest to the 
influence they had on the proposal of this portuguese author. This is a discussion that continues today 



as it is possible to see in the works of Brousseau et al. (2007) and the successive changes in the 
approach to rational numbers presented in the portuguese curricula. 

The work with different units and the importance given to the definition of the unit it is also relevant 
in Gonçalves work. This definition of unit allows Gonçalves to systematize the type of problems to 
be presented to the students in the beginning of the learning of this numerical set. The most used 
contexts in these problems are those of measurement (length, weight). 
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Introduction 
We will endeavour to show that some historical documents which are probably too difficult to be 
used in the classroom can nevertheless be fruitfully used in teacher-training, in order to provide 
teachers with tools for the analysis of informal or semi-formal justifications. We will analyze an 
extract from the Nine Chapters, so as to spell out tool for the analysis of three school documents 
bearing on the multiplication of decimal or general fractions. 

A historical example: Multiplying fractions in the Nine Chapters 
The Nine Chapters on the Mathematical Art  (九章算術) is a Classic that was compiled during the 
Han Dynasty (206 BC – 220 AD). It contains an organized list of problems with general procedures 
to solve them, yet with no attempts at justification. In 263 AD, scholar Liu Hui wrote an extensive 
commentary in which endeavoured to justify all the procedures, and identify key subprocedures of 
general scope. We will comment on the passage in chapter one which deals with the multiplication 
of fractions, on the basis of the critical edition and French translation (Chemla & Shuchun, 2004)1. 

Problem 1.19. Now given a [rectangular] field, 4/7 bu in breadth and 3/5 bu in length. Tell: what is 
the area? Answer: 12/35 bu. 

(…)2 Procedure for the multiplication of parts: multiply the denominators to make up the divisor; 
multiply the numerators to make up the dividend. Divide the dividend by the divisor. 

(…) [Liu Hui]: In all cases when a dividend does not fill a divisor, then they are called denominator 
and numerator. If there are parts, expand the corresponding dividend by multiplication, then, when 
the divisor is filled, the division yields an integer. If, moreover, one multiplies something by the 
numerator, the denominator must therefore divide in return [baochu]. To divide in return is to “divide 
the dividend by the divisor”. Now, “the numerators are multiplied one by the other”, hence both 

                                                 
1 An independent English translation is also available (Crossley, Lun & Shen, 1999). As far as this passage is concerned, 
the two translations differ significantly; our interpretation is based on Chemla’s translation and interpretation.  

2 I edited out two similar examples (with proper fractions), as well as Li Chunfeng’s commentary. 



denominators have to divide in return. Whence the multiplication of the two denominators, and the 
division at one go [by their product]. 

The mere length and width of a rectangular field leave no room for a general explanation. Let someone 
ask: “20 horses are valued at 12 jin of gold. Now 20 horses are sold and the proceeds are shared by 
35 persons. How much does each one get?” The answer is 12/35 jin. To solve this by the procedure 
for dividing into parts, take 12 jin of gold as dividend, and 35 persons as divisor. Now, change [the 
problem] to: “5 horses are valued at 3 jin of gold; now 4 horses are sold, and [the proceeds] are shared 
by 7 persons. How much does each one get?” Answer: each one gets 12/35 of jin. To solve this, you 
need to homogenize these quantities (shu) of people and of gold; it is then completely similar to the 
first problem, that of dividing into parts.  If so, “multiply the numerators to make up the dividend” 
does homogenize this quantity of gold;  “multiply the numerators to make up the dividend” does 
homogenize this quantity of people. Equalizing the denominators yields 20, but that plays no part: we 
just need the homogenized. Moreover, when 5 horses are valued at 3 jin of gold, these are the lü in 
whole numbers. If we express them with parts, 1 horse is valued at 3/5 jin of gold. Let 7 people sell 
4 horses, 1 person does sell 4/7 of a horse. (…) As far as expression is concerned, that’s different; yet 
as far as quantities are concerned, the three procedures boil down to the same.  

Figure 1: (Chemla & Shuchun, 2004, 169-171). Free translation: R. Chorlay 

Even if the procedure in quite easy to understand – and familiar to the reader – Liu Hui’s commentary 
is probably hard to decipher. Even without a clear understanding of the details, one can probably see 
at least two things: the goal of Liu is to justify the general procedure of the classic; he gives two 
different justifications, one which does not rely on a semantic context nor on specific numbers, and 
one which does.  

Let us first focus on the first justification. Liu first distinguishes between two cases: a basic case in 
which the fractions represent whole numbers; in this case, the procedure for multiplication is already 
known. Of course, the goal is here to justify the new procedure – in the case where the divisions have 
non-zero remainders – on the basis of the basic procedure. The word “procedure” is important, since 
what is to be justified is the validity of an algorithm. More precisely, two sequences of calculations 
are to be compared: 

Sequence 1: divide a by b; divide c by d; multiply the two quotients. 

Sequence 2: multiply a by c; multiply b by d; divide the first product by the second product. 

If the two sequences relied on operations defined previously and independently, the goal would have 
been to prove the universal equivalence of these two algorithms (that is, same entries yield the same 
output). However, if one is not to beg the question, the first sequence actually contains the undefined 
operation multiply, since the final multiplication may involve a multiplication of fractions3. So the 
goal here is rather to justify that sequence 2 (which involves only well defined operations on integers) 

                                                 
3 When the remainder in the Euclidean division is non-zero, the quotient, the remainder and the dividend were read as a 
mixed number. For instance, the division of 7 by 3 has quotient 2 and remainder 1, so its result is 2 and 1/3. 



should be universally equivalent to sequence 1, thereby implicitly defining “multiply” in terms of 
“multiply.” 

To perform this, Liu uses terms which are specific to the commentary: whereas the Classic uses 
“divide” and “multiply”, Liu uses “expand by multiplication”, and “divide in return” (baochu); these 
terms point to the role of these operations. However, it is important to know that throughout the Nine 
Chapters, “baochu” denotes a division whose role is to compensate for a multiplication by the same 
number, so that these two steps of the procedure do not affect the final output of the sequence of 
operations. On this basis, one can see that Liu’s justification involves a third sequence of operations: 

Sequence 3:    1.  multiply a by b, so that the first factor becomes ab / b, which is equal to a 
2. multiply c by d, so that the second factor becomes cd / d, which is equal to c 
3. multiply the two factors, which yields ac 
4. divide by bd, which is the product of the two denominators 

This sequence is not to be actually performed, it is mentioned for justificatory purposes only. Since 
step 4 is a baochu-division, it compensates steps 1 and 2. The line of argumentation can thus be 
reconstructed as: sequence 1 (which is yet undefined) should be universally equivalent to sequence 
3, and sequence 3 boils down to sequence 2.  

This line of argumentation may seem far-fetched. However, it is quite close to the following 
contemporary proof of the following theorem: the only map f from ℚ × ℚ∗ which is ℤ-bilinear and 
which is a prolongation of integer multiplication (i.e. if m and n are integers, then 𝑓(𝑚, 𝑛) = 𝑚 × 𝑛), 
is 𝑓 (

𝑎

𝑏
,

𝑐

𝑑
) =

𝑎×𝑐

𝑏×𝑑
 (where a, b, c, d denote integers, with bd  0). The proof goes as follows:  

(𝑏 × 𝑑) ×  𝑓 (
𝑎

𝑏
,

𝑐

𝑑
) =  𝑓 (𝑏 ×

𝑎

𝑏
, 𝑑 ×

𝑐

𝑑
)  by ℤ-bilinearity 

= 𝑓(𝑎, 𝑐) by a Lemma4 which relies only on addition in ℚ 

= (𝑎 × 𝑐)    (prolongation requirement) 

Diving both sides by (bd) completes the proof. One could argue that, although Liu Hui states the 
prolongation requirement quite explicitly, never does he say anything resembling the bilinearity 
requirement. Even if this requirement is not explicit, it should be stressed that the bilinearity of the 
operation being defined (i.e. multiply) can be rephrased as follows: multiplying either of the two 
factors by and integer n should multiply the product by n; which is exactly the property which justifies 
the role of the baochu division.  

The second part of Liu Hui’s commentary clearly follows another line of argumentation. The first 
part does not rely on a semantic context of interpretation, nor does it use specific numbers. The second 
part, however, depends on a semantic context which Liu Hui introduces out of the blue after 
dismissing the context provided by the Classic (rectangular areas), and uses the numbers from 
Problem 19. 

In the second part, several in-context problems are mentioned, and their relationships discussed. 

                                                 
4 𝑏 ×

𝑎

𝑏
=

𝑎

𝑏
+ ⋯ +

𝑎

𝑏
 (with 𝑏 terms) =  

𝑏𝑎

𝑏
= 𝑎 (assuming b ∈  ℕ∗).  



Pb. 1: 20 horses are valued at 12 jin of gold [for all 20 horses]. Now 20 horses are sold and the 
proceeds are shared by 35 persons. How much does each one get? 

Pb. 2: 5 horses are valued at 3 jin of gold [for all 5]. Now 4 horses are sold and [the proceeds] are 
shared by 7 persons. How much does each one get? 

Problems 1 and 2 can be connected by a series of problems. Starting from Problem 2, on can consider: 

Pb. 2’: 5x4 horses are valued at 3x4 jin of gold. Now 4 horses are sold and [the proceeds] are shared 
by 7 persons. How much does each one get? 

Although Pb2 and 2’ differ from a semantic viewpoint, they are equivalent in the following sense: 
the numerical answers to Pb 2 and 2’ are equal, since the second parts are the same, and the answers 
depends only on the ratio between horses and jin of gold. The argument would hold for any factor, it 
so happens that “4” is more relevant than others for what follows5. This is quite explicit in the text, 
since throughout the Nine Chapters the technical term lü denotes either a ratio, or numbers which are 
to be considered up to multiplication by a common factor. The relationship between Pb2 and Pb 2’ is 
the same as that between Pb2’ and Pb2’’: 

Pb. 2’’: 5x4 horses are valued at 3x4 jin of gold. Now 4x5 horses are sold and [the proceeds] are 
shared by 7x5 persons. How much does each one get? 

Now, Pb 2’’ is the same as Pb 1, so their numerical answers are the same: 12/35. 

But there is another way to solve Pb 2. The numerical answer to Pb 2 is the same as that of  

Pb 2’’’: 1 horse is valued at 3/5 jin of gold. Now 4/7 horses are sold and [the proceeds] are shared 
by 1 person. How much does this person one get? 

We want to define multiplication of fractions so that the following property of integer multiplication 
remains valid: total value = unit value times quantity. As a consequence, the product 3

5
×

4

7
 should be 

the numerical answer to Pb 2’’’, hence to Pb 2 just as well, hence equal to 12/35. 

A more formal summary would go as follows (we use ⊗ to denote to multiplication of fractions, to 
be defined here in terms of ): 

 
3

5
⊗

4

7
=  

3 × 4

5 × 4
⊗

4 × 5

7 × 5
=  

3 × 4

5 × 4
⊗

4 × 5

7 × 5
=

3 × 4

7 × 5
 

As for the extra-steps mentioned in the first argument, none of these intermediary operations are to 
be performed when actually multiplying fractions; they are here for justificatory purposes only. This 
formal summary does not do justice to the nature of the argumentation, since it is the context only 
which justifies the equalities: dependence on ratios only (first equality); then reduction to a problem 
involving only two integer data instead of four, and which can be solved by ordinary division. Just as 
well, the fact that any given fraction can be freely replaced by any equivalent fraction can be justified 

                                                 
5 We will not comment on the use of technical terms such as “equalizing” and “homogenizing”, which Liu Hui introduced 
in the context of the addition of fractions:     𝑎

𝑏
+

𝑐

𝑑
=

(𝑎𝑑)+ (𝑏𝑐)            ←  this is what you get by "homogenizing"

(𝑏𝑑)        ←  this is what you get by "equalizing"
 . 



by the context; for instance, the unit price depends only on the ratio between the number of horses 
and their total value.  

Tools for the analysis of arguments in today’s textbooks 
Reflecting on the Nine Chapters from a teacher-training perspective 

The obscurity of the Chinese text probably makes it impossible to use in the classroom. In this paper, 
we would like to show how the mathematical analysis of this text that we carried out in the first part 
can help raise the awareness of prospective teachers as to several general features of argumentation 
in rather informal contexts (this is our Hypothesis #1); and even supply them with tools which are 
useful in everyday teaching, when they are to decide how to (somehow) justify some mathematical 
definition or property (this is our Hypothesis #2)6.  

The analysis of the Nine Chapters drew our attention to several facts, some of which bear specifically 
on fraction multiplication, and some of which are of a more general scope: 

 There are several ways to justify the rule for the multiplication of fractions. 
 The use of letters is not the only way to express a general line of argumentation, as Liu Hui’s 

first argument illustrates. 
 The rule for fraction multiplication is not only an equality between formulae; it can also be 

seen as the equivalence of two different algorithms (one with two divisions followed by a 
multiplication, and one with two multiplications followed by a division). This equivalence of 
algorithm can be established using general arguments within the algorithmic framework (i.e. 
arguments about algorithms), as opposed to the rewriting of formulae within an algebraic 
framework. 

 Argumentation is not limited to properties or theorems: the choice of a definition (here: for 
the multiplication fractions) can also be justified. With fraction multiplication we are dealing 
with a case domain extension: some notion was already defined for a given class of objects; 
the to-be-defined notion has to apply to a class of objects that encompasses the first class, and 
to coincide with the former notion on the first class. In our case, a very weak form of 
justification would be: this definition of fraction multiplication boils down to ordinary 
multiplication (of integers) should the fractions denote integers (this could be called the 
control case). The Nine Chapters suggests a stronger kind of justification: the extended 
definition of “multiply” should preserve some structural properties of the former definition, 
properties that we value. For instance: bilinearity; or the validity of the formula “total value = 
unit value times quantity”. On the other hand, we are ready to give up on some properties, 
such as: the product of two numbers is greater than or equal to either of them. To some extent, 
when justify the choice of a definition, these required properties play the part that hypotheses 
play in the proof of a theorem. 

 In some cases, from a mathematical viewpoint, these requirements completely characterize 
the new notion. In these cases, whether or not this uniqueness property should be proved in 

                                                 
6 The decisions as to how to justify a given definition or property is closely related to the decision as to whether or not it 
should be, and to the knowledge of ways to justify it (can it be defined, or not, in a given mathematical context?). We 
will not have time to discuss the interplay of these three aspects in this short paper. 



the classroom calls for another decision. Even if the teacher thinks the uniqueness aspect 
cannot / need not be made explicit, the Nine Chapters suggest another lead. Making explicit 
the properties that we want to extend also has a heuristic value, suggesting the path to a 
definition of the extended notion. 

  Liu Hui’s second line of argumentation also suggests many fruitful leads, which we can only 
mention in passing for lack of space:  

o A rather unusual form of argument: proving that two formulae or two algorithms are 
universally equal / equivalent by exhibiting a class of in-context problems for which 
the answer is unique – for any given set of initial data –, and for which – for reasons 
that can be spelled out – both formulae or algorithms work out the solution. Of course, 
this form of argumentation – that can be called semantic immersion – raises questions 
as to the context-dependence of the argument. For instance, multiplication plays a part 
in the context of commercial transactions and in the context of area calculation, and 
nothing proves that the fact that the relevant operations coincide in both contexts when 
the data are integers will still hold with all rational data.  

o Liu Hui’s second argument is not only in-context (a horse-deal), it is also an arguments 
which clearly claims full generality while dwelling on a single specific case, that of 
3/5 times 4/7. This raises the well-kown but deep questions pertaining to the notion of 
generic example (Balachef, 1987, 157). Let us mention two such questions: (1) from 
a mathematical viewpoint, which conditions guarantee the minimal level of non-
specificity that an example should enjoy to be potentially seen as generic (for instance: 
dealing with 1/5, 7/5, or 15/5 instead of 3/5 would probably make this case less 
generic)? (2) The genericity of a case is not a mathematical property but is a 
multilayered property of the relationship between it and the students; it involves 
pragmatic aspects (students should be able to adapt the reasoning to other cases), and 
epistemological aspects (students should regard this case as a mere representative of 
all cases, thus providing some form a general argument); what are the general 
conditions for a didactical genesis of this relationship? 

Field-work  

We shall end with some applied work. The following three documents are extracts from contemporary 
French textbooks or standard teacher-training documents, for students in the second year of middle-
school (Figures 2 and 3) or in the last year of primary school (Figure 4). In cases 2 and 3 they are 
meant for students who are somewhat familiar with fractions and their addition, but with no 
knowledge of multiplication. As to Figure 4, students are familiar with integer multiplication, and 
with multiplication and division of decimals by powers of 10. These extracts are what most French 
textbooks call “introductory activities”, in which students are to experience a new notion from a 
hands-on, guided but non-dogmatic approach. We suggest these documents be analyzed in TWG12 
in order to test Hypotheses #1 and #2.  



 
Figure 2: Two ways to work out a rectangular area (Malaval, 2014, 69) 

 
Figure 3: A justification in terms of combination of operators, and a conjecture relying on the 

control-case of decimal fractions (Mante, 2006, 50) 

 
Figure 4: Generalizing multiplication from integers to decimals using bilinearity7 

Conclusion 
The goal of this short paper was to contribute to the ongoing reflection on the use of original historical 
sources in the classroom or in teacher-training; a reflection which bears both on the goals of this use, 
and on the relevant ways to use such documents.  

Within this general field of research, the main features of this specific contribution are: we dealt with 
teacher-training only, since we do not think this excerpt from the Nine Chapters can be used with 

                                                 
7 Document retrieved from a teacher-training slideshow: http://docslide.fr/documents/techniques-operatoires-cycles-2-et-
3-multiplication-jean-luc-despretz-cpc-landivisiau-avril-2010-lacquisition-des-mecanismes-en-mathematiques-est-
toujours.html (slide 22). Accessed September 14, 2016. 



students who learn to multiply fractions; we endeavoured to show that even for such documents, they 
can be used in teacher-training for other purposes than simply teaching some history of mathematics, 
or enriching teacher’s image of mathematics. As teachers, it is or will be part of their everyday work 
to analyze/assess teaching documents and make decisions on the basis of this analysis/assessment. 
Among these documents, some will be of an argumentative nature: sometimes in the form of pretty 
formal and academic proofs; more often than not, these documents will explicitly display or rather 
implicitly point to other forms of argumentation. We think the conceptual analysis – an analysis which 
has a mathematical component and an epistemological component, and which is to be distinguished 
from both the historical analysis and the didactical analysis – of some historical documents can give 
teacher-trainers opportunities to make explicit some tools which can be of constant use in the analysis 
and assessment of argumentative documents. 

In this paper, we dealt with pretty informal arguments and elementary mathematics. However, we do 
not think this general scheme is specific to such contexts, since this work is a continuation of our 
CERME8 paper (Chorlay, 2013), in which a similar approach was used in a formal and rather 
advanced mathematical context (proof of the relationship between the variations of a function and the 
sign of its derivative).  
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with elements of a pilot study that collected data from students in the course to evaluate changes in 
attitudes toward mathematics and its study. 
Keywords: Instructional materials, primary historical sources, topology, worldviews. 

Introduction 
There are numerous motivations and benefits for incorporating the use of primary sources into 
undergraduate mathematics teaching. Primary among the cited motivations is that providing students 
experience with reading texts in which the genetic development of a topic is presented gives them an 
opportunity to expand their mathematical education in such a way that includes both traditional and 
modern methods of the discipline (Fried, 2014; Laubenbacher et al., 1994). Another motivation is 
that using original sources in the teaching of mathematics makes it possible to contextualize the 
mathematics in ways that many textbook treatments do not afford. That is, original sources place 
particular mathematical ideas in the context and setting of the investigations in which the author was 
engaged at the time. As a result, the problems with which the author was struggling, and the 
motivations for solving them, are often more clearly and naturally described, and more compelling 
than traditional textbook expositions. Exposing the original motivations behind the development of 
esoteric mathematical concepts may be especially critical for placing the subject “within the larger 
mathematical world,” in the hope of making it more accessible to students (Scoville, 2012). 
Furthermore, primary texts seldom contain the specialized vocabulary that comes with later 
formalism, promoting access to the ideas by students with a wider range of backgrounds than is 
achieved with more standard presentations. 

Many mathematics instructors interested in bringing the history of mathematics to the classroom 
question the use of primary historical sources in light of the increased availability of high quality 
secondary historical sources (e.g., Katz, 2009). Such resources may suffice to help students reap some 
of the benefits of original works; however, they carry their own difficulties. For example, there is a 
risk of placing too much emphasis on the history of mathematics per se, as opposed to using that 
history to support the learning of mathematics. Other key differences between using primary and 
secondary sources are described by Jankvist (2009): 
 



When using secondary sources, the students are exposed to a given historian’s presentation and, 
possibly, interpretation of history, and they must make their choices based on this (Furinghetti, 
2007, p. 136). When reading original sources, the students must, on the other hand, perform their 
own interpretation of what actually took place, why a certain mathematician developed a theory 
in one way or another, whether or not what is written is true, what internal and/or external forces 
drove the development of the work, etc. … The extent to which original sources are being used 
does, of course, have an impact on what the students learn: what students may gain from just 
“sniffing” at a few picks from an original source and what they might learn from being exposed to 
systematic readings of original sources are immensely different things. (p. 250) 

In this final statement, regarding “what students may gain from just ‘sniffing’ at” selections from an 
original source, Jankvist points to the primary focus of the Transforming Instruction in 
Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) project. 

The TRIUMPHS project 

In 2015, a seven-institution collaborative project to design, test, and evaluate curricular materials for 
teaching standard topics in the university mathematics curriculum in the United States via the use of 
primary historical sources was funded by the National Science Foundation. The TRIUMPHS project 
seeks to help students learn and develop a deeper interest in, and appreciation and understanding of, 
these mathematical concepts by crafting educational materials in the form of Primary Source Projects 
(PSPs) based on original historical sources written by mathematicians involved in the discovery and 
development of the topics being studied. These PSPs contain excerpts from one or several historical 
sources, a discussion of the mathematical significance of each selection, and student exercises 
designed to illuminate the mathematical concepts that form the focus of the sources. PSPs are meant 
to guide students in their explorations of these original texts in order to promote their own 
understanding of those ideas. TRIUMPHS plans to work with mathematics faculty and graduate 
students from over forty institutions in the United States who will participate in the development and 
testing process of these PSPs. As part of this five-year project, impacts of the materials and 
approaches to implementing them will be investigated in terms of teaching, student learning, and 
departmental and institutional change. 

Organization of the paper 

The remainder of the paper is organized into four sections. First, we describe the three “mini-PSPs” 
implemented by the third author during his topology course in spring of 2016. Next, we present a 
broad overview of one of the components of research we are conducting during the five-year project, 
and then discuss a small subset of the data collected from five student participants. The paper 
concludes with a discussion of the implications from this small data set from the pilot year of the 
project, and a review of next directions planned for the research. 

Primary source projects in topology: The case of three mini-projects 
The third author developed and implemented three “mini-PSPs” during the Spring 2016 semester at 
Ursinus College, a small liberal arts school outside Philadelphia, Pennsylvania. His experience using 
primary source materials in the classroom began in 2012 when he introduced them into a discrete 
mathematics course. His current interest in using primary sources in the classroom involves teaching 
topology. Three “mini-PSPs,” each taking up two 50-minute class periods, were written for use in an 



Introduction to Point-Set Topology course, an upper-division elective course for mathematics majors 
and a designated “capstone” course intended to provide an experience for mathematics students to 
test and apply previously acquired mathematical knowledge and skills. The author taught this course 
twice before in a standard lecture-based style.  A short description of each of the three projects is 
provided below. 

The course was introduced with a mini-PSP titled “Topology from Analysis” that investigates a paper 
by Georg Cantor (1872) in which he considered a problem in Fourier series, namely, if a function has 
a Fourier series expansion, when is such an expansion uniquely determined?  Cantor proved in a 
previous paper that two convergent trigonometric series with equal sums have the same coefficients 
(uniqueness theorem), even if – for a finite number of values of the variable – the series either fail to 
converge, or converge toward different sums. Could this theorem be extended to certain infinite sets 
of points? After reading Cantor’s statement of the problem, the students explore simple examples of 
infinite sets where such an extension is possible. They investigate what properties these examples 
have that allow for such an extension. The desirable properties ultimately prompted Cantor to define 
concepts like limit points, derived sets, point sets, and iterated derived sets.  The students were then 
able to use these concepts to prove a more general theorem. Even though these concepts were used 
to prove a result in analysis concerning Fourier series, they are naturally topological concepts. Hence 
the project helped to connect analysis and topology, thereby motivating new definitions through the 
need to clarify concepts, rather than introducing them as standard jargon.   

The second mini-PSP focused on the topological concept of connectedness. It again considers a work 
of Cantor (1883) and his study of the continuum. Students follow Cantor’s musings concerning the 
best way to define such a concept. After he defined a perfect point set based on derived sets, he 
investigated whether the property of perfectness is sufficient to characterize a continuum. The 
students wrestle with this question, and eventually observe that such a definition will not suffice. 
Cantor then proposed an additional property, connectedness, which he defined using a metric. After 
reading Cantor’s definition of connectedness, students examine a work of Jordan (1883, pp. 24-27) 
which viewed connectedness in terms of separation of point sets into components. This introduces 
the students to a new conceptual perspective for the same notion considered by Cantor. Next, students 
read from a paper by Schoenflies (1904, pp. 209) in which it was proven that connectedness is a 
topological invariant. To do this, Schoenflies required a definition of connectedness that does not 
appeal to a metric, and is therefore purely topological. Finally, students read from a work of Lennes 
(1911, pp. 287, 303) in which he attempted to give a proof of the Jordan Curve Theorem and gave 
yet another definition of connectedness. Students are then asked to show that Lennes’ definition is 
equivalent to the definition used today. 

The final mini-PSP used in the course studies excerpts from a paper of John Henry Smith (1874) on 
discontinuous but integrable functions. Smith intended to provide a counterexample to a “theorem” 
of Henkel. He constructed an integrable function that is “very badly” discontinuous. Students are led 
through Smith’s work involving the definition of the concept of nowhere dense set in order to 
construct such functions. As in the first mini-PSP, students examine a problem that motivates the 
need for a new mathematical concept by abstracting the essence of particular examples in order to 
capture the essential properties that a set must satisfy to prove a result. Ultimately, this project 



culminates in Smith’s construction of a generalized Cantor set. A function that is continuous except 
on a generalized Cantor set is then seen to provide a counterexample to Henkel’s claim.  

A major benefit of these mini-PSPs is that they naturally induce sophisticated discussions about the 
mathematics by students. During classroom implementation, students were observed to be carefully 
and thoughtfully working to understand concepts, answer questions, and pose their own questions 
and conjectures. One such instance occurred when students began to question Schoenflies’ definition 
of connectedness, without prompting from the instructor.  The question was raised as to what 
Schoenflies meant by the phrase “... can be decomposed ...” One student suggested that he meant a 
partition, but it was soon realized that such an interpretation would be too general. Others then began 
to modify the partition idea to make it work. This sort of high-level engagement had not occurred in 
any previous topology course taught by the instructor.      

Description of the research 
The TRIUMPHS project includes an evaluation-with-research (EwR) study, designed to provide both 
formative and summative evaluation of the key project activities and defined goals for each. In the 
original EwR study design, we designated three project components for which we would conduct 
extensive research and evaluation, and designated these as “student change,” “faculty expertise,” and 
“development cycle.” Here we only describe a small piece of the “student change” component of the 
study. 

Rationale and research questions 

For decades much of the research literature on the impact of the history of mathematics on students, 
particularly at the secondary level or post-secondary level, was focused on students’ attitudes (e.g., 
Marshall, 2000; McBride & Rollins, 1977). There was scant focus on the use of primary sources as a 
classroom tool in the early work in the field of history in mathematics education. However, more 
recent work on the use of primary sources has been done in countries such as Denmark (e.g., Kjeldsen 
& Blomhøj, 2012) and Brazil (e.g., Bernardes & Roque, 2016), while such research has not yet been 
conducted with student populations in the United States. Thus, we are committed to investigating the 
ways in which mathematics students respond to concepts within the undergraduate curriculum that 
are taught via primary sources. To this end, we developed several research questions, of which we 
provide a subset here: 

1. As a result of students’ work with or study of a PSP, what changes do students report in their 
attitudes and beliefs about learning mathematics? 

2. As a result of engaging with PSPs, what do students report as challenges and benefits of learning 
from primary sources? 

3. What is the dominant mathematical worldview reported by students on pre- and post-course 
surveys? And, does academic major (or gender, or race or other attribute) make a difference in the 
reported worldviews? 

Pilot study: The case of a topology course 
This work took place in the first year (pilot year) of the project, which was focused on developing 
instruments and refining the questions that were formulated in the original grant proposal. The only 



data sources available for analysis were student pre- and post-course surveys, student work samples 
(from the three mini-PSPs), and instructor surveys and post-implementation reports. Data were 
collected from four undergraduate mathematics courses during the pilot year of the TRIUMPHS 
project: two courses in Fall 2015 (geometry; analysis) and two in Spring 2016 (abstract algebra; 
topology). In the topology course, the three mini-PSPs described above were implemented and tested 
for the first time by the third author. In this paper we report data that inform the first, second, and 
fourth research questions listed above for the five of eight students enrolled in that course who 
consented to participate in the research and for whom we obtained a complete set of data.  

Exploring student responses: Research questions 1 and 2 

Our initial pre- and post-course surveys (to which students responded before instruction on any PSP 
occurred and again at the end of the course) only contained one pair of open-ended questions asking 
students to identify what they enjoyed most and least about studying mathematics: 

What do you enjoy most about studying mathematics. (Explain briefly.) 
What do you enjoy least about studying mathematics. (Explain briefly.)  

For this small group of students, pre- and post-course responses were mostly stable for this pair of 
questions. This could be a function of the fact that all five students were in the final two years of their 
undergraduate program. However, we discuss two interesting pre-/post-course survey pairs of 
responses below. 

First, in response to the second prompt, Student 2 stated on the pre-course survey that she was “not 
fond of professors/texts that state a definition/theorem/idea without giving any hint to how that 
conclusion was derived, either historically or through proof/explanation.” By the end of the course, 
however, her response no longer referred to lacking historical grounding or a thorough proof or 
explanation. Instead, her response focused on the fact that “it is very easy to go through math classes 
and fall behind. If you don’t understand one topic, the class often moves on without you…”  

A similar change in identifying what he enjoyed least about studying mathematics occurred with 
Student 3. On the pre-course survey, Student 3 stated that he least enjoyed “how everything is given 
to you but never comes with an explanation of where the math is coming from.” However, in response 
to the same item on the post-course survey, Student 3 only commented that he disliked having to 
remember definitions and equations. It is possible that for Students 2 and 3 that the historical sources 
related directly to the formal content of the course satisfied their initial “sore spot” with regard to 
what they previously enjoyed least about studying mathematics. Since there was no effort in the pilot 
year to ask for student clarification (e.g., via follow up interviews), we cannot link the change in the 
sample responses presented here as resulting from students’ engagement with the PSPs. However, 
the responses signal potential interesting outcomes and we have modified our pre- and post-course 
surveys and have added post-PSP surveys to further investigate this potential influence.  

We also asked students to describe their experience using the mini-PSPs in the topology course, as a 
way to explore the benefits and obstacles they identified. The student responses were encouraging, 
and in important ways their responses point to the underlying effect of engaging with materials that 
provide an opportunity to understand the evolution of a mathematical concept. Here, we provide a 
sample of three of the students’ descriptions: 



Student 1 (Mathematics major): “We used these sources to learn about topics such as 
connectedness as we thought about origins of the idea and read about how the definitions changed 
the longer it was studied.” 

Student 2 (Computer Science major): “Each PSP was an interesting addition to class, and it was 
unique to be able to see the process of mathematical ideals through the eyes of the various 
mathematicians.” 

Student 5 (Physics & Mathematics major): “I enjoyed the document on definitions of 
connectedness, because it showed how mathematics is really done and how it takes time to 
accurately articulate an idea. I also liked the first document because it helped motivate topological 
ideas and illustrate the connection between topology and analysis.” 

Exploring student responses: Research question 3 

To address the third research question, we included a subset of 20 items from Törner (1998) on the 
pre- and post-course surveys. Törner and his colleagues surveyed 310 German secondary 
mathematics teachers in order to identify attitudes about mathematics that captured “the essence of 
mathematics,” where they defined “mathematics as a field and not as a subject taught in school” (p. 
119). In doing so, they identified attitudes relating to four aspects of a mathematical worldview: 
scheme, formalism, process, and application. Tables 1 and 2 report the pre- and post-survey means 
of students’ responses for these items. Item responses ranged from 1 to 5, where higher values indicate 
stronger association with that particular worldview. The predominant worldview (in bold in tables 1 
and 2) of the Spring 2016 topology students on both the pre- and post-course survey was the process 
view.1 

Mathematical 
worldview 

Student 1 
(female; 4th 

year2) 

Student 2  
(female; 4th 

year) 

Student 3  
(male; 3rd 

year) 

Student 4  
(male; 3rd 

year) 

Student 5  
(male; 4th 

year) 
Schema 3.4 3.2 3.4 4.2 1.6 
Formal 3.8 3.4 3.8 4 4.4 
Process 4 4.6 5 3.6 4.8 
Application 3.6 3.4 3.6 3.4 3.4 

Table 1: Mathematical worldview of Topology students, Spring 2016 sample (pre-survey)  

Mathematical 
worldview 

Student 1 Student 2 Student 3 Student 4 Student 5 

Schema 3.4 2.6 4.2 3.6 1.4 
Formal 4.8 3.4 4 3.8 4 
Process 4.2 4.4 5 4 4.4 
Application 3.8 3.4 4.4 3.8 3.4 

                                                 
1 Törner (1998) described each of the four aspects. For example, the process aspect characterizes mathematics “as a 
process and as an activity in thinking about problems and gaining knowledge” (p. 122); whereas the schema aspect 
represents a view of mathematics as “a “tool-box and bundle of formulas” and an idea oriented with algorithm and 
schemes” (p. 123). 

2 In the college and university system in the United States, typical undergraduate degrees are four years in duration. 

Table 2: Mathematical worldview of Topology students, Spring 2016 sample (post-survey) 



Törner (1998) reported on the relations among these four aspects, stating, “the formalism and 
schem[a] scale represent both aspects of the static view of mathematics as a system and intercorrelate 
highly” (p. 125). However, these two aspects of a static paradigm “correlate with the process scale in 
a significantly negative way” (p. 125), which is a finding that appears to hold for several students in 
our sample. For example, where there are lower means on the scheme and formal aspects (e.g., 
Student 2 pre/post; Student 3 post; Student 4 post), higher mean values occurred on the process aspect. 

Discussion 
This paper highlights the promise of robust investigations and implications that may result from the 
EwR efforts of the TRIUMPHS project. The project’s pilot year enabled us to trial student and 
instructor survey instruments and data collection procedures. We chose the topology course as a case 
because of the particular nature of the PSPs (“mini” as opposed to full-length), the students’ 
mathematical maturity (juniors and seniors), and the expectation that many of the courses 
participating in TRIUMPHS will also likely have small enrollments. As a result of the pilot year, we 
have significantly modified our survey instruments and research questions, and our aggregate student 
population has now increased. As we move forward, our research plans include conducting multiple 
analyses to identify trends in students’ mathematical worldviews (within courses, across courses, and 
disaggregated by other demographic characteristics). We have also developed and incorporated post-
PSP surveys and are currently developing and piloting multiple interview protocols.  
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A course in the philosophy of mathematics for future high school 
mathematics teachers 
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In this paper, I discuss a course in the philosophy of mathematics designed to help future high school 
mathematics teachers develop an understanding of philosophical questions about mathematics. 
Throughout the course, our discussions link core philosophical questions to particular theories of 
mathematics teaching and learning. Thus the course mixes traditional philosophy of mathematics 
with the study of everyday embodied mathematical habits, offering a kind of descriptive and synthetic 
approach more often associated with continental traditions of philosophy. This paper describes some 
of the key theoretical themes and issues, and argues that such courses offer future teachers important 
insights into the nature of mathematics. 
Keywords: Philosophy of mathematics, ontology, epistemology, teacher education. 

Introduction  
Philosophical questions about mathematics open up discussions about why we have the mathematics 
we have, inviting consideration of how mathematics is embodied in particular material practices. This 
paper discusses a course designed for pre-service mathematics teachers with the aim of diversifying 
their image of mathematics, and enhancing their skills at philosophically analyzing mathematical 
behavior. Throughout the course, our discussions link core philosophical questions to historical 
developments in mathematics (and philosophy) and to particular pedagogical approaches to 
mathematics education. Thus the course mixes historical perspectives with traditional philosophy of 
mathematics and with the study of everyday embodied mathematical habits. The focus on embodied 
material practices in mathematics – past and present – is more often associated with phenomenology 
and other continental traditions of philosophy, rather than the analytic tradition one typically finds in 
the philosophy of mathematics. Such a mixture of analytic and continental philosophy is extremely 
challenging, in part because analytic approaches have been typically concerned with foundational 
questions that do not always translate into studies of everyday mathematical practice. The course is 
modeled on what Corfield (2003) calls descriptive epistemology insofar as it entails interpreting 
mathematical activity for how it reflects certain philosophical assumptions about the nature of 
mathematics, following earlier efforts by authors such as Lakatos and Kitcher to remake the 
philosophy of mathematics into the study of mathematical practice, while incorporating and 
expanding approaches to the foundational concerns.  
 
Students enroll in the course often not knowing anything about philosophy, let alone the philosophy 
of mathematics. They are usually in their fifth year of a combined bachelor degree in mathematics 
and master’s degree in education, and are just beginning to visit high school mathematics classrooms 
and practice-teach. I open the course with a set of statements that Brown (2008) calls the common 
“image” of mathematics. Students are then exposed to the following set of core questions. These core 
questions drive many of the discussions and course assignments.   

1.    Can a diagram function as a mathematical proof?  



2.    What is the nature of proof? How has mathematical proof changed over history? 
3.    Is there such a thing as mathematical intuition? Where is it? Is it innate? 
4.    Is mathematics indispensable to science? Could science work without math?  
5.    What should be the relationship between logic and mathematics? 
6.    What is the status of axioms? Are they grounded in reality?  
7.    Are mathematical propositions necessarily true (or false) (rather than culturally or contingently 
true/false)? 
8.     Is mathematics a language (a system of symbolic signs that are immaterial and not part of the 
physical world)? 
9.     Can we speak about actual infinity (or just potential infinity)? How has the concept of infinity 
influenced the development of mathematics? 
10.  What is the role of the body in doing mathematics? How is mathematical knowledge embodied? 
11.  Is mathematics discovered or invented? What are the ontological implications of your answer? 
12.  Is mathematics objective and certain (rather than subjective and open to revision)? 
 
It’s absolutely essential that before tackling these questions, we unpack the difference between 
epistemological and ontological concerns (knowing versus being). Of course the two concerns are 
always entangled, but students need to identify the distinctive contribution of each. The need to keep 
these two concerns separate while understanding their relationship helps considerably as they go on 
to formulate arguments to support their positions on the core questions. Perhaps because these are 
education students, they seem more at home with epistemological questions (How do we come to 
know the concept of number?) and are initially baffled by ontological questions (What is number?). 
I have learned to motivate the latter by suggesting that such questions will be of huge interest to their 
future students. I suggest they treat the typical student query “how is this relevant?” as a philosophical 
question, and that they consider these queries akin to the very questions posed by philosophers of 
mathematics. Indeed, these bored students are asking, in their own way, the philosophical question: 
“Why mathematics?”. Rather than offer the usual unconvincing answer, such as “because you can 
use it to do ….” teachers might explore with their students the various schools of thought that 
developed as a means of answering this very question. They could, I suggest, introduce one of the 
core questions into their lessons, as a motivator for all those astute students who have raised this 
central concern about the relevance of mathematics. In other words, rather than dwelling on the 
pragmatic nature of mathematics, I suggest we direct attention to the more speculative aspect of 
mathematical activity. 

The course uses historical case studies to help students diversify their image of mathematics. Pairs of 
students research and present a 10-minute slideshow on a discussion topic each week, focusing on 
what are deemed controversies. Sample topics are: Zeno’s paradoxes and the parallel postulate. As 
the instructor, I introduce links between the topics and the core philosophical questions that structure 
the course. For instance, a presentation about the parallel postulate might simply recount attempts to 
prove it and mention developments of non-Euclidean geometry without linking these developments 
to our readings about Kant and his claims about the a priori synthetic nature of geometry. Further 
links need to be raised that help the students grasp how this topic is related to questions about the 
certainty and objectivity of mathematics, and its relation to science. With little to no training in history 
or philosophy, these students tend to present their topics without consideration of social context or 



cultural ramifications. These brief presentations feed into their later more substantial assignment to 
compose a philosophical paper, arguing in support of a position on one of the key questions listed 
above. It has always intrigued me that these students, despite being immersed in mathematics, a field 
known for its careful deductive methods, struggle so much in composing a formal philosophical 
argument. Many of these students confess to having selected mathematics because they don’t enjoy 
reading and writing. However, I feel strongly that, as future teachers, they need to become excellent 
communicators, and I treat the course as an opportunity to build that skill as well. I have designed 
guidelines to help them structure their assignments, and I work with various draft versions of their 
papers to help them improve this skill. 

General philosophical themes 
The distinction between ontology and epistemology helps us narrow in on students’ assumptions 
about mathematical activity, as we discuss how Platonism and other schools of thought consist of an 
ontological claim and an epistemological claim. In this we follow Bostock (2009) who effectively 
differentiates these kinds of claims for different schools of thought. The ontological questions are the 
most difficult for the students to comprehend. We ask: In what sense can universals (redness or beauty 
or triangles or numbers) be said to “exist”? This, as Bostock reminds us, is a question about the 
ontological status of universals. Most students don’t quite know how to engage with this question, 
although they are more than ready to grant universality (generality) to geometric figures or arithmetic 
entities like numbers. They tend to think of this generality as cross-cultural, and confuse it with the 
question of truth value. My task is to tease out questions about truth from metaphysical questions 
about being. I offer them some choices: If universals do exist, do they exist outside the mind, or 
simply as mental entities? If they exist outside the mind, are they corporeal or incorporeal? If they 
exist outside the mind, do they exist in the things that are perceptible by the senses or are they separate 
(or independent) from them? To further support and scaffold their exploration of these questions, I 
offer three schools of thought, each with a different answer to these questions, and I ask the students 
to decide who they most identify with. I am really forcing their hand in this, in that I hope to show 
them that these three responses do not actually exhaust the possible answers to the ontological 
question. In the next section, I discuss how new directions in the philosophy of mathematics offer 
different choices. But the choices first given, drawn from those used by Bostock (2009), are 
simplifications so that they can begin to engage in debate. As in all such sorting and labeling, we can 
query whether a particular mathematician or philosopher is a good example of a particular 
philosophical paradigm (for instance Hilbert is egregiously characterized as a nominalist in this list), 
and I am careful to tell the students that they will debate these issues later, after reading more primary 
texts:  

•The realist (Plato, Frege, Godel) claims that universals exist outside the mind and are independent 
of all human thought.  

•The conceptualist (Descartes, Kant) claims that they exist in the mind and that they are created by 
the mind. Some claim that we create these universals based on sense perception and some say they 
are innate and do not require perceptual stimulation. 



•The nominalist (Hilbert, Field) claims that they do not exist outside of language. Some claim that 
the words and symbols we use are mere shorthand for longer ways of expressing the same idea and 
some claim that statements with such terms are simply untrue in the sense that they refer to nothing.   

The assignment of the names to the schools is imperfect, but it works as a starting point. One of the 
difficulties in starting with the main schools of thought, and then trying to tease out the subtle 
differences and ways in which these philosophers’ claims are not perfectly aligned with the school, 
is that the students are not yet ready to delve deeply into these historical subtleties. For instance, it 
might seem a travesty to put Descartes and Kant together, since Kant pushed past Descartes’ claim 
that mathematical truths are innate, clear, and distinct ideas, so that he might attend to the synthetic 
nature of mathematical judgment. According to Kant, space and time are the mind’s contribution to 
experience. Space and time are the “form” of experience, a form imposed by us on the raw data of 
experience. Historians of philosophy usually oppose Descartes (the rationalist) against Locke and 
Hume (empiricists), and posit Kant as the reconciler. Bostock (2009), however, claims that Locke, 
Hume and Descartes, despite their differences, share the same beliefs about the ontological status of 
mathematical objects (they are ideas or mental entities), and differ in how they think we acquire these 
mathematical ideas. One might then associate Kant with this approach as well, since, as Brown (2008) 
suggests, according to Kant, “Our a priori knowledge of geometric truths stems from the fact that 
space is our own creation.”(p.119) Similarly, arithmetic for Kant is connected to time and the fact 
that time is also a form we impose on the world. This conceptualist approach seems to have saturated 
many of the later treatments of the philosophy of mathematics, seeping into the realist and nominalist 
camps as well. Brown indicates that Frege (a Platonist) embraced Kant’s view on geometry, Hilbert 
(the formalist or nominalist) embraced Kant’s view on arithmetic, and even Russell (the logicist) can 
be characterized as Kantian.  One might also argue that the conceptualist approach has saturated 
theories of learning, and has become full-fledged in cognitive psychology and its dominant image of 
learning. This image assumes that learning entails an acquiring of a set of cognitive ‘schemas’ and 
assumes that brains are the seat of reason. Pre-service teachers need to be aware of this history so that 
they might become empowered to identify and critique the theories of learning that structure the 
curriculum policy they are meant to adopt in their classrooms. 

Diagrams and the body 
Questions about the status of diagrams in proofs are easy for students to connect with, and link directly 
to the opening readings by and about Plato. Students are drawn to the compelling distinction that 
Plato draws between the physical world and the realm of mathematics. We discuss the theory of ideal 
forms, and how Plato was motivated by the gap between the ideas we can conceive and the physical 
world around us. Some students see in the proposal of an ideal realm a way of reconciling their belief 
in the universality of mathematics with the messiness of learning, but more often than not they are 
drawn to a conceptualist approach, perhaps Kantian, whereby mathematics is considered a cognitive 
invention that aligns with the physical universe. Thus they tend to ascribe to the human mind a 
consciousness or intuition or faculty that is capable of bringing together the ideal forms (triangles, 
numbers, etc) that are unchanging and eternal (the realm of being or essence) with the physical realm 
(the realm of becoming or change). We discuss how there is a strong dualism (between mind and 
body) at work in this approach, and how this dualism plays out in different pedagogies. The vast 
majority of pre-service teachers split mind from body, arguing that we grasp the ideal forms only 



through mental reflection, while we understand the physical world through the senses, just as Plato 
might say. Most of the contemporary philosophy of mathematics we read in the course questions the 
validity of this dualism, and we discuss the main criticisms of Platonism that were formulated 
centuries ago. 

Diagrams figure prominently in this discussion, as they have, since Plato, if not before, bridged the 
dualism in ways that trouble its claim to a clean distinction (de Freitas, 2012). In small groups, the 
students are given a set of visual proofs, and asked “What does this diagram prove?” I use this 
question to provoke debate, as it gets to the heart of concerns about what constitutes a legitimate proof 
in mathematics. We discuss to what extent the diagram might function as a proof of an arithmetic 
statement.  

We situate the question historically, by discussing readings by Plato (Meno, Theatetus, Rupublic). 
Although the students tend to find Socrates overbearing in the Meno, they begin to grasp how the 
Socratic method emerges from a particular set of philosophical assumptions about the nature of 
mathematical diagrams and concepts. We compare this method to the kind of questioning sequences 
they see in their observations in classrooms. For Plato, geometrical knowledge is obtained by pure 
thought and divorced from sensory observation, which seems to go against what many of the students 
experience in mathematics classrooms. This is when they become somewhat unhappy with their 
Platonism. As Brown (2008) explains, Plato considered the diagram as merely a heuristic to help us 
“access” the pure forms of mathematics. Plato is critical of the geometers who work with diagrams 
and are led astray by the visual images of mathematical ideals. Plato is rather disparaging of all this 
talk of diagrams and gestures and activity, chiding the geometers for using material verbs to talk about 
mathematical actions: 

Don’t you also know that they use visible forms besides and make their arguments about them, 
not thinking about them but about those others that they are like? They make the arguments 
for the sake of the square itself and the diagonal itself, not for the sake of the diagonal they 
draw, and likewise with the rest. These things themselves that they mold and draw, of which 
there are shadows and images in water, they now use as images, seeking to see those things 
themselves, that one can see in no other way that with thought. (Plato, Book VI, 510d, p. 191) 

Here, true apperception is achieved only through rational discernment (“thought”), rather than 
empirical investigation or what Kant will call synthetic reason. For Plato, geometers use diagrams 
and visual forms to speak about ideal forms, “seeking to see those things themselves” when only 
“thought” in its pure disembodied capacity can access such ideal forms. In the course, we discuss the 
consequences of Platonist and conceptualist approaches that deny or demote the significance of the 
material activity of doing mathematics and prize instead only the mental or cognitive reasoning 
faculty. We begin to read contemporary theories of embodied cognition that attack this approach 
philosophically (Lakoff, G. and Núñez, R., 2000; Nemirovsky et al, 2009; Roth 2010). The students 
begin to grasp how diagramming (and other embodied activities) are not merely heuristic but rather 
necessary for thinking mathematically. We discuss what it might mean for thinking to occur in and 
through this activity rather than independent of it.   

The readings in this section of the course range across phenomenology, focusing on the role of the 
body in learning mathematics. We begin to consider how recent work in embodied mathematics might 



engender a new philosophy of mathematics. Although the work of Lakoff and Núñez is still 
‘conceptualist’ in how it treats the body as the container of the mind (a dualism inherent to their 
approach), there are other scholars who attempt to move even further into a monist philosophy of 
mathematics (Nemirovsky & Ferrara, 2009; Roth, 2010; Stevens, 2012). For instance, de Freitas and 
Sinclair (2014) push past the phenomenology framework, seeking a more post-humanist approach 
that attends more generally to the diverse material forces at work, and less exclusively on the human 
body’s individuated capacities. 

The ontological turn 
The pre-service teachers are shown how much of the philosophy of mathematics since the nineteenth 
century has been contending with the Kantian assertion that mathematical truths are a priori and 
synthetic. Kant claimed that if a proposition is thought as (1) necessary and (2) universal then it is an 
a priori truth; and if a judgment of truth requires one to engage with the phenomenal world in some 
fashion, it is a synthetic judgment rather than an analytic one. Mathematical truth, according to Kant, 
is both synthetic and a priori. How can such knowledge be possible? This is a perennial question in 
the philosophy of mathematics, the question as to how pure mathematics is possible as an activity in 
this messy world (Hacking, 2013). In other words, how can we grasp universal and necessary truths 
by using our material bodies to determine whether they are true? Hacking claims that one has to look 
closely at applications of mathematics if one is to address – or contest – this question of purity. 

Corfield (2003) argues that the philosophy of mathematics has spent far too much time on the 
foundational ideas of the 1880-1930 period, and neglected the thinking and doing of “real” 
mathematicians both before and after that period. Corfield believes that a philosophy of mathematics 
should “concern itself with what leading mathematicians of their day have achieved, how their styles 
of reasoning evolve, how they justify the course along which they steer their programmes, what 
constitute obstacles to these programmes, how they come to view a domain as worthy of study and 
how their ideas shape and are shaped by the concerns of physicists and other scientists.”(p.10) He 
names this approach descriptive epistemology and defines it as the “philosophical analysis of the 
workings of a knowledge-acquiring practice.” (p. 233) Imre Lakatos (1976) is often taken as 
inspiration in this kind of approach to the philosophy of mathematics. He examined the process of 
meaning-making in mathematics, by studying the historical evolution of concepts and procedures, 
and offering insight into the form of deliberation that characterized creativity in the work of 
mathematicians. He was interested less in the so-called foundational issues in mathematics, and more 
in the empirical and material making of mathematics, an approach he called “critical fallibilism”:   

It will take more than the paradoxes and Gödel’s results to prompt philosophers to take the 
empirical aspects of mathematics seriously, and to elaborate a philosophy of critical fallibilism, 
which takes inspiration not from the so-called foundations but from the growth of mathematical 
knowledge. (Lakatos, 1978, p. 42)  

Hersh (1997) characterizes Lakatos as a philosopher of mathematics who was committed to studying 
the social and “humanist” aspects of doing mathematics. For Hersh, Lakatos was a humanist because 
he celebrated the specificity of informal reasoning found in the work of mathematicians, rather than 
or in addition to the generality of its truth claims. For Lakatos, these examples of informal reasoning 
are not simply unfinished formal proofs, in which the pertinent axioms and logical rules of inference 



are suppressed, but rather a significantly different mode of inquiry, a non-axiomatic argument that 
has its own trajectory and its own becoming. 

Despite the significance of this more humanist perspective on the philosophy of mathematics, which 
values the study of informal and unfinished mathematical activity by experts, we still lack 
philosophical insight into the experiences of those who, for the most part, do mathematics from an 
outsider or fringe position, like most students. Although recent moves in the philosophy of 
mathematics – like Corfield – have insisted that we look more closely at the practice of contemporary 
mathematics to build a philosophy of mathematics, these scholars are still entirely focused on 
extremely accomplished mathematicians, and remain focused on the epistemological dimension of 
that activity. In other words, they are still concerned with how mathematicians determine the truth of 
their mathematical propositions. But this is not the only issue! Despite the more expansive study of 
mathematical activity, Corfield’s approach of “descriptive epistemology” is, as the name suggests, 
directed at mathematician’s epistemology or theory of knowledge production.  

A focus on knowledge production confines one to attend to particular aspects of activity – indeed, 
this focus explains why scholars like Corfield look exclusively at accomplished mathematics. In order 
to grapple philosophically with mathematical activity more broadly - be it expert or novice, animal 
or human, revolutionary or controlling, conceptual or algorithmic – one needs to consider 
mathematics not merely as a knowledge production activity. Contemporary philosophers like 
Zalamea (2014) and Châtelet (2000) and Deleuze (1994) lend support in this venture, as they grant 
mathematics more ontological import, although continuing the focus on high-stakes achievement. 
These scholars track how mathematics operates in the world as both an expression of human cultures 
(perhaps as knowledge), but also as a kind of worlding in itself. In other words, mathematics is an 
activity both pragmatic and speculative that makes and mutates possible worlds. As part of what many 
have called the “ontological turn” in the humanities, this speculative work (“worlding”) informs a 
contemporary shift in the philosophy of mathematics, towards an emphasis on “mathematics as 
ontology”, the latter refrain capturing Alain Badiou’s attempt to position mathematics within 
philosophy, but not merely as logic in drag. 

The ontological turn and related developments in philosophy are reshaping the way we think about 
all material-cultural practices, let alone mathematics. The course aims to move students through 
conventional idealism (best formulated in Plato) through conceptualism (best formulated in Kant) 
through phenomenology (best formulated in Merleau-Ponty) to a more post-humanist perspective that 
dethrones the human subject as the central orchestrator of his/her mathematical participation. It is 
near impossible to move students through these radical shifts in one course, but one can begin to 
problematize the landscape and trouble assumptions about mathematics.  

Conclusion 

This course aims to help pre-service teachers develop a nuanced appreciation for the philosophy of 
mathematics, so that they might begin to critique the intellectualist and conceptualist model of 
mathematics teaching and learning. 
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In this paper, we study historical proofs of the existence and uniqueness theorem for the differential 
equation 𝑦′ = 𝑓(𝑥, 𝑦). We analyze original works that played a part in the problematization of this 
concept, thus offering a rational reconstruction of its genesis which sheds light on its meaning. We 
will use results from the socioepistemologic theory to show that variational strategies are efficient in 
the analysis of the proof. We believe this epistemological analysis may help in the future for 
pedagogical designs. 

Keywords: Socioepistemology, variation, existence, uniqueness, differential equation.  

Introduction 
We present the results of an ongoing research on the existence and uniqueness theorem for first order 
ordinary differential equations. The socioepistemological theory, theoretical basis of the research, 
faces, from a systemic view, a possible reconstruction of its meaning due to the variational strategies 
in its development, without limiting itself to a chronological reproduction of the contributions of the 
mathematical works, nor a reinterpretation of what we actually know of the theorem. 

Variational strategies involved the construction of the mathematical notions related to the theorem 
mentioned above are analyzed. These strategies are part of a study program called “Variational 
Thinking and Language” that the socioepistemological program develops. From the study a different 
use of the actual knowledge is recognized, that is considered a potential element to start changing the 
relation with said knowledge from the objects to the actual practices (Fallas-Soto, 2015). 

This notion of “from the objects to the actual practices” talks about constructing a new interpretation 
of the object (the theorem in this case) based on practices (Cantoral, 2013), with the notion of starting 
with the problematization of knowledge, from the Socioepistemology, finding the meanings of said 
knowledge at the moment of actual use. Then, the problematization from this view, consists in 
performing a double study whose elements, historize (historical reconstruction of knowledge) and 
dialectize (coordination of mathematical notions, examples, counterexamples and conceptions and 
misconceptions), are the base to study the evolution of the theorem throughout history and thus to 
analyze how its associated mathematical notions plays in order to construct the theorem from the 
point of what is known today. 

Therefore, the research problem is linked to the meaning in mathematics, this because the way how 
the existence and uniqueness theorem is presented on textbooks does not appears to be deducted from 
the practices properly, nor also from the mathematization. Then, the problem, which are the principles 
that give meaning to the notions of existence and uniqueness as specific characteristics of the 
solution's nature? The hypothesis of this research work is to assume that the construction of the 
theorem can be a prediction model with the study of variation. It can be said that there's a common 



thread that organizes the conditions for the existence and uniqueness, and is concected with the 
prediction idea that was the basis for the theorem along with its hypothesis. 
The research focus for this research was to mean the existence and uniqueness theorem from a 
particular problematization of mathematical knowledge.  
 

Methodology 
The phases that describe the research are briefly described below: we study the textbooks used in the 
teaching of Differential Equations, particularly we analyze the demonstration. By showing that there 
is no problematization of this mathematical knowledge and only remains as a test of hypothesis, it is 
decided to study the genesis of this knowledge and its evolution. We offer a rational reconstruction 
of the main arguments used by mathematicians and in the part of conclusions we make a comparison 
of the origin of the theorem with the current didactic treatment. 

A rational reconstruction for the existence and uniqueness for differential equations, in a first stage, 
a bibliographical research is presented with some of the mathematical works of the time that helped 
on the construction of this knowledge. These are: 

 (Cauchy & Moigno, 1844), “Leçons de Calcul Différentiel et de Calcul Intégral”  
 (Lipschitz, 1880), “Lehrbuch der Analysis”  
 (Lipschitz, 1868) “Disamina della possibilità d' integrare completamente un dato sistema di 

equazioni differenziali ordinarie”  
 (Peano, 1973 – new-edition) “Sull' integrabilità delle equazioni differenziali di primo 

ordine”.  
 (Picard, 1886) “Cours d' Analyse”  

This proposal there will be reported the results obtained in the analysis of Cauchy & Moigno (1844) 
and Lipschitz (1880) papers, all of them for the study of the variational strategies. These five books 
were chosen because of Picard and Peano appear in the current textbooks contributing to the theorem. 
Then Picard (1886) in his work refers to Cauchy and Moigno in addition to Lipschitz. 

On a second stage, a documental analysis, the elements used on the mathematical works for the study 
of the existence and uniqueness theorem are reconstructed. This gives contributions to generate 
implementation strategies that propitiate the construction of the theorem based on a pragmatic 
evolution of the practices. To obtain the conclusions of tis work, we perform a confrontation between 
the mathematical works (also used for teaching) that arose at the end of the XIX century and at the 
beginning of the XX century, with ideas from the textbooks of XX century and nowadays. 

With respect to the variational strategies presents on this theorem, we are based on the PylVar (That 
its acronym in Spanish means Thinking and Variational Language) program that has been used 
throughout the years by some authors (Caballero, 2012), (Cabrera, 2009), (Cantoral, 2004; 2013a), 
(Cantoral & Farfan, 1998). This approach seeks to show the construction of mathematical knowledge 
from the study of motion, change and the variation of physical or natural phenomena. Our research 
work does not mention the modeling of phenomena related to the theorem of existence and 
uniqueness, however in the study of change is how the differential equations are born and we continue 
to deepen in current research. These works have permitted to explicit the variational strategies 
(practices on the study of change) that the Pylvar program describes, and that are discussed in 
Caballero (2012): 



 Comparison: Associated to the action of establishing differences between states. 

 Serialization: It is associated with the action of establishing relations between successive 
states. To study the changes to determine a certain pattern. 

 Estimation: Starting from other knowlegde of changing states, proposing states for a short 
term. 

 Prediction: The action of being able to determinate after analyzing some states to deduct 
posterior states. It means to anticipate to a certain rational state. 

Results 
We do not offer a mathematical proof but to show arguments that helped the mathematicians in 
formalizing this mathematical knowledge. 

Cauchy & Moigno (1844) consider the differential equation 𝑦′ = 𝑓(𝑥, 𝑦) with the hypothesis that 
𝑓(𝑥, 𝑦) and 𝜕𝑓

𝜕𝑦
 are continuous functions with the initial condition (𝑥0, 𝑦0). The authors prove the 

convergence of the sequence of points obtained by the fractions method. 

 

 
Figure 1: Fractions method utilized by Cauchy & Moingo, page 386 of the lesson 26 of the work 

Leçons de Calcul Differentiel et de Calcul Intégral. 

This method (this method of approximation was expounded by Euler in 1768 in his Institutionum 
Calculi Integralis) consists on determining successive states that depend on the preceding state 
parting on the study of the linearity and small variations that can be taken with the differential 
equation (as the rate of change that determines the slope of the line) and the initial condition (point 
by which the line passes). This procedure is shown in the following figures. 

 
Figure 2: First iteration of the fractions method. 

 



 
Figure 3: Second iteration of the fractions method 

Therefore, the process is generalized and it is approximated that 𝑦 − 𝑦0 = ±𝛩𝐴(𝑥𝑛 − 𝑥0)where 𝐴is 
an average of the 𝑓(𝑥𝑛, 𝑦𝑛)and 𝛩a value between 0 and 1. Then, the authors generalize the process 
and stating that 𝑦𝑛is equal to  

 
Figure 4: N-th iteration obtaining a numerical approximation of the solution. 

From which 𝑦𝑛corresponds, practically, to the same value that 𝑦0if the difference 𝑥𝑛 − 𝑥0is small. In 
other words, if 𝑥𝑛 → 𝑥0then 𝑦𝑛 → 𝑦0. 

Besides, convergence is studied in the following form as part of a stability of the system. If a small 
increment 𝜍0is added to 𝑦0, then 𝑦𝑛will have an increment 𝜍𝑛. In order for it to converge, this last 
increment has to be as small as 𝜍0. This seeks the stability of the function 𝑦to guarantee the existence. 
Again, the small variation plays a fundamental role to compare states and thus determine a local 
prediction on each iteration to determine a final global prediction (estimation) of the system. 

 
Figure 5: Case where the increment of 𝒚𝒏changes considerably with respect to the increment of 𝒚𝟎. 

This result is studied even further by Lipchitz (1880) when working with systems of equations and 
the uniqueness of the solution. By looking at figure 05, what is really happening is that from the first 



iteration two tangent lines are obtained that correspond, respectively, to each of the solutions. Because 
of this, on the point (𝑥1, 𝑦1), and another one close to it, say (𝑥1, 𝜂1), with 𝜂1 = 𝑦1 + 𝜃1such that 
𝜂1 − 𝑦1is close to zero, two tangent lines are determined, given by 

𝑦 − 𝑦1 = (𝑥 − 𝑥1)𝑓(𝑥1, 𝑦1) 

and 

𝑦 − 𝜂1 = (𝑥 − 𝑥1)𝑓(𝑥1, 𝜂1) 

Which are depicted in the following representation 

 
Figure 6: The existence of two solutions for the equation. 

Then, if we study the difference between these two lines, we see that is the same that subtracting their 
two respective slopes, this because 𝜂1is a value that is close to 𝑦1. Notice that the distance between 
the two lines is determined by 

|𝑓(𝑥1, 𝜂1) − 𝑓(𝑥1, 𝑦1)| 

That is why the Lipschitz condition plays a very important role, due to the fact that this difference 
would be bounded by 

|𝑓(𝑥1, 𝜂1) − 𝑓(𝑥1, 𝑦1)| < 𝑀|𝜂1 − 𝑦1| 

where the constant 𝑀is the bound of 𝜕𝑓

𝜕𝑦
 that not necessarily is a continuous function. Therefore, if 

this condition holds, we would have that |𝑓(𝑥1, 𝜂1) − 𝑓(𝑥1, 𝑦1)| = 0, being a unique solution to the 
equation. If the Lipschitz condition does not hold, we cannot guarantee uniqueness, it can or cannot 
exists. 

Conclusions 
This study, from the socioepistemological point of view, broadens the knowledge on the Existence 
and Uniqueness Theorem for Ordinary Differential Equations, but most of all it shows the kind of 
practices (variational strategies) that play a role in the justification of both existence and uniqueness. 
The fractions method, absent in most textbooks on Differential Equations, is present in textbooks on 
numerical methods. This is the second time this phenomenon arises. A similar situation arose in the 
prediction based on Taylor series. This findings, are worth mentioning, are derived from an 
appropriate problematization of the mathematical knowledge. Two things that gave genesis to this 
problem were the looking for a formalization on the proof of the theorem and also the determination 
of the minimum quantity of hypothesis that guarantee the existence and uniqueness of the solution. 

Additionally, the initial questions referred to the inverse tangent problem and the different examples 
present in the mathematical discourse for school were answered, but these time with the support 
different resources: variational, numerical, analytical and visual. All these was obtained thanks to a 



documental analysis that was based on original mathematical works. On the other hand, it was 
possible to discuss other constructs, such as convergence, the Lipschitz condition and the continuity 
of the functions 𝑓(𝑥, 𝑦) and 𝜕𝑓

𝜕𝑦
, with respect to y. 

Besides, the variational strategies on the construction of this theorem were: 

 Comparison: The states that correspond to the numerical solution of the differential equation are 
compared. Besides, the solution is compared before and after of the small variation to determine 
its uniqueness. 

 Serialization: When finding a relation between a state and another, starting with the initial 
conditions, in a lot of cases are possible to obtain an analytical solution to the equation, while in 
other cases it is only possible to predict the value that the solution will take in the next state 
(numerical solution), both cases with the support of the study of the patterns between one state and 
the other. 

 Estimation: When knowing the initial values and unknowing the next value that determines the 
numerical solution of the equation, is when the linear approximation enters to determine the next 
value or state. 

 Prediction: This theorem corresponds to a predictive model, it is utilized to predict the existence 
of the solution, and with the small variation we are certain of the convergence and uniqueness of 
the solution. 

 

When performing a study such as this one, it is possible to study the rupture between most 
contemporary textbooks against the works reported on the mathematical studies of the past. Besides, 
it can be observed that some rationalities arise that will help to design teaching and learning activities 
by means of the use of teaching variables or control variables to modify, keeping in mind the present 
construction of these meanings. Reconstructing these meanings helped us to understand other 
problems related with differential equations, such as the stability of a system of differential equations, 
and to construct other visual interpretations. 
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In this article, I compare two experimental projects led in the 1960s and 1970s by Tamás Varga in 
Hungary and by Guy Brousseau in France, concerning the teaching of combinatorics and 
probabilities. I attempt to show that this comparison can contribute to a better understanding of their 
theoretical reflection on the teaching of mathematics and the dependence of their didactical 
conceptions on the particular historical context in which these reflections were realized. 

Keywords: History of mathematics education, didactical theories, New Math, probability teaching, 
abstraction. 

Introduction 
In the Hungarian mathematics education community, the “complex mathematics education” reform 
led by Tamás Varga during the 1960s and 1970s is considered as one of the most important milestones 
of the history of mathematics education in Hungary. Varga’s conception is viewed as a representative 
of the so called “discovery based” tradition of mathematics education. However, this conception was 
never developed in a theoretical level: it can be understood from the documents of the reform (as the 
curriculum, the textbooks, teacher’s handbooks etc.) and from some articles of Varga, but most of the 
time, these texts present his approach on very concrete examples and give only limited, indirect access 
to the conceptual basis of his didactical conception. 

The research presented in this article is part of a more complex work, aiming to analyse Varga’s 
conception with a combined, historical and didactical approach, and in comparison with the French 
reforms and mathematics educational movements of the same period (Gosztonyi, 2015a). This 
analysis contains three levels: the study of the historical context, of the epistemological background 
(the conceptions about the nature of the mathematics in the background of both reforms) and a 
didactical analysis of the reforms’ documents.1 For this third part, French didactical theories were 
used, Brousseau’s Theory of Didactical Situations (TDS) (Brousseau, 1998) among others. The TDS 
proved to be an expedient theory to reveal characteristics of Varga’s conception; however, some 
difficulties of the analysis let to think there were also some important differences between Varga’s 
and Brousseau’s didactical approach. 

These theoretical questions led to consider Brousseau’s work not only as a theoretical framework for 
my research, but also as a research object: actually, Brousseau himself was one of the actors of the 
French math education scene of the 1960s and 1970s. He led experimentations during this period, and 
he developed his didactical theory in relationship with these experimentations, in the very particular 
historical context of the French reform movement. So, a historical analysis of Brousseau’s projects 

                                                 
1 (Gosztonyi, 2016b) gives a short summary of this work, showing how the difference of the epistemological background, 
represented by influent groups of mathematicians in both of these countries, can explain, at least partly, the differences 
of the two reforms. 



of the period could contribute to the comparison of the two countries’ reform movements and to the 
understanding of Varga’s project. 

One more reason explains my interest for Brousseau’s experimentations. One of the main domains of 
Varga’s activity concerns the teaching of combinatorics and probability: so I was interested to do 
comparative analysis partly on these domains. At the same time, these domains are missing from the 
French obligatory education of the period which makes the comparison obviously difficult between 
the two countries. However, during the 1970s, these subjects appear in France in certain experimental 
projects, and one of the most developed examples is Brousseau’s experiment on teaching 
probabilities, described in a retrospective article (Brousseau, Brousseau & Warfield, 2002). 

In the following, I will resume the comparison of Brousseau’s experiment with Varga’s teaching 
projects and experiments, and I attempt to show how this comparison helps to understand the authors’ 
didactical conceptions. 

Some elements of the historical context 
The international discourse on mathematics education during the 1960s and 1970s is dominated by 
the New Math movement and the debates following the introduction of New Math related reforms in 
several countries. France is one of the leading countries of the international reform movement, with 
the “mathématiques modernes” reform introduced in 1969/70. Varga declares also being influenced 
by the international movement: he starts his experimentations in 1963, inspired by Z. P. Dienes’ 
lectures in Hungary in 1960 and a UNESCO conference organized in Budapest in 1962, and follows 
the reforms of several countries during the following decades. His experimentations concerning the 
primary and later also the middle-school are progressively spread in the country, and give the basis 
of a new official curriculum in 1978. 

Although Brousseau is not among the main actors of the French curricular reform movement, his 
early experiments can also be interpreted in the context of the reform. In France, various 
experimentations on primary and secondary school mathematics education were encouraged and 
supported during the 1960s and 1970s. For example the system of the IREMs2 was progressively 
created from 1968, with the mission to form in-service teachers to the implementation of the reform, 
but also to continue experimentations. During the 1970s, the IREMs became also centers of critical 
debates on the reform, and principal sources of the emergence of didactical research in France. 
Brousseau’s early work fits clearly in this context: he led experiences since the 1960s, and his projects 
led in the Jules Michelet experimental primary school from the beginning of the 1970s became the 
basis of the development of his later theory. The experimentations on the teaching of probability 
described in his retrospective article were also led in 1973 and 1974 in this school. 3 

Brousseau’s and Varga’s teaching projects and experimentations 
The reasons to teach combinatorics and probability 

In France and Hungary, combinatorics and probability are not present in primary and middle-school 
curricula before the New Math period. So, the experiments concerning these domains attempt to 
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3 For more details and references on the historical background of the two projects, see (Gosztonyi, 2015a, part I.) 



introduce new elements of curricula or introduce them much earlier than in precedent cases. Varga 
explains in several papers why he found important to introduce these domains very early during 
mathematics education. According to him, these domains contribute to the diversity of mathematical 
subjects treated in school and help to implement dialectic relationships between mathematical 
domains – which is one of the main principles of his reform curriculum’s structure. He says 
combinatorics and probabilities can be studied on the basis of very concrete, material experiences and 
so can give a good example of the process of mathematical abstraction very early, using a diversity 
of representational tools, and without the need of complex theoretical background. These domains 
can also give occasion to many playful activities. More particularly the teaching of probabilities 
represents a “different kind” of mathematics: the mathematics of uncertain things, which is especially 
important to describe real world phenomena. Furthermore, in the frame of tasks related to 
probabilities, and especially through estimations, student’s autonomous thinking and the expression 
of students’ various opinion can be easily encouraged. The quotation below shows also that this last 
question is closely related to more general pedagogical considerations concerning the teacher’s and 
student’s role in the learning process or students’ education to democracy. 

My own view is that estimating, guessing, predicting, mentally representing, the future and 
expressing our opinion about it is a human ability which should play a greater role in education 
than it does now. All these activities [...] get kids personally involved in learning. […] 

Reasons must be strong, maybe not unrelated to sentences from “a child should not have an 
opinion” to “a child should have not will.” If this is a correct conjecture, then the issue is a more 
general one about education, not necessarily school education or school math in particular. (Varga, 
1982, p. 30) 

All the arguments resumed above are important characteristics of Varga’s conception on mathematics 
and its teaching (Gosztonyi, 2016a, b). Thus, one can understand that the emphasis made on the 
teaching of combinatorics and probabilities is closely related to the general educational goals of 
Varga’s reform, and these domains’ curricula and tasks can serve as efficient examples to understand 
the realization of these goals in Varga’s reform. 

In Brousseau’s examined experiment, there is no question of a general curricular reform: probabilities 
are not included in the official curriculum of primary school, and Brousseau’s experimentation is 
realized in the frame of general activities (“activités d’éveil”) and not during the mathematics lessons. 
However, Brousseau underlines also some general arguments to explain the interest of teaching 
probabilities. The idea of “another kind of mathematics” appears also in his work (Brousseau, 
Brousseau & Warfield, 2002, p. 397). Beyond that, students’ autonomous work and the repartition of 
responsibilities between the teacher and the students is in the center of his theoretical thinking, and 
as he admit in the quoted paper (e.g. p. 384, p. 411), the experiments on teaching probabilities played 
a crucial role in the development of his didactical theory. 

Some tasks of Varga on probabilities 

In his articles, Varga describes several probabilistic tasks developed in the frame of his 
experimentations (see e.g. Varga 1970, 1982). In the case of the subtraction game,  



Each kid draws boxes for the digits [of two two-digit numbers] the way they are used in writing 
subtractions. The goal is to make the difference as great as possible. They can fill the boxes in any 
order, but only with random numbers produced by rolling dice. (Varga, 1982, p. 28) 

In another game, the “game with three disks” (Varga, 1970, p. 424), three discs are in a box, one of 
them has a cross in each side, one has a cross on one side only and one is blank in both sides. The 
teacher draws a disk at random and shows one of its faces at random to the students. They have to 
guess the other face. 

In each of these situations, there is a competition between students, which motivates the development 
of a strategy. The comparison of these strategies, their test during further experiments contributes to 
the development of probabilistic thinking. According to Varga’s description, frequentist approach, 
based on repeated experiments and the observation of relative frequencies is alternated with a 
classical approach to probabilities, based on logical arguments concerning models with equally 
probable events. However, the frequentist approach is rarely developed in deep details: it seems more 
to serve as an experimental basis to develop classical models which are then confirmed by logical 
and combinatorial arguments. 

In the situations described by Varga, teacher and students are in permanent dialogue: Varga gives 
several examples how to guide these dialogues in order to help the development of mathematical 
notions, but to give also important autonomy to the students in this process. 

Beyond the description of tasks and problem situations, Varga describes also the conception of long-
term teaching processes. Even if some texts help to understand the long-term conception of 
probability-teaching, the clearest descriptions on the construction of long-term teaching processes 
concern the domain of combinatorics. We study this in the next section. 

Varga’s series of problems to teach combinatorics 

In Varga’s conception, ordered series of problems play a crucial role in the construction of long-term 
teaching processes (Gosztonyi, 2015b). A particularly interesting example concerning combinatorics 
is described in the first grade teacher’s handbook associated to Varga’s reform (C. Neményi et al., 
1978, pp. 243–258). It is interesting not only because it is particularly clearly structured (compared 
to other parts of the handbook), but also because it gives quite explicit explanation about the principles 
of ordering problems. This ordering is not completely given in advance: teachers have to conceive 
(and reconceive) it depending on the particularities of the class, and on the reactions of the students. 

The series contains activities with different materials: the students build towers with coloured cubes; 
thread beads, draw flags or build houses with three parts of different colour; write ‘words’ (letter 
series) with a given number of characters or play music with a given number of notes. One organizing 
principle is the variety of experiences, apparently fare from each-other, and stimulating a diversity of 
senses. But there is also certain progressiveness in their order, namely in the level of abstraction: 
starting from the manipulation of physical objects, through drawing and until the manipulation of 
symbols. 

The activities with one material follow also a progressiveness, which is explained in detail on the 
example of building towers: after a free game with the material (elements with, for example three 
different colours), students are asked to build towers with a given height; then different towers with 



the same height; and then come the question of the number of possibilities. The handbook suggests 
variations of the mathematically important variables as the number of levels or colours, but also the 
mathematically neutral elements as the type of the material or the colours of the elements. It suggest 
also some additional restrictions (as for example two neighbouring levels cannot have the same 
colour; or a given colour can have on the top level, etc.). 

A similar process is described for different materials. The handbook indicates the analogies between 
the corresponding phases of these different activities, and explains also their differences which make 
them problems of different nature in the eyes of students: for example, in the case of building houses, 
the order of the elements is not immediately given, contrarily to the building of towers or the colouring 
of (three-stripe) flags. Students have to recognize progressively the links and the analogies between 
these different problems: that is what will lead to a progressive generalization of methods and 
solutions. 

The process is planned for several years: the object at the first grade is mostly the collection of 
experiences in structuring possible cases and in looking for the number of all possibilities, in concrete 
situations. The systematic variation of conditions and the formulation of rules for calculating the 
number of cases come some years later. In a later article, Varga (1982) describes in detail a process 
on the long-term, based on the example of building coloured towers: there he also explains how the 
progressive construction of representation tools (as tables and trees) leads in his conception to 
creating proofs and general formulas in combinatorics. 

Brousseau’s experimentation 

In his experimentation on the teaching of probabilities, Brousseau also conceives a long and coherent 
teaching process, although the structure of this process is quite different from those of Varga, as we 
will see below. The whole process emerges from one situation: the teacher fills three opaque sacks 
with black and white balls, five in each sacks but the proportion of blacks and withes is unknown. 
The students have to find out the exact composition of each sack by drawing balls one by one from 
the sacks. The process goes through several phases that the authors describe as follows: 

i. “An introduction to hypothesis testing”  (5 sessions) 
ii. “Modelling and experimenting” (3 sessions) 
iii. “Graphic representation of long series” (8 sessions) 
iv. “Convergence and statistical decision” (4 sessions) 
v. “Decision intervals” (5 sessions)  
vi. “Events and their probabilities” (7 sessions) 

After a number of drawings and hypotheses made on the compositions, they decide to model the sacks 
with transparent bottles where they put five balls in different compositions, in order to compare the 
outcomes of these bottles with those of the sacks. Students work almost autonomously during the first 
two phases, only with some “regulative” interventions of the teacher: that’s what Brousseau calls later 
an adidactic situation. The teacher intervenes more directly during the third phase, in order to stabilise 
the method of students’ experimentation. A difficulty emerge in this phase, as even after long series 
of drawings, students are still not able to prove a decision between the possible compositions and 
they start to loose motivation. The teacher refuses to open the sacks but suggest proving the 
compositions by elaborating a methodology which allows students to do predictions. That is what 



happens during the fourth and fifth phases using computers for simulations and different tools and 
methods of representation (as tables and graphics). 

The described process represents a typically frequentist type of approach to probabilities, with the 
use of complex statistical methods and tools, and with a long process of repeated experimentations. 
The first five phases emerge from one initial problem. The classical approach as well as other problem 
situations appear in the sixth phase but, considered more conventional as the precedent ones, this 
phase is not developed in the article (p. 405) 

A comparison of Brousseau’s and Varga’s projects 
Comparing Brousseau’s and Varga’s teaching projects briefly described above, one can observe some 
common points but also several interesting differences. 

Although both frequentist and classical approach appears in both of the authors’ projects, Brousseau 
puts more emphasis on the first one while Varga emphasize more the second one. This difference can 
be explained by different things, as by the coherence with other parts of the curricula (links with 
statistics on one hand, with logic and combinatorics, privileged domains of Varga on the other; the 
use of decimal numbers, privileged by the French curriculum of the period, or the use of fractions, 
emphasized in Varga’s curriculum), but also by some pedagogical questions. 

One of the common motivations to introduce probabilities into the primary school mathematics 
education is, in both of the cases, the opportunity offered by this domain to work with students 
guessing and estimations, and develop mathematical thinking with an important responsibility 
provided to students during the learning process. However, the repartition of responsibilities between 
teacher and students does not happen in the same way by the two authors. For Brousseau, this 
repartition has to be provided by the alternation of adidactic phases, where students work 
fundamentally autonomously and teacher does not intervene on the level of mathematical knowledge, 
and phases of institutionalization, where teacher intervenes essentially in order to transform students’ 
context-dependent discoveries into stable, decontextualized and institutionally accepted knowledge. 
As Brousseau underlines, the experiments on teaching probabilities contributed essentially to develop 
these key-notions of his later theory. In Varga’s case, although students’ responsibility in the learning 
process plays also a key role, the teaching situations are more based on a permanent dialogue between 
the teacher and the class: the teacher acts as an experimented guide to develop progressively collective 
knowledge. 

In both cases, we can see sophistically constructed long-term teaching processes. But the structure of 
these processes is quite different. Brousseau’s experiment is developed starting from one problem 
situation. This is something that he calls later fundamental situation: a problem situation which is rich 
enough to lead to the emergence of a whole theme. The process goes through the alternation of 
adidactic situations and institutional phases. According to him, the transmission of knowledge 
constructed by students in the context of a particular situation is not possible without the 
decontextualisation realized during the institutionalization (Brousseau, Brousseau, & Warfield, 2002, 
p. 407). Indeed, in the examined experiment, other problem situations appear only in the last sixth 
phase. Varga’s approach is quite different to the construction of long-term teaching processes. He 
suggests starting from a diversity of problem-situations, with a big variety of contexts. The 



construction of series of problems offer occasions to recognize similitudes, analogies between these 
different problems, and leads to a progressive generalization of the solutions.  

Behind this difference of the two authors’ conception on long-term teaching processes we can 
recognize a fundamental difference concerning their conception on the mathematical abstraction. As 
for Brousseau, abstraction is decontextualisation, for Varga, the abstraction process does not mean 
the elimination of the context, more a progressive generalization on the basis of a diversity of 
contexts.  

Conclusion and discussion 
The comparison of Brousseau’s and Varga’s experimentations led in the 1970s showed several 
common points and also some important differences. This comparison can help to understand better 
the conceptions of the two authors on mathematics and its teaching, and also the relationship of these 
conceptions to their special context. Both of the two authors’ projects inscribe clearly in the context 
of the international New Math movement, with the reforms of the content of the curricula, the debates 
on the nature of the mathematics and on the psychology of mathematics education. For both of them, 
Piaget’s constructivist theory represents an important reference, but they are both critical with it: the 
alternation of the adidactical situations with institutionalization in Brousseau’s case, and the dialogic 
relationship between the teacher and the student in Varga’s case can be interpreted as two different 
answers to the limits of constructivism considered by these authors. Moreover, Brousseau’s notion of 
adidactical situation seems to be related to the discourses about the French reform, more precisely to 
the notion of situation and its role in pedagogical practices and students’ learning processes (Artigue 
& Houdement, 2007). Varga’s choices seem also to respond to several elements of local discourses 
in mathematics education as well as in pedagogy and psychology (Gosztonyi 2015a). 

An interesting relationship can also be observed with the dominant epistemological background of 
each countries reform movement, concerning the author’s conception on mathematical abstraction: 
Brousseau’s decontextualisation approach seems to be related to the “bourbakian” conception on 
abstract mathematical notions, as Varga’s ideas on the progressive generalization can be find in the 
writings of several Hungarian mathematicians supporting his reform (Gosztonyi, 2015a, part II). 

This case study reveals how a didactical theory, like Brousseau’s one, may depend on the particular 
context in which it emerges. Thus, further studies on the history of didactical theories are susceptible 
to contribute to their understanding, and enrich also projects connecting and comparing didactical 
theories as the “Networking Theories” project (Bikner-Ahsbahs & Prediger, 2014). 

The comparative analysis presented above contributed importantly to the original objectives of my 
research, namely to a reconstitution of Varga’s missing didactical theory. But it can also contribute 
to recent didactical discourse in several further ways, as to the research on the teaching of probabilities 
or to the recent reflections on the notion of mathematical abstraction. 
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The historical anaglyphic method was in use for more than hundred years to create spatial illusions 
of mathematical objects and for technical constructions. While algebraisation is predominant at 
school, students lack experience in understanding the causalities of technical tools. Modern technical 
devices rarely allow for direct investigations on underlying technical principles. Here we use the 
historic anaglyphic method to enable the students to produce high-standard 3D illusions just by using 
coloured pencils, a ruler and glasses with colour filters. We developed an approach to the anaglyphic 
method that uses nothing but similarity and especially surpasses projective geometry. The presented 
approach relates plane and spatial geometry, and can be grasped by all students that have some 
understanding of the similarity of triangles.  

Keywords: Anaglyph, binocular geometry, historical methods of visualization, 3D-representations. 

 

Introduction 
Concept development in high school mathematics – in particular A-level subjects in many countries 
– is characterized by predominant algebraisation. This seems to match successful and effective 
heuristics, attitudes and problem-solving strategies in modern everyday lived experience. Out of 
school it fosters the learning of pattern recognition, algorithmic procedures and trial and error. The 
progressive digitalisation of most fields of experience and actions of contemporary students seems to 
make the search for causalities and functional principals superfluous and unnecessary. Modern 
technical devices rarely for allow direct investigations on underlying technical principles. However, 
approaches and attitudes aiming only for the use and not the understanding of technical devices 
involve the risk of simple manipulation of the user and restrict creative developments of the tools by 
their users. In order to help our students to become autonomous, mature individuals, we need in 
mathematics (and also as a foundation for technical sciences) teaching designs where students start 
to wonder: How does it work? How can I accomplish it on my own?  

In the following we present materials for discovery learning, supporting the described educational 
goals. The design of teaching and learning materials allows for the implementation of the history of 
engineering and technical drawing in different ways and with different aims. A historical 
investigation using original sources can be conducted as an introductory part of a workshop on 3D 
presentations. Historical investigations can also be undertaken as a part of an individual student’s 
presentations after the workshop on anaglyphs and binocular geometry. We start with a short 
historical introduction into anaglyphs as well as into the literature and original sources, which are 
applicable by the students at school or by student teachers in teacher education.  

We then give a short summery of how binocular geometry can be related to the mathematics 
curriculum and discuss a textbook presentation of the topic. The following section deals in detail with 



the geometrical properties of central projections, which enable the drawing of anaglyphs without 
using three-dimensional analytic geometry.  

We tried out the developed set-up and the material in four workshops at an international Kangaroo 
Camp, each with 15-20 high school students between the ages of 15-18, and in a day course at the 
Hausdorff Center with local high school students in Bonn, with a lecture and problem sessions with 
about 60 high school students. 

Historical background 
Sir Charles Wheatstone invented the earliest type of stereoscope in 1838 (Wheatstone, 1838). 
However, as David Brewster writes in (Brewster, 1856, p.27) a certain Mr Elliot was led to the study 
of binocular vision … as early as 1823. Wheatstone and Elliot used mirrors, whereas Brewster 
invented lenses. The mathematician Wilhelm Rollmann (1853) invented the anaglyph stereographic 
method. The Greek word Anaglyph is derived from 𝛼́𝜈𝛼́(aná), meaning “on” or “on each other“ and 
𝛾𝜆𝜐́𝜑𝜔(glýphō) “to carve”, “engrave”, or “represent”. In his method, two pictures in the mutually 
different colours blue and yellow are superposed onto each other. The observer in Rollmann’s method 
separates these pictures by using glasses with colour filters, i.e. a red glass for the left eye and a blue 
one for the right eye.1 All cited sources are digitalised and available online. The descriptions of the 
methods are mainly verbal. The few calculations can be performed and understood using elementary 
middle school mathematics. This makes the cited literature a good and suitable source for historical 
investigations in the classroom. 

Rather than being a goal as such, the anaglyph method was already used by Rollmann to illustrate 
mathematical facts and insights in a three-dimensional fashion. Another impressive example of this 
kind of illustration is the Imre Pal’s beautiful book (1961). Although the books of Rollmann and Pale 
describe the three-dimensional model of spatial seeing, nevertheless they do not instruct how to draw 
two-dimensional anaglyph stereographic pictures. For the latter we designed a special workshop, 
which can be related to schoolbook exercises in analytic geometry (Körner et al., 2010, p. 92) or can 
serve independently for project work. 

Anaglyphs in teaching 
Binocular geometry is not a canonical topic for mathematics lessons. So we were rather surprised to 
find a set of exercises related to the anaglyph method as well as well as materials for teacher training 
courses. The following excerpts in Figure 1 are taken from a German school textbook for grade 11 
(one year before A-levels). The book is one of the five most widely used textbooks in high schools 
in Germany. The excerpts stem from a chapter in analytic geometry dealing which the calculation of 
intersections of lines and planes given in Cartesian coordinates. In addition to perspective drawings 
of a house and bowling pins, some general properties of perspective drawings are given (left). In 
preparation for the work with perspective mappings, the textbook authors posed the exercise to 
compute the image of the shadow of a cube illuminated by a lamp given in Cartesian coordinates. 
The shadow has to be calculated in a given plane using the formulas for intersection points of lines 

                                                 
1In our case, we use a red glass for the left eye and a blue or better turquoise one for the right eye.  

 



with planes. The green image (right) is the cube shadow in the given plane. The red image is the result 
for the same calculation but with a slightly shifted illuminant. The students are asked to make red-
green glasses themselves and to look at the picture through these glasses. Among the textbook 
materials for computer-based learning, there are 3D dynamic geometry applets with the green and the 
red calculated images corresponding to different dynamic light sources. Even though the exercises 
deal with a geometrical context – perspective drawings – the proposed approach is purely algebraic.  

 
Figure 1: Erecting a stick of thumb size by lifting a point. 

The pictures are visualizations of the results of algebraic calculations. In (Färber, 2016) the author 
proposes designing the excursion on the anaglyph stereographic method as discovery learning in 
groups. Nevertheless, the lesson planning only involves algebraic manipulations. As we already 
discussed in (Kaenders & Weiss, 2016), the high degree of abstraction and technical complexity of 
algebraic symbolic language gives students few opportunities to question the underlying rules, to 
introduce their own situated notations and notions reflecting their individual understanding of a 
problem and its context or to develop their own mathematical questions. To deal with this problem 
we develop a geometrical context for discovery learning of the anaglyph stereographic method. 

A simple approach: Lifting plane figures 
When we considered using the historical anaglyph method for teaching, we expected a couple of 
difficulties. First, we were convinced that we would have to give a quick introduction to projective 
geometry and then apply it to the anaglyph method. We were then surprised to discover an approach 
to the fabrication of such binocular illusions that does not use projective geometry at all. It is the 
technique of lifting a point. Well understood, it allows not only for the lifting of points but also the 
lifting of any figure from the plane as long as it is supposed to become an illusion of a congruent 
figure in a plane parallel to the initial plane. We give a description of the course of action in the 
workshops.  

Practical preparation 

Before the students are given the task of creating their own anaglyphs, we show them some exemplars. 
By looking through the red-green-glasses they begin to get a feeling for what such a painting could 
look like and which type of effects are generally possible. It turned out to be a helpful practical hint 
to let the student put their fingertip on the spatial spot where they expect the figure to be. A few 
students do not succeed in recognizing the intended illusion. The reason for this might be problems 
like shifted eyesight, where one eye has a stronger visual faculty than the other, or a red green 
deficiency. Nevertheless, these students could successfully participate in the workshop. 



Erecting a little stick 

The first exercise is to erect virtually a little stick of thumb size to an illusion that appears to be an 
orthogonal stick on the paper. In a second step, we can also let the stick appear slightly levitated. In 
order to find such a representation of the desired illusion, the students can turn the question around: 
the stick is given and we seek the red-green drawing on our paper. If we put a stick (like a pencil) 
orthogonally on the paper, we can conceive the red and the green drawing as the shadow we obtain 
when we imagine our eyes to be light sources.  

 
Figure 2: Erecting a stick of thumb size by lifting a point. 

Almost all students draw a short red and a short green line segment that produce two lines that 
intersect at the point that is ought to be the orthogonal projection of the stick on the paper. By 
discovering this, two questions arise: 

 What is the angle between the red and the green line segment? The students relate it to the 
position of the eyes and some conjecture that the lines prolong to the pedals of the eye points. 

 How far do we have to draw the line segments for a perfect illusion? After having explored 
the situation, the students give two conjectures: The ratio of the red and green line segment is 
the same as the ratio of line segments between the pedal points of the eyes and the point where 
the stick touches the paper. They indicate that because of similarity, both assertions are 
equivalent.  

Analysis of the exercise 

To analyse the situation, we assume the position of the eyes 𝐴 and 𝐵 on fixed height ℎ over the table. 
We assume the eyes 𝐴 and 𝐵 to be parallel to the table plane and to have a distance of 7 cm, which is 
about the average eye distance for adult human beings. When we project the eyes 𝐴 and 𝐵 
orthogonally onto the table, we obtain two pedal points 𝐴′ and 𝐵′. We consider an arbitrary point 𝑃′ 
in the plane. Now we want to find points 𝑃𝐴 and 𝑃𝐵 in the plane with the effect that they create the 
illusion of a point 𝑃 in space, that lifts our point 𝑃′ to some height ℎ.  

In Figure 3 we see that this illusion arises when the lines 𝐴𝑃𝐴 and 𝐵𝑃𝐵 cross in the point 𝑃. Then 𝐴𝐵𝑃 
forms a plane. Then the three planes 𝐴′𝐵′𝐵𝐴, 𝐴′𝐵′𝑃 and 𝐴𝐵𝑃 have three intersection lines, two of 
which are parallel. Then the third one is parallel as well. The reason is what one can call the Theorem 
of the Tent: Given three planes 𝐸1,𝐸2 and 𝐸3 that intersect in three lines 𝑔12 = 𝐸1 ∩ 𝐸2 and𝑔23 =

𝐸2 ∩ 𝐸3 as well as 𝑔13 = 𝐸1 ∩ 𝐸3. When two of these lines are parallel to each other, the third is 



parallel to both as well. The proof of this proposition is an occasion to show the efficiency of the set 
theoretic language: Assume that the lines 𝑔12 = 𝐸1 ∩ 𝐸2 and 𝑔23 = 𝐸2 ∩ 𝐸3 are not parallel; they 
then intersect in a point 𝑃, since both lie in a plane. Then {𝑃} = 𝑔12 ∩ 𝑔23 = 𝐸1 ∩ 𝐸2 ∩ 𝐸3 and 𝑔23 =

𝐸2 ∩ 𝐸3 intersect in 𝑃 as well. 

 
Figure 3: The basic principle of point lifting. 

Hence, we can lift the point 𝑃′ to an illusionist point 𝑃, when we draw the lines 𝐴′𝑃′ and 𝐵′𝑃′ and end 
up at points 𝑃𝐴 and 𝑃𝐵, such that 𝑃𝐴𝑃𝐵 is parallel to 𝐴′𝐵′. In order to find out how far the point will 
be lifted, we use the point of view of similarity as the students uttered it. We consider one of the two 
triangles 𝐴′𝑃𝐴𝐴 or likewise 𝐵′𝑃𝐵𝐵 (see Figure 4). We especially want to understand the relation 
between the height ℎ and the distance 𝑑 ≔ 𝑃𝐴𝑃𝐵. 

 
Figure 4: One of the triangles of the basic figure.  

In Figure 4 we read off the following ratios: 𝑎

ℎ
=

𝐴′𝑃𝐴

𝐴′𝑃′
 and 

𝑎−ℎ

ℎ
=

𝐴𝑃

𝑃𝑃𝐴
. Combining this with the ratio 

between the triangles 𝐴𝐵𝑃 and 𝑃𝑃𝐴𝑃𝐵, we conclude 
7

𝑑
=

𝐴𝑃

𝑃𝑃𝐴
=

𝑎−ℎ

ℎ
. Thus 𝑑 =

7ℎ

𝑎−ℎ
 orℎ =

𝑎𝑑

7+ℎ
.  

Note the remarkable fact that the distance 𝑑 does not depend on the special position of 𝑃′. Hence, we 
have one method to lift not just one point but also a whole figure to a certain fixed height ℎ. For 
instance, we can lift a square by lifting its vertices on the same height and then connect the 
corresponding red and green points. If we do that twice, we can construct the illusion of spatial box. 

Similarity as key concept 

Finally, we want to understand how we can lift a figure that does not consist of line segments, e.g. a 
circle. For this, we need to understand how to lift an arbitrary figure to a fixed height ℎ. For this 
fixed ℎ, we consider the map of the plane to itself, that maps 𝑃′ to 𝑃𝐴 and likewise the map that 



maps 𝑃′ to 𝑃𝐵. We know already the answer, since 
𝐴′𝑃′

𝐴′𝑃𝐴
=

𝑎

ℎ
. Therefore, both are central dilations with 

the factor 𝑎

ℎ
, one with centre 𝐴′, and the other with centre 𝐵′.    

 
Figure 5: Central dilation with factor 

𝒂

𝒉
. 

These considerations on similarity can be used to construct tasks for instructional scaffolding as well 
as materials for explorative learning. 

Observations during the workshops and development of research questions  

In our workshops, we developed most of the tasks and drawings together with the students on the 
blackboard. This gave us the possibility of choosing between small-step guiding tasks and rather open 
activity-oriented tasks corresponding to the work of the students. The groups in the four workshops 
at the international Kangaroo Camp were very inhomogeneous regarding their English language skills 
as well as their mathematical preparation. These groups had students interested in mathematics but 
without any training for competitions or mathematical extracurricular experiences and participants of 
the International Mathematical Olympics. None of the participants had ever dealt with binocular 
geometry. In spite of their age (15-18 years old) there was no problem to get the students to draw 
pictures with crayons. It became also evident that the problem ‘How to draw an anagram’ is extremely 
suitable for inhomogeneous groups. The students worked in small groups and were quickly fascinated 
by their own experiments and pictures. Our objective that was reached in all four workshops was to 
get the students to search for the underlying principles of constructions and to produce their own 
drawings by using the principles. As soon as the students are acquainted with the technique of point 
lifting, there are many possible projects to tackle. 

The day course in Bonn was organized differently. The workshops were hold by mathematics teacher 
students. We gave introductions into anaglyphs first for the tutors than for the students, attended the 
different workshops and moderated the presentations of the results. For the day course in Bonn, we 
prepared a script for the tutors with problems they were supposed to solve. Before the day course 
there were several meetings were the tutors could asked questions and discuss the concept. There was 
a noticeable difference between tutors who tried to grasp on their own the concept of drawing 
anaglyphs by lifting points and curves using the script more to look up some of the details and tutors 
who first read the script and tried to solve the problems by using the methods described there. The 
first type of tutors led their workshops in a more explorative experimental way; some of the second 
type tutors had inserted into their workshops small lectures on the basic of the script. The students 



asked questions from different perspectives: from a phenomenological perspective (What are 
conditions for two points to create the illusion of a floating point?), from the perspective of 
geometrical invariants (Which properties do not depend on the position of the centre of the 
projection?), from the perspective of geometric transformations (How to place the figure to support 
its three-dimensional illusion?). 

                          
Figure 6: Examples of student products: a box with concave top, a house, a tetrahedron. 

Nevertheless, the students of all groups of the day course were very motivated to understand how to 
draw a 3D picture, experimented with pencils, lifted points and produced their own 3D images (Fig.6). 
During our reconsiderations of the first repeated workshops, we tried to describe the atmosphere when 
the students started to construct central projections and calculate distances. At the beginning - may 
be because of our technical explorations into the past - we called it the mind of engineers and 
inventors. During the next workshops non the less we realized that a substantial part of workshops 
the students were engaged with thought experiments: projections through transparent tables, cutting 
up spheres, building houses out of cubes and tetrahedrons, rotating trefoil knots. This led us to think 
about the role of thought experiments in physic and mathematic lessons. May be it was so easy to 
inspire so different students for experiments because there were not real experiments? Students meet 
nowadays in their everyday life not often people who both are said to be cool and decompose technical 
devises in order to understand basic functional principles. Choosing advanced courses in science for 
A-levels does not imply one has grown up with a soldering iron or a chemistry box. 

One could think that our students good performance and experiences in virtual worlds could give the 
historical extremely important thought experiment a new place in physics lessons in order to develop 
interest in functional principles even if there are only very limited prior technical experiences. But at 
least in German physic lessons, it seems to be rather the other way around: Many computer based 
visualisations and experiments transform the very nature of the thought experiment and replace it by 
a confirmation experiment of a virtual programmed reality (as it is also done in the earlier discussed 
mathematics textbook task using the applet to compute the anaglyphs). 

May be it became rather a task for mathematics educators to integrate thought experiments and virtual 
engineering into mathematics teaching to support the perspective: How does it work? 

Conclusion 
The fact that the participants in our workshops were able to pose independent research questions in 
geometrical terms with geometrical meaning is for us an indication of their development of a 
geometrical language and concept. The students gave their proofs by construction and in different 
geometrical notions using invariants and similarity mappings. We were especially impressed by the 
ability to switch between plane and spatial perspectives on the stereographic pictures developed by 
the participants during the workshops.  



 
Figure 7: Borromean rings made of three golden rectangles. 
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This article describes a proposal for teaching kinematics using mathematics history; recognizing 
that history, mathematics, physics and language share similar knowledge structures that must be 
articulated to achieve teaching-learning processes. To account for this, we discuss how 
mathematics and physics has historically contributed to describe motion representations. A 
learning unit is described based on the experimental technique that probably Galileo used to 
measure times and distances and is not well known by textbooks’ authors. This experimentation 
with intervention tries to interrogate students’ alternative ideas. We intended to provoke a 
conceptual change using several mathematical and physical representations that have been 
constructed throughout history and have allowed describing the nature in a better way. A 
qualitative study of the experience in a physics class was carried out. Forty students aged about 13-
years-old from a public secondary school in Mexico City participated in the study. The learning 
unit described in this article was the first stage of a broader study constituted by five stages. It was 
important to work with students to establish the relationship between the variables involved in the 
description of uniformly accelerated motion, so as the ratio between the distances travelled and the 
time elapsed. 

Keywords: Conceptual change, alternative conceptions, acceleration, uniformly accelerated 
motion, mathematics and physics representations 

Introduction 
The role of the history of mathematics in teaching and learning mathematics has been discussed in 
several workshops (Fauvel & Van Maanen, 1997). However, Fried (2007) has pointed out a major 
problem: Where do teachers find time to teach the history of mathematics? It isn’t easy to answer 
this question, but given that both history of mathematics and mathematics themselves embrace 
genuine ways of knowing, it may be possible to make a didactic design that combines mathematics 
with valuable elements of history of mathematics without investing too much time. 

It is important to recognize that mathematics, history and language are ways of knowing related to 
semiotic systems that are used to understand or interpret any kind of knowledge. Therefore, we 
consider the problem presented above as our own, that’s why we propose an approach that has been 
tested with 13-year-old high school students, to give an example with the intention to contributing 
to answer the previous question. 

Acceleration concept is an example of the relationship between our ways to understand nature and 
to interpret it. It is well known, since ancient times, that interpretations had been made to explain 
acceleration as a physical phenomenon without being able to describe it fully. Unfortunately, the 
nature interpretations that human beings do are determined by common sense, this situation causes 
obstacles to describe it correctly in Bachelard and Viennot’s sense (cited respectively in Jankvist 
(2009), and Bastién, Mora & Sánchez, 2013). Obstacles to understand sciences have been called in 
several ways associated with different epistemological origins, however, authors of this paper agree 



with Halloun & Hestenes (1985), Hierrezuelo & Montero (1989/2006), Laburú & Carvalho (1992), 
Duit & Treagust (1998), and others who have contributed to define obstacles as alternative 
conceptions. Ideas that are related to common sense, which are persistent, shared by many persons 
and can be adapted and modified in such a way that one can believe that those ideas are adequate to 
explain the reality of the physical world. 

Some ideas in science history have been considered satisfactory because they explained, at least in 
part, a field of reality, but others, much more powerful, creative and audacious, have emerged to 
break paradigms and challenge common sense. Such are the ideas of those who have not been 
satisfied with the accepted description of reality at a certain historical moment. 

The so-called scientific revolutions allowed the advance of science and a changing in our 
understanding of the universe. An analogy of these scientific revolutions is found in the processes 
of teaching and learning, as well as alternative conceptions that are compared, but if those ideas 
cannot be used to explain reality, they lose their validity. Anomalies then arise, which will open the 
way to new explanations, often more complex, but those ideas could be used to explain a situation 
apparently in a better way. This process has been called conceptual change (Posner, Strike, Hewson 
& Gertzog, 1982).  

If ideas are images and representations of reality, then in so far as representations are tested, the 
validity of the ideas is proved. Mathematics makes possible the testing of diverse representations of 
distinct levels of complexity, so concept formation can be achieved in an increasingly structured 
way (Pozo & Flores, 2007). 

Considering that it is necessary to challenge the ideas of the common sense, Galileo made 
experiments on the acceleration leaving aside the causes of its origins. Galileo in his Discorsi e 
Dimostrazioni Matematiche (Hawking, 2013) explained some experiments and his description 
about uniformly accelerated motion, but he did not explain his efforts and trials to obtain 
satisfactory results or how he accurately measured time or displacement. Drake (1975) researched 
these problems by reviewing Galileo's notes and pen strokes to discover clues as to how he did his 
research. 

This article deals with the description of a didactic intervention using a teaching experiment in 
which Galileo’s technique is used to describe uniformly accelerated motion. The didactic activities 
allow the students to interrogate some alternative conceptions, such as the idea that, in a uniformly 
accelerated motion equal distances are travelled in equal times (Laburú & Carvalho, 1992). 
Relationships between experiments have also been established, data organized in tables and 
qualitative diagrams to propose a mathematical expression that allows to relate distances and times; 
with the intention to promote a conceptual change. 

Historical development of the kinematical concept 
The first ideas about motion came from Aristotle who in his dialogue On Philosophy uses the term 
proton kinoun as the first motor, the cause of every motion in the Universe (Düring, 1990, p.188). 
According to Aristotle, the velocity of a moving object is directly proportional to the thrust force 
and inversely proportional to the media resistance (Düring, 1990, p.477). 



It was not until the 14th century, when mathematicians from Oxford (most of whom came from 
Merton College), took up again the study of motion of bodies. This was mostly done in the decade 
between 1330 and 1340, as explained by Farmaki, Klaudatos & Paschos (2004).  

William Heytesbury (1313-1400), Richard Swineshead (1340-1354), and John Dumbleton (1310-
1349), mathematicians and logicians of Merton College at Oxford, known as “Calculators”, 
introduced the idea of functional relationships in attempt to describe magnitudes with quantitative 
measurable features. They defined several kinds of motion, proposed theorems concerning motion 
and proved them mathematically, using Euclidean geometry. Swineshead defined uniform motion, 
and Heytesbury the uniformly accelerated motion (Farmaki, et al., 2004, p. 506). 

Nicole Oresme in 1362, in the Configurationibus qualitatum represented the variations of qualities 
(see Figure 1), such as velocity and time, by means of geometrical figures, in which the line AB 
represents the time and the perpendicular lines the speed or its increasing value (Farmaki et al., 
2004, p. 507). 

 

 

 

Figure 1: Oresme representation of a qualitative magnitude  
(Adapted from Farmaki et al, 2004) 

There were many efforts to solve the problem of the unequal velocities that appear in a uniformly 
accelerated motion, however they were not concretized. It was not until Galileo’s deduction 
presented in the Discorsi, where he artfully simplifies the free fall of a ball rolling down along a 
plane with a few degrees of inclination. 

 
Figure 2: Theorem I, Proposition I, Third journey in  

Discorsi e dimostrazioni matematiche (Hawking, 2013, p. 468) 

In Theorem I, Proposition I, Third Day of the Discorsi, Galileo states the relationship between 
velocity and time, using schemes such as those used by Oresme, but replacing uniform motion with 
uniformly accelerated motion (Hawking, 2013). In Figure 2, time is represented as a quality by the 
line AB and velocities are represented as intensities by perpendicular lines.  

The schemas used by Oresme and Galileo suggests that the relation between time and velocity 
could be drawn in a Cartesian coordinate system, but in Galileo’s scheme there is also a line 



representing an external magnitude, the distance. In the Proposition II, third day of Discorsi, Galileo 
explains the proportional relationship between time and distance travelled in a uniformly 
accelerated motion, including the relation between time and velocity. But the method reported by 
him to measure time was not considered practical, in accordance with Drake, who estimated that 
Galileo achieved more accuracy with another method than would have been possible with the 
clepsydra. So, there is a controversy about how Galileo found these results. Galileo just wrote: 

For the measurement of time, we employed a large vessel of water placed in an elevated 
position; to the bottom of this vessel was soldered a pipe of small diameter giving a thin jet of 
water, which we collected in a small glass during the time of each descent, whether for the whole 
length of the channel or for a part of its length; the water thus collected was weighed, after each 
descent, on a very accurate balance; the differences and ratios of these weights gave us the 
differences and ratios of the times, and this with such accuracy that although the operation was 
repeated many, many times, there was no appreciable discrepancy in the results (Galileo Galilei, 
1633/1914, p.179). 

Stillman Drake’s proposal 
In “The Role of Music in Galileo's Experiments”, Drake (1975) described an experiment that 
probably took place in 1604. The experiment was part of a series of investigations that led Galileo 
to obtain finally the correct rule of times-squared being proportional to the distance an object falls 
from rest during the time elapsed. Ben Rose reconstructed the experiment according to 
specifications supplied by Drake (see Figure 3).  

 
Figure 3: Reconstruction of Drake’s experiment (Drake, 1975) 

The objective of this modernized test was to measure as precisely as possible the distances travelled 
from rest by a ball rolling down on an inclined plane taken at the end of eight equal time intervals. 
The grooved inclined plane used in the reconstruction was 6 ½ feet long (198.2 cm) and was set at 
an angle of 1.7 degrees. The time intervals were established at a tempo almost two notes per second. 
At one note the ball was released, and the positions of the ball at subsequent notes were marked 
with a chalk; for comparison the exact 0.55 second positions were also captured by multiple-flash 
photographs. A rubber band was then put around the plane at each chalk mark. The positions of the 
rubber bands were adjusted so that the audible bump made by the ball in passing each band would 
always coincide exactly with a note; the bumps were visualized by leaving the camera shutter open 
during an entire run. Finally, the distances between pairs of adjacent bands were measured. The 



ratios of the successive intervals were found to agree closely with a set of figures logged by Galileo 
(Drake, 1975). 

Methodology 
In Mexico as in other countries, the role of textbooks is very important for the teaching-learning 
process from primary school to the first university-level courses. The first Physics course is offered 
in secondary education to 13-year-old students, where conceptual approach prevails. We decided to 
work with a group of forty students who attend a high school physics class in Mexico City to make 
a qualitative study of their reactions to a teaching sequence proposal. This group had no teacher, so 
the learning unit did not conflict with the daily activities related to the ongoing study of curriculum 
contents. 

After having done an analysis of a Mexican textbook (Gutiérrez, Pérez & Medel, 2012) of the 
secondary school on the proposed activities to study the topic of acceleration, it was decided to 
make a design of a learning unit complemented by a physical experimentation. First, the students 
had to perceive with their senses how the ball falls that is rolling down on an inclined plane and, as 
it rolls, rings bells placed at equal distances. 

Students were asked how distances were covered by the rolling ball between successive rings of the 
bells, how time between each ringing of the bell varied, and to make a personal description of the 
rhythm they had heard. They modified the height of the inclined plane and the distances between 
bells to find out if they perceive changes in the phenomenon. 

At the end of this experiment, students wrote their observations in a notebook. The following 
student’s activity was designed with had the purpose of recalling the meaning of proportionality in a 
context of a recipe to make a three-layered cake. They had to find the proportion of the ingredients 
with respect to the amount of cake that had to be prepared. Students were asked how they found the 
proportion and what the proportionality constant for each quantity was. The amounts of ingredients 
provided were given in kilograms. 

Finally, students were asked to carry out a different measuring process to find the times and 
distances travelled by a ball that rolls down on an inclined plane. The instructions for assembling 
the device in the laboratory were given to the students. The teacher previously tested the assembly 
to control the time in which distances were covered by the rolling ball. The material used consisted 
of an aluminium rail, a steel ball, a universal holder, burette clamps, bells and clips. 

The learning unit took place in a week. All sessions were video recorded. Students wrote their 
answers in a booklet guide prepared by the researcher, those answers were later analysed. 

Description of physical experimentation 
The material was placed on working tables in the laboratory for each team. The teacher had a digital 
metronome on the computer connected to an amplifier so that all students could hear loudly the rate 
of 60 beats per second. 

The experiment started when the teacher activated the metronome; then the students had to 
synchronize the beat of the metronome with their mental count. A student in each team then had to 
drop the iron ball from the top of the aluminium rail upon hearing a beat (of the metronome) and 



stop it upon hearing the next beat. The first distance should be considered as a unit. This action is 
repeated several times to determine the distance travelled in a second, which has to be marked each 
time with a permanent marker pen. The process continued in basically the same manner; students 
must drop the iron ball from the beginning of the rail, just when hearing a beat and stop it after 
having heard two beats making a mark on the rail. The same has to be done with three, four and 
more beats. 

Once the distances travelled per second by the rolling ball were determined, students had to put a 
bell in each marked position. To verify that the travelled distances were correct, they dropped the 
iron ball while the metronome marked the time, so that at each beat of the metronome a 
corresponding bell rang. 

Results 
With the help of the written guide, students took notes on what they had observed. In the first 
activity, 17 out of 40 students answered that the distances travelled between successive bells were 
equal while the time intervals were getting shorter and also described that the ringing of the bells 
during the journey of the ball were getting faster and faster. In the activity to review the 
proportionality issue only three out of 40 students could find the factor to determine the correct 
amount of ingredients for each cake. 

A small exercise was included, which consisted in completing some arithmetic progressions, 
specifically a succession of integers, odd, even, and finally squares. The purpose of this exercise 
was to serve as a heuristic to conjecture that in a uniformly accelerated motion the distance travelled 
increases as the square of the time intervals do. 

 

This means that for a unit of time corresponds a unit of 
distance, for two units of time corresponds four units of 
distance, for . . . 
 
For three units of time correspond to 9 units of distance. 
For four units of time correspond to 16 units of distance 
For five units of time correspond 25 units of distance 
 
In what proportion does the distance increase with respect to 
time? To discuss in plenary with the wholegroup. 
The distance is in proportion to square time   d= t2 

Figure 4: Relationship between distances and time: a student’s conclusion 

Then with the intention of analysing the information provided by the previous activity, the teacher 
asked the students in a plenary session, what relationship was observed between elapsed time and 
distances travelled. Students answered for each unit of time elapsed, that the distance travelled 
increased as the square time intervals, thus establishing a proportional relation between both 
magnitudes associated with uniformly accelerated motion. 

The teacher introduced for the first time the algebraic symbol () to denote the correspondence rule 
which is used in physics when the proportionality constant is not fully determined. Finally, it was 
found that 16 out of 40 students gave incomplete arguments about time measurement and distance 
travelled, but 24 of 40 answered that the rhythm of time was constant while distance increased 
faster and faster as square of the time intervals (see Figure 4). 



Conclusions 
The learning unit described in this paper was important as a starting point of a larger study 
involving several phases of experimentation, because it allows a perceptual approach to uniformly 
accelerated motion. 

The activity provides a simple way to engage students with the task of describing uniformly 
accelerated motion. They associated the problem with Galileo's experiments and were able to 
identify how nature is scrutinized in order to describe and understand it. 

Experimentation allowed students to be challenged by the alternative conception which assumes 
that in a uniformly accelerated motion the velocity is constant. 

This procedure avoids the problem of synchronization with several timers placed simultaneously at 
equal distances, an impractical measure option that is often suggested in textbooks. Another 
advantage is that students can listen to a metronome carefully and measure time mentally, as is done 
in music. 

The students realised some difficulties Galileo may have faced in order to measure time and 
determine their relationship with the distances travelled, providing both experimentation and the 
learning unit design, a learning context that is much more meaningful than any anecdotal 
knowledge. 

Finding the proportionality relationship between elapsed time and distance travelled may be enough 
as a first approach to describe a uniformly accelerated motion for being used when necessary to 
determine more precisely the proportionality constant of a uniformly accelerated motion. 

The results shown in this research give an account of how the obstacles attested by history for the 
understanding of scientific concepts help overcome the obstacles that students face. 

Our didactic proposal was enriched with the development of ideas in the history of mathematics and 
physics by adapting them to provide a different way of accessing to physics and mathematics 
knowledge. In this didactic design, we consider the genesis of the concept of uniformly accelerated 
motion throughout history as an example of the inductive thinking that human being does in the 
construction of their own knowledge, so it has been tested with students, getting encouraging 
results. 
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The concept of infinity and its use is one with different meanings through the centuries within 
various contexts reflecting mathematical historical development. This development is scarcely clear 
to pupils during school time and rarely stressed in teacher education although it offers a lot of 
potential to understand mathematics. The field of arithmetic is one example in which to study 
infinity within a range that student teachers are able to understand and that is useful for and in 
their future teaching. The paper focusses on the potential of this concept within the arithmetic field 
using an original article of Cantor and on examples, also from Hilbert, that stress different 
counting methods and various illustrations of infinity. 

Keywords: Infinity, countable set, denumerable set, very small/large numbers. 

Introduction 
Like many other mathematical concepts ideas of infinity developed and diversified through the 
centuries. Well known is its appearance within the Elements of Euclid within the ninth chapter: 
There are more prime numbers than any given number of prime numbers, cf. Euclid (1997, IX, §20). 
This statement answers the question, if there is an end of prime numbers. The proof uses the fact 
that the product of arbitrary prime numbers added by 1 has a new prime number in its prime 
factorization. That is, to conceptualize the concept of infinity of prime numbers Euclid uses the idea 
that there is always another one apart from the given ones which has a somewhat operative aspect. 

Also within geometric contexts there are ideas about infinity regarding the extensions of space, 
planes and lines as well as the number of points on lines and figures. There are considerations of the 
behavior of parallel lines regarding infinity, like for example the parallel axiom states.  

Already these examples show that there exist different meanings of infinity depending on the 
various mathematical objects. Also, the meanings are verbalized without formulization. Doubtless 
does the use of very large numbers within everyday experiences come close to a sense of infinity. 
For example, the addition of two numbers, one of which is very much larger than the other, form a 
sum that does not differ very much from the large number in terms of the relative error concept.  

Infinity and the use of it deserves a closer look because terms like “infinite”, “endless” and 
“unlimited” have a colloquial meaning that sometimes provides a reasonable starting point for the 
understanding of abstract patterns and sometimes not. In some instances infinity incorporates the 
imagination of a very large extension, endlessness is for many just a word for a very large but still 
finite set of objects or a very large extension like the ocean.   

First-year students often show a vague notion of the term “infinity”, an observation that was done 
also by Woerner (2013). She even points out that a thorough understanding of infinity is neither a 
goal nor is it a step towards understanding mathematics. Dötschel (2011) even finds that the 



understanding of infinity does not vary much between teacher students and pupils of secondary 
level. In school they learned the lemniscate symbol “” and used it associated with the limit of 
sequences, series and – at the best – the differential quotient. At least in principle they know that it 
is not allowed to use this symbol like a number or a variable in all respects (like it was used partly in 
the 18th century), but one can observe a high degree of uncertainty. For instance, what does it mean 
when the differential quotient is interpreted in terms like “zero divided by zero”? And what is the 
outcome? Standard lectures like the ones for Analysis and Linear Algebra usually do not change the 
perspective and are continued with refined conceptions of limits and the definition of concepts like 
that of an infinitely dimensional space. Concerning the cardinality of sets there remains often the 
sketchy notation A =  or the like.  

Precisely because counting, the determination of a number, is a fundamental concept at all school 
levels, it is surprising that the issue of cardinality seems to be somewhat neglected. Nevertheless, it 
is not too difficult to provide a base of knowledge due to Georg Cantor. In many cases original 
mathematical treatises are definitely unsuitable within teacher education, but there are notable 
exceptions. One of these is the article of Cantor (1895), which is understandable in large parts. The 
reason for this is that students are able to acquire understanding with supporting examples on the 
side of the teacher which will be shown later in the paragraph. 

Our paper describes the used examples during the seminar held in the summer term 2016 together 
with some details around the concept of infinity. 

Various ways towards an understanding of infinity 
The mathematical education of future elementary math teachers at the University of Erfurt includes 
among mathematical survey lectures a seminar on the basic principles of arithmetic and algebra. 
One of the goals of this seminar is to improve the student's understanding of (natural) numbers and 
their properties since this field will constitute one of the bases of their future teaching. During the 
seminar students are often encountering the question in how far they have an understanding of the 
set of natural numbers being infinite. The upcoming discussions circle around the question how one 
could find out “what is true”. And the discussion ends with the question why. The phenomenon of 
infinite many natural numbers very often brought about an astonished attitude on the part of the 
students who pondered about the reasoning of Aristotle: There will be always one number that can 
be added. 

In our seminar there was a focus on aspects of numbers, especially of the natural numbers. Apart 
from the Peano axioms, the aspect of ways of counting provides a reliable foundation, especially 
since the cardinalities of sets may be included. This approach promotes a formalization due to the 
concept of bijective mappings, which is of value in its own. The natural numbers can be regarded as 
cardinal numbers of finite sets. But what do students know about the cardinality of the set of the 
natural numbers? Being asked, students claim “infinite” and denote the lemniscate symbol which 
they know from limits of sequences or functions. In interviews they show an obvious uncertainty 
about the arithmetical behavior of the object “infinite”. In case of doubt they often suggest treating it 
like a “usual” number. 

We feel responsible for giving a brief insight into the cultural heritage of the different approaches 
dealing with “infinity”. In particular we seek to show with what kind of caution Euclid, and Cantor 



too, got closer to proper descriptions, depending on the actual contexts. Especially we are interested 
in giving insight into the richness of mathematical thoughts and ideas: "It is possible to regard the 
history of the foundations mathematics as a progressive enlarging of the mathematical universe to 
include more and more infinities" (Rucker, 1982, p. 2). With regard to Cantor, we know that "... 
soon obtained a number of interesting results about actually infinite sets, most notably the result that 
the set of points on the real line constitutes a higher infinity than the set of all natural numbers. That 
is, Cantor was able to show that infinity is not an all or nothing concept: there are degrees of 
infinity." (Rucker, 1982, p. 9) 

There are a lot of ways how to understand mathematical statements. Some point out their proof, 
some stress their genetic development, some point out their formal argument. Our actual 
understanding of infinity allows us to give statements like: the set of natural numbers or the set of 
natural numbers between 0 and 100. The first is an infinite set, the second is a finite one. Stressing 
the idea of a potential infinity which we could not grasp as a solid concept, we help ourselves by a 
stepwise approach knowing that we will never succeed. This very constructive standpoint or 
procedure permits a very simple activity and that is adding one, again and again: |, | |, | | |, … In this 
manner one can distinguish finite and infinite sets. For the first set the procedure ends with a certain 
number, for the second one there is no certain last number and it becomes clear that the procedure 
never ends. In both cases the counting is mathematically a 1-1-correspondence.   

The different meanings of the term infinity show the richness of mathematics and its historical 
development. Needless to say that mathematical history does not develop in a regular and uniform 
way (Dieudonné, 1985, p. 16). Some epoch does not show any development in a field, in some there 
is a continuous change because of new developments. The fact that we use the word infinity the way 
we do with numbers goes back to Cantor (1895). It was the upcoming of new ideas, e.g. the idea of 
a set that changed the understanding of infinity. 

How very much different this meaning is in contrast to the “old” Greek meaning shows when 
student teachers learn about it in their first mathematical lectures: infinity is hard to grasp and the 
use of it shows that school mathematics does not at all build a proper foundation. Because of its lack 
it is even more important to build a solid understanding during mathematical studies especially for 
student teachers as there are many potential links to basic notions of counting in their future 
teaching.  

German mathematical education often refers to three basic experiences (“Grunderfahrungen“), by 
Winter (1996): 

• perceiving phenomena of nature, society and culture; 

• knowing (and appreciating) mathematical issues, represented by language, symbols, images 

and formulas; 

• acquiring heuristic competencies. 

We like to refer to Winter (1996) because he stresses a connection between everyday life 
experiences, heuristics and beginning formalization. In order to get aware of basic experiences and 
deepen the understanding there is a strategy necessary that gets students involved. Kattou et al. 
(2009) points out: 



In particular, academic programs offered to teachers should include mathematical knowledge 
regarding to infinity in combination with instructional approaches related to the concept. A 
proposed teaching approach could include the following steps: presentation with several typical 
tasks aimed at uncovering teachers’ intuitions about the concept, discussion about infinity’s 
applications in real life, introduction of the formal definition of infinity and the two aspects- 
potential and actual- and attempt to distinguish them in examples. (Kattou et al.2009). 

Within this this context we pinpoint the following aspects: 

1. The notion of infinity changed its meaning through the centuries. In the late 19th century the 
notion of aleph 0, aleph 1 and so forth came up. 

2. The way infinity appears in mathematical textbooks follows the idea of Freudenthal’s anti-
didactical inversion. It is common to introduce infinity by using the lemniscate symbol, 
mostly just informing about it. The mathematical developments are neglected. 

3. Some examples of infinite sets can be solved with simple steps used with finite sets. This 
presents an approach with a low barrier to student teachers and enhances their understanding 
of infinity. 

Our didactical approach is influenced by Vollrath (1987) who proposed a phase model showing the 
process of understanding mathematical concepts:  

intuitive and content-related        formal / integrated        critical 

We therefore stress the finding of variations of standard examples and of counting strategies on the 
side of the students. The integration of Cantor’s text provides some formalism and fostered 
discussions about the historical circumstances which were not controversial, that is the conflict 
between Cantor and Kronecker e.g.    

The following paragraph presents examples that proved useful within elementary school teacher 
education. 

Methods of counting 
In many cases it turns out difficult to provide an original text to students with the expectation of an 
adequate comprehension. But just mathematical topics that lead to very fundamental issues may 
prove appropriate in order to their connection with intuition and imagination. Cantor (1895) 
develops a concept of elementary set theory, which includes transfinite cardinalities and their 
arithmetic properties. During teaching it became evident, that important parts of this text are quite 
understandable and can be an opportunity to discuss an historical treatise and express own 
reflections. 

Before we start investigating into various ways of counting infinite sets we observe that there is no 
uniform definition of the concept infinity. The word occurs as an adjective to characterize sets 
especially. We concentrate therefore on the arithmetic field.  

The following sections present a couple of examples that may foster the understanding of infinite 
sets.   



Counting as one-to-one correspondence 

The concept of a set, as introduced from Cantor (1895), surely fits into these frameworks. To him 
we owe the so-called “naïve” definition of a set.  

By an “aggregate” we are to understand any collection into a whole M of definite and separate 
objects m of our intuition or our thought. These objects are called the “elements” of M. 

A counting or numerating of a finite set M with exactly n elements means, that every number 1, 2, 
3, …, n is assigned to exactly one element of the set. This is linked to the concepts of maps and 
functions and more over bijectivity. 

The set ℚ is countably infinite 

This follows out of a scheme in which every positive rationale number shows one time and is 
arranged like this: 

 

1/1 1/2 1/3 1/4 1/5 1/6 … 

2/1 2/2 2/3 2/4 2/5 2/6 … 

3/1 3/2 3/3 3/4 3/5 3/6 … 

4/1 4/2 4/3 4/4 4/5 4/6 … 

5/1 5/2 5/3 5/4 5/5 5/6 … 

6/1 6/2 6/3 6/4 6/5 6/6 … 

… … … … … … … 

Table 1: Cantor’s first diagonal method 

The way the scheme is counted goes back to Cantor and is called the ”diagonal method”. 

Following the presentation of the scheme students were invited to vary it and write down their 
proposals. Are there other suitable paths? What do they have in common? Furthermore, how could 
repetitions of numbers be avoided? In the scheme above every positive rational number is repeated 
infinitely. Does this cause problems? What options do we have to be represented by a reduced table 
of fractions? Is this already an indicative of the countability of even “larger” sets? After all most 
students could design various methods for counting even all rational numbers, for instance by 
designing spiral paths or the like. 

The set ℝ is uncountable 

Suppose that there is an enumeration  

.....,,,, 4321   



of the interval [0, 1[, which is a subset of ℝ, and the numbers are represented in the decimal system, 
i.e. 

.....,0 15141312111    

 .....,0 25242322212    

 .....,0 35343332313    

 .....,0 45444342414    

..... 

with digits }9...,,1,0{...,,, 321 iii   for every positive natural numbers i.  

Now one can define a number ...,0 321      [0, 1[  such that 










1,7
1,1

ii

ii
i if

if



  

for all positive integers i. Obviously, the representation of  possesses at least one decimal digit that 
differs from i, namely, the i-th digit. Therefore  cannot occur in the enumeration above, which is 
inevitably incomplete. Now, if the given interval is already uncountable, then all the more the real 
numbers are. This scheme originates from Cantor, too, and is called the second diagonal method. 

To promote an adequate understanding, students did vary this scheme in a written form, also 
regarding other b-adic representations. At this point, the fundamental significance of place value 
systems in general is to be clarified. During teaching lessons students were encouraged to replace 
the digits by other symbols such as letters or notes from sheet music etc., and it has become clear, 
that the relating interpretations (“the entity of ‘texts’ is uncountable”) can foster an adequate 
understanding in the sense that students are able to make a transfer. 

Hilbert’s Hotel 

The cardinality of the set of the natural numbers is denoted by ℵ0. In set theory several properties of 
this first transfinite cardinality are elaborated, as there are 

1 + ℵ0 = ℵ0, 

n + ℵ0 = ℵ0  

for any n  ℕ, as well as 

2ℵ0 = ℵ0 

and 

nℵ0 = ℵ0,  

again for any natural number n. To illustrate this, the thought experiment of Hilbert’s hotel is 
helpful: Suppose that there is a hotel with an unlimited number of single rooms, which are 
numbered according to the natural numbers. The hotel is fully occupied and one other person is 
knocking on the door. Will the hotel be able to accommodate this person, too? In the classical 
version each present guest moves up to the room that is numbered one greater as yet. In this way the 



first room (numbered by 0 or 1) becomes available and no one has to leave the hotel. The situation 
is very similar if two or a finite number of new guests ask to come in: The present guests move up 
in the rooms that are numbered n greater than now.  

A bit more challenging is the arrival of a “Hilbertian bus” with an infinite number of passengers, 
named or numbered due to the natural numbers. In this case a constant moving up will not be 
successful. But the past guests could double their initial room number, and every passenger gets an 
oddly numbered room. This is not the only option available, students should contribute alternatives. 
More general, if there are two or a finite number n of “Hilbertian busses”, one can multiply every 
original room number with n + 1 and assign the passengers of the first bus those rooms, which 
numbers are congruent n + 1 modulo 1. The occupants of the second bus move into the rooms that 
are numbered by natural numbers congruent n + 1 modulo 2 and so on. Students are expected to 
formulate a proper mapping rule and to come up with their own ideas relating alternatives.  

Where is the border line? Even a “Hilbertian bus-fleet” of infinite number of “Hilbertian busses” 
numbered according the natural numbers, is still not able to overstrain the hotel. For example, one 
can assign a double index to every passenger due to his bus number and his seat number within this 
bus. Now Cantor does the work by applying his first diagonal method to this matrix structure. Also 
here students could consider a formula or a formal description of an algorithm.  

Students varied the above solutions in several and diverse ways. For example, prime numbers were 
used and alternating methods of simultaneous counting. Of course, the most important task is the 
clarification of the impossibility of lodging an uncountable amount of recent arrivals. 

The above considerations go along with the equation 

ℵ0 + ℵ0 + ℵ0 + … = ℵ0, 

where the number of the summands on the left side is countable. 

The given examples above, which were part of the studies of our futures teachers, have certain 
potential to support understanding. 

Conclusions with respect to understanding the concept infinity 
We referred to Cantor especially when we stressed the 1-1-coresspondance (or mapping) and some 
insights of arithmetic rules including infinity. Since all examples are rather basic but initially 
unknown to most of the students they gained competencies with counting and the notion of 
bijectivity. It is important to realize that the arithmetic rules known from the basic arithmetic 
operations may vary, depending on the context. Another example, but in a different relationship is 
the “double distributivity” in case of unions and intersections of sets. The phenomenon “infinity” 
holds in itself ambiguities which contradict common sense at first glance. It is of great educational 
value to become acquainted with some of them, namely in two respects: in terms of general 
education, which should be a concern of mathematics education and for the purpose of educating 
“good” teachers. The well-educated primary teacher is then in the position to react properly when 
children ask smart questions or questions that show insight but do not use proper wording. Pupils 
occasionally may achieve even philosophical significance – so long as the teacher recognizes its 
meaning.  
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The use of symbolic language and the resolution of equations are of great curricular importance 
and often cause difficulties to our students who find several obstacles. These obstacles can be of 
different nature and epistemological obstacles can sometimes be traced back to ancient 
mathematical texts. In this paper, we will focus on one of the first texts with algebraic content that 
was published in Spanish, the Arithmetica practica, y specvlatiua by Juan Pérez de Moya. In 
particular, we will present the mistakes made by the author when solving equations of the form axm 
= bxn and we will analyze and give explanations for some of them. Furthermore, we will observe 
how 10th grade students face these types of equations and if some of the old arguments are still 
present among our students. 

Keywords: Algebra, mistakes, obstacles, history of mathematics education, 16th century. 

Introduction and objective 
Obstacles to learning can be (Brousseau, 1983) of different types according to their origin. They can 
be ontogenetic, didactical, epistemological or cultural. An obstacle is epistemological if it is 
independent from the teaching practice. Brousseau suggested (Chorlay & de Hosson, 2016) that a 
distinctive characteristic of epistemological obstacles is their appearance in mathematics “from the 
past”. It might be true that in ancient texts we barely find traces of the errors, difficulties and 
failures associated to mathematical creation (Cid, 2000). However, in some kind of texts, devoted to 
teaching or to the introduction and dissemination of knowledge it is sometime possible to find non-
trivial errors1. 

The use of symbolic language and the resolution of equations are of great curricular importance and 
often cause difficulties to our students (Socas, 2010). Consequently, it can be of interest analyze 
ancient algebraic texts searching for possible mistakes or misconceptions. 

The first algebraic texts written in Spanish appeared during the second half of XVI century. The 
first one was the Libro primero, de Arithmetica Algebratica (Aurel, 1552) written by a German 
living in Valencia (Puig & Fernández, 2013). The first text with algebraic content written by a 
Spanish author was (Meavilla, 2005) the Arithmetica practica, y specvlatiua (Pérez de Moya, 
1562).  

In this work will identify some mistakes in Pérez de Moya book. For some of them we will try to 
give plausible explanations and furthermore, we will see how present 10th grade students face the 
type of equations where those errors arise.  

                                                 
1 By non-trivial errors, we mean errors that imply cognitive difficulties of some degree; i.e., we do not take into account 
small arithmetical mistakes, typos, etc. that are also usually found in this kind of texts. 



Juan Pérez de Moya mistakes 
In his book, Pérez de Moya discusses the possible solutions of equations of the form axm = bxn by 
considering four different cases. In table 1 we summarize the information given by the author in his 
text: 

Case 1 a = b and m = n Unique solution, x=1 

Case 2 a ≠ b and m = n No solution 

Case 3 a = b and m ≠ n Infinite solutions 

Case 4 a ≠ b y m ≠ n Unique solution (not given) 

Of course, this information is clearly incorrect from a modern mathematical point of view. It is 
interesting to point out that the same mistakes can be found in different text printed during the same 
period. For instance, in the Arithmetica by Rocha (1565) we find the exact same errors, while in 
Marco Aurel’s previously mentioned work we can find a fragment where the author considers cases 
1 and 2 above in the same way as Pérez de Moya. 

This fact can of course be explained because many of these authors used the same sources and they 
read each other. However, it is noteworthy than none of them noticed or corrected them. This leads 
us to the hypotheses that they did not see them as incorrect and some deeper explanation for them 
must exist. In this work, we will focus on cases 1 and 2. 

Analyzing case 2 
In this paper, we are going to focus of case 2 above. From our modern point of view it is rather 
straightforward that this type of equations have the unique solution x = 0. In any case, 
straightforward as it is, we can try to make some kind of aprioristic analysis of how a hypothetical 
solver can face one such equation. 

Consider, for instance, that we want to solve the equation 4x = 2x. We can conceive, at least, the 
following possibilities: 

1. The “canonically correct” procedure. Transform the equation into 2x = 0 subtracting 2x 
from both sides of the equation and then divide by 2 to obtain the unique solution x = 0. 

2. A procedure which is “syntactically correct” but “semantically incorrect”. Divide both sides 
by x to obtain that 4 = 2 and conclude that there is no solution to the original equation. 

3. A “materialistic procedure”. Four objects of some kind cannot be equal to two objects of the 
same kind. Hence, the equation has no solutions.  

Of course, at that time it was natural not to consider zero as a number so it is reasonable that a XVI 
century algebraist thought that this equation has no solution at all. Hence, from this point of view, 
the answer given by Pérez de Moya would not be a mistake at all.  

Anyhow, it can be of interest to identify which of the three previous possibilities, if any, was chosen 
by XVI century algebraists. 

In principle, point 1 above was well-known at that time. In fact, this was the procedure used by 
Pérez de Moya throughout his work as soon as the considered equation had a constant term. On the 
other hand, Pérez de Moya also used point 2 in his work. For instance (see Figure 1) we can read 



(pp. 546-547): “if you were given an equation like 6x3 = 4x2, divide x3 and x2 by x […] and the 
equation 6x3 = 4x2 will be the same as 6x2 = 4x. And thus you will continue until you can no more”. 

 
Figure 1: Dividing by x during XVI century 

But, in spite of his constant use of point 1 and 2 above throughout his algebraic work, Pérez de 
Moya did not use any of those arguments when facing equations described in case 2. Instead, he 
appeals to that “materialistic procedure”. In particular, we read (p. 544): “if 3x were equated to 4x 
or 5x5 to 2x5, in such case, those equations will be impossible and they cannot be done because two 
reals cannot be the same as three, provided they have the same value”. Moreover, this exact same 
idea, with nearly the same example can be found in Marco Aurel’s work (fol. 78 v): “three ducats 
are not worth the same as four ducats since ducat have one only value” (Figure 2). 

 
Figure 2: Materialistic argument in Marco Aurel’s work 

As we already pointed out, the first possibility led to the solution x = 0. It is very likely that these 
authors conceived ‘0’ just like a figure and not like quantity. Since ‘0’ is not a quantity, it cannot be 
the solution of the equation. Hence, a reasoning like the described in the point 1 above was flawed 
and could not be used. 

Regarding the second possibility, we have seen that Pérez de Moya in fact used this technique. 
Nevertheless, he is quite imprecise saying that it must be used “until you can no more”. It is 
possible that, since in this case this technique leads to non-sense expressions, was also considered 
flawed and abandoned. 

Therefore, from this point of view, the third possibility was the only hope to give an answer to this 
type of equations and so they used it. As we will see, this idea is still present among our students 
and it has an interesting explanation (Booth, 1984). The use of this argument implies that the 



unknown is conceived as an object itself and not as the representation of a number. Clearly Pérez de 
Moya and Marco Aurel have this in mind when they talk about “two reals” or “four ducats” when 
referring to 2x and 4x, respectively.  

Back to case 1 
After the previous analysis, we have a more or less clear idea of why XVI century authors could not 
manage correctly equations of the form axm = bxm with a ≠ b. Moreover, we understand why they 
said that they had no solution. Then, we might want to apply a similar reasoning to equations of the 
form axm = axm; i.e., to case 1 above. 

These equations, from a modern point of view, have – trivially – infinite solutions. They are, in fact, 
what some people call identities. Pérez de Moya, Marco Aurel and other authors provide x = 1 as 
the only solution and, unlike in the previous case, they provide no argument supporting this claim. 
If we try to apply the three aforementioned possibilities to the case of, say, 2x = 2x we would get: 

1. 0 = 0. 
2. 2 = 2. 
3. 2 euros are always equal to 2 euros. 

All three cases lead to some kind of tautology. To some kind of essential identity of an object with 
itself as opposed to an accidental identity of the form 2x = 3x2. When dealing with aspects regarding 
these topics we can turn to Aristotle’s Metaphysics which suggests a genealogy or rational 
grounding for this answer. In particular, in the chapter IX from Book V we read (Taylor, 1801, p. 
122): “But some things are said to be the same essentially, in the same manner as things which are 
essentially one. For things of which the matter is one, either in species or number, are said to be the 
same”. Thus, when facing an essential identity “the matter is one” and the answer is the unity as our 
XVI century authors claim. In any case, as to the historical question of the impact of Aristotle’s 
Metaphysics on our XVI century algebraists, this paper is no place to discuss it. 

Dealing with cases 1 and 2 today 
We worked with 57 students of 10th grade during a 50 minutes class session. By 10th grade, 
Spanish students should be completely familiar with algebraic language and notation (introduced in 
7th grade). They have not systematically solved polynomial equations of degree higher that two, but 
they know how to use techniques such as taking common factor, etc. We designed a questionnaire 
(Table 1) that included the four cases treated by Pérez de Moya in his work. In particular, items (1) 
and (2) corresponded to the cases 1 and 2 discussed above. 

Solve the following equations: 

(1)  x + 1 = 1 + x 

(2)  x = 2x 

(3)  4x7 = 4x5 

(4)  8x2 = x5 

Table 1: Questionnaire 



Among other aspects, we wanted to analyze how the students faced identities like the one presented 
in item (1) and equations like item (2) that lead to the materialistic procedure described above. 

Item 1 

For this equation, Pérez de Moya proposed x = 1 as the only solution. The answers given by the 
students can be classified according to the following categories (Table 2): 

 NS: The student says that there is no solution. 
 US: The student says that there is a unique solution. 
 IS: The student says that there are infinite solutions. 
 N: The student does not give an answer. 

NS 16 (28%) 
US 5 (8.7%) 
IS 19 (33.3%) 

NDS 17 (29.8%) 

Table 2: Answers for item 1 

It is clear that answers from the categories NS and US are incorrect. Moreover, 15 answers from the 
category IS are also incorrect. Thus, only four (7%) students gave a correct answer to this item. 
From these correct answers, two are worth mentioning: 

1. “Infinite solutions. Because the order of the factors does not change the result and if you 
sum one to a number is the same as if sum the same number to one”. 

2. “It has infinite solutions, because any value that you give to the x is the same. For instance, 
x = 5, 5 + 1 = 1 + 5, 6 = 6”. 

The first answer shows that the student has observed the structure (Linchevski & Livneh, 1999) of 
the algebraic expression and has identified it with the commutative property of addition. In the 
second answer, we see that the student has the idea that the solution of an equation is a number that 
leads to an identity when x is substituted by this number. 

Among the students in the category US, only one gave x = 1 as the unique solution to the proposed 
equation. His answer was the following: 

x + 1 = 1 + x  x – x = 1 – 1  x = 1 

The most plausible interpretation for this answer is that the student compared both sides of the 
second equality and assigned to the symbol on the left hand side (x), the corresponding symbol on 
the right hand side (1). Of course, we could not expect any XVI century-like reasoning. 

In addition to this answer, some other mistakes were found that are worth mentioning: 

1. 0x = 0 ; x = 0/0. “It has no solution. Dividing by zero gives an irreal [sic] number”.  
2. x – x = 1 – 1 ; 0x = 0. “It has no solution because it gives 0x = 0, that is, there is no”.  
3. x – x = 1 – 1 ; 0x = 0 ; x = 0. “No solution”. 
4. x – x = 1 – 1 ; x = 0. “Infinitely many solutions”. 
5. 1 – 1 = x – x  0 = 0  x = 0. 
6. x + 1 = 1 + x  x – x = 1 – 1. “No solution, that is, infinite solutions, because if we find zero, 

it means that there can be many solutions”. 



The first mistake comes from the use of the “canonical” procedure to solve linear equations. As we 
pointed out before, this procedure lead to “non-standard” situations, the student cannot manage. The 
second mistake arises when the student tries to give a meaning to the expression 0x. The student 
understands this expression as “there is no [x]”. Since there are no x, there is no value to assign to it. 
Finally, the last four mistakes show different ways to face the expression 0 = 0. Some are wrong, 
some are arbitrary and the last one shows hay the student fails in remembering what he is supposed 
to say when he gets 0 = 0. 

Item 2 

Pérez de Moya states that this equation has no solution. The answers given by the students can be 
classified according to the following categories (Table 3): 

 CS: The student correctly solves the equation. 
 WS: The student gives a wrong answer but with a unique solution. 
 NS: The student is unable to give a numerical solution (either correct or incorrect). 
 N: the students gives the wright answer without any explanation. 

CS 18 (31.6%) 
WS 20 (35%) 
NS 15 (26.3%) 
N 4 (7%) 

Table 3: Answers for item 2 

In this case, we mainly focus on the categories NS and CS, especially on the last one. Students 
belonging to the category WS usually make mistakes when operating and manipulating algebraic 
expressions. The following steps give a rather paradigmatic example: 

x = 2x ; x / x = 2 ; x = 2. 

Regarding those students not providing a numerical solution, it is noteworthy that one of them gave 
an answer that essentially reproduces the XVI century reasoning: “No solution. x cannot be equal to 
2x”. The most interesting other mistakes that we have found in this item are: 

1. x – 2x = 0 ; – x = 0. “It has no solution because x cannot be negative”. 
2. 0 = 2x – x ; 0 = x. “No solution”.  
3. 2 = x / x ; 2 = 1. 

The first two answers show a good knowledge of the algorithmic procedure used to solve a linear 
equation but both students fail in the last step, which involves some kind of interpretation. The third 
answer again involves dividing by the unknown. 

In this case, 18 students provided a correct answer. One of these answers, in some sense, completes 
and corrects the original XVI century mistake: “x = 0. Because x cannot be equal to 2x unless the 
solution is 0”. 

Some final comments 
Leaving apart problems regarding algebraic manipulation and notation, we find a main difference 
between the student who correctly face the analyzed situations and those who do not. In the case of 
item 1, for instance, we see that most of the correct answers involve a clear idea of the notion of 



solution to an equation, while wrong answers always involve the mechanical and algorithmical 
search of the solution using the steps of some kind of canonical procedure. This thoughtless 
application of a procedure implies that the student is not usually able to manage non-standard 
situations like 0 = 0 or 0/0. Then they sometimes try to use some memoristic knowledge or just do 
not know how to give an answer. This algorithmical conception also leads very often to divide by 
the unknown, even if this assumes that x is not 0. Most of the students work at a syntactical level 
and they simply do not care about the meaning of the symbols and the operations among them.  

Consequently, we think that the mechanical manipulations and rules to solve equations, if 
presented, should never be the starting point of our teaching. Rather, the solution of equations 
should be introduced starting from particular problematic situations. After all, algebra was initially 
a method to solve some arithmetical problems involving unknown quantities. It might be possible 
that such an introduction implied what we have called “materialistic procedures”, which can also 
lead to mistakes as we have seen, but at least statements like “x cannot be equal to 2x” can be the 
basis for interesting discussions in the classroom. 

Finally, in the light of our results, it seems clear that we should devote plenty of time to work with 
equations leading to identities and to expressions of the form 0 = 0 and 0/0. They will consistently 
appear throughout the mathematical life of our students and a good understanding of the meaning 
and implications of these expressions will be a great benefit for them. 
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In the spring semester of 2016, the author worked with twenty undergraduate (BA) students on 
original sources from the Edward Worth Library (1733), in Dublin. The end goal was to produce an 
online exhibition of the mathematical works from that library. The approach to this collaborative 
work is given, set in the context of a more general framework of the pedagogical value of working 
with original sources for teaching the history of mathematics. Examples of feedback from the students 
are given, as is an outline of how the exhibition itself was eventually shaped. The conclusion reflects 
on the learning gained by all involved in the collaboration. 
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Introduction 
This paper outlines the process and product of working, with twenty students and two other 
collaborators, on the mathematical works in the Edward Worth Library (EWL). This collection opens 
a window on two centuries of the development of mathematics in England from the 1530s to the 
1730s, a period of momentous cultural change in Ireland – with the expansion and consolidation of 
English political power and the emergence of an Anglo-Irish Protestant elite – and scientific 
blossoming, culminating in the work of Isaac Newton and his circle, with very strong influences from 
continental Europe, especially from France and the Netherlands. The work, on original sources from 
EWL, of the author with his students and the librarian is outlined, as is the subsequent work in 
preparing an online mathematical exhibition, launched in November 2016. 

The Edward Worth Library and my encounter with it 
The Edward Worth Library was founded in 1733 by its benefactor, Edward Worth (1676-1733), a 
medic who had a passion for fine books and who left some 4500 volumes to Dr Steevens’ Hospital, 
in Dublin. Unusual in Ireland for this period, about one third of his collection comprise texts of 
medical and scientific interest. Of these, in turn, about 9% are mathematical. The collection is housed 
in a single room with glazed cabinets designed specifically for that purpose. The books themselves 
are in impeccable condition due, in no small way, to the fact that they were used very little during the 
283-year history of the library (Mc Cormack, 2005). 

I have taught a one-semester module on the history of mathematics every two years since 2008. A 
few weeks after completing teaching such a module in 2012, I visited EWL on 15th June, for the first 
time, in the company of Professor William (Bill) F. McComas, visiting Fulbright Professor (to Dublin 
City University, DCU) from the University of Arkansas. Combining his interest in the history of 
science and mine in the history of mathematics, EWL gave the impression of an Aladdin’s cave of 
early modern European learning. We were enthusiastically welcomed by the librarian, Dr 
Elizabethanne Boran. With a permanent staff of one (the librarian herself) and some visiting scholars 
and interns from time to time, it is challenging to open the doors to the public, although small 
specialist conferences are accommodated as much as possible. The librarian has overseen the 



publication of online exhibitions that enabled the treasures of the library to be appreciated by a wider 
readership (Edward Worth Library, n.d.).  

On 6th May 2014, the librarian welcomed the first group of my students (undergraduates in their 
second of third year of a three-year BA) to visit EWL. She had put on display works I had chosen by 
Viète, Harriot, Descartes, L’Hospital, Wallis, Ward, Huygens and Newton, dating from 1615 to 1732. 
The reaction of the students to viewing the original sources was very positive, however it was too late 
in the academic year for this cohort of students to engage with these original sources in any 
meaningful way. Their reaction, together with my own growing familiarity with scholarship in the 
HPM community on the importance of working with original sources, prompted me to seek an 
opportunity to work with EWL in a more significant way in 2016. The librarian was keen to extend 
the scope of the online exhibitions at EWL, and it seemed realistic to build a mathematical exhibition 
around the work of the next cohort of students (twenty, including two visiting from the USA). 
Necessary preparatory work on my part was to become familiar with the online EWL catalogue and 
derive from it a (provisional) list of the mathematical works in the collection. From this list (of 109 
works), I identified for which ones the author had a biographical entry in MacTutor (O’Connor & 
Robertson, 2016), and found online versions of about a third of the texts, using EROMM, for example. 
Searching for so many original sources was time-consuming, yet very rewarding; it was an exercise 
I had previously no reason to undertake on such a scale. At this stage, I considered myself ready to 
lead the students in the EWL Project.  This paper gives an overview of how the project itself was 
conceived and implemented. 

Original sources and teaching History of Mathematics 
Much is said in the literature about the use of original sources in teaching the history of mathematics, 
and this is not the place to provide a comprehensive overview. Kiernan identifies the challenge facing 
both teacher/lecturer and students: 

The task of presenting original works of mathematics to a class of undergraduates may seem 
like a daunting task. It requires much preparation. How does one become confident that one 
can do this? Well, you must remember that you are not alone in this task. Attending any 
conference with themes on the history of mathematics will remind you that there are many 
others who have the same interest as you. (Kiernan, 2010, p. 412) 

Because I, the author, am also the lecturer and so a crucial player in the work described in this paper, 
it is appropriate to describe, in the first person, how I engaged with the tasks involved. Glaubitz is 
quite clear that working with original sources is quite a different kind of work from that which 
students usually think of when they ‘do’ mathematics: 

Of course, on the part of the teacher it involves quite some preparation, but this is always the 
case when you are going to try something new. What is more, the study of original sources 
requires teachers and students to be prepared to dive into some strange and unknown realm of 
thinking, to appreciate cultural and historical contexts and – last but not least – to deal 
competently with written text that is more extensive than the word problems they are used to 
in mathematics. (Glaubitz, 2010, p. 351) 



If working with original sources is, indeed, ‘something new’, it “[provides] context, motivation and 
direction for students’ mathematical endeavours” (Barnett, 2012, p. 336). Thus, such work has a 
strong potential to open up new perspectives for students: 

By reading historical sources students can be acquainted with episodes of past mathematics 
where other meta-discursive rules governed the discourse. (Kjeldsen, 2010, p. 52)  

Even when students do not make explicit reference to unfamiliar ‘meta-discursive rules’, appreciation 
of such rules can often be noticed indirectly in the ‘surprise’ they express in their reflections on 
working with original sources. 

Designing the EWL project 
The EWL Project was designed as an integral part of a 5-credit (ECTS) module on the History of 
Mathematics (having a strong, but not exclusive, emphasis on the development of algebra). Credit for 
this module comprised two main components: 70% for a terminal examination and 30% for 
continuous assessment (CA). Roughly one third of the examination and 17 marks of the 30 allocated 
to CA were associated with the EWL Project. Thus, in effect, a substantial 40% of the total credit for 
the module was assigned to this project. What were the salient aspects of the project and how was it 
presented to the students? 

The semester began on 1st February (2016) and it was important to arrange a visit to EWL early in 
the semester to allow the students to become familiar with material that would be very foreign to their 
experience. In advance of the visit, I prepared a one-page overview (with web links, indicated in 
bold, below):  

It is a great privilege to be invited to view a selection of the mathematical works at EWL of 
which there are about 109 in total. These span a period of almost two centuries, from Cuthbert 
Tunstall’s De arte supputandi libri quatuor (1538) to Isaac Newton’s posthumous Arithmetica 
universalis (1732), published the year before the establishment of EWL and the death of its 
founder. 

According to the entry in MacTutor, Tunstall (1474-1559) had a prominent career as a 
diplomat (at the court of Charles V in Aachen, for example) and bishop (eventually of 
Durham). His De arte supputandi (1522) was the first printed work published in England 
devoted entirely to mathematics. This was not an original work, but was based on Luca 
Pacioli’s Suma (1494). 

Newton (1643-1727), arguably the greatest English mathematician, worked in a broad range 
of disciplines including theology, optics, mechanics, algebra and (especially) the calculus. 
EWL has no fewer than 16 works attributed to Newton. There are several other works in EWL 
by others associated with Newton (such as Barrow, ‘sGravesande and van Musschenbroek), 
all of whom (along with Newton himself, of course) are presented in the EWL online 
exhibition on Newton. 

The 109 books are written in four languages: English (21), French (15), Latin (64) and a 
combination of Greek and Latin (9). The authors of 74 of these (and some of the authors, such 
as Newton, have more than one book in EWL) have biographical entries in MacTutor. EWL 



expects to prepare an online exhibition on Mathematics at EWL in summer 2016. You are 
invited to contribute to this by writing a page on one of the mathematical works in EWL. 

In advance of the visit to EWL on 25th February, take a look at one of the seven ‘big’ 
exhibitions already online at EWL (Newton, Botany, Alchemy & Chemistry, Infectious 
Diseases, Astronomy, Dr Steevens’ Hospital and Aldines) or one of the eight smaller 
exhibitions  (e.g. Looking at the Moon or Surgery). Think about the following: 

1. How do you find navigating these webpages? 
2. What features of the exhibition (you chose) do you find attractive? 
3. What do you find exciting/daunting about the prospect of writing a page for the 

Mathematics at EWL exhibition? 

This page set the scene for the project. Its subsequent development required much attention to detail, 
taking on board, to a greater or lesser extent, the reactions of the students as observed in their 
submitted work, contributions to a forum (in a virtual learning environment), and queries by email or 
verbally.  

On the day of the visit, 16 of the twenty students made it, along with a colleague (Fionnán Howard) 
who played a crucial role later in editing work for the online exhibition. The students were given hard 
copy of the following: 

 A list of the twelve works of which nine were put on display by the librarian 
 A page of text or an illustration from ten of these 
 Chapter 3 (“How are mathematical ideas disseminated?”) from Stedall’s The History of 

Mathematics – A very short introduction (Stedall, 2012) 

Students were asked for their reflections on visit, and responded enthusiastically and on a wide range 
of aspects. Different perspectives on the library itself included (with student identifiers given in 
[square brackets]): 

On arrival to the Edward Worth Library (EWL) it was just how I would have pictured it. Not 
only had the books all been perfectly preserved but so had the library itself. [8] 

I expected the library to be quite big and look similar to any other library. My expectations 
were quite incorrect. [15] 

I felt as if I went back in time [12] 

In each case, the student’s surprise, even sometimes delight, is evident. On the nine books put display, 
comments included: 

I was surprised that we were allowed to view some texts up close given their iconic meaning. 
[16] 

The books themselves were written in a number of different languages, mainly Latin and 
French, with only a small amount in English, which again highlights how things have changed. 
[10] 

The most astonishing thing I saw was the quotient rule in a book from 1696. It was bizarre 
seeing it in such and old context. [2] 



There is a real sense here of situating a rule, familiar from school, now in the ‘exotic’ period of the 
calculus textbook (L’Hospital, 1696). In her introduction the librarian had made a very reasonable 
conjecture on the relative plainness of the binding of almost all of Worth’s mathematical books, and 
one student picked up on this: 

Worth didn’t seem to pick these books for their binding or appearance alone, but their content 
[7] 

Some students were thoughtful, as if for the first time, about how mathematics emerges and is 
communicated: 

It quickly became apparent to me that to study any subject during this time period you would 
need a huge amount of devotion and intellect. You would need to be fluent in various 
languages to even access three quarters of the books, you would need to travel to find the 
books and you would need an in-depth knowledge of the subject to comprehend them. [2] 

I was curious about the various languages used in the books and wondered whether every 
mathematician needed to be fluent in order to understand and broaden their mathematical 
knowledge. [6] 

The visit gave me a much better and clearer insight into the HoM module, it put into context 
how the maths we do and formulas we take for granted did not just fall from the sky, but were 
sought after and achieved by great minds. [12] 

Other students articulated hermeneutical sensibilities about the foundations of mathematics: 

Seeing some of the diagrams and equations that were printed in the math books we viewed 
(though in a different language and confusing at times) made me very aware of how long math 
has been around. That may sound childish at first, but it was extremely eye-opening to realize 
that though we may now solve problems using different methods, the foundational concepts 
and ideas are similar. [9] 

I suppose because these books were collected such a long time ago, we assume that they had 
a complete different idea of maths, but in fact this is where our understandings stemmed from. 
The visit to the Edward Worth library made me completely believe and understand that. [15] 

Others again drew attention to the language in which the works were written: 

I was also reminded how much I take it for granted that English is the principal language of 
science today. [7] 

I was taken aback by how easily I could comprehend what was in the books even though they 
were written in different languages. [18] 

Overall the response to viewing original sources close up and in the ‘intense’ atmosphere of EWL 
was strong and clearly expressed. After giving these initial informal impressions of their visit, 
students were asked to work on the detail of the EWL Project in two phases. The first phase was 
introduced as follows: 



The overall aim of this project is to produce material that will contribute to an online 
exhibition of the Mathematical works at EWL. Specifically, you are asked to choose one 
mathematical book from the collection and explore it in whatever way you can.  

Several approaches that students might have adopted were suggested, without being prescriptive. 
These included (along with many others): finding out about the author (from the web), about the 
historical context in which they lived and about who influenced their mathematical development. 
Students were encouraged to make plenty of rough notes, to be explicit about why they had chosen a 
particular work, and to relate it to their prior knowledge and readings. Moreover, the librarian sent a 
message of encouragement with some notes on the availability of English translations of books in 
other languages using the British Library's English Short Title Catalogue (ESTC). She also 
recommended paying attention to the preface of their chosen book (if available in English) so as to 
get an idea of the context of the book and what the author considered important, and to identifying 
the most striking illustrations in the book (if any). 

The four students who could not make the visit had the opportunity to read the feedback of those who 
did, and compose questions for them. In this way, they were integrated into the work of the EWL 
Project alongside their peers. 

Not surprisingly, some books were chosen by more than one student: seven chose Wilkins (1691), 
three chose L’Hospital (1696) and 2 chose Tunstall (1538). Having reviewed the work of phase one 
and given feedback, I nudged students to choose unique books, so that, in the end, 19 distinct books 
were ‘chosen’ (with two opting for Wilkins). 

In phase two, students were required to review and polish there work, taking my feedback into 
account, reviewing features of the existing EWL online exhibitions and distilling their work to 
produce an engaging, informative and reliable piece of between 800 and 1200 words. 

Later, in a short ‘capstone’ exercise, students were asked to identify the two readings they found most 
helpful for insights into the history of algebra, and give reasons why? Many of them chose readings 
related to their work on the EWL Project, indicating its strong significance in their view. 

Preparing the online mathematics exhibition 
Once the students’ work was complete, the next challenge was to devise the structure for the online 
exhibition. The librarian, Elizabethanne Boran, had much experience in this matter and, together, we 
decided to use the headings (Arithmetic, Algebra, Geometry, Conic Sections and Infinities) in Ward’s 
The Young Mathematicians Guide (1719) as categories for five sections, and to augment these by four 
more, namely Probability, Applications, Notation and Communities. These nine sections were then 
to be introduced by an opening section entitled ‘What is Mathematics?’ A decision was made to 
incorporate the students’ project work to the greatest extent possible (within an appropriate editorial 
rubric). Each of these thematic sections included links to the works of featured mathematicians. A 
full list of these mathematicians is given in Table 1 (presented chronologically, with reference to the 
life of Edward Worth himself). 

  



Number represented in EWL who died 
(or were born) in a particular period 

List of those chosen for the EWL Exhibition 

7 died before 1000 
1. Euclid of Alexandria 
2. Archimedes of Syracuse 
3. Apollonius of Perga 

16 more died before 1640 

4. Tunstall (1474–1559) 
5. Commandino* (1506–1575) 
6. Cardano (1501–1576) 
7. Viète (1540–1603) 
8. van Ceulen (1540–1610) 
9. Clavius (1538–1612) 
10. Harriot (1560–1621) 
11. Marolois (1572–1627) 

13 more died before 1678 

(before Worth’s birth in 1676, roughly) 

12. Descartes (1596–1662) 
13. Pascal (1623–1662) 
14. Wilkins (1614–1672) 
15. Barrow* (1630–1677) 

of the remaining 37:  

16 were born before 1640 

(and were living during Worth’s lifetime, 
but were much his senior) 

16. Kersey (1616–1690) 
17. Wallis (1616–1703) 
18. Brouncker (1620–1684) 
19. Dechales (1621–1678) 
20. Leybourn (1626–1716) 
21. Huygens (1629–1695) 

15 more were born before 1676 

(and were contemporaries of Worth, and 
senior to him) 

22. Ozanam (1640–1717) 
23. Ward (1648–1730) 
24. Fontenelle (1657–1757) 
25. Gregory* (1659–1708) 
26. L’Hospital (1661–1704) 

6 were born after 1676  
(and were younger than Worth) 

27. Montmort (1678–1719) 
28. Steell (1690–1726) 

Table 1: List of those chosen for the EWL Exhibition 

In this table, three (indicated by *) are included for their editions of Euclid. The exhibition itself can 
be seen online (OReilly, et al., 2016). 

Conclusion 
This paper has outlined the design and implementation of collaborative work within a module 
dedicated to the history of mathematics, drawing significantly on original sources. The result of this 
work has led to the production of an artefact external to the module, the online mathematical 



exhibition at EWL. It is evident that much was learned by all those involved, students, librarian and 
lecturers, giving clear testimony to the value of engaging deeply with original sources, in this case 
the mathematical works collected by the medic, Edward Worth, in the late 17th and early 18th 
centuries. It is hoped that many will view the exhibition and thereby enjoy the work of those who 
created it. 
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Inquiry-based teaching approach in mathematics by using the history 
of mathematics: A case study 
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The use of the history of mathematics during an inquiry-based teaching approach is expected to 
multiply the positive effects on students’ learning. The present work investigated a “typical” 
teacher’s difficulties while trying to use the history of mathematics as a teaching tool during 
inquiry-based teaching activities. Two examples which were presented in the textbook of the 5th 
grade of primary education were used to observe the teaching practices. Results indicated that the 
teacher had difficulties in understanding how students could investigate a mathematical concept by 
integrating the history of mathematics and how the study of the history would enable them to 
construct the new-acquired knowledge. The respective knowledge of the domain seemed to be a 
prerequisite in order to be able to use the history of mathematics fluently and flexibly in a learning 
environment which asked students to explore or investigate the mathematical concepts.  

Keywords: Case-study, inquiry-based teaching approach, history of mathematics. 

Theoretical background 
Mathematics education aimed to develop pupils’ abilities to think logically, critically and creatively 
by recognizing that mathematics permeates the world around and by recognizing the power and the 
beauty of mathematics. We believe that a central key for those aims is the appreciation of the 
multicultural and the historical perspective of mathematics which faced the tendency to understand 
it as a formal science which has already been discovered. Using authentic problems from the history 
of mathematics provides experiences for students to actively engage in classroom discourse 
(Gulikers & Blom, 2001), and to realize the role of the construction of the science of mathematics.  

Since 2009, in the context of the CERME we have the appearance of the specific group which 
discusses the role of using the history of mathematics, the theoretical framework, the teaching 
practices and the respective learning results. In a meta-analysis, Butuner (2015) included 56 
researches in Turkey and abroad in order to reveal the influence of using the history of mathematics 
on success.  By the same way numerous articles have been published in scientific journals and 
many conferences have been done, without exhausting the discussion on how to use in a more 
productive way the history of mathematics in order to fulfill the aims of mathematics education. 
Recently there was a special thematic issue of the Menon Journal of Educational Research about the 
use of the history of mathematics in mathematics education. The emphasis concentrated on the 
educators’ experiences, beliefs and practices on using the study of the historical aspects of many 
different concepts for the teaching of mathematics in different ages. There are many studies on the 
level of higher education (e.g. Weng-Kin, 2008) and on the level of secondary education (e.g. 
Kaygin, et al., 2011, Lim & Chapman, 2015) and fewer about the primary education.   

The present work joined the use of the history of mathematics at a specific grade in primary 
education, with the aim of using the inquiry-based approach as a teaching method which was 
supposed to enable students explore and investigate the new mathematical concepts. At the 
Curriculum of Mathematics which was constructed in 2011 for the primary education in Cyprus, the 



use of the history of mathematics was suggested in order to develop students’ positive beliefs about 
mathematics and the usual use of inquiry-based teaching was proposed as the main teaching 
approach. The two central concepts for the inquiry-based teaching approach which were proposed 
were “investigation” and “exploration”. A case study of a “typical teacher” was used in order to 
investigate the two specific research aims: a) to examine his knowledge and beliefs on using the 
history of mathematics in an inquiry-based framework and b) to reveal the teaching practices which 
are used and the teaching difficulties which are faced during the implementation of the innovation.   

The history of mathematics as a teaching tool  

In 2000 the International Commission on Mathematics Instruction has set up a study on the role of 
the history of mathematics in the teaching and learning of mathematics. The main intention was to 
study the role of the history of mathematics in relation to the teaching and learning of mathematics 
to the teacher training. Jankvist (2009) explains the use of the history of mathematics both as a tool 
and as a goal and suggests that introducing the history of mathematics in school curricula enhances 
learners’ motivation, promotes favoured attitudes, and draws attention to possible obstacles faced in 
the generation and evolution of mathematical concepts. As a pedagogical tool it can serve as a guide 
to understand the difficulties students may encounter as they learn a particular mathematical topic 
(Haverhal & Roscoe, 2010). History of mathematics enables teachers to present to their students 
how mathematical ideas develop and to guide them appreciate mathematics as a creative 
disciplinary activity. Schubring and colleagues (2000) also posit that programs based on the history 
of mathematics could increase self-confidence in working with mathematical tasks and develop 
learners’ ability to apply mathematical methods. A journey through the history of mathematics can 
also enable learners to construct mathematical meanings and support new conceptions about 
mathematics by changing learners’ existing beliefs and attitudes (Dubey & Singh, 2013).  

Jahnke (2000) suggests three general ideas which are suited for describing the special effects of 
studying a source on the teaching of mathematics: (a) the notion of replacement according to which 
mathematics is seen as an intellectual activity, (b) the notion of reorientation according to which 
history reminds us that the mathematical concepts were invented and (c) the notion of cultural 
understanding. As Siu (1997) claims, using the history of mathematics in the classroom does not 
necessarily increase students’ cognitive performance, but “it can make learning mathematics a 
meaningful and lively experience, so that learning will come easier and will go deep” (p. 8). As 
Panasuk and Horton (2013) underline the learning of mathematics can be facilitated by studying the 
cultural significance of mathematics and understanding that “in the earliest stages of invention, 
many of the mathematical concepts were extremely difficult to define, understand and accept for 
even the most gifted mathematicians” (p.38).  

Although the mathematics teachers in the study by Lit and Wong (2001) were very supportive in 
using history in their teaching, Siu (1997), in an invited talk given at the working conference of the 
10th ICMI study on the role of mathematics in mathematics education, offered a list of thirteen 
reasons why a school teacher hesitates to make use of the history of mathematics in classroom 
teaching such as “I have no time for it in class”, “Students don’t like it”, “There is a lack of teacher 
training on it”, “Students do not have enough general knowledge on culture to appreciate it”, etc.  



The inquiry-based teaching approach 

The inquiry-based approach in mathematics education is supposed to promote engagement and 
ownership and a “human view” of science as knowledge in the making (Savelsbergh et al., 2016). It 
requires teachers to use pedagogical methods which actively engage students in developing 
conceptual understanding of mathematical concepts (Chapman, 2011). The challenge for 
educational systems is to enable its teachers to adopt the values of the inquiry-based pedagogy. The 
scientific journal of ZDM in Mathematics Education has published a special issue in 2013 with nine 
papers focusing on inquiry-based mathematics education and their implementations, indicating that 
many questions remain unanswered.  

Teachers need to develop their ability to foster student decision-making by balancing support and 
independence in thinking and working (NCTM, 2000). Classroom management is a crucial aspect 
of instructional quality (Taut & Rakoczy, 2016). Chin and Lin (2013) claim that there are obstacles 
and difficulties such as: (i) teachers did not experience inquiry-based learning in mathematics in 
their own school years, (ii) they do not have complete understanding of the inquiry-based teaching, 
(iii) there are practical constraints such as that the allocated teaching hours are not enough, (iv) the 
influence of teaching for success in tests. 

Maab and Artique (2013) examine the implementation of the inquiry-based approach and look at its 
implementation through resources and professional development. They indicate that there is a need 
to promote a widespread uptake of inquiry-based approach in day to day teaching. One of the main 
emphases of the new proposed teaching model of Mathematics in the centralized educational 
system of Cyprus which is presented at the New Curriculum (NCM, 2011), is the use of 
“exploration” and “investigation” of mathematical ideas, as two dimensions of the inquiry-based 
teaching and learning approach. The whole idea is to introduce a mathematical concept by using an 
inquiry-based activity through which the teacher asks students to express their ideas and arguments, 
to communicate by using the language of mathematics. The emphasis is on using authentic and 
open-ended problem solving activities without only one correct answer and by respecting the value 
of inter-individuality.  

Methodology 
The emphasis of the present study was to examine the teaching practices used during the 
implementation of the inquiry-based activities by using the history of mathematics in authentic 
classroom situations. We chose to observe two lessons where the use of the history of mathematics 
was proposed by the textbook, at the 5th grade of primary education. We are referred to a centralized 
educational system where the Curriculum, the textbooks and the teaching materials are proposed by 
the Ministry of Education. A “typical” teacher was chosen after the first phase of the study which is 
not presented at the present paper. The criterion for the selection was his medium performance 
concerning his knowledge and beliefs about using the history of mathematics and the inquiry-based 
teaching approach in mathematics. He took part at a first phase of the project which collected data 
about teachers’ knowledge and beliefs (details about the questionnaire are presented at Panaoura, 
2016). We aimed to make the link between what he might say during an interview and what he 
actually did during the teaching. By using the case-study approach we emphasized the analysis of 
the teaching conditions in real-life classroom situations and the interpretation he proposed during a 



follow up interview. Firstly the teacher at the 5th grade was observed by the researcher and then 
semi-structured interviews were conducted in order to discuss the lessons. The lessons were chosen 
because an activity of using the history of mathematics for introducing a concept during an 
investigation was suggested by the school textbooks. The proposed activities are presented at the 
Figure 1. 

 

  
Egyptians used the hieroglyphs in 3000BC which 
included 7 different symbols in order to represent the 
numbers. Write the numbers in the decimal numbering 
system.  

A follow up task asks them to compare the two systems 
and write their comments  

Unit 3, page 73 

The Reed’s papyrus gave us important information about 
the mathematics of the ancient Egyptians. One of them is 
the method of multiplication by using the doubling method. 
After studying the method, apply it in order to find out the 
result of 64X15 and then use the distributive property in 
order to find out the 13X15.  

Unit 3, page 100 

Figure 1: The activities as presented at the textbook (in Greek and in translation) 

A protocol for the observation was constructed and used in order to concentrate the observer’s 
attention on: a) teacher’s guidelines at the introduction of the activity and his interventions while 
students were working and b) teachers’ feedback on students’ difficulties and mistakes. The semi-
structured interviews with the teacher were concentrated on the practices he used and the difficulties 
he faced. 

Results 
The teacher’s observation enabled us to concentrate our attention on the teaching practices he 
followed in order to use the inquiry-based approach during the teaching of numbers and operations, 
by using a historical perspective. 

In the first case the teacher asked students to study the page, then they had to write few numbers by 
using the hieroglyphs and finally they were asked to transform other numbers into the decimal 
arithmetic system. After they presented a few numbers, their teacher asked them to discuss with the 
members of their group the similarities and differences of the two systems. The specific activity 
lasted for 10 minutes and then a whole class discussion was conducted. Teacher insisted by posing 
questions to guide them understand the limitations of the ancient Egyptians’ numeric system. Many 
correct answers were given by the students and only one unexpected question was posed by a girl: 



“Today in Egypt people use these symbols or something which remind them the attempts of their 
progenitors?” The teacher explained why the ancient systems were not survived by repeating 
arguments which were presented previously by the students, such as the complexity of the symbols. 
Nevertheless he admitted that he was not able to answer whether there is something in Egypt today 
which is related with the specific system. He continued by showing his clock and the roman 
symbols on it, he explained that there were residues of arithmetic systems and symbols which were 
used in the past. He then asked students voluntarily to look in their free time for more information 
about the arithmetic system of the ancient Egyptians in order to be able to answer their classmate’s 
question in three to four days. As he admitted during the interview there were some students who 
tried to find out more information about the numeric systems. They had not found anything about 
Egyptians; however they discover the Babylonians’ impact on the way of measuring the time and 
the Latin numbers on buildings such as the German Parliament.  

In the second case, it was the use of the ancient Egyptians’ algorithm of multiplication. The teacher 
asked students to study individually the method which was presented and applied it at the 
multiplication 35X17. Few students were not able to continue after the 32X17. One of them 
continued by writing 3X17 and then she added the two products. Teacher said that it was a wrong 
solution because “Egyptians did not know how to find 3X17”. The follow up dialogue is 
interesting: 

Student: How is it possible to know 2X17, 4X17, 32X17 and they didn’t know 3X17? 

Teacher: They knew only to double the product. 

Student: Why they did that? 

Teacher: It was their algorithm.  

Student: But the guideline at the book asked to use the distributive property to find the       
product. I had used it, 32X17 and 3X17.  

Teacher: It is right today, but not for the ancient Egyptians.  

Student: They were not clever.  

It is obvious that the student did not understand that the method of the Egyptians depended on the 
property according to which when a factor is duplicated the whole product is duplicated and she 
was not able to understand why this method was easier for them rather than the algorithm which is 
used today. However it is important that she understood the use of the distributive property in 
mathematics. Actually this was the objective of the specific course and probably the teacher did not 
know that the history of mathematics was proposed in the specific case in order to enable students 
investigate and understand the use of the distributive property in multiplication. When the teacher 
was asked about the teaching aim and the respective learning aim he said: 

Teacher: The history is used in order to understand that mathematics was created by 
humans.  

Researcher: Yes, but they could understand this at the previous lessons, with the arithmetic      
systems.  

Teacher:  Here they can understand that complicated processes were used as well.  



Researcher: Which was the impact of those processes on the development of mathematics? 

Teacher: I don’t know. However it is important for humans to study their past. 

Researcher: Do you know which were the ancient Egyptians’ occupations and where did they  

                        use mathematics? 

Teacher: No, I am not sure, probably for their transactions.  

The teacher used only naive teaching arguments for studying the history of mathematics without 
understanding that students by investigating the way the arithmetic properties were used, they could 
understand the use of those properties in order to simplify the used processes. He seemed to not 
have adequate knowledge about the cultural, political and economic framework of using the specific 
processes in order to be able to judge their utility.  

Discussion 
Teachers will continue to be expected to actively engage students in inquiry-based experiences. At 
the same time most of the Curriculum will continue to ask teachers to use the history of 
mathematics as a teaching tool in order to enable students to understand the continuity and the 
development of mathematics in respect to the cultural circumstances. The current study provided 
evidence that although probably a teacher may express positive beliefs about the importance of the 
history of mathematics for the introduction or the understanding of mathematical concepts, he or 
she may face serious difficulties in implementing an inquiry-based teaching approach. Teachers 
needs experiences during their school life or even during their pre-service training in order to be 
convinced for the results of the inquiry-based learning and the  positive results of exploring and 
investigating the mathematical concepts through a historical perspective.  

The historical approach is supposed to encourage and enable students to regard mathematics as an 
intellectual process and an on-going activity of individuals (Grugnetti & Rogers, 2000). The 
prerequisite is to enable them to understand how mathematics thinking and applications developed 
in different cultures, in response to the needs and thinking of different societies. As it is obvious 
from the present qualitative study, there are fundamental problems in the implementation of this 
objective in relation to other main objectives such as the use of the inquiry-based teaching 
approach. In the case of the New Curriculum in the educational system of Cyprus the history of 
mathematics is proposed to be used as a tool in teaching the students topics or concepts within the 
curriculum (Jankvist & Kjeldsen, 2011). 

The present study is just a part of a project which investigates the use of the inquiry–based 
approach. Much more research has to be developed in order to relate the teachers’ knowledge and 
beliefs about the use of the history of mathematics with their beliefs and knowledge about the 
inquiry-based approach in different grades Teachers’ knowledge and beliefs are the official targets 
of educational reform (Uwe, Espinoza & Barbe, 2013). Emphasis has to be given on studying 
further teachers’ difficulties in implementing the inquiry-based teaching approach in general and in 
the case of using the history of mathematics in particular, by examining the results of intervention 
programs in real classroom actions, with an emphasis on facing the teachers’ difficulties  
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This paper reports on a study about word fraction problems. These kind of problems have been 
transmitted by the school tradition. Nowadays, they have disappeared because the education model 
has changed. A classification of the problems is given and the historical resolution methods are 
presented here because they may be useful in creating knowledge for teaching.  

Keywords: Descriptive, historical, fraction problems, resolution methods. 

Introduction 
In textbooks, there are a variety of descriptive word problems. Swetz (2012) mints descriptive and it 
refers a story or pseudorealistic situation that is not meant to address any practical real situation 
(some of them are known as recreation or puzzle problems).  

Until recently, these problems were used as an essential part of the teaching of mathematics. 
However, the educational model and the design of mathematics textbooks began to change. Then, 
many problems disappeared from the current books, because the confidence in the educational 
power of these problems had declined. 

Nowadays, descriptive problems have emerged with renewed interest because the curriculum 
proposals consider problem solving as a core competency in the development of arithmetical and 
algebraic thinking. In this context, they become relevant because the historical record of the 
development of mathematical ideas and methods is useful to produced knowledge valuable for 
teaching. Particularly, to support an alternative pedagogical approach different to those that use 
problems as sub-product of other specific content learnings (as an exercise and practice). 

When we have reviewed descriptive problems that appear in textbooks, we have found them under 
different headings which are related with Methods and Rules or with Context, Actions and Agents. 
For example, 

- Methods and Rules: Rule of Three, Compound Proportion (or Double Rule of Three), Conjoined 
Proportion, Fellowship, Allocation, Interest, False Position (single and double), proportional 
distribution, etc. 

                                                 
1 This paper has been done in the framework of the research projects of Ministerio de Ciencia e Innovación, references: 
GVPROMETEO2016-143 and EDU2015-69731-R (MINECO/FEDER) 



 

 

- Contexts: Fountains or Pipes filling or Holes Emptying the Cistern, Inheritance, Clock Problems, 
God Greet You or Heap problems, Passing Through Tax passes, Water in wine, Division of Casks, 
etc. 

- Agents: Ass and Mule, Hound and Hare, Hundred Fowls, Couriers or Mobiles, The Epitaph of 
Diophantus, Animals eating a Sheep, Men Buy a Horse, Men Find a Purse, Lazy Workers, 
Posthumous Twins, Dishonest Butler, Apple-sellers’, Snail Climbing out of Well, Broken Bamboo, 
Monkey and Coconuts, A travelling Merchant, Lotus, etc. 

- Actions: Overtaking and Meeting, Giving and Taking problems, Selling Different Amounts at the 
Same Prices (to yield the same amount), Co-operative work, etc.  

This way of showing problems is the result of historical motivation and it does not allow an overall 
vision of the problems. For example, there is usually not a single resolution method for the same 
problem. Also, problems with different appearance may have the same characteristics or structure. 
This is the reason why the problems can be not organized according to the context, the actions or 
the agents, or even method of resolution. 

Our goal in this research is to build the classification of descriptive fractions problems, with a 
criterion that contributes clarity and generality, for an overall view of them. At the same time, we 
want to recover the different resolution methods, as authors have been reflected in textbooks. 

The remainder of the paper is organized as follows. First, sample problems are presented and their 
classification is explained. Also, the relation between quantities is shown with a generic statement. 
Second, different resolution methods are shown. Finally, the conclusion of the research and some 
suggestions for future research are proposed. 

The problems 
The problems, which are studied in this research, seem similar because they are multi-step fraction 
problems. 

Dying man. A dying man gave 6000 escudos to distribute in this way: the half will be given to 
the monastery of the Jacobites; the third part will be given to the convent of San Agustin; the 
fourth of the escudos to the monastery of the Friars Minor; and the fifth will be given to the order 
of the Carmelites". Question: if the whole is 6000 escudos, how many escudos will each 
monastery have? (Silíceo, 1996, p. 266) 

The Cloth. A certain man buys 4 pieces of cloth for 80 bezants. He buys the first for a certain 
Price, and he buys another for 2

3
 the price of the first. He truly buys the third for 3

4
  the price of the 

second. Moreover, the fourth he buys for 4

5
 the price of the third. It is sought how much each 

piece is worth. (Sigler, 2002, pp. 274-275) 

Lotuses. From a bunch of lotuses, 1

3
 are offered to Lord Siva 1

5
 th to Lord Visnu, 1

6
 th to the Sun, 1

4
 

th to the goddess. The remaining 6 were ofered to the guru. Find quickly the number of lotuses in 
the bunch (Bhāskarācārya, 2001, pp. 57-58, ex. 3) 



 

 

The Eggs. A country woman carrying eggs to a garrison, where she had three guards to pass, sold 
at the first, half the number she had and half an egg more; at the second, the half of what 
remained and half an egg more; and the third, the half of the remainder and half an egg more 
when she arrived at the market place, she had three dozen still to sell. How was this possible 
without breaking any of the eggs? (Ozanam, 1884, pp. 207-208) 

Nevertheless, they presented two main differences. First, the whole may be known or not. The 
whole is the amount that will be split up in parts. Second, the different parts of the whole are 
interrelated or not.  

The Dying Man is a problem in which the known whole is split up in unrelated parts, i.e., we know 
the whole (T) and for example we have two parts: 𝑝1 = 𝛼1𝑇 and  𝑝2 = 𝛼2𝑇, where 𝛼1 + 𝛼2 ≥ 1 
and 𝛼𝑖   𝜖 ℚ 𝑤𝑖𝑡ℎ 𝑖  𝜖 (1,2). We want to know each part. 

The Cloth, is a problem in which a known whole is split up in related parts, i.e., the known whole 
(T) is divided in, for example, three parts, 𝑝1 = a1 + 𝛼1𝑝1 and 𝑝2 = a2 + 𝛼2𝑝2, where 
𝑎𝑖 𝑎𝑛𝑑  𝛼𝑖  𝜖 ℚ 𝑤𝑖𝑡ℎ 𝑖 𝜖 (1,2). We want to know each part.  

Lotuses are problems in which the unknown whole is split up in unrelated parts, i.e., we do not 
know the whole (T) and it is divided in three parts: 𝑝1 = 𝛼1𝑇, 𝑝2 = 𝛼2𝑇 and 𝑝3 = 𝐴 where 
𝛼𝑖 𝜖 ℚ 𝑤𝑖𝑡ℎ 𝑖  𝜖 (1,2) and A is a known quantity. We want to know the total amount. 

The Eggs, are problems in which the unknown whole is split up in related parts, i.e., we do not 
know the whole (T) and we want divided it in, for example, three parts: 𝑝1 = 𝑎1 + 𝛼1𝑇, and 𝑝2 is 
𝑎2 and 𝛼2 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔, the third part is known A, where 𝑎𝑖, 𝛼𝑖 , 𝐴 𝜖 ℚ 𝑤𝑖𝑡ℎ 𝑖  𝜖 (1,2). We 
want to know the total amount. 

These differences permitted us to classify the problems and show a global vision about descriptive 
word fraction problems (Figure 1). 

 
Figure 1: The classification of the problems 



 

 

Note that it is possible to which the draft of the classification according to the relations between the 
parts: additive (one part is the sum of another or others), multiplicative (one part is a multiple or a 
fraction of another or others), combinations of both, …but the research focuses on a classification 
without subcategories because of the allowed extension. 

Resolution methods 
Different Textbooks, from different periods or historical moments, has been reviewed to select 
problems. The resolution methods observed are the following. 

Method of inversion  

The method of inversion method is explained by Colebrooke (1817, p. 21) in these words, “To 
investigate a quantity, one being given, make the divisor a multiplicator; and the multiplier, a 
divisor; the square, a root; and the root, a square; turn the negative into positive; and the positive 
into negative.” 

In this method, the problems are solved by the inverse operations, i.e., if the problem name the 
product, the division is used to solve, or in the case of addition, the subtraction is used. Note that, 
the resolution process begins with the last operation, and continues up to the first operation 
indicated in the problem definition. 

The next problem of “unknown whole and related parts” shows the method: 

The Eggs solution. It would appear, on the first view, that this problem is impossible, for how 
can half an egg be sold without breaking any? The possibility of it however will be evident when 
it is considered, that by taking the greater half of an odd number, we take the exact the half +1

2
  . 

It will be found therefore that the woman, before she passed the last guard, had 73 eggs 
remaining, for by selling 37 of them at that guard, which is the half +1

2
, she would have 36 

remaining. In like manner, before she came to the second guard she had 147; and before she 
came to the first, 195 (Ozanam, 1884, pp. 207-208). 

False position 

False position is related with the algorithmic process where an assumed value is chosen. The 
operations are done with this number so the result is not correct because the value is not the real 
value. Then, a rule of three or a proportion is done to obtain the correct result2.  

We can see this method in a lot of fraction descriptive problems, for example in this known whole 
and related parts problem, 

                                                 
2 The conditions of the statement can be modeled with a first-degree equation with one unknown: b = ax. The rule 
commands that the equation be solved by giving an assumed value to the unknown x = x1, which gives rise to the error 
b1, b1 = ax1. From these two equalities: b = ax and b1 = ax1, we obtain the ratio =

𝑏1

𝑥1
, from which the value of x is 

followed. 



 

 

The Cloth solution. Put the first piece worth 60 bezants (False position), because 60 is the least 
common multiple of 5 and 4 and 3. Therefore, if the first is worth 60 bezants, then the second is 
worth 2

3
 of it, 40 bezants and the third worth 30 bezants, that is 3

4
 of the price of the second. The 

fourth worth 24 bezants, that is 4

5
 of 30. Then you add 60, 40, 30 and 24, i.e., sales prices of the 

four pieces; They are 154 and should be 80; says, got 60 for the price of the first piece and 154 
bezants result that the sum of the four pieces; How much will I put to the sum of the parts it is 80 
bezants? Multiply 60 by 80; and there will be 4,800 which is divided with the rule by 154, i.e., 
1/2 0/7 0/11; the ratio is 6/7 1/1131 bezants. And this is the value of the first piece. Also in order 
to obtain the price of the second, multiply 40 by 80, then divide again by 1/2 0/7 0/11; the ratio is 
20 4/7 8/11 the price of the second piece. Also, to know the price of the third, it multiplies 30 by 
80, and divide by 1/2 0/7 0/11; the ratio is 3/7 6/11 15 bezants; in the end, the price of the fourth, 
multiply 24 by 80, and divide by 1/2 0/7 0/11; the ratio is 1/7 5/11 12 bezants, and you realize 
that in each of the four products is canceled 1/2. (Sigler, 2002, pp. 274-275) 

Or in these other two problems of “unknown whole and unrelated parts”: 

The Tree solution. Because the least common denominator of 1

4
 and 1

3
 is 12, you see that the tree 

is divisible into 12 equal parts; three plus four parts are 7 parts, and 21 palms; therefore as the 7 
is to the 21, so proportionally the 12 is to the length of the tree. And because the four numbers 
are proportional, the product of the first times the fourth is equal to the second by the third; 
therefore if you multiply the second 21 by times the third 12, and you divide by the first number, 
namely by the 7, then the quotient will be 36 for the fourth unknown number, namely for the 
length of the tree; or because the 21 is triple the 7, you take triple the 12, and you will have 
similarly 36 (Sigler, 2002, p. 269). 

Lotus solution. Suppose the total number of lotuses is 1. Then the number of lotuses left is  

1 − (
1

3
+

1

5
+

1

6
+

1

4
) = 1 −

20+12+10+15

60
= 1 −

57

60
= 1 −

19

29
=

1

20
. So if 1

20
𝑡ℎ is 6 the total 

number of lotuses is 6×1
1

20

= 120 (Bhāskarācārya, 2001, pp. 57-58, ex. 3). 

In both examples, the value of one part is known and the other parts are fractions of the whole 
unknown. If T is the unknown whole and A is the known part, in these problems  𝑇 = 𝑝1 + 𝑝2 + 𝑝3, 
where, 𝑝1 = 𝛼1𝑇;  𝑝2 = 𝛼2𝑇, where  𝛼𝑖  𝜖 ℚ 𝑤𝑖𝑡ℎ 𝑖 𝜖 (1,2). Consequently, we add the fractions 
𝛼1 + 𝛼2, and an equation is drawn between the difference of this sum with T and the known value . 
To solve this equation is arithmetically run as in the false position. For this, one can proceed by 
avoiding the fractions, by taking an assumed value for T that is a multiple of the denominators of 
the fractions (The Tree); Or, taking as value the whole unit (Lotuses), and then with a rule of three. 

Direct method  

In this resolution method, the arithmetic operations with fractions are performed as the statement 
says. We present a “known whole and unrelated parts” problems to show this method: 

Dying Man Solution. For Jacobite the half of 6000 escudos; for St. Augustine a third of the 6000 
escudos, i.e., 2000; for Friars Minor the fourth part 6000 escudos that is 1500; and for Carmelites 
the fifth of the 6000 escudos, i.e., 1200. All of these parts add up 7700, but it is not possible 



 

 

because the man only has 6000 escudos. The divisor is considered 7700, and the multiplier is the 
money that would must be distributed, i.e., 6000. Then, each part is multiplied by this ratio. 
Therefore, if the part of the Jacobites is multiplied by the multiplier and is divided by the divisor, 
they get 2337 escudo 23 duodenos and 2 turonos and 1400/7700 parts of turon. Then, this is the 
amount that corresponds to the Monastery of the Jacobites. In other cases, we proceed similar 
and get the amount corresponding to each of them. Note that 1escudo = 35duodenos; 1duodeno = 
12turonos. (Silíceo, 1996, p. 266) 

In Dying Man, once the arithmetic operations with fractions are performed directly as the statement 
says, is needed an unequal distribution. T is distributed according to the rates 𝛼1: 𝛼2: 𝛼3. Then the 
required distribution of T is: 𝑝1 =

𝑇

𝛼1+𝛼2+𝛼3
𝛼1; 𝑝2 =

𝑇

𝛼1+𝛼2+𝛼3
𝛼2; 𝑝3 =

𝑇

𝛼1+𝛼2+𝛼3
𝛼3. 

The direct method appears in the “known whole and related parts” problems too. In this kind of 
problems, the parts of the whole are considered in different ways. The next examples illustrate it, 

A walker. A certain man walking in the street saw other men coming towards him, and he said to 
them: “O that there were so many [more] of you as you are [now]; and then half of half of this 
[were added]; and then half of this number [were added], and again, a half of [this] half. Then, 
along with me, you would number 100 [men].” How many men were first seen by the man? 
(Hadley & Singmaster, 1992) 
Solution. We can suppose that the half of half is a part; then the half would be two parts; The 
group of men would be four parts and the others are four parts. Therefore, if you divide 99 into 
eleven parts, the result will be half of the half, then the solution is 36 men in the group. Testing: 
36+36+18+9+10100. (Sánchez Pérez, 1949, p. 58) 
Day laborers. Three laborers charged for one hour 610 pesetas. The oldest earned 1/8 more than 
the median and this 1/5 more than the youngest. How many pesetas are each? 
Solution. Supposing that the youngest earned 1, the median would earn 1 + 1

5
 = 1.5, and the 

oldest would earn 1.2 + 1.2

8
 = 1.2 + 0.15 = 1.35. If we divide 610 in proportional parts 1:1.2:1.35, 

the youngest earn 640

3.55
= 171.83 pesetas… (Solís y Miguel, 1893, p. 52) 

The hours. You know the hours, could you say me how many hour have passed since this 
morning? There remain twice the two thirds of the hours that have already passed. (Jacobs, 1863, 
p. 42) 
Solution. You must divide the length of the day in 12 parts, the question is divided this number 
in two parts, such that the 4

3
  of the first are equal to the second, it is 51

7
 , consequently, for the rest 

of the day, 6 hours and 6

7
 . (Ozanam, 1844, p. 192) 

The work. In one work, 25 men, 12 women and 30 children are employed. A woman's salary is 2

3
 

of a man’s salary, and a child earns 3

4
  of a woman salary’s. The work has cost 403.20 pesetas. 

What is the salary of each? 
Solution. The 12 women earn as much as 12 ·

2

3
= 8 men. A child earns 3

4
  of a woman's salary, 

i.e. or 2

3
·

3

4
=

1

2
 of a man's salary. The 30 children earn 30 ·

1

2
= 15  men. The 403.20 pesetas are 



 

 

the salary of 25 + 8 + 15 = 48 men. Each man earns 403.20

48
= 8.40 pesetas. Each woman: 8.40 ·

2

3
= 5.60 pesetas. Each child: 8.40

2
= 4.20 pesetas. (Aritmética razonada, 1940, pp. 151 & 660) 

Algebraic method 

This method is where the problem is reduced a list of quantities and the relation between them gives 
rise to an equation (Puig, 2003). The equation is obtained as a result of matching two algebraic 
expressions that represent the same amount. 

The next example of “known whole and related parts” illustrated this resolution method (Aurel used 
the cossic sign, not x) 

Three men want to share 100 ducats. Three men want to share 100 ducats. The first person has 2

5
 

of the second person; and if the ducats of third person are divided by the ducats of the first 
person, the number is4

5

6
. So, how many ducats are there?  

Solution. Three men want to share 100 ducats. The first person has 2

5
 of the second person; and if 

the ducats of third person are divided by the ducats of the first person, the number is 4
5

6
. So, how 

many ducats are there? Solution. I suppose the second person have 1x ducats so the first person 
have 2

5
 x; and the third will have the remainder, 100 − 1 

2

5
 x. The ducats of the third person are 

divided by the ducats of the first person and the result is 
100−1 

2

5
𝑥

2

5
𝑥

, it is 4 5

6
 . Reduce the equation, 

100 − 1 
2

5
 x = 

29

15
𝑥. Calculating, 1𝑥 is equal to 30, then the first and third person have 12 and 58 

ducats, respectively (Aurel, 1552, fol. 102v, ex 88; Aurel used the cossic sign, not x). 

Conclusion 

With this research, we try to use the historic descriptive problems to produce useful information to 
the mathematics education.  

Firstly, the descriptive word fraction problems, which are in the ancient textbooks, have been 
studied. Secondly, a classification of them is built and is focused in the whole and the parts. With 
this, four different types of problems have been obtained and a generic statement of each problem is 
proposed. Thirdly, some resolution methods have been explained and analyzed: method of 
inversion, false position, direct method and algebraic method. Note that this is a classification that 
supports subcategories, and they are been studying in this moment. 

This research allows us to offer students a range of methods to choose the most appropriate method 
in each problem to solve it correctly.  

In a future, we will design a questionnaire to carry out a cognitive analysis to obtain the students 
achievement in this kind of problems. That is, an empirical analysis that will try to find out the 
difficulties faced by students in each of the determined types. The difficulties will be related with 
the essential elements studied in this research. 
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translation of Lī ā atī). (K. S. Patwardhan, S. A. Naimpally & S. L. Singh, Trans.) Delhi: 
Motilal Banarsidass.  

Colebrooke, H. T. (1817). Classics of Indian mathematics: Algebra, with arithmetic and 
mensuration, from the Sanskrit of Brahmagupta and Bhāskara  London: J. Murray.  
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Mathematics at the Royal Danish Military Academy of 1830   
Asger Senbergs  

Roskilde Katedralskole, Roskilde, Denmark; asger@senbergs.dk  

This paper takes its starting point in the question concerning why mathematics was chosen as the 
most important subject in the education of Denmark’s new officers when the Royal Military Academy 
was founded in 1830. To answer this question, source material from the period is researched. From 
the source material, three educational aims in the mathematical education can be derived: 
mathematics as a goal in itself; mathematics as a tool; and the mathematical method. These 
educational goals can be seen as a desire to educate officers in three skills: theoretical knowledge; 
vocational knowledge; and general education. Together these two sequences of each of the three 
elements are connected in pairs, thereby creating a link between the officers to be educated and 
mathematics as a taught subject. It is concluded that mathematics was chosen as the most important 
subject, because it supported the needs an officer educated at the Academy was required to possess.  

Keywords: Military schools; officer’s mathematics education; societal elite. 

The Royal Danish Military Academy  
In 1830 a new military education was created in Denmark – an education that was very different 
compared to similar educations that existed in Denmark at the time and even very different compared 
to the modern officer’s education in Denmark. This new education was called The Royal Military 
Academy, and it played a central role in the history of Denmark due to the establishment being an 
expression of the emerging nationalism that was forming in the country. It also marked the start of a 
professionalization of the military, which consequently formed a new social class: the educated 
officers. With this institutionalization of military training there was a desire to organize the 
knowledge believed necessary to become an officer. This created a need for both skilled teachers and 
teaching material of a certain quality that could support this new institution.  

In particular a need for educated mathematicians arose, since mathematics was chosen as the main 
subject for the entire education regardless of which field of study, the students were subjected to. At 
the Royal Military Academy officers could study the following fields: general staff officer; engineer 
officer; artillery and rocket officer; and road officers. For all four fields of study, mathematics was 
the subject that had the highest number of modules throughout the 4-year education. The education 
was split into two classes – referred to as the youngest class and the oldest class – both having a 
duration of two years. Students in the youngest class followed courses classified as being “purely 
scientific”, which included mathematics, chemistry, physics and languages. In the oldest class the 
students had courses classified as the “applied“ subjects, which included war history, mine teachings, 
and field maneuvers. 

The split mentioned above seems consistent with the general view of mathematics as a teaching 
subject at the time, i.e. in Denmark as well other countries in Europe mathematics was viewed as an 
entity made up by two parts: a pure and an applied (Kragh et al., 2005, pp. 297–298). Pure 
mathematics was perceived as the theoretical part, which was considered beneficial to the ability to 
think logically and connect structures in a certain way – important aspects of what was described as 



the “general education”. The applied part of mathematics was perceived as a tool for solving various 
problems, often in a very practical context.  

Out of all the subjects taught at the academy, mathematics made up half (49%) of the total number of 
lessons taught during the youngest class. In total during the four years, mathematics made up one 
fourth (25%) of the lessons taught making it by far the largest single subject taught during the entire 
education. Not only was mathematics the largest single subject, it was also taught at a very high level 
in particular in comparison to mathematical knowledge of the average population of Denmark at the 
time. The students at The Royal Danish Military Academy were taught descriptive geometry, 
mathematical analytics and rational mechanics, which consisted of both complicated proofs and 
assignments varying from very abstract situations to practical use. Even compared to the current 
officers’ education in Denmark at The Royal Danish Defense College, this prioritization of 
mathematics is notable. An article brought in a Danish military magazine present the fact that 40% 
of all permanent military employees have difficulties even with 9th grade level mathematics 
suggesting that the mathematical knowledge of today’s military education has been somehow 
downsized (Frovin, 2014, p. 16).  

In a central source material book from 1855, which is concerns the creation and subsequent operation 
of the Royal Danish Military Academy, the following is stated:  

The Danish academy is modelled on the French educational institutions. […] the organization, the 
teaching methods (first theory taught by a teacher and then repetition), the exams, which are 
supervised by other officials than the teachers – these main points with minor details are directly 
copied from the French educational institutions, only with smaller modifications which are caused 
by the economic situation and the smaller scale of the Danish educational system. (Caroc, 
Bjerring, Reich, & Købke, 1855, p. 31, my translation)  

This strong inspiration was most likely due to the fact that several of the officers in the planning 
commission of the Royal Military Academy in Denmark had themselves studied at the Ecole 
Polytechnique. A key difference between the Ecole Polytechnique, created in 1974, and the Royal 
Military Academy was however that the Royal Military Academy did not train civil engineers, which 
was the case at the Ecole Polytechnique.  

The prioritization of mathematics in a military context, as in the case of the establishment of the Royal 
Danish Military Academy is not only a Danish phenomenon, it is closely linked to similar trends 
which started years before in central Europe with France as a starting point (Bradley, 1976, p. 165). 
The French Revolution and the European wars throughout the 1700s led to developments in both 
weapon technology and construction work. This again increased the need for better educated 
mathematicians and hence teaching in more advanced mathematics.  

Still, the question remains, how mathematics was considered to help cadets become better soldiers? 
According to Karp and Schubring (2014) not much research has been carried out on mathematical 
education in a military context. In fact, they describe how this field is only just beginning to take 
shape alongside the methodology. Nevertheless this relatively new research field can contribute to 
our historical knowledge about the development of a society, because mathematical education have 
often been prioritized in historical periods, where society was in need of engineers, technical and 
scientific personal (Karp & Schubring, 2014, pp. 9-10). Hence, an understanding of how the 
mathematical education was constructed at military academies can provide us with an indication of 



what kind of work tasks the military personal was meant to fulfil, thereby also explaining the general 
perception of mathematics at the given time. This sums up the focus of this paper, which may be 
condensed into the following research question: Why was mathematics chosen as the most important 
subject, when the Royal Danish Military Academy was founded in 1830 as the new national officer’s 
education program? 

Methodical approach 
The answer to the above question shall be based on a carefully selected sample of source material 
from that period alongside a variety of secondary literature, which will form the historical background 
for the source material. The historical source material falls in two categories: books concerning 
administrative aspects; and teaching materials.  

In the first category, two very central works from the period are used. The first book is Plan to the 
Royal Military Academy (my translation) and was written by a committee in 1830. The committee 
consisted of eight officers from the Danish army. Lieutenant general Franz Christopher Bülow 
oversaw this committee, and he was also the official author of the work. This book formed the official 
establishment of the Royal Military Academy and described all relevant matters for the creation and 
operation of the academy. The content covered everything from the overall structure and economic 
frame to detailed descriptions of the teaching subjects and lesson tables for all fields of study spanning 
over all four years. This book makes up the main source, since it contains several descriptions about 
why mathematics is important and what role mathematics was to play in various connections. The 
second central book is Overview over the education in the special corps before 1930 and the Royal 
Military Academy's operation from its creation to 1855 (my translation), written by three officers and 
a professor from the University of Copenhagen: F. C. V. Caroc, V. J. Bjerring, C. E. Reich and J. P. 
Købke. This book was released on the occasion of the Academies 25-year anniversary. The book 
makes up an important piece of source material, because it is one of the only available books from 
the period that describes the development of military education and does so in a critical manner.  

In the second category, the teaching materials, there are seven books in total. All seven are teaching 
materials in mathematics: three of these are textbooks in mathematical analysis; two are textbooks in 
descriptive geometry; and the last two are figure books in descriptive geometry the purpose of which 
were to serve as support for the textbooks. One textbook by Bendz (1831) was in particular used to 
support the conclusions about the role of mathematics at the Royal Military Academy. The book is 
in mathematical analysis describing differential and integral calculations, and an analysis shows that 
it contains practically no tasks related to extra-mathematical circumstances, which supports the 
interpretation of the text by Bülow (1830). 

To set the historical frame for the Royal Military Academy, several books have been used, of which  
Danish history of Natural science, Volume II edited by Helge Kragh, and Private Schools through 
200 years, volume I edited by Christian Larsen, are some of the more important books. These works 
provide an overall understanding of the educational level of young men from the higher levels of 
society in Denmark, who would be the students at the Royal Military Academy.  

In order to set the European historical frame, both regarding military education in general and 
mathematics as a teaching subject and as a research profession in particular, several articles and books 
have been used. Here it is important to mention: Boyer (1968); Barnett (2015); and Bradley (1975). 
These works provide the study presented in this paper with background knowledge on how the 



development of the Royal Military Academy might have been influenced by similar institutions in 
other European countries, in particular France.  
 
Mathematics as the cornerstone  
In the main source (Bülow, 1830) there are several descriptions and explanations about the various 
teaching subjects which were taught at the Royal Military Academy. The description of mathematics 
is rather interesting in this context. The following quote from the introduction became the starting 
point for the research described in this paper:  

Mathematics, especially its analytical part, including rational mechanics, is considered the 
cornerstone in education as a whole. Thus it should give the students the means to understand a 
series of other important subjects. (Bülow, 1830, p. 38, my translation)  

Through careful readings of this material several other interesting quotes was found and eventually 
they came to form the analysis. Through this archival based analysis I found evidence to suggest that 
the commission, who planned and designed the Royal Military Academy, were subject to three central 
educational aims, all having mathematics as the cornerstone: mathematics as a goal in itself; 
mathematics as a tool; and mathematics as a method. These aims were never explicitly uttered in the 
source material and could therefore make up a separate question for discussion. In the present 
analysis, however, they came to structure the reading of the source material. In the following I present 
carefully chosen excerpts from the source material in order to support the finding of the three 
underlying educational aims of the commission. 

Mathematics as a goal in itself  
There are several quotes that put emphasis on the importance of “mathematics as a goal in itself” 
without mentioning a specific purpose of the mathematical knowledge, which might lead one to think 
that there was another purpose besides the more direct usage of mathematics. A central quote on this 
is from the descriptions of the teaching subject of physics, where the proper way of learning is 
explained:  

The dual way to realization; the experimental and the mathematical, which here make up the right 
teaching method, which also has an exceedingly significant influence on the entire development 
of the mind; because the mind gets used to neither neglecting the simplicity of the real world nor 
making us lose ourselves in these details, thereby forgetting the general principles. (Bülow, 1830, 
pp. 39–40, my translation)  

Here mathematics is mentioned as one of the two ways to true realization, whereas an experimental 
or practical way is mentioned as the other. In fact we touch upon a very central aspect. As mentioned 
earlier, several publications state that mathematics in this historical period is seen as a unity consisting 
of two parts, namely pure and applied mathematics. The distinction between these two is noticeable 
in the way the mathematical subjects were structured during the education at the academy. For 
example, descriptive geometry was divided into a theoretical and an applied part, with a vast 
difference between what kind of theory and assignments the students were to do. The following quote 
is a description of what kinds of assignments the students should be able to accomplish during a 
lecture in the theoretical part of descriptive geometry.  



For a given curve, draw a tangent, which has a horizontal projection that is parallel to a given line. 
(Bülow, 1830, p. 76, my translation)  

This assignment is purely mathematical without any trace of an extra-mathematical scenario, which 
was very important since the purely mathematical way was thought to be one of two parts in the 
learning process. This central point can be further validated by looking at the teaching material used 
in descriptive geometry, which are two textbooks both authored by L. S. Kellner. The first book 
(Kellner, 1830a) – which conisted of only one booklet – described a theoretical approch to geometry, 
whereas the second book – consisting of six booklets – described different ways to use the given 
theory in a wider range of subjects, spanning how to construct different buildings to how shadows 
fall on objects (Kellner, 1830b). From reading the source material it seems clear that students were 
believed be able to understand the basic sciences to the fullest before they could apply them in other 
connections. Since mathematics was a subject that had its usage in other scientific disciplines and a 
large part of the applied disciplines, mathematics appears to be a subject that students should learn 
and master before applying it in extra-mathematical connections.  

However, the mathematical curriculum exceeds the need in other subjects, which indicates that the 
students were meant to learn beyond the point of what they were actually going to use in these 
subjects. This suggests that mathematical knowledge was an educational goal in itself, because it was 
thought to be beneficial in various ways.  

Mathematics as a tool 
The second identified educational aim was that it was essential that the students learned how to apply 
mathematical equations and a logical approach to problems, because it was a required tool in both the 
purely scientific and applied subjects taught in the youngest and oldest class at the academy. 
Especially in the applied subjects mathematical knowledge was necessary, since these applied 
subjects were the ones to make a student capable of fulfilling his later duties in a specific position 
within the military.  

For that reason it was important that the students knew how to use mathematics as a tool, which 
according to the source material forms the experimental way to realization. This practical use of 
mathematics can be seen in a description of an assignment from descriptive geometries in the applied 
part, which the following quote illustrates.  

Explain the various timber connections in roof- and stair constructions. (Bülow, 1830, p. 79, my 
translation)  

This example forms a clear contrast to the other assignments from descriptive geometry in the 
theoretical part, where there is no connection to the real world. In this short assignment, the student 
should be able to construct very specific structures according to a set of requirements.  

This vast span from theoretical knowledge to the ability to use it practically is closely linked to the 
term “general education”, which is commonly referred to by Bülow (1830). Hence, this term is vital 
for this analysis, and needs to be explained in this paper as well. The term “general education” (in 
Danish “almendannelse” similar to the German “Allgemeinbildung” or “Bildung”) was a common 
term in the Danish society in the beginning of the 1800s, and the exact meaning of the term was 
greatly influenced by the first Danish professor in pedagogy, L. C. Sander. The “general education” 
term was also seen as a unity with two parts: the general part and the professional part. The 



professional part was a person’s ability to carry out a certain profession or job, which required some 
specific skills and knowledge. The general part was a person’s ability to engage in and contribute to 
different levels of the society, which required overall knowledge about culture, history, behavior, 
science, manners and language (Slagstad, Korsgaard, & Løvlie, 2003, pp. 9, 245). Both of these rather 
different parts should be in place before the general education was complete. And this was one of the 
central goals at the Royal Military Academy. Hence, in order for the students to gain this general 
education, they should be educated to be good soldiers and loyal officers with insight in every relevant 
subject in their field.  

The mathematical method  
This brings us to the last identified educational aim, namely the mathematical method. The 
mathematical method is mentioned several times in The Plan to the Royal Military Academy and was 
described as something that benefitted the general ability to think and to conclude logically, not only 
in a mathematical context but also in other circumstances. Actually, it was believed that once a student 
had acquired the mathematical method, this student would be able to transfer this knowledge and 
approach to other fields of study and everyday scenarios (which we of course know from mathematics 
education research often is not the case). 

This idea becomes clear through the following quote, which is taken from a paragraph that describes 
the Danish language as a subject, taught at the Royal Military Academy.  

The incessant desire for clarity and definitiveness of expression leads to clarity and definitiveness 
in concepts of the person, whose thinking has become sharpened by the mathematical study of the 
natural sciences. Thought and language are in close contact with each other; they constantly excite 
and control one another. (Bülow, 1830, p. 41, my translation)  

Not only is the mathematical study seen as something that sharpens the minds of the students, which 
makes them more precise in their choice of words, it is actually seen as something that makes the 
students more likely to draw the right conclusion based on logical assumptions. This is further 
supported by the following quote.  

The verdict is always most correct, when it can be constructed with numbers, or, and even more 
perfect, with specific algebraic symbols that simultaneously provide idea and form, the common 
and the special, the abstract and the concrete. (Bülow, 1830, p. 38, my translation)  

The above suggests that the mathematical method played several important roles in the education at 
the Royal Military Academy. Not only was mathematics a central subject in order to acquire the other 
subjects taught at the academy, it was also believed to develop the mind and the communication of 
those who mastered the mathematical method to its fullest extent.  

The officer: Gentleman and soldier  
In the following, I compare the above described three educational aims, which were condensed from 
the source material, and connect them with the three levels of knowledge that might make up some 
of the main reason why mathematics was chosen in the first place. These three levels of knowledge 
could be described as: theoretical knowledge; practical knowledge; and general education.   

Theoretical knowledge: It is the idea that an officer must be trained in the basic sciences that are used 
in various parts of his work as a soldier. Courses in this type of knowledge are taught at the youngest 



class, which is certainly not a coincidence, but part of a basic philosophy that these basic sciences 
must be mastered in full, before the student will be able to apply the knowledge in other contexts. 
This explains why several of the mathematical topics were not connected to any applications. The 
point was to learn the theoretical basis without any applied context.  

Practical knowledge: This type of knowledge is gained through the courses taught at the oldest class, 
because these subjects are related to the different fields of study, i.e. the “applied” subjects. For 
example, it was in the oldest class that artillery and rocket students had training in artillery, mine 
teaching and statistics, as well as practical exercises in artillery shooting and marching. This tendency 
is present in all fields of study. Many of the courses for students in the youngest class served as basis 
knowledge for the applied subjects in the oldest class.  

General education: Here the underlying idea is that an officer in addition to knowing his profession 
to his fingertips also should be a well-educated gentleman. That meant that an officer trained at the 
Royal Military Academy should be a person with a broad insight into the culture, history and 
language of Denmark as well as other European countries. The students should also have a wide 
knowledge of the natural sciences and their mutual connections, but also with sensible ethics, a good 
appearance, attitude and solid behavior.  

It may seem odd that an officer was taught about Danish literature, since this does not immediately 
suggest itself as a useful subject for an officer. But at the time an officer was also a person who should 
be able to be part of Denmark's highest layer of society. In fact, officer was one of the best educated 
professions in all of Denmark at the time. Therefore, it was indeed expected that the officers were 
well-educated in many subjects and trained in the spirit of the time.   

Conclusion  
My starting point was a question about why mathematics was chosen as the cornerstone subject, when 
the new officer training institution in Denmark, the Royal Military Academy, was founded.  

In this paper the reasons for choosing mathematics as the main subject are examined through source 
materials and mathematical teaching materials from the academy and the given period. The analysis 
of these contemporary sources was structured around three educational aims, which were supported 
by a close reading of the source material linked to other similar institutions of the time, e.g. the Ecole 
Polytechnique. These educational aims could be thought to show three distinct levels of knowledge, 
which were desirable for a recent graduate student to possess from the Royal Military Academy, i.e. 
theoretical knowledge, practical knowledge, and general education.  

Besides these two sequences being findings in their own right of the present study, yet a finding is 
that they belong together in pairs. That is to say, the aim of mathematics as a goal in itself was to 
support students’ development of theoretical knowledge; the aim of mathematics as a tool that of 
practical knowledge; and the aim of acquiring the mathematical method served a purpose of general 
education. Hence, it seems fair to say that mathematics was chosen as the cornerstone for the 
education at the Royal Danish Military Academy, because it supported the objective – namely to 
educate good officers.  
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This paper describes a research project analysing design research projects with history of 
mathematics. As a background, the theory of design research is invoked. For the purpose of this 
paper, preliminary analyses of three publications have been made. In later phases, interviews will 
supplement text analyses to enable a discussion on both explicit and implicit considerations 
involved when designing materials with history of mathematics in mathematics education. 
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Introduction 
The study of how history of mathematics (HM) can contribute to mathematics education has been 
ongoing for a long time. From time to time, major efforts have been made to design materials for 
teaching mathematics with history of mathematics. Parallel to this, design research has emerged as 
an area of study in its own right. The purpose of this research project is to use the insights that 
recent literature of design research provides to study how design have been done with HM.  

Design research 

In a recent ICMI Study on task design in mathematics education, Kieran, Doorman and Ohtani 
(2015) outlines the history of “design-related work” in mathematics education. Design efforts have 
had many forms and names, but I will take as my starting point Malcolm Swan’s encyclopaedia 
article on design research (Swan, 2014). He defines design research in this way:  

[Design research] is a formative approach to research, in which a product or process (or “tool”) is 
envisaged, designed, developed, and refined through cycles of enactment, observation, analysis, 
and redesign, with systematic feedback from end users. In education, such tools might, for 
example, include innovative teaching methods, materials, professional development programs, 
and/or assessment tasks. Educational theory is used to inform the design and refinement of the 
tools and is itself refined during the research process. Its goals are to create innovative tools for 
others to use, describe and explain how these tools function, account for the range of 
implementations that occur, and develop principles and theories that may guide future designs. 
Ultimately, the goal is transformative; we seek to create new teaching and learning possibilities 
and study their impact on teachers, children, and other end users. (Swan, 2014, p. 148) 

I choose to lean on Swan’s definition and use the phrase “design research” here. Others use “task 
design” for similar efforts – task design is not to be understood as merely designing tasks:  

[…] designing a task or task sequence in isolation from consideration of the design of the 
instructional culture in which the task is to be integrated may be of quite limited value – 
somewhat analogous to expecting a bird to fly with just one wing. (Kieran et al., 2015, p. 61) 

Based on a selection from the literature on design research (including task design), I will focus on 
four dimensions: the goal; theories, values and design principles; testing; and end result. 



First, what is the goal of the project? As seen in the quote above, the goal is to improve something 
(a product, process or tool) – for instance it could be to create materials (based on history of 
mathematics) that will improve how geometry is taught. 

Design can be seen as an art or as a science (Kieran et al., 2015, p. 62) or as both. Seen as an art, 
creativity is an important factor, seen as a science, design will be based on previous theories. In 
addition, values will always play a role: “the frames and principles used in task design are intimately 
related to aims of mathematics education” (Kieran et al., 2015, p. 65). The role of theories is 
debatable, for instance Burkhardt (2013) stresses that “strong theories” are often overestimated in 
education, and argues for “phenomenological theories for specific areas” (p. 233). Kieran et al. 
(2015) distinguish between three levels of theoretical frames: Grand Theoretical Frames (such as the 
constructivist), Intermediate-Level Frames (such as the Theory of Didactical Situations) and 
Domain-Specific Frames (such as theoretical frames concerning specific parts of mathematics). 
Based on such theories, as well as on values, design principles are often developed for the research 
project. Thus, the second dimension is which theories, values and design principles are involved. 

Kieran et al. (2015) also makes a further distinction: “Design as implementation focuses attention 
on the process by which a designed sequence is integrated into the classroom environment and 
subsequently is progressively refined, whereas design as intention addresses specifically the initial 
formulation of the design” (p. 28). In design as implementation, the testing in “cycles of enactment, 
observation and redesign” (Swan, 2014, p. 148) has a key role. Moreover, Burkhardt (2013) states 
that there is a “crucial difference” between exploration of teaching possibilities by a researcher and 
testing “what can be achieved in practice by typical teachers with available levels of support” (p. 
207). He claims that impact on practice at least requires involving “typical teachers” in testing. The 
third dimension is therefore what the role of testing is in the project, who is doing it, in what way 
and in how many cycles. 

The fourth dimension concerns the results of the project. The result may be the designed product 
that can be used by others. Often, local theories about the designed material are also developed:  

Potential users of a curriculum should know what conditions are necessary for its successful 
implementation, so they can make sure the conditions are in place […]. It is the development 
team’s job to discover and provide this information in the later stages of development and from 
use in the field. (Burkhardt & Schoenfeld, 2003, pp. 6–7) 

In addition, researchers also want to contribute to more general theories of mathematics education: 
“Design experiments […] are about improving both theory and practice” (Schoenfeld, 2014, p. 404) 

For several reasons, design research studies do not always conform to the definition. For financial 
reasons, testing cycles are often reduced to a minimum. There are also political factors; theories 
seem to be valued more than practical solutions. When publishing or applying for grants, theoretical 
results may be stressed more than design results. However, this may be changing, as signalled by the 
introduction of the ICMI Emma Castelnuovo Award – an award “for excellence in the practice of 
mathematics education”. Burkhardt (2013) contrasts the situation in education with medicine, where 
the development of new medicines and treatments are valued as much as new theories. 



Kieran et al (2015) concluded with a note that “knowledge about design grows in the community as 
design principles are explicitly described, discussed, and refined” (p. 73–74). This is exactly my 
motivation for looking at how design is conducted when history of mathematics is concerned. 

History of mathematics in mathematics education 

Jankvist (2009) shows that the literature on history of mathematics in mathematics education was 
for a long time dominated by “publications advocating […] for history in mathematics education” 
and “publications describing either concrete uses by teachers or developments of teaching 
materials” (p. 13). Some publications in the latter category can be seen as small design research 
studies, but were mostly based solely on reflections by the teacher-researcher. By adding systematic 
testing and data collection, the projects can become empirical studies on the “effectiveness” of 
history of mathematics. Recently, there have been a number of these, and they are often focusing on 
generating theory rather than the development/design of material (although design nonetheless plays 
an important part). Alternatively, putting more weight on the development part, they can become 
fully-fledged design research studies. There does exist a small number of large-scale design research 
projects, for instance the Historical Modules project (Katz & Michalowicz, 2005).  

Research questions 

The main research question of this study is: What are characteristics of the design projects that 
include history of mathematics?  

The design research perspectives are used to analyse the projects to shed light on what is considered 
important by researchers and the community. I will base the analyses on the four dimensions 
discussed above: the goal; theories, values and design principles; testing; and result. 

As not all these dimensions are likely to be described explicitly in written articles about the projects, 
there are two sub questions: a) How is this process presented in writing? b) What considerations are 
involved which are not explicitly included in the written results? 

In addition, this project may give suggestions on ways in which the literature on design research can 
contribute to HPM design projects and vice versa. 

Methods 
The project has three phases. In the first phase (reported in this article), I analyse three publications 
describing efforts in designing materials for teaching mathematics with history. The analysis is 
twofold, the texts are analysed in accordance with the categories of the design research literature, 
and also to find additional considerations not included in the design research literature that I have 
surveyed. The first phase can be regarded as a “pilot” to see if the approach seems worthwhile. In 
the second phase, a more thorough literature review is done and more texts are included, whereupon 
a more thorough analysis is done. In the third phase, interviews are conducted with researchers from 
selected design projects to identify considerations absent in the published texts. 

For the first phase, three texts were chosen: Weng (2008), Barnett, Lodder, Pengelley, Pivkina, & 
Ranjan (2012) and Jankvist (2009). They were chosen because they are different in scope, target 
group and context, and could therefore be expected to provide diversity. Two of them are not design 



research studies on the face of it, thus the analysis can give me a clue as to whether including such 
other design-related studies in my analyses are worthwhile. 

Preliminary results 
Weng: Using history of mathematics in Singapore 

Weng (2008) gives an overview of the use of history of mathematics in Singapore, while section 6 
of the article describes “an action-research based case study” in which the author developed and 
gave a course using history of mathematics.  

Goal: The stated goal of the study was “integrating history of mathematics into the teaching and 
learning of mathematics” and “investigate whether such a methodology help the students develop 
(or even enhance) a positive attitude” (p. 18). The article also includes a ten-page appendix giving 
examples from several projects, suggesting that the examples are assigned a value of their own. 

Theory, design principles, values: The article refers to several potential effects of employing 
history of mathematics, but advocates the use of history of mathematics “to inculcate positive 
attitudes of the learner, as well as the teachers, towards mathematics” (p. 3). Weng proposes a 
“didactical framework”, based on the thought that “the learner must make intellectual leaps” while 
mankind make “historical leaps”. “[The] relationship between the mechanisms which are 
responsible for each of these leaps” (p. 13) is important. The intellectual leaps should be identified, 
“psychogenetical mechanisms” to help should be found, historical mechanisms associated to these 
should be identified, and historical points found which the historical mechanisms were employed to 
tackle. Identifying the historical points is called “sourcing”, and concerns searching the literature 
and discussing with colleagues. 

In the appendix, seven kinds of “implementation methods” are given – these could perhaps be seen 
as seven sets of design principles. The seven are historical snippets; primary sources; worksheets; 
historical packages and enrichment programmes; experimental activities using ancient instruments 
and artefact; outdoor experiences; integration into modes of assessment. 

Testing: The course was taught (once) by the researcher himself. The article includes results from 
students’ and teacher’s logs and a student survey. 

Results: The stated result of the case study was that the historical approach was effective 
concerning belief and perseverance. However, as mentioned earlier, some of the materials created 
are given as examples in the appendix, and there are also examples of “evaluations” connected to 
the concrete examples: “[…] students appeared motivated since this approach replaced the usual, 
re-orientated their mathematical perspective and promoted cultural understanding.” (p. 35) 

There is no discussion of which contexts the examples given could be suitable in, but there is 
discussion on the Singaporean context, including data on teachers’ attitudes and a lament on lack of 
teacher training in history of mathematics, lack of curriculum time and lack of assessment rubrics. 
This could perhaps be helpful for others to see whether their context is similar to the Singaporean. 

Barnett et al.: Designing student projects via primary historical sources  

Goal: The project described in Barnett et al. (2012) builds upon an earlier design research project (a 
“pilot program”) in which “over a dozen historical projects for student work in courses in discreet 



mathematics, graph theory, combinatorics, logic, and computer science” (p. 189) were developed. In 
the new project, “additional projects based on primary sources are being developed, tested, 
evaluated, revised and published” (p. 189). The goal was thus to develop these resources, with the 
aim “to recover motivation for studying particular core topics by teaching and learning these topics 
directly from a primary historical source of scientific significance” (p. 190). The article was written 
while the authors were in the second year of the four-year project. 

Theory, design principles, values: The article does not give an overview of the theory it is building 
on, instead just stating that “Much has already been written about teaching with primary historical 
sources”, and then referring to chapter 9 of the 10th ICMI Study. Some design principles are given:  

each historical project is built around primary source material which serves either as an 
introduction to a core topic in the curriculum, or as supplementary material to a textbook 
treatment of that topic. Through guided reading of the selected primary source material and by 
completing a sequence of activities based on these excerpts, students explore the science of the 
original discovery and develop their own understanding of the subject. Each project also provides 
a discussion of the historical exigency of the piece and a few biographical comments about the 
author to place the source in context. (p. 190) 

In addition, fifteen “pedagogical goals guiding the development” are given. They include “students’ 
verbal and deductive skills”, “moving from verbal descriptions […] to precise mathematical 
formulations”, “the organizing concept behind a procedure”, “understanding of the present-day 
paradigm [and] standards”, “attention to subtleties”, “students’ ability to equally participate”, “offer 
diverse approaches”, “provide a point of departure for students’ work”, “more authentic (versus 
routine) student proof efforts”, “a human vision of science and of mathematics”, “a framework for 
the subject”, “a dynamical vision of the evolution of mathematics”; “greater understanding of its 
roots” and “engender cognitive dissonance (dépaysement)” (p. 190). 

Testing: The testing is done “by faculty at twenty other institutions” (p. 189), but no more detail is 
given in the article on the procedure, number of iterations and so on. 

Results: The projects are published online at http://www.cs.nmsu.edu/historical-projects/, including 
“notes to the instructor” and comments from users of the projects. The article includes some 
experiences from the implementations (p. 199–200), including some comments from students and 
some possible ways of using the materials. This approach to using history to teach mathematics “is 
effective in promoting students’ understanding of the present-day paradigm of the subject” (p. 200). 

Jankvist: Using history as a ‘goal’ in mathematics education 

Jankvist (2009) is a dissertation, and therefore has more room for (and demand of) a clear 
theoretical underpinning than the articles. Moreover, Jankvist’s project is not design research as 
such – to the contrary, the project is an empirical research study whose stated goals are to answer 
general questions, with materials only as “a byproduct” (p. 8). The three research questions are  

RQ1. In what sense, to what extent, and on what conditions is it possible to have upper secondary 
students engage in meta-issue discussions and reflections of mathematics and its history in terms 
of ‘history as a goal’?  



RQ2. In what sense and on what levels may an anchoring of the meta-issue discussions and 
reflections in the taught and learned subject matter (in-issues) be reached and ‘ensured’ through a 
‘modules approach’? 

RQ3. In what way may teaching modules focusing on the use of ‘history as a goal’ give rise to 
changes in students’ beliefs about (the discipline of) mathematics, or the development of new 
beliefs? (p. 45) 

However, for two reasons it makes sense to regard this project as having a design research project at 
its core. Firstly, his way of answering his research questions is by designing and testing two 
modules. Secondly, the developed materials are interesting results in their own right, as evidenced 
by their being published in full (Jankvist, 2008a, 2008b). Thus, in this analysis, I will look at the 
design parts of Jankvist (2009) as an example of design research. 

Goal: The goal of the design research part follows directly from RQ1–3; to design teaching modules 
engaging students in meta-issue discussions and reflections of mathematics and its history, anchored 
in in-issues, changing students’ beliefs about mathematics in the process. 

Theory, design principles, values: The theories are treated systematically and in detail. First, he 
gives his categorization of the whys and hows. Then, he discusses Meta-Issues (inner and outer 
driving forces; pure and applied mathematics; epistemic objects and epistemic techniques; discovery 
versus invention; multiple developments), In-Issues (in particular Sfard’s theory of commognition) 
and Student Beliefs (stressing students’ beliefs about mathematics as a discipline and the role of 
reflection in changing beliefs). As Meta-Issues and In-Issues are part of what the students are 
supposed to reflect on, a thorough theoretical treatment of them is of particular relevance. 

Design principles are not treated as systematically; they are found throughout the dissertation: 

Obviously, original sources have to be chosen with great care, depending on the educational level 
in question, in order to make sure that the students have a realistic chance of actually working 
with them. (p. 33) 

The historical cases chosen for [a modules approach] should […] be exemplary, e.g. in such a 
way that they embrace as many general topics and issues related to the history and historiography 
of mathematics as possible. (p. 89) 

[cases should be chosen] for which the in-issues could be built up in front of the eyes of the 
students in parallel with the explaining of the related meta-issues. (p. 94) 

Other design principles are “using modern notation in the presentation of the mathematical in-
issues” (p. 95), “setting the text of the teaching material with two different fonts; one for in-issues 
[…] and one for meta-issues” (p. 95), and “Following their group discussions, the groups were to 
write essays on the topics in question and hand these in” (p. 95). 

Jankvist also offers some of his “personal viewpoints”, such as that it is “important to provide 
students with a ‘picture’ of what mathematics in time and space is” and that “one must have some 
kind of understanding of the involved mathematics also” (p. 7). 

Testing: The actual teaching was done by “a typical upper secondary mathematics teacher” (p. 96), 
being “coached” by the researcher (p. 115), but no teacher’s manual was written (p. 95). There was 



just one cycle, but the testing of the first module led to some changes in the second module. Most 
importantly, “[instead] of the introductory essay assignments, so-called historical exercises were 
introduced” (p. 157). Moreover, discussions with the teacher also led to at least one change, in that 
the researcher agreed to discuss the final essays with the class (p. 127). 

An immense amount of data was collected: videos of the teaching and of focus group discussions, 
interviews with teachers and students, lots of hand-ins, including essays, and several questionnaires.  

Results: The modules have been published, but not (as far as I know) in a new version informed by 
the results of the testing, although there are examples of details that were “ill-suited” (p. 150) and 
examples of new ideas; including role play (p. 202) or using the wording “on the shelves” (p. 203). 

There is no attempt in the dissertation to describe conditions necessary for using the modules, 
except that “In other countries with different types of curricula, the possibilities for doing this may 
be somewhat limited” (p. 108). It is pointed out that although this “typical” teacher was coached by 
the researcher, she felt she lacked historical knowledge (p. 275). This makes it doubtful that other 
teachers with the same level of confidence would use the modules on their own – suggesting that 
having teachers collaborating with researchers to develop materials might be better (p. 304). 

On the questions that the dissertation set out to answer, however, there are ample answers: Students 
were able to have discussions on meta-issues, anchored in in-issues. The essay assignments “appear 
to be a suitable setting for having the students engage in meta-issues” (p. 201). “[S]ome of the 
effects of choosing a newer history over an older one appear to be that it may be easier to relate to” 
(p. 281). Changes in students’ beliefs/views were observed. 

Preliminary discussion 
The three publications include the theoretical background to very different degrees – probably partly 
because of context and space restrictions. Therefore, I will not discuss this in detail here. Design 
principles, however, are detailed in all three publications. Some of these concern the parts of history 
to be chosen. In Weng’s case, specific “historical points” are found that will help students make 
“intellectual leaps”, while in Jankvist’s case, the historical cases should be “exemplary”, but without 
concern for whether the mathematics covered is already a central part of the curriculum. Barnett et 
al., on the other hand, does not discuss the choices of topics but seem to choose topics already 
central to the curriculum. 

All three projects include testing to some degree, although they include different levels of detail. 
While Barnett et al. explicitly states that testing will be used to revise the materials, Jankvist gives 
examples of revisions that could be made but he does not make them. None of the publications give 
very detailed (testing-based) pointers on what “conditions are necessary for its successful 
implementation”, to quote Burkhardt and Schoenfeld. However, both Jankvist and Weng are 
concerned about the teachers’ attitudes and knowledge, raising the question of whether the materials 
could be used by “average” teachers at all, without significant support. 

For two of the publications, the materials produced are not presented as the main result of the 
studies. If this emerges as a pattern, it would be interesting to investigate whether this is because of 
the authors’ opinions or because of external factors such as the expected format of research texts. 



Conclusion of the first phase (“pilot”) 
The first phase of this project establishes that there are significant differences in the goals, 
theoretical underpinnings, design principles, testing and results in the three chosen texts. Bringing 
such differences into the foreground may contribute to a discussion which can, in turn, benefit 
future design research projects. 
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Purpose and question of the study 
In the Federal Republic of Germany, public remembers so-called New Math mostly as a curious 
episode during which set theory has preceded numbers in primary mathematics education, a reform 
that has been controversially discussed and finally taken back, having been branded a failure. Thus, 
a closer look at the history of this reform is required. 

As in any educational reform, changes concerned all different components of the educational system. 
Keitel (1980, p. 449) summarizes three levels that are crucial for the course of any reform, namely a 
subject’s educational scientific community, educational administration and curricula alongside their 
implementation in textbooks. Neglecting practical classroom experience, this list stucks to a more 
theoretical view, whereas Fend (2008) constitutes a multi-layer model of educational system upon 
the levels administration (politics and curriculum), school (teachers) and lesson (pupils and parents), 
putting more emphasis on practice and social reception. In both concepts textbook production is seen 
as being closely linked to curricular decisions, nevertheless it is also stated that – particularly within 
the German New Math movement – schoolbooks served as “instruments of innovation” inside the 
classroom (Keitel, Otte, & Seeger, 1980, p. 73). For these reasons, the project is based on a multi-
layer model of schooling comprising the following levels: scientific theories of education, curricula, 
textbooks and implementation in classroom. Former analysis of the reform in Germany has mostly 
emphasized on curricular aspects (Damerow, 1977; Keitel, 1980; Zumpe, 1984), has mainly been 
focused on secondary education and dates back from when New Math curricula were still mandatory, 
causing those accounts to criticize the concepts and implementations rather than bringing them in line 
with long-term historical development. 

From this derives the main purpose of the project, which is to describe ideas and concepts (with regard 
to aims, contents, principles, methodical suggestions) leading to the reform of mathematics education 
in West German primary schools and compare them to how they were implemented into methodical 
concepts. Three different 1st grade textbooks and associated teacher handbooks from the 1960s and 
1970s were chosen as exemplary key sources: alef by Bauersfeld et. al., which developed from the 
country’s only long-term classroom project (Frankfurter Projekt), Wir lernen Mathematik by 
Neunzig & Sorger, which was the first New Math textbook for primary level being published and 
which is explicitly based on the concept of Z. P. Dienes, and Mathematik für die Grundschule by 
Fricke & Besuden, which originated from a former numeracy textbook based on the operative 
principle and therefore on the results by J. Piaget.  

Results 
It shows that the courses differ when it comes to basic curricular decisions as well as to the relation 
between mathematics, sets and arithmetic. Bauersfeld et. al. have created a non-linear course that is 



based on fundamental logical (relations, sets, transformations) and geometrical concepts. Here, 
arithmetic is founded on mathematics; sets serve as one example of a basic mathematical notion. 
Fricke & Besuden subordinate all their subject matter decisions to the learning of operative thinking. 
Thus, mathematics becomes a means for this, and arithmetic as well as set theory, logic and geometry 
serve as examples for mathematical thinking. Neunzig & Sorger’s course, however, is aiming at a 
mathematical foundation of arithmetic, which is solely based on sets. 

Especially the latter, which largely narrowed the original idea – namely to replace pure arithmetic by 
propaedeutic mathematics from the start – to teaching set theory in advance of numbers and 
numeracy, was widely disseminated and thus influential for the course of reform. The question occurs 
what might have caused this development. One result of further investigation of concepts of numeracy 
education up to the 1960s at the German Volksschule is that such an approach could be brought in 
line with long-term tradition of German primary arithmetic education.  
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Introduction 
The aim of this poster is to present the study of the history of the development of genetic and, in 
particular, historic-genetic approach in works of Russian mathematics educators of the second half 
of the 19th century and first half of the 20th century. It is important because the genetic approach and 
the history of mathematics are used in mathematics teaching nowadays (e.g., Fauvel & van Maanen, 
2000). The role of genetic approach and history of mathematics for mathematics teaching is 
important today and it has been investigated by many authors (e.g., Furinghetti & Radford, 2008). 
The role of genetic approach and history of mathematics in works of Russian mathematics 
educators also needs a systematic research. In our study (work in progress), we use books and 
articles written by Russian mathematics educators of the past, notes of their lectures, and 
proceedings of Congresses of mathematics teachers held in the beginning of the 20th century. 

Genetic and historic-genetic approach to the teaching of mathematics in works 
of Russian mathematics educators 
Progressive Russian mathematics educators developed ways of using history and genetic approach 
in mathematics teaching since the middle of the 19th century. 

Russian mathematics educator Petr Semyonovich Guryev (1807-1884) was acquainted with works 
of F.W.A. Diesterweg. As early as in the middle of the 19th century he insisted on the use of 
elements of genetic and concentric (Safuanov, 1999) teaching. He wrote (Guryev, 1857, p. 176): 

It is necessary that theory would develop like concentric circles… It is more appropriate and in 
accordance with the progress of development, that the definitions should be given at the end 
rather than in the beginning of the teaching of elementary arithmetic and geometry. 

Viktor Viktorovich Bobynin (1849-1919), in his report on the 7th All-Russia congress of scientists 
and doctors he explicitly argued that it is necessary to use genetic method in geometry teaching and, 
in particular, to base the methods of teaching on the history of mathematics (Bobynin, 1886, p. 31).  

At the end of the 19th century and in the beginning of the 20th century, one of the leading figures in 
the development of Russian mathematics education was Semyon Shokhor-Trotsky, author of 
mathematical textbooks for elementary mathematics. He invented the “Method of expedient tasks” 
which was essentially similar to genetic method. He wrote in one of his methodical guidebooks for 
mathematics teachers (Shokhor-Trotsky, 1935, p. 9):  

The true method consists in that we should put a child in conditions at which human mind started 
inventing arithmetic, we should make him a witness of that invention. But it is not sufficient 
today. Nowadays we should aim at putting a child in conditions at which she/he would become 
not only a witness but rather the active participant of that invention.  



Most interesting was the development of didactic ideas of Nikolai Izvolsky. Beginning with the 
method of “combination of mathematical representations” (Reports of the First Russian Congress of 
Mathematics Teachers, 1913, pp. 148-157), he eventually came to the profound expression of the 
genetic approach (not reduced to the historical one) to geometry teaching: “…A view of geometry 
as a system of investigations aiming at finding answers to the consequently arising questions” 
(Izvolsky, 1924, p. 9). He elaborated an original version of the genetic approach.  

Conclusion 
Thus, we see that in Russian mathematics education many researchers, mathematicians, as well as 
mathematics educators, strongly contributed to the development of the genetic teaching of 
mathematics. N. Izvolsky articulated the idea of indirect genetic teaching prior to O. Toeplitz. We 
think that ideas of Russian mathematics educators, especially those of S. Shohor-Trotsky and N. 
Izvolski, would be useful for the further elaboration and improvement of the genetic approach in 
future. The development of ideas of Russian mathematics educators will be presented in the poster 
via the use of images and schemes. 

References 
Bobynin, V. V. (1886). Philosophical, scientific and pedagogical significance of the history of 

mathematics. Moscow, Russia: Fiziko-matematicheskie Nauki.  

Fauvel, J., & van Maanen, J. (Eds.). (2000). History in mathematics education: The ICMI study. 
Dordrecht, The Netherlands: Kluwer. 

Furinghetti, F., & Radford, L. (2008). Contrasts and oblique connections between historical 
conceptual developments and classroom learning in mathematics. In L. English (Ed.), Handbook 
of international research in mathematics education (pp. 626−655). New York, NY: Routledge, 
Taylor and Francis. 

Guryev, P. S. (1857). A detailed outline of teaching initial mathematics to small children. Russkii 
Pedagogicheskii Vestnik, 2, 172−199. 

Izvolsky, N. A. (1924). The didactics of geometry. Petrograd, Russia: Brokgauz – Efron.  

Reports of the First Russian Congress of Mathematics Teachers (1913). St. Petersburg, Russia: 
Sever. 

Safuanov, I. (1999). On some under-estimated principles of teaching undergraduate mathematics. In 
O. Zaslavsky (Ed.), Proceedings of the 23rd Conference of the International Group for the 
Psychology of Mathematics Education (Vol. 3, pp. 153−160). Haifa, Israel: Technion. 

Shokhor-Trotsky, S. (1935). The didactics of arithmetic. Moscow, Russia: Uchpedgiz. 

 



TWG13: Early years mathematics 



Introduction to the papers of TWG13: Early years mathematics  
Ingvald Erfjord1, Christiane Benz2, Esther Levenson3 and Bozena Maj-Tatsis4  

1University of Agder, Norway; ingvald.erfjord@uia.no,  
2University of Education Karlsruhe, Germany; benz@ph-karlsruhe.de,  

3Tel Aviv University, Israel levenso@post.tau.ac.il;  
4University of Rzeszow, Poland; bmaj@ur.edu.pl  

 

Introduction 
The working group on Early Years Mathematics was established at CERME 6. The aim of this 
working group has always been to share scholarly research concerning mathematics for children aged 
3-8. In this age group, the transitions within preschool, and from preschool to the early grades of 
primary school are important areas of attention. The working group on early years mathematics has 
also considered that in different countries preschool education has different objectives and children 
in different countries begin primary school at different ages (e.g., in Sweden there is one preschool 
curriculum for children aged 1-6 followed by primary school, and in UK there are different curricula 
for with nursery, preschool and primary school: 0-2, 3-4 and 5-8 years). These differences have 
always stimulated fruitful discussions and CERME 10 was no exception.  
The 15 papers were each allocated 30 minutes of attention during the TWG 13-sessions; 12 minutes 
for presentation, 8 minutes where a different participant prepared a response or query, and 10 minutes 
for open discussion. The five posters were allocated 15 minutes each for a brief presentation and open 
discussion. One 30-minute slot was reserved for group work where participants from different 
countries were grouped and discussed quite openly topics of common interest (such as, e.g., the role 
of aesthetics in mathematics and the use of manipulatives in mathematics), and another 30-minute 
slot was reserved for discussing the plenary by Lieven Verschaffel on children’s number sense. It was 
very fortunate to have him as a participant in TWG13..The final 90-minute session on Saturday was 
used to collaboratively prepare the report for Sunday, which together with what was presented and 
discussed in the other sessions, formed the basis for this introduction.  

One of the Friday sessions included a 60-minute presentation and discussion of the Early Years 
Mathematics chapter draft for the soon to be published ERME book, where one of the editors of the 
book (Kenneth Ruthven) was present. Participants had been asked to read and send their questions 
and comments to the chapter in advance of the conference, and these inputs, as well as comments 
during the session, contributed important input to the ongoing discussion in the group.  

The number of participants in TWG13 has been quite stable over the past five conferences, and each 
time the group has benefitted from a quite broad attendance when it comes to the area of Europe. 
Twenty-nine participants from 11 different countries attended the working group in Dublin (see the 
table below). 
  



 

Country Number of papers Number of posters Number of Participants 

Belgium   1 

Denmark   1 

Germany 1 1 3 

Greece 2  2 

Israel 1  1 

Norway 3 2 8 

Poland 1 0 1 

Portugal 0 1 1 

Sweden 3 1 4 

Spain 2 0 4 

UK 2 0 4 

TOTAL 15 5 29 

 

General summary of presentations 
Seventeen of the 20 papers and posters concerned preschool children aged 3-6 years, 
preschool/kindergarten teachers’ professional knowledge and competence development or teaching 
materials for activities in preschool. The remaining three contributions focused on children aged 6-7 
years, which in most countries means Grade 1 in school. Compared to previous years, there was an 
increased attention given to preschool compared to early schooling. 

Broad attention was given to the roles of preschool teachers’ competencies in promoting early years 
mathematics learning. Vanegas, Gimenez and Samuel studied school mathematics narratives in early 
childhood teacher education, focusing on how the future preschool teachers recognized the potential 
of two professionally designed geometrical tasks to promote mathematical processes. Palmér and 
Björklund considered how preschool teachers characterize their own mathematics teaching in terms 
of design and content, while Hundeland, Erfjord and Carlsen analysed preschool teachers’ 
orchestration of researcher-designed mathematical activities. They used this analysis to discuss what 
can be learned about teachers’ knowledge by adopting the Knowledge Quartet by Rowland and 
colleagues for kindergarten level. Tirosh, Tsamir, Levenson and Barkai studied preschool teachers’ 
variations when implementing a patterning task, where they investigated the impact of the various 
implementations on children’s success in extending repeating patterns. Gifford, Griffiths and Back 
presented a theoretical paper concerning the use of manipulatives with young children, while 
Skoumpourdi presented a framework for designing inquiry-based activities for early childhood 
mathematics. Silva, Costa and Domingos offered an nterdisciplinary approach to linking science and 
mathematics in early mathematics. A new issue presented and discussed during our WG was 



mathematics for special needs children during the early years. Gasca, Clemente and Colella outlined 
and discussed the design of mathematical instructional activities to foster achievements in 
mathematics for children with Trisomy 21 (Down’s Syndrome). Peter-Koop and Lüken considered 
the role of inclusive compared to exclusive settings for the learning of mathematics for children with 
special needs.  

In total, eight papers and posters focused on the learning and development of mathematics for 
preschool children. The paper by Tzekaki and Papadopoulou was based on a teaching intervention 
for developing generalisation in early childhood. Björklund’s paper considered the importance of 
adults challenging two year old toddlers’ evolving concepts of numbers in their play. Her paper 
stimulated a discussion as to whether 3 years of age should be the lower limit of attention for our 
group as it was in the past. Sundström and Levenson reported on an exploratory study of young 
children’s aesthetic development in the context of mathematical explanation, while Pettersen and 
Volden presented a poster considering the use of maps in kindergartens and children’s development 
of spatial orientation and navigations. Bjørnebye reported from a multi-case embodied design study 
on early learning of numbers, while the paper by Schöner and Benz studied preschoolers’ perception 
and use of structures in sets, adopting eye-tracking as a tool. Breive studied preschool children’s 
argumentation as part of an inquiry approach in reflection symmetry and Rinvold investigated 
children’s learning of numerocity. Both Breive and Rinvold adopted Radford’s theory of knowledge 
objectification to kindergarten settings. 

Regarding the first year of primary school, Maj-Tatsis and Swoboda reported on an intervention study 
on first grade school children’s ability in noticing and using regularities in three-dimensional 
geometrical objects while using playing blocks. Van Bommel and Palmer focused on 6 years old 
children’s representation of the semi-concrete and semi-abstract, as connections between concrete 
(objects) and abstract (signs) representations. Finally, Thoules presented a self-study action research 
study on the role of gestures in supporting mathematical communication for first grade students with 
language delays.  

Main characteristics and issues in focus 
The group had ongoing discussions about the importance of fostering children’s early development 
of mathematics for later success. As such, the group experienced presentations and discussions of 
several intervention and exploratory studies, teacher development and ways of fostering children’s 
mathematics learning. The role of play and the term “playful learning” was given great attention. This 
proposed term takes into account that distinguishing between play and learning at this age-level 
makes little sense. The argument offered was that an activity designed, planned and guided by the 
teacher may indeed promote learning among children, but can be considered as play by the children. 

As usual, the group presented a mixture of small scale studies (case study design), large scale studies 
and several pilot studies for larger studies. These different studies contributed valuable insights. We 
also experienced a broad range of theory in discussions of papers and posters, including the theory of 
objectification, variation theory, socio-cultural theories, the use of Clements and Sarama’s 
framework, the core knowledge system, as well as development of conceptual frameworks. The 
theoretical discussions of the group were supported by Lieven Verschaffel’s perspective and 
contributions, generating fruitful discussions of theory use and development. 



The most prominent “news” for our group came from presentations discussing the following issues: 
ways in which special needs children can engage with mathematics, toddlers and mathematics, and 
young children’s appreciation for the aesthetical dimensions of mathematics. The group was also 
introduced for the first time to the possibility of using eye tracking as a tool in early years mathematics 
research. We encourage researchers to continue with their important work regarding early years 
mathematics and hope to see new insights in the next CERME meeting. 
 



Aspects of numbers challenged in toddlers’ play and interaction  
Camilla Björklund 
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The aim of this pilot study is to explore when and how toddlers discern aspects of number in 
exploratory play and communication. Data for analysis consists of video-observations of 23 1–3- 
year-olds’ mathematical activities in preschool, revealing occurrences where toddlers’ conceptions 
of number are challenged. A qualitative analysis informed by Variation theory of learning provides 
important clues for early mathematics education: toddlers encounter many aspects of number on a 
daily basis, but their conceptions are rarely challenged. This study will work as a basis for 
intervention and further studies of the possibility to enhance early mathematics education. 

Keywords: Early childhood education, mathematics, number concept, toddlers. 

Introduction 
There is a diversity of pedagogical approaches and theoretical understanding of young children 
learning mathematics. Palmér and Björklund (2016) discuss in a recent review of contemporary 
preschool mathematics research that what children are actually offered to learn in preschool differs 
to a great extent, even though there is a consensus among the research community that early math 
matters. Consensus is however not reached when it comes to what and how mathematics should be 
taught. Some argue that basic understanding, which some children already have acquired, is enough 
and preschool should offer a space for children to use and master these skills. Others find it 
necessary to challenge children’s knowledge and set goals for learning that the majority of the 
children in a group have not yet mastered (Claesson, Engel, & Curran, 2014). 

Many researchers have made efforts to describe developmental trajectories in mathematics learning 
and what to expect from children at different ages or in what order skills develop in general. 
Consequently, there is a large body of research departing from different theoretical approaches (see 
Baroody, Lai & Mix, 2006; Sarama & Clements, 2009 for overviews). A contemporary theory – 
Variation theory of learning (Marton, 2015) – proposes a bold conjecture that the understanding of 
whole numbers originates from experiences of different aspects of number, rather than a predictable 
development trajectory. Focus is here shifted from descriptions of children’s competences and 
learning trajectories towards the content to be learnt, and particularly what it takes to learn that 
content. Based on this conjecture, this study directs attention to what aspects of numbers are 
discerned by toddlers in play and interaction in preschool. The theoretical framework furthermore 
provides analytical tools for interpreting why children express different ways of experiencing 
numbers and what is possible to learn in different interaction. The study will therefore have impact 
on education and further research. There are many aspects of mathematics that could be made object 
for this study, but in this particular pilot project the interest is demarcated to number concept. 

Aspects of number as learning object in the early years 
The concept of number is complex and research shows that many competences seem to be necessary 
for children, to develop their numerical reasoning and arithmetical skills. By the time children turn 
three years, most of them already know the beginning of the sequence of counting words and are 



acquainted with nursery rhymes with number words. To develop an advanced understanding of the 
different meanings of number in different contexts is however a process that continues until children 
are about eight years old, according to Fuson (1992). In the early years, the sequence of counting 
words is best described as a continuing string of words that lack numerical meaning. During their 
preschool years, children’s understanding of number words includes also a numerical meaning, but 
how this process happens is an issue raised by Wynn already 25 years ago (Wynn, 1992). There is of 
today no consensus how this development occurs or what seems critical for learning to handle 
numbers in arithmetic tasks. Some (c.f. Carpenter & Moser, 1982; Fuson, 1992) claim that counting 
is the foundation for arithmetic competence, while others argue for the necessity of perceiving the 
part-whole relationship of numbers (Baroody & Tiilikainen, 2003). One way of finding a path to 
understand the development of number sense and arithmetic skills could be to direct more attention 
to the features of numbers and how numbers may be perceived in different ways, as proposed by 
Marton (2015). A controlled study by Benoit, Lehalle and Jouen (2004) has for example shown that 
the perception of numbers as parts and whole simultaneously, supports children in acquiring the 
meaning of small numbers. This builds on the ability to perceive numbers as exact sets of items 
without counting, referred to as “subitizing” (Kaufman et al., 1949). Subitizing is limited to small 
amounts of three or four, but the ability can be enhanced to larger numbers, so called conceptual 
subitizing (Clements, 1999). When items are arranged in ways that make them possible to recognize 
as patterns or collections of sets, it is easier to compare and estimate both exact number and larger 
magnitude. However, the sequence of counting words and the meaning of numbers as descriptions 
of sets of objects (a sense of “manyness”) probably has to be considered as two necessary aspects of 
numbers that children presumably learn during their first years. 

Even though young children seem to have the ability to perceive exact number, there is no guarantee 
that all children make use of this ability. Studies (Hannula, Mattinen & Lehtinen, 2005) show that 
far from all three-year-olds take initiatives to focus on numerical features of their surroundings or 
use number words in routine situations and play. Spontaneous attention to number among young 
children has nevertheless shown to predict later mathematical achievements (Hannula-Sormunen, 
Lehtinen & Räsänen, 2015) and this can be enhanced by social interaction and directed attention 
towards number relations, with long-lasting effects.  

From earlier research we have reasons to believe that certain aspects of number are necessary to 
discern in order to develop number sense and arithmetic skills. Neuman (1987) argued, based on a 
study of 6-7-yearolds that children who suffer from math difficulties cannot experience the first ten 
natural numbers as magnitudes nor the relations between them. This lack hinders them in perceiving 
that 7 may be a part of 9 and the difference between them is 2. Most children develop strategies to 
deal with numbers and arithmetic tasks, but those who cannot discern the part-whole relationship 
have to turn to cumbersome strategies of counting up and down and even double-counting. Neuman 
further described how children’s strategies for problem solving are related to their conception of 
numbers and what aspects of numbers that the children can differentiate. The following aspects are 
known from the vast literature in the field, confirmed as aspects necessary for arithmetic 
computation in Neuman’s study: a) numbers can be represented in different ways, b) numbers 
constitute a part-part-whole relationship, c) number words refer to cardinality (or manyness), and 
d) number words refer to ordinality (or sequence). 



In an on-going project (Björklund et al., 2016) we found these aspects present in some, but not all, 
5-yearolds conceptions of number. It is thereby of interest to further investigate how younger 
children perceive numbers. Thus, the question raised in this pilot project is: What aspects of number 
are discerned by the youngest preschoolers and how are their conceptions of number challenged?  

Theoretical framework 
The theoretical framework used in this study is Variation theory of learning (Marton, 2015). The 
theory states that variation is central for learning and patterns of variation constitute necessary 
conditions for learning (Marton & Tsui, 2004). When learning new concepts, there is in particular 
one pattern of variation that is essential – contrast. By contrast means that what is to be learnt is 
held constant but some critical aspect of the learning object has to be contrasted to enable 
discernment. In other words, to learn the meaning of “five”, sets of five (items constituting the sets) 
may vary (five flowers, five dogs, five children) but the “fiveness” will appear only when five in a 
set is contrasted with for example four in another set. Only then, can the numerical meaning of five 
be discovered and thereafter generalized to the different sets of five. Generalization, differentiation 
of aspects that are potentially necessary to discern in order to better understand the concept, and 
simultaneous attention to several aspects are the other patterns of variation that the framework holds 
as necessary for learning (Marton, 2015). This theoretical framework provides tools for analyzing 
empirical data to describe the process of learning by focusing on how necessary aspects of the 
learning object are presented to the learner. For example, the child needs to differentiate that 
numbers have both ordinal and cardinal meaning to be able to operate with numbers in arithmetic 
tasks, but if the child has not discerned numbers’ cardinality they cannot make use of numbers as a 
representation for sets of objects.  

Children’s conceptions of a phenomenon constitute, according to this theoretical framework, of 
those aspects that the child can discern in a particular situation (either due to earlier experiences of 
similar phenomena or due to what the situation offers the child to experience). Conceptions can 
thereby be interpreted as the way a child encounters a phenomenon. Lack of discerned aspects is 
thereby also expressed in children’s use of numbers in problem solving (Neuman, 2013) and in 
particular when they are encouraged to communicate their understanding of numbers to peer or 
adults. 

Methods 
The aim of this study was to get an overview of toddlers’ conception of number and in what ways 
their conceptions of number are challenged. This is done through an analysis using Variation theory 
of learning as analytical tool, which directs attention to the content of learning and in particular how 
a phenomenon (number in this case) is perceived by the children in a specific situation. The unit of 
analysis is interaction that provides opportunities to discern necessary aspects of number.  

The participating children attend two randomly selected preschools in Finland, where they take part 
of a pedagogical practice with their peers in both planned activities and self-initiated play. 23 
toddlers altogether (aged 13 months – 3 years 9 months) are observed in their common activities in 
these preschools. The data consists of 45 hours of video-documentations originally collected for a 
larger study with a broader mathematics focus (see Björklund, 2007). Of these, episodes where 



number concepts are focused on are analyzed more thoroughly in this particular study. Written 
consent for children’s participation in video-recorded documentations is given by the children’s 
parents. Children’s and teachers’ names are anonymized in all public presentations. 

The analysis concerns the opportunities children are given to develop their conceptions and learn to 
use numbers and is conducted in two steps: 1) the children’s conceptions of number is 
characterized, 2) the analysis focuses what aspects that are emphasized when children express a 
certain conception including if and how this conception is challenged. The theoretical framework 
provides analytical tools to study such situations where the number concepts are challenged and 
what constitutes the development opportunity. We are in accordance with the theoretical framework 
looking for situations where children or adults “open up dimensions of variations” (Marton, 2015), 
meaning that a certain aspect of the learning object is emphasized and thereby made possible to 
explore and learn the meaning of. It is in particular contrast that we look for and how it enables 
different dimensions of variations to be opened up. 

Results – Acts that challenge toddlers’ number concepts 
We know from studies with older children that some critical features of number are necessary to 
discern to use numbers successfully in arithmetic problem solving. In this study we see the same 
aspects’ importance and can describe how the lack in discerning necessary aspects results in 
different conceptions of numbers. The sequence of counting words is quite common in different 
activities, but the sequence is mostly used for naming items or as any nursery rhyme. The number 
concept is then limited to an ordered string of words without relation to numerosity. It is more 
seldom found that the children use the sequence of counting words to find out how many objects 
there are in a set (in a cardinal sense). However, there are examples of children using number words 
to describe sets and quantities and thereby expressing a conception of number as quantitative 
relations. The following presentation will discuss how toddlers’ conceptions of number are 
challenged in their interaction with peer and adults, with analytical focus on which aspects that are 
made possible to explore for the further development of number concept.  

Describing objects or sets  

Number words are by many toddlers used as a rhyme that is fun to recite. Some relate the reciting to 
groups of objects, one-to-one, and a few children use number words to describe sets of objects. The 
difference between these ways of using number words is in the conception of numbers as ordered 
names (emphasizing an ordinal aspect) or numbers as describing a set (a cardinal aspect brought to 
the fore). To challenge number concepts’ meaning it is then necessary to open up these dimensions 
of variation to the child: 

Harry (2:0): (looking in a picture book) Wow, horses.  

Nancy (3:9): Yes. It’s two horses. 

Harry (2:0): (browsing through the book) There they are. There are also two. 

The short but clear comment from the peer opens up for numbers’ “manyness” and numerical 
relationships to be explored. Harry shifts his attention from “horses” to numbers, “two”. However, 
numbers are not further challenged, such as by comparing two horses with more or less or 
generalizing to other sets of two.  



Expressions of numbers as names of items are common in the literature and frequently observed in 
this study. This conception of number (or rather the number words) is characterized as a way to 
enumerate by giving each counted item a number name, attaching the name to the physical object. 
This means that number words do not refer to quantity - they are rather an ordered list of names 
applied to some items. In the short excerpt below the child Lou is counting stars in a book, over and 
over again, pointing her finger at one star at a time while saying the number words: 

Lou (2:7): One, two, three, four, five, six, seven, eight, nine. 

Arthur (3:1): That one is not nine!  

Lou points at the stars while counting out loud. The second time she points at different stars than 
before, making Arthur react to the break in the pattern of named stars. Arthur acts as the counting 
rather is about “naming” the stars with number words, not differentiating any cardinal meaning. The 
order of naming them is then closely related to the physical objects, emphasizing ordinality. 

Extending the setting  

Mathematics is useful due to the transferability of notions and the abstract relationships that 
mathematics concepts describe. It is in this sense natural to think that generalization is a key to 
learning the meaning of abstract numbers. This is not uncommon in teacher-child interaction: 

Elsa and Ann (adult) are sitting at the breakfast table. 

Elsa (2:6): There’s two (pointing at two plates on top of the other).  

Ann (adult): There’s another two (pointing at two other plates) and there’s two pieces of bread, 
and there’s also two (pointing at two spoons on a plate). 

The teacher makes efforts to pick up the child’s initiatives and generalizes the idea of sets of two. 
However, the observation does not reveal whether the child discerns the cardinal meaning of “two” 
applied to other settings as well or if the directed attention to other kind of objects takes away 
attention from the number’s meaning of “twoness”.  

Comparing more-less 

When numbers are used to describe sets, a possibility to explore number words’ cardinal meaning 
opens up if sets of different quantities are made possible to compare. Subitizing enables children to 
compare and estimate small number of items, but this builds on the above mentioned condition, that 
focus is already directed towards numerosity. 

Lou (2:7):  (brings three different cat toys to a table) Here’s two kitty cats. 

Arthur (3:1): No, it’s not like that, it’s this many (showing three raised fingers on one hand). 
One, two, three (raising one finger for each said counting word).  

Cardinality is undoubted critical for operating with numbers. It seems that comparison of different 
quantities, contrasting numbers as sets, makes this possible. Merely counting will promote 
ordinality as the primary aspect in focus, shorter or further on the sequence of counting words, but 
does not necessarily emphasize the “manyness” of the numbers. 



Attention to the cardinal and ordinal meaning of number words  

Observations show that many children, and teachers, express a rather strong focus on the aspect of 
ordinality, while the cardinal meaning of numbers is an aspect that is rarely opened up for 
exploration. The following excerpt is thereby an exception but important in our investigation of 
learning opportunities in preschool mathematics: 

Alan (3:5): (has been asked to check how many children there are in the cloakroom) There is 
one and one and one and one and one and one and one and one and one and one 
and one and one and one there. 

Gloria (adult): That’s quite a lot. Or was there only one? 

Even though the child is not using number words to express himself, he expresses number as an 
addition of ones. The teacher picks up the word he uses and opens up both the aspect of ordinality 
by referring to the number word “only one” and in the same occurrence also the aspect of cardinality 
when confirming that the boy had described a large number of objects.  

The idea of directing attention to ordinality, as in the following excerpt, is however not always 
critical for a task and may thereby not be taken into consideration by the child: 

Alice (2:4):  (sits with a jig-saw puzzle with pieces shaped as fish and a number of dots on the 
board and corresponding number of dots on the fish) Just one dot and then just 
two (tries to fit a piece in the board). 

Mary (adult): No, you have to look at the dots, here’s three, then you have to see how many dots 
there are there [on the board]. Where should it go?  

Alice (2:4): There! (pointing at the board where there are three dots)  

Mary (adult): (pointing at each dot on the fish) There’s one, two, three, where? 

Alice (2:4): (pointing again at the board and the three dots) 

Mary (adult): There’s one, two, three. 

Alice (2:4): It will go there (putting the rest of the pieces with 1–3 dots on their right places on 
the board). Here’s only one dot (pointing at the last empty place on the board). 

Alice’s attention is directed towards the features of the fish that will not fit on the board. This 
conflict directs her attention to find clues or strategies to ease the task of finding right pieces. She 
discovers the dots and describes their difference in number “just one dot and then just two”. The 
teacher supports her discovery but offers a counting strategy to make sure she finds sets of dots that 
are equally large. However, the attention to different aspects does not seem to meet, nor are they 
simultaneously considered as aspects of numbers. Alice did not count the previous two dots, she 
also seems to perceive equal number of dots if they are three, since she does not make any attempts 
to count in the same way as the teacher instructs her to do. It is thereby uncertain if the aspect of 
ordinality is necessary to emphasize since the child masters the task by focusing on the “manyness” 
of the sets. The number of dots is within the subitizing range, which has to be considered as a 
reason for not needing another strategy to compare the number of dots on the fish and on the board. 



Discussion 
This pilot project brings to the fore that children’s conceptions of number seem to be characterized 
by partly numbers as names and sequence, parallel to using numbers to describe a set of objects. In 
some rare occasions these conceptions are emphasized simultaneously, enabling the fusion of 
ordinal and cardinal meaning, which is presumably an important condition for number concept 
development. An advanced use of number words includes both of these aspects and enables a child 
to solve arithmetic problems. Wynn (1992) raised this issue when presenting findings of 2–3-year 
olds’ sense of numerosity in contrast to their emerging understanding of the counting system. The 
current study confirms that toddlers experience number in different ways, but provides insight to the 
activities and interactions where ordinality, cardinality and the fusion of them are put to the fore and 
thereby enable children to develop number concepts. According to Variation theory (Marton, 2015) 
such analyses are essential for understanding what constitutes the learning object (numbers in this 
case) and consequently how to support concept development by offering necessary aspect to be 
discerned by the child. Forthcoming studies will thereby shed more light on how the conception of 
numbers as names and rhyme can be challenged and related to numbers’ “manyness”. Critical is 
what role the different aspects play in number concept development; is cardinality superior to 
ordinality (c.f. Benoit et al., 2004), and perhaps more important, how are the aspects related in 
toddlers’ number concept development?  

It is of high pedagogical value to consider what activities toddlers encounter in preschool and what 
opportunities to explore ordinality and cardinality there are – the examples presented here show that 
it occurs in both planned and spontaneous situations. Further studies will also direct attention to 
teachers’ acts to engage toddlers in such stimulating activities and how it can be made possible for 
children to extend their conceptions of numbers, as this pilot study indicates is possible. 
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Research on how neuroscience and knowledge of human’s endowment can inform educational 
practice is a young field. With reference to contemporary research and models that hold the idea 
that humans possess non-verbal inborn cognitive systems for estimating sizes and processing 
quantities, empirical data from a multi-case embodied design study on early learning of numbers is 
discussed. Based on observational data and on a discrepancy in the results of traditional and 
modified Give-N-tasks for determining the cardinal knower level, it is contended that designs which 
embrace innate spatially organized representations of numerosity through body-based 
metaphorical mappings, could guide the development of tools for measuring the cardinal concept. 

Keywords: Cardinality, cardinal concept, measurement, embodied design, core knowledge systems. 

Introduction 
Recent research and discoveries in the field of cognitive development suggest that the individual’s 
concept of cardinality in terms of fluency with exact enumeration constitutes a particular predictive 
factor for the development of mathematical skills (Aunio & Niemivirta, 2010). Furthermore, 
mastery of cardinality as a culturally-achieved word principle is regarded as a fundamental skill for 
later development of arithmetical abilities (Dowker, 2005). However, children find it challenging to 
understand the meaning of cardinality (Fluck et al., 2005). Some cognitive psychologists who 
develop models of numerical cognition posit a close relationship between the spatial and the 
numerical domains, and see the existence of spatially organized representations as the core of 
number meaning (e.g. Dehaene & Brannon, 2011). However, there is a dearth of research focusing 
on the underlying cognitive structures that support mapping between non-symbolic and symbolic 
representations of numbers (Mundy & Gilmore, 2009), and in particular inquiries into children’s 
mathematical performances in naturally occurring testing scenes (Reikeras et al., 2012).  

The aim of the study is to explore how the cardinal concept is measured, perceived and 
conceptualized in an educational design incorporating early learning of numbers. In the following, 
we introduce the conceptual framework of the study which is theories of core knowledge system.  

The core systems of number representation and conceptual mapping 
In the literature, there is a consensus that cognition is based on at least four domain-specific core 
knowledge systems for representing objects, actions, numbers and space, each mechanism being 
deeply rooted in human evolution with shared ontogenetically and phylogenetically abilities (Spelke 
& Kinzler, 2007). Two of these core systems are dedicated for representing numbers, i.e. the 
Approximate Number System (ANS) and the Object Tracking System (OTS), accounting for humans 



basic numerical intuitions, and serve as the foundation for acquiring symbolic and cultural aspects 
of the number concept (Feigenson et al., 2004). Whereas the ANS supports rapid analog estimated 
representation of large magnitudes, the OTS is a cognitive system for tracking up to four objects in 
parallel (Burr et al., 2010). Subitizing, which is an immediate perceptual insight of the cardinal 
value of a small set of objects “without having to engage in conscious counting” (Wynn 1995: 36), 
is thought to emerge from the OTS-system. However, the exact nature and origin of subitizing is 
still in dispute (Piazza, Fumarola et al. 2011). Moreover, these core systems of object 
representations center on the spatio-temporal principles of cohesion and continuity, positing that 
objects maintain their connectedness and boundaries across movement in space and time (Spelke et 
al., 2007). Hence, from a core knowledge standpoint, this suggests that infants have an innate ability 
to grasp the ontological aspects of wholeness, numerosity and invariance of the cardinal concept.                                                                      

A conceptual mapping concerns neural connections in the brain including core knowledge systems, 
and is described as a systematic set of relations between constituting elements where a target 
domain is understood in terms of a source domain (Lakoff & Johnson, 1999). Based on this model, 
the level of meaning in the transfer is determined by what the two domains have in common. This 
set of shared features or similarities is termed the “ground”. For example, cardinal word knowledge 
within the subitizing range is thought to reflect a mapping between number terms or metaphorical 
expressions (e.g. “cat-four”) in the semantic domain and the OTS (i.e. the cardinal value 4 is the 
ground). In a similar manner, approximate number word knowledge is supposed to reflect a 
projection between the ANS and cardinal labels such as “all”, “many”, “a part” or “about 20” 
(Gunderson et al., 2015). Thus, linguistic expressions that reflect estimated values or exact 
enumeration share the feature of pointing back to the collection of items as a part or as a whole, but 
these types of number representations are posited to be processed in different neural structures.  
Next, in order to illuminate how the core knowledge system is put into play in the design, a brief 
epistemological and ontological clarification of the cardinal concept is presented. 

The concept of cardinality  

The cardinality refers to the number of objects in a set, also denoted as the set size, magnitude or the 
quantity of a set. Formally, there are two main approaches to determining the cardinality of a set. 
The first method, which is associated with the cardinal word principle (Gelman & Gallistel, 1978), 
uses enumeration, that is the transitive meaning of counting to align the cardinal value to the set. 
The last number-word in a counting sequence points back to the group of tagged items, and hence 
ontologically reflects an aspect of the set as a whole. The second method compares sets directly 
using one-to-one correspondence. For example, a gestalt using two hands, two knees and two feet to 
tag an array of six leaves, is an embodied way of confirming that the quantity of the set of grounding 
limbs and the collection of leaves is the same. The non-verbal transitive relation emphasizes that the 
pair of knees is a part of the entire collection of six body-parts across movement in space and time. 
Thus, the aptitude to treat sets as wholes and parts of wholes reflects spatial and temporal features 
of the cardinal concept, and rests on the ability to grasp the idea that the value of the set is an 
invariant property across the form and shape of the boundary and the configuration of the items.  



Methodology 
Selection and intervention 

Four 4-year olds were enrolled in a six-week program outdoors comprising ten one-hour sessions 
using direct methods to determine the cardinality. The cases were selected based on results on a 
Give-N-task for assessing understanding of cardinality (Schaeffer et al., 1974), as outlined below. 
Cardinal-four knower, Fia (3:9), was selected as a prototypical case, and cardinal principle-knower, 
Kate (4:2), and the two cardinal-one-knowers Chris (3:11) and Ted (4:1) to ensure maximum 
variation in the cases competences in representing numbers. 

Situated in the vicinity of the kindergarten and contextualized by different N-dotted matrixes on the 
asphalt, the participants were guided to articulate their body-based mappings using corresponding 
number-metaphors (see Figure 1). For example, on a four-dotted matrix, they could embody and 
articulate the metaphorical expression “frog-four” performing a gestalt of four body parts tagging 
the dots.  

    
Figure 1: Embodiment of spatial-structures using body parts                                                             

Data collection 

The empirical data was assembled as video-recordings of intervention episodes and assessment 
tasks.  

   
Figure 2: The modified small-scale (left) and large-scale (middle and right) Give-N-tasks 

Pre- and post- Give-N-task. The children were asked to select a certain number of blocks from a set 
of fifteen blocks (e.g. “Can you give me three blocks?”). When the child had responded, the 
experimenter asked “Is that N-blocks?” If the child confirmed, a new task was given. Otherwise, the 
initial question was repeated. No suggestion was made to use a counting procedure to check 
incorrect responses. The knower level (c.f. Lee & Sarnecka, 2010) was determined by the highest 
number of correct responses given by the child in two out of three times (i.e. the criteria set by 



Wynn, 1992), given that all preceding numbers had met the same criteria. Knower-levels above four 
are labeled cardinal-principle-knowers, and reflects the group that knows how counting works.        

The “Create A-Metaphor-N-task” (only post-test, see Figure 2, left). The same procedure as the 
Give-N-task described above was applied but the question comprised the use of “number-
metaphors”. For example: “Can you find a cat-four?” and the experimenter asked “Is that a cat-
four?”                                                                   

The “Embody-Metaphor-N-task” (only post-test, see Figure 2, middle). A circle (d = 2.0 m) on the 
ground with 16 arbitrary distributed dots (d = 0.1 m). The experimenter asked can you jump or find 
a “Metaphor-N” in the matrix; for example, “Can you find a kangaroo-two and then a dog-four?” 
(Coded as 2+4, see Table 1). The question was repeated only if the child did not respond. No 
confirmatory question was posed after the child had completed the articulated embodiment. The 
initial position outside the circle was determined by the movement trajectory of the previous task.       

Qualitative data analysis 

A qualitative multi-case study approach using pattern matching and cross-case analysis as analytic 
techniques (Yin, 2009) was adapted to our purposes. The first step of the analysis identified unique 
patterns in the data material for each case, and meaningful units conveying information of non-
verbal and verbal representations of numbers across testing scenes and activities were transcribed 
and coded in the qualitative analysis tool NVivo. A cross-case analysis was conducted in order to 
identify diversities, gaps and shared patterns across the cardinal-knower-level. Based on this, 
general patterns and discrepancies emerged and were synthesized.  

Findings and discussion 
Five hours of video produced 700 references in NVivo capturing situations where the four cases 
were engaged in bodily-spatial mappings of numerosity. Elaborated, the data shows 1182 
occurrences of the seven most frequently used metaphors of articulated body-based mappings of 
numbers. For example, the use of the “cat-four” metaphor was reported 316 times. Moreover, the 
assessment shows that the cases skills in verbal production tasks span from cardinal-one-knowers to 
cardinal-principle knowers. With the exception of Ted who progressed to a cardinal-two knower-
level, the results from the pre- and post-Give-N-tasks suggest that the intervention had no “effect”. 
However, during intervention and on the two modified assessment-methods, the three subset-
knowers showed domain-specific cardinal knowledge in terms of an ability via metaphors to map 
non-verbal and verbal cardinal knowledge above their assessed level in the ordinary Give-N-test. 
Subsequently in order to ensure an in-depth-analysis comprising the lower bound of the 
performances in the design, the examination will mainly focus on the behavior of Chris, this being 
the case with the lowest measured competence. Table 1 comprises a summary of his Give-N-results. 



  
Table 1: Results for Chris on traditional and modified Give-N-tasks 

The traditional Give-N-task and the “Create a Metaphor-N-task” 

According to the notion of conceptual mapping, the dissimilarities between the two things being 
compared in the Give-N-tasks might create an epistemic “tension” in terms of instability between 
two cognitive domains. Thus, and applied to the core knowledge systems, the question of 
discrepancy in the results narrows down to an explanation as to why the tension was resolved in a 
conventional manner in the projections involving ANS and OTS in the modified Give-N-tasks. 
Overall, the results of tasks above the three subset-knowers level of competence as measured by 
traditional Give-N-tasks suggest that the semantic mapping from a number word (i.e. the source) 
onto an unstructured collection of items (i.e. the target), did not share the cardinal value as a 
common feature (i.e. the ground). For example, the behavior for cardinal-one-knower, Chris, shows 
that the semantic expression “Give me three blocks” is frequently associated with verbal 
expressions such as “many” or “all”, and in a concrete manner mapped as 2, 6, 6, 9, 9, 5 and 15 
blocks respectively. Hence, the transfer gives no meaning as the mappings are reflected in arbitrary, 
unstructured and inconsistent distributions of blocks. Moreover, this suggests that the semantic label 
“three”, with the exception from the first response, is mapped via ANS. However, on the two 
correct responses of post-testing of the two-knower-level (2,4,15,2), Chris accompanies his behavior 
with articulation of the metaphor “kangaroo-two” showing via the OTS an emergent ability to lean 
on figurative support in the mapping of the number-word “two”. In contrast, on the “Create a 
Metaphor-N-Task”, the tension of the mappings initiated by the contextualized metaphorical 
questions was resolved in a conventional manner showing that he is on a cardinal-four-knower level 
in a domain specific way. For example, on “find a monkey-three”-tasks, Chris consistently produced 
spatial structured assemblies of three blocks (see Figure 2, left). Hence, this suggests that the 
mapping from the number word “three” is processed via the OTS to produce structured 
configurations of sets. Furthermore, this chain of reasoning rests on the assumption that no counting 
procedure was employed. This premise lends support from previous research that suggests that 
subset-knowers seldom use any counting procedure on Give-N-tasks (Le Corre et al., 2006). Hence, 



the verbal twist in the small scale “Give-N” question, from “Give-me-two-blocks” to “Can you find 
a kangaroo-two”, suggests that the discrepancy in “knower-level” is on a linguistic level and that the 
knowledge assessed in the modified task is domain-specific and contextualized.  

The “Embody-Metaphor-N-task” and behavior that reflects aspects of the cardinal concept  

Below, we focus on the two core knowledge structures for representing numbers to examine the 
responses that cardinal-one knower, Chris, gave to the kangaroo-two and the cat-four task in the 
“Embody-Metaphor-N-task”. Allowing the use of the commutative property of addition, the results 
in Table 1 show that Chris responded correctly to all four tasks, and the behavior was observed as 
articulated bodily-spatial representations “Kangaroo-two, Cat-four”. Since Chris is standing outside 
the marked boundary of the matrix, we suggest that he cognitively represents the whole assembly of 
16 dots using ANS. Based on the verbal instruction “kangaroo-two”, Chris had to visually identify a 
configuration of dots that matched the metaphorical expression (see Figure 2, right). Although it is a 
difficult task to account for when the two systems for representing numerical information are 
activated, verbal- and non-verbal empirical data in combination with experimental findings of the 
signatures of the OTS and ANS, could provide supporting evidence to the various hypothesis 
(Barner et al., 2008). For example, one hypothesis posits that the first “container” was visually 
identified via a metaphor-word-mapping onto OTS, and the rest of the dots were cognitively 
processed as an estimated quantity through ANS. This suggests that the whole assembly of dots was 
decomposed in two subsets, one part being exact enumeration via OTS, the other being a 
constellation of the whole, i.e. an estimated number representation via ANS. Another explanation is 
that Chris subsequently processed the two dots via the OTS as a part of a whole estimated set. 
Either way, these lines of reasoning finds support in the claim that ANS interacts with OTS (Piazza, 
2010), and moreover the suggestion that ANS constitutes a support in basic numerical processes of 
small numbers (Feigenson et al., 2013). Moreover, the findings of Burr et al. (2010) show that 
subitizing (OTS) rather than estimating needs attentional  resources. Thus, a third hypothesis, which 
also lends support to the claim that ANS is defined for large and small sets (Cantlon et al., 2006), 
suggests that the two-dotted configuration was initially identified as an estimated value via the 
ANS, and as a result of an increased use of attentional resources, was subsequently processed as an 
exact numerical magnitude via the OTS.                                                                       

Overall, the four cases demonstrated flexibility in their non-verbal and linguistic-metaphorical 
representations of numbers, and the diversity of embodied strategies was shared across cardinal 
knower-level and counting skills. However, the quality of the cases use of cultural skills for exact 
enumeration differs. While Kate as a cardinal-principle knower provided exact enumeration of 
embodied additive structures such as 4+4+4 and 1+2+3+4, the subset-knowers could represent the 
same arithmetic structure via articulated bodily-spatial mappings, for example three times “Cat-
four” or “Cat-four, dog-four, bear-four” and “Rooster-one, kangaroo-two, monkey-three, cat-four”. 
Hence, this gap in competence might inform of a potential learning trajectory. 

Concluding remarks 
The results reveal a discrepancy in sub-set knowers’ behavior across representational tasks of 
numbers. In particular, the data show that subset-knowers possess an ability to map non-verbal and 
figurative expressions of cardinality in modified small-and large-scale Give-N-tasks above their 



knower-level as assessed in traditional Give-N-tasks. We suggest that the most promising 
explanation concerns the suggestion that the formation of the cardinal concept rests on the core 
knowledge structures for representing numbers synchronized via direct methods to determine the 
cardinality. Based on this, the full bodily-spatial metaphorical mappings of the matrixes provided 
coherence and meaning to the cases ideas of invariance, wholeness and numerosity. Hence, the 
results correspond to a growing body of evidence suggesting the existence of a fundamental link 
between the non-verbal and verbally-created system for processing numbers (Feigenson et al., 
2013). Furthermore, the consistency of the results in the modified Give-N-tasks suggests that the 
participants managed to transfer their metaphorical number knowledge across testing scenes. Thus, 
the design follows contemporary views on cognition that see mathematical ideas and reasoning as 
“embodied” and “imaginative” (Niebert et al., 2012), suggesting the use of metaphors and imageries 
as powerful “thinking tools” (English, 2013). Hence, the examination emphasizes that the cardinal 
value is a linguistic surfacing manifestation of a deeply grounded spatial structured concept, and 
that the use of metaphors might merge these two domains in a complementary manner. In 
conclusion, the examination shows that authentic assessment during intervention and the adapted 
Give-N-tasks provides a fine-grained picture of the multiple dimensions that proficiency of the idea 
of cardinality reflects.  
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Kindergarten children’s argumentation in reflection symmetry: The 
role of semiotic means 
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In this paper I investigate the characteristics of children’s argumentation when they work with 
reflection symmetry. Using Toulmin’s (2003) model for substantial argumentation, I illuminate 
structural aspects of the ongoing argumentation. In addition, I analyse the children’s 
argumentation with respect to their use of semiotic means. Results show that children are able to 
argue for a claim in a quite complex manner. The study also illustrates the extensive use of semiotic 
means in children’s argumentation. In every element in the argumentative structure, children use 
gestures and other semiotic means to mediate their ideas. It is actually impossible to make sense of 
the ongoing argumentation without considering the use of semiotic means. 

Keywords: Argumentation, kindergarten, gestures, semiotic means.  

Introduction 
How children communicate their mathematical ideas is an important aspect in the attempt to 
understand children’s reasoning in mathematics. In kindergarten children experience mathematical 
concepts through play and interaction with others. In their communication they justify and explain 
their mathematical ideas and in return they need to consider other’s ideas and arguments. Thus 
argumentation can be seen as important for fostering children’s mathematical learning. 

This study is situated within a research and development project called the Agder projecti (AP). One 
of the aims in the project is to investigate how researcher designed mathematical activities, 
developed in the project, stimulate mathematical competences. In this case study I observed one 
kindergarten teacher (KT) and a group of six 5-year-old children engaged in mathematical activities 
about reflection symmetry. The aim of this paper is to examine the characteristics of children’s 
argumentation when they work with reflection symmetry. Furthermore, I examine what role 
‘semiotic means’ (e.g. objects, linguistic devices and signs) play in the ongoing argumentation.  

Following Toulmin (2003) and Krummheuer (1995), I regard argumentation as the practical 
business of choosing statements that serve the purpose of making an initial assertion reasonable and 
accountable for others. Argumentation is the production of an argument. An argument is then “the 
final sequence of statements accepted by all participants” (Krummheuer, 1995, p. 247). In addition, 
several arguments can serve as units in an expanded argumentation which again constitutes a new 
and extended argument. Toulmin also recognises that single statements can contain argumentative 
features. Just by making a statement you put yourself in a position of potentially being questioned.  

Argumentation, acknowledged as an important means for enabling young children’s mathematical 
reasoning, can be promoted through a dialogic approach to teaching (Mercer & Sams, 2006; Yackel 
& Cobb, 1996). Despite the increased focus on the role of mathematical argumentation for enabling 
young children’s mathematical reasoning, little research has focused explicit on the role and 
characteristics of mathematical argumentation at kindergarten level.  Pontecorvo & Sterponi (2002) 
found that children’s reasoning in preschool activity unfolded “through complex argumentative 



patterns” (p. 133). They emphasised that teachers should pay attention to the different ways children 
argue in order to facilitate children’s “possibilities to practice, enrich and refine argumentative 
resources they have already acquired” (p. 139). Tsamir, Tirosh, and Levenson (2009) investigated 
different types of justification given by children between five and six years old, working with 
number and geometry tasks. Their study shows that young children are able to justify their 
statements by using appropriate mathematical ideas. Some children, in contrast, used their ‘visual 
reasoning’ as a way to justify their statements. When the researcher asked how they could know 
which bunch of bottle caps had more they answered “because we see”, and they felt no further need 
to justify their answer or did not know how to do it. Dovigo (2016) investigated how argumentation 
promoted collaboration and problem solving in preschool (age 3-5). By comparing different ways of 
how argumentation took place in teacher-talk and peer-talk they found that peer-talk contributed 
very positively for promoting collaboration and problem solving. But at the same time they 
emphasised that if the teachers were able to guide the debate in a careful and exploratory way the 
teacher guidance could be a positive contribution to the development of the argumentation.  

Theoretical framework 
My theoretical stance is rooted in a sociocultural paradigm where interaction is regarded as the very 
engine of learning and development, (Vygotsky, 1978). As a consequence of adopting this 
theoretical stance, I regard argumentation as a cultural and historical activity. Children are not 
naturally born with the ability to argue. Argumentation is a communicative pattern which they learn 
through interaction with more knowledgeable others.  

Interaction, specific for human beings, is characterised by the use of tools and especially by the use 
of language (Vygotsky, 1978). In recent years there has been a growing interest to study the 
interplay between gestures, language and thought both in mathematics education and in other 
domains. McNeill (2005) developed a theory where he regarded gestures as an integral part of 
language, not merely as a support for language. He regarded gestures as having an active and 
inseparable role in language and thought.  

Not only gestures have been recognised as important for human reasoning. Radford, Edwards, and 
Arzarello (2009) talk about the importance of the multimodal nature of cognition; how different 
sensorial modalities – tactile, perceptual, kinesthetic become integral parts of our cognitive learning 
processes. Radford’s (2002; 2003) theory of knowledge objectification emphasises how gestures, 
bodily actions, artifacts, (mathematical) signs and speech in cooperation affect mathematical 
reasoning. A special category of semiotic means of objectification that Radford (2002) considers is 
deixis. Deictic terms are words that have the function “to point at something in the visual field of 
the speakers” (p. 17), and cannot be fully understood without additional contextual information (e.g. 
“here”, “there” “that”, “this” etc.). All semiotic means play a significant role in mathematical 
mediation and reasoning. “Each semiotic means of objectification puts forward a particular 
dimension of meaning (signification); the coordination of all these dimensions results in a complex 
composite meaning that is central in the process of objectification” (Roth & Radford, 2011, p. 78).  

The concept of argumentation used in mathematics and mathematics education is often related to 
the production of proofs. It is nevertheless important not merely to connect the concept of 
argumentation to formal logic as found in mathematical proofs. Toulmin (2003) distinguishes 



between analytic argumentation, which is used in production of mathematical proofs, and 
substantial argumentation which is informal argumentation used in everyday practices. Substantial 
argumentation does not necessarily have a strict logical structure. Substantial argumentation 
gradually supports a statement by presenting relationships, explanations, background information, 
etc. (Krummheuer, 1995). Toulmin (2003) strongly emphasises that substantial argumentation 
should not be regarded weaker as or less important than analytic argumentation.    

Toulmin (2003) developed a model for analysing structural and functional aspects of substantial 
argumentation with the aim to illuminate how statements are organised for the purpose of 
constituting an argument, and how a conclusion is established through the production of an 
argument. In Toulmin’s model the core of an argument is based on three elements: claim (C), data 
(D) and warrant (W). The claim is an initial statement, for example an assertion or an opinion about 
something. To support the claim, the arguer needs to produce data. Data are facts or statements on 
which the claim can be grounded. A warrant is a justification of the data with regard to the claim. 
The warrant holds the argument together. It points to the relation between the data and the claim.  

In addition, Toulmin’s (2003) model contains three other elements, backing (B), qualifier (Q) and 
rebuttal (R). A backing is a statement that supports the warrant. It is like a special case of data that 
is provided as evidence for the warrant. The purpose of a backing is to answer “why in general this 
warrant should be accepted as having authority” (Toulmin, 2003, p. 95). A qualifier says something 
about the extent to which the data confirm the claim. Words like ‘probably’, ‘presumably’ etc. are 
often used as qualifiers. Rebuttals refer to exceptions or conditions under which the claim is true, 
often used subsequent to a qualifier, exemplified as “The claim is true except/unless/only if …”.  

Method for data collection and data analysis 
In this case study I observed one KT in the focus group of AP and his group of six 5-year-old 
children engaged in mathematical activities about reflection symmetry. The activities had been 
developed in the AP, and as part of an in-service program for the focus group the KTs were asked to 
implement a number of activities with their children. I visited the kindergarten on two occasions 
with a one week interval. It was the KT himself that decided to work with reflection symmetry 
activities on both occasions. The method for data collection was observations and the sessions were 
video recorded and field notes were made.  

I regard argumentation as a sequence of statements (both verbal and non-verbal) that serve the 
purpose of supporting an initial claim. Thus one criterion for selecting episodes from the transcript 
was that they should contain verbal communication and have more than one utterance from the 
children. Another criterion was that the episodes I selected should contain mathematics, and they 
should be linked to the lesson aim (reflection symmetry). In total I found 11 episodes from the 
transcript using these criteria. Ten of these episodes had more or less an argumentative structure. 
Six of the episodes had more than two turns and more than two argumentative utterances from the 
children. These episodes were analysed in depth according to Toulmin’s (2003) model to identify 
the argumentative structures. In addition, I analysed each of the six episodes from a multimodal 
perspective. In fact, I had to look at multimodal aspects in order to be able to differentiate between 
the elements in the argumentative structure. I did not focus on any specific semiotic means and their 
significance for children’s reasoning. Rather I focused on what kind of semiotic means children 



used with respect to the different elements in the argumentation, and what role they played in 
constituting the argument.  

Results 
In this section I will present the analysis of one of the six episodes to illustrate the structure of 
children’s argumentation, and what role semiotic means play in the ongoing argumentation.  

In advance of this episode the children have been asked, by the KT, to find things in the room which 
they think are symmetric or as the KT says “equal on both sides”. Each child is then asked to 
explain why they think the toy they have chosen is equal on both sides. In this particular episode one 
of the boys (John), who has chosen a trolley, is being asked to explain why he thinks the trolley is 
equal on both sides (or more precise; he is being asked if he think the trolley is equal on both sides).   

KT: Maybe we should start with John, since he has a very large thing. John, is this 
equal on two sides?  

John: Mmm (2)ii There (2) ((He lifts his trolley up from the table, and holds it in a 
straight forward position. Then he says “there” and nods his head)).   

John: and there… ((He rotates the trolley 90 degrees, showing the side of the trolley and 
then nods his head while saying “there”)). 

KT: Aha! 

John: and (2) there. ((He rotates the trolley 180 degrees, showing the other side of the 
trolley and nods his head again while saying “there”)). 

Elias: And there and there. ((Elias has already paid attention to the situation)). 

KT: Can you see if this is equal Elias? 

Elias: Look… 

Elias: There, there (.) there, there (.) there, there and there, there. (.) And there and there, 
and (1) everywhere. ((He is pointing with his index finger to show where he thinks 
the trolley is equal. When he says “everywhere” he is letting his whole hand swipe 
over the trolley)). 

KT: ((The KT lifts up the trolley and tries to show the symmetry line and explaining 
how the trolley is equal on both sides of that line)).  

Elias: Everything is equal on both sides, even the wheels.   

The structure of children’s argumentation 

Before this episode each child was asked by the KT to choose a thing that they thought was equal on 
both (two) sides. In this episode John has picked a trolley and just by doing so he has implicitly 
made the claim that the trolley is equal on both (two) sides. When the KT asks John; “John, is this 
equal on two sides?” John’s claim is being challenged. The KT actually asks a yes-no question, but 
the question is still a quest for explanation or justification. 

To argue for his claim, John lifts the trolley up in the air, like he wants to make it visible to the 
others. The first “there” and the first nod is also a part of this visualization which together constitute 



the data he presents. It is important to notice that at this moment he holds the trolley in a straight 
forward position from his own point of view. He is not referring to any particular equal points on 
the trolley. The trolley itself is being presented as the data that supports the claim.    

Then he is trying to present a warrant for his data by rotating the trolley 90 degrees while saying 
“there” and then back again 180 degrees while saying “there” again. Each time he is saying “there” 
he is nodding his head. John is presenting the warrant as two particular sides that are equal, and 
exemplifies the equality. The warrant (the example) relates the data (the presentation of the whole 
trolley) to the claim (the trolley is equal on two sides). Considering the time John is using while 
presenting the warrant and the way he utters the second and third “there”, John does not seem very 
confident in his presentation of the warrant. Nevertheless, when John was walking around in the 
kindergarten trying to find a thing that had two equal sides, he considered the trolley for some 
seconds before he took it back to the table. This indicates that his choice was not completely 
random. John seems certain that the trolley is equal, but he is not quite certain how to justify it.   

After John has presented the second “there”, the KT utters “aha” (with a rising intonation at the 
end). By this utterance the KT gently appreciates John’s contribution, even if the two sides that John 
presented thus far were not equal. While presenting his data and his warrant, John waits several 
seconds, and it seems that the KT thinks that John has finished his explanation after the second 
“there”. From the children’s point of view, the KTs “aha” gives Johns contribution authority and 
can be regarded as a backing of John’s warrant-attempt. But from the KTs point of view, the “aha” 
was not meant as a backing, only as a gentle appreciation of his contribution.   

Elias then contributes to the argumentation. By the utterance “and there and there” and a pointing 
gesture he is presenting another warrant for John’s data. Elias is talking faster and more concisely 
than John. Because he is using his index finger rather than nodding he is also more precise in his 
communication and is able to point on specific points on the trolley, like the joints and the handles. 
The way Elias communicates indicates that he is more confident and has more knowledge about 
reflection symmetry. Elias is actually presenting several warrants for the data. Every time he says 
“there and there” and points at different corresponding points, he gives a new warrant. By 
presenting particular corresponding points, each warrant is exemplifying exactly where the trolley is 
equal. By repeating several almost identical warrants (presenting several examples) it seems that he 
is trying to communicate that every point on one side has a corresponding point on the other side.  

After presenting several warrants Elias says “everywhere” while he is swiping his whole hand over 
the trolley. I interpret this as a generalisation of his previous statements (warrants), and thus a 
backing for the warrants because it answers “why in general this warrant should be accepted as 
having authority” (Toulmin, 2003, p. 95). The warrants are not independent examples of equality 
rather examples of a more general property of reflection symmetry. 

When the KT shifts his attention to Elias in the middle of this episode, Elias answers by saying 
“look”. The intonation of the utterance indicates that he is only introducing his coming explanation. 
I interpret his utterance as synonymous to “let me explain”.  

At the end of this episode, Elias says “everything is equal on both sides, even the wheels”. The use 
of the word “even” in this sentence is very interesting. The word “even” I interpret as a qualifier for 
the claim. It says something about to what degree the data confirm the claim. Usually words like 



“probably” or “presumably” are used as qualifiers, but in this case Elias is indicating that he is very 
certain that everything is equal on both sides, by saying “even the wheels”. It seems that the 
probability for everything being equal increases since ‘the critical points’, the wheels, are equal. 
Why Elias regards the wheels as important points is hard to tell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: The structure of children’s argumentation  

This example illustrates the complexity of children’s argumentation. They are able to present more 
than only the core of an argument. In this episode I found that some children are able to present both 
data, warrant, backing and even qualifier for a claim. In another episode that is not provided in this 
paper (because of the limited space) Elias was also able to present a rebuttal. He was able to modify 
his claim by giving examples of exceptions.  

Discussion 
This study shows that young children are able to argue for a claim in a quite complex manner. Using 
Toulmin’s (2003) model to illuminate structural aspects of the children’s argumentation, the results 
show that some children are able to use several of the elements in the model in their argumentation.  

This study also illustrates the extensive use of semiotic means in children’s argumentation. In every 
element in the argumentative structure, children use gestures and other semiotic means to mediate 
their ideas. This illuminates the significant role that gestures and other semiotic means play in 
children’s communication and especially in their argumentation. (cf. McNeill, 2005; Radford, 2002; 
2003; Roth and Radford, 2011). Deixis, in particular, are extensively used in the argumentation 
above. Both the data that John presents and the warrants that John and Elias present are based on the 
deixis “there” and the related pointing and nodding gestures. Even if John and Elias use different 
signs for mediating their ideas, both the nodding and the pointing gestures serve the same purpose, 

Data (John): There [Lifts the trolley 
in a straight forward position and 
nods his head]  

Claim (John): The 
trolley is equal on 
two sides 

Warrant (John): [pause] and there [pause] and there [He is first showing one 
side, then the other side]  

 

Qualifier (Elias): 
even the wheels 

Warrant (Elias): And there and there [pointing with his index finger at equal 
points on two sides of the trolley] 

Warrant (Elias): There, there. There, there. There, there and there, there. And 
there and there [pointing with his index finger at equal points on two sides of 
the trolley] 

Backing (Elias): Everywhere [swiping his hand over the trolley] 



namely to give contextual information to the deixis “there”. It is actually not possible to get the 
whole meaning of the words “there and there” without including the pointing and nodding gestures.  

The deixis and the related pointing and nodding gestures are not the only significant semiotic means 
in this argumentation. To be able to distinguish between the data and the warrant that John provides 
I had to interpret his related actions. When he presents the data he holds the trolley in a straight 
forward position, he is not referring to any particular equal points, only presenting the trolley as a 
whole, as if he wants to show the equality. The way he presents his claim corresponds with one of 
the findings in Tsamir, Tirosh and Levensons (2009), that some children based their justification on 
‘visual reasoning’. The trolley itself is being presented as the fact that supports the claim. In the 
warrant he is presenting two corresponding sides, as if he wants to give an example of the equality. 
Without interpreting these actions, it is impossible to distinguish between the data and the warrant, 
and thus fully understand the structural aspects of the ongoing argumentation. 

The repetitive presentation of Elias’ warrants and the swiping hand that generalises the repetitive 
warrants are other important semiotic means in the argumentation. By repeating “there and there” 
with corresponding pointing gestures Elias indicates that every point has a corresponding point on 
the other side of the symmetry line. When Elias says “everywhere”, he swipes his hand over the 
trolley. This swiping gesture plays a significant role in the generalisation process of the points.    

The results from this study point to significant features of children’s argumentation and give 
important insights into how children argue. I think teachers could benefit from paying attention to 
the different ways children argue and being aware of the structural aspects in children’s 
argumentation in order to provide opportunities for improving children’s mathematical 
communication and reasoning (cf. Dovigo, 2016; Pontecorvo and Sterponi, 2002). But to be able to 
do so, the KTs also need to pay attention to how children make use of semiotic means in their 
argumentation. The Toulmin model revealed structural aspects of children’s argumentation, but 
these structural aspects would not have emerged without considering the use of semiotic means. In 
line with Roth and Radford (2011) I would argue that all the different semiotic means play a 
significant role in the constitution of meaning.  

In the example above we saw that Elias was able to use several elements in the model and 
demonstrated more confidence in his argumentation than John. A possible explanation could be that 
Elias is further in his appropriation of the properties of reflection symmetry than John. Maybe there 
is a correspondence between how far children have appropriated a certain subject and their ability to 
use several elements in the Toulmin model. This is thus a suggestion for further research on this 
interesting topic. 
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The Making Numbers research Project, funded by the Nuffield Foundation, has developed guidance 
for teachers of 3 to 9 year olds on the use of manipulatives in the teaching of arithmetic. The project, 
which consisted of a literature review, survey of teacher use and small-scale teaching investigations, 
identified key principles and issues for the use of manipulatives. This paper gives a brief overview of 
project findings, which are reported elsewhere, and discusses issues relating to the early years from 
the literature review.  
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Background to the project  
Making Numbers is a Nuffield Foundation funded project to develop research-informed guidance for 
teachers of three to nine year olds on the use of manipulatives to teach arithmetic. The project has run 
for two years and includes a literature review, a survey of current practice and the development of 
exemplars of good practice through observation and small-scale teaching investigations. The resulting 
guidance has been published as a fully illustrated book for teachers with accompanying animations 
for use with children (Griffiths, Back, & Gifford, 2016). The findings of the project are reported in 
full elsewhere (Griffiths, Back, & Gifford, in press): this paper gives a brief overview, highlights 
some issues concerning the use of manipulatives with young children and exemplifies key 
pedagogical principles. 

Our definition of manipulatives is “objects that can be handled and moved and are used to develop 
learners’ understanding of a mathematical situation” (Gifford, Back, & Griffiths, 2015, p.1). This 
includes the use of everyday and structured materials, characterized by a pedagogical intention, which 
concurs with recent studies (Swan & Marshall, 2010; Carbonneau, Marley, & Selig, 2013). The 
project focus was on number sense, prioritizing for this age range counting, cardinality, comparison 
and composition of numbers. Hence the project title, ‘Making numbers’, emphasises flexibly 
decomposing and recomposing numbers, which was identified by Boaler (2009) as key to 
mathematical achievement. 

From the survey and interviews with teacher groups, we found that manipulatives were mainly used 
in the early years and with older low achievers (Gifford et al., 2015). The most common were 
counters, interlocking cubes and Numicon 10-frame based number plates (Wing, 2001), followed by 
place value apparatus. Teachers’ choice was influenced by commercial availability and past 
government policy, but for some it was serendipitous. Most expressed a lack of confidence about how 
to use manipulatives to teach different aspects of number.  

The methodological approach of the literature review was to consider studies and theories from a 
range of perspectives, in order to gain insights into factors affecting children’s learning. Sources 
included the history of pedagogy, cognitive and social constructivist theories of learning and 
quantitative and qualitative empirical studies. We found that experimental studies were contradictory 



and inconclusive, identifying only crude factors, such as length of the study or the amount of 
instructional guidance, as shown by Carbonneau et al.’s (2013) meta-study.  

The conclusion was that the effective use of manipulatives depended on some key pedagogical 
principles (Gifford et al., 2015). These included:  

 the careful matching of both manipulatives and activities to the mathematical focus 
 the identification and assessment of children’s prerequisite understanding  
 activities involving comparison, equivalence, analysis and generalisation  
 discussion, requiring children to use manipulatives to justify reasoning 
 linking manipulatives to abstract symbols 
 creating an inclusive mathematics learning community. 

Here we identify some issues from the literature review about teachers’ use of manipulatives with 
young children. These concern fingers as manipulatives, discrete and continuous models for number 
and the learning potential of pattern activities. The pedagogical principles above are exemplified in a 
small case study from a teaching investigation. 

Fingers as manipulatives 
The benefits of drawing from a range of perspectives are evident in the consideration of fingers as 
manipulatives, which are of particular relevance to teachers of young children. Their significance has 
been underlined by neurological research: brain areas representing fingers and numbers are closely 
related, according to Wood and Fischer (2008). Young children use mental finger representations for 
numbers more than adults, suggesting that finger use is significant for the development of number 
understanding. Gracia-Bafalluy and Noel (2008) found that young children’s finger awareness was 
predictive of their mathematical competence and that training in distinguishing fingers resulted in 
improvements in subitising, counting and comparing numbers. However, the way that fingers are 
used for counting varies in different cultures, including counting three to a finger, or counting hands 
as fives. Bender and Beller (2012) argued that the resulting number concepts also vary according to 
different languages, some of which support 10s structures more transparently. Jordan (2003) also 
found that children from low-income families tended not to use fingers to solve problems. This 
suggests that home practices differentially support children’s number understanding and need to be 
taken into account by teachers. 

How should children be taught to use fingers? Sarama and Clements (2009) advised teachers not to 
discourage children from using fingers until they were confident with mental strategies, in order to 
prevent reliance on finger counting. Marton and Neuman (1990), using a phenomenological approach, 
found that older higher attainers, who used recall and derived facts, showed numbers of fingers ‘all- 
at-once’, whereas low attainers continued to rely on using fingers to count on and back. ‘Finger 
numbers’ encouraged children to analyse numbers, developing subitised images and part-whole 
number understanding. This model therefore represents key number concepts more effectively. 
Sinclair and Pimm (2015) reported that using the app ‘Touchcounts’ rapidly resulted in three year 
olds showing ‘all-at-once’ finger numbers. This seems an important skill which young children might 
also learn in other ways, for instance, when singing number rhymes.  

  



Discrete and continuous models of number  
One current issue relating to young children is about the relative merits of discrete and continuous 
models of number, for instance using either counters or colour rods which represent numbers as 
lengths. Usually in England numbers are introduced by counting separate items. However, when 
children are later introduced to number lines, numbers are represented by intervals on a continuous 
line and children often count the numerals or marks, rather than the intervals between them. Sarama 
& Clements (2009, p. 119) recommended caution in using the number line “as a representation for 
beginning arithmetic”, raising the issue of when and how to introduce it. However, neuroscientific 
evidence suggests that people intuitively see some kind of mental number line (Wood & Fischer, 
2015). This supports renewed interest in teaching young children about number based on measuring 
lengths, as proposed by Bass (2015) following the approach of Davydov (1975). Bass pointed out 
that number “arises from measuring one quantity by another, taken to be the ‘unit’” (2015, p. 100). 
He argued that introducing numbers as chosen units for measuring quantities provides a more 
coherent model of numbers which can also include fractions. It supports multiplicative and 
proportional reasoning and early understanding of algebraic principles such as inverse and 
commutativity. This argument also supports the use of colour rods. 

Fuson (2009) argued that number paths or tracks are more comprehensible for young children, as they 
present adjacent squares which are more obviously countable than intervals on a line. Laski & Siegler 
(2014) found that children who regularly played number track games, reading the numbers aloud as 
they counted moves, improved their awareness of number magnitude and arithmetical achievement. 
It has subsequently been argued that children’s engagement with ordinal number has been overlooked 
as a means of developing understanding. Sarama & Clements (2009, p. 93) suggested that children 
were linking the distance model with counting moves and numbers spoken: 

connections between the numerical magnitudes and all the visual-spatial, kinaesthetic, 
auditory and temporal cues in the games (i.e., all the magnitudes increase together: numerals, 
distance moved, number of moves, number of counting words etc.) may provide a rich mental 
model for a mental number line.  

It therefore seems that we may underestimate children’s capabilities to combine the various models 
to construct complex networks of numerical understanding. According to Clements and Sarama 
(2009), four year olds may be in the process of developing a mental number line connecting different 
‘quantification schemes’, including discrete number ideas based on subitising and counting with 
continuous ideas about duration and length.  

Some manipulatives have attempted to integrate discrete and continuous models of number. For 
instance, bead strings present countable beads, usually coloured in groups of five or 10, along a line: 
Beishuizen (2010) reported that teaching children to find a number on a bead string and then on a 
number line helped them to develop mental calculation. Some older apparatus, such as Montessori’s 
numeric rods and the Stern counting board, present rods arranged as ‘staircases’ of discrete cardinal 
numbers, with numerals alongside. These afford a clear image of the value of numerals in sequence 
increasing by one, but are not common in schools, having been replaced by rods made of interlocking 
cubes. An approach we have developed is to use centimetre cubes alongside a ruler: this has the 
advantage of providing countable objects, while demonstrating that the individual items counted are 



in the intervals between the numerals. This not only shows the numbers increasing by one and but 
also that each successive number includes all previous ones, the idea of hierarchical inclusion or 
‘nested numbers’ (Clements & Sarama, 2009, p. 20). Combining both models also provides 
opportunities for children to discuss what is the same and what is different, as advocated by Harries, 
Barmby and Suggate (2008). This is an area where teachers need to be aware of the complexities 
involved in the differences between continuous and discrete models and further investigation is 
needed of how children reconcile these. 

The potential of pattern 
There is a range of possible factors affecting young children’s understanding of manipulatives used 
to represent number relations. From Piagetian theory young children are seen as needing sensory 
experiences in order to learn, and from Vygotskian theory as being able to use symbols, such as 
fingers, from an early age. Recent theories suggest differences in young children’s spontaneous and 
intuitive appreciation of number and pattern. Hannula and Lehtinen (2005) found that some very 
young children displayed a tendency to spontaneously focus on numerical features of a situation 
(SFON), while others did not, and this predicted later achievement. Mulligan and Mitchelmore (2009) 
found that children varied considerably in their awareness of mathematical pattern and structure 
(AMPS) and that this was also linked to mathematical achievement. They identified different stages 
of AMPS: some children focused on non-mathematical surface features of patterns, some children 
noticed one or two mathematical elements in a pattern and others could reproduce and continue 
patterns, by identifying the components and relationships. Mulligan and Mitchelmore also found that 
pattern awareness could be taught to young children, suggesting that this facility is learned from 
experience: Papic, Mulligan and Mitchelmore (2011) reported a successful intervention with four 
year olds, which improved awareness of pattern and mathematical structures. This presents a 
potentially powerful approach, both in building on young children’s strengths with visuo-spatial 
memory and in developing pre-algebraic understanding. 

Staircase patterns 

One of our teaching investigations, into the learning of numbers to 20 with a class of 30 six year old 
children, exemplified the importance of pattern awareness as well as some of the key principles 
identified in the literature review. In a series of small group teaching sessions, we aimed to teach 
children about the numbers from 10 to 20, sometimes referred to as the ‘teen numbers’ (Gifford & 
Thouless, 2016). We used a ‘staircase’ pattern of ‘teen numbers’ made of rods of interlocking cubes 
arranged in number order. The rods for one to 10 were of different colours, with the rod for ten 
consisting of a stick of green cubes; the rods for 11 to 19 then had 10 green cubes with the rods for 
numbers 1 to 9 attached, repeating the same colour sequence. Numerals were presented alongside the 
rods 1 to 9. We invited the children to find a single rod, such as 18. We found that children used a 
variety of strategies to do this: most picked a rod at random and counted the cubes from one. Magda 
counted in ones along the 20 rod and then along the 18 rod and explained ”I knew one less would be 
19 and one less would be 18”. Only one child identified rods by counting on from ten. Some children 
made errors in counting, either in the word sequence, or in matching words to cubes when pointing.  

This activity demonstrated the pedagogical principle of carefully selecting manipulatives to match 
mathematical concepts and showed how this affected the accessibility of those concepts. We wanted 



the children to recognize the sticks as representing the teen numbers as composed of ten and another 
number, but it was not easy to see there were ten green cubes and recognize the ‘ten’, unlike with 
Numicon plates which children had previously identified as ‘ten’. However, the staircase arrangement 
enabled some children to recognize the ‘one more than’ pattern, which would not have been so evident 
with Numicon.  When trying to find the ‘thirteen’ rod, six year Lucasz, who was not yet fluent in 
English, said, ‘because after 2, 3. Because it’s like ten, 1, 2, 3.’ In doing this he made a sweeping 
gesture across the 11, 12 and 13 rods, then across to rods 1, 2 and 3. Later, Magda, whose home 
language was Czech and who was more fluent in English, said, ‘It’s a bit like counting up stairs. Like 
counting 1, 2, 3 but 11, 12, 13.’ The children thereby implicitly identified two types of pattern, a 
repeating units pattern and the stair pattern of equal intervals of one, which is the most basic arithmetic 
sequence. This was evidence of early algebraic thinking, in that they noticed mathematical features, 
identified the relationship between elements and observed regularities  (Blanton et al., 2015, cited by 
Kieran, Pang, Schifter, & Ng, 2016).  

This activity thereby also demonstrated the principle of prompting analysis, by simply asking children 
to say how they identified a number. In our teaching investigations we have been impressed by the 
way patterns can fascinate children. On one occasion, when children were rushing by our table outside 
a classroom on their way to lunch, two six year old boys halted in their tracks in order to gaze at the 
staircase pattern and one child sat down to join us. We found that patterns like these engaged a range 
of children, who had differing expertise with numbers, in solving problems and noticing relationships. 
While some children may have had high levels of AMPS (Mulligan and Mitchelmore, 2009), the 
striking pattern made with manipulatives helped all children to focus on number relationships. 
Presenting number patterns in this way contrasts with other approaches which advocate that early 
years mathematics pedagogy should be based on realistic “context situations” (van den Heuvel-
Panhuizen, 2008, p. 20). 

The activity also prompted discussion, stimulating both Lucasz and Magda to express themselves 
creatively using language and gesture, as shown above, making connections and elaborating ideas. 
Lucasz may have been an example of a child using gesture to express emergent mathematics learning, 
as described by Garber, Alibali and Goldin-Meadow (1998) or he may have already been familiar 
with this pattern and been able to articulate it in Polish: we do not know. However, this showed that 
a lack of fluency did not prevent a child in the early stages of learning a language from trying to 
express a mathematical relationship, and also the importance of gesture in supporting mathematical 
discussion between children who are not using their home languages. The manipulatives pattern 
thereby supported the linking of different modes of representation, not only verbal and visual, but 
also kinaesthetic and, through the use of numeral cards, abstract symbols. 

This activity also exemplified the need to identify and assess prerequisite understanding. Some 
children could not reliably count objects to 20, despite having been assessed as doing this the previous 
year. Most of the children counted from one instead of counting on from 10, even when it was pointed 
out to them that there were always 10 green cubes. This may have been because they lacked skills of 
counting on or were not yet able to unitise ten as an item. As Cobb (1995) pointed out, if children do 
not have a concept of ‘a ten’ they will not be able to ‘see’ it even when demonstrated. Similarly, some 
children could add 10 and 3 and instantly say “13”, but seemed not to understand the inverse 
relationship sufficiently to apply this to decomposing 13 into 10 and 3 and did not use this knowledge 



to identify 13 as 10 and 3. Therefore some children may have lacked the prerequisite understanding 
and skills to access what the manipulatives were intended to represent. 

The final principle shown by this example, is that of an inclusive learning community. The children 
were not in ‘ability’ groups, as is common in English early years classrooms, in which case Lucasz 
and Magda would not have been in the same group. We do not know if Magda would have articulated 
the pattern in this way, if she had not first listened to Lucasz, who was able to hear his idea expressed 
differently.  Latoya, in her second session, identified the 15 rod by counting on from 10, saying, ‘10, 
11, 12, 13, 14, 15’; this was a skill she had not used previously but had observed another child using 
in the previous session. Both the lack of grouping and the open activity, allowing for a range of 
solution strategies, facilitated children in learning from others.  

In our study we also observed successful practice, particularly with colour rods, which similarly 
showed children engaged by patterns and stimulated to discuss mathematical relationships. These 
experiences imply that developing children’s focus on patterns is a promising avenue for 
mathematical pedagogy in the early years. 

Implications 
The issues discussed here suggest some potentially profitable avenues for future research with 
mathematical manipulatives and young children and some implications for practice. Firstly, we might 
build on home practices in finger counting and develop young children’s use of ‘all at once’ finger 
numbers. We also might investigate how children reconcile differences between discrete and 
continuous models of number, through comparing and discussing representations. These issues 
highlight the need to consider carefully exactly how manipulatives might foster learning of particular 
aspects of mathematics. There are promising avenues for early years mathematics pedagogy in using 
manipulatives to build on children’s interest in patterns and to develop children’s own expressions of 
mathematical relationships. However, an important prerequisite for all of these is a focus on 
children’s understanding of mathematical relationships rather than on performing calculations, as 
suggested by Ma (2015), which also has implications for early years mathematics curricula. 
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The aim of this study is to employ the Knowledge Quartet, proposed by Rowland, Huckstep, and 
Thwaites (2005), in order to characterise the kindergarten teacher’s competence when 
orchestrating researcher designed mathematical activities for 5-year-olds. We are drawing on 
design research as a methodology in which design principles such as playful learning and inquiry 
are implemented in the activities. Our analyses show that knowledge-in-action and knowledge-in-
interaction are revealed in the orchestration. Hence, the Knowledge Quartet is applicable in the 
kindergarten context – however, with some modifications due to kindergarten particularities.  

Keywords: Design research, kindergarten, Knowledge Quartet, mathematics, orchestration. 

Introduction 
For about a decade, mathematics has been part of the Norwegian curriculum for kindergarten, a 
curriculum situated within a social pedagogy tradition. In a kindergarten setting in Norway, a 
kindergarten teacher (KT) is supposed to empower the children’s mathematical explorations. 
However, the curriculum is not explicit as regards how KTs are to facilitate the children’s 
mathematical explorations. In this study we characterise one KT’s orchestration of mathematical 
activities for 5-year-olds in terms of knowledge employed by the KT. The following research 
questions are formulated for the study:  

In what ways may the Knowledge Quartet be employed in order to characterise the 
kindergarten teacher’s competence? 

What knowledge-in-action and knowledge-in-interaction does a kindergarten teacher reveal 
in her orchestration of a mathematical activity on geometrical shapes?  

The activities were designed by researchers in mathematics education (the authors of this paper 
among others), as part of an ongoing research and development project called “The Agder project”i, 
in order for the participating children to engage with mathematical concepts and ideas.  

In this study we use the metaphor of orchestration. By this metaphor we mean that it is the KT who 
is in charge of and leads the mathematical activity. She has to plan, think forward, act in the 
moment, follow up children’s questions and comments, adapt questions for each of the children, etc. 
– an important and by no means easy role to fulfil. Our admiration of this complexity is thus 
considerable when we set out to design the mathematical activities and study how the KTs 
orchestrate the activities. 

Theoretical lens: The Knowledge Quartet 
In order to analyse in depth how the Knowledge Quartet may be employed in order to characterise 
the kindergarten teacher’s competence and the revealed knowledge-in-action and knowledge-in-
interaction on behalf of the KT, we draw heavily on the Knowledge Quartet coined by Rowland, 



Huckstep and Thwaites (2005). The Knowledge Quartet was developed by Rowland et al. (2005) as 
a theoretical construct drawing on the profound and substantial work of Shulman (1986). Rowland 
and colleagues drew on videotapes from mathematics classroom lessons where pre-service teachers 
utilised their mathematical and pedagogical knowledge in their teaching. This quartet is used as a 
theoretical lens through which we analyse video data of one KT´s orchestration of one of the 
developed activities. We limit ourselves to one KT taking into account that “the quartet is 
comprehensive as a tool for thinking about the ways that subject knowledge comes into play in the 
classroom” (Rowland, Huckstep, & Thwaites, 2003, p. 97). 

The Knowledge Quartet differs from the framework of Ball, Thames and Phelps (2008), 
mathematical knowledge for teaching (MKT), in that the former focuses on situations in the 
mathematics classroom through which the teacher’s mathematics-related knowledge may be 
observed. Ball et al.’s (2008) framework describes different kinds of mathematics teachers’ 
knowledge. Mosvold, Bjuland, Fauskanger, and Jacobsen (2011) used the framework of Ball et al. 
(2008) to analyse mathematics teaching at the kindergarten level. Mosvold et al. (2011) found that 
the MKT framework needs to be adjusted to the kindergarten context in order to be appropriately 
used. This is because (1) the work situation of orchestrating mathematical activities for a Norwegian 
kindergarten teacher is very different from the teaching situation of a U.S. mathematics school 
teacher; and (2) the tasks of teaching in the kindergarten setting are significantly different from that 
of the school setting. It is pedagogical activities which is the basis for learning activities in 
Norwegian kindergartens, not mathematical activities as such. These differences have been 
emphasised by Erfjord, Hundeland, and Carlsen (2012), through the lens of the didactic triangle. 

In adopting a grounded approach to the analyses of data, Rowland et al. (2005) identified what they 
labelled the Knowledge Quartet, four dimensions along which mathematics teachers’ “mathematics-
related knowledge” (p. 255) may be analysed. These four dimensions are termed foundation, 
transformation, connection and contingency. Foundation encompasses the knowledge background 
of the KT; transformation and connection encompass how and to what extent knowledge is revealed 
in action as the KT implements and orchestrates the activity, hence dimensions described as 
knowledge-in-action. Contingency encompasses the KT’s knowledge as this unfolds in interaction 
with the children, hence knowledge-in-interaction. 

Foundation is a dimension of propositional knowledge used, adapted to our case, to address the 
KT’s mathematical knowledge, the KT’s knowledge of mathematics education, and the KT’s view 
upon the purpose of mathematics education and how children learn mathematics. Analytically, we 
use this dimension to characterise both the mathematics and the didactical insights revealed by the 
KT in her orchestration of the activity.  

Transformation is a dimension of knowledge-in-action which addresses the KT’s choices of 
representations, demonstrations, and use of examples in her orchestration of the activity. The 
dimension focuses on the KT’s ability to transform the mathematics “in ways designed to enable 
students to learn it” (Rowland et al., 2005, p. 265). Analytically, we use this dimension to describe 
the KT’s orchestration of the activity on characterising two-dimensional geometrical shapes. 

Connection is a dimension of knowledge-in-action as well, addressing to what extent the KT draws 
connections between various mathematics concepts and connections between various mathematics 



procedures, alternative meanings for these concepts and different ways of carrying out procedures. 
Analytically, we use this dimension to characterise how the KT makes connections between the 
geometrical shapes and their features, as well as various ways of deciding what shape is what.  

Contingency is a dimension of knowledge-in-interaction, a dimension that addresses how the KT 
interacts with the children through appropriately responding to children’s contributions, to what 
extent she takes advantage of learning opportunities that emerge, and to what extent she makes the 
activity her own and deviates from the goals and foci of the activity. Analytically, we use this 
dimension to characterise how the KT responds to the children’s ideas, the questions and comments 
she uses, whether she draws the children’s attention towards particular mathematical ideas, and 
whether she makes the geometry activity her own and are unbounded by its original foci.  

Design principles and context 
In our design of the mathematical activities we drew on two main principles, playful learning and 
inquiry approach to the teaching and learning of mathematics. The design principle of playful 
learning emphasises that for children play and learning is one and the same thing. Playful learning 
encompasses both free play (child-initiated and child-directed play) and guided play (adult-initiated 
and child-directed play), where guided play is the principle used here. In guided play the KT 
orchestrates and literally guides the play in an adequate direction in order to reach pre-formulated 
aims for the children’s play and to nurture the children’s interest, curiosity, engagement, and 
(mathematical) sense-making (Weisberg, Kittredge, Hirsh-Pasek, Golinkoff, & Klahr, 2015). The 
design principle of adopting an inquiry approach to the teaching and learning of mathematics stems 
from Jaworski’s (2005) inquiry as “a way of being in practice” (p. 103). That is, the KT and the 
children collaborate in order to achieve meaningful answers to prompts and questions, the children’s 
curiosity is taken advantage of, and the children are guided into mathematical inquiries through the 
use of questions, being curious and excited about mathematical issues. 

The KT that takes part in our study is a participant in the Agder Project, and by that also a 
participant in a professional development program. The professional development program within 
this project was based on four workshops of two days duration, focusing on Number, Measurement, 
Geometry and Statistics, combinatory and probability. In the third workshop, the KTs participated in 
lectures and group discussions on Geometry. Our data collection took place during the period when 
the KTs tried out two geometry activities. The observed KT is in her forties, educated for three years 
(180 ECTS) at university level, and is a well experienced kindergarten teacher.  

Context 
We as researchers are interested in scrutinising the KTs’ processes of orchestrating our designed 
mathematical activities. Moreover, the KTs have been participants in a professional development 
program where we have contributed with lectures and feedback on previous orchestrations of 
mathematical activities. We study the case of Wilma and videotaped her orchestration of a geometry 
activity. Wilma had received a written instruction note for the geometry activity a couple of weeks 
in advance of our data collection. 



Analysis and results 
In order to employ the Knowledge Quartet (KQ) on empirical data, one has to go into the code level 
from which the four dimensions are extracted (Rowland, 2016, personal communication). Our 
analytical process started with a first phase of collectively reflecting on our collected data in total, 
consisting of two days with data collection in each of four different kindergartens. In doing that, we 
had the KQ in mind, seeking to use KQ terminology and codes to analyse our data. The second 
phase consisted of us collectively looking at video excerpts from the different kindergartens, 
resulting in our choice of the case of Wilma. The reason for choosing one of the sessions of Wilma 
was that this session, from our collective looking at the video, turned out to be the most promising 
in addressing our research questions. The KT observably revealed her knowledge in action and 
interaction, the children contributed with oral statements and questions, and interaction amongst the 
children was taking place. The third analytical phase consisted of transcribing the video from 
Wilma’s session. The fourth phase consisted of us conducting collective in-depth analyses of the 
natural talk-in-interaction adopting the codes developed in the Knowledge Quartet. 

The activities were presented in written form by us with the three headings Equipment, Intention, 
and Implementation. The particular activity we consider here, is the first part of an activity focusing 
on two-dimensional geometrical shapes. Under Equipment we wrote: Geometrical shapes: triangles, 
squares, rectangles, circles, trapezium, rhombus, while for Intention we wrote: The children are 
supposed to get experience in recognizing properties of different two-dimensional shapes. 
Furthermore, the children are supposed to practice mathematical argumentation with respect to 
features of the various shapes. As regards Implementation, we wrote: Let the children investigate the 
shapes and their characteristics. Let the children discover the shapes’ differences.  

Excerpt 1: Foundation 

The following excerpts are taken from the initial phase of Wilma’s orchestration of the geometry 
activity. Wilma shows and shakes a box containing two-dimensional paper shapes. One of the 
children responds that “It’s shapes”. Upon this, Wilma  continues their conversation. The analytical 
contributory codes are: “awareness of purpose; identifying errors; overt subject knowledge; 
theoretical underpinning of pedagogy; use of terminology; use of textbook; reliance on procedures” 
(Rowland et al., 2005, p. 265).  

Wilma: Yes, that’s correct. And with mathematical terminology we call them geometrical 
shapes. Are you able to pronounce that?  

Sam: I think it is cookies (Smiles as he says it). 

Wilma: John, are you able to pronounce that? Geometrical shapes?  

John: Geometrical shapes. (Several children simultaneously say “Geometrical shapes”) 

Wilma: Yes, that is what they are called with mathematical terminology. Inside this box 
there are several of such shapes (She opens the box and shows it to all the children 
so that they may look inside the box). 

John: It looks like a puzzle. 

Wilma: Yes, it looks like a puzzle. That’s true. 



Sam: Yes. Are we going to puzzle with them? 

Wilma: At least we are going to work with them, yes we are. 

Ken: Can you pour them out? 

Wilma: I was thinking of pouring them out. Then I want you to take a look at them. 
Currently, there are quite a few shapes and some of them are almost identical. 
Now you may take a look at them. (She pours the shapes out on the table; the 
children take some shapes each and say “that is small” and “a triangle”.) 

In this excerpt we argue that Wilma’s orchestration is characterised by her foundation, both with 
respect to mathematics insights and didactical insights. The mathematical insights are revealed 
through Wilma’s emphasis on the mathematical terminology through the twice expressed term 
“geometrical shapes”. Furthermore, her mathematical insights are revealed through her choice of 
shapes that are congruent, shapes that are similar, and the variety of shapes included (various 
triangles, various quadrilaterals, circles of various sizes, ellipses, hexagons and octagons). The 
written material made by us suggested “triangles, squares, rectangles, circles, trapezium, rhombus” 
as shapes to work on in the activity while Wilma introduced many more shapes and terminology. 
Thus, we argue that the foundation here is Wilma’s and not just her use of external provided 
foundation from us in the written form.  

The didactical insights of Wilma are revealed through her way of establishing interest and curiosity 
among the children by shaking the box. The children’s interest and curiosity about the shapes are 
nurtured further by her showing of the various shapes in the box. Wilma confirms that the shapes 
look like pieces of a puzzle and by that she makes a link between these shapes and the apparently 
well-known activity of puzzling. By establishing that link, Wilma also communicates a playful way 
of engaging with the shapes. Finally, in this excerpt, Wilma’s didactical insights are revealed when 
she asks the children to inquire into the various shapes. By orchestrating the activity as playful, 
Wilma signals that she appreciates inquiry as a tool in order to learn mathematics. Additionally, the 
children’s interest, curiosity, engagement, and mathematical sense-making are nurtured.  

Excerpt 2: Transformation and Connection 

Approximately ten minutes later, the following dialogue occurred, exemplifying the dimensions of 
transformation and connection. Relative to transformation, the analytical codes are: “choice of 
representation; teacher demonstration; choice of examples” (Rowland et al., 2005, p. 265). Relative 
to connection, the analytical codes are: “making connections between procedures; making 
connections between concepts; anticipation of complexity” (Rowland et al., 2005, p. 265). Some of 
the children had picked up quadrilaterals that they found interesting since they did not know their 
names and they were different from rectangles and squares. Then the KT said: 

Wilma: Do you know what? These two quadrilaterals actually have other names with 
mathematical terminology. They have four edges (She counts “one, two, three, 
four” aloud while simultaneously pointing at the edges). 

Susie: But what are they called then? 

Wilma:  That one is called a rhombus (she points at the rhombus while speaking). 



Susie: Rhombus. 

Wilma: Rhombus. And that one, do you notice that two and two edges are equal (she 
points at the parallelogram she shows). That edge and that edge (slides her finger 
along the two opposite, parallel edges), are equal, and that edge and that edge are 
equal (slides her finger along the two other, opposite, parallel edges). Its name is 
actually a parallelogram.  

Sam: A paragram? 

Wilma: Yes, a parallel o gram.  

In this excerpt we see that Wilma carefully introduces two new shapes for the children. She gets 
everyone’s attention by holding up and showing one shape at a time. She emphasises that both 
shapes are conceptually associated with quadrilaterals, by overtly counting the edges. At the same 
time she makes it obvious that the two shapes are particular kinds of quadrilaterals. This is 
pinpointed by saying that they have “other names”, implicitly distinguishing these shapes from the 
familiar quadrilaterals square and rectangle.   

Wilma’s orchestration in this excerpt exemplifies transformation in that she uses one example of 
each of the two new shapes. She points at each of them in accordance with what she is saying, and 
she demonstrates how to classify geometrical shapes by counting their edges. Her orchestration also 
exemplifies contingency due to the deviations from the agenda set by the researchers in the designed 
activity. 

The dimension of connection is also exemplified in this excerpt as Wilma draws the children’s 
attention towards the particular features of one of the shapes. Wilma carefully focuses at the two 
pairs of edges that are parallel, one pair at a time, by sliding her index finger along the edges. She 
neither uses the mathematical concept of parallel nor equal length at this occasion. She only uses the 
feature “equal”. The feature of parallelism is thus only implicitly focused. However, by sliding her 
index finger along the two edges, her gesture signals that they are of equal length.  

In the end of the dialogue we also notice that Wilma is particularly focused at offering opportunities 
for the children to learn the name of the new shape. On two occasions, Wilma uses the name 
“parallelogram” for the shape. Both times she puts emphasis on the expression “parallelogram”. We 
see that Sam tries to pronounce the name, but only partly succeeds. Wilma then slows down the 
pace in her pronunciation of the word, in order for Sam, and the other children, to pay attention to 
the new word. Hence, we observe that Wilma is eager to name new objects mathematically correct. 
Naming is an important element in these children’s mathematical learning process. However, both 
in this example and in other examples the naming of shapes comes at a late stage, after the children 
have presented their sorting of shapes and the KT has orchestrated a discussion of the properties of 
the shapes. We consider this as evidence of her taking an inquiry approach in her orchestration. 

Excerpt 3: Contingency  

To exemplify this dimension of the KQ in Wilma’s orchestration, we include examples of single 
moves which illustrate how she responded to the children’s ideas, the questions and comments she 
used to make the children pay attention to various mathematical ideas. Even though she 
occasionally addressed her questions to one particular child, the other children still paid attention. 



The analytical codes used were: “responding to children’s ideas; use of opportunities; deviation 
from agenda” (Rowland et al., 2005, p. 266).  

Wilma drew the children’s attention towards the mathematical concept of sorting. Sam said: “Can 
we sort them?” (19). Then, some moves, but only a few seconds later, Wilma said: “Sam, what does 
it mean to sort?” (27). Wilma also drew the children’s attention towards mathematical features of 
the various shapes. One example was found when Sam said: “Yes, but these are small (points at the 
short edges of the rectangle). These two are equally long” (144). A few seconds later, Wilma 
responded to this utterance and asked all of the five children: “Does anybody know what the shape 
is called when two edges are quite long and two edges are shorter?” (147). With this question, she 
seeks to establish interest and curiosity, and thus to nurture playfulness in her orchestration. 

Wilma likewise focused their communication around the similarities between the shapes. Susie talks 
about the fact that two shapes, two congruent triangles, may be joined in order to make a rectangle. 
She says: “Jack’s shapes have such…, but Ken’s do not have such when he puts them together” 
(196). Upon this statement of observation, Wilma responds immediately: “What happens when you 
put them together?” (197). Furthermore, Wilma addressed the children’s mathematical reasoning 
through questions like: “How did you figure out that one (points at one of the hexagons)?” (72); and 
“Do you want to tell the other children?” (227). These examples show that Wilma adopts inquiry as 
a way of being (cf. Jaworski, 2005) and responds to the children’s ideas and uses the opportunities 
that unveil in their interaction.  

Discussion 
In this study we have considered the following questions: In what ways may the Knowledge Quartet 
be employed in order to characterise the kindergarten teacher’s competence? and What knowledge-
in-action and knowledge-in-interaction does a kindergarten teacher reveal in her orchestration of a 
mathematical activity on geometrical shapes? From what is possible to include in this relatively 
short paper, we are able to discern instances of all four knowledge dimensions through which her 
orchestration of the mathematical activity is informed. As such, the Knowledge Quartet (Rowland et 
al., 2005) has proven to be analytically useful when seeking to wrap up how a KT is able to 
orchestrate researcher-designed mathematical activities. At the same time, we observe that the KQ 
unfolds slightly different in the kindergarten context than in the school context, the context from 
which the KQ was originally elaborated and developed. In the Norwegian kindergarten context, it is 
highly rare, even inappropriate to orchestrate mathematical activities through long introductions and 
demonstrations. Concerning the issue of time, we see that the periods where the KT has the word 
are quite short, often only 5-10 seconds. Furthermore, in the kindergarten context it is unusual to 
give children extensive time to inquire into the mathematics without KT interference. This is 
however a usual case in the school context.  KQ contributory codes, such as use of textbook, 
reliance on procedures, teacher demonstration, and making connections between procedures, are 
partially inappropriate and inapplicable in the kindergarten context. Thus, our modification of the 
KQ materialised as not taking these codes into consideration.  

It is challenging to separate the dimensions from each other in the dialogues. In the dialogues the 
dimensions are intertwined, where one move may simultaneously exemplify several dimensions. 
The excerpts above are thus not mutually exclusive when it comes to the four dimensions of the 



KQ. For the purpose of this paper, however, the excerpts are deliberately chosen to illustrate how 
the KT reveals her knowledge-in-action and knowledge-in-interaction with respect to this particular 
mathematical activity. 

References 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it 
special? Journal of Teacher Education, 59(5), 389−407.  

Erfjord, I., Hundeland, P. S., & Carlsen, M. (2012). Kindergarten teachers’ accounts of their 
developing mathematical practice. ZDM - The International Journal on Mathematics Education, 
44(5), 653−664.  

Jaworski, B. (2005). Learning communities in mathematics: Creating an inquiry community 
between teachers and didacticians. Research in Mathematics Education, 7(1), 101−119.  

Mosvold, R., Bjuland, R., Fauskanger, J., & Jakobsen A. (2011). Similar but different - 
investigating the use of MKT in a Norwegian kindergarten setting. In M. Pytlak, T. Rowland, & 
E. Swoboda (Eds.), Proceedings of the Seventh Congress of the European Society for Research 
in Mathematics Education (pp.1802−1811). Rzeszów: University of Rzeszów.  

Rowland, T., Huckstep, P., & Thwaites, A. (2003). The knowledge quartet. In J. William (Ed.), 
Proceedings of the British Society for Research into Learning Mathematics 23(3), 97−102.   

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject 
knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher 
Education, 8(3), 255–281. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 
Researcher, 15(2), 4−14.   

Weisberg, D. S., Kittredge, A. K., Hirsh-Pasek, K., Golinkoff, R. M., & Klahr, D. (2015). Making 
play work for education. Phi Delta Kappan, 96(8), 8−13. 

                                                 
i The Agder project is funded by the Research Council of Norway (NFR no. 237973), The Sørlandet Knowledge 
Foundation, The Development and Competence Fund of Aust Agder, Vest Agder County, Aust Agder County,  
University of Agder and University of Stavanger. 
 



Young children’s aesthetic development in the context of mathematical 
explanation 

Esther Levenson1     Manya Raman-Sundström2 
1Tel Aviv University, levenso@post.tau.ac.il 

2Umeå University, manya.sundstrom@umu.se 

Mathematicians routinely report that beauty is both a reward and a motivation for the work they 
do. However, how and to what extent children can appreciate mathematical beauty is an open 
question. This exploratory study looks at young children (ages 6-12, with a focus on the younger 
years) as they evaluate different explanations of claims about even numbers and triangular 
numbers. While our results are fairly speculative, we provide case studies which illustrate possible 
kinds of aesthetic reactions, and some of the factors which might impact on those reactions. 

Keywords: Aesthetics, explanation, even numbers, triangular numbers, affect. 

Introduction 
There is little doubt that mathematicians have rich, aesthetic lives (Sinclair, 2004). While recent 
research has attempted to characterize what exactly this aesthetic life consists of (Raman-
Sundström, & Öhman, 2016) or what is meant by aesthetics in mathematics in the first place (Rota, 
1997), evidence suggests that aesthetic reactions are common in, and perhaps even central to, the 
working lives of mathematicians. According to some, aesthetic reactions include pleasure, tension, 
surprise, and a sense of being compelled (or repelled) (Marmur & Koichu, 2016). Interestingly, 
neuroscientists suggest that the same region of the brain is involved for judging mathematical 
equations and works of art (Zeki et al., 2014).  

Recently, there has been interest in studying aesthetics in mathematics education. While some of 
those studies have investigated school children’s aesthetic reactions while working on mathematical 
problems (e.g., Sinclair, 2006), few have focused on young children. Yet, research has shown that 
young children are capable of sophisticated proof-like reasoning (Maher & Martino, 1996), 
justification, and argumentation (Tatsis, Kafoussi, & Skoumpourdi, 2008). Thus, it seems 
reasonable to ask whether young children could be capable of aesthetic experiences, and if so, at 
what age. Are young children able to experience the satisfaction of finding a good explanation? Do 
they find pleasure in coming to understand an explanation? 

This paper presents an explorative study of the possible aesthetic experiences of young children. 
Mathematics, like other aesthetic subjects, provides experiences that have the potential to draw 
people in. It also provides a reward or a sense of satisfaction (Sinclair, 2004). What makes the 
experience “complete” is the presence of both a startup phase and a reward phase. We study the 
presence or absence of aesthetic reactions of young children (age 6-7) by comparing their behavior 
to an older cohort (ages 9-10). We find that the younger children, while lacking some of the insight 
of the older children, have what we might call “aesthetic dispositions” that allow them to enjoy and 
to be curious about fairly complex mathematical tasks. 

 



 

Theoretical background 

One of the central questions of aesthetics is whether beauty is objective or subjective. According to 
Marmur & Koichu (2016), those that consider mathematical beauty as objective (such as Dreyfus 
and Eisenberg, 1986) list characteristics such as clarity, simplicity, brevity, and conciseness when 
judging theorems and proofs. In other words, beauty is an intrinsic property of the mathematical 
object. Those that consider beauty to be subjective, claim that mathematical beauty is in the eye of 
the beholder and that experience, age, knowledge, and culture contribute to aesthetical views. 
Marmur and Koichu (2016) integrate both views, concluding that when discussing school 
mathematics, we may hypothesize that a mathematical problem might elicit an aesthetic experience 
among students because of its simplicity or surprising result. Ultimately, however, students may or 
may not have an aesthetic experience depending on, among other things, the pedagogical setup of 
the problem.  

In their study of university students, Marmur & Koichu (2009) found that surprise was integral to 
experiencing mathematical beauty. They found that students who referred to a solution as beautiful 
had first struggled with the problem, had put significant effort into finding the solution, and 
ultimately were surprised at the simple and unexpected solution. Struggle was also a factor in 
Brinkmann’s (2009) study of middle and upper school students’ appreciation of mathematical 
beauty. A problem was considered to be beautiful if it had a certain degree of complexity, yet felt 
solvable. Eberle (2014) investigated students’ (ages 8-10) aesthetic attractions when evaluating 
geometric tessellations. Students referred to several characteristics of the geometric objects which 
contributed to their appreciation, such as real world connections, color, complexity, and uniqueness. 
Eberle (2014), as well as Sinclair (2001) also noted the generative role of aesthetics when students 
were involved in inquiry-based tasks. In both studies, aesthetics led students to engage and play with 
the mathematics, guiding them when deciding which direction to pursue. 

The above studies related to aesthetics with regard to problems, solutions, and geometric objects. In 
our study, we focus on mathematical explanations and young children’s appreciation of those 
explanations. Previously, Levenson (2010) found that fifth-grade students have preferences 
regarding different types of explanations. Students’ preferences were based on clarity, brevity, 
relatedness, and because the explanation was perceived as fun. Although some of the reasons 
students mentioned for their preferences are reminiscent of aesthetic evaluations given by older 
students, and even mathematicians, the focus of that study was not specifically on aesthetic 
appreciation or satisfaction from an explanation. In this study, we draw on a theory of explanation 
developed by Gopnik (2000), which helps explain what makes certain explanations satisfying. 
Gopnik suggests that an explanation consists of two parts, the why? (the ‘hmmm….’ phase) and the 
because! (the aha! or wow! phase depending on how surprising the result is for the individual). An 
exploration can have a why? without a because! and vice versa. Both phases are needed for an 
explanation to be found satisfying. Moreover, Gopnik suggests that both the seeking and the 
satisfaction from finding a good explanation are part of our human nature.  

The aim of this study is to begin an exploration of young children’s appreciation of mathematical 
beauty. Specifically, we ask: Do young students’ aesthetic reactions (or non-reactions) to 
mathematical inquiry and explanation differ from that of older students? Are younger and older 



 

students capable of an experience that contains both the hmmm… and aha! phase of a mathematical 
explanation?  

Methodology 
Data was collected using semi-structured interviews with two cohorts of children, one aged 6-7 
years old, and one aged 9-10 years old. The older children worked with explanations about 
triangular numbers, namely that the number of dots in the nth triangular number is n (n+1)/2. This 
cohort included four fifth grade girls, all from the same class, who sat together in a group with the 
interviewer in one of the girl’s houses. The discussion began with introducing the girls to triangular 
numbers, discussing the number of dots in the first five triangles, and then asking them to come up 
with the number of dots in the 100th triangle. After giving them time to work on the problem, the 
girls were shown two solutions and asked to evaluate each solution.   

The younger cohort of three children worked individually with the interviewer with explanations of 
the claim: the sum of two even numbers is always even. Two interviews were conducted in the 
house of the child and one was conducted in the house of the child’s grandmother. Each interview 
began in the same way, asking the child to say if he or she could give examples of even numbers 
and to say why those numbers were even. After confirming that the children were familiar with even 
numbers they were given the following question: what would happen if you add two even numbers, 
would the answer be even or odd? Children were given time to think and reply. Although the 
interviewer had several explanations on hand for the children to evaluate, as will be shown in the 
next section, only one child was asked to evaluate explanations. 

One of the difficulties of studying aesthetics in children, or even with mathematicians, is how to 
detect an aesthetic experience. While there may be bodily clues, such as changes in eye-dilation or 
neural correlates (e.g., Zeki et al., 2014), a natural place to start is by simply listening to what 
people say (see Wickman, 2006) and watching for engagement (or disengagement) during the 
experience. In this study, we take this approach as a first approximation, using key words (taken 
from the background studies) such as “Wow!” and “Funny!” as markers for a general aesthetic 
experience.  

Findings 
Below we present four episodes, one with older girls and three with younger children. What is 
striking about the young children is that there is no sense of surprise. The children seem to lack the 
‘hmm….’ needed to build the wow! or to even warrant an explanation.  

Fifth-grade girls, age 11 

Trying to figure out how many dots will be in the 100th triangle proves challenging to the girls. 
When they realize that they would have to sum all of the numbers from 1 to 100, the interviewer 
gives them some time to work this out and then explains to the girls the Gaussian method for 
summing an arithmetic sequence. She lines up the numbers from 1 to 100 in one row and on top of 
that row, lined up the numbers from 100 to 1 (see Figure 1), explaining that this shows how many 
dots are in each row of the 100th triangle.  

 



 

 

 

 

Figure 1: Summing the numbers from 1 to 100          Figure 2: Combining two triangles  

To explain why one multiplies 100 by 101 and then divide by 2, the following discussion ensues: 

Esther: Two triangles of 100, right? Now look what we have here. (Esther circles the 100 
and 1 and the 99 and 2). 

Girls: Ahh!  

Esther: 1 and 100, 2 and 99, 3 and 98. 

Trina: Wow! It’s great. It’s the same thing. 

The girls are surprised that the sums all add to the same number, 101. Their remarks of “Ahh” and 
“Wow” indicate their pleasure in this simple conclusion. After showing the girls this explanation, 
the interviewer shows them a second method, that of drawing two congruent triangles, inverting one 
and placing it next to the first, thus creating a rectangle. The number of dots in the triangle is then 
equal to the area of the rectangle divided by two (see Figure 2). After establishing that the girls 
understand both explanations, the girls are asked to compare the two methods. 

Esther: Which explanation of the method gives you more satisfaction?  

(All of the girls point to the second explanation with the dots.) 

Amanda: You simply see that you do this times this, and then divide by 2 because you have 
2 triangles. 

Hailey:  Because instead of computing it all, this is easier and simpler and in front of your 
eyes. 

Amanda: Also, it draws attention more. It’s more fun, but not just more fun, it’s like, it goes 
more into your head. 

In the second segment, the girls claim to like the second explanation better because it is simpler and 
because they can “see it.” This hints at their appreciation for the aesthetic value of efficiency, which 
might have been enhanced by their struggle to find the solution. 

Zev, age seven 

Zev is seven years old, attends first grade in Israel, where learning about even and odd numbers is 
part of the curriculum in school. Zev is able to list several even numbers as well as several odd 
numbers. When asked why eight is an even number he says, “because four is even and … because 
four is even and it’s… and also… the second four is even.” Note that he does not stress that 8 could 
be written as the sum of two equal whole numbers, but rather that both of the addends, in this case 
fours, were both even numbers. When asked why 10 is an even number, the following discussion 
ensues: 

Esther: OK. Is ten an even number? 



 

Zev: Yes. 

Esther: How do you know that ten is even? 

Zev: Because odd plus odd is even. 

Here Zev was probably thinking that 10 results from 5 + 5, both odd numbers. Realizing that Zev 
seems already familiar with summing odd numbers, the interviewer asks about the sum of two even 
numbers: 

Esther: And what about an even number plus an even number? 

Zev: Even. 

Esther: Always? 

Zev: Yes. 

Esther: Can you tell me how you know that even plus even is always even? 

Zev: Four plus four, eight. Eight pus eight, sixteen. 

Esther:  How do you know that sixteen is even? 

Zev: Because ten is even, and six is even. 

For Zev, it seems that his working definition of an even number is of a number that can be written 
as the sum of two other even numbers. Although this is a recursive definition, it does not seem to 
bother him and the outcome of this conception is that Zev does not even recognize the question of 
what might be the sum of two even numbers. Zev has no sense of hmm…. When Zev is shown 
another explanation for why the sum of two even numbers is always even (that every even number 
can be written as the sum of twos and thus the sum of two even numbers can also be written as the 
sum of twos), Zev says that the explanation is boring because he already knew that. 

Anna, age six 

Anna is six years old and attends kindergarten in Israel. Although even and odd numbers are not 
part of the kindergarten curriculum, Anna was able to list several even and odd numbers and 
claimed to have learned about them from her teacher. When asked why eight is an even number she 
responded, “Because each one has a partner.” When she was asked to explain what an even number 
is, she said, “That the two of them have a partner. That each of them has a partner.” What Anna is 
alluding to in her own language is that an even number may be written as the sum of twos. After 
talking about even numbers for a few minutes, we discuss the sum of two even numbers: 

Esther: What would happen if I added an even number with another even number? 

Anna: It would be even. 

Esther: How do you know? 

Anna: Because both of them are not separate, it never separates from the second. 

Esther: What do you say! Are you sure that this is always this way? 

Anna: Yes. It will never be that, uhmm, a partner doesn’t run away from the pair. 

Anna has a very specific conceptualization of even numbers, that an even number represents an 
inseparable pair. She draws on this conceptualization to explain why the sum of two even numbers 



 

must always be even. Engaging further with the problem, Anna takes out a bunch of wooden blocks 
from a basket (without counting) and proceeds to pair up blocks. When the interviewer asks if she 
can say if she took out an even or odd number of blocks she readily says that she took out an even 
number of blocks because on the table, every block is paired off. To summarize, Anna is drawn in to 
the problem, has an explanation, but she does not struggle with the claim. 

Leila, age seven   

Leila is from Sweden, has just turned 7, and attends kindergarten. Although learning about even and 
odd numbers is not part of the curriculum, she is able to list several even numbers (perhaps hearing 
about them from her parents or friends). Although prompted to think about the possible sum of any 
two even numbers, Leila shows no interest and instead, with the use of colorful cubes, begins to 
explore a self-generated conjecture involving pairs of twos. She puts together six pairs of cubes to 
represent an even number and then wonders if seven pairs will still be even.  

Leila: I have a question. You can’t have an odd number of twos. 

Manya: How are you thinking? 

Leila: Like, if I have these (pointing to the six pairs of cubes), you can never have an odd 
number. Look here. I have 1, 2, 3, 4, 5, 6. If I have this many (she takes another 
pair), now I have enough…. odd numbers of twos… because there’s seven… does 
it get an odd number or an even? I think it is actually funny.  If you have an odd 
number of twos, it even gets an even number. That I think is really funny. 

Manya: I see.  Why is that? 

Leila: I don’t know, because it feels like it’s actually pretty funny. 

Manya: Do you think it’s funnier to have an even number made of an odd number of twos 
than an even? 

Leila: What do you mean – an even number of odd number …? Yeah. It gets an even 
number if you have an odd number of twos. Because I figured it out of these. 

This discussion suggests that autonomy might play a role in having an aesthetic experience.  Leila 
generates her own question (What is the sum of two odd numbers?) and the resolution of the 
question (that an odd number of twos can be even). She thinks that this conclusion is funny. While 
she might have had a similar reaction to a given statement, the affect seems to be closely correlated 
to ownership of ideas. In the last two lines, the researcher asks her to compare two statements. Leila 
replies “what do you mean”?  The statement is funny to her because she “figured it out of these.” 

Comparing the older cohort to the younger cohort 

The following table summarizes the observations from the data presented above and the children’s 
aesthetic experiences (AE). A full circle represents that an AE took place, a dotted circle reflects a 
partial experience, and an empty circle that no AE was detected.  In all of these cases, we can see 
that the path to having an aesthetic experience consists of several distinct phases. One needs to be 
engaged; there should be some build-up, some crucial moment, and then some release. Only the 10 
year olds seem to have a complete experience. 



 

 
Children Age Task AE Behavior 

Trina, 
Hailey, 
Amanda 

10 Triangular 
numbers 

 Have an aesthetic experience, marked by both surprise 
and satisfaction. They appreciate a solution which is 
simple and “goes into their head”. 

Zev 7 Even 
numbers 

 Has a conception of even numbers, but is uninterested in 
explaining why the sum of evens is even.  He “already 
knows that”. 

Anna 6 Even 
numbers 

 Has a conception of even numbers which goes along with 
the claim about the sum of even numbers. Is engaged and 
involved, but is lacking a “hmmm….” 

Leila 7 Even 
numbers 

 Takes control.  Explores her own hypothesis.  Tests if an 
odd number of twos can be even.  Finds the result “funny”. 

Table 1.  Types of aesthetic experiences for the triangular number and even number tasks 

Build-up takes place when they explore the question, and their interest increases as the interviewer 
shows the explanation involving pairs of numbers. After having time to digest this information, the 
interviewer shows another explanation which further increases their interest. Each time a new 
explanation is understood, the girls say words like “wow!” and “aha!”. The fact that they have this 
kind of reaction, we claim, is because they had time to explore and to start generating their own 
explanations. We also cannot rule out that there might be some developmental issues, such as the 
children being old enough to abstract and/or take in the explanations given. 

In contrast to the fifth-graders, the younger students had limited or no aesthetic experience. Zev is 
strikingly uninterested in any explanation at all. We suspect that his disinterest came from the fact 
that he had been told in school that even + even is even, so there was no tension left to resolve. 
Leila has some interest in explanation, but not for the question given to her. Rather, she generates 
her own question about whether an odd number of pairs can result in an even number. She finds this 
result funny, indicating some level of surprise, which she quickly believed despite her initial 
expectation. Anna is drawn in to the explanation activity, but did not seem to have a full aesthetic 
experience. Unlike the fifth graders who could “see” why the explanations held, Anna simply states 
her conception of even numbers in terms of pairs or partners, and claims that any sum of pairs will 
still be even.  She does not give an actual reason, which might be because she did not experience the 
hmmm… phase of explanation. She is not bothered by any alternative, so no relief or satisfaction is 
expressed. 

Conclusion 
One of the challenges of this study was to find tasks that might elicit an aesthetic reaction. We 
attempted to find tasks that would be suitably challenging, yet accessible to each of the age groups. 
In the end, the older children worked on a new task, presented not only in general manner, but with 
an iconic illustration, while the younger children worked on familiar (at least for two children) 
general characteristics of numbers. Thus, it might be that the different conditions affected the 
aesthetic experiences. Taking these limitations into consideration, there is still the possibility of 
developmental differences in aesthetic experiences. In the naïve view, children have and rely on 
concepts, but are not yet puzzled. Because of this lack of puzzlement (an essential ingredient 



 

according to several researchers (e.g., Gopnik, 2000; Marmur & Koichu, 2009)), there is no tension 
in their mathematical exploration, nothing to be resolved, and so no aesthetic experience is possible. 
In contrast, in the mature view, children are engaged and puzzled. They are more open to 
explanations because they themselves have struggled with the questions. This kind of behavior is 
possible among quite young children (Leila, at age 7, has a very small amplitude aesthetic 
experience when she generated her own conjecture), but might be more likely to occur the more 
autonomy is given to the students, the more challenging the task, and the more supported the 
students are to not to give up when they think they already have the answer. As an exploratory 
study, this paper has begun a discussion regarding young children’s possible aesthetic experiences 
when working on mathematics. Additional research is needed to continue this discussion. 
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We present the analysis of a research conducted with first-grade pupils with a focus on their ability 
to notice and use regularities in three-dimensional geometrical objects by using playing blocks. The 
results show that children had difficulties in reconstructing the figure and retaining the regularities 
in the invisible part of it. 

Keywords: Early years mathematics, patterns, regularities, geometrical objects. 

Introduction 
Discovering regularities is considered one of the most important processes involved in mathematics. 
Actually, developing an awareness of patterns is a significant step towards generalisation. Children 
are expected to be able to recognise, describe, duplicate and extend patterns, even at a young age. 
These assumptions are expressed in the Polish curriculum (Podstawa Programowa, 2011), in which 
the use of patterns and regularities appear in the first grades of primary schools; for example, the 
pupils are expected to be able to draw a particular pattern. However, much often the attention of the 
teacher is focused on the manual abilities of the students and not on mathematical thinking. In the 
next classes the topics do not play a significant role, according to the Polish curriculum. 

In our study we designed a series of lessons for the first grade pupils using playing blocks. By 
observing constructions presented at pictures the children were asked to construct the same figures. 
In order to do so, they had to recognize a geometric pattern and/or a repeating pattern (Zazkis & 
Liljedahl, 2002), and then use their observations to their work. Our analysis was focused on children’s 
ability in noticing regularities and in continuing them in their constructions. In our paper we describe 
a particular task in which the children had to reconstruct a three-dimensional figure and build an 
invisible part, which could be done by using the same pattern. We try to investigate to what degree 
the children subordinated their actions connected to building the invisible part of the construction to 
regularities of the visible part of the construction. Our theoretical framework is presented in the next 
section, followed by our methodology, the results and analysis, and finally our conclusions. 

Theoretical framework 
Discovering regularities in the primary school 

In mathematics teaching exploring patterns is closely related to the development of mathematical 
thinking and reasoning: “Patterns are the heart and soul of mathematics” (Zazkis & Liljedhal, 2001, 
p. 379). This is underlined in many studies (e.g. Clements & Sarama, 2009; English, 2004; McGarvey, 
2012; Threlfall, 2005). It is thus very important for every child from a young age to have contact with 
patterns; it is considered a way “to make connections to the world around them” (McGarvey, 2012, 
p. 310). As Frobisher and Threlfall (2005) state, in their first years of schooling students should 
develop abilities to describe, complete and create patterns. Tasks that involve patterns encourage 
students to verbalize their ideas, thus improve their communicational ability (Garrick, Threlfall & 
Orton, 2005). Moreover, searching for a regularity is an extremely effective method during solving 



mathematical problems. English and Warren (1998) suggest a patterning approach as a way to 
introduce the concept of variable. Mulligan and Mitchelmore (2013) introduce the construct 
“Awareness of Mathematical Pattern and Structure” in order to study the development of structural 
understanding; moreover, they claim that this development is related to the big mathematical ideas of 
generality and equal grouping. 

Although patterns and regularities are considered vital, in some cases they do not stand on their own 
in the curricula and teachers see such activities as merely an enrichment to more “traditional” 
activities. On the contrary, we believe that “algebra, and indeed all of mathematics is about 
generalizing patterns”. (Lee, 1996, p. 103) Therefore, patterns should be observed and studied in 
many different manifestations in mathematics. 

Three-dimensional geometry in the early mathematics classroom 

Although small children have many experiences with handling three-dimensional objects within their 
play, early geometry curricula usually place three-dimensional geometry to higher educational levels 
(Swoboda & Vighi, 2016). In Polish primary schools, space geometry is almost absent in the first 
three grades. According to the National Curriculum (Podstawa Programowa, 2011), the only relevant 
topics are recognising and naming basic geometrical two-dimensional figures. Generally, the tasks 
proposed in the textbooks have a reproductive character and are directed into building the concept of 
geometrical object. Much often the tasks impose scientific terminology. There is lack of tasks which 
could be a cognitive challenge connected to geometric problem solving. The tasks in which the pupil 
has to use some geometrical properties of objects or some observed relations are also missing in the 
first years of school mathematics. Moreover, there are very few tasks related to three-dimensional 
geometry. Such tasks have a significant influence on development of thinking and imagination of a 
child who is surrounded by three-dimensional objects.   

Context of the study and methodology 
The starting point for our research was a general question concerning the degree that 6-7-year-old 
children can grasp regularities formed in a three-dimensional environment. The research was 
conducted by a preservice teacher (Falger, 2016) – a master student supervised by the second author 
of the paper – among 16 first grade pupils (6-7-year-old). It consisted of a series of four lessons of 
around 45 minutes and it was realized in the period of February – April 2016 every two weeks. The 
preservice teacher was known to the pupils. The research tools were series of tasks, which were based 
on creating a construction by wooden playing blocks of dimensions 3 cm  3 cm  3 cm in three 
colours: red, blue, and yellow. The classes comprised a sequence of activities which started by 
building “towers” and “snakes” (considered as one-dimensional figures) then by “walls” of different 
shapes and regularities (considered as two-dimensional figures) and continued by three-dimensional 
constructions which were also based on some regularities. During the classes the children were asked 
to build some constructions presented on a picture; sometimes this was accompanied by building the 
figure by the teacher. All the lessons were video recorded; additionally, photos were taken. All the 
phases of pupils’ work were reconstructed and analysed by using the video; the process of analysis 
was supported by the photos and the notes of the preservice teacher.  

For the purpose of this paper we will focus on the last lesson which consisted of two different 
activities. The first task was to build a construction which was presented to the children on a picture 



(Figure 1, shape on the left) and then the pupils were asked to continue the figure. The second task 
was to build the construction presented on a picture (Figure 1, shape on the right) and built by the 
preservice teacher by using the blocks. For a short time the pupils could observe it in order to 
familiarize with it (still a part remained invisible to the pupils) and after that the building was 
destroyed. The children were expected to rebuild it. At the end of the activity the teacher asked them 
individually: “Which blocks did you use where it was not visible? Why?”. In this paper we will 
analyse the second activity.   

                              
Figure 1: The first and the second construction during the fourth lesson 

Both constructions were classified as visual geometric patterns (Zazkis & Liljedahl, 2002) in which 
we can observe two types of regularities: the colour repetition (“repeating pattern”, Zazkis and 
Liljedahl, 2002) and the heights of the “towers” which increase by one block (“geometric growth 
pattern that can be quantified”, McGarvey, 2012). The first figure can be considered a two-
dimensional one and the second figure three-dimensional. In the second construction there is an 
“invisible” part which has to be built by the children. 

Our analysis was mainly based on the videotaped process of building the constructions of every child; 
additionally, we collected data from a discussion with the pupil at the end of the task. All aspects of 
pupils’ works emerged during the process of analysis, according to a grounded theory approach 
(Strauss & Corbin, 1998). We focused on answering the following research question: To what degree 
children will subordinate their actions for building the invisible part of the construction to regularities 
existing in its visible part? In particular, we have formulated the following research questions: 

a) Were the pupils able to reproduce regularities in the visible part of the construction? 

b) Did the invisible part of the construction retain any regularities during the students’ work? 
Which student activities led to the retain of the regularities? 

Results and analysis 
In this section we will present the results of the second activity during the fourth lesson. Firstly, we 
present a detailed analysis of the works of three pupils as characteristic cases. All pupils’ names are 
pseudonyms. 

Ania’s work (Figure 2) 

The girl started her work from constructing a “tower” which contained four red blocks. Then she 
created a blue “tower” of three blocks and located it next to the initial one. The next step was one red 
two-blocks “tower” which she put next to the blue one. The wing was finalised by one blue block. 
After that, she started building another “tower” from four blue blocks. Next to it she located a red 
two-blocks “tower” and one blue block. She had left one blue block which she put at the top of the 
construction, half at the red and half at the blue “tower”.  



    
Figure 2: Ania’s work  

Ania used a different regularity of colours than in the picture; her “towers” were the same colour and 
occurred by turns. She consequently kept that rule. She built her “towers” decreasingly, the first part 
of her work retained the regularity of heights but in the second “wing” she made a mistake. Her work 
started from the invisible part and that somehow determined the rest of the construction. The only 
visible element of the highest “tower” was red, which could cause the decision of the colour choice 
for the whole “tower”. Ania built the whole “tower” in one colour and that influenced the fact that 
the rest of “towers” were also one-colour. The process of creating one “wing” with her own ad hoc 
rule could pull her back from analysis of the regularity at the picture. During building of the second 
part of the construction she repeated her own rule and she changed only the first colour into a blue 
one. She also forgot that the four-blocks “tower” appeared only once in the construction. By putting 
the last block she probably tried to keep the regularity of the heights of the “towers” and to balance 
the two contradictions of the right and left “wings”. 

Kuba’s work (Figure 3) 

He firstly built the “right wing” and then the “left wing” of the construction, according to the template. 
Then he connected the two separated “wings” with the edges of the cubes. He completed the 
construction by a “tower” of four blocks: blue, red, blue, and red. He continued the regularity created 
by the second “left wing”.  

     
Figure 3: The phases of Kuba’s work 

Kuba worked very precisely and systematically; all his movements were intentional. He created the 
construction correctly. He recognised and used the regularity of colours and heights. The last part of 
the figure – the invisible “tower” – was an effect of continuation of the regularities previously created 
and connected to the construction of the “left wing”. 

Julia’s work (Figure 4) 

The girl started the construction from the invisible “tower” in the order: blue, red, blue and red block. 
Then she continued the “left wing” by constructing the “towers” of three blocks: red, blue and red, 
then two blocks: blue and red. She finalised the “left wing” by a red block. In that way she created a 
regular wall, concerning the colours and heights. Then she constructed the “right wing” by a “tower” 
of three blocks, then two-blocks “tower” and the last blue block.  



   
Figure 4: Julia’s work 

Julia was the only one who fully succeeded in the task by starting her construction from the invisible 
part. That part was a result of her imagining the continuation of one of the walls (the left wing). She 
applied the observed pattern without testing it on the visible parts of the figure. Thus, she started from 
realising the imagined part and then she reproduced the pattern in the opposite order. Her building of 
the “wing” was done by lower “towers” of alternate colours, thus we can conclude that the base of 
her first decision was determined by firstly ascertainment of the height (four blocks) and calculation 
back: red – blue – red – blue. Even the contradiction between the left and the right “wings” did not 
affect her self-confidence.  

The analysis of the process of building the second construction (Figure 1) of all 16 pupils, led us to 
the following aspects. We have to note that one work may contain more than one aspects:  

1. Regularity of colour – a pupil puts red and blue block in a staggered manner; 
2. Grouping colour – a pupil is grouping the colours by building short series of same colour 

blocks; 
3. Regularity of shape – the figure’s shape is reconstructed correctly; 
4. Partial regularity of shape – a pupil reconstructs only one part of the figure (one “wing”); s/he 

has difficulties in building the second “wing”. 
5. Student’s own shape – a pupil builds a construction which is not related to the template. 
6. The invisible part built first – a pupil starts the work from the invisible “tower”; 
7. The invisible part built as last – a pupil starts from the visible parts and at the end of work 

s/he competes the invisible “tower”; 
8. Colour regularity of the invisible part – a pupil uses the same rule of the colours which was 

observed in one of the “wings” of the construction; 
9. Lack of colour regularity of the invisible part – a pupil does not use the rule of the colours. 
10. Proper height of the invisible part – a pupil builds a “tower” by using 4 blocks; 
11. Improper height of the invisible part – a pupil uses less or more than 4 blocks. 

Table 1 presents the pupils’ ways of work in relation to the aforementioned aspects. We may notice 
that 15 works contain more than four aspects; each aspect present in a particular work is marked by 
x. Only Bartek’s work does not contain any aspect: this boy did not build anything during that activity; 
he was just repositioning the blocks. He justified this in the following way: “I don’t want to build 
anything. I have already built something before (referring to the previous task)”. 

  



 

No. Pupil’s name 
Characteristic aspects of the pupils’ works 

1 2 3 4 5 6 7 8 9 10 11 
1. Kuba x  x    x x  x  
2. Zosia x  x    x x  x  
3. Dawid x  x    x x  x  
4. Julia x  x   x  x  x  
5. Maciek x  x    x  x x  
6. Franek x   x   x x   x 
7. Borys x x  x  x  x   x 
8. Paula x   x  x  x  x  
9. Ania  x   x x   x  x 
10. Wiki x x   x  x  x x  
11. Staś  x   x    x x  
12. Leon  x   x x   x x  
13. Kamila  x   x x   x  x 
14. Basia  x   x x   x  x 
15. Jola  x x   x   x x  
16. Bartek - - - - - - - - - - - 

Table 1: Characteristic aspects of the pupils’ works 

Only four children managed to build the correct construction by using the observed patterns: Kuba, 
Zosia, Julia and Dawid. They all used the regularity of colour (aspect no.1) and preserved the 
regularity of the heights of the “towers” (aspects no.3 and 10). They created the “invisible tower” 
which retained the colour regularity of one “wing” (aspect no.8). In Kuba, Zosia and Dawid’s 
constructions the highest “tower” was a consequence of their work on the “wings” and was created 
as the final element. Julia started her construction from the “invisible” element. The remaining eleven 
children (without Bartek) tried hardly to complete the task. They used the experience from previous 
lessons by putting the red and blue blocks in a staggered manner (aspect no.1) or grouping them 
according to the colours (one “tower” red, then blue or bases of the “towers” are blue and the next 
level of the “towers” are red, etc. – aspect no.2). Five of the mentioned children used the regularity 
of colour (aspect no.1) and three of them transferred their observation into the invisible part, where 
they applied that regularity (aspect no.8). Two pupils out of eleven were able to reconstruct the shape 
by using the shape regularity together with space imagination (aspect no.3) but failed to keep the 
colour regularity (aspects no.1 and 9). Five children did not notice that the invisible “tower” is the 
highest one and contains 4 blocks (aspect no.11; usually the “tower” was built from three blocks, in 
one case it was five blocks). During reconstructing the processes of the pupils’ works it can be noticed 
that the buildings were changed when the children reached the invisible “tower” and then they usually 
lost their regularity. It seems that the invisible part of the figure dominated the pupils’ trials of 
constructions and most of their difficulties were caused by the fact that it was hard to imagine what 
is behind of the figure. Four examples of the constructions are shown in Figure 5. 



    
Figure 5: The works of Staś, Leon, Kamila and Jola (from left to right) 

Although almost all children did not have any problem in building the first construction (Figure 1) in 
which they used the observed visual geometric patterns: the repetition of the colours and increasing 
the heights of the “towers”, building the second construction seemed to be very difficult. While in the 
first task all children were able to use their experience from the previous lessons, in the second task 
the experience was not enough for some of them. We may claim that working with geometrical 
patterns in a three-dimensional environment is much more difficult that than in a two-dimensional 
one and that patterning skills obtained in a two-dimensional environment are not easily transferred.  

Conclusions 
In early years mathematics it is expected that children will easily recognise patterns, particularly they 
should impose regularities on visual images and describe the rules that help to extend or predict those 
regularities (McGarvey, 2012). Many researchers express the opinion that recognising patterns is one 
of the most important skills which are necessary for algebraic thinking (e.g. Lee, 1996). On the one 
hand, research has shown that “perceiving a pattern is not difficult. Students successfully recognize 
patterns by imposing structural regularities onto visual and symbolic phenomenon” (McGarvey, 
2012, p. 313). On the other hand, our study has shown that many children failed to construct the 
presented pattern. Only four out of sixteen pupils performed the task correctly and, additionally, 
retained the regularities in the invisible part. Although the teacher did not mention that the hidden 
“tower” should follow the rule of the whole figure, they felt the need to continue it. The task turned 
out to be difficult; however, many children presented their trials in keeping the regularities they 
observed. They demonstrated their good intuitions and imagination. In most works we could find a 
rule which was dominant and influenced the final performance.  

Our data shows that even if the children had difficulties in reconstructing the figure, they were 
motivated and their work was intentional. The combination of two regularities and the three-
dimensional geometrical object was challenging and such activities brought new experiences to the 
pupils. The tasks using three-dimensional geometric patterns unveiled that the children in early years 
need such stimulations. Such activities engage pupils in discovering regularities but also in 
experiencing and “touching” geometrical objects.  
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How can we design mathematical instructional activities that reveal children's early mathematical 
competence in an analogous way as school activities that exploit children's mother language 
competence? We put forward a list of mathematical conceptions young children may have been 
taught previously and some subsequent actions developed to observe them and guide their first 
steps in mathematics in an instructional context. The list has been developed on the basis of insights 
from modern axiomatic presentation of arithmetic and geometry contrasted with historical results 
and epistemology of mathematics. We discuss the application of the list in a singular context, a 
group of eight 3 to 8 year-old Spanish children with Trisomy 21, to show the suitability of this tool 
for revealing early mathematical competence.  

Keywords: Experiential learning, early years education, special needs, mathematical skills. 

The central issue: Enhancing young children’s competence in mathematics 
The starting point of our research was a situation of stagnation in two different and singular 
educational contexts: the encounter with mathematics of Italian primary first graders and the special 
needs of children with Trisomy 21(or Down syndrome).  

Actual current praxis in Italian first grade classrooms1 and the available research and teaching 
materials regarding mathematics for children with Trisomy 21 show a remarkable similarity in two 
aspects. Firstly, from the point of view of contents, there is a focus on numeracy and especially on 
teaching and learning of numerals and written arithmetic and a clear exclusion of geometry. 
Secondly, from a wider cultural point of view, we witness a marked lack of confidence in the 
relationship between mathematics and children's feelings and mind. (Millán Gasca & Gil Clemente, 
2016). Both aspects are interrelated. As mathematics is socially viewed as a key component of our 
modernity, school is forced to cope with the difficulties of its teaching and learning. Consequently, 
teachers must concentrate on the traditional hardcore, that is, numeracy and practical tasks, 
                                                 
1 A quite homogeneous didactical praxis was identified thanks to the relationship of the Roma Tre University 
Department of Education with schools (private, state, urban and rural, and with students from different social 
backgrounds) in the Lazio area in 2006-2014. Although compulsory mathematics teaching or initiation for 3 to 5 years 
old children is not laid down, in some Italian preschools, including the wide number of state Montessori schools, 
mathematics is a part of the curriculum and goals. A sharp contrast is experienced between the good results obtained in 
these latter schools, where pupils usually show a deep interest and curiosity towards number and geometry, and a 
general situation of difficulty, anxiety and fear of primary school first graders starting in the first months of first grade 
where schoolwork is focused on exercises about the writing of the numerals from 1 to 9 and moving on to addition and 
number symbols with two digits from 11 to 20 after 3-4 months. 



narrowing the goals of the learning to obtain instructional success. Centrality of arithmetic and 
abandonment of formative goals are especially noticeable when teaching children with Trisomy 212.  

Our working hypothesis was that early mathematical competency, in the same way as linguistic 
competency, could be enhanced and analyzed in terms of naive conceptions. For this aim, we 
developed a list of items (including concepts and observable actions) to be used in the design of 
focused mathematical instructional activities, able to bring out young children's mathematical 
competency (avoiding initiating children in mathematics through written arithmetic), in much the 
same way as school activities exploit children's mother language competency (avoiding initiating 
children in linguistic expression through grammar). After testing the suitability of the list with a 
group of twelve 4 year-old children schooled in Lazio (Italy) (Colella, 2014), we faced the 
challenge of using it to enhance the mathematical competence of a group of children with Trisomy 
21 in Spain. 

Naive mathematical conceptions 

The fact that there is a lot of mathematical life “before school” or “before being taught” has been 
pointed out by authors such as Martin Hughes (1986), Margaret Donaldson (1978) and Liliana 
Tolchinsky (2003). Usage-based theory of toddlers´ language acquisition (Tomasello, 2003) offers a 
description of the key situations leading to the first holophrases in a joint adult-child attentional 
frame. It helps us to understand the precocity of children and their interest and enthusiasm regarding 
numbers as well as geometry. 

The empirical examples considered by Hughes among children in Edinburgh’s Department of 
Psychology nursery, as well as by Karen Fuson (1988) regarding her two daughters, recorded in the 
mother's diary she started at 1 year and 8 months, were observations of what are considered as naive 
arithmetical conceptions, that is, conceptions that have been observed in children independently of 
schooling and instructional design. Fuson and Hughes go beyond Piaget and his collaborators' work 
on the roots of children's understanding of arithmetical ideas because they avoided concentrating 
solely on the search for a developmental path and on the isolation of spontaneous cognitive 
development. Instead, they tried to come closer to children's thoughts and feelings through close 
interviews, observations and task experiments, considering that elementary teaching enters the 
scene in the wider context of children's human experience and development. 

We have extended this available research in arithmetic to encompass geometry, following René 
Thom's views (Israel, Millán Gasca, 2012; Millán Gasca 2016), as shown in later pages. 

Insights from historical and mathematical perspectives on primitive objects and relationships  

In order to identify geometrical items we drew inspiration from Federigo Enriques (1924-27). He 
focused on the instructional meaning of the identification of the "primordial", primitive, undefined 
concepts of the modern axiomatic description of arithmetic and geometry considered in their 
historical context (Israel & Millán Gasca, 2012).  

                                                 
2 Elisabetta Monari (2002) pointed out that the "old tree of mathematics" (the traditional view of school mathematics as 
introduction to written arithmetic) should be replaced by a "new tree", where different cognitive potential could appear. 



It can be noted that the pivotal role of the acquisition of sequence of number-words in arithmetic is 
strikingly coherent with the modern Peano's (1899) axiomatic description of natural numbers. 
Information on undefined primitive objects (number and one) and their relationship (successor) is 
contained in axioms, such as, “one is not the successor of any number” or “if two numbers have the 
same successor they are the same number” that evoke counting. In addition, the first recursive 
definitions of addition and multiplication and the definition of “greater than” start from this 
information. Fuson's description of early arithmetical conceptions includes all of these 
mathematically critical ideas regarding an ordinal view of natural numbers defined in a child’s way, 
together with the cardinal views and measures uses to which children are exposed nowadays (these 
views were also central in the ancient origins of number and of extensions of the concept of natural 
number). This attention to mathematically well-identified different number situations in children's 
experience is crucial to draw indications for instructional activities. 

Following the same path, we paid special attention to the role of Hilbertian (1902) undefined 
concepts (point, straight line, plane), relationships (congruence, lie in, lie between) and first 
definitions of objects and relations (angle, segment, circle, triangle, polygon, greater than...) 
deduced from the axioms, in the building of naïve geometrical conceptions in young children´s 
minds. For example, in relation to the concept of line (paradigm of the continuum) and straight line, 
possible naïve conceptions regard line as a path; line as a stroke on a sheet of paper with a pencil; 
lining up, or walking along the minimum distance between two positions. In relation with the 
concept of point we can observe whether they know to stand at a fixed point, or if they are able to 
draw them. Talking about change of direction can be a way to introduce the concept of angle.  

Inspired by these primitive concepts we considered performance regarding “solving simple 
geometric problems”, such as drawing a circle freehand; cutting a circle; comparing circles (cutting 
and overlapping); drawing a straight line connecting two points; joining several numbered points 
freehand with a straight line; drawing a non-straight line; answering questions related to which 
object is longer, bigger or thicker...  

Naïve arithmetical and geometrical conceptions list 

The list we have developed, based upon primitive arithmetical and geometrical concepts and the 
previous developmental insights, includes some possible naïve mathematical conceptions that 
children can have. Following Fuson's point of view (1988), we looked for a web of conceptions, 
including connections between geometry and numbers and some obvious relationships, and not for 
a systematic building of a theory. Naive conceptions also include the ideas on symbols belonging to 
the oral dimension of language (not centered at all on the decimal positional numeration system.).  

As for mother language, naive mathematical conceptions include competence together with errors 
and misunderstanding in a dynamic setting, where exposure to new experiences or situations helps 
the child to correct by him/herself previous ideas or accept and include corrections from peers or 
adults..  

From the list, we have also developed a guide for observation in action. This guide consists of 
several activities intended either to observe this possible mathematical competency (activities 
simulating a non-instructional “informal” context, such as domestic or playground experiences) or 
as “opportunities to learn” (becoming proper instructional, teaching activities). These activities 



should be embedded in children's overall living experience and should have a human sense for them 
(Donaldson, 1978). Furthermore, they should at the same time, help to actually generate learning, 
that is, to guide first steps in mathematics. Of course the border between observation and generation 
of learning is not sharp. For instance, during the time expended in exploring a question, many 
children may learn something or reinforced their knowledge (taking into account besides that not 
every child has the same previous informal opportunities to build naïve conceptions).  

Relating to arithmetic, activities such as bringing enough pencils for everybody, telling the cook 
how many people to prepare lunch may bring out naïve conceptions, skills children already possess 
such as knowing some number words, knowing some part of the number sequence, counting things. 
These conceptions are connected with the primitive arithmetical concepts, idea of number one, or 
successive number. However, children can also bring into play these conceptions to actually be able 
to use their knowledge to bring enough or the exact number of pencils or to try to give an answer to 
the cook or even to answer correctly.  

In relation with geometry other activities like walking down a road, holding a thread between two 
children, folding a sheet of paper neatly are suitable for bringing to light naïve conceptions of path 
and line, which are closely related to the primitive concept of straight line. In the same way, 
children can use these conceptions to learn, as instance, how to distinguish a straight line from a 
curved one. 

First steps in mathematics for children with Trisomy 21.  
When faced with the mathematical instruction of young children with Trisomy 21, we had to take 
into account the adverse general context of confusion about goals and contents mentioned at the 
beginning. In this context, children with Trisomy 21 appear to be in a clear disadvantage due to 
their well-known difficulties with arithmetic, lack of effective proposals for teaching and 
misunderstanding of the role of the discipline in their personal development. 

There is also a problem in assessing the actual mathematical knowledge of children with Trisomy 
21 (Faraguer, 2014) attributed to their scarce skills in oral and written language and their avoiding 
behaviour when put in stress situations (Wishart, 1993). This has lead to evaluations based upon 
interviews with parents or professionals (Faraguer, 2014) and consisting of solving 
decontextualized tasks (Zimpel, 2016). Such evaluations use to show a poor performance in 
mathematics by people with Trisomy 21. 

From the success obtained using the list of naïve conceptions with a group of 4 year-old Italian 
children with no previous exposure to mathematics (Colella, 2014), this list appeared to be a 
suitable tool to make a proper assessment of the previous mathematical ideas of the children with 
Trisomy 21. We could also use this assessment as a basis for the building of an accurate teaching 
programme, that focus on formative values of mathematics without giving up to placing high 
expectations on the children.  



Methodology 
The experience3 consisted of a twenty-hour workshop over ten months with a group of eight 
children between 3 and 8 years old (three aged 3, two aged 5, two aged 6, and one aged 8) without 
previous selection4. The workshop was conducted by a team of four volunteer special education 
teachers and devoted the first three months to an exhaustive exploration of their naïve arithmetic 
and geometrical conceptions. 

It was a study case5 framed in what it is known as research for practice (Faraguer, 2014). 
Throughout the sessions we made an experiential observation, which allowed us to write a narration 
of the living experience (Van Manen, 2013) and prepare a final description of the naïve conceptions 
of each child in relation to the items we have observed. 

Development of the workshop 
Firstly, we have to adapt the original list to make it suitable to the group of children. Table 1 shows 
the conceptions definitively explored. 

Arithmetical conceptions Geometrical conceptions 

Numbers (any ideas) 

Counting (transitive and intransitive) 

Cardinality 

Subitizing 

Zero 

Spontaneous symbolic representation of 

quantity 

Resolution of simple arithmetical problems 

 

Idea of point 

Line and idea of continuous 

Idea of straight and of non-straight 

Ideas of angle 

Ideas of round and circle 

Ideas of triangles and quadrilaterals 

Ideas of sphere and other regular solid 

figures  

Resolution of simple geometrical problems 

Measure of time 

Distance 

Use of cardinal numbers to measure a distance (steps) 

Table 1: Some arithmetical and geometrical naïve conceptions 

Secondly, throughout the three two-hour sessions devoted to the exploration of their naïve 
mathematical conceptions, we faced the challenge of designing activities also adapted to features of 
children with Trisomy 21 (for example most of them did not speak, so we could not use dialogue to 
build mathematical knowledge). We practiced oral sequence when counting balls to decorate a 
Christmas tree or when counting time playing hide-and-seek. We worked with the concept of 
                                                 
3 Carried out in the context of the PhD thesis of the second writer devoted to the exploration of geometry with children 
with Trisomy 21, following a careful consideration of geometry in Édouard Séguin's approach. (Gil Clemente, 2016)  
4 Families who decided to participate in the research, were members of a local association in Zaragoza (Spain) and have 
more confident outlook than those of older children with a disappointing experience of primary school. 

5 It is a common methodology with children with Trisomy 21, because as Monari (2002) pointed out, these studies open 
the path to more general ones that usually confirm results obtained in singular cases. 



straight line folding a letter to the Wise Men. We walked along paths to discover new worlds or join 
points to discover secret drawings. We also compared the length of swords before fighting as a way 
to compare magnitudes. We understood geometrical concepts through mimesis when training for 
having an adventure and we discovered surprising similarities among different familiar objects 
(balls, fruits, caps, towers, boxes, tins or tubes…).  

We must highlight the importance of applying these activities in a happy play context in which we 
could witness their individual and group processes of learning without interference or pressure.  

Results 
In spite of the limitations inherent with an experience carried out in a formal context and not in their 
real life6 we obtained some useful conclusions to guide our later research.  

Most of the children, especially the youngest, had very limited initial arithmetical conceptions. Only 
three of them were able to count to nine and the rest hardly know the numbers “one, two, three”. 
They could only subitize one or two objects, except the eldest child who reached six objects. They 
made a lot of mistakes reciting oral sequences (they counted objects more than once or forgot 
objects when counting) and counting objects or drawings (although they counted objects better than 
drawings). Only the three eldest children had well established some conception of cardinality and 
these children were able to solve some very simple arithmetic problems (such as “give me n” or 
answering to the question “n plus m” with low numbers and only by counting). Surprisingly, hardly 
any had difficulties in understanding zero in several ways, consistently with the research made by 
Zimpel (2016): most recognized the cipher, some knew that it was the number before one in the 
number sequence and some said the word “zero”. 

However, their initial geometrical conceptions were much better. Through the use of their bodies, 
movement and mimesis they showed their understanding of point as a fixed position (standing on it 
without moving), of line as a path (making an effort to go along it without bending) and of straight 
line as the minimum distance between two points (they all walked straightly when asked to go from 
one teacher to another). The eldest ones were also able to distinguish none-straight lines and named 
them as “curves”. They all had an idea of a circle as a round (they knew how to sit in a circle or 
how to turn on themselves). However, they had scarce ideas of polygons (they showed more 
difficulties in recognizing triangles than in recognizing quadrilaterals). Surprisingly, they had a 
special ability to discover the similarities among every day solids. Acquisition of skills related with 
drawing differed substantially from one child to another due to the delay in motor development 
common in Trisomy 21. 

Their greatest difficulties in geometrical conceptions had to do with every aspect related to measure 
(counting steps, for instance, was almost impossible for all of them, even for the eldest one) due to 
the strong relation between measure and numbers. They also showed a poor performance in 
understanding the relationship “to be between two objects or two persons”, basic for the acquisition 
of the concept of segment. 

                                                 
6 We observed only one of the children, the eldest, in his everyday life. From this observation we made a diary that was 
very useful for extending our research (Gil Clemente, 2016). 



The most remarkable conclusion was the enthusiasm and good disposition showed by all the 
children when facing mathematical tasks: only one child did not engage in the activities proposed; 
the other children enjoyed the activities and concentrated on them; many families told us their 
children were looking forward to coming back and doing “mathematics”. This widely confirmed 
our initial thesis about the natural relationship between mathematics and childhood, even for those 
with disabilities.  

The results of our observation show a path to the possibility of seizing the power of geometry for 
developing some abstract thinking processes in children with Trisomy 21. This is consistent with 
the role attributed to geometry by Séguin (1846,1866) for awakening ideas in disabled children’s 
minds and with recent research regarding the strength of abstraction in Trisomy 21 (Zimpel, 2016). 

Final remarks 
The experiences carried out with the two groups of children in Italy and in Spain, indicate that this 
approach to the encounter with mathematics actually stimulates knowledge building on a solid basis 
by avoiding the non-involvement of children in school mathematics and is therefore a promising 
path for future research. It runs in contrast with normal standardized numerical school exercises, by 
proposing items connected to the development of a relationship of intimacy with abstract 
mathematical objects such as points, segments or numbers (Thom, 1971) which should lay the basis 
for further introduction to symbolic thought.  

Introducing geometry in children’s education as a result of the confidence in the relationship 
between mathematics and childhood7 helps children to develop this abstract thinking. We have 
confirmed this idea with the development and application of subsequent teaching sequences based 
mainly on geometrical concepts after the exploration of the naïve conceptions described (Colella, 
2014; Gil Clemente, 2016). 
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Preschool mathematics may look very different in different contexts. These differences concern both 
what mathematics children are offered to learn and how the learning of that mathematics is 
orchestrated. In this paper we present an ongoing study on how Swedish preschool teachers 
characterize their own mathematics teaching in terms of design and content. The target preschool 
teachers are those working with the youngest children aged one to three. We present two examples 
of how these preschool teachers describe and characterize their mathematics teaching in terms of 
design and content and we discuss possible contributions to research and practice.  

Keywords: Content for learning, design for education, mathematics, preschool teachers. 

Introduction 
Preschool mathematics does not only prepare for future schooling but – and maybe even more 
important – provides “young children with rich and engaging intellectual stimulation” (Ginsburg, 
2009, p. 405). From a time when young children were considered to be almost incapable of learning 
mathematics the question today is seldom whether or not mathematics belongs in preschool but 
rather how to organise mathematics teaching (Björklund, 2014; Cross, Woods & Schweingruber, 
2009; Perry & Docket, 2008). However, the recognition of importance and the increased attention 
do not automatically imply consensus regarding how preschool mathematics should be designed or 
what constitutes an appropriate content. Cultural issues may explain some of these differences but 
there are also differences within countries and seemingly similar educational contexts (Palmér & 
Björklund, 2016). 

There are several studies where researchers observe, analyze and often evaluate mathematics 
teaching and teachers in preschool (see Sarama, Clements, Wolfe & Spitler, 2016; Tirosh, Tsamir & 
Levenson, 2015). More seldom are the preschool teachers asked about how they themselves analyze 
and/or evaluate the observed teaching. In this paper we present an ongoing study on how Swedish 
preschool teachers working with the youngest preschool children, those aged one to three, 
characterize their own mathematics teaching in terms of design and content. To what extent do their 
characterization coincide with researchers and other preschool teachers? Maybe preschool teachers 
use different words to describe “the same kind of” mathematics teaching or reverse, maybe they use 
the same words to describe “different kinds” of mathematics teaching. The aim is to find out how 
these preschool teachers themselves conceptualize their mathematics teaching practice. In this paper 
we will present the frame for analysis we intend to use, to investigate one of our research questions, 
that is:   

 How do these preschool teachers characterize their teaching in terms of design and content? 



Since the study is ongoing the focus of the paper is on the rationale of the study and methodological 
layout with only brief discussions of two examples. First in the paper we will give some background 
of preschool mathematics and Swedish preschool. After this we present the study followed by two 
examples of the empirical material we are to work with. Finally, we discuss what we believe this 
study will contribute with to research and practice. 

Preschool mathematics 
Preschool mathematics is an issue of current debate and may look very different in different 
contexts. These differences are found both in what mathematics children are offered to learn and 
how learning of that mathematics is orchestrated (Cross, Woods & Schweingruber, 2009; Perry & 
Dockett, 2008). While some emphasise basic number facts and applying computational procedures 
(Westwood, 2011) others emphasise advanced mathematical activities focusing on a broad spectrum 
of content (Claessens & Engel, 2013; Seo & Ginsburg, 2004). Regarding what mathematics children 
learn in preschool numbers and quantity are often emphasised but also concepts of space, shape, 
pattern, and order are central in early mathematics learning (Sarama & Clements, 2009). However, 
there are studies showing that the depth and quality of how the content is made an object of learning 
varies, where for example spatial relations, shapes and patterns are rarely problematized (Björklund 
& Barendregt, 2016). 

One way to characterize how mathematics is taught is to distinguish between naturalistic, informal 
and adult guided learning experiences (Charlesworth & Leali, 2011). Naturalistic learning 
experiences are initiated and controlled by the child. A naturalistic learning experience can turn into 
an informal learning experience if a teacher starts to interact with the child in a way that knowledge 
may be reinforced, applied or expanded. Adult guided learning experiences are those being pre-
planned by the teacher involving some direct instruction. Björklund’s (2014) study of meaning 
making of mathematical concepts highlights the complexity of designing preschool mathematics 
education. She found three ways in which teachers planned and acted to facilitate conceptual growth 
among 4- and 5-year-olds. One way of approaching mathematical concepts was to give the children 
individual traditional tasks to solve (“I give you x number of items, can you divide them into 
half?”). Another way of approaching the same concept was to “hide” the mathematical content in 
problem solving tasks, such as games and every-day tasks. The former approach, which was clearly 
goal-oriented and adult guided turned into a task of “doing” where the children primarily waited for 
their turn but not directing attention to the mathematical content rather than the joy of being given a 
task to solve. The latter, which also was carefully planned by the teacher to stimulate certain 
concept development, failed in establishing intersubjectivity because of the children’s different 
attention to play the game and finish the task, rather than stop and reflect on the mathematical 
content within the tasks. Even though the children happily engaged in the activities, the 
mathematics was not in focus of attention. A third way of approaching mathematical content was 
framing a concept in narratives where the teacher could orchestrate the direction of a story and in 
that manner direct the children’s attention towards an intended object of learning. It turned out that 
this approach appealed to the children and engaged them in problem solving where concept 
development was made possible. This third approach was also characterized as more perceptive to 
the children’s suggestions and creative solutions. Thus, designing teaching for preschool 
mathematics is a delicate work, where abstract and “invisible” mathematical principles are to be 



made explicit. Preschool didactics is to make the invisible visible to the child (Pramling & Pramling 
Samuelsson, 2011). Björklund’s (2014) study is one example of this, since the focused attention has 
to be made common for both teacher and child, whereas the design of the activity may constrain or 
enable learning.  

Swedish preschool 
Swedish preschool, in which the present study is conducted, is situated within a social pedagogy 
tradition (Bennett & Tayler, 2006) where care, socialisation and learning constitute a coherent 
whole and is part of the formal education system. Preschool is offered to children between the ages 
of one and six, and similar to other Nordic countries (Reikerås, Løge & Knivsberg, 2012), the 
youngest children attending preschool are increasing in number. In Sweden, 94% of all 4–5-year-
olds are enrolled in preschool or similar pedagogical practice and 88% of all 2-year-olds attend 
preschool or an equivalent practice (National Agency for Education, 2016).  

The preschool curriculum includes several mathematics-related goals, for example that preschool 
should strive to ensure that each child “develop their understanding of space, shapes, location and 
direction, and the basic properties of sets, quantity, order and number concepts, also for 
measurement, time and change”. Another example is to ensure that each child “develop their ability 
to use mathematics to investigate, reflect over and test different solutions to problems raised by 
themselves and others” (National Agency for Education 2011, p. 10). These are however not goals 
for children to attain but instead provides direction for content and activities.  

Based on the curriculum, each preschool chooses the approaches most appropriate for its own 
setting. Preschool teachers and child-minders are the two main types of pedagogues working in 
Swedish preschools. Child-minder is an upper secondary school education while to become a 
preschool teacher; one must complete a three and a half year university programme in preschool 
teacher education. Preschool teachers educated after 2001 have studied mathematics teaching in 
their degree, but the preschool teacher profession is mostly characterized as “educational 
generalists”, without specialization in any particular subject. 

Theoretical framing 
Since we want to investigate how preschool teachers characterize their own teaching we needed to 
develop a framework that included the dimensions of what and how. To capture both these 
dimensions we have used Bernstein’s (1999) notions vertical and horizontal discourses together 
with Claesson, Engel and Curran’s notions (2014) basic and advanced content. 

Bernstein (1999) uses the notions vertical and horizontal discourses to distinguish between different 
kinds of knowledge. A discourse characterized by coherence of content, hierarchically 
interconnected procedures, specialized language, systematically organized activities focused on 
general knowledge is a vertical discourse. A discourse characterized by location within 
communities, high relevance in the situation, every-day language, segmentally organized and 
maximized encounters with persons and habits is a horizontal discourse. In this study the notions of 
vertical and horizontal discourses is used to describe the dimension of how.  

Claesson et al. (2014) define mathematics content as basic or advanced depending on whether the 
majority of children in the group focused on have mastered the content or not. Thus, basic 



mathematics imply mathematics content that the majority of the children already know but that still 
is new for others while advanced mathematics is new content for the majority of the children. In this 
study the notions of basic and advanced is used to describe the dimension of what. However, basic 
or advanced will not be based on groups of children mastering some content or not, but on the 
preschool teachers’ view of the content in each situation being characterized. Together these four 
notions can be used to characterize different contexts of mathematics in preschool as in Figure 1.  

 

Figure 1: Connecting horizontal and vertical discourse with basic and advanced mathematics. 
 

The two extremes basic and advanced content are to be understood as differences when it comes to 
which mathematics being focused on while the two extremes horizontal and vertical discourses are 
to be understood as differences when it comes to design. The axis basic and advanced content 
illustrates if the content is considered as basic or advanced, in other words if the children engaging 
in an activity will be familiar with and master the content or will it be a challenge. On the left side 
(horizontal discourse) it is sufficient that this content is part of every-day activities and routines with 
no need to make it explicit for the children. On the right side (vertical discourse) mathematics is the 
starting point with no need for applications. Thus, every-day is the starting point in the horizontal 
discourse and mathematics is the starting point in the vertical discourse. Along the line there is a 
gradual shift and somewhere in the middle there is a shift concerning everyday life or mathematics 
being the starting point for the design of preschool mathematics.  

The study  
The authors of this paper have been part of a national network for several years that focus on toddler 
mathematics in preschool settings. A consortium of preschool teacher educators from different 
Nordic universities initiated the network with a special interest in the youngest children’s 
mathematics learning and didactical challenges in early childhood education. There are 
approximately 30 active members in the network. On the network’s spring-meeting 2016, the 
current study was presented and the members were invited to participate in generating data for 
analysis. Thus, the selection of participants is information-oriented and deviant (Flyvberg, 2002) 
which imply that we have chosen teachers that we know are interested in teaching also the youngest 



children in preschool mathematics. This selection is based on the research focus not being if these 
teachers teach mathematics but instead how they characterize the mathematics they teach.  

At the network meeting the study was presented verbally and afterwards the information was also e-
mailed to the participants. Until the autumn-meeting 2016 the participants who wanted to 
(participation is of course voluntary) were supposed to document “eight situations where toddlers 
encounter mathematics” on a pre-prepared form. First they were asked to “describe the situation”. 
They got some extra help by the questions: Who was present? What mathematical content? What 
happened? Next they were asked to describe how the situation started. Was the situation 
spontaneous or planned? If the situation was planned, on what grounds? Then they were asked to 
describe their own as well as the children’s actions in the situation. What did they do and say? What 
did the child/children do and say? To find out how these preschool teachers themselves characterize 
the teaching situations they describe, they were asked to place the situation in a picture like Figure 1 
above. If they wanted to they could motivate their placement. Having the preschool teacher to 
characterize the situations based on what and how makes it possible to examine what they associate 
with expressions as everyday mathematics, advanced content for toddlers etc which in turn may 
develop the professional language of preschool mathematics. Finally they were asked to estimate 
how common a situation like the described one, is for this/these child/ren.  

Two examples 
The current study is ongoing and we have only a small sample so far and tentative results. 
Therefore, we will here present two examples of documentations submitted from two of the network 
members to illustrate the framework and how it can be used as an analytical tool.  

Example 1 

The first described situation is about a child aged two years and ten months. She and one preschool 
teacher are sitting together. This situation was planned by the preschool teacher based on the child’s 
interest in sorting activities. The mathematics content is named as “sorting”. 

The preschool teacher gives the girl a box with small plastic bears in different sizes and colors and 
asks the girl if she can sort them. The girl answers, “yes I can” and starts to pick in the box. She 
picks up one bear and at the same time naming its color. She says “blue, yellow, red and green. Do 
we have more colors? Yes we have more blue bears”.  

The preschool teacher describes her own actions as “confirming what she [the girl] was saying” as 
well as “keeping the other children who wanted to take the bears away”. She writes that she asked 
the child if she could count the bears. The child then answered, “yes I can but now I don’t want to 
because I want to wear a dress instead”.  

This situation is described as occurring two or three times a week and is by the preschool teacher 
categorized as in Figure 2 below.   

Example 2 

The second example is a described situation with a child aged exactly two years. The mathematics 
content is named “training volume”. The situation arose spontaneously outdoors. The girl is 
standing together with three other children in a puddle. She takes 2-3 shovels with water and pours 



it into a bucket. Then she pours the water out again. This procedure is repeated over and over again 
for about 15 minutes. After about half the time another child aged two years and ten months starts to 
pour water into the same bucket. The only thing the first girl says during the 15 minutes is “pour 
in”, this as a call to the second child. The situation is described as occurring two or three times a 
week and is by the preschool teacher characterized as in Figure 2 below.  

 

Figure 2: Example 1 and 2 as placed in the figure by the preschool teachers. 
 

As mentioned, our selection of participants is information-oriented and deviant (Flyvberg, 2002) 
why our results will not reflect toddler mathematics in all Swedish preschools. However, the 
empirical material will provide some insight into the context in which the youngest children in 
Swedish preschool meet mathematics as well as which situations these preschool teachers think of 
as mathematical situations. In relation to the first example in this paper one could question the 
preschool teacher naming the mathematical content as “sorting” instead of describing sorting as an 
activity with the aim to make visible mathematical concepts as shape and size. Furthermore, one 
could consider if the content is to be deemed as advanced in relation to the explicit child in the 
situation. In relation to the second example one could question what the child is engaged in. Is she 
exploring volume or pouring water more as a scientific activity? Other questions that can be raised 
are if the invisible is made visible to the children in the situations as well as if focused attention 
becomes common for both teacher and child? Questions like this are about the situations 
constraining or enabling the learning of mathematics. 

Expected contribution to research and practice 
The preschool teachers focused on in this study are working with the youngest preschool children, 
those aged one to three. Based on the national network on toddler mathematics we know that these 
preschool teachers are interested in teaching mathematics. What we want to investigate is how they 
themselves characterize their mathematics teaching in terms of design and content. Since the study 
is ongoing we cannot present other than tentative results since only few examples of empirical 
material are collected so far. In this final section we will discuss what we believe this study can 
contribute with to research and practice. 



The question of whose perspective that leads the interpretation becomes focal when starting to look 
into this kind of empirical data. “Volume” may be considered a quite advanced mathematical 
concept, since it demands attention to three dimensions and the spatial relationship between length, 
height and width of an object, for example. The preschool teacher may on the other hand consider 
the act of pouring water as a very simple exploring activity without further consideration of the 
complexity that the activity may entail. However, the child’s object of learning might very well be 
of natural scientific nature or a motor skill exploration whereas the mathematical content is left for 
the observer to interpret, without any conclusions of the mathematical learning value made possible.      

Another reflection regards how the preschool teachers interpret vertical and horizontal discourses as 
well as basic and advanced mathematics for these preschool children. What similarities and 
differences can be found? As mentioned, one possibility is that preschool teachers use different 
words to describe “the same kind of” mathematics teaching or reverse, maybe they use the same 
words to describe “different kinds” of mathematics teaching. Making such similarities and 
differences visible may develop the professional language of preschool teaching in mathematics. 

Since the study is conducted within the frames of a national network on toddler mathematics we 
believe it is important to contribute to this practice. One way of doing this is to use the empirical 
material to investigate to what extent the members characterize the same situation similarly. One 
way to do this is to ask some of the preschool teachers to present one of their situations and then let 
all the others do a categorization. When they place the situations into Figure 1 they define what they 
consider to be vertical and horizontal discourses as well as basic and advanced mathematics for 
these preschool children. Thus, collective but not joint categorizations can be the starting point for 
discussions about what we mean by spontaneous versus planned mathematics, vertical versus 
horizontal discourses as well as advanced versus basic mathematics.  
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There are numerous studies that confirm the importance of different skills in determining cardinality 
of sets for coherent mathematical learning. Some of these skills can be supported in kindergarten in 
a playful way. In this article we will first discuss whether it’s possible to distinguish the two processes 
of perceiving quantities and determining the cardinality of sets and/or when they may coincide with 
each other. It will also be investigated how the perception of structures in sets develop in children at 
preschool age and how this is used to determine cardinality in various ways. 

Keywords: Perceiving (sub-) structures in sets, determining cardinality of sets, (structural) subitizing, 
preschool education, early mathematics education. 

Introduction 
“Two, three and two more equals seven”. This statement of a five year old girl may sound simple but 
profound mathematical developments underlie this statement. From the age of five to six years, the 
numerical knowledge increases strongly. This period seems to be a fruitful phase for the development 
of mathematical abilities (Weinhold Zulauf, Schweiter, & von Aster, 2003, p. 229). One of these 
developing abilities is the ability to perceive structures in sets and the usage of these in determining 
the cardinality of the set. The example above shows that the girl perceives a structure in a presentation 
of seven dots with the sub-structure two-three-two. This perception leads to a specific determination 
of the cardinality. The background knowledge about these issues is important as it enables 
professionals to ask adequate questions in order to support children individually or to offer suitable 
playing and learning areas. In particular, the different possibilities of the (individual) perceiving of 
structures play an important role, which will be described in detail in the following sections. 

Perceiving (sub-) structures in sets 
Perception does not just happen incidentally but on the contrary it is a very active process. By focusing 
the attention and one’s own interest on the characteristics of a certain object, information from the 
surrounding area is actively chosen (Goldstein, 1997, p. 108). In the interviews described below, the 
attention is drawn to the cardinality of presented objects. Although not all ongoing cognitive 
processes when seeing and perceiving objects can be illustrated here, it shall be briefly referred to the 
gestalt psychology, in which the question is central as to why some things are perceived as a unity 
and others are not (Goldstein, 1997, p. 170). In order to answer the question, several gestalt principles 
(gestalt laws) were formulated. The six main important laws are the law of good gestalt (pithiness), 
the law of similarity, the law of closure, the law of proximity, the law of common fate and the law of 
past experience (ibid. pp. 170–176). The law of proximity indicates that things which are close 
together appear as belonging together (ibid. p. 173). The arrangement of objects as representations of 
sets may due to their distance, indicate a possible grouping of the objects. The emerging structured 
perception based on the grouping can then promote a determination of the set of objects in “a single 
glance”. In psychological and mathematical education research this “perception in a single glance” 
and the simultaneous determination of the set is described as subitizing. Here, it is assumed that a set 



with up to four objects can be determined in a glance, without counting the objects (e.g. Mandler & 
Shebo, 1982). It has not been clarified whether a quick counting process lies behind subitizing 
(Gelman & Gallistel, 1986) or whether it’s about a non-counting process (cf. Dornheim 2008). 
Clements and Sarama (2009) distinguish between perceptual und conceptual subitizing. Perceptual 
subitizing is when you just “see” how many objects there are. So it is possible to identify the cardinal 
number instantaneously. Conceptual subitizing is used when “seeing the parts and putting together 
the whole” (ibid. p. 9). With conceptual subitizing it is possible to subitize more than four objects. 
Clements and Sarama (2009) use the term conceptual subitizing whenever a recognized structure is 
used for determining the cardinality, as in the case ‘counting on’, for example (cf. Schöner & Benz, 
in press). For the following analyzes it is important to use a term which describes the following 
situation only (for a set with five elements or more): the perception of structures in a set and the 
immediate naming of the number. In this case, the term "structural subitizing" is used (ibid.). So the 
term structural subitizing means that the determination of the cardinal number of objects coincides 
with the process in which the set is perceived in structures. The terms "perceptual" and "conceptual" 
subitizing are not used in this article. Even children at preschool age “can perceive structures in 
representations of quantities and use this for the determination of numbers” (Benz, 2013, p. 11). The 
girl who is quoted at the beginning of the introduction “Two, three and two more equals seven” 
determines the cardinality of the set by means of structural subitizing when she recognizes the 
structure and immediately knows that the answer is seven. In this case, she can use the structure for 
determining the cardinality of the set. Söbbeke (2005) states that children use the “visual structuring 
ability” as a method in perceiving and using structures in arrays of objects. This also means perceiving 
sets not as every single item but as (different) groups of items. This ability to change from focusing 
every single item to perceiving and identifying structures in sets is important for the numerical 
development (Hunting, 2003), as well as for the part-whole understanding (Krajewski, 2008; Benz, 
Peter-Koop, & Grüßing, 2015). In this paper, the emphasis is on the visual level, because each time 
the cardinality of a presented set is considered. This is the basis for the later more abstract processes 
with numbers, in which composing and decomposing numbers play an important role. Additionally, 
to the question whether and how the structured perception of sets develop in five to six year old 
children, it is illustrated if and how further possibilities to determine the cardinality of sets can be 
observed due to the perception. 

Research questions 
The following two research questions are investigated in this paper: 

(1) How does structured perceiving of sets develop in children at the age five to six? 

(2) How do children at preschool age use structures for determining the cardinality of sets? 

Design 
In this paper, a case study will show how structured perceiving of sets develops in children aged five 
to six years. In the case study it is also examined how children of this age use structures to determine 
the cardinality of sets. The case study is part of a larger study. In order to understand the framework 
of the case study, the structure of the entire study is described first. The whole study is an efficacy 
study with a treatment group and a control group with more than 100 children aged between five and 
six years (cf. Table 1). It’s a panel design so the same children were interviewed three times (t1, t2, 



t3) to evaluate whether and how they perceive and use structures for determining the quantity of a 
collection of objects. The first interview (t1) was before the intervention. Then the intervention 
happened. The second interview (t2) took place shortly after the intervention. The third interview (t3) 
was conducted as a follow up interview. 

Between t1 and t2 the treatment group got a box with different materials and games, which were 
suitable to discover and facilitate the structured perceiving of sets in a playful way. The kindergarten 
teachers were instructed and used these materials one to three times a week together with the children. 
At time t2, the kindergarten educators were interviewed with the help of a structured interview in 
which six questions were formulated. Amongst other questions, it was asked which developments 
were observed in the children’s perception and usage of structures. In many studies concerning the 
determination of cardinality, a set is presented only for a short instance in order to investigate whether 
the children perceive the set simultaneously or not (e.g. B. Clarke, D. Clarke, Grüßing, & Peter-Koop, 
2008). As it can’t be eliminated that the sets may possible be determined by a quick counting process, 
despite a short time of presentation, a pre-study with 27 children was conducted. Pictures with dots 
were presented to the children and also for only a short instance before they were asked to mention 
the cardinality of the dots. Statements made by the children such as for example “I have counted them 
again, as they could not be seen anymore” or “I have looked at the dots on a picture in my head” 
indicate that visual conception may play a role here. (Schönhammer, 2009, p. 178). Because a short 
duration of presentation does not allow a reliable conclusion whether the children use subitizing or 
whether they have counted the objects (quickly), the study at hand works without a time restriction. 
Therefore, there was no time limit for the children to look at the picture in determining the cardinality 
of the set of dots. To take a closer look into the processes of perceiving sets and determining 
cardinality, the investigation method eye-tracking was used to record the eye movement of the 
children. In this paper we will focus only on one part of the interview, the part with arrays of dots. 
Pictures with different numbers of dots were presented on a monitor. Before the interview, the 
children were instructed to say how many dots they can see, as soon as they know the answer. When 
the children said a number the interviewer asked how they came to the result. Interviews of nine 
children from the treatment group were previously evaluated and in the following section a thereof 
selected case study is presented. 

First results and interpretations 
This section analyses how perceiving structures in sets develop in children in preschool age and 
whether and how they use these structures for determining cardinality of sets. The following results 
and interpretations will be illustrated by means of a single case study. Liam is a child from the sample 
described above which took part in the study. His age at the three investigations is illustrated in 
Table 1. 

Time of investigation Age of each time of investigation 

t1 29th September 2015 5 years, 2 months (5;2 years) 

t2 16th February 2016 5 years, 6 months (5;6 years) 

t3 5th July 2016 5 years, 11 months (5;11 years) 

 Table 1: Liam’s age at each investigation  



The following Table shows a section of the interview. It is based on one item, which was chosen as 
an example for a longitudinal analysis on all three time points of investigation. 

t1 

 

Liam: One, two, three, four, five. (He counts the 
 dots aloud.) 

 Interpretation: Perception: Set as individual elements 
Determining cardinality: Counting all 

t2 

 

Liam: Four and one are one, two, three, four, five. 
 (When counting he points the finger at each 
 dot.) 
I:  Where is the one? 
Liam: (He points to the leftmost dot.) 
I: Thank you. 

 Interpretation: Perception: Set in structures 
Determining cardinality: Counting all 

t3 

 

Liam: Five. 
I: How did you find out that there are five? 
Liam: Here are two und again two and here is 
 one. That results in five. 

 Interpretation: Perception: Set in structures 
Determining cardinality: Structural subitizing 

Table 2: Case study – Liam 

At the first interview t1 (cf. Table 2), Liam perceives the presented set of the five blue dots as single 
elements and uses to determine the cardinality of the set, the counting strategy of “counting all”. He 
uses this determination strategy for all items, independent from the kind of objects shown to him. He 
always counts aloud and often uses additionally, his fingers as a counting aid by pointing to each 
single object. Even in sets of two, three or four, he continuously uses this strategy. 

At the second interview t2 (cf. Table 2), after the implementation for four months, his perception of 
sets changed. Liam is now capable to perceive sets in structures. In order to determine the cardinality, 
he still uses his familiar strategy of “counting all”. It is noticeable that he first explains the structures 
no matter how the objects are arranged. Then in order to determine the cardinality of the set he starts 
to count the objects one after another each time. By means of the eye-tracking data it can be confirmed 
that he really perceives structures and does not look on every single item separately. With several 
items he only mentions the two partial sets and only when asked again by the interviewer, how many 
these make up together, he answers by counting each time all the objects separately. At sets of two, 



three or four, he now uses nearly every time subitizing in order to determine the cardinality. This 
hypothesis can be confirmed by means of the eye-tracking data and thus the possibility of an eventual 
quick counting process can be excluded (Schöner & Benz, in press). 

At the follow-up-interview at time t3, he increasingly succeeds to use his structured perception of sets 
in determining the cardinality, as described in the example above (cf. Table 2). He uses structural 
subitizing in order to determine the cardinality of the set by perceiving the partial sets, knowing then 
directly how many objects there are. At some items he goes back to his familiar determination strategy 
of “counting all”. 

In the example of Liam, a clear development especially concerning the structured perception of sets 
is visible. A very interesting aspect is the fact that the identification of the cardinality of a set is not 
one process, but seems to consist of two processes. There is on the one hand the process of perceiving 
a set, which in turn can be distinguished in three kinds of perceptions and the process of determining 
cardinality which can also be distinguished into three sub-groups. The following Figure (cf. Figure 1) 
illustrates these two processes and their possible relationship. The model is the result of a first 
evaluation and is developed by an inductive approach (cf. Benz, 2013; Benz et al., 2015, p. 134). 

 
Figure 1: Two processes: Perception of sets and determining cardinality (cf. Schöner & Benz, in press) 

The two processes of perceiving the structure of sets and determining the cardinality can run one after 
the other or coincide with each other. There are different possibilities of perceiving a set of objects 
(cf. Figure 1, blue boxes). Each of these three cases offers (partially different) strategies in order to 
determine the cardinality of the presented objects (cf. Figure 1). These processes that have been 
described can run successively. This is shown in Table 2 in the example of Liam at the second 
interview t2. He recognizes and names the structures that he perceives but he is not able to make a 
statement about the cardinality of the dots. This phenomenon can also be observed with many other 
children who were interviewed in the study at hand. In the example of Liam, the two processes 



coincide at time point t3. He perceives the set in structures and then knows immediately that there are 
five dots altogether (structural subitizing). The perception of a set in structures offers not only the 
possibility of subitizing by knowing figural patterns (cf. Glasersfeld, 1982; 1987, p. 261) or by the 
usage of counting strategies for the determination of the cardinality of sets, but is also a necessary 
prerequisite in order to use non-counting derived facts strategies. 

After the implementation of the tasks concerning the structured perceiving of sets at time point t2, a 
clear development can be observed in Liam’s realization of structures. The detailed evaluations are 
not yet finished, but it is already conceivable that this development can also be observed in the 
interviews of many other children. The tendency of the follow-up study t3 is that this newly learned 
knowledge about the structuring of sets does increasingly stabilize itself and becomes more 
independent. In no case of the already evaluated interviews it is visible that the ability to perceive 
structures in sets is lost again. On the contrary, this newly acquired knowledge seems to be integrated 
as a familiar strategy in dealing with the cardinality of sets. 

The kindergarten teachers from the participating kindergarten told that they could observe how 
children did use and explain structures in playing situations between t2 and t3, after the four months 
of implementation. “It [the structuring of sets] did become really independent”. It was also significant 
that there were discussions among the children about it and arguments like: “One can put the five like 
this [four and one] or like that [two and three] or like that dice pattern. And it can well be seen like 
this [structure] and it cannot be seen very well like that, because it is mixed up.” The preschoolers 
passed their newly discovered knowledge on to the younger children and explained to them their 
structured representation of a set. A mother told of a situation at home where her son arranged objects 
also in structures [four and five], explaining “look mum, this adds up in nine”. The kindergarten 
teachers gave no purposeful suggestions to the materials at this time point, but still this higher 
attention of the teachers as well as of the children became independent and turned into an independent 
discovering and exploring. 

Summary and conclusion 
The following section is an attempt to answer the research questions and draw conclusions. In Figure 
1 on the left side it is illustrated which possibilities might occur when perceiving sets. How to perceive 
sets, can thus be completely different. Initially, children seem to perceive a set predominantly as an 
arrangement of single objects. To answer the first research question it is helpful to look again to the 
case study with Liam. At time t1, he perceives several sets as single elements. After four months, he 
perceives the set by means of its structure. This kind of perception is still present at the last 
investigation t3. Here, the visual structuring ability becomes visible, as Elke Söbbeke describes 
(Söbbeke, 2005). This could also be observed in other children, who took part in this study. To 
perceive a set as a whole or in structures seems to be a natural step of development. The second 
research question investigates how children at preschool age use structures for determining the 
cardinality of sets. We examine again the example of Liam. At the first interview he uses his familiar 
counting strategy “counting all”, in order to determine the presented set. Also, at the second point of 
investigation, he uses this counting strategy in order to determine the cardinality although he is now 
able to perceive the structures. It is obvious here that the process of perceiving sets must not coincide 
with the process of determining the cardinality of sets, but that these two processes may happen 
independently of each other. Within the following months, Liam learns to use the perceived structures 



in order to determine the cardinality of sets. At the third point of investigation, it is obvious that 
through his structured perception of sets, he is now able to use non-counting strategies to determine 
cardinalities. In the described item, he uses the strategy “structural subitizing.” To perceive a set in 
structures is therefore an important precondition for the usage of non-counting strategies and for 
replacing counting strategies through calculating strategies in primary school (Gaidoschik, 2010).  

It is possible to support the structured perception of sets in a playful way already in kindergarten. 
Designing mathematical playing and learning environments which are mathematically substantial and 
which will enable the children to act in a discovering and exploring way through adequate games and 
materials, is a precondition for supporting the perception of structures in sets. In addition to providing 
such materials, kindergarten teachers should act inspiringly and supportively within this learning 
environment, in order to support this development in children. On the one hand they must be 
competent concerning mathematical contents but on the other hand they must be able to connect 
situational observations and perceptions with pedagogical-didactical activities. The knowledge about 
the processes of perceiving sets and determining the cardinality of sets, as it is illustrated in this paper, 
may serve as a basis for a differentiated, constructive and individual support in a playful learning 
environment. 
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Nowadays it is widely agreed that students should be involved in critical and creative thinking 
about mathematics concepts and ideas in order to organize and consolidate their thinking, as well 
as to reflect and construct their own learning. Inquiry-based mathematics education, as a teaching 
and learning method among many others, seems to be a fundamental way to initiate and support 
students’ effective involvement to the teaching/learning process. In this method, in which the role of 
students, teachers and activities is changing, the teachers must be also able to design and 
implement mathematics activities that are open to an inquiry-based process. In this paper, a 
framework for designing inquiry-based activities (FIBA) for early childhood mathematics is 
proposed, accompanied with an example, aiming to assist teachers in their instructional design. 

Keywords: Inquiry-based activities, early childhood mathematics, framework. 

Introduction – Theoretical background 
In the last decades, it is argued that instructional design should support a critical (Skovsmose, 1994) 
and a creative mathematics education (Leikin, 2009). The teaching that was based on the simple 
reproduction of given conceptual contents and the transmission of knowledge has yielded space to 
the teaching based on student’s own activities, that contributes to a meaningful learning and 
stimulation of their own identity as an emerged process (Van Oers, 2010). 

In this new context, in which mathematics education is based on inquiry1, teaching includes 
exploration, practical action, developmental thinking, connection of mathematical ideas and 
contents, problem solving and posing, collaborative learning, as well as autonomy to the 
development of ideas and methods (Artigue & Baptist, 2012; Ulm, 2012). Clarke and Clarke (2002) 
describing the effective mathematics teaching, set as a starting point the use of unusual problems 
without suggestions for their solution and the use of materials and other resources relevant to the 
content of the problems but also to the students' interests and needs. Moreover, they propose to 
address the classroom as a 'community of learning', that develops mathematical discourse and 
encourages the expression of students' ideas and strategies, focuses on the big ideas of mathematics, 
uses informal assessment methods to support instructional decisions, as well as facilitates students 
to act and think. In a “community of inquiry” teachers learn from students and students learn from 
teachers solving and posing mathematical problems to each other (Goodchild, Fuglestad & 
Jaworski, 2013). In this perspective, qualitative teaching, takes place by encouraging the creative 
and critical participation of students (Radford, Schubring & Seeger, 2011) and adoption of 

                                                 
1 The IBME (Inquiry Based Mathematics Education) perspectives are based on approaches that have been developed in 
the field of mathematics education, such as the problem-solving tradition, among others, which tend to shape it in a 
particular way. But, in the problem-solving tradition the focus was on 'teaching problem solving' by developing problem 
solving skills and associated metacognitive competences, whereas in the IBME the focus is on 'teaching via problem 
solving'.  



exploratory and expressive ways of learning. As Sierpinska argues, “it makes sense to assume that 
learning – mathematics or mathematics teaching – is either inquiry-based learning or it is not 
learning at all” (2016, p. 55). 

In the inquiry-based mathematics education, the roles of students, teachers and activities, as factors 
that jointly shape the instructional design, are changing. Students are no longer considered as the 
passive recipients of knowledge but as co-constructors and co-researchers of their knowledge 
assuming greater responsibility for their actions (Lau, Singh & Hwa, 2009). They are at the center of 
the learning process; they actively participate in it and are strongly engaged with mathematics 
problems. They are actively involved in explorations and discussions, and they pose questions, that 
were usually posed by teachers, in order to express an opinion, to share and explain their ideas, to 
make assumptions and generalizations, to present their solutions to a problem, to justify their 
creations and to support or prevent the ideas of their peers. When students are forced to describe 
their strategies in detail and justify them, they promote their understanding. Students’ creative 
participation in the teaching and learning process of mathematics is related with producing new 
ideas, giving meaning to symbols, materials and tools, facts and procedures, understanding math 
problems, making plans and devising ways to solve them, as well as finding ways to assess the logic 
of their solution (Haylock, 1987). 

The role of the teachers, since they are not the key persons of the teaching/learning process, is also 
changing and instead of being the sole sources of mathematical knowledge, who only focused on 
practicing the mathematical operations and procedures, they become supporters of children’ 
mathematics constructions (Lau et al., 2009). They work cooperatively with students to create the 
appropriate conditions and organize the process and the ongoing opportunities for them, to explore, 
to make connections, to build mental representations and to develop mathematics concepts based on 
their prior or/and informal knowledge through the interactions with others. They cultivate to 
students the need to communicate their actions, their creations, their solutions with the use of 
materials or other auxiliary means, to discuss their mathematical ideas, to share their thoughts, to 
cooperate (Shriki, 2010). They help students to look for multiple solution methods and multiple 
outcomes for a situation (Tsamir, Tirosh & Tabach, 2010), to identify relationships and common 
characteristics in different cases, to reflect and justify their thoughts and actions. Teachers transfer 
the problem-solving responsibility to students without, at least initially, intervening and suggesting 
ways of thinking. They encourage children to think and present their solutions to the rest of the 
class. The discourse, which includes the presentation of students' results, solutions, strategies and 
methods, highlights students' own considerations and encourages the exchange of their ideas (Ryan 
& Williams, 2007). Teachers pose questions related to students' ideas in such a way, as to explain 
their thinking and imagining, as well as giving meaning to their actions and developing their own 
understanding. It is important that the posed questions are linked with the task and its solving. The 
questions are not supposed to fulfill teachers' desire to teach mathematics, but have to encourage the 
emergence of multiple strategies, to make clear the relationships between these strategies, as well as 
to give opportunities to students to integrate the pieces of their knowledge. 

Activities’ type, in the new cooperative, critical and creative classroom context, is changing. 
Activities arise from tasks that are problem-based with sufficient openness for inquiry-based 
learning (Ulm, 2012). The context of these tasks can be authentic or not, known or unknown to 



students and can be associated with everyday activities, stories, games, workshops etc. Complex and 
creative situations allow various solutions and reasoning. They enable the use of students’ informal 
knowledge and empirical reality. They are ‘realistic’ experiences, supported by a variety of 
materials and other means (Varol & Farran, 2006). Materials that are related to the task are used and 
aim to help students to investigate the situation, to find answers to the questions posed, as well as to 
pose their own questions. The main aim of the activities is not just to be carried out by the students, 
because it is the lesson of mathematics and they should do so, but the challenge to deal with the 
situation presented to them. They challenge students to connect mathematics with their daily life 
(Van den Heuvel-Panhuizen, 2005) and encourage them to describe the different ways in which they 
perceive things. Activities that are realized in many ways require students to conjecture, to interpret, 
as well as to justify their thoughts (NCTM, 2007). They encourage reflection and communication 
for students, to construct mathematical meaning using skills and knowledge they already hold 
(Varol & Farram, 2006). Moreover, they have to be interesting, effective and developmentally 
appropriate inducing the active participation of students (Tzur, 2007) to mathematics discourse. The 
solution of the problem is not readily apparent. To solve the problem, students have to use 
something more than a routine solution or an algorithmic process. The solution of the problem may 
be proposed by a student or a group of students. It may occur during the discourse or be suggested 
by the teacher. The mathematical discussion is completed when the whole class agrees to a mutually 
acceptable solution/s for the task, which can consist of many answers. In each case, children "earn" 
if the discussion, that took place, has set the basis for them to understand that the proposed solution 
is reasonable for this reflection. Then, when possible, the solution is modified and generalized. The 
generalization begins when reasoning gets independent, when it does not refer to the specific 
context in which it was created, and continues when the common characteristics of the different 
ideas are combined. Tasks can be either structured or unstructured but are open to an inquiry-based 
implementation. 

The design of creative and critical activities that can be realized within an inquiry-based process that 
encourages students to decide for themselves when and how to use a method, a process or a 
strategy, can lead to meaningful learning. Such activities allow the creation and communication of 
students’ reasoning cultivating skills such as prediction, fast perception of information, systematic 
reasoning, critical and creative thinking, problem solving and posing, assessment, comparison and 
correlation, as well as generalization, skills that are necessary for the future citizens (Sarama & 
Clements, 2009). This type of activities is not usual in the mathematics classrooms because its 
design and implementation is difficult (Sierpinska, 2016). It is easier for teachers to teach facts, 
procedures and problem solving processes through structured situations even if these situations are 
often not understood by the students and do not influence their thinking. Children, often, because 
they have to deal with routine and structured mathematical tasks, that require the implementation of 
specific strategies, do not sense when and how to use a mathematical procedure to solve a problem. 
Research results pinpoint that it is essential for the mathematics education to include also inquiry-
based activities (Artigue & Baptist, 2012). Thus, a framework for designing inquiry-based activities 
for early childhood mathematics (FIBA) is proposed, accompanied with an example, to assist 
teachers in their instructional design. 



Framework for designing and implementing inquiry-based activities (FIBA) 
Taking into consideration the above main points of inquiry-based mathematics education, a 
framework for designing and implementing activities is proposed. The framework consists of seven 
stages (figure 1): 

 

Figure 1: The seven stages of the FIBA 

1. Τask (key person: teacher): A problem-based task is invented and presented, by the teacher, 
through a context, resulting from children’s interests, experiences, knowledge, queries (emergent 
from a previous free talk and sharing experiences with the students in the class which is based on 
the curriculum and is in accordance with a mathematical purpose). The task, which may have one 
or more solutions, is designed in such a way that it problematizes and incites children, in order to 
engage them in a problem solving and posing process. The problem to be solved could be a non-
standard, unfamiliar, a bit complex and novel situation in order not to be solved just by applying 
existing knowledge and already-known strategies, but through exploration.  

2. Exploration (key person: students): Children (individually or in groups) use their own (informal) 
problem-solving strategies to explore the problem introduced by the scenario, to choose/use 
materials and other auxiliary means, to make conjectures, to pose questions to each other and to 
the teacher for understanding/grasping the situation and to suggest solutions, in order to ‘solve’ 
the problem. In that stage, students have the opportunity to reflect and think about the problem 
on their own, before sharing their thoughts with their peers. They are also free to discuss their 
ideas about the problem with their peers before presenting them to the whole class.  

3. Presentation (key person: students): Children share their explorations with the whole class by 
presenting/describing their ideas, constructions, solutions, experiences etc. Teacher, in that stage, 
is an observer and organizer of each team’s presentation, orchestrating students’ contributions, 
posing questions to help children describe, explain and open out their explorations. He/She also 
encourages students to pose questions to their peers, from other groups, in order to ensure that 
they understand all the presentations.  



4. Connection (key person: teacher): Teacher, in cooperation with students, summarizes the results, 
poses questions and encourages students to ask questions that connect the presented ideas with 
each other, with the task that was explored and with the mathematical aims, in order to construct 
the common meaning that the classroom would share. Teacher’s questions have to encourage 
mathematical thinking and reasoning and can be of several types (Carlsen, Erfjord & Hundeland, 
2010). At that stage, it will become apparent if cooperative grouping strategies are effective in 
promoting classroom discourse. 

5. Generalization (key person: teacher): Teacher is generalizing (and mathematizing when and if 
possible) students’ actions, shaping the mathematical concept, connecting it with students’ 
previous knowledge and giving feedback to them.  

6. Translation (key person: students): At that stage, students are asked to communicate to others 
(students from another class, family etc.), their solutions, creations, understandings etc. through 
different modes—verbalizing, gesturally and schematizing (Skoumpourdi, 2016a). 

7. Expansion: Students are asked to pose/solve related/changed/expanded problems. 

In all the above stages, teachers are also responsible to take students’ questions and comments into 
consideration, turn them into learning opportunities incorporating them to their instructional design, 
creating a new problem-based task.  

The Pattern King: An example of an inquiry-based activity 
Given that, the importance of patterning is increasingly highlighted in recent years and that, to 
further improve the performance of children on patterning, teaching interventions are necessary 
from the early years of schooling (Skoumpourdi, 2016b), in this chapter, an example of a pattern 
task2 is presented, through the seven stages of the FIBA, supporting an inquiry-based 
teaching/learning process of mathematics. 

Task: “The Pattern King forgot the password of his secret room and thus he cannot enter. 
Fortunately, he has photographs of the passwords he used to use and he asks your help to construct 
them”. The students, (individually or) in groups, pick a drawing with chain 
schematization/password3. 

Exploration: Each (student or) group explores its schematization. They pose questions to the teacher 
to understand the situation. They observe how it is made and suggest ways for creating it. After the 
discussion, they choose the associated materials (connected shapes4) in order to construct the 
pattern/password and they create a/the chain. 

Presentation: Each (student or) group presents the structure of its creation to the whole class, 
                                                 
2 This is just an example of an inquiry based pattern activity. Taking into consideration the pattern’s four functional 
characteristics (Skoumpourdi, 2016b), as well as students' pattern abilities and their type of performance (Skoumpourdi, 
2013) a wide range of critical and creative pattern tasks can be designed which can engage children in challenging 
patterning experiences. A different combination of these characteristics leads to different pattern tasks with a varying 
degree of difficulty.  
3 Examples of chain schematizations/passwords      

4 Connected shapes  



bringing side to side the construction with the schematic representation. The teacher is posing 
questions to ensure effective and understandable presentations. Also, students are encouraged to 
pose questions to their peers. The questions can be: “Can you describe us what did you construct? 
Which shapes did you use? Which shapes are similar? How many shapes did you use? Why did you 
put the triangle in this place? Which shapes are repeated? Do you observe any pattern?” etc.  

Connection: Teacher, in cooperation with students, orchestrates a mathematical discourse trying to 
connect presentations/creations with each other, with the Pattern King’s problem, as well as with the 
pattern concept in order for a shared meaning to emerge. Questions can be: “What do you observe to 
this construct? In what, these constructs differ? To what are these constructs similar?” etc. 

Generalization: Teacher is shaping the pattern concept, connecting it with students’ previous 
knowledge to generalize it. Questions are more general and are related to the pattern construct. For 
example: “Are these patterns the same”? “What is repeated in this pattern?” etc. 

Translation: “Can you draw your creation to show it to the students of the other class?” In this stage 
students ‘translate’ their constructs and understandings for patterns and shapes to the paper. 

Expansion: “A magician invited the King to play a game. He was sure that he would win him, to get 
his palace. The magician has two dice, one with numbers and one with shapes. Each of them—the 
king and the magician—would throw the dice and would take as many shapes as the dice indicate. 
The one that would create the longest chain with patterns will be the winner. Come to play the game 
to help the King make a very long pattern chain.” In that stage students expand their understanding 
by creating their own patterns.  

At the end of the inquiry process, students would have used the connected shapes to copy the 
patterns or to construct their own ones. They would have translated their constructions to schematic 
representations, using paper and pencil, as well as verbalized them describing the pattern construct. 
They would also have discussed about the shapes’ names (circle, triangle and rectangle) and their 
orientations, as well as about length comparison.   

Conclusions 
Teachers, in their educational practice, are asked to invent mathematical tasks for their students, to 
design activities relied on them and implement them, as well as to reflect on the outcomes of the 
implementation. Yet it is not easy for teachers to design inquiry-based activities and implement 
them in classroom. They prefer to stay within the comfort of the usual school tasks which are 
routine and structured and they design teacher-centered activities that reproduce the given 
conceptual contents and are solved by memorizing facts and processes.  

But if we take into consideration the argumentations of the last decades for the inquiry-based 
mathematics education, the design and implementation of inquiry-based mathematics activities, 
which are beyond the usual school tasks, will help students to develop their curiosity and creativity, 
their ability for critical exploration, reflection and reasoning and their autonomy as learners leading 
them to mathematical understanding (Artigue & Baptist, 2012).  

Using the proposed framework one can design and implement activities, for early childhood, 
supporting an inquiry-based teaching/learning process of mathematics. Through the seven stages of 
the framework which include: 1. the formulation of the task, 2. the exploration of the problem posed 



by the task, 3. the presentation of the explorations, 4. the connection of the presentations with 
mathematical aims, 5. the generalization of the connections and mathematical concepts and ideas, 6. 
the translation of the understandings on other modes and 7. the expansion of the initial task to a 
modified one, students’ and teachers’ roles alternate. During their cooperation they are both the key 
persons, the co-constructors and co-researchers of the teaching/learning process.  

We do not support that all of mathematics activities should be designed and implemented in an 
inquiry-based process but we do believe that such activities should be adopted to develop different 
skills in students and to actively involve them in their own learning. 
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Despite the fact that discourse is an important facet of mathematical learning, most research on 
students with language delays learning mathematics has focused on their procedural fluency, with 
limited focus on their communication of mathematical reasoning. This study focused on two first 
grade students with language delays as they engaged in choral counting, an instructional activity 
designed to encourage mathematical discourse. Qualitative analysis of the techniques they used to 
express their mathematical ideas found that the students’ use of gestures in relation to an artefact 
supported their mathematical communication. 

Keywords: Mathematics instruction, language impairments, nonverbal communication, discourse 
analysis, pattern identification.  

Introduction 
Discourse mediates mathematical learning (Forman, 2003) by providing a conduit for students to 
participate in mathematical practices, particularly when discourse is defined as comprising all forms 
of communication—including language, gestures, symbols, and artefacts (Lerman, 2001). The 
importance of discourse to mathematics education is shown by its prominence in educational policy 
documents (see e.g. NCTM, 2000), which state that mathematics instruction focused on discourse 
should enable students to express their mathematical ideas, analyse the mathematical thinking of 
others, and clarify and consolidate their own understanding of mathematics.  

Gersten et al. (2009) found that the process of encouraging students with learning disabilities to 
verbalize their thoughts is effective, and yet it is uncommon to see teachers encouraging 
mathematical verbalizations from students with disabilities. This is because the dominant 
instructional paradigm for teaching students with disabilities is teacher-led algorithmic instruction 
(Jackson & Neel, 2006), which is characterized by the teacher demonstrating a step-by-step 
procedure for completing a specific type of problem, and the students then using these same 
procedures to solve similar types of problems. This type of instruction leaves little space for 
independent student verbalizations. In this paper I explore what students with language delays learn 
about communicating mathematical ideas by engaging in an instructional activity—choral 
counting—that encourages students to engage in mathematical discourse. 

In this study I use the term language delays to mean that the students had persistent difficulties with 
expressive and/or receptive language that interfered with their academic competence and had been 
present since early childhood, but was unrelated to low cognitive ability, hearing loss, autism, or 
other known causes.  



Conceptual framework 

This study is influenced by a sociocultural framework in which learning is defined as the 
transformation of participation in a cultural practice (Rogoff, 2003). The cultural practice examined 
in this study is discourse about mathematical ideas. Amongst the community of mathematicians, 
discourse between mathematicians about axioms and conjectures is an important cultural practice 
that allows them to refine and improve knowledge; this is different than the one-directional 
discourse that commonly occurs in school mathematics classes, with the teacher imparting 
knowledge to the students (Lampert, 1990). This study examines the transformation of practice as 
the students move from the type of discourse typical in school mathematics towards disciplinary 
discourse as they learn several practices that mathematicians engage in when discussing 
mathematics: making assertions and presenting evidence (Lampert, 1990). 

Several researchers have used a sociocultural framework to understand how students with English 
as an Additional Language (EAL) participate in mathematical discourse (Turner, Dominguez, 
Maldonado, & Empson, 2013). It is often assumed that students with EAL will struggle to 
participate in mathematical discussions, but Turner, Dominguez, Maldonado, and Empson (2013) 
found that these students increased their participation when the teacher invited their participation, 
validated their participation by responding positively to their contributions and accepted a variety of 
resources as valid forms of communication including gestures, objects, artefacts, and the students’ 
home language. 

These findings about how students with EAL can be encouraged to participate more in 
mathematical discussions, may help us support students with language delays to participate more in 
mathematical discussions. At present students with language delays are assumed to fare better in 
environments that limit peer interactions (Griffin, League, Griffin, & Bae, 2013), however, since 
“content learning is inseparably bound up with language learning and vice versa” (Barwell, 2005, p. 
207), students with language delays may actually need more opportunities to participate in 
mathematics discussions than typically developing students. They may need more practice 
communicating mathematically, just as they need more practice communicating in other modes. 
This means that mathematics lessons should be designed to support students’ language goals as well 
as their mathematical content goals. These language goals will be more readily addressed with 
mathematical discussions than by direct instruction. 

Significance of research 

The research question explored in this paper is: What do primary students with language delays 
learn about communicating mathematically as they interact during choral counting? This study 
contributes to the field of mathematics education by helping researchers and practitioners 
understand more about the intersections of language performance and mathematics learning by 
examining a group of students who are rarely asked to communicate their mathematical ideas as 
they learn mathematical content.  



Methods 
Self-study 

This study is an example of self-study action research, as I was both the Special Educational Needs 
(SEN) teacher for the participants and the researcher in this study. I used the position of the teacher 
to investigate an issue, try a new method, and examine it systematically (Ball, 2000).  

This type of research has several advantages and disadvantages in regards to validity. My 
established relationship with the students meant that I knew the history of shared understandings 

within the class and understood the children’s use of language (Ball, 2000), and could use this 

knowledge to understand to what the children were referring, thus increasing the validity of the 

results. On the other hand, as their teacher I had a vested interest in seeing the students learn, which 

is a threat to the validity of the results. As an attempt to offset this threat to validity I triangulated 

the data with several other sources of data. The reliability of this study would have been increased if 

I was able to include a report of inter-rater reliability for the results. 

This study was motivated by my own experiences teaching mathematics as an SEN teacher. I had 
tried to teach mathematics through direct instruction for several years and was dissatisfied with the 
limited progress that my students were making in mathematics.  Therefore I decided to try a new 
instructional activity that emphasized mathematical discourse—choral counting—and to examine 
this new activity systematically to discover whether it is a fruitful way to work with young students 
with language delays. 

Participants 

The participants in this study were two first grade (6-7-year-old) boys who received small group 
SEN services in the areas of mathematics, literacy, and communication in an urban area of the 
U.S.A.  

Martin1 and Ali were both members of my primary special education mathematics class (PSEM). 
They had both qualified for SEN services under the category of Developmental Delays. Although 
the category given to them by the school district was Developmental Delays, which suggests global 
delays, the term Language Delays more accurately reflects their difficulties. These students showed 
delays in their language development, but no delays in their self-help or motor skills, and only 
minor delays in their social skills. Therefore, I use the label Language Delays to refer to these 
students’ disabilities.  

Martin and Ali were selected because at the beginning of the study they both had Individual 
Education Plan (IEP) goals related to counting, were in first grade, had language delays, and 
remained in my mathematics class throughout the duration of the study. There were four other 
students in their mathematics group, but these students did not receive SEN services in my class 
through the entire duration of the study.  

                                                 
1 All names are pseudonyms. 



Procedures 

I chose to study the instructional activity of choral counting (Lampert, Beasley, Ghousseini, 
Kazemi, & Franke, 2010) because it is an activity that incorporates both appropriate mathematical 
content for students in first grade and an opportunity for the students to engage in mathematical 
discussions. There are two sections to the choral counting activity: 1) rote counting, and 2) pattern 
identification and expansion. It is during the second section of the activity that students engage in 
mathematical discourse by expressing their own mathematical ideas. 

In choral counting the teacher has to first choose an appropriate counting sequence for the students. 
For these students the counting sequences were by ones, twos, fives, tens, or backwards by ones. 
When counting by ones, the count started from a number in the low double digits because the 
students were very familiar with counting by ones from one. These counting sequences were 
selected because they were identified as the essential counting sequences for first grade students in 
the Washington k-12 Mathematics Standards (Office of Superintendent of Public Instruction, 2008), 

which were the relevant state standards in the time and place where this study was situated. Once 
the teacher has introduced the counting sequence to the students, the class counts together while the 
teacher strategically records the count on the board so that certain patterns emerged.  

After writing three or more rows or columns the teacher stops the count and asks the students to 
identify patterns in the numbers. Once a student has stated a pattern they can be asked to extend, 
compare, or justify their pattern, and other students can be asked to build on what the first student 
has said.   

The students in the PSEM class engaged in choral counting approximately weekly from November 
until March. They then continued to participate in choral counts once or twice a month from April 
until June. This resulted in eleven choral counting lessons over the year, each of which took 
approximately 20 minutes to enact. I additionally recorded my lesson plans, my reflections of each 

lesson, and asked the students to complete independent counts. Although I do not report my analysis 

of these additional sources of data in this paper, they did triangulate the data from the videos. 

Data analysis 

The data collected and analysed for this article consisted of two episodes from the videotaped choral 
counting lessons. The data were collected during a single school year, and were analysed 
systematically by drawing upon both sociocultural theory (Rogoff, 2003) and interaction analysis 
methodologies (Schegloff, 1997). In the initial analysis of the data, I used open coding to produce 
concepts, which were revised with further analysis. The resulting claims and assertions are based in 
the data and are therefore empirically grounded. 

Results 
In this paper I show how the students incorporated gestures towards the artefact into their 
interactions, and why this increased their communication of mathematical ideas. 

In the first couple of choral counting lessons all of the students responded to the quest for patterns 
purely verbally. When asked what patterns he saw, Martin responded, “A square right there…Ooh! 
A triangle…Circle…Rectangle.” These verbal responses did not communicate enough information 



to help his classmates or teacher understand why he was responding with shape names, and the 
conversation about shapes petered out. 

On his next turn Martin initiated a new form of communication about the numbers. Instead of 
remaining in his seat, he came up to the board and gestured towards the numbers he was referring to 
(see Figure 1): 

Martin: I see zeroes  

Teacher: Where. Tell me where. [Martin got up.] Tell me 

Martin: Right here. [Martin went to the board and pointed to the zeroes in the final 
column. As he counted he pointed to each zero.] Ten. Twenty. Thirty. Forty. Fifty. 

 

  2   4   6   8 10 

12 14 16 18 20 

22 24 26 28 30 

32 34 36 38 40 

42 44 46 48 50  +10  0 Martin’s pattern 

52 54 56 58 60   4 Ali’s pattern 

62 64     

Figure 1: Count by 2s, December 

In this interaction Martin defied the teacher’s expectations that he would respond to the question 
purely verbally. Instead he adopted some of the teacher’s communication style from the previous 
interaction with Ali by using the artefact to gesture towards the relevant numbers, but also 
innovated to convey more information. While the teacher had used a gesture that simply indicated 
the digits under discussion, Martin used a cohesive gesture that united two separate but related 
aspects of his idea (McNeill, 1992). Martin used pointing to indicate the repetition of the written 
zeroes in the ones place, while verbally reading the count by tens; in this episode Martin used a 
cohesive gesture to express his emerging understanding of the links between the symbolic and 
verbal representations of number. This corresponds to Garber, Alibali, and Goldin-Meadow’s 
(1998) finding that children often use gesture to express emergent learning.  

Martin’s initial comment about “zeroes” was clarified and expanded by his use of gesture. This 
expansion allowed the teacher to respond to his statement and prompt him to further expand on his 
idea. 

Teacher: What are they counting on by? 



Martin: Tens. [Confident voice.] 

Teacher: Yeah. Tens. [Writes +10 beside the zeroes with an arrow pointing down.] That’s a 
great answer. 

The positive response that Martin achieved through this interaction encouraged other students to 
take up his innovation and by episode 4 it had become a norm for the students to come to the board 
when they were trying to communicate which numbers they were discussing. For example, in 
episode 4 Ali communicated that he saw a similarity between the numbers in the first row (see 
Figure 2) by both verbalizing the numbers he was discussing and pointing to the relevant numbers. 
The words that he said,  “Tens…got a number one zero, one one zero,” could have been easily 
misconstrued but because he came up to the board and pointed at the relevant numbers, his listeners 
understood exactly which tens he was talking about.  

 

10  110 210 310 410 

  20 120 220 320 

  30 130 230 330 

  40 140 240 340 

  50 150 250 

  60 160 260 

  70 170 270 

  80 180 280 

  90 190 290   

100 200 300  10 Ali’s pattern 

Figure 2: Count by 10s, January 

 

The use of gestures allowed Ali to clearly communicate his idea and the mutual understanding 
engendered by this exchange of ideas allowed his teacher to extend the conversation (Goldin-
Meadow, 2003).  

Teacher: What number will be here? [Teacher points to the right of 310.] 

Ali: Four 

Teacher: Four hundred [Writes 4.]  

Ali: Ten. [Teacher writes 10.] 



In this exchange Ali went beyond the initial statement of the pattern to extend his pattern to the next 
column while incorporating an unstated arithmetic sequence in the hundreds.  

Discussion 
This action research project improved the participating students’ educational outcomes, challenged 
assumptions and provides a basis for a call to social action, which are all important goals for action 
research (Kincheloe, 2003; Somekh & Zeichner, 2009). 

The instructional activity of choral counting improved the students’ educational outcomes 
(Kincheloe, 2003) by transforming their participation in the cultural practice of mathematics 
discourse by challenging the assumption that students with language-delays will not be active 
participants in discussions around mathematics because they find the language too difficult (Fazio, 
1999). Although both boys found it difficult to express their ideas verbally, they were actively 
engaged in the mathematical discussions and used gestures to enhance their communication. Thal, 
Tobias, and Morrison (1991) found that students with specific language impairments are often 
worse at gesturing than their peers, but that those whose gestures develop normally will later catch 
up with their peers in verbal speech. Therefore it is important to encourage the use of gestures 
among students with language delays and this study showed that allowing students with language 
delays to gesture and physically interact with the numbers can support their participation in 
mathematical discussions. My call to action is to encourage other teachers to involve their students 
with language delays in mathematical discussions and to encourage them to use gestures and 
artefacts to express meaning. 
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It is often recommended to engage young children with patterning activities. As part of a 
professional development program, nine preschool teachers were introduced to repeating patterns 
and were given the materials and instructions with which to implement an extension task with 
children. This study presents the various ways teachers implemented this task and investigates the 
impact of the various implementations on children’s success in extending the repeating patterns.    

Keywords: Repeating patterns, tasks, preschool teachers  

Introduction and background 
For several years, we have been providing professional development for preschool teachers guided 
by the Cognitive Affective Mathematics Teacher Education (CAMTE) framework (e.g. Tsamir, 
Tirosh, Levenson, Tabach, & Barkai, 2014). Our aims are to promote teachers’ knowledge and self-
efficacy for teaching mathematics to young children. An essential element of pedagogical-content 
knowledge is knowledge of tasks (Sullivan, Clarke, & Clarke, 2009). In Israel, where this study took 
place, there is a mandatory mathematics preschool curriculum, but few curricular materials are 
available. Thus, introducing preschool teachers to appropriate mathematical tasks is essential. 
However, studies have shown that even when providing teachers with a task, and with explicit 
instructions for carrying out that task, teachers may implement the task in different ways (Bieda, 
2010). In turn, different implementations may affect the cognitive load of a task or a student’s 
conceptualization of key mathematical ideas (Stein, Grover, & Henningsen, 1996). This paper 
investigates the various ways preschool teachers implement a given repeating pattern task. 

Repeating patterns are patterns with a cyclical repetition of an identifiable 'unit of repeat'. For 
example, a pattern of the form ABBABBABB… has a (minimal) unit of repeat of length three. The 
importance of engaging young children with pattern activities is supported by mathematicians, 
mathematics education researchers, and curriculum developers (Sarama & Clements, 2009). Pattern 
exploration and recognition may support children as they learn a variety of mathematical skills 
developed at this age. For example, recognizing repeating patterns may help children develop skip 
counting, such as 5, 10, 15, 20, 25, 30 ... where the ones digit forms the pattern 5, 0, 5, 0, … 
Recognition and analysis of patterns can also provide a foundation for the development of algebraic 
thinking and provide children with the opportunity to observe and verbalize generalizations as well 
as to record them symbolically (Threlfall, 1999).  

Several studies have investigated ways in which young children engage with repeating patterns. For 
example, Seo and Ginsburg (2004) found that young children build block towers with an ABAB 
pattern. Fox (2005) observed young children painting stripes in ABAB patterns as well as one child 
who painted four sets of an ABC pattern and then said, “Look at my pattern” (p. 317). Waters 
(2004) observed a young girl who created a necklace out of game materials and described her 
necklace as “diamond, funny shape, diamond, funny shape” (p. 326). Papic, Mulligan, & 



Mitchelmore (2011) found that some preschool children may be able to draw an ABABAB pattern 
from memory by recalling the pattern as single alternating colors of red, blue, red, blue, basically 
recalling that after red came blue and after blue came red. However, when shown a more 
complicated pattern such as ABBC, they could not replicate the pattern.  

This study focuses specifically on the task of extending a repeating pattern. Pattern extension tasks 
mostly include showing the child a pattern and requesting the child to continue it. Papic, et al., 
(2011) reported that many children succeed at these tasks without necessarily recognizing the unit of 
repeat. Instead, they use the “matching one item at a time” strategy, also known as the “alternation 
strategy” which is especially successful with simple ABAB patterns. Rittle-Johnson, et al., (2013) 
found that some children reverted to producing an ABAB pattern while others could not produce 
more than one unit of repeat correctly when extending an ABB pattern. Similarly, Swoboda (2010) 
found that for some four-year old children, continuing a pattern means duplicating the unit of repeat 
once, and no more. In other words, both the complexity of the unit of repeat, as well as the number 
of times the unit is to be repeated, seemed to contribute to the difficulty of the task.  

Another factor which may impact on the difficulty of extending repeating patterns is whether (or 
not) the given pattern ends with a complete unit of repeat. In one study, children were shown given 
repeated patterns and asked to consider extending the patterns by choosing between different 
possible continuations, some appropriate and some not appropriate. Children had greater success 
extending patterns which ended with a complete unit, than extending patterns which ended in a 
partial unit (Tsamir, Tirosh, Barkai, Levenson, & Tabach, 2015). Furthermore, several of the 
appropriate continuations would have extended the pattern in such a way as to end the pattern with 
an incomplete unit of repeat. Fewer children chose those possibilities as appropriate, even though 
they were correct extensions. 

From the above studies, we see that there are several variables that may be taken into consideration 
when engaging with pattern extension activities: the structure of the pattern, the length of the unit of 
repeat, the number of times a unit appears in a pattern, and if the presented pattern ends in a 
complete unit of repeat or not. However, these variable all have to do with the repeating pattern. 
Might there be other variables that need to be considered when requesting children to extend a 
repeating pattern? Our first question is: Given an extension task and a set of repeating patterns, what 
are the various ways preschool teachers implement the task? Considering variation theory of 
learning and that learners may experience objects in various ways (Ling & Marton, 2012), our 
second question is: What can we learn about children’s patterning abilities from the different 
implementations? 

Methodology  
This study took place within the context of a professional development course for preschool 
teachers, focusing on patterning for young children. Twenty-three preschool teachers participated in 
the program. All had a first degree in education and between 1 and 38 years of teaching experience 
in preschools. The entire program was planned for 21 hours. The teachers met seven times over a 
period of about four months in the local professional development center in their area. 
Approximately five of the seven sessions were devoted to repeating patterns with the other two 
focusing on number concepts. All lessons and tasks were planned by the four authors of this paper.  



During the program, teachers were introduced to different patterning tasks as a tool for promoting 
their mathematical and pedagogical knowledge for teaching patterns in preschool. For the final 
project of the program, teachers were instructed to choose two of the tasks that were presented and 
analyzed during the course, and implement and video those chosen activities with one child. Those 
videos were then analyzed and discussed together in terms of children’s solutions. In this paper we 
investigate teachers’ implementations of one task (see Figure 1). Nine teachers (T1-T9) 
implemented this task, each with one child from their preschool (C1-C9). It is important to note that 
the task, along with the explicit instructions, was presented to the teachers by the teacher educator, 
who demonstrated how the task should be implemented. Furthermore, this task was not meant to be 
an instructive task, but instead an evaluation task in the sense that it was meant to assess children’s 
ability to extend various repeating patterns.  

Present the child with one pattern at a time. For each pattern prepare two or three separate 
containers, each container containing cutouts of triangles, squares, or circles. For example, 
when presenting the first pattern, place before the child two containers, one with blue 
squares and one with red triangles. For each pattern ask: What comes next? This question is 
repeated three times so that in the end, the child will have added three elements to the 
pattern.  

 

P1 

 

P2  

 

P3 

 

P4 

 

P5 

 

 P6   

Figure 1: What comes next? 

Note that there are basically three different structures, from the simpler AB, to the more complex 
ABC, and the even more complex ABB (e.g., Rittle-Johnson, el al., 2013). In addition, the first 
three patterns end in a complete unit of repeat and the last three do not. In other words, the 
sequencing of patterns goes from the simple to the more complex. 

Various ways of implementing the task 

We first note that none of the teachers changed the given patterns. Some variations came about from 
not implementing the tasks according to the instructions. For example, although teachers were told 



to prepare five separate containers for each possible cutout, according to shape and color, and only 
present to the child those containers which contained cutouts for that pattern, only one teacher 
actually followed this instruction. Four teachers did separate the elements into five containers 
according to shape and color, but then kept all of the containers on the table, no matter which 
pattern was being extended. Four other teachers separated the elements into only three containers 
according to shape (e.g., putting blue and red squares in one container), and then placed all three 
containers on the table, no matter which pattern was being extended. Another explicit instruction 
which was not followed was the sequencing of the patterns. Two teachers did not present the 
patterns in the order given above. One teacher showed the patterns in the following order: P4, P6, 
P3, P4, P1, and P2. The second teacher used the following order: P4, P3, P2, P1, P6, and P5.  

Some variations in implementation seemed to come about because no explicit instructions were 
given as to what to say to the child before beginning the task. That is, teachers were instructed to 
ask for each pattern “What comes next?”, but were not told what to say when sitting down with the 
child and introducing the task. Six teachers stated at the beginning of the task, as they placed the 
pattern down on the table, “Here is a pattern.” Five teachers asked the children to say out loud each 
element from the beginning of the pattern. It might be that the teachers thought that saying out loud 
the elements would allow children to hear the repetition of the unit of repeat and thus enable the 
children to pick out the correct next element. For example, at first, T5 did not ask C5 to read out 
loud each element of the pattern. She told her that there was a pattern and then asked her to pick out 
the element that should come next. After waiting a bit and seeing that the child sat still and did 
nothing, she then requested the child to say out loud each element of the pattern from the beginning. 
After that, C5 continued with the task and picked out the next element (correctly). T5 then 
continued with this instruction for each additional pattern (and answered each one correctly). Other 
teachers did not wait to see what would happen, but from the beginning requested that the child say 
out loud each element. T7 began her interview with C7 by saying, “Let’s read the pattern together, 
let’s read.” At that point, C7 did not read the pattern but stretched out her arm to take a blue square 
(the correct element for extending the pattern) from one of the containers and place it at the end of 
the given pattern. T7 stopped her, despite that C7 chose the correct way of extending the pattern, 
and said, “No, sweetie. Wait a minute. First, let’s read it.” Three of the five teachers who requested 
children to read out loud the patterns, and an additional two teachers, asked the child they 
interviewed to say what was in the containers.  

Variations in task implementation also occurred while the child was actively engaged with the task. 
Some of those variations were queries into why the child chose one or another element. For 
example, when engaged in the second pattern (P2), one child mistakenly took a blue square, but 
then immediately switched it with a correct red square. The teacher then inquired, “Why didn’t you 
put down the blue square and why did you put down the red one?” This type of intervention did not 
interfere with the child’s performance, but was instead a way for the teacher to listen to the child’s 
way of thinking. In this case, the child answered, “because here (pointing to the pattern), the square 
is red.” In other instances, the teacher’s intervention came about even before the child took action. 
For example, when placing on the table P4 (the first pattern that did not end with a complete unit of 
repeat) T4 said to the child, “Now pay attention.” After placing on the table the last pattern, T4 said, 
“Now look closely at the pattern, and also look carefully where it ends.” This type of intervention 
has the potential to alternate a child’s performance. In this case, despite all these warnings, C4 



incorrectly extended all of the last three patterns (those that did not end with a complete unit). Some 
teachers intervened when the child chose an incorrect way of extending the pattern. For example, 
when T6 asked C6 to extend P3 (the pattern with an ABB structure), C6 incorrectly added ABA. 
The teacher then pointed to each element in the unit of repeat and said, “Look closely. Square, 
triangle, and …” C6 then responded correctly, “triangle.”  Interestingly, C6 had previously extended 
P2 in an incorrect manner. Although placing the correct shapes to extend the pattern, the child chose 
incorrect colors. In that case, T6 did not intervene, and instead said, “Good.” Perhaps the teacher 
was satisfied that at least the child had chosen the correct shapes. However, when it came to placing 
incorrect shapes for P3, the teacher (T6) intervened.  

Children’s performances 

Results of children’s performances on the task, for each pattern, are shown in Table 1 according to 
structure and if the pattern ended in a complete unit (Comp.) or an incomplete (Inc.) unit. An 
extension of the pattern was only considered correct if the child successfully extended the pattern by 
three elements. As can be seen, children performed better extending a pattern that ended in a 
complete unit of repeat than a pattern which did not end in a complete unit. 

Structure P1 (AB 
Comp.) 

P4 (AB 
Inc.) 

P2 (ABC 
Comp.) 

P5 (ABC 
Inc.) 

P3 (ABB 
Comp.) 

P6 (ABB 
Inc.) 

Frequency 8 (89) 6 (67) 6 (67) 6 (67) 2 (22) 4 (44) 

Table 1: Frequency (%) of successfully extending each pattern (N=9) 
We now address the question of whether different implementations affected the children’s success 
in extending the pattern. Comparing results of children who read out loud the elements of the 
pattern before extending the pattern, and those who did not, the relative frequency of success was 
slightly greater for those children who did not first read out loud the pattern (see Table 2).  

 Reads out loud the pattern (N=5) Does not read out loud the pattern (N=4) 

P1 (AB Comp.) 4(80) 4(100) 

P2  (ABC Comp.)  3(60) 3(75) 

P3 (ABB Comp.) 3(60) 3(75) 

P4 (AB Incomp.) 3(60) 3(75) 

P5 (ABC Incomp.) 1(20) 1(25) 

P6 (ABB Incomp.) 1(20) 3(75) 

Table 2: Frequency (%) of success per variations in reading out loud the pattern 
Regarding the placing of elements in containers, results (see Table 3) indicated that in general, the 
way the elements were presented made little difference to the children’s ability to extend the pattern. 
Taking a closer look, for the first three patterns that ended in a complete unit of repeat, there was a 
higher success rate when the elements were separated by shape and color. However, when the 
patterns did not end with a complete unit of repeat, there was either no difference or there was a 
higher success rate when the elements were separated only by shape. 



 3 containers separated 
only by shape (N=4) 

5 containers separated  by 
color and shape (N=4) 

2 or 3 containers, only 
necessary elements (N=1) 

P1 4(100) 4(100) - 

P2 2(50) 3(75) 1(100) 

P3 2(50) 3(75) 1(100) 

P4 4(100) 2(50) - 

P5 2(50) - - 

P6 2(50) 2(50) - 

Table 3: Frequency (%) of success per variations in containers. 
Regarding other differences in implementations, few affects were noticed. For example, among the 
six children who were told explicitly before beginning the task that there was a pattern which 
needed to be extended, three children extended correctly only two of the six patterns; the other three 
correctly extended three, five, and six of the patterns. Among those who were not explicitly told that 
there was a pattern (three children), a similar variance in success rates was found. The same 
variance in success was noted regarding children who were requested to say which elements were in 
each of the containers. 

When analyzing the errors made by children, we found that the most prevalent mistake when 
attempting to extend a pattern that did not end with a complete unit of repeat was to continue the 
pattern as if it had ended in a complete unit, i.e., adding the first three elements from the beginning 
of the pattern. For example, C2 continued P4 by adding a square, triangle, and then a square. 
Another type of mistake which occurred for patterns both that ended and did not end with a 
complete unit of repeat, was to continue the pattern with ABAB despite there being a different 
structure to the given pattern. This occurred for C6 who added BA to an ABC structure, and also an 
ABB structure. Likewise, C9 continued P6 by adding BABABABA. Another type of mistake was 
taking the correct shape, but with the wrong color, as was demonstrated above by C2. This last type 
of mistake was directly related to the way the task was implemented. Obviously, if only the correct 
colors of shapes would have been on the table, this type of mistake could not occur. 

Summary and discussion 
As part of the professional development program, teachers were supplied with the materials for 
implementing the repeating pattern task. They were given laminated strips of paper with the patterns 
printed on them in color. They were given the matching pictures of colored squares, triangles, and 
circles to be cut out and placed in containers. They were even told what to ask each child. Yet, many 
variations occurred when implementing the task. Some of the variations occurred in the setup of the 
task, specifically with placing the elements in containers. Some of the variations occurred in the 
midst of implementing the task. When reflecting with the teachers on their implementations, it 
became apparent that these variations occurred spontaneously, without planning for them ahead of 
time. And yet, several of the teachers had the same ideas, such as having the children read out loud 
the pattern. Knowledge of tasks includes knowing the affordances and constraints of that task 
(Watson & Mason, 2006). It could be that the teachers saw this task as affording the opportunity to 



review with the children names of two-dimensional figures. According to Zaslavsky (2008), 
teaching tools include not only materials, but other kinds of resources, such as language and time. It 
could be that teachers were incorporating the tool of language into this given task, having children 
say the names of the shapes in the pattern. It could also be, similar to other studies (Stein, Grover, & 
Henningsen, 1996) that teachers were attempting to lighten the cognitive load of the students by 
telling them that there was a pattern and having them say out loud the names of the shapes which 
repeated themselves. In any case, as teacher educators it is important to be aware that teachers may 
implement a given task in various ways. In fact, in our program, the teachers brought the videos of 
their implementations back to the program, and as a group, we viewed them together. This, in turn, 
enhanced the teachers’ knowledge of tasks, including their knowledge of the way children engage 
with repeating patterns tasks.  

Despite the variations in implementations, most of the outcomes were consistent with previous 
research. For example, children had greater success when extending patterns which ended in a 
complete unit of repeat than those which did not (Tsamir et al., 2015). Children in this study made 
similar errors as children in other studies, such as extending an ABB pattern with ABA (Rittle-
Johnson, et al., (2013). Can we conclude then that variations seen in this study had no impact? 
Certainly, a study with nine children is not enough to make such a conclusion, but it does leave us 
with an interesting question. How come the variations seen in this study (e.g., telling the children 
that there was a pattern, reading out loud the elements of a pattern, placing the elements in various 
containers) did not seem to impact on children’s performance? The answer to this question perhaps 
lies in acknowledging the essence of repeating patterns, which is the unit of repeat and its structure. 
None of the variations in implementations focused the child on the unit of repeat. What seemed to 
impact on results was the complexity of the structure as well as if the pattern ended in a complete 
unit of repeat. By reviewing these results with preschool teachers, noticing the variations as well as 
the little affect they had on children’s performances, we strengthen teachers’ appreciation for the 
structure of a pattern, and promote their knowledge for teaching repeating patterns in preschool. 
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Abstraction and generalization, lying at the heart of mathematical activity, attract the interest of 
many researchers who mostly examine generalizing processes in patterns and algebra. Given that 
earlier approaches questioned the possibility of developing generalizing capabilities in early ages, 
in our research we attempt to examine if an appropriate teaching intervention could change this 
initial assumption. For the needs of this work, 23 preschoolers participated in a seven months 
teaching intervention with relevant tasks in various topics: figures, patterns, measures and numbers. 
In this paper only for length measurement is presented. The children were pre and post examined in 
tests designed to examine their knowledge and initial generalizing abilities in this topic. The results 
indicated that their long-term involvement helped these young children to improve their abilities to 
(a) reflect on their own activity, (b) express their ideas and (c) reach to some concluding remarks, 
first related to their own personal experiences and later to more general thoughts. 

Keywords: Generalization, abstraction, measurement, early childhood, teaching intervention. 

Introduction 
A 6-year-old child saying, “When two distances begin and end together, this does not mean they are 
equal, we need to measure them....” shows a preschooler able to express in a more detached from 
his/her experience and general way a relation concerning length comparison. This reveals a 
generalizing ability that, lying in the heart of mathematical activity, attracts the interest of research in 
mathematics education.  

Current studies related to generalization and generalizing processes concern mainly patterns and 
approaches in algebra for older students (Hitt & Gonzales-Marin 2016; Warren, Trigueros, & Ursini 
2016; Zazkis, Liljedahl, & Chernoff, 2008; Lannin, 2005), while relevant investigations of younger 
children’s generalizing abilities also are connected to patterns and structures (Mulligan & 
Mitchelmore, 2013).  

In our study we attempted to explore generalizing skills in early ages. More specifically, our research 
question focused on whether an appropriate teaching intervention could support young students’ 
disposition related to noticing properties, relations and structure and developing a first level of more 
general conclusions. Our research supports the efforts for a meaningful and effective early 
mathematics education, by accepting generalizing abilities as an important component of it. 

Abstraction and generalization 
Humanity starts dealing with ideas related to abstraction and generalization quite early, pursuing 
answers related to the development of concepts in human’s mind. Similarly, psychologists 
systematically investigated abstraction and generalization, as integral parts of humans’ conceptual 
formation, supporting, thus, many explorations in mathematics education. For mathematics, 
abstraction is considered as a process during which students directly reorganize former structured 



mathematics in a new mathematical structure (Hershkowitz, Schwarz, & Dreyfus, 2001). This process 
(as part of the generalization process) has been studied by many researchers. We could underline the 
advances of Dubinsky (1991) and APOS, Sfard (1992) and the theory of reification, Hershkowith, 
Schwarz and Dreyfus (2001) and epistemic actions, as well as a variety of combinations of these 
approaches (Tzur & Simon, 2004).   

Generalization could be identified as the level at which students, starting from specific situations, 
proceed to more general ideas and conclusions identifying patterns, structures, relationships, rules 
etc. (Kaput, 1999). Similarly the idea of generalization, as an integral part of mathematical 
development, holds an important place in mathematics education. Starting from Harel and Tall 
(1989), Tall and Vinner (1981), Fischbein (1993), Bills and Rowland (1999), Radford (2001), Becker 
and Rivera (2003) and Sriraman (2004), many researchers have proposed models regarding 
theoretical approaches for this conceptual elaboration. These models refer to concept formation (as 
important stage of generalization), reflection and communication (as important reason for 
generalization), different kinds of generalization (extension, reconstruction, disjunction/ results and 
process of generalization), elements of generalization (grasping and expressing) and generalization 
as objectification (factual, contextual, symbolic). 

As mentioned earlier, most of this research is related to generalizing processes in patterns and 
algebraic elements, and certainly examines these processes in older students. Their findings can be 
organized in the following strands: generalizing abilities, generalizing procedures and strategies, 
teaching intervention aiming at improving generalizing skills. Related to generalizing abilities, Yeap 
and Kaur (2008) studied structure and pattern recognition with the use of heuristic tools and 
technology as well as the development of metacognition and critical thought. Related to teaching 
intervention, Zazkis, Liljedahl and Chernoff (2008) investigated the use of appropriate examples and 
tasks. 

The elements or actions and elaborations that consist the integral parts of generalization cannot be 
defined so easily. However, elements such as reflection of action and expression of more generalized 
properties, rules, relationships and structures deriving from specific tasks, problems and practical 
experience could be identified as being essential in this conceptual elaboration and are placed in the 
center of students’ mathematical development. Therefore, mathematical education needs to cultivate 
these skills from early ages and progressively improve them in the course of mathematics education. 

Starting from this basic question, our research aimed at examining (a) the possibility of developing 
generalizing capabilities in early childhood, and (b) teaching interventions that could improve these 
skills in young children. Our wider research concerns teaching and findings related to four topics of 
mathematics curriculum: geometric figures, patterns, geometric measurement and numbers. In 
previous communication (Tzekaki & Papadopoulou, 2016) we presented results concerning 
geometric figures and numbers, while in this paper we are limited to data related to geometric length 
measurement. We believe that the most interesting part of this presentation is not exactly the specific 
topic but the development of generalization capabilities in 5 years old children. 

Measurement and generalization 
Measurement is an important every day activity, that mathematically connects geometry and 
numbers, but its approach is not so evident in early years or even later (Bragg & Outhred, 2004). 



Length measurement can be identified as a procedure that divides a continuous magnitude of an object 
to a number of specific parts (units) and connects it to the number of iteration of these parts. Thus, 
the conceptualization of length measurement could be analyzed in several steps that demand 
understanding and generalization (Battista, 2003): 

1. Identification of length as a special (unchangeable) attribute of an object. 

2. Transfer of this attribute to another object (intermediate). 

3. Comparison of lengths by means of intermediate (arbitrary or conventional). 

4. Covering with different equal units (arbitrary and conventional) and quantify this covering. 

5. Connecting unit iteration (and thus measurement) to a number (Sarama & Clements, 2009). 

Our research related to length measurements examines whether young 
children succeed to understand and express different generalized ideas for three of these steps: 
transfer, comparison and covering. More specifically, generalizing levels of each of these 
measurement steps was expressed and examined, both as procedure and relation, as following: 

- Generalization related to the transfer of a length to an intermediate (2) means that children could 
identify the equality of the lengths of objects and intermediates. 

- Generalization related to the comparison of lengths (or distances) by means of intermediate (3) 
means that children could identify the starting and ending points of objects and intermediates and the 
equality of their lengths. 

- Generalization related to covering with different units for the needs of a measurement means that 
children could understand the role of equal units, the different quantification when the units are 
different and the role of numbers in the procedure of measurement. 

Children’s explanations both in tests and in classroom interchanges during the teaching intervention 
were classified according to this analysis. 

Methodology 
For the needs of this research related to length measurement, 23 preschoolers participated in a three 
weeks teaching intervention with relevant measurement tasks. There were also pro- and post 
examined in tests specially designed to examine their knowledge about measurement and their 
generalization level, before and after the intervention. 

Pre and Post tests 

The tests items in length measurement included four (4) items in accordance to the aforementioned 
analysis:  

1. For the transfer of a length, a real object (for example a frame) hung on a specific height on the 
wall had to be transposed to another place.  

2. For the comparison of lengths, cards of different width and height had to be ordered (their 
dimension were changing inversely, the thinner was the taller, and the thicker was the shorter). 

3. For covering with different units and comparison there were two items: the children had to compare 
unequal distances in zigzags with common starting and ending points drawn on worksheets and 



covered with equal units, as well as equal distances in zigzags with common starting and ending 
points, but covered with different (non equal) units. 

Two of the items concerned lengths, while the other two distances. Also, two of them were real 
situations with material while the other two were representations of comparison situations. The 
children were individually interviewed on these tasks and were questioned about their reflections and 
conclusions. Their answers were organized in the following stages. 

1st Stage: The child does not express any procedure or relation related to measurement. 

2nd Stage: The child starts with a holistic measurement approach of procedure or relations that can 
explain his/her doing, e.g. transferring an object a child says “I thought to put it in the same 
height..” showing an imaginary line with his hand. 

3rd Stage: The child starts conceptualizing length measurement and can explain the procedure 
presenting some relations, e.g. comparing distances in zigzags by means of batons, a child 
says “for this side (showing the starting point) they are the same, but from the other side 
(showing the end) this one (showing) looks longer…” 

4th Stage: The child starts conceptualizing the measurement as iteration of units and can explain 
almost the whole procedure and relations, e.g. comparing distances in zigzags by means of 
matches, a child explains “this one is longer because it has 1,2,3,…,6 matches and the other 
has 1,2,3,4 matches…” 

5th Stage: The children explain all the relations that are needed for the measurement, e.g. comparing 
also equal distances in zigzags by means of matches, a child explains “they start together 
and end together and have the same number of matches”. 

Teaching intervention 

After the pre-test the children were involved in “generalizing experiences” concerning length 
measurement. They first worked with relevant measurement tasks in groups and then presented their 
results in the whole class. The teaching intervention consisted of five (5) lessons with eight (8) tasks. 
The tasks concerned all five steps of length measurement (length/distance - width – height, presented 
earlier) with 

- Length transfer, direct and indirect comparisons and estimations. 

- Indirect comparisons by means of arbitrary of conventional units (unit covering and number 
assignment). 

- Indirect comparison by means of conventional units with iteration and number assignment. 

- Length and height measurement by means of meter. 

Tasks with length transfer proposed the use of batons or strings to measure, for example, the height 
of the position of a frame that has to be hung on a different wall. Indirect comparisons suggested 
covering with meters or other convectional units to measure and compare, for example, itineraries in 
stories or dimensions of furniture. Similarly, other comparisons presupposed the iteration of units for 
these measurements or comparisons. 



The most important part of this intervention was the closure of activities, when children were 
systematically encouraged (a) to identify common characteristics, relationships and properties in the 
different encountered situations, (b) to express more general ideas and (c) to formulate conclusions 
or other overall rules about length measurement. 

The discussion and the generalizing questions aimed at the understanding of measurement procedure 
and its principles and, more specifically, of the equal partitioning of the continuous attribute of 
objects, the unit iteration and the equality relations (with starting and ending points).  

Results 
The results coming from the comparison of the pre and post tests indicated that, after a series of tasks 
and systematic discussions, young children were able to improve their abilities to reflect on their own 
activity, to express their ideas and reach to some kind of conclusions, initially ‘locally’ related to their 
own personal experiences or the specific task (e.g. way of doing it) and later to a more general level 
regarding mathematical ideas (e.g. whether are equal or nor) or even formulating a rule or proposition 
(e.g. to measure two distances we have to…). 

Findings related to measurement: Pre and post tests 

The pre-test findings indicated that children initially didn't recognize the procedure of measurement, 
but approached comparisons globally and estimated lengths and distances based on their own 
experiences. For example, comparing distances covered with batons they didn’t count the number of 
batons but based their responses on personal judgments of closeness. Their justifications were 
idiosyncratic, practical or kinesthetic, e.g. “because I think so…”, or “This line is bigger because in 
this place there is only one animal, so the thunderbolt killed more…”. They ordered objects based on 
their figure, while they covered them with units that were overlapping or had gaps. They understood 
that there was an equality or inequality of dimensions, but explained it based on morphological 
elements, e.g. “it is more pointy…”.. 

The analysis of children’s responses after the intervention indicated a significant improvement 
regarding the identification of the procedure of measurement, as they did successful measurements 
and explained their actions based on measurement principles. They identified the iteration of units 
(with no overlapping and gaps) explain e.g. “we don’t put the sticks as we like, but one after the other, 
watching that they are not overlapping…”. They were able to order objects based on metrical 
characteristics (length and height) and explained the measurement they have done. The children’s 
improvement is illustrated in the following table (Tab. 1). 

 

Issues of Tests Success pre, % Success post, % 
Transfer of heights 0 87,5 
Comparison of weights and heights  33,33 66,66 
Comparison of unequal distances (in 
crooked lines) by means of batons 29,16 95,83 
Comparison of equal distances (in 
straight lines) by means of matches 0 66,66 

Table 1: Results before and after the teaching intervention 



Students’ conclusions related to measurement  

Examining the children’s answers to the interviews and the records from their work in the classroom, 
we can support that the preschoolers are able to conceptualize length measurement and its principals 
and moreover describe it, as procedure and relations at a more general level. The following examples 
present the ideas developed by the young children and the level of generalization achieved after 
involving in generalizing exchanges. At the end, the teacher gathered the children’s conclusion about 
measurement in drawings and utterances. 

The children’s utterances expressing their concluding remarks about the transfer of heights: 

- We must measure one distance before doing the other 

- The two distances must start form the same point  

The children’s utterances expressing their concluding remarks about covering with units: 

- It shouldn't be one over the other and crooked  

- We don't leave gaps, we put start to start and back to back  

- We put them in a line 

The children’s utterances expressing their concluding remarks about the measurement of distances: 

- When two distances are straight and start together and end together, then they are equal  

- When two distances are zigzag and start and end together, it doesn't mean that they are equal, 
we have to measure to see which one is longer and which one is shorter 

- When two distances are zigzag and don't start and end together, it doesn't mean that they are not 
equal, we have to measure them. 

Discussion 
In general, this study shows that the development of generalizing capabilities in early childhood is 
possible on the basis of appropriate teaching approaches that encourage reflection, activity 
justification and concluding communication. The development of these abilities depends generally 
on a modification of young children’s focus from personal to ‘impersonal’ ideas, and, thus, from 
‘local’ to more general as a way of functioning in the mathematical class. This development was 
observed and recorded in all topics: figures, patterns, measurement and numbers (Tzekaki & 
Papadopoulou, 2016). 

The development of children’s ideas and generalizing remarks reaffirmed the importance of teaching 
approaches that orient the class to generalizing experiences (Sriraman, 2004). More specifically in 
the identification of the measurement procedure and relations by the children, their utterances showed 
that they succeeded to overcame the specific content of the tasks and proceeded to the 
conceptualization of measurement principles and invariants (Bills & Rowland, 1999). The children 
passed gradually from local generalizations related to every one of their actions and tasks to more 
general related to all their activity and finally to general principles of the measurement that recorded 
in the specific for their age way. The choice and the sequence of tasks, the group work in the 
classroom and the exchange between groups aiming at arriving systematically to more general 
remarks are the main factors that led to this result. 



The findings gathered from this topic, as well as from all other topics, justify why it is possible but 
also of imperative to exercise children from early age, with appropriate activities and elaborations 
with respect to their age and their way of thinking, to generalizing skills as significant part of their 
mathematical development (Tzekaki, 2014). 
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In this work we recognise how a group of future teacher of Early Childhood Education, analyse 
narratives about rich school experiences. We presented a professional task, in which we wanted to 
see how future teachers recognize initially the potential of the mentioned experiences to promote 
mathematical processes. We recognise that future teachers give a limited value to the problem-
solving process and have difficulties in recognizing the processes of reasoning and proof. We found 
it is not because of a mathematical previous weak formation, but rather it points to the need of 
analysing school practices and narratives as good examples of action.  

Keywords: Early childhood, future teachers, mathematical reasoning, problem solving. 

Introduction 
NCTM (2000, 2013), as other new national curricula, suggested that teachers could design better rich 
school activities, if they can identify the power to develop mathematical processes in their classrooms. 
In Spain, authors like Alsina (2014), pointed out that to achieve a quality of mathematics education 
for early years, it is important to implement curricula focusing on mathematical processes in a 
systematic way. It is important for the teaching and learning of mathematics to use mathematical 
models in relevant everyday contexts. 

Preservice teacher’s mathematical knowledge plays an important role when teaching mathematics. It 
is clear that for early years, almost no one remembers about his own experience. Therefore, their 
knowledge for teaching at early years is limited, and based upon personal theories and preconceptions 
(Jaworski & Gellert, 2003). “Little improvement is possible without direct attention to the practice of 
teaching ... [h]ow well teachers know mathematics is central” (Ball, Hill & Bass, 2005:14). In this 
paper, we assume that narratives are a wonderful way to allow students to personalize mathematics 
(Kurz& Bartholomew, 2013) and develop mathematical knowledge. In such a framework, the use of 
narratives is a powerful tool for teacher professional development and an useful research 
methodology for those interested in the study of teachers, teaching and teacher development (Ponte, 
2001). 

Llinares, Fernández, & Sánchez-Matamoros (2016) pointed out that for teacher education purposes, 
it is important to promote that future teachers (FT) grow on mathematical understanding by noticing 
mathematical aspects when future teachers analyse school experiences. It is also important for FT to 
know about designing rich practices. What about Early Childhood Education?  In some countries as 
Spain, there is a global curriculum for Kindergarten, without any explicit mathematical goals for 
children’s mathematical knowledge. Therefore, FT must have a preparation to understand the 
emergence of mathematical objects and processes from good early school practices. In the case of 
Spain, it is difficult to involve FT in implementing designed tasks, as it is for continuous training. 
There is a danger when considering the practice of teachers, and therefore presumably the experience 
of learners, of focusing exclusively on pedagogic practices, without reflective processes (Shulman, 
1986). It seems to be the main reason for the need of mathematics reflective activities for prospective 
kindergarten teachers. In this presentation, we want to analyse the initial position of future teachers 



when they analyse narratives about school experiences, in order to find how they relate the richness 
of school actions and the emergence of mathematical objects and processes.  

Theoretical framework 

As Ponte (2001) wrote, we use teacher narratives as a way to represent a school experience for oneself 
or for others. A narrative involves three basic elements: i) a situation involving some conflict or 
difficulty, ii) one or more agents that act on that situation with their own intentions, and iii) a temporal 
sequence of related events in which the conflict is resolved in a certain way. It involves people, 
settings, and events that take place in a given time. The acceptance of a story is oriented by convention 
and by “narrative necessity” (Bruner, 1991). In pre-service teacher education, narratives such as these 
provide good starting points to discuss issues faced by a teacher in making curriculum decisions and 
conducting classroom instruction. Some authors, like Chapman (2008) and Ponte (2001), mainly use 
narratives to reflect on future mathematics teachers’ thinking and actions in relation to mathematics 
and mathematics teaching and learning, aiming to broaden their understanding of new curriculum 
orientations.  

In this paper, we use narratives to study teacher’s knowledge when analysing innovative teaching 
practices (Ponte, Oliveira, Cunha, and Segurado, 1998). In the current study, we focus on identifying, 
planning and enriching mathematics practices, made by others. We consider such activity as a fruitful 
starting point for inquiring into how FT should anticipate the enactment that will occur. Some future 
teachers of early childhood want to know and copy nice school experiences. Instead of this, this 
research leads to understand that richness of a school activity relates to the possibilities for emergence 
of mathematics objects and processes. Our aim is to recognise the initial reflection of future teachers 
about the emergence of mathematical objects and processes, as a noticing professional competency 
(Jacobs, Lamb & Philips, 2010). In this presentation, we focus on the analysis of problem solving 
processes, and analysis of the reasoning and proof processes. We assume that the practices in reading, 
analysing, and discussing narratives generate a number of insights that provoked to modify future 
teachers’ planning for instruction. Many studies have reported that narrative data helps to validate the 
learning results as a basis for understanding of human actions (Polkinghorne, 2007), and to 
understand the role of intentionally drawn school practices (Font, Godino & Gallardo, 2013). 

Methodological issues 
We use a qualitative, naturalistic research perspective (Creswell, 1998) focusing on capturing and 
interpreting the participants’ thinking about narratives as a case study. To achieve our aim, we 
designed a professional task. The professional task is structured in two parts. In the first part, FT are 
asked to read two articles: "The map of a treasure" (De Castro & Escorial, 2006) and "Where is 
Paula?" (Feixes, 2008).These articles describe two school experiences about geometrical itinerary 
aspects and spatial references, made with children of 5-6 years old. We select these two narratives 
because they describe rich (Woodham & Pennat, 2014) and high quality (NAEYC & NCTM, 2002) 
of school experiences for children from 3 to 6 years of age. Both school experiences use a continuous 
dialogue in the classroom. They also explain didactical orientations to planning and managing 
activities, connecting geometrical objects and processes. During the first experience, the idea is to 
promote a problem solving approach to “know about” the space of the school, as a provocation to 
find the place where a treasure is. Children spontaneously use paper and pencil itineraries, written 
codifications, and gestures to discuss in groups how to go from one point to another among other 
decisions. During the second experience, the teacher proposed to talk with Paula (a child that left the 
school to come back to her country, Uruguay). The five years-old children immediately ask where 
Paula is. A nice discussion about at what time do we call her, helps the children to discuss how the 
difference of time relates to the difference places in Earth, and different hemispheres. Our interest in 



choosing these two narratives is to look at two sides of the problem of situating points in the real 
world space: the local or short distance problem (narrative 1) and global world problem (narrative 2).  

In the second part of the professional task, four questions are posed to guide the analysis of the two 
narratives read in the first part. These questions are: 1) Talk about what raise your attention after first 
reading. 2) If you should recommend to your teacher friends these experiences, what do you explain 
for them? 3) What is the role of the teacher in both experiences? 4) Why do you think there are rich 
practices that develop the emergence of children’s mathematical thinking?  

The participants in our study are 33 FT of Early Childhood Education at the Barcelona University. 
To describe how they explain the emergence of mathematical objects and processes in the two 
narratives, we collect all the individual responses to the questions proposed in the second part of 
professional task. To analyse the data, we used a tool raised by Coronata & Alsina (2014). This tool 
includes five categories that correspond to the five mathematical processes proposed by the NCTM, 
(2000). For each of these categories, 6-7 indicators are provided for evaluation. In our study we only 
consider the indicators of problem solving and indicators of reasoning and proof processes. 

The analysis takes three moments: a) The research team answer as experts giving a set of the processes 
observed; b) the future teachers’ answers are analysed by using the methodological tool cited above; 
c) the research team explain some hypothesis about why the results appear. We assume that some text 
is related to one or more indicators, if there is a sentence evocating such principle by means of 
discursive argumentation (Gee, 2014). General sentences are not considered. For instance, the 
sentence “The teacher develop the capacity of creating arguments to explain children’s curiosities in 
reference to mathematical concepts as distance, space and time” is assumed as relating to an indicator 
of reasoning and proof. But a sentence like “It is considered the interest of children” is not assigned 
to the indicator, because it is a fuzzy simple comment without any explanation given to what is the 
text or mathematical idea in the narrative. 

Results 
Many mathematical objects are easily identified by almost all the FT, but it is not enough explained 
how these objects emerge from the examples given in the narratives. In general comments, many FT 
talk about the differences among space by using time, and the idea of having different periods in a 
year. They talk about the meridian as a reference for timing. They assume the need of codes in order 
to represent itineraries among other geometrical objects.  

Many FT also consider that problem solving is a common framework in both school experiences, but 
they explained some of the mathematical processes superficially (See Table 1). We find that future 
teachers identify issues related to problem solving more easily than other processes, and have 
difficulties in explaining aspects related to the processes of “reasoning and proof”. 

In Table 1, we associate examples of the responses made by FT to each indicator and we include an 
expert comment when FT identify problem solving process in the narrative 1, as an example of the 
use of indicators for problem solving. Some FT tell us that children’s participation in narrative 2 
stimulate imagination and creativity. Nevertheless, we only observed two out of 33 FT on where is it 
possible to see such promotion of creativity as an inquiry problem solving process.  

The main indicator found is related to the assumption that contextualisation plays a role in problem 
solving activity. Nevertheless almost a half of the students write sentences in which FT talk about 
problem solving without any explicit indicator 

In some cases, as FT14 and FT 24, they do not express any sentence about contextualisation and 
interest. We also see that 27% of the FT talking about mediators and interest are the same as those 



who talk about contextualisation. It is possible that the lack of processes recognised relate to the 
mathematics background of the FT. 

Indicators % FT 
n=33 Examples of FT’s responses Responses from experts 

Questions 
generate inquiry 
and exploration 

 
6% 

“Helps to develop math thinking... 
Formulate questions, hypothesis, to 
find answers, explanations...” 
(FT 3) (FT 6) 

“Where is Paula” is a challenging 
starting question. Teacher promotes 
exploration when asking for 
information at home about time zones 

Propose open 
problems -- -- 

The teacher use children’s open (non 
easy) proposals to analyse cultural 
influences about spatial relations 

Contextualise in 
familiar contexts 52% 

“learn from the surrounding 
environment”(FT 2) 

The teacher contextualise to travelling 
problems to see what is invariant and 
changing in different positions  

Promote 
discussion and 
participative 

debate 

3% 

“contrast and reveal with different 
representations as figures, pictures 
or the use of dialogue the different 
knowledge”(FT25) 

The teacher promotes discussion about  
the need of comparing points and 
itineraries in the space, the use of 
references  

Maintain the 
interest and 

curiosity 
13% 

“…From the beginning, through 
their (children) questions we 
observed that is of its 
interest”(FT2) “children achieve 
different learning from curiosities” 
(FT7) similar (FT9)  

The school teacher focus on a lived 
experience to base a set of continuous 
problems related to the use of images to 
solve the problems 

Use different 
type of mediators 

when solving 
30% 

“The maps used by children are 
different from those done by 
adults” (FT 9) 
“…It is a dream…to know about 
now it is early morning…”(FT 24) 

Children construct and read maps in big 
spaces with the Earth globe as a 
powerful semiotic mediator. It emerges 
the idea of meridian line as a reference. 
The experience itself has an emotional 
background.  

Reinforce the 
process using 

different support 
6% 

“…using trial and error, children 
structure math 
knowledge…”(FT14) 

The teacher promotes the use of the 
starting situation to promote the use of 
spatial relations and references 

Table 1: Responses associated to the indicators of problem solving process (narrative 1) 

We can see that the FT do not relate some verbal aspects as discussing as a part of the problem solving 
process for narrative 2 (See Table 2). They realise that contextualisation is the main aspect behind 
problem solving activity for having good answers. It is expected that the FT talk about the role of 
mediators in this initial moment of analysis, but the justification they give is very limited focusing on 
having a “meaningful task” without any relation to a specific mathematical knowledge. They talk 
about “learn from the surrounding environment” without explaining that the need of a reference line 
(Greenwich Meridian) appears when we have numbers to indicate points in the space (initial idea of 
geographical coordinates). This could indicate a rather weak mathematical background of the FT, and 
the need for having a professional reflection about what mathematical knowledge emerge from a 
mathematically interesting activity like this. Precisely, this is the role of training process and 
professional activity never done before. The results show that narratives help to focus the reader’s 
attention for recognising more mathematical connections (distance/speed; codification/itineraries; 
real world/representation) than expected.  

 



Indicators  % FT 
n=33 Examples of FT’s responses  Responses  from experts 

Questions 
generate 

inquiry and 
exploration 

6% “build hypothesis, elaborate 
representations” (FT3) 

The teacher promotes different strategies 
as situating, identifying, recognising, 
building hypothesis 

Propose open 
problems -- -- There are open strategies, but no open 

problems 

Contextualise 
in familiar 
contexts 

36% 

“To know what is a map, which is its 
use” (FT4)“…The problem  promote 
meaningful knowledge”(FT3) 
 

The context of “find treasure” help to 
identify the role of registers when 
solving itinerary problems. 

Promote 
discussion and 
participative 

debate 

 
9% 

“…and the colleagues were able to 
decode the information” (FT9) 

The dialogue gives challenges for 
coding/decoding processes 

Maintain the 
interest and 

curiosity 
3% 

“Children take and search at home 
more different maps … helping the 
comprehension and motivation” 
(FT4) 

The use of a school as a milieu, and the 
aim of arriving to a treasure, ensure 
interest and give opportunities for 
maintaining interest as a long job 

Use different 
type of 

mediators when 
solving 

15% 

“The maps done by children were 
functional, …they served for the 
purpose of representing a space 
indicating the place of a treasure” 
(FT9) 

The maps, are used to identify itineraries, 
distances, directionality 

Table 2: Responses associated to the indicators of problem solving process (narrative 2) 

It is difficult to find explicit children’s arguments and reasoning in the narrative of “Where is Paula?”  
In fact, the teachers tell us many sentences (as “we always ask why”) about the use of argumentation 
and reasoning, without explaining all the details. Nevertheless, in the children’s pictures we can 
observe that they talk and argue when they observe the Earth globe, or when they talk about “Uruguay 
is far away”. We only find general statements about reasoning and proof as we can see in Table 3 and 
Table 4.  

  



 

Indicators  % FT 
n=33 Examples of FT’s responses  Responses  from experts 

Helping to 
develop 
student’s 
thinking 

12 % 

“Children structure their 
mathematical knowledge” (FT 13). 

The Teacher promotes reflections and 
arguments about the invariance of 
day/month/year but different time and 
season, by seeing to the Earth globe. 

Inviting to 
explain 

conjectures 
6 % 

“The need to have good 
questioning”(FT4) “revealing initial 
ideas and preconceptions” (FT 16) 

The practice promotes to use arguments 
relating conjecturing about the need for 
having time references 

Promoting to 
control 

conjectures 
3% 

“to establish hypothesis to 
understand zones having the same 
time…to understand why it happens 
in the world… and which are the 
lines that make the difference, when 
situating places in the map” (FT 16) 

The teacher promotes some deductive 
reasoning. To argue, Bernat uses if…then 
as a deductive reasoning.  Describes the 
relation between numbers (+1) and going 
to the right.  Also (-1) means going to the 
left. 

Questioning 
to evaluate 
arguments 

3% 

“...develops the ability to create 
arguments explaining the concerns 
of children which refer, in this case, 
to space and time (FT 1) “being 
aware of time and its difference” (FT 
17). 

The teacher promotes adjusting variables 
and control validity  when talking about  
“that fit with those from other sources as 
it is the case of having information about 
time zones” 

Promote 
reasoning by 

giving 
feedback 

-- 

“...the children in both experiences 
offer the possibility to establish 
arguments and generating 
hypothesis” (FT 9). 

Teacher promotes inference levels of 
spatial reasoning: What it is possible to 
see; what I see without specific attention 
to particular students 

Promoting 
divergent 

thinking when 
arguing 

3% 

“Permits the children to observe, to 
explore, and to determine what is 
more important or less…”  (FT 16) 

Promoting children arguments about why 
do we say “Uruguay is far away” The 
need of relating two points in the space. 
The need of having a global view to 
understand it, by arguing that the flight is 
long (according time) 

Promoting 
discoveries, 
analysis and 
arguments 

6% 

“About the project…it pays my 
attention the amount of information 
that children can draw (extract ideas 
and conclusions) from the 
maps….arriving to conclusions that 
children assume as the best and 
right” (FT2) 

The  teacher promotes the need of  
connecting children’s surprises to math 
or science knowledge (children see Paula 
as summer dressed) 

Table 3: Responses associated to the indicators of reasoning and proof process (narrative 1) 

Clements & Sarama (2009), tell us about the need for promoting reasoning since early years, however, 
FT in the research do not identify the amount of possible quotations in the narratives relating 
reasoning and proof. We observe that, in general, many of the future teachers do not offer specific 
mathematical examples from the narratives to illustrate the reasoning and proof processes.  

It is surprising that inquiry attitude not seems to be considered as part of a problem solving process, 
perhaps because FT have the belief that the most important for a problem solving is to have a right 
solution. In fact, many of the future teachers’ comments do not pay attention to the role of the teacher 
giving opportunities for continuous problem posing moments, promoting hypothesis and conjectures. 
The FT explain that the teacher in both narratives promote the use of arguments, but none of the FT 
mentions the importance of feedback.  



Indicators % 
FT 

n= 33 

Examples of FT’s responses Responses given  from experts 

Helping to 
develop 
student’s 
thinking 

 
15 % 

“In this practice… the teacher 
ask questions to influence 
children’s reasoning, to 
improve their thinking” (FT 
19) 

The teacher tell us explicitly the use of the 
students’ natural environment  to promote 
spatial thinking 

Inviting to 
explain 

conjectures 

 
3 % 

“The teacher tries to improve 
autonomy to reflect, to 
produce hypothesis about the 
ways of coding”(FT28)  

The teacher promotes the emergence of 
Students’ conjectures about maps and big 
distances o represent travelling by using 
descriptions. 

Promoting to 
control 

conjectures 

 
6 % 

“The teacher permits that 
children explore information 
given by the maps, and select 
which information is relevant 
and which one is not”(FT 19) 

The teacher tells about reflections and 
argumentation, but it is not explicit how the 
teacher controls the conjectures, because the 
focus is the codification process. 

Questioning to 
evaluate 

arguments 
6 % 

“Sharing and contrasting (FT 
17)“Discussing about his or 
her discoveries”(FT 23) 

They discuss to have a common result, but 
different representations and evaluate the 
representation used 

Promote 
reasoning by 

giving 
feedback 

-- -- 
The teacher find that David, use a comparison 
(small globe vs big Earth) to reason that from 
Madrid to Lanzarote you must use a flight. 

Promoting 
divergent 

thinking when 
arguing 

-- -- 
The teacher promote that Children adjust their 
arguments about which objects must be in the 
map, where to place and how to represent them. 

Promoting, 
analysis and 
arguments 

 
6 % 

“..revealing initial ideas and 
preconceptions” (FT 16) 

The teacher promote the emergence of 
Students’ ideas (Luke : Itinerary as a set of 
steps; David what we can learn from Earth 
globe 

Table 4: Responses associated to indicators of reasoning and proof process (narrative 2) 

After this professional task, we devote some time for collective reflection not detailed in this paper. 
Some new processes appear as: “The teacher drives arguments, and promotes different possible 
contents and meanings” (FT 19) or “by dialoguing, the teacher gives immediate answers to students, 
reinforcing children’s knowledge about coordinates” (FT 16), or “Children almost prove their 
conjectures, in a way that surprises us” (FT 9). 

Conclusion 
Future teachers are able to identify many mathematical objects and some processes implicit in the 
narratives analyzed. We see less process than it was expected. The main one is problem solving. The 
analysis promoted by the two professional tasks has allowed us not only to characterize some aspects 
of professional noticing of the future teachers, but also to establish a basis for recognizing the role of 
mathematical discourse (Adler & Ronda, 2015). In fact, after the implementation of the professional 
task, we find a more structured discourse of future teachers, more connections, didactic arguments, 
recognition of a greater number of processes and more justifications. With this research, we enlarge 
the conjecture done by Llinares et al. (2016) that noticing also promote deeper subject-matter 
understanding of pre-school’s future teachers. Therefore, we consider that the implementation of this 
type of tasks is relevant in the training of future teachers of early childhood education. 



Finally, it stands out that discussing and reflecting on school narratives such as those presented here 
has allowed future teachers to contrast school practices, different from those they have traditionally 
observed giving mathematics knowledge improvement. 
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Introduction 
Following recommendations by the UNESCO, an increasing number of primary and secondary 
schools in Germany take on children with special needs, who were traditionally taught in special 
education schools, and include them in their classrooms. One organizational approach is to place the 
children with special needs in one class and provide a teaching team consisting of a primary teacher 
and a special education teacher for this class during the majority of the lessons. The study reported in 
this poster seeks to investigate the mathematics learning of four parallel classes during their four years 
of primary school in Germany. While three of these classes are taught in the traditional way with one 
teacher responsible for (mathematics) instruction, the fourth class is taught by a teaching team.  

Theoretical background and research interest 
Studies on the learning of children with special needs in inclusive compared to exclusive settings (i.e. 
in homogeneous groups predominantly in special education schools) in Germany, Austria and 
Switzerland suggest that children with special needs with respect to their school learning frequently 
underachieve when taught in special education schools (Wocken, 2005). Children with special needs 
who attend regular schools with inclusive classrooms, in contrast, demonstrate significantly higher 
achievements (Dessemontet et al., 2011). Already in 1998, Feyerer, who had reviewed findings from 
studies on inclusive learning, concluded that children without special needs taught in inclusive classes 
in regular schools showed at least the same, and sometimes better achievements than their peers in 
traditional settings. Klemm and Preuss-Lausitz (2012) in their meta analysis of more recent studies 
in inclusive classroom settings found that children with special needs in inclusive classes demonstrate 
higher cognitive gains than their peers in special education schools, while both, children with and 
without special needs, who are taught in inclusive settings demonstrate substantial gains with respect 
to their social skills. However, none of the studies conducted in this context explicitly looked at 
achievement in mathematics.  

Methodology  
The longitudinal study (2015–2019) reported in this poster compares the mathematics learning and 
achievement as well as the social and emotional school experience of four parallel mathematics 
classes (n = 100) of one primary school over their four years of primary school education. Three of 
the classes are taught in the traditional way with one primary teacher being responsible for 
mathematics instruction, while one of the four classes is taught by a teaching team consisting of 
primary teacher and a special education teacher. Included in this class are four children with special 
needs. Children’s mathematics learning is measured using the task-based Early Numeracy Interview 
(ENI) and associated Growth Point Framework (Clarke et al., 2002) that was first developed in 



Australia and then translated and adapted to the German curriculum (Peter-Koop et al., 2007). Over 
the four years of primary school the ENI, which involves individual interviews, is conducted five 
times, i.e. at the beginning of school and at the end of each school year. In addition, a standardized 
test on primary children’s social and emotional school experiences, FEESS (Rauer & Schuck, 2004), 
is conducted at the end of each year level with the whole class. Lesson observations during the second 
and fourth year are also planned in order to look at the characteristics of collaboration in the inclusive 
classroom between the primary teacher and the special educator (in mathematics lessons) as well as 
at the differentiation of mathematical content. 

First results 
The analysis of the ENI data shows the highest gain for the inclusive class taught by a teaching team. 
This class showed the weakest mathematics knowledge and understanding in terms of the Growth 
Points and it will be interesting to see how the students continue to develop in comparison to the other 
three classes in that year level. At the beginning of their second primary school year, the inclusive 
class also shows significantly lower values in parts of their social and emotional school experiences 
(measured by FEESS). The significant differences relate to the sub-categories “peer acceptance”, 
“climate in the classroom” and the “children’s self-concept”. 

We are proposing this work to TWG13 as to date little is known about young children’s early school 
experiences during their first year of school, that not only looks at their mathematics learning in an 
individualized and detailed way, but also examines the social and emotional involvement first graders 
experience during their first school year. Another interesting aspect will be to see how these 
experiences may change over the years and how they relate to their mathematics learning.  
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Maps have been used in Norwegian kindergartens in several ways, from topological to more 
topographical maps. The aim of this study is to develop knowledge about how exploring the terrain 
around their kindergarten can help children develop spatial orientation. The children in the 
kindergarten made different maps with pictures from a digital camera. We also used a big picture 
(size A1) taken with a drone from above the kindergarten. The assumption was that making the map 
and examining the picture would help the children translate the world around them into a scaled-
down, two-dimensional representation. Clements and Sarama’s (2014) framework for development 
of spatial orientation, navigation, and maps will be used to analyse the activity, which is based on 
the students’ learning trajectories for spatial thinking. The children have to be familiar with the area 
and special landmarks, then they need to experience the one-to-one connections between the real 
world and objects or icons on the map. Here, it can be helpful to use drawings, such as a table with 
legs, so that children can recognise them from their own perspective. Clements and Sarama argue 
that it is important to work with mathematical questions such as ‘Which way?’, ‘How far?’, or 
‘What is it?’ They also argue that students need experience to become competent users of maps 
(Clements and Sarama, 2014). Bjerva, Græsli, and Sigurdjónsson’s (2011) model for map reading 
skill, kartstigen, will be used, but an aerial picture instead of a two-dimensional map will replace 
Level C. Young children’s ability to use aerial pictures has been investigated in past literature 
(Plester, Richards, Blades, and Spencer, 2002).  

This leads in to the following research questions: What kind of orientation experience do children 
get from activities with maps in kindergarten? How do children understand the representation of 
the area around the kindergarten from maps they have made themselves and from aerial pictures? 

Five children, age 5, were used in the present study. The study was designed and carried out by 
researchers and kindergarten teachers, and consists of three separate parts. First, the kindergarten 
teachers took the children on a walk from the kindergarten to a small lake nearby, with which the 
children were familiar. During the walk, the children were invited to find special landmarks, and the 
teachers took pictures of them. The following week, the children, teachers, and researchers made 
maps from the pictures. These maps were topological and showed the path from the kindergarten to 
the lake, with respect to the order of the pictures. After finishing the maps, the children tried to find 
their way to the lake with the help of the maps. During this walk, the kindergarten teachers and 
researchers encouraged the children to stop at each landmark on the maps. The aim was to 
investigate whether the children were able to make a connection between the real world and the 
maps. Finally, the children were shown a big aerial picture of the same area to investigate how they 
managed to navigate using a picture with a bird’s-eye (vertical projection) perspective. 

Data were recorded with video cameras and transcribed. The study design is an explorative case 
study design (Cohen, Morrison, & Manion, 2007). 



Early findings 
The children did not have much difficulty making a connection between the real world and the 
landmarks on the maps they made. However, when they were presented with an aerial photo of the 
same area, they were not immediately able to find the kindergarten. Monica is one of the 
researchers: 

Monica: What’s on the picture? 

Children:  Kindergarten 

Monica: Where is it? (Children pointing in 
opposite directions) 

Monica: Why do you think that? 

Ann: Because it is grey, and it got that kind 
of thing. 

Erik: Yes, it got that colour. Grey 

Ann: It is the kindergarten. 

Monica: What kind of things are outside the 
kindergarten? On the playground? 

Ann: The playground. What? There is no 
playground. Then it’s not there. 

The kindergarten, from the children’s point of view, has the shape of a big, grey rectangle. This was 
the first thing they looked for. When Monica asked whether they could see the playground, they 
realised it could not be the kindergarten. After examining the picture for a while, they were given 
their self-made maps of the area. They were now able to make a connection between the landmarks 
on the map and the picture, even though they were taken from a different perspective. 

Preliminary findings indicate that the maps were helpful for the children’s experiences, in 
connecting landmarks on the map with the real world, but the children experienced more difficulties 
finding the kindergarten on an aerial picture. 
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Research topic and theoretical approach 
The aim of this study is to develop both activities for the learning of numerosity in three year old 
children and theory describing the process of learning. The theoretical framework is Luis Radford’s 
theory of knowledge objectification. His theory gives a central role to semiotic systems used within 
culturally and historically bound practices and social interaction in mathematical activity and 
learning, but also assumes an intimate and dialectical relationship between mathematical thinking 
and the material world (LaCroix, 2012). According to Radford (2008, p. 222), “… mathematical 
objects are fixed patterns of reflexive human activity incrusted in the ever-changing world of social 
practice mediated by artifacts.”. Knowledge objectification is a matter of actively and imaginatively 
endowing with meaning the conceptual objects that the child finds in his or her culture (Radford, 
2008, p. 223). Counting is a central mathematical activity that children normally develop. It is a 
procedure which children do not initially connect with properties of sets. Counting is interwoven 
with other quantity related cultural activities, such as for instance the How-many task, set 
construction and measurement. Set construction means building a set when its numerosity, for 
instance, is specified by a number word, as in the Give-a-Number task (Wynn, 1992). Davydov 
(1975) has advocated that perceptual comparison of quantity is developmentally prior to numerosity. 
When lengths are divided into equal units, the combination of perceptional length comparison and 
assignment of number words can be seen as a rudimentary example of measurement. The How- 
many task requires that the child assigns a number word to a presented set. The special role of the 
last counting word in a count is a pattern in the interface between counting and the How-many task. 
Children often emphasize the last counting word or insert “and” before it. Such linguistic devices 
are examples of semiotic means of objectification. 

These objects, tools, linguistic devices, and signs that individuals intentionally use in social 
meaning-making processes to achieve a stable form of awareness, to make apparent their 
intentions, and to carry out their actions to attain the goal of their activities, I call semiotic means 
of objectification. (Radford, 2003, p. 41) 

Typically, children for some time think that the counting procedure is the answer to the How-many 
question. To initiate processes of deeper objectification of numerosity, it is proposed that 
engagement in other uses of number words than counting is vital. 

An activity with towers and dice 
In the poster presented at the congress, one designed activity with the intention of integrating 
counting and other quantity related cultural activities was outlined. A hypothesis behind the 
designed activity is that perceptual length comparison may be a semiotic means of objectification 
for connections between counting, the How-many task and set construction. The core of the activity 



is to roll a dice and build a tower with the number of bricks the dice shows. The children sit on the 
floor and walk or crawl to fetch the dice when it is thrown. The plastic bricks are easy to pick up 
and fit exactly into the holes of the dice. An alternative way of building a tower is to put one brick 
into each hole in the top face of the dice and then put the bricks onto the stick. Putting the bricks 
into the holes can also be used to evaluate whether a tower is correctly built. A variation of the 
activity is that a puppet, the Easter bunny, makes a mistake when building the tower indicated by the 
dice. The puppet is hidden behind a screen so that the children do not see what it does. The children 
then are given the opportunity to respond and possibly correct the mistake. 

    

Figure 1: The towers and dice activity 
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Background 
We will present results from children aged five engaging in an activity and learning about magnets 
and inquiry in a kindergarten session. We want to understand how they learn and grow and in what 
ways the kindergarten teacher orchestrates the activities in order to engage the children in 
magnetism through inquiry. The study is part of a broader project in the kindergarten, aiming mainly 
to understand how and what skills and learnings are developed through understanding and inquiry. 
How do children develop inquiry skills (making observations, asking questions, making predictions, 
designing investigations, analyzing data, and supporting claims with evidence)? How do they 
conceptualize mathematics (classification, representing mathematical ideas in drawings, types of 
reasoning, number sense, comparison of sizes, problem posing)? The results show the importance of 
the questions (Carlsen et.al, 2010) and an appropriated orchestration for creating an inquiry 
interdisciplinary learning environment. 
The Portuguese curriculum for kindergarten education (age 1-6 years old) requires an integrated and 
global approach to subject areas. It seems that few kindergarten teachers integrate physics into their 
teaching, and according to Tu (2006) only half of kindergartens are equipped with an area for 
experimental activities and few of those kindergarten teachers promote science and mathematics 
tasks. If such an approach were performed early, it would allow scientific reasoning and it would 
foster a better understanding of science with effect upon the children´s achievement (Eshach & 
Fried, 2005). In this study, we adopt: an interdisciplinary approach between science and math; the 
perspective on early math of Clements and Sarama (2009); and a sociocultural perspective on 
learning and development. We view learning as a social and a situated process of appropriation 
where individuals make concepts, tools, and actions their own through collaboration and 
communication with others (Rogoff, 1998). Also, as Hedges and Cullen (2012), we consider that in 
the early childhood context, participation is more active than mere presence, which in itself may not 
engender learning without attention relationships, content, change, context and cultures. This 
sociocultural perspective is useful for our emphasis on the orchestration of participation in social 
magnet activities.  

The theoretical stance of our study is in accordance with Inquiry-Based Science Education (IBSE), 
(Worth, Duque and Saltiel, 2009). It is an approach to teaching and learning science and math that 
comes from: an understanding of student learning; the nature of science inquiry which may be 
represented as a set of four stages (explore, investigate, draw conclusions and communicate); a 
focus on content and heavy dependence on the local context and the interest of students and 
teachers. The inquiry–based approach has important principles such as: direct experience is key to 
conceptual understanding; students should be taught skills (making observations, asking questions, 



making predictions, designing investigations, analyzing data, and supporting claims with evidence); 
reasoning, talking with others and writing both for oneself and for others. 

Method and results 

The study was carried out in one private kindergarten in Lisbon and adopted a qualitative research 
methodology under the interpretative paradigm, emphasizing meanings and processes. The 
researcher, first author, took the dual role teacher-researcher, conducting the study with her own 25 
children (aged five years) in her own environment. In this study, we collected empirical data 
through the use of video camera and audio as well as field notes from one session out of seven 
sessions implementing the IBSE approach. Interaction and communication were captured as 
children engaged in magnet activities and the teacher orchestrated the group of children who were 
participating. Mathematical features used by children were elicited through the class interactions. 
We decided to analyse deeply the participation of the children in that interdisciplinary environment 
session above mentioned in looking for supporting the remaining research analysis.  

The results imply that children’s learning is influenced by their active participation and by the kinds 
of questions and learning opportunities that emerge, and how kindergarten teacher respond to 
children’s ideas and orchestrates the activities. The collected data from that session indicate such an 
interdisciplinary environment involved playful learning and inquiry. The children developed content 
and competencies in science such as vocabulary (to attract and magnet) and experimentation. The 
children also developed: imagery, quantitative and critical reasoning; number sense (object 
counting, counting mental images, comparing numbers and early addition); as well as representing 
mathematical ideas in drawings. The children had opportunities to pose and to solve problems. 
Children connected ideas in play with the whole class in the game “fishing” and they learnt through 
collaboration and communication with one another.  
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Short description of the research topic and theoretical framework 
The focus of this poster is on the links between representations and solutions when 6-year-olds work 
on combinatorial tasks. The task can be explained as follows: In how many ways can three bears sit 
on a sofa?   

Studies of young children’s representations often focus on informal and formal representations. 
Abstraction is often perceived as a goal and teachers often value when young children use abstract 
representations. Heddens (1986) introduced semi-concrete and semi-abstract as connections 
between concrete (objects) and abstract (signs) representations. He referred to representations of real 
situations, for example, pictures of real items, as semi-concrete, whereas he referred to symbolic 
representations of concrete items, where the symbols or pictures do not look like the objects they 
represent, as semi-abstract. Connected to the task presented above, concrete implies real bears and a 
sofa, semi-concrete implies images of (resembling) bears, semi-abstract implies a symbolic, not 
resembling, representation of the bears and abstract implies the use of formal signs. As for the 
concrete level, the ‘real’ bears can be replaced by three play-bears, or by engaging in a role-play, 
enacting the situation. In both semi-concrete and semi-abstract representations, the colours of the 
bears and their symbols are often kept identical.  

When conducting the combinatorial task in 13 pre-school classes in Sweden (125 children, age 6), 
children showed different levels of abstraction in their solutions of the problem. In a previous paper 
we problematized the apparent relation between the level of abstraction and the number of duplicate 
solutions. Surprisingly we found that the children who used semi-concrete representations in their 
documentations were more systematic in the process of finding solutions with less duplication than 
the children who used semi-abstract representations. We argued that a more abstract level seemed to 
reduce the problem from bears on a sofa to putting three coloured dots on a paper. It seemed that 
children moved too fast to the next level of abstraction. Internalisation of the problem had not 
occurred yet which led to a reduction of the problem as described above. Simultaneously, we also 
concluded that documentation within the semi-concrete level was very time-consuming for children, 
as it takes a lot of time for the children to draw bears (Palmér & van Bommel, 2017).  

Methodology 
How could we slow down these children without slowing down the process of documentation? An 
application was especially designed to let children work on the semi-concrete level, and 
simultaneously, the time-consuming issue of drawing the bears was taken into account. The aim of 
the application was to provide an opportunity to develop an understanding of combinatorics and its 



systematisation by letting children work within the semi-concrete level. The design-principles for 
the application concerned a possibility to adjust the level of the problem, resulting in a choice of the 
number of bears and the size of sofa. It also resulted in the possibility to save solutions as well as to 
offer an insight to all outcomes. By doing so, we wanted to explore the semi-concrete level more 
explicitly and focus on the learning opportunities this level of abstraction can offer the children.  

During the autumn of 2016, 6-year-olds (about 60) from different preschool-classes have tested the 
application. Our reflections concern the learning opportunities created by using the digital form of 
documentation (in addition to the paper and pencil forms). After using the application, we let the 
children work on similar combinatorial tasks but only by using paper and pencil.  

Preliminary results 
Our preliminary results show that the children who have worked with the application do not 
document as many duplicates when using semi-abstract representations as the children in our 
previous study (Palmér & van Bommel, in press). Additionally, we see an increase in the systematic 
way they organise and search for solutions. These first results of the study also indicate that the 
children indeed develop significant skills when working within the semi-concrete level, for instance 
they seem to have obtained a good understanding of what the concept different combinations 
entails. A special note has to be made towards the possibility to adjust the level of the task in the 
application. For example, some children explored the situations of two bears on a three-seat sofa 
and four-seat sofas with different number of bears. Such explorations led to discussions of 
similarities between two and three bears on a three-seat sofa and mathematical aspects of the tasks 
were discussed at another level compared to paper and pencil lessons.  
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Introduction 
TWG14 (University Mathematics Education, hereafter UME) was launched in CERME7 (Nardi, 
González-Martín, Gueudet, Iannone, & Winsløw, 2011) in recognition of the growing area of 
research in university mathematics education research. This area, although sharing in many cases 
approaches, methods and research topics with other areas in mathematics education research, has its 
own distinctiveness: the institutional characteristics at university (or postsecondary education in 
general) are usually quite different from those in compulsory education and do not always follow 
national curricular guidelines; the training of teachers (when existing) is also different from the 
training followed by primary and secondary teachers; there are many cases of classes with a large 
number of students, and teaching approaches are usually different – the amount of personal work 
expected from the students is also much higher; students’ personal experience and aims are different 
than in compulsory education; very often mathematical notions and reasoning are dealt with at a 
higher level of complexity and abstraction; etc.. The fast growth of this research area, both outside 
and inside CERME, is evident in the breadth of research publications in this field and was 
recognized by the ERME community, in inviting the three-year leader of this TWG to present a 
summary of UME research as a CERME10 plenary lecture (Nardi, 2017). 

Within CERME, the number of papers submitted to TWG14 has been increasing steadily since its 
inception. This year, we received a record number of 64 papers, with 47 getting accepted for 
presentation (of which, 41 are published in the proceedings, together with 17 short contributions). 
This indicates a substantial increase in comparison to the 31 full and 14 short contributions in 
TWG14 in CERME9 proceedings (Nardi, Biza, González-Martín, Gueudet, Iannone, Viirman, & 
Winsløw, 2015). Additionally, the substantial number of papers led to the split of TWG14 into two 
isomorphic groups (TWG14A: 23 accepted papers and TWG14B: accepted 24 papers) which ran in 
parallel and common sessions during the conference. This introductory paper summarises the works 
presented in both groups, as well as our common discussions. 



Outside of CERME, the number of handbook chapters focusing on UME or dedicating some 
sections to it (from the pioneering Artigue, Batanero, & Kent, 2007, to the most recent Coupland, 
Dunn, Galligan, Oates, & Trenholm, 2016; Larsen, Marrongelle, Bressoud, & Graham, in press; 
Rasmussen & Wawro, in press) acknowledges the recognition of this research area for its 
specificities, as does the launching of the International Journal of Research in Undergraduate 
Mathematics Education. Moreover, the activities of TWG14 have also led to two major 
contributions: the creation of the International Network for Didactic Research in University 
Mathematics (INDRUM) with a bi-year ERME topic conference (see INDRUM2016 and 
INDRUM2018); and, the publication of a Research in Mathematics Education special issue 
summarising some of the works presented during CERME7 and CERME8, and discussing the use 
of institutional, sociocultural and discursive approaches to research in university mathematics 
education (Nardi, Biza, González-Martín, Gueudet, & Winsløw, 2014). 

In CERME10 we intended to cement and expand further this work, as well as welcoming 
contributions from across the board of research approaches and topics: the teaching and learning of 
advanced university mathematics topics (including proof); transition issues “at the entrance” to 
university mathematics, or beyond; the training of university mathematics teachers; challenges for, 
and novel approaches to, teaching mathematics at university level (including the teaching of 
students in non-mathematics degrees); the role of ICT tools and other resources (e.g. textbooks, 
books and other materials) in the teaching and learning of university mathematics; assessing the 
learning and teaching of mathematics at university level; collaborative research between university 
mathematics teachers and researchers in mathematics education; and, theoretical and 
methodological approaches to research into the teaching and learning of university mathematics. 

In the large number of papers received, we identified some continuities, but also some ruptures, 
with previous iterations of TWG14. For instance, there is still a large number of papers following 
sociocultural, discursive, and institutional approaches, although a considerable number of papers 
using cognitive approaches was also present. Moreover, among the papers focusing on a specific 
mathematical notion, calculus and analysis are still predominant, although we also received papers 
discussing other topics (such as group theory, linear algebra, or logic). There is also a small but 
growing number of papers addressing the teaching and learning of more advanced topics, such as 
algebraic topology, ring theory, and quantum mechanics. The number of papers addressing the use 
of mathematics as a service course (i.e., mathematical course offered to non mathematics 
specialists) is still growing, and papers focusing on engineering were again predominant, although 
we also received papers addressing the use of mathematics by biologists, economists, and 
physicists. The number of papers addressing teachers’ practice, training, and knowledge has also 
grown considerably, showing the increasing interest that this area of research is gaining. 
Conversely, papers proposing experimental interventions (in particular, using technology) are still 
rare in the group. Finally, we note that a larger number of quantitative studies were presented at 
CERME10 in comparison to previous CERMEs. Among the accepted papers, we could identify six 
main themes (although we are aware that some papers fit in more than one theme): students’ 
learning of specific topics; students’ experience and affective issues; interventions; didactical 
transposition and use of resources; mathematics for non-mathematicians; and, teachers’ practices 
and knowledge. In what follows, we follow the structure of these themes to summarise the main 
results presented during the conference. Due to the large number of papers and to space limitation, 
we have not included the content of the short contributions in the summary. 

Themes and paper contributions 
Students’ learning of specific topics 
Nine papers can be seen as contributing to this theme. Aaten, Deprez, Roorda and Goedhart show 
the difficulties with applying Lithner’s framework in order to analyze ‘hybrid’ types of students’ 



reasoning when solving integration tasks in undergraduate calculus; the authors argue that this 
framework may need the addition of reasoning types that make use of some kinds of recall. Biza 
employs Sfard’s commognitive framework to investigate first-year students’ meaning-making of the 
tangent line, finding that they engage with analytical, geometrical and algebraic discourses in their 
substantiations about tangents, sometimes engaging with more than one discourse in the same 
response, and sometimes separating them across different responses. Chellougui uses Copi’s system 
of natural deduction as a frame to investigate students’ difficulties in producing a valid proof in 
mathematical contexts that involve multiply-quantified statements (e.g. the definition of an order 
relation in elementary set theory). Hanke and Schäfer use eight categories of mental images of 
continuity to show that students’ mental images of real-valued continuous functions can be 
expressed by different forms of communication, which, in turn, depend on whether mental images 
are used or are explicitly verbalized. Juter investigates how students understand continuity and 
differentiability (and their links) during and after a calculus course, with a focus on students’ 
choices of representations, both espoused and enacted; her study identifies that only students who 
preferred formal theoretical representations were able to produce formal proofs, as well as a strong 
coherence between students’ espoused and enacted preferences of representations. Mai, Feudel and 
Biehler study first-year university students’ personal concept definition of a vector; they identify 
several misconceptions and note that a vast majority of students state geometrical concept 
definitions that are not fully adequate and may cause conflicts in their learning of linear algebra. 
Ovodenko and Tsamir describe students’ grasp of the notion of inflection point, and offer a detailed 
classification of reasons students offer to identify a point as an inflection point, and a point as a 
non-inflection point. In the field of abstract algebra, Ioannou studies discursive shifts in year-2 
mathematics students’ learning of group theory, drawing attention to some commognitive conflicts 
between the new discourse and other mathematical discourses, including advanced mathematics 
(e.g. set theory) and high school mathematics. Thoma and Nardi, also taking a commognitive 
approach, study first-year students’ learning of the notion of variable, drawing attention to 
commognitive conflicts between the notion of variable, and even the notion of number, between 
school and university mathematics. Both these papers show that university instructors are aware of 
common student errors, yet they may not be aware of the conflicts that underlie these errors. 

Students’ experience and affective issues 
Eight papers can be seen as contributing to this theme. Using data from questionnaires and 
exploratory factor analysis (EFA), Anastasakis produces a typology of seven different types of 
resources that engineering undergraduates use; he refers to the role of tools within Activity Theory 
and uses also Wartofsky’s categorization of artefacts to propose an interpretation of these resources 
as seven different modes of action in students when studying mathematics, concluding that the way 
we usually classify resources does not necessarily reflect the way these resources are used by 
students. In a study of first-year engineering students’ note-taking, Andrà uses a narrative approach 
where students’ notes are seen as re-tellings of a story told by the teacher; she focuses on how the 
students condense the mathematical content in their notes, and what conditions might prompt 
students to act as ‘scribblers’ or ‘thinkers’. Bampili, Zachariades and Sakonidis conduct an in-depth 
analysis of one student’s process of transition from secondary to tertiary mathematics studies; they 
consider this transition from a rite of passage perspective, finding connections between the social, 
academic and mathematical dimensions of the transition, for instance, an interaction between 
emotions and the student’s reconstruction of her mathematical thinking. Griese and Kallweit report 
on a quantitative analysis of the relationship between patterns of learning behaviour and 
examination outcome in first-year engineering courses. Kaspersen, Pepin and Sikko describe a 
quantitative analytical tool for evaluating students’ mathematical identities and investigate the 
relationships between mathematical identities and grades in university mathematical courses. 
Kürten reports on a preliminary course for engineering students, and shows how this course can be 



designed to influence students’ self-efficacy. Liebendörfer, Hochmuth, Biehler, Schaper, Kuklinski, 
Khellaf, Colberg, Schürmann and Rothe propose a taxonomy of the goals of 44 mathematical 
learning support services offered by universities in Germany; the taxonomy suggests a range of 
educational goals (e.g. learning the language of mathematics or strategies for studying) and system 
related goals (e.g. reduce dropout rates or increase passing rates). Marmur and Koichu investigate 
the relationships between key affective events and the mathematical discourse in two university 
mathematics lessons where two similar problems were considered. 

Interventions 
Five papers can be seen as contributing to this theme. Fredriksen, Hadjerrouit, Monaghan and 
Rensaa study the introduction of a flipped classroom approach in an engineering course at a 
Norwegian university, focusing on the emerging tensions when students are introduced to a novel 
approach with videos and quizzes; using the Cultural Historical Activity Theory (CHAT) approach, 
they identify some tensions attributed to the changes of rules and expectations, as well as the lack of 
shared understanding in the community of students about the mathematical topic, their preparation 
for and participation in the sessions. Hogstad and Isabwe describe the use of a digital tool that 
combines mathematics and kinematics aiming to help students to better grasp integrals; using the 
theory of instrumental genesis, they investigate the activity of two groups of students with the tool, 
and identify the pragmatic and epistemic values of students’ techniques for solving some given 
tasks. Kondratieva and Winsløw develop activities dedicated to helping students relate familiar 
practical tasks from calculus with theoretical ideas of more advanced courses in analysis; their 
approach is based on a theoretical model of the calculus-analysis transition, using the notion of 
praxeology from the anthropological theory of the didactic (ATD), and the associated strategies 
from Klein, to deal with students’ challenges in this transition. Lecorre uses the scientific debate 
methodology developed by Legrand to design and implement, at the transition between high-school 
and university, specific tasks on double-quantified statements (the Q2-game) that may raise the need 
for conventions of interpretations before they are introduced through mathematical formalism. 
Schmitz and Schäfer investigate the potential of designing a course in linear algebra and in analysis 
using the Abstraction in Context framework to increase students’ motivation and ability to engage 
in concept construction; their results indicate that the new courses seem to help students in the 
transition from school to university mathematics. 

Didactical transposition and use of resources 
Two papers can be seen as contributing to this theme. Ghedamsi investigates the mathematical 
organization of complex numbers in the official textbook in Tunisia at upper secondary level; 
mainly building on Sfard’s three stages of cognitive development and on Duval’s theory of semiotic 
representations, she identifies three didactical variables that can be used to efficiently influence 
students’ activities and learning process of complex numbers when they enter tertiary levels. 
Jovignot, Hausberger and Durand-Guerrier analyze the implicit complexity of a proof presented in a 
textbook, which involves the concept of ideal in ring theory; using ATD’s construct of praxeology, 
the mathematical organization related to abstract algebra is modeled into structuralist praxeologies, 
highlighting the intertwined relationships between algebraic, set-theoretic and logical praxeologies 
and, as a consequence, the inadequacy of such proof for students’ self-learning. 

Mathematics for non-mathematicians 
Seven papers can be seen as contributing to this theme. Feudel analyses the use of derivatives in 
economics to introduce cost functions and marginal cost; his data indicate that many of the students 
participating in his study, after their calculus course, just identified the derivative as an amount of 
change, without showing a clear understanding of the differences and connections between the 
derivative in mathematics and in economics contexts. González-Martín and Hernandes Gomes 
analyse the use of integrals in the Strength of Materials for Civil Engineering course to introduce 



the notion of bending moment in the study of beams; using tools from ATD, their analyses show 
that, even if bending moments are introduced as an integral, the proposed tasks do not mobilise 
elements related to integrals from a calculus course. Kortemeyer and Biehler investigate the 
mathematical skills and knowledge required in undergraduate engineering using quantitative and 
qualitative analytical tools developed particularly for this study. Quéré uses tools from ATD to 
study French engineers’ mathematical needs in the workplace; using data from 237 French 
engineers, he identifies mathematical notions they use, but also the need of ‘mathematical abilities’ 
that allow them to use mathematics not only as a tool. Rensaa uses grounded theory techniques to 
investigate engineering students’ own descriptions of what they mean by ‘learning linear algebra’; 
she identifies an apparent contradiction: to describe what they have learned, students emphasize 
conceptual more than procedural approaches, but in order to know that they have learned something 
they refer to solving specific tasks in the discipline. Viirman and Nardi describe a series of activities 
designed for Norwegian students of biology on biology-related mathematical modeling, and follow 
the learners’ path from ritualized participation in mathematical routines towards more explorative 
participation; they suggest that highly scaffolded tasks, that explicitly state which routines students 
should invoke, may inadvertently contribute to students’ ritualized participation in mathematical 
discourse. Wawro, Watson and Christensen analyze one student’s meta-representational 
competence as he engages in solving a quantum mechanics problem involving concepts from linear 
algebra; they correlate this type of competence with abilities to solve tasks that require thinking in, 
using, and relating different notation systems from physics to mathematics. 

Teachers’ practices and knowledge 
Ten papers can be seen as contributing to this theme. Branchetti analyses the resources, orientation 
and goals in the intended practices of a high school mathematics teacher with a PhD in 
mathematics, in relation to the topic of real numbers; the analysis indicates that orientations 
concerning the epistemology of real numbers, the goals of mathematics education in the high school 
and students’ conceptions and difficulties lead the teacher to choose a very intuitive approach, 
missing the opportunity to benefit from his knowledge and expertise as a research mathematician. 
Cooper and Zaslavsky analyse a case of a mathematician/mathematics educator co-teaching 
partnership in an undergraduate course on Mathematical Proof and Proving; they find that the 
mathematician’s main concern was with the written proof and its “correctness”, whereas the 
mathematics educator showed a sensitivity to the person behind the proof, and to pedagogical 
aspects of proof and proving, suggesting that this type of co-teaching might be a way of achieving 
relevance for teaching in mathematics courses. Farah combines an ATD perspective with a 
sociocultural approach to identify institutional features that influence and transform the working 
habits of students in the context of French preparatory classes for business schools; she finds a great 
stability among the teachers’ practices she investigates, these practices being strongly linked to the 
specific institution in which they occur. Fernández-León, Toscano-Barragán and Gavilán-Izquierdo 
use the horizontal and vertical mathematisation to study the conjecturing and proving approaches of 
a research mathematician working in a Spanish university; the analysis suggests that these practices 
(both in a horizontal and a vertical way) interact with each other when mathematicians create new 
knowledge. Florensa, Bosch, Gascón and Ruiz-Munzon report on a professional development 
course for mathematics lecturers in engineering; using tools from ATD and the construct of study 
and research path, they carried out modelling activities with a group of lecturers, allowing the 
introduction of some ATD notions to empower lecturers to question and put under vigilance the 
dominant epistemology at university. Jaworski, Potari and Petropoulou draw on their previous 
research to theorise and characterise university mathematics teaching within an Activity Theory 
perspective, developing an example concerning a lecture course in calculus with first year 
undergraduates; the Teaching Triad at the micro level of goals and actions, together with Activity 
Theory at the macro level, are used together to capture the complexity of the teaching situation, 



addressing for instance the ways the lecturer engages his students and provides for their needs. 
Meehan, O’Shea and Breen examine ‘brief but vivid’ accounts of their lectures they wrote during a 
first-year undergraduate calculus course, and investigate the kinds of decision points they faced and 
how these decisions were triggered. Pinto observes and analyses the decision making and the shift 
of choices of an experienced mathematics teacher (Alan Schoenfeld) while he teaches a 
mathematical problem solving course; the Teaching for Robust Understanding of Mathematics 
framework (TRUmath) is used to unpack the conflicts that may underlie teachers’ dilemmas and to 
explain their decisions. Püschl investigates the discussion patterns of teaching assistants in 
Germany with specific focus on how they work on tasks in small group tutorials, suggesting a 
typology of five discussion patterns of tasks: heuristic, pragmatic, student-oriented, problem-
oriented, and minimalistic. Stewart, Thompson and Brady examine one mathematician’s thought 
processes as he taught a course on algebraic topology; adopting the perspective of Tall’s three 
worlds, they investigate how the teacher moves between the formal, symbolic and embodied 
worlds, and how he uses written handouts to ease students’ movement between the worlds, 
particularly from the embodied to the formal, which he sees as the most challenging for students. 

Current developments in TWG14 
As we mentioned earlier, one of the themes that has grown considerably in this CERME10 concerns 
teachers’ practices and knowledge. The presented papers offer a variety of theoretical and 
methodological approaches to study teachers’ practices and decision making in the preparation of 
their teaching as well as during their actual teaching. As evident in the papers discussed in the 
conference, the investigation of teaching in its complexity seems to demand the use of more than 
one theoretical perspective. Moreover, some of the papers have proposed ways of collaboration 
between researchers and teachers towards better research insight as well as further development of 
teaching through a research-based reflection of teachers on their practice. These works have 
facilitated the discussion on teacher education and professional development at university level; an 
area of significant teaching interest that seeks further research. 

Regarding students’ learning of specific topics, CERME10 contributions continue to deepen our 
understanding of aspects of students’ learning. This year there was more interest in how learning of 
specific topics can be seen also in relation to students’ studying practices that go beyond these 
topics and specific courses. For example, students’ learning can be seen in relation to how they use 
resources, take notes or experience transition issues. 

Furthermore, this year we discussed five papers proposing interventions and reporting on the 
evaluation of the implementation of these interventions. Also, there were studies of tensions 
between innovative approaches and students’ experiences, especially when these approaches 
contradict students’ expectations. As in previous CERMEs, the number of papers proposing 
interventions is not high (Winsløw, Gueudet, Hochmuth, & Nardi, in press), and the account of 
experimental uses of digital technologies is still low. Although a range of studies proposes 
innovative approaches, more research is needed in this area, particularly studies that go beyond 
specific contexts and groups of students. 

Finally, another growing area in TWG14 concerns mathematics for non-mathematicians. The 
papers presented this year show different degrees of collaboration with experts from other 
disciplines, as well as the importance of understanding the needs of these disciplines and their use 
of mathematical notions. From research about the learning of specific topics that happens to be 
conducted, for instance, with engineering students, the field has moved to study specific uses of 
mathematics by professionals (this year from biology, economics, engineering, and physics). We 
believe that this is an important shift of focus, and we expect to see in the future more papers 
studying the use of mathematics (and the professional needs) of several categories of professionals, 
as well as how mathematics can be taught by targeting these professional needs. 



Reflection and ways forward 
In this concluding section we reflect on the research in UME so far and suggest ways forward in 
terms of two directions: general questions about teaching and learning at university level; and, the 
role of mathematics as a service subject. 

Regarding the first direction, general questions about teaching and learning at university level, we 
have noticed that research in UME usually reports on studies conducted in a specific educational 
context. As a research community, we would like to see more research conducted in joint efforts by 
colleagues from different countries. Strengthening communication between mathematics educators 
and mathematicians is also necessary towards collaborative research projects that engage 
mathematicians and suggest innovative approaches for future practice. There are more occasions 
recently where researchers in mathematics education are invited by mathematics teachers to share 
experiences and views and to contribute to curricular development decisions; collaborations of this 
type are very welcomed by our community, 

Furthermore, although there is a considerable number of studies connecting students with 
mathematics, as well as teachers with mathematics, we would like to see more studies connecting 
teachers and students (teaching with learning). Aiming towards this connection may lead to new 
theoretical and methodological developments. Finally, we also discussed that there is a growing 
body of research about mathematicians teaching non-mathematics students, but there is still little 
research on how non-mathematicians teach mathematics as a service subject. 

Regarding the second direction, the role of mathematics as a service subject, we would like to see 
more research on the different challenges and priorities that may occur in service courses. To name 
some examples, in service courses teachers may encounter large and heterogeneous groups; the 
content is not necessarily in the teacher’s research area; there can be consequences for teachers’ 
promotions (between giving a course of his/her specialty or a general course), which may have an 
impact on their motivation and practices; etc.. There is also little research on the epistemological 
analyses of what it means to teach mathematics to other disciplines; what makes the use of 
mathematics necessary in other disciplines; and, why mathematics is used as it is used in other 
fields. These investigations may lead to the identification of possible ruptures – and conflicts for the 
students – with how the content is presented in the mathematics courses. Another way forward can 
come from the use of discursive approaches, which would allow studying the discursive difference 
between communities. In most of these cases, we see the value of the collaboration of UME 
researchers with experts of other disciplines towards a research agenda that can address these 
questions. 

Finally, in a general way, we would like to see more research that goes beyond single case studies, 
as well as research projects that expand small-scale studies to a bigger scale. We also notice that 
most of the papers in our group address mainly one of the themes we listed earlier, but we see the 
benefit of research that connects these themes by addressing the complexity of the teaching and 
learning of mathematics at university level. In all these scenarios, it is possible that mixed-methods 
studies will become more necessary. Regarding contributions to practice, the accumulated body of 
research results in UME should contribute to the development of research-based teacher training 
programmes for university teachers. Furthermore, there is a growth in the amount of mathematics 
learning support, and institutions are developing mechanisms to better guide and support students’ 
learning of mathematics; we need to develop research about these new mechanisms offered to 
students, as well as about their impact and connections to what students learn in lectures. 

This brief account of the presentations and discussions held in TWG14 during CERME10 aims to 
summarise our activities during the conference, as well as to invite the reader to explore the papers 
(long and short contributions) included in these proceedings. Our exchanges will continue in 



different fora and we hope to meet again the participants to pursue our discussions and reflections, 
and to foster collaboration. Until we meet again in CERME11, the next meeting will take place in 
April 2018; we invite all participants (as well as newcomers) to join us in INDRUM2018. 

 
References 
Artigue, M., Batanero, C., & Kent, P. (2007). Mathematics thinking and learning at post-secondary 

level. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: 
a project of the National Council of Teachers of Mathematics (pp. 1011–1049). Charlotte, NC: 
Information Age Pub. 

Coupland, M.P., Dunn, P.K., Galligan, L., Oates, G., & Trenholm, S. (2016). Tertiary Mathematics 
Education. In K. Makar, S. Dole, J. Visnovska, M. Goos, A. Bennison & K. Fry (Eds.), Research 
in Mathematics Education in Australasia: 2012-2015 (pp. 187–211). Rotterdam, The 
Netherlands: Sense Publishers. 

Larsen, S., Marrongelle, K., Bressoud, D., & Graham, K. (in press). Understanding the concepts of 
calculus: Frameworks and roadmaps emerging from educational research. In J. Cai (Ed.), The 
compendium for research in mathematics education. Reston, VA: National Council of Teachers 
of Mathematics. 

Nardi, E. (2017). From advanced mathematical thinking to university mathematics education: a 
story of emancipation and enrichment. Dooley, T. & Gueudet, G. (Eds.) (2017). Proceedings of 
the Tenth Conference of the European Society for Research in Mathematics Education (CERME 
10, February 1 – 5, 2017). Dublin, Ireland: DCU Institute of Education and ERME. 

Nardi, E., Biza, I., González-Martín, A. S., Gueudet, G., Iannone, P., Viirman, O., & Winsløw, C. 
(2015). Introduction to the papers of TWG14: University mathematics education. In K. Krainer 
& N. Vondrovà (Eds.), Proceedings of the 9th Congress of the European Society for Research in 
Mathematics Education (CERME9) (pp. 2048-2051). Prague: Charles University in Prague. 

Nardi, E., Biza, I., González-Martín, A., Gueudet, G., & Winsløw, C. (2014). Institutional, 
sociocultural and discursive approaches to research in university mathematics education. 
Research in Mathematics Education, 16(2), 91–94. 

Nardi, E, González-Martín, A., Gueudet, G., Iannone, P., & Winsløw, C. (2011). University 
Mathematics Education. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the 7th 
Congress of European Research in Mathematics Education (CERME7) (pp. 1923–1927). 
Rzeszów, Poland: ERME. 

Rasmussen, C., & Wawro, M. (in press). Post-calculus research in undergraduate mathematics 
education. In J. Cai (Ed.), The compendium for research in mathematics education. Reston, 
VA: National Council of Teachers of Mathematics. 

Winsløw, C., Gueudet, G., Hochmuth, R., & Nardi, E. (in press). Research on University 
Mathematics Education. In Artigue, M., Dreyfus, T., Potari, D., Prediger, S. & Ruthven, K. 
(Eds.), Developing Research  in Mathematics  Education. Twenty  Years  of  Communication,  
Cooperation  and  Collaboration in Europe. New York, NY: Routledge. 



Undergraduates’ reasoning while solving integration tasks: 
Discussion of a research framework 

Aaltje Berendina Aaten1,2, Johan Deprez2, Gerrit Roorda1 and Martin Goedhart1  
1 University of Groningen, the Netherlands; a.b.aaten@rug.nl; g.roorda@rug.nl; 

m.j.goedhart@rug.nl; 2 KU Leuven, Belgium; johan.deprez@kuleuven.be  

In this paper we investigate the extent to which the research framework on reasoning developed by 
Lithner (2008) is adequate for characterizing undergraduate students’ mathematical reasoning. We 
conducted a small number of individual task-based think-aloud interviews in which students solved 
integration tasks. Several examples illustrate how we characterized reasoning types by using the 
framework. However, we found that some reasoning types were not covered by the framework. We 
propose to extend the framework by introducing a reasoning type that is mathematically founded but 
not creative, and as a consequence, may be intertwined with imitative reasoning. 

Keywords: Mathematical reasoning, undergraduate students, calculus. 

Introduction 
Students’ mathematical reasoning while solving mathematical tasks is not always as well-founded as 
it appears, as has already been highlighted by Vinner (1997) in his article on pseudo-conceptual and 
pseudo-analytical thought processes in mathematics learning. Moreover, undergraduates’ reasoning 
in the domain of calculus is found to be susceptible to ill-founded reasoning (Lithner, 2003). Because 
of its relevance for mathematics teaching, students’ mathematical reasoning demands further 
investigation. Different frameworks on mathematical reasoning have been reported in literature. 
Some frameworks focus on argumentation used while solving proving problems (e.g., Blanton & 
Stylianou, 2014; Stylianides, 2008). Zandieh and Rasmussen (2010) constructed a framework on 
mathematical reasoning that distinguishes informal and formal reasoning, which seems most suited 
for investigating students’ understanding of abstract concepts. Carlson and Bloom (2005) combined 
the problem solving phases Orienting, Planning, Executing, and Checking with the use of problem 
solving attributes Resources, Heuristics, Affect, and Monitoring. Their framework appears capable 
of identifying students’ problem solving activities and the influence of cognitive, affective and/or 
metacognitive factors. However, this framework does not incorporate the foundation of mathematical 
reasoning. Lithner (2008) constructed a framework which does incorporate foundations of students’ 
strategic decisions in solving mathematical tasks. This framework is often referred to when 
characterizing reasoning as either imitative or creative, which are the two main categories in the 
framework (e.g., Jäder, Sidenvall, & Sumpter, 2016; Jonsson, Norqvist, Liljekvist, & Lithner, 2014). 
However, the framework offers greater detail, by also defining Memorized Reasoning, and Familiar, 
Delimiting, and several types of Guided Algorithmic Reasoning (Lithner, 2008). Since this detailed 
characterization of mathematical reasoning based upon its foundation appears useful for identifying 
students’ reasoning, we selected this framework for our research. Based upon our experiences in 
applying this research framework, we discuss the framework’s possibilities and limitations. 

  



Theoretical framework 
Lithner (2008) defines reasoning as: 

The line of thought adopted to produce assertions and reach conclusions in task solving. It is not 
necessarily based on formal logic, thus not restricted to proof, and may even be incorrect as long 
as there are some kinds of sensible (to the reasoner) reasons backing it (Lithner, 2008, p. 257). 

Based on observations of students who solve mathematical tasks, Lithner describes various ways in 
which students choose a mathematical strategy to solve a task, pointing out students’ ‘predictive 
argumentation’ (reasoning for choosing a strategy) and ‘verificative argumentation’ (reflection upon 
implementation of strategy), where strategy “ranges from local procedures to general approaches” 
and choice “is seen in a wide sense (choose, recall, construct, discover, guess, etc.)” (Lithner, 2008, 
p. 257). The resulting framework is visualized in figure 1. 

 
Figure 1: Visualization of reasoning framework as described by Lithner (2008) 

The framework distinguishes two main categories, Creative Mathematically founded Reasoning 
(CMR) and Imitative Reasoning. CMR1 refers to reasoning that is based on intrinsic mathematical 
properties, that is novel to the student (the reasoner) and for which the student has arguments (Lithner, 
2008). Imitative reasoning is described as reasoning in which an algorithm or answer is recalled in 
some way. Imitative reasoning is divided into Memorized Reasoning and Algorithmic Reasoning. 
Memorized Reasoning implies that the student recalls a complete answer, for example a definition or 
a proof that is learnt by heart. Algorithmic Reasoning occurs when a student recalls an algorithm. 
Lithner’s framework altered over time (see Lithner, 2003, 2004, 2008); in this study we applied the 
framework as described in Lithner (2008). 

The definitions by Lithner (2008) for each of the reasoning types are listed in Table 1. In the definition 
of Delimiting Algorithmic Reasoning (see Table 1), the term ‘set’ of algorithms requires some 
explanation. Lithner (2008) clarifies that if no guidance is available and if the task is unfamiliar to 
the student, then the student must choose an algorithm from the ‘set’ of algorithms the student knows, 
based upon some kind of connection to the task.  

  

                                                 
1 In earlier versions of the framework (e.g., Lithner, 2004), creative mathematically founded reasoning (which was then 

named Plausible Reasoning) was subdivided in a global and a local subtype, but this distinction has not remained. 



 

Reasoning type Criteria 

Creative 
Mathematically 
founded 
Reasoning 

Three criteria: “Novelty. A new (to the reasoner) reasoning sequence is created, 
or a forgotten one is re-created.” “Plausibility. There are arguments supporting 
the strategy choice and/or strategy implementation motivating why the 
conclusions are true or plausible.” “Mathematical foundation. The arguments 
are anchored in intrinsic mathematical properties of the components involved 
in the reasoning” (Lithner, 2008, p. 266) 

Imitative 
Reasoning 

No definition is given. Imitative Reasoning is subdivided into Memorized 
Reasoning and Algorithmic Reasoning.  

Memorized 
Reasoning 

“The strategy choice is founded on recalling a complete answer. The strategy 
implementation consists only of writing it down.” (Lithner, 2008, p. 258) 

Algorithmic 
Reasoning 

“The strategy choice is to recall a solution algorithm. The predictive 
argumentation may be of different kinds (see below for examples), but there is 
no need to create a new solution.” “The remaining reasoning parts of the 
strategy implementation are trivial for the reasoner, only a careless mistake can 
prevent an answer from being reached.” (Lithner, 2008, p. 259) 

Familiar 
Algorithmic 
Reasoning 

“The reason for the strategy choice is that the task is seen as being of a familiar 
type that can be solved by a corresponding known algorithm.” “The algorithm 
is implemented.” (Lithner, 2008, p. 262) 

Delimiting 
Algorithmic 
Reasoning 

“An algorithm is chosen from a set that is delimited by the reasoner through the 
algorithms’ surface relations to the task. The outcome is not predicted.” “The 
verificative argumentation is based on surface considerations that are related 
only to the reasoner’s expectations of the requested answer or solution. If the 
implementation does not lead to a (to the reasoner) reasonable conclusion it is 
simply terminated without evaluation and another algorithm may be chosen 
from the delimited set.” (Lithner, 2008, p. 263) 

Guided 
Algorithmic 
Reasoning 

Text-guided Algorithmic Reasoning: “The strategy choice concerns identifying 
surface similarities between the task and an example, definition, theorem, rule, 
or some other situation in a text source.” “The algorithm is implemented without 
verificative argumentation.” (Lithner, 2008, p. 263) 

Person-guided Algorithmic Reasoning: “All strategy choices that are 
problematic for the reasoner are made by a guide, who provides no predictive 
argumentation.” “The strategy implementation follows the guidance and 
executes the remaining routine transformations without verificative 
argumentation.” (Lithner, 2008, p. 264) 

Table 1: Definitions of reasoning types, derived from Lithner (2008) 



It is important to note that the foundation of Creative Mathematically founded Reasoning is explicitly 
stated, while this is not the case for Imitative Reasoning: CMR is by definition founded in intrinsic 
mathematical properties, while the foundation of Imitative Reasoning is not clearly stated. The 
definitions of various sub-categories of Imitative Reasoning contain criteria like ‘surface relations’, 
‘surface considerations’, ‘surface similarities’, ‘no predictive argumentation’, and ‘without 
verificative argumentation’. This terminology appears to stem from earlier work: Lithner (2004) 
distinguished mathematically founded reasoning and superficial reasoning, where the latter was based 
upon surface properties and not upon mathematically relevant properties. Although in Lithner (2008), 
‘imitative reasoning’ is not defined as founded in superficial or surface properties, many of the 
subtypes are (see Table 1). Moreover, all examples and explanations given by Lithner (2008) do refer 
to situations in which the reasoning is founded in so-called superficial properties and not in intrinsic 
mathematical properties, which is a criterion for CMR.  

Certain studies have already used the framework to characterize students’ reasoning. Boesen, Lithner, 
and Palm (2010) employed the categories of Memorized Reasoning, Algorithmic Reasoning (without 
subcategories) and extended the category of Creative Mathematically founded Reasoning by defining 
the two subtypes Local CMR and Global CMR (in accordance with Lithner (2004)). Sumpter (2013) 
applied the framework to label episodes of students’ reasoning in a study on the role of beliefs in 
mathematical reasoning, and showed three examples which were all labeled as Familiar Algorithmic 
Reasoning. Jäder et al. (2016) used the framework to discern whether students’ reasoning was 
imitative or creative. We remark that these studies have not used all sub-categories of the framework 
as described by Lithner (2008). In the case of Sumpter (2013), only one type of reasoning was 
discussed. Although these studies did make use of the framework, none of them did explicitly reflect 
upon its applicability. Since we consider the framework a worthwhile addition to literature on 
mathematical reasoning, we investigate its applicability for characterizing students’ reasoning. The 
research question we thus aim to answer is: to what extent is the framework by Lithner (2008) 
adequate to characterize undergraduate students’ mathematical reasoning? 

Methodology 
The data in this study originates from interviews with three first year mathematics bachelor students, 
one male and two female, of varying mathematics proficiency levels, determined by previous exam 
scores. These students are a sub-sample of a group of 12 students participating in a longitudinal study 
that investigates the development of mathematical reasoning. The students are majors in mathematics 
at the University of Groningen (the Netherlands) or the KU Leuven (Belgium); universities which 
offer courses in a wide range of domains at undergraduate and graduate level. The individual task-
based think-aloud interviews lasted for approximately 1.5 hours each and are administered by the first 
author at the end of the students’ first undergraduate year. Students were permitted to use a list with 
basic calculus formulas, which did not include elaborate integration formulas. The students were 
asked to explicate their thinking while solving tasks and, after each task, to answer the questions: 
“How did you come to think of using this strategy?”, “How certain were you that this strategy would 
help you solve the problem, and why?”, and “Have you seen this type of task before?”. The interviews 
are video and audio recorded.  

We used tasks to create a situation in which the students must choose a suitable strategy from a wide 
range of possible strategies. We considered integration tasks suitable for this purpose since the 



students had learnt various mathematical strategies for solving integrals, such as partial integration, 
substitution, partial fractions, or Euclidean division, in the courses they had taken so far. These 
considerations led to selection of various tasks, amongst which   dxx29  and   dxx 92 . Both 

integrals can be simplified through inverse trigonometric substitution, e.g. )sin(3 tx   or )cos(3 tx   
to solve the first integral, and )sin(/3 tx   or )cosh(3 tx   to solve the second integral. The students 
had taken courses in integral calculus in which they solved similar tasks, amongst many other types 
of tasks. The explicit discussion of these types of integrals had already taken place earlier in the 
academic year. Based upon teaching experience we expected that these tasks at the time of the 
interviews would be non-trivial to many students. 

While integration tasks may be regarded as tasks that solely require application of procedures, these 
tasks can arouse various types of mathematical reasoning in students. Considering and selecting 
suitable procedures is a process in which Creative Mathematically founded Reasoning as well as 
Imitative Reasoning can become visible. Familiar Algorithmic Reasoning can be used if the student 
recognizes the problem type and recalls the corresponding algorithm; Delimiting Algorithmic 
Reasoning if the student does not recognize the task but recalls various algorithms such as partial 
integration or substitution of some kind; Creative Mathematically founded Reasoning can be 
employed if the student is not able to recall a solution strategy but instead constructs a solution or 
reconstructs a forgotten reasoning sequence, such as drawing a rectangular triangle and deducing a 
suitable substitution. We did not expect Memorized Reasoning, since the solutions to the tasks are 
extensive. Guided Algorithmic Reasoning also appeared improbable, since example solutions were 
unavailable and the interviewer would not offer any hints. The available list with formulas however 
could serve as inspiration. 

Transcripts of the task solutions are split into episodes. An episode begins at the first consideration 
of a strategy (or a set of strategies) and ends when the strategy is abandoned and a new strategy is 
about to be considered. Using the framework to characterize parts of a solution is similar to the 
method of Lithner (2008) and Sumpter (2013). The first author tried to characterize each of the 
episodes through the definitions given by Lithner (2008). If this was unsuccessful, the difficulties 
were described. The findings from this analysis were discussed with the other authors until agreement 
was obtained. 

Results 
Below we describe several reasoning episodes from our data, which illustrate how we characterized 
reasoning using the framework and which problems we encountered.  

Familiar Algorithmic Reasoning? 

Example 1:   dxx 92 ; student A chose to rewrite the integrand by splitting it into two terms and 

next integrating them separately: 
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xx
x

x
xx . The student had applied 

this strategy earlier in the interview, when (unsuccessfully) solving   dxx 29 . The student 

explained: “The task was similar to the former task, so I figured I could try using the same approach.” 
We observe that the task is recognized as a familiar type, which made the student decide to apply the 
same strategy as before. We characterize this reasoning as Familiar Algorithmic Reasoning.  



Example 2: 


dx
x

x
92

; this sub-task arose while student A worked on   dxx 92 . This sub-task 

is of a standard form because the derivative of 92 x  is in the numerator, making 92  xt  an 
appropriate substitution. Student A effectively chose this strategy and explained afterwards: “Because 
I knew that the derivative of this (points at 92 x  in the denominator), was something like this 
(points at the numerator) […] So I applied substitution to this (points at 92 x ), because this (points 
at the numerator) would then be eliminated.”. We observe that the student noticed the relevant 
mathematical characteristics of this task and knew what algorithm would solve tasks of this type. 
Either the task type was familiar or the student constructed the approach. The ease with which the 
student came to this conclusion and the fact that this type of task has been practiced extensively make 
us expect the student to be familiar with the task type: we characterize the reasoning as Familiar 
Algorithmic Reasoning. However, the student clearly founds the reasoning in intrinsic mathematical 
properties, which is very different from the reasoning that occurred during Example 1, where the 
student appears to base the strategy choice solely on familiarity with the task type.  

We conclude that Examples 1 and 2 provide two rather distinct reasoning types while both satisfying 
the criteria for Familiar Algorithmic Reasoning.  

Memorized Reasoning or Creative Mathematically founded Reasoning? 

Example 3:  


d
cos

1 ; this sub-task arose while student C worked on   dxx 92 . The student 

searched the primitive of 
cos

1 with respect to  , which is |tansec|ln   . “It was something like 

ln to the power…, ln  of, wait.  


d
cos

1 . it does not have to be so complicated. There must be 

something that I overlook. […] eh. Ah, no, wait wait, hey. sec θ times … Secant tangent? There was 

something about that. 
|tansec|ln

sec



. I rely on my memory now, because I have solved those 

integrals. I know it’s an integral with secant, with ln. (student calculates the derivative of 
|tansec|ln  , infers it is not correct) What was it like? […] wait, I think I know. |tansec|ln    

is (student calculates derivative) 




tansec
sectansec 2




. Then you can cancel this (‘  tansec  ’ in 

numerator and denominator) and then you obtain indeed… I knew it was something with ln .” 

We observe that the student solves the task by making use of answer recall, but also reasons on the 
intrinsic mathematical properties of the task to be successful. In the framework, the only reasoning 
type that makes use of recall of an answer is Memorized Reasoning. However, the second criterion 
of Memorized Reasoning is not fulfilled. The strategy implementation was not just writing down the 
answer, since the answer was constructed and verified building upon the intrinsic mathematical 
properties of the components involved in the reasoning. On the other hand, the category of Creative 
Mathematically founded Reasoning does not reflect the important role of memory in this solution. 
This example shows hybrid reasoning with elements from Creative Mathematically founded 
Reasoning and from Memorized Reasoning. 



Intrinsic mathematical properties or surface properties? 

Example 4:   dxx29 ; student B rewrote 29 xy   to 922  yx  and remarked it is a circle: 

“That gives a nice circle. Then you have got the radius, a circle with radius 9, radius 3, I mean. It’s 
not transformed, so you get this. Circular coordinates. Let’s take a look at circular coordinates […] 
Then you get cosrx   and sinry  . So 22222 sincos rrr   . […] This is of course… This is 
just 22 rr   because   22 sincos  … 2r .” The student stops using this strategy. 

We observe that the student considered the circular coordinates (polar coordinates) since the integrand 
made the student think of a circle. The strategy appears to be selected based upon intrinsic 
mathematical properties of the task. However, the student employed the circle coordinates in an 
ineffective way, which shows that the student did not know why the property of the task, that it 
concerns a circle, implies the use of circle coordinates. The strategy of using circle coordinates are 
selected only because the task concerned a circle, therefore the foundation for strategy selection 
should be regarded as based on the task’s surface properties. This example raises doubts concerning 
whether it is always possible to distinguish a surface property from an intrinsic mathematical 
property. 

Conclusions and discussion 
The framework by Lithner (2008) provides means to highlight foundations that underlie students’ 
reasoning when solving a mathematical task. However, we faced several difficulties when employing 
the framework as an analysis instrument. Examples 1 and 2 concern rather distinct reasoning 
episodes, while both satisfy the definition of Familiar Algorithmic Reasoning. Whether or not the 
student provides mathematically founded reasons is a relevant characteristic but not included in the 
definitions. In Examples 2 and 3, the predictive argumentation of a strategy was imitative (based on 
recall of any kind), but verificative reasoning was founded in intrinsic mathematical properties of the 
task. These examples reveal that the framework does not cover such ‘hybrid’ types of reasoning. 
Example 4 confronted us with the more fundamental issue how to decide whether reasoning is based 
on ‘surface properties’ or on ‘intrinsic mathematical properties’.  

A way to improve the applicability of the framework is to include reasoning types that are 
mathematically founded as well as make use of some kind of imitative reasoning. This is not the same 
as local CMR (Lithner, 2004), which is reasoning that is partly Creative Mathematically founded 
Reasoning while the remainder is Imitative Reasoning. We propose that reasoning can be 
mathematically founded without being creative, and in addition, that mathematically founded 
reasoning can be intertwined with imitative reasoning. Whether a property is an intrinsic 
mathematical property or a surface property appears to depend on the student’s understanding, e.g. 
of why a certain task property leads to a certain strategy selection. Distinguishing between the use of 
surface properties and intrinsic mathematical properties therefore requires a more complete picture 
of the students’ reasoning as a whole. These suggestions are based upon difficulties faced when 
applying the framework on a small number of reasoning episodes within the domain of integration. 
To obtain a framework adequate to characterize any type of mathematical reasoning not only requires 
thorough investigation of specific examples, but also requires investigation of the structure of the 
framework such that the framework will be decisive for each reasoning episode to be characterized. 
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This paper presents results from a survey exploring the kind of resources that engineering 
undergraduates (N=201) use when studying for their mathematics modules. By using Factor analysis, 
we were able to produce a typology of these resources. The resulted typology was further analysed 
by combining Leontiev’s version of Activity Theory and Wartofsky’s hierarchy of artefacts. This 
helped us to draw links between the tools that students use and infer about their learning actions. 
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Introduction 
Historical records suggest that using tools has always been inseparable from expressing and doing 
mathematics (Roberts, Leung, & Lins, 2012) with numerous examples demonstrating the capacity of 
tools to influence the development of mathematics itself as a scientific discipline (Laborde & Sträßer, 
2009)1. Since the end of the nineteenth century many different types of tools have been used for the 
teaching and learning of mathematics (Kidwell, Ackerberg-Hastings, & Roberts, 2008) however for 
many the term “technology” corresponds to electronic or digital in nature tools (e.g. calculators) 
something that manifests a kind of historical amnesia (Roberts et al., 2012). Students nowadays have 
access to a plethora of digital/online resources that they could use alongside more “traditional” ones 
(e.g. textbooks, lecturers or their own notes) and thus blend their learning. As a matter of fact, Masie 
(2006) asserts that this has been always the case as students were always combining resources in 
order to support their learning. The notion of blended learning (BL) has been introduced almost 30 
years ago however, the term has not been clearly defined yet (Bos & Brand-Gruwel, 2016; Graham, 
2013; Torrisi-Steele & Drew, 2013). The three main definitions of BL used in education are (Sharma, 
2010): BL as a combination of face-to-face and on-line teaching; BL as a combination of technologies 
and; BL as a combination of pedagogical methodologies. In this paper, we are mainly referring to BL 
as a combination of technologies or better as a combination of tools since each era has its own 
technologies not only digital ones. Despite what its name implies, BL has received criticisms and 
some authors argue that it should be rather called blended teaching because current views adopt a 
teacher-centred and not a student oriented perspective by focusing on the resources that instructors 
choose for their students (De George Walker & Keeffe, 2010; Oliver & Trigwell, 2005). If students 
indeed blend their learning by mixing different resources not just digital or the ones provided to them 
by their institution, what kind of resources do they blend and how can these resources be classified? 
In terms of the resources that students use, we have found a lack of empirical studies exploring the 
kind of resources that undergraduates themselves choose and use, with previous studies focusing 

                                                 
1 Although many authors consider the terms “tools”, “artefacts”, “instruments” or “resources” to be different, for the 
purposes of this paper we treat them as having the same meaning. 



mostly on digital/online or institutionally-led resources and thus neglecting the “blended” nature of 
their learning (for a short review see Anastasakis, Robinson, & Lerman, 2016). In effect, our sense 
of the field aligns with comments from authors suggesting that the student perspective has not been 
taken into account in the BL literature (e.g. Ituma, 2011; López-Pérez, Pérez-López, & Rodríguez-
Ariza, 2011). Having previously identified the kind of resources that a sample of engineering 
undergraduates uses when studying mathematics (Anastasakis et al. 2016), our aim in this paper was 
to propose an empirically based typology of these tools. 

Theoretical framework 
Long before the dominance of the world wide web and computers, many researchers had emphasised 
the significance of tools in our everyday activities; a well-developed theoretical account of human 
praxis which emphasises the role of physical tools is second generation Activity Theory (AT) 
(Leontiev, 1981). From an AT perspective, our relationship with the “objective” world is mediated 
by tools: the central role of tool mediation within this framework is due to the fact that tools shape 
the ways we interact with reality and they reflect past people’s experiences and practices (Kaptelinin 
& Nardi, 2006). In AT, activities have a hierarchical structure and they consist of three layers (Ibid.): 
at the top is the activity itself directed towards the object of the activity (our overarching goal); in the 
middle lie actions (what we do) directed at goals (what we want to achieve) and; finally, at the lower 
layer we find operations (non-conscious, routine processes) which are directed to conditions (non-
subjective factors that affect our actions). In sum, AT asserts that tools are the means by which 
subjects are trying to achieve their goals and in this sense tools are bounded with a subject’s practice. 
Despite the central position that tools hold in AT, little is written from this perspective in regards to 
how they can be categorised; among the little accounts found in the literature, is Wartofsky’s typology 
of artefacts. Wartofsky (1973) considered tools as the genes of our cultural evolution and proposed 
that they can be classified into primary, secondary and tertiary artefacts. As primary are considered 
the tools themselves (Engeström, 1990); secondary artefacts represent “modes of action using primary 
artefacts” (Cole, 1996, p. 121) and they “synthesise the ways and procedures of using instruments 
and materials” (Miettinen, 1999, p. 189). Finally, tertiary artefacts are those which emphasise 
creativity (Kaptelinin & Nardi, 2006) and “transcend[s] the more immediate necessities of productive 
praxis” (Wartofsky, 1973). As an example of what constitutes a primary and a secondary artefact, 
Bussi and Mariotti (2008) refer to the abacus: the abacus itself is a primary artefact and the ways of 
using abaci for counting, keeping records or making computations represents a secondary artefact. 
Engestrøm notes that Wartofsky’s typology is closely related to Leontiev’s levels of activity 
(Petersen, Madsen, & Kjær, 2002): primary artefacts correspond to the level of operations/conditions, 
secondary to the level of actions/goals while tertiary to the level of the activity (Engeström, 1990; 
2015). Our focus in this paper are primary and secondary artefacts. 

Method 
This study is part of a doctoral project that aims to identify the kind of tools that undergraduates use 
when studying mathematics, how these tools are used and the reasons for using them. During the 
autumn term, a paper-based questionnaire was administered to four different groups of second year 
engineering students in Loughborough university and in total 201 completed it. Loughborough has 
one of the largest cohorts of engineering students (over 3000 undergraduates) in the UK and a well 
established provision of Mathematics Support (http://www.lboro.ac.uk/departments/mlsc). It has also 



led on significant projects producing high quality printed material (e.g. the HELM project: 
http://helm.lboro.ac.uk). The questionnaire consists of three main parts and its design was guided by 
Activity Theory (AT) (Leontiev, 1981). Here we report only on the part related to the resources (tools) 
that undergraduates use. In this, students were explicitly asked to identify how often they use a list of 
14 resources on a 6-point semantic scale (1/Never, 2, 3, 4, 5, 6/Always) with two additional open 
ended items for other resources not listed in the questionnaire. The list was based on our literature 
review, five in depth interviews with undergraduates conducted in 2015 and the resources that 
Loughborough University offers to students e.g. the Learn website (university’s VLE). The list of 
resources was carefully generated and encompasses a great variety of tools available to students; in 
this way it reflects -to a certain degree- students’ reality as learners when it comes to the resources 
they use. Students were also asked to identify which five of these 14 resources they use the most (top-
5) and rank them in a descending order (not reported here). 

Analysis and results 
Summary statistics 

Results for the tools that students use are presented in Figure 1. These results have been already 
presented elsewhere (Anastasakis et al., 2016) but we include them here for clarity. By using each 
tool’s mean, we categorised them into three main groups: tools with a mean greater than or equal to 
4.5 were characterised as high-use, those with a mean between 3 and 4.5 were assigned into the mid-
use group while resources with a mean between 1.5 and 3 were put into the low-use group. 

Factor Analysis 

Exploratory Factor Analysis (EFA) is a statistical method aiming at grouping variables which have 
something in common (i.e. they correlate with each other). This enables researchers to identify latent 
constructs in the data that cannot be measured otherwise directly. Each group (or cluster) of variables 
is then called a factor and the variables consisting each factor are thought to be measuring the same 
underlying/latent construct i.e. each factor represents one underlying construct. An initial EFA was 
performed on all the 14 variables for tools. We used an oblique rotation because the underlying 
constructs sought in our data were expected to be related (all variables are related to tool-use after 
all). Our sample’s adequacy was measured by the Kaiser-Meyer-Olkin measure of sampling adequacy 
and found to be above the minimum value of .5 (KMO=.711). Bartlett’s test of Sphericity also showed 
that the correlations between variables are not 0 i.e. the correlation matrix is not an identity matrix: 
this is true when the significance value for this test (p) is less than .05 and in our case, it was p<.001. 



The scree plot was used as a criterion for determining how many factors should be kept. Two lines 
that best summarise the scree plot were drawn with the intersection of these lines (called point of 
inflection) indicating how many factors are present in our data, excluding the factor on the point of 
inflection (in our case 3 factors). We additionally examined both the pattern and structure matrices 
and decided to exclude the variables “own written lecture notes”, “HELM workbooks”, “Learn 
website” and “Wolfram Alpha” from our subsequent analysis. This was done because these variables 
were either having factor loadings below the cut-off value of .364 that we used based on our sample’s 
size (see Stevens, 2002, p. 374) or because only one variable was present on a single factor (the goal 
of EFA is to group similar to something variables). Based on this analysis, we run a second EFA on 
the 10 remaining items with an oblique rotation (KMO = .711, p<.001) by requesting a 3 factor 
solution. Both the pattern and structure matrices were interpreted (Tables 1 and 2). Factor loadings 
(numbers at structure and pattern matrices) can be thought as the correlations between each variable 

Figure 1: Tools and their grouping based on their mean 
(high-use: red, mid-use: green, low-use: blue) 

Table 1: Pattern matrix of the final EFA (please 
note that values below .3 are omitted) 

Table 2: Structure matrix of the final EFA (please 
note that values below .3 are omitted) 



and the factors and they represent how well a variable “fits” into a factor. The final obtained factors 
included the following variables: 

 Factor 1 (5 variables): “Mathematics Learning Support Centre”, “other textbooks”, 
“lecturers”, “pre-university notes” and “staff at tutorials” 

 Factor 2 (3 variables): “other students”, “instant messaging” and “social media” 
 Factor 3 (2 variables): “online videos” and “online encyclopaedias”. 

At this point, we decided to treat the 4 variables not loading on any Factor (“HELM workbooks”, 
“own written lecture notes”, “Learn website”, “Wolfram Alpha”) as latent constructs too. This 
decision was made for two reasons: first, these variables did not load on any Factor (i.e. not relating 
with other variables); and second, the nature of each resource is different and unique when compared 
with the other resources, thus they can be thought “measuring” something on their own. By adopting 
a descriptive approach (Rummel, 1970) we named the 7 identified types of resources as follows: 

1. The “official” mathematical textbook: “HELM workbooks” 
2. Students’ lecture notes: “own written lecture notes” 
3. University’s VLE: “Learn website” 
4. The calculator: “Wolfram Alpha” 
5. Teaching staff: Factor 1 
6. Peers and communication tools: Factor 2 
7. External online tools: Factor 3 

From the above types of resources, “teaching staff” (Factor 1) contains 5 variables which they seem 
not fitting together; is it reasonable to interpret together different in nature variables such as “pre-
university notes”, “other textbooks” and “lecturers” for example? In our opinion, it makes good sense 
since they correspond to students’ direct interactions with university’s teaching staff (“Mathematics 
Learning Support Centre”, “lecturers”, “staff at tutorials”) and ways that students interact indirectly 
with teaching staff; this includes the use of resources probably suggested by teaching stuff (“other 
textbooks”) or resources which are the product of prior interactions with a person holding a teaching 
position e.g. A-levels tutor (“pre-university notes”). 

Discussion 
Our aim for this paper was to produce a typology of the resources that engineering students in our 
sample reported using. By performing an Exploratory Factor Analysis on our data, we were able to 
identify 7 different types of resources that undergraduates in our sample reported using (Table 3, left 
column). From a Wartofskian point of view, all the tools used by undergraduates when examined 
separately are primary. On the other hand, secondary artefacts represent “modes of action using 
primary artefacts” (Cole, 1996) and they “synthesise the ways and procedures of using instruments 
and materials” (Miettinen, 1999, p.189, our emphasis); this means that our proposed typology 
corresponds to the different secondary artefacts that undergraduates use. When examined from an 
AT perspective, the typology of tools corresponds to thematically related actions that students 
undertake when studying mathematics. This is because actions in AT are the “...specific interactions 
that people have with artefacts and other people...” (González, Nardi, & Mark, 2009) i.e. as actions 
we account the processes of using a tool (types 1, 2, 3, 4 and 7) and/or interacting with other subjects 
(types 5 and 6). Our Wartofskian and AT-based interpretations are also consistent from a statistical 



point of view: students were asked how frequently they use a resource thus, the nature of each variable 
is related to using a tool or interacting with a person i.e. an action from an AT perspective (Ibid.) or 
the ways of using primary artefacts. Thus, from both a Wartofskian and AT perspective, the 7 
different types of resources that undergraduates use, correspond to the following secondary 
artefacts/actions (Table 3, right column):  

1. Studying the mathematical textbook 
2. Taking notes during a lecture 
3. Accessing institutionally provided material (online) 
4. Performing (complex) calculations 
5. Interacting with teaching staff 
6. Interacting with peers (in-person or virtually) 
7. Searching for external/alternative material online 

 

Typology of Tools Secondary Tools (Wartofsky) - Actions (AT) 

(1) The “official” mathematical textbook Studying the mathematical textbook 

(2) Students’ lecture notes Taking notes during a lecture 

(3) University’s VLE Accessing institutionally provided material (online) 

(4) The calculator Performing (complex) calculations 

(5) Teaching staff Interacting with teaching staff 

(6) Peers and communication tools Interacting with peers 

(7) External online tools Searching for additional/alternative resources of 
information 

Table 3: Proposed typology of tools (left) and their representations as secondary artefacts and actions 

Conclusion 
In this paper, we analysed survey data from a cohort of second year engineering students (N=201) 
about the kind of tools they use when studying for their mathematics modules. In contrast with 
common approaches found in the literature, we did not focus only on digital/online or institutionally 
provided resources but rather we incorporated a variety of resources that students have at their 
disposal. An Exploratory Factor Analysis of our data allowed us to identify 7 different types of tools 
that students in our sample reported using: the “official” mathematical textbook (“HELM 
workbooks”); their own written notes; university’s VLE (“Learn website”); a sophisticated calculator 
(“Wolfram Alpha”); university staff (Factor 1); peers and social apps (Factor 2); and non-institutional 
online tools (Factor 3). By adopting Wartofsky’s hierarchy of tools these dimensions represent 
secondary artefacts i.e. 7 different ways that students use primary artefacts or students’ modes of 
action when studying mathematics: studying the mathematical textbook, taking notes during a lecture, 
accessing institutionally provided material, performing calculations, interacting with teaching staff, 
interacting with peers and searching online for additional/alternative sources of information. This 
interpretation is consistent with AT because these dimensions represent students’ actions when 
studying mathematics. One important implication of our analysis is that although some resources are 



different (e.g. people, digital) they may be used by students in a similar way: this was the case of 
Factor 1 which contained different in nature resources. This result contradicts our common 
assumptions when categorising resources (e.g. people, digital, online etc.) and adds an empirical basis 
for the argument that the way we usually classify resources does not necessarily reflect the ways these 
resources are used. Because of the nature of our data, we could only infer about the nature of the 7 
types of tools that undergraduates use by only examining the resources included in each type. 
However, our preliminary analysis of 14 interviews suggests that our interpretation aligns with these 
resources’ actual use: for example, students who interviewed reported using Facebook for 
communicating with peers when having an issue with mathematics (either by using Messenger or by 
posting a question on Facebook groups created by undergraduates). Our intention for the future is to 
complement the survey data with data gathered with other methods (interviews and diaries). Finally, 
we are of the opinion that the results of our analysis (students’ learning actions), highlight the 
temporal nature of all primary tools used in learning and suggest that our future research foci in 
mathematics education should be on the ways that these tools are used rather than the tools 
themselves.  
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I analyse the notes of a group of first year engineering students who attended a course in pre-
calculus mathematics. Being interested in verbalisation skills at the beginning of university, I adopt 
a narrative lens to analyse the notes: I see a lecture as a story being told by the teacher and the 
students’ notes as re-tellings of the teacher’s story. I focus on the way the students condense the 
mathematical content in their written notes in two distinct teaching formats: a traditional frontal 
lesson and the concluding phase of a classroom discussion after a small group activity.  

Keywords: Secondary-to-tertiary education transition, students’ notes, narrative approach. 

Introduction 

This paper is part of a wider research project on freshmen engineering students at the Polytechnic of 
Milan, aimed at understanding their difficulties during the first year of their studies. Recent research 
has found that mathematics at tertiary level is difficult for engineering students (see e.g. Gomez-
Chacon, Griese, Rosken-Winter & Gonzales-Guillen, 2015). Gueudet (2008) provides a detailed 
overview of mathematics education studies concerning the transition from school to university and 
she identifies the theme that is the core of my research, namely: the students’ organisation of 
knowledge that is new to them at the beginning of university.  

Boesen, Lithner & Palm (2010) argue that the kind of task assigned to the students affects their 
learning: tasks with low levels of cognitive demand lead to rote-learning by students and, 
consequently, their inability to solve problems that are unfamiliar to them (for instance, the ones that 
require conceptual understanding). Breen, O’Shea and Pfeiffer (2013) define an ‘unfamiliar task’ as 
a task “for which students have no algorithm, well-reharsed procedure or previously demonstrated 
process to follow” (p. 2318), and provide evidence that this kind of tasks raises an awareness about 
the need for more than procedural understanding of mathematics, thus easing the students’ transitions 
to university math practices. Also, the teaching strategies employed in the class can influence the 
development of one type of knowledge more than another: teacher-centred methods would favour the 
development of procedural knowledge and student-centred methods would favour conceptual 
knowledge (see e.g. Garner & Garner, 2001; Allen, Kwon & Rasmussen, 2005). Inspired by these 
studies, I investigate how the students organise the knowledge in their notes during a preparatory 
math course. 

To take notes does not involve only mathematical ability. It involves also verbalisation skills. O’Neill, 
Pearce and Pick (2004) found that there is a correlation between performance in generating narratives 
and mathematical ability as early as in primary school years. With Nardi (2011), I recognise the 
centrality of the students’ ability to use ordinary language to construct and convey mathematical 
meaning and I investigate undergraduate engineering students’ notes in a preliminary math course at 
their first year at university. With Nardi (2011), I value the students’ attempts to mediate the 
mathematical meanings through words, symbols and diagrams and I maintain that at the basis of the 
students’ difficulties in dealing with a discursive shift from secondary to university mathematics there 
are: (a) undervalued verbalization and (b) premature compression. According to the former, “the 



students undervalue, and often avoid entirely, expressing their mathematical thoughts verbally” 
(Nardi, 2011, p.2056); according to the latter, “students’ mathematical writing is typically 
prematurely compressed, namely ridden with gaps, leaps and omissions” (ibid.).  

Theoretical framework 

Andrà (2013) examines the relationships between a teacher’s lecture and the students’ notes by 
viewing the lecture as a kind of story that the teacher tells and the students’ notes as retellings of the 
teacher’s story. A mathematical lesson seen as a story can be analysed in terms of its components: its 
characters, setting, action, plot, and moral (see also Bal, 2009). Mathematical objects, in fact, can be 
considered the mathematical characters of a story (Dietiker, 2012). They can play a central or a 
peripheral role, have multiple names, and have properties that can be introduced and developed 
gradually. The setting is the space where characters are placed. Sometimes the setting is not obvious, 
as it refers to underlying assumptions and/or axioms. The setting may also involve different registers, 
such as algebra or the Cartesian coordinate system. The action is that which the actor performs. In 
mathematical stories, the result of an action can be a change in an object or in a setting, or both. 
According to Dietiker (2012), we see that, unlike in literary stories, mathematical ones can change 
actions into objects (through reification). Andrà (2013) observes that the students miss important 
(teacher’s) mathematical actions in their notes and more in general Morgan (1998) notices a relative 
absence of active verbs in mathematical writing. The moral can be seen as the intended message of 
the lesson. The plot is the sequence of actions and it involves the shaping of the story, which is linked 
to its aesthetic effects: for instance, the rhythm and the frequency of the story (Bal, 2009) may affect 
the students’ focusing on the areas of emphasis of the story and foster his anticipative acts. Some 
moves might displace attention away from what the teacher wants to communicate: for example, 
repeating the name of a character often may lead the students to think that the actual name is 
important, or more important than its properties. Other moves may induce the students to believe that 
the setting is unimportant. These moves can be interpreted in terms of Rotman’s (1988) schema, 
which distinguishes between invitations for the reader to be a “thinker” and ones that prompt the 
reader to be a mere “scribbler”. This distinction provokes a further distinction, namely: to think about 
note-taking as mere consumption of mathematical meaning or to think about it as active production 
of meaning. It is possible to interpret Rotman’s schema with respect to the students’ notes in this way: 
a scribbler is a student who reports mainly the mathematical characters of the story and misses the 
actions, so that the notes result to be compressed and ridden with gaps, leaps and omissions (see also 
Nardi, 2011). A scribbler is also a student who avoids putting her thoughts in her notes, and limits 
herself to copying and/or reporting what the lecturer is saying/writing. The plot is the same plot as 
that of the story told by the lecturer. A thinker, instead, re-organises the content of the lesson, she 
(re)structures the plot so that it becomes accessible to herself even after the lesson ends. A thinker 
pays attention to the details and also records the mathematical actions so that her notes are not overly 
compressed and under-verbalised. In Andrà’s (2013) understanding of Rotman’s schema, 
furthermore, some moves invite the students to be thinkers while others invite them to be scribblers. 
In view of the findings of Boesen, Lithner & Palm (2010) we consider two scenarios: in the first one, 
the lecturer proposes a group activity on a conceptual and unfamiliar task and the students’ notes are 
taken during the classroom discussion that follow the group activity; in the second scenario, the 
lecturer assigns a procedural task and corrects it on the blackboard. The interest is to see how the 
students’ notes change (if so) in the two different scenarios. 

  



Methodology 

The Polytechnic of Milan, like many universities all around the world, organizes some courses before 
the beginning of the first semester, which have the purpose to recapitulate the basic knowledge that 
is necessary for the students to successfully attend the courses at the first academic year. One of these 
preparatory courses is on pre-calculus mathematics. Since three years, the course is organised 
according to a flipped classroom pedagogy: the students (are supposed to) watch a series of videos in 
a MOOC and at university the lecturers of the preparatory course involve them in groupwork activities 
aimed at deepening their understanding of the basic math concepts and expose the students to frontal 
lessons with routine exercises. The mixed method of teaching serves the purpose of both exposing 
the students to a new, “conceptual” teaching and to make them feel comfortable with teaching 
practices that are more typical of secondary school. During the first lesson of the preparatory course, 
among the exercises given about polynomials, one had a conceptual nature, since it said “The 
polynomial p(x) is divisible by the polynomial q(x) if…”. This is a kind of task that is unfamiliar for 
Italian students, since it asks for reflection about the definitions and the students do not have a well-
established procedure to resort to. It was first dealt with in small groups, then discussed at classroom 
level. During this last phase, the teacher wrote the steps of the solution at the blackboard and the 
students took notes. Another task had a procedural nature and was not unfamiliar for the students: 
two polynomials were given, p(x) and q(x), and the students were asked to divide p(x) by q(x). It was 
solved at the blackboard by the teacher. I compare and contrast the students’ notes in these two 
different situations: one familiar and procedural (i.e., linked to actions), one unfamiliar and 
conceptual (i.e., linked to characters). In this study, the lecturer under consideration is also the 
researcher and the author of this paper. At the end of the lesson, the students were informed about the 
study and invited to provide their notes for research purposes. I am aware of the potential issues 
concerning this method of data collection, and I followed ethical guidelines in order not to expose the 
students to risk. Ten students offered their notes; of those I selected four to be analysed in this paper 
since they are contrasting. The students are identified with four fictitious names: Angela, Filippo, 
Roberto and Vincenzo. Their notes are analysed through a narrative lens, identifying: the 
mathematical characters; their setting; the mathematical actions, understood in terms of operations 
made on/by the mathematical characters; the plot, or the organisation of the content on the sheet of 
paper; the moral. The four students are inferred to be scribblers or thinkers by looking at these 
elements. The research questions read as follows: (a) how do students organise their notes? (b) which 
elements of the teacher’s “story” are recorded, and which ones are discarded? (c) in which cases do 
the students act as scribblers and in which ones as thinkers? 

  



Data analysis 

Figures 1-8 report the four students’ notes regarding the two tasks. Since they are in Italian, a 
translation is provided in the caption of each figure. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Filippo’s notes about the “conceptual task”. On the first row, he writes “q(x) divisible by p(x)”, 
then he draws an arrow and writes a ratio, from which he draws another arrow and writes “polynomial”. On 

the second row, he writes “example” and in the third row he writes a formula. In the last row: “hence it 
means that there exist a polynomial g(x) such that I can write q(x) = a(x)p(x)”. 

  

 

 

 

 

Figure 4: Roberto’s notes about the “conceptual task”. On the first row, he writes “q(x) divisible by p(x)”, 
then he draws an arrow and writes “a polynomial a(x) | q(x) = a(x)p(x)”. 

Vincenzo’s notes (Figure 1) report exactly what the lecturer wrote on the blackboard. From these 
notes, we can see that the story has: (A) two mathematical characters, p(x) and q(x) and there’s a 
relationship between them, being the latter divisible by the former; (B) the mathematical action is a 
division; (C) the moral is that there exists a polynomial a(x) such that q(x) = a(x)p(x). Vincenzo’s 
plot is linear: each row is put below the other one, with no connections. The plot of Angela’s story 
(Figure 2) is also linear: (A) is followed by (B) that is followed by (C). But she also adds an arrow 
on the right side of (B) and she writes “result”, then another arrow and then “polynomial”. These 

Figure 1: Vincenzo’s notes about the 
“conceptual task”. On the first row, he 
writes “q(x) divisible by p(x)”. On the 
second row, he writes a formula and in 

the last row: “polynomial a(x) s.t. q(x) = 
a(x)p(x)”. 

 

Figure 2: Angela’s notes about the “conceptual 
task”. On the first row, she writes “q(x) divisible 
by p(x)”. On the second row she writes the ratio, 
then she adds an arrow and writes “result”, then 

another arrow and “polynomial”. On the third row, 
she writes “hence there exists a polynomial a(x) 

such that q(x) = a(x)p(x)”. 

 



details have been told by the lecturer orally. For Angela, it is worth noticing that the result of the 
mathematical action is a polynomial (which is a(x), a new character), namely a character that still has 
the same properties of the other two. While the setting was implicit in Vincenzo’s notes, it emerges 
in Angela’s ones: the setting is the set of polynomials. Instead of the mathematical symbol for “there 
exists”, she writes in words and she also adds “hence” at the beginning of (C): the moral is made 
more explicit and the verbalisation is less condensed compared to Vincenzo. Filippo (Figure 3) 
organises the plot in a non-linear way: he writes (A) and on the same row he writes (B), to which he 
draws an arrow and writes “polynomial”. Like Angela, Filippo also remarks about this detail. 
Vincenzo and Angela do not write down the example, while Filippo does. Hence, a story in the story 
is told: it’s the story of the two characters that become two particular polynomials. At the end of the 
story, Filippo writes (C) in a fashion that is similar to Angela’s. 

Filippo’s story is slightly less linear than the stories re-told by Angela and Vincenzo, but the student 
that writes a different plot is Roberto (Figure 4): he writes (A), an arrow, then (C) on the first row, 
namely he puts at the first line the characters and the moral, then on the second row he writes the 
action, which is (B), and the story in the story, namely the example. We can infer that Roberto is a 
thinker, since he re-organizes the knowledge, while Vincenzo is a scribbler, since he reports the story 
in a linear way. Angela and Filippo also act as scribblers: in a sense, we can say that they are more 
accurate than Vincenzo, since they report more details, but do not re-organise the content of the lesson 
as Roberto does. Roberto, in fact, does not only remark what is worth noticing, he establishes a 
hierarchy in the mathematical content: characters and moral on the same, first row, and the action 
plus the example on the same, second row.  

  

 

 

 

 

 

Figure 5: Filippo’s notes about the “procedural task”. On the first row, he writes “Exercises on euclidean 
division and Ruffini’s division”. To the right of the first arrow he writes “Ruffini is used because a first order 

polynomial is present”. To the right of the arrow pointing to -60, he writes “this division is a factorisation, 
because there’s no reminder”. 

If we look at the “procedural task” in Filippo’s notes (Figure 5), we notice that he employs a more 
linear structure compared to the “conceptual” task. He writes: (0) the title of the story (“Exercises on 
the Euclidean division and Ruffini”), then (1) he presents the characters P(x) and Q(x), then (2) the 
series of actions in the Ruffini’s grid. The new character, (3) A(x), the result of the actions, is present 
to the right of the grid. At the right side of the paper he adds comments that are connected to the 
“story” by means of arrows: such comments better characterise, and justify, the actions that are made. 
Like in the conceptual case, we see them as details that are worth to be noticed by Filippo. Like in 
the conceptual case, we can say that Filippo is an accurate scribbler. Vincenzo’s notes (Figure 6) also 
have a linear structure with no connections between (1) and (2), or between (2) and (3). Vincenzo 
also adds the comment “we use Ruffini when we divide by an order-1 polynomial”, but this comment 
about the actions is put below the characters with no arrow. 



  

  

 

 

 

 

 

 

 

 

 

 

Figure 8: Roberto’s notes about the “procedural task”. 

 

Angela’s notes (Figure 7) reflect exactly what the lecturer wrote on the blackboard. The notes have 
no words, just symbols: we can say that there’s only one register present, the symbolic one. She 
records the characters, i.e. (1), the actions, i.e. (2), and the new character that results from the action, 
i.e. (3). Differently from Filippo, whose notes have a rather linear structure, Angela’s ones are even 
more linear and essential, as if she wants to record just the essential facts. Like Vincenzo, Angela is 
an (inaccurate) scribbler. 

Roberto (Figure 8) records (1), then (2), then (5)-(3)-(4) on the same line. To the right of (1) he 
remarks “Ruffini, because x=5 is such that P(5)=0”, hence noticing a detail that is different from the 
ones recorded by Filippo and Vincenzo and also less general than those: Ruffini’s algorithm can be 
used for any value of x when q(x) is an order-1 polynomial, not only for those polynomials where the 
value of x is a zero. Since the lecturer has said something different (see Filippo’s or Vincenzo’s 
notes), we can infer that Roberto added a detail that generated from his own knowledge about 
polynomials. As for the conceptual task, Roberto reorganises the space of the sheet and we can infer 
that he acted as a thinker. 

Discussion 

I discuss the data analysis in terms of what the distinction between scribblers and thinkers can add to: 
(1) our knowledge of the students’ verbalisation skills (responding to the question which elements of 
the teacher’s “story” are recorded, and which ones are discarded?); (2) our understanding of how the 
students organise their knowledge (how do students organise their notes?); (3) whether the teaching 

Figure 6: Vincenzo’s notes about the “procedural 
task”. The first sentence reads “We use Ruffini 

when we divide by an order-1 polynomial”. 

 

Figure 7: Angela’s notes about the “procedural 
task”. 



strategies have an influence on conceptual and procedural understanding of mathematics (when do 
the students act as scribblers and when as thinkers?). I would like to underline that I am not valuing 
“thinker” over “scribbler”, on the contrary I am interested in seeing which elements of the lesson 
provoke either modality in students. Comparing Angela’s and Vincenzo’s notes, I tend to say that 
both them act as scribblers in both tasks. I can further infer that Angela is a scribbler because the 
course is recapitulating mathematical concepts that are familiar for her: she probably does not need 
to put so many details in her notes. Angela’s notes of the procedural task report only what has been 
written on the blackboard. Looking at her notes for the conceptual task, furthermore, I commented 
that she had time to record details that are worth to be noticed and she didn’t give us the impression 
that she was rushing to keep the pace of the lecturer. For Vincenzo, it is a completely different story: 
he records only what has been written on the blackboard during the conceptual task and during the 
procedural one he added “We use Ruffini when we divide by an order-1 polynomial” to his notes 
with respect to what has been written on the blackboard. I can see that Vincenzo is struggling to 
remark all that is relevant, since the lesson is difficult for him. A conclusion that can be drawn from 
these observations is that a student acts as a scribbler in two cases: either if the mathematical content 
is too easy for her, or if it is too hard.  

Nardi (2011) pointed out that the students under-verbalise and hyper-condense the mathematical 
discourses. As regards the conceptual task, I can see that Vincenzo and Roberto condense the 
mathematical content more that Filippo and Angela, but Roberto does it in a completely different way 
compared to Vincenzo: Roberto compresseseorganises the content, to have the character and the 
moral on the same row, and the actions plus the example on the second row, while Vincenzo linearly 
puts the elements of the story one after the other. Andrà (2010) analysed the teaching styles of 
university lecturers and concluded that in a blackboard modality (namely, when the lecturer is mostly 
writing on the blackboard) the students have to adjust the pace of their note-taking to the pace of the 
lecturer’s writing. By comparing Vincenzo’s and Roberto’s notes, indeed, I can imagine the former 
making an effort in dealing with a pace that is too fast for him, to the point that he does not have time 
to record the details that Angela and Filippo remarked, while Roberto seems to stop and think (fast) 
where he wants to put what is told by the teacher. Angela and Filippo can be seen as accurate 
scribblers, and it seems that they tend not to hyper-condense the math content. As well, Angela and 
Filippo tend not to under-verbalise when they take notes on the conceptual task. Why are some 
students more accurate scribblers than others? Andrà (2010) interpreted this difference in terms of 
each student’s ability to keep the pace of the lesson at the blackboard, but I would also add that it 
depends on the student’s views: for some students, it seems necessary to record all the possible details, 
while for others it seems a question of being brief. Looking closely at Angela’s notes, and comparing 
her notes on the conceptual task and on the procedural one, I can see a difference: in the first case, 
she adds details and comments that she discards in the second case. Vincenzo does not add comments 
in neither case, and Filippo accurately adds details in both cases, hence Angela seems to be the student 
on which the procedural vs conceptual nature of the task provokes different modalities of taking notes, 
and actually the conceptual nature of the task invites her to remark more details. This seems to have 
an impact on her verbalisation skills and on conceptual reflection. 
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The transition from secondary to tertiary mathematics encompasses a complex interaction of social, 
academic and mathematical context changes, including a vast array of emotions, beliefs and issues. 
The present paper reports a study of the difficulties faced by a first year undergraduate student in a 
Mathematics Department during her transition from secondary to tertiary education through the 
lenses offered by a rite of passage framework. Data were gathered over the student’s first two 
semesters of attendance predominately through interviews. The results indicate difficulties she faced 
regarding the mathematical content and a powerful interaction between emotions and the 
reconstruction of her mathematical thinking.  

Keywords: Transition, university mathematics, rite of passage, reconstruction.  

Introduction 
The secondary-tertiary transition is itself an exciting and often confusing experience for students. 
After tough examinations, the successful students have yet to adjust to new learning environments, 
new modes of study, and above all, higher expectations.  

The problems encountered in the transition from high school to university mathematics are common 
in every educational system worldwide. Several researchers identify a “gap” between school and 
university mathematics content (Luk, 2005; Kajander & Lovric, 2005; Winsløw, 2013), while others 
identify important changes that affect students during the secondary-tertiary transition. These include 
the new academic and social environment as well as the shift required to a different mathematical 
way of thinking and studying (Cherif & Wideen, 1992; Tall, 1992). 

The aim of this paper is to study the ways in which a first-year student in the Department of 
Mathematics at the University of Athens dealt with transition issues through the lens offered by a rite 
of passage framework, focusing on the ways that changes in the student’s social life and the academic 
environment shaped the reconstruction of the mathematical thinking required. 

Literature review 
The transition from high school to university mathematics could be seen as an interaction of many 
transitions: social, academic, mathematical content transitions as well as others (Alcock & Simpson, 
2002). University as an institution and university mathematics are encountered as a new world, with 
a new language and new rules that make the novice student feel like a foreigner (Gueudet, 2008).  

With respect to the social dimension, Hernandez-Martinez et al. (2011) considered the social aspects 
of transition as the most important when entering university. Students argue that the beginning of 
university life can be a quite scary and nerve-racking phase for many but also an “exciting” personal 
opportunity to develop in a “better environment”. Some recall being quite shy in the beginning but 
becoming more confident over the first year. Going to college is about “working harder” but also 
about expanding social life. The change from a structured, parent-disciplined life to a self-disciplined 



university life is difficult. First-semester students claim that the change of the education environment, 
new expectations and unlimited freedom are the biggest problems (Cherif & Wideen, 1992; Clark & 
Lovric, 2008).  

Concerning the academic dimension, students in transition undergo changes requiring an adjustment 
of learning strategies, time management skills and a shift to more independent studying. They 
experience changes in teaching and learning styles. They often encounter a higher level of 
competitiveness among their unknown colleagues (Clark & Lovric, 2008). The new environment 
demands a different type of critical thinking, something for which students are not necessarily 
prepared (Cherif & Wideen, 1992). 

As far as the mathematical content is concerned, first-year university students often face 

the move to more advanced mathematical thinking [which] involves a difficult transition, from a 
position where concepts have an intuitive basis founded on experience, to one where they are 
specified by formal definitions and their properties reconstructed through logical deductions (Tall, 
1992, p. 1)  

Furthermore they are confronted with a significant change from a computational to a proof-based 
learning and teaching approach. Some concepts learned at high school need to be reconstructed at the 
tertiary level thus increasing the transition’s difficulties. In tertiary mathematics courses students are 
exposed to the introduction of abstract concepts and formal reasoning; they witness an increased 
emphasis on the precision and rigor of the mathematical language, and this is very new for them 
(shock of the new) (Clark & Lovric, 2009). The relevant literature seems to agree that more relational 
and conceptual understanding as well as more flexibility in solving mathematical problems compared 
to high school mathematics is expected (Breen, O’Shea, & Pfeiffer, 2013). In other words, a shift 
from “instrumental understanding” to more “relational understanding” is required.  

Theoretical considerations  
We employed the rite of passage approach (Clark & Lovric, 2008) to explore the ways in which the 
subject of the study dealt with transition issues. We considered the transition from high school to 
university mathematics as a rite of passage, a concept explored in anthropology and in other 
disciplines (e.g. in cultural studies). French anthropologist Arnold van Gennep (1960) (in Clark & 
Lovric, 2008) described and analyzed certain events that, in one way or another, create a “crisis” in 
an individual’s life. He observed that these “life crises” (e.g., birth, betrothal, marriage, or death) 
possess a similar general structure, and based on this, developed a three-stage theory of what he called 
rites of passage. In the separation stage, the person experiencing a crisis gets “removed” from the rest 
of the community (family, social group, etc.). The process of achieving necessary changes constitutes 
the liminal stage. In the incorporation stage, the person learns about the community that she/he will 
belong to at the end of the rite. With the support of members belonging to the communities involved, 
she/he is supposed to find her/his place in the new community. Applied to mathematics, the model 
suggests that one could analyze problems and issues in transition by studying their dynamics within 
three stages: (a) separation (from high school) which takes place while students are still in high 
school, and includes anticipation of forthcoming university life; (b) liminal (from high school to 
university) that includes the end of high school, the time between high school and university, and the 
start of first year at a university; (c) incorporation (into university) concerning roughly the first year 



at a university (Clark & Lovric, 2008). Although Clark & Lovric (2008) suggest applying the rite of 
passage model with regard to the mathematical content only, we utilize a methodology for revealing 
the dynamics and the connections within all three dimensions (social, academic and mathematical 
content).  

The study 
Situated within the literature reviewed above, the study reported here is part of an ongoing research 
project aimed to examine the interface between social, academic and mathematical content aspects of 
the transition from high school to university mathematics. In particular, the research questions 
pursued in the study were as follows: 

1. What was the dynamics exposed in each of the three stages of the rite of passage along the 
three dimensions (social, academic and mathematical content)?  

2. How do academic and social dimensions interact to shape the passage from the liminal to the 
incorporation phase regarding mathematical content?  

Greek students who want to enter University go through hard preparation to pass the exams in their 
last high school year. During their final high school year, most of the students undergo a strictly 
structured life program, including many hours of daily study almost always under the guidance of 
school teachers and private teachers in paid courses after school. They are introduced to Calculus, 
coming across proofs, the emphasis of teaching being, however, more on computational than 
conceptual learning/understanding. As first-semester university mathematics students, they are 
introduced again to Calculus but this time in formal terms, more as Mathematical Analysis. This 
constitutes a qualitatively big jump for their thinking. Furthermore, there is hardly any support around 
provided either by the academic staff, in the form of learning advisors, or by higher-years students 
and/or the Students’ Association.  

In October 2015 we started surveying incoming first-year students (October 2015-June 2016), 
collecting information. Twelve students volunteered to be interviewed individually to help us look 
thoroughly at the issues described above. Four semi-structured interviews (in the beginning of the 
first semester, before the semester exams, in the middle of the second semester and before the second 
semester exams) were carried out, each lasting between 25 and 45 minutes; these were audio-recorded 
and fully transcribed. Students were asked about their conceptions of university mathematics, how 
their experience of mathematics at school differed from that at the university, how their study habits 
or ways of working had changed, how they felt being a member of a new academic environment and 
how they dealt with the changes in their social-personal life.  

One of these students, Nefeli (a pseudonym), is the focus of this work. We chose Nefeli because her 
responses during data collection strongly indicated that she was undergoing a rite of passage 
regarding mathematics: although she was doing well in mathematics (her grades were good at school 
and also in the university entry exams, 16/20 on average), in the beginning of her first university year 
she felt that perhaps it had not been a good decision to study mathematics. She was negatively affected 
because of the overwhelming changes imposed in her lifestyle and the new academic environment 
that strongly influenced her studies. She even considered quitting. Only after the first semester exams 
did she started adapting to the new environment, and at the end of the first year she almost felt well 
adjusted.  



Results 
Nefeli’s representative comments and thoughts related to transition and expressed in the contexts of 
the four interviews were organized along three dimensions, social, academic and mathematical 
content, within each of the three phases of a rite of passage, as presented in Tables 1, 2 and 3. In the 
following, some central issues emerging along each of these dimensions and across the three phases 
are discussed.  

The social aspects of the transition were seen by Nefeli as among the most important (but also 
worrying) issues. She highlighted mainly two of them: (a) the home-university distance and (b) her 
relationships with classmates and friends (Table 1). 

Social dimension Separation phase Liminal phase Incorporation phase 

(a) the home-
university distance 

 

 

 

 

(b) her relationships 
with classmates and 
friends.  

S1:“School was near 
my home”. (1st 
interview) 

 

 

 

 

S5: “I try also to 
spend some time 
with my friends from 
school and 
neighborhood which 
is not easy…they 
hardly understand 
that I have to study 
hard”. (2nd 
interview) 

 

S2:“I am negatively 
affected because of 
the long home-
university distance”. 

(1st interview) 

S3: “I manage time 
better, but I’m still 
undergoing a total 
change in my former 
well organized life”. 
(2nd interview) 

 

S6: “Some interesting 
people I have met 
here helped me to 
adjust myself to the 
new environment”. 
(1st interview) 

S7: “With my 
classmates I have the 
feeling that we 
discuss mostly issues 
about our studies but 
in a competitive 
way”. (2nd interview) 

S4: “I have the 
opportunity to manage 
my time as I want, 
although not so 
effectively all the 
time”. (3rd interview) 

 

 

 

 

 

S8: “I met some 
higher-year students 
who helped me a lot to 
adjust to the new 
environment”. (3rd 
interview) 

 

 Table 1: Social aspects through the three transition phases  

Nefeli experienced big changes in the new academic environment (academic dimension). A vast array 
of answers is identified in her interview responses: from great expectations for a creative teacher-



student relationship and academic staff support to her statement that some professors do not care at 
all if students understand their lectures. Two critical features are (a) teacher-student relation and (b) 
lack of support (Table 2). 

Academic dimension Separation phase Liminal phase Incorporation phase 

(a) teacher-student 
relationships 

 

 

 

 

 

 

 

 
 

 

(b) lack of support   

A1: “I had great 
expectations for a 
creative teacher-
student 
relationship”. (1st 
interview)  

  

 

 

 

 

 

 
 

A6: “I have 
expectations for 
academic staff 
support, like in high 
school”. (1st 
interview) 

 

 

A2: “I couldn’t 
understand what was 
written on the 
blackboard”. (1st 
interview)  

A3: “I believe that 
professors and 
students are not 
close enough.... 
Professors take it for 
granted that students 
understand 
mathematics. They 
have many academic 
expectations from 
them. I am afraid to 
ask the professor, if I 
don’t understand 
something, because 
he may think that I 
am stupid”. (2nd 
interview) 

 
A7: “I am negatively 
influenced by the 
absence of help from 
the Student 
Association and the 
absence of a Student 
Learning Advisor”. 
(4th interview) 

 

A4: “I have to say that 
some professors 
guided us well 
enough…I felt better 
asking questions and 
the truth is that I did 
not receive a negative 
treatment from the 
professors”. (3rd 
interview)  

A5: “I was positively 
influenced by the 
guidance of some 
teachers who inspired 
me to listen to them”. 
(4th interview) 

 

 

 

 

 
 
A8: “…my adjustment 
was getting better after 
a long time with great 
mental and spiritual 
effort...”. (4th 
interview) 

 

Table 2: Academic aspects through the three transition phases 

Regarding studying mathematics (mathematical content dimension), Nefeli lost her self-confidence 
at the beginning. As time went by, she confronted studying mathematics as a challenge: to turn her 



disappointment and stress to something powerful and effective. She highlighted two main issues (a) 
the psychological impact of the “unknown subject” and (b) the new way of studying (Table 3). 

Mathematical 
content dimension 

Separation phase Liminal phase Incorporation phase 

(a) the psychological 
impact of the 
“unknown subject” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) the new way of 
studying 

M1: “I thought that I 
was good in 
mathematics because 
of my good school 
grades and because I 
passed the university 
entrance exams also 
achieving good 
grades”. (1st 
interview) 

 

 

 

 

 

 

 

 

 

 
M6: “I experienced a 
big change. In high 
school, we did not 
pay much attention 
to the conceptual 
understanding. 
Teachers told us 
what to study and 
how”. (1st interview) 

M2: “When I started 
studying university 
mathematics, I was 
desperate. I was 
wondering if I had 
taken the right 
decision”. (1st 
interview) 

M3: “I am still 
thinking that maybe 
it wasn’t a good 
decision to study 
mathematics. If I 
could say only one 
thing that I still 
struggle with, this is 
the difficulty of the 
subject. … I felt I 
turned my love to 
mathematics to 
something sick….”. 
(2nd interview) 

 
M7: “I try to change 
the way of studying. 
I try very hard on my 
own to understand. I 
try to deepen more 
in definitions and 
theorems”. (1st 
interview) 

 

M4: “I am in a position 
now to say that the 
more I study 
mathematics the more 
I love mathematics and 
I am happy with my 
choice”. (3rd interview) 

M5: “I feel more 
confident. The exams 
were less demanding 
than I expected. I 
passed the exams with 
good grades”. (4rd 
interview) 

 

 

 

 

 

 

 
M8: “…I realized that 
to do well on the first 
semester exams, I had 
to use my “simple” 
knowledge inductively 
to solve a problem, 
rather than knowing 
many things”. (3rd 
interview) 

Table 3: Mathematical content aspects through the three transition phases 

The results show the dynamics and the connections identified within all dimensions through the three 
transition phases. As we follow Nefeli’s steps, we can see that in the separation phase she had to deal 
with her expectations concerning her social and academic life (S1, S5, A1, A6) and “move away” from 
her former way of living and studying (M1, M6), which is characteristic of this phase. Some of these 



changes affected her almost until the end of the first year (for example the lack of studying support). 
She struggled a lot to achieve necessary changes (a process assigned to the liminal phase), something 
that also affected her self-confidence as a math student (A2, A3, M2, M3, M7). Her great mental and 
emotional effort as well as the support of some higher year students and the influence of some 
inspiring professors (S8, A8, A4, A5) helped her to take the next step. After the first semester exams 
and more clearly near the end of the first year, it looks like she had also managed to find the necessary 
way of studying (M8). Overall it seems that she was close to finding her place within her new 
community, which is a feature of the incorporation phase (S4, M4, M5). Her success in Calculus I and 
II exams (8/10 and 10/10) can be seen as a positive outcome of her efforts. 

Discussion and conclusions 
Regarding our first research question, we found that the rite of passage framework brings out the 
dynamics of all dimensions. We followed Nefeli passing from one well-defined, established and 
accepted position in life to another, which is equally well-defined, established and accepted (Clark & 
Lovric, 2008). Nefeli saw university as an institution and university mathematics as a new world, 
with a new language and new laws that made her feel like a foreigner (Gueudet, 2008). She 
experienced a big change in her social and academic life which affected her studies as noted by 
Hernandez-Martinez et al. (2011). She struggled with the shift from “instrumental understanding” to 
more rational and conceptual understanding (Breen et al, 2013). As Tall (1992) suggested, in order 
to achieve the transition, students should adopt a new way of thinking, a prerequisite also 
acknowledged by Nefeli. Organizing her thoughts and comments within the phases of a rite of 
passage, we could identify some initial steps of the necessary shift to a new “mathematical self-
identity” needed.    

Regarding our second research question, the results of our analysis reveals dynamics and connections 
between all three dimensions (social, academic and mathematical content). To pass from the liminal 
to the incorporation phase concerning the mathematical content, Nefeli had to feel better in the new 
academic environment and also try to deal effectively with her social life. For example, she appears 
to shift from the position that she felt undergoing a total change (in her former well organized -by 
others- life) during the liminal phase, to finding some positive aspects in her new self-disciplined 
university life (“I have the opportunity to manage my time as I want” and “I realized I had to use my 
“simple” knowledge inductively to solve a problem). This is in accordance with Tall’s (1991) position 
that: 

Advanced mathematics, by its very nature, includes concepts which are subtly at variance with 
naïve experience. Such ideas require an immense personal reconstruction to build the cognitive 
apparatus to handle them effectively. It involves a struggle…and a direct confrontation with 
inevitable conflicts, which require resolution and reconstruction (p. 252)  

We consider that our study constitutes a good starting point for exploring specific transition issues 
more extensively. A deeper investigation of the interaction between different aspects of transition 
from high school to university mathematics is needed. The analysis of other students’ interviews 
indicates that the rite of passage lens allows for critical social and academic aspects shaping the 
passage to the new ‘mathematical world’ to be identified. Overall we view studying university 
mathematics as a multidimensional process requiring the reconstruction of mathematical thinking. 



Fulfilling this reconstruction demands a repositioning of the student considering the new social and 
academic community. To this end, the institution should systematically offer students’ support, and 
in a well-organized manner, since the lack of which, as the results indicated, might affect students’ 
self-confidence and successful adjustment to the new environment.  
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“Points”, “slopes” and “derivatives”: Substantiations of narratives 
about tangent line in university mathematics students’ discourses 

Irene Biza 

University of East Anglia, Norwich, UK; i.biza@uea.ac.uk 

This paper reports from a study on first year university mathematics students’ meaning making of 
tangent line, especially in their transition between mathematical contexts: algebraic, geometrical 
and analytical. The analysis draws on the commognitive approach (Sfard, 2008) in order to identify 
characteristics of responses to a questionnaire in which 182 students were asked to explain in 
simple words the tangent line, describe its properties, provide its definition and identify if a drawn 
line is a tangent of a given curve. Findings suggest that students engage with analytical, 
geometrical and algebraic discourses in their substantiations about tangents, sometimes by 
engaging with more than one discourse in the same response or/and across different responses in 
the same script. 

Keywords: Tangent line, mathematical discourse, derivative, narratives, routines. 

Introduction 
Research reports students’ difficulties with their meaning making of the tangent line to a function 
graph. These difficulties have been attributed to students’ encounter with the tangent line in 
different mathematical contexts (e.g. Euclidean geometry, analytic geometry or analysis), 
disconnection between algebraic or analytical approaches (e.g. rate of change, slope, derivative or 
tangent line formula) and graphical approaches (e.g. limiting position of secants, visualisation of 
tangents) and differences between a global perspective (relation of the line and curve as a whole) 
and the local perspective (relation of the line to the curve at a specific point). Most challenging 
cases are: when the tangent has more than one common point with the graph (e.g. f(x)=sinx at π/4) 
or coincides with the graph or a part of it (e.g. when the curve is a straight line); tangency at 
inflection points (e.g. f(x)=x3 at 0); and, points in which the limit of the difference quotient from the 
left and the right are different real numbers (e.g. f(x)=x at 0) or infinity (e.g. f(x)=x at 0) (Biza, 
Christou & Zachariades, 2008; Castela, 1995; Park, 2015; Vinner, 1991). 

In this paper, I draw on my previous research on students’ perspectives about tangent line (Biza et 
al., 2008; Biza & Zachariades, 2010) by analysing not only what lines students recognise as tangent 
or not, but also by considering how they justify their choices. The conjecture I examine here is that 
students use a range of arguments from geometry, algebra and analysis to justify their choices that 
go beyond the correctness or not of these choices. With this analysis, my objective is to gain insight 
into how students make meaning of mathematical objects – in the case of this paper tangents – 
through their communication about them. To this aim, I analyse first year university mathematics 
students’ responses to a questionnaire about tangent line by drawing on the commognitive approach 
(Sfard, 2008). In what follows, I introduce the main tenets of the commognitive approach that I 
employed in the analysis, and the methodology of the study. Then, I present preliminary findings 
from the analysis and I discuss them also in relation to potential implications for teaching. 



Theoretical underpinnings of the study 
According to the commognitive approach (Sfard, 2008) communication about mathematics in 
written or verbal responses is not a window to thinking but an inseparable part of this thinking that 
makes sense only in the context in which this communication takes place. A mathematical discourse 
is defined by four characteristics: word use, visual mediators, narratives and routines. Word use 
includes the use of mathematical terms (e.g., in the context of this study, ‘tangent’, ‘derivative’ or 
‘direction coefficient’) as well as everyday words with a specific meaning within mathematics (such 
as ‘touch’, ‘region’ or ‘point’). Visual mediators include mediators of mathematical meaning (e.g., 
function graphs, diagrams, geometrical figures or symbols) as well as physical objects. Narratives 
include texts, written or spoken, which describe objects and processes as well as relationships 
among those (e.g., definitions, theorems or proofs), and are subject to endorsement, modification or 
rejection according to rules defined by the community (e.g., ‘a tangent line is a line that has one 
common point with a curve’ is an endorsed narrative for tangents in Euclidean geometry but not in 
analysis). Routines include regularly employed and well-defined practices that are used in distinct, 
characteristic ways by the community (such as defining, conjecturing, proving, estimating, 
generalising and abstracting). Sfard elaborates three kinds of routines: deeds, explorations and 
rituals where explorations are categorised into substantiations, recall or constructions (ibid, pp. 
223–245). Recently, there has been increasing interest in discursive approaches and, especially, in 
university mathematics teaching and learning research, discursive approaches are gaining more 
momentum (Nardi, Ryve, Stadler, & Viirman, 2014) in the investigation of university teachers’ 
discursive practices (e.g. Park 2015; Viirman, 2015) and student learning (e.g. Güçler, 2016).  

In this study, students’ responses to a questionnaire are seen as acts of communication and thus part 
of their meaning making about tangent lines. Mathematical routines such as investigating if a line is 
a tangent (see question Q3 in Figure 1) can be explorations that include recall of previously 
endorsed narratives, substantiations of narratives about why a line is (or is not) tangent or 
constructions of new objects such as formulae and graphs. However, there are differences in the 
mathematical discourses about tangency in analysis, geometry and algebra. For example, in 
Euclidean geometry, whether a line is tangent or not depends on the number of common points and 
the relative position between the line and the curve (geometrical routines) because a tangent line to 
a circle has one common point and keeps the circle to one side (geometrical narratives). In analysis, 
tangency is checked locally (analytical routine) and is defined by the derivative at a point 
(analytical endorsed narratives) which is the slope of the line (algebraic narrative). In algebra, the 
tangent line will be justified through calculations (algebraic routine) of the slope and defined 
through its equation or the vector that gives its direction (algebraic narratives). Identifying how 
students’ responses to a questionnaire engage with these discourses is the focus of this paper. 

Methodology 
Data reported in this paper were collected from a questionnaire administered to 182 first year 
university students (97 female) from mathematics departments in Greek universities. All 
participants had been taught about the tangent line in Euclidean and analytic geometry, and in 
elementary analysis courses in Years 10, 11 and 12, but not yet at university as the questionnaire 
was administered at the beginning of their first year. The questionnaire included tasks (see a sample 
of questions from the questionnaire in Figure 1) in which the students were asked to explain in their 



own words the tangent line (Q1); to describe properties of it (Q2); to identify if a drawn line is a 
tangent line of a given curve (Q3); to construct the tangent line, if it exists, of a given curve through 
a specific point on the curve or outside the graph (Q4 and Q5); to provide definitions (Q6), to write 
the formula, and to apply the formula in specific cases (Q7 and Q8). In questions Q3, Q4 and Q5 
only the graph was provided and no formula of the corresponding curve was given; students were 
asked to identify or construct the tangents based on the graphs and justify their choices. The 
proposed curves were chosen to reflect students’ common difficulties with tangent lines identified 
by previous research (Biza et al., 2008; Castela, 1995; Vinner, 1991). For example, the 
corresponding line: had more than one common point with the curve (e.g., in Figure 1, Q3.b and 
Q3.c in comparison to Q3.a challenge the geometrical routine of checking the number of common 
points and the relative position between the line and the curve) or passed through an inflection point 
(e.g., in Figure 1, Q3.d and Q3.e challenge the geometrical routine of the relative position between 
the line and the curve) – for more about the questionnaire design see Biza et al. (2008).  

 

Q3: Which of the lines that are drawn in the following figures are tangent lines of the 
corresponding graph at point A? Justify your answers. 

     
Q3.a Q3.b Q3.c Q3.d Q3.e 

Q6: What is the definition of the tangent line of a function graph at its point A? 
 
 
 
 
 
 

 
 

Q1: Explain, in simple words, what you are thinking when you hear the term “tangent line”. 
Q2: Write as many properties as you can think of about the relationship between a curve and 

its tangent line at a point A. 

 
Figure 1: Questionnaire sample 

In earlier analysis (Biza & Zachariades, 2010), student choices in questions Q3, Q4, Q5, Q7 and Q8 
were characterised according to their correctness and analysed quantitatively. This analysis 
suggested a classification of students regarding their perspectives on tangent line and its relation 
with the corresponding curve into three groups with analytical local perspectives (closer to the 
tangent line in the context of analysis – 25.8%); geometrical global perspectives (more relevant to 
the tangent line in the context of geometry – 17.6%); intermediate perspectives between the 
analytical local and the geometrical global perspectives (56.6%). Although this classification 
indicated a spectrum of students’ perspectives about tangency, it does not grasp the subtlety of these 
perspectives as they were evident in students’ choices and justifications of these choices. To this 
aim, student responses to questions Q1, Q2 and Q6 and their justifications in questions Q3, Q4 and 
Q5 were analysed qualitatively. Part of this analysis focuses on the mathematical discourses 
students engaged in in their responses (analytical, geometrical and algebraic) with specific emphasis 
on the words used, routines and narratives, substantiation of these narratives, how this discourse is 
related to their choices (correct or not) in the questionnaire and the consistency of student responses 
across the questionnaire. This paper discusses preliminary findings from the 182 student responses 
to the items: Q1, Q2, Q3a-e and Q6 presented in Figure 1. 



Student justifications on why the sketched line is a tangent or not 
Justifications students offered in order to accept or reject a tangent line when it does not have any 
other common point and keeps the graph at the same semi-plane (Q3.a) or when it has other 
common points sketched (Q3.c) or not (Q3.b) are summarised in Table 1. 

Justification Script Example 
Rejection of the line as a tangent  
Common points between line and 
curve, global view 

“No [it is not a tangent], the line has 2 points in common with the 
function graph” 

Relation of the line and the curve, 
global view 

“No it is not a tangent, although it touches1 the function graph at the 
point A, it cuts [the graph] at another point” 

Relative position of the line and the 
curve, global view 

“[The line] splits the curve in two semi-planes”  

Only local acceptance of the 
tangency 

“Not [a tangent] in general […] in a small interval (δ>0 (x-δ, x+δ) it 
is [tangent]” 

Derivative / differentiability “Although the function is differentiable at A and thus it has a 
tangent, the extension of the [line] ε that goes through A has another 
common point with the function and as a result it is not a tangent” 

Acceptance of the line as a tangent  
Common points between line and 
curve, local view 

“[It is a tangent, b]ecause if we consider a small region (κ, γ) around 
the point A where [the line] ε is tangent we can see that [the line] ε 
does not touch any other point” 

Relation of the line and the curve, 
local view 

“Yes [it is tangent] because it touches exactly at [the point] A and it 
does not cut it [the graph]” 

Relative position of the line and the 
curve, local view 

“The part of the function graph which is close to the point A is 
located at the same side of the line ε” 

Common points between line and 
curve, global view 

“It [the line] has one common point with the curve” 

Relative position of the line and the 
curve, global view 

“f(x)>(ε)” 

Slope of the line “Yes, the line ε is tangent at A, the slope equals to the direction 
coefficient of the line”2 

Derivative / differentiability “It is [tangent] because it has slope [equals to] the derivative of the 
function at this point”  

Opposite rays “The rays ε1, ε2 which are tangents at A are opposite” 
Other “There is only one tangent at the point A” or “There is a limit which 

is the same from the left and the right side or “ε: it is tangent, the 
point A is defined and belongs to the domain of the graph” 

Table 1: Student choice justifications to questions Q3.a, Q3.b and Q3.c  
 

                                                 
1 Data have been translated from Greek to English. In Greek, the noun tangent [line] (εφαπτομένη [ευθεία]) and verbs 
such as being tangent, abut, touch (εφάπτεται) have the same origin. In Greek, the excerpt: “No, it is not a tangent 
because although it touches the graph …” sounds contradictory (“Όχι, δεν είναι εφαπτομένη γιατί αν και εφάπτεται στη 
γρ. παράσταση …”), one explanation is that the noun “tangent” draws on the mathematical discourse, whereas the verb 
“touches” draws on the everyday discourse.  

2 In the Greek curriculum, the “direction coefficient” is the coefficient m in y=mx+b, that indicates the slope of a line. 



Justifications students offered in order to accept or reject a tangent line when the tangency point is 
an inflection point (Q3.d and Q3.e) are summarised in Table 2. 

Justification Script Example 
Rejection of the line as a tangent  
Common points between line and 
curve, global view 

“No [it is not a tangent], because the curve and the line cut each 
other in several points” 

Relation of the line and the curve, 
global view 

“It is not [a tangent] because [the line] penetrates the curve”  

Relative position of the line and the 
curve, global or local view 

“It [the line] intersects the function graph by going to its both 
sides” 

Inflection point / concavity change “It [the line] is not tangent because A is inflection point” 
Change of function formula “Because the formula of the graph changes” 
Derivative / differentiability “The graph does not have tangent at [the point] A because the 

graph is an image of a function f and A(x0,f(x0)), f΄(x)=κ for x<x0 
and f΄(x)=λ for x>x0 κ≠λ close to x0” 

Solution of the corresponding system 
of simultaneous equations (line and 
curve) 

“[The line] ε is not tangent because the system line – curve has 
one solution and not a double solution” 

Other “more than 1 lines can be sketched through point A with at least 
one common point with the graph” or “if we consider the figure as 
two figures with A as the unique common point the line ε is a 
tangent of the two figures. If we consider the figure as a whole the 
[line] is not a tangent of this figure» 

Acceptance of the line as a tangent  
Common points between line and 
curve, local view 

 “The ε has only point in common with Cf in the region (xΑ-κ, 
xΑ+κ), κ>0 and very small” 

Common points between line and 
curve, global view 

“The line ε is tangent because it has one common point with the 
curve and the concavity of the graph changes at this point” (these 
participants rejected the line when it had more than one points in 
common) 

Opposite rays “It is [tangent] but for the right part of the function after A, tangent 
is the right part of the tangent and respectively for the left [part]” 

Slope of the line “Yes, the line ε is tangent at A, the slope equals to the direction 
coefficient of the line” 

Derivative / differentiability “derivative equals to the slope of the tangent” 
Inflection point / concavity change “It is [tangent] and the [point] A is inflection point” 
Other “The ε is tangent at the point A especially internal” 

Table 2: Student choice justifications to questions Q3.d and Q3.e 
In both set of questions students engage with analytical, geometrical or algebraic discourses. They 
use narratives such as derivative, differentiability, intervals, regions close to the tangency point, 
inflection point or concavity (analytical discourse); common points, relative position of curves, 
same-plane or ray (geometrical discourse); and, slope or system of simultaneous equations 
(algebraic discourse). Routines include checking for common points or for the relative position 
between line and curve (geometrical discourse) or for derivatives (analytical discourse) or slopes 
(algebraic discourse). Routines are applied locally around the point A (analytical discourse) or 
globally for the whole figure (geometrical discourse). Indicatively, of the justifications offered in 
Q3.c, 83.3% were geometrical (either global or local); 12.1% analytical; and, 4.6% a mixture of 
analytical and geometrical/algebraic. Whereas, in Q3.d, 70% were geometrical (either global or 
local); 2% algebraic; 22% analytical; and, 6% a mixture of geometrical and analytic/algebraic. 



Similarly, the word use includes verbal descriptions as well as terms and symbols from geometry, 
analysis and algebra. The relation of the line and the curve especially at the point A are described in 
a range of ways, not necessarily with consistent (in terms of the different discourses) meaning. For 
example, in questions Q3.d and Q3.e where point A is an inflection point the line intersects (τέμνει); 
pierces (τρυπάει); cuts (κόβει); crosses (διαπερνά) or bisects (διχοτομεί). The same word can be 
used with a range of meanings in different scripts or across the same script. For example, 
“intersection” may mean the common point regardless of the position of the curve in relation to the 
line, whereas in other cases (in the same or different scripts) it means the split of the curve into 
parts. The analysis aimed to identify evidence not only regarding the common points but also 
regarding the overall relation of the line and the curve and their relative position. These subtle 
differences are not always evident in student responses. 

Furthermore, the analysis indicated the use of endorsed narratives from more than one discourse in 
the same response or/and across responses within the same script. For example, student S[149] who 
performed well in all questionnaire items, writes in Q2:  

f΄(xA)=λ the direction coefficient. 
A

A

xxA xx
xfxfxf

A 






)()(lim)('  [analytical narrative]. At this point 

it [the line] has one “double” [his emphasis] common point with Cf [algebraic narrative]. It can 
have other common points with Cf, x≠ xA [geometrical narrative] 

and he sketches the graph in Figure 2a. In Q3.b and Q3.c he accepts the line because “it satisfies all 
the conditions” and in Q3.d he writes: “The [line] ε is [tangent] because f is differentiable at xA and 
ε has one (double) common point with Cf in the region (xA-κ, xA+κ), κ>0 and very small” [a mixture 
of analytical and algebraic endorsed narratives applied locally]. 

 

 206

0+x0)». Ενώ στην q3.14: «∆εν είναι γιατί στο διάστηµα (x-δ1, x+δ2) η ε έχει παραπάνω από 

ένα κοινό σηµείο µε την καµπύλη». Για τις ασκήσεις µε σηµεία καµπής ανέτρεξε στο 

επιχείρηµα της τοµής και όχι επαφής γράφοντας στην q3.6 ότι «η ε δεν είναι εφαπτοµένη 

γιατί τέµνει την καµπύλη και δεν εφάπτεται σε αυτή».  

Ο φοιτητής [123] έγραψε στην q1: «Εφαπτόµενη ευθεία είναι µια ευθεία που 

εφάπτεται σε ένα σηµείο Α µιας γραφικής παράστασης και σε µία µικρή περιοχή γύρω από 

αυτό δεν τέµνει την γραφική παράσταση» και στην q2: «Η κλίση της εφαπτοµένης στο 

σηµείο Α(x0,f(x0)) ισούται µε f΄(x0)». Στις q3.1 και q3.2 έδωσε την απάντηση που φαίνεται 

στην Εικόνα 6.5. Στην q3.6 όµως έγραψε: «ε - δεν είναι γιατί διχοτοµεί την f».  

 

Εικόνα 6.5. Άσκηση q3.1, φοιτητής [123] 

O φοιτητής [254] έγραψε στις q3.1, q3.2 και q3.3: «Είναι η ε εφαπτοµένη καθώς 

τέµνει τη γραφ. παράσταση σ'ένα µόνο σηµείο σε µια περιοχή του πεδίου ορισµού της» και 

σχεδίασε και αυτός περιοχή του σηµείου Α στο αντίστοιχο σχήµα. Σχετικά µε τις περιπτώσεις 

σηµείων καµπής, στην ερώτηση q3.6 έγραψε: «Όπως φαίνεται στο σχήµα η ε δεν είναι 

εφαπτοµένη χωρίζει τη γραφ. παράσταση» ενώ στην q3.10 θεωρεί ότι «η ε δεν είναι 

εφαπτοµένη στο Α γιατί έχει άπειρα σηµεία µε τη γραφ. παράσταση (όπως φαίνεται στο 

σχήµα)». Πάντως είτε µε το ένα είτε µε το άλλο επιχείρηµα δεν µπορεί να δεχτεί 

εφαπτόµενες στις περιπτώσεις των σηµείων καµπής. Στο σηµείο αυτό θα µπορούσαµε να 

δούµε και µια παραλλαγή του ΠΟ6 που θα ήταν: Εφαπτόµενη ευθεία µίας καµπύλης είναι η 

 
2a: S[149]’s response to Q2 2b: S[123]’s response to Q3.a 

Figure 2: Student responses 
Student S[123], on the other hand, who had difficulties with accepting tangency at an inflection 
point writes in question Q1: “The tangent line is a line that touches a graph at a point A and in a 
small area around it [the point] it does not intersect the graph” [geometrical narratives applied 
locally]. Then, in question Q2 he writes: “The slope of the tangent at the point A=(x0, f(x0)) is equal 
to f΄(x0)” [analytical narrative]. In Q3.a and Q3.b he accepts the line and justifies the choice: 
“Because if we consider a small interval (κ, γ) around the point A where [the line] ε is tangent we 
can see that [the line] ε does not touch any other point” (Figure 2b) [geometrical narratives applied 
locally]. In Q3.d he responds “ε – it is not [tangent] because it bisects f” [geometrical narrative].  

Another student (S[261]), who also had problems with tangency at inflection points, writes in Q1: 
“Gradient (λ), the tangency point, the formula of the line, f(x)=λ=(y2-y1)/(x2-x1), M(x,y), y2-
y1=f(x)(x2-x1)” [algebraic narratives]. Then in Q2 she responds: “The [point] A is a tangency point 



and belongs to the figure. It satisfies the equation of the tangent as well as of the figure. It is λ=tanω 
(the angle between the figure and x'x)” [algebraic narratives]. In Q3.a and Q3.b she accepts the line 
and justifies the choice: “(ε) is tangent at A [the line is] at the same side of the graph” [geometrical 
narratives applied globally]. In Q3.c she writes “(ε) is tangent at A only. There [the line is] at the 
same side of the graph” [geometrical narratives applied locally]. I have highlighted “there” in her 
response as an indication of the focus at the area around point A. In question Q3.d she responds: 
“(ε) not tangent. It intersects with the graph going through both its sides” [geometrical narratives 
applied locally]. Finally, in Q6 she responds by using mainly geometrical narratives with 
symbolisation from analysis:  

The tangent line of a function graph at a tangency point A=(x0, f(x0), that belongs to the function 
and the tangent, is a line that intersects the function without going from its one side to the other 
but remains at the same side of the function with only one common point the [point] A. [her 
emphasis] 

Discussion 
This paper reports on my first attempt to draw on the commognitive approach to analyse 182 first 
year university mathematics students’ justifications about tangent line. My initial conjecture was 
that students engage with different discourses (geometrical, algebraic or analytical) even for the 
substantiation of similar choices regarding the tangent line. Although the findings presented in this 
paper cover only a small slice of the data, in terms of questionnaire items, I would say that there is 
evidence supporting my conjecture. Students engage with analytical, geometrical or algebraic 
discourses in terms of the endorsed narratives and routines I identified in their responses. Also, the 
word use includes verbal descriptions as well as terms and symbols from geometry, analysis and 
algebra. Additionally, the same justification may engage with more than one discourse or/and 
different discourses across the script. Also, it seems that in several responses there are arguments 
that use analytical endorsed narratives (derivative etc.) applied through geometrical routines (check 
the tangency globally). I note here that my analysis considers students’ responses in relation to the 
discourses of the mathematical community in different mathematical areas and not in relation to 
their correctness. Use of analytical narratives, for example, do not necessarily ‘secure’ the 
correctness of the response and, the other way around, a correct choice does not necessarily draw on 
a coherent and consistent justification. Furthermore, the type of the task may also affect the type of 
discourse students engage in. For example, a graphical question (e.g. sketch the tangent line) may 
trigger geometrical discourses whereas an algebraic question (e.g. calculate the formula) may 
trigger analytical or algebraic ones. The reported findings are indicative and further investigation is 
in process also in relation to inconsistencies within a response with potential commognitive 
conflicts between geometric, algebraic and analytical discourses of tangent lines as well as to the 
extent student responses are mediated by the task formation.   

This work contributes to our insight into what students bring with them when they join post-
secondary mathematics courses and I credit to the commognitive approach the deepening of this 
insight in the case of students’ meaning making of tangency. I envisage teaching implications of the 
outcomes of this analysis in calculus or analysis introductory courses. For example, the observed 
mismatch between lecturers’ and students’ discourses (Park, 2015) would be dealt by explicitly 
addressing commognitive conflicts with the use of appropriately selected examples – see (Biza, 



2011) about the role of examples in student meaning making of tangency. 
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Lecturers’ professional activity is, at least, twofold: research and teaching. However, their 
professional development is generally mostly based on research achievements and little effort is 
made to empower lecturers overcome the difficulties experienced during their teaching activities. 
We postulate that didactics of mathematics can be a powerful tool to help lecturers question and 
reorganize the knowledge to be taught, and to make them aware of the conditions enabling and the 
constraints hindering new modalities of teaching mathematics, more based on its use as a 
modelling tool to approach open questions. We present in this paper a first edition of a professional 
development course for lecturers designed for and experienced in an Engineering School in 
Barcelona. The results obtained are then used for a subsequent course redesign to be conducted 
with lecturers of a similar university school. 

Keywords: Lecturer education, mathematical modelling, Anthropological Theory of the Didactic 

Introduction 
Traditionally, lecturers’ development courses have not been considered relevant by research in 
teacher education. This is a normal phenomenon considering universities’ criteria when hiring 
lecturers and evaluating those already lecturing: mainly research activities and merits are 
considered. In contrast, lecturers’ didactic or pedagogical education is usually ignored or, at most, 
considered as a positive complement. The absence of regular lecturers’ teaching training is a 
worldwide phenomenon with few – and not always successful – exceptions. In the United Kingdom, 
the Higher Education Academy (HEA), the UK Professional Standards Framework (UKPSF) and its 
accreditation process made a first attempt to incorporate lecturer training as a requirement to teach 
in UK universities (Department for Education and Skills, 2003). Nevertheless, this program that was 
thought to be central in lecturers’ professional development has finished as a volunteer training and 
accreditation scheme for both individuals and institutions involved in teaching at higher education 
(The Higher Education Academy, 2011). 

We consider that, as long as their activity has a clear twofold character based on research and 
teaching, in addition to the traditional training in research (Master’s Degree and PhD program), 
lecturers also need an explicit pedagogical and didactic education. In fact, universities are among 
the sole existing teaching institutions where teachers are not required an explicit training course on 
teaching and learning processes. We consider that this crucial difference should not be accepted as a 
given: the conditions of existence of a university teacher education course have to be studied, 
especially with the possibility to base it on contents emerging from research in didactics. 

In order to have a first set of empirical data to evaluate the conditions of existence of such a course 
for lecturers at university level we designed a course for 14 lecturers of an Engineering School in 



Barcelona (www.euss.es). Lecturers participating in the course teach Analysis (3), Strength of 
Materials (4), Physics (2), Electronical Technology (2) and Informatics (2). We took as starting 
point the frame of “study and research paths for teacher education” (SRP-TE) based on recent 
investigations in the Anthropological Theory of the Didactic (ATD) for pre-service and in-service 
secondary teachers. The lecturers’ course was experienced in February 2016. We present the design 
principles and results of this first edition, as well as the subsequent re-design for new editions, to 
overcome the experienced difficulties and take advantage of its potential strengths.  

University teacher education: A field to be explored in ATD  
Courses for pre- and in-service lecturer professional development are an unexplored field in 
research. There exists very little literature regarding this subject and the few experiences reported 
involve only general pedagogical contents not taking into account the very nature of the knowledge 
involved in the teaching and learning processes. It is important to highlight that no paper on this 
field was presented at the last CERME9 (neither at TWG 14, University Mathematics Education; or 
at TWGs 18, 19 and 20, Teachers’ Knowledge, Practices and Education), or at groups regarding 
teacher training or university teaching at the last ICME 13, except for a preliminary version of this 
paper (Florensa, Bosch, & Gascón, 2016b). The structure of ICME13 Topic Study Groups about 
teacher education is especially revealing at this respect: there were four groups on teacher education, 
two (in and pre-service) centered on the elementary level and two on the secondary level, but none 
on the tertiary level. At the recent conferences on Mathematics Education in North America, only 
Ellis presented research on teacher assistants training (Ellis, 2014a, 2014b). 

Regarding the presence of papers in journals about lecturers’ education we have found very little 
production: only two papers (Guasch, Alvarez, & Espasa, 2010; Postareff, Lindblom-Ylänne, & 
Nevgi, 2008) and the Handbook on Teaching and Learning in Higher Education (Fry, Ketteridge & 
Marshall, 1999). We have developed a research from the initial year of publication to the end of 
2015 in these journals: Educational Studies in Mathematics, Higher Education, Journal of 
Mathematics Teacher Education, Mathematical Thinking and Learning, Journal of Teacher 
Education, Recherches en Didactique des Mathématiques, REDIMAT, RELIME. 

As said before, we consider that research in didactics can be used as the basis for courses on lecturer 
education regarding teaching and learning processes. Our starting hypothesis is that results emerging 
form secondary teacher education can be used at this level. Our results will be used to partially 
confirm this assumption. The Solid Findings in Mathematics Education on Teacher Knowledge 
(Education Committee of the EMS, 2012) state explicitly that “content knowledge” (CK) is 
necessary but not sufficient for teaching. The report of the Education Committee highlights as 
crucial notions to be developed in teacher education the “pedagogical content knowledge” (PCK) 
(Shulman, 1987) and the different dimensions of the “mathematical knowledge for teaching” 
(MKT) (Ball, Thames, & Phelps, 2008). Both approaches clearly go further than the traditional 
conception of teaching as transmission of knowledge and consequently ask for changes in teacher 
education concerning the way mathematical knowledge should be approached.  

We use the Anthropological Theory of the Didactic (ATD) as a main framework for the design, 
experience and analysis of the course. The last investigations on teacher education in ATD show 
that the use of notions such as PCK and MKT do not ensure researchers/educators to include a 



questioning of the nature, selection and organization of the contents to be taught (Ruiz-Olarría, 
2015). Under the ATD approach, the role of teacher education is not limited to enrich teachers’ 
pedagogical performance, but also to provide them with tools to contest the so-called dominant 
epistemology and emancipate from it when designing study processes (Gascón, 2014).  

This questioning and reorganization of the knowledge to be taught is not spontaneous for teachers 
(nor for lecturers) because they tend to assume the institutional dominant epistemology as their own. 
The way proposed by ATD research to locate it at the core of teacher educational processes has very 
much evolved in this last decade. It started with a first experience in secondary teacher education 
based on the “questions of the week” (Cirade, 2006) and nowadays takes the form of an inquiry-
based device called “study and research path for teacher education” (SRP-TE), which starts from a 
problematic question appearing in the field of the teacher profession and leads to the search, 
development and analysis of alternative teaching proposals (Barquero, Bosch, & Romo, 2015, 
2016). The main idea of the SRP-TE is to generate a practical and theoretical questioning of the 
school activities linked to the teacher professional initial question. It is structured in five modules:  

 M0: Formulation and first exploration of the generating question Q0 of the SRP-TE, for instance 
one of the kind: “How to teach (a specific content)?” which is to be partially answered at the end 
of the process.  

 M1: Living a “study and research path” (SRP) as a student. The main goal is to make teachers 
encounter an unfamiliar inquiry-based activity related to Q0 that could exist in a normal 
classroom of the considered educational level. 

 M2: Adaptation of the lived SRP to be experienced in a real school situation. During this 
adaptation, many of the institutional restrictions teachers should face are expected to show up. 
They can thus be afterwards analyzed from an epistemological, didactic and ecological 
perspective (what can “live” and under what conditions in a given educational setting). 

 M3: Experimentation, management and carrying out of in vivo and a posteriori analyses of the 
adapted teaching proposal. 

 M4: Joint elaboration of a critical analysis of traditional teaching practices and the possibilities 
(and limitations) of introducing new proposals, as well as generation of a partial answer to Q0. 

During the development of SRPs-TE for secondary school teachers, an epistemological tool has 
been adapted and developed to facilitate the analysis of the SRP and the questioning of school 
contents: what we call “question-answer maps”. Following other authors, we consider these maps, 
which are used as a key tool in ATD research, as a powerful instrument for teacher education: 

We hypothesize that such a representation is sufficiently close to teachers’ concerns, and 
also captures such essential parts of a didactic design, that one could use it as a tool for 
collaboration and communication with and among teachers, regarding concrete teaching 
designs (Winsløw, Matheron, & Mercier, 2013, p. 281) 

Some preliminary and promising experiences exist in using these maps in teacher training courses to 
describe the dynamic and collective aspects of mathematical activity (Barquero, Bosch, & Romo, 
2016; Florensa, Bosch, & Gascón, 2016a; Jessen, 2014). The work with the maps seem to be useful 
for teachers in order to describe knowledge in inquiry activities and to act as a counterpoint of the 
official curricular organization of contents. 



Research questions  
The work presented in this paper is considered as an exploratory design (Singh, 2007) to obtain and 
analyze a first set of data from the first implemented course and to redesign it to be applied in 
another institution. The specific research questions that will be studied are: 

RQ1. The role played by question-answer maps in teacher education: Do they help lecturers 
describe, analyze and design inquiry and modelling processes and the involved knowledge? 

RQ2.  Does the course empower lecturers to identify the dynamic and collective nature of the 
lived SRP in contrast to the static, individual and compartmentalized dominant conception 
of knowledge?  

Course description  
The engineering school where the course was implemented keeps a four-hour time slope with no 
teaching for all lecturers all Wednesdays: they use this time for professional development, meetings, 
pedagogical courses or activities. In fact, it is a Salesian university with a special concern about 
teaching and learning processes, as well as students’ personal evolution. The course was structured 
in six two-hour sessions during three weeks, and the central question to be partially answered was: 
“Could modelling be the main motivation of my subject? Which conditions enable and which 
constraints hinder this modelling activity?”  

Because of the time restriction, the five-module structure of the SRP-TE had to be adapted. The six 
sessions appeared to us (designers and course leaders) as a short course. However, they finally 
seemed to be enough for the work planned. Of course the true work is to be carried out afterwards, 
when lecturers decide to introduce some new proposals in their subject based in the work initiated at 
the course. During this application phase teachers implementing SRPs asked for help to the 
researchers-educators, thus extending the real duration. We planned the course as follows: 

 1st session: Explicitly state the professional question Q0 and shortly present the ATD 
framework including the notions of praxeology, Herbartian schema and media-milieu 
dialectics, topogenesis, mesogenesis and chronogenesis (Barquero & Bosch, 2013). They 
seemed to be well understood and some of them were mobilized during the 4th session.  

 2nd and 3rd sessions: A SRP was proposed to be carried out in groups of up to three lecturers. 
“Taking into account the incidence index of the last 9 months of a dengue outbreak: could 
you forecast the incidence index for the next 3 months (already known)?” (Figure 1)  

 4th session: Lecturers generated a question-answer map of the lived SRP including aspects 
such as media-milieu dialectics. One of the generated maps can be seen in Figure 2. 

 5th session: Lecturers are invited to create new small groups with the colleagues teaching the 
same subject. They are asked to design a SRP by choosing a generating question in their 
field trying to overcome some observed didactic facts such as the absence of raison d’être, 
the disconnections of topics or the poverty of the experimental work, among others.  

 6th session: Sharing some possible teaching proposals and conclusions of the course. 



 

Figure 1: Data used for the lived SRP 

 

Figure 2: Question – answer map of one of the groups  

In the introduction to the 5th session, lecturers were invited to identify didactic facts that they would 
like to overcome through the new didactic proposal. The goal was not to implement the inquiry by 
itself, but to identify how the dominant epistemology in the institution is related to these 
problematic phenomena and roughly propose new possible epistemological and didactic 
organizations to face them. The question-answer maps were the tool provided to lecturers to carry 
out this work. During the implementation of the course, some of the contents that we initially 
considered as difficult had an easier reception than expected (especially the notion of media-milieu 
dialectics) and, on the contrary, some basic notions were difficult to share with the participants, for 
instance the description of contents in terms of questions instead of topics. 

In order to obtain data to evaluate the course, all the questions-answer maps of all groups, both from 
the analysis of the modelling lived activity and from the a priori design of the SRP, were collected. 
We have also obtained data from a final survey filled in by all lecturers attending the course. The 
survey was structured in three main blocks. The first block addressed general aspects of the course 
such as duration, balance between individual and team work, time structure, etc. The second block 
asked about content-related aspects of the course like the work developed with question-answer 



maps and with the media-milieu dialectics. Finally, the survey asked the lecturers about the possible 
consequences of the course on their teaching activities: changes in the conception of knowledge, 
dynamics and collective aspects of activities, and availability of new designing and evaluating tools.  

Results and discussion 
The question-answer maps regarding the dengue outbreak SRP shew up how the inquiry was 
capable to connect fields usually disconnected in the traditional curricular organization of contents. 
For example, the map of Figure 2 reveals that functions, differential equations, regression, average 
rate of change and epidemiological notions are deeply interrelated. An interesting fact emerged 
when analyzing different maps from different working groups: depending on their lecturing field, 
they approached the problem quite differently. For instance, Mathematics lecturers’ work was 
centered on finding a mathematical model fitting the data, whereas Chemistry lecturers’ work 
evolved around the epidemiological data, the notion of “incidence index” and searching scholar 
literature regarding other similar outbreaks. The different teaching fields of lecturers permitted to 
share different visions of the knowledge at stake in the proposed SRP. The use of the maps was a 
key factor to describe this connection of fields usually lacking in school institutions.  

The second part of the survey about the content of the course reveals that the work developed by 
lecturers with the question-answer maps and the media-milieu dialectics was difficult for them 
(more than 70% of the teachers found it hard or very hard) but at the same time they identified this 
work as “easily applicable to design and manage new teaching and learning processes” (more than 
70% of the lecturers found contents and tools of the course easy to use and to implement). 
Regarding the consequences of the course on the lecturers’ teaching practices, the survey showed 
that it helped (more than 90% totally agreed) to change their previous conception of knowledge 
towards a dynamical-collective conception in terms of modelling activities.  

The third source of evidence are the maps generated by the lecturers as a priori analysis for an SRP 
to be experienced in their subjects. In total, six maps where generated by lecturers, all of them with 
a generating question and making explicit the didactic facts intended to be overcome. Two of these 
a priori SRP designs where experienced during the spring semester, starting just after the lecturers’ 
course. These two emerging SRP have been experienced and managed only by lecturers that 
followed the course and did not have any other didactic experience or training. This fact is 
especially interesting because with the analysis of these experiences a first set of data can be 
collected regarding the conditions of existence of SRPs at the university level led by lecturers with 
almost no direct connection with research in didactics. This first experience in lecturer education 
seem to preliminary validate Winsløw et al. (2013) hypothesis about the use of question-answer 
maps in teacher education and confirm Barquero et al. (2016) results. Lecturers have worked with 
the maps and have used them to both model a lived study process and a priori analyze their own 
designed SRP. Moreover, the maps have been used to compare the knowledge mobilized during a 
specific SRP and the school knowledge. The Q-A duplets appearing in the map were used as the 
elements to contrast with curricular requirements.  

The course also appears as a good tool to empower lecturers to question and put under vigilance the 
dominant epistemology at the university. It produced a discussion (and thus enabled a reflection) on 
what knowledge has to be taught at the university and how the modelling activity with its dynamics 



and collective aspects could be considered. Regarding the conditions of existence of a lecturer 
course based on the ATD, it seems that the described conditions make it viable and that some 
lecturers have taken it as an opportunity to redesign their teaching and learning activities. However, 
an important aspect to take into account is the fact that one of the leaders of the course is also a 
lecturer in the considered Engineer School, what certainly affected the good predisposition of the 
attendees due to his personal leadership in the institution. This particular condition has to be 
considered in new editions of the course and the question of its reproducibility remains open. 
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High school teachers’ choices concerning the teaching of real 
numbers: A case study 
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The goal of this paper is to present a case study in which a high school teacher with PhD in 
Mathematics was asked to answer a questionnaire concerning the teaching and learning of real 
numbers and then he was interviewed in order to investigate the interplay between his resources, 
goals and orientations in the decision-making process. As a main result, I show how some 
orientations concerning the epistemology of real numbers, the goals of mathematics education in the 
high school and the students’ conceptions and difficulties lead him to choose a very intuitive approach 
to the teaching of real numbers and to leave aside all his expertise as a mathematician. 
Keywords: Real numbers, teaching, high school, teachers, tertiary education. 

Epistemological issues concerning real numbers and continuum  
The relation between the continuum and the real numbers is often considered as something intuitive 
and to be taken for granted (Lakoff & Nunez, 2000), but as it is well known to the experts in history 
and epistemology of mathematics, this is one of the most complex issues to face dealing with the 
foundations of mathematics. This topic deals indeed with very relevant challenges. I will just 
highlight some aspects that are relevant to characterize the orientations of a teacher concerning the 
epistemology of real numbers and continuum. In Continuity and irrational numbers, Dedekind (1872, 
transl. 1901) stated: “In discussing the notion of the approach of a variable magnitude to a fixed 
limiting value, and especially in proving the theorem that every magnitude which grows continually, 
but not beyond all limits, must certainly approach a limiting value, I had recourse to geometric 
evidences. [...] For myself this feeling of dissatisfaction was so overpowering that I made the fixed 
resolve to keep meditating on the question till I should find a purely arithmetic and perfectly rigorous 
foundation for the principles of infinitesimal analysis. The statement is so frequently made that the 
differential calculus deals with continuous magnitude, and yet an explanation of this continuity is 
nowhere given; even the most rigorous expositions of the differential calculus [...] depend upon 
theorems which are never established in a purely arithmetic manner” (p. 1-2). Dedekind came to the 
construction of R as the field of the rational cuts, stressing that the new numbers - irrationals - were 
creations necessary to identify the points of a line and the numbers and making explicit that the 
assumption of the property of continuity of the line is nothing else than an axiom. In this paper, I just 
report Dedekind’s approach, since it’s particularly relevant to analyse the case study I present here; 
for a complete dissertation see Bell (2014). 

  Challenges with teaching and learning of real numbers and continuum  
The topic of teaching and learning real numbers and continuum in the high school and the university 
have been investigated in several countries and nowadays a lot of results are available; in particular, 
the researches concern the difficulties of high school and university students and prospective teachers. 
In this paper, I report just some examples, but the literature is very rich (for a complete review see 
Voskoglou & Kosyvas, 2012). First of all, cognitive issues "resonate" with the very relevant 
epistemological issues: space-temporal intuitions and metaphors (Bolzano, 1817), and the formal 



approach, based on static and rigorous should be clarified by teachers. Indeed, according to Lakoff 
and Nunez (2000), the identification between objects such as lines, points numbers and sequences, 
that is very usual at school and in the University, hide the intrinsically metaphorical nature of the 
relation between natural continuity and “formal continuity”. The main students’ difficulties reported 
in several studies concern: irrational numbers; infinity; points of a line; density and continuity; and, 
number line. Students from high school to university are often not able to define correctly the concepts 
of rational and irrational numbers, like if rational numbers in general remains isolated from the wider 
class of real numbers (ibid., 2012). In particular, students’ ideas concerning the relation between 
0.999… and 1 (Tall & Schwarzenberger, 1978) and, in general, concerning the meaning and the use 
of decimal representations (Margolinas, 1988) are usually very ingenuous and seem to be product 
rather of a spontaneous generalization from finite to infinite numbers than of a structured learning 
path. Tall (1980) observed a recurrent phenomenon, that was defined dependence: there are more 
points in a longer segment than in a shorter one, based on the generalization to infinite cases of what 
has been learnt of the biunivocal correspondence of finite cases. Tall (1980) also observed among the 
students an intuitive model of the line in which points are as much as they need to fill a segment with 
physical points, that are “non-overlapping marks” (p. 3) and the quantity of numbers is proportional 
to the length of the segment. This intuitive model, without a suitable elaboration, could influence the 
learning of properties like density and completeness if the model of real numbers considered is a line. 
Also, Bagni (2000) alerted from the false illusions concerning the introduction of properties of real 
numbers in the graphical domain. Bergé (2008) highlighted that in the transition from calculus to 
analysis in the university, it’s necessary first to change the conception of the number line. Fischbein, 
Jehiam and Cohen (1995) carried out research based on the assumption that the irrational numbers 
could be counterintuitive because of their high complexity but, contrary to what they had 
hypothesized, they found out that many high school students and prospective teachers overcame the 
barrier quite easily in suitable contexts, paying attention to the potential difficulties and presenting 
them to the students. 

Research problem and framework  
In this work, I face the problem from the point of view of teaching in the high school, focusing the 
attention on high school mathematics teachers’ intended reported choices concerning the teaching of 
real numbers in the high school; in particular the focus is on what considerations and necessities guide 
their decisional process. Schoenfeld’s model (2010) provides a tool to distinguish between three main 
factors that may influence the teachers’ choices: resources (mathematical and pedagogical 
knowledge); goals (educational, instructional and social aims); orientations (beliefs concerning 
knowledge, concerning teaching-learning processes). I used this model to design a written 
questionnaire answered by the teachers in the first part of this research. Orientations may be very 
general (what mathematics is, what learning is) or more specific and may concern epistemological 
(what is the role of real numbers in the history of mathematics, what are real numbers necessary for), 
cognitive (what is difficult for the students, what is a good choice to help students) or ecological 
aspects of the didactical activities (what teachers must do within an institution, what are the aims of 
the teaching in high school). Some of these orientations act as criteria to make choices. Since real 
numbers and continuum both in the history and in the teaching-learning processes oscillates between 
the two poles of intuition and formalization, I owe special attention to the orientations concerning 
rigor and intuition.  



Methodology 
This case study is part of a research carried out for a PhD dissertation concerning the teaching and 
learning of real numbers in the high school, in which I involved 89 Italian high school teachers with 
very different backgrounds. I will discuss in a case study the role of teachers’ resources, orientations 
and goals in a teacher’s decision making intended process, according to Schoenfeld’s model (2010). 
In Italy, according to the national curricula, an introduction to calculus and some theorems of analysis 
are proposed to students in the end of high school. According to Bergé (2008) what characterize more 
the transition from calculus to analysis is the transformation of intuitive models of the line into a 
formal construction of R. Usually, in high school, teachers are asked to introduce: limits, continuous 
functions and related theorems (Bolzano, Weierstrass), derivatives, Rolle and Lagrange theorems, 
examples of computations of limits and derivatives, Riemann integral, examples of integration based 
on Torricelli-Barrow theorem and examples of differential equations. Italian textbooks are usually 
based on formal definitions and intuitive examples that are not suitably connected each other. Usually 
intuitive approaches to the definition and use of real numbers are proposed in the first 4 years of high 
school (roots, points, decimal numbers). Then, in the last year, definition and procedures of calculus 
and theorems are introduced through formal expressions and using concepts such as limits, 
convergence towards a point and open intervals. The research question in this study is: how does the 
interplay between resources, goals and orientations about teaching and learning of real numbers and 
continuum in the high school affect a high school teacher’s intended choices? I designed a study with 
a questionnaire and follow up interviews. The teacher first was asked to answer an online 
questionnaire structured in order to investigate his knowledge, goals and orientations. The first 
questions concerned the teacher’s background and training. The teacher was asked to answer 
questions about the main properties of the set R, the construction of R starting from Q, the definition 
of limit points. In the next section of the questionnaire the teacher was asked what they thought to 
introduce R was necessary for and to comment on teaching materials or parts of lessons concerning 
real numbers and the line, from different points of view (construction of √2, correspondence between 
points of a line and numbers, algebraic and graphic approach to inequalities). Then the teacher was 
interviewed in order to make him declare his choices concerning teaching and learning of real 
numbers in depth and to follow the thread of his thoughts, in order to make the orientations emerge 
in relation to the epistemological, cognitive and institutional issues that were emerging time after 
time. The interview was a semi-guided one: a general question concerning the way the teacher 
introduces usually real numbers in the high school and the motivations of the choices; a particular 
question concerning the relation between numbers and points of a line; a particular question 
concerning the way the teacher presents the enlargement from Q to R in relation with the line; a 
general question concerning the relevance in the last year of high school (in particular for calculus 
and analysis) of the previous knowledge concerning real numbers and the way connect the two.  

I identified the following a priori categories: 

1. Resources 

a. Mathematical knowledge 

i. The teacher knows the main properties of R (complete, ordered, Archimedean 
field) 



ii. The teacher knows at least one construction of R (Dedekind, Cantor, Hilbert, …) 

iii. The teacher knows that a limit point of a set A can be defined in every dense set  

iv. R as a complete ordered field is necessary for Analysis  

2. Goals  

a. Institutional 

i. To introduce intuitively some real numbers, after providing some examples and 
proofs of irrationality of some numbers introduced in geometrical constructions 

ii. To formalize real numbers in order to give foundations to the theorems of Analysis 

b. Personal 

i. To construct a set in which it is possible to define the most used continuous 
functions (exponential, logarithmic, …) 

ii. To construct a set in which it’s possible to solve equations (but the ones with 
complex solutions) and inequalities 

iii. To construct a set in which it’s possible to formulate some theorems of Analysis 
and to define limits, integrals and derivatives  

3. Orientations 

a. Epistemological 

i. R is complete in the sense of the continuity of the line 

ii. A theoretical construction of R is not necessary to develop calculus and formulate 
theorems of Analysis, since it was constructed after the theorems 

iii. R is a set of points of a line 

iv. The representations of real numbers (points, decimal numbers, …) are all 
equivalent (framed in the same theory) 

v. A postulate is necessary in the constructions or axiomatization of R 

b. Cognitive 

i. R is intuitive for students; students have preconceptions of real numbers 

ii. The construction of R is too abstract for students 

iii. Students prefer simple and concrete things, even if they don’t understand 
everything 

iv. It’s important be make the lessons intuitive for students 

v. It’s important to be rigorous and consistent during the lessons 

c. Ecological 

i. It’s important to respect institutional constraints 

I analyzed data of the questionnaire using a priori categories concerning the different dimensions of 



the teacher’s profile - goals, dimensions and knowledge - and then I looked for further emerging, 
unexpected phenomena to frame in this research background and to compare them with further 
literature review. Using a qualitative analysis, I labeled the relevant features concerning the three 
dimension and the declared choices. Then, I looked at the interview searching for sentences that could 
confirm the teacher’s belonging to the categories I used in the questionnaire and to look for new 
relevant elements emerged in the interview. Finally, I looked for a relations between the different 
categories in order to interpret the teacher’s choices in terms of the interplay between resources, goals 
and orientations.  

Data analysis 

I report first the background and the teacher’s answers in the first part of the questionnaire, to show 
that the teacher showed advanced mathematical knowledge. I label the sentences with the codes 
presented before.  

Background: Master, PhD in Mathematics and National qualification for Mathematics and Physics 
high school teachers; 5 years of experience as a teacher 

He studied real numbers: at the University in a course of Analysis and at school  

Properties: two operations make real numbers a field (with characteristic 0); total order, compatible 
with the operations; complete [R-a-i]  

Construction: Two equivalent constructions: 1) the method of Dedekind’s cuts (separating elements 
of two sets whose union is Q and that have no maximum or minimum in Q, e.g. {x ∈ Q : x² < 2} and 
{x ∈ Q : x² > 2}; 2) quotient of set of the Cauchy’s sequences with convergent ones [R-a-ii]  

Limit point: It’s possible to define it also in Q; the set {x ∈ Q : x < 0} has 0 as a limit point [R-a-iii] 

Then, I report the most relevant results of the data analysis carried out in the second stage: 

1. the properties of real numbers are necessary to introduce only differential and integral Calculus, 
sequences and series. [G-b-iii] 

2. a video in which the graphic and algebraic solution of linear inequalities are presented as two 
different solutions should be changed because the solution is the set of numbers that satisfy the 
equation and only the representation may be graphic or algebraic [O-a-iv] 

3. a tutorial in which a concrete problem involving measures of courtyard containment is used to 
present the “reality of irrational numbers” helps the student to create good images of real numbers, 
even if something is not convincing [O-b-iii] 

4. a video in which the correspondence between R and points of a line is showed using a point 
moving on a line, with the extreme indicated by a decimal number with one decimal digit, can’t 
help to grasp the correspondence between real numbers and points of a line, because only an 
origin is fixed and not a unit and it’s difficult to justify negative numbers [O-b-v] 

In the interview, some further relevant aspects emerged concerning the teacher’s knowledge and 
cognitive and epistemological orientations and goals. Since new categories emerged, I label the 
synopsis with a priori but also with a further category (NEW_C_i).  
To present the following synopsis, I use a chronological criterion: 
1. students have preconceptions of the relations between numbers and point of a line. He presents 

real numbers intuitively, as points of a line, and to base on this intuition all the definitions, also 



very formal (e.g. limits, Cauchy-Weierstrass continuity, decimal numbers, ...) [O-b-i]  
2. this is enough to "do what we have to do", a "pseudo-mathematics" [NEW_G_1]  
3. real numbers are imagined as the real line, with an abuse of language, that makes a few damages 

at this level but may have many advantages [G-b-i&ii] 
4. it's important to be coherent with mathematics [O-b-v] without saying it to the students [O-b-iii] 
5. to introduce analysis "seriously" R is needed [R-a-iv]  
6. formal definitions are not useful but were only useful to clear "the conscience of Dedekind" and 

that "Euler did so many good things without formalizing R" [O-a-ii]  
7. history confuses students [NEW_O_1]  
8. students can’t understand very much of real numbers in the high school [O-b-ii] 
9. asked to declare his choices concerning the introduction of continuous functions he referred to 

formal definitions (Cauchy-Weierstrass approach) that are traditional in Italy [G-a-ii] 
10. there is a "parallelism between geometrical and algebraic postulates" [O-a-iii] 
11. R and the line are the same object [O-a-iv]  
12. we live between two truths, the ‘pure mathematical’ and the ‘operational’ one [NEW_O_2]. 
13. none really use R and the line is really strange; maybe teachers are disappointed because no one 

really knows what numbers are, thinking at infinite convergent sequences and the definition of 
new numbers (irrationals) that are limits of convergent rational sequences [NEW_O_3] 

14. he uses representations like decimal numbers, the line, the roots only in order to make operations 
with them [O-a-iv] but never deepen their meaning and mutual relations [O-b-iii]  

15. it's simpler for the students and for the teachers to “sneak off the theoretical crevices” [O-b-iii] 
 

Discussion and conclusions 
The teacher is a PhD in Mathematics (Analysis) and attended teachers’ training courses. The 
knowledge he showed about the topic is advanced. The pedagogical knowledge has never been taken 
in account by the teacher to support argumentations, while his orientations, reflections and 
experiences are used to motivate his statements during the interview. Also, he never quoted explicitly 
the institutional constraints. He declared to choose usually to avoid completely the formal 
introductions of real numbers and the historical issues and to simplify as much as possible. Even if 
he’s aware also of some epistemological issues, his choices are very traditional and are suitable 
calculus but not for analysis (Bergé, 2008). Asked to declare his choices concerning the introduction 
of continuous functions he referred to formal definitions (Cauchy-Weierstrass approach) that are 
traditional in Italy. He declared to switch suddenly from intuitions of continuity and a set of numbers 
with different representations to a formal implicit meaning of R, used in the hypothesis of theorems 
without a contextualization and without stressing the epistemological implications of such a step. The 
teacher conflicted with the true relevance of formal constructions of real numbers: sometimes he said 
it's necessary, sometimes it seemed just a fancy of some mathematicians. He’s convinced that some 
representations of real numbers can't be interpreted in high schools – even if he never considers not 
to use them – so he prefers the students to use them without being aware of their complexity. 
Moreover, he's convinced that not only the students have limitations dealing with real numbers but 
there is an epistemological issue: there are two truths, the ‘pure mathematical’ and the ‘operational’ 
one. Furthermore, he showed “epistemological doubts” concerning the deep meaning and the 
existence of irrational numbers. To sum up what could seem to be only didactical and cognitive 



motivations (he wants the students to understand; simplifying and omitting is always better for 
students) hide – or at least are accompanied by – deep epistemological unsolved doubts and noisy 
ambiguities highlighted by the teacher, declared several times during the interview, both 
spontaneously and answering the interviewer’s questions, as confirmed by relevant sentences like 
“The line is… is perceptual. No.. it’s not perceptual, is stem from... you don’t see. But … what is the 
line?”; “In practice is it useful for anything? It was useful for the purpose of a clear conscience for 
Dedekind but it’s not useful at all”; “I take this point, limit of a function. A bit an approaching to the 
border of the abyss, keep the feet ... approach something that doesn’t exist ... infinite rational paths 
doesn’t imply to be rational. It’s something that maybe we don’t understand very well too ...”. The 
teacher's orientations concerning the cognitive aspects of teaching and learning real numbers 
(intuition and preconceptions) that seemed in the beginning the most relevant motivations towards an 
intuitive oversimplification, considered helpful for students, are thus deeply intertwined with his 
epistemological orientations. Firstly, his orientations concerning the uselessness of formal definitions 
do not motivate him to look for suitable teaching strategies and, on the contrary, act as factor that 
reinforces his naive orientations towards what is better to foster in students’ learning processes. 
Secondly, his epistemological doubts, hidden under perfect formal definitions, encourage him to keep 
the “Pandora’s vase” closed and to avoid to face his own uncertainties, thinking that for the students 
it’s absolutely better not to know them in order to keep on trusting him and let him going on presenting 
the “pseudo-mathematics” that is enough in the high school. His orientations and his decision to use 
a very traditional, internally disconnected and full of “theoretical crevices” approach to the teaching 
of real numbers have been proved to be unsuitable by a lot of researchers both from a general point 
of view and for the specific problem of real numbers. I can state that, in this investigation, it emerges 
that an advanced mathematical knowledge, even very significant, doesn’t imply the use of this 
knowledge in teachers’ choices: doubts and personal orientation can lead the teacher to use a trivial 
and sterile approach for all the complex issues that characterize real numbers and continuum from an 
epistemological point of view, taking the risk to create at least the same problems to the students that 
teachers with a weaker background in mathematics would create. The teachers, without suitable 
reflections and teacher training courses, could also reinforce their motivation towards such a choice 
mixing in their mind personal orientations and expected students' cognitive features, justifying and 
hiding with the last ones the epistemological uncertainty. The main implications of the study are the 
following:  

1) mathematicians, even with a PhD in Analysis, in their transition to a teaching profession may miss 
the opportunity to benefit from their knowledge by not being completely aware of the epistemological 
issues of the importance of formalizations into teaching;  

2) mathematicians who become high school teachers, in order to become able to design good teaching 
and learning activities for their students concerning real numbers, should be trained not only from the 
disciplinary point of view, but also from the epistemological and the didactical one. 

These observations are particularly relevant in the country in which I carried out my investigation, 
from an institutional point of view, where often the significance of the epistemological and the 
didactical background of teachers is a central in the debate between policy makers (and some 
teachers) and the community of researchers in mathematics education. 
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In mathematical activity, especially in proof, it is a fairly common practice to change letters’ 
logical status without giving any indication of these changes. Nevertheless, in some cases this 
practice is likely to hidden invalid steps in the proving process. In this paper, I show on an example 
that Copi’s system for natural deduction provides a methodological tool that allows us both to 
anticipate where such invalid steps could appear and to analyse students’ proof productions. 
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Introduction 
Difficulties met by university students in the use of logical formalism are well documented in the 

literature (e.g. Selden & Selden 1995, Dubinsky & Yiparaki 2000, Chellougui 2009). An important 
issue on the development of formalism in university mathematics education is to reduce ambiguities 
conveyed by natural language, in order to foster the understanding of mathematical statements and 
to improve the development of proving skills. However, Durand-Guerrier and Arsac (2005) have 

underlined a rather common practise in mathematics textbooks of changing letters’ logical status in 

a proof without giving any indication of these changes. This practice introduces additional 

ambiguities in the proving procedure. The aim in this paper is to address the conjecture that 
university students who are not able to cope with these ambiguities face difficulties with proofs. 

In this paper I use the system for natural deduction (i.e. a formalisation of mathematical reasoning) 

suggested by Copi (1954) in predicate calculus (i.e. an extension of propositional calculus that deals 

with the internal structure of propositions, with symbols for properties, relations, quantifiers and 

individuals) as a tool for checking the validity of proof. A main interest of this system is to make 

explicit the difference between bound variables (i.e variables in the scope of a quantifier) and 

generic elements (i.e any individual element of the domain of quantification at stake)1. In the first 

part, I present the Copi system which has been used for both a priori and a posteriori analysis in my 

research. The second part focuses on the letters’ status in a proof from the logic and didactic point 

of view. To this purpose, I present results demonstrating student’s difficulties with letters' status at 

the beginning of their university studies. In the third part, I present results from first year university 

student’s responses in a proof where the use of letters challenges the validity of the proof 

(Chellougui, 2009). 

Natural deduction system 

I first introduce the natural deduction system proposed by Copi (1954) and show that this system 

provides tools to detect invalid steps in a proof by remaining as close as possible of the usual modes 

of reasoning of mathematicians (Durand-Guerrier & Arsac, 2005). In my work, I use this system in 

                                                 
1 "[…] the proof of a universal statement, apart from the case of proof by induction, is always done by the method of the 
generic element: in order to prove a statement of the kind “for all x ∈ E, P(x)”, you prove P(a) for a generic element a ∈ 
E, then after verifying that only properties of a that are common to all elements in E were used, you conclude that P(x) is 
true for every x in E." (Durand-Guerrier and Arsac, 2005, p.153) 



the frame of predicate calculus, where four rules for introduction and elimination of quantifiers are 

introduced. In Figure 1, I summarize a presentation offered by Durand-Guerrier (2005) of these 

rules completed by some specific restrictions needed for preserving validity. 

 

Figure 1: Copi’s rules (Durand-Guerrier, 2005, pp. 413-414) 

This system can be used to control locally the validity of mathematical proofs. It can act as an 
intermediate between the usual practice and the completely formalized system. The rules of 
introduction and elimination of quantifiers from Copi address the semantic dimension, because 
there is an introduction of letters referring to generic elements. In ordinary textbooks, most often, 
both operations of elimination and introduction of quantifiers are either absent or partial (Durand-



Guerrier & Arsac, 2005; Chellougui, 2009). By making explicit the rules of introduction and 
elimination of quantifiers, Copi’s natural deduction system allows the identification of implicit 
steps, especially in cases of proof that use multi quantified statements where there is, at least once, 
each of both universal and existential quantifiers. In my research, I use Copi’s natural deduction as a 
tool for a priori analysis in order to anticipate possible invalid steps in the proving process of a 
given statement and as a tool for a posteriori analysis of the proofs offered by undergraduate 
students. In a following section, I present an example of such analysis. 

The logical structure of mathematical statements: Changing letters’ status 
Durand-Guerrier and Arsac (2005) have investigated the letters' logical status in mathematics 
teaching. In their work, they refer to the predicate calculus in order to analyse quantified statements 
with a focus on the variables’ dependence. They analyse a specific mistake which appears in proofs 
where one applies twice or more a statement of the kind “for all X, there exists Y such that R(X,Y)”, 
abbreviated to AE statements, and a student may ignore that in that case, a priori, “Y depends on X”. 
The misuse of AE statements in calculus have been demonstrated in an invalid proof of Cauchy’s 
mean value theorem (Figure 2, Durand-Guerrier and Arsac, pp. 151-152): 

 

Figure 2: Two theorems: mean-value theorem and Cauchy’s mean-value theorem. 

We can read: 

"A proof rather often provided by first year science students consists of the following deduction 
of Theorem 2 from Theorem 1: 
Function f satisfies the conditions for applying Theorem 1; hence there is a number c in ]a;b[ , 
such that f‘(c)(b–a)=f(b)–f(a). Also g satisfies the conditions for applying Theorem 1; hence 

there is a number c in ]a;b[ , such that g‘(c)(b–a)=g(b)–g(a).  As g‘ is never equal to zero on 

]a;b [ ,  then g‘(c)0; hence g(b)–g(a)0 . The result follows from the quotient of the above 
two equalities. 
This proof is invalid; one can prove it by considering two functions for which it is not possible to 
choose the same number c." (Durand-Guerrier et Arsac, 2005, p.152). 

According to the authors, the error from a logical point of view is the following: since c is a bound 
variable following an existential quantifier, it cannot denote a particular real number. However, the 
existential elimination that must be applied here allows to consider a real number r such that: 

f‘(r)(b–a)=f(b)–f(a). 



When thus applying the same rule to g, it is necessary to consider a real number s, that may or not 
be equal to r, such as g‘(s)(b–a)=g(b)–g(a). It is important to notice that this logical analysis 
depends only on the logical structure of Theorem 1, and not on the mathematical meaning of the 
letters f, c, r, etc. The same reasoning allows us then to derive the quotients’ equality: 

 
but this does not provide a proof of Cauchy’s mean value theorem (Durand-Guerrier & Arsac, 
2005). 

This example illustrates the difficulties linked with the logical status of letter in proof and proving. 
In the next section, I illustrate one example in Algebra how the use of Copi’s natural deduction 
allow us to anticipate student’s difficulties and to analyse their proofs. 

An example in elementary set theory 
In the context of my PhD (Chellougui, 2004) conducted in Tunisia, I distributed a questionnaire to 
ninety-six mathematics students arriving at university in November 2001 (details on the analysis 
and main results can be found in Chellougui, 2009). In this paper, I focus on a specific example that 
I analysed in detail in order to highlight the methodological relevance of Copi’s natural deduction 
for a priori and a posteriori analysis of proofs. In the Tunisian university, the first elements of 
elementary set theory including equivalence relation, order relation and binary relation, are taught at 
the beginning of the first academic year. The example I discuss here regards the proof that a given 
binary relation  is an order relation (Figure 3). My main objective was to identify precisely 
students’ difficulties in the use of multi quantified statements in proof and proving. 

We consider the set IN*2 endowed with the relation  defined by: 

(p,q) IN*x IN*(pqn IN*; pn=q). Show that  is an order relation. 

Figure 3: The exercise submitted to students 

I hypothesised that the students would be able to recall each of the three properties that an order 

relation checked: reflexivity, antisymmetry and transitivity, because they have met this type of 

questions in the course and in the series of exercises, although the formalisation of an order relation 

was new to them. The three definitions of the properties above were given to the students in the 

general case of a binary relation  as follows: 

Reflexivity: p pp. Formulation containing one universal quantifier. 

Antisymmetry: pq(pqqp p=q). Formulation containing two universal quantifiers. 

Transitivity: pqs(pqqs ps). Formulation containing three universal quantifiers. 

In this paper, I focus on the proof of antisymmetry for a binary relation whose definition involves an 
existential quantifier, leading to a rather complex logical structure as will be shown in the a priori 
analysis. I first present some elements of a priori analysis; then I present results from students’ 
responses. 

                                                 
2 IN*= IN \{0} 



Mathematical and logical analyses of proof of antisymmetry 

The definition of the binary relation  involves two universal quantifiers in the beginning of the 
formula and an existential quantifier in the second part of the equivalence.  

In order to anticipate the difficulties that the students could meet in proving that the given binary 

relation owns the property of antisymmetry and to make explicit the steps needed for a complete 

proof, I provide (Figure 4) a mathematical and logical analysis, using the Copi’s system for natural 

deduction (see Figure 1) with a specific focus on introduction and elimination of quantifiers  

(1) pq (pq  nIN* pn=q) Premise3 

(2) ab  nIN* an=b U I  on (1) 

(3) ba  nIN* bn=a U I  on (1) 

(4) [ ab  ba Auxiliary premise 

(5) ab Simplification on (4) 

(6) nIN* an=b Modus Ponens on (2) and (5) 

(7) ba Simplification on (4) 

(8) nIN* bn=a Modus Ponens on (3) and (7) 

(9) am=b E I  on (6) 

(10) bk=a E I  on (8) 

(11) amk=bk Property of the power 

(12) amk=a Transitivity of the equality on (10) and (11) 

(13) a=1 or m=k=1 Mathematical properties 

(14) a=b ] Consequence of (13) 

(15) (ab  ba)  a=b Introduction of  on (4) and (14) 

(16) pq (pqqp  p=q) U G  on (15) 

Figure 4: Formalisation of the proof in the frame of Copi’s natural deduction 

This formalized demonstration starts with a universal premise followed by four successive universal 

instantiations; twice in (2) with two different letters a and b, and twice in (3) with the two same 

letters a and b; so, one works then with two generic elements. In (4) an auxiliary premise is 

introduced to express the antecedent of the property of the antisymmetry on the generic elements 

(this is a standard way to prove a conditional statement in the frame of Copi’s natural deduction: 

proving B under hypothesise A provides a proof of  The two existential statements (6) and 

(8) are followed by two existential instantiations with two different letters: m in (9) and k in (10). 

                                                 
3 A proposition upon which an argument is based or from which a conclusion is drawn. 



The mathematical argument is developed in (11) to (14) using mathematical properties without the 

quantifiers. The passage from (13) to (14) does not appear in this demonstration. It can be expressed 

in the following way: 

(13): a=1 or mk=1; First case: a=1 then a=b=1; Second case: if mk=1, with mIN* and kIN*, then 

m=k=1; finally, in both cases, a=b (14) 

Framing the proof in Copi’s system allows us to anticipate potential flows likely to appear in 

students’ responses from (6) and (8) to (9) and (10), respectively, in case the restriction rule for two 

successive existential introductions is not applied.  

I provide an a priori classification of the answers that I will use for a posteriori analysis.  

Category 1: answers for which two different letters are quantified existentially. 

Category 2: answers for which the same letter is quantified existentially.  

Category 3: answers for which the same letter is used without existential quantifier,  

Category 4: answers where two different letters are used without existential quantifier. 

Classification of students’ answers  

Among the ninety-six students that answered the questionnaire 80 students have produced a proof of 

the antisymmetry property for the given binary relation. 

1) There are 17 copies in category 1 (about 21%) with representative examples that illustrate this 

category (Figure 5). 

 

Figure 5: Responses of Student 1, Student 2 and Student 3 

In the solution of student 1, the mathematical argument for step (11) to (14) is fully developed. This 
is not the case of student 2: the mathematical argument is absent, there is no mathematical 
justification for the equality of both natural numbers x and y. 

Student 3 used two different letters in the existential statements, however student 3 declared them to 
be equal. In this case we can make the hypothesis that the student attributed the same value to m and 
n in order to satisfy the validity of the statement. Another hypothesis could be that student 3 thinks 
that the equality is necessary. 

2) There are 27 copies in category 2, that I have subdivided in two cases:  



(a) The existential quantifier is present twice (21 copies), see Figure 6. 

 
Figure 6: Responses of Student 4 and Student 5 

In the production of student 4, there is a presence of both quantifiers, the student tries to construct 
the object n existentially introduced in such a way as to have the conclusion. So, to verify the 
property of antisymmetry and have the equality p=q, the student takes, for the natural number n, the 
value 1 which is a solution of the equation pn=q of unknown n. Also for the student 5, where there 
is absence of universal quantification, the construction of the object n is implicit and the conclusion 
is immediate for the student. 

(b) The existential quantifier is present only once (6 copies), see Figure 7. 

 
Figure 7: Response of Student 6 

I notice with the student 6, that the existential introduction of n for the relation pq is also 

considered for qp. Let us note here that, on one hand, both variables p and q are not introduced 

and that, on the other hand, the elimination of the number n is not declared. This illustrates the fact 

that there are implicit arguments in the use of variables and in the steps required to prove the 

antisymmetry property. 

3) There are 36 copies classified in category 3. I have considered in this category copies where the 

letter is used for both statement and is not in the scope of a quantifier. I have consider it as an 

implicit existential introduction without taking in account the restriction rule. The example in 

Figure 8 is typical of answers in this category. 

 

Figure 8: Response of Student 7 

In the production of student 7, the variable n is the same in the two equivalences, and there is no 
mathematical argument supporting the conclusion. It is possible that the student wrote directly the 
conclusion p=q to fulfill the antisymmetry property; another possibility is that he considered that it 
was obvious that both equations pn=q and qn=p allow to conclude that n is 1 and to deduct the 
equality. 

4) There is no copy in category 4, provided that we consider that the existential introduction may 
remain implicit. 

These results confirm my hypothesis that the complexity of the logical structure on the side of 

quantifiers is likely to create an obstacle for the students to provide a correct mathematical 

argument. In particular, it is noticeable that the only students that provide sound mathematical 



arguments are those in category 1, i.e. those who take in account the restriction rule for existential 
introduction.  

These results also highlight the fact that in case of two successive applications of an existential 

definition that a priori requires the use of different letters, many students use the same letter. In 

other words, they do not respect the restrictions on the names of objects associated with the rule of 

existential instantiation. We could suppose that the symmetry in pq and qp triggers the choice of 

the same letter; however in line with other results (e.g. Durand-Guerrier et Arsac 2005) we would 

say that this students’ practice could be found in various other contexts.  

Conclusion 

In this paper, I aimed to illustrate the relevance of our methodology relying on Copi’s natural 

deduction that allowed detailed a priori analysis of proofs and a posteriori analysis of students’ 

productions. From the a priori analysis of the proof of the antisymmetry property of the binary 

relation at stake, I identified possible invalid steps. The a posteriori analysis of the proofs provided 

by students has shown that such invalid steps appeared in many answers and that in some cases, this 

invalid steps prevent the students from identifying the mathematical property required for providing 

a valid proof. 
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Prospective secondary school teachers are required to take undergraduate courses in mathematics, 
which may be of limited relevance for their teaching. In this study, we investigate affordances of co-
teaching for achieving such relevance. This is a qualitative study of an undergraduate course on 
Mathematical Proof and Proving, co-taught by a professor of mathematics education and a professor 
of mathematics. Analyzing an episode critiquing three different proofs, we show that the 
mathematician was concerned mainly with the written proof and its “correctness”, whereas the 
mathematics educator showed a sensitivity to the person behind the proof, and to pedagogical aspects 
of proof and proving. We propose that such a course may help students reconcile conflicts between 
how mathematics is taught and practiced in university and in high school, and suggest such co-
teaching as a model for achieving relevance for teaching in mathematics courses. 

Keywords: Mathematical proof and proving, teacher education, undergraduate mathematics. 

Background and setting 
The study reported herein was carried out in the context of an undergraduate course on mathematical 
proof and proving (MPP) taught at a major university in the USA1. Typically, such courses are the 
responsibility of mathematics departments, yet this course was conceived and designed through 
collaboration between the university’s department of teaching and learning and its mathematics 
department, and was co-taught by a professor of mathematics education – the second author of this 
paper, herein MEI (Math Educator Instructor) – and a professor of mathematics, herein MI 
(Mathematician Instructor). The goal of this collaboration was to capitalize on the two departments’ 
complementary fields of expertise – mathematics education and mathematics. This setting provides 
a unique opportunity to investigate differences and interactions between these two different types of 
mathematical expertise. Some preliminary findings were reported by Sabouri, Thoms, & Zaslavsky 
(2013) and by Zaslavsky & Cooper (2017), where some aspects of the co-teaching were discussed.  

The course was open to a wide range of students, but the majority of participants were enrolled in 
teacher preparation programs, for which it was a required course. Accordingly, we situate our study 
in the context of the mathematical preparation of pre-service secondary-school teachers. These 
students have two different needs for MPP. In the short term, they must be proficient in university 
routines of proving in order to succeed in their mathematics courses. The notion of formal proof is 
new for many university students, and the transition to the kind of mathematical proving that is 
required in undergraduate courses is known to be difficult (Harel & Sowder, 2007). In the longer 
term, the majority of these students will become secondary school mathematics teachers. As such, 
they will be expected to teach MPP in their classrooms and to assess students’ proficiency in and 
understanding of mathematical proving. Thus they are faced with the challenge of two transitions, 
                                                 
1 Data collection was supported by the National Science Foundation under Grant No. 1044809. 



first from high school to university MPP, and then back to high school. One way of addressing this 
challenge is to offer two separate courses, taught in mathematics departments and in schools of 
education, leaving it up to students to reconcile differences between MPP in the two contexts. Our 
study suggests an alternative; perhaps a course that is co-taught by professors of mathematics and of 
mathematics education will help reconcile the different, sometimes conflicting notions of MPP at 
high school and undergraduate levels. This is the overarching question that guides our study. 

Literature review and research questions 
Secondary school teachers are usually required to take some university level mathematics (ULM) 
courses in their pre-service training; in some contexts, they are even required to hold an undergraduate 
degree in mathematics or in a related field. Yet many ULM courses, taught in mathematics 
departments, deal with advanced mathematical content whose relevance for teaching is not 
immediately obvious. A number of researchers have investigated affordances of ULM courses for 
teaching, using a methodology of teachers' self-reporting (e.g., Adler, et al., 2014; Even, 2011; Zazkis 
& Leikin, 2010). Such methodologies have been found to be of limited value; teachers tended to 
report on general affordances of learning mathematics from mathematicians, however, Zazkis & 
Leikin (2010) found that teachers were generally unable to specify in what ways they made use of 
ULM in their teaching. In our study we utilize a different methodology for revealing affordances of 
the MPP course for teaching, in analysing the teaching in this unusual setting.  

According to Harel & Sowder (2009), mathematicians teaching undergraduate courses are not fully 
aware of student difficulties in learning MPP. The conception of co-teaching in our context was 
similar in some aspects to the way it is utilized in special education (Friend et al., 2010), letting the 
mathematician and the mathematics educator share the responsibility for the content, while leaving it 
up to the educator to attend to students’ “special needs”. Thus, we hypothesize that the mathematician 
will take responsibility for epistemic aspects of the course, while the educator will take responsibility 
not only for addressing the students’ mathematical difficulties, but also for the course's relevance for 
teaching. This hypothesis is consistent with Cooper’s findings (2016) in his study of a professional 
development course for primary school teachers taught by research mathematicians, where the 
mathematicians took responsibility for the mathematical content, while the participating teachers 
themselves took responsibility for achieving relevance for teaching. Accordingly, our research 
questions are: 

1. What are the instructors’ views on MPP? In what ways are their views similar or different? 
2. What are the affordances of different views on MPP for the students as future teachers? 

Theoretical framework and epistemic analysis 
We join researchers such as Nardi et al. (2014) in taking a Commognitive approach (Sfard, 2008). 
Mathematical “knowledge” is conceived as a particular community’s established modes of 
communication, called discourses. These are constituted in commonly used keywords (e.g., “proof”, 
“given”), in narratives that are endorsed or rejected by the community (e.g., proofs), in visual 
mediation that is considered useful (e.g., two-column format of a proof), and in repetitive routines 
(e.g., proving). The very different mathematical discourses of two communities - research 
mathematicians and researchers in mathematics education – differ in their use of common keywords, 
in the types of routines they engage in, and in the rules and norms that determine which narratives 



will be endorsed and which will be rejected, and these differences are grounded in the communities’ 
activities – mathematical research on the one hand and mathematics education on the other. 

Proof is a genre in mathematical discourse, a type of narrative that is expected to adhere to a 
community’s conventions. It usually includes text, and may employ a variety of means to visually 
mediate its mathematical ideas. A proof may be endorsed or rejected based on the metarules of a 
community’s mathematical discourse. Proving is a routine in mathematical discourse, with the goal 
of producing a proof. Ideally, the prover should take responsibility for producing a “valid” (i.e. 
endorsable) proof, which may subsequently be endorsed or rejected by a teacher or by peers 
(classmates or fellow researchers). Routines of proving, and the proofs that are produced, are 
governed by very different metarules in school and in university. 

Method and data 
The study reported herein is part of a larger study, for which extensive data were collected, including 
video recording and field notes of each of the 13 lessons taught in 2013, audio recording and field 
notes of weekly meetings held following each lesson, email exchanges among members of the 
teaching team, and students' written homework with TAs' comments and grading. The rich data offers 
insight into the instructors’ intentions, however, in the current analysis we are concerned with 
affordances of the co-teaching as it played out, and thus focus our attention on the video recordings 
of the lessons, and, in particular, on a single episode from lesson 8, selected for being rich in 
interactions between the MI and MEI. We assumed that the two instructors referring to each other's 
ideas, possibly disagreeing with each other, would reveal their tacit norms and ideas about MPP, and 
highlight differences between them.  

Analysis 
In the following episode, MI and MEI discuss a homework assignment, where an exemplary proof 
had been provided for the claim |𝑥 ∙ 𝑦| = |𝑥| ∙ |𝑦|. Three other responses (also ostensibly proofs) 
were included in the assignment, and students were asked to critique them. These “proofs”, labeled 
2.1, 2.2, 2.3, were copied onto the board, and were discussed. 

Format: we present one or more utterances followed by a short annotation raising points that we later 
elaborate in the discussion. For brevity, utterances not relevant for our analysis were omitted.  

Sample proof 2.1 

MI One thing I told you in the very first lecture is to do what? 
Write the “given” and write RTP [remains to prove] … This 
is a mistake that is commonly made because people confuse 
what is given and what you need to prove. 

MI considered proof 2.1 unacceptable, since it begins with what needs 
to be proven, and manipulates it to obtain the incontrovertible 𝑎 ∙ 𝑏 =
𝑎 ∙ 𝑏. He believes that following a simple rule of writing the given and 
writing RTP at the outset can help students avoid this common mistake.  

Figure 1: Proof 2.1 



MEI [Where] we provided proof [in the HW], we actually wrote the given and what you have 
to find, and if the people who wrote this proof [2.1] started by saying: “given”, then there 
would be no confusion of what should the last line be. The last line being verifying this. 

MEI elaborates MI’s point, but soon after gives a different perspective on this rule of thumb: 

MEI It's more than writing what's given and what you have to prove. It's also accounting in each 
line … what is the status of what you wrote. Is it given, is it a known fact that you bring 
from some other place, which is fine. You have to annotate and write where it comes from, 
how you got to there... If we can infer the following [line], we have to say it... We need 
these words to make sense of what the status of each line is. Because you'll suddenly ask 
what is this? How do I know it? It's a mean of communication, but it's also a means of sort 
of control of what you're doing… …We need to know [where it came from], not just us to 
follow you, but mainly for you to produce a correct proof. If you skip and don't account for 
each line, you're more likely to make a mistake. 

MEI stresses the importance of accounting for everything that is written. The most obvious reason, 
stressed by MI earlier in the lesson, is that these are the norms of the genre; this is the way you 
communicate with others within the mathematical community. However, MEI’s words suggest 
additional considerations. First, in her words “we need to know… not just to follow you” she appears 
to be conscious of the pedagogical setting, where instructors need to follow the student’s thinking in 
order to assess their work. Additionally, she sees the written proof not only as a means of 
communicating with others, but also for communicating with oneself (i.e., thinking). Her word 
“control” alludes to metacognitive aspects of proving, and MEI seems to be suggesting that following 
norms of writing a proof may contribute to the process of producing a valid proof.  

Sample proof 2.2 

MI The proof started by saying... this [(𝑥𝑦)2 = 𝑥2 ∙ 𝑦2] is 
correct, right? Does [it] imply [√(𝑥𝑦)2 = √𝑥2 ∙ 𝑦2]? 

MEI The thinking of this person was that they're taking what 
we need to prove and squaring it and getting there 

For MI, it is the proof that is “saying” something, whereas MEI 
draws attention to the thinking of the person behind the proof.  

MI I'm asking you simply does anyone in this room disagree up to this step? 

The implication of MI’s question (“does anyone disagree”) is that the proof may be correct (at least 
“up to this step”) regardless of the thinking of the person who wrote the proof (e.g., squaring the RTP 
instead of beginning with the given).  

MEI This would be ok without this [striking through lines in the parentheses “square both sides 
and get rid of the absolute value”]. Because what it says here, that you took this as given 
in a way, and squared it and got this. 

In spite of MEI’s previous attention to the prover, she is now showing how the written proof can be 
fixed by striking out the parts that were a consequence of the prover’s misguided thinking. 

Figure 2: Proof 2.2 



Figure 3: Proof 2.3 

MI Sorry, I did not read that. I was just looking at the equations. Absolutely right, this is 
making the same mistake [starting with RTP instead of with Given]. 

MEI I do want to say very nicely that at least the logic of the thinking was clear here, because 
whoever did it provided the explanation, and this is easier to follow, and important. 

MI, in assessing the correctness of the proof, had not read the text in parentheses. This further supports 
the suggestion that he is concerned with the proof as a mathematical product (i.e., the equations), and 
not with the prover’s thinking, which is represented in the explanations. MEI, in contrast, values not 
only the mathematical correctness of the proof, but also the clarity of thinking that is revealed. Here 
again she is showing concern for pedagogical aspects of MPP. 

MI Whoever wrote the proof had a very good idea at the beginning, and choked at this point 
[𝑥𝑦 = 𝑥𝑦] 

Here MI refers for the first time to the person who wrote the proof. However, his claim that this 
person “had a very good idea” is not justified. This claim was based on the fact that the first line on 
the board - √(𝑥𝑦)2 = √𝑥2 ∙ 𝑦2 – can serve as the beginning of a valid proof. In this he is ignoring 
the proving process and the thoughts of the prover, as reflected in the words that MEI crossed out. 

Sample proof 2.3 

 
 

MI How many of you think this is a proof? How many of you don't think this is a proof?  

MEI What do you think J's opinion is? Does he think it's acceptable or not? 

In her question, MEI is allowing for the possibility that the students’ opinion will be different from 
MI’s, but she is suggesting that they should be coming around to seeing things Jim’s way. 

MI It is a proof. It's a badly written proof, but it is a proof. Whoever wrote this made a lousy 
job of writing [it]. That's the only mistake that person made... because they don't know how 
to write a proof. How to present it. So the mistake here is not in the content but in the 
presentation. The person ended up writing two paragraphs for two lines.  

These words highlight three aspects of a proof in MI’s discourse. There is the end product, what he 
calls the “presentation”, which in this case he considers “lousy” (Jim later rewrites the proof in two 
condensed lines of mathematical expressions). There is the “content” of the proof, the mathematical 



ideas that underlie the presentation and are revealed in it, which in this case are valid. Finally, there 
is the thinking of the prover, which MEI is keenly aware of, but Jim appears to be ignoring. 

Discussion 
In this section, we discuss findings from the analyzed episode, along with some additional findings 
from other episodes whose analysis we omitted for brevity. Regarding our first research question, we 
found, as hypothesized, that MEI and MI stressed different aspects of MPP. We present similarities 
and differences between their discourse, as it pertains to proof and proving. 

The human element in a mathematical proof 

MI and MEI both held the view that a text purporting to be a mathematical proof must adhere to 
specific norms of communication. For Jim, the question of validity was central: does the proof begin 
with the given, end with what needs to be proven, and is each line in the proof mathematically 
justified. This is a consequence of the communicational role of proof in his discourse – to convince 
members of the community that a claim is valid. MEI, too, was concerned with the mathematical 
validity of arguments, yet she was also sensitive to pedagogical aspects of proving, and considered 
the prover’s communication with a teacher, who is not only assessing the validity of a mathematical 
text, but also the nature of the mathematical thinking that produced it. There were also differences in 
the instructors’ attitude to the prover’s communication with herself. MI saw two distinct phases in 
proving, a draft phase (which he called a “scratch”) where the prover does her thinking and is not 
accountable for what is written, and the final product which will be scrutinized by others. Thus, for 
MEI a student’s proof should reveal the prover’s underlying thinking, whereas for MI the final 
product should conceal thinking. MEI held a more integrated view regarding the phases of producing 
a proof, where the “accounting” in the final product could serve a metacognitive role in the process 
of proving, by “controlling” the flow and minimizing mistakes. These differences in the instructors’ 
attitudes to proof and proving are evident in their use of language. MI spoke of what the proof “is 
saying”, whereas for MEI it is a human agent who is “saying” something. Jim frequently asked if the 
students “agree up to this step”, where he is referring to a step in the written proof. In sample proof 
2.2 MI did not pay attention to the student’s thinking, as reflected in the text in parentheses. It was 
MEI who suggested striking out these lines, but though this would “fix” the proof, she realized that 
it would not fix the thinking of the person who produced it. MI, on the other hand, when speaking of 
the process of producing proof 2.2, attributed a “good idea” to the prover, based on the fact that a 
valid proof could have begun with the first line. He felt that after this promising start the person had 
“choked”, and this just a few seconds after he conceded that the prover had in fact made “the same 
mistake” as the prover in sample 2.1 - beginning with what needs to be proven. 

In spite of MI’s attention in sample proofs 2.1 and 2.2 to proof as a text, in proof 2.3 he suggested 
that this text may be a “representation” (i.e., a visual mediation) for something else. Though the proof 
was badly written, he felt that there was no mistake in the “content” of the proof. The nature of this 
underlying content and its relationship with its representation as a text is not clear. MI does not appear 
to be alluding to a human agent’s thinking, but this point requires further analysis of his discourse, 
drawing on additional data. 



The role of proof in mathematical discourse 

Later in the lesson MEI pointed out how the pedagogical context of the course may give a distorted 
view of the role of proving in mathematics: “Mathematicians do proof in order to establish theories… 
But what happens in this course, because the focus is on how to really construct proofs, sometimes 
we're doing it about facts that may be trivial to you… we may be giving you a wrong message”. This 
may explain the importance MEI attributed to a comment from MI in lesson 6, regarding a proof of 
the claim: if 𝑛 > 10, then 𝑛5 − 6𝑛4 + 27 ≥ 0. At MEI’s prompting, MI showed that a careful 
analysis of the proof reveals that the expression is not only greater than 0, it is in fact greater than 
40,000! Why should this be important? Jim explained that “you might need [this “stronger” fact] later 
on in the proof”. MEI re-voiced this idea, but we suspect that for her it had a second role, in addressing 
“the wrong message” about the nature of proving. The task, given by some anonymous agent, was to 
prove “greater than 0”. In showing more than was required, MI and MEI were modeling proving as 
an investigation, where the prover has some agency in deciding what to prove.  

Affordances of the co-taught course for future teachers: Explicit and implicit goals 

We hypothesized that a course on MPP co-taught by a mathematician and a researcher in mathematics 
education would have special affordances for futures teachers, in presenting and reconciling different 
aspects of MPP that are crucial for teaching. Our analysis has demonstrated some affordances. 

The explicit goal of the course was transitional – to help students learn the mathematics department’s 
norms of MPP, and to develop proficiency in university level routines of proving. This goal was 
addressed by both instructors, with Jim taking a leading role. MEI accepted and encouraged Jim’s 
role as the mathematical authority, in calling on him to take over when crucial mathematical issues 
were at stake. It was MI who modeled the kind of proving that will be expected in advanced university 
courses. Furthermore, if students internalize MI’s discourse, they may eventually bring a commitment 
to mathematical precision and rigor to their own classrooms. MEI did not disagree with Jim. 
However, in stressing other aspects of MPP, we feel that she was modeling not only how to produce 
an acceptable proof, but also how to teach MPP. In her attention to the thinking behind students’ 
proofs she was modeling how these future teachers should be concerned not only with what their 
students are writing, but also with the mathematical thinking that drives their work. She was further 
concerned with some meta-level issues, such as the investigative nature of mathematical activity, and 
the development of metacognitive skills of self-monitoring the process of proving.  

Thus, students were exposed to two different perspectives on MPP, both of which they will need to 
internalize as teachers. However, MI and MEI by and large taught in the one teach, one observe 
approach (Friend et al., 2010), and their points of view remained disjoint. In fact, being aware of their 
differences and wishing to present a unified front, they often tried to resolve them at the planning 
stage of lessons (Sabouri, Thoms, & Zaslavsky, 2013). Had they taught in the teaming approach, 
described as “representing opposite views in a debate, illustrating two ways to solve a problem, and 
so on” (Friend et al., p. 12), there may have been opportunities to openly discuss differences, 
encouraging students to reconcile different aspects of MPP relevant for their future teaching.  



References 

Adler, J., Hossain, S., Stevenson, M., Clarke, J., Archer, R., & Grantham, B. (2014). Mathematics for 
teaching and deep subject knowledge: Voices of mathematics enhancement course students in 
England. Journal of Mathematics Teacher Education, 17, 129–148. 

Cooper, J. (2016). Mathematicians and primary school teachers learning from each other. 
Unpublished doctoral dissertation. 

Even, R. (2011). The relevance of advanced mathematics studies to expertise in secondary school 
mathematics teaching: practitioners’ views. ZDM, 43(6-7), 941–950. 

Friend, M., Cook, L., Hurley-Chamberlain, D., & Shamberger, C. (2010). Co-teaching: An 
illustration of the complexity of collaboration in special education. Journal of Educational and 
Psychological Consultation, 20(1), 9–27. 

Harel, G., & Sowder, L. (2007). Toward comprehensive perspectives on the learning and teaching of 
proof. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and 
Learning (pp. 805–842). Charlotte, NC: Information Age Publishing. 

Harel, G., & Sowder, L. (2009). College Instructors’ views of students vis-à-vis proof. In D. A. 
Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and Learning Proof Across Grades (pp. 
275–289). New York: Routledge Taylor & Francis Group. 

Nardi, E., Ryve, A., Stadler, E., & Viirman, O. (2014). Commognitive analyses of the learning and 
teaching of mathematics at university level: the case of discursive shifts in the study of Calculus. 
Research in Mathematics Education, 16(2), 182–198. 

Sabouri, P., Thoms, M., & Zaslavsky, O. (2013). The merits of collaboration between mathematicians 
and mathematics educators on the design and implementation of an undergraduate course on 
mathematical proof and proving. In S. Brown, G. Karakok, K. H. Roh, & M. Oehrman (Ed.), 
Proceedings of the 16th Annual Conference on Research in Undergraduate Mathematics 
Education, 2 (pp. 307–313). Denver, Colorado. 

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and 
mathematizing. Cambridge: Cambridge University Press. 

Zaslavsky, O., & Cooper, J. (2017). What constitutes a proof? Complementary voices of a 
mathematician and a mathematics educator in a co-taught undergraduate course on mathematical 
proof and proving. Online Proceedings of the 20th conference on Research in Undergraduate 
Mathematics Education. San Diego. 

Zazkis, R., & Leikin, R. (2010). Advanced mathematical knowledge in teaching practice: Perceptions 
of secondary mathematics teachers. Mathematical Thinking and Learning, 12(4), 263–281. 

 

 



 

 

The organization of study in French business school preparatory 
classes 

Lynn Farah  

American University of Paris, France; lgf00@mail.aub.edu 

This paper presents parts of a doctoral research pertaining to the study of mathematics in French 
business school preparatory classes. In what follows, we identify the main features of the 
institutional devices designed and implemented by two mathematics teachers in their respective 
classrooms in order to influence and transform the working habits of their students. To do so, we 
rely on qualitative analysis of data collected mainly through interviews and questionnaires. Our 
conceptual framework borrows constructs from the Anthropological Theory of Didactics as well as 
several works in the sociology of education field.  

Keywords: Mathematics learning, preparatory classes (CPGE), organization of study, teaching 
devices, teachers’ practices. 

Context 
Student failure in mathematics during the first university years is a widespread problem in many 
countries including France, but it does not seem to affect in the same way students of all French 
higher education institutions. In fact, there are in France alternative institutions such as the Classes 
Préparatoires aux Grandes Écoles (CPGE in what follows) students achieve much better results in 
mathematics than those enrolled in regular French universities, as is reported in official statistics 
provided by the ministry of national and higher education and research1. The CPGE prepare 
students over two academic years after obtaining the French baccalaureate to enter the Grandes 
Écoles, which are mainly business schools or engineering schools, by passing the concours, national 
competitive written and oral exams specific to each type of school which students take by the end of 
the second preparatory year. In the French educational systems, the two preparatory years at the 
CPGE are equivalent to the first two years of undergraduate study at university and do not lead to 
obtaining a degree. The CPGE have three streams, scientific (S), business and economics (EC) and 
literary (L), which each have different tracks. 

Our study focuses on the CPGE in the continuation of the work of Castela (2011). These institutions 
differ widely from regular French universities in elements commonly considered as the main causes 
of student failure (Farah, 2015b, chap.II, section 4). They are known for their selectivity in 
recruiting students who have obtained exceedingly above-average results throughout high school 
and in the French baccalaureate, as well as their supportive culture, which fosters student 
collaboration and provides them with close follow-up, in a relatively rigid high-school-like system 
within stable moderate-sized classrooms. In fact, these institutions resemble more the European and 
North American universities than the French universities in terms of teaching methods and student-
teacher relationships. Therefore, it is important to point out that although our study is conducted in a 

                                                 
1 Source: http://www.enseignementsup-recherche.gouv.fr/cid75181/reussite-et-echec-en-premier-cycle.html 



 

 

specific environment, its results help us to understand more general issues that concern other 
institutions in France and in other countries. 

With the change of institution, from high school to CPGE, students face a significant rift with 
respect to the work they have to complete in order to succeed in mathematics. In fact, in the CPGE, 
students are expected to develop without teacher supervision and in addition to the tasks that are 
prescribed to them, significant autonomous personal work in mathematics that is not necessarily in 
the continuity of what ensured their prior success in high school. Moreover, assessment in the 
CPGE is entirely conditioned by the nature of the examinations of the concours. In mathematics, it 
is cumulative, covering the content of both preparatory years, which is never the case neither at 
university nor even in high school. In this paper, we are interested in the ways these institutions 
shore up their students and help them develop a new working mode in mathematics, geared towards 
the CPGE requirements, during the first year of scientific track business school preparatory classes 
(ECS). Therefore, we focus on the relationships that exist between institutional and students’ 
personal organization of study in mathematics. 

Conceptual framework 
We are mainly interested in the institutional dimension and its impact on students’ learning in 
mathematics. We claim that through their ways of functioning, the CPGE institutions help their 
subjects (the students) construct a new working mode in mathematics adapted to the CPGE 
requirements. We refer to the foundations of the Anthropological Theory of Didactics (ATD) to 
examine the weight and action of these institutions (Chevallard, 2003). We endorse Chevallard’s 
(2003) description of an institution as a social system that allows and imposes on its subjects, that is 
people who occupy different positions within the institution, ways of doing and thinking. Subjects 
are hence submitted to collective constraints and expectations that regulate their actions and thus 
subjugate them (in French, assujettir). For our study, we consider first, at a global level, the CPGE 
institution within which individuals occupy the positions of student, teacher, and administrative 
staff… At a local level, we focus first on the teaching of mathematics in the broader sub-
institutions, the EC stream then the ECS track. Next, we consider the teaching of mathematics in the 
school institution. Lastly, we examine the institution of the mathematics classroom of each teacher, 
with two main positions: teacher and student. 

Regardless of the level of institution in question, it is important to bring forward the idea of 
organizational stability emphasized by Darmon (2013) and Rauscher (2010). Darmon identifies 
institutional devices that are shared among CPGEs, which put students to work while supervising 
them. In accordance with the ATD hypotheses, Rauscher advances that subjects of the CPGE 
institutions occupying the teacher position (per discipline, hence in mathematics in particular) 
predominantly share common experiences and background traits. They thus form a distinctive social 
group, as a result of several interacting mechanisms, and take decisions as a team, or a tribe (tribu) 
as Chevallard (2003, p.89) would refer to it. The hypothesized continuity and stability within the 
CPGE, as to the norms of the teacher profession and the study organization created by each teacher, 
enables us to foresee the influence of the global CPGE institution on the students’ work. 

The work of Darmon (2013) in sociology allows us to clarify certain important aspects of the 
functioning and role of the CPGE institution, through which it exerts its subjugation actions and the 



 

 

resourcing of students’ personal work. Darmon defines a specific type of institution based on the 
socializing functions of the CPGE and examines it as an institution where a specific type of person 
is manufactured. According to her, these “enveloping institutions” (p.10) shape and transform the 
students through preparatory institutional socialization processes. Therefore, she analyzes the 
different daily functioning devices that make it possible for the institution to exert its effects on the 
students (“surveillance, sanction, examination and pressuring techniques” p.16). It appears that this 
subjugation process in undertaken by taking into consideration the individuals involved; this is far 
from common in higher education practices in France and sounds highly paradoxical. In fact, 
Darmon puts forward the fact that the CPGE strives to soften the preparatory violence. She 
describes the institution as being powerful but not totalitarian, violent but concerned about the well-
being of its members, it operates by individualizing to the extreme rather than homogenizing, thus 
reinforcing its take over the individuals which are its members (2013, p.28). Her findings converge 
with those of Daverne and Dutercq (2013) who put forth the regretted yet accepted pressure to 
which CPGE students are subjected as well as the personalized adaptation of teaching.  

Furthermore, we sought to develop the institutional dimension of our research from the point of 
view of the teachers. We hence considered two levels: the first once pertains to the way teachers are 
subjected to the CPGE institution; the second one is related to the mathematics classroom of each 
teacher, the local institution s/he creates thanks to stable devices which we seek to identify. We 
believe that the subjugations to the CPGE generate an environment in which each teacher enjoys a 
given autonomy and can freely express his/her individuality within the boundaries of the common 
CPGE teacher culture highlighted by Rauscher. Using Darmon’s work, we bring forward the CPGE 
institutional functioning analysis in order to explore how the socializing function is exerted. 

Therefore, based on the different didactical and sociological elements of our conceptual framework, 
we address the following research question in this paper: which institutional devices lead to the 
transformation of the students’ personal work mode in mathematics, at both levels of an institution, 
ranging from the global CPGE institution to the local teacher classroom institution? 

Methodology 
A first phase of our study, which is beyond the scope of this paper, was entirely centered on 
students’ personal work in mathematics. Using questionnaires and interviews of first year students 
from two ECS track preparatory schools in Paris (see Farah, 2015a), we gathered data about the 
organization of mathematics courses, the teaching methods, the assessment tools and the resources 
provided by the teachers to put students at work and accompany them in the study of mathematics. 
Based on this, we sought to approach the practices of the teachers by examining the teaching 
devices they design and implement in their classrooms as well as their meta discourse (Robert and 
Robinet, 1993, p.1). We must clarify that the word “discourse” refers to verbal expression, i.e. the 
use of words to exchange thoughts and ideas. It is not a theoretical construct borrowed from a 
conceptual framework. As for the word “meta”, we refer to Robert & Robinet’s definition (1993) 
whereby a teacher’s discourse contains meta elements, i.e. about mathematics and about the ways of 
doing and learning mathematics. The second phase of our research followed from this. 

To answer the research question addressed in this paper, we relied on qualitative analysis of data 
collected from two mathematics teachers of the schools involved in our study. We started with data 



 

 

obtained through semi-structured interviews conducted with each of the two teachers about the 
devices instituted in their classrooms. Then, we designed and had each teacher complete two 
questionnaires. The first one, inspired from Rauscher’s thesis (2010), is about their career path and 
their choices with respect to teaching in the CPGE, which we believe determine their position and 
impact their subjugation within the CPGE institution. The second one, inspired from Darmon’s 
book (2013), is about the assessment and pressuring devices the teachers implement in their 
respective classrooms to put the students to work, as well as their ways of softening preparatory 
violence in terms of the support and comfort they bring to the students. 

We used Qualitative Content Analysis of the interview transcriptions and questionnaire answers to 
put together a description of institutional devices implemented by each teacher (local) and those 
common across the different institutional levels (global). The narratives were analyzed thoroughly, 
manually, line by line, in a search for keywords and vocabulary terms constituting the teachers’ 
discourse about the ways students should study mathematics, while focusing on anything pertaining 
to institutionalization, regularity, and insistence on specific actions by the students or the teachers. 
Our search was structured around the following themes that determined the analysis rubrics of our 
content analysis: taking notes in class, managing work and revisions overall, studying between two 
mathematics sessions, using resources, preparing for an exam, the colles2, collaboration between 
students, student difficulties. We then resorted to triangulation to confirm the information obtained 
from the teacher-designed instruments by comparing it with what we had gathered in the first phase 
of our study through the students. We must clarify that, besides the things that converge with the 
information gathered from the students, we had very few elements that would allow us to determine 
the propinquity between the teachers’ statements and what actually takes place in their classrooms. 
In fact, one could be surprised that, in an analysis of teaching practices, there have been few filed 
observations. This limit is due to practical constraints in terms the duration of a doctoral thesis. The 
final output of our analysis is presented in the form of a description of the different institutional 
devices that organize and shape students’ personal work in mathematics. 

Main findings 

The findings show that the teachers seek to put their students to work and mold their study methods 
in mathematics through numerous collective devices instituted in their classrooms. In addition, they 
closely follow-up on each student’s work in mathematics through customized individual devices. 
Thanks to the latter, the teachers develop and apply diverse pressuring techniques in order to ensure 
the students’ intellectual training and their successful passing of the concours. We provide below a 
description of the main devices, which are either dictated by the global organization of mathematics 
study in the CPGE institution and thus revealing how the teachers are subjugated to their institution, 
or specific to one of the more local sub-institutions (for more details, see Farah, in press).  

                                                 
2 A colle is an assessment tool specific to preparatory classes. In mathematics, it classically takes the form of a one-hour 
bi-monthly oral examination, in groups of three students working individually but simultaneously, answering lesson 
questions and/or solving problems on the board, managed by a colleur who is present to supervise and grade the work.  



 

 

The teacher’s course and the follow-up beyond 

The mathematics course organization and progression are the first aspects of guidance to students’ 
work. For both teachers, when they explain a mathematics lesson, their first priority is to retain the 
students’ attention while encouraging them to actively participate by regularly asking questions. The 
lesson is completed and illustrated through examples and exercises, which are solved in class or at 
home, then corrected in class. During regular classroom sessions, if needed, teachers wrap up the 
work that they have previously started during practical solving sessions (called Travaux Dirigés or 
TD). Theses special sessions give students room to work on exercises in small groups, thus 
fostering discussions with the teacher as well as classmates. 

Both professors involved in our study use a handout as the baseline for the lesson explanation; they 
distribute it to students either systematically or occasionally. Depending on the teacher, the class or 
the chapter, this handout can be exhaustive or having blanks to complete, and teachers modify it 
regularly in order to tailor its contents to the level of the students and their capabilities 
(concentration, understanding, note taking ability) and the course pace is slowed down or increased 
accordingly. The main objective behind the use of such a device is to save note-taking time in class 
and ensure that students don’t make mistakes in copying key elements. A typical handout contains 
mathematical definitions and notations, propositions and theorems with occasional short proofs, 
lesson examples and application exercises. During the lesson, the teachers spend most of the time 
completing the missing proofs then provide additional examples. They explain to students that the 
proofs are the basis of mathematics, and repeatedly underline the practical and generic aspects to be 
extracted. On the contrary, little importance is given to statements of theorems. This is an example 
of a specificity of mathematics teaching in this CPGE stream as opposed to the insistence on 
academic knowledge in universities. In addition, the teachers formulate several remarks that are not 
solely about theoretical mathematical knowledge. In fact, in addition to the mathematical content, 
the teachers make comments related to practical knowledge. These are part of their meta discourse 
which contains technological elements (Castela, 2011) used to bring forward the know-hows linked 
to the mathematical content, thus allowing them to accompany students in their study. 

In addition to the time dedicated to lesson explanation, exercises solving and correction, both 
teachers ensure to always be available to assist the students in the learning of mathematics outside 
the classroom. They are willing to answer questions, provide explanations, recommend and even 
correct additional work despite believing that the workload they assign is already enough (regular 
exercise sheets and occasional extra exercise sheets with their correction for some chapters). They 
usually encourage students not to look for more resources (textbooks, online) and focus on what 
they provide due to time constraints. Moreover, the teachers hold weekly tutoring sessions to ensure 
that students are getting all the needed help within the institution. Through their extended 
availability and individualized follow-up, the teachers are ensuring that all their students are 
provided with the necessary assistance for their learning, while they control and organize their 
study. They are thus softening the preparatory violence through surveillance and examination. This 
is one important manifestation of the CPGE teacher culture that is absent in French universities. 



 

 

The recurring discourse about the ways of studying 

The teachers encourage their students to regularly study their mathematics lessons and solve the 
assigned exercises (for both the regular sessions and the TD) and they always explain to them how 
they should proceed to do so. The teachers emphasize the importance of reading a mathematics 
lesson actively and critically. The objective is learning the keys lesson elements while thinking 
about them and asking the right questions to first understand then memorize. According to both 
teachers, validation of the learning should be done by playing-back important lesson contents 
mentally, then preferably in writing.  

In addition, they both stress the crucial role of decontextualizing in mathematics learning. To do so, 
they underline the significance of both the results brought through proof and the use of generic 
components of reasoning, in addition to the techniques used in standard exercises which students 
must be able to acquire and plough back in other situations. In fact, they preach strategic exercise 
solving whereby students are expected to identify standard problems and recognize methods, 
techniques and tricks that can be used to solve them, which can also be applied to other problem 
situations. Thus, according to both teachers, students should have a transfer-oriented approach to 
exercises rather than one that favors only practice or reproduction (Castela, 2011), the latter are 
dominant among successful university students but are deemed ineffective in the CPGE. The 
teachers also insist on the necessity of doubling efforts until mastery is attained when facing 
difficulties in solving an exercise.  

We can refer to the notion of constructive help proposed by the teachers to guide students in 
studying the lesson, solving exercises and decontextualizing proof and exercises, when working on 
a daily basis between two mathematics sessions, as well as when preparing for an exam. In fact, we 
have identified several features of help common to both teachers in their discourse, about expected 
ways of studying mathematics and practical knowledge pertaining to the techniques which could 
help students gain know-hows relating to the awaited tasks. These illustrate the convergence of 
learning methods regularly repeated by two different teachers of the same stream and track. 

The assessment tools 

In order to ensure that the students are completing the assigned work (lesson and exercises) and to 
identify their weaknesses and difficulties in mathematics before the graded exams, teachers use 
personalized informal evaluation techniques during classroom sessions (both regular and TD). They 
often resort to oral interrogations about the lesson notions by randomly calling on students or 
choosing those who are inattentive or fall behind. Also, while the students are solving exercises in 
class, the teachers go around to check what they have done, they assess their understanding and help 
when needed. Then, the teachers encourage the students to engage in discussions about the 
exercises’ solutions before correcting them or asking a student to do so. One of the two teachers 
gives special care to exercises preparation by the students prior to class. In order to push students to 
maintain regular work, he periodically calls students to the board and collects notebooks without 
prior warning whenever he notices that the work has not been fully done, without necessary grading 
any. These are all examples of surveillance and sanction techniques that allow the institution to 
monitor and redirect the work of the students’ work. 



 

 

The teachers have several types of more formal assessment devices, institutionalized at the global 
CPGE level, which allow them to evaluate the degree of investment and understanding of their 
students. Firstly, they use all sorts of written evaluations. Teachers mainly resort to short quizzes 
focused on the mathematics lesson content (definitions, theorems…) at the beginning of the school 
years to push the students to study, however they state that they cannot maintain them throughout 
the year due to time constraints. They also have monthly exams (called Devoirs Surveillés or DS), 
and bi or triannual mock concours which are summative and are conducted in conditions similar to 
the official concours. One of the teachers quizzes his students about the correction of previous DS 
exams thus allowing the students to detect and address their weaknesses. In addition, teachers assign 
and grade homework sets (called Devoirs Maison or DM) on a monthly basis and they usually invite 
students to work on those in small groups. All of the above are examination and pressuring 
techniques used across the CPGE institution, with specificities of each sub-institution.  

Last but not least, the colles are the most important assessment tool that teachers use to evaluate 
their students in a highly customized manner. We summarize the main perks they list about this 
institutional device, which are for most specific to the case of mathematics colles in the ECS track, 
since their organization and functioning changes across disciplines, tracks and streams. The colles 
impose on the students a work and study regularity, which is certainly stressful and tiring for some, 
but the pressure is eventually seen as beneficial for the majority. Mathematic colles sessions are 
described as similar to private tutoring sessions where students can discover their weaknesses, ask 
questions, obtain additional explanations and a new point of view, and practice by solving 
additional exercises. Further to these mathematical learning related aspects, the colles are 
characterized by their interpersonal feature and the know-hows and social skills they teach (stress 
management, oral presentation, self confidence) which go beyond the scope of the classroom or 
even the school. Therefore, the colles are viewed as a summary of the best things the CPGE have to 
offer in terms of learning environment for their students (Daverne and Dutercq, 2013, p.182). They 
are to many teachers the secret to students’ success in CPGE (ibidem, p. 182), despite the 
difficulties and constraints they are subjected to. 

Discussion and conclusions 
On one hand, we can conclude that the teachers who took part in our study are heavily involved in 
their students’ learning. To accommodate the needs and level of a “new population” (ibidem, p.7) 
of CPGE students, more diversified in terms of academic and social backgrounds, teachers redefine 
their teaching modalities and pedagogical devices and adjust the level of their expectations. Daverne 
and Dutercq state that if some young students have good working habits when they enroll in the 
CPGE, none yet have the general culture nor the confidence needed to face the concours, which 
requires from teachers a high level of commitment towards them and a constant care for their moral 
(ibidem, p.8). Hence, the teachers participate in the didactical and pedagogical organization of their 
students’ autonomous study thanks to the advice they provide and the devices they institute and 
regularly adapt according to their needs and capabilities. They are therefore clearly dedicated to 
their students’ success. This is also reflected through the closeness in the student/ teacher 
relationships, which we do not tackle in this paper (for more information, see Farah, 2015b).  



 

 

On the other hand, although the use of the varied pressuring techniques in mathematics differs 
among teachers and depending on the students’ dispositions, the techniques themselves remain 
redundant across teachers and classes. This brings forward their generality and continuity within the 
EC stream of the CPGE institution, of which they become a specificity. As a matter of fact, we find 
in the teachers’ discourse common features underlining the coherence in the practices of teacher 
tribes per class as well as the stability of practices within each preparatory school, within the ECS 
track, and even within the entire EC stream. Regardless of the level of the institution, the devices 
used are specific to the teaching and learning of mathematics, even though we do not examine them 
with respect to a specific mathematical content in this paper. We conclude that the coherence of 
practices noted between the two teachers involved in our study concurs with what the sociological 
studies of Rauscher (2010), Darmon (2013), and Daverne and Dutercq (2013) have identified.  
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This work makes a contribution to the research line that studies the mathematical practices of 
research mathematicians, when developing their research, with the aim of improving the teaching 
and learning of such practices in an educational context. To be precise, we focus on the mathematical 
practices of conjecturing and proving in order to identify their characteristics as a basis to formulate 
a model. To address this problem, we consider Rasmussen, Zandieh, King and Teppo’s (2005) 
theoretical constructs (horizontal and vertical mathematising) and report results from a case study 
of a research mathematician.  
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Introduction 
Freudenthal (1973), in relation to mathematics and its learning, asserts that  

there is no doubt that pupils should learn mathematizing […] There is no mathematics without 
mathematizing […] This is what follows from the interpretation of mathematics as an activity. (p. 
134) 

On the other hand, Dreyfus (1991) points out the relevance of mathematising by highlighting the 
processes through which mathematical knowledge is constructed (discovering, defining, proving, 
modelling, etc.). These processes are relevant research focuses in mathematics education by the 
importance of its teaching and learning. In this sense, assuming mathematics as an activity, 
Rasmussen, Zandieh, King and Teppo (2005) also note the significance of considering mathematical 
practices developed in a learning setting.  

From the mathematics education perspective, mathematicians have been seen as study subjects. In 
fact, Tall (1991) already points out that “we are cognizant of the fact that it is essential to understand 
the nature of the thinking of mathematical experts to see the full spectrum of mathematical growth” 
(p. 3). In this regard, several researchers study mathematical practices of mathematicians with the 
aim of proposing models that describe such practices. For instance, Ouvrier-Buffet (2015) proposes 
a model that describes how mathematicians develop the mathematical practice of defining. Weber 
and collaborators focus on aspects of mathematician’s work associated to the process of proving 
(Mejia-Ramos & Weber, 2014; Weber, Inglis & Mejia-Ramos, 2014; Weber & Mejia-Ramos, 2011). 
Furthermore, Weber and Mejia-Ramos (2011) devise “a model for how mathematicians read the 
proofs of others” (p. 341). These inquiries lead us to consider the study of the mathematical activities 
that take place when research mathematicians generate conjectures and proofs.  

In our study, conjecturing and proving refer to those activities carried out to generate conjectures and 
proofs respectively. For us a conjecture is a statement that can be true or false, appears reasonable, 
“has not been convincingly justified and yet it is not known to be contradicted by any examples, nor 
is it known to have any consequences which are false” (Mason, Burton & Stacey, 1982, p. 58). On 



the other hand, we consider Weber and Mejia-Ramos’s (2011) definition of proof: “the socially 
sanctioned written product that results from mathematicians’ attempt to justify why a conjecture is 
true” (p. 331).  
For two reasons, we consider the practices of conjecturing and proving as two sides of the same coin. 
Firstly, for reasons related to mathematics, Peirce’s contributions (1997) on the three type of 
reasoning: abduction, induction and deduction, applied to mathematics, justify the joint consideration 
of both processes (Fernández-León, Toscano & Gavilán-Izquierdo, 2016). Specifically, abduction 
refers to the provisional adoption of a hypothesis, deduction traces out the probable and necessary 
consequences of a hypothesis and induction is the verification of a hypothesis by experiments (Peirce, 
1997). Secondly, from mathematics education, Alibert and Thomas (1991) point out that “[t]he 
formulation of conjectures and the development of proofs are two fundamental aspects of a 
professional mathematician’s work” (p. 215). 
This work contributes to the research line that studies the mathematical practices of research 
mathematicians, when developing their research, with the aim of improving the teaching and learning 
of such practices in an educational context. To be precise, we focus on the mathematical practices of 
conjecturing and proving in order to identify their characteristics as a basis to formulate a model. 

Mathematisation: Theoretical perspectives 
In the last decades, the specific meaning of the term “advanced mathematical thinking” has been a 
subject under discussion. Tall (1992) associates this expression with the formal use of definitions to 
describe concepts and the logical deductions of theorems based upon them. He points out that such 
grade of sophistication is the highest level of mathematical thinking, but not the activities to reach it. 
With this in mind, Rasmussen et al. (2005) propose an alternative characterisation of advanced 
mathematical thinking, called “advancing mathematical activity”, that mainly focuses on general 
mathematical practices (defining, classifying, conjecturing, etc.) instead of on particular 
mathematical contents. They emphasise the progression and evolution of students’ reasoning in 
relation to their previous activity when participating in a variety of different socially or culturally 
situated mathematical practices. 

Rasmussen et al. (2005) also suggest that each mathematical practice can be described by using two 
different dimensions, the so-called horizontal mathematising and vertical mathematising. These two 
terms are firstly used by Treffers (1987) to describe what he calls “progressive mathematising”. 
Treffers refers to horizontal mathematising as the activities of “transforming a problem field into a 
mathematical problem” (p. 247) and to vertical mathematising as those proper activities of the process 
of reorganisation within the mathematical system itself. Notice that the idea of mathematisation is 
originally formulated by Freudenthal (1973), who understands mathematics as a human activity. This 
author indicates that “there is not mathematics without mathematizing” (op. cit., p. 134). He defines 
mathematisation as the activity of organising matter from reality and within the mathematics 
discipline. Freudenthal (1991) assumes Treffers’ dimensions, although expressing their meanings in 
the following way:  

horizontal mathematisation leads from the world of life to the world of symbols. In the world of 
life one lives, acts (and suffers); in the other one symbols are shaped, reshaped, and manipulated, 
mechanically, comprehendingly, reflectingly; this is vertical mathematisation. (Freudenthal, 1991, 
pp. 41–42)  



For him, these two forms of mathematisation are not separated worlds, have the same status in practice 
and can take place at all levels of mathematical activity. 

In our research, we assume Rasmussen et al.’s (2005) approach about horizontal and vertical 
mathematising. These authors also slightly adapt and modify Treffer’s constructs. For them, 
horizontal mathematising refers to those activities used to formulate a problem situation in such a 
way that it can be mathematically addressed subsequently. Thus, horizontal mathematising also 
includes problem situations that are properly mathematical and is mainly related to initial or informal 
ways of reasoning. On the other hand, vertical mathematising refers to those activities built on 
horizontal activities with the aim of creating new mathematical ideas or realities. They use these 
constructs to characterise the practices of symbolising, algorithmatising and defining. An important 
coincidence they find among these three mathematical practices is the relation between “creating” 
and “using”. They argue that both actions occur when these practices are carried out, although with a 
different role in each dimension. In particular, in horizontal mathematisation, people create 
(definitions, algorithms, etc.) “to express, support, and communicate ideas that were more or less 
already familiar” (Rasmussen et al., 2005, p. 70) and products of this dimension are used within their 
mathematical problematic situation. On the other hand, in vertical mathematisation, new 
mathematical realities are created and using promotes “movement from the particular to the more 
general and in some cases the more formal” (op. cit., pp. 70–71). The authors state that vertical 
activities often give rise to other horizontal activities. Vertical mathematisation may be the setting for 
a new horizontal mathematisation, which subsequently can lead to vertical mathematisation, and so 
on, creating a chain of progressive mathematisations. 

Our study aims to identify characteristics of the practices of conjecturing and proving of research 
mathematicians to describe and explain how they develop them. For this purpose, horizontal and 
vertical dimensions proposed by Rasmussen et al. (2005) are considered. Thus, the research question 
behind this study is: Can horizontal and vertical mathematising constructs describe and explain the 
mathematical practices of conjecturing and proving of research mathematicians? 

Methodology 
In this research, we assume a qualitative methodology. In particular, we have adopted a case study 
methodological approach. With the aim of answering the research question above, we consider an 
inductive analysis, that is, the different categories emerge from the data. In this work, we discuss one 
case of a research mathematician.  

Participant and context 

The participant (Anna, pseudonym) is a research mathematician, understanding as such those who 
have a Ph.D. in mathematics and have published research papers also in mathematics. Specifically, 
Anna is a teacher that researches in mathematical analysis (functional analysis) and has more than 
five years of experience in university teaching. The case study of Anna presented here is part of a 
larger research study which aims, among others, to refine and thus improve the analysis shown below. 
The results reported in this paper are based only on this participant’s case. 



The research instruments 

The data for our study are obtained from different sources: interviews, working documents and 
research reports. Four semi-structured interviews are conducted. The first of them aims to obtain basic 
information from the researcher; the following interviews revolve around the mathematical research 
carried out by Anna. Specifically, we discuss her research results collected in different research 
reports (papers, posters and beamer presentations in conferences). We also talk about the personal 
working documents used in the development of her research. Some of these documents are related to 
situations that led to successful outcomes and some others to situations which were less successful. 

Data analysis 

The analysis process (interpretative analysis) considers the dimensions horizontal and vertical 
mathematising from Rasmussen et al.’s (2005) approach to organise the mathematical activities that 
take place when conjecturing and proving. Specifically, this process identifies relevant events in the 
data and assigns meanings according to the theoretical framework: first, they are classified as actions 
linked to the mathematical practices of conjecturing or proving. These actions are subsequently linked 
to the horizontal or vertical dimension of the corresponding practice, according to the characteristics 
of these two dimensions. For instance, when proving, the activity of Detecting patterns in examples 
(see description below) is considered horizontal since when detecting patterns in examples one 
systematically expresses or formulates (based on experimentation) how certain property (the problem 
situation) holds in such a way its generalisation can be addressed in the vertical category Formalising 
findings with examples. Once that double assignment is finished (conjecturing-proving and 
horizontal-vertical), taking the nature of the events in consideration, the categories emerge in such a 
way that each event is seen as an “example” of a category. 

Results 
In this section, categories of activities that emerged from the analysis of the data are presented. 
Consequently, the offered classification is not based either on the content of the research (geometry, 
analysis, etc.) or the mathematical method considered in each practice (proof by contradiction, etc.). 
Although space prevents the exemplification of each given category, we provide several excerpts 
from Anna’s answers and documents to illustrate some of them. Specifically, we denote each example 
by “Example x.y”, where “x”, that may be 1 or 2, refers to the mathematical research situations in 
which the example arises and “y”, that varies between 1 and 6, indicates the precise moment (in the 
temporary sequence) of the mathematical research situation in which the excerpt appears.  

Although conjecturing and proving are closely related practices (Fernández-León et al., 2016), we 
describe them separately for expository reasons. Notice that the informal character of horizontal 
mathematising and the almost simultaneity of these two mathematical practices make complicated to 
differentiate if the features of the researcher’s informal activities are linked to the construction of a 
proof or, on the contrary, of a conjecture.  

How mathematicians conjecture 

Three categories of horizontal nature (C.H.a, C.H.b, C.H.c) and two of vertical one (C.V.a, C.V.b) 
have been characterised during the analysis of Anna’s case. These categories do not describe a linear 



process, but they are interconnected many times. We begin by describing the activities that 
characterise the horizontal component of the practice of conjecturing.  

C.H.a) Detecting patterns. Experimentation with mathematical objects (a triangle, a number, a Hilbert 
space…) and in relation to a certain characteristic or observable property. To be more precise, logical 
reasoning and informal activities with mathematical objects involved in detecting a certain pattern in 
a concrete mathematical context. 

Example 1.1- Anna: When dealing with the research question about whether all complete 
CAT(0) spaces satisfy the (Q4) condition, we started to check what 
happened to spaces with constant curvature, since the other two extreme 
cases had already been checked by the authors of the paper (Hilbert 
spaces and R-trees). Firstly, we checked that the hyperbolic space, with 
curvature -1, satisfied property (Q4). That conclusion led us to a 
conjecture. 

Example 2.1- Anna: We considered the analytic expression of the modulus of convexity of 

the sphere, a geodesic space that is not linear: δ(r,ε)=1- 1
r
 arccos⁡(cos r

cosε
2
) ; 

and tried to prove its monotonicity with respect to “r” through the first 
derivative. We did many calculations but no conclusion could be 
established. Many experiments with the software Mathematica were 
also done to see if the modulus of convexity of the sphere was monotone 
with respect to the variable r. However, we couldn’t derive any 
conclusion from hand calculations, which was the necessary for any 
future publication. 

C.H.b) Testing conjectures. Verification or rejection of a certain conjecture by specific examples. 

Example 1.3- Anna: We started to checked property (Q4) in more CAT(0) spaces, 
specifically, on gluing CAT(0) spaces. These experiments allowed us 
to reject the conjecture “every CAT(0) space has property (Q4)”. 

C.H.c) Modifying statements. Experimentation with the components of an already existent conditional 
proposition (proved or not, that is, a proved proposition or a conjecture) consisting in modifying its 
hypothesis or conclusion. 

The activities that characterise the vertical component of the practice of conjecturing are given next.  

C.V.a) Formalising patterns. Generalisation and formalisation of a certain pattern observed in 
horizontal mathematising activities. Specifically, a pattern observed in the horizontal dimension is 
used to formulate what is known as a conjecture.  

Example 1.2- Anna: We conjectured that “every CAT(0) space has property (Q4)”. 

Example 2.2- Anna: After seeing many different plots with Mathematica of the cited 
function, we conjectured that “The modulus of convexity of the sphere 
is nonincreasing with respect to r”. 



C.V.b) Formalising modifications of statements. Formalisation of the modifications of the hypothesis 
or conclusion of an already existent conditional proposition (proved or not) which gives rise to a 
conjecture.  

Example 1.4- Anna: We changed the conjecture on the (Q4) property by formulating a new 
one that was more probable in the light of the example checked before 
(gluing CAT(0) space): “any CAT(0) space with constant curvature 
satisfies the (Q4) condition”. 

How mathematicians prove 

Two categories of horizontal nature (P.H.a, P.H.b) and four of vertical one (P.V.a, P.V.b, P.V.c, 
P.V.d) have emerged from the data. We start by describing the activities that characterise the 
horizontal component of the practice of proving.  

P.H.a) Detecting techniques or tools within proofs. Careful study and examination of the 
characteristics and steps of other proofs related to the proof to be built. When dealing with the 
construction of a new proof, it is common to seek proof techniques, in other proofs, that may fit in 
well with the new proof. Notice that this description is consistent with the claim by Rasmussen et al. 
(2005) that many specific activities of this dimension are of organisational and clarifying type. 

P.H.b) Detecting patterns in examples. Experimentation with specific examples that satisfy the 
hypotheses of a given conjecture with the aim of detecting patterns that could be extended to more 
general settings for the proof in process.  

Example 1.5- Anna: After formulating the new conjecture, we considered another space of 
constant curvature, the sphere, to see which pattern was followed when 
checking the (Q4) condition in such space. We observed that it was very 
similar in both spaces. 

In the sequel, the activities that characterise the vertical component of the practice of proving are 
given.  

P.V.a) Selecting and applying demonstration methods. Selection and application of demonstration 
methods (direct, by contraposition, by contradiction, etc.).  
P.V.b) Using proof techniques. Use of proof techniques or tools found in the horizontal dimension. 

P.V.c) Applying known results. Application of known results to build chains of logical implications. 

P.V.d) Formalising findings with examples. Extension and formalisation of the findings and 
calculations with examples in the horizontal dimension.  

Example 1.6- Anna: After revising those examples, we extended the calculations in the 
examples to general cases and proved the conjecture. In fact, what was 
done was the following: we wrote the proof in the hyperbolic space and 
wrote what to do in the general case. This type of reasoning is very 
common in our papers if the extension is very easy and useless.  

Results of this study may show the still strong influence of formalism on mathematical research.  



Conclusions 
In this research, different categories are identified (and organised through the constructs horizontal 
and vertical mathematising) to describe and explain the mathematical practices of conjecturing and 
proving. These categories are consistent with previous results of other studies, for instance, inductive 
reasoning described by Peirce (1997) is closely related to our category Testing conjectures. The 
“Examples x.y” shown in the previous section corroborate, for both practices, the interrelationship 
between horizontal and vertical mathematising activities. Notice that the identification of these 
different categories may contribute to elaborate a model that characterises both mathematical 
practices.  

The categories identified may give information about instruction processes to improve students’ 
understanding of the practices of conjecturing and proving and of their products (conjectures and 
proofs). Such understanding highlights and emphasises the duality conjecturing/conjecture and 
proving/proof, so that it is consistent with what mathematics (as a product of mathematicians) reveals. 
On the other hand, Harel and Sowder (1998) identify three different students’ proof schemes: external 
conviction proof schemes, empirical proof schemes and analytical proof schemes. A tentative idea to 
develop in future works is to check whether the role we have identified induction to play in the 
horizontal dimension of the practice of proving, Detecting patterns in examples, may help us to 
facilitate the transition of students from empirical schemes to analytical schemes.  

We characterise the results of this inquiry as exploratory. That is, the classification described above 
must be refined and validated, in future research, in other different contexts (with other mathematical 
contents, other mathematical cognitive levels, etc.).  
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The concept of derivative plays a major role in economics. One important competence for students 
of economics is to interpret values of the derivative in an economic context. In the study presented 
in this paper it was investigated how students of economics interpreted values of the derivative in 
an economic context before and after their Calculus course at university. Before the course only 
very few students were able to interpret these values adequately. After the course about half of the 
students were able to state an adequate economic interpretation of values of the derivative, mostly 
as amount of change of the function while increasing the output by one (marginal) unit, which is a 
common interpretation in economics. However, the data indicates that many of these students just 
identified the derivative with that amount of change without understanding the differences and the 
connection between these two different mathematical objects. 

Keywords: Derivative, economics, concept image, economic interpretation, marginal cost. 

Introduction and embedding of the research 
In order to maximize their profit firms have to make many profound decisions, for example about 
possible investments. An important tool that aids economists to make optimal decisions is marginal 
analysis. Baumol and Blinder (2015) listed marginal analysis even as one of the most important 
ideas of economy. In marginal analysis the consequences of making relative small changes from the 
current situation are examined (Ruffin & Gregory, 1990). Typical problems are the effects on cost 
or revenue if the output is increased by a small amount (normally one unit), or the effects on the 
demand of a product if the price is increased by a small amount. Marginal analysis is closely 
connected with the mathematical concept of derivative, which serves as a tool to measure the effects 
of these small changes on cost or revenue. Therefore, students of economics should have a proper 
understanding of the mathematical concept of derivative and its use in marginal analysis, which is 
currently investigated in my PhD-Thesis (supervised by Prof. Dr. Rolf Biehler). 

Unlike for students of engineering or physical science, whose understanding of the derivative has 
been examined more extensively (Bezuidenhout, 1998; Bingolbali & Monaghan, 2008; Çetin, 2009; 
Maull & Berry, 2000), only little research about the understanding students of economics have of 
this concept exists. Only two studies are known to the author dealing with the understanding of rate 
of change by students of economics (Mkhatswa & Doerr, 2015; Wilhelm & Confrey, 2003), and 
none of these involves the concept of derivative explicitly. To use the derivative in marginal 
analysis the students have to interpret calculated values of the derivative in an economic context. 
Interpreting values of the derivative in contexts is not easy for students, as shown by Bezuidenhout 
(1998) for students of engineering. He showed, for example, that many of these students could not 
interpret values of the derivative of a stopping distance function S(v) (v is the velocity of a vehicle) 
adequately. They overgeneralized that the derivative is the acceleration or the velocity, or they had 
problems with the unit, which shows that they did not have a profound understanding of the 
derivative itself as rate of change. The economic interpretation of the derivative has the additional 
difficulty that it does not directly correspond to any of the usual mathematical representations of the 



derivative, which is explained in detail in the next section. Therefore, it can be expected that 
students of economics have even more difficulties in understanding this interpretation. To address 
this conjecture, the study presented in this paper is guided by the following research question: “How 
do students of economics interpret the derivative in an economic context before and after their 
Calculus course?” The results will extend the knowledge about students’ difficulties in the 
understanding of the derivative with a focus on students of economics, who have been rarely 
considered until now. 

Theoretical background of the study 
The economic interpretation of the derivative 

In physical contexts, the derivative is often interpreted as rate of change (for example as speed), 
which directly corresponds to other representations of the derivative like the slope or the limit of the 
difference quotient. The common economic interpretation, however, represents a different 
mathematical object, which is now explained for cost functions. If :[0; [ [0; [C     is a cost 
function and C(x) represents the cost of a given output x, '( )C x (called marginal cost) is often 
interpreted as the additional cost while increasing the output by one unit (Schierenbeck & Wöhle, 
2003). This additional cost, exactly calculated by ( 1) ( )C x C x  , differs from the derivative C’(x) 
in its numerical value and in the unit. Hence, this interpretation has to be connected to the students’ 
other knowledge of the derivative and needs to be justified. A typical justification is via the 
approximation formula ( ) ( ) ( )C x h C x C x h    for h close to 0 with the additional argument that 

1h   is really small in economic contexts. A more detailed description of the connection between 
the derivative and its economic interpretation as additional cost can be found in Feudel (2016). 

Some books of economics add the word “marginal” to the unit when describing marginal cost. The 
marginal cost is then the cost that arises if the output is increased by a marginal unit and is written 

as ' dCC
dx

  (e.g. in Reiß (2007)). In economic literature the term “marginal unit” is often used as a 

synonym for a very small, but finite, unit. In Dyckhoff (2002), for example, the term is used to 
emphasize that one unit is small enough and that the derivative C’(x) can be used as approximation 

for the difference quotient C
x




 for Δx = 1. Reiß (2007) emphasizes furthermore that it depends on 

the context whether a unit can be considered as marginal or not (example of the book: if water 
utility is measured in cubic meters a marginal unit might be a cubic millimeter). 

Theoretical tools for the study 

An adequate economic interpretation should be part of the students’ conceptual knowledge of the 
derivative, which can be described with the term concept image by Tall & Vinner (1981). The 
concept image describes the total cognitive structure that is associated with the concept. This 
includes are all mental pictures, associated properties and processes. Concerning the derivative the 
students’ concept image should contain the different representations of it, the differentiation rules, 
connections to other mathematical concepts like monotonicity, and in the case of students of 
economics also an adequate economic interpretation of the concept. To understand this 
interpretation properly students should connect it to other knowledge of the derivative they already 
have from school. The process of making these connections, called synthesizing by Dreyfus (2002), 



is a special challenge in the case of the common economic interpretation of the derivative as 
additional cost because this interpretation does not directly correspond to any of the other 
representations of the derivative, and, as described above, justifying it needs some argumentation. 

Knowledge about the derivative covered in the students’ Calculus course 

In the course the study took place in (University of Paderborn, Germany), the derivative concept 
itself was covered in two lectures. In the first lecture the definition of the derivative as limit of the 
difference quotient, which was also visualized by secant lines “converging” to the tangent line, and 
the differentiation rules were presented. Afterwards the unit of the derivative in comparison with the 
unit of the original function was discussed in the case of a cost function C. In the second lecture the 
economic interpretation was presented and justified. Two possibilities were given in the course: 

1. Approximation of the additional cost of the next unit 

This interpretation was justified in the course via the above mentioned approximation formula   ∆C 
≈ C’(x)∙∆x that was derived by deencapsulating the limit in the definition of the derivative and using 
the limit as an approximation of the difference quotient. 

2. Additional cost of the next marginal unit 

It was illustrated in the lecture with the help of the tangent line in the case of a convex function that 
the error between ΔC and C’(x)·Δx in the approximation '( )C C x x    becomes smaller, the 
smaller Δx is. It was explained that the limiting process ∆x→0 results in a fictional 
equation '( )dC C x dx , in which dx was called a marginal unit. 

Some lectures later, after the introduction of the concepts of monotonicity and convexity, the 
connection between the derivative and these two concepts was discussed. In a last step the 
derivative was used as a tool to solve optimization problems. 

Besides the lectures the students had to solve problems referring to the content of the lectures. The 
problems were solved by the students in small groups. One week later the solutions were presented 
on the board in the lecture hall. Relevant for this study is that the problems also included a task to 
interpret the value '(5)C of the cost function 2( ) 8 10 700C x x x    in an economic context. 

Methodology of the study 
Data Collection 

Students of economics at the University of Paderborn were administered a pre-test addressing their 
previous knowledge of the derivative concept in September 2015 in a voluntary bridging course 
before their math courses. The pretest contained the following task, to check if an adequate 
economic interpretation was part of the students’ concept image: 

A company produces pens. The cost (in euro) for the production of a number of x pens can be 
described with a cost function with the following equation: 

3 21 1( ) 2 , 0
30000 100

C x x x x x    . It can be determined that '(200) 2C  . Interpret this 

result in the above context. 



After their Calculus course in February 2016 the students had to take an exam to finish the course 
successfully. In the exam the students also had to answer a similar task: 

Let :[0; [P  R be a profit function of a company, which manufactures a product in an 
unlimited and indivisible amount. The profit is measured in units of money, the output measured 
in units of quantity. It is known that the derivative function P’ is called marginal profit. You get 

to know that GE'(73) 0.2P
ME

  (GE = units of money, ME= units of quantity). 

State an economic interpretation of this value. 

As described in the previous section, the students were familiar with that type of task. 

Data analysis 

The answers to the two tasks were categorized by the author with quantitative content analysis. 
Besides two categories given by the interpretations “additional cost of the next unit” and “additional 
cost of the next marginal unit”, which were derived from literature in economics (see “Theoretical 
background”), the categories were created inductively because it was not clear what answers the 
students might state. This led to a system of 10 categories for the task in the pretest (other answers, 
which were all wrong, were given by less than 3% of the students). The answers in the first three 
categories were adequate economic interpretations (detailed descriptions in Figure 1). 

 

Figure 1: Adequate response categories for the task to interpret '(200) 2C  for a cost function C in 
an economic context 

The answers in the categories 4-10 were not adequate economic interpretations (detailed description 
in Figure 2): the answers in categories 4-5 contained at least a correct idea, the answers in categories 
6-8 were wrong economic interpretations, and the answers in categories 9-10 were no economic 
interpretations and therefore were wrong answers to the task as well. 



 

Figure 2: Not adequate response categories for the task to interpret '(200) 2C  for a cost function C 
in an economic context 

After the development of the category system the data was re-coded by a student to check inter-rater 
reliability. The reliability coefficient Cohen’s Kappa was κ = 0.82, which is good. 

The 10 categories mentioned above were also used to categorize the answers to the task in the exam 
to interpret '(73) 0.2P   for a profit function P. However, three additional categories that contained 
more than 3% of the answers had to be added (Figure 3). In addition, the category “cost doubles or 
halves” was adapted to “Increase of profit by 20%”. 

 

Figure 3: Additional response categories for the task to interpret '(73) 0.2P   for a profit function P 
in an economic context 

Results 
The students’ answers to the task to interpret '(200) 2C   for a cost function C in an economic 
context before their Calculus course are shown in Figure 4. 



 

Figure 4: Students’ answers to the task to interpret '(200) 2C  for a cost function C in an economic 
context before their Calculus course (N = 143) 

As can be seen in Figure 4, the economic interpretation of the derivative of a cost function C as the 
additional cost of the next unit was not known by the students from school, and is not as intuitive 
that the students stated it spontaneously. Instead, some students tried to use their knowledge about 
the derivative being the slope at a point (category: Gradient of cost at the point) or the rate of change 
(categories: Growth rate at of cost or Cost per unit). Others had misconceptions.  

The students’ answers to the task to interpret '(73) 0.2P   for a profit function P in an economic 
context in the exam after their Calculus course are shown in Figure 5. 

 

Figure 5: Students’ answers to the task to interpret '(73) 0.2P   for a profit function P in an 
economic context in the exam at the end of their Calculus Course (N = 821) 

As can be seen in Figure 5, more than half of the students knew the common economic 
interpretation of the derivative of a profit function as additional profit of the next (marginal) unit 
after the course (but still various misconceptions occurred). Thus, an adequate economic 
interpretation of the derivative was part of their concept image for about half of the students. 
However, the data indicates that many of these students did not really integrate their economic 
interpretation of the derivative with the rest of their concept image, i.e. they did not fully understand 
the differences between the derivative '( )P x  and its economic interpretation as profit of the next 
unit (differences in the numerical values and in the units). Of the 422 students who interpreted the 
derivative as additional profit, 100 students (23.7%) mentioned “unit of money per unit of quantity” 
as corresponding unit, which is the right unit of the derivative but not of its interpretation as 
additional profit. Furthermore, of the 103 students who interpreted the derivative as the additional 



profit of the next unit, only 20 students (19.4%) mentioned in their interpretation that the value of 
the derivative '( )P x  is just an approximation of the additional profit ( 1) ( )P x P x  , although the 
lecturer had emphasized that this has to be stated explicitly in the interpretation (and had shown 
graphically the error on the board). This indicates that many students probably did not understand 
the differences between the derivative '( )P x and its economic interpretation. They just identified 
both objects, which leads to an incoherent concept image of the derivative (Tall & Vinner, 1981). 

Limitations of the study 

Due to organizational problems it was not possible to match the students in the pretest and the 
exam. So it is not possible to investigate the progress of individual students with the data. It is just 
possible to compare the amount of students giving certain answers before and after the course. 

Discussion and conclusions for further research 
The study shows that an adequate economic interpretation was not part of the students’ concept 
image of the derivative (with few exceptions) when entering university. Hence, this interpretation 
should be introduced in the course with caution and connected to the rest of their concept image of 
the derivative concept. After the course an adequate economic interpretation of the derivative as the 
additional cost/profit of the next (marginal) unit was part of their concept image for about half of 
the students. However, the data indicates that many of these students did not understand the 
differences between the derivative as a mathematical concept and its economic interpretation. For 
example, one quarter of the students who interpreted the derivative as additional profit gave the 
wrong unit (a unit of rate). They did not distinguish between the derivative being a rate of change 
and its economic interpretation being an amount of change, which is also documented in literature 
(Mkhatshwa & Doerr, 2015). Furthermore, the data indicates that many students were not aware that 
the value of the derivative is just an approximation for the additional cost/profit of the next unit. 
Students having these problems probably did not connect the economic interpretation of the 
derivative to their concept image of the derivative as a pure mathematical concept properly. 

To find out to what extent the students really integrated the economic interpretation of the derivative 
as additional cost/profit into their concept image as intended in their Calculus course (i.e. that they 
know the differences and the connection between these two different mathematical objects, and can 
justify the identification of them), further research is necessary. Therefore, in spring 2015, an 
interview study addressing this identification directly was conducted to find out to what extent the 
students really integrated the economic interpretation of the derivative into their concept image of 
the derivative concept (and not just memorized it) and what cognitive obstacles occur during the 
justification of the economic interpretation of the derivative in the way it was done in the course.  

The above mentioned research, however, only takes a cognitive perspective into account. There are 
more factors influencing the way students interpret the derivative in an economic context like 
institutional practices of the two institutes involved in their education (institutes of mathematics and 
economics). Taking these institutional influences into account, which has great potential for further 
research, would, however, require other theoretical perspectives like ATD (Bosch & Gascón, 2014). 
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Flipped Classroom approaches to teaching are becoming increasingly popular in higher education, 
but there is a lack of empirical research. We present here a study performed during an engineering 
course for 20 students at a Norwegian university, on student appropriation towards Flipped 
Classroom through interviews, questionnaire, video/quiz usage statistics and classroom filming. We 
approach this research through an activity theoretical framework, focusing on tensions experienced 
as the students try to tackle the demand of video preparation and active learning in class. In line with 
much of the recent research on the topic, we find that most students seem to appreciate more 
collaboration with peers and teacher. However, there is also evidence that the new form of teaching 
creates various tensions; a minor part of the cohort demonstrates conflicting beliefs about 
mathematics learning, resisting the active learning part of Flipped Classroom. 

Keywords: Activity theory, flipped classroom, tensions. 

Introduction 
Flipped Classroom (FC) is most commonly known as a method that arranges the lecturing part of the 
teaching as homework through videos. This is considered the out-of-class part of the FC. When 
students come to class, the stage is set for learning in a student-centered manner, using various 
problem-solving activities (Bergmann & Sams, 2012). This is considered as the in-class part of FC. 
Both are vitally important for the FC learning model to work. The out-of-class video learning 
“primes” the students for the crucial in-class active phase (Seyfedine, Kadry & Hami, 2014), where 
hopefully the active “learning-by-doing” understanding and adaptation takes place. The idea is that 
through well-designed activity sets in class, the teacher has the opportunity to challenge the students 
at both a collaborative and conceptual level in this phase (Wan, 2015).  

In this paper, we describe a study that was conducted in the spring term of 2016 at a Norwegian 
university, where students in their first year of engineering studies were exposed to several 
interventions of the FC way of teaching. The teaching setup in this university is well suited for flipped 
teaching. It is a small campus, with only 20-30 students per-year in a 3-year long bachelor study in 
computer engineering, allowing for a tight integration between the students and the teacher.  

Many studies on the implementation of FC seem to indicate that motivation might increase among 
students in mathematics (Franqueira & Tunnicliffe, 2015; Kadry & El Hami, 2014; Roshan, 2015). 
However, there are also research studies that indicate the opposite. Wasserman, Quint, Norris, and 
Carr (2015) found that students in a flipped calculus III class were critical to the use of class time for 
group work. Strayer (2015) reports that students felt “lost” and disengaged with the material sooner 
than students in the traditional classroom did. Ramaglia (2015) did a comparative study between 



flipped and non-flipped high school and middle school mathematics classes in her PhD thesis, but 
failed to find consistently increased peer-to-peer activity among students. Referring to these mixed 
results from other studies, it seems interesting to gain more insight into what kind of tensions, strains 
and possible resolutions of these can be observed in a FC realization. Based on this background, our 
research questions are formulated as follows: 

Research Question: What are the tensions that emerge from students’ attempts to appropriate change 
towards FC facilitated by videos and quizzes? 

Theory 
We believe that learning can best be understood when considered as a common enterprise among 
students and teacher, emerging as culturally negotiated in an environment based on constructive 
criticism. Turning to Cultural Historical Activity Theory (CHAT) (Engström, 1994), we have a rich 
theoretical basis to put FC in a broader perspective.  

Campus Inkrement
Classroom discourse
Curriculum literature

Student
Learn 
Math

Prepare using 
videos

Roles during 
group work

The class

Become 
engineer

Instruments

Subject Object

Rules Division of labour

Community

Outcome

Figure 1: The CHAT triangle adopted to the Flipped Classroom from a student’s perspective 

The primary part of the activity system in this study is the student as a subject in her object-oriented 
activity to learn engineering mathematics. In attempting this, she uses various instruments. The most 
important ones are Campus Inkrement (a virtual learning environment used for distributing videos 
and quizzes), classroom discourse and curriculum literature. The dominant new rule governing FC 
compared to “traditional teaching”, is the video preparation part, forming the out-of-class component 
of FC. The mathematics in the video should form a common ground of knowledge for the community 
consisting of students and teacher. For the division of labor, we consider how students attain various 
roles in their collaboration to solve tasks in-class. 

In any activity system there exist tensions and contradictions. Engström (1994) summarizes activity 
theory in five principles, and among these, he mentions contradictions as one of the leading sources 
for change and development. Basically, contradictions can be defined as a misfit within elements of 
an activity system, between them, and between different activity systems. Engeström (1987) argues 
that four levels of contradictions are present in an activity system, and identified tensions in 
interactions within and between activity systems. The contradictions can be identified at four levels: 
primary, secondary, tertiary, and quaternary. If we apply this model in the context of FC, we can 
describe the contradictions as follows:  

1. The primary contradictions occur within the elements or components of FC as an activity 
system, e.g. within the community of students and teacher.  



2. Secondary contradictions arise between the elements of FC, or when two or more elements 
of FC conflict with one another, e.g. between the community and subject (for example 
between the class and the individual student), between the object and the community, or 
between the rules and the community, etc. 

3. Tertiary contradictions arise when a new and advanced method or artefact is used to achieve 
an objective, e.g. when videos are introduced as a new artefact to teach mathematics. 

4. Quaternary contradictions occur between FC (as activity system) and another activity 
system.  

Methodology 
We performed two separate periods of FC teaching during the second semester of study year 
2015/2016. We performed data collection by issuing an anonymous questionnaire, doing three semi-
structured interviews and two rounds of classroom filming. In addition, students’ usage statistics of 
video and quizzes were collected through the Campus Inkrement software. As our theoretical stance 
is in the socio-cultural field, an interpretative research paradigm was chosen. The questionnaire and 
the interviews were performed after the students’ first encounter of FC teaching, informing us on 
student impressions on pedagogical and technical impressions with the learning platform chosen for 
distributing video/quizzes, the in-class group work activities and the quality of interaction with the 
teacher and the other students. Episodes relevant for the enlightenment of the research questions of 
the paper, tensions and student appropriation towards FC, are highlighted in the results section. 

Campus Inkrement (CI) as a mediating artefact 

Preceding each in-class session, a corresponding out-of-class session of videos and quizzes was 
presented to the students in CI, which is a web-application fulfilling the role of the out-of-class 
component of FC. Built from the ground up to be consistent with the FC teaching design, the 
teacher/researcher also has the capability to highlight video watching statistics and quiz results for 
the individual student. From a student perspective, CI brings the opportunity to give feedback on how 
well the student understood the current topic on a scale 1-5. In addition, self-perceived effort can be 
reported on a similar scale. The student also has the opportunity to ask for further guidance from the 
teacher on specific topics. This opens up for an out-of-class possibility for students to prompt the 
teacher for assistance without revealing their uncertainty to peers in-class. 

FC implementation 

In this class, there were 20 students following the course. Before attending the spring term, these 
students had all background from a 10 ECTS (European Credits) calculus based Math-1 course with 
traditional lecture-based teaching. The course in the spring term that was subject for FC teaching was 
labelled Math-2, consisting of 10 ECTS containing series, Fourier and Laplace transform, recursion 
equations, proofs and optimization on functions with two variables.  

After having informed the students thoroughly about the new form of teaching in the beginning of 
the term, we started out the term with one month of FC teaching in January. The topic for this first 
round of FC teaching was sequences and series, studying criteria for convergence, and in the end 
Taylor expansions and Maclaurin series. Although we did not influence the curricula, obligatory 
assignments and exam, we could plan and implement FC as we saw fit, including the teaching 
performed in-class. The teaching consisted of two or three 90-minutes sessions each week. To prepare 



each in-class session, 3-4 videos each of 8 to 15 minutes in length were available for the students. In 
between the videos, quizzes directly related to video contents were given. The videos presented the 
mathematics in a chalk-and-talk fashion, screen-capturing teachers writing using a tablet, including 
some demonstrations made in geogebra. We produced 12 of the 36 videos, the rest were collected 
from online resources mainly from Khan Academy (https://www.khanacademy.org). The videos were 
procedural in content, in the sense that there was little time to go into proofs or elaborate on deeper 
concepts. This choice was intended to make the video homework manageable in length for the limited 
out-of-class time. In line with FC ideas, in-depth understanding should be elaborated in an in-class 
setting. 

After this first attempt at FC teaching, we spent the middle of the course teaching traditionally with 
other teachers involved. The reason for this shift was the necessity for collecting feedback through 
interviews with a representative selection of students, in addition to an anonymous questionnaire. 
This to inform us on potentially needed adjustments in the second phase of FC. At the end of the term, 
we ran two more FC teaching weeks on the introduction of functions with several variables, 
linearization of these, partial derivatives and optimization. On most occasions, specially adopted task 
sheets were prepared for in-class active learning to provoke discussion and in-depth conceptual 
reflection about the mathematics, the purpose being to raise the abstraction level. 

Results 
These three sources of data, the questionnaire, the interviews and the filming, provide the possibility 
for us to triangulate findings. As this is a paper investigating tensions in the CHAT sense, we have 
been actively looking for excerpts where such qualities are prominent. 

Questionnaire 

At the beginning of March, we invited all students participating in the class to answer an anonymous 
questionnaire. Here we asked the participants to agree or not on fifteen statements, in a 5-point Likert 
scale fashion, about various features of our FC implementation. The purpose of this was primarily to 
inform us towards the next iteration of FC. Additionally, the questionnaire contained three open-
ended questions, prompting the students to express their opinions about the method with their own 
words. n=15 out of N=20 students responded. 

We have chosen to highlight three responses to the open-ended question: “What did you feel was 
most inconvenient with this method of teaching and learning mathematics?” While other questions 
highlighted the positive sides of FC, the three statements below are representative for most of the 
answers to this question, and are important for the analysis of tensions: 

 “Personally, it works better for me when I spend time on my own with the tasks. Thus, the session 
in the classroom became wasted for me. I believe I should learn new things in the class, and then 
work on my own with the topic afterwards, and then turn to the videos for assistance.” 

“I got “pushed away” from the classroom using this method, since I do not like to work on tasks 
in groups. I feel that group work is difficult since many do not understand the topic 100%, which 
means that many just do not participate in the discussions.” 

“Group work was unsuitable, since mathematics is a more “individualistic” subject.” 



Interviews 

In addition to the questionnaire, we performed interviews with a representative set of students in a 
semi-structured fashion. Due to time constraints, we had to limit the sample to three persons. This 
group of students was chosen as a representative sample according to gender and age, but also due to 
observed willingness to make critical remarks about the teaching. The interview tried to dig a bit 
deeper into topics of engagements, impressions about videos, group work and interaction with the 
other students and the teacher and lasted for about 30-40 minutes. With respect to our consideration 
of tensions, we present interview excerpts from students with positive and negative views on FC. 

The first interviewee was an engaged student in mathematics, with almost 100% attendance in class. 
He favored learning by videos over traditional learning, and liked the fact that the teacher was more 
available for questions than traditional lecture-based teaching. As the problematic part of all the group 
work, he pointed at troubles with fluency in using new mathematical vocabulary. However, he noted 
that by trying to communicate verbally the task with the others in the group, it became easier to 
understand how to solve it for himself. 

The second interviewee had most of his career from offshore industry but turned to engineering 
studies for health reasons. He had been away from mathematics for a long time and sometimes 
struggled to keep up with the pace in the group work 

Student:  I did not like the specially adopted tasks we got for the class session, and the way we 
worked in the groups was very inefficient for me. Because many in the class are 
above me, I am stuck behind the rest during the work. 

Interviewer: Ok, but you liked to prepare using the videos? 

Student:  Yes, I liked that very much. 

Interviewer: But you think it would be easier for you to find the answer to the tasks if you were all 
by your own solving them? 

Student: Not easier, but it would have been a better way for me to understand them, since I 
would be alone to think it over, instead of the others in the group just working fast 
through them. 

Interviewer: So you weren’t able to engage in the conversation and participate with your own 
thoughts? 

Student:   Not to the degree I wanted. 

Both interviewees 1 and 3 expressed concerns about using specially adopted tasks for the in-class 
work. They worried about the tasks not having sufficient relevance for the final exam, and would 
rather spend time solving tasks from the textbook. I chose to not include excerpts from the third 
person being interviewed, since there were little indications of tensions in this interview. 

Classroom filming 

During the second FC intervention period, we filmed two in-class sessions. We filmed several of the 
groups, primarily motivated by how the out-of-class teaching affected in-class group work. Two or 
three students worked together solving problems related to the videos, but on a slightly higher level 



than the examples used in the videos. One episode in particular caught our attention. One student in 
a pair (let us call her Silvia) attended class seemingly well prepared and brought notes with her that 
she had taken from the videos. The other student in this pair (let us call him Nick) seem to be quite 
unprepared. A study of CI usage statistics confirms this impression. He did not bring notes, and barely 
spoke during the beginning of the episode. Silvia on the other hand expressed interest in how the 
formula of linear approximation for functions in two variables came about. The formula referred to 
is the well-known linearization  

∆𝑓 =
𝜕𝑓

𝜕𝑥
∆𝑥 +

𝜕𝑦

𝜕𝑦
∆𝑦 

The first author hinted that this formula was based on an extension of the single variable case that 
was derived in the video, but Silvia was clearly not satisfied with this, wanting to know more. In 
addition, she was the dominant speaker in the group: In the 22 minutes that the episode lasted, we 
counted 488 words spoken by Silvia, whereas Nick spoke 236. He did catch up in the last third of the 
episode though, speaking almost as much as Silvia does then. We observe from the videos that this 
occurs after he had listened carefully to her struggles with the problems and the conversation that she 
had with the teacher in connection with this. 

It was evident from the CI user statistics that many students had not prepared in the last period of FC 
teaching. This was influencing their progression in-class, although many seemed to use other means 
of catching up with the topic. They used other resources such as the curricula book, discussions with 
more knowledgeable peers like prepared students and the teacher, and even to some extent looking at 
the videos in-class on their own laptop. 

Discussion and summary 
As previously discussed, activity theory can be used to depict tensions in the FC teaching. Studying 
the activity triangle in Figure 1, one of the most prominent changes in FC compared to traditional 
teaching are the rules. These undergo a radical change in FC, enforcing video preparation for in-class 
active learning. 

There are two important observations we would like to highlight. Firstly, the second statement from 
the questionnaire excerpts hints towards a lack of understanding among several group members (the 
community) about the mathematical topic at hand. It seems that many members in the group had not 
grasped the mathematics in the videos, or they simply had not watched them, leading to a breach in 
the quality of student group collaboration. 

The filmed episode of Silvia and Nick confirms this impression. Nick appeared to struggle to follow 
the arguments of Silvia, although there were evidence that he somehow changed from being an 
‘eavesdropper’ of her struggling and collaboration with the teacher to becoming an active participant. 
However, Nick was not playing as the part of a collaborating peer, and thus failing to support Silvia 
in the discourse. We believe that this was due to his lack of preparation using the videos.  

Classroom discussion is considered a vital instrument of learning in FC, and it constitutes a major 
tension if this is not taking place inside a group. We consider this as a secondary contradiction 
between rules and community. As previously explained, the major rule to consider in the student FC 
activity is the necessity to arrive at the in-class session being ‘primed’ by the out-of-class session. If 



a major part of the group has failed to do this, the in-class discourse, considered a CHAT instrument, 
is hampered. Thus, this contradiction could also be seen as a secondary contradiction between rules 
and instrument.  

Considering the data excerpts, we can also mention the tensions below, even though not substantiated 
through triangulation as the one already mentioned: 

1. Tension in expectations/beliefs/rules: Students expect to be “taught” by the teacher, but FC 
rules and division of labour directs students towards learning through collaboration with 
peers (subject – division of labour tension), (secondary contradiction). 

2. Students disagree with the new rule that tasks should be solved during class time. Preference 
towards solving them in solitude (object – rules tension, students feel this is not the best way 
to learn math), (secondary contradiction). 

3. Students need to adopt to a new paradigm of work: Preparation through video lessons 
requires discipline, which results in tension, especially when a heavy workload is expected 
in courses taken in parallel (subject – rules tension), (tertiary contradiction). 

4. Fluency in discourse. Problems expressing the mathematical problems verbally to other 
students. (subject – instrument (discourse) tension), (tertiary contradiction). 

5. Students failing to keep up with the others during group-work (subject – community 
tension), (secondary contradiction). 

As we discussed earlier on, in the filmed classroom episode with Silvia and Nick there is indication 
that students who have prepared by engaging in the out-of-class work seem to express themselves 
fluently in the mathematical problems, and in addition seem eager to learn more about the concepts 
behind the procedural mathematics shown in the videos. This provides empirical evidence (though 
only a single case) of the potential of FC to motivate students to strive towards a higher level of 
abstraction.  

Validity and reliability issues 

This paper must be viewed in the context of a report on a pilot study. More elaborate studies will be 
carried out during 2016/2017 and 2017/2018 with engineering students in the same institution. Thus, 
there is little rigid design according to how data have to be collected to obtain optimal analysis and 
results. Handpicked excerpts from the data material were chosen to highlight the findings. There is 
also the issue of the researcher being present as the teacher, a classical objectivity dilemma found in 
many small-scale educational research settings. However, as we are presenting the data using several 
methods, both quantitatively and qualitatively, we can to some degree state that we have made valid 
triangulation of the findings.  

Conclusion 

Our analysis of the data collected in this study, shows evidence that there exist several tensions in 
FC; some of these could be expected from the outset, while others are surprising. Data seem to point 
towards various aspects of the active learning being the most problematic part for many students 
towards a FC realization. Considering the activity system of the student, a secondary contradiction or 
tension materializes between the rules and the community, since many students was not adhering 
properly to the out-of-class part of FC. This is also seen to hamper the in-class discourse, considered 
to be an important instrument of learning. 
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When complex numbers are introduced, there may be some mathematical choices that go beyond the 
learning processes requirements. Research highlights the necessity to take into account the 
epistemological aspects of complex numbers in order to cope with students’ potential difficulties with 
these numbers. In this paper, we analyze the contents of the mathematical organization planned by 
the upper secondary institution to introduce these numbers by using a micro-model of didactical 
variables. Our results underline a lack of organization and put forward some learning criteria that 
could be deployed to design tasks for introducing efficiently complex numbers.     

Keywords: Didactical variables, complex numbers, mathematical organization.  

Introduction 
One of the most useful approaches to introduce the complex numbers postulates the existence of the 
solution (√−1 or 𝑖) of the equation 𝑥2 + 1 = 0, and enlarges by the same time the set of real numbers 
by including such solution in a way that the sum and product rules could be naturally generalized 
(Ghedamsi & Tanazefti, 2015). Yet, the real number and the complex number are utterly unlike, 
specifically because the former is associated to a concrete measuring process. Some pioneer research 
on complex numbers (Artigue & Deledicq, 1992; Rogalski, 2002; Rossel & Schneider, 2003) 
underline the complexity of learning these numbers by emphasizing the gap between the 
epistemological aspects of these numbers and the mathematical organization chosen to introduce 
them. Three fundamental epistemological aspects are highlighted by these researches and may give 
some details about this gap:  
- In history, imaginary numbers are firstly used as a tool by the Italian algebra school to resolve cubic 
equations; they appeared as the square root of a negative number in the numerical expression given 
by the formula of the real solution ( √𝑎 + √−𝑏

𝑛
+ √𝑎 − √−𝑏

𝑛
) with no more mathematical meanings.  

- Imaginary numbers were being used by mathematicians long before they were first properly defined 
as complex numbers. The progress of the imaginary from the statute of a simple tool towards a 
mathematical existence as an object was supported by their efficiency to solve geometrical and 
infinitesimal calculus problems. Mathematicians made free use of them by applying the permanence 
principle which consists on generalizing real number rules to these numbers.  
- The manipulation of imaginary numbers in history evolved through the use of several mathematical 
and semiotic representations. The use of several procedures, particularly those related to the 
multiplication of vectors, led to a geometric representation of imaginary numbers in the Argand (or 
complex) plane by identifying them to both a vector and a point. This kind of representation is not 
the first one; mathematicians started thinking about trigonometric representations of imaginary 
numbers along with their emergence by using infinitesimal calculus rules. The key role of these 
semiotic and mathematical representations reinforced the utility of imaginary numbers and putted 
forward the necessity to firmly entrench them as a mathematical object.  



Many researches emphasize the major role of the organization of mathematical activities in the 
teaching and learning of mathematics as it shaped what could be taught and how this could be done 
(textbooks, syllabus, etc.). For instance, the study of the mathematical organization of Calculus 
concepts in the transition between secondary school and university highlights several problems in the 
way used to introduce mathematical topics that could potentially affect students’ process of learning 
(Bressoud, Ghedamsi, Martinez-Luaces & Törner, 2016). This paper seeks to analyze this 
phenomenon in the case of complex numbers taking into account the epistemological aspects 
mentioned above, especially through their connection to the development of students’ work with these 
numbers. We build on a networking of frames in order to identify the didactical variables - defined 
as the parameters that influence students’ work (Bloch & Ghedamsi, 2005), related to complex 
numbers. Then, we use these variables to give a global vision of the choices of the mathematical 
organization related to the introduction of these numbers.  

Theoretical frames  
Sfard (1991) argued that three phases shaped both the historical and the cognitive development of a 
mathematical concept. She particularly underlined subtle differences between historical and cognitive 
phases by means of the example of complex numbers. From the historical point of view, the three 
phases are defined as follow: “1) the preconceptual stage, at which mathematicians were getting used 
to certain operations on the already known numbers […] manipulations were treated as they were; 
as processes and nothing else […]; 2) a long period of predominantly operational approach, during 
which a new kind of number begun to emerge out of the familiar processes […], at this stage, the just 
introduced name of the new number served as a cryptonym for certain operations rather than as a 
signifier of any "real" object […]; 3) the structural phase, when the number in question has eventually 
been recognized as a fully-fledged mathematical object […].” (Sfard, 1991, p. 14). These three stages 
are firmly consent with the history of complex numbers. In adequacy with these phases, the cognitive 
development of students is categorized into three stages: 1) interiorization where students become 
aware of the processes that gives rise to the concept; 2) condensation where students start combining 
and generalizing processes; 3) reification where the concept achieves the status of mathematical 
object by unifying the various processes in a structure. In this sense, the mathematical organization 
of complex numbers should cope with activities that enable students to first build skills of 
computation with square roots through active involvement of processes including those related to 
number representations; and secondly to realize through a huge variety of cases the practical 
perspective of these numbers (Sfard, 1991).  

The object level of this concept is closely linked to the algebraic structure (or mathematical category) 
of the set of complex numbers. Each category or structure refers to one mathematical representation. 
In the language of category theory, the establishment of an isomorphism between sets of the same 
algebraic structure allows a person confronted to a new set to detect similarities and connections to 
familiar objects or sets, and to organize efficiently the new set. For instance, the isomorphism of 
field𝑠 φ ∶  (ℂ, +, . )  ⟶  (ℝ2, +, . ), 𝑎 +  𝑖𝑏 ⟶ (𝑎, 𝑏) permits to link the abstract representation of 
the complex numbers to a more concrete one. Furthermore, the use of functors to transit from one 
category to another permits to translate a difficult problem from one mathematics area into an easier 
problem in another area; this is the case of the trisection problem which is just solved by using 
complex numbers. This knowledge thus permits to orientate and to organize mathematical thinking. 



At the transition from the end of secondary school to university, two categories of mathematical 
structures are implicitly used in the teaching of complex numbers: the category of Euclidian space 
and the Field category. To achieve the object level, these categories (and more) should become “the 
ultimate base for claims on the new object's existence.” (Sfard, 1991, p. 20). Of course, this could not 
be done at the transition between secondary school and university! To do so requires some 
foundational notions that are actually not taught at these levels. Nevertheless, the study of the 
mathematical organization of complex numbers by means of category theory provides information 
about the mathematical representations concerned by the institution and their design as well as those 
involved in a process of conversion between two mathematics areas. These information are associated 
to the mathematical culture of complex numbers, and they are useful for the teachers as they become 
aware of substantial details that influence the development of the learning process. Thus, the 
investigation of the upper secondary mathematical organization by using categories should not be 
outlawed simply because of the lack of mathematical notions at this level. However, it is fundamental 
to stress the distinction between the semiotic representations of an object as signifiers - that are 
organized into semiotic registers, and what is signified thus the mathematical representation. In the 
case of complex numbers, one semiotic representation may evoke more than one mathematical 
representation and vice versa. For instance, 𝑧, 𝑧, |𝑧|, arg(𝑧) , etc. constitute the elements (or the 
scripts) of what we called the intrinsic register; students’ work with complex numbers in the category 
of Euclidean space could be done by using both the intrinsic scripts and the geometrical ones. This is 
the case of the representations of three collinear points: A, B and C are collinear points, if there exists 
a real number α≠0 such that 𝑧𝐵 − 𝑧𝐴 = 𝛼(𝑧𝐶 − 𝑧𝐴) which is equivalent to arg(

zC – zA

zB – zA
)0(). Further 

study on the semiotic registers involved in the same category or in the transition between two 
categories is unavoidable. A switch between two semiotic registers is a conversion which refers to 
the same signified being in the same category. This conversion creates a new semiotic representation 
that does not involve the formation of a new object. In the case of the translation from one category 
to another, this switch engages a process of creation of a new mathematical representation of the same 
object. The process of conversions between semiotic representations as well as between mathematical 
representations performed the cognitive flexibility of the students and enabled the enlargement of the 
representations field of these numbers (Duval, 1995).   

This theoretical synthesis highlights the impact of at least three didactical variables on the learning 
process of complex numbers. These variables lead to a micro-model that we use to investigate the 
institutional mathematical organization of complex numbers: DV1: The use of the permanence 
principle which concerns the generalization of real numbers rules (in the categories of field and 
Euclidian space) to the complex numbers; DV2: the use of the process-object duality; and DV3: the 
use of the semiotic and mathematical representations. We classify the mathematical organization in 
terms of practical blocks containing types of tasks and techniques to solve these tasks (Chevallard, 
2006). This classification gives an overall patent description of the institutional requirements that 
permits to analyze the mathematical organization of complex numbers by involving the three 
variables of the stated micro-model. In this paper, we investigate this mathematical organization by 
means of two didactical variables that are DV2 and DV3.   



Empirical context 
Complex numbers constitute one of the most important topics introduced in algebraic courses at the 
end of the secondary school in Tunisia for 16/17 years old students. Courses follow the contents of 
the unique official textbook used by the teachers as their own syllabi; almost all mathematics teachers 
adhere strictly to this textbook. The mathematical organization concerned by this study is taken from 
this textbook.   

The modeling of the whole mathematical organization of complex numbers into praxeologies 
underlines the existence of 14 types of tasks designed T1 until T14; each one can be solved by using 
more than one technique. These techniques are generally algorithmic and indicated in the terms of 
the questions. For instance, to solve the type of task T7: Determine an argument of a complex number; 
students have the possibility to simply employ the property of the argument of the product of two 
numbers, they can also use cosine and sinus properties. Each task is a block formed by the type of 
tasks and the involved technique. The frequencies of these tasks (each task can occur more than once) 
in the whole organization are as follows:  

T1: Determine the cartesian representation of a complex number 20 
T2: Solve an equation using complex numbers 5 
T3: Determine the conjugate of a complex number 2 
T4: Determine the affix of a point or a vector 7 
T5: Determine the modulus of a complex number  12 
T6: Spot points in the complex plane  16 
T7: Determine an argument of a given complex number 5 
T8: Determine the trigonometric representation of a complex number 11 
T9: Determine the kind of a quadrilateral (rectangle, square, etc.) 2 
T10: Determine a set of points of the complex plane 11 
T11: Determine the kind of a triangle (isosceles, equilateral, etc.) 1 
T12: Prove that three points are collinear  1 
T13: Determine the position of two lines (parallel, secant, etc.) 1 
T14: Determine the sinus and the cosine of an angle 1 

Table 1: Types of tasks and frequencies 

The tasks are organized according to the categorization of the course into three sections: 1) the first 
section concerns the introduction of complex numbers via the traditional approach mentioned in the 
beginning of this paper; T3, T2 and T1 are the tasks used in this section particularly to prove and to 
exemplify the proprieties of the product and the sum of complex numbers and of their conjugates, by 
using the cartesian representation; 2) in the second section, the affix and the image notions, and the 
modulus and its proprieties are introduced with no details about the necessity to draw on the complex 
plane; T6, T5 et T4 are the tasks involved in this section; 3) the third section introduces the argument 
and its proprieties, and the trigonometric representation of complex numbers; T7 and T8 are mostly 
studied here. The tasks T9 to T14 are not concerned by a specified section, they are considered as 
integrative tasks that permit to use a variety of techniques. Using this classification, we can now 



analyze the mathematical organization of complex numbers with a particular focus on the micro-
model of the selected didactical variables.   

Some results   
Pseudo operation level of complex numbers  

In opposition to the cognitive development principles as highlighted by Sfard (1991), the 
mathematical organization focus from the beginning, on the object level of complex numbers in way 
that: 1) the reification phase is “imposed” to the students with no tasks that allow the unification of 
the processes into a structure; 2) the preconceptual level of these numbers is missing, and the 
interiorization phase is limited to the manipulation of several representations of the object which is 
already introduced via one of them, this manipulation is mainly guided by the questions; 3) the 
condensation phase, which is supposed to illustrate the operation level of these numbers, is mostly 
neglected. It is important to precise that the same type of tasks could be associated to more than one 
level of complex numbers: preconcept, operation, or object. Specifically, the frequencies of the tasks 
referring to these levels are as follows:  

 Objet Preconcept Operation 
T1: Determine the cartesian representation  20 0 0 
T2: Solve an equation using complex numbers 5 0 0 
T3: Determine the conjugate of a complex number 2 0 0 
T4: Determine the affix of a point or a vector 3 4 0 
T5: Determine the modulus of a complex number  11 1 0 
T6: Spot points in the complex plane 5 11 0 
T7: Determine an argument of a given complex number 5 0 0 
T8: Determine the trigonometric representation  10 1 0 
T9: Determine the kind of a quadrilateral (rectangle, etc.) 0 0 2 
T10: Determine a set of points of the complex plane 1 8 2 
T11: Determine the kind of a triangle (isosceles, etc.) 0 0 1 
T12: Prove that three points are collinear  0 0 1 
T13: Determine the position of two lines (parallel, etc.) 0 0 1 
T14: Determine the sinus and the cosine of an angle 0 0 1 

Table 2: Complex numbers levels and frequencies 

About 2/3 of the whole tasks concerns the object level of complex numbers, and only deals with 
algorithmic computation in the field category or the Euclidian space category of ℂ. The only process, 
referring to the supposed preconceptual level of complex numbers, consists on the strict manipulation 
of complex numbers representations by “juggling” from one to another. These manipulations are 
isolated, indicated in the statements, and do not probably lead to any kind of interiorization, this is 
the case, for example, of the geometric interpretation of the cartesian representation and vice versa. 
Only two tasks from those related to the operation level could actually be considered as an effective 
training to combine and unify processes that show the practical perspective of complex numbers 
(tasks T13 and T14). Tasks T9 to T14 should clearly highlight the role of complex numbers to 



overcome complex computations of the geometrical problems, but with a certain choice of data, the 
students can simply apply geometric rules with no reference to these numbers. But the mathematical 
organization that is investigated in this paper does not permit to underline the role of complex 
numbers in simplifying extremely complicated computations; the data associated to the tasks T9 to 
T12 are not thought to take advantage of the operation level of these numbers.  

The amalgam of complex numbers representations 

Four kind of semiotic representations structured into four registers intervene in the mathematical 
organization of complex numbers: 1) intrinsic register (In., 𝑧, 𝑧, |𝑧|, arg(𝑧) , etc.); 2) cartesian register 
(Ca., scripts using 𝑎 + 𝑖𝑏); 3) trigonometric register (Tr., scripts using 𝑟(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)); 4) graphic 
register (scripts using cartesian coordinates G.a.c., or polar coordinates G.a.p.). These semiotic 
representations are employed in several ways by mean of the two mathematical categories of ℂ used 
in this mathematical organization: field category and Euclidian space category. The analysis of the 
tasks using complex numbers representations is structured into three levels depending on the 
conversion process: 1) no conversions between semiotic representations as well as between 
mathematical representations; 2) only conversions between semiotic representations; 3) conversions 
between both semiotic representations and mathematical representations. In the case of this 
mathematical organization, each conversion between mathematical representations is followed by a 
conversion between semiotic representations. Depending on the techniques used, the same type of 
tasks could be associated to any of the three levels mentioned above: object, preconcept and operation. 
For instance, the tasks related to T1: Determine the cartesian representation of a complex number 
can be solved in the same register (computing powers of i in the cartesian register), or by moving into 
another register (from the graphic register to the cartesian one). Some techniques used to solve tasks 
referring to T8, T3, T2, T1 and T10 do not require conversions, the frequencies of these tasks are 
shown in the table below: 

Mathematical category Semiotic register Occurrence 
 

Field 
Cartesian 26 
Intrinsic 1 

Trigonometric 2 
 

Euclidian space 
Cartesian 1 
Intrinsic 5 

Graphic/cartesian coordinates 1 

Table 3: Frequencies of tasks with no conversions 

About 1/3 of the whole tasks (26 out of 95) of the mathematical organization concerns the work on 
the Field category using the Cartesian register. These tasks involve simple computations by the mean 
of the properties of the operations in the ℂ field. Tasks from almost all the types are concerned by the 
conversions between semiotic representations:  

  



 

Mathematical category Semiotic conversion  Occurrence 

Field 
(Ca.→Tr.) 2 
(In. →Ca.) 1 

Euclidian space 

(Ca.→In.); (Ca. →Tr.) 1; 6 
(Ca. →G.a.c.); (G.a.c. →Ca.) 24; 5 
(Ca. →G.a.p.); (G.a.p. →Ca.) 4; 1 

(In. →Tr.); (G.a.p. →Tr.) 6; 1 
(In. →G.a.c.); (In. →G.a.p.) 4; 2 

Table 4: Frequencies of tasks with semiotic conversions 

The most important tasks that require semiotic conversions within the Euclidian space are those 
related to the determination of the graphic representation of a complex number by interpreting 
geometrically a given relation with complex numbers. This interpretation is based on a standard 
employ of the properties given in the textbook. Finally, only two tasks need a double conversion: T13 
(Euclidian space./G.a.p.→Field/Tr.→Euclidian space./G.a.c.), and T14 (Euclidian 
space/Ca.→Fied/Tr.). 

Conclusion  
The analysis shows that the mathematical organization of complex numbers involves some values of 
the didactical variables that are theoretically identified. This result corroborates their validity to 
examine students’ learning expectations in the case of complex numbers. However, the approach used 
to introduce these numbers, firstly as object and implicitly as an element of a field set, avoids the 
possibilities to engage efficiently in tasks that deal with the operation level of these numbers as well 
as with valuable conversions of semiotic representations in the category of Euclidian space. 
Moreover, this approach makes it difficult to organize contents related to conversions between 
mathematical representations so that students can use them by their own in the future. But the role of 
the institutional mathematical organization is manifest to overcome the potential changes that should 
occur in the way students are required to work with complex numbers at university level. On the other 
side, the micro-model of didactical variables related to complex numbers reveals a high level of 
cognitive flexibility that is required for learning complex numbers specifically at the beginning of the 
university level: differentiate between real numbers rules and complex numbers ones; use conversions 
between mathematical representations to solve geometrical problems; make autonomously semiotic 
conversions; involve several categories of the set of complex numbers to solve problems outside and 
inside mathematics, etc. These requirements are a source of students’ main difficulties with complex 
numbers (De Vleeschouwer, Gueudet & Lebaud,, 2013 ; Ghedamsi & Tanazefti, 2015). Specifically, 
Barrera (2013) highlights students’ difficulties to interpret the product of complex numbers by means 
of plane’s transformations in the category of Euclidian space. The crucial question is then: how to 
design efficiently the introduction of complex numbers in ways that minimize transition issues to the 
university? This study leads us to conjecture how it is possible to tackle such question by means of 
the micro-model of didactical variables. More precisely, three criteria may be considered for 
designing efficiently the mathematical organization that aimed the introduction of complex numbers: 



1) use several values of the didactical variables and specifically those related to the conversions 
between semiotic and mathematical representations; 2) highlight the distinctions between the 
different categories of the set of complex numbers; 3) focus firstly on the operational level of complex 
number and improve its use in the resolution of different kind of problems. Further studies on 
students’ learning of complex numbers are needed to examine the efficiency of these criteria.  
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Research has shown that mathematics courses in engineering programmes present students with a 
number of difficulties, some of which stem from a disconnection between mathematics course content 
and the professional activity of engineers. Using tools from the anthropological theory of the didactic 
(ATD), we examine how the drawing of bending-moment diagrams is introduced in a classic textbook 
used in engineering programs. Although the notion of integral is used to teach this topic, the 
techniques used rely mostly on geometrical considerations (and not on integral techniques or 
theorems), and the justifications provided are a mix of (incomplete) mathematical discourse and 
professional justifications, with implications for students’ learning. 

Keywords: Mathematics for engineers, ATD, praxeology, integral. 

Introduction and background 
Mathematics is an important subject in many scientific and technological fields, including 
engineering. However, the difficulties university students face in their mathematics courses can lead 
them to abandon their professional aspirations (Ellis, Kelton, & Rasmussen, 2014). Research in 
engineering and mathematics education has shown that these difficulties manifest themselves in at 
least two points in a student’s learning pathway. First, researchers have stated that students find the 
progression from secondary to tertiary education to be very difficult, especially when it comes to 
mathematics (Rooch, Junker, Härterich, & Hackl, 2016), and that they possess unsatisfactory 
mathematical readiness for engineering courses (Bowen, Prior, Lloyd, Thomas, & Newman-Ford, 
2007). Second, a disconnect between mathematics courses and professional courses in university 
engineering programmes has been identified. For instance, Loch and Lamborn (2016, p. 30) stated 
that “mathematics is often taught in a ‘mathematical’ way with a focus on mathematical concepts and 
understanding rather than applications. The applications are covered in later engineering studies.” 
This disconnect may create a “gap in the students’ ability to use mathematics in their engineering 
practices” (Christensen, 2008, p. 131). This gap can be aggravated by the fact traditional engineering 
courses are usually separated into two groups: basic science courses in the first two years (such as 
mathematics and physics), and technical courses specific to each area of engineering in later years. 
Regarding this, Winkelman (2009, p. 306) indicated that “the first 2 years are typically devoted to the 
basic sciences, which means that students may only encounter engineering faculty in the third year 
of study”. Some effort has been made to bridge the gap between mathematical and engineering 
practices, for instance by linking basic mathematical methods to applications (Rooch et al., 2016) or 
by introducing courses on mathematical modelling and problem solving early on in engineering 
programmes (Wedelin, Adawi, Jahan, & Andersson, 2015). These initiatives seem to have positive 
effects on student learning. 

Tertiary mathematics education research has identified a number of difficulties encountered by 



Calculus students; however, there is a lack of research on how teachers of professional engineering 
courses consider and use the mathematical tools taught in prerequisite mathematics courses. In 
general, it is expected that students in second- or third-year professional courses have grasped the 
mathematical notions taught in their earlier courses. We are interested in studying how Calculus 
notions – which students are expected to master – are used in professional engineering courses; in 
particular, whether they are used in the same way as in Calculus courses. Specifically, our research 
analyses the presentation of Calculus notions in a classic engineering textbook. We anticipate that 
this analysis will help Calculus teachers in engineering programmes understand how the notions they 
teach are used in higher-year professional courses, which may lead to a reflection on the connections 
(or lack thereof) between the content of Calculus courses and that of professional courses. In this 
sense, we adhere to Castela’s (2016) position on the issue of choosing appropriate mathematics for 
professional-oriented programmes: “mathematicians need to take some distance with their own 
culture […]. They have to reconsider the following questions: which mathematical praxeologies are 
useful for such engineering or professional domains? What needs would be satisfied? Which 
discourse makes the mathematical technique intelligible? This is actually an epistemological 
investigation that we consider as a prerequisite to the design of mathematics syllabi for professional 
training programs” (p. 426). 

Theoretical framework 
Because we are interested in how mathematical notions are used in Calculus and professional 
engineering courses, we believe that an institutional approach is appropriate for our research. In 
particular, Chevallard’s (1999) anthropological theory of the didactic (ATD) provides useful tools for 
analysing mathematical activity, since it considers that human activities are institutionally situated, 
and, consequently, so is knowledge about these activities (Castela, 2016, p. 420). 

A key element is the notion of praxeology (or praxeological organization), which is formed by a 
quadruplet [T / τ / θ / Θ] consisting of a type of task to perform T, a technique τ which allows the 
completion of the task, a discourse (technology) θ that explains and justifies the technique, and a 
theory Θ that includes the discourse. In analysing tasks, we identify the practical block (or know-
how) which is composed of types of tasks and techniques. The knowledge block describes, explains 
and justifies what is done, and is composed of the technology and the theory. These two blocks are 
important elements of the anthropological model of mathematical activity that can be used to describe 
mathematical knowledge. 

Our research identifies specific praxeologies present in professional courses; we analyse how 
Calculus notions are applied in these courses and whether this application reflects how the notions 
are usually presented in Calculus courses. In this case, analysing the practical block of these 
praxeologies allows us to identify specific tasks that require the use of Calculus notions, whereas 
analysing the knowledge block allows us to identify the justifications given in using these notions, 
and compare them with the justifications usually given in Calculus courses. We consider the work of 
Castela (2016), who identified that “when a fragment of social knowledge, produced within a given 
institution I, moves to another one IU in order to be used, the ATD’s epistemological hypothesis states 
that such boundary crossing most likely results in some transformations of knowledge, called 
transpositive effects” (p. 420). Her model (p. 424) proposes that in the boundary-crossing process, 
some (or all) elements of the original praxeology may evolve, and it ascribes the same level of 



importance to types of problems and techniques as to concepts and theories. However, unlike Castela, 
we do not analyse the same type of task in two institutions, but rather a single praxeology specific to 
engineering and the use of mathematical tools within it. 

Methodology 
As we stated in the introduction (agreeing with Castela, 2016), in order to analyse how mathematics 
are used to solve problems in a given professional field, we must first understand and define these 
problems. We believe this is best achieved in collaboration with professional practitioners. To 
determine how Calculus notions are applied in professional contexts in engineering courses, we 
contacted an engineering teacher who holds Bachelor and Master of Civil Engineering degrees. Over 
the past 28 years this teacher has taught a variety of professional engineering courses at Brazilian 
universities, in engineering programs that meet international standards. He has also enjoyed a career 
in structural systems and reinforced concrete since 1986, developing projects and serving as a 
consultant. We interviewed him in March 2016 to understand how he uses Calculus notions in his 
professional courses. The interview and post-interview exchanges covered his way of teaching, the 
books he uses and the course notes he produces, focusing on his way of presenting different notions. 
For the purposes of this paper, we have chosen to analyse the introduction of shear force and bending 
moment and, specifically, how integrals are used to introduce this topic. At his university, shear force 
and bending moment are introduced in the second year of the programme, in the Strength of Materials 
for Civil Engineering course (students take Calculus in their first year). Three classic international 
textbooks are listed in the course syllabus (all translated into Portuguese), the main reference being 
the book by Beer, Johnston, DeWolf and Mazurek (2012). 

The teacher indicated he primarily follows the structure of the main reference book in teaching shear 
force and bending moment. Therefore, this paper focuses on the book’s content; we are currently 
analysing the complementary material provided to students, as well as the content of the interview, 
which will be the source of future papers. In analysing the textbook, we identified how notions are 
introduced, the type of tasks associated with them, and the type of praxeology developed, paying 
particular attention to the practical and knowledge blocks and the role of mathematical tools and 
discourse within these blocks. 

It is also important to note that in the prerequisite Calculus course at this instructor’s university, 
certain properties and results are proved while others are simply stated. For instance, the connection 
between the sign of the derivative and the monotonicity of the function (θ1) is present and used in 
some tasks (such as the drawing of functions), as well as the connections between differentiability 
and continuity (θ2). 

Shear and bending forces: a summary 

The content introduced in this part of the 
course is related to the analysis and design 
of beams, an important aspect of civil and 
mechanical engineering. Generally, loads 
are perpendicular to the axis of a beam 
(transverse loading), which produces 
bending and shear in the beam. These 



transverse loads can be concentrated (measured in newtons, pounds, or their multiples of kilonewtons 
and kips), distributed (measured in N/m, kN/m, lb/ft, or kips/ft), or both (Figure 1). 

When a beam is subjected to transverse loads, any given section of the beam experiences two internal 
forces: a shear force (V) and a bending couple (M). The latter creates normal stresses in the cross 
section, whereas the shear force creates shearing stresses. Consequently, the criterion for strength in 
designing a beam is usually the maximum value of the normal stress in the beam. 

Therefore, one of the most important factors to consider in designing a beam for a given loading 
condition is the location and magnitude of the largest bending moment. To determine this location, 
students are introduced to techniques for drawing bending-moment diagrams, defining M at various 
points along the beam and measuring the distance x from one end. 

Data analysis and discussion 
Although the main reference book develops its theoretical content in a well-structured way – which 
allowed us to grasp the notions presented – is it possible that students do not read it. Research 
examining how engineering students use their mathematics books seems to indicate that students pay 
little attention to theory, focusing instead on tasks (Randahl, 2012). We are not aware of research that 
looks at the way engineering students use their textbooks in professional courses. 

The content addressing the drawing of bending-moment 
diagrams is presented in Chapter 5 (Analysis and design 
of beams for bending) of Beer et al. (2012). The chapter 
starts by introducing the different types of beam and 
loads, and the notions of load (w), V, and M. Section 5.1 
introduces the relations between, and the directions of, 
the forces V and M in different sections of a beam, 
according to the type of load. In this section, calculations 
are made based on the idea that the sum of forces must 
equal zero, using formulae introduced earlier in the book. 
Sketches of bending-moment diagrams result in 
configurations such as the one shown in Figure 2. 
Obviously, someone with a background in Calculus 
could start to make a connection between the diagrams 
for V and M. However, this connection is not made in the 
textbook until section 5.2 (Relationships between load, 
shear, and bending moment).  

The technique used in section 5.1 is quite rudimentary, 
but section 5.2 defines more explicitly (using derivatives 
and integrals – for this reason we focus on the content of this section) the relationships between w, V, 
and M to facilitate the drawing of bending-moment diagrams, which is the type of task (TE) to solve. 
Section 5.2 presents a new praxeology (related to the one in section 5.1) that introduces the calculation 
of V and M at two adjacent points, x and Δx. Expanding on results from section 5.1, the authors arrive 
at ΔV = -w Δx and state: “Dividing both members of the equation by Δx and then letting Δx approach 
zero: dV/dx = – w. [This] indicates that, for a beam loaded as shown in [the given figure], the slope 



dV/dx of the shear curve is negative” (p. 360). We have two remarks about this. First, the book avoids 
the writing of limits. Including limits could help make a connection with mathematical praxeologies 
present in the prerequisite Calculus courses (for instance, when defining derivatives and shifting from 
Δx to dx). Even if the technology used to arrive at the final expression is based on content previously 
taught in a Calculus course, it is not certain that every student will make the connection, since tasks 
addressing the passage from Δx to dx are not very numerous in Calculus courses. Second, the book 
links dV/dx with the notion of slope, but (surprisingly) relates the latter to a single case (illustrated 
with a figure), rather than explaining it as a general principle using the technology θ1 introduced in 
the Calculus course. This could lead some students to think that this connection between the slope of 
V and w applies only to the given figure. Although the notions (and their properties) introduced 
through TE are defined using tools from Calculus, they are not explicitly linked to technologies (such 
as θ1) derived from Calculus. Finally, the expression is integrated between points C and D to obtain: 
“VD – VC = 

D

C

x

x
wdx

 

 
” and “VD – VC = – (area under load curve between C and D).” 

In general, although the textbook uses elements of Calculus, it avoids explicitly using the kind of 
notation and properties that have been institutionalised in Calculus courses (such as θ1 and θ2 
mentioned above). For instance, the books states: “[dV/dx = –w] is not valid at a point where a 
concentrated load is applied; the shear curve is discontinuous at such point” (p. 361). Here, the author 
avoids a clear statement about continuity and differentiability (available in θ2). As Castela (2016) 
pointed out in a different context, we believe that the authors are seeking to develop another kind of 
knowledge, strongly correlated with a professional context. Employing techniques similar to those 
used to find V (and again, avoiding the writing of limits and saying instead “and then letting Δx 
approach zero”), the expression dM/dx = V is deduced and the authors state: “[this] indicates that the 
slope dM/dx of the bending-moment curve is equal to the value of the shear. This is true at any point 
where the shear has a well-defined value (i.e., no concentrated load is applied). [It] also shows that V 
= 0 at points where M is maximum. This property facilitates the determination of the points where 
the beam is likely to fail under bending”. Interestingly, once again, the book’s authors avoid using 
explicitly a technology derived explicitly from Calculus (θ1), making it less likely that students will 
make the connection. They finally deduce that: “MD – MC = 

D

C

x

x
Vdx

 

 
” and “MD – MC = area under 

shear curve between C and D.” 

We can see that the book avoids explicitly using properties previously institutionalized in Calculus 
courses, which leads to a kind of praxeology in which Calculus tools are written but geometric 
techniques are favoured. We do not mean to say these techniques are wrong; however, they could 
result in a knowledge gap, as some students may not recognise the same object (integral) that they 



encountered in their Calculus course. For instance, the first 
solved example (t1) (Figure 3) presents a uniformly distributed 
load w. Using previous formulae, the reaction forces in the 

extremities are deduced (equal to wL
2
1 ), which allows the 

deduction of VA = wL
2
1  and V – VA = 

x
wdx

 

0 
= –wx, leading 

to V = VA – wx = wL
2
1  – wx = w 








 xL
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1 . Note that the 

notation differs from that in the theoretical section, and the 
expression depends on the parameter w (introducing a 
technique τ1 that differs from what was previously presented 
and that does not address the presence of w); however, the latter 
is not highlighted, and a graph is drawn (Figure 3c), taking for 
granted that students can interpret a graph depending on a 
parameter (ignoring students’ known difficulties with 
parameters; e.g. Furinghetti & Paola, 1994). The maximum 
value of the bending moment is obtained by calculating the area 

under the positive triangular region 









8222
1 2
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and the curve is hand-drawn (another technique that does not 
address that M has been introduced as the integral of V). The 
authors conclude with: “Note that the load curve is a horizontal 
straight line, the shear curve an oblique straight line, and the 
bending-moment curve a parabola. If the load curve had been an oblique straight line (first degree), 
the shear curve would have been a parabola (second degree), and the bending-moment curve a cubic 
(third degree). The shear and bending-moment curves are always one and two degrees higher than 
the load curve, respectively. With this in mind, the shear and bending-moment diagrams can be drawn 
without actually determining the functions V(x) and M(x)” (p. 362). A single case is used to introduce 
an important technological element (θE) that is helpful in solving TE (drawn by hand), but this element 
is not justified in general, even though introducing V and M as integrals (showing that their 
coefficients can be deduced as primitives) would allow the use of a technology derived from the 
Calculus course for this justification. The book instead chooses to introduce a “rule” (θE) indicating 
that the student simply has to add one and two degrees, respectively, to draw V(x) and M(x). The next 
solved problem has students calculate (again using formulae from section 5.1) the values of forces in 
extremities of intervals as well as areas using geometry. Students are asked to draw by hand the 
bending-moment curve (Figure 4), even for cubic functions. This way, given the original diagram 
(Figure 4-top), students can deduce the value of V, which will be constant at certain intervals, and 
deduce its value at D and E specifically, while simply linking them with a straight line. Once a student 
has drawn the graph for V, it is possible to calculate the areas under each segment to deduce the values 
of M in B, C, and D, linking them by hand. 



In summary, the book introduces a praxeology to solve the 
problem of drawing bending-moment diagrams (TE); however, 
although related notions are introduced using mathematical 
tools such as integrals, the technologies rely on implicit 
mathematical results without clearly identifying them, 
favouring a more professional perspective. The techniques 
presented are limited to calculating certain points on graphs and 
linking them using geometric properties, which hinders 
students’ ability to make connections with the techniques and 
notions introduced in their Calculus course. Notions are 
presented as integrals but this fact is not explicit in the book’s 
techniques nor in the technology; because it is possible to 
ignore the book’s explanations when focusing on techniques, it 
is not certain that students will connect this content with 
content previously studied in Calculus courses. The book 
introduces a praxeology in which the practical block is clearly 
presented [TE, τE], but where the knowledge block (mainly θE) 
mixes statements from mathematics and the engineering 
profession, leaving many facts implicit. Furthermore, this type 
of task does not justify all the content and techniques 
previously learned in Calculus courses regarding integrals.  

Final remarks 
In this paper we analysed the process of boundary crossing (Castela, 2016) of content related to 
integrals, and examined how this content is used as technique and technology in a praxeology proper 
to civil and mechanical engineering. The literature has identified disconnections between 
mathematics and professional engineering courses (Christensen, 2008; Loch & Lamborn, 2016) and 
our research has allowed us to pinpoint one of these disconnections. Furthermore, we believe the tools 
provided by ATD allow us to study praxeologies and identify the connectivities and disconnectivities 
between the content in mathematics courses and professional courses. 

It may be argued that the study of integrals in engineering programmes is motivated by the simple 
fact that “engineers use integrals”. However, we believe that the way integrals are taught in Calculus 
courses follows acknowledged mathematics praxeologies (those which are accepted and recognized 
by the institution of mathematics research; Castela, 2016, p. 421). These mathematics praxeologies 
ignore the use of integrals in professional courses. The crucial question, evoked in the introduction, 
of “what needs would be satisfied?” seems to be ignored by the praxeologies developed in Calculus 
courses, resulting in two different uses of the same object. We intend to analyse the entire content of 
the book related to sheer forces and bending moments, as well as the course notes, to provide a more 
detailed portrait of the use of integrals in this content. This work will be followed by further analysis 
of other engineering-related content, which will allow us to better understand the use of Calculus 
content by engineers and pinpoint possible gaps experienced by engineering students. 
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We investigate university students’ mental images of continuity of real-valued functions by analyzing 
the answers of a questionnaire administered to Bachelor students at the University of Bremen. Our 
conception of mental images is based on concept images in the spirit of Tall and Vinner (1981) and 
the Grundvorstellungen (basic ideas) present in German subject-matter didactics (vom Hofe & Blum, 
2016). For this purpose, we introduce the notion of “communicative simulacra.” Furthermore, we 
catalog students’ mental images of continuity that appear within this and preceding studies and 
demonstrate results on their acceptance in the study group. The used taxonomy and results are part 
of the first author’s master’s thesis (Hanke, 2016). 

Keywords: Continuity, mental images, Grundvorstellungen, concept image, acceptance. 

Introduction 
More than 20 years ago Moore (1994) did an empirical analysis on the difficulties students face when 
they are required to give formal proofs. He identified among other factors that the students had little 
intuitive understanding of the concepts and their concept images were not adequate to perform certain 
proofs. Moreover, Selden and Selden (2013) argue that the ability to choose the right conceptual 
representation is a vital part in proving and generally in problem-solving activities. 

In the context of analysis the concept of continuity is one of the most fundamental notions needed to 
do rigorous proofs. It is well known that students have difficulties with the notion (Tall & Vinner, 
1981). This paper focuses on the mental images that future math teachers, pure math and applied math 
students have, which mental images they find acceptable and which they use to solve tasks. For the 
notion of continuity from the point of view of mathematics as well as mathematics education we refer 
to Tall (2013). 

Theoretical background 
In the German tradition of subject-matter didactics the notion of Grundvorstellungen (regularly 
translated as “basic ideas”) has gained much attention: The idea of Grundvorstellungen was extracted 
by vom Hofe (1995) after an analysis of related ideas of didactics of arithmetics and college-
preparatory didactics by pointing out the importance of creating internal representations of 
mathematical notions in the learners’ minds (vom Hofe & Blum, 2016). According to Kleine, Jordan 
and Harvey (2005) Grundvorstellungen link mathematics and reality by pointing out that modeling is 
a central mathematical process which fulfills requirements of mathematical literacy (application, 
structure and problem orientation): The authors argue that this is only possible after having acquired 
internal representations of mathematical concepts, so called Grundvorstellungen, which connect 
learners’ experiences and mathematical knowledge with real life. Primary Grundvorstellungen are 
directly related to concrete objects and actions in the environment of the learners whereas secondary 
Grundvorstellungen consist of imaginative actions with mental representations (vom Hofe & Blum, 



2016). The latter are particularly relevant for the notion of function and special classes thereof such 
as continuous real-valued functions. 

We prefer to regard the essence of Grundvorstellung, using a subject-matter-didactical analysis, as a 
predominantly normative (or even prescriptive) approach to find internal representations learners 
should acquire in order to be able to recognize and use a mathematical notion in inner-mathematical 
or applied fields. But the idea of Grundvorstellungen is complemented by the wish of mathematical 
didactics specialists to observe actual mental models or images, respectively, that learners really 
develop (vom Hofe, 1995; vom Hofe & Blum, 2016; Kleine, Jordan, & Harvey, 2005). 

The notions of concept image and concept definition by Tall and Vinner (1981) have been 
foundational for the existing literature on university students’ conceptions of elements of analysis 
such as differentiation, integration but also limits and continuity. The concept image comprises “the 
total cognitive structure that is associated with the concept, which includes all the mental pictures and 
associated properties and processes“ (Tall & Vinner, 1981, p. 152). Besides, the concept definition is 
a form of words to specify the concept and to communicate it. It can be personal or formal, thus 
individually shaped or widely accepted by the mathematical community (Tall & Vinner, 1981). A 
formal concept definition rather reflects a normative viewpoint on what is actually forced to belong 
to the concept. We argue that concept definitions are part of the overall of concept images of a 
mathematical notion. Contrariwise, if learners are confronted with an existing concept definition they 
develop concept definition images, a part of their concept images that expressly comprises their 
associations with the definition. Additionally, it is understood that learners enter their acquisition 
process of a newly introduced concept with preexisting concept images (Tall & Vinner, 1981), and 
that teaching persons and environments can influence the acquisition of concept images (Bingolbali 
& Monaghan, 2008). 

Since both the idea of Grundvorstellungen and concept images lack a distinctive description of what 
actually counts as internal representations, a conceptualization of mental images (Vorstellungen) was 
developed in (Hanke, 2016) which seems more appropriate to address the subtleties of precise and 
distinguished research questions in the scope of mental images. Mental images are substantiated as 
individual constructions and therefore reconstructions of all kinds of mathematical notions. They are 
of singular, regular or epistemological nature, can be subdivided into mental pictures 
(Vorstellungsbilder) and mental actions (Vorstellungshandlungen) (Weber, 2007). Due to the premise 
of being able to be communicated, mental images can be shared as well as accepted, rejected or even 
imposed on somebody. 

The most important idea for our study—and in general empirical research—is the fact that mental 
images cannot be observed. Thus, the only way to do empirical research about mental images is to 
study their communicative simulacra, the transformation of a potential inner world of a learner into 
observable entities such as spoken words, written solutions to exercises and so on (Hanke, 2016). In 
particular, communicative simulacra do not reflect normative assumptions on a notion as it is the case 
with Grundvorstellungen. In case of answers to a direct question on mental images (e.g. “What is 
your intuitive meaning of continuity?“) we will speak of exclamatory simulacra. With this 
terminology we emphasize the fact that what is actually communicated by a learner depends on the 
occasion of communication and does not necessarily reflect the full entity of associations of the 
learner. We cannot even be sure that the learner is aware of the intentions of the researcher when 



asked about mental images. Rather, we find blurrings of the actual mental images of learners that 
could potentially be sharpened by further qualitative analysis. In particular, exclamatory simulacra 
are shaped by the learner’s understanding of the concept in question and are only a subset of 
communicative simulacra which, in turn, can be expressed by different forms of communication. 
Here we concentrate on descriptions of communicative simulacra. 

Based on Moore’s (1994) and Selden’s and Selden’s (2013) conclusions, we believe that the mere 
knowledge of definitions, the ability to reproduce them or the setup of mental images for a 
mathematical concept do not necessarily mean that the students are able to use the concept. Also, we 
believe that the more mental images students have the more they are able to apply at least some of 
these in inner-mathematical situations or in contexts. Moore’s (1994) term concept usage is related 
to our idea of distinguishing between exclamatory simulacra of mental images and the usage of 
(probably different) mental images as required in the third section of our questionnaire. The second 
part of the questionnaire provides insight in the acceptance of attitude (Einstellungsakzeptanz) and 
acceptance of usage (Nutzungsakzeptanz) (Weber, 2007) (see next section). 

The review of central papers (Bezuidenhout, 2001; Núñez & Lakoff, 1998; Schäfer, 2011; Takači, 
Pešić, & Tatar, 2006; Tall & Vinner, 1981) on concept images and related results on students’ 
conceptions of continuity lead to the classification in Table 1 of eight possible mental images that are 
reported in the literature following Mayring’s (2015) methodology of qualitative content analysis. 
We emphasize that these categories are representatives of communicative simulacra identified in the 
literature and we do not intend to judge about their formal or normative correctness. 

Connections of continuity to the concept of integration is hardly ever noticed explicitly and therefore 
in case of appearance subsumed under miscellaneous. Likewise, the concept image of “pulling flat” 
the graph of a real-valued continuous function (Tall, 2009, p. 487) could not be found in any of the 
students’ responses. It seems to be related to the rubber band metaphor often used in topology and 
usually is not part of standard German textbooks or lectures on analysis in one variable. Additionally, 
Schäfer’s (2011) Grundvorstellungen for real-valued functions (controlled stability while wiggling at 
a point, possibility of approximation at a point and connectedness of the graph) are subsumed in the 
categories of Table 1. 

# Category Example 

I Look of the graph of the function “A graph of a continuous function must be connected” 

II Limits and approximation “The left hand side and right hand side limit at each point must be equal” 

III Controlled wiggling “If you wiggle a bit in x, the values will only wiggle a bit, too” 

IV Connection to differentiability “Each continuous function is differentiable” 

V General properties of functions “A continuous function is given by one term and not defined piecewise” 

VI Everyday language “The function continues at each point and does not stop” 

VII Reference to a formal definition “I have to check whether the definition of continuity applies at each point” 

VIII Miscellaneous  

Table 1: Categories for mental images of continuity 



Setup of the study and methodology 
Our research questions have been: 

1.) What mental images do students express by exclamatory simulacra? 

2.) What mental images do students accept and make use of in argumentation? 

3.) Is there a difference between students who want to become teachers and those studying pure 
and applied mathematics with regard to mental images or concept usage? 

We distributed a questionnaire to 54 Bachelor students (first-year pure and applied mathematics and 
second-year mathematics teacher students) in Bremen after the completion of a lecture with exercise 
classes on Analysis I (Hanke, 2016). The course covered approximately the content of Binmore 
(1982). The chosen methodology of the questionnaires is very similar to the one used often to 
investigate concept images (e.g. Tall & Vinner, 1981; Bezuidenhout, 2001; Nordlander & Nordlander, 
2012). Our questionnaire, described in detail below, is an extended version of those described in Tall 
and Vinner (1981) and in particular Schäfer (2011). No questions concerning applications are given 
in order to identify students’ conceptions of continuity solely related to the mathematics itself. New 
is the differentiation as described in the taxonomy of communicative simulacra and the comparative 
approach of acceptance of attitude and acceptance of usage, i.e. if students accept certain concept 
images and if they can apply those different images to some example functions. 

To identify the different types of simulacra, the types of questions we provided different stimuli. In 
the first part of the questionnaire the students were asked to freely verbalize what the intuitive 
meaning of continuity from their point of view is. In the second part we probed the acceptance of 
attitude of the verbalizations of mental images presented to the participants in fictive statements on a 
6-point Likert scale (totally decline (0), …, totally accept (5)) (Table 2). Furthermore, the third part 
of the questionnaire focused on acceptance of usage of mental images since we asked to give 
arguments for whether the following functions in Table 3 are continuous at the respective locations 
with multiple mental images. We have chosen the functions because they have discontinuities of 
different kind: the right and left hand side limit of g(x) exist and do not coincide as x approaches 0, 
and the limits of f(x), and h(x) respectively, do not exist as x approaches 1, or 0 respectively, while 
the graph of f is disconnected in every neighborhood of 1, whereas the graph of h is connected in 
every neighborhood of 0. 

# Description # Description 
1 Having minima and maxima is characteristic for 

continuity 
5 Controlled wiggling 

2 Limit definition of continuity 6 Connection to differentiability (“a function is not 
continuous at a point if it cannot be differentiated at 
that point”) 

3 Weierstraß ε-δ-definition / preimages of small open 
intervals contain small open intervals 

7 Graph has no jumps 

4 Graph has no holes 8 Graph does not swing too much back and forth 

Table 2: Mental images of continuity probed in the second part of the questionnaire 



 

Table 3: Different functions in the questionnaire 

Summarizing, we are interested in the threefold of mental images through communicative simulacra: 
exclamatory simulacra and the usage and acceptance of mental images observable in communicated 
outcomes. Due to page restrictions, we limit ourselves on an overview and provide some statistics. 
For instance, the flexibility of usage and acceptance of individuals will be preserved for an upcoming 
paper. 

Results and discussion 
All answers to our questionnaires were categorized according to Table 1. Multiple responses of the 
students were not only possible but desired and multiple categorization of a single answer into the 
categories was also possible. The categorization of the answers to the first question “What is the 
intuitive meaning of continuity from your point of view?“—i.e. the exclamatory simulacra of mental 
images of continuity—led to the following: five students did not give an answer, 37 answers fell into 
only one category, eleven in two and the one remaining answer in three categories. Around 70% of 
the overall codes were found in “Look of the graph“ (I) and all the other categories appeared in no 
more than 10% of the cases each. 

The “Look of the graph” (I) is the dominant mental image among students when asked to give one. 
Nevertheless, some students are able to accept other mental images as well. Figure 1 illustrates this. 
While the items “Graph has no holes” (4) and “Graph has no jumps” (7) are accepted by the majority, 
items close to the limit (2) or Weierstraß definition (3) of continuity have 40% to 50% acceptance. 
The fact that the majority wrongly connects differentiability as a necessary condition for continuity 
may be a problem of the item in the questionnaire which included two negations. Based on the very 
high rejection rates for the items „Having minima and maxima is characteristic for continuity“ (1) 
and „Graph does not swing too much back and forth“ (8) in the second part of the questionnaire, it 
seems to be certain that these are not common misconceptions about continuous functions. 

The functions f, g and h in Table 3 were all known to the students and had been part of the course in 
analysis and also of the exercises. In contrast to Tall and Vinner (1981) we did not give a picture of 
the graphs. The functions f and g seem familiar to the majority of students so about 50% are able to 
give a correct answer. The function h seems more complicated and most students do not answer the 
question at all and about half of the answers are false. This item is one where there is a real difference 
between those who study to become teacher and those who want to work as mathematicians. In the 
latter group the percentage of a correct answers is about twice as high (Hanke, 2016). 



 
Figure 1: Acceptance of item on Likert scale from 0 to 5: Reject (0, 1), Neutral (2, 3) and Accept (4, 5) 

in percent of answers 

To identify group differences between the different study groups (pure and applied math students vs. 
future teachers), we counted the occurrences of every category in Table 1 in the answers of the 
students for each of the questions. Concerning the overall usage of certain mental images measured 
with the coding of all answers to all functions of the third part of the questionnaire Fisher’s test on 
the resulting contingency tables did not yield a significant result. We interpret that there are no 
observable differences in the acceptance of usage of the different study groups. Using the Kruskal-
Wallis-Test, we could not find statistically significant differences except for the acceptance of the 
limit definition (2) in part two of the questionnaire (p < 0,03) where teachers students tended to 
express their acceptance with higher values on the Likert scale than the others. 

Comparing the results with Schäfer (2011) we identified more detailed mental images via their 
exclamatory simulacra (categories 4 to 7). While the concept image of “look of the graph” (I) was 
dominant here as well, it was not so dominant in Schäfer’s study (2011). We see a more diverse 
pattern in the argumentation for the three functions instead. 

The most interesting part of the empirical results is that the same mental image is used by the students 
either to justify a wrong or a correct answer (based on their judgment whether the given function is 
continuous or not; cf. Figure 2): The look of the graph (I) was used most frequently for a correct but 
also for a wrong answer. For example, the graph of function h is connected (i.e. has no jumps) but 
the function is discontinuous at the origin. Among the answers to this function we found e.g. “Yes [h 
is continuous], since [it is] going through, without gaps or jumps,” or “The function looks continuous, 
since it does not ‘jump’.” General properties of functions (V) were even used more often for a wrong 
than for a correct judgment of continuity. Again, for the function h, some students argued it is 
“discontinuous because of a pole,” but also h is “continuous at x=0, since it lies in the domain of the 
function.” For this function we could also find various different justifications for (dis-) continuity like 
“it gets area-like at the origin” or “it wiggles too much.” This is also the function where more wrong 
than correct answers were justified with mental images.  



 

Figure 2: Numbers of correct and incorrect answers per category summed up for all four functions 

Outlook 
In this study we provided a taxonomy that guides empirical research related to mental images of 
mathematics students in several directions. We pointed out that communicative simulacra of mental 
images of real-valued continuous functions depend on the context in which mental images are used: 
Figures 1 and 2 show that the spectrum of mental images used or accepted by the students we 
investigated is broader than the spectrum of explicit exclamatory simulacra. We also found out that 
in the overall of justifications of (dis-) continuity a single mental image does not exclusively help or 
misguide. A first step into mental images of metric space-valued continuity is also given in (Hanke, 
2016). 

We believe that future research on teachers’, doctoral students’, tutors’ or university lecturers’ 
conceptions of continuity will provide insight into similarities and differences between social groups 
in the overall process of teaching and learning of a particular mathematical notion. This will be of 
particular importance for the teaching of real-valued continuity in today’s university classrooms. 
Since continuity is disappearing from the curricula in secondary schools in Germany, it would be 
interesting to find out how the teaching of continuity in secondary schools implicitly or explicitly 
influences the mental images of beginning university students. Particularly, the question on the 
stability of mental images arises. Focusing on the analysis courses taught at secondary schools, an 
upcoming research area are teachers’ judgments of the adequacy of teaching continuity in schools as 
a prerequisite for important facts on differentiability and integration such as the fundamental theorem 
of calculus. 
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Using the theory of instrumental genesis to study students’ work with 
a digital tool for applying integrals in a kinematic simulation 
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Digital tools are increasingly becoming part of mathematics in Higher Education, some of which 
are used pedagogically. An example is Sim2Bil, a digital tool that offers mathematical tasks about a 
simulation of cars. Students can solve the tasks using integrals. Applying the theory of instrumental 
genesis, in which techniques are analyzed in light of epistemic and pragmatic value, we studied the 
tool when used by groups of engineering students. We observed the students applying techniques 
such as instrumented and pen & pencil for solving the tasks. The techniques required the 
combination of understanding integrals kinematically (as distance travelled), graphically (as area 
under a graph) and as a calculation with symbols (finding the anti-derivative). In fact, the 
mathematical tasks provided opportunity for students to address at least one task, and we had 
students solving the most demanding ones. 

Keywords: Digital tool, engineering students, instrumental genesis, epistemic value, pragmatic 
value. 

Introduction 
Solving mathematical tasks involves using different tools. These tools might be compasses and 
rulers, but also language, symbols, gestures, and digital tools. From a didactical point of view, it is 
important to study how such tools function, how students work with these tools and how the tools 
can be incorporated into educational practices. Within education, tools not only serve to do 
mathematics, such as carrying out calculations quickly, but they can also be pedagogical instruments 
for learning mathematics (Artigue, 2002). In our study, we focus on digital tools. Examples of 
digital tools for doing mathematics are Mathematica (www.wolfram.com/mathematica/) and 
MatLab (www.mathworks.com), which are numerical computing environments used in academia 
and industries. Examples of digital, pedagogical tools for mathematics are Geogebra 
(www.geogebra.org) and MIT Mathlets (http://mathlets.org).  

Our research is positioned within the education for engineers. The integral is one of the 
mathematical concepts to be learned. It can be perceived in many different ways, for example as an 
object (as a function or as an area) or as a process (calculating the anti-derivative or taking the limit 
of a Riemann sum). Researchers have found that students have difficulties conceptualizing the 
integral (e.g. Jones, 2013; Swidan & Yerushalmy, 2014). Derouet (2016) has focused on the relation 
between integral, area and probability, in which the integrand is the probability density. We take an 
approach where we study the relation between integral, area and distance in which the integrand is 
the velocity. We are representing the integral as a mathematical model for making objects move 
under certain conditions.  

There are several digital tools used for the learning of integrals. On the internet one can find applets, 
in which the integral is demonstrated with the Riemann Sum with an interactive slider for showing 
the limiting process. Berry and Nyman (2003) used a different tool, namely one that can record 



displacement of an object and then graphically display both a displacement-time graph and a 
velocity-time graph. These kinematical graphs were meant to assist students in visually making a 
connection between the function and its anti-derivative. Yerushalmy and Swidan (2012) describe 
another tool that, given a function and its graph, generates graphically an accumulation point graph. 
Further on, Swidan and Yerushalmy (2014), presented the Calculus Integral Sketcher, which allows 
students to construct and drag a primitive graph when a function graph is given. In all cases, 
students’ learning is supported by graphical means. We want to extend the research on pedagogical, 
digital tools for learning the concept of integrals by combining graphical and kinematical 
approaches with dynamic animations. Therefore, we considered a tool aiming to engage students to 
(1) combine different topics of their curriculum, such as calculus and kinematics, (2) calculate and 
interpret graphs etc, and (3) collaborate. 

We studied Sim2Bil which can be used for groups within higher education where integrals and 
kinematics are part of the curriculum (students in the natural sciences, engineering, etc.). The tool 
requires users to work with velocity functions, of which the integral represents the distance 
travelled. The tool’s name comes from a Norwegian word for car, ‘bil’, derived from automobile. 
The tool consists of mathematical tasks connected to dynamic animations. In addition to studying 
this tool, we want to study collaborative work between students, because inter-personal mediation is 
considered an important aspect of future education (Lowyck, 2014). 

Figure 1 shows the interface of Sim2Bil. The top left part shows an animation of two cars driving in 
a straight line from a starting line to a finish line. This is the simulation area. The lower left part 
shows two separate graphs for the velocity-time function of both cars. The areas under the graphs 
represent the distance travelled by the cars. This is the graph area. The bottom right part is the space 
for the velocity functions of the cars. A user can set in parameters for polynomial velocity functions. 
This is called the formula area. Also, within this area there are buttons to click on. ‘Formula1’ and 
‘Formula2’ give the generalized kinematical formulae for average and instantaneous velocity, and 
displacement, which include the integral symbol. Other buttons can hide/show the cars and graphs. 
When pressing the Start button in the bottom right corner, an animation starts showing the cars run, 
and at the same time the areas under the graphs are animated: the grey areas increase with time.  

The tasks in the top right area were especially designed for the animations. In connection with the 
animations of cars driving by taking over each other and finishing at the same time and the graphs, 
the tasks were about making these cars run under certain conditions. Without the tasks, the 
animations of moving cars will not be very meaningful, and vice versa.  

In the study presented in this paper, we investigate how Sim2Bil is used by groups of students. We 
use the theory of instrumental genesis to analyze our data. Our research question is: what forms 
does the instrumental genesis of students working with Sim2Bil take?  

 

 



 

Figure 1: Interface of Sim2Bil. 

The theory of instrumental genesis 
The theory has assisted researchers to study students’ activities in CAS environments (e.g. Drijvers, 
2003; Guin & Trouche, 1999) and dynamic geometry environments (e.g. Alqahtani & Powell, 
2016). First, we will explain the constructs instrumentalisation, instrumentation and technique 
which play an important role in the theory. Further, we will explain how techniques can have 
epistemic or pragmatic value.  

Any artifact, a physical object, will remain a bare artifact for a person if the person does not know 
what to use it for. However, an artifact might turn into an instrument if there exists a meaningful 
relation between the person and the artifact (Rabardel, 2003). Drijvers and Trouche (2008) give a 
good example of how a hammer, an artifact, is turned into an instrument if a person has skills and 
experience of how to use it properly. The distinction between artifacts and instruments does not lay 
in a physical change of the objects, but a transformation of the way a person thinks about and 
practically uses the object.  

This transformation process is a learning process and it is called instrumental genesis. The 
transformation process works in two directions as explained by Trouche (2004): towards the artifact 
and towards the user. The first direction involves the user learning to use the artifact. This embraces 
the activities in which an artifact becomes an instrument for a user, and about how the action 
influences the user’s activity and knowledge. This direction is called instrumentalisation. The other 
direction concerns the user using the artifact meaningfully for tasks. This is called instrumentation. 
As Artigue (2002) points out, this process involves developing ways for solving tasks. 

We will analyse students’ work with Sim2Bil. Our intention is to understand how students are 
appropriating the tool and the transformation process of the tool becoming an instrument. Since 



there exists a dialectic relationship between an artifact and a user (Gueudet & Trouche, 2009), we 
will look into both directions described above for the investigation.  

Epistemic and pragmatic value of techniques 

While doing mathematics, students can use several techniques, which may involve doing 
calculations and making drawings. A technique within the theory of instrumental genesis means “a 
manner of solving a task” (Artigue, 2002, p. 248). Artigue distinguishes between instrumented and 
paper & pencil techniques. Techniques yield a result and, therefore, they have a value. The value 
can be epistemic or pragmatic. Epistemic value involves that the technique has a meaning for the 
students related to the mathematical objects involved. We observe this, for example, when students 
find solutions to symbolic equations by creating a graphical representation with a graphing tool to 
use the zeros of the graph instead of solving the equations algebraically or numerically.  

A technique might also have pragmatic value. Artigue (2002) explains that we can observe 
pragmatic value when a technique is applied by students who are focused on the productive 
outcome of that technique (e.g. to have a quick answer). Further, she states that epistemic value 
might be less recognizable than pragmatic value since the latter concerns the appearance of 
immediate results. We observe this, for example when students are randomly guessing an equation.  

Methods 
To investigate students’ work with Sim2Bil we needed to observe students interacting with this 
digital tool. Hence, we created an environment in which students use the tool (tasks, animations), 
and other resources such as calculators, pens and paper.  

As a default setting, there are two velocity functions given in the interface so that a student can 
press the Start button, see the cars run and the areas under the graphs grow. The two default velocity 
functions make the cars finish simultaneously. In this way, the forthcoming tasks were framed, 
which all have requirements on how the cars should finish. With a total of four tasks, Sim2Bil 
integrates tasks and animations.  

The first task requires students to press the Start button and explain what the shaded areas represent. 
This task gives a visual introduction to the tool offering an association to distance as represented by 
area under a graph. After Task 1, there are Tasks 2–4, in which students are asked to find velocity 
functions that fulfill different requirements for the running cars. In Task 2, students are asked to find 
other functions so that the cars run with different velocities and arrive at the finish line at the same 
time. This will require students to translate the kinematics into mathematics and find functions v(t) 

so that 
4

0

( ) 400v t   . In Task 3, they are asked to make the green car be only half way when the red 

car reaches the finish line, thus 
4

0

( ) 200v t  . In Task 4, they are asked to make one car have half the 

velocity of the other when they arrive at the finish line simultaneously.  

Our study was carried out at two different universities, at each of which we worked with one group 
of three students. All were within their first year of engineering studies. Group 1 comprised three 
boys, while Group 2 included one boy and two girls. All the six participants were not familiar with 



Sim2Bil. In their lectures, the students of Group 1 might have seen a similar tool as Sim2Bil, 
including a button to press on screen for making an animation run. All volunteered to participate in 
this study outside regular lectures. The groups sat in a room with a table and one laptop with the 
tool in front of them. They were informed that we would study how they interact with the tool, and 
that they would not be assessed. Both groups were given an unlimited time for group work, and it 
turned out that Group 1 spent 45 minutes and Group 2 used one hour.  

There are some differences in how the groups were treated, with regards to parts of the interface and 
how the tasks were given. In the interface, the top right area showed an unused menu for Group 1 
and they received the tasks on paper. For Group 2, the Tasks 2–4 were given on screen. In the 
formula area, the students of Group 1 could write in parameters to make up to third degree 
polynomials (see Figure 1). Group 2 students could write in any expressions. Since Task 1 has a 
different nature than the others, as it does not ask for mathematical expressions, we gave this task 
orally to Group 2, at about three minutes into the session. In this way, we could see whether the 
Start button would be quickly found. The data collection consisted of video recordings of the 
students’ group work. The first author was present with both groups and two cameras were used at 
different angles to capture students’ writings, gestures, and screen activity. The video recordings 
were transcribed fully for Group 1 and largely for Group 2, and analyzed in light of instrumental 
genesis. In particular, techniques the students used to solve the tasks were identified by going 
through the videos and transcriptions, and analyzed in terms of epistemic and pragmatic value.  

Results 
By analyzing the students’ group work regarding the process of instrumentalisation, we observed 
that Group 1 easily found the Start button at the beginning. They saw the cars driving to the finish 
line and arriving together, the growing graphs and the increasing shaded areas. Then they read Task 
1. They related the areas under the graphs with the distance covered by the cars.  

Group 2 was not asked to press the Start button at the beginning. They started by explaining to each 
other what they saw on the screen: 

Dana: We are going to work with the relationship between velocity and time. (…) I’m 
thinking we are supposed to come up with functions like this (points at the 
formula area) related to the graphs (points at the graph area). Isn’t it?  

Jeff: Mhm… Okay, it looks like we have the formula for the velocity of the first car… 
and for the second car. So, uhm…. 

In the episode above the students related velocity functions to the graphs and velocity to the cars. 
After this, Jeff turned to the researcher and asked: “Excuse me, what are we supposed to find out 
here? We are supposed to…”. The researcher asked them to press the Start button. Then, they 
pressed Start and saw the animated cars and graphs, and they related the areas under the graphs to 
distance covered by the moving cars. Thereafter, they started working on the remaining tasks.  

Based on the observation of Group 2, we saw that guidance of finding the Start button was needed. 
At first sight, the screen offers much information, so this button can be overlooked. By pressing 
Start, they were introduced to the tool’s functionalities and to the conditions of the tasks. The 
animation showed two cars running differently but finishing simultaneously. We interpret that once 



the Start button was found, it enabled the appropriation of (1) the operations of the animations and 
(2) the conditions of the tasks.  

In regards to the process of instrumentation, the students used several techniques. For example, they 
set parameters in the formula area and pressed the Start button and watched the cars run. Another 
instrumented technique was to insert parameters and notice how a graph of a function looked like, 
dismissing it when it went too low. These techniques were applied by both groups within each task. 
On some occasions, we observed some students set in parameters seemingly at random in the 
formula area. Then, the graphs were noticed or they saw the cars run. On other occasions, the 
instrumented techniques were done as a final check whether their paper and pencil solutions were 
correct (paper & pencil techniques are explained below). These instrumented techniques had 
pragmatic value, since it was a quick check to see whether inputs were correct. The students might 
have reasonably guessing parameters, and on some occasions, the students explained why the 
animations appeared the way they did connecting it with algebraic expressions of the functions. The 
techniques connect symbolic, graphical, and kinematical representations. Therefore, it can be argued 
that the techniques also had epistemic value. 

We observed both groups use paper & pencil techniques for the tasks 2–4. They calculated the 
integral as anti-derivative, but knowing that they calculated the area under the graph and that it was 
the distance covered by the cars. In task 4, Group 1 also used a technique consisting of making 
rectangle and triangle drawings and making area calculations based on the fact that one area needs 
to be equal the other one. The techniques have a pragmatic value since the focus was on the 
productive potential (finding velocity functions) and it was a way of checking their answers. It can 
also be argued that these techniques, inherent symbols, had an epistemic value, since integration can 
be regarded as anti-derivation and an area can be regarded as distance travelled.  

Both groups discussed how to solve each task. Also, one group occasionally used gestures to 
visualize the cars and graphs in a way they could not visualize through instrumented techniques 
(e.g. get a specific graph). Also, gestures were used to support their imagination in discussions on 
the requirements. When one group started on task 4, they used their hands to gesture the run of the 
cars, mimicking the cars take over each other and finish together. Especially, the use of gestures 
occurred when the students faced challenges in finding parameters to solve the tasks.  

For creating polynomial velocity functions, the tool included a hint for the problem-solving process. 
We observed some students being “stuck” while doing calculations and clicking around on possible 
buttons for a clue. The formula buttons confirmed to them, that they needed an integral, but it did 
not help them in calculating the integral or in mathematizing the requirements of the tasks.  

At the end, the one group related their answer (v1=100, v2=-25t+150) to different parts in the areas 
on screen:  

Erik: Can we prove that the answer is correct? Yes, by the calculations again. (…) But 
we can also see it here that it stops on half of the other (point at the screen). So, it 
stops on 40. So, you can see that on the graph, actually. 

Sam: Oh, yes and you can see that it is a relation between  

the area under the graph…which is the integrated of the velocity.  



This episode shows that the students were reasoning on how they can check whether their answer is 
correct. Erik mentioned the paper & pencil technique (calculating the triangle and rectangle, area), 
and the instrumented technique (notice the graphs on screen including the equal areas and the 
velocity of the red car is half the velocity of the green car). Sam repeated the relation between areas 
and distance.  

Discussion and conclusion 
Research has focused on different approaches for learning the concept of integral. In some studies, 
the integral was visualized as Riemann sum. In our contribution, we have taken another approach: 
we investigated how students work with Sim2Bil, which is a digital tool designed for university 
level engineering studies that include mathematics and kinematics. Two groups of students were 
offered tasks and animations to make cars fulfill different requirements. They needed to 
collaboratively understand the distance travelled as an area under a graph.  

The theory of instrumental genesis allowed us to investigate students’ activities in a technological 
environment as previous studies have shown. In particular, focusing on particular aspects of the 
theory such as instrumentation, instrumentalization and technique, we were able to analyse the ways 
students used Sim2Bil.  

In the theory of instrumental genesis, a distinction is made between learning to use a tool, and using 
the tool for solving tasks. For learning to use the tool, the Start button played a dominant role. By 
pressing the Start button, students observe how the velocity functions make the graphs appear and 
the cars run. Thus, students were introduced to the functionalities of the tool and the conditions of 
the tasks. However, if students weren’t told to press Start, it could take long before they discover the 
dynamic animation. For using a tool for solving tasks, also known as instrumentation, Artigue 
(2002) distinguishes between two types of techniques, instrumented and paper & pencil techniques. 
In tasks 2–4, our students needed pencil and paper for calculating the integral as anti-derivative, and 
making drawings of areas which they also calculated. Their instrumented techniques consisted of 
generating cars running and generating graphs. In both groups, the instrumented techniques were 
always the final activity in each of the tasks 2–4. With this technique, they could check whether the 
functions they had found met the conditions of the task.  

Several techniques were used to solve the tasks. The instrumented techniques in the groups played a 
role as a check whether solutions are correct. Thus, they had pragmatic value. At the same time, the 
instrumented techniques had epistemic value because integration can be regarded as anti-derivation, 
and an area can be regarded as distance travelled. With task 1, our students learned the operations of 
the animations and the conditions of the tasks within only a few minutes. The Start button was 
included to get the cars running. This framed the forthcoming tasks. The challenge laid in finding 
functions for solving the remaining tasks. To overcome these challenges, the students used several 
techniques as explained above supported by gestures and discussions.  

The study has some limitations. Sim2Bil is different from other tools in which students can 
construct mathematical objects (drag triangles, construct families of parabolas, etc). It is more of a 
question generator, the animation “explains” the task, and the students can use the animations or the 
graphs to check their answer. Additionally, the findings of this study may not be generalizable to 
larger groups of students since we have only observed two groups of students using the digital tool. 
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This study aims to investigate undergraduate mathematics students’ learning experiences in a first 
course on Group Theory. I have used the Commognitive Theoretical Framework to examine 
incidences of interdiscursive commognitive conflict that emerge due to incommensurabilities with 
other areas of mathematics, such as Set Theory. Data is comprised of students’ coursework, 
interviews and other secondary data. Analysis suggests that incidences of incomplete mathematical 
learning emerge when students need to cope with the notions of set, group, subgroup, and their 
elements in the same mathematical task. In addition, analysis suggests that students can often 
successfully produce a technically valid proof, without necessarily having full grasp of the involved 
concepts, indicating a ritualistic participation in Group Theory discourse. 

Keywords: Group theory, theory of commognition, discursive shift, commognitive conflict.  

Background  
Unlike other areas of university Mathematics, such as Calculus and Analysis, the learning of Abstract 
Algebra, and Group Theory in particular, has been investigated to a significantly lesser extent. The 
first studies focusing on the learning of Group Theory emerged in the early nineties, adopting, mostly, 
an acquisitionist1 perspective and within the Piagetian tradition of studying cognitive processes and 
errors (e.g. Dubinsky et al., 1994; Asiala et al., 1998). Other studies investigated issues such as 
difficulties students face with the level of abstraction of this particular mathematical subject (Hazzan, 
1999), students’ reaction to the semantic abbreviation and symbolisation (Nardi, 2000), the 
importance of visualisation (Ioannou and Nardi, 2010; Zazkis et al., 1996), and novice-students’ 
difficulty with the process of proof (Weber, 2001).  

These studies have highlighted the pedagogical challenges that students, as well as educators, face in 
the learning of this particular course, mostly due to its abstract nature, the often unclear, to the novice 
students, raison d’être of the fundamental concepts, as well as the consequent tension due to historical 
decontextualisation of these concepts (Nardi, 2000). Leron and Dubinsky (1995, p. 227) suggest that 
“[t]he teaching of abstract algebra is a disaster, and this remains true almost independently of the 

quality of the lectures.”  

Far more scarce are studies in this particular area that analyse learning from a participationist2 
perspective and in particular through the lenses of Commognitive Theoretical Framework (Nardi et 
al., 2014). Ioannou (2012), among other issues, investigated the intertwined nature of object-level 

                                                 
1 Acquisitionists consider human development “as proceeding from personal acquisitions to participation in collective 
activities”. (Sfard, 2008, p.78) 

2 According to participationism, “patterned, collective forms of distinctly human forms of doing are developmentally 
prior to the activities of the individual.” (Sfard, 2008, p. 78) 



and metadiscursive level of mathematical learning in Group Theory, focusing on the intradiscursive3 
commognitive conflicts (see Ioannou (2016) as an example) but also on the interdiscursive 
commognitive conflicts, namely in relation to the incommensurability with other areas of 
mathematics. This study is a ramification of the second category. In particular, the aim of this study 
is to investigate incidences of commognitive conflict that emerge due to the incommensurability 
between various mathematical concepts in other mathematical fields towards the learning of Group 
Theory. For instance the notion of a set, as this has been learned in secondary mathematics education, 
or in the introductory course of Set Theory, and the newly introduced notion of group, focusing both 
on these notions as well as their elements. 

Theoretical framework 
As mentioned above, Commognitive Theoretical Framework (CTF) by Anna Sfard (2008) adopts a 
participationist perspective on learning and teaching. This fact sets CTF apart from Behaviourism 
and Cognitivism, in an ontological, epistemological and methodological level. Unlike the 
acquisitionist perspective, Commognition considers the object of developmental change to be the 
human activity and not the individual. Moreover, by using CTF, one should not aim to analyse the 
students’ skills or the mental schemas of the various concepts but the discourse itself, as the principal 
object of attention. In fact this last characteristic of CTF is what distinguishes it from the other 
participationist approaches (Sfard, 2008).  

Focusing on mathematical discourse in specific, unlike other scientific discourses, objects are 
discursive constructs and form part of the discourse. Mathematics is an autopoietic system of 
discourse, i.e. “a system that contains the objects of talk along with the talk itself, and that grows 
incessantly ‘from inside’ when new objects are added one after another” (Sfard, 2008, p. 129). CTF 
defines discursive characteristics of mathematics as the word use (the mathematical vocabulary, 
including the keywords that are used, not always exclusively, in schools and academia), visual 
mediators (the visible objects that are used as part of communication), narratives (any sequence of 
utterances that describe objects, relations and process, such as definitions, theorems and proofs), and 
routines (repetitive patterns characteristic of mathematical discourse) with their associated 
metarules, namely the how and the when of the routine. 

A useful notion of CTF, especially for this particular study, is commognitive conflict, which is 
defined as a “situation that arises when communication occurs across incommensurable4 discourses” 
(Sfard, 2008, p. 296). Commognitive conflict is considered “a gate to the new discourse rather than a 
barrier to communication, both the newcomer and the oldtimers must be genuinely committed to 
overcoming the hurdle” (Sfard, 2008, p. 282). Therefore, an aim of this study is to identify these 

                                                 
3 These are conflicts that emerge within the particular mathematical discourse, e.g. a conflict that may occur for concepts 
such as subgroups and normal subgroups (both within the discourse of Group Theory). 

4 Incommensurable discourses are the discourses that differ in their use of words, visual mediators, routines or their rules 
of substantiation. In addition, they may allow the endorsement of seemingly contradictory narratives, due to the fact that 
they do not share criteria for deciding whether a given narrative should be endorsed or not. (Sfard, 2008) 



situations in the undergraduate mathematics students’ attempts to solve problems, which involve the 
newly introduced notion of group. 

Other important notions within the CTF that are important for this study are the rules of discourse, 
namely the object-level and the metalevel rules. Object-level rules are defined as “narratives about 
the regularities in the behaviour of the objects of the discourse” (Sfard, 2008, p. 201). In other words 
these are rules that are directly related to the definition of the various objects, e.g. group, subgroup, 
coset, etc. Metalevel rules “define patterns in the activity of the discursants trying to produce and 
substantiate object-level narratives” (Sfard, 2008, p. 201). In other words metarules govern the 
process of proof of new (to novice students) mathematical results. 

Consequently, Sfard (2008, p. 254) describes two distinct categories of learning, namely the object-
level and the metalevel learning. Moreover, object-level learning “expresses itself in the expansion 
of the existing discourse attained through extending a vocabulary, constructing new routines, and 
producing new endorsed narratives; this learning, therefore results in endogenous expansion of the 
discourse”. In addition, metalevel learning, which involves changes in the metalevel rules of the 
discourse “is usually related to exogenous change in discourse. This change means that some familiar 
tasks, such as, say, defining a word or identifying geometric figures, will now be done in a different, 
unfamiliar way and that certain familiar words will change their uses”. In the context of this study, 
object-level rules could be considered the rules governing the elements of the set 𝑋 or the group 𝐺, 
whereas metalevel rules could refer to the proof that an algebraic structure is indeed a subgroup. 

Methodology 
This study is a ramification of a larger research project, which conducted a close examination of Year 
2 mathematics students’ learning experiences in their first encounter with Abstract Algebra. The 
module was taught in a research-intensive mathematics department in the United Kingdom, in the 
spring semester of a recent academic year. 

The Abstract Algebra (Group Theory and Ring Theory) module was mandatory for Year 2 
mathematics undergraduate students, and a total of 78 students attended it. The module was spread 
over 10 weeks, with 20 one-hour lectures and three cycles of seminars in weeks 3, 6 and 10 of the 
semester. The role of the seminars was mainly to support the students with their coursework. There 
were 4 seminar groups, and the sessions were each facilitated by a seminar leader, a full-time faculty 
member of the school, and a seminar assistant, who was a doctorate student in the mathematics 
department. All members of the teaching team were pure mathematicians. The module assessment 
was predominantly exam-based (80%). In addition, the students had to hand in a threefold piece of 
coursework (20%) by the end of the semester. 

The gathered data included the following: Lecture observation field notes, lecture notes (notes of the 
lecturer as given on the blackboard), audio-recordings of the 20 lectures, audio-recordings of the 21 
seminars, 39 student interviews (13 volunteers who gave 3 interviews each), 15 members of staff’s 
interviews (5 members of staff, namely the lecturer, two seminar leaders and two seminar assistants, 
who gave 3 interviews each), student coursework, markers’ comments on student coursework, and 
student examination scripts. For the purposes of this study, there have been analysed the staff and 
student interviews, and the coursework solutions. The interviews, which covered a wide spectrum of 
themes, were fully transcribed, and analysed with comments regarding the mood, voice tone, 



emotions and attitudes, or incidents of laughter, long pauses etc., following the principles of 
Grounded Theory, and leading to the “Annotated Interview Transcriptions”, where the researcher 
highlighted certain phrases or even parts of the dialogues that were related to a particular theme. 
Furthermore, coursework solutions were analysed in detail, after the data collection period, using the 
CTF, and mostly focusing on issues such as students’ engagement with certain mathematical 
concepts, the use of mathematical vocabulary and symbolisation, and the application of discursive 
rules. 

Finally, all emerging ethical issues during the data collection and analysis, namely, issues of power, 
equal opportunities for participation, right to withdraw, procedures of complaint, confidentiality, 
anonymity, participant consent, sensitive issues in interviews, etc., were addressed accordingly. 

Data analysis 
This study focuses on the application of object-level and metalevel rules that govern the mathematical 
concepts under study, namely, groups, subgroups, sets and their elements, investigating also the 
emerging commognitive conflicts. A priori analysis suggests that there are two likely commognitive 
conflicts: the first is related to sets (in school mathematics, sets come with a binary operation, 
whereas, in university mathematics, sets such as 𝑋 in 𝑆𝑦𝑚(𝑋) do not); the second is related to 
functions (in school mathematics, functions operate on algebraic structures, whereas in Group Theory 
they play a double role, namely, operating on sets, and being themselves members of a set with a 
binary operation). Such commognitive conflicts have appeared in five of the thirteen students’ 
solution of the following task: Suppose 𝑋 is a non-empty set and 𝐺 ≤ 𝑆𝑦𝑚 (𝑋). Let 𝑎 ∈ 𝑋 and 𝐻 =

{𝑔 ∈ 𝐺: 𝑔(𝑎) = 𝑎}. Prove that 𝐻 is a subgroup of 𝐺.  

Interestingly, students, despite their problematic application of object-level rules of the involved 
concepts, were often able to apply the involved metarules correctly, and produce a valid proof (e.g. 
for the claim that 𝐻 is a subgroup of 𝐺). This fact possibly indicates that proving, as assessed in this 
course, may not always require an explorative participation in the proof process and complete grasp 
of the involved mathematical notions, but rather can rely on a ritualistic5 performance of new routines. 
Moreover, successful application of metalevel rules does not necessarily imply that all the involved 
mathematical concepts have been fully objectified6. Due to limited space, below there will be 
demonstrated two examples of students’ responses. 

The first example of interdiscursive commognitive conflict, as this has been suggested in the a priori 
analysis above, appears below in the solution of Student A. The student has not grasped the fact that 
the operation refers to the group 𝐺 and not to the set 𝑋. Apparently, he seems to have tried to apply 
it to 𝑎 ∈ 𝑋 in an effort to prove inverses. He has not realised that 𝑋 is a set and not a group, and 
therefore there is no defined binary operation on 𝑋.  

                                                 
5 Rituals are defined as “sequences of discursive actions whose primary goal (closing conditions) is neither the production 
of an endorsed narrative nor a change in objects, but creating and sustaining a bond with other people” (Sfard, 2008, p. 
241) 

6 Objectification is defined as the “process in which a noun begins to be used as if it signified an extradiscursive, self-
sustained entity (object), independent of human agency” (Sfard, 2008, p. 300). 



 
Figure 1: Example of commognitive conflict of Student A 

In Figure 1, one can identify a commognitive conflict that emerged due to the discursive shift from 
the secondary school mathematical discourse, where all mathematical sets have algebraic structure, 
and in particular a binary operation with some properties. The notion of a set without an operation is 
new for these students. Furthermore, it proves to be particularly confusing to deal with this new kind 
of object in the context of a course on Group Theory, where some structures, namely groups, do have 
a binary operation, and others do not. In addition, another commognitive conflict is related to changes 
in acceptable notation. In particular, the notation 𝑔𝐻 is possibly confused with 𝑔 (𝑋). This “abuse” 
of notation, where 𝑔𝐻 stands for “the set of all 𝑔ℎ for ℎ in 𝐻” may contribute to the confusion. An 
underlying commognitive conflict is due to the fact that in a university mathematics discourse, abuse 
of notation is often acceptable where it does not cause mathematical ambiguity. However, notation 
that is mathematically unambiguous may nevertheless be pedagogically confusing. 

The second example, related to the second commognitive conflict of the a priori analysis, appeared 
in Student B’s attempt to solve the aforementioned mathematical task, as seen in Figure 2. Although 
her solution demonstrates that she has a structural understanding of the required proof, yet she is still 
unable to practically do it. She applies accurately the routine for a set to be a subgroup, nevertheless 
there is an inaccurate application of object-level rules of the concepts of set and group and 
consequently several inaccuracies in her attempt. The first one is related to the expressions 
𝑔(𝑎1), 𝑔(𝑎2), … and 𝑎1, 𝑎2… where 𝑎 is used to signal an element of 𝐻, and which is possibly a 
result of a deep confusion regarding the elements of the groups, 𝐺, 𝐻 and 𝑆𝑦𝑚 (𝑋) versus the 
elements of the set 𝑋, as well as the operation of the permutation on a set versus the composition of 
permutations. This inaccuracy may be considered as a result of a commognitive conflict regarding 
the notion of function. In the old mathematical discourse functions operate on algebraic objects, 
which are usually numbers. In Group Theory, functions (such as permutations) play a dual role – they 
operate on sets as in the old discourse, where often these sets have algebraic structure, but, in addition, 
they are also themselves objects of an algebraic structure (in this case group), where there is a binary 
operation (function composition). This dual role contributes to the incommensurability of the 
discourses. 

 



 
Figure 2: Example of commognitive conflict of Student B 

Moreover, Student B uses the incorrect expressions 𝑔(𝑎1), 𝑔(𝑎2), referring to elements of the set 𝑋, 
but under operation that is not applicable in 𝑋. She does not have a clear view of what is 𝑋 and what 
is 𝐻, i.e. that 𝑋 is a non-empty set and that 𝐻 is a subgroup of 𝐺 with a certain condition. At some 
point she also writes 𝑎 ∈ 𝐻, which is not true since 𝑎 is an element of 𝑋. Student B’s incomplete 
object-level learning is also revealed in the following statement:  

I found it quite hard, because... I got a bit confused with this um… 𝑆𝑦𝑚(𝑋) and stuff, but – so I 
don’t – I started it but then I weren’t sure, whether I was doing it right, so I kind of have stopped, 
and I’m gonna go ask for help. To like – because I – I don’t like, if I’m doing something and I’m 
not sure if it’s right, I don’t like to carry on because I don’t want to do it all wrong.  

The Lecturer, with the statement below, reinforces the claim that a number of students had an 
incomplete object-level learning regarding the elements of groups and sets. 

It is interesting, you know you have got a set in the group and somehow separating out in their 
minds the different roles of the elements of the setting up around and the group which is acting, is 
something that, you know, somehow they don't have a picture in their mind of – so they – you 
know writing a string of symbols round like 𝑔1𝑔2(𝑎) its – the sort of – the distinction between the 
elements of the group and the elements of the set is something that is not necessarily clear.  

Lecturer’s opinion highlights the importance of examining students’ object-level learning of the 
relevant mathematical concepts as well as their efficiency with the process of proof, something that 
can be investigated using CTF. It also reinforces the claim of unresolved commognitive conflicts as 
these occur in the discursive shift from the secondary education mathematics discourse to the 
formalism of Group Theory discourse. In particular, this study is in agreement with the Lecturer about 



the fact that in the discourse of Group Theory there coexist structures with and without an operation, 
a new feature that is particularly confusing for novice students. 

Interestingly, Lecturer’s view is in agreement with the Seminar Leaders and Assistants’, as this has 
been expressed in their final report on the 78 students’ performance, as seen in Figure 3. 

Figure 3: Markers’ comments on the 78 students’ performance 

Similarly, Markers’ comments highlight students’ difficulty to distinguish the various algebraic 
structures that coexist in the discourse of Group Theory. Students’ confusion is due to the fact that 
that they often cannot distinguish the elements of the set and the elements of the group, but also they 
cannot always successfully attach the binary operation to the appropriate structure. 

Conclusion 
This study’s aim was to identify incidents of incomplete mathematical learning in the context of 
Group Theory, focusing, when possible, on interdiscursive commognitive conflicts, related, in 
particular with the concepts of set, group and their elements. In agreement with other studies, Group 
Theory is a demanding subject, both from an object-level (Dubinsky et al. 1994; Nardi, 2000) as well 
as from a metalevel (Weber, 2001) perspective. The analysis above suggests that a frequent incidence 
of incomplete mathematical learning emerged during the discursive shift from a set (as students have 
learned in the secondary education mathematical discourse) to a group (new introduced concept in 
the discourse of Group Theory) and it also involved their elements. The first example of 
commognitive conflict emerged when Student A applied object-level rules relevant to the concept of 
group on set 𝑋, in which there is no defined binary operation. A second example of commognitive 
conflict, related to the first, was revealed through problematic use of notation, that displayed Student 
B’s unclear view of what is 𝑋 and what is 𝐻, i.e. that 𝑋 is a non-empty set and that 𝐻 is a subgroup 
of 𝐺. Finally, the analysis above suggests that students may have a structural understanding of the 
required proof, yet they are still unable to practically do it, indicating a ritualistic participation in the 
Group Theory discourse.  
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We draw on our recent research to inspect again some of the theoretical perspectives we have been 
using to analyse data and to characterise teaching-learning in university settings. We focus 
particularly within a sociocultural perspective on Activity Theory (AT) and the construct ‘the 
Teaching Triad (TT)’, seeking to embed the TT within an AT perspective. To achieve this, we relate 
the Teaching Triad with aspects of the sociocultural setting both in and beyond direct interactions 
in face to face teaching. While this is mainly a theoretical paper, an example is taken from 
observations of teaching in university lectures in a Greek university to show how these theoretical 
perspectives have provided insights to the institutional and cultural complexities involved. 

Keywords: University mathematics learning and teaching; teaching triad, activity theory, didactical 
triangle and tetrahedron. 

Introduction to University Mathematics Teaching (UMT) 
By University Mathematics Teaching (UMT) we refer to any or all the teaching of mathematics 
which takes place at university level. In our own corpus of work we are particularly interested in 
face to face teaching in lectures and tutorials in which teachers design their teaching for the benefit 
of students who attend their sessions. We are interested in uncovering relationships between 
teaching and learning within the full sociocultural context of university life. This includes the 
institutional setting as well as the cultures from which teachers and students make sense of the 
interactions in which they engage. In particular, we seek to know more about “what teachers do and 
think daily, in class and out, as they perform their teaching work” (Speer, Smith & Horvath, 2010, 
p. 99). Our research addresses:  

What is it that mathematics teachers do and think as they perform their teaching work in a 
university setting, and how does this relate to the mathematical meaning making of their students? 
(Jaworski, Mali & Petropoulou, 2016) 

This question takes us into the didactical thinking of teachers who consider how best to enable 
students to think mathematically and develop understandings of mathematical topics; it includes 
teachers’ pedagogic thinking in the ways in which they interact with students and use resources to 
promote students’ engagement with mathematics; it includes also the ways in which teachers work 
within university affordances and constraints, the norms and expectations of university culture and 
their own educational histories, their views of mathematics and of what it means for students to 
learn mathematics and so on.  

In our work to date we have used a number of theoretical perspectives to analyse data from teacher-
student interactions in university mathematics teaching. Largely we have taken a broad 
sociocultural perspective in which we aim to address both micro and macro aspects of teaching. In 



some of our work we have more specifically used Activity Theory to examine relationships and 
issues in teaching (e.g., Jaworski & Potari, 2009; Jaworski, Robinson, Matthews and Croft, 2012). 
Within some of this work we have used a theoretical construct, the Teaching Triad to address micro 
aspects of teaching while Activity Theory has addressed macro aspects, as we explain below.  

In this paper our aim is to zoom in on connections and inter-relationships between these areas of 
theory as they apply in our research into teaching mathematics at university level. In order to 
contextualize these theoretical ideas, we include below an example from university lecturing. Since 
our focus is on the theories we are using in relation to the activity of teaching, we do not try to 
analyse the actual meaning-making of the students in our example. 

Introduction to the Teaching Triad (TT) 
The Teaching Triad (TT) is a theoretical construct developed from earlier research into the teaching 
of mathematics at secondary school level. It offers a way of characterizing mathematics teaching by 
acting as a tool for analyzing teaching data from classroom situations; it has also been used by 
teachers as a developmental tool (Jaworski, 1994; Potari & Jaworski, 2002). More recently it has 
been used to characterize mathematics teaching at university level and as an analytical tool at this 
level (Jaworski, 2002; Jaworski, Mali & Petropoulou, 2016). 

Although NOT a triangle, the TT comprises three inter-related elements or domains of teaching: 
Management of Learning (ML); Sensitivity to Students (SS) and Mathematical Challenge (MC). 
These have been interpreted in terms of the interactions that take place within a classroom setting 
and, as such, focus on the micro aspects of teaching, without overt focus on the broader situational 
and cultural focuses, the macro. Briefly, Management of Learning describes the

 
Management  
of Learning (ML) 

 
 
Sensitivity  Mathematical 
To Students (SS)  Challenge (MC) 

 

Figure 1. The Teaching Triad (Jaworski, 1994). 

teacher’s role in the constitution of the 
classroom learning environment by the 
teacher and students. It includes classroom 
groupings; planning of tasks and activity; use 
of textbooks and other resources, setting of 
norms and so on. Sensitivity to Students 
describes the teacher’s knowledge of students 
and attention to their needs, affective, 
cognitive and social; the ways in which the 
teacher interacts with individuals and guides. 

group interactions. Mathematical Challenge describes the challenges offered to students to 
engender mathematical thinking and activity; this includes tasks set, questions posed and emphasis 
on metacognitive processing. These domains are closely interlinked and interdependent (Jaworski, 
1994). Research has shown that a good balance between SS and MC is needed for effective 
teaching: a lot of SS, but little MC can lead to good teacher-student relations but low mathematical 
progress; a lot of MC but little SS can result in students feeling stressed or unable to succeed. When 
challenge and sensitivity are well balanced, the result is “harmony” – students are suitably 
challenged and stimulated while supported to achieve (Potari & Jaworski, 2002). 

The TT is associated with another familiar construct, the Didactic Triangle (DT) which links 
Teacher (Τ), Students (S) and Mathematics (M) and draws attention to relationships 



TeacherStudent; TeacherMathematics; StudentMathematics and links between these 
pairs (e.g., Rezat & Strässer, 2012). The TT expands the “Teacher” node of the DT, illuminating the 
links TeacherStudent and TeacherMathematics through the constructs SS and MC 
respectively while extending the DT to the wider classroom context through the construct ML. This 
wider context includes the resources a teacher uses in mediating between students and mathematics 
as expressed in the idea of a Didactic Tetrahedron in which there are 4 planes: the original DT 
linking TSM and the planes linking TSR, TRM and SRM (R=Resources/artifact; see Figure 2). .

 

Figure 2 . The Didactical Tetrahedron 
(DTetra) (Rezat & Straesser, 2012) 

 
Figure 3. The Expanded Mediational Triangle 
(EMT) (Engestrom, 1999) 

Embedding the TT into the sociocultural perspective 
In this paper we re-examine the TT as a construct used within a sociocultural perspective and 
particularly its relationships to and within an Activity Theory analysis of teaching data. As a 
backdrop to AT we take Vygotskian perspectives involving particularly mediation, tool use, 
scientific concepts and the zone of proximal development (ZPD). Briefly, we see teaching as a 
process of mediation between teacher, students and mathematics (relationships are expressed simply 
in the DT and expanded in the TT). Teaching can be seen as mediating between student and 
mathematics: this is not a simplistic relationship but one with several dimensions which the TT 
serves to accentuate. The resources that a teacher brings to teaching (examples include 
mathematical symbolism, dynamic software, display media) are tools used in the teaching process; 
tools to facilitate learning (indicated by the extension of the DT to the DTetra). Scientific concepts 
are those distinguished by Vygotsky as involving theoretical learning in contrast with spontaneous 
concepts which arise from empirical learning (examples are mathematical concepts which need to 
be introduced by someone – they are not naturally occurring in everyday interactions). Daniels 
(2008, p. 314) cites Hedegaard (1998, p. 120) to suggest that “the teacher guides the learning 
activity both from the perspective of general concepts and from the perspective of engaging 
students in ‘situated’ problems that are meaningful in relation to their developmental stage and life 
situations”. These words capture importantly the basic ideas of ML and SS in the TT of which we 
say more below. Daniels emphasizes the important relationship between the idea of scientific 
concepts and the ZPD as involving a teacher in bringing general theoretical knowledge to her 
interactions with students, while engaging students in concrete tasks from which scientific concepts 
can be abstracted. This suggests important relationships between a teacher’s didactics and pedagogy 
– expressed simply, the former involving the transformation of mathematical concepts into tasks 
and activity for students and the latter involving the organization of the social setting to enable 
students’ engagement with mathematics (together these form the basis of ML in the TT). Within the 



ZPD, student engagement with a teacher’s theoretical input can achieve better learning outcomes 
than would be achievable by a student’s engagement with empirical tasks alone. 

The concepts expressed extremely briefly above fit with the sociocultural perspective of A. N. 
Leont’ev, who makes the following point “in a society, humans do not simply find external 
conditions to which they must adapt their activity. Rather these social conditions bear with them the 
motives and goals of their activity, its means and modes.” (A. N. Leont’ev, 1979, pp. 47-48). Here 
we focus particularly on Leont’ev’s three layers of human action which constitute Activity. The 
outer, or top layer is labelled ‘Activity’ which according to Leont’ev (1979) is always motivated, 
although the motive might not be explicit. Within Activity, the second layer consists of the ‘actions’ 
of humans engaging in Activity. Actions are goal-directed, such that the goals are always explicit or 
conscious. In the third layer, actions include ‘operations’, which depend on the ‘conditions’ within 
which actions take place. In earlier research we have used Leont’ev’s layers to explain issues and 
tensions which have emerged from analyses between teachers’ and students’ perspectives on 
mathematics teaching and learning (Jaworski & Potari, 2009; Jaworski, Robinson, Matthews and 
Croft, 2012).  

If we think of the Activity of a university teacher teaching mathematics, within a university setting, 
subject to all the sociocultural forces within which the Activity takes place, we might think of the 
motive of this activity to be the mathematical learning of students participating within the 
complexities of this setting. Actions here are the teaching actions which take place as the teacher 
engages in the teaching process in relation to the mathematics which is the focus of teaching. Such 
actions are goal directed and relate to ways in which the teacher thinks about her teaching and acts 
in relation to her students. Thus, teacher intentions and theoretical perspectives form goals, and 
didactical and pedagogic processes form actions in this activity setting. The operations within this 
role, with which the teacher engages, are closely related to the practicalities of the role; for 
example, setting exams, creating VLE pages, assessing students’ work. These operations must take 
place within the affordances and constraints of the university system which impose conditions on 
the operations. 

Another model which is used very commonly to represent an Activity System, is the Expanded 
Mediational Triangle (EMT) from Engeström (e.g. 1998). This developed originally from 
Vygotsky’s (simple) mediational triangle (the top part of the EMT) linking a subject with the object 
of her activity via the resources (tools, artefacts) employed in mediation. Engeström recognized the 
important mediational functions of other aspects of the sociocultural setting, such as ‘rules’, 
‘community’ and ‘division of labour’ which expanded the roles of tools/artefacts, and which he 
added overtly in the EMT (see Figure 3). The ‘rules’ include university procedures and constraints, 
community includes both student and academic communities, and division of labour recognizes 
differences between student and teacher roles within the academic setting. 

Example: Teaching in a lecture course in calculus with first year 
undergraduates  
This example comes from the study of university lectures in first year calculus teaching in a four-
year mathematics programme in the mathematics department of a Greek University (see 
Petropoulou, Jaworski, Potari & Zachariades, 2015). The lecturer is an established mathematician, 



with extensive teaching experience, who is very popular among the students in this department. The 
teaching takes place in an amphitheatre with more than 200 students. The course is compulsory and 
its focus is theoretical with an emphasis on proofs; in this example, the mathematical focus is the 
convergence of series. The approach is new for the students who have previously experienced 
calculus in high school as a set of methods and computations. Students’ expressed opinions and the 
very low success rate in the course examination suggest that this course is experienced as one of the 
most difficult during the four year programme. A large number of students take more than four 
years to complete their studies (the average time is 6.5 years) and some of the students have part 
time jobs in order to support their studies financially.  

The lecturer is aware of these sociocultural issues and takes them into account in his teaching, as 
our analyses show. For example, he says, “I do know that students get lost in their first year and that 
most find mathematics too difficult…if you don’t pay attention as a teacher, the average duration 
of their studies could easily become 7 or 8 years”. (In analysis we see here SS in cognitive, affective 
and social dimensions as we explain below).  

The lecturer’s teaching appears rather traditional as he is seen mostly standing at the front of the 
room, writing at the board, “telling” or “explaining” the mathematics with rare interaction with 
students. Nevertheless, we see many elements of sensitivity, taking into account students’ learning 
needs. By scrutinizing his teaching actions and goals, we see that his main teaching goal is to make 
the content relevant to students, with associated actions providing comprehensive explanations, 
highlighting subtle points that cause students’ difficulties, linking informal and formal 
representations, making connections with students’ prior school experiences, emphasizing the 
importance of the specific content in mathematics, in the course exams and in other courses.  

At the beginning of this episode the lecturer reminds students that they know they can add a finite 
number of terms of a sequence i.e. they know that the sum of a finite number of terms always exists. 
He points out that a central question is whether the sum of an infinite number of terms exists.  

He establishes the importance of this question by saying that this is exactly what we mean when we 
say that if it exists then the series converges. He also highlights that the “big difference here” is that 
the number of terms is infinite. By relating the convergence of the series to the existence of a sum, 
he attempts to help students to make sense of the meaning of convergence (which may still be 
difficult however). This can also offer a mathematical challenge that is possibly not appropriate for 
the students to respond to at this stage. It acts more as a situated problem for introducing the 
relevant theorems about the convergence of a series.  

He sympathizes with the students, through a personal story about a teacher he had at school for 
whom the convergence was of great importance. We might say that this story supports their comfort 
zone, offering affective sensitivity. He then formalizes a basic proposition related to the necessary 

condition for a series to converge:  “If a series
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
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  converges, then the sequence ak → 0”. 

Here we see SS-cognitive in alternative expressions of the meaning of convergence, helping 
students to make sense of the concept of series convergence. We categorise the personal story as 
SS-affective/social, encouraging students in the lecture to have rapport with the lecturer and feel 
empathy with his approach to teaching them. These are pedagogic strategies which enable the 



lecturer to proceed to a more formal didactic stage in his explanation in which he acknowledges a 
problem they might find in a text book on the topic. “The books write ‘consider the sequence Sn-1’. 
But what is the sequence Sn-1 if n=1? Is it S0? S0 is not defined! Ok?”. His solution to this problem is 
to introduce a second sequence tn: “Now, I define a second sequence tn as follows – I am going to 
write down for you the terms of this sequence. First, I set something… let’s say t1, to be equal to 0. 
Then I set the 2nd term of tn to be equal to S1, the 3rd to S2… Ok? … the 4th to S3 etc. Namely I set 
t1 to be 0 - you can set everything you want. So let tn be Sn-1, if n ≥2.” He concludes this proof and 
then he offers a second proof based on the formal ε-δ definition. He compares the two ways by 
characterising the first way of proving ‘the quick way’ and the second ε-δ proof ‘the slow way’. He 
provides all the details in both of these proofs highlighting the problem solving strategies that are 
usually used in proofs about series such as for example the use of partial sums. 

These steps challenge students to engage with the mathematics of series in a more formal way. 
Perhaps this MC is scaffolded by the sensitivity observed in the earlier considerations. We see again 
the lecturer’s drawing of students into his confidence in encouraging them to be critical of the text 
book, and in involving them in his reasoning for introducing the new sequence. We might see these 
careful steps on the part of the lecturer as his sensitivity in “paying attention as a teacher to his 
students’ potential difficulties”. 

The lecturer subsequently takes the opportunity to remind students of the harmonic series 
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sequence of which tends to 0 but the series itself does not converge, and he uses this to justify that 
the inverse of the above proposition does not hold. He draws students’ attention to the usefulness of 
this example in the forthcoming exams. 

Further actions include providing resources and materials to students for their individual studying 
especially for those students who cannot attend the lectures, the structuring of the content, the 
teaching tools (board, supportive resources) and the traditional communication norms. In the 
analysis, Mathematical Challenge (MC) is often difficult to distinguish, appearing to be integrated 
into the SS. It is usually addressed through problem solving heuristics that are presented by him in 
explaining general mathematical strategies in specific cases of problems and theorems (e.g., the use 
of partial sums for proving the convergence of series) and by emphasizing metacognitive processes 
(e.g., comparing different solution strategies). 

By referring to the EMT, we identify some links to the TT. SS is related to the lecturer’s attention to 
the students’ community (e.g., offering supportive resources for the students who do not attend the 
lectures, the delay for completing their studies). ML is related to the lecturer’s attention to the 
university community (e.g., the tools that the lecturer uses and develops, the institutional rules such 
as examinations, large cohorts of students,) On the other hand MC is related to the community of 
mathematicians and to the mathematical practices that the lecturer brings into the classroom. 

Discussion 
In this example, the Activity is the sociocultural setting of teaching and learning. Seeing the teacher 
as subject (in the EMT) with the object of enabling students to make sense of the mathematical 
topic, mediators are the various artefacts/resources (such as the lecturer’s board writing; his 
provision of on-line resources) as well as the cultures of students or teachers (student community. 



academic community), differing roles of students and teachers (division of labour), and the 
expectations of university lectures/tutorials and the four-year programme (rules). In Leont’ev’s 
terms the Activity is the whole, the lecturing, with the motive of enabling the students to learn basic 
concepts and theorems of calculus by taking into account their learning needs. We see actions and 
goals particularly in the activity of the lecturer: what he does to achieve the main goal of making the 
content relevant to the students, such as explaining mathematics at the board to ensure that students 
are provided with clear accounts of mathematical concepts with which they can work further, 
providing on-line resources to help students who must work to support their studies. 

The Teaching Triad cuts across the Activity Theory frameworks to interrogate the activity of 
teaching. It captures the teacher’s actions as related to mathematics and to the students (MC and 
SS). Through ML, we see the teacher’s use of artefacts: tasks and resources, pedagogic strategies to 
include and engage students, orchestration of the environment to facilitate learning. MC can be seen 
in the ways the teacher presents or provides access to mathematics, linking with what the students 
know and with what they are expected to do in the course exams.  

SS links the affective, cognitive and social elements of student engagement, rationalizing 
conventions and norms within the constraints and affordances of the institution. The triad presents a 
framework in which we see all the aspects of Activity through its three dimensions. 

Elaborating further the elements of the TT discussed above, we see a close link between SS and ML 
in the teaching of this lecturer. SS has a strong social dimension apparent inside and outside the 
amphitheatre. For example, we see his concerns for providing clear explanations without interaction 
with the students as the institutional context and the affective constraints do not allow it. He says, 
“In an audience of 200 students, if you discuss with 2–3 of them, these probably will be the 
strongest students and the others will feel bad. … And finally nothing will remain on the board”. He 
also takes into account students who cannot attend the lectures for various reasons (e.g., 
participating in social associations; socializing after the hard entry examinations; or having to get a 
job for financial reasons) by providing supportive online resources and materials. The lecturer 
teaches within the sociocultural setting described above. He engages with mathematics and with 
students: the fundamental relationships expressed in the DT. He uses a range of resources with 
which to engage students as expressed in the DTetra. The TT enables us to inspect these 
relationships in more depth, addressing the ways in which the lecturer engages the students and 
provides for their needs. We come to see that despite an approach that seems transmissive, he is 
nevertheless sensitive in social, affective and cognitive ways to what students need in order to make 
sense of the mathematics he offers. These needs relate strongly to elements of the sociocultural 
context in which the activity takes place including the number of students, the financial provision 
for their studies, and their struggles with mathematical formalism. We see lecturer’s goals and 
actions, through which he demonstrates challenge and sensitivity, to relate fundamentally to his 
recognition of these contextual demands. While the AT frames (EMT and Leont’ev’s layers) 
characterize teaching activity in its relation to context, the TT zooms in on the goals and actions to 
specify qualities of sensitivity and challenge and their management within the given context. 
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The importance of studying structuralist praxeologies has been highlighted by Hausberger (2016). 
In this communication, we illustrate it on the case of ideals in Ring Theory. We provide a detailed 
study of a proof extracted from a textbook in Abstract Algebra showing that structuralist praxeologies 
involve interplay between intertwined algebraic, set-theoretic and logical praxeologies, revealing a 
hidden complexity. 

Keywords: Mathematical structuralism, structuralist praxeologies, ideals in Ring Theory, logic. 

Introduction 
Hausberger (2016), with the introduction of the notion of structuralist praxeology, underlined the 
importance of praxeological analysis in the didactical study of phenomena related to the teaching and 
learning of Abstract Algebra at University level. His work is based on an epistemological 
investigation of algebraic structuralism that showed that mathematical practice in Abstract Algebra 
may be interpreted as an application of the axiomatic method, structures being used as tools by 
mathematicians in order to prove statements on objects. In the Anthropological Theory of the 
Didactics (Bosch &Gascon, 2014), a method is a set of techniques. In fact, ATD poses the general 
model that every human activity may be described by quadruples [T,τ,θ,Θ], called praxeologies, 
which correspond to the organisations it sets up: these combine a praxis (a type of tasks T and a set 
of techniques τ) with a logos that include two levels of description and justification of the praxis: the 
technology θ and the theory Θ. Hausberger (2016) made the assumption that clarifying the 
structuralist techniques may illuminate practices in Abstract Algebra, make their rationale more 
visible and ground them as a coherent whole. Hausberger (2016) described common tasks and 
techniques in the arithmetic of abstract rings and studied the structuralist praxeologies developed by 
students on a mathematical forum online. By contrast, the empirical data presented here is an extract 
of the solution of an exercise on Noetherian rings proposed by teachers in a textbook. The central 
mathematical notion at stake is the notion of ideal. By a detailed study of this example, we will 
develop the argument that structuralist praxeologies involve interplays between algebraic, set-
theoretic and logical praxeologies, thus revealing a hidden complexity.  

Structuralist praxeologies as intertwined algebraic, set-theoretic and logical ones  
The notion of structuralist praxeology 

Structuralist techniques are the by-products of the complete rewriting of classical algebra operated 
by Noether’s school in the 1920s (Hausberger, 2013 & 2016). They are based on the now standard 
structuralist constructs: sub-structures, homomorphisms, isomorphism theorems, products or sums of 
structures, quotients, etc. Hausberger (2016) stressed that common tasks in Abstract Algebra may 
often be solved using elementary techniques. Whenever its logos block contains a theorem on 
structures, the praxeology may be called structuralist. Nevertheless, a gradation of its structuralist 



dimension (loc. cit.) may be observed. In fact, structuralist praxeologies reflect the concrete-abstract 
and particular-general dialectics that are at stake in Abstract Algebra: tasks involving concrete and 
particular objects are completed by using abstract and general considerations on structures. Examples 
will be given in the sequel. The particularity of structuralist praxeologies that will be investigated in 
this article is that they often involve sub-praxeologies of algebraic, set-theoretic or logical type. 

Algebraic and set-theoretic praxeologies 

Noether qualified her own work of “set-theoretic foundation for algebra” (Hausberger, 2013), 
following Dedekind. On an epistemological point of view, it is characterised by the transition from 
thinking about operations on elements to thinking in terms of selected subsets and homomorphisms. 
The distinguished subsets are the kernels of homomorphisms, hence the normal subgroups in Group 
Theory and the ideals in Ring Theory. Noether uncovered the importance of the chain condition on 
ideals that led to the definition of Noetherian rings (see below). In other words, set-theoretic 
operations on ideals are connected to algebraic properties on elements. We will present below this 
connection by means of a “dictionary”. It explains the intertwining of algebraic praxeologies (on the 
level of elements) and set-theoretic praxeologies (on the level of structures), but it leads also to the 
use of logical praxeologies, notably for the descent from the ideals toward the elements at stake.  

Logical praxeologies 

Many tasks in Abstract Algebra involve proof and proving, thus logical praxeologies. Durand-
Guerrier (2008) has enlightened that the natural deduction developed by Copi (1954) provides a 
powerful tool to analyse and check mathematical proofs. In particular, it allows identifying those 
steps where mathematical arguments are silenced, supporting the claim that mathematics and logic 
are closely intertwined in proof. We will rely on Copi’s natural deduction to describe logical 
praxeologies likely to appear in proof and proving: elimination and introduction of implication, 
universal quantifiers and existential quantifiers, restriction of the domain of quantification. The theory 
is the First order logic (Predicate calculus) and the technologies are logical theorems (i.e. statements 
true for every interpretation in any non-empty domain). In Copi’s natural deduction, one deals with 
a generic non-empty universe, and some aspects need pragmatic control in order to ensure validity, 
as we will see below. The following table details common logical praxeologies that can be involved 
in a proof and hence in the study of structuralist praxeologies.  

We provide triplets (type of tasks, technique, technology): 
index Type of tasks Technique Technology  Example of use 
L1 Elimination of 

an implication 
Asserting the antecedent – 
asserting the consequent 

[(P  Q)  P]  Q  Deduction based on a 
conditional theorem 

L2 Introduction of 
implication  

Recognizing that Q has been 
proved under the hypothesis P, and 
assert “P  Q” 

(P Q)  (P  Q) 
 

Conclusion of the 
proof of a conditional 
statement 

L3 Elimination of 
a universal 
quantifier  

Deleting the quantifier, 
introducing of a generic element of 
the universe, assigning this 
element to every occurrence of the 
variable in the open statement.  

[x (F(x)]  F(y) 
 

Using a universal 
statement in a proof 
by generic element.  

L4 Introduction of 
a universal 

Given a true statement involving a 
generic element of a domain U, 

No logical theorem. 
Need to control that the 

Conclusion of proof 
by generic element.  



quantifier assert the corresponding universal 
statement  

element is actually a 
generic element of U (no 
other assumption on this 
element has been done) 

L5 Introduction of 
an existential 
statement 

Given an element of the universe U 
satisfying an open sentence, assert 
that the corresponding existential 
statement is true.  

F(y)  x F(x) Conclusion of the 
proof of an existential 
statement. 

L6 Elimination of 
an existential 
statement  

Given a true existential statement, 
introduce an element satisfying the 
corresponding open sentence.  

No logical theorem. 
Need to control that the 
name of the element has 
not been used prior in the 
proof  

Using an AE 
statement (“For all, 
Exists”) in a proof.  

L7 Restriction of 
the domain of 
quantification  

Given a universal statement true in 
a domain A, assert it on a 
subdomain B of A.  

[(x (A(x)  F(x))  (x 
(B(x)  A(x))]  [(x 
(B(x)  F(x)) 

Fitting the statement 
with the antecedent of 
a conditional 
statement  

L8 Transformatio
n of a 
statement 
preserving its 
truth value 

Substitute an equivalent statement 
to a given statement 

In the case of 
implication: [(x (P(x) 
 R(x)) (x (Q(x)  
R(x))]  [(x (P(x)  
Q(x)) 

Using the dictionary 
of properties 
elements/structures 
(cf. table 2) 

Figure 1: List of a priori logical praxeologies according to Copi 

The case of ideals in Ring Theory  
The notion of ideal and its ecology 

An ideal I of a ring (𝐴,+,∙) is, by definition, a subset of A with these properties: (i) I is a subgroup of 
the additive group (𝐴, +); (ii) if 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝐼, then 𝑎 ∙ 𝑥 ∈ 𝐼. As part of her Master’s degree 
dissertation, the first author conducted an epistemological and didactic study of the concept of ideal 
in order to explore the ecology, including the habitats and niche (Artaud, 1997) of this concept in 
French university education. This epistemological study started with the creation of ideal numbers by 
Kumer in 1847 and it enhanced the rise towards abstraction leading in the 1920s through the work of 
Noether to the concept we use today (Jovignot, to appear). As far as the ecology of the concept of 
ideal is concerned, the epistemological study allowed the identification of the following a priori main 
habitats: general Ring Theory (quotient rings and isomorphism theorems), arithmetic of abstract rings 
and elimination theory. Bearing on those results, Jovignot developed an analytical framework to 
identify habitats and niches of the notion of ideal in algebra textbooks addressed to undergraduates 
and Master’s students. A first study of 3 textbooks has led to improve this grid, that was then applied 
to a sample of 7 French textbooks that were considered as representative of the ecology of the concept 
of ideal and of its use in the different post-secondary institutions in which this concept is taught in 
France. This study confirmed general Ring Theory and arithmetic of abstract rings as major habitats 
of the concept of ideal, but it also allowed the exhibition of habitats that had not been previously 
identified, such as the theory of modules and algebraic geometry, which suggests the importance of 
leading a complementary study in contemporary epistemology. Finally, elimination theory appeared, 
in our sample, only in the specialized computer algebra manual.  

  



Ideals and structuralist praxeologies in the arithmetic of abstract rings 

Arithmetic of abstract rings as a mathematical domain is characterized by a mathematical structure 
in “Russian dolls”: it involves Euclidean, principal ideal domains (PID) and unique factorization 
domains (UFD), which generalize properties of the ring of integers, and mathematical theorems that 
state inclusions from the former class to the latter. Common tasks consist in proving that a given ring, 
for instance Gauss’s ring of integers Z[i], belongs to a class or the other. More abstract tasks, such as 
the one that will be analyzed below, involve making new connections between such classes. The 
central notion is the notion of ideal. In fact, the class may be defined directly by a property on ideals 
(such as PIDs) or by properties on elements (such as UFDs) which may be related to properties of 
ideals by means of the following “dictionary” which was already mentioned above. This dictionary 
will be useful to understand used praxeologies in the task studied below. 

index Conditions of validity Level of elements Level of structures 
D1  a divides b  (a) contains (b) 
D2  a and b are associates (a) = (b) 
D3 p ≠ 0  p is a prime element (p) is a prime ideal 
D4 A is a principal ideal domain p is irreducible in A (p) is a maximal ideal of A 
D5 A is a unique factorisation domain d is a gcd of a and b (d) = (a) + (b)  

Figure 2: dictionary of properties elements/structures 

The task under study 

In the next section, we will present the praxeological analysis of an exercise involving the concept of 
ideal which is extracted from a book addressed to Master’s degree students preparing the French 
Agrégation1: Francinou, S. & Gianella, H. (1994). This book is widely used by university students in 
France. The authors sampled classical exercises in Algebra and provided proofs. In the chosen 
exercise, students are requested to establish a connection between Noetherian integral domains 
endowed with an extra property and PIDs. We clarify that this praxeological analysis is not a tool for 
teaching but could help us later for the design of experimentation with students. 

The exercise is the following (our translation): 

Let A be a Noetherian integral domain. We assume that every maximal ideal of A is principal. 
1) Show that A is a unique factorization domain. 
2) Show that every non-zero prime ideal is maximal, principal and of the form (p) where p is 

irreducible. 
3) Show that A is a principal ideal domain. (loc. cit. p.57) 

We will restrict our study to question 1. The authors introduce the following classical criteria, in 
which E designates the property of existence of a factorization and U the property of unicity: 

A is a UFD if and only if: 
a) every increasing chain (a1) < (a2) < (a3) <… of principal ideals is stationary (equivalent to 

E) 
b) every irreducible element is prime (equivalent to U) 

                                                 
1 Competitive exam for prospective teachers for secondary and tertiary education 



The proof provided by the authors is the following (our translation from French): 

Since A is Noetherian, A satisfies (E). To establish that A is a unique factorization domain, it suffices 
to prove that if p is irreducible, the ideal (p) is prime. Let us consider a maximal ideal M containing 
(p). By hypothesis M is principal generated by a. Thus a divides p. Since a is not a unit (because M 
≠ A), p and a are associates and (p) = M is maximal. In particular (p) is prime. 

Praxeological analysis of the task 
Supplementing the proof 

Reading the proof of the authors, it appears that a lot of steps remain implicit. In order to be able to 
study the full set of praxeologies involved in the proof, either explicit or implicit, we have 
supplemented it. We consider that the proof is complete when all the statements are obtained by 
natural deduction from previously established results or standard theorems in Abstract Algebra. We 
do not examine in detail in this paper the question of which of these supplements should be taught, 
but we will provide hypothesis that will be studied in further steps of this research. The steps of the 
proof presented in the textbook are numbered, our supplements appear in italic and are designated by 
letters whenever several steps are involved. The supplemented proof reads as follows: 

1. Since A is noetherian, A satisfies (E). 
a. Indeed, A is Noetherian so every increasing chain of ideals is stationary by definition. 
b. In particular, every increasing chain of principal ideals is stationary. 
c. So, thanks to the criteria, A satisfies(E). 
2. To establish that A is a UFD it suffices to prove that if p is irreducible, the ideal (p) is prime. 
a. Indeed, we need to show that every irreducible element is prime (criteria, b) 
b. And “p is prime” is equivalent to “(p) is prime” 
c. In fact, we will show that (p) is maximal. It is enough since every maximal ideal is prime in a ring. 
3. Let p be an irreducible element of A and M a maximal ideal containing (p). 
a. If there aren’t any irreducible elements, we are done. In fact, irreducible elements exist since A is 

Noetherian, except if A is a field.  
b. p is not an unit, so (p) is proper and M exists according to Krull’s theorem. 
4. By hypothesis M is principal. Let a be a generator of M. 
5. Thus a divides p. 
a. Indeed, (p) is included in M and M = (a), so (p) is included in (a). 
b. And (p) is included in (a) if and only if a divides p. 
6. Since a is not a unit (because M ≠ A), p and a are associates - indeed, a|p so there exists b in A 

such that p=ab; moreover, p is irreducible so, since a is not a unit, b must be a unit and p and a 
are associates - 

7. and (p) = M is maximal since two principal ideals are equal if and only if their generators are 
associates. 

8. In particular (p) is prime. 
  



Praxeological analysis 

We present the praxeological analysis as a tabular; in the column labelled “steps”, we are indicating 
in which steps of the proof the studied praxeology appears. Only tasks, techniques and technologies 
are mentioned; the theory in the sense of ATD is Ring Theory. We note S structuralist praxeologies 
and A algebraic ones. 
steps Type of task Technique Technology 

1 – 8 (S1) Show that a ring is 
UFD  

Use of the criteria Equivalence between the criteria and 
the definition of a UFD 

1 L7 
2  L8 
2 b – 8 (S2)  Show that an 

element p is prime 
Associate to p the ideal (p) and 
show that (p) is prime 

The dictionary of properties 
elements/structures (D3) 

2 c – 8 (S3) Show that an ideal 
is prime 

Try to show that the ideal is 
maximal 

Every maximal ideal is prime 

2 c L1 
3 - 7 (S4) Show that an ideal I 

is maximal 
Take a maximal ideal M 
containing I and show that M=I 

Krull’s theorem 

3 a L6 (making explicit the two existential statements permitting the introduction of p and M) 

4 - 7 (S5) Show that two 
principal ideals are 
equal 

Show that two generators of 
those ideals are associates 

The dictionary of properties 
elements/structures (D2) 

5 (S6) Show that a divides 
b 

Show that (a) contains (b) The dictionary of properties 
elements/structures (D1) 

6 (A1) 

  

Show that two 
elements a and b are 
associates 

Show that a divides b; it is 
enough to conclude whenever b 
is irreducible and a is not a unit 

Definition of units, irreducible 
elements and associates; a and b are 
associates if and only if a | b and b | a 

Figure 3: praxeological analysis of the task 

Conclusions of our analysis 

This praxeological study allows us to highlight significant characteristics of the praxeologies used by 
the authors that we summarize below. 

The dictionary elements/structure is used along the proof; indeed the proof involves relationships 
between properties of elements of the ring (being an irreducible or a prime element) and properties 
of subsets (being a principal, maximal or prime ideal). Moreover, the algebraic notion of generator 
and the dictionary of properties elements/structures allow the replacement of common set-theoretic 
praxeologies (such as proving an equality of two sets by double inclusion) by more powerful algebraic 
praxeologies (involving A1). This cultural shift that is characteristic of structuralist algebra may be 
pointed out as a potential obstacle (previous praxeologies hindering the use of the new praxeologies 
to be acquired). 

The structuralist praxeology S1 decomposes into several sub-praxeologies S2-S6, A1, L1, L7, L8. In 
the authors’ proof, only structuralist steps of the proof are given; the steps involving algebraic and 
logical praxeologies are nearly systematically hidden. We may hypothesize that these authors see 
structuralist steps as the architecture of the proof and expect students to be able to reconstruct the 
missing elements by themselves. On the contrary, we will argue in favour of setting out the non-
structuralist praxeologies and elaborate on their role in connection with structuralist praxeologies. 



The nearly systematic omission of logical praxeologies raises the following issues and comments. 
First of all, the proof deals with generic objects, which is due to the level of generality of the statement 
of the exercise. It is already explicit in the statement itself, therefore both rules of elimination (L3) 
and introduction (L4) of a universal quantifier on the ring are not needed. In the sequel, the ideal M 
is introduced (step 3) without justification of its existence (Krull’s theorem). The introduction of the 
generator of M is allusive and could be misinterpreted, letting think that this element has already been 
introduced. In both cases, the elimination of the existential quantifier (L6) remains implicit, letting 
thus implicit the statements themselves. The generic element p that plays a central role in the proof 
is not introduced, while it is a delicate step. Indeed, a classical way to prove a conditional statement 
by generic element is to introduce an element satisfying the antecedent, under the implicit assumption 
that such element exist; indeed, if not, there is nothing to prove (step 3.a). In addition, letting silent 
the restriction of the quantification domain (L7, step 1) hides the fact that this rule does not apply for 
existential statements, which might not be clear for some students. Finally, the substitution rule (L8) 
is a key for using the dictionary elements/structure by substituting a property of elements for a 
property of structure and vice-versa. 

Giving such a proof requires the availability of the praxeologies cited above and a suitable 
understanding of their interrelations, or enough experience on the structuralist methodology in order 
to apply these praxeologies en acte. We hypothesise that the textbook’s proof does not permit the 
appropriation of the structuralist praxeologies at stake. A didactical strategy to reach this goal may 
include, for instance, a “meta-discourse” on the crucial role of the dictionary elements/structure, 
together with making explicit the logical praxeologies whose role has been underlined above. 

The particular construction of the proof (related to the decomposition of S1 into S2-S6-A1) can be 
understood by analysing the interplay between the blocks of the praxis and that of the logos of the 
different praxeologies engaged in the proof. However, the technological elements are seldom present 
in the proof written by the authors. For example, the properties of the dictionary are used but barely 
cited. Even if the students own in their praxeological equipment those technologies, the proof doesn’t 
offer them the opportunity to identify those technologies in the context of the proof and thus build 
the associated structuralist praxeologies in order to be able to use them by themselves in another proof 
situation. 

General conclusion and perspectives 
Our praxeological analysis has highlighted the complexity of the chosen exercise. This complexity 
comes, in particular, from the decomposition of structuralist praxeologies into several structuralist 
sub-praxeologies and their interrelation with logical and algebraic praxeologies. These are 
fundamental in order to make the structuralist technologies practically operative. A sketchy proof 
which restricts to the structuralist steps, although it is seen as a clear and synthetic account by 
mathematicians, may therefore appear quite inadequate for self-learning by students who are not 
familiar with the structuralist methodology. In other words, our study contributes to break the 
“illusion of transparency” behind proofs that may be found in Abstract Algebra textbooks. 

We aim to record and analyse the work of students who attempt to reconstruct the proof as we did, or 
to write a proof from scratch. In this forthcoming empirical study, our praxeological analysis will 
serve as an a priori analysis. It may also be used as a starting point in order to prepare clues for the 



students and other types of didactical intervention, as well as to lead semi-structured interviews. 
Moreover, we intend to interview the authors of the book in order to get insights in their goals and 
motivations for the choices they made when writing down the proof. More generally, it is expected 
from these praxeological analyses, conducted on a larger scale, a deeper understanding of structuralist 
praxeologies with a view to setting up didactic engineerings dedicated to the teaching of structuralist 
concepts and in particular the ideal concept. 
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University students’ understandings of concept relations and preferred 
representations of continuity and differentiability  
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The aim of the study reported in this paper is to investigate how students understand continuity and 
differentiability during and after a calculus course. The students’ choices of representations, both 
claimed and acted, were also studied. The study is part of a larger study of four student groups 
taking a calculus course. 207 students answered a questionnaire during the course and of them, 11 
were interviewed after the course (the ones in this paper). Answers in questionnaires and interviews 
were categorised and compared. All students who preferred formal theoretical representations, and 
only those students, were able to produce formal proofs. The students’ stated and acted preferences 
of representations were quite coherent, with only a few inconsistencies.    

Keywords: Calculus, continuity, differentiability, understanding, representations. 

Introduction 
Learning means adaption of, building on and sometimes rejection of prior knowledge. Calculus at 
university level comprises numerous new things to learn for many students and the actual learning 
may take place a while after the teaching occasion or even the examination. Differentiability and 
continuity, the topics studied in this paper, are closely linked to limits that have been proven 
difficult to learn (e.g. Juter, 2005, 2012; Tall & Vinner, 1981). Nagle (2013) concludes, in her 
overview of research on transitions to formal limit conceptions, that there is a consensus in the 
results about the students’ insufficiently developed concept images that do not allow them to 
formally understand limits. The transition requires students to go from a dynamic, discrete way of 
perceiving limits as processes to a static, continuous viewpoint where limits are regarded as formal 
objects. Nagle suggests an alternative introduction to calculus where more time is spent on informal 
conceptions to ease the transition to a formal definition. Raman (2002) found that students learning 
calculus do not seem to develop abilities to coordinate formal and informal aspects of mathematics 
unprompted, due to too little experience of such activities. It is therefore important to learn more 
about how students use formal and informal representations, deliberately or not, when they study 
mathematics. Exams also influence students’ studying strategies. Bergqvist (2007) found that a vast 
majority of tasks from 16 university exams in introductory calculus from four different universities 
in Sweden only required imitative reasoning skills to pass. Mathematics learning is then endangered 
to become reduced to remembering routines rather than understanding concepts, processes and 
relationships, since students’ strategies for learning are influenced by exams. The study in this paper 
further investigates formal and informal representations used by students to argue for relational 
properties of continuity and differentiability during a calculus course, and how they have developed 
after the course. The students’ exams were divided in two, where the first part was a written routine 
problem solving exam and the second an oral exam where definitions and proofs were assessed. The 
students’ preferred types of representations were also investigated and compared to their used types 
of representations and understandings to further explain how the students’ use of formal and 



informal representations compare to their learning processes. The research questions addressed in 
the paper are: 

 How do students’ relational understandings of continuity and differentiability during a calculus 
course compare to their understandings after the course? 

 How do students’ claimed preferences of representations match their actual use of 
representations? 

 How do students’ understandings and preferences of representations, spoken and acted, 
correlate? 

Theoretical frame and some prior results 
Students’ understandings of mathematical concepts are reflected in their solutions, reasoning and 
other actions as traces (Juter, 2005) of their concept images, i.e. the total cognitive representation of 
a concept that an individual has in his or her mind (Tall & Vinner, 1981). Tall and Vinner define a 
person’s concept definition for a concept as the words or symbols used to define the concept. 
Understanding a concept and being able to solve tasks involving the concept may be regarded as 
synonyms for some students, particularly if being able to solve tasks through imitative reasoning is 
enough to pass exams. The two ways of dealing with mathematics can however be distinguished 
according to their core features. Hiebert and Lefevre (1986) defined conceptual knowledge (p. 3) as 
a web of pieces of information well linked together with meaningful connections. Relations between 
concepts are abundant and significant. They defined procedural knowledge (p. 6) as knowledge 
requiring an input which the learner recognises and is able to perform a linear procedure on to 
obtain an outcome. No relational understanding is required for the process to be carried through. 
Strong and valid connections between concepts, i.e. conceptual knowledge, help learners to 
understand more as new information is embedded in, and supported by, their existing knowledge 
(Hiebert & Carpenter, 1992). Rich connections between concepts also reduce the burden of 
remembering pieces of knowledge and makes transfer within the concept image easier. Students are 
often unaware of the quality of links between concepts in their concept images, particularly if 
irrelevant or untrue links are mixed with true ones (Juter, 2011). A large number of links enables 
students to explain what they think determines a concept or a relationship between concepts. This 
can give a false sense of understanding if the links are incorrect, which in turn may lead to a 
situation where the student is unaware of any need for further work with the concept. 

Connections between different representations of the same concept, as well as connections between 
different concepts, are important to create strong concept images. A function can for example be 
represented in different ways algebraically, by a graph, or in words. Santi (2011) addressed the issue 
of students understanding different representations of the same mathematical phenomenon or 
concept, e.g. tangents. He compared the limit process of a derivative in calculus with a cognitive 
perspective to a more embodied Euclidean approach of the tangent touching the curve in one point. 
Some students showed difficulties in seeing those representations as the same object. In a study of 
university students learning limits of functions (Juter, 2005), another example of incoherence in 
representations of a concept was apparent. Several students interpreted the formal theory as stating 
that limits are unattainable for functions, but when limits were used in problems they could see that 
sometimes functions could attain limit values (e.g. linear functions). When both these perceptions 



were evoked simultaneously, the students became confused. Students meet different definitions and 
representations, depending on the context, e.g. intuitive descriptions, informal definitions and 
formal definitions (Jayakody & Zazkis, 2015). Jayakody and Zazkis presented two definitions of 
continuity based on limit definitions used at university courses. They concluded that students should 
investigate different definitions and their consequences to better understand the purpose of them. 
When investigating a function for continuity, the results may differ depending on definition choice, 
particularly if the definitions are learned intuitively rather than formally. An intuitive representation 
is here regarded as a perceived self-evident mental representation of a concept or phenomenon, as 
described by Dreyfus and Eisenberg (1982). An intuitive representation often lacks the benefits of 
formal strictness that can be useful in particular situations, e.g. determining if a function is 
continuous in a neighborhood of a given point. Developing conceptual knowledge may be difficult 
based mainly on intuitive perceptions. In the example with attainability of limits (Juter, 2005) some 
students misinterpreted the strict inequalities in the formal definition to mean that the function never 
can attain the limit value. The intuitive interpretation of that part of the definition overthrew the 
formal definition leaving the students with an incoherent concept image. Intuitive representations 
and other informal representations work as support for learning in many cases, but sometimes they 
are obstacles, particularly in a procedural learning approach where there are few opportunities to 
understand relations from deductive reasoning. In this study students formal and informal (including 
intuitive) representations of continuity and differentiability are studied and compared to the 
students’ stated and acted preferences of representation forms. 

The study, methods and sample 
The 11 students focused on in this study were part of a larger study of 207 students enrolled in their 
first calculus course at university level. The course was not given in one particular program, so the 
students were from different disciplines, such as physics or mathematics. Their understandings of 
continuity and differentiability, and proving strategies of statements regarding the concepts, were 
examined (for prior results see Juter, 2012). The students were from four different groups taking the 
same course (different semesters). The duration of the course was 10 weeks and included basic 
calculus with limits, continuity, derivatives, integrals, differential equations and Taylor’s formula. 
The students wrote an individual exam with focus on problem solving, mainly with calculations, at 
the end of the course and if they passed, they took an individual oral exam covering the theory of 
the course a couple of days later. The students answered a questionnaire when they had covered 
continuity and derivatives in the course. The 207 students in the study were all answering the 
questionnaire, which was more than 90% of the students attending the lectures. They filled it out 
after a lecture and had as much time as they wanted (they used up to about 30 minutes). The aim 
was to learn more about the students’ understandings of the concepts and the relation between them, 
but also how they expressed their responses, e.g. formally or informally. The questions were for 
those reasons openly formulated. The first five questions were about what features continuous 
functions and differentiable functions have and what the concepts are used for. The questions 
relevant for the part reported here followed and they are:  

1. Are all continuous functions differentiable? Justify your answer.  
2. Are all differentiable functions continuous? Justify your answer.  



The aim with these two questions was to see what types of representations the students would select 
to argue for their hypotheses. Before the data collection, they had seen examples and proofs that 
would enable them to answer both questions even though they were differently formulated than in 
the course. After the course, 11 of the students were individually interviewed. The students 
volunteered by indications in their questionnaires and were selected from their questionnaire 
answers to exemplify conceptual understanding, procedural understanding, formal use of theory and 
informal use of theory. The selected students are described after Figure 1. Each interview lasted 
about 30-45 minutes and was audio recorded. The questions were about the questions from the 
questionnaire and the students’ answers to them, proving, examination forms and attitudes to 
mathematics. They were particularly asked if they agreed to their former statements in the 
questionnaire or not. The analysis of the interviews were tightly connected to the questionnaires and 
the students’ development from them. Representation forms as well as mathematical content were 
analyzed and categorized.  

Results and discussion 
Figure 1 shows the students’ answers to the two questions in the questionnaire (Q), if they agree or 
disagree (correctly or incorrectly) to those answers at the interview (I) after the course, and if the 
students managed to prove their statement in the second question (if so, in the questionnaire, Q, or 
the interview, I).  
Stud.  Continuous 

implies diff. Q 
Diff. implies continuous  
Q 

Agrees (I) correctly/ 
incorrectly 

Disagrees (I)  
correctly/ 
incorrectly 

Proves 
formally, 
Q or I 

Jonas No, |x| Yes, small change in x 
causes a small change in 
y 

Correctly but he 
wants something 
added about 
intervals  

 Yes, I 

Jack No, |x| Yes, no actual reason Correctly 
explaining why |x| is 
not differentiable 

 Yes, I 

Jim No, not |x| and 
endpoints of [a,b]  

Yes, differentiability is a 
stronger feature than 
continuity 

Correctly   Yes, I  
 

John No, |x| Yes, correct formal 
proof using the 
definitions of continuity 
and derivative  

Correctly   Yes, Q 

Felicia No, |x| Yes, same left and right 
limit, slope independent 
of chosen point in the 
neighbourhood of the 
point 

Correctly agrees 
with first question 
and explains why |x| 
is not differentiable 

Correctly clarifies her 
answer to the second 
question. Thinks it was 
messily formulated 

No 

Fred 
 

No, |x| Yes, no reason Correctly  (some 
confusion)  

 No 

Fay Yes, no jumps in a 
neighbour-hood of 
an undefined point 
so same limits 
form left and right 

No, a function may be 
differentiable on an 
interval, but not in the 
actual jump 

 Correctly but a bit 
vaguely justified in a 
formal attempt 

No 

Clara No, only if defined 
for all points in an 
interval 

No, no reason Incorrectly    No 



 
Carly Yes, since they 

always have a 
slope 

Answers that continuous 
implies differentiable 
again 

Incorrectly on the 
first question, not 
really addressing 
the second 

 No 

Celia No, |x| Yes, no actual reason Agrees but adds 
error: In (0, 0) is |x| 
not continuous 

 No 

Carl No, at peaks there 
are many different 
tangents. States 
that continuous 
implies diff. in 
another question 

No, not a stair function Correctly agrees on 
the first question  

Correctly disagrees to 
his statement that 
continuous implies 
differentiable but 
unable to clarify the 
second question  

No 

Figure 1: Students’ understandings of continuity and differentiability from questionnaires during the 
course (Q) and interviews after the course (I) 

The students in Figure 1 are categorized in three groups, separated by different first letters in their 
fictitious names, depending on their responses to the two questions in the questionnaire and the 
interviews. In the first group (all names start with J), the four students correctly answered the 
questions in the questionnaires and interviews and came up with correct formal proofs. All four 
students used |x| as a counter example to show a continuous non-differentiable function in the 
questionnaires. Three of the four students (all but John) did not prove their answers to the second 
question in the questionnaires, but they were all able to do so in the interview. Jim did at first not 
think he was able to prove his statement in the interview, but when he got started he was able to 
take it deductively step by step through knowledge about the concepts revealing a conceptual 
(Hiebert & Lefevre, 1986) approach to mathematics in this area. Jack had a similar task to prove at 
his oral exam and showed confidence in procedurally proving it in the interview, even though he 
was unable to prove it during the course in the questionnaire. In the second group, with three 
students, all names start with F. The students either answered correctly at the questionnaire and 
agreed with their answers in the interview (Fred and Felicia) or answered wrongly at the 
questionnaire and then disagreed in the interview (Fay). Felicia and Fred both used |x| as a counter 
example the same way the students in the first group did. The students in the second group could 
show some confusion or small mistakes, but they answered correctly in a large sense after the 
course. The students did not produce any proof of the second question, but Fay made an attempt to 
do so when she was asked to try. She was however unable to see it through after she had written the 
definition for continuity where x tends to a and the definition for derivative where h tends to 0. It 
would probably work better for her if she had used a definition of derivative where x tends to a so 
she could combine the definitions easier; the lack of such flexibility could be due to her concept 
definitions. Comparisons of various definitions, as suggested by Jayakody and Zazkis (2015), could 
have helped her adjust her concept definitions to work together. She also thought that a limit is not 
an exact value, which can lead to problems understanding that a tangent in a point is unique if it 
exists, as Santi (2011) found. The third group comprises four students, all names starting with a C. 
These students were unable to correctly answer and/or justify their answers in the interviews. Carl 
and Carly both stated that continuous functions are differentiable in the questionnaire (Carl wrote it 
as an answer to another question where he was asked what features continuous functions have, so he 
gave two opposing answers in the questionnaire since he answered ‘no’ to question 1 above) and 



Carly kept that opinion in the interview whereas Carl changed to a correct standpoint. He was 
however not able to correctly answer the second question. Carly thought that all continuous 
functions have a specific slope in all points and are hence differentiable. In the interview she 
thought that all differentiable functions are continuous in an open interval since the tangent does not 
fall over the edge at the endpoints. Carly had an intuitive (Dreyfus & Eisenberg, 1982), non-formal, 
way of explaining her thoughts as this example indicates. Celia got the answers correct but added 
erroneous explanations that did not seem founded in any conceptual knowledge, e.g. |x| is not 
continuous at (0, 0).  
There were various kinds of confusion in all groups, but in the first group it was only Jonas who 
lacked something about intervals in his own reasoning in the questionnaire, and this was sorted out 
in the interview. The other two groups showed more serious errors and confusion as described. The 
clarity in representation varied in the students’ responses to questions in the study and the students 
used different types of representations to argue for their hypotheses. Figure 2 show the students’ 
preferred representation styles as they described it and as they acted when answering the 
questionnaire (Q) and in the interviews (I). The category called “F theory” means students using 
formally expressed definitions and theorems. “Pictures” is a category for students using diagrams or 
other figures to explain. “Words” is a category for descriptions in words, including theoretical (but 
not formally theoretical), and informal (including intuitive) descriptions. The categories “F theory” 
and “Words” complement each other in the sense that formal representations are in the first category 
and informal representations in the second. The categories can be combined, e.g. “Theory” and 
“Words” in John’s description where he formally stated a proof of the second question using formal 
definitions of derivative and continuity and explained the definition of continuity using words and 
not formal theoretical notation. John specifically stated that he did not use pictures ever, Clara 
stated that she read the formal theoretical parts, but did not use that way to express herself and Celia 
described her learning intentions to be shallow with no focus on formal theory. The categories for 
these three students are specified according to this in Figure 2. These are only narrow timespans to 
look at the students’ mathematics representations so they may of course vary from what is reported 
here. 
 

Students  Says to prefer in interview Preferences in action 
Jonas F theory F theory I, Words Q 
Jack F theory F theory  I, Words Q 
Jim F theory  F theory I, Words Q 
John F theory, Not pictures F theory I, Q, Words I 
Felicia Pictures Pictures I, Words Q 
Fred F theory Pictures I, Q, Words Q 
Fay Pictures  Words I, Q, Pictures Q, F theory I 
Clara Reads F theory Words I, Q 
Carly Pictures  Pictures I, Words Q 
Celia Not F theory Words I, Q  
Carl Pictures  Pictures I, Q 

Figure 2: Students’ outspoken and acted preferences of representation forms in interview (I) and 
questionnaire (Q) 



There is a rather good correlation between what representations the students said they preferred and 
what they used in this study. Fred’s statements and actions were most apart as he said that he 
preferred formal theory, but showed no traces of it. Instead he used pictures and words as did Felicia 
and Fay in the same group. Only students in the second and third groups, i.e. students with names 
not starting with a J, stated that they preferred to use pictures in their reasoning. The tendency was 
also apparent in their actions. Carly, who was very visual in her explanations, preferred 
representations as pictures. Her mathematical development was not conceptually strong as her 
representations were vague and erroneous. Fay also preferred pictures, but she turned to formal 
representations when she was urged to try to conduct a proof (as afore described). Male students had 
a stronger focus on formal theory throughout, but this is a small sample so it may be a coincidence. 
All four students in the first group (names starting with J) said to prefer formal theoretical 
representations and correspondingly used formal theory. John even emphasized that he did not use 
pictures, which he also did not do in this study. No other student than these four both said to prefer 
formal representations and used formal representations in justifying claims. The four students were 
the only ones who could prove that differentiable functions are continuous (Figure 1). Three of them 
were unable to prove it in the questionnaire (or did not do it for other reasons) even though they had 
just covered the topic in the course, but managed to prove it in the interviews. One reason may be 
that many students learned the theory after the course for the oral exam since the theory was 
examined then. If so, they did not use much of the theory in problem solving or in making sense of 
mathematics during the course. 
Celia stands out from the other students in Figure 2, as she showed traces of a concept image with 
quite weak connections. She was aware of the weaknesses since it was her strategy to learn 
mathematics shallowly and she kept on learning that way on purpose. Her stated approach to 
mathematics was procedural and she had no attempt to learn anything conceptually. This was also 
very clear in her responses in the interview and the questionnaire (see Figure 1). Celia had a 
representation of |x| not being differentiable, but she did not know why. She had an intuitive sense 
of how it should be and kept that standpoint even though she had no means available in her concept 
image to justify or explain it. When she tried to explain she came to the wrong conclusion that |x| is 
not continuous at (0, 0).  

Conclusions 
The changes in students’ understandings of continuity and differentiability from the time right after 
they have learned the concepts (Q) to after the exams (I) were mainly correct adjustments. Some 
added errors occurred but the main type of changes were improvements of the concept images. It 
appears as if the students’ conceptual understanding and use of theory had matured and small 
mistakes could be clarified deductively after the course. Students with more serious 
misunderstandings or insubstantial learning strategies during the course did however not show 
evidence of understanding the concepts better after the course (e.g. Clara and Carly). Most students’ 
descriptions of what types of representations they used agreed with their actual usages in the data 
sample. A clear result is that all students in the first group claimed to prefer formal theoretical 
representations, all used them and all (and only they) were able to correctly prove the statement in 
the second question. The results of this study imply that further development of conceptual 
understanding after the learning situation may depend on students’ preferred representation style. 



Formal representations seem to be most useful for developing conceptual understanding of the 
concepts. 
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This study continues our previous research about the relationship between learning behavior and 
examination outcome in first-year engineering courses. So far, our findings have stressed the 
importance of making (continuous) effort and processing the weekly assignments (Griese, 2016; 
Griese & Kallweit, 2016), but learning behavior related to understanding was found to have little 
relevance. In this paper, we examine a consequent cohort of 458 students, and investigate the 
relationships between examination outcomes and deep learning strategies. This approach is better 
suited to assess competence rather than calculation routines, in accordance with the SEFI (Société 
Européenne pour la Formation des Ingénieurs) curriculum (Alpers, 2016). To reach this goal, 
variations of traditional exercises are planned to be gradually introduced in a mathematics lecture 
(and the appertaining assignments) for engineering first-years. 

Keywords: Engineering, mathematics, curriculum, competence, assessment. 

Introduction 
There is a general awareness of “the struggle students endure in Service Mathematics courses” (Liston 
& O’Donoghue, 2009, p. 10), and of an orientation of future engineering education towards 
competencies (http://www.teaching-learning.eu; Alpers, 2011, 2016), following analogous 
developments in secondary education. This, however, is not intended to mean less skill in the handling 
of symbols, formulae, and operations, as the deficiencies in this area are often lamented. Rather, the 
notion is to keep “higher-level learning goals” (Alpers, 2011, p. 107) in mind: thinking, reasoning 
and modeling mathematically, posing and solving mathematical problems, as well as communicating 
in, with, and about mathematics (Alpers, 2011, p. 103f.), while not neglecting the traditional skills. 
This change must necessarily involve reforms in teaching and assessment (Entwistle & Entwistle, 
1992), albeit gentle ones. Our research prepares the ground for a planned development study in this 
area. 

Theoretical background and research approach 
When introducing curricular innovations, it is advisable to investigate the initial situation as 
thoroughly as possible, so that changes can be researched adequately. This applies to the current state 
of teaching and assessment in engineering mathematics, as well as to predictors of success or failure. 
For mathematics majors, Rach (2014, p. 219) identified, among others, mathematical competence and 
school qualifications as predicting as much as 38% of academic success (in terms of passing a first-
year module in calculus), whereas other researchers (Eley & Meyer, 2004) focus on aspects of the 
learning process (e.g. “systematic and principled use of examples”, p. 449). The role of affective 
factors was investigated in depth by others (e.g. Andrà, Magnano, & Morselli, 2011; Liston & 
O’Donoghue, 2009), stressing the importance of enjoyment of mathematics, the individual’s 
mathematical self-concept, beliefs, and motivation. Personality, or more specifically, interest in 
mathematics, is also an important factor (Alcock, Attridge, Kenny, & Inglis, 2014; Liebendörfer & 
Hochmuth, 2013). When aiming at competence-oriented learning of mathematics for first year 



engineering students, their specificities and level of understanding is worth investigating (Entwistle 
& Entwistle, 1992; Khiat, 2010), and should be supported not only by an appropriate choice of tasks, 
but also by innovations in both teaching and assessment, such as “small group activity, a variety of 
forms of questioning, an assessed group project” (Jaworski & Matthews, 2011, p. 178) or journal 
writing (Glogger, Schwonke, Holzäpfel, Nückles, & Renkl, 2012).  

We are interested in what learning behavior is promoted 4 for first-year engineering students, who 
are confronted less with proofs, but who have to deal with formal notations and who are expected to 
draw the connection between abstract theorems and calculation routines when aiming to succeed (see 
also Griese & Kallweit, 2016). Findings could also shed a light on how much conceptual 
understanding is required in service mathematics. We phrase our research objectives as follows:  

RQ1: How do specific teaching practices relate to student learning behavior in first-year engineering 
mathematics courses? 

RQ2: What clusters of students indicating specific learning behavior can be identified? 

RQ3: What are the relationships between student learning behavior and academic success?  

Methodology 
Questionnaire 

For our current survey we opted for items covering learning behavior under six aspects: weekly 
assignments (a1 to a8, 8 items), lectures (l1 to l5), tutorials (t1 to t4), deep learning (d1 to d8), surface 
learning (s1 to s4), and effort (e1, e2). The items were taken from Wild and Schiefele (1994), 
Himmelbauer (2009) as well as from Trautwein, Lüdtke, Schnyder, and Niggli (2006), via Rach 
(2014), and were slightly reworded to distinctly refer to mathematics. All items were rated on a 4-
point Likert scales with extreme points (1) not true and (4) true. The survey was conducted three 
weeks before the end of the first semester. So, students had had ample experience (> 12 weeks) with 
academic work, had overcome the Christmas break, and the written examinations were looming. The 
mathematics lecture for students of civil, mechanical, and environmental engineering was addressed 
in the academic year 2015/2016, as well as the more advanced one for students of electric engineering 
and IT security, yielding a total of 458 data sets, complementing the 508 from our previous study 
(Griese & Kallweit, 2016). 

Data analysis 

In order to explore the structure of the questionnaire, we employed descriptive statistics, conducted 
explorative factor analysis (principal component analysis with orthogonal, i.e. varimax rotation) and 
calculated Cronbach’s α for internal reliability. 

Then, k-means cluster analysis was employed to identify different learner types who might show 
different patterns of academic success. Here, standardization of scale scores proved helpful for the 
characterization of the clusters. The average examination scores of the clusters were calculated.  

Multiple linear regression was chosen to explore the influence of the different categories of learning 
behavior on academic success. For each participant, the items of one scale were combined by 
determining their means. These were used as predictors to calculate their influence on the outcome 
variable, academic success, represented by assessment points. Predictors were entered into or 



removed from the linear model by means of the forward, backward and stepwise methods. Constants, 
coefficients b, their standards errors, standardized coefficients β, their significance values, R² and 
ΔR² were calculated. Missing data was eliminated pairwise in all analyses. 

Results  
Sample description 

Out of the 458 students having answered our questions, 382 (83.41%) are enrolled in an engineering 
course (the rest gave no answer or were attending other courses). 74.61% of these are male, although 
the percentage varies over the different engineering courses (from only 49.35% males in civil 
engineering up to 90.23% males in machine engineering). The average age is 20.75 years (SD=3.30 
years, median = 20 years), which means that the vast majority enrolled at Ruhr University almost 
directly after leaving school. About one quarter (25.57%) have a mother tongue different from 
German. About two thirds (67.42%) gained their general qualification for university entrance at a 
grammar school (German Gymnasium), and 70.05% attended an advanced course in mathematics 
when at school. 69.02% went to the preparation course offered by our university. Considering that 
37.31% of the students state they got no more than average marks in mathematics at school, there 
may be a notable share of students facing problems with tertiary mathematics. 

The sample of 262 data sets from students of machine, civil, and environmental engineering (who 
attended the same mathematics lecture) was chosen as it fit the sample from the previous year. 192 
data sets could initially be matched via their individual codes to results from the written examination, 
and a further ten were matched by completing exactly one blank (out of the five defining a code). In 
order to avoid wrong matchings, this was only done in unambiguous cases. The resulting 202 data 
sets were then used for further explorations (meaning 60 questionnaires were eliminated for the 
purpose of research question three). 

Exploration of items and factor structure 

Some items showed prominent descriptive values. The items with the highest scores are l1 and t1 
(Ml1=3.69, SDl1=0.75, Mt1=3.58, SDt1=0.85) which cover regular attendance of lectures respectively 
tutorials. Item l4 (see below) scored lowest, followed by t3 (Mt3=1.94, SDt3=0.86, I prepare for the 
math tutorials). 

The results of the explorations of the factor structure are presented here, complementing the outcomes 
from the year before, see Table 1. In summary, in 2014/2015, the theoretically implied six factors 
were identified with only one slight renaming of effort into continuous effort, but the internal 
reliability was compromised in three of the six scales (Cronbach’s α < 0.6): surface learning, deep 
learning, and tutorials. This was acceptable only because the factors relevant for academic success, 
weekly assignments, and continuous effort, had α > 0.7. The explorations for the new data from 
2015/2016 finally resulted in the same six scales as before (with a root mean square residual of 0.07). 
The similarities between the two years are notable, and as before, the total variance explained sums 
up to 48%. 
  



Factor Items 14/15 α in 14/15 Items 15/16 α in 15/16 

Weekly assignments a1, a2, a4, a5, a6, a7, a8 0.75 a1, a2, a5, a6, a7, a8 0.74 

Continuous effort e1, e2, d4, d7, d8, t3, l5 0.72 e1, e2, d4, d7, d8, t3, l5 0.63 

Lectures l1, l2, l3 0.72 l1, l2, l3 0.48 

Surface learning s1, s2, s3, s4 0.57 s1, s2, s3, s4 0.59 

Deep learning d1, d2, d3, d5, d6 0.56 d1, d2, d3, d5, d6, a4 0.61 

Tutorials t2, t4, a3 0.53 t1, t2, t4, a3 0.61 

Table 1: Factors and their internal reliabilities, data from two years 

Item a4 (I only hand in the solutions of weekly assignments that I authored myself) has changed its 
loading from weekly assignments to deep learning, and indeed it can be understood both ways, as a 
strategy for handling the weekly assignments, and as a deep learning strategy. The factor continuous 
effort shows only an acceptable internal reliability which does not improve when items are deleted or 
added. Item l4 (During or after the mathematics lecture I ask questions if something is unclear to me) 
again showed its inadequacy and was not entered into further calculations, so this item (with 
Ml4=1.80, which is the lowest value observed, and SDl4=0.91) is not expedient. Item t1 (I regularly 
attend math tutorials), which was eliminated in 2014/2015 due to unilateral scores, now loads (in 
compliance with its conception) on tutorials, without worsening the internal reliability. The scale 
lectures has lost its cohesion due to the fact that it contains both the lowest and the highest scoring 
item (l4 and l1). The scoring may be connected to some changes in teaching style, thus addressing 
RQ1. Mostly, the internal reliabilities of the scales are within the range of acceptability or better (apart 
from lectures with α = 0.48) and allow the use of five out of the six factors for further investigations.  

Scale 
centers  

A E L S D T # Students Average assess-
ment points 

Cluster 1 0.55 0.54 0.21 -0.46 0.55 0.53 64 84.52 

Cluster 2 -0.63 -0.62 -0.25 0.52 -0.63 -0.61 56 50.84 

Table 2: Cluster analysis (k-means) for two clusters, standardized score values  

Concerning RQ2, the data fitted best into two clusters, whose average standardized scale scores are 
presented in Table 2. The students in the first cluster show superior learning behavior under all the 
six aspects represented by the factors; they even employ less surface and more deep learning 
techniques (as pointed out by the pattern of algebraic signs), which consequently correlates to a higher 
number of achievement points in the written examination. 

The scales (named with capital letters) show varying average scores, indicating the relevance students 
assign to them. Lectures (L), tutorials (T), and weekly assignments (A) score highest (ML=3.55, 
MT=3.43, MA=3.26, SDL=0.57, SDT=0.54, SDA=0.52), while deep learning (D), continuous effort 
(E), and surface learning (S) score medium (MD=2.87, ME=2.82, MS=2.31, SDD=0.48, SDE=0.43, 
SDS=0.60).  
  



Predictor b SE for b β  Sig. 

(Constant) -33.10 30.50  0.280 

Weekly assignments 17.18 5.88 0.27** 0.004 

Continuous effort -3.43 7.02 -0.04 0.626 

Lectures 5.27 5.25 0.08 0.318 

Surface learning -12.71 4.57 -0.24** 0.006 

Deep learning 2.97 6.55 0.04 0.651 

Tutorials 17.06 5.65 0.27** 0.003 

R²=.38, *** for p<0.001, ** for p<0.01, * for p<0.05 

Table 3: Regression model with six predictors and outcome variable academic success 

For answering RQ3, concerning the relationship between learning behavior and examination 
outcomes, linear modelling was employed. The correlations between the resulting six factors were 
limited to 0.45, allowing this method. The purpose of a linear model is to identify the factors 
(predictors) connected to an outcome variable (academic success, measured in achievement points in 
the written examination), as well as the direction (via the algebraic signs of b and β) and the strength 
of their influence (via the absolute value of the standardized β). In linear regression, the aim is to 
predict values of an outcome variable via a linear model of one or more predictor variables. 
Correlation between the predictor and the outcome variables is a condition for linear regression, but 
must not be interpreted as causality without further information. It can (but need not) mean causality 
in both directions (or even a common cause for both observations). Linear regression, however, has 
the advantage of distinguishing between predictors and outcome. It also provides estimates for the 
significance and the strength of the influence of each predictor on the outcome variable. 

Predictor b SE for b β  Sig. 

(Constant) -35.40 26.94  0.192 

Weekly assignments 16.54 5.61 0.26** 0.004 

Surface learning -9.81 4.35 -0.18* 0.026 

Deep learning 6.10 5.78 0.08 0.293 

Tutorials 16.65 5.12 0.27** 0.001 

R²=.38, *** for p<0.001, ** for p<0.01, * for p<0.05 

Table 4: Regression model with four predictors and outcome variable academic success  

In our case, the direction of the influence (learning behavior on examination performance) is 
unsuspicious, even though we are aware of the fact that other variables (e.g. general intelligence, 
education before university) influence performance, too. As a first step, all six factors were entered 
into a linear model, resulting in the parameters presented in Table 3, showing the importance of 
weekly assignments, tutorials, and of avoiding of surface learning techniques. 



The forward, backward, and stepwise methods for entering predictors into the model, respectively 
removing them, were employed, resulting in the four-predictor model shown in Table 4, which 
additionally comprises deep learning strategies (which, though not significant, increases the R² 
considerably from 25%), and explains 33% of the variance of academic success. The algebraic signs 
of the (significant) β values indicate the direction of the supposed impact of the predictors on the 
outcome variable: The more students engage in working on their weekly assignments, the more they 
actively partake in the tutorials, and the less they employ surface learning behavior, the more 
successful they are in the written examination. 

Summary and discussion 
The highest average scale scores were found for lectures and tutorials, thus pointing out their central 
role in university teaching (in spite of new digital tools for distance learning). Again, the item on 
asking questions during or after lectures scores consistently lowest and loads unsystematically. 
Obviously, hardly any students dare to ask questions in the huge lecture hall comprising more than 
800 seats. This item need not be used again in comparable courses. There is no scale with a mean 
score below 2.3 (all average scale scores are medium or high), which can be understood as an 
indication for the fact that our questionnaire covers only the learning behavior students report to 
engage in regularly; it may also be understood as a weakness of the questionnaire, as learning 
behavior not engaged in might also provide interesting revelations.  

Some parameters of the new sample indicate a more competent cohort (e.g. the smaller share of 
students with a weaker educational background), although other findings show hardly any difference 
(e.g. gender, mother tongue ≠ German). The high scores for the items from the lectures scale are 
striking, it now has a distinctly higher average score (ML=3.55 in 2015/2016; ML=2.35 in 2014/2015) 
and has gained the top position, hinting that the students from this cohort attended the lectures more 
often and engaged in preparations or follow-up work more regularly. One reason for this may be a 
very different teaching approach in 2015/2016, which (among other features) involved the upload of 
script with gaps before lectures, as contrasted to uploads of complete scripts after lectures in 
2014/2015. This distinct difference impacts on learning behavior and addresses RQ1. 

Regarding RQ2, in the cluster analysis, two opposing groups of almost equal size emerge: one 
showing sensible, continuous, and diligent learning behavior (and consequently attaining more 
assessment points); the other is characterized by superficial and irregular learning or procrastination 
(and less points). It is remarkable, though, that their standardized scores for lectures are more similar 
than the scores from the other scales, which (apart from the fact that it reveals the weakness of this 
scale) allows the interpretation that the engagement in lectures is a less distinctive feature than other 
learning behavior. Considering how irregular the items from this scale score over the years, and the 
personality factors involved, this scale will probably stay problematic in future.  

Concerning RQ3, the linear modeling stresses the relevance of working with the weekly assignments 
(as in the previous year) and attending tutorials. Again, lectures play no quantitatively relevant role, 
despite the high average score assigned to them now; but for reasons pointed out above this scale 
must be interpreted with care. The fact that surface learning techniques have a significant (and 
negative) impact in the final model is remarkable in view of the task types engineering students face 
in their first year. This may be hinting at an already changed assessment focus, but that would have 



to be supported by a detailed and comparative analysis of the tasks from several years. Deep learning 
techniques were kept in the model as a complement and because they increase the explained total 
variance, although it can be argued that their contribution is weak and not significant. In contrast to 
other findings, (continuous) effort now does not contribute relevantly to explaining academic success, 
which is another indication of a change in assessment. On the whole, the more recent model paints a 
clearer picture of what is relevant or not in order to succeed in the examination than in the year before, 
when multiple choice tasks were involved. 

Outlook on further research perspectives  
The results form the basis for further research in which the tasks from the weekly assignments and 
the exercises in the written examination are examined more closely with the goal to gradually change 
them towards more competence-orientation, according to the suggestions by Alpers (2016). This 
would involve, for example, finding, describing, and correcting different types of mistakes in the 
calculation of an inverse matrix, instead of doing the calculation itself. The results gained from the 
explorations presented in this and a previous paper (Griese & Kallweit, 2016) will then supply the 
background against which the expected changes can be compared. 
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Arguments have been made that one purpose of learning mathematics successfully is for students to 
develop mathematical identities. Thus, since students are frequently evaluated with grades in 
university mathematics courses, a relevant question is how mathematical identities are associated 
with average grades. This study has measured engineering students’ mathematical identities and 
compared these measures with grades in university mathematics courses, and a Welch’s ANOVA 
conclude that the mean average grade amongst students with high mathematical identities is 
significant, and about one grade higher than students with low mathematical identities. Moreover, 
the variance is greater amongst students with low mathematical identities, which indicates a strong 
association between mathematical identity and average grade only when mathematical identities are 
high.  

Keywords: Mathematical identity, Rasch, ANOVA. 

Introduction 
The transfer of mathematical knowledge from university to the world of work seems problematic. 
Specifically, evidence has been provided that “attainment” in university mathematics courses is 
poorly transferred. One example is an experiment that illustrated how 17 students and researchers all 
failed a mathematics examination they had previously passed, even the students who had recently 
passed the original exam with an “A” (Rystad, 1993). Moreover, selected studies illustrate how the 
mathematics is often hidden in “black-boxes” (e.g. Williams & Wake, 2007) in the world of work, 
and consequently, arguments have been made that the world of work seeks more general 
mathematical characteristics than what is typically assessed in standard exams (e.g. Hoyles, Wolf, 
Molyneux-Hodgson, & Kent, 2002). On a general note of education, Wenger (1998) argued that 
learning is about developing identities in communities of practice. In general, over the last decades, 
there has been an increased attention towards the construct of identity, and mathematical identity in 
particular (e.g. Axelsson, 2009; Black et al., 2010; Wenger, 1998). Thus, if the world of work seeks 
general characteristics of working mathematically, a relevant question is how mathematical 
attainment in university mathematics courses, as represented by average grades, is associated with 
mathematical identity. This paper addresses this question.  

This study has examined the association between self-reported mathematical identities and average 
grades in university mathematics courses. From a Rasch calibrated instrument, previously validated 
in Kaspersen (2015), the students were categorised as having a “low,” “medium,” or “high” 
mathematical identity, and the paper will illustrate how the mean average grade of students with high 
mathematical identities was significant and about one grade higher than students with low 
mathematical identities. Moreover, the variance amongst students with low mathematical identities 
was higher than amongst students with high mathematical identities, although the difference was not 



significant (p=0.06). The paper concludes that high mathematical identities are associated with high 
average grades in university mathematics courses. However, the same conclusion is not true amongst 
students with lower mathematical identities.  

Theoretical framework 
The construct of identity suffers from a lack of consensus on general philosophical issues (Cote & 
Levine, 2014). Specifically, identity is defined differently across different studies and paradigms, 
such as “a certain kind of person” (Gee, 2000, p. 99), “those narratives about individuals that are 
reifying, endorsable and significant” (Sfard & Prusak, 2005, p. 44), and “self-perceived mathematical 
knowledge, ability, motivation and anxiety” (Axelsson, 2009, p. 387).  

This lack of consensus is typical in pre-paradigmatic fields (Kuhn, 1970). Unlike firm paradigmatic 
fields where well-established theories tend to guide the analyses, research in pre-paradigmatic areas 
has a more dialectical relationship between data and theory (Kuhn, 1977). This description is a fair 
representation of how the theoretical perception in this study was chosen. That is, no ready-made 
theory was chosen on pure faith. Rather, a definition of identity was established that was consistent 
with measurement (i.e., consistent to conclude some persons to have stronger mathematical identities 
than others), yet, influences by fragments of multiple existing theories. The following theoretical 
perspective and a wider discussion on practical significance has been provided in more detail in 
Kaspersen, Pepin, and Sikko (2017).  

On another note, we do not regard theories as mirrors of some true reality. Thus, we do not believe 
that some theories are true, and that others are false. When we propose the following theoretical 
perspective, therefore, we are not refusing other perspectives, for instance, a narrative view on 
identity. Rather, we claim that if we choose the following perspective, then the practical consequence 
is that mathematical identity can be measured.  

The perspective of mathematical identity relies on two assumptions. First, we assume that identity 
(originated from the Latin idem) is about sameness and distinction. As such, the position in this study 
juxtaposes perspectives that consider persons to have their unique identity. That is, persons are indeed 
unique. However, they can be defined as identical with respect to a set of characteristics, just like 
mathematical objects can be identified by certain characteristics while remaining unique on others. 
Moreover, since there exists an infinite number of characteristics, identities have a varying degree of 
complexity. That is, mathematical identity can be binary, linear, or multidimensional, and we argue 
that there is no ontological limit to the number of dimensions. Consequently, there exists no set of 
criteria that dictates when researchers have arrived at the final dimension. Hence, the choice of 
complexity can be nothing but pragmatic, and in this study, we have chosen a one-dimensional 
perspective on mathematical identity, whereby persons are distinguished on a continuum from having 
a low to having a high mathematical identity within the engineering education context.  

Furthermore, if we accept that persons participate and contribute in multiple activities, a consequence 
is that each person has multiple identities, a position that is shared by many authors, for example 
Black and colleagues (2010) who, inspired by Leont'ev (1981), presented the idea of “leading 
identity.” Since there is no limit to how many ways persons can be distinguished, we argue that there 
exists no limit to the number of identities, although the number of identities that individuals are 
consciously aware of is likely to be finite. Moreover, in this study, we take no definite position on the 



relationship between identities. Thus, when we later will conclude that selected persons have (more 
or less) the same mathematical identity, we do not make claims about how these are related to the 
multiplicity of identities–for instance, whether they are central/leading or peripheral identities.  

Second, we assume that identity is relational by nature. That is, persons can be concluded to be 
identical relative to a set of characteristics, only if the structure of these characteristics is person-
independent. Thus, in quantitative studies, we reject the assumption that persons with the same score 
on some test or questionnaire are identical unless statistical evidence is provided that the items stay 
invariant across relevant subgroups. Hence, there likely exist contexts that are so different that 
comparisons of identities across these contexts do not make sense. Consequently, we argue that the 
methods that are applied to capture identities should also capture the level of invariance. 

In conclusion, we define mathematical identity to be where persons position themselves relative to 
the social structure of being mathematical within the activity in which they participate and contribute. 
From a one-dimensional perspective, “the social structure of being mathematical” is a person-
independent set of characteristics and their internal structure (i.e., their relative distance) that 
distinguishes persons on a continuum from having a “low” to having a “high” mathematical identity. 
“Where persons position themselves” is persons’ positions relative to the social structure.  

Method 
To test the relationship between engineering students’ self-reported mathematical identities and 
average grade in mathematics courses, a convenience sample consisting of Norwegian engineering 
students (N=361) was selected. 47 students attended an “Introductory course in mathematics,” 71 
students attended a “Calculus 2” course, 113 attended a “Calculus 3” course, 11 a “Cryptography” 
course, and 119 were students from a variety of courses in their normalised final year of education. 
The participants responded to a Rasch-calibrated instrument (Rasch, 1960), previously validated in 
Kaspersen (2015), that measures persons on a continuum from having a low to having a high 
mathematical identity relative to 20 uni-dimensional characteristics. The items in the instrument were 
collected from three sources: the literature, other related instruments, and from persons contributing 
in mathematical activities (e.g., students and lecturers). The validation of the instrument will not be 
discussed in depth, as details can be found in Kaspersen (2015). The person reliability, analogous to 
Cronbach’s alpha, was 0.87. Moreover, from principal component analysis of residuals, the 
instrument was found to be sufficiently uni-dimensional for the purpose of measurement with a 1.99 
unexplained variance (in Eigenvalue units) in a second contrast. Furthermore, the mean of the squared 
standardised residuals (outfit mnsq) and the information-weighted version (infit mnsq) (see e.g., Bond 
& Fox, 2003, p. 238 for a detailed description) indicated a sufficient data-model fit, with Item 6 and 
Item 15 as the most underfitting items (Table 1).  

Rasch measurement requires additivity, uni-dimensionality, and invariance, and the probability of an 
observation is a function of the difference between a person’s measure and a characteristic's measure 
(e.g. Wright & Stone, 1979). Thus, most response strings follow a Guttman-like structure with most 
deviations around the measure of the person. Consequently, persons with approximately the same 
measures, except those with large misfit, have, not only the same measures but also approximately 
the same combination of self-reported characteristics (and thus concluded to be identical with respect 
to these characteristics).  



After the validation of the instrument, the respondents were categorised as having either low 
(measures lower than -1), medium (measures between -1 and 1), or high (measures above +1) 
mathematical identities (all measures are in logit units). The distance from the “low”/”medium” to 
the “medium”/”high” thresholds was about the same distance as one response category. 
Consequently, persons with “high” mathematical identities were expected to respond at least one 
category higher on each characteristic than persons with “low” mathematical identities. Subsequently, 
a one-way ANOVA was conducted to compare the association between mathematical identity and 
the self-reported average grade in mathematics courses at the University (from grade F=1 to grade 
A=15). However, since the Levene’s (1960) test barely accepted the null hypothesis of homogeneity 
of variances (p=0.06), and the sample sizes across categories were unequal, the Welch’s ANOVA 
was chosen since it is more robust to unequal sample size and variance.  

Moreover, the assumption of normality was violated, and the grades were ordinal as opposed to 
interval measures. Since Welch’s ANOVA assumes normal and interval measures, 10,000 
simulations were made in R (R Core Team, 2015) to assess how these violations affected the 
robustness of the analysis. To ease this part of the analysis, we considered a transformed data set 
which had no difference in the mean across groups but was otherwise identical to ours–the 
assumptions of Welch’s ANOVA were violated equally in the empirical study and the simulated 
studies. This transformation eased the interpretation since we could compare the results with the 
statistical ideal situation (perfectly normal interval data, equal sample size and variance). If our data 
set was as good as the ideal situation, we would expect the Welch’s ANOVA to show a significant 
difference in about 5% of the simulations.  

Specifically, from the empirical data frame, M, a new data frame, M', was made whereby each grade 
in the medium and high groups was shifted so that the mean of all three categories in M' were equal 
(i.e., keeping the sample sizes and distributions, but aligning the means). From M', 10,000 data 
frames, M1 – M10,000, were randomly sampled whereby the sample sizes in the three groups were 
equal to the original M. Subsequently, Welch’s ANOVA was conducted on each simulated data 
frame. Since the result showed that 5.2% of the p-values in the simulations were less than .050, it was 
concluded to ignore violations of Welch’s ANOVA’s assumptions since they had only a trivial 
negative effect on the robustness.  

Result 
Mathematical identities 

Due to the Guttman-like response strings, a rough interpretation of Table 1 is that most students with 
low mathematical identities (measures lower than -1) agreed with characteristics much lower than -
1, and disagreed with those much higher than -1. That is, students with low mathematical identities 
often keep trying when they get stuck, but they rarely study proofs until they make sense (to them), 
they rarely like to discuss mathematics, they rarely derive formulas, etc. Likewise, students with 
medium mathematical identities (measures between -1 and 1) frequently keep trying, connect new 
and existing knowledge, and can explain why their solutions are correct, but rarely take the initiative 
to learn more than expected, rarely take the time to find better methods, etc. Students with high 
mathematical identities (measures above +1) agree with most characteristics in the instrument. A 
more thorough discussion is discussed in Kaspersen, Pepin, and Sikko (2017). 



Item statistics: Measure order 

Measure INFIT MNSQ OTFIT MNSQ            Item 
 1.91  .81  .83 1. Takes time to find better methods 

 1.58 1.08  .99 2. Takes the initiative to learn more 

 1.24  .91  .86 3. Thinks of times when methods don’t work 

  .55 1.22 1.20 4. Struggles with putting problems aside 

  .51 1.05 1.07 5. Derives formulas 

  .45 1.36 1.37 6. (x) Likes to be told exactly what to do 

  .41  .96  .95 7. New ideas lead to trains of thoughts 

  .32 1.05 1.05 8. Likes to discuss math 

  .20 1.07 1.07 9. Makes his/her own problems 

  .05  .99  .99 10. Studies proofs until they make sense 

  .04  .86  .88 11. Moves back and forth between strategies 

 –.10  .87  .86 12. Tries to understand formulas/algorithms  

 –.20  .72  .74 13. Considers different possible solutions 

 –.26  1.03 1.05 14. Pauses and reflects 

 –.38  1.32 1.31 15. Finding out why methods do not work 

 –.47   .86  .86 16. Wants to learn more things 

 –.77  1.20 1.20 17. Visualises problems 

  –1.19  .71  .76 18. Can explain why solutions are correct 

  –1.83  .83  .88 19. Connects new and existing knowledge 

  –2.05  1.02 1.06 20. Keeps trying 

Note. Item 6 was negatively coded 
Items in their entirety in https://www.researchgate.net/publication/309740755_math_identity_questionnaire 

Table 1: Characteristics of mathematical identities amongst Norwegian Engineering students 

Moreover, it is evident from Table 1 how the identities in this study were situated amongst the 
engineering student context. That is, persons with measures, say, around 0.5 in other contexts would 
be identical to engineering students with the same measures, only if the same set of characteristics 
were proven to be invariant (i.e., calibrated to have the same structure) in both contexts. 

The relationship between self-reported mathematical identities and average grade 

Figure 1 illustrates the relationship between self-reported mathematical identity and average grade in 
university mathematics courses. The Welch’s ANOVA showed that the association between 
mathematical identity and self-reported average grade was significant, F(2, 110.79)=31.966, p=0.000. 
Moreover, the mean of the self-reported average grade amongst students with high mathematical 
identities was about one grade higher than those with low mathematical identities. The Games-Howell 
test showed that the difference was significant between all groups with low-medium as the least 
significant (p=0.001).  



 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The relationship between self-reported mathematical identity and average grade in 
university mathematics courses 

The unequal variance is also illustrated in Figure 1. Specifically, the variances decreased with the 
increase of mathematical identity. That is, high mathematical identities are associated with high self-
reported average grade. However, there seems to be no limit to how low mathematical identities 
students can have and still get high grades.  

Conclusion and discussion 
In this paper, we have argued that the average grade in university mathematics courses amongst 
students with high mathematical identities is about one grade higher than amongst students with low 
mathematical identities, and the difference is significant. Moreover, we have shown that the variance 
of self-reported average grades amongst students with low mathematical identities is higher than 
amongst students with high mathematical identities. That is, students with high identities get, for the 
most, high grades. However, the grades of students with lower identities are more uncertain.  

We have in this study examined the association, and not the causal relationship, between self-reported 
mathematical identities and average grades, and therefore we argue that the significance of the result 
is that it points the direction for future research. Specifically, we suggest future research to address 
the following: 

First, replicates of this study should seek more precise measures. That is, the precisions of the 
mathematical identity measures can be improved by including more response categories (as long as 
they are sufficiently validated) and more items, particularly near the “gaps” (e.g., between 0.5 and 
1.2 logits). Moreover, the precision of the average grade would most likely be improved if self-
reported average grades were substituted with actual average grades.  

Second, future research should seek a more causal relationship between identities and grades. 
Specifically, this study does not conclude that an increase in mathematical identity infers an increase 
in attainment.  



Third, future research could study the significance of mathematical identity versus the significance 
of attainment. For instance, students can be categorised as having “low identities and low grades,” 
“low identities and high grades,” or “high identities and high grades,” and subsequently studied with 
respect to other variables, for example, in the transition from university to the world of work.  

Fourth, we argue that future research can transfer the design of this study to other samples and forms 
of testing students’ attainment. For example, relationships between mathematical identity and 
measures on international standardised tests, such as PISA and TIMSS, can be tested. Accordingly, 
we argue that future research can nuance the debate on the significance of these tests. If some 
districts/countries are “teaching to the test,” then one might hypothesise that a relatively great 
proportion of students in these districts/countries are in the “top left corner”–that is, students with 
low mathematical identities, yet, high measures of attainment.  
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In our previous work on Calculus–Analysis transition we independently explored the reasons of 
students’ difficulties with studying analysis and observed that the problem is related to the 
discontinuity of students’ experiences leading to their inability to interpret the (formal and more 
rigorous) ideas learned in analysis courses in terms of (practical) knowledge acquired in calculus 
courses, and vice versa. In this paper we continue and combine our work with two new 
contributions: a theoretical formulation of Klein’s idea of a “Plan B” for teaching mathematics, 
applied to the transition in question; and a concrete student activity attempting to give flesh to this 
“plan” for the special case of introductory Fourier Analysis.  

Keywords: Calculus, Fourier analysis, transition, praxeology  

Introduction  
Calculus and Analysis appear as related, but distinct subdisciplines in many contemporary 
university programmes. Calculus courses specialise in mathematical themes indicated by course 
titles such as “Integral Calculus”, “Functions of several variables” or “Ordinary differential 
equations”. Analysis courses, on the other hand, treat theoretical perspectives on these same 
mathematical themes, gradually moving from course titles such as “Real Analysis”, “Fourier 
Analysis” towards more abstract areas such as functional and harmonic analysis. In short, calculus 
courses can be roughly characterized as teaching students certain calculation practices related to real 
and vector valued functions, with little theoretical precision or justification – while analysis courses 
tend to present “formal theory with little practice”. This division is a didactical construct which is 
related to historical and institutional conditions (see Klisinska, 2009, for an in-depth analysis of the 
case of the “fundamental theorem of calculus”).  

The main reason for the division seems to be that the two types of courses cater to different student 
populations. While calculus courses are studied by a large cohort of students in natural and social 
sciences, much fewer students get to study analysis (mainly students of pure mathematics, 
theoretical physics and mathematical statistics). For these and other reasons, it may be difficult to 
change the course structure. 

The transition from Calculus to Analysis presents mathematics students with several challenges (for 
examples, see Winsløw & Grønbæk, 2014). Here is a typical student formulation of some of these 
(interview with a student of the first author, summer 2016): 

In calculus courses we learn methods, but usually the why questions are not explained or proved. 
(...) However, analysis courses felt as separate. They were more theoretical than applied. I never 
grasped them as well as Calculus. It was often unclear, what it was leading to. I wish we had a 
better sense of connection between the theory we covered in pure math courses and the methods 
shown in applied math courses.  



We have explored this perceived lack of “connection” in earlier papers (Kondratieva, 2011, 2015; 
Winsløw, 2007, 2016). In the present paper, we use the notion of praxeology (Chevallard, 2006) to 
represent the general “connection” problem in more precise terms, and - as a theoretical case study - 
to present a new proposal for “connecting” Calculus and one of the basic theorems in Fourier 
Analysis. Our research results are thus basically theoretical. 

Theoretical framework  
Chevallard (2006) defines a praxeology as a pair ),( LP  consisting of a praxis block P and a logos 
block L. A praxeology is a minimal element of human knowledge, P representing the practical part - 
the “know how” - and L the intellectual part, the “thinking and explaining” – often called “know 
why”. The two are interdependent: 

…no human action can exist without being, at least partially, “explained”, made “intelligible”, 
“justified”, “accounted for”, in whatever style of “reasoning” such an explanation or justification 
may be cast. Praxis thus entails logos, which in turn backs up praxis. For praxis needs support – 
just because, in the long run, no human doing goes unquestioned. (Chevallard, 2006, p. 23). 

As we focus here on mathematical praxeologies taught and learnt at university, it is obvious that 
praxis (e.g. computing the Fourier series of a given function) is intimately connected to various 
forms of logos - from ad hoc explanations of standard techniques to theories involving general 
definitions, theorems and proofs. To compare and contrast the praxeologies developed in calculus 
and analysis courses, we consider that they represent various affinities with the praxeologies of 
present-day mathematicians, which we shall represent suggestively using Greek letters ),(  . We 
can thus, as a first naïve model, propose that praxeologies taught and learnt in calculus courses are 
of the form ),(

ii
L : the praxis blocks, including computational techniques, are identical to those 

used (for tasks of the same type) by professional mathematicians, while the logos blocks iL  are 
limited to informal explanations of smaller collection of practice blocks (like the various techniques 
for determining whether a series is convergent or not). On the other hand, analysis courses then 
focus on the scientific form of logos blocks. The taught and learnt praxeologies in such courses are 
therefore of the form ),( iiP   where each i constitutes a logos block consistent with the scientific 
model, while the praxis blocks iP  are didactic “afterthoughts” constructed to consolidate the 
acquisition of i . As mentioned in the introduction – such teaching practices often fail to motivate 
students for i  and to provide them with a coherent, autonomous relationship with ),( ii  . Our 
research focuses on how this issue can be addressed. 

Taken together, calculus and analysis courses in principle provide students with praxeologies 
),( ii  which, taken individually, are close to the scientific model. For instance, convergence tests 

used in Calculus praxis on series are now supplied with a theory involving precise definitions and 
proofs of the “criteria” for convergence. However, because the number and technical complexity of 
these praxeologies is quite high and the i  were taught in other courses, typically years before, 
some effort and support may still be needed for students to “assemble” individual praxeologies 

),( ii  . We can say that working along these lines corresponds to establishing complete but 
separate praxeologies within different small areas of mathematics, which is what Klein called “Plan 
A” for teaching: “Plan A is based upon more particularistic conception of science which divides the 



total field into a series of mutually separated parts and attempts to develop each part by itself.”  
(Klein 1908/1932, p. 77, see also Winsløw, 2016) Within this approach two praxeologies are related 
only through strict logical dependency at the theoretical level and only within strictly confined areas 
(which, in terms of what students actually acquire, may be surprisingly small).  

However as explained by Klein, the scientific practice (historically as well as currently) involves 
more than isolated or strictly dependent praxeologies. Klein (1908/1932, p. 78) recommended that 
also elements of “Plan B” be included in mathematics teaching both in schools and at university: 

The supporter of Plan B lays the chief stress upon the organic combination of the partial fields, 
and upon the stimulation which these exert one upon another. He prefers, therefore, the methods 
which open for him an understanding of several fields under a uniform point of view. 

In terms of the praxeological model above, we may thus summarize the two “plans” or strategies for 
developing and connecting students’ previous knowledge as follows: 

Plan A. assemble elementary praxeologies ),( ii  from calculus and analysis elements, by 
establishing firm relations of type ii  . In fact, this is sometimes a possible function of the 
“fingertip” exercises, which constitute iP  in many courses and textbooks on analysis. 

Plan B. develop cross-cutting relationships among praxeologies which could be of one of the 
following types (or combinations among them):  

B1.  Relating praxis blocks ( ji  ) or logos blocks ( ji  )  

B2.  Relating otherwise unrelated praxis and logos blocks ( ji  ) 

It may be more easy and common to develop relations of type B1, even if they certainly appear more 
often in “mathematician” praxeologies than in typical course teaching. We now present and analyse 
an example of student activity aiming at developing relations of the last type (B2): namely, that 
students connect a collection of praxis blocks i  (concerning trigonometry, integration and 
convergence) to a logos block ( L0 ) from Fourier Analysis. 

A logos block from Fourier Analysis  
For a 2-periodic, piecewise continuous function f : ℝ → ℂ, the Fourier series of f is defined as  
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In general the two infinite series may not converge at a point x. In 1829, Dirichlet gave one of the 
first sufficient conditions for pointwise convergence of a Fourier series. A version of this result 
which is usually formulated for piecewise continuous functions, is stated below in a special case to 
avoid technicalities. We refer to it as Dirichlet’s theorem, although we don’t use his original claim. 

Theorem If f : ℝ → ℂ is a continuous 2-periodic function with piecewise continuous derivative, 
the Fourier series of f is pointwise convergent to )(xf  at every x ℝ. 

Here we outline the main steps of the proof that appears in a typical formal course on Fourier 
Analysis (see e.g. Folland, 1992, pp. 30–36 for the wealth of computational details omitted here): 



1. First, it is shown that under weaker assumptions, such as f being square integrable and 2-
periodic, the coefficients na  and nb  tend to zero as n tends to infinity. (In fact, one 
demonstrates this by showing that the series 2

na  and  2
nb  are both convergent.) 

2. Next, by direct computation, we rewrite the Nth partial sum given by 
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3. Finally, let DN (x) = sN (x)- f (x). Using 2., a straightforward set of computations yields 
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is a continuous for y ¹ 0 and 2-periodic function. At y = 0 gx (y)  may have a jump 
discontinuity if f '(x +0) ¹ f '(x -0). The functions gx (y)sin(y / 2)  and gx (y)cos(y / 2), 
notwithstanding the possible discontinuity of the latter at y = 0, are bounded, and thus, 
square integrable. Formula (*) shows that DN (x)  is simply the sum of Nth Fourier 
coefficients of these two functions. Applying now 1., we conclude that the infinite Fourier 
series s¥(x)  converges to f (x)  because its partial sum sN (x) can be written as 
sN (x) = f (x)+DN (x), where DN (x)vanishes as N®¥. 

The key point of the proof is (*): to rewrite DN (x)  as a sum of two Fourier coefficients, together 
with the fact that the coefficients tend to zero as N®¥. According to the distinction we made 
above, the general result (and certainly its proof) does not belong to the realm of Calculus. When 
students are presented with the theory in a somewhat more general form, - they may not realize that 
the proof almost entirely draws on the notion of series convergence and on techniques known from 
Calculus. To make them discover that is the aim of the design that we present in the next section, 
focusing on the following special case: 

Example. Applying the above Theorem for 2)( xxf  , extended periodically from   ,  to ℝ, we 
get that the Fourier series converges to 0 at 0x . Computing the Fourier coefficients, this gives 
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The latter - striking - result can be derived by other means, as a variant of the famous Basel problem 
(see e.g. Kondratieva, 2016). One such approach is at the root of the design presented below. 

Outline and a priori analysis of Student Activity  
In continuation of earlier work of the first author (Kondratieva, 2016), we took the Example above 
as a point of departure for constructing a sequence of exercise-like activities that would lead 



students through two approaches to computing the infinite sum considered in the Example: part 1 
consisting of a series of “calculus-like assignments” which, without saying so, go through the proof 
of Dirichlet’s theorem in the special case where 2)( xxf  ; part 2 in which the students work 
directly with the result, as in the Example; and a final reflection in which the students are supposed 
to realize that the proof (known from a Fourier Analysis logos block L0 ) amounts to nothing more 
than a generalization of the sequence of calculus techniques drawn upon in part 1. We notice here 
that the numbering suggests that the praxis and logos blocks thus connected through the activity are 
not, prima facie, connected - and, thus, the connection established is really of type B. 

Part 1 begins with presenting the problem of determining the value of   21 /)1( nS n . The 

praxis blocks acquired in calculus courses do not provide ready-made techniques to solve this 
problem; instead, students are invited to do so through “several preliminary problems”: 
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6. Show that the integral in 5 converges to 0 as m  ( 1  and )3 . 

7. Finally, combine the results above to find S ( 1 ). 

The only slightly advanced praxis (technique) involved in the above appears in 6., where 1  is 

supposed to include something like   ff  – or, alternatively, 3  should include a rule which 

permits to conclude that 0 I mm
flim  under appropriate conditions on )( mf . 

Part 2 of the activity invites the students to compute the Fourier series of 2)( xxf   and engage in 
some concrete computations related to its convergence which are in fact very similar to 1.-6. above.  

The final reflection is supposed to make them discover the close parallel between the two parts. 

In case they do recall elements of the proof of Dirichlet’s theorem, they will recognize in Problem  
2. the simplification technique of the Dirichlet’s kernel in step 2., and in Problems 3.-6. – a way to 
get the convergence result of step 3. Meanwhile, step 1 appears more indirectly in the concrete case, 
where both the Fourier coefficients of f and the auxiliary coefficients, appearing in (*), can be 
computed or estimated directly. Indeed, many textbooks present Step 1 as a corollary of a more 



general theorem on orthogonal sets in Hilbert space. This, together with the technicalities related to 
the possible non-continuity of f, contributes to the impression that the proof is way beyond simple 
techniques from Calculus. Nevertheless, comparing the proof with the proposed activity, the 
students could realize that in the special case f (x) = x2the proof relies entirely on well-known 
praxis blocks ( i , i = 1,2,3,4). Certainly, this could establish a strong relation L0 « ( i , i = 1–4) 
which might in fact be prepared by students’ working Part 1 above prior to encountering L0 . 

Some experimental observations  
To pilot and refine the above design before testing it with a larger group of students in a course on 
Fourier Analysis, we have done a preliminary study with five students who have completed at least 
3 years of undergraduate mathematics program. These students were involved in summer research 
projects in mathematics at the Memorial University of Newfoundland. This involvement is an 
indicator of the students’ high motivation and achievements in studying mathematics. The students 
volunteered to solve the problems from the activity (with no firm restrictions in time or access to 
any materials) and participate in a follow-up semi-structured interview. The students were asked 
whether they found the problems (a) familiar, (b) interesting, (c) easy/accessible; and whether they 
saw any connections between praxis and logos of parts 1 and 2. All students regarded problems 1-6 
as familiar from their calculus courses, and they found them easy. In words of one student, “I loved 
that stuff when I was in my calculus courses, so I found these problems pleasant… And they are not 
difficult, too.” While problems 1-6 were familiar to the students, they clearly indicated that no 
projects of nature similar to problem 7 were present in their study: “I think it is a cool layout. 
Nothing of this format was in my calculus courses, – when you need to use previous results to solve 
larger or more interesting problem.” Students regarded the task of series evaluation as challenging 
but also most enjoyable: “The problems 1-6 were like baby steps… And they met together nicely in 
problem 7”. So, at least these students were successful and appreciative of tasks in part 1. As for the 
accessibility of part 1 for an average student in a calculus course, we had overall a confirmative 
response: “I think it is accessible for a student who has done Integral Calculus.... if they are not 
confined to a very short period of time, then yes.” Another student confirmed, “it could be a good 
exam sequence, more fun than just doing problems.” However, a different perspective was also 
articulated: “…many students take this [Integral Calculus] course because it is a prerequisite for 
their programs, so maybe they would not be interested as much.” 

Among the five students only one had studied Fourier series in his courses, while others had heard 
the term but had very little familiarity with the subject. However, they all recognized the similarity 
in the technical praxis of parts 1 and 2, for example, that calculation of the Fourier series in part 2 
resembles evaluation of integrals in problem 1 from part 1. Bridging the theory and connecting the 
idea of convergence of an individual series in part 1 and pointwise convergence of Fourier series 
was more challenging. This is where the role of an instructor might be critical: to help students to 
relate new theoretical constructs and ideas to familiar praxis.  We realize that students’ background 
makes a difference, however even learners previously unfamiliar with Fourier series seem to benefit 
from this activity. Students’ responses based not on reproduction of known facts, but rather on 
reasoning related to their practical experiences, is an indication of establishing new mathematical 
relations. The following is an excerpt from an interview with students of the first author:  



M.K.: Is it always possible to replace a function with its Fourier series in calculations? 

Student 1: In my (applied) courses we were told that no (a function is not always equal to its 
Fourier series), but this was never proved. Now it kind of makes more sense. 

M.K.: Do you think that familiarity with part 1 would help to exemplify general theory 
related to Fourier series and their convergence? 

Student 1: Yes, definitely. I think it is more logical to go this way about discussing 
conditions of pointwise convergence of Fourier series. However, the experiences 
need to be close together in time, so that the second part occurs before students 
have forgotten the first portion.  

The space available does not allow us to give the details of students’ accomplishments and their 
impact on our design. We simply note that the sample students were by and large able to complete 
them and see the inner connections. Also, the students considered that building on the familiar 
computational tasks (1-6) on the one hand, and on new theoretical constructs (Example) on the other 
hand, organized around given problem (evaluation of the series S) was stimulating: “Suppose 
someone has a theoretical solution and I have a computational solution and they look completely 
different, but they give the same answer to the same problem so they have to be the same 
somehow… then I want to go back and find out why they are the same. I found it very interesting.”  

Conclusions  
While calculus courses include praxis blocks i  compatible with those of professional 
mathematicians, their theoretical components are more informal and focused on algebraic 
computation. Moreover, these praxis blocks are often isolated from each other, as they occur within 
separate sections of textbooks and courses, and students typically don’t get opportunities to apply 
them in combinations. When students meet Dirichlet’s theorem, they are given a general and 
relatively complicated proof (in Analysis). In such courses, “simple applications” (such as the 
Example above) may be introduced as examples or exercises, to build an artificial practice block 0P  
corresponding to the much richer logos block L0 . The fact that the general proof ( L0 ) is essentially 
linked to familiar praxis blocks from Calculus will then not appear. We propose that by replacing 0P  
by a sequence of computational auxiliary tasks (1-7), similar to the steps 2 and 3 of the proof ( L0 ), 
two goals can be achieved. First, students will see how different praxis blocks ),...,( 41   from 
Calculus work together and combine to support 0P  by themselves. Secondly, this special case might 
help to prepare for the various general theorems on Fourier series convergence ( L0 and beyond) by 
relating it to the concrete and familiar elements P1,...,P4 . This hypothesis will be investigated 
empirically. More generally, we hypothesize that situations which enable students to establish 
“cross cutting relations” ji   are precise and possibly partial interpretations of Klein’s Plan B. 
At the same time, constructing integrated praxis blocks such as ),...,( 41  above constitutes an 
essential complement to “Plan A” type courses. These constructions could emerge from detecting 
explicit links between different solutions of interconnecting problems (Kondratieva, 2011), as 
shown above. It will clearly necessitate a careful analysis of (central) theory blocks of more 
advanced courses, and resources found in reasonably well-established praxis blocks of previous 



courses. So, while the general hypothesis may look fairly simply, realizing it in concrete cases - 
even theoretically - represents a non-trivial didactical research programme.  
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In our project, we investigate the mathematical skills that are required in first-year courses of 
technical subjects of engineering bachelor courses, i.e., we do not look at the courses on pure math. 
We analyze four exercises from an exam in electrical engineering, which is compulsory for first-
years. To solve such exercises, students have to combine their knowledge in electrical engineering 
with their skills in mathematics. We introduce a theoretical approach consisting of three elements: 
a normative solution called “student-expert-solution, “low-inferent analyses” for qualitative 
studies with students, and categorizations of written solutions. We describe the newly developed 
tools and details on one of the exercises and present the results from the analysis of the exercise in 
reference to the three concepts mentioned above. This provides insight into the interface between 
mathematics and engineering courses in the first year at university. 

Keywords: Engineering mathematics, competence, differential equations. 

Introduction 

Engineering students at German universities are taught mathematical subjects as well as engineering 
subjects, which require some understanding of mathematical topics, at the same time. This leads to 
several challenges for the students: To begin with, the lectures on Mathematics for Engineering 
Students (MfES) and the Fundamentals of Engineering (FoE) are very often asynchronous. On the 
one hand, there is a deductive structure in the lectures on mathematics, which leads to a certain 
order of presentation of the different topics to assure understanding. On the other hand, there is also 
a standard way of presentation of the different engineering topics in the FoE-courses and because of 
that, mathematical topics are often needed earlier in the FoE-courses than they are presented in the 
MfES-courses. Moreover, there are different mathematical practices in MfES and FoE, for example 
in the use of vectors or differentials (see e. g. Alpers, 2015). There is a mismatch between the 
mathematics in MfES-courses, the mathematics at school level, and the “contextual mathematics” 
required in engineering tasks (see e. g. Redish, 2005). 

At the beginning of the research, our central question was: how do engineering students solve tasks 
in basic engineering courses given this situation with two interconnected fields of competences - 
mathematics and engineering. We are interested in the modelling and assessing of explicit as well as 
implicit competences required and developed by students in this field. We investigate how students 
actually solve exercises in FoE-courses and which difficulties occur. Our focus is on four typical 
exercises of a FoE-exam after the first year at university. In this paper, we present a case study of 
these issues in the context of a single exercise on ordinary differential equations in the electrical 
engineering field of oscillating circuits. Our focus here is on the following research questions:  



1. What are the expectations from students’ solutions to an exercise on ordinary differential 
equations in a first-year electrical engineering course? 2. What are the characteristics of students’ 
problem-solving processes (e. g. strategies, difficulties) in electrical engineering courses? 

For the analysis of students’ work we required a normative solution of the exercise, which was 
developed with engineering experts and which considers both fields of competences. This 
normative solution is based on relevant theoretical concepts that are presented in the next section.  

Theoretical background 
In this section, we present the theoretical tools that were used to develop the newly constructed 
methodology for our investigations. As a first step, the approaches deal with modelling processes 
using mathematical methods and mathematical problem solving. Both theoretical approaches are 
relevant, as they combine inner- and outer-mathematical solution parts and describe their 
connections. Next, we also consider actual solving processes that help us to supplement normative 
solutions with the steps students use when solving an exercise. 

The first approach is the modelling cycle by Blum and Leiss (2007), which is used to describe 
idealized modelling processes of real world problems that can be solved using mathematics. In a 
broad outline, it divides the modelling processes into two distinct parts, the so-called “rest of the 
world” and “mathematics”. Our second perspective is mathematical problem solving by Polya 
(1949), who intended to give advice to students on how to solve mathematical problems as well as 
applied problems referring to mathematics. He divides the solving processes into four phases: 
understanding the problem, devising a plan, carrying out the plan, and looking back. 

For the analysis of actual solution processes of students, we use theoretical approaches developed by 
Redish and his working group, i.e., by Redish and Tuminaro (2007) and Redish and Bing (2008), in 
addition to the normative solution. Their approaches discuss the role of mathematical resources and 
knowledge in solving processes by pairs of physics students. Redish and Tuminaro (2007) 
distinguish three framings in qualitative solving processes: quantitative sense-making, qualitative 
sense-making, and rote equation chasing (without understanding the underlying physical situation). 
Bing (2008) looked at mathematical justification strategies and found four distinct types of 
justifications: calculation (a correctly done algorithm gives a correct result), physical mapping (the 
physical behavior is described correctly by mathematical results), invoking authority (the result is 
consistent with the lecture) and math consistency (the same mathematical approach is used in a 
similar situation). The theoretical background is presented in more detail in Biehler, Kortemeyer, 
and Schaper (2015). 

The newly developed methodology and its aims 
In order to do research in this interface of two interconnected competence fields, new theoretical 
approaches had to be developed. This section presents the three main approaches that were 
developed on the basis of the theoretical approaches mentioned above. As shown in Figure 1, the 
central theoretical tool is the SES, which builds on expert interviews and the theoretical frameworks 
of the modelling cycle and mathematical problem solving. The SES is our tool to answer the first 
research question, i.e., it gives idealized solution processes which we can expect from first-years. It 
is used to analyze and structure the video-graphed solving processes, which were transcribed using 



LIAs, and the categorizations of written solutions. Details on the SES, the LIAs and the 
categorizations are presented in Figure 1: 

 

Figure 1: Diagram on the connection of the different elements of our analyses 

Initially we asked the task designer and the electrical engineering experts to solve the exercises from 
the perspective of students who understood the contents of the courses in the first year of studies 
well. Afterwards we interviewed them concerning their solution processes. The aim of the expert 
interviews was to identify the explicit and implicit competence expectations of instructors in 
electrical engineering courses. We conducted the interviews using the Precursor-Action-Result-
Interpretation (PARI) method by Hall, Gott, and Pokorny (1995) which is a task-based interview 
technique. This solution was then subdivided using the language of the modelling cycle and 
mathematical problem solving, which in combination structured the normative solution of the 
exercise. The solving processes could be divided into three main phases: mathematization, math-
engineering working, and validation and each main phase was subdivided by Polya’s four phases. 
The expert interviews and the structure shown in Figure 1 were the basis of the student-expert-
solution (SES), which was used to finally sharpen the theoretical description, and as a basis for the 
further analysis of students’ work. SESs are represented by two columns: the first column provides a 
normative solution to the exercise in detail and is structured as mentioned above. The second 
column contains a division of the problem-solving process into phases, as well as remarks given by 
the experts on expected mistakes, alternative solutions, and learning goals for the different phases. 

One of our main interests is to describe real problem-solving processes of students for the four 
exercises using both qualitative and quantitative methods. Those analyses are based on the SES. We 
conducted video studies of problem solving processes of three to four pairs of students per exercise, 
who were asked to solve the exercise and to think aloud during the solution processes. The videos 
were transcribed with additional remarks on the activities (especially gestures) performed. We 
analyzed the transcripts using our concept of the low-inference analyses (LIAs) with the aim of 
finding differences to ideal solutions (the SESs) and to identify students’ difficulties. The LIAs 
consist of four parts: First, there is the connection of the phases in the SES and the phases in the 
problem-solving processes of the students. Second, the differences between the idealized solution 
parts in the SES and the actual solution paths of the students are described. The third part consists of 
commenting and interpreting of the differences, which forms the basis to conceptualize and describe 
problem-solving strategies, which are expected to be more general than just the process in the actual 



exercise alone. Finally, we connect the strategies we found with the strategies described by Redish 
and Tuminaro (2007) in general, and Bing (2008) in particular, in order to find typical strategies and 
challenges at the interface between math and engineering. 

In addition to these qualitative studies, we also scanned 92 anonymized “solutions” of students from 
their written exams. In order to analyze the solutions, the phases in the SES were subdivided into 
the particular activities that students have to accomplish in order to solve an exercise. For example, 
the phase of the math-engineering work was subdivided into the forming and the evaluation of the 
formula. Each student’s work was categorized using a partial credit system, i.e., they got two points 
if the activity was done correctly, or they got one point if it contains right parts (e. g. the solution 
would be correct if one multiplied it with a power of 10), or they got no points if the solution is 
completely wrong. The categorization “1” was subdivided into 1a, 1b, 1c etc. to distinguish 
different forms of mistakes. This provided quantitative results on the frequency of mistakes and – by 
combination of activities in contingency tables – the connection of successes in different activities. 
The results are used to confirm, refine, and enhance the results in the first two levels.  

The SES for the analyzed exercise on ordinary differential equations 
This section presents the first part of one of the exercises of the exam to exemplify our method and 
present exemplary results. It answers the first research question, which asks what we can expect 
from students in their first year at university. The exercise deals with oscillating circuits and 
transients. We present the problem setting as well as a short overview of the solution. This solution 
is enhanced by the remarks of the experts, which were elicited in the third phase of the PARI-
interview. For the first time, this paper presents our total approach for an exercise using methods 
from MfES. In this exercise, the oscillating circuit contains a resistor R, an inductor L, a capacitor C 
and an ideal voltage source U0. In summary, the students have to read the sketch – taking into 
account conditions on the switches S1 and S2 - to be able to form an ordinary differential equation 
(ODE) and then to solve it. The exercise starts with the circuit diagram shown in Figure 2. It 
consists of eight subtasks. In this paper, we concentrate on the first five subtasks, which deal with 
the left part of Figure 2. 

Initially, both switches are open, and the inductor and the capacitor are totally discharged. At the 
moment t=0 the switch S1 is closed, while S2 remains open. In subtask 1 and 2 the students are to 
give the values of uC(t), the voltage at the capacitor, iC(t), the electric current in the capacitor, and 
iL(t), the voltage at the inductor, before and after opening S1, i.e., before and after t=0. Solution: All 
three values are 0 before S1 is closed, because the components of the circuit are initially assumed to 
be discharged. After closing switch S1, uC(t) and iL(t) are still 0, as a voltage across a capacitor or an 
electric current through an inductor does not change discontinuously; a fact students learned in the 
lecture. iC(t)=U0/R directly after the switching of S1 due to Ohm’s law and then declines due to the 
charging of the capacitor. 
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Figure 2: Sketch of an oscillating circuit containing the mentioned components 

In subtask 3 the students are to form an ordinary differential equation for uC(t). Solution: We have to 
apply Kirchhoff’s voltage law on the left part, giving U0=uC(t)+uR(t), and use the two component 
equations of the capacitor CuC’(t)=iC(t) and the resistor uR(t)=iC(t)R. The combination of those 
equations gives an ordinary differential equation (ODE) of first order, which is uC(t)+ RCuC’(t)=U0. 

The ODE is to be solved in subtask 4. Solution: The solution can be done using either the separation 
of variables combined with a variation of constants, or alternatively, the solution can be found by 
superposition of the solution of the homogenized ODE, one particular solution of the 
inhomogeneous ODE and the using of the initial value uC(0)=0. The solution is uC(t)=U0(1-et/(RC)). 

In subtask 5 the students are to sketch the voltage curve of uC(t). Solution: The graph of uC(t) 
starting at uC(t=0)=0 approaches an asymptote at uC(t)=U0, because et/(RC) converges to 0 for t  . 

Developing the SES for this exercise 
At first sights, the solving process can be divided into three phases: mathematization (the given 
circuit diagram, subtask 1 to 3), math-engineering working (subtask 4), and validation, which is 
partly done in subtask 5, at least, if the students know the physical behavior of the setting. 

As stated in Biehler et al. (2015), there are differences to the modelling cycle in mathematization 
processes in exercises in basic courses of electrical engineering. Students do not construct a real 
model from a real situation– as suggested in the modelling cycle – but they need to have strategies 
to reconstruct the underlying real model - which was implicitly taught in the course (but usually not 
called model). This includes understanding conventionalized circuit diagrams. In contrast to the 
exercise on magnetic circuits that was presented in Biehler et al. (2015), the equivalent circuit 
diagram does not have to be produced by the students; they can use the given diagram directly for 
their mathematization. In both cases, students use implicit idealizations and are not necessarily 
aware that they are idealizations. The students have to “read” the diagram and recall and use its 
physical background in the first two subtasks. The didactic motive of the first subtasks is – as stated 
by the task designer – to remind students of applying Ohm’s law. Then in subtask 3, the 
mathematization consists of two independent competences: either recognizing certain components 
and translating them into their equations, or alternatively the translation of the experiment set-up 
into mesh and node equations using graph-theoretical arguments in an application of Kirchhoff’s 
laws. The result are three equations: U0=uC(t)+uR(t), CuC’(t)=iC(t), and uR(t)=iC(t)R.  

In the next step, there are similarities to the modelling cycle, except that physical quantities are used 
instead of numbers. The left part can be mathematized by the three equations mentioned and using 
them, an entering of the “world of mathematics of physical quantities” is possible. Students have to 



do equation management (see Biehler et al., 2015) to combine the equations in order to get a 
formula, which also contains one unknown quantity (given by a function in this case), while all the 
quantities are given in the exercise or have already been calculated. The equation management 
includes equations with functions as objects and leads to an inhomogeneous ODE of order one. A 
further characteristic of the equation management is that, unlike in the solving of systems of linear 
equations, there are no methods to find out whether there are enough or too many equations to get a 
solvable ODE. Asked for typical mistakes the experts said that the students have some problems in 
applying mathematical methods to solve the ODE. He also said, that for some students, the 
application of Kirchhoff’s laws is hard, as they do not obtain all the required equations. 

Students have learned two different algorithms to solve such ODEs. In the MfES-courses, they solve 
the homogenous ODEs by separation of variables and – using the solution of the homogenous ODE 
– they subsequently solve the inhomogeneous differential equation. In the FoE-course, they retain a 
solution by using superposition of the homogenous and the inhomogeneous solution. In the 
interview, the expert said that most students are able to set up the differential equation, the 
following solving of the ODE, however, is quite difficult for many students, especially finding the 
inhomogeneous solution. As the students work with functions instead of numbers or quantities, 
there is no difference in the use of the solving algorithm for ODEs, which was presented in the 
MfES-course. So, in this case, the solving process can be divided analogously to the modelling 
cycle, i.e., there is a “real” world (given by a conventionalized sketch), its translation using three 
equations and the solving in the mathematical world with quantities. 

The solution of the inhomogeneous ODE, uC(t)=U0(1-et/(RC)), describes the behavior of the voltage 
in the capacitor in such a setting. Students know the qualitative behavior of this function from lab 
courses, which are obligatory in the first year at university. The didactic motive of the task designer 
was to make students see the connection between their solution of the ODE and the physical 
mechanisms they know from the lab courses, and use this as a validation strategy. Possible 
variations of exercises on this topic, which were suggested by the experts, can be either done by 
using further components (as in the right part of the sketch, which leads to a second order ODE) or 
by changing the setting of the circuit from a series connection to a parallel connection. 

Analyzing the actual solution processes of the students 
Selected results of the analyses of the videos in the LIAs. Three pairs of students worked on this 
exercise in our video studies. Each pair directly found the component equations using the concepts 
and the language of graph theory for applying Kirchhoff’s laws was a bigger problem for two pairs: 
They were not sure whether one mesh equation would be enough to mathematize the setting, or if 
they also needed to have node equations, as there was a node between the two parts of the 
oscillating circuit. However, no pair started the equation management with an incorrect equation 
and they were also successful in combining them. In reference to solving the ODE, all three pairs 
used the superposition-method, i.e., they used the method presented in the FoE-course.  

In subtask 5 the three pairs acted in different ways, which they described while thinking aloud. One 
pair found the solution of the ODE by inserting t=0 and realizing that the function converges to U0. 
Another pair remembered the behavior they had seen in the lab courses, i.e., they knew that the 
graph should start at uC(0)=0 (also known from subtask 1 and 2) and would converge to the value of 



the ideal voltage source, so they applied their physical knowledge to get a mathematical 
representation of the result, i.e., they used the “mapping meaning to mathematics”-game (see Redish 
& Tuminaro, 2007). The third pair used both arguments, i.e., they drew the solution of the ODE and 
validated it with the physical behavior, saying it confirms the result of the ODE. 

Some results of the analyses of the written exams. There is a connection between finding the 
component equations and the applying Kirchhoff’s law: 84 of 92 students either did both types of 
equations right or both wrong. Here, 77 students were able to find the correct ODE; 56 of them 
solved the homogenous ODE correctly, i.e., for about 73% of the students solving the rightly 
formed ODE was no problem. Table 1 shows that all students who were able to solve the 
homogenous ODE could also solve the inhomogeneous ODE. Eight students only solved the 
inhomogeneous ODE correctly by finding one particular solution using physical arguments, i.e., 
they were able to solve at least one part of the task without applying any mathematical methods to 
solve ODEs, by looking instead at certain values of uC(t) that were known from the problem setting. 

 Inhomogeneous solution: 
wrong resp. partly right 

Inhomogeneous 
solution: right 

Total 

Homogenous solution: wrong 28 8 36 

Homogenous solution: right 0 56 56 

Total 28 64 92 

Table 1: Connection between homogenous and inhomogeneous solutions 

Summary and discussion of results 
The solution processes of first-years (Research Question 1). The SES shows that this exercise has 
more similarities to the modelling cycle than the one presented in Biehler et al. (2015). Although the 
exercise uses quantities rather than numbers, it contains three distinct parts, which are analogous to 
the modelling cycle: mathematization, math-engineering and validation. The mathematization part 
consists of finding equations for the involved components and the experiment set-up by applying 
Kirchhoff’s laws. In math-engineering these equations are combined in a purely mathematical way, 
they are solved using inner-mathematical algorithms. The validation part is attended to by a 
retranslation into the so-called real world by looking at the physical behavior. 

The analysis of students’ work (Research Question 2). In the mathematization part, most students 
were able to find both kinds of equations, and in the video-studies the biggest hurdle was, whether 
they had the right number of equations to get a solvable ODE. The component equations were cited 
from the FoE-lecture, i.e., the students invoked authority (see Bing, 2008). The students in our 
studies could either find both the component equation and the equations by application of 
Kirchhoff’s laws or none of them. In contrast to the remarks of the experts, the same holds for the 
solution processes in the math-engineering part, i.e., more than 90% of the students who solved the 
homogeneous part correctly also solved the inhomogeneous part. Moreover, some students only 
solved the inhomogeneous ODE using physical arguments. The question remains is whether 
students realize that they can also apply another method from the MfES. In the validation part, 
students used different strategies, involving both mathematical as well as physical arguments, i.e., 



some students did all steps of the modelling cycle, while others argued using inner-mathematical 
arguments. They showed different justification strategies, analogous to justifications like calculation 
and physical mapping, as defined in Bing, 2008.  
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In this paper we investigate the self-efficacy (SE) of engineering students in the introductory phase 
of studies. We focus on changes occurring in the first weeks, reasons for those changes, and the effects 
of a mathematics preliminary course on SE. Based on results of interviews with first year students in 
2014, the preliminary course was adapted in the following year. In 2015 we interviewed first year 
students and collected questionnaires on SE. In the analysis we focus on mathematics, social, and 
general SE. 

Keywords: Self-efficacy, transitional programs, undergraduate students, higher education. 

Introduction 
The start of studies at tertiary education institutions marks a new stage of life for young people. 
Students often move to a new location, meet new people, learn new rules, and are required to become 
accustomed to new educational settings. These changes can influence the students’ self-efficacy (SE) 
beliefs (Schunk & Meece, 2006), which can be defined as “beliefs in one's capabilities to organize 
and execute the courses of action required to produce given attainments” (Bandura, 1997, p. 3). In 
academic contexts these beliefs correlate with perseverance, persistence, and achievement (Pajares, 
1996; Schunk & Pajares, 2001), and therefore mediate study-success (Fellenberg & Hannover, 2006). 
Depending on the given task, different SEs are of importance: Engineering students for example face 
mathematical, social, and course-specific tasks. For this reason mathematics, social, study-oriented, 
and course-related SEs may influence the study progress. In this paper we focus on mathematics and 
social SE, as it seems reasonable to assume that they might be influenced by a mathematics 
preliminary course. 

Van Dinther, Dochy and Segers (2011) reviewed 39 studies investigating factors that affect SE at 
higher education level, which were conducted between 1993 and 2010. None of these studies 
considered effects of preliminary courses that are common measures at the introductory phase of 
studies. Fischer (2014) investigates the perceived change in SE occurring during a mathematics 
preliminary course in his dissertation and finds that students perceive only minor changes in SE 
caused by the preliminary course. This study, however, offers no reasons for existing or non-existing 
changes. Another educational transition, namely the transition from primary to secondary school, is 
well investigated concerning SE beliefs. “Young adults often experience declines in their competence 
and efficacy beliefs as they make the transition from elementary to middle school […] [that] may 
result from changes in the school environment” (Schunk & Meece, 2006, p. 80).  

The results of interviews conducted with first year students at the University of Applied Sciences 
Münster in 2014 suggested that several study-related SEs might change during the first weeks at 
university. The students reported rising uncertainty concerning the new style of teaching and learning 
at university and the finding and joining of a study group. Furthermore they feared to fail in their 
mathematics studies whilst being confident about success in other subjects. When asked for mastery 
experiences in mathematics during the first weeks they didn’t report any preliminary course 



experiences, and even improvement in the mathematics-tests didn’t raise their confidence, as 
improvement was the least they had expected in a test that mostly differed only in numbers from the 
first one. As a consequence of these results, the preliminary course was adapted in 2015 to promote 
participation and cooperation of students.  

In this paper the development of SE (mathematics and social) of engineering students at the start of 
studies is investigated. The study focusses on changes occurring during the first weeks at university, 
their reasons, and the role of the redesigned mathematics preliminary course regarding those changes. 

Theoretical framework 
SE is “competence-based, prospective, and action-related” (Luszczynska, Scholz & Schwarzer, 2005, 
p. 440), as shown in items such as “I am confident to solve the systems of equations with 𝑥 + 𝑦 = −7 
and 𝑥 ⋅ 𝑦 =  30” (Zimmermann, Bescherer & Spannagel, 2011, p. 2137) or “I am confident that I can 
start a conversation with someone I don’t know very well” (Hermann, 2005, p. 107). Efficacy beliefs 
are multi-dimensional, varying in level, generality, and strength (Bandura, 1997). Generality of SE 
can range from task-specific SEs as used in the original definition of Bandura (1997) to domain-
specific SEs such as mathematics SE or social SE to general SE. “Mathematics self-efficacy 
expectations indicate the belief of a person in his/her own competence to solve mathematical 
problems and tasks successfully” (Zimmermann et al., 2011, p. 2136). Engineering students are 
confronted with a considerable amount of mathematics in their studies, although they usually don’t 
choose their course of studies for that reason. Social SE can be defined as “an individual’s confidence 
in her/his ability to engage in the social interactional tasks necessary to initiate and maintain 
interpersonal relationships” (Smith & Betz, 2000, p. 286). Students beginning their studies at 
university face these tasks daily. “General self-efficacy […] reflects a generalization across various 
domains of functioning in which people judge how efficacious they are” (Luszczynska et al., 2005, 
p. 440). It can be defined as “the belief in one’s competence to cope with a broad range of stressful 
or challenging demands” (Luszczynska et al., 2005, p. 439). We use this rather stable SE to control 
our results for testing effects. 

SE beliefs influence goal-setting, motivation, or perseverance of people (Bandura, 1997). Empirical 
studies have shown that in academic contexts, low study-related SEs influence proneness to drop out 
of studies, whereas high SEs are supposed to promote study success (Fellenberg & Hannover, 2006). 
Pajares (1996) discovered that SE influences performance independently from and as strong as 
ability, and Schunk and Pajares (2001) showed that mathematics SE is a better predictor of 
achievement than self-concept, anxiety or prior experiences in mathematics. In general, SEs that 
slightly exceed actual skills are the most functional, as they “lead people to undertake realistically 
challenging tasks and provide motivation for progressive self-development of their capabilities” 
(Bandura, 1986, p. 394). SE can be developed through four main sources: enactive mastery 
experiences, vicarious experiences, verbal persuasion, and physiological and affective states. 
Enactive mastery experiences (failures or successes) are the most influential source, especially when 
they are attributed to personal effort. When no absolute measures of adequacy exist, social 
comparisons can function as source of SE. These vicarious experiences, i. e. observed experiences of 
models, are of greater influence when the observer perceives higher resemblance to the model. Verbal 
persuasion can be a third source of SE if significant others express faith or doubts in one’s capabilities. 
This source is less influential than the first two. The last source mentioned by Bandura is that of 



physiological and affective states. Stress reactions or feelings of joy in the face of certain tasks may 
influence one’s SE if no other information is available. The way these sources influence one’s SE is 
dependent on the cognitive processing, and therefore SE cannot simply be interpreted as the sum of 
prior mastery experiences (Bandura, 1997). Of these sources, enactive mastery experiences appear to 
be the strongest at higher education level (van Dinther et al., 2011).  

Research questions and methods  
Based on the preliminary findings and open questions described above, this study aims to find 
answers concerning the following research questions: 

1. Do mathematic and social SEs change during the first months at university and if so, how 
do they change? 

2. How does the mathematics preliminary course affect mathematic and social SEs? 

At University of Applied Sciences Münster each year in September before the start of the semester, 
a mathematics preliminary course takes place. It consists of twelve modules: The first one – “How to 
study” – addresses general differences between school and university and other study-related aspects, 
such as time-management or preparation for exams. The second module – “practicing mathematics” 
– gives an introduction into reading and writing mathematics, set-theory, propositional logic and 
proofs. The remaining ten modules focus on contents of school mathematics from lower and upper 
secondary level (Kürten & Greefrath, 2016).  

 
Figure 1: Time bar of the preliminary course and the accompanying surveys 

For the quantitative part of the study, three data collection points were chosen: At the day before and 
at the first day of the preliminary course (pretest), in the first two weeks of the semester (posttest) and 
in the first two weeks of January (follow-up test, see Figure 1). Participation in the first test was 
mandatory for all students taking part in the preliminary course and voluntary for the rest. 
Participation in the posttest and follow-up test was voluntary because of organizational reasons. Each 
mathematics test consisted of 19 items associated with the contents of the mathematics modules of 
the preliminary course, with items that vary from test to test only in the used numbers or the given 
context. After completing the mathematics test, the participants submitted a questionnaire on 
statistical data, such as the type of school qualification and the elapsed time since the end of school, 
and a SE questionnaire. This questionnaire, in 2015, was composed of the German versions of three 
category systems: general SE (Hinz, Schumacher, Albani, Schmid & Brähler, 2006), mathematics SE 
(Zimmermann et al., 2011), and social SE (Hermann, 2005). The general efficacy part uses a four 
level Likert scale, while the other two operate with a five level Likert scale. The results of the general 
SE test were used to complement the specific view of the other scales and provide an opportunity to 



detect testing-effects. The other scales were chosen due to the results of prior analysis (2014), which 
suggested changes in mathematics and social SEs. This specific mathematics SE scale was chosen, 
as it presents tasks that can be solved using school mathematics, the only mathematics most of the 
students taking part in our survey knew when filling in the pretest. The reasoning behind the choice 
of social SE scale lies in its specific design for students at tertiary education. It was translated into 
German, and the translation was validated by retranslating the items back into English and comparing 
the two English versions. These scales were chosen because they were already tested for validity, 
objectivity, and reliability with satisfying results (e.g. Cronbach’s α between .80 and .94) 
(Zimmermann et al., 2011, Blömker, 2016, Smith & Betz, 2000). 

For the qualitative part of the study we chose two data collection points: In the week before the 
preliminary course began (first interview) and during the third and fourth week of studies in October 
(second interview, see Figure 1). Participation in the interviews was voluntary. In the first interview 
14 students were interviewed, and out of this group 8 were chosen for a second interview according 
to their department, their results in both mathematics tests, and their school-leaving qualification, to 
generate a heterogeneous sample and thus gather a large range of positions present in the population. 
The interviews were conducted using a semi-structured interview guide. The questions focused on 
mathematics and social SE as well as the students’ motivation for studying and learning. In addition 
to the qualitative data gained in the interviews, the results of the SE scales were analyzed using t-tests 
to find changes in SE during the course, and semi-partial correlations to assess the relationship 
between attending the preliminary course and changes in mathematics SE. The interviews were 
transcribed and analyzed using qualitative content analysis according to Mayring (2014). As the 
interviews should be used to understand the quantitative findings, our focus lay on mathematics and 
social SE. To find reasons for changes and the perceived level of SE, inductive category formation 
was used conducting a summarizing content analysis (Mayring, 2014). 

Results 
Self-efficacy scales 

In 2015 the SE questionnaire was completed by 409 students in the pretest, by 243 students in the 
posttest and by 135 students in the follow-up test. The downturn in the number of participants from 
pre- to post- and follow-up test can be ascribed to the change from mandatory to voluntary 
participation. 167 students completed the questionnaires in pre- and posttest and 54 students 
completed all three questionnaires. Comparison of the results of students taking part in the pre- and 
posttest (n = 167) respective in all three tests (n = 54) shows no significant differences in general SE 
and significantly higher results in the post or follow-up test for social SE (small effect size: 
dz_post = 0.20, resp. dz_fu = 0.40) and mathematics SE (medium effect size: dz_post = 0.61, resp. 
dz_fu = 0.79). To measure the relationship between attendance in the course and changes in 
mathematics SE we compute a semi-partial correlation of preliminary course attendance (as stated by 
the students) and mathematics SE after three months. We assume that for students not taking part in 
the preliminary course, mathematics SE didn’t change in the weeks of the course. As those students 
neither took part in the course nor in the associated e-learning, we suppose they didn’t engage in 
mathematics during this time. As we did not have results from those students in the pretest, we 
compare the first result of each student (whether it is from the pre- or posttest) with their results in 
the follow-up test. We found a significant correlation of .26 (n = 112, p = .006) between preliminary 



course attendance and mathematics SE in the follow-up test, after partialing out mathematics SE-
results of the first test. 

Interviews 

In 2015 eight students taking part in the preliminary course were interviewed twice. They were of 
age 18 to 22 and studied chemical engineering (2), informatics (1), and electrical engineering (5). The 
qualitative content analysis resulted in six main categories: mastery experiences, vicarious 
experiences, verbal persuasion, goal setting, temporal effects, and type of teaching. 

Pseudo-
nym 

School-leaving 
qualification 

Last grade 
in mathe-

matics 

Test results Mathematics 
SE 

Social SE Time 
since end 
of school  Type Grade Pre Post Pre Post Pre Post 

Dennis ATC 1 1 81% 84% 80% 96% 59% 73% 0 years 

Roman A-level 3.3 4 68% 74% 72% 75% 53% 47% 1 year 

Christoph ATC 2.3 2 11% 61% 59% 72% 71% 80% 3 years 

Leon A-level 2.6 2.7 42% 95% 69% 80% 70% 72% 3 years  

Table 1: Statistical data of the interviewees cited in the article with German grades ranging from 1 
(very good) to 6 (inadequate) and German school-leaving qualifications “Abitur” (A-level) and 

“Fachgebundene Hochschulreife” (advanced technical certificate [ATC]) 

In the first interviews some students explained their perceived competence in mathematics by the 
time that has elapsed since their last studies of mathematics at school (Christoph, Leon) or by social 
comparison with students coming from more demanding schools (Dennis): 

Christoph:  Well, my mathematics are a bit rusty. I had in the advanced technical certificate/ I 
was quite good. […] And now I haven’t had any mathematics in the last three years 
apprenticeship. Really not a bit. (1st interview, translation by the author) 

Dennis: If I now/ If I consider, I’ve been at a main school (Hauptschule), so surely there is 
something missing in maths compared with those of a middle school (Realschule) 
or a grammar school (Gymnasium). (1st interview, translation by the author) 

In some of the answers the changes in the preliminary course are quoted as reasons for confidence in 
social or mathematical settings. The groupwork at the beginning of each tutorial offered possibilities 
to meet people and to solve harder tasks together. In the second interviews differences in school-
leaving certification were of lower importance than mastery experiences in social tasks (finding a 
study group) as well as in mathematical tasks, and in the latter case the mastery experiences were 
attributed to personal effort: 

Dennis: It worked out well. I met new people right after the preliminary course. It opened 
up with the groupwork. You have to talk to other people there. […] And then groups 
formed right away and why should it worsen?! (2nd interview, translation by the 
author) 



Roman: […] I was first put off a bit by the exercises because I wasn't able to figure them 
out. But as I took the lecture notes, I understood it and I liked that a lot. Because I 
realized that I understand things I didn’t understand before. And I could solve 
exercises I hadn’t been able to solve and then I saw there is improvement. (2nd 
interview, translation by the author) 

Christoph:  That shows me that I’ll be able to solve hard problems that I couldn’t solve at first 
if I study for them. And it shows me concerning my studies that a 2.0 might be 
possible. Depending on how much I will knuckle down and then practice, practice, 
practice. (2nd interview, translation by the author) 

The prediction of failure rates was mentioned by some students as a reason for their fear to fail in 
mathematics. These vicarious experiences didn’t differ from those reported in 2014: 

Interviewer: Okay. We get to the next statement: “I’m afraid to fail in my studies due to 
mathematics“. 

Leon: Well, I would say four. That’s more like the case, there is a certain fear of course. 

Interviewer:  And can you explain why you put the cross at the four? 

Leon: Well, if you look at the rate of the last year, there are many failing. And there is of 
course/ you fear a bit that you won’t be able to make the cut somehow. (2nd 
interview, translation by the author) 

Discussion and perspectives 
In the study presented here we show that students’ mathematics and social SE did rise during the 
preliminary course, and that this effect was stable over a period of at least three months.  

As participation in the interviews and the posttests was voluntary, and participation in the pretest only 
mandatory for those taking part in the preliminary course, the sample is probably not representative 
of the population of first year students. For example, motivation for learning or studying might 
influence the students’ decision whether or not to take part in the course, the interviews or the tests. 
This is especially important for the quantitative analysis of the SE scales. Although the qualitative 
analysis of the interviews doesn’t need statistical representativeness, it should be considered that 
certain interesting types of students (for example those with low motivation) were not included in our 
sample. Besides this limitation of the study, the results presented show that even in the first weeks at 
university study-related (mathematics or social) self-efficacies change, while general SE remains 
relatively stable. For ethical reasons we had no control group of students wishing to take part in the 
preliminary course, and for organizational reasons we weren’t able to collect pretest results of those 
students not attending to the preliminary course. Therefore, the quantitative data does not reveal 
whether the perceived changes in SE are caused by the preliminary course or not. At that point the 
qualitative data help interpret the quantitative results, as their analysis suggests that experiences in 
the preliminary course influence changes in SE. Those experiences resulted partly from the redesign 
of the preliminary course in 2015, for example, the forced group work at the beginning of each tutorial 
that fostered social SE.  

We did assume that for students not attending the preliminary course, no changes in mathematics SE 
occurred during the time of the course. However, some students might have used other resources to 



prepare for their studies or just reflected on their competencies in comparison to the requirements of 
the University of Applied Sciences Münster. Again, the qualitative data help us justify our 
conclusions, as none of the students taking part in post- or follow-up tests stated other mathematical 
activities as reasons for not attending the preliminary course in the open ended questions of the 
survey. We feel therefore confident that our conclusion is valid for at least the bigger part of the 
students. Nevertheless, the correlation between course attendance and development of mathematics 
SE has to be treated with caution.  

With regard to our first research questions we can say that in contrast to the findings of Fischer (2014), 
SE beliefs did change in the first months at university at least in the part of the population that attended 
the preliminary course. Social SE rose slightly and mathematics SE rose moderately during the 
preliminary course. These results are in contrast to the findings described in the introduction that 
predict a decline of self-efficacies during transitions (Schunk & Meece, 2006). The differences may 
be a result of different ages of the observed students, effects of the preliminary course, or other 
reasons. Another possible explanation is that the decline of SE takes place even before the preliminary 
course and is therefore missed by our survey. Further research could clarify this by assessing SE well 
before the move to tertiary education, as well as before and after a preliminary course. With regard 
to the second research question, we did find clues that there is a relationship between the changes in 
SE and the preliminary course attendance. Those students who reported mastery experiences (social 
or mathematical) in the second interview showed an increased value for the related SE in the second 
test as well. Further research should investigate changes in SE during a preliminary course in an 
experimental or quasi-experimental design to investigate whether the changes reported here are 
indeed caused by the preliminary course.  

Of the students cited in this paper, those who had been out of school for a longer period showed lower 
mathematics SE than the others. As they also stated the elapsed time without mathematics training as 
a reason for their perceived mathematics ability, it might be interesting to evaluate the effect of time 
on mathematics SE. 
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This article deals with student’s interpretation of multiply-quantified statements. The efficient 
interpretation of such statements is useful, for example, for those who try to understand and use the 
formalism of the definition of limit of a function. Literature points out some students’ difficulties in 
the interpretation of double quantified statements. I am using the scientific debate methodology to 
design and implement tasks by means of two fundamental steps. In the first step, I draw on the 
results of a questionnaire to identify students’ difficulties related to the order of quantifiers in the 
interpretation of such statements. The aim of the second step is to design the targeted tasks by 
considering the results of the first step; these tasks are based on a game called Q². The 
implementation of the design shows that students understand that there are at least two kinds of 
interpretations, and that conventions of interpretations are needed. 

Keywords: formalism, quantification, limit, scientific debate in class, game Q². 

Quantified statements problem 
Mathematics formalism uses massively quantification and specifically multiply-quantification. 
Research shows that students have difficulties with the interpretation of multiply-quantified 
statements (Dubinsky & Yiparaki, 2000; Chellougui, 2009; Piatek-Jimenez, 2010). EA statements 
corresponding to “Exists…for all…” sentences must be distinguished from AE ones corresponding 
to “For all…there exists…”. Dubinsky and Yiparaki (2000) study the impact of two main variables 
on the interpretation of double quantified statements. The first variable is the order of quantifiers 
(AE or EA) and the second one is the kind of statement, mathematical or non-mathematical. They 
show that the interpretation of non-mathematical statements is essentially correct but the 
interpretation of mathematical ones is difficult for students. For AE mathematical statements, the 
students’ interpretation is very efficient, whereas their interpretation of EA ones seems to be done 
through an inversion: the EA statement is very often interpreted as the AE corresponding statement 
(the variables remain with their own quantifiers but the order of quantifiers are changed). Moreover, 
it is noticed that “the students did not appear to care of the syntax of a statement to analyze it […] 
the student did not appear to be aware of having engaged in interpreting the questionnaire 
statements.” (Dubinsky & Yiparaki, 2000, p. 53). The inversion of interpretation of an EA statement 
is also noticed by Chellougui (2009) when she asks students to define the upper bound M of a set A 
and when almost all of them answer by what she calls “a strange definition”: « ∀ x ∈ A, ∃ M ∈ IR, x 
≤ M ». Piatek-Jimenez (2010) confirms the asymmetric perception and interpretation of those two 
kinds of double quantification in the mathematical field. There seem to be two different problems: 
the use of “strange” conventions and the unawareness to interpret statements. 

To overcome these difficulties Dubinsky and Yiparaki (2000) presented a game based on the 
dialogical logic (explained below) and used it with students to make them aware that two kinds of 
interpretation can be used and that this depends on rules of interpretation linked to the places of 
quantifiers. Results have shown that the game seems to help sometimes students to understand such 
statements but in some cases, it does not, and in a few cases this has created more confusion.  



I want to pursue this research by designing tasks to overcome the difficulties of the interpretation of 
double quantified statements using the methodology of scientific debate. This implies two related 
goals. The first one deals with the identification of students’ difficulties related to the order of 
quantifiers in a double quantified statement. I specifically explore the role of some other potential 
variables: the set of quantification (familiar or not, finite or infinite), the semiotic representation of 
the quantified variables (formal or usual language) and the kind of relation involved in the predicate 
(familiar or not). The second goal is to design and to implement tasks by considering the results of 
the study related to the first goal. A new game called Q² based on the interpretation of double 
quantified statements to determine a winning strategy will play a fundamental role in this design. 

The aim of this paper is to study the following question: is there a domain of values of variables 
where students take into account the order of quantifiers and if yes how to take advantage of this 
domain to enlarge it? Specifically, how to make students aware that they are interpreting these 
statements and that they need rules for that? 

The methodology of scientific debate: A tool for designing tasks 
The scientific debate (Legrand 2001) is a socio-constructivist approach to learning and teaching 
mathematics based on two main principles: 1) the need of new knowledge can be obtained by 
making one realize that his/her previous conceptions may lead to contradiction; 2) the organization 
of appropriate debates among students permits firstly to express and share previous conceptions 
about the targeted subject, secondly to encounter the limits of these conceptions, and thirdly to be 
able to understand the institutionalisation related to this knowledge that is made by the teacher. 
Three fundamental steps shape the design of tasks by means of the scientific debate methodology:  

1) The first step consists on epistemological and cognitive studies of the targeted mathematical 
concept: the role of quantifiers in formal statements and the interpretation of double quantified 
statements that stands on the use of a convention of interpretation. For this interpretation, I have 
chosen the dialogical logic (Lorezen, 1967). In this paper, we mainly explore the cognitive aspects 
and we use a questionnaire for that purpose. 

2) The second step concerns the design of the tasks, which is done by using mainly two kinds of 
questions to initiate the debate. The first kind of question concerns the truth of a conjecture: is it 
true or false? This conjecture can be given by the teacher or can come from the students after a call 
for conjecture. The second kind of question concerns the nature of an object for a conjecture or a 
property: is it an example, a counter example, or off topic (neither example nor counter-example) 
for this conjecture, and is it an example for a property? The example can come from the teacher or 
from a call for an example. A vote is made: do you think it is true, false or something else (an 
example, a counter example, off topic or something else)? The possibility of voting for something 
else is given to preserve the authenticity of the other votes (voting True or False must be a choice 
founded on convictions). Then a debate is organized by the teacher among those who have different 
view-points. The teacher never gives any opinion about what is debated but tries to maintain a level 
of interaction by emphasizing the contradictions between students. 

3) The third step concerns the level of experimentation and its analysis: what actually happens is 
confronted to what was expected to happen. Specifically, this analysis leads to discuss the efficiency 
of the choices made in the two first steps. 



The whole study is conducted according to the aforementioned three steps. In this paper, I show my 
findings from the study related to the first step and I give more details about the elaboration and the 
results of the two final steps. For the first step, I have chosen to use a questionnaire on a sample of 
181 students in their last year of secondary school to identify students’ difficulties with the 
interpretation of double quantified statements in formal and non-formal context. For the second 
step, the results of this questionnaire are used in a way that is aiming to make students aware that 
the lack of the rules of interpretation is not a problem in a certain domain but leads them to conflicts 
out of this domain. This design is based on a game, called Q², in which the interpretation of double 
quantified statements is crucial: the question that will initiate the debate concerns the way to win 
this game. For the third step, I experiment this design for students in their last year of secondary 
school in a scientific class composed of 29 students (experimentations at university are planned). 

Task design 
Background: The result of the questionnaire 

I have mainly studied five variables in the interpretation of double quantified statements: place of 
quantifiers, kind of statements (mathematical or not), the set of quantification (familiar or not, finite 
or infinite), the semiotic representation of the variables (formal or informal language) and the kind 
of relation involved (familiar or not). In the questionnaire, words (for all, exists) are used instead of 
symbols because symbols are introduced after the game Q² as a solution to the conflicts that appear 
about quantifiers and associated conventions. A questionnaire has been given to 182 students. We 
will only give the findings here (for more details see Lecorre, 2016a). The first finding is that the 
rule of “correct interpretation for AE statements and inversed one for EA statements” seems not so 
obvious: some EA statements are perfectly interpreted whereas some AE statements are interpreted 
through an inversion of the quantifiers and the variables. The second finding is that some other 
variables are correlated with difficulties in the interpretation (e.g. width of the quantified set, 
formalization of variables...). The third finding is that there exists a domain of correct interpretation 
for both EA and AE. This domain is made of non-mathematical statements quantified on a “small” 
finite set (less than ten values) without any formal variable and with a familiar relation. These 
findings are then used to design the tasks aiming at discussing the interpretation of double 
quantified statements. 

The game Q² 

The game presented by Dubinsky and al. (2000) is based on the dialogical logic of Lorenzen (1967) 
which gives a way to decide on the truth of quantified statements using a codified dialog between a 
proponent and an opponent. In this game, for example, if the sentence is “for All x there Exists y 
such that R(x;y)”, the A-player chooses x and the E-player has to find a y such that R(x;y) is verified. 
If he/she fails to find such y, the A-player wins, otherwise the A-player can give another x (same 
kind of rule for EA). I call this game a direct game: given a statement and sets of quantification, you 
have to decide the truth. The Q² game is an inverted game: given a statement and the truth, the 
players construct the set of quantification to make a statement true or false. 

For the Q² game I choose values of the variables that make it an easy game to play: non-
mathematical field, small set of quantification, familiar relation. This choice is made to permit 
students to get into the game and into the interpretation of associated statements.  



This is a two players’ game. This game is given by four elements: a starting rule, a winning rule, a 
statement and a grid. For example, red player has to start (starting rule) and plays for the 
falsification (winning rule) of the statement S: “For all red letters, there exists the same black letter” 
and the given grid: 

 
Figure 1: A grid for the game Q² 

So red has, first, to circle one letter with his red pencil. Then the black player circles one letter and 
so on until all the letters have been circled. With the given elements of this example (starting and 
winning rule, statement, and grid) and the coloration of letters, if the statement S is false then the 
red player wins, but if it’s true the black one wins. This game has, of course, many variants, 
beginning with the filling of the grid and the starting and winning rules. This game is the heart of a 
design which aims precisely to enlarge the domain of good interpretation. I am going to show that a 
smart use of Q² in the design has the potential to reach such a goal by emphasizing the lack of the 
convention of interpretation. 

 “The Q² situation” 

The principle of the Q² situation is to provoke conflicts of interpretations that will lead students to 
the need of the convention of interpretation. The situation Q² is divided into four periods: 

- The first period aims an appropriation of the game Q² by playing. 

- The second period deals with the concept of winning grid for the game Q². 

- The third period targets a conflict of interpretation, in a way that students feel the need of 
conventions of interpretation. At that stage, the conventions are given. 

- The fourth period is just an application of these conventions on the unsuccessful domain 
where the values of the variables lead students to difficulties of interpretation. 

In the first period, a paper is given that contains eight games of Q² to play (each game is defined by 
a statement, a starting rule and a grid). These games are designed for the two players to have 
opportunities to win and to start to have ideas on how to play to have good chances of winning. In 
fact, with such a game, with “good players”, the winner depends only on the statement (EA or AE), 
the starting rule, and the grid given. 

The second period aims at the definition of winning grid. The students are asked to give the winning 
grids for a given rule, then a debate is organized about these propositions: are they winning grids, or 
not? The contradictory opinions about the propositions should lead students to identify the lack of a 
definition of winning grid. A winning grid is, in fact, quite difficult to define in a mathematical way 
for pre-university students (double recursive definition). Here, a definition such as “a grid is a 
winning grid for red if when red plays “cleverly”, he is sure to win, even if black also plays 
cleverly” is largely sufficient for this design. When the students show a need for a definition, the 
above definition is given. 



The third period aims to highlight the lack of convention of interpretation. Once again, for a given 
rule, the students are asked to give winning grids. There should be no more conflicts about what is a 
winning grid in general, but new conflicts should appear about the propositions: is this grid really a 
winning grid with this rule? This should happen because the winning grids depend on the 
interpretation of the rule which is a double quantified statement. And the need for a convention 
should appear with the impossibility to find a common agreement (is it a winning grid or not?). The 
didactical principle which is used here is the following: it seems very difficult to organize a direct 
confrontation of the different rules used by students to interpret a double quantified statement, 
because this problem, taken as a general one, is too theoretical and depends on too many variables 
(findings of the questionnaire). On the contrary, it is much easier to create a conflict on concrete 
consequences of the interpretation of such statements. Here, the conflict holds about the question ”is 
the grid a winning one or not?” Then, trying to understand each other, and trying to convince their 
peers, students are going to explain their own interpretation. And then it will appear that the implicit 
conventions used by students are contradictory. Students can realize that without common 
conventions, no agreement is possible. Deciding if a grid is a winning grid or not is possibly more 
complicated than the logical principles of deciding who won, but it leads students to materialize 
their own conventions through these grids and permit to confront these conventions. 

Then these conventions are given in the manner of the dialogic logic (Lorezen, 1967), which is 
described above with the game of Dubinsky and Yiparaki (2000). At this stage, the game Q² plays 
as a preparation to such rules by simulating a game between a proponent and an opponent. The 
design here aims much more the awareness of the need of convention than the “right rules”. The 
aim is to make students aware of the necessity to check the validity of their interpretation relatively 
to the adopted conventions.  

The fourth period consists in verifying, still using debates, that the given rules can lead to 
agreements, and even in the domain where students used to fail: the rules are helpful, efficient. 

Results 
The first period of the situation Q² (playing the game) shows a good appropriation of the game: the 
winning grids were almost always won by the one for who the grid was a winning one, which means 
that the students were playing “cleverly”. Some strategies seemed to begin to be used. And, above 
all, almost all the decisions about who is the winner were correct. All this is coherent with the 
results from the questionnaire in terms of domain of interpretation. 

The second period led to the question of the definition of a winning grid. The definition is given. 

The third period begun with a question of the interpretation raised by students in a debate. I present 
an extract of the script of this debate to explain this unexpected acceleration. Student are asked to 
give winning grids for red for the game “There exists a red square such that all black squares have 
the same symbol” where red starts and plays for true. The given statement does not specify if black 
squares shall have the same symbol as the red one or not. So, after six winning grids had been given 
by the students in the second period, this lack of information was intensely discussed.  



 
Figure 2: The winning grids for red given by the students 

The grid P1 was put into debate and everyone agreed that it was winning grid for red. Then P2 was 
put into debate (28 votes for a winning grid for red and 1 for “something else”). Loïc who had voted 
“something else” changed his mind and explained why, for him, it was a winning grid for red: 

Loïc:  Because red starts and as he plays to win he takes the square A and… 

Teacher:  You’re saying that “red plays A first” yes and what? 

Loïc:  Then black takes only B squares. 

Teacher:  Black only takes B squares. Why, in the end, red wins? 

Loïc:  Because…. 

Hadrien:  Because Black has only B squares. 

But Quentin disagreed with this explanation: 

Quentin:  And because red has it also (One B square) 

But Hadrien and Louis did not agree with this addition: 

Hadrien:  No, he has A squares and B squares. 

Quentin:  Yes! 

Louis:  I think that I should just say that there exists a red square. 

The sequence above shows that these students do not need to disagree on the fact that it is a winning 
grid or not to begin to explain their own interpretation: “the same symbol as the red square” 
(Quentin), or “the same symbol for all black squares” (Loïc, Hadrien). Then Fabio, in the same way, 
explained that nothing must be added contrary to the sayings of Quentin: 

Fabio:  I do think that what Quentin added is not necessary. 

Then Quentin proposed a grid to strengthen the differences of interpretations: 

 
Figure 3: Quentin’s grid (As in black and Bs in red) 

Leaving aside for a while the problem of the winning grid, the teacher asked whether the statement 
S1 was true or not, according to the grid of Quentin. Twelve students thought that the statement was 
true, ten false, while six students voted something else. Some conclusions were then raised : 



Fabio:  There are some, like me, that can think that all the black squares have got the 
same symbol is enough and some other, like Sébastien, who are thinking that there 
must be a red square that has got exactly the same symbol as any black square. 

Mickaël:  I’m asking: if you who think that only black squares have the same symbol is 
enough, this red square exists such that what? 

This made Hadrien change his opinion, but Louis did not agree with this change: 

Louis:  There are two opposite opinions just because we’re not thinking the same. 

Teacher:  Ok, you are not reading the same way…That is what Fabio said… 

Louis:  Exactly! 

Juliette and Maxime then explained why they voted something else: 

Maxime:  That is exactly why, from the beginning, I voted Other. 

Juliette:  So do I. 

These two interpretations are not directly linked to an EA/AE inversion but to the interpretation of 
the predicate. It would be interesting to investigate the role that the vernacular language (the 
linguistic subtleties that may eventually vary in French or English) may have played in leading 
students to interpret the two variables in the predicate as bound variables (“the same as red 
squares”), as shall be done in AE statements, where as it isn’t the case in such an EA statement. In 
any case, the discussion among students led them to work on these interpretations and to get aware 
of the complexity of having a unique interpretation. The teacher then gave the conventions of 
interpretation of EA and AE logical statements. These conventions were then used successfully for 
the applications of the fourth period. One month later, the same students had to face double 
quantified statements in a situation aiming at the definition of limit. They experienced, once again, 
the need of conventions when they encountered another conflict of interpretation of these 
statements, so they checked the conventions to decide on their own (Lecorre, 2016b). 

Later, another experimentation was realized with some other students using a “complete” rule 
(“…such that all the black squares have the same symbol as the red square”) and this led students, 
with a grid of eight squares filled with symbols appearing twice, to the predicted conflict (EA/AE 
interpretation). A new didactic variable is then identified, the constitution of quantified sets (how 
they are filled relatively to the predicate), which raises an unexpected question: is the students’ 
choice of convention between EA and AE convention for the interpretation more guided by the 
constitution of the sets of quantification than by the statement itself? 

Conclusion 
The Q² situation, with the scientific debate methodology, were used to make the interpretation of the 
double quantified statement the main object of students’ discussion. The contradictions that the lack 
of conventions of interpretation was bound to imply then emerged in that discussion. This lack 
which was invisible to students suddenly came into light with these contradictions. 

More precisely, the questionnaire led to identify some variables playing a role in the interpretation 
of students. There is a domain of the value of those variables which gives a good interpretation. 



This Q² situation led students to be ready to receive the conventions of interpretation of double 
quantified statements. Indeed, they have experienced the need of shared conventions. The described 
situation Q² mainly aims the recognition that there are two kinds of double quantifications that 
should be differenced according to the order of the quantifiers in the statement and the convention 
of interpretation of the predicate but the validation using variables defined in function of the other 
variable remains a difficulty.  
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In university mathematics, support measures address diverse goals in terms of students’ knowledge 
and abilities, motivation and beliefs, or institutional goals like the reduction of dropout rates. In 
order to facilitate the analysis of specific support measures’ goals, their evaluation and 
comparisons with other forms of support, we aim at developing a taxonomy for these goals. To this 
end, we have analyzed documents of 44 innovative projects of mathematics support in Germany and 
conducted supplementary interviews with teaching staff. We present the method and intermediary 
results of this research and discuss its potential use for researchers, policy makers and teaching. 

Keywords: Educational objectives, Mathematics support, Taxonomy, Tertiary education. 

Background and aim of the paper 
Mathematics support has become a common endeavor in many universities and both researchers 
and teaching staff are interested in identifying the “best way” of supporting their students. The 
research we present here is part of the ongoing WiGeMath project (Wirkung und Gelingensbeding-
ungen von Unterstützungsmaßnahmen für mathematikbezogenes Lernen in der Studieneingangs-
phase; Effects and success conditions of mathematics learning support in the introductory study 
phase), which is a joint research project of the Universities of Hannover and Paderborn (Colberg et 
al., in press) led by Biehler, Hochmuth and Schaper. In a first phase, the research aims at identifying 
and structuring goals that have been pursued in selected Projects of Mathematics Learning Support 
(PMLS). This paper reports on the methodology and the research outcomes of this first phase, 
drawing upon the project proposal and the intermediate project report of the three project leaders. 

In WiGeMath, we examine 44 PMLS in mathematics programs, teacher education and diverse 
engineering programs at 14 German universities. These projects all have in common that they are 
trying to help students acclimatize to university mathematics. We label them innovative as they aim 
at deviating from the formats of standard lectures or standard tutorials. The extent to which they can 
fulfill this deviation is part of the evaluation in WiGeMath. The PMLS are clustered into four types: 
bridging courses, mathematics support centers, redesigned lectures and support measures that 
parallel courses. In most German universities, bridging courses are offered shortly before the 
beginning of the first semester and aim to bridge the gap between school and university, dealing 
with school contents as well as university contents. Mathematics support centers are relatively new 
to German universities and have been implemented in rather few universities. They are designed as 
optional classes for students where they can go and seek help or work on their math problems under 



the supervision of experienced tutors. Redesigned lectures are also relatively new and are offered 
particularly for preservice secondary teachers in order to support their transition from school 
mathematics to more abstract mathematical content. They focus more on study techniques like 
problem solving or reading and writing mathematical texts than on mathematical content. Support 
measures that parallel courses are diverse and include formats that provide online learning material 
as well as tutorials for special study groups (e.g. students at risk of failing the course), with a special 
focus (e.g., applications) or for a special purpose (e.g., exam preparation). Using a program 
evaluation approach (Chen, 1990), WiGeMath aims at evaluating different PMLS based on their 
own assumptions and comparing them. Therefore, we developed a taxonomy in the sense of a 
descriptive (non-normative), structured set of goals, features and conditions of the PMLS. In this 
paper, we focus on the taxonomy for the goals of PMLS. Here, the term “goal” is interpreted in the 
sense of any observable criterion that provides ground for the evaluation of a PMLS against its own 
initial conception. Existing taxonomies of educational objectives include cognitive and affective 
aspects of students’ learning (e.g. Krathwohl, 2002). However, they only describe learning 
outcomes of the individual. For evaluating the PMLS’ outcomes against their respective initial 
conception and comparing different PMLS, existing taxonomies have proved insufficient. We 
found, for example, that some PMLS have goals that cannot be assessed in terms of individual 
learning objectives, like the support of certain study groups.  

Method 
We constructed a new taxonomy using an empirical approach consisting of two steps. In the first 
step, a document analysis was conducted based on documents from the partners’ PMLS. This step 
resulted in a first draft for the taxonomy. In a second step, this rough taxonomy guided interviews 
with teaching staff to check, refine and supplement the categories. 

For the first step, we asked our partners to send us any document that might inform us about the 
projects, including self-descriptions and learning material. The kind of information greatly varied 
across the projects: some PMLS had been described in conference papers or posters; others sent us 
lecture notes or books, and in several cases, flyers or websites addressed at students were available. 
In the case of redesigned lectures, we also analyzed study regulations. Moreover, the depth of 
information varied as some projects had explicit descriptions of their goals, others only had learning 
resources and some PMLS were just in the making and could not give us any documents. We thus 
asked several partners to describe the goals of their projects either via email or in unstructured 
interviews and then included these emails or interview notes and transcripts in the analysis. In the 
following phase of the document analysis, we followed the typical steps of skimming the 
documents for relevant passages, reading them and interpreting them as an iterative process 
(Bowen, 2009). Following the principles of inductive category formation in qualitative content 
analysis (Mayring, 2015), we worked through the relevant passages line by line, either subsuming 
the goals under existing categories or constructing new ones. In this step, we also reconstructed 
goals that were not mentioned explicitly but were apparent in the documents. If, for example, 
learning material explicitly asked the students to consider mathematics as a process of trial and 
discovery, we assumed the change of students’ mathematical beliefs to be a goal. Due to the high 
diversity of materials and goals, we worked through all the material before reorganizing the 



categories in a rough taxonomy. Here, distinctions from the literature were implicitly taken into 
account, like the distinction of cognitive and affective outcomes. 

A limitation of document analyses may lie in insufficient details and a bias in the document 
selection (Bowen, 2009). Specifically, the teaching staff could have had goals that were not 
reflected in the documents. Thus, in the second step the rough taxonomy was used to guide eight 
interviews. Two interviews were held for each of the investigated designs, i.e., bridging courses, 
mathematics support centers, redesigned lectures and support measures that parallel courses. The 
interview guide first asked for the goals of the PMLS in general and then used the subcategories for 
deeper inquiry of each specific aspect. In the interviews, we found that some staff members did not 
mention all goals immediately. In reaction to a general question, only some goals were named. 
Explicit questions mentioning specific goal categories, however, led to additional goals named by 
the staff members. These interviews, taped and transcribed, were coded using the rough taxonomy 
as a coding scheme in order to see if each goal that was mentioned by the interviewees fit into one 
of our categories. This led to the refinement or reformulation of subcategories, but generally, all 
goals were covered by the taxonomy. 

Results 
The goals we identified were split into two main categories of educational goals and system-related 
goals, each of which consists of several sub-categories. We proceed with a presentation and 
description of the emerged categories and sub-categories that are summarized in Table 1. 

Educational goals 

The first main category of educational goals comprises learning outcomes with a focus on 
objectives regarding the individual learner. These educational goals are subdivided into knowledge 
goals, action-oriented goals and attitudinal goals. As these goals are more or less covered in existing 
taxonomies (e.g. Krathwohl, 2002) and space is limited, we omit a description and discussion of 
these goals. We only shortly mention the last category of learning and working conduct. It refers 
to learning rhythm (i.e., when do participants study), learning expenditure (i.e., how much do 
participants study), learning materials (i.e., which resources do participants use when studying), 
learning environment (i.e., where and with whom do participants study) and use of the PMLS’ 
provision. This goal differs from the ones mentioned so far as it does not represent a final goal of 
studying but rather functions as a mediating partial objective that facilitates the fulfillment of other 
goals at a later point in the course of studies. Staff members explicitly mentioned that they wanted 
their students to work in specific ways they assumed to be most efficient. 

System-related goals  

In our study, we found goals which do not focus on students as individuals but rather take into 
account the university as a broader organization and therefore decided to label them system-related 
goals. We specify how we understand each of these categories and which aspects they include. It is 
important to note that the system-related goals and the educational goals are not necessarily disjoint. 
When using the taxonomy to categorize the goals of a PMLS, these goals may fall into one category 
under educational goals and, at the same time, into another category under system-related goals. 
The difference lies in the focus on the individual learner versus the institution as a broader 



organization which for example has to establish its own reputation, take into account questions of 
funding as well as maintain its societal position in providing studies that lead to certain certificates. 

Educational goals 
Knowledge goals  - school mathematics knowledge and abilities 

- higher mathematics knowledge and abilities 
- the language of mathematics 

Action-oriented goals - mathematical modes of operation 
- university modes of operation 
- learning strategies 

Attitudinal goals - beliefs  
- affective features 
- perceived relevance for the future job 
- perceived relevance for future studies 
- mathematical enculturation 

Learning and working conduct  
 
System-related goals 
Creation of prerequisites for 
knowledge/abilities 

- improvement of school knowledge and abilities as a 
prerequisite for university studies 
- requirements for lectures that exceed school knowledge 

Improvement of formal study 
success 

- dropout rates 
- passing rates/achievements 

Improvement of teaching quality  
Improvement of feedback quality  
Promotion of social contacts and 
connections relevant for the studies 

 

Making university study demands 
transparent 

 

Supporting of certain student groups  

Table 1: Categories of the WiGeMath taxonomy 

As to the creation of prerequisites for knowledge/abilities, PMLS with this target would aim at 
qualifying students to participate successfully in subsequent university classes. This might be 
achieved via the improvement of school knowledge and abilities as a prerequisite for university 
studies, a category that we defined as a first sub-category. We refer to topics and methods that are 
not part of regular university lectures but should be familiar to students from their school 
background like doing arithmetic with fractions, sine, cosine, and solving systems of linear 
equations. The difference between this goal and the educational goal of fostering school 
mathematics knowledge and abilities is that the educational goal is only achieved when each and 
every student has gained the knowledge in focus, whereas the system-related goal is reached when 
the bigger part of students has gained this knowledge so that future teaching can take this 
knowledge as shared. In the latter case, it is inconsequential whether all students make use of the 
knowledge supply and integrate it into their own learning. It is well known, for example, that 



students entering university often have gaps in their knowledge while lecturers want to give their 
lectures as if this knowledge was present. In one bridging course, asked for knowledge as a 
prerequisite in future lectures, a staff confirmed this (all quotations are own translations): 

Staff member: Due to the fact that we refresh the students’ school knowledge, there is something 
they can build on later [in the lectures] and certainly will. […] If I look at a proof 
of continuity, I need absolute values and inequalities. If I do not know them, 
particularly now that they were removed from the school curriculum, then I have 
to learn them before. 

Interviewer:  That means, you try to compensate some deficits, in particular after changes 
through a school reform where some topics have been canceled from the 
curriculum? 

Staff member: Yes, I would say. 

Often, PMLS also aim at providing requirements for lectures that exceed school knowledge. In the 
innovative courses included in our study, examples may be seen in topics like groups, rings or fields 
that could be shifted from regular university courses, in which they would usually be discussed. 
Sometimes, bridging courses also cover topics that were considered school knowledge in the past 
but are no longer taught in schools today. 

For some institutions, the improvement of formal study success also proved to be important. This 
relates to objectively measurable success criteria like dropout rates, defined as the number of 
students who withdraw from their studies, and passing rates/achievements, which can be measured 
via the final exam. For a support center, for example, this was central in the interview: “Clearly, I 
mean, the big credo was always to reduce the dropout rate.” In German universities, dropout rates in 
mathematics and engineering programs exceed 30 % (Heublein, 2014). These criteria are of special 
interest as they may be used for an institution’s quality evaluation. PMLS addressing dropout 
include tutorials for specific study groups with low success rates or students who already failed an 
exam twice and now make their final attempt. 

The improvement of teaching quality is another goal of PMLS. The aim is to improve the 
teaching quality as perceived by the students and gain better evaluations from the participants. This 
may include changing the teaching styles and improving the communication with the students. 

In our analysis, three more goals emerged, which all reflect the position that, the university on the 
one hand wants to provide an optimal environment for the students’ learning, yet on the other hand 
does not take the responsibility for each individual student. The sub-category of improvement of 
feedback quality covers the aim to provide students with high-quality feedback on their state of 
studies that helps them improve their learning. Under promotion of social contacts and 
connections relevant for the studies, we subsume the support of social exchanges and 
conversations, technical aids, and stimulation to form study groups. For example, students may be 
offered specific hours for a specific lecture in a mathematics support center so that they may form 
learning groups on their own account. Also, the design of such centers may reflect this goal: “These 
workstations there have desks, where eight students may sit at a time. Students have increasingly 
come in larger groups. And it was clearly our goal, to foster this”. A further category that some 
PMLS aimed at is making university study demands transparent. This includes giving insight 



into demands of university education, especially with future orientation concerning preconditions 
and requirements in the course of further studies. Together, these aspects enable the students to 
make well-informed decisions on how to study according to their personal preferences.  

Finally, some PMLS were designed to help certain students more than others, for example, students 
with a different language background, females, students with a sideline job or students with 
children. These aims would be encoded under supporting of certain student groups. For one 
support center, for example, the focus was on low and medium-achieving students, as we could see 
in the interview: “Our priority is on everyone but the high-performing students. So, from low-
achieving to average. […] If we have resources left, then the high-performers are also welcome”. In 
contrast, a redesigned lecture addressed the average-achieving students but not the low-achieving 
ones: “We have, so to say the very good students, a broad midfield and then the lower fifth part or 
so, where most of them will probably dropout from their studies, because they are not suitable after 
all. But they take part at the beginning and want to try it, anyway. And my objective during the 
development and conduction of this course was to address the broad midfield and in addition 
provide challenges for the very good students.” Another specific group that might be mentioned 
consists of students without “Abitur”. The German school system is split into schools for lower-
achieving students where students attend nine/ten years and the so-called “Gymnasium” that adds 
another three years of school. Generally, only the students of the Gymnasium are allowed to attend 
university after they have passed the final exam called Abitur. Yet, there are exceptions where 
students without Abitur may attend university, a scenario that occurs particularly frequently in 
engineering programs. As engineering was one of the study fields we focused on, this category 
seemed especially relevant. This goal may reflect a special profile of the university or study 
program or societal goals and may come along with special funding opportunities. 

Discussion 
Methodological discussion 

As mentioned above, the taxonomy at hand was developed in cooperation with university staff 
involved in innovative PMLS. Contrary to our expectation that the goals of PMLS were thought 
through and decided upon in advance, we found, in the course of our work, that many of their goals 
had remained implicit until our inquiry. This observation raises the question of whether important 
goals of innovative PMLS can be fully accessed from documents and interviews. Similarly, goals of 
traditional lectures might also be implicit, since some lecturers may be reproducing these long-
established formats without further reflection. To be more specific, it seemed as if some PMLS aim 
at establishing a specific didactic contract (Brousseau, 1984). For example, students are to be 
offered a good learning environment in hope of thereby increasing success rates but the university 
does not take responsibility for the success of each individual. However, this aspect was not 
included in the taxonomy as we lacked clear evidence. The lack of reference to the didactical 
contract in the materials and the staff interview might be because of its implicitness in PMLS goals 
and to the less familiarity of staff to such theoretical terms. 

Discussion of the taxonomy 

The educational goals in our taxonomy show similarities to the objectives of other taxonomies 
(Krathwohl, 2002). Whereas these models focus on individual learning outcomes, the WiGeMath 



model aims at comparing and evaluating innovative measures as a whole, in particular following the 
program evaluation approach (Chen, 1990). This reflects in the new category of system-related 
goals. The system-related goals reflect three purposes: Some of the goals ensure the preservation of 
the institution. The creation of prerequisites for knowledge/abilities, improvement of formal study 
success, and improvement of teaching quality would fall into this category. Another set of system-
related objectives consists of improvement of feedback quality, promotion of social contacts and 
connections relevant for the studies, and making university study demands transparent. These goals 
improve the environment for students’ self-directed learning. Supporting certain groups of students 
is a goal of a third kind as it represents the societal goal of creating equal study conditions in higher 
education for a wide range of students. The taxonomy thus reflects the institutional framing, in 
particular goals related to the institutions’ preservation as well as the preservation of the innovative 
PMLS, which mostly had no regular funding but were financed by federal grants for innovative 
support. Related notions can be found in classification systems for higher education institutions. 
However, these categories are intended to be strictly descriptive and can therefore not be 
reformulated as goals. An early example is provided by the Carnegie Classification of Institutions 
of Higher Education, which was created in the 70s for US institutions. Initially, it was mainly 
concerned with structural and organizational characteristics of institutions but has undergone major 
changes in 2000, strengthening the emphasis on teaching-related institutional characteristics 
(Bartelse & Vught, 2009). A shortcoming of the model is that it lacks a consistent theoretical 
framework. In following the program evaluation approach, we based its development on the 
individual language and paradigms of the PMLS and did not question them in their data. From a 
practical point of view, the model helps to highlight their similarities and specialties. From a 
theoretical point of view, a next step could be the consistent re-interpretation of their goals from a 
specific theoretical and epistemological stance, e.g. clarifying basic notions of knowing and 
learning. We should keep in mind, however, that such a taxonomy might not only be used for the 
non-normative exchange of ideas, but also be turned into a normative model. 

Implications for research, policy and teaching 

It seems obvious that a model like the one developed above is never complete and could be 
expanded not only to fit more goals of innovative measures but also in order to serve regular 
courses or classes in other fields of study. So far in the first study phase of university mathematics 
education, we focused on innovative PMLS. We may thus have missed goals that are related to 
studies beyond the introductory year or to innovative measures integrated in the regular classes. An 
example for a possible system-related goal that was not mentioned in our study is the qualification 
of future staff or PhD-students.  

Since many practitioners had to reconstruct their goals during the interviews, we believe that our 
taxonomy may prove beneficial to both teaching staff and developers of courses and support 
measures as a heuristic tool, helping them reflecting on their goals and teaching practice. It may 
also highlight ethical questions, e.g. by pointing out that some PMLS were designed to specifically 
support some students but not others. This taxonomy could also improve the communication about 
goals between students, teachers and institutions. It provides a common language and a frame of 
reference. In research, this framework is ultimately intended for the evaluation of innovative 
measures and so far proved useful in doing so in the ongoing WiGeMath project. For policy-



makers, a taxonomy may help in the evaluation of their decisions. In our study, we found that many 
practitioners had thought about various aspects of their work, but did not have a (shared) language 
to communicate these thoughts.  
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The vector concept is an important concept students are confronted with in their first year at 
university. To be able to build on students’ previous knowledge it is important to find out what they 
have learned about vectors from school. This study aims at exploring university freshmen’s personal 
concept definitions of a vector. We therefore analyzed common German school textbooks to find out 
how vectors are introduced and what conception of a vector students might have developed at school. 
In addition, we administered a short pretest in which students were asked what a vector is and to 
explain vector addition and its properties. We ascertained that freshmen stated a lot of individual 
concept definitions. The majority of students stated geometric ones, which were mostly not fully 
adequate, i.e. improperly formalized to be embedded into the theory of abstract vector spaces. 
Furthermore, various misconceptions were identified. 

Keywords: vector, concept definition, transition, textbook analysis. 

Introduction 
Many students face problems connected with the transition from school mathematics to university 
mathematics. To reduce students’ difficulties during this transition, the Ministry of Innovation, 
Science and Research initiated the Studifinder project. Part of this project are the studiVEMINT 
learning materials. We have developed these learning materials (which are an e-learning based 
bridging course for mathematics) at the University of Paderborn since 2014 (Colberg, Mai, Wilms, 
& Biehler, 2017). The development was completed in summer 2016, although quality assurance still 
takes place. Students can use the course for several purposes: to fill gaps in their mathematical school 
knowledge, or to get used to elaborated forms of school content. In any case a focus lies on accurate 
language and notions and a mathematical discourse based on the definitions introduced, as it is 
expected at university. 

An important concept students are confronted with at school and university (at a more abstract level) 
is the concept of vectors. In early 2016 we started the development of a chapter on vectors for the 
studiVEMINT learning materials by looking into school textbooks to explore how the concept could 
be introduced. While looking into many of these textbooks we observed the following: 

1. The formal definition – that is either geometric as an infinite set of arrows with the same 
direction and length or symbolic as a triple of real numbers – is often not referred to again in 
the chapters following the introduction of the vector concept. 

2. During the mathematical discourse related to vectors, several models (in the sense of Dörfler 
(2000)) of the concept are used without arguing about isomorphism. 

3. The symbols labeled as vectors and used are not always conceptually coherent with the 
axiomatic definition of a vector space. 



These observations led us to question which of the many representations of a vector that were labelled 
as vectors at school the students actually consider to be a vector. This question was examined by 
analyzing the common German school textbooks dealing with the vector concept and by 
administering a short test to university freshmen at the beginning of their university studies. The 
results are presented in this paper. 

Theoretical background 
Although every formalized mathematical concept has a precise definition, students need to give it a 
meaning by operating with the concept (maybe just mentally) in order to understand it. Tall and 
Vinner (1981) use the term concept image to describe all associations students may have acquired by 
operating with it. These include examples, counterexamples, visualizations as well as properties of 
the concept. In order to specify the concept with words it has a concept definition. This can either be 
the formal definition accepted by the mathematical community, or student’s reconstruction of a 
definition of the concept from their concept image (more precisely from the parts of the concept 
image that were activated during this reconstruction process, which Tall and Vinner (1981) call 
evoked concept image). In the latter case Tall and Vinner (1981) call it personal concept definition. 

The formal definitions of the vector concept the students might have learned at school are the 
following ones, which were discovered when analyzing German school textbooks: 

1. A vector is an infinite set of arrows with equal direction and length (Bigalke & Köhler, 2012; 
Bossek & Heinrich, 2007; Brandt & Reinelt, 2009; Weber & Zillmer, 2014). 

2. A vector is a triple of real numbers or a matrix with one row (Alpers et al., 2003; Artmann & 
Törner, 1984; Griesel, Andreas, & Suhr, 2012; Griesel & Postel, 1990).  

However, students’ personal concept definitions, which they reconstruct from their concept images, 
may differ depending on individual experiences with the concept. 

In the following we present for each of the two formal definitions of the vector concept, how they are 
introduced in German school textbooks and what possible personal concept definitions university 
freshmen might have, assuming these introductions formed their concept image at school from which 
they reconstructed their personal concept definitions. Then we discuss how the formal definitions are 
referred to further in the books when operating with vectors and how this might again influence the 
students’ concept definitions reconstructed from their evoked concept image. 

Analysis of books using the geometric definition of a vector  

The geometric definition as an infinite set of arrows with same length and direction is often motivated 
by translations (Bigalke & Köhler, 2012; Weber & Zillmer, 2014), and sometimes even defined by 
these (Brandt & Reinelt, 2009). The translations are then represented by arrows with the same length 
and direction. Afterwards, students are told that all of these arrows describe the same translation and 
can therefore be identified as the same object (e.g., see (Weber & Zillmer, 2014)). This path would 
lead to the adequate concept definition of a vector as an infinite set of arrows with equal length and 
direction (D1). However, this identification step is rather difficult as is denoted in the literature, and 
may result in the incomplete conception that a vector is considered as a single arrow (D2) (Malle, 
2005). The motivation of the formal geometric definition as a set of arrows with equal length and 
direction may also lead students to think that a vector is a translation. While a definition of a vector 



as a translation mapping operation on the whole plane is consistent with its formal concept, literature 
shows that translations are often understood as the motion of an object (Yanik, 2011). So the students 
might think of a vector as a translation of an object or translation of a point (D3). Yanik (2011) also 
found out that the connection between a vector and a translation is often not understood, and that 
many teacher students thought that a vector only gives the direction of a translation. This might lead 
to the following misconception: vector as direction indicator (D4).  

Besides using translations, some books also motivate arrows in space as a quantity characterized by 
length and direction in physical contexts like speed or force (Bossek & Heinrich, 2007; Weber & 
Zillmer, 2014). The recognition that two of these arrows can be considered as the same, since only 
the magnitude and direction matter (e.g., for the resulting movement of an object) leads to the 
adequate concept definition of a free vector, which is a quantity characterized by length and direction 
and represented by a free movable arrow (D5) (Watson, Spyrou, & Tall, 2003). But since forces are 
normally considered as dependent also on the point of origin (Watson et al., 2003), this approach can 
again lead students to the consideration that a vector is a single arrow (D2).  

The geometric definition requires not only a lot of effort in its introduction, it is also difficult to handle 
afterwards. In literature, this is denoted as a lack of operability of the definition (Bills & Tall, 1998). 
For example the geometric definition is difficult to handle when defining vector operations because 
for all operations the independence from the chosen representative of the vector has to be justified. 
In some books, this problem is discussed (Weber & Zillmer, 2014), others ignore it, and vectors are 
simply identified with arrows when defining vector operations geometrically (Bossek & Heinrich, 
2007). This can again lead to the conception of a vector as a single arrow (D2). Another option to 
deal with these difficulties is highlighted in Bigalke and Köhler (2012): the addition of vectors is 
defined via the addition of the components in the symbolic representation as an n-tuple (directly after 
its introduction) and from then on the geometric addition only serves as a visualization. This does not 
result in a misconception but becomes problematic when trying to embed the geometric vectors with 
operations defined between triples into the formal theory of vector spaces because in the formal theory 
the operations have to be defined on the set, whose elements will be the vectors if the axioms are 
satisfied. After the introduction of the vector operations and their properties, the definition as a set of 
arrows (or as a translation) is not referred to again (Bigalke & Köhler, 2012; Brandt & Reinelt, 2009; 
Weber & Zillmer, 2014). Instead, in the following chapters on analytical geometry, single arrows and 
their corresponding number triples are used to describe geometric objects. This can lead to a loose 
connection between the formal definition and students’ concept image from which they might deduce 
their own personal concept definition (Vinner, 2002). The resulting personal concept definitions in 
this case would be: vector as a single arrow (D1) or vector as a number triple (D6). 

In summary, if the vector concept was introduced geometrically as an infinite sets of arrows with 
equal length and direction, the following concept definitions can be expected: vector as an infinite 
set of arrows with the same length and direction (D1), vector as a single arrow (D2), vector as a 
translation of an object or translation of a point (D3), vector as direction indicator (D4), vector as a 
quantity characterized by length and direction (D5), or vector as a triple of numbers (D6). The 
personal concept definitions D1 and D6 correspond directly to possible formal definitions of the 
vector concept, D5 is also an adequate conception, in which the equivalence of arrows with equal 
length and direction is realized by independence from the space, D2 and D3 are incomplete concept 



definitions (D2 does not take into account that vectors are equivalence classes, D3 does not take into 
account that a translation is a mapping on the whole plane) and D4 is a misconception. 

Analysis of books using the symbolic definition of a vector as n-tuples  

The symbolic definition is often motivated geometrically by translations or arrows (Alpers et al., 
2003; Griesel et al., 2012) or as coordinates of the points in the space (Griesel & Postel, 1990). 
Sometimes the symbolic definition is introduced earlier in connection with the theory of systems of 
linear equations (Artmann & Törner, 1984). The symbolic definition of a vector has the advantage of 
allowing a flexible interpretation as a point or an arrow. This can avoid the discussion about the 
equivalence of arrows (e.g., see Alpers et al. (2003)). However, besides the already mentioned 
incomplete conception of a vector as a single arrow, this flexibility can lead to another inadequate 
conception: vector as a point (D7). The identification of vectors and points becomes problematic in 
higher mathematics, e.g., in the theory of affine spaces, in which they are considered different objects 
(Henn & Filler, 2015).  

The way the vector concept is introduced in Artmann and Törner (1984) can also lead to another 
adequate concept definition. Artmann and Törner (1984) restrict their visualizations of vectors on 
points and arrows starting at the origin. If students identify the number triples with these arrows 
starting at the origin, they might consider a vector as an arrow starting at the origin (D8). These 
arrows starting at the origin can serve as elements of a vector space (with suitable operations defined 
between them).Unlike the geometric definition of a vector as a set of arrows, the symbolic definition 
is operable when defining vector operations and justifying their properties like the commutative law. 
However, some books do not mention these properties explicitly (Alpers et al., 2003; Artmann & 
Törner, 1984; Griesel et al., 2012). One reason, which is also noted in literature, might be their self-
evidence (Harel, 2000). However, the symbolic definition can also be difficult to handle in the case 
of the definition of geometric concepts related to vectors such as the norm of a vector. Purely algebraic 
definitions of these concepts seem unnatural without further explanation (e.g., see Alpers et al. 
(2003)). Geometric definitions of these concepts on the other hand (e.g., see Griesel et al. (2012)), 
have the danger that the vector defined as a triple is again identified with just a single arrow, which 
is an at least incomplete vector conception. 

After the introduction of vector operations, the concept of a vector is mainly used in geometrical 
settings (describing lines and planes in the space). This might cause students to not identify vectors 
with the originally defined ‘triple’ but with its geometrical representations such as points (D4) or 
single arrows (D2) (students might reconstruct their personal concept definitions of vectors from 
these representations and not from the formal symbolic definitions).  

In summary, the symbolic approach can lead to two further personal concept definitions besides the 
intended definition of a vector as a triple (D6), which have not been mentioned yet: vector as a point 
(D7) or vector as an arrow starting at the origin (D8). The identification of symbolic vectors with 
arrows starting at the origin is not problematic because the latter ones can truly serve as objects, which 
the vector operations can be defined upon. The identification of vectors with points, however, can 
cause conflicts later in the theory of affine spaces, where these two objects have to be distinguished.  

  



Methodology of the empirical study  
Research question 

On entering university, what personal concept definition of the vector concept do students have? 

Data Collection 

In September 2016 a short test was administered to 103 university freshmen in a mathematics bridging 
course at the University of Paderborn. These students were either freshmen majoring in mathematics 
or in mathematics for teachers at grammar schools. The pretest consisted of three open questions: 

1. What is a vector?  

2. Explain how you add two vectors a  and b . 

3. Explain, why for all vectors a  and b  the following is valid: a b b a   . 

The first question was asked to identify what the students’ personal concept definition of a vector in 
the sense of Tall and Vinner (1981) is. We did not ask for a definition because we did not want the 
students to try to recall the formal definition they had learned at school, but rather to specify the 
concept in their own words. We also did not use the term “definition” because we suspected that 
many students might not be familiar with the term and therefore might get confused.  

The other two questions were asked to further analyze if the students used the defined objects to 
explain vector operations and their properties. This is important for a proper embedding of the old 
vector concept into the abstract notion of a vector space, which is a set with operations defined on its 
elements. However, this problem will be investigated later. 

Data Analysis 

The answers to the first question “What is a vector?” were categorized by using possible personal 
concept definitions deduced from the analysis of the textbooks (see theoretical background, categories 
D1,…, D8). Furthermore, four additional categories have been added. The first one, a vector as an 
element of a vector space was added before the analysis because, although this generalization is not 
taught at school, it may happen that some students had heard about it (e.g., in mathematical clubs at 
school). The other categories depict inadequate personal concept definitions that often showed up 
during the analysis: a vector as a line segment, a vector as a line and a category containing other 
inadequate concept definitions not yet mentioned.  

The whole typology of 12 categories is shown in Table 1. The first five categories can be considered 
adequate, which means that objects described in the definition can serve as concrete examples of 
vectors in a vector space (if suitable operations are defined on them) or if vectors are already 
considered as elements of vector spaces. Categories 6 and 7 contain incomplete concept definitions, 
categories 8 to l2 contain inadequate concept image definitions, which can be considered as 
misconceptions. 



 
Figure 1: Answer categories to the question “What is a vector?” 

Two of the authors separately coded the data from the questionnaire. The interrater-reliability 
coefficient, Cohen’s Kappa, was κ=0.803, which is good. Afterwards, they discussed the answers 
they had coded differently and agreed on a categorization. 

Results of the study 
The students’ personal concept definitions of the vector concept that were identified form the 
students’ answers to the question “What is a vector?” are shown in Figure 2. 

 
Figure 2: Students’ answers to the question “What is a vector?” (N=103) 

The bars of adequate personal concept definitions (which correspond roughly to possible formal 
concept definitions of models of the vector concept) are marked green, not fully adequate concept 
(i.e. they cannot be properly formalized or embedded into the abstract theory of vector space) 



definitions are marked yellow, inadequate concept definitions are marked red. As can be seen in figure 
2, the students had a variety of individual concept definitions of the vector concept when entering 
university. Most of them had a geometrical basis. However, in most cases these geometric concept 
definitions were either incomplete (the yellow bars, in which either the nature of a vector being an 
equivalence class was not mentioned or in which a vector was considered as a translation of points or 
objects and not as translations of the whole space) or inadequate (the red bars). Nevertheless, even 
the inadequate conceptions of a vector like “a direction”, “a connection between two points or a line 
segment” or “a point” have some properties of the adequate conceptions of vectors (e.g. if a vector is 
considered as a line segment, it has the property “finite length”, which is as basic property of the 
arrows, which represent a vector geometrically. 

Conclusion and outlook on possible further research 
Our study shows that the students have a variety of concept definitions of what a vector is when 
entering university. Thus we should keep in mind that freshmen do not come to university with a 
shared idea on what a vector is. The majority of students stated geometric definitions which were 
mostly inadequate definitions in the sense that they cannot be properly formalized or embedded into 
the common definition of a vector in mathematics. This indicates that it is difficult for students to 
fully grasp the concept of a vector. However, many students seemed to be familiar with the symbolic 
definition of a vector as an n-tuple and that it can be interpreted in manifold representations. This 
property of the n-tuple approach seems very appealing. Dealing consistently with equivalence classes 
including the independence from the chosen representative can be circumvented with this approach. 
Hence, we chose this approach for the studiVEMINT course. We utilized the connection between the 
symbolic and geometric representations as often as possible. However, we avoided using the 
geometric representations while introducing the mathematical discourse on vectors that we wanted to 
be consistent with the provided definition (Sfard, 2000), similar to what is required from the students 
in their upcoming lectures about linear algebra.  

For further research we will look into the students’ answers to questions 2 and 3 more thoroughly 
with a more elaborated theoretical framework. We also intend to do a follow-up study to investigate 
the influence that the linear algebra course achieved on students at the end of the currently ongoing 
winter term 2016/17. Including a semiotic point of view and an analysis of textbooks from school as 
well as the introduction of vectors within the linear algebra course will improve the theoretical 
framework and provide further insights. 
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This paper reports on part of a study regarding student learning-experiences and affective pathways 
in undergraduate calculus tutorials. The following question is pursued in this paper: How do the 
students’ key affective states relate to the type of mathematical discourse conducted in class? We 
present and discuss two lessons where two similar problems were considered. The lessons were filmed 
and followed by stimulated recall interviews with nine students. Though the students in both lessons 
did not understand the solution to the challenging problem, they evaluated the lessons and subsequent 
learning experiences very differently. We suggest the difference was related to the type of discourse 
employed by the instructor. The lesson that evoked a negative reaction utilized only an object-level 
discourse. The lesson that evoked a positive reaction additionally utilized a meta-level discourse. We 
will call this heuristic-didactic discourse. Implications are drawn.   

Keywords: Undergraduate calculus, emotional states, key affective events, discourse. 

Introduction 
Emotions have long been recognized to take an integral part in mathematical problem-solving 
activities, especially when coping with non-routine problems. However, relatively little is known on 
the role emotion plays in undergraduate student learning, and even more so in context of frontal 
tutorials. This paper is part of a wider research investigating student emotion and learning-
experiences fostered by problem-solving explanations in calculus tutorials. In this paper we present 
and discuss 2 cases. The first case, which is at the focus of this paper, consists of students regarding 
a lesson containing a highly challenging problem rather positively, whilst not fully understanding the 
solution. Our interest in this case lies in the generally positive attitude towards this part of the lesson, 
accompanied by students admitting that key parts of the proof were incomprehensible, and showing 
disbelief in their ability to solve such problems on their own. This lesson will henceforth be referred 
to as Lesson-P (positive student attitude). Lesson-P especially stood out when juxtaposed with a 
lesson containing a similar challenging problem also not understood by students, yet their lack of 
understanding was accompanied by negative emotions of anger and frustration. This lesson will be 
briefly presented in the paper as a contrastive background and referred to as Lesson-N (negative 
student attitude). Thus, we were faced with the following question: how can it be that the students of 
Lesson-P described their learning experience in a rather positive manner, though not fully 
understanding the solution? 

Theoretical background 
Frontal teaching style of undergraduate mathematics 

Undergraduate mathematics courses are typically comprised of lectures and tutorials. This paper 
focuses on large-group tutorials, which are lessons that present problems accompanying the 
theoretical material (presented in the lectures), and are taught in a traditional-frontal style (Marmur 



& Koichu, 2016). The common practice of the frontal teaching style (henceforth referred to as FTS) 
in undergraduate mathematics education possesses pros and cons. On the one hand, there is evidence 
that FTS can be effective in modeling mathematical reasoning for students by “conceptual scaffolding 
through demonstration and worked examples” (Pritchard, 2010, p. 611). This modeling can be 
motivational to students, particularly when exposing the struggle that precedes the reaching of a 
solution (Pritchard, 2010). On the other hand, it has been argued that FTS at university level consists 
of a one-directional communication based on transmitting information (Biggs & Tang, 2011) and 
treating the students as “non-emotional audience” who are granted no room for individual difficulties 
(Alsina, 2002, pp. 5-6). It is not our intention to either support or oppose these claims. Rather, we 
recognize that FTS is widespread and will most likely not disappear in the near future. Therefore, it 
is vital to gain a better understanding of how students learn in this environment in order to be able to 
improve the system from “within”, theoretically and practically, by identifying learning opportunities 
for students within the FTS paradigm. Lectures and tutorials comprise however only a certain 
percentage of the total time spent on an undergraduate mathematics course by students, and they are 
generally expected to spend many additional hours studying independently. Consequently, when we 
discuss the need to recognize and identify learning opportunities presented in the classroom, we mean 
not only those aspects related to the learning process in class, but also the aspects that support the 
learning that continues outside the classroom. 

Emotions, learning, and discourse in the undergraduate classroom 

In this paper we utilize Goldin’s theory of local affect. Goldin (2000) defines emotional states as “the 
rapidly changing (and possibly very subtle) states of feeling that occur during problem solving” (p. 
210). Affective pathways are regarded as a sequence of emotional states, and are linked by Goldin to 
mathematical cognition and heuristic processes students utilize at different stages of mathematical 
problem solving. Specifically, we choose to focus on what Goldin (2014) refers to as key affective 
events during mathematics learning, i.e., events “where strong emotion or change in emotion is 
expressed or inferred” (p. 404). Weber (2008) claims that emotional states may have a substantial 
impact on a student’s failure or success in a high-level calculus course. In his paper, Weber 
demonstrates how a single and strong positive experience of success may alter a student’s attitude 
and type of engagement with the material for the continuation of the course. Marmur and Koichu 
(2016) illustrate that also in a single lesson the creation of strong emotional experiences for students 
may significantly influence their level of focus, attention, and involvement in class.    

Student emotions are examined in this paper in relation to the discourse led by the instructor in class. 
Theoretically, Evans, Morgan, and Tsatsaroni (2006) link emotions with discourse by regarding 
emotions as a “socially organised phenomena which are constituted in discourse” (p. 209). According 
to Sfard (2008), learning is perceived as a change in the mathematical discourse, while distinguishing 
between a discourse on mathematical objects, called object-level discourse, and a “discourse about 
this discourse” (p. 300), referred to as meta-level discourse. In relation to the FTS, the focus on the 
instructor’s discourse finds additional support in Sfard’s (2014) claim that this teaching style allows 
an expert to teach students how to “talk mathematics” and thus promote student learning through their 
introduction to a new mathematical discourse (p. 201).  



Research question 
The study reported on in this paper is part of a broader research on the link between student emotions 
and learning during calculus tutorials. This broader research focuses on characterizing classroom 
events students respond to during calculus tutorials, students’ affective pathways and learning 
experiences during tutorials, and classroom learning-opportunities as reflected by the students’ own 
point of view. This paper addresses these issues by concentrating on the following question: How do 
students’ key affective states relate to the type of mathematical discourse conducted in class? 

Method 
Context and participants  

The two lessons reported on in this paper were of two separate tutorial groups that were part of the 
same second-semester calculus course. The course was highly demanding and challenging, and was 
attended by students from the computer science faculty. Both lessons were attended by approximately 
50 students. The instructors (henceforth referred to as Instructor-P and Instructor-N) were both 
experienced instructors with a good reputation at the university. 

The problems  

Lesson-P took place during the second half of the semester and was regarding the topic of the two-
variable Riemann integral. For this lesson the students were asked to prove that the function below is 
Riemann integrable in two variables on [0, 1] × [0, 1] (and the value of the integral is 0). 

𝑓(𝑥, 𝑦) = {
1

𝑞
 , 𝑥 ∈ ℚ 𝑎𝑛𝑑 𝑦 = 𝑝

𝑞
∈ ℚ, 𝑝

𝑞
 𝑖𝑛 𝑙𝑜𝑤𝑒𝑠𝑡 𝑡𝑒𝑟𝑚𝑠, 𝑞 > 0

0 , 𝑥 ∉ ℚ 𝑜𝑟 𝑦 ∉ ℚ
Lesson-N took place during the first 

half of the semester and was regarding the one-variable Riemann integral. The problem of interest 
was to prove that the “popcorn function” below (also known as “Riemann’s function”) is Riemann 
integrable on [0, 1] (and the value of the integral is 0). 

𝑓(𝑥) = {
1

𝑞
 , 𝑥 = 𝑝

𝑞
∈ ℚ, 𝑝

𝑞
 𝑖𝑛 𝑙𝑜𝑤𝑒𝑠𝑡 𝑡𝑒𝑟𝑚𝑠, 𝑞 > 0

0 , 𝑥 ∉ ℚ
Both instructors referred to the definition of a 

Riemann-integrable function. The problem in Lesson-P was planned as a follow-up two-variable 
version of the “popcorn function”. 

Data collection and analysis 

Both lessons were filmed by the first author of this paper who also took notes during the lessons. 
Subsequently, individual stimulated-recall interviews were conducted with nine volunteering 
students: five on Lesson-P and four on Lesson-N, each student participated in only one of the two 
lessons. The interviews were conducted over a nine-day period after the lessons. Stimulated recall 
was the chosen methodology as it presents a non-intrusive method to help students “relive” the lesson 
and reflect upon their thought processes during its course (Calderhead, 1981). During the interviews, 
the students were presented with an approximately 20-minute video excerpt of the filmed lesson in 
which the problem of interest was taught. They were explained that the video served as a tool to help 
them “relive” the lesson, and were instructed to stop the playback whenever they had a particular 
recollection of what they thought or felt at that moment.  During this part of the interview the 
interviewer occasionally asked clarifying questions, mainly in the form of “can you explain why you 



thought/felt this way at that specific moment?” After watching the filmed episode, the students were 
asked follow-up questions regarding the problem, lesson, and course, the main ones being: a) Was 
the problem memorable for you, and if so, in what way? b) What were you pleased and displeased 
with during the lesson? and c) What is your general attitude towards the course? The interviews were 
audio-recorded and ranged in length from 40 to 65 minutes, depending on the level of detail shared 
by the student. 

For the data analysis we utilized a “general inductive approach” (Thomas, 2006) that allowed us to 
coordinate the raw data into a brief summary that addresses and explains the “underlying structure of 
experiences or processes” (p. 238) most apparent in the data. The goal of the analysis was to identify: 
1) students’ key affective states as indicators of potential-learning or obstacle-for-learning episodes; 
and 2) types of mathematical discourse in the classroom. Specifically, we focused on: 1) episodes 
where all students stopped the video to reflect on the lesson; and 2) repeated statements or themes 
(whether within a specific interview or between interviews). Subsequently, we continued with a 
recursive process of going back and forth between the video observations and the student interviews 
in order to refine our conclusions. Although students were asked in each interview to express their 
emotional states during the lesson itself, it should be recognized that the accounts shared by the 
students might have been of their emotions during the interview. However, we considered this issue 
as a point of strength for the research, rather than a limitation. Such a selective recollection of 
emotions may shed light on the process, addressed by Goldin (2014), of how in-the-moment 
emotional states transform into longer-term attitudes and beliefs, and on how this process shapes the 
mathematical learning. Accordingly, while adopting Goldin’s (2014) terminology of “key affective 
events”, and in line with Marmur and Koichu (2016), we regarded: a) the most memorable emotional 
states of students as key emotional states that shape their overall learning experience; and b) student 
expressions of strong emotions as indicators of potential-learning or obstacle-for-learning episodes 
in class.  

Findings 
Due to the scope limitations of this paper, in the Findings section we will focus on: a) the instructional 
episodes most prominently addressed in the student interviews; and b) student thoughts and emotions 
regarding these episodes. Additionally, the Findings section will predominantly focus on Lesson-P 
as the main explored phenomenon, utilizing Lesson-N as a contrastive background to illustrate and 
emphasize certain aspects of the findings. 

Lesson-P 

After having presented the problem to the students, Instructor-P said: “Let us first try to understand 
what’s going on here. [...] I want us to make some observations.” The instructor reminded the students 
of the one-variable Riemann (popcorn) function, after which the following 10 minutes were focused 
on what was titled on the board as “Observation” and “Observation no.  2”.  The first “Observation” 
entailed that for a fixed 𝑥 we get ∫ 𝑓(𝑥, 𝑦)𝑑𝑦 = 0

1

0
 and therefore the following iterated integral equals 

zero: ∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑦
1

0
) 𝑑𝑥 = 0

1

0
. After having written the title “Observation no. 2”, Instructor-P asked 

the students: “What happens if I fix 𝑦?” The students participated in the discussion regarding a fixed 

𝑦 ∉ ℚ and a fixed 𝑦 ∈ ℚ, the latter giving the Dirichlet function 𝐷(𝑥) = {
1

𝑞
 , 𝑥 ∈ ℚ

0 , 𝑥 ∉ ℚ
. This led to the 



conclusion that the integral ∫ 𝑓(𝑥, 𝑦)𝑑𝑥
1

0
 does not exist and therefore it is impossible to calculate the 

(opposite-direction) iterated integral ∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑥
1

0
) 𝑑𝑦

1

0
. 

These observations led the class to two conclusions regarding the function: 1) Its double integral 
exists, yet the iterated integral (in one of the directions) does not; 2) It demonstrates the necessity of 
the continuity assumption in Fubini’s theorem which allows us to calculate the double integral 
∬ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦, 𝐷 = [0,1] × [0,1]

𝐷
, as the iterated integral ∫ (∫ 𝑓(𝑥, 𝑦)𝑑𝑥

1

0
) 𝑑𝑦

1

0
. These conclusions 

were in fact surprising for the students, as conveyed in their interviews. It was only then that the 
instructor admitted that everything discussed so far “does not yet answer our problem”. At that point 
he wrote: ‘So how do we solve?’, and said: “In such a case we need to follow the definition.” 

We interpreted the students’ general attitudes towards that part of the lesson dealing with this 
problem, as rather positive in the following manner. At different levels of explicitness, all students 
claimed that the lesson and teaching were good, while mainly pointing at the problem presented 
above. For example, even before knowing what the interview was about exactly, Student A said: 
“You came to a very special lesson […] The instructor chose a non-standard problem [the discussed 
one] to convey his messages. I really loved it”. Student B said: “You came to a good lesson, really!”, 
and referred to the discussed problem as “the problem” of the lesson (emphasis in intonation). Student 
C said: “The lesson was interesting. The lesson was clear. The first function [the discussed problem] 
was different and new.” Students A, C, and D called the problem beautiful. Students D and E claimed 
the problem was good since it prepared them for similar problems that may appear in the exam. 
However, all students admitted the problem was difficult and challenging, and the unexpected 
impression we got was that the students did not fully understand the solution, nor expressed 
confidence in their abilities to solve similar problems independently. For example: Student A 
admitted that a key line in the (actual) solution seemed to him like gibberish; Student C found the 
same line to be full of incomprehensible transitions which she referred to as “jumps”; Student B 
referred to the same line with: “What??? He said it, so it is probably true”, and later in the interview 
admitted: “If this problem was in the exam, I wouldn’t have succeeded solving it”; and Student E 
hoped such a problem would not appear in the exam and hoped the lecturer did not have such a “dark 
heart”. However, these statements were not accompanied by any explicit expressions conveying 
negative emotions. Additionally, such statements barely appeared in other parts of the interviews, and 
did not even appear at all when the students were explicitly asked what they were displeased with 
during the lesson. 

It is towards the opening “observations” part of the lesson that the students mainly expressed positive 
opinions on what had happened. Additionally, all students claimed that even though the 
“observations” part was not directly utilized in the actual solution, it was nonetheless an indispensable 
part in support of their learning. They supplied us with a variety of reasons: it exposed the thinking 
process of how to reach a solution; it allowed time to think about the problem; it included a counter-
example for claims they thought were true; it imitated what they would actually do if they were to 
start solving the problem on their own (i.e., try to calculate the iterated integral); it helped them 
understand the problem through step-by-step analysis; it gave room for “mathematical play” where 
the goal was not merely to solve a problem; and it demonstrated that even if an attempt for a solution 
did not succeed, they should just try again in a different way. Some students clearly linked their 



positive attitude with the following didactic aspect of the mathematical discourse led by the instructor 
in class. Student A shared that he really loved the approach taken by Instructor-P during the 
“observations” part. The student described that the instructor put himself in the position of a student, 
approaching the problem through their eyes, and instead of immediately solving the problem because 
he was already familiar with the solution, he started “playing” with it with the aim of seeing where 
this will lead them. A supportive angle is given by Student D who said that during the lesson 
Instructor-P really tried to give the impression that he did not already know the answer, but rather 
was trying to solve the problem with them. She said that only once she was convinced he was not 
“fooling” them, she started thinking with him. The instructor, however, was indeed familiar with the 
solution, and Student D admitted that only when watching the lesson again during the interview, 
she realized how planned and structured the lesson was. 

Lesson-N 

After having written what needs to be proven according to the definition of a Riemann integrable 
function, Instructor-N told the students: “At the beginning you may experience some lack of 
understanding. Once we reach the end [of the solution] you’ll understand where I took the numbers 
from that initially might have looked a bit weird.” Then he wrote the following:  Choose 𝑛0 such that 
1

𝑛0
<𝜖

2
. This is a key moment where all 4 interviewed students stopped the video and expressed similar 

thoughts and strong dissatisfactions. The main criticism the students conveyed is expressed in the 
following interview excerpt: “It really bothers me that he reads the solution by the order of the proof 
and not by the order of how you think about the proof. [...] At the end it all works out. But it doesn’t 
help me with how to solve a problem.” The student then continues while expressing her anger: “It 
really pissed me off.  He pulls the answer out of a hat, and I don’t know how he got to it.” 

These negative opinions towards the lesson, while pinpointing the underlying reason to the key 
moment presented above, continued and repeated throughout all interviews. The students claimed 
that also at the end of the lesson they did not understand the solution, and that the promise made by 
the instructor at the beginning was left unfulfilled.  

Discussion 
While the case of Lesson-N demonstrates that students can possess negative emotions towards a 
solution they did not understand, the case of Lesson-P, containing a similar problem, demonstrates 
that a lack of understanding can still be accompanied by positive student emotions. Both lessons 
contained episodes focused on the solving of a challenging problem, which we suggest to regard as 
an object-level type of discourse. However, the positive emotions in Lesson-P were mainly directed 
towards that part of the lesson focused on how to approach a challenging problem, which we regard 
as a meta-level type of discourse. While other explanations for the students’ positive attitude towards 
Lesson-P are certainly possible, our interpretation is based on what we found to be most prominently 
conveyed by students during the interviews. Furthermore, we suggest that not only did students 
appreciate this meta-level discourse, as expressed in their interviews, but that this discourse may have 
also had a neutralizing effect on the potential negative emotions related to not understanding the 
solution.  

The meta-level discourse in Lesson-P revealed a heuristic approach on how to tackle a challenging 
problem. On the one hand, the discourse was planned and monitored from an expert’s point of view, 



which may be viewed as a teacher’s learning goal (Simon, 1995) that did not coincide with the 
declared main goal of solving the problem. In the case of Lesson-P, the “observations” part did not 
constitute a directionless exploration, but rather led to the conclusions mentioned in the findings. On 
the other hand, as also regarded by the students themselves, the discourse was led by the instructor 
through a student’s point of view, considering students’ cognitive and affective needs, their ways of 
thinking, their assumed misconceptions, and the steps they would most likely take. We call such a 
discourse, presenting heuristics monitored from an expert’s point of view yet derived from a student’s 
point of view, a heuristic-didactic discourse. In the case of Lesson-P, the heuristic aspect of the 
discourse may be viewed in line with what Featherstone (2000) refers to as “mathematical play”, 
which puts emphasis on the act of exploring rather than solving, and may support the creation of a 
zone of proximal development, giving guidance to the learning student. The didactic aspect of the 
discourse may be viewed in line with what Jaworski (2002) refers to as “harmony” between 
“mathematical challenge” and “sensitivity to students” (both their cognitive and affective needs) in 
order to help students make mathematical progress. This is one example of a heuristic-didactic type 
of discourse, and we call for further research on characterizing different types of heuristic-didactic 
discourses in the undergraduate classroom. 

In practice, the presented study suggests that university students wish for a more heuristic-didactic 
discourse to be held in the undergraduate mathematics classroom. In simple terms this means that it 
is necessary for students to get “tools” on how to approach a challenging problem on their own. In 
the presented lessons, not only were students satisfied when a heuristic-didactic discourse took place, 
students also showed strong emotional responses of anger and frustration when this need was not 
fulfilled. Furthermore, even though Lesson-P could have been improved by the students also 
understanding the solution better, it clearly demonstrated that the learning induced by the heuristic-
didactic discourse was perceived by the students as the most valuable kind of learning, even at the 
expense of not fully understanding a solution. Sfard (2008) regards meta-level learning as a change 
in meta-rules of the discourse, while claiming that this change is not likely to be initiated by students 
on their own. Accordingly, meta-level discourse in class may serve as an initial point of aid for 
students to continue a meta-level learning-process at home. All this implies that lecturers and 
instructors should consider paying more didactic attention in revealing to students how they came up 
with their solutions and proofs. This learning-opportunity may be implemented in the common 
undergraduate frontal teaching style and could supply valuable tools for the learning process that the 
students are required to continue independently. 
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We report on an analysis of ‘decision points’ that occurred during first year undergraduate calculus 
lectures. We analysed 135 accounts written by three lecturers concerning their own teaching; these 
accounts were written during a professional development project on employing the Discipline of 
Noticing (Mason, 2002). We classified the decision points in these accounts into eight categories. 
Furthermore, the triggers of these moments were identified and classified into seven categories; of 
these, the majority (58.2%) arose as a result of the lecturer monitoring either her own practice or the 
students’ engagement. 

Keywords: Teacher noticing, decision points, mathematics lecture, university mathematics.  

Introduction 
Today I was happy with my ‘performance’ from a teacher-centred perspective as the lecture 
evolved: I felt I was coherent, explained and connected ideas well, used multiple representations 
of concepts and built on students’ prior knowledge, However, I realised more than halfway through 
the class that my lecture was just that – very teacher-centred! I tried to rectify this but was not 
happy that my attempts were successful. (Lecturer C) 

Lecturer C speaks about a tension inherent in large-group mathematics lectures between teacher-
centered and student-centered methodologies, and this is probably familiar to anyone who has taught 
such a course. It also highlights the dilemma that faces a lecturer when it occurs to her mid-way 
through a lecture that she might deviate from her original plan. The change of plan can feel like a 
risky strategy, especially when working with very large groups of students; however research on 
mathematics teaching at school level indicates that rich learning opportunities can arise from 
decisions to change direction (Rowland and Zaskis, 2013). It is important then, that lecturers are 
aware of opportunities that present themselves, for the simple reason that the quote in the title, 
borrowed from Schoenfeld (2011, p. 228), suggests. It is also important that lecturers develop the 
skills to take advantage of these opportunities as they arise. In this paper, we explore the opportunities 
to make decisions that might arise in a mathematics lecture; we have named instances when a non-
trivial choice between alternative courses of action could be taken ‘decision points’.  

The Discipline of Noticing developed by Mason (2002) consists of “a collection of practices which 
together can enhance sensitivity to notice opportunities to act freshly in the future” (p. 59). Mason 
notes that practitioners, of necessity, form habits in order to deal with issues that arise in their 
everyday practice. The practices described by Mason provide educators with techniques to assist them 
in developing the dual abilities to notice key events in the classroom, and secondly to have possible 
actions come to mind in-the-moment in order to respond to these in non-habitual ways. 



Mason (2002, pp. 33-34) distinguishes between levels of noticing, from ordinary-noticing, through 
to marking, and finally recording. “Ordinary-noticing” is where a person’s memory of something can 
be jogged if another person remarks upon it; “marking” is where someone has taken sufficient notice 
of something to “re-mark” upon it at a later stage; and, finally, “recording” is where one records or 
makes a note of something one has noticed, usually in writing. To do the latter, Mason (2002, p. 46) 
advocates the practice of writing “brief-but-vivid accounts”. These are brief notes which give an 
“account-of” an incident, rather than an “account for” as Mason explains: 

To account-for something is to offer interpretation, explanation, value-judgement, justification, or 
criticism. To give an account-of is to describe or define something in terms that others who were 
present (or who might have been present) can recognize. (p. 41) 

The data for this paper comes from a set of brief-but-vivid accounts written by the three authors on 
incidents that occurred during teaching over a two-year period when they took part in a project aimed 
at using the Discipline of Noticing to study their own teaching (see Breen, McCluskey, Meehan, 
O’Donovan & O’Shea (2014) for more details). 

In this paper we will present an analysis of the accounts which relate to large-group teaching of first 
year modules; in particular we will endeavour to answer the questions: What types of decision points 
can occur during a mathematics lecture? What triggers these decision points? 

Literature review 
Teacher noticing has been receiving attention in the research literature recently, see for example the 
research studies included in the book edited by Sherin, Jacobs & Philipp (2011). In presenting an 
overview of these studies, the editors observe that while the conceptualisation of teacher noticing may 
vary, it is generally considered as consisting of one or both of two main processes. The first process, 
“attending to particular events in an instructional setting” (p. 5), relates to where the teacher does 
(and does not) place her attention in the classroom setting. The second process they describe as 
“making sense of events in an instructional setting” (p. 5) and note that some researchers 
conceptualise this process only as “interpreting” (p. 9) what is noticed, while others view it as “both 
interpreting and deciding how to respond” (p. 9). 

Instances when a choice presents itself during teaching are labeled “contingent moments” by 
Rowland, Huckstep, and Thwaites (2005) in their work on the Knowledge Quartet. At these moments 
teachers have to think on their feet and possibly deviate from the planned lesson. Rowland, Thwaites 
and Jared (2015) identified three types of triggers of contingent moments in their study of 
mathematics teaching: responding to student ideas; teacher insight; and, responding to the availability 
of tools and resources. Teachers may deal with the first trigger in one of three ways: ignore; 
acknowledge but put aside; acknowledge and incorporate (Rowland and Zaskis, 2013).  

Schoenfeld (2010) has developed a theory to explain what influences the decisions an individual 
makes when carrying out a particular task. He has applied his theory in particular to decision-making 
in mathematics classrooms. He proposes that decisions a teacher makes while teaching are a function 
of her resources, orientations and goals. Although “resources” is a broad term, Schoenfeld classifies 
the knowledge that a teacher possesses as being a key component of the resources she brings to the 
classroom. He uses “orientations” to encompasses one’s “dispositions, beliefs, values, tastes, and 



preferences” (p. 29). And while the term “goal” is self-evident, Schoenfeld notes that an individual 
may pursue a particular goal “simply in the service of other goals” (p. 20). 

Most of the research studies discussed above in relation to noticing, contingent moments, or decision-
making in the classroom have been conducted at the school level. An exception is the work of Barton, 
Oates, Paterson, and Thomas (2015) and colleagues in New Zealand who use Schoenfeld’s (2010) 
theory to discuss taped video excerpts from participating mathematicians’ and mathematics 
educators’ lectures as a means of engaging in professional development on teaching practice. 
However in terms of noticing and the occurrence of decision points in lectures, there is little research. 
Indeed to many it might seem like traditional lectures provide few opportunities for contingency. 
However McAlpine, Weston, Beauchamp, Wiseman and Beauchamp (1999) report on a study of 
monitoring of student cues by university lecturers. The lecturers in this study were found to attend to 
four types of cues: student written, student verbal, student non-verbal, student state. McAlpine et al. 
(1999, p. 117) posit that the lecturers had a corridor of tolerance for these cues and a decision to 
change practice was only taken when the cue lay outside of this corridor. In contrast to the work of 
both Schoenfeld (2010) and McAlpine et al. (1999), we focus here on the opportunities for decision-
making that arise in lectures rather than the process of decision-making itself. 

Methodology 
The authors are lecturers of mathematics at three different universities in Ireland. Each has a doctorate 
in mathematics or applied mathematics and has a minimum of fifteen years’ experience of teaching 
mathematics at the tertiary level. Between them they have taught mathematics classes from first year 
undergraduate through to postgraduate level, and have experience of teaching students in class sizes 
ranging from single figures up to a few hundred students. In 2010/11, along with two other colleagues, 
they embarked on a project aimed at reflecting on their teaching using the ideas and philosophy 
described by Mason (2002). As part of this process, over the course of two years, they engaged in 
writing brief-but-vivid accounts of incidents or moments that occurred in relation to their teaching. 
See Breen et al. (2014) for further details.  

The accounts of all five members of the group were collected and a general inductive approach 
(Thomas, 2006) was used to identify themes in a sample of the accounts. We noticed that many 
accounts described instances where the lecturer was faced with a decision about what to do next, or, 
instances where an opportunity to make a decision that might change the course of the lecture or 
discussion was implicit. We labeled these moments decision points (DPs). In order to focus 
specifically on these moments, all accounts that did not specifically deal with lecturing were removed. 
The first and second authors (AOS and MM) independently analysed all the accounts to both identify 
and code the DPs. After some discussion they agreed on the identification of DPs and the codes 
assigned. In addition, AOS identified the triggers. Then all five members worked through all the 
accounts to confirm their agreement or express disagreement with the DPs and triggers identified and 
the codes assigned. By the end of this process, the group had reached a consensus. AOS then grouped 
the codes into categories, and the third author (SB) examined these for consistency. In some of the 
accounts, the action taken by the lecturer as a result of a DP was recorded, however we will not 
discuss the identification or classification of these here. 



In this paper we present findings on the DPs and triggers from accounts written by each of the three 
authors while lecturing a first year mathematics class. In total there were 135 accounts with 141 DPs 
identified, as some accounts contained more than one DP. These DPS were classified into 8 
categories. In order to provide a context for the accounts, we note that Lecturer A taught Calculus to 
a group of approximately 200 students consisting of both mathematics and finance students in the 
first semester of both 2010/11 and 2011/12. Lecturer B taught mathematics to a group of over 200 
first-year business students in the first semester of both 2011/12 and 2012/13, while Lecturer C taught 
Calculus to a first year class of approximately 50 mathematics students for the duration of the 
academic years 2010/11 and 2011/12. The format for each course consisted of either 2-3 lectures per 
week given by the lecturer, to which all students were required to attend.  

While all three lecturers engaged in what might be considered lecturing - that is, the lecturer speaks 
to the whole class, and perhaps writes on a projector or board while the class is expected to remain 
silent - they also engaged in initiatives aimed at increasing student participation. These fall into two 
categories – whole class question or discussion and class activity. The former relates to where the 
lecturer asks the whole class a question or attempts to conduct a whole-class discussion, while by 
class activity we mean an activity that students are expected to engage in during class, usually in 
small groups. As a final part of the analysis MM classified each account containing a DP as occurring 
in either Setting 1 (S1) – lecturing; Setting 2 (S2) – whole-class question or discussion; and, Setting 
3 (S3) – class activity. We now present the findings. 

  Lecturer A Lecturer B Lecturer C Total 

 Decision Points S1 S2 S3 S1 S2 S3 S1 S2 S3  

DP1 How to engage students? 5 0 3 1 0 0 4 2 0 15 

DP2 
How to respond to students’ 
questions, answers, or 
comments? 

8 0 1 0 4 0 3 0 3 19 

DP3 How to ask questions to gather 
information? 

4 0 2 1 0 0 1 1 1 10 

DP4 How to deal with disruption? 1 0 0 18 1 1 2 1 0 24 

DP5 How to conduct class activity 
or discussion? 

0 0 3 0 2 0 2 2 7 16 

DP6 How to deal with students’ 
mathematical difficulties? 

4 0 2 0 17 0 1 7 5 36 

DP7 What to do next in the lecture? 5 0 0 1 2 0 4 3 2 17 

DP8 Other 1 0 0 2 1 0 0 0 0 4 

 Total 28 0 11 23 27 1 17 16 18 141 

Table 1: Decision Points by Lecturer and Setting 

Findings 
In Table 1 we present the categories of DP with frequency by lecturer and setting. Lecturer A mainly 
wrote accounts about S1 and S3, Lecturer B about S1 and S2, while Lecturer C wrote about all three. 



This is perhaps not surprising as she had a much smaller class. Over a quarter of all DPs identified 
belongs to the category “How to deal with students’ mathematical difficulties?” (DP6, n=36, 25.5%). 
It is noteworthy that 31 of these occurred in Settings 2 and 3. The next largest category of DPs is 
“How to deal with disruption?” (DP4, n=24, 17.0%) with three-quarters of these attributed to Lecturer 
B in the lecture setting. The third largest category is “How to respond to students’ questions, answers 
or comments?” (DP2, n=19, 13.4%) and while these DPs may be expected to occur in Settings 2 and 
3, it is interesting to note that just under half are attributable to Lecturer A in the lecture setting. The 
category “What to do next in the lecture?” (DP7, n=17, 12.0%) contains DPs relating to opportunities 
for decisions that present themselves when moving from a whole-class question/discussion or class 
activity, back to the lecture setting. Four of the DPs did not seem to fit in any of the categories 
identified and were grouped as “other”.  

Each DP was found to have an associated trigger and in Table 2 we present the categories of triggers 
with frequency by lecturer and setting.  

  Lecturer A Lecturer B Lecturer C Total 

 Triggers S1 S2 S3 S1 S2 S3 S1 S2 S3  

T1 Lecturer monitors aims/goals 3 0 1 1 0 0 2 1 3 11 

T2 Lecturer monitors practice 6 0 1 2 1 0 3 1 0 14 

T3 Lecturer monitors student 
nonverbal 

9 0 0 0 5 1 8 4 0 27 

T4 Lecturer monitors absence of 
student verbal  

0 0 6 0 0 0 0 0 4 10 

T5 Lecturer monitors disruptive 
behavior 

1 0 0 18 0 0 0 1 0 20 

T6 Student question or comment or 
answer 

8 0 3 2 19 0 6 9 9 56 

T7 Other 1 0 0 2 0 0 0 0 0 3 

 Total 28 0 11 25 25 1 19 16 16 141 

Table 2: Triggers by Lecturer and Setting 

The first five triggers listed in Table 2 (T1-T5) are as a consequence of the lecturer monitoring her 
aims/goals for the class, her practice, what the students were (not) doing, which students were not 
answering questions or contributing, and student behaviour. These account for 58.2% of triggers 
identified. In terms of the triggers identified when the lecturer monitored students (T3-T5) there are 
some similarities between the cues identified in McAlpine et al. (1999) and those described in the 
accounts relating to these triggers. The category labeled “Student question or comment or answer” 
(TP6, n=56, 39.7%) contains student-initiated triggers and is the largest of the trigger categories. The 
“Other” category relates to triggers that are neither lecturer- nor student-initiated and relate to issues 
such as a cold room or poor attendance due to bad weather. These findings are similar to those of 
Rowland et al. (2015) who in their study classified triggers of contingent moments as emanating from 
the teacher, the students, or resources and tools, with the latter category accounting for far fewer 
triggers than the first two. Exploring links between DPs and triggers, not surprisingly almost all DPs 



categorized as DP2 (18/19) and most of those as DP6 (29/36) arose from T6 triggers. Over half of 
DP3 and most of DP4 (20/24) resulted from T1 and T5 triggers respectively. 

We now present some examples of accounts featuring DPs and associated triggers that occurred in 
the lecture setting. We note that the account by Lecturer C at the start of the paper is an example of 
a lecturer attempting to make her lecture more student-centred in order to engage students (DP1) as 
a consequence of monitoring her practice (T2). In the following account by Lecturer A, the trigger 
for the decision point about how to engage students (DP1) is the lecturer monitoring what the 
students are (not) doing (T3) while she is lecturing. 

I continued the introduction to limits today. I was doing a lot of talking and I realized that people 
weren’t taking anything down. I tried writing more explanations on the pictures I was drawing, so 
hopefully it will make more sense when they look at it again. (Lecturer A) 

Similarly the account by Lecturer C describes how noticing students’ expressions (T3) during a 
lecture, prompts her to explain what mathematicians do in an attempt to engage the students (DP1):  

On noticing students exchanging glances when I asked them why they would attempt to solve a 
particular problem in a particular way, I was prompted to reiterate what “doing mathematics” (at 
this level) entails. (Lecturer C) 

The next account illustrates how a student asking a question (T6) during a lecture results in a decision 
point for the lecturer about whether to review material already covered (DP2). 

I found the limit of  as  when a mature student, who asks lots of questions, 
asked why you couldn’t just cancel the sin’s and the x’s to get 2/3. We proceeded to discuss the 
meaning of the term  and the difference between multiplication and composition. I had 
spoken about this before but felt talking about it here was useful. (Lecturer A) 

When a lecturer monitors student behaviour (T5) during a lecture, decision points about how to deal 
with disruptions (DP4) may arise as illustrated in the following account by Lecturer B: 

Shortly into the lecture I ask a group of four students to stop talking. Minutes later I tell two other 
students to stop talking. Some minutes later, I ask the first group to stop talking again. I look at 
the class – most of them are staring straight at me and not moving. I realize I am nagging and 
stopping the lecture for the sake of a few “talkers”. As I continue to write and talk, I hear 
whispering coming from various parts of the theatre and my explanation falters. I decide I can’t 
get any more annoyed. I put up a question and ask the class to work on it. (Lecturer B, T5, DP4) 

Unlike the accounts so far which occurred in the lecture setting, the following account takes place 
during a class activity. During the activity the lecturer experiences a decision point concerning how 
best to respond to student questions (T6 and DP2). But on completion of the activity another decision 
point arises about what to do next in the lecture (DP7).  

I put up an exercise for the students to work on. I remind them that the first part is revision – they 
have to find the profit function. As I walk around the theatre a student asks: “What are the fixed 
costs?” I remind him that this example is different to the one I did earlier in class. Another asks: 
“Do I multiply this function by q to get total revenue?” “No, you are given total revenue, you don’t 
have to find it”, I reply. “What is q?” another asks. I feel deflated – this is revision. I planned to 

sin(2x) / sin(3x) x®0

sin(2x)



finish the exercise today, but instead, show them how to get the profit function and complete the 
exercise in the next lecture. (Lecturer B) 

Discussion and conclusions 
We wish to discuss three points in this section. The first concerns decision points that arise while 
lecturing. One might assume that in the traditional sense of a lecture, a lecturer delivers from a pre-
prepared script and unless a student asks a question, the lecturer will not deviate from the script. 
However there is some evidence from the three lecturers’ accounts on their practice that indicates that 
even while lecturing in the traditional sense, they monitor their aims for the class, their own practice, 
and how the student cohort are acting, and that this monitoring leads to the occurrence of many of the 
decision points. About one third of the triggers for decision points in our study were student initiated, 
(T6 in Table 2) in contrast to the findings of McAlpine et al. (1999), but in comparing one must be 
cognizant that our methodology differs from theirs. While we acknowledge that the fact that the three 
lecturers undertook a professional development project on using the Discipline of Noticing (Mason, 
2002) to improve their practice may mean that they are not typical, it would be interesting to explore 
further what mathematics lecturers focus on while in a lecture as well as gathering more data to 
illuminate the relationship between triggers and decision points. 

Secondly we observe from our findings that decision points relating to how to address students’ 
mathematical difficulties usually emerged in the context of a whole class question or discussion or a 
class activity. This is perhaps not surprising but does highlight the importance of including such 
activities during a lecture in order to assess students’ mathematical understanding. However it is also 
worth pointing out that over half of all the decision points identified in this study were as a 
consequence of such an activity, which may suggest an increased cognitive load for the lecturer who 
engages in such activities.  

Our final point relates to the methodology used in this study. Our analysis of the settings seems to 
indicate the lecturers’ individual preferences for pedagogical techniques and activities however we 
cannot use our data to draw conclusions about the proportion of class-time they each spent in the 
three settings, or make general claims about the relationship between the settings and the occurrence 
of decision points. This is because the lecturers in this study had complete autonomy over what 
incidents they chose to write about. They wrote about what mattered to them and many of the accounts 
relate to incidents where the lecturer felt unsure about what to do, or uncomfortable about a decision 
she had made. In any lecture, there may have been a multitude of more interesting moments worthy 
of noting, but either they did not notice them, or chose not to write about them. In this way there is a 
parallel with the findings of Barton et al. (2015). In choosing excerpts from a video-taped lecture for 
group discussion, the authors note that: “Counterintuitively, lecturers chose parts in which they felt 
less comfortable” and in group discussions “frequently chose to focus the group’s attention on 
interludes in the lecture when unexpected decisions were made” (p. 152).  

We return to the quote from Schoenfeld (2011): “Noticing is consequential – what you see and don’t 
see shapes what you do and don’t do” (p. 228). We suggest that the use of the Discipline of Noticing 
(Mason 2002) can help lecturers to identify opportunities for making (possibly different) decisions in 
their lectures. Individually the process also highlighted for each of us different aspects of our practice 
that we wanted to work on – for Lecturer A it was how to make her lectures more student-centered, 



for Lecturer B the issue was how to deal with disruptive behavior, for Lecturer C, how to address 
mathematical difficulties effectively and sensitively. We also recommend that lecturers, as a 
professional development exercise, write a selection of brief-but-vivid accounts and discuss them in 
a group setting using Schoenfeld’s theory (2011) to frame the discussion. 
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This paper describes students’ grasp of inflection points. The participants were asked to define 
inflection points, to judge the validity of related statements, and to find inflection points by 
investigating (1) an algebraic representation of a function, and (2) the graph of the derivative. We 
found that participants provided their own “filtering conditions” to determine or deny the existence 
of an inflection point In order to analyze participants’ conceptions of inflection points, we used the 
lenses of Fischbein’s theoretical framework. 

Keywords: Inflection point, formal knowledge, algorithmic knowledge, intuitive knowledge. 

Introduction 
Functions receive considerable attention in secondary school, commonly in algebra and calculus 
lessons. Inflection point is one of the function-related notions addressed in high school and in 
further mathematics studies. In preliminary studies, we found some indications of common 
erroneous conceptions of the notion (e.g. Ovodenko & Tsamir, 2005; Tsamir & Ovodenko, 2004; 
2013). These findings encouraged us to expand our research regarding the grasp of the notion of 
inflection point, and regarding possible sources of related common errors, while addressing a larger 
and diverse population who was given richer types of tasks (elaborated upon in the methodology 
section). In this paper, we present part of the findings from the extended study (Ovodenko, 2016). 
The research tools were designed and the findings analyzed with reference to a number of 
theoretical frameworks, including Fischbein's theory of algorithmic, formal, and intuitive 
components of mathematical knowledge (Fischbein, 1987, 1993a) and his theory of figural concepts 
(Fischbein, 1993b). Specifically, our research questions are: In the students’ opinion, (1) When is a 
point an inflection point? (2) When is a point a non-inflection point? 

What does research tell us about students’ conceptions of inflection points? 
Literature gives some indications of students’ difficulties when using the notion of inflection point. 
Some researchers (e.g. Carlson, 1998) have reported that students tend to use fragments of phrases 
taken from earlier-learned theorems, such as “if the second derivative equals zero [then] it is an 
inflection point” when solving problems in the context of dynamic real-world situations. 

Other researchers have reported that early experiences with the tangent to a circle contribute to the 
creation of the intuitive grasp of the tangent as a line that touches the graph only at one point and 
does not cross it (e.g. Vinner, 1982). This intuition was evoked when students were asked to 
identify and draw a tangent line to a curve’s points that included non-differentiable and 
differentiable inflection points (e.g. Biza & Zachariades, 2010). 

In a previous study, we examined students’ conceptions of inflection points, in which we came 
across a novel tendency to regard a “peak point” as an inflection point (e.g. Tsamir & Ovodenko, 
2004). We found tendencies to regard f '(x) = 0 as a necessity for the existence of an inflection point 
(Ovodenko & Tsamir, 2005), as well as tendencies to view f '(x) ≠ 0 as a necessary condition and       



f ′′(x) = 0 as a sufficient condition for an inflection point (Tsamir & Ovodenko, 2013). 
Consequently, we designed a large study to examine students’ conceptions of the inflection point 
when solving a rich variety of problems. Here we report on part of the findings (Ovodenko, 2016). 

Methodology 
The research population included 223 participants from different educational levels of mathematics: 
high school students studying mathematics at the intermediate level, high school students studying 
mathematics at the advanced level, university students and university graduates (the latter majoring 
in mathematics-rich subjects, such as mathematics, computer science, and electronic engineering). 
All participants had studied the notion of inflection point during their calculus lessons. 

According to the Israeli mathematics curriculum for secondary schools, an inflection point is 
defined as a point on a curve at which the curve changes from being concave up to concave down or 
vice versa, usually relating to functions that are at least twice differentiable in a small neighborhood 
of the point. It is important to note that the first encounter with inflection points occurs before the 
term is defined. It happens when students start investigating functions: they solve f '(x) = 0 to find 
possible x-s of extreme points and accidentally encounter cases where f '(x) = 0, but there is no 
extreme point because the function is monotonic in the interval that includes this point. In such 
cases – f '(x) = 0 but the point is non-extreme – students are first guided to label these points as 
inflection points for purposes of communication and to distinguish them from extreme points. 
Afterwards, useful theorems are introduced, e.g., a necessary condition for x0 to be an inflection 
point is f ''(x0) = 0; a sufficient condition may be: (1) f ′′(x0

+), and f ′′(x0
-) have opposite signs in the 

neighborhood of x0; or, (2) f ′′′(x0) exists and f ′′′(x0) ≠ 0.  

In order to widen the scope of the gathered data, two types of tasks were designed: Produce-a-
Solution (production) tasks (i.e., solve mathematical problems), and Evaluate-a-Solution 
(identification) tasks (i.e., examine the correctness of given solutions). Tasks in each of the two 
types were presented in verbal, graphic, and algebraic representations (see Figure 1).  

 

 

 

 

 

 

This systematic structure of tasks provided insight to the participants’ ideas and reasoning. It was 
developed and empirically validated (during preliminary pilot studies) as a tool that allows students 
to explain related formal, algorithmic and intuitive components of their mathematical knowledge 
(Fischbein, 1987, 1993a). The contribution of these structured tools may go beyond the broad 
exploration of students’ conception of inflection points; such structured tools could be useful to 
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      Figure 1: Structure of research questionnaire  



reveal students’ conceptions of additional mathematical notions. That is, the research tools offered 
in this study may serve as a model when designing research tools aimed at investigating students’ 
conceptions of other mathematical notions.  

In the following, we present four tasks (Produce-a-Solution) from the questionnaire.  

Task 1: Define: What is an inflection point?  

Task 2: True or false? Prove:  

Statement 1: f: R → R is a differentiable function. 
            If f '(x0) = 0, then P(x0, f (x0)) is an inflection point.  
Statement 2: f: R → R is a continuous, (at least twice) differentiable function. 
            If f ′′(x0) = 0, then P(x0, f (x0)) is an inflection point.  
Statement 3: f: R → R is a continuous, (at least twice) differentiable function. 
            If f ′(x0) = 0 and f ′′(x0) = 0, then P(x0, f (x0)) is an inflection point.            
Statement 4:  f: R → R is a continuous, (at least twice) differentiable function. 

                  If f ′′(x0) = 0 and the function is monotonically increasing (decreasing)  
                  in the neighborhood of x0, then P(x0, f (x0)) is an inflection point.  

Task 3: Find (if possible) the inflection points of the functions: 

  (1) f (x) = x4 + 2x3 – 1;  (2) f (x) = x4 + 32x;  (3) f (x) = | x3 – 1|;                                   

  (4) 
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Task 4: Find (if possible) the inflection points of f(x), g(x), t(x), 
based on the graphs of f '(x), g '(x), t '(x) – see Figure 2.           
 

Task 1 and Task 2 are in a verbal representation, addressing participants’ formal knowledge, Task 3: 
in an algebraic representation, addressing what we expected to be algorithmic knowledge; and Task 
4 in a graphic representation, addressing participants’ figural conceptions. Intuitive knowledge may 
be expressed in all four tasks. 

Before giving our high school participants the tasks, we asked their teachers whether these tasks 
would be familiar to them. We learnt that Task 3 was expected to be most familiar – students 
usually investigated algebraic expressions of functions. They seldom analyzed graphs of the 
derivative, as required in Task 4; and were rarely asked to determine and prove the validity of a 
statement, as required in Task 2. Students’ modest experience with such tasks and the impossibility 
of applying routine algorithms in the related solutions led us to assume that students’ knowledge 
might be challenged. 

Based on the analysis of their solutions, 20 participants were invited to individual, semi-structured, 
follow-up interviews, where they were asked by the researchers to elaborate on their written 
solutions. Interviewees were chosen according to their solutions in the questionnaires, focusing on 
interesting, correct, and incorrect ideas, while aiming to understand their reasoning. Interviewees 
were asked, among other things, to explain their solutions and to analyze solutions proposed by 
other participants. The interviews took 30-45 minutes and were audiotaped and transcribed. 

Figure 2: Graphs in Task 4 



Results 
In this section, we answer the research questions: In the students’ opinion (1) When is a point an 
inflection point? (2) When is a point a non-inflection point? We discuss each of the ideas as 
presented in relevant tasks. More specifically, we present each of the conceptions found as 
expressed in the four tasks, in descending frequency of the phenomenon. 

When is the point an inflection point?  

Our data indicates six sets of conditions that in the participants’ opinions guarantee the presence of 
an inflection point. 

Passage point from convex to concave or vice versa ⇒ Inflection point – This conception was 
mainly expressed (55%) in Task 1 (Define): “Inflection point is a point where the graph shifts from 
concave to convex (or vice versa)”. However, no reference was made to characteristics of the 
function (domain, continuity or differentiability). 

f ′′(x0) = 0 and a passage from convex to concave ⇒ Inflection point – This conception 
prevented participants from finding the non-derivative inflection point of the functions, based on the 
graphs of derivatives in Task 4 (24%). In addition, it was also expressed in solutions to the algebraic 
representation of function f (x) = |x3 – 1| (16%) in Task 3. 

f ′′(x0) = 0 ⇒ Inflection point – This conception was evident in the participants’ solutions to three 
tasks. In Task 3, f ′′(x) = 0 considerations were erroneously used as sufficient for inflection points of 
polynomial functions and even of piecewise functions. For example, participants correctly found  
A(0, –1) and B(–1, −2) as inflection points of f (x) = x4 + 2x3 – 1 by examining only f ′′(x) = 0 (30%). 

Similarly, the point (0, 0) was erroneously claimed to be an inflection point of 
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by examining only f ′′(x) = 0 (15%). About 30% incorrectly claimed that Statement 2 is correct 
(Task 2). Some of them added: “That is the definition: P is an inflection point if and only if f ′′(xP) = 
0”. Others provided algorithmic considerations, mentioning solutions to investigate-the-function 
and stopping after solving f ′′(x0) = 0, e.g.: “We find inflection points when looking for extreme 
points. If f ′′(x0) = 0, then the point is not minima or maxima, and that is why it is an inflection 
point”. In their reactions to Statement 3 (Task 2) participants (10%) incorrectly answered that the 
statement is valid and explained that “f ′′(x0) = 0 is a sufficient condition for the existence of an 
inflection point”. 

f '(x0) = 0 and f ′′(x0) = 0 ⇒ Inflection point – This conception was mainly expressed in Task 2; 
about half of the participants incorrectly claimed that Statement 3 was valid. Most of them provided 
the methods that they used to solve investigate-the-function tasks. They wrote: “[We] always find 
inflection points when looking for extreme points, thus starting this search with f ′(x) = 0”, then: 
“An inflection point is a point where f ′′(x) = 0”. In addition, in Task 4 (Investigate the graphs of 
derivative), about 20% incorrectly found an inflection point only at x = 6, exhibiting an erroneous 
assumption: “We see that t ′(6) = 0, that is, the slope of the tangent of y = t ′(x) at x = 6 is zero, so,   t 
′′(6) = 0, therefore at x = 6 there is an inflection point.” 

f ′′(x0) = 0 and monotonicity in the neighborhood of x0 ⇒ Inflection point – Participants (42%) 
incorrectly claimed that Statement 4 was valid (Task 2). They explained: “Those are sufficient 



conditions for an inflection point”, or gave a supporting example, like f (x) = x3 + 5. In their 
interviews, several of the latter explained their solution in terms of: “If the second derivative is zero 
and the function continues to increase when increasing and to decrease when decreasing, there is a 
change of convexity-concavity”. The combination of these two conditions is likely to determine an 
inflection point. However, this answer can be refuted by a counter example, like f (x) = x4 + 32x (this 
function appeared in Task 3, but it was not used to refute this statement), f ′′(0) = 0 and the function 
is increasing monotonically in the neighborhood of x = 0 but (0, 0) is not an inflection point. 
Evidence about this set of insufficient conditions that seem to be “allegedly certain” for ensuring an 
inflection point, to the best of our knowledge, was found for the first time in this research. 

f ′(x0) = 0 and monotonicity in the neighborhood of x0 ⇒ Inflection point – Participants (16%) 
wrote, for instance: “A point where f ′(x) = 0 and the graph keeps increasing (or decreasing) before 
the point and after it is an inflection point” (Task 1). In reaction to Statement 1 (Task 2), 
participants correctly answered that the statement is false, but their explanation was: “f ′(x0) = 0 is 
necessary but not a sufficient condition for an inflection point. If in addition to f ′(x0) = 0 the 
function increases (or decreases) before and after the point, only then is the point an inflection 
point” (10%). It should be noted that a combination of these conditions define a particular type of 
notion – a horizontal inflection point. This grasp of inflection point probably ignores non-horizontal 
inflection points (Task 3), like the inflection point of the function f (x) = x4 + 2x3 – 1 (10%). 

When is the point a non-inflection point? 

We found three conditions that deny the existence of an inflection point: 

No differentiability ⇒ No inflection point – In reactions to Task 3, investigate the function          f 
(x) = |x3 – 1|, most participants (63%) found an inflection point only at x = 0, providing algorithmic 
considerations of solutions to investigate-the-function, such as: “f ′(0) = 0, f ′′(0) = 0, before x = 0, f 
′′(x) is positive, so f (x) is convex and after x = 0, f ′′(x) is negative, so f (x) is concave, thus x = 0 is 
an inflection point”. Some of them added a correct graph to their investigation and, with relation to 
x = 1, wrote that “although at this point the function changes from concave to convex, it is a non-
inflection point, because the function is not differentiable at x = 1”. In their interviews, several 
participants explained: “The function is non differentiable at x = 1 and therefore there is no 
inflection point”, or: “No differentiability, no inflection point.” Following this, a quarter of the 
participants defined “inflection point” (Task 1) as requiring differentiability. For example: “A point 
where f ′′(x) = 0 and the function turns from concave to convex or vice versa”, or: “The slope of the 
tangent of the function at this point is zero, and the function is either increasing on both sides of the 
point, or decreasing on both sides of the point.” 

No second derivative ⇒ No inflection point – This conception, that is consistent with the condition 

f ′′(x0) = 0, is used as a filter to reactions to Task 3, Investigate the function
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included explanations (23%) such as: “When there is no second derivative – there is no inflection 
point. All inflection points must satisfy the condition f ′′(x0) = 0. Otherwise there is no infection 
point”. It was also found in reactions to Task 4 (15%), Investigate the graphs of f ′(x), that only the 
point x = 6 that satisfies the condition f ′′(x0) = 0 was identified as an inflection point. The other point 
(x = 10), where the second derivative is not defined, was ignored. 



f ''(x0) = 0 and f '''(x0) = 0 ⇒ No inflection point – expressed in the investigation of the function  
f (x) = x4 + 32x (7%). Note that this function really has no inflection points. Yet, this correct 
judgment was based on a wrong consideration. A counter-example is f (x) = x5 has an inflection 
point, yet both f ′′(0) = 0 and f ′′′(0) = 0. 

Commonly studies report of students’ conception of mathematical notions by reporting on criteria 
that lead to regard the notion as defined. Here we show a new angle of criteria that regards the 
notion as undefined. 

Discussion 
We discuss the findings by using Fischbein’s (1993a, 1993b) theoretical framework for analyzing 
students’ errors and for examining possible related sources. 

What are possible sources of students’ mathematical errors? 

Fischbein studied broad aspects of students’ mathematical reasoning, claiming that an analysis of 
students’ performance has to take into account three basic aspects: algorithmic, formal and intuitive 
(Fischbein, 1987, 1993a). The algorithmic aspect includes knowledge of (a) “how” to solve a 
problem, and (b) “why” a certain sequence of steps is correct. The formal aspect includes 
knowledge of axioms, definitions, theorems, proofs and knowledge of how the mathematical realm 
works. The intuitive aspect of mathematical knowledge is an immediate and self-evident, though 
not necessary correct, knowledge, accepted with certainty. Fischbein’s three components of 
mathematical knowledge and their interrelations play a vital role in students’ mathematical 
performances. However, “sometimes, the intuitive background manipulates and hinders the formal 
interpretation or the use of algorithmic procedures”, causing inconsistencies in students’ solutions 
(Fischbein, 1993a, p. 14). Fischbein further addressed the impact of drawings (e.g., in geometry) on 
learners’ mathematical reasoning by explaining that the figural structure may dominate one’s 
reasoning instead of being controlled by the corresponding formal constraints (Fischbein, 1993b). 

What are the possible sources for students’ errors with the concept of inflection points? 

We found tendencies to determine or deny the existence of an inflection point under certain 
conditions. It is important to note that during the study we did not ask directly: Under which 
conditions, does or does not one get an inflection point? Participants provided “filtering conditions” 
by their own initiative. So, if one of the following sets is true: (1) convex-concave; (2) f ′′(x0) = 0 
and convex-concave; (3) f ′′(x0) = 0; (4) f ′(x0) = 0 and f ′′(x0) = 0; (5) f ′′(x0) = 0 and monotonicity in 
the neighborhood of x0; (6) f ′(x0) = 0 and monotonicity in the neighborhood of x0; on the other 
hand, if there is (7) No differentiability; (8) No second derivative; (9) f ′′(x0) = 0 and f ′′′(x0) = 0 – 
then there is no inflection point. During the interviews, students reinforced these views. 

An initial evaluation of the reasons underlying erroneous conceptions suggested two main causes: 
algorithmic experience with investigations of functions, and the impact of the drawing. Students 
tended to explain that: “This is how I find an inflection point when I investigate a function”, or, [in 
relation to Task 4] “According to the graphs, each function has one inflection point at x = 7 where 
the graphs shift from concave down to concave up”. Thus, it seems that the answers may intuitively 
evolve from the participants’ mathematical, algorithmic experiences (Fischbein, 1993a) and from 
their figural concept of inflection point (Fischbein, 1993b).  



Four of the six sets of conditions that participants presented for “being an inflection point” do not 
necessarily lead to inflection points (sets 1, 3-5); the other two sets determine inflection points only 
for a limited family of functions (sets 2, 6). For example, in set 1, the participants provided intuitive 
definitions, without reference to the type of the functions (e.g., continuous or differentiable). In set 
4, participants exhibited slope-zero figural concepts (Fischbein, 1993b) in their reactions to Task 4, 
when they incorrectly found an inflection point “where slope of the tangent is zero...”, or, “where 
the first derivative and second derivative cross the x-axis”. In set 5, the necessary condition  
f ′′(x) = 0 was presented as a critical step in the algorithmic offering (Fischbein, 1993a), but in 
combination with the condition of monotonicity, that at first sight seems “sufficient” for an 
inflection point, surprisingly this does not necessarily lead to an inflection point (as presented in the 
results section).In set 6, the unnecessary condition f ′(x) = 0 was possibly used as a result of the 
“primacy effect”. That is, it might be the case because these are usually the first inflection points 
addressed in calculus lessons (Fischbein, 1987); but it was presented with the condition of 
monotonicity, and thus defined a particular type of notion – a horizontal inflection point.  

The three sets of “denying conditions” сan shed some additional light on students’ conception of 
inflection point from two perspectives: (1) types of functions that are usually investigated, and, (2) 
logical constraints of their knowledge. Requesting the necessity of differentiability (set 7) can be 
related to functions that are usually investigated or presented graphically in textbooks – most of 
these are differentiable at the inflection point. Thus, an intuitive image of a “smooth inflection 
point” was created. Here, as in many other cases, students recognize the concept “by experience and 
usage in appropriate contexts” (Tall & Vinner, 1981, p. 151; their emphasis). The necessity of twice 
differentiability (set 8) might be rooted in intuitive ideas that interfere with students' formal 
knowledge (Fischbein, 1987; 1993a). That is, from the theorem, “If f (x) is twice differentiable in 
some neighborhood of x0, and if x0 is an inflection point, then f ′′(x0) = 0” students erroneously 
conclude that “if no second derivative then there is no inflection point”. Here, this answer can be 
refuted by a counter example, like f (x) = x5/3. In set 9, the inadequate declaration: ‘f ′′(x0) = 0 and  f 
′′′(x0) = 0 ⇒ No inflection point’, might be rooted in intuitive ideas that interfere with students' 
algorithmic knowledge (Fischbein, 1987). That is, from the theorem “f ′′(x0) = 0 and f ′′′(x0)  0 ⇒ 
Inflection point” students erroneously create the rule “if ... then..., if not … then not…”.  

This study considerably enriches the existing body of knowledge regarding high school students’, 
university students’, and university graduates’ conceptions of inflection points. Only a small number 
of studies have dealt with students’ conceptions of inflection points directly (e.g. Rivel, 2004; 
Tsamir & Ovodenko, 2004) and indirectly (e.g. Biza & Zachariades, 2010; Vinner, 1982). Reported 
studies usually addressed a limited population and dealt only with specific conceptions. The current 
research offers a broad collection of related correct and incorrect conceptions found among 
participants with suitable mathematical backgrounds (as specified in the methodology section), with 
reference to the type and the representation of the given tasks. 
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When engaging students in genuine mathematical problem solving, how can instructors maintain a 
productive learning environment? In this paper, I examine a series of improvised instructional moves 
of Alan Schoenfeld, a renowned teacher of mathematical problem solving, and investigate his 
dilemmas, considerations, and in-the-moment decisions. I use the TRUmath framework to unpack the 
conflicts that underlie Schoenfeld’s dilemmas, and to propose a tacit teaching heuristic that help 
explains his hard-to-justify moves. I conclude that Schoenfeld’s in-the-moment decision making is 
tacitly oriented towards maintaining certain kinds of balances between his pedagogical principles. 
On the basis of this analysis, I recommend exploring further the use of TRUmath as a framework for 
analyzing in-the-moment decision making in the context of conflicting pedagogical principles. 

Keywords: University math teaching, teaching dilemmas, decision making, problem solving. 

Introduction 
I think this kind of teaching is highly principled by not determinate. What I was thinking of is jazz 
improvisation. It’s anything but random; there are moves that the musician will say would or would 
not be right; but, there may not be a sound justification for any particular in-the-moment move 
other than ‘it just felt right’. 

In this quote, Prof. Alan Schoenfeld reflects on a series of in-the-moment teaching decisions he made 
during a problem solving session. Schoenfeld is an expert teacher of mathematical problem solving 
(MPS hereafter); he has been studying and teaching MPS for more than three decades now. After so 
many years, Schoenfeld’s instruction seems anything but improvised. For this study, he has reflected 
on numerous teaching moves that he made during his MPS course, and he was typically able to 
provide a sound and detailed rationale for his decisions. However, there were certain decisions that 
Schoenfeld found hard to fully justify, as a key ingredient in their making was a tacit sense of where 
the class is and how different decisions could work out. In the quote above, Schoenfeld argues that 
this kind of hard-to-justify decisions makes the instruction of MPS a lot like jazz improvisation, in 
the sense that both activities are ‘highly principled but not determinate’. In this paper we investigate 
Schoenfeld’s jazz-like teaching moves through a case study of three hard-to-justify decisions in one 
MPS session. In this session, Schoenfeld faced a typical dilemma in MPS-oriented lessons: how 
should a teacher react when a student comes up with a beautiful and original idea that opens the door 
to a mathematical exploration that seems worthwhile for some of the students, and a step too far for 
other students? The aim of this paper is to unpack Schoenfeld’s conflicting pedagogical 
considerations in this case, and to provide insights into his decision making. 

The lesson examined in this paper was part of Schoenfeld’s MPS course. Schoenfeld’s teaching in 
this course has been studied in several papers. For example, Arcavi, Kessel, Meira and Smith (1998) 
studied Schoenfeld’s teaching in relation to the establishment of classroom norms and MPS 
heuristics. Schoenfeld’s in-the-moment decision making in this course, which is the focus of this 
paper, has not been studied so far. This MPS course was given to education graduate students and 



prospective teachers and comprised of paper reading, a small scale research project, and engagement 
in authentic MPS. In terms of goals and pedagogy, the lesson described in this paper is similar to 
lessons that Schoenfeld has taught in earlier years to undergraduate mathematics students. Therefore, 
the dilemmas and instructional moves discussed below are not specific to teacher-education courses, 
and should be viewed in the context of MPS-oriented instruction at university. 

There are various approaches for explaining why teachers make the decisions they make as they teach. 
One approach, which has been gaining much attention in recent years, is to explain teaching decisions 
in terms of knowledge, goals, and orientations (Schoenfeld, 2010). This approach has been used at 
the university level in empirical studies (e.g. Pinto, 2013) and also in professional development 
programs, as an organizing framework for instructors’ self-reflections on their teaching (e.g. 
Schoenfeld, Thomas, & Barton, 2016). However, a notable limitation to the explanatory power of this 
approach is that instructors’ self-reflections are oriented towards what instructors notice in their 
teaching and have words for. Therefore, there is a need for an organizing framework that would draw 
attention to various important facets of the work of teaching. One candidate framework is the 
Teaching for Robust Understanding of Mathematics framework (TRUmath) (Schoenfeld, 2015). In 
this paper we analyze Schoenfeld’s reflections on his teaching from a TRUmath perspective, and 
examine the use of TRUmath as an organizing structure for instructors’ reflections on their dilemmas 
and decisions that attends to all the major contributors for productive learning environments.  

Setting and methods 
This paper examines a lesson taught by Alan Schoenfeld in a “Mathematical Thinking and Problem 
Solving” course at the Graduate School of Education at UC Berkeley. The lesson took place during 
the 11th week of the semester. The class comprised of 21 students – graduate students in the school 
of education and students from teacher preparation programs. The class met once a week for a 3-hour 
lesson and every lesson included an MPS part where students worked alone or in small groups on a 
list of problems and then reconvened to share ideas and solutions. The author videotaped the lessons 
and took notes. After each lesson, Schoenfeld wrote down some reflections on his dilemmas, his 
instructional moves and decisions, and their impact on the lesson. In addition, the author conducted 
three 1-hour interviews with Schoenfeld at different stages of the semester that focused on where the 
class is with respect the learning trajectories for the course. 

The analysis in this study is based in part on the TRUmath framework, which seeks to characterize 
the main contributors for productive learning environments. This framework was derived through a 
comprehensive literature review by distilling the factors that shape learning in classrooms into a small 
number of “equivalence classes”. These classes are represented through five dimensions: (1) the 
richness of the mathematics, (2) cognitive demand and opportunities for “productive struggle”, (3) 
equitable access to content for all students, (4) students’ opportunities to develop agency, ownership, 
and positive mathematical identities; and (5) formative assessment. According to the TRUmath 
framework, these five dimensions are both necessary and sufficient for studying learning 
environments in the sense that instruction needs to do well along these dimensions in order to produce 
mathematically proficient students. Figure 1 provides a brief account of each dimension. 



In this paper, we explore TRUmath’s explanatory power on Schoenfeld’s own instruction, and use 
the five dimensions as an organizing structure for the discussion of his dilemmas and considerations. 
Schoenfeld is one of the leading developers of the TRUmath framework, and therefore it is 
particularly suitable for exploring his decision making. We examine a sequence of three hard-to-
justify decisions, first from an outside observer perspective based on the videos of the lessons; then 
from Schoenfeld’s inner perspective based on his post-lesson written reflections and the interviews; 
and finally, from a TRUmath perspective, where the dimensions are used to organize and compare 
Schoenfeld’s various considerations, to unpack the pedagogical conflicts that underlie his dilemmas, 
and to investigate what kinds of balances he achieved in his in-the-moment decisions.  

The Square-ness task 
The discussion analyzed in the paper revolves around the Square-ness task, given in the figure below, 
which was designed by Judah Schwartz in cooperation with members of the Balanced Assessment 
Group at the Harvard Graduate School of Education. In the lesson, Schoenfeld framed this task as 
“an introduction to the game mathematicians play”, and directed students to start with their intuition 
as to what it means for a rectangle to be more ‘squarish’, and then mathematize this intuition by 
“coming up with a mathematical characterization that would enable anyone to perform some sort of 
operations on a rectangle […] and obtain a number that would tell, in some sense or other, how close 
to being a square that rectangle is.” 

Below you will find a collection of rectangles.  
(a) Define a mathematical measure that allows you to tell which rectangle is the "most square" 
and which rectangle is the “least square”. 
(b) Define a different measure that achieves the same result. 
(c) Is one measure "mathematically superior" to the other?  
Argue why, and be prepared to defend your choice to the class 

Figure 1 – The five dimensions of the TRUmath framework (Schoenfeld, 2015) 



Analysis  
It’s not the note you play that’s the wrong note – it’s the note you play afterwards that makes it 
right or wrong. (Miles Davis) 

Taking a cue from a renowned jazz improviser, I maintain that improvised teaching decisions should 
not be examined in isolation but rather as part of the flow of instructional moves that teachers make 
during a lesson. Accordingly, this investigation of Schoenfeld’s improvised teaching moves examines 
three hard-to-justify decisions in the context of Schoenfeld’s instruction throughout the MPS session. 
The analysis is presented as a narrated description of the whole session that comprises of three 
threads: an outside-observer description of Schoenfeld’s moves; a synthesis of Schoenfeld’s 
reflections on his moves, as explicated in the interviews; and a TRUmath perspective on three 
challenging teaching dilemmas and their hard-to-justify resolutions.  

The discussion of the Square-ness task began with a short introduction by Schoenfeld, after which he 
invited students to present their candidates measures. One of the students, Sophie, approached the 
board and suggested that the square-ness of a rectangle with side-lengths a and b will be defined by: 
“The ratio a/b ought to be close to 1”. Two students objected to this definition, arguing that it is not 
well defined and that it should specify that a is the shortest side length. Sophie disagreed at first, 
claiming that “it does not matter”, but was eventually persuaded. She added “where 𝑎 ≤ 𝑏” to the 
written definition, and walked back to her seat. At this point, Schoenfeld intervened:  

Ok, I love it when the class takes over and raises mathematical objections. The question is, if 
you’re characterizing the square-ness of this figure and you’re getting a number, shouldn’t we get 
the same number if we happen and bring it down this way instead? (Draws a figure of a rectangle 
rotated by 90 degrees) It’s the same rectangle, so whatever measure you have should bring you the 
same number. If you have say, a 1 by 3 rectangle, then you get 1 over 3 which is not the same 
distance from 1 as 3 over 1; so, it begins to be problematic unless you lay it down so that ‘a’ is the 
smaller one of the two [side lengths], and then take ‘a’ over ‘b’. 

After making this remark, Schoenfeld leaned quietly against the wall and waited for the students to 
react. In his reflections, Schoenfeld noted that up to this point the discussion took off just as he 
intended, as the students were engaged in defining, comparing and criticizing measures, and by doing 
so, expressing their implicit expectations from a measure. Schoenfeld noted that it is quite typical that 
the first candidate measure is based either on the ratio or on the difference between adjacent side 
lengths of the rectangle. The measure Sophie suggested has the nice property that it can be defined in 
a way that makes it invariant under rotations and scaling. The students’ debate on whether Sophie’s 
measure was well defined did not address explicitly the properties of the measure. The students 
seemed more occupied with figuring out the exact routine for computing the measure. Nevertheless, 
Schoenfeld explained in the interview that this debate provided him with an opportunity to 
acknowledge, respond to and build on students’ ideas, while rephrasing these ideas in a way that fit 
his goals – to engage students in discussing the desired properties of measures.  

Emmy was the first to comment on Sophie’s example: “I think that I can probably find a quadrilateral 
that is not a square, but would have that, hmm… would be a square under that measure of square-
ness, but it is not a rectangle, is that OK?” 



Schoenfeld’s immediate response was to the entire class: “Do you want to take a vote? Is that OK?” 
The class seemed divided with some students wondering whether considering quadrilaterals other 
than rectangles is allowed, while others expressing interest in seeing Emmy’s example. Schoenfeld 
agreed with the students that the problem is stated just for rectangles, but as several students 
responded in disappointment, he paused to make a quick evaluation and to decide how to proceed.  

In his reflections on this moment, Schoenfeld noted that Emmy’s example came as a surprise, and 
too soon with respect to where he felt the class was. He explained that he was more expecting students 
to propose another candidate measure, which he could compare to Sophie’s measure; or to point out 
that Sophie’s measure is invariant under scaling, which would have provided another opportunity to 
discuss properties of measures. Schoenfeld reflected on his dilemma: on the one hand, the class 
seemed eager to see Emmy’s example; Emmy’s comment was well aligned with his own agenda of 
discussing the desired properties of measures, as it pointed out the fact that Sophie’s example might 
not be generalizable to parallelograms. He also considered this comment as an authentic and beautiful 
example of ‘doing mathematics’ and he wanted to acknowledge this; and, coming from a student, this 
generalization felt natural and organic rather than an artificial teaching move, making it even more 
appealing. On the other hand, Schoenfeld noted that he was worried that Emmy’s example might 
steer the discussion towards arbitrary quadrilaterals, and he was not sure that the class was ready for 
this level of abstraction. He wanted more students to participate in the discussion and considered 
putting Emmy’s example on hold so other students could present their candidate measures for 
rectangles. He also noted that he had examined some of the student work on this problem and that 
there were a few important insights that he wanted to draw from that work. 

In the classroom, Schoenfeld responded almost instantly: 

Now, before I throw [Emmy] out of class (laughing), let’s examine what [she] said. One of the 
properties one might like for, hmm... any definition is to ask the question: what class of objects 
this definition applies to? […] So, this measure (points at the Sophie’s definition on the board) 
works for rectangles, but being my psychic self, I think the figure Emmy had in mind was a family 
of rhombuses (draws two rhombuses on the board), all of which have a measure 1 according to the 
definition, if we think in terms of side lengths; but they don’t look like a square! 

Note that Schoenfeld’s response opened the door for Emmy’s example, but that he presented the 
example himself, as he understood it, rather than letting Emmy present it in her own words. Looking 
back at his response, Schoenfeld noted that it is hard to justify, claiming that on one hand, it is highly 
principled in the sense that it is consistent with his goals and orientations, as explicated in his 
reflections on his dilemma. On the other hand, this decision was not determined by principles, as it 
was based in part on a tacit sense of where the class was, and how well things could work out.  

We now turn to analyze Schoenfeld’s hard-to-justify decision from a TRUmath perspective. One 
option Schoenfeld had was to invite Emmy to present her example in her own words. This option is 
well aligned with the Formative Assessment and Agency dimensions. Moreover, Schoenfeld 
considered Emmy’s idea to be “a beautiful example of doing mathematics”, and since his goals were 
to discuss properties of measures, he considered this option to also be well aligned with the 
Mathematics dimension. However, Schoenfeld’s reflections suggest that he found this option less 
appealing from the perspectives of the Access and Cognitive Demand dimensions. He explained that 



it is essential that students understand and relate to the goals of the exploration. Emmy, who might 
still be struggling to formulate her idea, could end up leading a discussion that the rest of the students 
could not engage with productively. Another option Schoenfeld considered was flatly rejecting 
Emmy’s example, or putting it on a back burner. This option would have given Schoenfeld more 
control over the lesson, which has merits in terms of the Mathematics, Cognitive Demand and Access 
dimensions. However, Schoenfeld considered this route potentially harmful in terms of Authority, 
Agency and Identity, and Formative Assessment. Schoenfeld’s response represents an alternative to 
these two options. He acknowledged and built on Emmy’s idea (Formative Assessment), lowering 
the risk of being perceived as rejecting her thinking (Authority, Agency and Identity). However, he 
did so by proposing two visual examples of rhombuses, making the discussion more concrete and 
accessible (Cognitive Demand and Access). Moreover, Schoenfeld provided a crisp outlining of the 
topic of the discussion: “what class of objects this definition applies to” (Access), orienting the 
discussion towards the properties of measures (Mathematics). To summarize, Schoenfeld considered 
the first two options to be potentially beneficial as well as potentially harmful; his reaction chose a 
middle ground that he still considered beneficial, and safe. 

The lesson continued with Sophie, Emmy and a few other students discussing how to modify Sophie’s 
measure to make it ‘more square’. This discussion led to a new candidate measure for square-ness: 
the product of the ratio between adjacent side lengths and the ratio between adjacent angles. However, 
Emmy criticized this measure, claiming that while this measure has the nice property that squares are 
separated from other shapes, she can no longer see what kind of ordering this measure induces on 
parallelograms, and whether this ordering has anything to do with her initial intuition as to what 
square-ness should mean. Several students endorsed this criticism, and the class abandoned this 
measure. One student suggested that it might not be possible to find a measure that works for both 
rectangles and rhombuses, and the whole classroom discussion started to break up into several 
concurrent discussions. At this point, Schoenfeld intervened:  

I’ll point out that what we’re doing right now is exactly the business mathematicians are engaged 
in. […] We start with rectangles and see candidate measures for rectangles; then the question is, 
what about parallelograms? Trapezoids? Arbitrary quadrilaterals? Is it possible to find a measure 
that could characterize square-ness for all of those? We only got one definition of square-ness of 
rectangles so far, and I want to see a few more. It is possible that if we are just looking at rectangles 
any of the candidate measures will do, although some might be easier to calculate, some might 
correspond more to your intuition in terms of how square something is. And then, as we move on, 
only some of those definitions work for more objects. That’s the game mathematicians play. So, 
we have two directions to go. We have this definition (wipes the board clean and writes ‘a/b closest 
to 1 where 𝑎 ≤ 𝑏’). We can ask, are there any other characterizations, or reasons to like them more 
or less; and we can ask do they generalize and how much, which can also get us to a discussion 
about just what properties of definitions in general do we want, and what properties do we want in 
this particular case. The floor is open. 

Reflecting on this intervention, Schoenfeld noted that this was a point where he sensed the class was 
indeed not ready for the exploration they initiated, as he anticipated might happen; in his message to 
the students, he was trying to steer the discussion back to rectangles, while making sure he is still 
giving due credit to the exploration the students were engaged with, framing it as the ‘game 



mathematicians play’. Schoenfeld considered this decision as essentially based on a tacit evaluation 
of where the class is. In the interview, he used TRUmath terms to make this evaluation somewhat 
more explicit: He explained that he was reading from the students’ facial expressions that some 
students were getting disconnected, signaling Access was becoming an issue; he also noted that the 
fact students starting to question whether the problem could be solved at all was for him a signal that 
the Cognitive Demand of the task might be too high. Schoenfeld concluded that in his intervention 
he was implicitly trying to attend to the Access and Cognitive Demand dimensions. 

At this point, Emmy suggested: “I have an idea, but I don’t know how to turn it into a measure […] I 
have a measure that would split out squares, but I don’t know how to make it order everything else. 
Should I share it? (Schoenfeld nods) OK, my theory is that if you have a given a perimeter for a 
quadrilateral, the square will have the maximum area. So, I want something that takes perimeters and 
determine whether or not, hmm… determines whether or not that’s the maximum area for that 
circumstance and then order everything else according to how not maximum it is, or something.” 

Emmy’s suggestion led to a rapid exchange between her and Sophie, while the rest of the students 
remained quiet. In the interview, Schoenfeld referred to this moment as another challenging dilemma 
that led to a hard-to-justify decision. While he considered Emmy’s comment to be mathematically 
inspiring, it also impeded his attempts to lead the discussion back to rectangles. Schoenfeld explained 
that he guessed Emmy’s idea is intuitively based on the isoperimetric theorem, and he estimated that 
forming a measure for arbitrary quadrilaterals on the basis of this intuition might prove too difficult 
for most students, potentially reducing their confidence and sense of efficacy even further. Thus, even 
though following up on Emmy’s comment was very appealing from the Mathematics and Formative 
Assessment perspectives, this option seemed very risky from the perspectives of Access, Cognitive 
Demand and Identity. However, Schoenfeld found that while his principles directed him to object to 
exploring Emmy’s idea, his sense of the class suggested otherwise: he sensed that the students were 
quiet but not passive, that they were actively listening to Emmy and Sophie. Consequently, 
Schoenfeld explained he decided to try and provide the class with just enough scaffolding to enable 
more students to engage productively in the new exploration:  

Ok, let’s take what we do know and see if we can turn this to a measure. Hmmm… you may have 
heard […] of this thing known as the isoperimetric theorem … the general theorem is that if you 
take any figure whatsoever for a fixed perimeter, the circle is the figure with the largest area. If 
you limit yourself to quadrilaterals, to rectangles, it turns out that for any given perimeter the 
square is the figure with the largest possible area. So, the question is whether we can turn that into 
a measure we can use, and then think about abstracting this into some of these other figures. 

In TRUmath terms, Schoenfeld’s decision can be expressed as an attempt to amend the level of 
Cognitive Demand so to increase Access. The intervention paid off. Four more students joined Sophie 
and Emmy and participated in the exploration. It took just a few minutes of discussion for Sophie to 
come up with a measure that works: “The perimeter over four, squared, over the area of the shape”. 
The class enthusiastically picked up on this suggestion, and eventually endorsed it.  

Discussion 
In this paper, we examined a sequence of three in-the-moment decisions. Schoenfeld’s first decision 
was to open the door to Emmy’s original idea, but present it in his own words; when the exploration 



of Emmy’s idea seemed too challenging for the class, Schoenfeld’s second decision was to try and 
steer the discussion back to the original problem; and finally, a quick evaluation of where the class 
was led Schoenfeld to reverse his second decision and allow an even more challenging exploration. 
Schoenfeld considered his decision making to be highly principled in the sense that his decisions were 
well aligned with his explicit orientations and goals; however, in his reflections, he also observed that 
some of these decisions were hard to fully justify since they were strongly influenced by a tacit sense 
of where the class is and how things could work out. This sense of the class is a resource Schoenfeld 
developed over years of teaching the course; his reflections suggest that this resource has a crucial 
role in his decision making when faced with challenging dilemmas: it helps resolve pedagogical 
conflicts that rise from tensions between competing goals and orientations. The TRUmath framework 
proved to be useful for unpacking these tensions by providing an organizing structure for the different 
considerations and the conflicts they present. For example, in the context of Emmy’s original idea, 
when examining three alternative options, we found that Schoenfeld considered two of the options to 
very well aligned with some of the dimensions, but also potentially harmful from the perspective of 
the other dimensions. The TRUmath analysis suggested that Schoenfeld chose a path that he 
considered more moderate across all five dimensions in terms of potential gains and risks. This 
analysis led Schoenfeld to suggest a teaching heuristic that may have tacitly guided him: keep the 
lesson productive from the perspective of each dimension, and avoid the temptation to excel in just 
one or two dimensions at the expense of the other dimensions.  
This paper illustrates the theoretical potential of TRUmath as a framework for explaining decisions 
made in light of conflicting goals and orientations, and the practical potential of TRUmath as an 
organizing structure for teacher reflection that highlights the gains and risks entailed in different 
instructional moves. As Schoenfeld is both the subject of this study and one of the developers of 
TRUmath, further research is required to assess TRUmath’s explanatory power for other instructors. 
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Mathematical tutorials play an important role in tertiary teaching of mathematics in Germany. 
However, we do not know a lot about what actually happens in these tutorials. This paper reports 
from a small study in the context of a PhD project which investigates the work of teaching assistants 
(TAs). The result of this study is a typology of discussion patterns of tasks in mathematical tutorials. 
In this study typological analysis, including a hierarchical cluster analysis, was used to identify 
different ways in how TAs work on mathematical tasks in classroom discussions. The findings suggest 
that there are five main patterns for the discussion of tasks, differing in focus, length and support of 
students’ learning. 

Keywords: Teaching assistants, tutorials, problem oriented instruction, classroom discussion. 

Introduction 
In Germany, teaching assistants (TAs) play a vital role in the learning of mathematics at universities. 
A mathematical course usually consists of three parts: the lecture, homework assignments and small 
group tutorials. The lecturer delivers the lecture and assigns three to five tasks for the homework 
assignments. After working on these assignments for one week, the students hand in their solutions 
to the tasks, TAs correct them and later discuss these tasks in small group tutorials. Usually, the 
lecturer and TAs meet every week for planning the tutorial session. TAs do not assist the lecturer in 
his teaching activities, but they are on their own in the tutorials and free to discuss the tasks as they 
like. TAs in Germany are undergraduate students who are just a few years ahead of the students they 
teach and they are usually employed for one semester. By leading the tutorials, TAs are close to the 
students’ actual learning and may function as link between students and lecturer, e.g., they shall 
connect the contents of the lecture to the tasks, they ought to get feedback from the students and report 
this to the lecturer. TAs are expected to be accurate and to facilitate students’ learning by also sharing 
their own experiences as successful students.  

Although TAs play such an important role in the learning of the students, there is hardly any research 
on German TAs’ practices. Internationally, research on TAs has increased in the last 20 years. 
However, as their role and practices differ in many ways from that of German TAs, it is uncertain in 
what respect the results of these studies can be transferred to the German context. Therefore, the aim 
of my PhD project is to understand how German TAs organize their tutorials in order, later, to be able 
to provide a basis on which we can develop quality criteria for German tutorials and use them to 
support TAs in weekly meetings and tutorial trainings. 

Theoretical background 
In the last years, research on mathematical teaching practices has increased and there have been a few 
studies that compare characteristics and teaching styles of instructors in different levels. Weber 
(2004) showed that one lecturer might use different teaching styles, depending on his learning goals 
and the content he is teaching. Weber could identify three different ways of teaching proofs in a 



traditional lecture format: logical-structural, procedural and semantic. This suggests that, at least 
advanced lecturers, change their teaching styles intentionally.  

There have also been studies on comparing teaching styles of different instructors. One example is 
Pinto’s (2013) study on two TAs that are even supposed to follow the same lesson plan. Using 
Schoenfeld’s resources, orientation and goals theory (Schoenfeld, 2011), Pinto illustrates how both 
TAs prepare and hold their tutorials quite differently according to their research background and 
experience in teaching this particular topic. Also Mali (2015) could accord to the findings of Pinto. 
In their study on two tutors in small group tutorials, they found out that teaching seems to be closely 
linked to research practices of the tutors: the mathematician “uses the graph to make fundamentally 
mathematical ways of thinking transparent to students”, whereas the mathematics educator uses the 
graph “as an alternative to explain the mathematics” (p. 2193). 

Of course, looking at TAs from the German context, they do not have a research background that 
might influence their teaching. However, their experience from their own tutorials or from teaching 
tutorials in former semesters as well as their learning goals, beliefs about learning or the mathematical 
contents might influence the way they discuss tasks. Therefore, the main research question for this 
paper is: What different “discussion patterns” do TAs use when working on mathematical tasks in 
tutorials? This includes sub-questions like: Do TAs focus on the problems they identified when 
correcting the students’ work? Do they always discuss the whole task or only parts of it? How much 
do they support the students in their learning process? For this paper I combine the answers to these 
questions by trying to find overall patterns for classroom discussions.  

Methods and design 
The study is being conducted at a German university. Students of mathematics for pre-service 
teachers are expected to attend lectures and additional small group tutorials of 10 to 30 students. Both, 
lectures and tutorials are weekly sessions of 90 minutes, the students are supposed to work on tasks 
out of class which are assessed by the TAs and discussed in tutorials. The videos for this study were 
generated in tutorial sessions containing 78 task discussions in total (2-3 discussions per tutorial). 32 
TAs have taken part in this study, all of them pre-service teachers. The data set includes task 
discussions in tutorial sessions from different semesters of the years 2010 to 2015 and the discussion 
covered a range of topics from analysis, arithmetic and geometry. This great variety of tutorials was 
chosen to get a representative sample of task discussions, thereby reducing other influences (style of 
lecturer, difficulty of mathematical content, etc.).  

The students in the tutorials were all bachelor students studying teaching mathematics in secondary 
schools. Students were not directly videotaped unless they presented parts of the solution in front of 
the class. Their questions, comments and other contributions to the task discussions are audible in the 
videos. 

In a previous part of the PhD study, these 78 task discussions were analyzed for different aspects: 
how TAs start and end the task discussions, what methods they use, how they try to support the 
students using visualizations, references to the lecture, etc. Using qualitative content analysis, 
different categories were generated to investigate each aspect in more detail (Püschl, 2016).  

This part of the study focus on the task discussion as a whole. As we want to find out different types 
of discussions, an empirical typification method, namely the “typological analysis” by Kuckartz (as 



described in Kluge, 1999), was used for analyzing the data. An important part of typification methods 
is to identify features which characterize the different discussion patterns. These features for the 
classification of task discussions are based on some categories from the previous part of the PhD 
project (see Püschl, 2016). The following four features were considered for the typological analysis: 
use of didactical elements, completeness of discussion, focus on problems and focus on strategies. 

The use of didactical elements is a key feature for the discussion, because it indicates to what extend 
the TAs support the students in their learning process. In the previous analysis of the PhD study, ten 
different didactical elements were identified: “use of visualization”, “highlighting common 
mistakes”, “reference to lecture, other exercises, school”, “giving structural advice”, “clarification of 
expectations”, “solving in several ways”, “recapitulation of main results”, “clarification of student 
questions”, “generating cognitive conflicts”, “returning students’ questions” and “asking advanced 
questions”. Some were only used in a few discussions (like “returning students’ questions”) while 
others could be found frequently (e.g., “use of visualization”). Some didactical elements are rather 
pedagogical (e.g., “returning students’ questions”), others demand more mathematical skills (e.g., 
like “asking advanced questions”). For the purpose of this paper instances in which a TA used a 
didactical element were counted, ranging from a minimum of 0 to a maximum of 13 elements per 
task discussion. The feature completeness of discussion tells, whether the TAs discuss the whole task 
or only parts of it. Therefore, this is a binary feature, 0 standing for an incomplete discussion. The 
other two features give insight into the focus of discussion and relate to categories from prior analysis. 
The focus could be on the mathematical problems the students had when working on the task. The 
focus on problems feature consists of three categories from the previous part of the study: “giving 
feedback on the work of students”, “highlighting common mistakes” and “telling the students to 
review specific parts of the task”. The focus on strategies feature is quite different: here, the TAs do 
not discuss mathematical difficulties, but rather pass on strategies that students need to solve a 
specific type of tasks. It contains the following three categories: “pointing out the task difficulty”, 
“giving structural advice” and “summarizing of task”. For both features, the elements in each 
discussion are counted, ranging from 0 to 4. 
Based on these four features, agglomerative hierarchical clustering was used to find patterns in the 
78 task discussions. Agglomerative clustering starts with all 78 cases, each building one cluster. The 
algorithm then merges a selected pair of clusters into a single cluster, so that after 77 steps only one 
big cluster is being left (Hastie, Friedman, & Tibshirani, 2001, p. 472). To equal the relative influence 
of the four features in the cluster algorithm, they were scaled between 0 and 1. The Squared Euclidean 
distance was used as a metric to calculate the distance between each cluster. To decide which clusters 
are joint in each step, the Ward’s Method was chosen as linkage criterion. The Ward’s Method tries 
to minimize the total distance from centroids by joining two clusters. This method facilitates the 
construction of clusters with similar sizes and is frequently used because it has often provided better 
results than other linkage criterions (Bortz, 2005, p. 573). As the clusters become more heterogeneous 
in every step of the algorithm, it is often recommended to stop at a number of clusters before the 
greatest increase of distance (Bacher et al., 2010, p. 241). The statistical analysis was facilitated by 
the software SPSS (version 23). 

The data has been analyzed regarding the four features mentioned above. In addition, other factors 
have been taken into account as they might influence the results (Kuckartz, 2012, p. 125). Therefore, 
the discussion patterns identified by the cluster algorithm were analyzed in regard to a variety of other 



factors. Three factors are presented in this paper: time spent on the discussion, the TAs’ individual 
approaches and their experience in leading tutorials. 

Results 
The results from the cluster analysis suggest five clusters from the 78 discussions. Using four or less 
clusters would have resulted in a high increase in distance between the cases in the cluster. Three 
cases of the 78 discussions were eliminated, because they did not fit one of these clusters for several 
reasons1. One case, for example, which showed a great distance to all of the other clusters, was a task 
discussion in which the TA was really ambitious and wanted to discuss the whole exercise with a lot 
of student participation, focusing on problems as well as strategies. However, in this way she ran out 
of time and was not able to discuss even half of the exercise in more than 40 minutes. As there is no 
similar task discussion in the data and it would have influenced the cluster algorithm too much, this 
case was eliminated according to these qualitative and quantitative considerations.  

Cluster  completeness 

(1 complete, 0 
incomplete) 

number of 
didactical 

elements (0-
10 elements) 

focus on 
problems – 
number of 

elements (0-4 
elements) 

focus on 
strategies – 
number of 

elements (0-4 
elements) 

1 median 1 4 0 1 

N 18 18 18 18 

2 median 1 2 0 0 

N 22 22 22 22 

3 median 1 6 1 0 

N 10 10 10 10 

4 median 0 5 2 0 

N 6 6 6 6 

5 median 0 2 0 0 

N 19 19 19 19 

overall mean value 1 3 0 0 

Table 1: median of four features distributed into five clusters (N=75) 

Table 1 shows that most of the discussions fall into clusters 1, 2 and 5. Only 16 of the 75 discussions 
have a focus on problems. Cluster 2 and 5 make up more than half of the discussions (55%), both not 
focusing on either problems or strategies. Cluster 1 is the only cluster with a focus on strategies. 

Taking into account the five clusters from cluster analysis five different discussion patterns could be 
identified in the material: 

  

                                                 
1 For further explanations on this process of analysis see Hastie, Friedman & Tibshirani (2001, p. 473). 



Heuristic discussion (Cluster 1) 

The TA discusses the complete task by focusing on strategies the students have to acquire in order to 
solve tasks from this specific type. The heuristic discussion is the only pattern with this focus on 
strategies and used 24% of all task discussions. 

Pragmatic discussion (Cluster 2) 

The TA discusses the complete task without focusing on strategies or problems and with minimal use 
of didactical elements to support the students in their learning processes. The pragmatic discussion is 
the most frequently used discussion pattern (29%). 

Student-oriented discussion (Cluster 3) 

The TA discusses the complete solution of the task while focusing on the specific problems the 
students might have had. This pattern is called student-oriented, because the TA satisfies the students’ 
request for a model solution, but also tries to help them to overcome their difficulties. The student-
oriented discussion is only used in 13% of the task discussions. 

Problem-oriented discussion (Cluster 4) 

This type of discussion can be characterized by a focus on problems. The TA highlights the 
difficulties in the solution process, using many didactical elements to support the students. This 
pattern is similar to the student-oriented discussion, only differing in the completeness of the 
discussion. Only 6 task discussions fall into this pattern.  

Minimalistic discussion (Cluster 5) 

TAs using the minimalistic discussion just discuss parts of the solution without a specific focus. The 
TAs hardly use didactical elements to support the students. This pattern is quite similar to the 
pragmatic discussion except for the completeness of the discussion. About 25% of the task 
discussions fall into this cluster. 

Duration of discussions 
The average discussion time of one task is about 19 minutes long, ranging from a minimum of 2 to a 
maximum of 53 minutes. The boxplots in Figure 1 show how long the discussions last in each 
discussion pattern.  

Although the differences in average discussion time between the different patterns is not statistically 
significant (one-factor ANOVA at a 5% significance level) there are some interesting observations to 
be made: The pragmatic discussion and the minimalistic discussion are about 10 minutes shorter than 
the discussions in the other clusters. Especially for the pragmatic discussion, this result is quite 
surprising as the TAs are going through the complete solution. However, both discussion patterns do 
not have a specific focus. TAs who discuss problems or strategies probably need some time to 
concentrate on this focus and need more didactical elements to support the students. Time might be 
an important factor for TAs to choose a discussion pattern like the pragmatic or minimalistic patters 
as they often run out of time in the tutorials. 

 



 
Figure 1: duration of discussion in minutes each discussion pattern (N=75) 

Individual approaches of the TAs 
Another factor which might influence the choice of discussion pattern might be the individual 
approaches of the TA. Depending on their beliefs on learning, some TAs might prefer learning from 
mistakes and usually choose discussions in the problem-oriented or the student-oriented pattern. 
Others rather want to hand on the model solutions and therefore choses the pragmatic discussion 
pattern. One interesting aspect to investigate might be whether TAs usually choose the same pattern 
or whether they switch between the patterns when discussing different tasks.  

As most TAs in the data only discuss one or two tasks, the data for this analysis is quite small. The 
following table shows the distribution of discussions from two TAs who discuss seven different tasks: 

 

TA 

discussion pattern  

overall heuristic pragmatic student-
oriented 

problem-
oriented 

minimalistic 

Andrew 1 5 0 0 1 7 

David 2 2 2 0 1 7 

Table 2: distribution of clusters on example of two TAs 

Andrew tends to use complete discussions with no specific focus. Although he discusses seven 
different tasks, he never focuses on strategies. David’s discussions fall in four different patterns. He 
does not seem to have a preference for any of the different types. This result suggests that some TAs 
have individual approaches while others might be rather flexible in their choice of discussion pattern.  

Both, Andrew and David, are experienced TAs who have led tutorials for several semesters. However, 
not all of the TAs are as experienced as David and Andrew. Like expert and novice teachers differ in 
some aspects of their teaching, rather inexperienced TAs might also choose different ways of 
discussing tasks. Only 11 TAs of the 32 TAs in the data have led tutorials before the semester of this 
study and are therefore labeled as “experienced” while the other 21 TAs are called “inexperienced”.  



 

experience of TAs 

discussion pattern  

overall heuristic pragmatic student-
oriented 

problem-
oriented 

minimalistic 

experienced 11 10 3 1 10 35 

inexperienced 7 12 7 5 9 40 

Overall 18 22 10 6 19 75 

Table 3: distribution of discussion patterns depending on experience of TAs (N=75) 

Table 3 suggests that there are some differences between experienced and inexperienced TAs. The 
experienced TAs, which have lead tutorials in the previous semesters, seem to prefer the heuristic, 
pragmatic and minimalistic discussions. The inexperienced TAs have a greater focus on problems. 
They use the student-oriented and problem-oriented patterns more frequently than the experienced 
TAs. This result is quite surprising as you would rather expect experienced TAs to have a specific 
focus in the discussion. However, the number of cases is quite small, it would be very interesting to 
analyze this aspect for a bigger set of data. 

Final remarks 
This paper presents five different patterns for the discussion of tasks in mathematical tutorials. The 
“heuristic discussion” focuses on strategy teaching which is very important for learning. This type 
consumes more teaching time than the other types and is rather used by experienced TAs. As Brophy 
explains, this kind of instruction is not “only demonstration of and opportunities to apply the skill 
itself but also explanations of the purpose of the skill (what it does for the learner) and the occasions 
on which it would be used” (2000, p. 25). Therefore, the students can hopefully gain more than just 
another solution from this kind of discussion. 

In the “student-oriented discussion” and the “problem-oriented discussion” TAs focus on aspects the 
students struggle with and help them to overcome these difficulties. These types of discussion take 
some more minutes than the average discussion. Interestingly these patterns are seldom used by 
experienced TAs. One explanation might be that inexperienced TAs are more aware of the students’ 
problems as they still remember their own problems. It could also be the case that experienced TAs 
do not believe that these patterns help the students in their learning process. However, this result 
might only due to the data.  

More than half of the discussions have no specific focus and few didactical elements to support 
students’ learning. The “pragmatic discussion” and the “minimalistic discussion” consume the least 
teaching time, so time pressure in the tutorials might be a reason for the frequent use of these two 
discussion patterns. However, the TAs might have other motivations for using discussion patterns 
without focus. Possibly, TAs might pursue learning goals that we are not aware of in this study. This 
shows that further research on this aspect is needed.  

According to the findings of Weber (2004), some TAs seem quite flexible in using the different 
discussion patterns. This result gives rise to possibility that we can support TAs in using the 
appropriate pattern for a specific learning goal. Especially, the heuristic and the problem-oriented 



patterns could be practiced in tutorial training. Apart from that discussion patterns could be a topic in 
the weekly meetings, helping the TAs to plan their tutorials more goal-oriented. 
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This paper deals with the theme "mathematics in the workplace" in the context of engineering work 
in France. In the continuity of recent research, it draws results from a two-step enquiry 
(questionnaire and interviews) with 237 French engineers. Using the Anthropological Theory of the 
Didactic (ATD), I study questions concerning the praxeological mathematical needs encountered by 
these engineers in their daily work ("in the workplace") and about their mathematical training and 
its adaptation to these needs depending on the training institution. This article shows that math 
should not only be considered as a "tool", because engineers sometimes need to have an accurate 
understanding of what they use. Furthermore, it shows that the two first years (called Preparatory 
Cycle) have a great impact on the future of these engineers' mathematical abilities. 

Keywords: Engineering schools, mathematics in the workplace, praxeologies, preparatory cycle. 

Introduction - Context 
The field of "Mathematics in or for the Workplace" has recently received an increasing interest 
especially at Tertiary Level (Biza, Giraldo, Hochmuth, Khakbaz, & Rasmussen, 2016). Worldwide 
researchers have contributed to think about and beyond dichotomies such as "school versus work" 
maths (Bakker, 2014). In the case of engineering apprentices, Ridgway (2002, p. 189) shows that 
"mathematical challenges of engineering differ from the mathematical taught in school. In 
particular, great precision is required, applied to a variety of mathematical techniques; a good deal 
of practical problem solving is necessary". Hochmuth, Biehler and Schreiber (2014) go further 
considering differences between mathematical practices in higher mathematic lectures and in 
advanced engineering lectures. They highlight the idea that for "solving a specific task, 
(engineering) students have to make specific decisions regarding the relevance of knowledge"    (p. 
697). Kent and Noss (2002, p. 1) have identified "a pattern of mathematics-in-use in which 
mathematics of school (are) transformed in something rather different, […] part of a social 
practice", and Romo-Vázquez (2009, p. 37) adds that "their most advanced dimensions tend 
increasingly to be supported either by experts or by software" and that "the needs of non-specialists 
seem to move towards the ability to manipulate these mathematics as a tool for communication 
through specific languages" (p. 37). All these works evidence that the usual training received by 
future engineers is not always adequate and depends on the kind of training institution. They also 
evidence that their mathematical needs are complex. 

In the following, I investigate similar issues in the context of engineering education in France. In 
this country, "engineering schools" are independent institutions, not inserted within universities. To 
become an "engineering apprentice" in an engineering school, students first have to follow two 
years of "Preparatory Cycle" after the baccalaureate. These two-year studies can take place in 
different kinds of institutions: 



- CPGE (Preparatory classes, Classe Préparatoire aux Grandes Écoles): This is a demanding 
training that concerns 50% of French future engineers. It takes place in "Lycées" (upper 
secondary schools) and has historically been created to allow students to enter the most 
prestigious engineering schools. The curriculum is rather generalist, and the admission very 
selective. 

- CPI (Integrated preparatory cycle, Cycle Préparatoire Intégré): for nearly 25% of future 
engineers, this training takes place directly in engineering schools. The curriculum is more 
adapted to the specialty of the school (Mechanics, Chemistry, and so on); the admission is 
also selective. 

- University: the remaining 25% of French future engineers follow their Preparatory Cycle in 
classical Universities (no selection for admission). 

In this paper, after a presentation of the theoretical framework and my research questions, I explain 
the methodology and the details of my enquiry. It comprises two elements: an online questionnaire 
submitted to working engineers, and semi-structured interviews with some of the respondents. I 
analyze the answers to selected questions of the questionnaire and then the interviews. Finally, I 
discuss these results and present some perspectives. 

Theoretical framework and research questions 
Mathematics practices in the workplace are conducted by the needs of the workplace itself. The 
diversity of existing tasks added to the particular tools and resources used in each workplace tend to 
make a research generalization difficult. Moreover, it is recognized that "school mathematics are 
often obscured by the production goal, technology, artifacts and established routines of workplace 
activity" (LaCroix, 2014, p.158). Furthermore, speaking of "school mathematics" requires making a 
difference again between the institutions where the training has taken place. For these reasons I have 
chosen an institutional perspective, provided by the Anthropological Theory of the Didactic (ATD) 
(Chevallard, 2006). 

I use in particular the concept of praxeology that is a system [T, τ, θ, Θ] designed to model every 
human activity (i.e. a certain subject's activity in a certain institution). Among the four elements of 
this organization, we can first meet the type of tasks T. The observed type of tasks T is associated to 
a technique τ to create the "practical-technical block" (so-called a know-how). The second block is 
called "technological-theoretical block" formed by a technology θ (meaning a rational discourse that 
justifies the technique that is used) and a theory Θ, whose role towards the technology is the same as 
the one of the technology towards the technique. I am interested in "mathematical praxeologies", 
which means here praxeologies where mathematics intervenes in one or several components of the 
praxeology. In Chevallard's theory, praxeologies can moreover be adapted from a very general to a 
very precise point of view, following "codetermination levels" that I do not detail here (Chevallard, 
2006). Using this approach, the two research questions I study in this paper are the following: 
(1) Which mathematical praxeologies live in the "workplace" institution for French engineers? 
(2) In which institution did they learn the mathematics they use in the workplace? 



Methodology 
The first step of my enquiry is an online anonymous questionnaire addressed to active engineers. I 
have sent it to institutional mailing lists (more than 20) of former French engineering students. To 
be as relevant as possible, I have tried to spread this questionnaire in schools with different domains 
of specialty such as data processing, electricity, electronics, agronomy, finance, chemistry, 
mechanics, materials, etc. In fact, I was not able to know in advance the number of engineers that 
would receive the invitation to participate, nor how many of them would answer. 

The questions mostly deal with the training engineers have received in maths and the questionnaire 
is divided in four parts. Only the first three ones will be analyzed in this work: 

- The first one concerns personal and professional elements. 

- The aim of the second part is to precise what kind of praxeologies they have encountered 
during their training in mathematics in their engineering school. 

- The third part concerns their effective use of mathematical praxeologies: Is maths a real need 
for their job? For what type of tasks do they need maths more frequently? For what 
professional objectives? Have they had in-service or self-training after their engineering 
school? What difference with the techniques of the initial training? What kind of tools: 
software, books, community, lectures notes, MOOC, etc.? 

The second step of my enquiry consisted of semi-directive interviews with 6 engineers selected 
according to their responses to the questionnaire and representing different classes according to the 
following variables: age, gender, institution of preparatory cycle (I've invited some ex-CPI students 
but none of them have unfortunately answered) and domain of specialty (see Figure 1). 

I describe here briefly the four parts of the interviews: The first one concerns the opinion of the 
engineers about their own training (preparatory and engineering curricula) regarding their current 
specific mathematical needs: what seems to them well adapted or not and why? Based on the same 
idea, the second part asked them to give indications of content that should be or should have been 
taught in their training, how and why. The third part concerns their view about student's autonomy; I 
do not use it in this paper. The fourth part concerns their self-training for learning useful specific 
mathematical praxeologies: which devices or resources? What difference with their initial training? 

 John Peter George Matthew William Alice 

Age/Gender 25/male 27/male 35/male 29/male 35/male 30/female 

Qualification Computer Computer Materials Chemistry Electricity Materials 

chemist 

Domain of 

work/job 

Signal 

(audio) 

processing 

Data 

security 

Consultant Control process 

engineering 

Entrepreneur 

in financial 

analysis 

Motorcars 

development 

engineering 

Preparatory 

Cycle 

CPGE University CPGE CPGE/University CPGE CPGE 

 

Figure 1: The six engineers interviewed 



Analysis of the answers to the questionnaire 
237 engineers from all over the country filled this questionnaire, some of whom are currently 
working abroad. In part 1, I observe that the predominant represented domains of activity are 
Chemistry, Physics Materials and Energetic, Computer, Electrical and Electronics, Production and 
Mechanics, Generalist, Agronomy and Economy. The repartition according to the principal 
variables is as follows (Figures 2): 
 

Age Min Med Max Avge 

Years 24 29 61 32 

 

Gender Women Men 

% 38 62 
 

Preparatory cycle CPGE CPI Univ 

% 68 12 20 

Figure 2: Age, Gender and Preparatory Cycles repartition 

In part 2, question 10 (have you received a training in mathematics in your engineering school?), 
183 engineers amongst the 237 (77%) answered yes. Among the other 23%, we note that 83% are 
chemistry engineers. This may indicate that the mathematical training depends on the precise 
orientation of the studies. 

Question 12 (During your training in engineering school, the main mathematical contents taught 
were…) concerns the mathematical contents mostly taught in the engineering schools, for which I 
proposed a list of main mathematical themes. I chose those themes according to groups of chapters 
mostly found in maths literature for engineers: the results are in Figure 3. 

In Figure 3, I notice the score of Statistics and Probability: it seems to be the most common 
mathematical theme taught in the engineering schools in France, followed by Analysis. 

In part 3, question 19 (Would you say that you encounter (or have encountered) a real need of 
mathematics in your job as an engineer?), 53% declare that they do not have a real need of maths. In 
the next question (question 20), like in question 12, I proposed a list of main mathematical themes 
used in the workplace; the results are presented in Figure 4. 

 

 Scientific 

computation 

Analysis Algebra Probability Statistics Modelling Logic Set 

Theory 

Graphs 

% 69.4 44.1 25.2 37.8 55.9 49.6 54 9 18 

Figure 4: Main mathematical contents needed 

In figure 4, the Scientific computation domain reaches the highest level. Then comes Statistics but 
with a far lower result compared with Figure 3; we observe the same for the Probability, Algebra 
and Set Theory domains. On the contrary, according to those percentages, the domains of Scientific 
computation, Modelling and Logic seem to represent important needs although they are not taught 
widely. In the answers to question 21 (For what kind of professional tasks?), the engineers explain 

Contents Scientific 

computation 

Analysis Algebra Probability Statistics Modelling Logic Set 

Theory 

Graphs 

% 40.4 47.5 44.8 68.9 84.7 27.9 23.5 17.5 16.9 
 

Figure 3: Mathematical contents taught in engineering schools 



the practical use of these contents. The tasks mentioned are simulation, modelling, data analysis, 
software or algorithms development, basic calculus for estimations, budgets, chemical dosing… 

Analysis of the interviews 
In this section I try to observe, drawing on sections 1 and 4 of the interview, the mathematical 
praxeologies present at the workplace, according to the interviewees. I recall that I consider as a 
"mathematical praxeology" a practice, and a discourse commenting/explaining this practice, where 
mathematics intervene. I propose a classification of these praxeologies, and I also try to identify in 
which institution the mathematics involved were met. 

Transversal types of tasks and mathematical technologies 

I classify in this category praxeologies of the workplace where the types of task is general, not 
necessarily linked with mathematics (as we see below, it can range from "problem solving" to 
"communicating"); and the engineers mention mathematical techniques, and even more importantly 
technologies in the corresponding praxeology.  

Some engineers identify, in the workplace, "reasoning" or "problem solving" type of task directly 
linked or not with mathematics (e.g. making an estimation of costs). Those coming from CPGE 
declare that, for such tasks, techniques and technologies they learned during this preparatory cycle 
are useful. The techniques and technologies they cite are linked with proof, testing hypotheses or 
logic. Obviously these techniques and technologies have been met in CPGE for very different types 
of tasks, but these engineers have transferred them to the workplace. For instance, John says that 
proof, seen as a method in CPGE, is very important to him in his job because it makes him 
understand the utility of mathematical rigor. George explains that, as a project manager, he has to 
understand the mathematical thinking hidden behind a phenomenon more than the phenomenon 
itself. William says that the prominence of hypotheses verification in reasoning is what sometimes 
makes the difference between him and some of his colleagues, as well as being able to rigorously 
check the result of this reasoning at the end. Finally, Alice tells us the importance of logic in her 
everyday job. She gives the example of the contraposition: when she had been taught this kind of 
logical reasoning in CPGE, she thought it would be useless for her. Years later, when she had to 
work on "experience plans", she realized that it is very important to master it when trying to show 
that an implication is true or false. 

According to the declarations of the interviewees all the mathematical contents corresponding to 
these daily needs are taught especially in CPGE more than any other institution. 

Another kind of transversal mathematical praxeology is what John, Matthew and William refer to as 
"basics" – that we identify with the term 'basic skills' used by Ridgway (2002). The corresponding 
types of task in the workplace are situated in many domains like cryptography (Peter), resolution of 
recursive problems in computing (John), and actuarial science (William). Because of the variety of 
tasks, it is also difficult to identify comprehensively all the techniques (integrating, solving 
equations or differential equations, etc.) and technologies (functions of several variables, geometry, 
matrices) in use. One important type of task appearing in the interviews can be formulated as: 
"Meeting and understanding new concepts". For this type of task, having a good general knowledge 



in Analysis and Algebra, including theoretical aspects, is mentioned as very helpful. This can be 
seen as an evidence of the theoretical bloc of praxeologies in action. 

In a similar way, I identified in the interviews the type of task: "communicating about or with 
mathematics". George declares that, thanks to his training in CPGE, he feels at ease to communicate 
about maths subjects with the people he works with. In this case the type of task is directly related 
with mathematics, and the techniques for presenting mathematics have been learned in preparatory 
classes. Another type of task cited by George is "Exploring new domains" like, for instance, static 
physics. I observed the same type of task for Matthew and William in other domains like 
computation or finance. For this type of task their initial training in mathematics is not sufficient, 
and brings to "searching on the Internet"(forums, specialized websites). Sometimes they have a look 
into their old lecture notes or in books as mathematical references that they need anyway to be able 
to enter the field. For this way of learning, they say that they feel satisfied to find the right 
information by themselves. 

Types of tasks in specific domains and mathematical techniques 

In the interviews the six engineers also describe types of tasks met at their workplace but belonging 
to scientific domains, like physics; the techniques in the corresponding praxeologies include 
mathematics. In these praxeologies I did not clearly identify technologies. This is the second type of 
mathematical praxeologies I observe in my analysis. 

First, I would like to highlight the fact that basic mathematical skills are also mentioned as 
providing techniques for many specific types of tasks in various domains, like for example the task 
"modeling the ageing performance of a material" (Alice). Nevertheless, the principle of use of the 
techniques and technologies differs: the aim is to be able to use some results (like theorems or 
formulae) without trying to understand them mathematically. Most of those basic skills are taught in 
the Preparatory Cycle, but the techniques (and technologies) they provide for the workplace are 
taught in the engineering schools. In fact these types of tasks are well known by them since many 
years; the same holds for the associated techniques. 

Amongst these basic skills, the case of Statistics and Probability seems specific because this domain 
is mostly not taught in the various Preparatory Cycles in France. Each engineering school provides 
its own specific training adapted to its needs. According to the interviewees, once confronted in the 
real world of the workplace, sometimes a statistics formula becomes useful (they mostly remember 
having learnt at the engineering school a lot of theory which does not intervene in their work). 

Reasoning + Using = "Reasusing": a concept for a personal and new mathematical experience 

A last category of mathematical praxeology I found in the interviews combines mathematics in the 
techniques, in the technology and even in the theory. This seems to be linked to specific types of 
task, requiring the development of original techniques – almost a research work. John cites a type of 
task that can be formulated as: "outperforming competitors in the design of new software". He 
explains that he has to know which theorem he must use, but not exclusively: he also has to have a 
deep understanding of the proof of this theorem to be able to understand which parameters will 
allow him to obtain a result in a smarter way than other colleagues. To illustrate this, he gives the 
example of audio latency that is one of the most important qualities for the client of music 
production software. The type of task here could be "Reduce the latency". It corresponds to a short 



period of delay between when the musician plays and when he can hear the sound through the sound 
system (e.g. headphones). When the competitors offer a 20 milliseconds latency, John has to put his 
efforts to find in the theorems or in their proofs (mostly based on Fourier Analysis) how to 
minimize it to 6 ms. This will make the commercial difference and it requires that he really 
understands what is happening "inside" the theorem. This corresponds to the technique "analyze a 
theorem proof". I consider this as a third type of mathematical praxeologies with a type of task 
requiring some innovation. 

Discussion - Conclusion 
Drawing on the results exposed in this paper, I now come back to the two research questions 
presented above. 

Regarding the mathematical praxeologies that live in the "workplace" institution for French 
engineers, the primary result in this study is that only 47% declare they have a real need of maths in 
their everyday job. Concerning the mathematical needs, I have encountered three different kinds of 
praxeologies: A first one with a general type of task, like "solving a problem" or "communicating"; 
techniques, and mostly technologies involving mathematical elements like reasoning and proving, 
and also some elementary mathematical skills. Rigor, logic and an amount of maths basics 
(sometimes considered as useless at first sight, because lacking of concrete sense to them) are 
necessary for the everyday work of these engineers, and also allow them to communicate more 
easily with other people in their working environment. The second kind of praxeology that lives in 
the workplace comprises specific tasks (simulating, modeling, data analyzing, calculating, etc.) 
associated with mathematical techniques: here again, the maths basics are considered as very 
important but they are seen as providing techniques. The last and rather interesting kind of 
praxeology is the mix of reasoning and using (I call it "reasusing"): for an engineer, it means to 
interlink a technology or even a theory to make them become an integrated part of a technique for a 
specific kind of mathematical type of task (such as a logical analysis of a situation, understanding a 
theoretical mathematical concept). 

For the second research question about the institution where they learn the mathematics they use in 
the workplace, I notice that the praxeologies developed in all types of Preparatory Cycles are mostly 
concerned with teaching basic mathematical skills. To end this analysis, I must highlight that the 
engineers who declare needing the first kind of praxeologies (thinking, reasoning and problem 
solving) that where taught during their Preparatory Cycle are all coming from the CPGE institution. 

Finally, my study certainly has some limitations. It cannot be considered as fully representative of 
the whole population of French engineers (in terms of age, gender, domains of work, and 
Preparatory Cycles). Moreover a large part of it is based on what the participants say about the 
mathematics they have learned and use, but it is not clear that they all have in mind the exact same 
interpretation of things. I will work on this issue in my future research. 

But the results that I expose can lead us to think that even if an important part of the engineers do 
not really need mathematics daily, they do not consider them exclusively as providing techniques. 
Receiving a training of the type "maths as a toolbox" is not satisfactory for them because they 
sometimes need to understand the precise functioning of the tools. It is possible for them thanks to 
their own mathematical "culture" (or background) and also their will to investigate by themselves 



some new concepts. I interpret this as the need for "complete" praxeologies (Bosch, Fonseca & 
Gascón, 2004): the engineers do not only need the praxis (basically taught in engineering schools), 
but also the logos (essentially depending on the Preparatory Cycle training). Moreover, several 
interviewees declared that they did not perceive the usefulness of the theoretical aspects when they 
were students. We interpret this as a need to motivate the praxeologies when taught. 
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The present paper investigates engineering students’ own descriptions of what they mean by 
learning of linear algebra and how they know that they have learned something. I seek to extract 
keywords from engineering students’ descriptions of learning of this discipline by drawing on 
grounded theory techniques and classifying the answers in conceptual and procedural approaches. 
By this, both detailed and more meta perspectives on learning are obtained. Results indicate that 
when explaining their learning of linear algebra, conceptual more than procedural approaches are 
emphasized. However, in order to know that they have learned something, many engineering 
students need to know that they are able to solve relevant tasks in the discipline. 

Keywords: Approaches to learning, linear algebra, engineering students. 

Introduction 
Students’ learning of mathematics is a main interest within the community of researchers in 
didactics of mathematics. We seek to know how students learn, what they learn, but also how they 
perceive their own learning (Sfard, 2007). Learning may be defined according to which point of 
view one has in an investigation, but also by taking into consideration what is relevant for the 
particular individuals of a study. A classical definition is given by Hiebert and Lefevre (1986), 
distinguishing between conceptual and procedural knowledge that may yield conceptual and 
procedural learning. Conceptual knowledge is defined as “knowledge that is rich in relationships” 
(ibid.1986, p. 6), which means that it cannot exist in isolation. Procedural knowledge includes 
sequential relationships or step-by-step instructions. Engelbrecht, Bergsten and Kågesten have 
found conceptual and procedural notions valuable in their research of engineering students (2009), 
and because the target group of the present investigation is engineering students, these constructs 
will be utilized.  

The present paper focuses on engineering students’ interpretation of their own learning in a linear 
algebra course. Such reflections are beneficial because the students then have to reflect on how they 
see their mathematical knowledge and for what purposes they study the discipline. Thus, asking 
questions about learning is valuable and frequently done by researchers. An immediate example is 
the present data collection, in which questions asked to the students were picked from a research 
investigation of a related group of students in a mathematics and physics foundation program for 
students going into an engineering program (Marshall, Summers, & Woolnough, 1999). Based on 
data from a longitudinal study over an academic year, they derive conceptions of learning held by 
these students. In my study the setting is somewhat different as the students are experienced 
engineering students, their reflections about learning are confined to a particular domain in 
mathematics, and it identifies students’ reflections at the end of the course. In this particular setting 
the following research questions are asked: Which approaches do engineering students include in 
their description of learning in linear algebra and how do they explain their knowing that they have 
learned something? 



Theoretical background 
The study reported on here investigates engineering students’ description of their learning 
approaches rather than the cognitive processes of learning itself. As will be argued for, such 
approaches are adequately split in two main categories: approaches connected to conceptual and to 
procedural knowledge. The definitions were originally given by Hiebert and Lefevre (1986) and are 
widely used. In this framework, conceptual knowledge is pieces of knowledge connected together 
or, as explained by Kilpatrick, Swafford, and Findell (2001), “an integrated and functional grasp of 
mathematical ideas” (p. 118). Procedural knowledge, on the other hand, includes familiarity with 
symbols but also representation systems in mathematics along with knowledge of rules and 
procedures that can be used in task solving strategies in mathematics (Hiebert & Lefevre, 1986, p. 
6). However, conceptual and procedural knowledges are partners and the interplay between them is 
valuated, emphasizing how one knowledge may lead to the other (Rittle-Johnson & Alibali, 1999). 
Indeed, they are increasingly regarded as interrelated and inseparable, but also object for extensions 
to superficial and deep qualities of the knowledges (Baroody, Feil, & Johnson, 2007). Such 
relationships are multifaceted, and researchers move towards more integrated views in which 
determining the dynamics between the two is the objective (Engelbrecht et al., 2009).  

Students often perceive linear algebra as difficult. This stems from three sources of difficulties 
(Dorier & Sierpinska, 2001). It is about the pedagogical approach, as proofs are found difficult 
(Rogalski, 1990). It is also a matter of difficulty with grasping the theoretical concepts and 
mathematical language; the ‘obstacle of formalism’ (Dorier, 1997). Finally, linear algebra demands 
a ‘cognitive flexibility’ as one has to move between different languages, both theoretical and 
practical forms. Students tend to think in practical terms (Sierpinska, 2000), and lack of connection 
to theoretical structures may hinder their learning (Dorier & Sierpinska, 2001). 

Engineering students recognize mathematics as a foundation of their education (Khiat, 2010). Still, 
they consider the discipline as a routine practice of their profession (Steen, 2001) and expect to be 
exposed to real-world engineering problems in mathematics (Hjalmarson, 2007). With such an 
approach, the formalism of linear algebra may be especially hard to get a grip of. Engelbrecht and 
colleagues (2009) found that engineering students uphold mathematics as procedurally founded. As 
part of their investigation, the authors created tailor-made working definitions to focus on 
engineering students, thus these are adopted in the present study:  

“Procedural approach: Use and manipulate mathematical skills, such as calculations, rules, 
formulae, algorithms and symbols. 

Conceptual approach: Show understanding by e.g. interpreting and applying concepts to 
mathematical situations, translating between verbal, visual (graphical) and formal mathematical 
expressions and linking relationships.” (Engelbrecht et al., 2009, p. 932). 

Methodology 
The present investigation is part of an ongoing study dealing with engineering students’ views about 
the learning of linear algebra. The teaching format in the course which was taught in English was 
‘traditional’, with large group lectures followed by task solving sessions where students worked in 
groups. The ‘untraditional’ part was that a well-functioning video recording system recorded all 



lectures and published them in-time. The linear algebra course was scheduled in the students’ fourth 
year of studies to become master engineers, postponed in accordance with Carlson’s 
recommendations (1993). However, some basic tools in linear algebra had been introduced in a 
mathematics course in their first year of studies, since these are necessary for use in the professional 
disciplines. All together 59 students attended the course this year, and data was collected as I was 
the teacher and arranged for a questionnaire to be answered at the end of the course. The open 
questions picked from (Marshall et al., 1999) discussed in the present paper were: “What do you 
mean by learning in linear algebra? And how do you know that you have learned something?” Due 
to experiences from a previous investigation (Rensaa, 2014), the questionnaire was made mandatory 
but anonymous to increase truthfulness, and the response rate was very good; 93% (55 out of 59). 

Data analysis was done in phases. Initially, grounded approaches were used (Strauss & Corbin, 
1998) to obtain codes that embrace engineering students’ approaches to learning. Next, these codes 
were related to the definition of conceptual and procedural approaches as described by Engelbrecht 
and colleagues (2009) since this definition is tailor-made for engineering students. It offers a meta-
perspective on the analysis results from coding, and this provides answers to the research questions 
about engineering students’ approaches to learning. 

Analysis and results 
The development of codes was done in steps. Initially, I wrote down headwords in each student’s 
description which was given in English. By comparing these, some seemed to describe similar 
things, e.g., ‘utilize for own goals’ and ‘use in gps’ [Global Positioning System], both which could 
be interpreted as ‘learning as applying mathematics’. Because I was working back and forth 
between statements and codes with an aim of reducing the number of codes without deteriorating 
their meanings, each time two replies were interpreted within the same category had to be put down 
as a criterion for the category. For instance, for descriptions of obtained learning, ‘know the whole 
picture’ and ‘associate theory to applications’ were both interpreted as being able to relate the 
different aspects of linear algebra to each other, thus crystalizing a category called ‘ARel’ (able to 
relate). The importance of emphasizing relation in this category was helped forward by a statement 
that did not fall into this category: ‘use different theorems to achieve solutions to practical 
problems’. The emphasis here is on obtaining solutions more than the relation, thus crystalizing a 
category called ‘ASol’ (being able to solve problems). Going back and forth between statements and 
codes resulted in a final reduction to 8 categories for what learning is and 6 categories for what is 
meant by learning of linear algebra.  

Next, the original data set and my developed codes were sent to another researcher for validation 
purposes. This researcher used the codes to independently code the data. Then, we met for 
comparison of results and refinement of codes. A main refinement was deepening the meaning of 
applications. Students had referred to applications when trying to describe learning in linear 
algebra, but we agreed that students should express that applications were actively studied in a 
mathematical connection in order to be coded as ‘Study Applications’ (SAp). An example of a 
statement where the coding was adjusted by this interpretation is the following: 

Student 30: For me, learning is knowing the practical use of theory and how to execute said 
theory. As a computer engineer student specializing in games development, linear 



algebra is central in the programming I perform. I only know I have learned 
something if I can associate theory to a problem I encounter.  

We agreed that this student is not stating that he is studying applications, but rather that he is 
actually taking advantage of knowing applications from other disciplines as part of his learning 
process. Thus, ‘Utilize Theory’ (UTh) is a closer category as the statement points to how theory may 
be utilized for practical purposes. The other refinement of codes that was needed was a specification 
of relations, originally named ‘Rel’. It was unclear which types of relations this was referring to. 
The category had derived from students’ answers as relating back to previous knowledge, thus the 
category needed to be adjusted to ‘RelB’ (relating to background).  

Two additional codes were agreed on: the categories ‘NoAns’ (no answer) and ‘Other’. All blank 
responses could be categorized as ‘NoAns’, while ‘Other’ refers to answers that responded to 
something else than what was asked about. The ‘Other’ category developed from cases in which 
divergence in our separate coding appeared. We both encountered problems because none of the 
codes actually fit with some of the particular answers. An example is ‘It really gives the knowledge 
of different engineering mathematical problems’. One researcher had interpreted this statement as 
‘Study Applications’ (SAp), the other as ‘Able to understand why/what is going on’ (AUn), but the 
student does not seem to be actually describing his learning. Thus, the final coding for this response 
was ‘Other’. This joint coding process showed that the codes were adequate and could be used to 
code all statements. However, we experienced that coding statements together often resulted in 
finding more information in a reply than what we had done individually.  

Ending the process, the following codes crystallized for engineering students’ description of what 
they mean by learning in linear algebra: SAp (Study Applications), GUn (Gain Understanding), 
UTh (Utilise Theory), ForM (Grasp Formalism), SimP (Simplify), SoL (Solve problems), RelB 
(Relating to Background), and ToO (Use Tools). Analytical results for this question are given in 
Table 1, presenting both the number of students in each category and percentage (rounded off) of 
the total number of 55 students. The category ‘No Answer’ consisting of 17 replies is left out, while 
a number of explanations covered approaches in more than one category. Thus, the sum of 
percentages does not add up to 100.  

 SAp Gun UTh ForM SimP SoL RelB ToO 

Number/% 8/15% 11/20% 10/18% 2/4% 2/4% 11/20% 2/4% 2/4% 

Table 1: Responses to what engineering students mean by learning in linear algebra 

Coding responses to engineering students’ description of how they know that they have learned 
something gave the following codes: ASol (Able to Solve), AExp (Able to Explain), AUn (Able to 
Understand Why/What is going on), AAp (Able to Apply), ARel (Able to Relate), and ARem (Able 
to Remember). Analytical results for this question are given in Table 2, including responses coded 
as Other (answering something else). The table presents both the number of students in each 
category and percentage, and again multiple codes were found in some answers. 



 

 ASol AExp AUn AAP ARel ARem Other 

Number/% 15/27% 3/5% 6/11% 9/16% 1/2% 2/4% 5/9% 

Table 2: Responses to when engineering students know that they have learned something 

When the codes and categories were set, I assigned the codes in conceptual and procedural parts. As 
the codes had developed based on engineering students’ own descriptions, they were aligned with 
Engelbrecht and colleagues’ working definition (2009) for conceptual and procedural approaches of 
engineers. This was done by linking the description of codes to statements given in the definition. 
Some codes were easier to categorize, like GUn. Gaining understanding was classified as a 
conceptual approach as this is necessary to be able to expose mathematical understanding. Other 
classifications were harder. An example is ASol. Problems may be complex, theoretical and demand 
deep argumentations, and solving these should classify as a conceptual approach. On the other hand, 
problems may as well be ‘standard’, connected to a set of skills that are more like a routine part of a 
learning process. Such dual interpretations of an activity highlight the complexity involved in 
interpreting conceptual and procedural knowledges in a praxeology. However, engineering students 
tend to ‘proceduralize’ problems, even those of a conceptual nature (Engelbrecht et al., 2009). 
Considering this, I deduced that ASoL ought to be categorized as a procedural approach, but highly 
interdependent upon conceptual approaches  

By going back and forth between the definition and codes, a final classification of codes was 
obtained. For what is meant by learning in linear algebra, the following codes were classified as 
conceptual: SAp fits with ‘applying to mathematical situations’; GUn is about ‘showing 
understanding’; UTh may be interpreted as ‘translating between verbal and formal mathematical 
expressions’; and RelB is about ‘linking relationships’. The remaining categories were classified as 
procedural: ForM is about ‘manipulating’ linear algebra expressions; SimP is simplifying by 
‘calculations’; SoL refers to a way of ‘using mathematical skills’; and ToO is to use tools like 
‘rules, formulas and algorithms’. About knowing that something is learned, the following codes 
were classified as conceptual: AExp is about ‘interpreting concepts’; AUn is about ‘showing 
understanding’; AAp is about ‘applying concepts to mathematical situations’ and ARel is ability to 
‘link relationships’. The remaining codes were classified as procedural: ASol is knowing how to 
‘use and manipulate mathematical skills’; and ARem may be a part of the manipulation of 
mathematical skills by recalling how to do this. Drawing on these interpretations, Table 1 and 2 may 
be organized in conceptual and procedural approaches. Gray coloring of conceptual cells and white 
coloring of procedural cells indicate the appropriate classification. In many cases, an interpretation 
of a student’s reply comprised more than one of the codes given. An example is the following 
statement with three codes of a conceptual type and one of a procedural type, codes included in 
parenthesis: 

Student 6: Generally, I mean that learning is to study something until you understand (GUn) 
the theory (UTh), and is able to use it in both theoretical and practical problems 
(SAp and SoL). 



A statement could be coded in a mix, as illustrated by the last part of the above statement. 
Interpreted as being ‘able to use it,’ this may be about studying applications as a way of utilizing 
knowledge in problem solving – SAp, a conceptual approach. Interpreted as being ‘able to use it’ 
this would be more about the solving process itself – SoL; a procedural approach. Thus, a statement 
could be coded in both procedural and conceptual categories, again illustrating the close 
relationship.  

Discussion 
The analysis results summed up in Table 1 and 2 give some indications of engineering students’ 
conceptions of learning. In many cases, an interpretation of a student’s reply comprised more than 
one of the codes and one phrase could be coded in a mix as illustrated by Student 6’s explanation. 
Engelbrecht and colleagues emphasize that the distinction between conceptual and procedural 
approaches are complex and not absolute (Engelbrecht et al., 2009). Thus, mixed coding may be 
expected. Brought together, however, the frequencies of codes give a meta perspective on which 
approaches (procedural or conceptual) are most appreciated by engineering students. In this 
perspective, Table 1 shows that engineering students emphasize conceptual approaches more than 
procedural ones when explaining what learning in linear algebra means to them.  

Table 1 shows that ‘Gain Understanding’ (GUn) is important to students, having the highest 
response rate. However, understanding is often – like in the above example – connected to knowing 
how to apply this understanding. Only when being able to apply their knowledge the students think 
they have understood linear algebra. This result is in line with the fact that these students are 
engineering students, busy with relating to the use of mathematics (Hjalmarson, 2007). To some 
students, however, solving of problems becomes the main issue and the scale by which they 
measure their learning. Lower interest is given to understanding, as the main objective is to obtain a 
correct answer. An example is the following:  

Student 34: in my opinion, linear equations are some kind of tool (ToO) to solve the problems 
(SoL) in real industrial areas such as factories and… (AAp). 

Not all replies coded as describing learning in a procedural way focus on solving problems. 
Grasping formalism, which is an aspect of difficulty for students when learning linear algebra 
(Sierpinska, 2000), may also be interpreted as a procedural approach in terms of manipulating the 
linear algebra language. This is illustrated in the following student’s description:  

Student 5: the meaning of learning linear algebra is actually learning a mathematical 
language (ForM), a language you can use to solve big questions with many 
variables (SoL). 

 

Responses to the question about engineering students’ knowing that they have learned something, 
summed up in Table 2, are more equally distributed between procedural and conceptual approaches. 
This is mainly due to the category ‘Able to Solve’, which takes all together 27% of the responses. 
An example of a statement coded within this category is: 



Student 35: The simplest way to know that I have learned something is that I can solve some 
problems (ASol), when I am faced with some practical problems using this 
method. 

This student indirectly says that he seeks to apply the mathematics in practical situations but 
knowing that he has learned something is concentrated to the solution process itself. 

Altogether, a rough answer to the stated research questions may be that the present engineering 
students emphasize conceptual more than procedural approaches when explaining learning of linear 
algebra, but in order to know that they have learned something a noteworthy amount need to know 
that they are able to solve relevant tasks in the discipline.  

Conclusion 
A result of the present analysis is that the engineering students emphasize conceptual aspects like 
understanding and utilizing theory as most important in their learning of linear algebra. This may be 
an anticipated result when dealing with students in general, but engineering students’ expectations 
towards mathematics are slightly different. They consider mathematics more as a routine practice 
(Steen, 2001) and procedurally founded (Engelbrecht et al., 2009). Thus, the result is noteworthy. 
However, to know that they have learned something, the same students seek confirmation in terms 
of being able to solve problems; a more expected procedural approach. An explanation to this result 
may be that the mathematics course is one in linear algebra. This course is more theoretical framed 
than the initial calculus courses, thus students are somewhat new to proofs and proving when 
coming to the course. Students find such approaches difficult (Dorier, 1997; Dorier & Sierpinska, 
2001; Rogalski, 1990), and engineering students may therefore put particular attention on these 
aspects in learning of linear algebra. Their consecutive measure of knowing that they have learned 
something in terms of ability to solve problems then shows that the connection between theory and 
task design is particularly important. Tasks should offer opportunities to engage in conceptual 
arguments on the preferred premises of solving tasks. However, as assessment guides students’ 
ways of studying, task design in exams is the most vital part. Thus, an investigation of engineering 
students’ learning approaches related to design of exam tasks will be an important follow-up of the 
present project. 

Even if students in the present study were asked to reply in writing – which naturally reduces the 
richness of the replies compared to responding orally – interesting responses were given. The 
following is an illustration of this, concluding the paper: 

Student 9: To learn does not necessarily mean to remember something, but to understand it in 
depth (GUn) and be able to utilize that information for your own goals (UTh). 
When one has truly learned something, one can easily explain it to someone else 
(AExp). 
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The transition from school to university mathematics is known to present a major challenge to many 
students, resulting in poor performances and high dropout rates during the first semesters. In this 
paper we present the preliminary results on summer courses in Linear Algebra and Analysis after 
the first semester, which were designed based on the Abstraction in Context framework (Dreyfus & 
Kidron, 2014) and on the self-determination theory (Deci & Ryan, 2000). In particular, we 
investigate the potential of this course design to contribute to the motivation of the students and to 
their ability to engage in concept construction. These qualitative preliminary results will be used in 
further research to quantitatively assess the effect of these courses as well. 

Keywords: Mathematical concepts, advanced mathematical thinking, tertiary level mathematics. 

Introduction 
A recurring problem in undergraduate mathematical education is students’ difficulty in coping with 
the transition from school mathematics to the higher paced, more demanding and more formal 
mathematics at university level. This can be seen in the high dropout rates of math students in the 
first semesters and the poor exam results. In particular, some students require more time to learn 
than the time span determined by the lecture course, and find it hard to catch up with their peers for 
the next course. The previous approach of the mathematics faculty at the University of Bremen had 
been to install weekly extra tutorials for the courses in Linear Algebra and Analysis, parallel to the 
corresponding lecture courses. Even though these were conducted by senior student tutors, they 
yielded poor results. Few students attended, and there was no perceived positive effect on 
motivation or performance with regard to concept building. Limited time during the semester was 
stated as the main obstacle to continuous attendance. 

In response to this, a new approach consisting of summer courses in Linear Algebra and Analysis 
was developed and implemented by the authors. These were voluntary courses that took place 
within two weeks between the first and second semester, after the students had not only had the 
weekly feedback from their homework groups, but also some individual feedback on their progress 
by the end-of-semester test. In addition to the goal of enabling the students who had failed (or 
scored low in) the first test to pass the retake, the courses were intended to foster the students’ 
motivation and help them create appropriate concept images (Tall & Vinner, 1981) of the core 
concepts of each course. This is assumed to be of vital importance, in order for them to be able to 
profitably take part in the follow-up courses in the second semester. From the experience gathered 
in the first implementation of these courses, we intend to give a preliminary evaluation with respect 
to these two factors. This will be used to make some adaptions to the following implementations, 
which will then be evaluated more thoroughly. 



In this paper, we will focus on the description and evaluation of the Linear Algebra additional 
course given by the first author. The analysis course was designed analogously by the second author 
and the results were similar.  

Figure 1: Structure of the Linear Algebra module 

In figure 1 the structure of the whole Linear Algebra module in Bremen is displayed. The lectures 
extend over 14 weeks with 4 hours of lecture, 2 hours of exercise in groups and 2 hours of plenary 
exercises each week. The test at the end of the first semester takes place about a week after the 
lectures end and does not contribute to the final grade. The students nevertheless have to achieve a 
certain number of points in order to complete the module. The pass rate is set at a low level 
compared to the final exam, so the students know what to expect on the final, but are not impeded 
by having to retake the test, unless their score is very low.  

Theoretical background 
In their extensive study on teaching Linear Algebra in the first university semester, Dorier et al. 
(2002) identified and described a main obstacle for students to learn the subject, which they called 
the obstacle of formalism. This obstacle is found to be a conglomerate of formal reasoning, 
abstraction and extracting ideas from concepts, due to the vast abstractions, simplifications, and 
unifications in the subject’s history. 

We tried to give students additional support to master this difficulty by a course design based on the 
Abstraction in Context framework, AiC, (Dreyfus & Kidron, 2014). This framework merges the 
idea of the vertical mathematization process by Freudenthal with Davydov's method of ascent to the 
concrete (ibd., p.87), in order to explain how abstraction processes can occur. Abstraction is 
assumed to happen in a “three-stage process: the need for a new construct, the emergence of the new 
construct, and the consolidation of that construct”. The corresponding (observable) epistemic 
actions are recognizing (R) the relevance of certain known constructs in a given situation, building 
with (B) these constructs to achieve (local) solutions and constructing (C), i.e., integrating the 
previously known constructs into a new whole. This model is referred to as the RBC-model.  

Since performance at challenging and creative tasks is dependent on intrinsic motivation, we make 
use of the self-determination theory of motivation (SDT), which postulates the existence of three 
basic psychological needs (Deci & Ryan, 2000). When these needs for autonomy, competence and 
sense of relatedness are fulfilled at a satisfactory level, intrinsic motivation is likely to occur. Low 
achieving students, in particular, may benefit from an environment that fosters positive experiences 
with regard to these needs in relation to mathematics (Um, Corter, & Tatsuoka, 2005; Rakoczy, 
2006). Hence, both in the course design and during the course hours themselves, special attention 
was paid to these factors of SDT. 

As in the methodology of design research according to Gravemeijer and Cobb (2006), we plan to 
develop the design of the additional courses in experiment-reflection-cycles. Gravemeijer and Cobb 
identify three main stages: (1) preparing for the concrete design experiment, (2) experimenting in 
the classroom (in this case the actual implementation of the course), and (3) analyzing the 



experiment retrospectively. At this point of our research, we consider ourselves to have obtained 
enough information from the initial design and implementation, as to be able to proceed to the first 
genuine design cycle within this framework. 

Research questions 
The main research questions we want to deal with are the following: 

1.) How does the participation in the course change the perceived fulfillment of the basic 
psychological needs and, thus, intrinsic motivation? 

2.) What is the effect on the epistemic actions with regard to the relevant concepts for the 
participants in the following course? 

In addition, a minor question can be seen to be “Is there a beneficial short term effect on the retake 
test?”, as this is the main motivation for the students to take part and also an institutional concern. 
We are, however, more interested in the long term effects. 

Description of the course design and design principles with examples 
The Linear Algebra course consisted of five days of activity spread out over two weeks (alternating 
with the corresponding Analysis course). Each day was divided into a morning and an afternoon 
session of three and two hours, respectively, with a lunch break in between. The sessions 
themselves were each devoted to a central topic of the Linear Algebra lecture, e.g., bases, linear 
maps or different interpretations of matrices, and were split into smaller working units of varying 
types and content, which were occasionally adjusted spontaneously according to the students’ needs. 

The instructional design of the course was based on the observation that low achieving students 
often do not have the mathematical resources to occupy themselves for a long time span with a 
given (in general more complex and open) task, but need to be guided to acquire these resources. 
Thus, the course proceeded from very short and clearly defined tasks of varying nature (but with 
immediate feedback) to longer and more open and self-determined ones. For example, the first task 
of the whole course consisted of a lecturer-guided group discussion of very small exercises 
concerning relevant geometric objects (lines, planes), while the very last task was a guided session, 
in which students were asked to create individual exercises to given topics by themselves and then 
solve each other’s exercises, including negotiations on the wording of the task and different 
approaches and solutions. In this way, the possibility of increasing the levels of fulfillment of the 
basic psychological needs was provided. 

With respect to the subject specific aims, on the one hand the focus was on developing the core 
ideas of Linear Algebra and important techniques (Gauss’ algorithm, proofs relating to algebraic 
structures, etc.). On the other hand, great emphasis was placed on the creation and discussion of a 
zoo of examples and counter-examples to the relevant notions, as this is known to be very effective 
in the initial understanding of new concepts (see Dahlberg & Housman, 1997). 

We illustrate how the AiC framework was used in the task design by the example of the concept of 
“linear independence” of vectors, which was comprehensively dealt with in the afternoon session of 
the first day and then later referred to throughout the whole course. 



To aid the construction of viable concept images of “linear independence”, the students were given 
geometric situations, where this concept is relevant, e.g. describing a plane in a three-dimensional 
space as the span of two vectors and characterizing the pairs of vectors where this description fails. 
Thus, the students had to recognize (R) that this particular knowledge of a linear relation between 
vectors is relevant to particular geometric problems (note that at this point the students were already 
aware of the existence of the definition of linear independence). Afterwards, the students were given 
tasks, where linear independence appeared in different situations and in relation to other concepts 
(such as basis, coordinate system, etc.) as to integrate the concept into their mathematical views and 
work out means to examine and apply the concept locally (B). Finally, by discussions among the 
students and with the whole class, the students were encouraged to express and evaluate different 
views on linear independence, which we hope has helped the students in building an (at least 
preliminary) concept image of “linear independence” (C). 

Since the students had already encountered the definitions during the lecture and found themselves 
naturally confronted with extracting meaning from them, we did not incorporate a component of 
guided reinvention in the sense of Freudenthal into the course. Students were not encouraged to 
create models of the key concepts themselves as proposed in RME (Gravemeijer, 1999), but instead 
the “models-of” were already given (e.g. in the form of the definition of linear independence) and 
had to be realized as “models-for” in corresponding applications. 

Field notes including students' actions and reactions during the course were collected by the first 
author. 

Implementation and observations using AiC and SDT 
We will illustrate the implementation of the course and relate it to the relevant theory by the help of 
two examples. In the first sessions of the course, the students were given explicit exercises of 
varying type and difficulty involving some recognizing of, but mainly building with, concepts. As a 
first example, we will therefore report on one specific exercise at this stage of the course. 

 

Figure 2: A problem from the course in linear algebra 

The exercise shown in figure 2 was given to students on the second day, after the concept of basis 
had been established and been related to the concepts of generating system and linear independence. 
It was part of a set of exercises, on which the students worked in small groups of two or three or 
individually according to their own choice. The students took to the exercises well, and most of 



them found access to part (a) quickly (possibly after short exchanges with other groups or with the 
lecturer). Part (b) was claimed to be impossible by some students, but this was resolved mainly 
among the students themselves without much intervention of the lecturer. The remaining parts were 
difficult. Part (c) was attacked by an attempt to prove that the vectors are linearly independent, and 
linear independence was claimed persistently. For time reasons, part (d) and (e) were only dealt with 
by some students, who all implicitly assumed K to be the real numbers, V to be the real plane and 
whose arguments were of a geometric nature. It is noteworthy, that the students refrained from 
trying to manipulate the expressions according to some formal rules they had not understood, but 
rather tried to give meaning to the statements, albeit not always succeeding. Similar effects could be 
observed throughout the course. 

With regard to the epistemic actions in AiC, in this exercise the students were mainly building with 
the concept of basis, while recognition of the relevance and the role of linear independence was 
required. The students' reaction (i.e. the persistent claim of linear independence) to part (c) indicates 
that the concept of linear independence had not yet been consolidated, although it had been 
extensively covered before. The geometric approach to the tasks, however, seems to show that the 
students already had acquired a basic concept image and tried to use this, as opposed to merely 
manipulating the concept definition. There was no particular observation concerning the motivation 
for this exercise. 

The second example to illustrate the implementation is taken from the last day of the course, where 
the students were given the task of creating exercises themselves. Each student was given an index 
card, which was labeled with one of the concepts that had been dealt within the course. He or she 
was then asked to make up an exercise together with a solution involving the corresponding topic 
and write up the exercise on the index card. Students who had quickly completed this task were 
given additional index cards, until everyone had made up at least one exercise. The cards were then 
redistributed randomly, and the students were asked to solve the exercise given to them. Once 
finished, they were told to check their solution with the creator and if both agreed, they repeated the 
process with another exercise. 

There were very different approaches to this task by the students. Some students chose to model 
their exercises on the ones they had been given during the course with only slight changes (different 
numbers, different number of variables/equations, etc.), while others tried to produce an original 
task by combining things they knew. Both approaches were encouraged by the lecturer. During the 
creation of the exercises, the most striking observation was that the students suddenly felt the need 
for certain insights, which had been difficult to stir beforehand. E.g., one student wanted to create a 
linear system of equations, where a row of zeros would appear at some point in the process of 
Gaussian elimination, and was confronted with the need for a practical criterion to achieve this. 
Even though this issue had been dealt with during the course, she seemed to recognize the relevance 
of linear independence of the rows only at this point, when it was explicitly needed by her. 
Additionally, the participants were aware of the need to communicate their mathematical problem 
well enough for someone else to make sense of it and there seemed to be a genuine effort to achieve 
this. In the following session of solving each other’s exercises, a dynamic of interaction was 
observed, where the randomly allocated pairs of creator and solver got together to sit down and 
negotiate the wording of the exercises and the validity of different approaches (in particular, 



students who had not closely worked together before). There was very little intervention from the 
lecturer. 

Concerning the epistemic actions in AiC, there was much activity of recognizing and building with 
concepts. Moreover, the proposition that there has to be a need for a concept for an abstraction 
process to occur was confirmed in some cases, e.g., in the case of the student described above. We 
do not know, however, at this stage, whether this led to the construction and consolidation of the 
relevant concepts, which we consider to be a long term process and not measurable in this short 
time span. With respect to self-determination theory, after a short period of orientation a high level 
of motivation was observed during this task. The students seemed to feel a strong sense of 
autonomy, as they were given the freedom to create a problem of their choice with only the general 
topic prescribed. During the period of solving, many students displayed a boost in perceived 
competence, particularly when they were in the creator-role, and experienced their exercise and their 
comments on it to be of value for someone else. Furthermore, the students appeared to build new, 
largely positive, relationships with each other via the random and varying allocations of creator-
solver pairs. This interaction seemed to be of natural importance to the students (the extensive 
meetings of these pairs were their spontaneous creation and had not been suggested by the lecturer). 
Hence, the conditions for intrinsic motivation according to SDT were largely fulfilled, which might 
help to explain the unusually high motivation. We believe, however, that this exercise would not 
have worked out well if the participants had not been prepared for it in advance by the preceding 
days of the course. 

Results  
One of the institutional measures to evaluate the success of the course was the pass rate of the test 
and retake test, which was compared to the one of the previous year (as the style of the lecture and 
of the exams were largely the same, this comparison seems justified). In 2015, the pass rate for the 
regular test was about 65%, while the retake test was passed by 50% of the participants. In 
comparison, the regular test in 2016 was passed by 78% and the retake by 95%. Although there are 
of course various factors, which play a role in these results, an effect of the additional course seems 
likely. 

In addition, the course was hoped to have a positive lasting effect both on the motivation as well as 
on the ability of the students to achieve concept construction by themselves with the means of the 
relevant epistemic actions. This has not been quantitatively assessed yet and will be the subject of 
further research. However, there are many indications that such an effect might indeed be observed. 

During the sessions of the course, the students appeared to be (at least extrinsically) motivated and 
confident of benefiting from the course. Confidence and perceived competence seemed to increase, 
as the students advanced from the passivity of merely carrying out tasks imposed onto them by the 
instructor to more self-determined action. This seemed to be accompanied by a shift from mere 
extrinsic motivation (to pass the retake) to at least some intrinsic motivation, e.g. some students 
were observed to carry on discussing tasks during the break. The actual mathematical competence 
was seen to increase accordingly, as students gathered experience and perceived deeper 
mathematical insights, which they worked to develop. By the analysis of the two examples above, it 



can be inferred that in the framework of AiC and of SDT there have indeed been positive effects on 
motivation and the ability to perform epistemic actions with regard to the relevant concepts. 

These positive effects reached far into the next semester. Most participants felt that they had 
acquired a basic knowledge and techniques, which were necessary for the following courses, and 
were repeatedly observed by the authors to use methods they had picked up on in the additional 
course during the exercise classes of the following course. In almost all cases this was bolstered by 
the fact that the retake had been passed. Many students expressed their conviction of having profited 
to a great extent from the additional courses, both immediately after the course and about half way 
into the next semester. 

Conclusion and perspectives 
Compared to the previous approaches of the faculty of mathematics and to other approaches 
described in the literature (e.g. remedial courses as discussed by Di Pietro (2014), which were 
shown to be largely ineffective) to help the students in the transition from school to university 
mathematics, the additional courses described here seemed to be more effective with regard to the 
research questions posed above. Various factors are assumed to be of importance for this. 

As this was a voluntary course aimed at students having failed the end-of-term test, it was made 
clear beforehand that it should be seen as a chance to acquire skills not yet developed rather than an 
obligatory task (as in Di Pietro, 2014). The course was announced at the beginning of the semester, 
giving the students the opportunity to take it into account in their planning. In general, the allocated 
time was met with approval, both because it meant no conflict with the workload during the 
semester and because the end-of-semester test provided some feedback for the students whether 
attendance was advisable (due to other time restrictions regarding school and computer practica for 
the students, however, the course should not exceed two weeks). In addition, the common goal to 
prepare for the next semester and pass the retake seemed to ensure a sense of belonging to a peer 
group with a common aim. Hence, the general framework of the course proved to be more feasible 
than the previous ones, and will be kept for the time being. 

The design of the course with sessions devoted to central topics, which were each split into smaller 
units of varying tasks, were also perceived to have a positive impact with regard to the above 
questions. In particular, the general progress from rigidly set tasks to more self-determined ones 
seemed to be appropriate in this setting. The exercises themselves were developed using the AiC 
framework, and their construction will be refined, based on the observation of how the different 
tasks affect the perceived concept building in the students. For example, in the exercise given in 
figure 2, part (c) has already been modified to ask for linear independence of the differences of the 
given vectors as opposed to their sums. This allows for the generalization of ideas from lower 
dimensions to higher ones, giving the students the possibility to use previously built knowledge 
more directly. Moreover, part (d) was simplified to ask only for real vector spaces, as the additional 
difficulty of an arbitrary field seemed to be ignored or actually hindered the building with in the 
previous course. This will be reflected on further, using the gathered experience, and systematically 
revised for the next implementations. After this first preparatory cycle, we hope to be able to 
contribute to the research regarding the mediation of students’ problems in the first year of 
university by carefully designing and evaluating the next cycle of the described additional courses. 



We are going to evaluate the two main questions in the next cycle as follows. To assess the effect 
with regard to SDT, we propose to use a pre-post-test according to the items presented in Rakoczy 
(2006) with the pre-test set at the end of the lectures of the first semester and the post-test in the 
middle of the second semester. We want to check for correlations of these results with the 
performance in the end-of-first-term test. With regard to concept building, we are going to evaluate 
some abilities concerning the relevant epistemic actions at the end of the additional course itself 
with a free form questionnaire, supplemented by two or three interviews with students to reach 
theoretical saturation and to clarify the data. 
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In this case study, we examined a mathematician’s thought processes as he taught a course on 
Algebraic Topology. The mathematician shared his teaching-related journals over an entire semester 
and discussed them in depth during weekly meetings with the research team comprised of a 
mathematics educator, a cognitive psychologist, and a postdoctoral fellow in mathematics. 
Concurrently, one of his students took detailed journals on most lectures. The team employed Tall’s 
three worlds of embodied, symbolic, and formal mathematical thinking as various lenses to 
gain insight into the mind of the working mathematician as he taught a course on Algebraic Topology. 
Although the analysis of the data from the instructor’s journals and the in-depth discussion of the 
journals during the team meetings revealed his thought processes, the 35 handouts that he prepared, 
aligned with students’ needs, provided the most insight into his way of thinking.  

Keywords:  Embodied, symbolic, formal, Tall’s three worlds, Algebraic Topology  

Introduction 
Communicating advanced mathematical ideas to university students is a challenging endeavor. It is a 
common and accepted practice for many mathematicians to write definitions, theorems and proofs on 
the board and make comments as they introduce mathematical ideas to students. Thurston (1994, p. 
162) asked the question: “How do mathematicians advance human understanding of mathematics?” 
In interviewing 70 research mathematicians, Burton (1999, p. 31) found that “intuition, insight, or 
instinct” was seen by most mathematicians as a necessary component for developing student 
knowledge. Although we have some literature on examining mathematicians teaching practices (e.g. 
Fukawa-Connelly, 2012; Stewart, Schmidt, Cook & Pitale, 2015), research on what takes place in the 
minds of mathematicians and their students is still scarce (Speer, Smith, & Horvath, 2010). Dreyfus 
(1991) believed that, “one place to look for ideas on how to find ways to improve students’ 
understandings is the mind of the working mathematician” (p. 29). In this study, we examined a 
mathematician and one of his students’ daily thoughts on Algebraic Topology. The overarching goal 
of this research was to investigate the way mathematicians and students think about mathematics and 
the possible pedagogical challenges that they may face.  

Theoretical framework 
In this study, we employed Tall’s (2013) three-world model of conceptual embodiment, operational 
symbolism, and axiomatic formalism in order to describe an expert geometer’s ways of mathematical 
thinking. In Tall’s view, the embodied world involves mental images, perceptions, and thought 
experiments; the symbolic world involves calculation and algebraic manipulations; the formal world 
involves mathematical definitions, theories and proofs. Tall (2008) asserts that, “all humans go 
through a long-term development that builds through embodiment and symbolism to formalism” (p. 



23). Bridging between the embodied and symbolic worlds is of critical importance. Tall emphasizes 
that “a curriculum that focuses on symbolism and not on related embodiments may limit the vision 
of the learner who may learn to perform a procedure, even conceive of it as an overall process, but 
fail to be able to imagine or ‘encapsulate’ the process as an ‘object’ (p. 12). 

Tall and Mejia-Ramos (2006, p. 3) declared that the word ‘world’ is carefully chosen and has a 
‘special meaning’ in order to represent “not a single register or group of registers, but the development 
of distinct ways of thinking that grow more sophisticated as individuals develop new conceptions and 
compress them into more subtle thinkable concepts”. As Dreyfus (1991, p. 32) declares “One needs 
the possibility to switch from one representation to another one, whenever the other one is more 
efficient for the next step one wants to take… Teaching and learning this process of switching is not 
easy because the structure is a very complex one.” Duval (2006) claims that many students do not 
have the cognitive framework to perform the switch. The overarching goal of the first author’s 
research program is to investigate the ways in which mathematicians move between modes of thought 
and facilitate their students’ movements among these modes. Tall’s theoretical framework accounts 
for movement between the worlds of mathematical thinking and is a suitable scaffold for this research. 
Through our collaborations, we are beginning to understand how the minds of working 
mathematicians operate. Thus, we hope to evolve Tall’s theory and use it to analyze rich data from 
many mathematicians. We endeavored to investigate the following research questions: (a) How did 
the instructor and student move between the formal, symbolic, and embodied worlds? (b) How did 
the instructor use handouts in order to help students move between the worlds? 

Viewing Homology Theory through three lenses 

The mathematician appreciated the developmental aspect of Tall’s framework in which one begins 
with a very embodied view of the world around them and then moves with increasing age and 
experience to a symbolic view as one matures. However, he took issue with the “formal” viewpoint 
as the ultimate destination of this progression, especially since formal from a math perspective (i.e., 
set theoretic axioms, definitions, and formal deductions from such a system) is not the way 
mathematicians think. One can program a computer to generate (i) statements and (ii) formal proofs 
of these statements within an axiomatic system. In what sense can we say that the computer is 
discovering a mathematical theory? Humans use a lot more when they discover/develop a 
mathematical theory. Among all the myriad of possible statements that could be true in this formal 
theory, mathematicians choose certain ones (usually as a result of intuition and metaphors possibly 
supported by symbolic computations to garner evidence for the particular statements) called 
conjectures, and they try to prove them. Instead, the mathematician made sense of Tall’s worlds by 
thinking of them as three lenses that allowed him to view a mathematical reality/world. Figure 1 
illustrates his views of Homology Theory through these lenses. The embodied lens allows the 
mathematician to see cycles as geometric objects, and similarly for chains and various topological 
spaces. The symbolic lens allows the mathematician to use symbolic computation tools such as the 
Mayer-Vietoris sequence and produce symbolic computations (e.g., the homology of the 2-torus). 
The formal lens allows the mathematician to work with the Eilenberg-Steenrod axioms and results 
which can be derived formally from these axioms. The geometric side of topology spans the embodied 
and symbolic lenses. Algebra, primarily in the form of Homological Algebra, spans the symbolic and 
formal lenses.   



 

 
 

Figure 1: The three-lens view of Homology Theory 

We can think of similar lenses, for example, in medicine. One can look at a patient with one’s eyes, 
take an x-ray or an MRI of the patient, view the patient through an infrared lens, listen to the patient’s 
heart and lungs etc., talk to the patient about their symptoms, and draw blood and perform tests. These 
are different modes of gathering information to give a practitioner a more complete picture of the 
patient. 

Method  
The participants. Our qualitative narrative study investigated the ways an expert mathematician 
navigated among Tall’s worlds of mathematical thinking. The research team consisted of four 
members: a mathematics education researcher; a geometer, Noel Brady (the course instructor); a 
cognitive psychologist; and a mathematics postdoc familiar with both Algebra and Topology.  

The course. The Algebraic Topology course was the first in a two-semester sequence of graduate 
courses. There were eight graduate students enrolled in the course. During class meetings, Noel often 
passed out handouts to help students follow along with the topic of the day. He believed some topics 
covered in the chosen textbook (Hatcher, 2001), needed to be handled in a more detailed fashion. 
“Hatcher is a bit fast and loose with all of this”. Students actively solved problems together in groups, 
or individual students were called to the board to complete problems. Noel also helped to revive an 
extracurricular, student-led topology seminar.  

Data and procedures. In this study, we analyzed a geometer’s thought processes and actions while 
he taught Algebraic Topology over the entire Fall 2014 semester. One source of data was a series of 
teaching journals that contained Noel’s reflections on his preparations for class, what happened 
during class, as well as some descriptions of the events that took place during office hours and a 
student-led topology seminar. The research team read his daily journal entries and discussed them 
during weekly research meetings. During these meetings, we asked Noel further clarification 



questions, and he often drew additional pictures as he described the course content. These meetings 
were audio recorded and later transcribed and will be used as a source of data. Another source of data 
came from one of Noel’s graduate students who also wrote daily journals. These student journals 
provided an additional perspective into the events that took place in class. In addition, further data 
came from 35 handouts that Noel provided.  

Coding scheme. The data were analyzed thematically, meaning we mainly considered the key issues 
that emerged in this study. The main themes and their sub-categories were identified and coded (see 
Figure 2). In addition to assigning codes for the three worlds of mathematical thinking, we also 
created codes for movement between the worlds (e.g., embodied-symbolic). While coding Noel’s 
journals, at times we assigned multiple codes for a particular instance. For example, an excerpt could 
be coded with both the “Teaching” and “Tall’s Worlds and Movements” codes.  

In the following section, we give a glimpse into the analysis of Noel’s journals, as well as instances 
from the student’s journals to illustrate how the student perceived movement among the worlds. 

Results and discussion 
Figure 2 shows the percentage of total qualitative codes that were applied to excerpts from Noel’s 
teaching journals. 

 

Figure 2: Qualitative coding scheme 

The main theme of Tall’s three worlds of mathematics comprised 25% of the total codes. Teaching 
was the main theme that was coded the most (46%) in Noel’s journals. Reflections included 20% of 
codes, and codes pertaining to students involved 9% of the total codes. Analysis of the data revealed 
ample evidence that Noel repeatedly navigated between the three worlds of mathematical thinking. 
Below, we provide examples from our analysis of his teaching journals and a student’s journals to 
illustrate movement between worlds. 



Moving between embodied (intuition) and formal worlds 

According to Noel, this may have been the type of movement that the students found the most 
challenging: “There were a lot of questions about how to pass from an intuition to a formal proof 
(many of these examples used techniques/results from quotient spaces).” 

The analysis of the student’s journals showed his concerns regarding the proofs. This excerpt was 
taken from one of his journals at the beginning of the semester:  

Dr. Brady's way of proving results that come from concepts we're already supposed to have come 
across before his class is nice, I think. He gives a detailed outline verbally, which is helped along 
visually by his pictures and hand gestures. For the most part I'll watch without writing almost 
anything, but I definitely get a lot out of reviewing concepts in this way. I'm a little worried, 
however, that when we get to brand new material Dr. Brady's way of proving results might remain 
in the same verbal/hand-waving/picture-drawing style and that this won't be enough for me to 
follow the proof right there and then. He tends to speak and write very quickly, which is fine when 
we're reviewing. But since I can either copy furiously what he writes on the board or listen to him, 
but not both, this could become a problem. 

Noel refused to give students proofs that were pre-packaged. More specifically, he wanted to provide 
students with intuitions/pictures that would help them understand the conceptual nature of the proof 
and ultimately lead them to it. In one of the research meetings Noel said: 

I mean I can give verbatim proofs of things or give them more detailed proofs where Hatcher 
leaves stuff out, but that will just waste time and I’ll reproduce a book and nobody will get anything 
out of it. So I’ve given them intuitions, enough of an intuition that they can tag that together with 
a formal proof. 

Later in the course the student wrote: “I've seen van Kampen's theorem before, but Dr. Brady's from-
the-ground-up approach was very nice in that it showed us through comprehensive diagrams just 
where exactly the theorem comes from.” 

Movement between embodied and symbolic worlds 

Noel discussed moving from embodied demonstrations (e.g., rope trick) to having students complete 
symbolic examples (e.g., right-angled Artin group (RAAG) complexes and the torus knot spine): 

More of the same. I connected back to several examples from the first week and from the intro 
to 𝜋1. The pair of circle links in 𝑆3 example (a.k.a. the rope trick) and the RAAGs. This seemed 
to go ok. Mentioned again that RAAGs are deceptively simple looking groups, but that their 
subgroup structure is surprisingly rich. In particular, Bestvina-Brady (1997) and Agol-Wise (2012) 
contain very surprising results about subgroups of RAAGs. Told them that the story is still 
ongoing. Left off with an example of a torus knot spine (Hatcher).  

The handouts 

Analysis of the 35 handouts that Noel created illuminated the motives behind some of his thought 
processes and movement between worlds. These handouts gave the team a more authentic glimpse 
into the mind of the mathematician than the teaching journals that Noel regarded as self-critical (self-
aware). Figure 3 shows the first two pages of a handout Noel created on barycentric subdivision. The 



start of the handout contains the formal definitions of “barycenter” and of “barycentric subdivision.” 
These definitions build on a previous definition (and square bracket notation) of an n-simplex. The 
definition of “barycentric subdivision” is recursive (i.e., defined in terms of lower dimensional 
versions of itself). The rest of the two pages is devoted to building students’ intuitions for these 
definitions. At the bottom of the first page, two embodied examples are provided which demonstrate 
how to unwrap the recursive definition to determine the barycentric subdivision of a 1-simplex (a line 
segment) and of a 2-simplex (a triangle). This is followed by an exercise which asks the student to 
add another layer of recursion and describe the barycentric subdivision of a 3-simplex (a triangular-
based pyramid). This is a very embodied example. At this stage, Noel hoped that the student should 
be gaining confidence working with the recursive definition and should be developing an intuition 
that the symbolism will work in higher dimensions where one’s embodied intuition fails. The second 
exercise asks the student to iterate the barycentric subdivision process for a 2-simplex. Again, this is 
very embodied and can be drawn easily in the plane. Noel pointed out that developing an intuition 
about iterated barycentric subdivisions is important since they will form the heart of the proof of the 
“locality result” and the proof of the “excision theorem” for singular homology later on in the course. 
The two Roman-numeral-labeled observations at the end of page 2 build on the student’s embodied 
intuition of the behavior of iterated barycentric subdivisions in dimension 2 (obtained from doing 
exercise 2). They motivate the statement of the theorem that will be given and proven on subsequent 
pages of the handout. They also alert the student to the fact that some care will have to be given to 
the proofs on the subsequent pages. This is particularly so, since these proofs will hold in arbitrary 
dimensions.  

Noel pointed out that, from a textbook perspective, one can skip straight from the definitions of 
barycenter and barycentric subdivision to the statement and proofs of the theorems about the behavior 
of the diameters of simplices under iterated barycentric subdivisions. Nothing in the logical 
progression and framework would be lost. However, students’ intuitions would be lacking (save for 
the rare student or two who can do some mental exercise equivalent of the examples, exercises and 
observations of these two pages.). This handout is one of a sequence of three handouts. These 
handouts get increasingly symbolic and abstract. Eventually, the results contained in the last handout 
are just what are needed in the formal proof of the “locality theorem” (and the “excision theorem”) 
of singular homology. At this stage, the proofs are very symbolic and far removed from geometry. It 
is good that students have developed an embodied intuition about iterated barycentric subdivisions, 
so that they have concrete models in their mind for how excision works on the geometric level of 
chains.  



 

Figure 3: An excerpt from Noel’s handout 

Concluding remarks 
This study revealed that Noel viewed Algebraic Topology through all three mathematical lenses 
(embodied, symbolic, formal), and his handouts provided his students with opportunities to view the 
course material through these different lenses as well. In one of the research meetings, Noel 
mentioned:  

When I think of the mathematical world of algebra I have examples in my mind, many of which 
are very embodied, and many of which are symbolic, I also know the axiomatic definitions of 
concepts in this world like "group," "ring," "field" etc. So, when I think of the world of algebra all 
three lenses (embodied, symbolic, formal kick into gear. Likewise, for the mathematical world of 
topology. 

Our research team, comprised of a mathematician, a mathematics educator, and a cognitive 
psychologist, are working together to apply and evolve Tall’s theoretical framework by analyzing the 
teaching journals of mathematicians and their students. We have come to realize that the embodied, 
symbolic, and formal worlds blend together as applied to Algebraic Topology; it is often not clear 
where one world starts and another world ends. In addition to thinking about problems from the ESF 
perspectives, mathematicians often translate a problem from one area of mathematics (e.g. Topology) 
to another (e.g. Algebra). This translation is achieved using mathematical constructs called functors.  

Noel used the analogy of a translator to describe the mathematical notion of a functor. When a 
statement of a problem is translated from one language to another, some of the details may get lost in 



the translation. Perhaps this loss of information has an unexpected benefit; the simpler formulation 
of the problem in the new language might allow for new insights or intuitions to be gained, and 
perhaps even for a solution to the original problem. 

Noel talked about functors in his journals, and described how they are used to solve problems in 
topology by first translating then into algebra problems: 

We introduced some other situations where Algebraic Topology functors might help solve 
topology problems, and mentioned that the homology functors would be introduced and studied in 
the course.  

We are using analogies and metaphors to communicate with one another as we attempt to understand 
the pedagogical decisions of the working mathematician. As Thurston (1994, p. 168) asserted: “we 
mathematicians need to put far greater effort into communicating mathematical ideas. To accomplish 
this, we need to pay much more attention to communicating not just our definitions, theorems, and 
proofs, but also our ways of thinking...we need to appreciate the value of different ways of thinking 
about the same mathematical structure”. 
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Discursive shifts from school to university mathematics and lecturer 
assessment practices: Commognitive conflict regarding variables 
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We report part of an ongoing study that aims to characterise lecturers’ assessment discourse, 
especially on closed-book examinations. We focus particularly on lecturers’ discourses that concern 
the transition from school to university mathematics, and we do so through highlighting one 
commognitive conflict regarding the use of variables in a task from an examination paper for a Year 
1 module on Sets, Numbers and Probability taught in a UK mathematics department. We show 
evidence that the lecturer’s assessment practices aim to facilitate students’ avoidance of errors that 
are occurring because of said conflict. Here, we focus on students’ scripts which illustrate that, 
nonetheless, students make errors and do not draw on the discourse of integers when deciding the 
domain of the variables used in the task. We conclude with a brief discussion of students’ experience 
of commognitive conflict in the transition from school to university mathematics.  

Keywords: Undergraduate examinations, assessment routines, commognitive conflict, variables.  

Introduction  
Studies in mathematics education have focused on students’ transition from secondary school to 
university (e.g. Gueudet, 2008). Part of how students experience said transition is evidenced in their 
engagement with examinations during their first-year undergraduate modules. The nature of tasks in 
examinations has been studied using different theoretical frameworks (e.g. Tallman, Carlson, 
Bressoud & Pearson, 2016). Researchers have also examined lecturers’ perspectives on examination 
tasks (Bergqvist, 2012; Tallman et al., 2016). In our study, we take a discursive approach in analysing 
examination tasks and lecturers’ perspectives focusing on aspects of the transition from secondary 
school to university mathematics. This theoretical approach allows a characterisation of the 
mathematical discourse the students engage in when solving the tasks, and provides insight into 
lecturers’ assessment practices and their expectations from students’ responses.  

In this paper, we analyse a task from a first-year module on Sets, Numbers and Probability offered in 
a UK mathematics department. We build on previously reported work from this study (Thoma & 
Nardi, 2016) in order to delve into lecturers' assessment practices facilitating students’ transition to 
university mathematics in more detail. Specifically, we take the case of variables and the way these 
appear in a Number Theory task of the module’s examination paper. In choosing this particular case, 
we take cue from previous works (e.g. Epp, 2011) which note that variables have diverse uses in 
mathematics, some of which often create difficulties for students’ transition to algebra and other 
advanced topics. Of particular relevance in this paper is the discussion by Biehler and Kempen (2013) 
about the difficulties with variables that students face. 

In the part of our study reported here, we focus on a commognitive conflict concerning the number 
domains in the secondary school and university mathematics discourses. First-year mathematics 
undergraduate students’ errors regarding variables, when engaging in a Number Theory task, provide 
evidence of this unresolved commognitive conflict. In what follows, we present briefly the theoretical 
framework of the study, the examination task and the study’s participants. We then analyse the task 



and the interview data with the lecturer who posed the task. The interview data illustrate the lecturer’s 
ways of assisting the students to avoid the errors. Finally, we highlight the errors evidenced in the 
student scripts despite this assistance, we present the case that these errors stem from aforementioned 
commognitive conflict and conclude with a discussion of findings and how these are embedded into 
the larger study. 

Commognitive conflicts and assessment routines facilitating discursive shifts 
Sfard's (2008) theory of commognition is a discursive approach that is being increasingly used in 
mathematics education (Tabach & Nachlieli, 2016), as well as specifically in university mathematics 
education (Nardi, Ryve, Stadler & Viirman, 2014). Mathematics in this approach is a discourse that 
can be described in terms of the following four characteristics: word use (e.g. divisor), visual 
mediators (e.g. algebraic symbols), endorsed narratives (e.g. definitions) and routines (e.g. proving). 
The routines are distinguished in deeds (“an action resulting in a physical change in objects”; Sfard, 
2008, p. 236), rituals (“creating and sustaining a bond with other people”, p. 241) and explorations 
(“producing endorsed narratives”, p. 259) with the explorations further categorised in recall, 
substantiation and construction. Of particular relevance to our analysis here is the construct of 
commognitive conflict “the phenomenon that occurs when seemingly conflicting narratives are 
originating from different discourses – from discourses that differ in their use of words, in the rules 
of substantiation, and so forth.” (p. 257). For example, a commognitive conflict may occur between 
the different relationships that the number domains have in school and university mathematics 
discourses. In school, number domains are introduced progressively. They are used for some time; 
and then subsumed in the next number domain. Positive integers are introduced first. Then, as the 
students learn about division, rational numbers follow. After a while, the discourse about unsigned 
rational numbers (which includes integers and rational numbers) together with negative numbers 
constitute the discourse on rational numbers (p. 121). The discourse of real numbers is introduced in 
later stages of the secondary school. In the university discourse, the number domains play a different 
role. They are presented as crucial abstract structures, the ring of integers and the fields of rationals, 
reals and complex numbers. In particular modules, the focus of study are those abstract structures and 
that is the case for Number Theory, where the domain of the variables is restricted in the discourse of 
integers. 

In our study, we examine students’ participation in the university mathematics discourse taking also 
into account the lecturers’ perspectives, particularly their rationale for the choices of the examination 
tasks and the wording of the tasks. Our previous analysis of examination tasks and lecturers’ 
assessment practices (Thoma & Nardi, 2016) highlighted the following assessment routines: giving 
directions to the students regarding the steps their response to a task may take; structuring the tasks 
and subtasks in ways that allowed students to secure and optimise marks as they progressed from one 
part of a task to another; and, providing guidance regarding expected justifications in the students’ 
responses. Overall, these routines aim at assisting students’ shifting from school to university 
mathematics discourse. Here, we aim to extend our previous analyses, also taking into account 
lecturers’ assessment routines, which aim to avoid expected errors. We will make the case that 
unresolved commognitive conflicts are responsible for those errors. We are, therefore, starting to look 
in tandem at aspects of students’ experience (here: commognitive conflicts relating to variables in a 
Number Theory examination task) and lecturers’ perspectives on – and intended practice relating to 



– this experience. In the following, we outline the larger study our paper originates in; and, introduce 
the examination task and a brief commognitive analysis of it. We then offer an analysis of the 
lecturer’s perspectives on the task, highlighting those assessment routines that aim to help students 
avoid errors relating to variables. Finally, we present the student examination scripts, which illustrate 
these errors and examine whether, and how, the unresolved commognitive conflict in the different 
relationships with number domains at school and university, may be seen as responsible for these 
errors. 

The examination task and the participants of our study (lecturer and students) 
The data of our study 
consists of examination 
tasks from different 
modules, lecturers’ 
interviews on those tasks 
and students’ scripts 
corresponding to these 
examination tasks. The 
focus of this paper is on 
one task from the module 
Sets, Numbers and Probability. This is a first-year module and has two parts: Sets, Numbers and 

Proofs taught in the autumn semester 
and Probability taught in the spring 
semester. The final examination 
includes six tasks: the first two are 
compulsory and the other four 
optional. One of the compulsory and 
two from the optional tasks are on 
Numbers, Sets and Proofs and the 
others on the Probability part of the 
module. At the final examination, the 
students have to solve both the 
compulsory tasks and three from the 
optional tasks. The total grade of the 
examination is 100 marks and the 
pass grade is 40 marks. This paper 

focuses on the compulsory task from the Sets, Numbers and Proofs part of the module (Figure 1). 
More specifically, in this part of the module, the topics covered are: Set Theory (notation, operations, 
cardinality and countability), Functions (introduction to functions, injection, surjection), Proofs 
(direct proof, proof by induction, proof by contradiction, proof by counterexample), Number theory 
(greatest common divisor, prime numbers, modular arithmetic) and Equivalence relations. The topic 
examined in this task is proof by induction and Number theory. Our analysis will focus on students’ 
responses to the Number theory part of the task, task (ii). The model solution for part (ii) created by 
the lecturer for departmental use is in Figure 2. We note that this solution is not made available to the 
students.  

Figure 1: Compulsory task on Sets, Numbers and Proofs 

Figure 2: Model solution of part (ii) of the compulsory task 



Fifty-four students took part in the final examination and the marks of their responses in this task 
ranged from 4 to 20, with the mean being 16.85 marks. The scripts of 22 students were selected by 
the first author to represent a variety of marks (Figure 3). The errors based on what we see as an 
unresolved commognitive conflict regarding variables were observed in 6 students’ scripts. Here we 
report: first, analysis of the task and from the lecturer interview data; then, a sample from the analysis 
of the six students’ scripts.  

Task analysis and the lecturer interview 
In part (i) of the task (Figure 1), the students are asked to engage in a substantiation routine (proof by 
induction). The wording of the task directs the students to this type of proof. In part (ii), the  
students are directed to engage first in a 
recall routine, giving the definition of a 
divisor, and then in a substantiation 
routine of a relationship describing the 
connection between the linear 
combination of a and b and the divisor d 
of a and b (iia). The students are then 
directed toward using the Euclidean 
Algorithm in (iib) and, in the last part 
(iic), they are expected to engage in a 
proof by contradiction (not explicitly 
mentioned in the wording of the task) in  

 

order to prove that the linear combination given is not divisible by 7 – see (Thoma & Nardi, 2016) 
for more detailed analysis of the task. For the purpose of this paper, we focus on the lecturer and 
student data corresponding to the second part of the task, (ii). 
During the interview, the lecturer said:  

Lecturer: (…) my memory of school mathematics is that there was a lot of doing things but not 
necessarily a lot of formally defining things (…) And of course they came to 
university thinking that they knew what that [the definition of the divisor] meant 
but in this situation it really matters that they are restricting themselves to the-to the 
ring of integers (…) and all the symbols represent integers so what it means to 
divide is very different than if they were working with fractional numbers or 
something where they could write a over b and things like this. 

Our commognitive analysis highlights the differences in the lecturer comments between the school 
discourse and the university discourse and, more specifically, with regard to the routine of defining 
and the importance of understanding that “all the symbols represent integers”. 

He highlights the differences between what the students are used to and what they are expected to do 
at university level. Our analysis sees this as the differences between the two discourses: on the one 
hand on the focus of the routines; on the other hand, on the constraints of the different discourses that 
exist within the mathematical discourse at university level. More specifically, the students, working 
with this definition have to restrict their work on integers – and not on rational or real numbers. The 
lecturer, then, speaks about the nature of the symbols involved. We recognize this comment by the 

Figure 3: Marks from all the students’ scripts 



lecturer as foreseeing students’ errors in the case that they treat the divisor as a rational instead of an 
integer, drawing on the discourse of rational numbers instead of the discourse of integers. Integer 
numbers are rational numbers, and making the distinction between the two – and then opting for 
working within the discourse of integers – is not something that these students have been routinely 
working with in school. This shows that the lecturer expects students to use division in the way that 
they were taught in school, instead of considering the abstract structure that this task is asking them 
to restrict their activity in. In the excerpt that follows, the lecturer explains his assessment routines 
which aim to assist students with avoiding errors that are happening because of what we see as a 
commognitive conflict: subtask (ii) is gradually structured as first asking the definition, then, 
substantiating a narrative that draws on this definition, engaging with the Euclidean algorithm and, 
finally, combining all the above to engage in a proof by contradiction. He comments on the purpose 
of this gradual structure as follows:  

Lecturer: (…) what’s being tested here is their ability to write down something formally and 
correct. And I would worry that if I didn’t prompt them to write down formally the 
definition of what it means for one integer to divide another in the exam, in the 
pressure of the exam and so on, then their answers could start looking very 
‘creative’ at the second part and they might start writing down fractions. 

Therefore, he aims that the gradual structure aids students towards achieving the expected solution. 
This can be thought of as a way of helping students avoid experiencing errors stemming from what 
we labelled as commognitive conflict, where a and b, would be treated by students as rational 
numbers, instead of integers: this gradual structure serves as a reminder that they should restrict 
themselves in the discourse of integers. Additionally, the analysis shows that the lecturer stresses the 
routine of justification and the rigor of the university discourse compared to the school discourse, a 
further staple of the transition that these students are at the moment experiencing (Gueudet, 2008). 

Lecturer: (…) the only challenging part would be the last part, the part that requires some thought 
and they need to-to sort of understand or remember that somehow it relates to what 
happened up here [shows parts (iia) and (iib)] (…) to remind them that I want them 
to explain why they are answering what they are saying. 

In the excerpt above, the lecturer comments on the challenge of the (iic) part of the task and the 
purpose of the prompt “Explain your answer carefully”. In this part of the task, the students have to 
engage in a substantiation routine that is based on the endorsed narratives that they have created for 
parts (iia) and (iib). The lecturer suspects that the students may omit justifying their response 
regarding the substantiation of the given relationship and aims that this prompt will help them do so.  

From the above, we see that the lecturer has identified students’ difficulties with the nature of the 
variables being used in this task. Our commognitive analysis sees this as evidence that the lecturer 
appears alerted to this difficulty as a difference between the school and the university discourse. The 
students, during their school years, gradually moved from the discourse of the natural numbers, to the 
one of the integers, then to the rational numbers and finally to the reals. Now, in this task, they are 
asked to endorse the discourse of the integers, which is subsumed in the discourse of rational numbers, 
within which they have been performing division of numbers in school. We now turn to students’ 
responses, which evidence that, despite aforementioned aid provided by the lecturer, errors 



illustrating this commognitive conflict were not avoided. Of the twenty-two student scripts analysed, 
six contained said evidence ([01], [03], [06], [11], [16], [17]). 

The students’ scripts 
Student [03] first communicates the relationship between the divisor d and a using written verbal  

 

visual mediators. In the second part of 
(iia) the student writes, using symbolic 
mediation, that d is a divisor of a and d is 
a divisor of b. However, in the symbolic 
realisation of the divisor, the student 
deploys fractions, with d being the 
numerator and a and b being the 
denominators. This way of writing that d 
divides a can be seen as a translation of 
the written verbal mediator into a 
symbolic mediator without taking into 
account that the fraction line means that 
the denominator divides the numerator. In 
the case of the task, this division would 
result in a non-integer number. This way 
of writing signals that the student may see 
m and n (written on the right hand of the 
script) as numbers and not as integers. 
Then, the student writes the relationship 
between the symbolic mediators m, d and 
a and concludes that d is equal to the 
product of m and a. The student used all 
the symbols given in the wording of the  

task to produce a narrative that involves fractions. Fractions could be part of the discourse of rationals, 
and this task asks the students to restrict their activity within the discourse of integers. We see the 
appearance of fractions and the absence of the constraints regarding the variables as evidence of the 
commognitive conflict regarding the relationships between the number domains in school and 
university mathematics discourses. Unclear meaning making regarding the object of a divisor is 
evidenced as the student starts by explaining that d is a factor of a, then engages in the discourse of 
rationals concluding that d=ma but then saying that the product 2d has d as a divisor. Having 
concluded that the greatest common divisor is 3 (Figure 4) using long division - and not the Euclidean 
algorithm - the student writes 123m + 45n =3. Then s/he divides all the terms of the equality by 3 and 
takes different cases where the new equality is true. 

In doing so though, [03] does not take into account the nature of the variable symbolic mediators and 
the variables become rational numbers. Also, there are multiple values in the rational numbers that 
satisfy this equality as can be seen in the response (Figure 4). Finally, in the last part of the task, the 
student responds affirmatively that there are “integers” s and t. However, the s and t s/he gives are 

Figure 4: Student [03]’s script to (ii) 



rational numbers chosen to result in 7. This signals a ritualised use of the word “integers”: the student 
uses the word integer, seemingly repeating the wording of the task but in fact providing numbers that 
are not necessarily integers. 

 

Two more students [16] and [17] give similar 
responses. Student [16] (Figure 5) does not give a 
definition of the divisor, attempts the substantiation of 
the relationship describing the connection between the 
linear combination of a and b and their divisor d, finds  

the greatest common divisor and uses only integers similarly in the identification of the integers m 
and n which give the linear combination of the greatest common divisor. However, when responding 
to (iic), [16] finds two non-integer rational numbers for s and t and confirms that the expression results 
in 7. Similarly, in the scripts from the students ([01], [06], [11]) there are instances where errors occur 
as the number domain of the variables is not clarified and the students work in a different number 
domain than the integers, which is what the task calls for.  

Symbolic visual mediation and the transition to university mathematics  
Looking at the model solution produced by the lecturer (Figure 2) and the wording of the task (Figure 
1), we can see that there are four different instances where the students have to define the symbolic 
mediators they use: first, in the definition of the divisor where an integer is introduced to illustrate 
the relationship between a and d; then, in the narrative which connects a, b and their divisor d; next, 
in the substantiation of the relationship between the linear combination of a and b and their divisor 
d; and, finally, in order to prove by contradiction that a linear combination of a and b is not divisible 
by 7. In the last instance, the symbolic mediators on both sides of the equality have to be integers and, 
as 7 is not divisible by 3, the contradiction occurs. The wording of the task, where the lecturer stresses 
that all the variables in this part of the task are integers, and the structure of the task aim to signal to 
the students that they have to be working within the domain of integers. Our analysis suggests that 
lecturers design the tasks being aware of the students’ potential errors regarding the variables 
belonging to different number domains and thus adds to Bergqvist’s (2012) results on what lecturers 
take into account when designing assessment tasks. The data from the students’ scripts shows 
however, that, in six out of the twenty-two analysed responses, students’ errors signal an unresolved 
commognitive conflict that relates to making a distinction about the nature of the variables. Engaging 
with this distinction is not a routine that students are typically engaged with, at least in the UK 
secondary classrooms where the students participating in this study have been educated in: number 
domains are introduced progressively and students are simply expected to always work within the 
latest introduced number domain. However, in the university, the numerical context of a task may 
differ from task to task and the students are expected to be able to swiftly identify the domain that is 
appropriate for each task and work within it. We approach this issue therefore as a non-negligible 
aspect of the students’ transition from school to university mathematics. Our results resonate with 
those in Biehler and Kempen’s (2013) study. They found that, frequently, their participants would 
use symbols without providing information regarding the domain of the variable; in our case, not 
attending to such information results also in leaving parts of the task practically not answered – 
especially in the cases where the explicit request for “integers s and t” in (iic) receives non-integer 
responses.  

Figure 5: Student [16]’s to (iic) 
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We report analyses from a collaborative, developmental research project between two Norwegian 
centres of excellence in higher education (MatRIC and bioCEED) in which biology-related 
mathematical modelling (MM) activities are introduced to biology students as a means to motivate 
their appreciation for, and competence in, mathematics. This phase of the project involved four 
sessions with 11 first-semester students. We report data and analyses from two activities: Yeast 
Growth and Digoxin. Our commognitive analyses trace the evolution of the students’ mathematical 
discourse in two episodes, revealing a scaffolding story about the gradual transition from ritualized 
to exploratory engagement with MM, and pointing to the crucial role played by the teacher in this 
process. We conclude with discussing some implications of our analysis for the design and use of 
MM activities for students of Biology, and other non-mathematics specialists. 

Keywords: Theory of commognition; mathematical modelling in biology; mathematical discourse; 
routines; rituals and explorations. 

Teaching mathematics to biology students through mathematical modelling 
Research into the mathematical needs of non-mathematics specialists is by no means new (e.g. Kent 
and Noss, 2003). Participants in many university-level studies are often non-mathematics specialists 
(e.g. engineers or pre-service teachers), but their specialism often remains a mere part of the study’s 
backdrop (Biza, Giraldo, Hochmuth, Khakbaz & Rasmussen, 2016). The relatively small but 
growing number of studies in this area (e.g., Gould, Murray & Sanfratello, 2012) have touched on 
issues such as: the double discontinuity between school, university and workplace mathematics; the 
challenges of teaching mathematical modelling at school and university levels; issues of confidence 
in and appreciation for mathematics; and, embeddedness of mathematics into other disciplines.  

Within biology, mathematics is becoming increasingly important, placing new demands on the 
education of future biologists. In the US, for example, the recognition of these demands has led to 
two national projects focusing on developing undergraduate biology education (Brewer & Smith, 
2011; Steen, 2005). A potential problem with placing greater emphasis on mathematics in biology 
education is that “biology education is burdened by habits from a past where biology was seen as a 
safe harbour for math-averse science students” (Steen, 2005, p. 14). The project that we draw on in 
this paper aims to improve student appreciation for mathematics through helping them experience 
the relevance of mathematics to their field of study. It does so through exploring the suggestion 
made by several authors (e.g. Brewer & Smith, 2011; Steen, 2005) for greater integration of 
mathematics and biology in the curriculum. MM, as Brewer and Smith (2011) point out, is a basic 
skill within the ‘core competencies and disciplinary practices’ (p. 17) of biology – and a vehicle for 
improving student appreciation for the role that mathematics can play in scientific research. 



Studies which have investigated the use of MM in university biology education (e.g. Chiel, 
McManus & Shaw, 2010) indicate that engagement with MM activities can contribute to more 
positive attitudes towards, and self-perceived competence in, both biology and mathematics. 
Concerning an integrated approach to mathematics and biology, Madlung, Bremer, Himelblau and 
Tullis (2011) investigated whether such an approach might have adverse effects, such as breadth at 
the expense of depth, or mathematics anxiety problems. Two versions of a bioscience module, one 
of which contained a computational statistical element, were developed and offered to an 
introductory and an advanced biology class. Results showed no detrimental effects of an integrated 
approach but indicated that advanced level students were more able to benefit from it.  

To examine the evolution of biology students’ appreciation for, and competence in, mathematics as 
they engage with MM activities we espouse a discursive perspective – particularly that of the theory 
of commognition (Sfard, 2008; Nardi, Ryve, Stadler & Viirman, 2014, p. 183-5) – according to 
which learning is change in one's participation in well-defined forms of activity (discourse). In what 
follows, we introduce those components of the commognitive perspective pertinent to the data 
analysis we present in this paper; we then present a sample of our data and analysis (two episodes 
from students’ engagement with two MM activities, Yeast Growth and Digoxin). 

The commognitive construct of routines: Explorations, deeds and rituals 
According to the commognitive perspective, ‘it is by reproducing familiar communicational moves 
in appropriate new situations that we become skillful discursants, and develop a sense of 
meaningfulness of our actions’ (Sfard, 2008, p. 195). A routine is a set of meta-rules that describe a 
repetitive discursive action. Sfard defines three types of mathematical routines: explorations, deeds 
and rituals, with deeds and rituals presented as predecessors of explorations. A routine is called an 
exploration ‘if its implementation contributes to a mathematical theory’ (p. 224) (e.g. equation 
solving, defining and proving). Explorations involve the construction, substantiation or recall of 
narratives about mathematical objects. Routines that involve practical action (action resulting in 
change in objects, either primary or discursive, p. 241) are called deeds. Deeds are therefore 
different from explorations, which aim to effect change on narratives. Often, however, there are 
routines that “begin their life as neither deeds nor explorations but as rituals, that is, as sequences 
of discursive actions whose primary goal […] is neither the production of an endorsed narrative nor 
a change in objects, but creating and sustaining a bond with other people’ (p. 241). 

Sfard claims that rituals are a ‘natural, mostly inevitable, stage in this development process’ (p. 
245) and that the road to exploration often leads through ritual. The data and analysis sample we 
present in this paper examines this claim with a particular focus on the following research question: 
“What characterizes the use of routines by Y1 Biology students as they engage in MM activities?” 

Aims, methods, data and participants of the study  
The research design of our study comprises cycles of developmental activity (planning, 
implementation, reflection, feedback) which are theoretically informed, contribute to the emergence 
of theory and take place in a partnership between teachers (in this case, a university mathematician) 
and didacticians (Goodchild, Fuglestad & Jaworski, 2013). This ongoing project is a collaboration 
between two Norwegian centres of excellence in higher education – the Centre for Research, 
Innovation and Coordination of Mathematics Teaching (MatRIC) and the Centre for Excellence in 



Biology Education (bioCEED). The aim of the project is to improve biology students’ motivation 
for, interest in, and perceived relevance of mathematics in biological studies through the use of 
MM. The teaching took place at a well-regarded Norwegian university where biology students take 
one compulsory mathematics course, taught in the first semester, designed not specifically for the 
biology undergraduate programme but for students from about twenty different natural science 
programmes. Typically, in this university, there is little collaboration between the mathematics and 
biology departments, and few opportunities for focusing on issues specific to biology in the 
mathematics course. The data for this paper originate in four three-hour sessions with twelve 
volunteer students, nine female and three male. Activity during the sessions was video and audio 
recorded, both from whole-class and small-group work. Also, all written material produced by the 
students was collected. The teaching was conducted in English, but all student group work and most 
student contributions to group discussions were in Norwegian. The first session began with an 
introduction to the basic ideas of MM and to the modelling cycle. Students were then asked to work 
in smaller groups on modelling problems of varying complexity, but requiring only pre-calculus 
mathematics. The structure of the three remaining sessions was similar, but the initial exposition 
instead introduced specific types of models relevant to the problems given in that session. The data 
we draw on in this paper are taken from sessions two and three, and concern one group of four 
female students as they work on two different, but related, tasks, Yeast Growth and Digoxin. In the 
analysis, we examined the discourse of the students looking for recurring patterns that could be 
described as routines, for instance graph construction. Furthermore, we looked for signs indicating 
the type of routine use. For instance, we aimed to discern the motives (if any) students provide for 
their activity. Since the changes in discourse that we aim at charting in this paper take place 
gradually and over extended periods of time, they are difficult to exemplify through data excerpts 
within this short paper. Hence, in presenting the data analysis we have opted for offering instead a 
condensed, selectively detailed narrative account of key incidents illustrating these changes.  

Mathematical modelling for biology students: Yeast Growth and Digoxin tasks 
A large part of the first session was spent on a very open task where the students were asked to 
estimate the density of a rabbit population based on the number of roadkill rabbits along a stretch of 
highway. Reflecting on the session, the lecturer felt that the students had not been able to work 
productively enough on this task, and he decided to make the second session more structured. The 
first 45 minutes of that session were spent first on a follow-up of a homework task given at the end 
of the previous session, followed by a brief lecture on “steady-state box models” and, related to this, 
a very short task on pollution in a lake. Then the focus shifted to modelling change, introducing a 
task concerning the growth of a yeast culture in a petri dish (Yeast Growth). Contrary to the first 
session, however, the task was broken into subtasks that the students worked on for 10-15 minutes 
each, with whole-class summaries in between. 

For the first Yeast Growth subtask, the students were given a first part of a table of data, taken 
from an old research paper (Pearl, 1927), with three columns (time, amount of biomass, change in 
biomass) describing the growth of a yeast culture. The students were asked to: analyze the 
numerical data in the table; plot the data and analyze the graph; suggest a simple model based on a 
difference equation of the form nn pkp 1 , where np is the size of the yeast biomass after n hours, 



nn

def

n ppp  1 is the change of biomass between two measurements, and 1k is a positive constant; 
and, explain what their expectations would be regarding the predictive power of the model they 
constructed. The initial plan for the second subtask was to give students the second part of the 
table and ask them to: analyze this new data (noting the change in population per hour becomes 
smaller as the resources become more limited); plot the population against time, explore the shape 
of the graph and state what they would expect in the long run; and, calculate the expected value for 
“carrying capacity” in this case (noting that, based on the graph, the population appears to be 
approaching a limiting value, known in biology as “carrying capacity”). However, in the actual 
session (due to limitations of time) the students were instead given a non-linear model based on 
incorporating the carrying capacity: “We may estimate carrying capacity to be 665 (this value is not 
precise and your value may differ a bit). As the number np665  gets smaller and smaller as np  
approaches 665, we may adjust our simple linear model replacing it with a nonlinear model 

)665(2 nnn ppkp   or alike, if you have chosen 664 or 666. Test a new model by plotting 

np against )665( nn pp  to check whether a reasonable proportionality is observed. Then, estimate 
the proportionality constant 2k . What is your value?” For the third and final subtask, the students 
were asked to use the new model, with 2k =0.00082, to compute values and compare them with the 
actual data (“Compute twelve values of np using the formula and starting with the initial 
value .6.90 p ”). 

Digoxin was the first task of session 3 and also concerned the modelling of change, in this case the 
decay in the body of Digoxin, a drug used in the treatment of heart disease: (a) For an initial dosage 
of 0.5mg in the bloodstream, the table shows the amount of digoxin na remaining in the bloodstream 
of a particular patient after n days, together with the change na each day. Plot na versus na and 
explore the graph. Suggest a simple model based on a difference equation of the form nn aka 3 , 
where 3k is a positive constant. What is your choice of 3k ? (b) Now our objective is to consider the 
decay of digoxin in the blood stream to prescribe a dosage that keeps the concentration between 
acceptable levels so that it is both safe and effective. Design a simple linear model describing the 
following scenario: we prescribe a daily drug dosage of 0.1mg and know that half the digoxin 
remains in the system in the end of each dosage period. (c) Consider three different options where 
the initial one-time dose of medicine received by the patient is 0a  = 0.1mg, 0.2mg or 0.3mg. What 
are your conclusions? What would you recommend if you were this patient’s GP?” 

In Yeast Growth, the students were expected to find an approximately linear relation between the 
change and the amount of biomass, estimate the proportionality constant, and conclude that this rate 
of growth cannot continue indefinitely. With the additional data then provided, they were then 
expected to conclude that the growth decreases and the amount of biomass stabilizes at the carrying 
capacity of the petri dish, in this case 665. The students were then given a suggested non-linear 
model and were expected to check the validity of the model by finding the proportionality constant. 
Finally, they were expected to use the model to generate values that could be compared with the 
actual data. To do this, they needed to solve the equation )665(21 nnnnn ppkppp   for 1np . 

In Digoxin, in part (a) the students were expected to find a linear relationship between the change 
and the amount of digoxin remaining, and estimate the proportionality constant from the graph. In 



part (b) they were expected to construct a model of the form 1.05.01  nn aa , and then, in part 
(c), use this model with the different initial conditions to realize that, in all cases, an equilibrium of 
0.2mg will eventually be reached, leading to a recommended initial dose of 0.2mg. 

In what follows we highlight two critical incidents, one from Yeast Growth and one from Digoxin. 

Yeast Growth: Ritualized engagement with mathematical modelling  
The group ignores the first question in the subtask, about analyzing the data in the table. Instead, 
their initial efforts concern the practical details around graph construction and data plotting: 
choosing the right scale for the axes, and the like. They do all work in parallel, constructing one 
graph each, on millimetre grid paper, but they still work collaboratively, discussing their work at 
every turn. The routines they are using seem familiar to them, but there is no evidence of any 
reflection concerning the purpose of the activity they are engaging in. The task requests of them to 
plot the data, and since this is something they know how to do, they do it. We see this as suggestive 
of ritualized routine use. After about ten minutes, however, they seem confused about how to 
interpret the data in the table: what does np actually mean? They start discussing how to fit a 
straight line to the data, but the relative inefficiency of their working method – putting a lot of effort 
into the design of the graph and all drawing their own copy – means that, in the end, they do not 
have the time to do this, let alone find the proportionality constant. In the first whole-class follow-
up, the students quickly agree that the problem concerns exponential growth, but none of the groups 
have succeeded in finding the constant 1k . It turns out that that they have constructed the wrong 
graph: plotting change against time, not against amount. We see this as evidence of ritualized 
routine use. Had the students engaged with the first question in the subtask, and reflected about the 
interpretation of the data, this mistake might have been avoided. Instead, the students resorted to a 
well-established routine for data plotting, using time as the independent variable. After this mistake 
has been clarified, the students are given additional data, and start discussing the validity of the 
model: is unlimited growth reasonable? The need for a revised model is established. 

The work on the second subtask still mostly revolves around plotting the data, but now the group 
only constructs one plot. There is, however, some remaining confusion regarding the nature of the 
data: does np represent change or the actual amount? One of the students interprets the decrease 
in np as evidence of a population crash (a catastrophic decline in population), but the other group 
members point out that the decrease is in change, not actual amount: “But this is just the change, 
this is not the number of living cells.” Thus, when engaged in biological discourse, they are able to 
reason in a meaningful manner about the interpretation of the mathematical symbols. However, the 
formulation of the task creates additional confusion. It explicitly mentions a nonlinear model, but at 
the same time asks for proportionality. Finding proportionality between the more complexly 
presented quantities in this task seems unfamiliar to the students – and, since this is something not 
normally done in school, it probably is. Following the recent whole-class discussion, but contrary to 
what is written in the formulation of the subtask, the students do what they were expected to do in 
the first subtask, plotting the change np against np instead of against )665( nn pp  . They thus 
struggle with fitting a straight line to the data, since their plot does not describe a linear relationship. 
In the whole-class follow-up, it turns out that, yet again, none of the groups have been able to 
compute the constant 2k , and, in the end, the lecturer provides the students with an estimated value 



and asks them to use the model they now have to compute a number of values of np  and to check 
the predictive value of the model. This turns out to be very confusing for our group, who are at a 
loss as to how to proceed: “I don’t have a clue. I feel so stupid.” The work they have been doing in 
both sessions so far has been geared towards constructing models, not validating them, leaving them 
unprepared for this way of using models. Furthermore, the routines they have been using have all 
concerned graph construction and plotting, and now they are supposed to compute values. After 
some initial confusion, they start doing computational work, but their nervous laughter and 
exclamations of surprise suggest that they have little faith in that what they are doing makes sense. 
Indeed, the different numbers they are juggling around suggest that they are making various 
computational errors. Also, they spend quite some time plotting the values that they obtain. We see 
this as indication that their routine use is still highly ritualized: they do certain things because they 
feel that it is expected of them, without having any clear rationale for why they are doing so.  

Looking at the way the students engage with the Yeast Growth task, we conclude that what was 
intended by the lecturer as scaffolding – dividing the task into clearly delineated, smaller subtasks – 
in fact amounted to restricting student agency. We propose that this restricted agency is connected 
to ritualized routine use. The formulations of the subtasks state explicitly what the students are 
supposed to do, and even suggest what specific routines to invoke (plot the data; estimate the 
constant). This decreases the need for reflection about what routines to use and why, thus inviting 
ritualized routine use. This interpretation is further supported by how they struggle when asked to 
perform a different set of routines, using a given model for substantiation purposes, rather than 
constructing a model from given data. This indicates to us that they are not yet using the 
construction routines in an exploratory manner. 

Digoxin: Towards exploratory routine use 
Although there seems to be a connection between the highly scaffolded format of the Yeast Growth 
task and students’ ritualized routine use, we do not intend this to be seen merely as a cautionary 
tale. Indeed, looking at the students’ work on the Digoxin task in session 3 four weeks later, there is 
evidence of progress towards making the discourse of growth model construction their own. The 
Digoxin task was presented as a whole, without the same amount of scaffolding as the Yeast Growth 
task. As in the second session, the group focuses their effort on constructing the graph, but has some 
problems interpreting the task because of unfamiliar terminology (e.g. difference equation). 
Contrary to Yeast Growth, in Digoxin time is not included as a column in the table of data, thus 
minimizing the risk of students resorting to the “plotting against time” routine. Still, one of the 
students suggests using n as the independent variable, in an attempt to fall back on the familiar 
routine. After some discussion, they decide not to resort to the earlier default option of using time as 
the independent variable, and, using the graph and the table, they manage to find the proportionality 
accurately. This might be interpreted as an indication of what Sfard (2008, p.251) calls “thoughtful 
imitation”. Having failed at constructing the requested plot in subtask 2 of Yeast Growth, and then 
being shown by the instructor what should have been done, they are now able to engage more 
fruitfully with this similar, but less complex, task. There is some additional confusion due to the 
formulation of the task (even though we are dealing with decay, the task still prescribes 
that 3k should be positive). Here we see signs that the group have still not made the discourse fully 
their own, but rather are emulating the discourse of the teacher. Rather than trusting their own 



reasoning, they handle the problem in a manner familiar to many students – they adapt the answer 
to fit the teacher’s expectations: “Let’s just drop the minus sign.” As for parts (b) and (c) of the 
task, they (as well as the other two groups) run out of time before managing to make much 
headway. Still, it appears as if the ritualized routine use when working on the Yeast Growth task has 
supported the students’ pathway towards handling the Digoxin task in a more exploratory manner. 

The path to exploration passes through ritual: Conclusions and ways forward 
In this paper, we examine a case (Y1 Biology students’ engagement with MM) of how new routines 
evolve, and particularly how discursants experience a step from ritualized to exploratory routines. 
The analysis points to the crucial role played by the teacher in facilitating this process. For instance, 
through the tasks presented to students, he influences their routine use, not only in the obvious way 
of suggesting what routines to use, but also in what way to engage with these routines. We have 
seen how a highly scaffolded task, which explicitly states what routines to invoke, might in fact 
invite ritualized routine use, whereas a less strongly scaffolded task might necessitate reflection 
about what routines to invoke and why, thus inviting a more exploratory engagement. At the same 
time, our analysis suggests that perhaps the ritualized routine use suggested by more scaffolded 
tasks might be a necessary step on the route towards exploratory routine use.  

Per Sfard (2008), rituals are a ‘natural, mostly inevitable, stage in this development process’ (p. 
245) and, recognizing this as so, recognizes fully the ‘inherently social nature of human thinking 
and learning’ (p. 245). Our claim here resonates with Sfard’s: the road to exploration must 
sometimes pass through ritual. There is an inherent circularity in this evolutionary process: a learner 
‘could not possibly appreciate the value of the new routine until she was aware of its advantages; 
such appreciation, however, could only emerge from its use’ (p. 246). Furthermore, ‘the deed-
enhancing mathematical explorations would sometimes involve new abstract objects, objects that 
can only emerge through implementation of this very routine’ (p. 247) and this holds for the 
evolution of an individual’s mathematical discourse as well as that of the field of mathematics as a 
whole. Discursive researchers – Sfard herself as well as Bakhtin – posit that thoughtful imitation 
can be a transitory phase in transforming ritual into exploration (where imitation is meant as a non-
trivial process that involves evaluation, assimilation, reworking and re-accentuation). Indeed, in the 
students’ work on the Digoxin task, we have shown signs of such “thoughtful imitation”. 

Deritualization results in consolidated discourse, namely a ‘well-developed network of interlacing, 
partially overlapping routines’ (p. 254). In this trajectory of growth there are at least two ‘basic 
conditions for effective mediation’: the principle of the continuity of discourse (‘introducing a new 
discourse by transforming an existing one’, p. 254); and, the principle of commognitive conflict 
(‘the situation in which different discursants are acting according to different metarules’ (p. 256) – a 
potential source of discourse change, and thus of learning). In this paper, we sample evidence 
mostly of the former principle. Our scrutiny of the entire dataset is now gearing towards the 
identification of evidence of the latter. Further, we anticipate that rolling out more MM activities to 
a new cohort of Y1 Biology students will lend corroborative power to the conjectures we explore 
here. It may also provide an opportunity for a more extended testing out of using the commognitive 
framework towards analyses that inform pedagogical practice. 
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In this report we analyze one student’s meta-representational competence as he engages in solving a 
quantum mechanics problem involving the linear algebra concepts of basis, eigenvectors, and 
eigenvalues. We provide detail on student A25, who serves as a paradigmatic example of a student’s 
power and flexibility in thinking in and using different notation systems. This case study, which lays 
the groundwork for future analysis, provides evidence that meta-representational competence (MRC) 
is beneficial to a student’s ability to make sense of and use concepts from linear algebra while solving 
quantum mechanics problems. 

Keywords: Linear algebra, meta-representational competence, physics. 

Introduction 
The National Research Council’s (2012) report, which charges the United States to improve its 
undergraduate Science, Technology, Engineering, and Mathematics (STEM) education, specifically 
recommends “interdisciplinary studies of cross-cutting concepts and cognitive processes” (p. 3) in 
undergraduate STEM courses. It further states that “gaps remain in the understanding of student 
learning in upper division courses” (p. 199), and that interdisciplinary studies “could help to increase 
the coherence of students’ learning experience across disciplines … and could facilitate an 
understanding of how to promote the transfer of knowledge from one setting to another” (p. 202). 
Our work contributes towards this need by investigating student understanding of linear algebra in 
quantum mechanics. Two research questions that guide us in this paper are: what are the various ways 
in which students reason about and symbolize concepts related to eigentheory in quantum physics, 
and in what ways might meta-representational competence impact how they make sense of linear 
algebra concepts in quantum mechanics? 

In this paper, we focus on one student’s reflection on symbolizing choices he makes while solving a 
quantum mechanics problem that involves linear algebra. In particular, we analyze his reasons for 
how and why he chooses a specific symbol system – either Dirac notation or matrix notation – for 
solving an expectation value problem. We align our analysis with the frameworks of meta-
representational competence (diSessa, Hammer, Sherin, & Kolpakowski, 1991) and of structural 
features of algebraic quantum notations (Gire & Price, 2015). This case study, which lays the 
groundwork for future analysis, explores in what ways MRC might aid a student’s ability to make 
sense of and use concepts from linear algebra while solving quantum mechanics problems. 

Background and theoretical framework 
In this section, we give an overview of research conducted on student understanding of symbols and 
representations in mathematics and physics, as well as our theoretical orientation. We conclude with 
a brief introduction to eigentheory in Quantum Mechanics and Dirac notation. 



Student understanding of symbols and representations 

The recognition of the importance of students’ understanding of symbols used in mathematics and 
physics has grown over the past few decades. Arcavi (1994, 2005) coined this as “symbol sense,” 
which includes aspects such as being “friendly” with symbols, engineering symbolic expressions, 
choosing which aspects of a mathematical situation to symbolize, using symbolic manipulations 
flexibly, and sensing the different roles symbols can play in various contexts. Other research along 
this vein include: an explication of how different perspectives, such as cognitivist, situationist, and 
social-psychological, provide vastly different ways to understand how students make sense of and 
use inscriptions and symbols (Kaput, 1998); a study of how students mathematize their language from 
a Vygotskian perspective (Van Oers, 2002); and an exploration of how notational systems can serve 
as a mediational tool which triggers and sustains mathematical activity (Meira, 2002). 

Research into students’ competence with symbols and representations is not limited to primary and 
secondary school studies. For example, Hillel (2000) described three modes of description (abstract, 
algebraic, and geometric) of the basic objects and operations in linear algebra and pointed out that 
“the ability to understand how vectors and transformation in one mode are differently represented, 
either within the same mode, or across modes is essential in coping with linear algebra” (p. 199). 
Thomas and Stewart (2011) found that students struggle to coordinate the two mathematical processes 
captured in 𝐴𝒙 = 𝜆𝒙, where 𝐴 is an n x n matrix, 𝒙 is a vector in ℝ𝑛, and 𝜆 is a scalar, to make sense 
of equality as “yielding the same result.” This interpretation of the “equals” symbol is often novel 
and nontrivial for students (Harel, 2000). Harel also posits that the interpretation of “solution” in this 
setting, the set of all vectors 𝒙 that make the equation true, entails a new level of complexity than 
does solving equations such as 𝑐𝑥 = 𝑑, with each taking values from the reals. Thomas and Stewart 
(2011) conjecture that this complexity may prevent students from progressing symbolically from 
𝐴𝒙 = 𝜆𝒙 to (𝐴 − 𝜆𝐼)𝒙 = 𝟎, which is particularly useful when solving for the eigenvalues and 
eigenvectors of a matrix 𝐴. 

Research into students’ understanding of quantum mechanics also investigates student use of 
symbols, such as how students make sense of and use a novel notation, called Dirac notation 
(explained in the subsequent section). Most closely related with this current study, Gire and Price 
(2015) looked at structural features of three different notation systems used in quantum mechanics 
(Dirac, matrix, and wave function) and how students’ reasoning interacts with these features. The 
features identified by the authors are: (a) individuation, or “the degree to which important features 
are represented as separate and elemental” (p. 5); (b) externalization, or “the degree to which elements 
and features are externalized with markings included in the representation” (p. 7); (c) compactness; 
and (d) symbolic support for computation. Using problem-solving interviews with students as insight 
into these features, Gire and Price found that students readily used Dirac notation, and that the 
structural features vary across the different notations and among contexts. 

Relatedly, diSessa et al. (1991) importantly discovered that students have a great deal of knowledge 
about what good representations are and are able to critique and refine them, which the authors 
defined as Meta-Representational Competence (MRC). diSessa and Sherin (2000) explained that 
MRC includes inventing and designing new representations, judging and comparing the quality of 
representations, understanding the general and specific functions of representations, and quickly 
learning to use and understand new representations. Furthermore, diSessa (2002, 2004) offered a 



variety of critical resources students possess as part of their MRC for judging the strength of 
representations, such as compactness, parsimony, and conventionality. Two particular resources 
encompassed by MRC that we focus on in our data are “critique and compare the adequacy of 
representations and judge their suitability for various tasks,” and “understand the purposes of 
representations generally and in particular contexts and understand how representations do the work 
they do for us (diSessa, 2004, p. 94).  

In this study, we align ourselves with the theory that representations are a sense-making tool, in that 
“the construction of representations on paper during problem solving mediates and organizes one's 
understanding of mathematical concepts” (Meira, 2002, p. 101). We couple this with a framing of 
MRC, specific to two particular notational systems, to investigate a student’s reflection on his own 
notational preferences in quantum mechanics and what that may reveal about his understanding of 
change of basis and eigentheory in that context.  

Brief introduction to eigentheory and Dirac notation in quantum mechanics 

In quantum mechanics, certain physical systems are modeled and made sense of using eigentheory. 
To a physical system we associate a Hilbert space (such as ℂ2), to every possible state of the physical 
system we associate a vector in the Hilbert space, and to every possible observable (i.e., measurable 
physical quantity) we associate a Hermitian operator (usually given in its matrix form). The only 
possible result of a measurement is an eigenvalue of the operator, and after the measurement the 
system will be found in the corresponding eigenstate.  

Dirac notation, also known as bra-ket or just ket notation, is a commonly used notational system in 
quantum mechanics. A vector representing a possible state is symbolized with a ket, such as |𝜓⟩. 
Mathematically, kets behave like column vectors, such as |𝜓⟩ ≐ [

𝑎1

𝑎2
], 𝑎1, 𝑎2 ∈ ℂ, and are usually 

normalized. The complex conjugate transpose of a ket is called a bra, which behaves mathematically 
like a row vector, such as ⟨𝜓| ≐ [𝑎1

∗ 𝑎2
∗]. In addition, the eigenvalue equations for observables are 

central to many calculations. For example, the eigenvalue equations for 𝑆𝑥 (the operator measuring 
the 𝑥-component of intrinsic angular momentum) of a spin-½ particle are 𝑆𝑥|±⟩𝑥 = ±

ℏ

2
|±⟩𝑥, where 

|+⟩𝑥 and |–⟩𝑥 form an orthonormal eigenbasis of 𝑆𝑥, and ± ℏ

2
 are the two possible measurement results 

of the observable. When symbolized in terms of this eigenbasis, the matrix representation of 𝑆𝑥 is 
[
ℏ 2⁄ 0

0 − ℏ 2⁄
]. One can also measure spin along other directions, such as 𝑧; similarly, the eigenvalue 

equations are 𝑆𝑧|±⟩ = ±
ℏ

2
|±⟩ (it is common for no subscript to be used for the 𝑧-direction). Thus, 

“within its own basis,” the matrix representation of 𝑆𝑧 would be identical to the aforementioned 
diagonal one for 𝑆𝑥. It is often beneficial to change between bases; for example, |+⟩𝑥 = 1

√2
|+⟩ + 1

√2
|−⟩ 

and |−⟩𝑥 = 1

√2
|+⟩ − 1

√2
|−⟩, so 𝑆𝑥 in the “𝑧-basis” is [ 0 ℏ 2⁄

ℏ 2⁄ 0
]. Finally, inner products are involved 

in computing the expectation value of observable 𝐴 for state psi, ⟨𝜓|𝐴|𝜓⟩. These calculations require 
the bra and ket expansion to be in the same eigenbasis as the matrix representation of 𝐴.  As such, 
expectation value problems present a rich setting for investigating students’ symbolizing of 
eigentheory and change of basis in a physics context. 



Methods 
Participants for this study were third year undergraduate physics majors at a large, public, research-
intensive university in the Pacific Northwestern United States. They were drawn on a volunteer basis 
from a class of 35 students in a Spin and Quantum Measurements course; this course met for 7 class-
hours per week for three weeks and involved many student-centered activities and discussions. The 
data for this report come from individual, semi-structured interviews (Bernard, 1988) conducted with 
8 students at the end of the course. The goals of the interview questions were to learn how students 
reasoned about linear algebra concepts (e.g., normalization, basis, and especially eigentheory), how 
they reasoned with these concepts as they discussed quantum mechanics concepts and solved 
quantum mechanics problems, and how they symbolized their work.  

To begin our analysis, we viewed the video and observed how students navigated the interview 
problems, while we kept in mind the overarching research questions regarding students’ reasoning 
about and symbolizing eigentheory in quantum physics. We noticed some students were particularly 
fluent in how they talked about and worked with both matrix and Dirac notations. This compelled us 
to investigate the literature about student use of symbols and notations, the most relevant of which 
were discussed above. Our analysis draws most heavily on the work of diSessa and colleagues 
regarding MRC, and that of Gire and Price (2015) regarding structural features of algebraic quantum 
notations. In particular, we coded for instances of students mentioning structural features of the 
mathematics or students making explicit meta-commentary on the representations they chose to use. 
This allowed us to integrate our analysis of students’ MRC with Gire and Price’s types of structural 
features in a way novel to the physics and mathematics education fields.  

In this report, we focus on one student: A25, a double major in physics and nuclear engineering who 
had completed two 10-week courses in linear algebra. The reason we chose to focus on participant 
A25 was his demonstrated ability to articulate his thinking. During the interview, he exhibited 
flexibility in reasoning about the concepts we were probing, and through his explanation a great deal 
of MRC seemed visible and analyzable. 

Results 
In the beginning of the interview, student A25 volunteered that he sometimes explicitly chooses 
between doing calculations in matrix notation or in Dirac notation:  

I:  So how do you feel like, using eigenvectors and eigenvalues, in spins has been 
similar to and different from how you've experienced those in other classes? 

A25:  Uh, well, it's very similar because you're doing a lot of the same math …the 
difference especially in physics, you're looking at kets. In, in at first I was kind of 
jarring, like to- to try to do the math in kets. But now, it's kinda- it's kinda easier, 
there's problems, there certain problems…where there's two ways to do them, 
they're kind of parallel, you can do it and you can expand the- the state in- in like 
as a- and expand them as kets in a different basis, or you can write that state as a- 
as a, as a vector, in that basis, and you can either do the matrix math for the like 
expectation values for example, you can do the matrix math or you can do the ket 
math, and sometimes it's, I'm finding that I, rather expand something in the ket. 



From the transcript we see that A25 was aware multiple legitimate ways exist to solve the problem, 
seemingly understanding the various mathematical nuances and implications of his notational 
choices. His brief explanation highlights sentiments that are consistent with Arcavi’s characteristics 
of symbol sense, such as being “friendly” with symbols and using them flexibly. Also, A25’s self-
reflection on his symbol usage adds a metacognitive aspect to the symbol sense characterization. 

Because A25 volunteered expectation value problems as a situation in which he could use either 
notation, the interviewer had him work on such a problem right away, even though it was prepared 
to be at the end of the interview: “Consider the state |𝜓⟩ = −

4

5
|+⟩𝑥 + 𝑖

3

5
|−⟩𝑥 in a spin-1/2 system. 

Calculate the expectation value for the measurement of 𝑆𝑥.” A25 immediately worked on the problem 
using Dirac notation, saying, “basically to find the expectation value… it's like denoted that way 
[writes 〈𝐴〉] but really what you're doing is you're taking the, the bra of the state, and then you're 
putting the operator [writes = ⟨𝜓|𝐴|𝜓⟩] in the middle of the inner product.” He continued to explain 
his work as he proceeded, with statements such as “you know that 𝑆𝑥 is just going to um, like apply 
it's eigenvalues to these, so, so like the eigenvalue corresponding to plus 𝑥 is going to be + ℏ 2⁄  and 
the, the eigenvalue corresponding to −𝑥 is going to be − ℏ 2⁄ , so you end up with this equation that 
looks like this [points to the second half of line 2 in Figure 1a]. Note that his work in Figure 1a, which 
led him to the correct answer of 7ℏ 50⁄ , involved the state’s expansion and use of eigenvector 
equations for 𝑆𝑥 in ket notation. He did not need to physically write the expansion of |𝜓⟩ in the 𝑥 
basis kets, nor did he write out the eigenvector equations; however, his verbal description of his 
process relied on his understanding of both basis and the eigenvector relationships at play. 
Furthermore, this notation was novel to the students during this course; as such, A25 was clearly 
quick to use and understand this representation (a quality of MRC, diSessa & Sherin, 2000).  

After discussing his work and solution, the interviewer asked: “Before you were telling about bra-ket 
versus matrix notation, you brought up an expectation value as an example of like, either or both, so 
can you, now that you had this problem, kinda revisit that?” A25 immediately solved the problem 
completely within matrix notation. He began by saying “if we’re strictly in the plus and minus 𝑥 

basis” and wrote the column vector [
−

4

5

𝑖
3
5

] associated with the given ket |𝜓⟩. He then said, “and then the 

bra would be, um, minus 4 over 5 and then minus i 3 over 5,” writing out the row vector [−
4

5
−𝑖

3

5
] 

as he spoke (see Line 1 in Figure 1b). He then said, “and so what you do is take this [copies the 
column vector]…and then you have the operator in the middle [writes an empty 2x2 matrix], and then 
you have the bra here [copies the row vector], and the operator in this case is 𝑆𝑥 and we’re in the 𝑥 
basis so it’s just ℏ 2⁄  and -ℏ 2⁄ , 0, 0” [fills in the 2x2 matrix values] (see line 2 in Figure 1b). 
Impressively, he was able to fluidly move from his original ket notation to matrix notation, flawlessly 
making translations from the bras, kets, and operators in ket notation to row vectors, column vectors, 
and matrices in the matrix notation, further evidence of his strong MRC. Next, he explained his 
process for computing the matrix times the column vector before he did the computation, noting that 
“you’re gonna get a vector.” Again in line 3 he explained “then I do it again, so, um, this time you're 
gonna get a number out,” meaning he anticipated that a row vector times a column vector would be 
a number. This shows two aspects of A25’s strong understanding: first, a fluency in the calculations 
and computations within matrix notation similar to his ease in working in ket notation, including the 
ability to anticipate results before actually carrying out a computation (as in anticipating the result of 



a matrix times a vector); and second, an ability to compare the two notations as well as an 
understanding that the two notations represent two ways to conceptualize the quantum physical 
calculation of expectation value. We see this as flexibly using symbolic manipulations (Arcavi, 1995) 
and an anticipation of results.  

 
(a) 

 
(b) 

Figure 1: A25’s expectation value problem, in ket notation (a) and matrix notation (b) 

The interviewer then asked A25 to reflect on any preference between the two notations:  

A25:  Uh...To be honest, I don't really, I don't really know why I prefer this [Figure 1a], I 
think it's just because, um, I like this notation. This specific notation [Figure 1a line 
1] like this to me is like a cleaner way of writing that [Figure 1b line 2] because 
that- I mean this and that [touches Figure 1a line 1 and Figure 1b line 2 
simultaneously] I feel like are your starting points, so you, you start here with this 
nice, like, looking thing [traces one finger under ⟨𝜓|𝐴|𝜓⟩], or you start here with 
this big array of numbers [puts two open hands around Figure 1b line 2], and I prefer 
this [Figure 1a line 1], even though you have to expand this into basically the same 
amount of information [Figure 1a line 2]. And also, the nice thing about, about this 
[Figure 1a line 1], is it—actually this is really why it's better—is because you can, 
you can say ok 𝑆𝑥 works- acts directly on these kets, you can just get rid of the 
matrix altogether... 

We see his use of “nice looking thing” and “big array of numbers” in comparison to one another are 
an example of compactness. He also compares Figure 1a line 1 and Figure 1b line 3 regarding the 
“amount” of information they convey, which involves reflection on the physical and mathematical 
content expressed in the compared notations. Finally, acting directly on the expansion in terms of the 
eigenstates of the operator allow him to forego the matrix calculation entirely, which speaks to A25’s 
view of compactness, parsimony, and symbolic support for ket notation for this problem.  

When asked about his notation preferences if the basis expansion of a given state vector and the 
operator “didn’t match,” A25 recalled a problem from his last homework that was “actually easier…to 
do the matrix multiplication,” stating “you don't want to have to change these kets into different bases 
all over the place 'cause they're already all written in the same basis and you know what the operator 
is in that basis so you might as well just, do the matrix multiplication.” Here we see how strong A25’s 
understanding is of the important linear algebra concepts of bases and change of bases, and how they 
relate to the matrix multiplication within expectation value quantum mechanics problems. 



Furthermore, we see another aspect of his MRC, namely his understanding that different notations 
have different strengths and weaknesses, and his ability to leverage these strengths and weaknesses 
depending upon the particular quantum mechanics situation. This speaks to his awareness of symbolic 
support as well as using symbols flexibly. Finally, when asked if the concepts of basis or 
eigenvectors/eigenvalues come up more in one notation than the other, A25 stated, “certainly…every 
time you write down a ket you're, you're very conscious of what basis you're in. In this one [points to 
Figure 1b] it's just kinda implied…all this [is] in the same basis, so you're just, you're just writing out 
numbers, an arrays of numbers, but here [in Figure 1a] you're thinking ok, this is the 𝑆𝑥 operator, this 
is the 𝑥 plus ket, this is the 𝑥 minus bra…so I think that you're definitely more aware of what basis 
you're in when you're using this, because you have to be.” This explanation is consistent with 
externalization (Gire & Price, 2015), in that the ket notation allows features of the problem, namely 
basis, to be externalized in a way that matrix notation did not provide for A25. This again attests to 
his understanding that notations have different strengths and weaknesses, an element of MRC that 
seems particularly important within quantum mechanics. 

Conclusion 
In this report we analyzed one student’s MRC and his understanding of change of basis and 
eigentheory as he solved an expectation value problem in quantum mechanics. This case study lays 
the groundwork for future analysis by being a paradigmatic example of a student’s power and 
flexibility for thinking in and using different notation systems. In addition, it provides evidence that 
MRC seemed to positively impact this student’s ability to make sense of and use concepts from linear 
algebra while solving quantum mechanics problems. In addition to analyzing the other students from 
our data set, future research includes investigating how classroom interactions may have influenced 
students regarding their notational choices, what aspects of MRC seem most important to success in 
using linear algebra when solving quantum mechanics problems, and what that implies regarding 
students’ understanding of the mathematics and physics content involved.  
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The teacher’s practice plays a major role in the learning process and influences students’ behavior. 
Moreover, teacher's choices affect students’ self-perception and guide their work. Ghedamsi (2008) 
also established that mathematical activities of students depended on mathematical organization and 
teachers’ designs. Robert and Rogalski (2002) also found that the mathematical activity of students 
such as calculus was affected by the way an exercise was organized. The work presented in this paper 
continues along the same lines and analyses the impact of the teacher’s practice on students’ learning 
of the Riemann integral concept in the first year of university. 

Theoretical considerations and method 
Studying the impact of the teacher’s choices on students’ learning in the case of the Riemann integral 
in the first year of preparatory studies led me to considering a tool developed by Ghedamsi (2015) 
for analysing the teaching and learning process in a regular lesson at the first year of university. This 
tool includes two dimensions: teacher management and students’ work. In this paper, the students’ 
work consists of two levels. The first is based on action and formulation by which students formulate 
questions concerning specific knowledge; spontaneously express knowledge by changing semiotic 
setting, making examples, or linking several notions; and formulate a view on knowledge. The second 
level is based on validation when students indicate technical methods; perform their own validations; 
and discuss patterns proposed by peers or by the teacher. 

Students participating in this study were in first-year preparatory classes at IPEIT (Preparatory 
institute for engineering school) in Tunisia. They had all obtained a mathematical baccalaureate. The 
method used in this research consists of three phases. In the first phase, we prepared a preliminary 
test for 25 students to be taken before studying the concept of Riemann integral, aimed at analysing 
and understanding their background. This test proposed tasks found at the end of the secondary 
school. Then, we observed some regular lessons (18 students were present in these lessons). In 
preparatory classes, the courses are organized into lectures and tutorials that each lasts two hours. 
Tutorials represent an opportunity to apply the definitions and theorems taught previously during 
lectures. We developed a detailed analysis of the two tutorials on the Riemann integral. Observation 
of these lessons allowed us to see the interaction between the teacher and the students. Finally, we 
prepared a second test after the teaching of this concept; 15 students participated in this test. The 
questions; which were presented in the second test primarily involved problems concerning Riemann 
integral concepts.  

 

 

  



Results 
Based on an analysis done using the tool of Ghedamsi (2015) cited above, we can conclude that the 
Riemann integral is used in the calculation of limits of some sequences that refer to Riemann sum. 
The teacher had the intention to invite debates and give students the opportunity to express themselves 
about the knowledge at play but the contract he established limited the students' opportunity for 
interactions, thus hindering the students in developing their analytical skills and improving their 
critical thinking. 

The intervention of the teacher seemed to point out the importance of the integral as a tool for 
calculations.  

The classroom observation allows us to see more clearly the impact of the teacher's choices on the 
quality of students’ learning. We can make the following observations: 

 Only the teacher offers the solutions and the different techniques required. The 
mathematical activity of the students is reduced to simple applications of the 
procedures proposed by the teacher. Thus, the practical implementations of knowledge 
are limited to the technical level. 

 The organization and structure of the tutorial sequences conducted by the teacher do 
not encourage student’s autonomous work. The types of tasks proposed do not invite 
reflective thought that mobilizes the supposed acquired knowledge, but rather invite 
algorithmic work. Students' work is limited to a few memory techniques to solve most 
often stereotyped questions. 

 The majority of tasks can be treated in the algebraic register. There is no recourse to 
other registries such as graphic register.  

Conclusion 
The analysis of the data collected suggest that is possible to develop teaching sequences for the 
Riemann Integral concept which take into consideration students’ autonomous work and encourage 
them to create their own self-perception. Hence, a Didactic Engineering can be elaborated in order to 
surmount the problems identified in this analysis and to propose another alternative improving the 
teaching-learning process of the Riemann Integral concept. 
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Transition and fragmentation 
Transition problems from school to 
university in mathematics 

Tall (2008) presented a theoretical model 
which he called the three worlds of 
mathematics to describe the transition 
problem from school to university in 
mathematics. He postulates the difference 
within the existence of a so-called 
axiomatic-formal world at university and a 
separated conceptual-embodied respectively 
proceptual-symbolic world at school. This 
model helps to account for some difficulties 
of many students’ transition to university in 
mathematics, resulting in missing common 
threads and not knowing connections. Consequently, one of the ideas of our visualization project is 
the attempt of following “known” conceptual-embodied and proceptual-symbolic truths – where 
possible through development in time – into the axiomatic-formal world in order to see their genetic 
connection, the desired and meaningful so-called “golden thread”.  

Interactive mathematical maps 

The concept of “mathematical maps” was introduced by Brandl 
(2008) as a didactical tool in the form of a virtual tree or net, 
which shows interrelation between topics (horizontal 
dimension) as well as the development of a subject matter – 
starting from an initial problem – in time (vertical dimension). 
A structural model can be seen in Figure 2. This concept offers 
several opportunities to foster joined-up thinking and will allow 
the student to follow the development of an initial problem in 
time. For example, the visualization in three dimensions allows 
for an ideal transparency of the interdependencies or the 
connection of single nodes which additionally offer contents 
from other platforms by link (Brandl, 2008, pp. 106–109). 
Another concept, especially for the horizontal orientation, is 
made by Acevedo (2014) with the “OpenMathMap” which organizes different subjects of 

Figure 1: The three worlds of mathematics (Tall, 2008) 

 

Figure 2: Structural visualisation 
of the development of an initial 

problem in time 

 



mathematics by size according to the amount of published papers and by closeness representing the 
relationship of two subjects (pp. 6–7). 

Design-based research methodology 
The new teaching format for students in mathematics and mathematics teacher education at the 
University of Passau will be developed via design-based research methodology. Interactive 
mathematical maps will be used as a didactical tool to show the interrelationship between different 
mathematical topics as well as between mathematics at school and at university level, connected by 
the development of the subject matter in time. 

The current status of our work-in-progress is ongoing 
conceptualization of the teaching format and development of the 
code for the interactive mathematical maps. Figure 3 shows a 
screenshot of a first attempt (via JavaScript) to produce content 
knots which are connected to related content knots by lines in an 
automatically evolving 3D-visualisation. In order to link the 
interactive mathematical maps with contents, ILIAS will be used 
as an e-learning tool (which is the common tool for online 
courses at the University of Passau). Reasons for the use of e-
learning formats are given by constructivism, improvement of 
quality of teaching, motivation of students and preparation for 
lifelong learning (Kreidl, 2011, p. 15).  

The final product will be implemented in mathematics teacher education for (higher) secondary 
schools (i.e. Gymnasium) to serve for a de-fragmentation process of mathematical contents learned 
at school and at university. We intend to improve teaching by using e-learning – particularly 
blended learning – in connection with these interactive mathematical maps. Furthermore, there will 
be special courses connecting courses in mathematics (first: geometry) and didactic of mathematics 
(first: didactics of geometry) using the presented ICT-tool in mathematics teacher education. 
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We report on a study aimed at examining the ways in which lecturers of large mathematics classes 
receive and use feedback from their students, with a particular focus on how they use feedback 
received via the Maths Support Centre (MSC). Three separate interviews with each of thirteen 
lecturing staff over the course of one semester were conducted. We discuss the ways in which these 
lecturers receive and use ten modes of feedback from their students and examine where the feedback 
received by the MSC sits in the general context of this feedback. We conclude that MSC feedback is 
one of the most valuable to lecturers and state the reasons given for such a claim. 

Research questions 
 How do lecturers receive and use feedback from large first year mathematics classes? 
 In what ways, if any, do lecturers find the feedback provided by the MSC on students’ visits, 

useful? How do they use it? 
 Where does MSC feedback sit placed in the general context of formative feedback? 

Methodology 
Thirteen lecturers from a research-intensive university in Ireland volunteered to participate in this 
study. Lecturing experience varied from two to seventeen years and two lecturers were teaching their 
particular module for the first time. The modules’ sizes ranged from 66 to 550 students in subjects 
including Calculus, Statistics, Linear Algebra, Computer Science and Applied Mathematics. Twelve 
of the 13 classes we examined were mathematics/statistics modules taught to non-mathematicians, in 
particular the cohorts consisted of agriculture, computer science, engineering, business, science and 
applied mathematics students. 

Thirty-seven semi-structured interviews consisting of three interviews with each lecturer were 
conducted in semester one of 2014/15 (interview one was not conducted with one lecturer as there 
was no MSC feedback to discuss at that time and the final interview for one module was conducted 
with both co-lecturers of that module simultaneously). This feedback, on the content of each students’ 
visit, is generated by the attending MSC tutor and electronically uploaded (anonymously) in real time 
via the MSC software system where it can be viewed at any time by the lecturer (Cronin & Meehan, 
2015). Interview 1 was an exploratory interview conducted in week 4 of the teaching term where 
lecturers were asked to review the MSC feedback collected from their module to see if they could 
identify the topic and mathematical difficulty being reported. The mathematical content of this 
feedback is discussed in the PhD of Nuala Curley and more information is available in Curley & 
Meehan (2016). Interview 2 was conducted in week 8 where lecturers were asked to comment on the 
various ways in which they receive feedback from their students and to comment on the usefulness 
of each. The third interview, conducted three weeks after teaching had finished, invited lecturers to 



summarise their experiences with the MSC feedback mechanism throughout the term and discuss the 
value associated with each of the feedback forms they received from students throughout the module. 
Interviews were analysed using thematic analysis (Braun & Clarke, 2006). 

Findings 
Lecturers reported nine ways in which they receive feedback from large classes. These are: in-class 
questions, after-class questions, continuous assessment (e.g. quizzes), midterms and final exams, 
module tutors, online activity (Blackboard, Moodle, WebWork etc), the institution’s Module 
Feedback system, staff-student fora and MSC feedback (Figure 1). Lecturers identify MSC feedback 
as one of the most valuable forms of feedback from a large mathematics class. In particular it is 
specific, detailed and lecturers reported that it aligns closest to in-class questions as it is content based, 
formative and in real time. It is mathematically accurate being the MSC tutor’s interpretation of the 
student’s difficulty. Lecturers stated that it is reassuring and confirms what is been asked at (and 
after) lectures. Many instructors stated that reviewing MSC feedback has had impact on their practice 
including; revising lecture content, writing midterms and revision classes, omitting material and 
delaying (or bringing forward) continuous assessment components. 

 
 

 

 

 

 

 

 

 

 

Figure 1: Usefulness of feedback forms to lecturers 
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The measurement of student learning for a federally funded project, EHR #831882, (Watkins, 
Duranczyk, Mesa, Ström, & Kohli, 2016) will be used to investigate the connection between 
instructional practices and student learning in algebra courses at six community colleges in three 
states of the United States. The poster focused on measurement issues faced in identifying students’ 
learning gains in the pilot data.  

Although we like to think that teaching causes learning, the truth is that such connection has not been 
established empirically (Hiebert & Grouws, 2006). As a first attempt to establish this connection, we 
investigate the extent to which there is a correlation between what occurs in the classroom and what 
students learn in a one semester course. Whereas there is some research documenting how individual 
and institutional characteristics (e.g., prior achievement, family support, financial aid, learning 
support and tutoring centers, and ratios of full- to part-time instructors) factor into failure rates and 
other performance measures (Bradburn, 2002; Feldman, 1993), there is little information about the 
fundamental work of teachers in the classroom, and the interaction that occur between instructors, 
students, and the mathematical content. The Quality of Mathematics Instruction (QMI), a video 
analysis tool used in P-12 settings (Learning Mathematics for Teaching Project, 2011), was adopted 
to measure faculty and student interaction at the community college. Research in K-12 and four-year 
colleges documents that the association between quality of instruction and student outcomes can be 
moderated by instructors’ knowledge and attitudes towards innovative teaching practices, knowledge 
of algebra for teaching, and their beliefs about mathematics, its curriculum, and students’ learning. 
The association is also moderated by students’ attitudes, beliefs, and confidence about mathematics, 
their patterns of adaptive learning orientations, and the perceptions they have about their instructors’ 
behaviors in the classroom and by the personal characteristics of instructors and students. The Algebra 
and Precalculus Concepts Readiness (APCR) test (Madison, Carlson, Oehrtman, & Tallman, 2015) 
was used to measure student learning. 

The first phase, presented here, is the pilot testing of the APCR instrument to measure learning gains. 
The algebra instruction captured for analysis focused on three key algebra topics: linear, rational, and 
exponential equations. The APCR tests these topics and was administered in the second week of the 
semester before the topics were introduced and then two weeks before the end of the semester after 
the three focal topics had been taught. 

The analysis based on the APCR data from 6 community college faculty and 161 students in 
beginning, intermediate and college level algebra courses lead to questions about the suitability of 



the instrument for our work. Examining the descriptive statistics, item analysis, and reliability 
measures from classical test theory (Thorndike & Thorndike-Christ, 2010) revealed problematic 
point-biserial correlation and poor item discrimination. Ten item on the test fell well below acceptable 
levels (point-biserial correlations below 0.20). 

Reliability measure gives information about the extent to which the scores produced by such 
measurement procedures are consistent and reproducible. The APCR had a Cronbach’s alpha of 0.676 
for the pretest data and 0.784 for the posttest data. The test-retest coefficient reliability coefficient 
(Crocker & Algina, 1986) for the APCR data was equal to 0.597, another low indicator. 

Conversations were held with the authors of the APCR and the instrument is undergoing major 
revisions to be re-tested in April 2017. Working collaboratively with the APCR team on the newly 
revised version hopefully will generate an instrument that performs at a higher standard for greater 
reliability and discrimination. The poster presentation provided an excellent venue to review the 
testing results and confer with colleagues in possible next steps which were taken in March, 2017. 
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The dilemma of the didactical design  
This poster reports on a large study dealing with the issue related to the implementation of didactical 
designs in the institutional context. This presentation is an attempt to specify some methodological 
principles for planning didactical design that could be used as a resource by the institution. We build 
on the Theory of Didactic Situations (TDS) construct of didactical engineering (DE) (González-
Martín, Bloch, Durand-Guerrier, & Maschietto, 2014) to first address the issue concerning the use of 
DE both as a fundamental research tool and as a tool ready to be used for action (Artigue, 2016). We 
then briefly introduce preliminary results of two studies which empirically investigate this issue in 
the case of the teaching and learning of convergence of sequences and complex numbers. DE is a 
research methodology usually associated to TDS, that “consists of designing, regulating and making 
controlled observations of experimental situations where certain mathematical knowledge appears 
as the optimal way to address a mathematical problem.” (González-Martín et al., 2014, p.120). Three 
global steps shape the design of DEs as a research tool: 1) Epistemological and cognitive analyses 
which deal with the mathematical specificities of the targeted knowledge and their impact on the 
cognitive process of learning; the results are supposed to define the didactical variables – namely the 
parameters that influence students’ work, which should be taken into account to design the projected 
situations; 2) The phase related to the a priori analysis leads to the identification of the values of the 
didactical variables that are used to build the experimental situations; these situations are thus 
analyzed in terms of milieu – "namely the set of material objects, knowledge available, and 
interactions with others" (p. 119) including the interactions with the teacher; 3) The results of the a 
posteriori analysis (by comparing with the a priori analysis) permit to assess the relevance of the 
experimental situations and the validity of the theoretical model. The aim of the final analyses is to 
give feedback on the theoretical frame and its efficiency; the research does not actually consider the 
conditions for the implementation of the DE in the institutional context. In the last decades, research 
dealing with didactical design has increased its focus on the issue concerning the “application role 
when didactical design is seen as a way for organizing the relationships between research and 
practice or, in other words, for developing educational actions inspired by research and 
incorporating its results.” (Artigue, 2008, p. 9). Yet, this issue is still pending and the didactical 
actions are not defined neither theorized. In the following section, we describe the methodological 
tool that we have elaborated to plan efficient DEs for action. 

The methodological tool for empirical investigation: the cases of the convergence 
of sequences and complex numbers   
The fundamental principle of the two DEs we have constructed is based on two essential ideas:   1) 
the necessity to negotiate and to plan such DEs with the actors of the educational system (teachers, 



 

 

trainers, policy makers, etc.); 2) the experimentation should provide some flexibility to the teacher in 
order to make adjustments depending on the class context. We rely on the research version of the 
design methodology (DE) and go forward to provide three empirical phases used as a method to plan 
and to experiment DE for action (Figure 1). 

 

 
 

Figure 1: A methodological tool - DE for action 

Its use with more than one mathematical topic gives more legitimacy to our methodological tool. In 
spite of their mathematical differences, these two studies revealed the cornerstone role of the 
institutional mathematical organization in the teaching and learning processes and how to manage it 
for more efficiency, for instance: 1) regarding the convergence of sequences: improve the neglected 
role of approximation and numbers; 2) regarding complex numbers: rehabilitate the operational level 
of these numbers by emphasizing the role of their several representations. For both cases, the results 
of the implementation of the first step corroborate the necessity of such adjustments. 
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We have investigated the difficulties encountered by undergraduate physics students when studying 
differential equations, and how these are best addressed. We developed a survey to identify these 
difficulties that was administered to a pilot cohort of students. The results were used to develop an 
instructional intervention, informed by APOS Theory, that seeks to address the difficulties uncovered 
by the survey. The intervention comprised fourteen one-hour tutorials. The tutorials were trialled for 
the next iteration of the module in question and the survey was given to the students who had 
completed the module. Applying a design based research approach, the results from these surveys 
were used to improve the intervention which is being evaluated using a combination of pre- and post-
testing and interviews with students in the coming academic year. The interviews will be analyzed 
using the APOS framework, which acts as the overall conceptual framework for this research 
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Research questions 

1. What is the precise nature of the difficulties encountered by physics students in using 
(identifying the need for/setting up/solving) differential equations? 

2. How may these be addressed? 

These questions lead to the following specific aims for the project which are: (1) identify the areas 
students struggle with and excel in during their study of differential equations; (2) develop a set of 
tutorials based on the data from the survey; and (3) evaluate and improve the tutorials that were 
developed. 

Conceptual framework 
In 1984, Dubinsky began developing a theory of how mathematical concepts may be learned. This 
eventually became known as APOS Theory and is a constantly evolving model developed and refined 
through application in research and instructional design. As described by Arnon et al. 

APOS Theory focuses on models of what might be going on in the mind of an individual when 
he or she is trying to learn a mathematical concept and uses these models to design 
instructional materials and/or evaluate student successes and failures in dealing with 
mathematical problem situations. (2014, p.1) 

As explained by Dubinksy (1991), APOS Theory describes the mental structures and mechanisms an 
individual constructs and applies when trying to understand a problem in mathematics. This project 
primarily uses APOS Theory as an analytical, evaluative tool. The language of APOS Theory is used 
to describe the level of understanding displayed by students during their interviews. 



Methodology 
Achieving the aims outlined in the opening sections will require the combination of both qualitative 
and quantitative data. The design diagram below shows how the project is structured. 

 
Figure 1: Design diagram 

The first aim, identifying difficulties, gave rise to both quantitative and qualitative data, gathered 
using a survey. The Diagnostic Survey was divided into four separate sections assessing different 
aspects of the students’ learning in differential equations: prior mathematical learning; conceptual 
issues in the study of differential equations; transfer issues; and modelling. To evaluate the tutorials 
a series of pre- and post-tests and interviews are being used to assess the effectiveness of the 
intervention. These results feed into the evaluation and improvement of the tutorials. 

Results 
The results obtained from the Diagnostic Survey show that of the four sections contained in the 
survey, students struggle most with conceptual understanding, indicating (in terms of APOS Theory) 
shortcomings in their ability to encapsulate Actions and Processes as Objects. Comparing to the 
results of the students who completed the tutorials, we saw a dramatic increase in their conceptual 
understanding, in addition to improvements in the three other sections of the survey. The pre- and 
post-test data were also used to amend the tutorials for the second research cycle.  
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Problems in university mathematics education: in the Japanese context 
It is becoming more important for all students regardless of educational level to acquire the ability to 
use mathematics in a variety of contexts, especially in real world situations (Niss & Jablonka, 2014). 
From this viewpoint, mathematics education for non-mathematics students at university is becoming 
an important issue; however, it is still under-investigated (Artigue, 2016). In Japan, it is an emergent 
issue that we have no successful mathematics curriculum designed especially for humanities and 
social sciences students. Many of those students have math anxiety and difficulty in doing and 
learning mathematics, and do not understand how mathematics is used in the real world. Hence 
mathematics education for those students is a challenging issue. 

Design principles of mathematics courses for humanities and social sciences 
students 
Continuing empirical studies from our previous research (Kawazoe et al., 2013), we have developed 
the following design principles of mathematics courses for humanities and social sciences students: 
(1) Design lessons according to mathematical modelling processes; (2) Choose topics and contexts 
by considering which mathematical knowledge students will encounter in real life and in which 
situations they will encounter it; (3) Present problems in different contexts associated to the same 
mathematical knowledge; (4) Connect different areas of mathematical knowledge by using different 
mathematizations of the same problem or mutually related contexts; (5) Explain mathematical 
concepts and operations in both mathematical language and everyday language; (6) Engage students 
in group activities rather than individual activities; (7) Design worksheets based on hypothetical 
cognitive processes of students’ understanding and use them as tools for formative assessment.  

The above principles originate in the four perspectives of learning environments developed in 
learning science (Bransford, 2000, Chapter 6). The first four principles (1)-(4) also originate in 
discussions on mathematical literacy (cf. Sfard, 2014) and mathematical modelling (cf. Kaiser, 2014). 
Especially, (3)-(4) are aimed at making students’ knowledge decontextualized and structuralized 
respectively, because it is often claimed that teaching mathematics in real world contexts makes 
students’ knowledge restricted to the learning contexts (cf. Sfard, 2014). In a previous study 
(Kawazoe et al., 2013), we showed that mathematics courses designed according to the above 
principles are successful in reducing students’ math anxiety and motivating them to learn math. 
However, their effectiveness for decontextualization and structuralization was not examined. To 
examine this effectiveness is the research objective of the present study.  



Evaluation of decontextualization and structuralization 
To evaluate the effectiveness of our design principles for decontextualization and structuralization, 
we analyzed the performance of examinations and the free descriptions in the self-report 
questionnaires conducted at the end of each semester in Basic Math I and Basic Math II, which are 
successive one-semester mathematics courses for humanities and social sciences students designed 
according to the above principles. The data were collected in the academic year 2012, when 300 and 
244 students took the courses respectively, with students divided into four classes.  

The examinations mainly consisted of problems in real world contexts, but the contexts were different 
from the learning contexts. The mean scores of the exams of Basic Math I & II were 85.9 and 75.4 
out of 100, respectively. The results of the exams indicated that students were able to use mathematics 
in contexts different from those they had studied before, suggesting that they acquired abilities to use 
mathematics in real world situations. 

In the qualitative analysis of the self-report questionnaire, we found evidence of structuralization of 
mathematical knowledge only in a small number of descriptions. Here we show an example: 

Student:  In this course, it seemed that mathematical formulae, which were just isolated 
pieces of knowledge, had been changing into meaningful ones. I felt that the 
knowledge base of mathematics that I had became harder and stronger; in that 
respect, it was a meaningful time. 

In sum, the design principles can be considered to be effective for decontextualization, however, the 
structuralization is still a challenge. More study is needed for structuralization. 
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Introduction and research problem  
Progressing from the study of rational numbers to irrational and real numbers can prove challenging 
for students. The way irrationals and reals are introduced in secondary school textbooks does not 
seem to promote the development of ideas that allow students to adequately grasp convergence or 
density in their tertiary studies (González-Martín, Giraldo, & Souto, 2013). Difficulties with irrational 
numbers also have been reported in university students (Kidron, 2016). However, we believe that 
certain activities, such as studying the approximation of irrational numbers by sequences of rationals, 
could help students grasp, informally, the ideas behind the formal 𝜀 − 𝑁 definition of convergence at 
university. We have not found works in the literature that address the connections between the 
teaching of these two notions. For this reason, we seek to investigate how they are presented in 
textbooks and study the connections that are made (or the lack thereof). Our research is guided by the 
following questions: 1) how do pre-university textbooks organise and present the notions of limit and 
of approximation of a real number by a sequence of rationals?; and 2) how do textbook tasks help 
students develop connections between the two notions? 

Theoretical framework 
Our research uses tools from Chevallard’s (1999) anthropological theory of the didactic (ATD). ATD 
acknowledges that every human activity generates a praxeology or praxeological organisation 
identified by the quadruplet [T/𝜏/θ/], where T is a type of task, 𝜏 is a technique used to complete 
this task, θ is a discourse (technology) that justifies and explains the technique, and  is a theory that 
includes and justifies the given discourse. The couple [T/ 𝜏] is the practical block (or praxis) and 
[θ/] is the theoretical block (or logos). We focus on the institutional relationship with the notions 
of real number (and activities of approximation) and limit, as reflected by the textbooks. 

Methodology 
Our study uses the tools provided by ATD to analyse the textbooks and recommendations of the 
Tunisian Ministry of Education’s official programme. Teachers in Tunisia use a different textbook 
for each school level; all are published by the Ministry. We chose two textbooks for our analysis: the 
first is used in the ninth level of the basic cycle (14-15 year-old students) and the second is used in 
the third level of secondary school (17-18 year-old students), which is the penultimate year before 
university. In examining the first textbook, we analysed the content related to real numbers, paying 
special attention to tasks concerning the approximation of an irrational by a sequence of decimals. 
We focused on whether such tasks implicitly use a theoretical block based on the notion of limit. For 



the second textbook, we looked at two chapters, “Sequences of Real Numbers” and “Limits of 
Sequences of Real Numbers”, to determine whether those chapters develop praxeologies that use 
(implicitly or explicitly) any of the elements present in the first textbook. 

Main results and discussion 
We identified three types of tasks in the first textbook (geometrical, algebraic and numerical). These 
are: Tpr (prove that a given figure is a square and calculate its area), Tcl (calculate the square of rational 
numbers using a calculator) and Tbn (determine lower and upper bounds of a square root). All these 
tasks seek to introduce routine techniques, such as the algorithm for bounding √2 between two 
decimals. The institutional relationship with this notion is characterised by an institutional void with 
regard to the theoretical block, which includes two technologies: θpr (the diagonals of a square are 
perpendicular and isometric, and they intersect at the same midpoint) and θcl (0 < a < b < c 

⇒  √𝑎 < √𝑏 < √𝑐), both of which are derived from Euclidian Geometry and elementary algebra. 

This institutional void may have an impact later on in the third level of secondary school, during the 
introduction of limits and convergence. Concerning the second textbook, it proposes three types of 
tasks (calculus, geometrical and numerical) focusing on bounding square roots and 𝜋. With respect 
to calculus, the textbook presents an activity related to the Fixed Point theorem and, essentially, the 
application of the algorithm of Newton’s method. This task, “determine upper and lower bounds for 
√37,” proposes a technique that breaks the exercise down into three sub-tasks: Tres (solving of an 
equation), Trep (representation of a sequence), and Tbnd (bounding of √37). The technology is implicit 
in this activity because the students have not yet studied the Fixed Point theorem. The two geometrical 
activities concern the approximation of 𝜋 using Archimedes’ polygonal approach. Finally, the 
numerical activity asks students to determine the rank 𝑛 of a recurrent sequence (𝑥𝑛) that verifies 
|√𝑎 − 𝑥𝑛| ≤ 10−𝑝. Our results indicate that all tasks presented in the two textbooks are routine. Both 
textbooks insist on the approximation of square roots and 𝜋. This could affect students’ learning of 
real numbers when the latter are formally introduced in university. We also found that both textbooks 
contain praxeological organisations that insist on the practical block and that implicitly present the 
theoretical block. Furthermore, the activities are presented using algorithms, without discussing the 
useful application of the knowledge gained. 
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The Mathematics community often does not agree on definitions of concepts and on the meanings of 
their symbols. For example, in the topic of complex numbers some Israeli textbooks propose that 
√𝑎 + 𝑏𝑖 represents a single value, while others maintain that two values are indicated (in the field of 
real numbers there seems to be a consensus around √𝑎2 = |𝑎|). When introducing such a debatable 
concept to students, teachers usually choose a particular approach among mathematically acceptable 
alternatives, and stick with it. In this poster, I am focusing on the question “what does a university 
lecturer take into account when making such a choice?”. 

I embark on the question with Schoenfeld’s (2011) theory of decision making. According to this 
theory, in-the-moment decisions that teachers make in classroom situations can be modelled with 
three explanatory constructs: resources (consisting of teacher’s knowledge inventory, social and 
material resources), goals that are set to be achieved (either consciously or unconsciously) and 
orientations (including beliefs, values and preferences). Schoenfeld suggests that the model can be 
further used for structuring developmental trajectories and promoting teacher expertise.  

For an experienced university lecturer, the choices among mathematical alternatives are hardly “in-
the-moment”, in the sense of spontaneity. Instead, I argue that these choices are systematically 
reproduced by some decision-making mechanisms that a lecturer brings to bear in a variety of 
teaching situations. Indeed, after the choice has been shared with the students (i.e. in one ‘moment’ 
during a course), for the benefit of course coherence, a lecturer is expected to maintain the choice 
through consequential inferences. Accordingly, making sense of these choices might illuminate some 
aspects of one’s epistemological perspectives on mathematics didactique. I showcase this idea with 
the case of Elza and direct interested readers to Kontorovich (2016), where additional illustrations 
were analyzed with a different theoretical lens. 

Elza is a highly-reputed lecturer in a technological university in Israel, who holds a master’s degree 
in mathematics and a PhD in mathematics education. Elza has more than thirty years of teaching 
experience, and she specializes in teaching linear algebra. These facts suggest that her knowledge 
inventory is rich and solid. Elza’s specialization determines a significant component of her 
instructional setting; typically, students in Elza’s university learn a single course in linear algebra, 
which is a pre-requisite for many other courses. In this way, didactical choices that Elza makes shape 
students’ knowledge development in her course and in the courses taught by her colleagues. 

An interview with Elza revealed a variety of interesting didactical choices that she makes, some of 
which are barely conventional. To name a few, it turned out that in the field of real and complex 
numbers, she defines √𝑎

𝑛  to be multi-valued - all solutions to the equation 𝑥𝑛 = 𝑎. Elza explained 
that this is her way to connect roots of numbers, roots of equations and roots of polynomials, all of 
which are discussed in her course. When a singular positive root is required, she uses the symbol 
‘+√  ’. For example, when computing a module, Elza writes |𝑎 + 𝑏𝑖| = +√𝑎2 + 𝑏2. With regard to 



an apparent conflict between her multi-valued approach to real roots and a single-valued approach 
which is used in the calculus courses, she indicated that, “[I]n calculus they have functions and [here] 
we are dealing with values in linear algebra. Every branch of mathematics works with its own 
premises”. It also turned out that Elza avoids using complex numbers, the Cartesian form of which 
contains roots (e.g., √3 + 𝑖) because “they look like a single thing but are actually two numbers”. 
Lastly, Elza explained that she has just a few hours to cover the foundations of complex numbers, 
and then she does not go into “nuanced details”. She would have expanded the scope of the course if 
it was intended for pre-service teachers only. 

Several observations can be made based on Elza’s choices. On the one hand, a multi-valued approach 
to the root concept and radical symbol entails consistency between several topics in her linear algebra 
course. For instance, real roots of a number are preserved and possibly extended with non-real 
numbers in the field of complex numbers. Then, for Elza’s students a transition from the field of reals 
to complex numbers is mostly a matter of concept extension rather than redefinition. On the other 
hand, Elza’s choices create ‘monsters’ (cf. Lakatos, 1976), such as inconsistency with mathematics 
studied in other courses, ambiguity and unconventional symbols. When monsters are necessary for 
linear-algebra purposes, Elza conducts “monster-adjustment” to familiar categories (e.g., ‘+√  ’), 
otherwise, the “monster-barring” method is used to expel the problematics from the course scope 
(e.g., √9 + 𝑖).  

In terms of Schoenfeld (2011), Elza’s didactical choices can be explained with a complicated 
intertwining of resources, goals and orientations. A limited resource of time promotes setting 
pragmatic goals, the scope of which does not go beyond a particular course. In some cases, the choices 
lead to unconventional consequences and artificial limitations of the course content. In other cases, 
the choices seem to benefit the course instruction through tightening the connections between the 
topics. Evidently, the choices align with Elza’s orientations about the nature of mathematics (e.g., 
different branches can have incompatible approaches to the same concept) and students’ academic 
needs (e.g., roots should be taught differently to pre-service teachers). In this way, the choices seem 
to reflect an ‘equilibrium’ that Elza achieved in her didactical decision-making. 

Are Elza’s choices really beneficial for her students? Are students aware of non-chosen alternatives? 
How unique is Elza’s decision-making? I invite the community of university mathematics education 
to join me in pursuing these interesting questions through further research.   
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Introduction and research problem 
Our motivation for engaging in this research project relies on recurrent students’ difficulties in the 
appropriation of the concept of Taylor approximation. Despite the richness of this concept as a tool 
in many fields of application (e.g calculation of limits, local study of a function and the study of 
physical phenomena), for what we know, there is little research on this topic in mathematics 
education. Beyond the lack of comprehension of the notion of convergence for Taylor series (Martin, 
2013), we hypothesize that the articulation between syntax and semantics is not clear for students, 
creating a fuzzy area that prevents them from being able to apply Taylor approximation as a tool in 
applied mathematics. In this paper, we summarize the main results of our epistemological 
investigation and the first element of a didactic study of teaching material on this topic, in order to 
identify paths for improving its teaching and learning. 

Theoretical framework 
Throughout our epistemological and didactic investigations, we refer to the dialectics between 
semantics (graphic interpretation, dynamic interpretation and numerical approximation) and syntax 
(the different formulations of the Taylor approximation), including their articulation with the tool-
object dialectic (Douady, 1991) and the registers of semiotic representations (Duval, 2006). (this 
approach is developed and used in Kouki, to appear). 

Epistemological investigation 
We outline the evolution of the mathematical object known as “Taylor approximation” through a 
historical and epistemological investigation. Our study emphasizes the co-existence of different types 
of techniques mainly with geometric, algebraic and dynamic origins that contributed to the emergence 
and development of this object (Kouki, Belhaj Amor, & Hachaïchi, 2016). 

Our research identifies key moments in the development of infinitesimal calculus and local 
approximations which led to the calculus as it is taught nowadays. In particular, the works of 
Roberval, Euler, Fermat, Leibniz, Newton, until Taylor and Weierstrass are significant in the 
development of Taylor approximations. 

Didactic investigation 
Based on our epistemological investigation, we have conducted a didactic study of the Tunisian 
curriculum, textbooks and course handouts on Taylor approximation. The Tunisian curriculum, three 
handwritten courses and four handbooks were analyzed. Through this study, we confront the various 
dimensions of this concept revealed by the epistemological investigation with those that are present 
in teaching materials. 



This study supports the hypothesis that there are gaps in the teaching of Taylor approximation. In 
particular, some of them are due to insufficiencies of graphical representations and numerical 
approximation, corresponding to a deficit of semantic work, the emphasis being put on the syntax. 

Conclusion 
The epistemological and didactical investigations summarized in this paper are part of a larger project 
aiming at developing propositions for enhancing the teaching and learning of Taylor approximation. 
This enhancement can help to foster an appropriation of the concept allowing to use it in the various 
applications undergraduate students could meet in further studies, in particular in applied 
mathematics. 
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Introduction 
Flipped learning is a relatively new model of instruction currently growing both in popularity and 
success. In a flipped classroom the elements of typical lecture and homework are reversed. Students 
are introduced to new material at home, mostly through videos prepared by the teacher, while the 
classroom time is reserved for solving problems, group work, discussions and other activities that 
help students control, deepen and extend their understanding and knowledge. 

The board of the Flipped Learning Network has defined Flipped Learning as 

… a pedagogical approach in which direct instruction moves from the group learning space to the 
individual learning space, and the resulting group space is transformed into a dynamic, interactive 
learning environment where the educator guides students as they apply concepts and engage 
creatively in the subject matter (FLN, 2014) 

The number of college and university instructors who practice Flipped Learning has increased over 
the past two years and has expanded in all subject areas. Research in Flipped Learning has shown 
positive impact both on students’ achievement and engagement (Overmeyer, 2015). 

Methodology 
During our study we collected data from the students, the lecturer and the class. We conducted a semi-
structured interview with the lecturer in the middle of the semester at the university campus and had 
several informal discussions through Skype and emails at the end and after the end of the semester. 
The students were given evaluation forms to fill out both in the middle and in the end of the semester, 
the latter being enriched with open questions where the students were asked to describe their 
experience with the flipped course. In addition, we visited the class and observed how in-class time 
was spent and how the students interacted with each other and with the teacher. 

The researchers in this study have direct experience with the course material and the way it was 
previously taught, as they attended it as students. The second author has also taught the course. 

The structure of the course 
The lecturer-informant recorded videos, using a mobile phone, while writing down on a blanc A4 
paper what he would otherwise write on the blackboard in a traditional lecture. The videos were then 
made available to the students through the course’s webpage. The problem sheets, which are, except 
from small changes, the same sheets that were used in previous years, were also put out on the web. 
The students were instructed to watch the videos at home and work with the problems when they met 
in class. 

Ten to twelve students on average were normally attending the class, which is an expected number 
for this course. In a relaxed and informal environment, students formed groups freely and worked 
with the problems, while the lecturer was walking around answering questions and guiding them 



through the problems. The groups were let to progress through the problem sheets at their own tempo 
and already in the middle of the semester different groups were working with different parts of the 
curriculum. Thirteen students took the exam at the end of the semester. 

Findings 
Even on this primitive form the Flipped Learning Model turned out to be beneficial to the learning 
outcome of the students. The students spent more time working on computational problems, 
concretizing difficult abstract concepts such as for example the radical of rings and modules, 
projective and injective modules, exact sequences, resolutions and dimensions, clarifying in this way 
the connection between theory and concrete problems on special classes of algebras. 

Some more advantages pointed out by the lecturer include, among others: 

 Differentiated guidance according to the level of each student 
 Students forced to work more actively with the course, during the whole semester 
 Better balance between learning the theory and working on problem solving 

What the students found more beneficial was, among others, 

 Watching the videos at their pace. Pause it, think, watch it again. 
 Thorough explanations from the lecturer 
 Working the problems in groups, learning from each other. 

There was a slight improvement on the average of the grades, compare to the previous years the 
lecturer-informant had taught the course, though the class is too small to make any safe conclusions. 

References 

Flipped Learning Network (FLN) (2014) The Four Pillars of F-L-I-PTM. Retrieved September 16, 
2016 from http://flippedlearning.org/definition-of-flipped-learning/ 

Overmeyer J. (2015) Research on Flipping College Algebra: Lessons Learned and Practical Advice 
for Flipping Multiple Sections. PRIMUS, 25(9-10), 792–802, doi: 10.1080/10511970. 
2015.1045572 



Mathematics and medicine: The socioepistemological roots of variation 
Angélica Moreno-Durazo1 and Ricardo Cantoral2  

1Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), 
Mexico; gamoreno@cinvestav.mx  

2Cinvestav-IPN, Mexico; rcantor@cinvestav.mx 

Keywords: Variation, prediction, shortened variation, medicine. 

Introduction 
Variational Thinking and Language (PyLV) is a line of investigation developed at Cinvestav, whose 
objective is the study of forms in which individuals deal with change mediated by their culture for 
predictive purposes. It is a form of methodology for the elaboration of teaching proposals based on 
the investigation. PyLV is founded in the Socioepistemological Theory of Educational Mathematics 
(Cantoral, 2013), where mathematical knowledge is recognized as part of human wisdom, that is to 
say, of the articulation of knowledge of diverse nature (scientific, technical and popular knowledge); 
this requires a decentration of the mathematical object, which leads to the analysis of the practices 
that accompany the construction of the object; we call this process the social construction of 
mathematical knowledge. 

This way, we assume change and variation as a substantial part of the scientific and technical work 
areas and the daily experiences of individuals and social groups in non-school situations. In these 
areas, the prediction is socially constructed by the development of normed practices that we call social 
practices (Cantoral et al., 2006; Tuyub & Cantoral, 2012). Derived from the projects developed, 
strategies and fundamental variational arguments were characterized for prediction. Therefore, a 
series of teaching sequences was developed for the improvement of education both in and outside 
school; moreover, the results of PyLV have had an impact in the educational reforms in Mexico. The 
prediction of the phenomena that have been investigated under PyLV involve mathematical models 
whose resolution needs the convergence of the Taylor series in a given domain (deterministic nature) 
as the future state, the value of f (x+h), depends only on the starting values of h, f(x), f’(x), etc. 
through the expression: f(x + h) = f(x) +

f´(x)h

1!
+

f´´(x)h2

2!
+⋯ 

Now, based on this research, the goal of our project is to characterize the nature of the predictions 
made by mathematizing phenomena not governed by the analytical study of a formal mathematical 
expression, as described above. We have taken interest in the analysis of the ways in which change 
and variation are used in the estimates made by doctors in their professional practice. In this scenario, 
the dynamics of the system are not deterministic but rather chaotic, since the conclusion of the 
trajectories that patients follow after a certain treatment may be divergent - sensitive to initial 
conditions. The development of these objectives requires an in-depth study of the dynamics followed 
in cardiac functioning, through the analysis of original works and medical specialized books 
(Castellano, Et al., 2004; Harvey, 1994), the analysis of the medical practices, and its articulation in 
previous investigations in the PyLV. 

 
 



First findings 
We found that medical practice requires more than assuming that something changes, it is necessary 
to recognize how fast the change is in order to diagnose patients. Our first finding was that, in the 
case of the interpretation of electrocardiograms, the recognition of how, how much and why the heart 
rhythm behavior changes, is done by the practices of comparison and seriation; reported as variational 
strategies in the study of optimization problems and calculation of the derivative of a function 
(Caballero, 2012). Hence, we claim that the basic practices of the study of change and variation are 
shared by medical professionals and students or teachers in Calculus courses. In addition, we 
identified the use of different orders of variation in the location of different types of blockages in 
electrical conduction in the heart. For example, in the figure, we can see that type II Mobitz I block 
requires the identification that the time invested in the PR segment has a progressive extension and a 
progressive decrease in that increase (Lobelo et al., 2001, p. 2126); that is, it is necessary to analyze 
the change in the change in the PR segment between beats.  

 
Final thoughts 

The next phase in the research corresponds to an ethnographic study where the theoretical 
construction on the study of variation is contrasted with the practices developed by medical 
professionals. It is important to mention that the future intention of our research is the impact on the 
educational system, particularly in higher education. Concerning this, the characterization of basic 
forms of reasoning is fundamental for theoretical proposals of sociocultural nature, especially for the 
socioepistemology that bases the redesign of the school mathematical discourse on the assumption 
that knowledge is constructed based on practices.  
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Theoretical background and research question 
According to our previous study (Slavíčková, 2013) we state the following research questions: “How 
to design a course of calculus to help students obtain higher level of understanding of the topic? How 
to implement an ICT into this process? Will be using of and ICT helpful?” To find the answers we 
used mathematical and didactical software in the lectures for presentation of mathematical terms, 
definitions, properties etc. We also created an e-learning course in the Learning Management System 
Moodle (LMS). We used this LMS as a primary communication channel between the teacher and the 
students, we published there all the materials from the lectures, as well as some extra tasks for the 
students (solving of these tasks was not obligatory). 

Activities implemented into the educational process were based mostly on constructivism. Our goal 
was prepare such activities which help students obtain cognitive dimension “Apply” according to the 
RBT (Revised Bloom Taxonomy) according to Anderson & Krathwohl (2001) and Web-link Bloom 
taxonomy (2015). Most of the activities were supported by ICT and we used mostly the works of 
Jonassen (2000) and Kadijevic (2006). 

The important notes concerning the learning/teaching process according to RBT: 

 Before you can understand a concept, you must remember it. 
 To apply a concept you must first understand it. 
 In order to evaluate a process, you must have analyzed it. 
 To create an accurate conclusion, you must have completed a thorough evaluation. 

Intervention 
We used Derive, Graphic Calculus, MS Excel and GeoGebra software in the lessons to demonstrate 
mathematical properties of functions, sequences, limits of a sequence, a function etc. We prepared 
small environments for observing, modeling and exploring.  

Organization of the teaching - learning process 

Lectures: lectures were lead by us; we used the computer and data projector to project mathematics 
formulas, theorems, some parts of the proofs and the most important – to demonstrate the 
relationships between the theory and the praxis.  

Seminars: The main work was on the students. We use data projector and computer to project the 
tasks, questions, some interesting schemas etc. Students can use computers to solve them or to help 
themselves to get deeper view into the problem. The materials from the activities were uploaded to 
the LMS Moodle, so students can use them at home preparation. 



The Table 1 shows the focus on the lessons and test – on the lessons we focused every field marked 
with “x”. On the test were only task highlighted by red. 

  Remember Understand Apply Analyze Evaluate Create 

Factual x x x x     

Conceptual x x x x x   

Procedural x x x x x   

Metacognitive             

Table 1: Cognitive and the knowledge dimension according to RBT 

Results 
The implementation ICT and using different type of software we obtained the good results. The most 
important results from the observations in our group are: 

 students take an active part of the teaching/learning process, 
 students wanted to discuss the interesting mathematical topics on the lessons, 
 students started modelling of the situation without a teacher’s command, 
 students interest in the topics was higher than in the other group (taught by our colleagues – 

it could be also by the personality of the teacher, but previous years showed us, that in our 
and colleagues group were similar result), 

 some students started studying more outside the classroom so they can follow the topics 
without the troubles (we avoided the troubles which still resist in colleague group, like if we 
change the task a little, students do not know what to do) 

Discussion 
The preliminary results shows that there is potential in using ICT on calculus lessons to obtain deeper 
knowledge and better understanding of the topic. Using different kind of software shows students 
different approaches to the different issues. The next step in our research will be to enlarge the sample 
and to prepare more technology oriented materials for the research.  
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Here a tutorial is described that focuses on mathematical methods that implicitly appear in the 
mathematics shown in a Linear Algebra lecture, and makes these methods explicit for the students. 
Interviews with students at the end of their first semester show some effects. 

Theoretical framework 
Mathematics, as all sciences, comprises content (e.g. definitions, theorems, finished proofs, …), but 
also mathematical methods.  

Pólya (1945) underlined the importance of the mathematical methods in the subtitle of “How to solve 
it -A new aspect of mathematical methods”. We use a broad approach of heuristic strategies as a 
central part of the mathematical methods shown in the following list: 

 Organise your material / understand the problem: change the representation of the situation 
if useful, try out systematically, (Pólya, 1945) use simulations with or without computers, 
discretize situations,  

 Use the working memory effectively: combine complex items to supersigns, which represent 
the concept of ‘chunks’ (Miller, 1956), use symmetry, break down your problem into sub-
problems,  

 Think big: do not think inside dispensable borders, generalise the situation (Pólya, 1945), 
 Use what you know: use analogies from other problems, trace back new problems to familiar 

ones, combine partial solutions to get a global solution, use algorithms where possible (Pólya, 
1945),  

 Functional aspects: analyse special cases or borderline cases (Pólya, 1945), in order to 
optimise you have to vary the input quantity,  

 Organise the work: work backwards and forwards, keep your approach – change your 
approach – both at the right moment (Pólya, 1945). 

Other mathematical methods are e.g. “proof strategies” which make extensive use of formal language 
such as mathematical induction, proof by contradiction, proof by exhaustion, the invariance principle 
or others. Another kind of methods are the use of mathematical language e.g. in depth reading 
mathematical texts or writing down mathematical proofs correctly. 

Tutorial example 
In the tutorial we made mathematical methods implicitly used in the lecture explicit. We also used 
these methods giving additional explanations and reflected this use afterwards in the tutorial. The 
concept of quotient spaces in linear Algebra was established on rings. One example given in the 
lecture was ℤ/𝑚ℤ . In the tutorial we reduced this example to the case ℤ/4ℤ and gave additional 
representations of this concept, some of them shown in figure 1. 



 

Figure 1: ℤ/𝟒ℤ in several representations. 

Here the four residue classes are shown in several representations, together with the way of 
calculating on that structure. The similarity of the calculation on a common clock was stressed as a 
possible link to school mathematics and further explanations were given. Calculating on the 
equivalence class that are supersigns from the heuristic point of view was difficult for the students 
and the similarity to calculating with fractions that are equivalence classes and supersigns as well was 
discussed. Furthermore, moving between representations was stressed as a method to deepen the 
understanding of the content or to find a way to solve a problem. 

Students’ feedback 
At the end of the first semester we interviewed five students who participated in the tutorial over the 
whole semester. The interviews were transcribed and analyzed using quantum content analysis. 

All students remembered well the connection to school mathematics based on mathematical methods 
that appear in university and school as well. The students also emphasized that visualized 
explanations with less formal language were very helpful. These explanations using “a change of 
representation” were remembered well. 

The input related to the heuristic strategies was remembered by the students. The concept of “heuristic 
strategy” was remembered and the students could describe examples given in the tutorial, connecting 
the examples to the appropriate heuristic strategy. 

Conclusions and looking ahead 
Supporting students by stressing mathematical methods, and particularly by stressing heuristic 
strategies, seems to have a positive impact, but is not realized easily. For this we will continue with 
this tutorial in the third and fourth semester bringing in heuristic strategies wherever possible. 
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Rationale 
At school, we actually only had exercises where we could calculate with numbers and formulas. 
Now, it was really abstract what we had to do. [...] We didn't really know: Where should we begin? 
How does this work? (Aylin, mathematics student, 1st semester) 

The quote above shows that some strategic knowledge is needed for problem solving at university 
level. Additionally, a necessary condition to deal with those problems is to be familiar with the related 
content of the lecture. The literature provides a lot of successful strategies both for problem solving 
(Pólya, 1945) and learning (Ramsden, 2003), but it is also known for a long time that it is insufficient 
for improving students’ skills to provide them with a list of those strategies (Schoenfeld, 1985). 
Therefore, I am cyclically developing an intervention program to help students act strategically. 

Research interest 
This study aims to test how an intervention may influence the students’ problem solving and learning 
processes and how the induced changes affect their success in university mathematics. 

Design of the intervention 
The intervention is embedded into the classic problem sessions of a first-semester lecture of B.Sc. 
students and future secondary school teachers (weekly sessions, 14×90 minutes). So far, there have 
been two pilot studies accompanying the Calculus 1 lecture. The classic purpose of the problem 
session, to discuss homework already submitted by the students, has not been altered. However the 
main objective of the intervention is to foster students’ self-regulation by engaging them in 
metacognitive processes. Therefore the students’ actions are systematically reflected. This is done in 
three steps: 

1) From a constructivist point of view it is of great importance that students develop their own 
strategies rather than using a checklist. Therefore students work on a few problems every week at 
home and write down used strategies. 

2) To support the individual development of strategies, different approaches are collectively reflected. 
In particular, those students who were unable to find a solution themselves get the opportunity to 
explicate their strategies and can benefit from the experience of their more successful fellow students. 
A lot of different ideas, especially those that might not lead to a solution, are reviewed and evaluated. 
Lastly, at least one solution chosen by the students is completely expanded upon. That way, students 
who were not able to solve the problem by themselves can have a deep insight into that process. 

3) During a reflection phase at the end of each class, the utilized strategies are discussed once again 
and those that could be helpful for more than one particular problem are written down on a “strategy 
board”. Usually those strategies resemble those postulated by Pólya (1945) and Schoenfeld (1985). 



For instance, when dealing with sequences or series, one firstly needs to clarify affiliated concepts 
like convergence and divergence. Then different strategies might be helpful, for example to generate 
different representations (a sketch, tables, etc.) or look at special cases. Considering related problems 
might also be a helpful strategy. 

Evaluation 
The program evolves cyclically based on student interviews, observation of solving processes, 
evaluation sheets and systematically documented experiences. At the end of the first pilot phase, the 
students were asked how often they use certain strategies (4-level likert scale). It showed that those 
displayed on the strategy board had significantly higher values than others. Especially self-reflection 
and clarification of concepts are frequently used. Nevertheless a qualitative analysis of videographed 
solving processes showed that the students still had a lot of difficulties to clarify concepts on their 
own. Therefore, in the following phases, we tried to increase their activity level concerning this task. 
We also integrated one unknown problem per week so we could experience a whole problem solving 
process together. 

In the second pilot phase, the design needed to be altered since the composition of students was very 
different. In summer most of the students have already failed at least one exam in Calculus 1. In 
addition to possible lower mathematical skills, their academic self-concept might be affected. We 
observed a much lower activity level than in winter, so we had to add introductory tasks to encourage 
the students to actively take part in the sessions. This could also apply to single weaker students that 
in winter would be unnoticed. 

Perspective 
As the order of courses was changed in the academic structure, the main study, starting April 2016 
will take place in the context of Linear Algebra. The necessary adaption of the concept will be an 
interesting task. For the first time, we will also be able to treat a statistically relevant number of 
students, so in addition to ongoing qualitative research, quantitative evaluation will be possible. 
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Over the past years, a number of engineering programs have arisen that transcend the division 
between technical, scientific and art-related disciplines. Media Technology at Aalborg University, 
Denmark is such an engineering program. In relation to mathematics education, this new 
development has changed the way mathematics is applied and taught in these disciplines. This 
paper discusses a doctoral dissertation that investigated and assessed interventions to increase 
student motivation and engagement in mathematics among Media Technology students. The results 
of this dissertation have been used to assess and improve practice in Media Technology and they 
may inspire interventions in other trans-disciplinary engineering programs. 
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Introduction  
This poster presents the main contributions of a doctoral dissertation, which aimed at investigating 
mathematics teaching and learning for Media Technology students (Triantafyllou, 2016). Media 
Technology at Aalborg University is a program that focuses on research and development, which 
combines technology and arts and looks at the technology behind areas such as advanced computer 
graphics, games, electronic music, animations, interactive art and entertainment, to name a few. 
This dissertation investigated and assessed interventions to increase student motivation and 
engagement in mathematics among Media Technology students. These interventions focused on two 
directions: a) teaching methods and b) ICT-based learning environments. As far as teaching 
methods are concerned, this project has applied the flipped instruction model (or the flipped 
classroom). Regarding ICT-based learning environments, a game engine (Unity) has been 
introduced as a domain for mathematical learning. Since many studies have indicated that the 
attitude towards mathematics influence the achievement of learning goals, Media Technology 
students’ attitudes towards mathematics were also investigated.  

This dissertation employed several mixed method studies. Observations and a survey study were 
employed for gathering information on student attitudes towards mathematics, student approaches 
on mathematical problem solving and student competences (Triantafyllou, Misfeldt, & Timcenko, 
2016). In regard to research on ICT-based learning environments, a use case study was conducted 
exploring development of student mathematical knowledge and effect on student motivation, when 
mathematics is being taught by programming in a game engine (Triantafyllou, Misfeldt, & 
Timcenko, in press). As far as the flipped classroom approach is concerned, two use case studies 
and a statistics course redesign and assessment took place (Triantafyllou & Timcenko, 2014; 
Triantafyllou & Timcenko, 2015; Triantafyllou, Timcenko, & Busk Kofoed, 2015).  

This dissertation has provided insights in student attitudes towards mathematics in Media 
Technology. It was found that these students often lack mathematics confidence and they consider 



 

 

mathematics a difficult subject that they do not like but value. The adoption of the flipped 
classroom instructional model revealed that students perceive learning with online resources on 
their own pace as contributing to their understanding and they reported that they could adjust the 
learning process to their own needs. This dissertation has also proposed the use of a model of 
reflection for designing activities that promote experience-based learning in flipped classrooms. As 
far as ICT-based learning environments are concerned, the study on the use of a game engine for 
mathematics learning provided insights on how students apply knowledge from a mathematical 
model to implement a physical model. This study shed light on students’ misconceptions and 
difficulties but also on their opportunities to challenge their understanding. This dissertation 
contributed to the discussion of the theoretical foundation of the flipped classroom and discussed 
aspects of ICT-based mathematics learning for Media Technology. These results can be furthermore 
used to assess and improve practice in Media Technology and other trans-disciplinary engineering 
programs. 
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I present a longitudinal study with engineering students taking a (science) foundation course (FC). 
The aim of the research is to explore the reasons why students decided to take the FC going beyond 
the rather obvious reason, “because they did not have the necessary qualification for direct entry”. 
Secondly, I explore students’ mathematical progression into first year engineering. Many UK 
universities have addressed students' lack of mathematical preparedness (e.g. Hawkes & Savage, 
2000) by establishing drop-in centres or one-to-one support with specialist tutors; some offer a one-
year FC as an alternative route into higher education, primarily aimed at students wanting to study a 
STEM subject. While the FC is often seen as aimed at students who ‘missed’ (perhaps narrowly) their 
target grades at A-level, it became clear to me that students came from varied backgrounds and 
qualifications, work experience, and included students with health problems that impacted on their 
progression. Thus I became interested in the motivational factors that led students to take a FC and 
the mathematical progression that students make. The FC at my institution consists of a number of 
modules, of which mathematics and physics are compulsory for engineering students, the largest 
group in the cohort. Topics studied include indices, logarithms, differentiation, integration, matrices 
and complex numbers. I pose two research questions: (1) Why did students take the FC? (2) What is 
students’ mathematical experience when moving into first year engineering study?  

Methodological considerations 
So far two cohorts of students have been interviewed at the end of their FC; one cohort has been re-
invited for interview at the end of the first year of their engineering course. Ten to eleven students 
were interviewed each year. I, therefore, pursue a case study methodology within an interpretive 
paradigm. The study is longitudinal in design with further interviews planned over the next years. 
Data analysis is qualitative with a focus on the reasons that students gave for taking the FC. I take an 
activity theory perspective since identifying reasons means identifying the motive of activity, hence 
closely linked to characterising activity (Leontiev, 1981). Action-goals can be used to discuss 
students' mathematical goals, and actions taken in pursuit of these, a focus in future analyses. 
Research was with students I had taught. Interview questions were communicated in advance and 
followed a fixed order. All interviews were recorded and subsequently transcribed and analysed. 

Research findings and conclusions 
I report on two separate findings. First, in interviews in 2015, students were asked why they had 
chosen a FC. Students replied in a variety of ways, giving one or more reasons. As part of analyses, 
these were categorised using an open coding procedure and summarised in Figure 1. Most students 
cited career advancement and gaining entry to their engineering course when A-level grades had not 
been good enough. Some did so strategically, i.e. there was no need to re-apply through UCAS, the 
UK body overseeing university applications, since passing the FC guaranteed entry. Also represented 
were six students who took the view that it gave them an advantage over other students when entering 
the first year of engineering. Thus students’ motives were nuanced, going beyond 



Reasons given Freq 
Change of career or advance current career 6 
A-level grades were not good enough 6 
Wrong subject taken at A-level/change of mind 3 
Interest/passion for the subject 5 
Foundation year gives an advantage in year 1 6 
Foundation year as orientation course 1 

Figure 1: Reasons for choosing the FC 

“because they did not have the necessary qualification for direct entry”. Most (not all) students 
reported having difficulties with the mathematics content of the FC, and some students said they were 
overwhelmed by them. Second, I report on three of seven students who were re-invited for interview 
and asked to compare current experience with how they recalled their experience during the FC. The 
second and third column (Figure 2) relate to students’ experience and achievement during the FC (as 
recalled by the student one year later); the last column to students' current experience. Clearly there 
are some differences in how students perceived their transition.  

Foundation Year FC Maths grade Year 1 Engineering degree 
Student A2-14 Maths is not strong Student feels settled 

GCSE is highest 
qualification 40 to 60% 

Student achieved 
40 to 50% (Maths) 

Student is not confident Degree programme is not heavily 
reliant on mathematics 

Student A2-12 Maths is not strong Student is struggling 
BTEC is highest 

qualification 60 to 70% 
Student has re-sit exams 

in mathematics 
Student is not confident Degree programme is 

heavily reliant on mathematics 
Student A2-15 Maths is strong Student does not feel settled 

IB is highest qualification 
80 to 90% 

Student achieved 
40 to 50% (Maths) 

Student is confident Degree programme is 
heavily reliant on mathematics 

Figure 2: Results from three interviews 

The FC is well established at my university and students are thought successful in progressing into 
their engineering courses. Students cited different motivational factors for taking a FC. While some 
were not surprising (e.g. change of career, A-level grades not good enough) others were, and related 
to students employing a more strategic decision (e.g. to gain an advantage later on in their studies). 
Considering students’ progression it is clear that this is far from linear. Both mathematically strong 
and not so strong students cited struggling with the mathematical demands placed on them, while a 
mathematically weaker student reported feeling settled and coping well. This raises some questions 
to explore further, e.g. to what extent can the FC provide a good mathematical basis for all students. 
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Introduction 
For the second successive CERME two groups addressed mathematics education research concerning 
technology. TWG15 focused on issues concerning teaching, teacher education and professional 
development, whereas TWG16 focused on students’ learning with technologies and software and task 
design issues (see Drijvers, Faggiano, Gerianou & Weigand, Introduction to TWG16 in this volume).  

TWG15 engaged in work that was stimulated by contributions in the form of 19 research papers and 
6 posters that had responded to the call, which had highlighted the following themes: 

 The specific knowledge, skills and attributes required for efficient/effective mathematics 
teaching with technologies and resources. 

 The design and evaluation of initial teacher education and teacher professional development 
programmes that embed these knowledge, skills and attributes – to include programmes that 
involve teachers’ working and learning in online communities. 

 Theoretical and methodological approaches to describe the identification/evolution of 
teachers’ practices (and of effective practices) in the design and use of technology and 
resources in mathematics education. 

 Theory and practice related to the formative/summative assessment of mathematical 
knowledge in a technological environment. 

The work of TWG15 drew upon research from 17 countries: Australia, Austria, Denmark, Faroe 
Islands, France, Israel, Italy, Lebanon, Germany, Greece, Norway, Palestine, Spain, Sweden, Turkey, 
United Kingdom and USA.  

TWG15 themes 
The contributions to TWG15 were grouped according to the following themes: large-scale 
professional development through online courses; technology-mediated assessment of students’ 
mathematical learning; establishing quality criteria for digital mathematics tasks; understanding 
teacher perspectives on technology use; in-service teachers’ knowledge and practice; pre-service 
teachers’ knowledge and practice; and the advancement of theories on technology use in mathematics 
education. 



  



The TWG15 was organised as follows: 

1. A research paper by Kimeswenger was selected to be the focus of a single TWG session as it 
highlighted a new issue for the TWG, which was the development of quality criteria to support 
the selection of (dynamic) digital resources for teaching mathematics.  

2. Two symposia, to address the themes: on-line large-scale professional development courses; 
and digital assessment of students’ mathematical learning. These included selected papers that 
were presented by the main author, followed by an invited reaction by one participant. 

3. The remaining papers were grouped by theme and presented as individual short presentations 
by the main author, followed by individual reaction by another invited participant. 

In all cases, the discussion was opened to the whole group (in small groups of 6-8 participants), which 
provided the opportunity for explicit links to be made with the topics of the poster submissions by 
both the TWG leads and participants, and to encourage all participants to share their own knowledge 
and experience during discursive work. Brief feedback from these small groups was collected at the 
end of each session. 

Large-scale professional development: Online courses 

The papers by Hohenwarter et al., Taranto et al. and Panero et al. focused on the design and early 
evaluation of three large-scale professional development online courses that had been designed for 
participants from Austria-Romania-Turkey, Italy and French-speaking countries respectively. Central 
to all three courses was the objective to offer practicing teachers an opportunity to develop their uses 
of technology in mathematics classrooms. These courses were described as either ‘open online’ 
(OOC) or ‘massive open online’ (MOOC), where the word ‘massive’ implied that there were no 
geographical boundaries nor limits to teachers’ registration and participation, although the language 
of the course was a limiting factor. 

The three courses used theoretical frames in different ways. Hohenwarter et al. adopted Koehler and 
Mishra’s Technological, Pedagogical and Content Knowledge model (TPACK, Koehler & Mishra, 
2005) to inform their course design. Panero et al. and Taranto et al. sought to network the theories of 
meta-didactical transposition (Arzarello et al., 2014), documentational genesis (Gueudet & Trouche, 
2009) and communities of practice (Wenger, 1998) to understand the collaborative work of teachers 
in the online context as seen through their productions.  

The invited reaction given by Bretscher stimulated a discussion that raised the following issues: 
defining and understanding ‘participation’ within open online courses; specific design features of 
(M)OOCs for teachers of mathematics and the balance between technological and mathematical 
content; the appropriateness of (M)OOCs for the (large-scale) professional development of teachers; 
and how research methodologies might need be developed to assess the impact of (M)OOCs on 
teachers’ classroom practices. 

Assessing students’ mathematical learning 

The papers by Sikko et al., Chenevotot-Quentin et al. and Olsher & Yerushalmy were centered on the 
use of technology in classes by teachers and students, for activities and assessment. Even if referring 
to different school levels, they focused on the technology as a means to support teachers’ assessment 
activities. In the first case, Sikko et al. presented the use of motion sensors in the Norwegian primary 



school classroom to support pupils’ construction of meanings for functions and their graphs. This 
work was set in the context of a large European project (Formative Assessment in Science and 
Mathematics Education, FaSMEd) aimed at researching the use of technology for formative 
assessment. In the second case, Chenevotot-Quentin and colleagues showed the use of a technological 
tool for the assessment of lower secondary school students’ learning of numbers and equations. Their 
technological tool is applied in a way that is consistent with an epistemological analysis of the topics 
and with the theoretical perspective of the Chevallard’s Anthropological Theory of Didactics (ATD, 
Chevallard 1985). Olsher & Yerushalmy presented a platform where students respond to geometrical 
tasks using a dynamic geometry environment, which are then classified within the platform according 
to their geometrical dynamicity. From the teacher’s perspective, the three papers presented in this 
session engaged the participating teachers with professional considerations in diverse and deep ways: 
as designers of tasks for assessment, as teachers while teaching; and as observers of students. The 
papers highlighted the importance of teachers’ and researchers’ collaborative work in the design and 
evaluation of such resources for the classroom. 

The discussion at the end of the presentation, stimulated by the invited reaction given by Yerushalmy 
focused on: the potential impacts of online formative assessment on teaching; the nature of online 
mathematics tasks and their formative/summative assessment; possible theoretical frameworks to 
support design and evaluation; automatization of students’ responses and subsequent feedback to 
students/teachers; high stakes testing; and issues of design. 

Quality criteria for digital mathematics tasks 

The paper by Kimeswenger problematized the existence of online platforms that host many thousands 
of user-generated digital resources for teaching mathematics, which presents a particular challenge 
for (other) teachers as they seek to locate suitable resources that meet their individual requirements. 
The author described a project in its early stages that seeks to develop a research-informed set of 
criteria to support different methodologies for user-review. The research focused on the views of 
‘experts’ with respect to the existence of quality criteria alongside their personal descriptions of the 
‘educational value’ of digital mathematical resources, concluding eight quality dimensions. This has 
led to an exploration of the possible correlation between resources that are highly rated as other users 
have decided that they have a ‘high-quality author’ and those that are identified by users as containing 
‘high quality material’.  

As anticipated, the TWG15 participants were most interested by, and animated to discuss, the issues 
raised by this paper, given that many had themselves been involved in the design of open educational 
resources or worked alongside teachers to try to support them to make thoughtful resource selections. 
This discussion concerned: the authors of quality criteria and the mathematical 
cultures/content/values on which such criteria might be based; the role of a consumer-led approach 
(i.e., ‘likes’ by teachers?) or a community-led approach; and, given the vast number of available 
resources, the usefulness of new algorithms that might automatically score ‘quality’, based on 
developed criteria 

Technology integration: Understanding teacher perspectives 

The two papers by Abboud & Rogalski and Bretscher both addressed aspects of technology 
integration into ‘ordinary’ secondary mathematics classrooms in France and England respectively. 



Whilst Abboud & Rogalski analyzed videos of lessons at distance using an ‘ergonomic’ theoretical 
approach (Robert & Rogalski, 2005) that highlighted tensions and disturbances in the observed 
practice, Bretscher used classroom observation and interviews to research aspects of a teacher’s 
mathematical knowledge for teaching with technology. These two papers instigated a critical 
discussion within the working group that was revisited several times during the conference as TWG15 
sought to understand, and question the use of the word ‘ordinary’ to describe teachers (and their 
classrooms) within research studies. For some this referred to experienced teachers who are 
dependent on their own ability to (re)design lesson with technology (as in Abboud & Rogalski). For 
others, it referred to teachers who are required to adapt their teaching to their situation and 
institutional constraints in a world of changing digital tools. There was a general agreement that 
teachers who are involved in research studies/projects/communities concerning the use of technology 
in mathematics were rarely ‘ordinary’. One helpful description that was offered described the set of 
teachers who were not yet aware of their own instrumental genesis with new technologies (or that of 
their students), which seemed to resonate with many of the researchers in the TWG. The TWG15 
participants concluded that ‘ordinary’ was an unhelpful descriptor and this highlighted the importance 
that researchers describe teachers’ contexts more fully (i.e. country, teacher background, school 
system, school curriculum, etc.) to enable deeper and more critical insight into each other’s research 
settings.  

The paper by Kolovou & Kynigos differed from the two previous papers by focusing specifically on 
the learning processes of the designers of dynamic digital resources to foreground students’ and 
teachers’ mathematical creativity, which is fully described in their paper. By focusing on a 
‘community of interest’ (which included teachers) that had been formed around the design of a 
particular creative book (c-book), the authors show how the participants’ learning was stimulated by 
the boundary objects (Fischer, 2005) in the design process. 

A focus on pre-service teachers 

The papers in this theme offered different approaches to pre-service teachers' training and the 
different interpretations of their required knowledge about technology. 

Prodromou investigated the usefulness of a flipped classroom approach in tertiary education in 
Australia. The theoretical frame was that of the ‘four pillars’ that define a flipped classroom, which 
take account of the flexible environment; a shift in the learning culture; intentional content; and the 
role of educators (Flipped Learning Network, 2014). The analysis of an experiment with pre-service 
teachers was presented with a particular focus on the role of the lecturer in a flipped classroom. The 
study by Herrelko tracked the implementation of technology in a mathematics methods course for 
pre-service teachers in the USA. The method, based on the Apple Classroom of Tomorrow framework 
(ACOT, Dwyer, Ringstaff, Haymore & Sandholtz, 1994), sought to describe the necessary conditions 
for the development of pre-service teachers who are knowledgeable about instructional technology. 
Baya’a et al. focused on pre-service teachers’ TPACK (Koehler & Mishra, 2005) and provided 
analyses of the impact of teacher preparation courses that had been shown to develop teachers’ 
TPACK.  

The main questions that these presentations highlighted, and were discussed by the TWG, are linked 
to understanding the pre-service teachers' perspectives in the design and implementation of 



mathematics with technology. Leading on from this, there is a need for deeper understanding of the 
required technological, mathematical, pedagogical, and epistemological knowledge that is essential 
for future teachers in order to prepare them to use digital tools effectively in their teaching.  

A focus on in-service teachers 

This theme concerned in-service teachers, their professional engagement in the various activities 
related with teaching: planning lessons; using technologies; working in communities; orchestrating 
different devices in laboratory activities for students; balancing laboratory activities and more 
traditional teaching. The presenters of the papers showed various aspects of the ways that teachers 
work with technologies, both related to their teaching practices and to the design and management of 
educational materials.  

Tamborg shared research on the use of a platform in Denmark, Meebook, for planning mathematics 
lessons in accordance with the teachers’ pre-determined learning objectives, teaching approaches and 
curriculum. The framework used for the study is the ‘instrumental approach’ (Gueudet & Trouche, 
2009), along with the ‘documentational approach’ (Gueudet et al., 2012) to describe the teachers’ 
collective processes in their use of the platform to plan their lessons. Kayali’s study centered on an 
investigation into the uses of mathematics education software by English secondary mathematics 
teachers, to understand why some software is used more or less than others, in which ways and for 
which reasons. Again, the instrumental and documentational approaches are the adopted frames 
alongside the ‘teaching triad’ (Jaworski, 1994), for the collection and analysis of data on teachers’ 
considerations when implementing tasks in mathematics lessons. Zender and colleagues showed a 
motivating way to support students’ learning with technologies outside of German classrooms using 
MathCityMap, a geo-located application for smartphones, which is used as an instrument for a range 
of situated mathematical tasks. The collaborative professional development of teachers in Lebanon 
on the use of GeoGebra in mathematics classes was the theme introduced and discussed by Kasti et 
al.. They based their research on the frame of Valsiner’s three zones (Valsiner, 1997) and the TPACK 
theory (Koehler & Mishra, 2005), using questionnaires and interviews to investigate how GeoGebra 
is introduced in various mathematics activities.  

Advancing theories on technology use in mathematics education 

The papers by Gustafsson and Grønbæk et al. both focused on advancing theories on technology use 
in mathematics education. Gustafsson investigated the potential of Ruthven’s Structuring Features of 
Classroom Practice framework (2009) as a tool to analyze empirical data to conceptualize and probe 
teachers’ rationales for technology integration in the mathematics classroom. Gustafsson’s results 
showed that, whilst the framework captures most aspects of their rationales, it did not fully encompass 
teachers’ justifications with respect to their students’ attitudes and behaviors. Hence, he suggested 
the addition of a new (sixth) structuring feature that relates to teachers’ craft knowledge of the use of 
technology to manage different types of student behaviors or attitudes.  

Grønbæk et al. suggested the addition of the concepts of out- and in-sourcing to Chevallard’s (1985) 
Anthropological Theory of the Didactics. These concepts, taken from the field of business economics, 
are used as metaphors within the dialectics of tool and content in the planning of teaching. Their 
addition offers a ‘production model’ to support teachers’ reflection on crucial choices between 
instrumented and non-instrumented praxeologies. This highlights the need for teachers to be able to 



identify core activities (with potential for in-sourcing) and non-core activities (candidates for out-
sourcing) based on the learning goals and the possible praxeologies when planning their use of 
technology in mathematics lessons.  

TWG15 participants’ reflections 
During the final TWG session, the participants were invited to reflect upon, and record on paper, their 
own insights and learning during the conference. A textual analysis of the 31 responses highlighted 
the following aspects of knowledge exchange: 

 Broader appreciation of theoretical frames and their uses: exposure to new theories; 
consideration of the limitations of theories; discussions of networking theories; and reflections 
on personal interpretations and applications of theories.    

 Deeper understanding of international contexts: theoretical traditions; institutional 
constraints (i.e. curriculum and examinations); the rejection of the concept of an ‘ordinary’ 
teacher, which seems difficult to define or to establish a common meaning across countries.  

 Widening of knowledge on emerging themes: opportunities afforded for large-scale teacher 
development through MOOCs and OOCs; the need for ‘quality’ criteria for digital resources 
to support their selection/uses by teachers; and the role of technology within formative and 
summative assessment that relates strongly to the mathematics curriculum, its values and 
traditions.  

Some participants reflected upon the unintended consequences of the division of the technology group 
for the two different foci (teachers and students), highlighting that an opportunity was missed to 
explore ‘How to develop a good framework to capture the interplay between mathematics content, 
technology (tools/resources), teachers and students/learners?’. 

Finally, a few participants commented on the collegiality of TWG15, highlighting they had also been 
‘inspired’ as they learned about the CERME spirit: ‘humility - and how to express both orally and in 
writing with humility’.  

Conclusions 
The broad range of papers and posters presented at CERME 10 highlighted the diversity of research 
interests in the participating countries. However, many common concerns prevail. The design and 
implementation of programmes and courses for future and practicing teachers was one such 
challenge. Debate over the exact content of such courses in order to address the knowledge and skills 
to integrate technology into future mathematics teaching practice was paramount, alongside the 
modes of delivery and the integration of teachers’ classroom experimentations. This highlighted the 
different views and perceptions of the simplicity and complexity for teaching mathematics with 
digital tools and the dilemma between technology appearing to make a teacher’s role easier (e/g/ by 
automatically marking students’ productions), whilst at the same time introducing new teaching 
challenges (e.g. by introducing new representational forms and related interactions). The TWG 
discussed ways to face such challenges through the development of research-informed teachers’ 
collaborative professional development models that integrated coaching, face-to-face and online 
communities, often conducted or sustained over a time period of years, rather than months, drawing 
on the outcomes of the recent ICMI Survey on this theme (Robutti et al., 2016).  



A common challenge is the scaling of such professional development models, for which (M)OOCs 
might offer some solution, although substantial research is needed to evaluate the ‘best designs’ to 
respond to the many different cultural contexts and requirements. The networking of theories 
proposed by Panero et al. and Taranto et al. provided some potential theoretical and methodological 
tools to this effect. 

The topic of the automated assessment of students’ digital work led the group to question deeply the 
nature of mathematical activity (and mathematics itself) that warranted such assessment. This raised 
a general concern over the ease with which closed mathematical questions can be posed and digitally 
assessed and the much greater technical challenge to design automated assessment that privileged 
mathematical processes such as reasoning, justification and proof. The poster by Recio and the two 
papers by Olsher & Yerushalmy and Chenevotot-Quentin et al. respectively contributed greatly to 
this debate. 

TWG 15 critiqued advancement in theories concerning teachers’ uses of technology in mathematics 
education. In particular, the notions of ‘tensions and disturbances’ as a theoretical construct to support 
analyses of teachers’ practices (Abboud & Rogalski), alongside extensions to Ruthven’s ‘Structuring 
Features of Classroom Practices’ (Bretscher & Gustafsson, and the poster by Simsek & Bretscher).  

Looking ahead to CERME11, TWG15 concluded the following questions, which might inform 
individual and collaborative research efforts over the next two years: 

 Which theoretical frames and methodological approaches focus on aspects of the 
collaborative work of researchers and teachers within the context of the use of technology for 
teaching mathematics?  

 What approaches might be fruitful to raise teachers’ awareness of the mathematical-
pedagogical decisions concerning the design and use of technology for learning and its 
assessment? 

 How do we create opportunities and approaches that support teachers to appreciate and plan 
for the process of students’ instrumental genesis? 

 In the design of technology-focused professional learning for mathematics teachers (pre- and 
in-service), what is the balance between professional needs across generic technologies and 
mathematics-specific needs? and how can this be achieved? 
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This paper presents an extension of approaches of the teacher technology-based activity, articulating 
the Double Approach alongside with the Instrumental Approach within the overarching frame of 
Activity Theory. Tensions and disturbances are defined for analysing the dynamics of the teacher's 
activity when ICT tools are mediating both teacher's and students' activity. The approach is 
illustrated throughout a comparative study of two "ordinary" teachers using dynamic geometry. 
Various tensions related to the temporal, cognitive and pragmatic dimensions were observed, 
differently managed depending on personal, material and social determinants. Tensions are inherent 
to the dynamics of the situation. Together with disturbances, they are lenses contributing to a fine-
grained analysis of teachers' activity.    
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Introduction 

The activity of "ordinary" teachers integrating technology into teaching is constrained and depends 
on several determinants, namely personal, institutional and social. The work of researchers such as 
Ruthven (2009), Drijvers et al. (2010) and Abboud-Blanchard (2014) emphasize the need to study 
the practices of these teachers, often not technology experts and practicing in non-experimental 
conditions(i.e. ordinary practices). One of the aims of such studies is to better understand what 
happens in the classroom and thereby to address professional development issues (Clark-Wilson, 
2014). The aim of the present paper is to contribute to this research line by introducing two new 
theoretical concepts, tensions and disturbances. These concepts were developed within a model of 
instrumented activities of teacher and students and were actually used as complementary resources 
within ICT teacher education programs.  

We consider the teacher as managing an “open dynamic environment” (Rogalski, 2003), and we focus 
on both the relationship between the lesson preparation and its actual implementation (anticipation, 
adaptation); and also on the management of the inherent uncertainty within such an environment. 
Indeed, the use of technology adds a “pragmatic” dimension emphasizing the “open” character of the 
environment that constitutes the classroom activity. Monaghan (2004), stresses that this use leads to 
an increased complexity in teachers’ practices and also that the uncertainties related to students’ 
mathematical activities with technologies bring teachers to modify their objectives during the lesson 
in progress, leading them to focus on new "emergent goals". The concepts we introduce enable an 



analysis of the impact of the dynamics of students’ interactions with technology tools on the 
management of the planned (by the teacher) cognitive route (Robert & Rogalski, 2005), and the 
possible divergences from this during the lesson. In this paper, we provide an example of the 
comparative analysis of the activity of two "ordinary" teachers’ uses of dynamic geometry with their 
(6th grade) students to describe the methodology and associated analytical tools and to highlight their 
usefulness. We selected this particular example from our research data as it is relatively easy to 
present in a short paper.  

Theoretical and methodological approaches 

The ergonomics theoretical perspective considers teaching as a case of dynamic management of the 
teaching environment (Rogalski, 2003). This environment is “open” as it contains many uncertainties 
due to the fact that the students’ activity cannot be completely predicted and the teacher is often in an 
improvisation mode. The teacher’s conceptions of the mathematical domain to be taught, and of the 
relation students have to it, are subjective determinants of his professional activity. These conceptions 
condition the “didactical process” he wants his students to follow i.e. the planned cognitive route, 
alongside the management of the processes developed during the lesson (Robert & Rogalski, 2005). 
Although the didactic scenario is familiar, the students’ diversity and the specific context of the class 
introduce a factor of uncertainty. This uncertainty is exacerbated when students are working with a 
technological tool as the teacher may encounter difficulties to control the tool’s feedback due to 
students’ manipulations and to identify their emerging interpretations. Teachers often have to deal 
with tensions due to the presence of the tool and its role in the student’s activity, and also its 
interaction with the mathematical knowledge at stake. 

Following Rabardel’s Instrumental Approach (2002), technological tools can be viewed from both 
the teacher’s and the students’ perspectives. In both cases, the subject-object interactions are mediated 
by the tool. As Rabardel states:  

Beyond direct subject-object interactions (dS-O), many other interactions must be considered: 
interactions between the subject and the instrument (S-I), interactions between the instrument and 
the object on which it allows one to act (I-O), and finally subject-object interactions mediated by 
an instrument (S-Om). Furthermore, this whole is thrown into an environment made up of all the 
conditions the subject must take into consideration in his/her finalized activity (Rabardel, 2002, 
p.42-43).  

Nevertheless, the object of teacher’s activity is the students’ learning, whereas the object of the 
students’ activity is the content of the task given by the teacher; their instruments based on the same 
tool are thus different. Figure 1, presents how these two instrumented activities are articulated within 
the dynamics of class preparation. 



 

Figure 1. Teacher’s and students’ instrumented activities within the preparation phase 

We now consider the classroom environment and present how the two instrumental situations are 
articulated within the dynamics of class management, indicating possible tensions and disturbances. 

Tensions and disturbances 

In our approach, we depart from the way Kaptelin & Nardi (2012) introduced the terms "tension" and 
"disturbance" when presenting the concept of contradiction central in Engeström's framework of 
analysis for how activity systems develop (Engeström, 2008). These terms appear in their familiar 
use; emphasis being put on the analysis of contradictions in activity systems as main learning sources.  

We do not define tensions as conflicts or contradictions. In the teacher’s activity tensions are 
manifestations of “struggles” between maintaining the intended cognitive route and adapting to 
phenomena linked to the dynamics of the class situation. Some of these tensions might be predicted 
by the teacher and so he/she plans how to manage them. Others are unexpected and constrain the 
teacher to make decisions, in situ, that direct his/her actual activity.  

Disturbances are consequences of non-managed or ill-managed tensions that lead to an exit out of 
the intended cognitive route. Disturbances happen when a new issue emerges and is managed while 
the current issue is not completely treated or when the statement of a new issue is not part of the initial 
cognitive route.  

We consider here only tensions and disturbances related to the local level of a class session; while 
some tensions are or might be managed at a more global level (i.e. over several sessions). Figure 2 
illustrates how tensions can be related to different poles of the system of teacher-and-student 
activities; they can be shaped differently along three dimensions (previously introduced by Abboud-
Blanchard (2014)): temporal, cognitive, and pragmatic. 

Tensions related to the cognitive dimension appear in the gap between the mathematical knowledge 
the teacher anticipated would be used during task performance and the knowledge that is actually 
involved when students identify and interpret feedback from the instrument. Tensions related to both 
the pragmatic and cognitive dimensions are produced by the illusion that mathematical objects and 
operations implemented in the software are sufficiently close to those in the paper-and-pencil context 



(we refer to Balacheff (1994) analysis of the “transposition informatique”). Tensions related to a 
temporal dimension are frequent in ICT environments and are linked to the discrepancy between the 
predicted duration of students' activity and the actual time needed to perform the task. Teachers are 
generally aware of such tensions; they often manage them by taking control of the situation, either by 
directly giving the expected answer or by manipulating the software themselves.  Finally, a tension 
non-specific to ICT environment may concern the didactical contract: Students cannot identify the 
type of answer the teacher is expecting. ICT environments may amplify this type of tensions when 
students are uncertain of the goal of the activity i.e. is it about a mathematical object to manipulate 
with the software or about the use of the software itself. 

 

Figure 2. Tensions and disturbances within the dynamics of class management 

Illustrating the theoretical approaches through a comparative case study 

We present how tensions and possible disturbances appear in the case of two teachers, Alan and Colin, 
using dynamic geometry software (Geoplan) with 6th grade students to introduce the notion of 
perpendicular-bisector. They are both “ordinary” teachers who use technological tools occasionally, 
and willingly, in ways that are in line with the institutional expectations, that is to introduce students 
to an experimental approach. The two teachers designed the same cognitive route based on the 
succession of two tasks: moving several points (eight) on Geoplan screen in order to place each of 
them at the same distance from two fixed points, M &N, (ICT task) and then similarly drawing 8 
points with the same condition in a paper-and-pencil context (p&p task). Each teacher’s final goal 
was to: give the definition of the perpendicular-bisector as a set of points equidistant from two given 
points; and establish an efficient associated construction method using compasses. Alan’s school is 



in a low-income socio-economic zone, while Colin is in a middle-class zone. Their working 
environments are different: Alan had access to a traditional classroom and a computer room that 
lacked either a video projection device or a black board, while Colin worked in a classroom equipped 
with laptops.  

The sessions included in our analysis were video recorded by the teachers themselves. Our choice of 
data collection approach is to reduce as far as possible the impact of researchers on the teacher’s and 
students’ activity in the class. The analysis of the teachers’ preparation documents and deferred 
interviews enable the identification of some personal and social determinants. We then compare the 
observed succession of episodes in the video alongside the planned cognitive route, to enable us to 
detect tensions and disturbances.  

Results 

A somewhat surprising result is that both Alan and Colin managed the session without temporal 
tensions despite a number of “unfavourable” material and social determinants. In Alan’s case, these 
could have resulted in strong tensions, e.g. the time needed to move from classroom to computer 
room and students’ prior cognitive difficulties. In fact, Alan took into account the social determinants 
of his class and the material constraints by anticipating and avoiding tensions that could have produce 
disturbances through a threefold organisation: temporal, pragmatic and cognitive. Indeed, Alan 
closely supervised his students and organised their activity by structuring the cognitive route as a 
succession of well-defined sub-tasks. This mode of guidance has been identified previously as a 
common approach that teachers use to manage such experimental approach in order to avoid students’ 
erratic behaviour (Abboud-Blanchard, 2014). The rhythm of sub-task completion is also strictly 
planned and guided. This is probably linked to Alan’s personal determinants that led him to establish 
strong routines to discipline students in all moments. Indeed, not all teachers with this type of students 
are able to establish such routines and to be at ease when implementing them. Colin avoided temporal 
tensions in quite different ways. He started by presenting the task both with ICT and p&p. During the 
session, he used the IWB for sharing elements of the task outcomes with the whole class. He 
particularly drew students’ attention to where they should look on the screen, and by doing so, avoided 
some pragmatic and cognitive tensions. Colin’s open attitude may be related to a personal determinant 
of “compliance” inherent in his relationship with his students. 

Regarding tensions related to the cognitive dimension, an important result is the shared illusion of 
transparency: Implicitly, Alan and Colin took for guaranteed that after completing the ICT task, all 
students would have detected the existence of a straight line on which all equidistant points are 
situated. This was clearly not the case. This tension was not managed as indicated by the absence of 
any collective comment concerning the point of transition between the ICT task and the p&p one. For 
some students, this fact led to a divergence from the intended cognitive route: a “local” disturbance. 
These students persisted conscientiously throughout the whole session to draw equidistant points 
without appreciating the notion of a straight line as the set of such points.  A tension related to the 



didactical contract was also observed in both classrooms when, during the p&p task, some students 
tried to place the 8 points at the same positions they occupied on the screen. What may have triggered 
this students’ interpretation of the task differs for the two teachers. Alan had introduced the p&p task, 
by saying “now we will do the same task but without the computer”. However, for Colin, the 
computers were not shut down and thus students may have continued to refer to what they saw on the 
screen. During the session, both teachers succeeded in managing this tension by explaining the 
differences of the two situations. 

Finally, a pragmatic tension that was not managed was an implementation issue that could be related 
to a shared belief among teachers that students are skilled with technology using a trial and 
improvement approach. At the beginning of the ICT task, for any given point (P) on the screen, the 
students could read the relative distances to the point M and N and, when moving this variable point, 
they could observe the numerical changes. However, dragging the point P to maintain the equality 
involved two degrees of freedom on the plane. Therefore, an efficient approach relied on both 
students’ awareness of this constraint and their development of an adequate concept-based strategy 
to “maintain a constant dimension when moving along the other” or “anticipate the curve on which 
the point is moving” (as shown in Abboud-Blanchard, 2015). In Colin’s class, some students 
continued to drag points without any strategy even when the teacher asked them to engage in the p&p 
task. As a consequence, they could not easily be aware of the efficiency of using compasses instead 
of rulers when switching to the p&p context. For Alan’s students, we can infer that some of them 
succeeded to place only few points with limited opportunities to notice their alignment. 

Overall, we have identified a set of tensions in the activity of two ordinary teachers use of dynamic 
geometry and have illustrated the dimensions they may affect. By predicting many tensions, these 
teachers avoided some of these tensions by anticipating and organising the students’ activity relative 
to the temporal, cognitive and pragmatic dimensions. The teachers managed others in situ mainly via 
individual interactions with, and support for the students. Their approach to classroom management 
depends on personal, material and social determinants. Nevertheless, the analysis also shows that 
even though they succeeded to maintain the essence of their intended cognitive goal, some 
unrecognised or ill-managed tensions led some students to diverge from the planned cognitive route.   

Discussion and conclusion 

In this paper, we have presented how and why we developed the notions of tensions and disturbances 
to analyse the dynamics of teachers' activity in ordinary contexts when they are using ICT in line with 
the institutional demands. We first schematised how ICT occupies two different positions as an 
instrumental tool for the teacher and for the students. The first schema is based on the postulate that 
there exists a crucial difference in the object of activity of the teacher (e.g. students' 
understanding/learning of the mathematical content involved in the task), and of the students, which 
is essentially to complete the task. Within the second schema, we added and defined several types of 



tensions that may appear within the teacher's activity along three dimensions: temporal, cognitive, 
and pragmatic, and at the level of the didactical contract.  The cases of Alan and Colin are examples 
of ordinary, experienced teachers investigated within a larger study, who use technology regularly. 
In addition, they are convinced that dynamic geometry enables students to make pertinent 
observations through the immediate feedback (this belief is widely shared by teachers). We identified 
a set of tensions: some of which were managed through anticipation; others in real-time (depending 
on different personal and social determinants); some were not detected or detected and not managed 
by the teachers. If teachers are able to identify and manage tensions, they can maintain the intended 
cognitive route for students or, when disturbances occur, modify this route to different effect. Several 
issues remain open for further research. First, the present study focused on the “local level” - an 
analysis of a specific classroom session. It will be necessary to extend our concepts and 
methodological tools to analyse tensions and disturbances at the more global level of a sequences of 
tasks on particular mathematical topics. Secondly, we analysed cases with “simple” ICT-based 
students’ tasks; other cognitive and pragmatic tensions could appear when the tasks involve objects 
and operations that are more deeply modified by the “transposition informatique”. Finally, at the 
deeper level considered in Artigue (2007), what different kinds of tensions would teachers encounter 
when students are engaged in mathematical activity involving mathematical objects (an epistemic 
orientation) compared with more specific computer-based tasks (a pragmatic orientation). Finally, we 
consider that the concepts of tensions and disturbances have enriched the range of theoretical tools to 
study teachers' instrumental activity, in particular for the identification and analysis of critical aspects 
of the dynamics of this activity. We conjecture that this could also inform approaches to teacher 
education.   
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We outline a model for analyzing the use of ICT-tools, in particular CAS, in teaching designs 
employed by ‘generic’ teachers. Our model uses the business economics concepts “out-” and “in-
sourcing” as metaphors within the dialectics of tool and content for the planning of teaching. Out-
sourcing is done in order to enhance outcomes through external partners. The converse concept of 
in-sourcing refers to internal sourcing. We shall adhere to the framework of the anthropological 
theory of the didactic, viewing out- and in-sourcing primarily as decisions about the technology 
component of praxeologies. We use the model on a concrete example from Danish upper secondary 
mathematics to reveal what underlies teachers’ decisions (deliberate or spontaneous) to incorporate 
instrumented approaches.  

Introduction  
Has use of computers in schools resulted in better education? With the steadily growing take-up of 
technology throughout the world, this question is as important as ever. The role and importance of 
technology has undergone phases from initial excitement to, more recently, a mixture of cautious 
optimism, moderate skepticism, and the stance that the use of computers might forfeit the true values 
of educational discipline. A recent, rather extensive international report (OECD, 2015) indicates 
countries’ improvements in learning by a number of measures against their investment in ICT. The 
foreword summarizes the implications for educational policy: 

Mere embracement of ICT in itself is at best harmless. Access to ICT does not automatically improve 

learning, “The results also show no appreciable improvements in student achievement in reading, 
mathematics or science in the countries that had invested heavily in ICT for education”. 

In person teacher-learner contact is essential, “One interpretation of all this is that building deep, 
conceptual understanding and higher-order thinking requires intensive teacher-student interactions, 
and technology sometimes distracts from this valuable human engagement”. 

There is a need for alignment of technology and learning: “Another interpretation is that we have not 
yet become good enough at the kind of pedagogies that make the most of technology; that adding 
21st-century technologies to 20th-century teaching practices will just dilute the effectiveness of 
teaching”. 

A deeply rooted trust in the progressive power of ICT (but with a somewhat unimaginative scope to 
traditional learning material), “Why should students be limited to a textbook that was printed two 
years ago, and maybe designed ten years ago, when they could have access to the world’s best and 
most up-to-date textbook?”. 



A tall order on teachers to meet the expectations (by pedagogy rather than by subject discipline), 
“Perhaps most importantly, technology can support new pedagogies … it is vital that teachers become 
active agents for change” (OECD 2012). 

Other meta-studies (Higgins, Xiao, & Katsipataki, 2012; MBUL, 2015) point to similar conclusions,  
“There is at most a weak positive correlation between bulk use of computers and learning outcome.” 

In contrast, there are numerous reports on very fruitful and insight-giving use of computers (Böhm, 
Forbes, Herweyers, Hugelshofer, & Schomacker, 2004; Heid, 2003; Nabb, 2010). These are often the 
result of computer focused teaching designs that are part of didactic research or teaching 
development, carried out by dedicated teachers. Therefore, the question is not how much, but how, 
about what, and by whom. 

The Danish landscape 

In the OECD report Denmark is ranked second in use of computers. From the mid 1990’s there has 
been rapidly growing CAS-use in Danish high schools, starting with graphing calculators and 
accelerated through the extensive use of PC’s from around 2005. The situation now is that most high 
schools use Maple, TI-Nspire, Geogebra, and/or a CAS-tool specially developed for Danish high 
schools (WordMat, a CAS engine integrated within Microsoft Word). Students bring their own PC to 
the classroom, and use of PC is required at examinations. Initially, the transformation was carried 
through by progressive and CAS-curious teachers, many of whom were inspired by reform pedagogic 
ideas that supported a shift from abstract mathematics towards applications and more intuitive 
conceptual understandings. There was (and is) also an element of believing in diffusion: If CAS helps 
advanced (university) students to solve advanced problems, we might as well use CAS to help less 
advanced students solve less advanced (but to them difficult) problems. The educational system 
eagerly supported the development. Mathematics has been a vehicle for use of PC in other subjects, 
and examinations using CAS could (possibly) help more students achieving higher levels in math. 
Since 2005, CAS has gone from being a tool for enthusiastic teachers to a tool for everyone, including 
teachers with less interest and less competency in CAS. There has been no essential change in the 
standard curriculum (only minor ones allowing time for, say, 𝜒2-test) – and standards for CAS use 
have not been introduced. On the contrary, the curriculum endorses the use of CAS in mathematical 
modeling and concept building, but without any indication of how, and in connection with what 
topics, to carry this out. In this landscape, many teachers have developed templates that students are 
allowed to use in exams, and the preparation of students to use these has become an important activity 
during normal lessons. Students of teachers, who for one reason or another disfavor such, may find 
templates on the internet or borrow from friends. Most of such templates have little epistemic value 
and a rather narrow pragmatic value in the sense of (Artigue, 2002) towards solving (standard) 
problems. With CAS at the national tests these tendencies of trivialization are even more pronounced, 
as problems must be formulated to be equally solvable on different CAS platforms, 

Denmark’s extended use of computers in education reflects of course a trend in society but is also as 
described above to a large degree the result of explicit educational policies. Hence, a teacher has to 
find his/her pathway through the affordances, constraints, possibilities etc. stipulated by official 
guidelines, curriculum and instruction plans. As indicated, successful use of computers does 
seemingly not scale up (MBUL, 2015). In order to understand the reasons for this better we propose 



an analysis model to help understand teachers’ decisions on use of computers in mathematics 
teaching. 

Theoretic framework 
As our proposal aims at elucidating teaching in an institutional context we find the anthropological 
theory of the didactics (ATD, Chevallard, 1999) well suited. We start by briefly recalling the most 
important concepts of ATD that we shall use. Mathematics as an enterprise (educational as well as 
scientific) is seen as human activity composed of two blocks each with two parts, a praxis block 
comprising types of problems, tasks, with techniques to accomplish these and a theory part 
comprising technology and theory. Together such two blocks are termed a praxeology (praxis + 
logos). Tasks are the immediate goals of the activity, i.e. finding the slope of a graph of a function at 
a given point. A task can be accomplished by several techniques, i.e. plotting the graph on a computer, 
zooming in on the point in question until the graph appears linear and reading off the slope. The 
technology part concerns the discipline discourse of the technique and its relation to the tasks, i.e. the 
scope and limits of computer rendering of graphs (in relation to variation of functions). The theory 
part is a discourse on the technology part and its relation to the praxis block, i.e. on the concept of 
linear approximation that the sketched approach leads and on how it is related to a larger body of 
mathematical knowledge and practice, for instance that of the theory of differentiation.  

We would like to stress a couple of points. A given task can be unfolded in many praxeologies. To 
choose, detail and organize such unfoldings is the essence of teaching design. Any praxeology has 
underlying praxeologies, i.e. praxeologies aimed at slope of a linear function, and is itself related 
to/part of other praxeologies. A praxeology always comprises all four parts. This is one key point of 
the analysis in (Barbé, Bosch, Espinoza, & Gascon, 2005). 

Praxeologies take place within organizations of mathematical practice and knowledge. In ATD such 
organizations are formed by two components, a mathematical body consisting of a totality of objects, 
concepts, statements, interrelationships, procedures, etc., termed the scholarly knowledge and an 
institution of society within which this body is taught, manifesting possibilities and constraints for 
acquisition of learning. The passage from scholarly knowledge to its institutional version (which has 
more components than indicated) is in ATD conceptualized as didactic transposition. 

In (Artigue, 2002, p. 271) it is noted that didactic transposition in its first version was described with 
respect to rather traditional scholarly mathematics. In order to underline a computerized setting 
Artigue has singled out the term instrumented techniques. 

The model 
In ATD the teacher is considered as the director of the learners’ didactical processes (Barbé et al., 
2005), that is, responsible for the establishment of relations between learners and organizations of 
knowledge within institutions. We shall take this a step further, viewing it as production of learning 
outcomes through production activities, the praxeologies. For this production, the teacher has at 
his/her disposal a palette of resources, typically in terms of techniques (along with their theoretical 
block) to solve tasks. The ‘employees’ who use the techniques towards the production are the 
students. 



This setup is very similar to a business economic model of the production of a corporation. In order 
to enhance the outcome a corporation director makes sourcing decisions on the allocation of 
resources. In modern terminology, one speaks of outsourcing, insourcing, backsourcing1, 
“outsourcing involves allocating or reallocating business activities (both service and/or 
manufacturing activities) from an internal source to an external source” (Schniederjans, 
Schniederjans, & Schniederjans, 2005, p.3). Insourcing can be viewed as an allocation or reallocation 
of resources internally within the same organization. Any business activity can be outsourced or 
insourced (dichotomy), but this decision is crucial to the success of the corporation. The basic idea 
of outsourcing is old, essentially, it is the dictum ‘buy or make’. However, in the last few decades, 
outsourcing has grown almost explosively. A main reason for this is the development of ICT. But 
outsourcing is risky. It is reported (Schniederjans et al., 2005, p. 12) that half of all outsourcing 
agreements fail due to lack of appropriate analysis, and the necessity of strategic planning has become 
evident. There seems to be general acceptance (Schniederjans et al., 2005, p. 9) that such starts with 
an analysis to identify the strengths of the corporation, in terms of core activities (‘core competencies’ 
in (Schniederjans et al., 2005). Loosely, a core activity is what the corporation does better than its 
competitors and possible outsourcing providers. Core activities must be insourced, non-core activities 
are candidates for outsourcing and a balanced decision to achieve the strategic goals must be made. 
Key advantages of outsourcing of inspiration for didactic equivalents are: focus on core activities, 
gain of outside technology, enhancement of capacity and lower cost, whereas some key disadvantages 
are loss of control, increased costs, negative impact on employees’ morale and difficulties in 
managing relationships with outsourcing provider. 

In the didactic version, the client is a didactically transposed knowledge organization along with the 
teacher(s) to direct the didactic processes. The outsourcing provider is an external knowledge 
organization, typically within a CAS. In the business model, external/internal refers to ownership. 
For our purpose the fundamental feature of ownership is that it allows for control of processes, i.e. 
outsourcing implies loss of control. We shall take this as the defining property. Hence outsourcing a 
mathematical activity means allocating it to a resource at the price of giving up control of processes. 
A blunt example could be a teacher encouraging students to find solutions to homework on the 
internet; a more elucidating example is employment of instrumented techniques in the form of black-
box applications of CAS. As pointed out, any activity can be outsourced or insourced, that is full 
praxeologies, be it punctual, local or regional, or just parts of praxeologies, typically the praxis block. 
To be more precise, the starting point of CAS outsourcing is typically a problematic task to be solved 
by the outsourcing provider’s technique thereby creating a transformed or new praxeology. We stress 
that a CAS such as Maple is not solely a provider. To the extent that a teacher exercises control over 
CAS processes, these are considered insourced. Outsourcing to CAS is a more restrictive concept 
than mere use of CAS. (Teacher control must be distinguished from student control as the latter is the 
result of the first, and perhaps of other competencies, acquired without the influence of the teacher.) 

                                                 
1 Backsourcing means reallocating tasks from external sources to internal. This could be in order to regain control of the 
production process but could also be imposed by outside regulatives. In an educational context such could be new 
stipulations of use of CAS at national tests. 



A simple example (an object of many controversies) illustrates the concepts. Arithmetical 
computations require a careful analysis of what are core activities that accordingly should be 
insourced. Depending on (long-term) learning goals, these could be the systematics of paper and 
pencil algorithms, skills of mental arithmetic with “nice numbers”, etc. On the other hand, 
multiplication of many-digit numbers is hardly a core activity and is therefore a candidate for 
outsourcing to calculators2. This does not mean that tasks, which can be solved by mental 
computation, should not be insourced by calculator techniques. The point is that the core activity of 
mental computing may give control also of some calculator computations. Note that a calculator 
praxeology is completely different from its non-instrumented equivalents, for instance its theory part 
may involve representation of numbers in a finite memory.  

The very decision to use CAS (or other instrumented techniques) involves, regardless of its specific 
use, outsourcing. The teacher has no control of the coding that underlies the CAS, the syntax, the 
defaults, the library of routines, etc. Most CAS-tools are developed with teaching in mind, at least 
partly. Perhaps most importantly, the CAS design may have didactic intensions, which the teacher 
may surrender to if not disable. Maple’s ‘clickable math’ is a good example of this. The relationship 
between non-instrumented mathematics and computerized mathematics resembles that of a strategic 
partnership with mutual outsourcing. This relationship is dialectic in nature. The potential of CAS in 
mathematical praxeologies needs non-instrumented mathematics to be redeemed.  

There is of course nothing new in the very idea of strategic planning. Mathematical activity has at all 
times involved use of ‘non-controlled’ components and didactic considerations have always had this 
as a condition. The modern aspect of CAS is the magnitude of impact, calling for a much clearer 
elaboration of such planning. The addition of the concepts of out- and insourcing to ATD offers a 
model for reflection on crucial choices between instrumented and non-instrumented praxeologies on 
basis on insight in the CAS-tool and in possible mathematical activities. On one hand, the model 
gives a framework for investigation of ordinary teachers’ undertakings and perhaps more importantly, 
of what is not undertaken. On the other, it provides a strategic planning scheme for the teacher cf. 
(Schniederjans et al., 2005, Figure 1.3), where II+III are the crux of the matter: 

I. Establishment of content and learning goals of the mathematical organization to be taught 
II. Detailed analysis of subject matter and activities of possible praxeologies. 

III. Identification 
a. Core activities 
b. Non-core activities 

IV. Sourcing decisions 
a. Core activities are insourced 
b. Non-core activities are candidates for outsourcing. 

                                                 
2 A business equivalent of the historically initial excitement about the freeing potential of calculators and the afterthought 
concerning (permanent?) loss of core activities: The reservation system of the flight company TWA was superior to those 
of its competitors, i.e. a core activity, but was outsourced in the 90’s. TWA never regained its market share and went out 
of business in 2001. 



How do teachers decide on what is a core activity? The dialectics of pragmatic and epistemic value 
(Artigue, 2002) seems inevitable, but is not directly reflected in the dichotomy of out- and in-
sourcing. The computational power of several thousand digits, obviously to be outsourced, may have 
epistemic value in relation to approximation by decimal expansions. The pragmatic value of graphing 
of polynomials may be an asset of outsourcing in order to study whether polynomials have desired 
properties, which are considered epistemic of certain mathematical models. In other praxeologies 
graphing, by hand or by CAS, may be insourced. 

Methodology for prospective work with the model 
We aim at a fully-fledged model to give a general description of ordinary teachers’ implementation 
of CAS and through this, an insight in the scaling-up question mentioned previously. Our first step is 
to analyze a rather extensive material of reports on teaching designs with CAS, succeeded by 
reflections on further development, modification and refinement of our model. These reports are 
produced by project participants at Center for Computer based Mathematics Education (CMU3), 
University of Copenhagen, as the last step of a reflective practitioner process. The mission of CMU 
is to support use of CAS in Danish high schools respecting core mathematics qualities in order to 
reverse the trivialization tendencies described above. The only condition for participating is a moral 
subscription to this mission. Thus, teachers have been free to choose subject, CAS platform (within 
CMU’s coaching expertise), design of teaching, etc. This first round of analysis data is collected in 
contemplation of dissemination, rather than evidencing answers to research questions, but in a 
systematic way that allows for a grounded theory approach.4  

Having an elaborated model, we intend a large-scale investigation on Danish mathematics high school 
teachers’ choices and rationale for outsourcing to CAS. 

A sketch of an analysis: a praxeology of finding derivatives 
The so-called 3-steps method of finding the derivative, 𝑓′(𝑥0), of a function is the canonical approach 
to differentiation in Danish high schools, explicitly mentioned in official guidelines. We recall: (1) 
With ∆𝑦 = 𝑓(𝑥0 + ∆𝑥) − 𝑓(𝑥0) form the fraction ∆𝑦

∆𝑥
 ; (2) reduce the fraction to make   lim

∆𝑥→0

∆𝑦

∆𝑥
 

accessible (3) find the limit lim
∆𝑥→0

∆𝑦

∆𝑥
 (if it exists). These are tasks in three praxeologies with rather 

separate theory blocks involving algebra, topology and geometry. In a CMU – project 
(Differentialregning, tretrinsreglen), the teacher, in the sequel L, wants to improve on students’ 
understanding of the method by CAS-outsourcing “to give the students hand-on experience of secant 
and tangent slope and limits through experimentation with CAS sheets” (our transl.). An outsourcing 
strategy like this is rather common in Denmark. L has worked on the teaching problematics of the 3-
steps method for many years ‘without really understanding why students find it so difficult’ (our 

                                                 
3 The Danish Industry Foundation, Department of Mathematical Sciences at University of Copenhagen, The Danish 
Ministry of Education, and Maplesoft Inc. sponsor CMU. 

4 For further details about the CMU material, we refer to the CERME 10 poster of TWG 15 (Bang, Grønbæk, & Larsen, 
2017) 

 



translation from Danish taken from the project report). This time L starts with a thorough analysis of 
prerequisites ending in 12 points. L decides to use CAS in the case of 𝑓(𝑥) = 𝑥2 on three points of 
the 12: ‘(5) computing slope of a straight line; (7) understanding what tangent and slope are; (12) 
understanding (the concept of) limit’ (our transl.). A few observations: (A) L is by his very wish to 
understand reasons for learning difficulties led to in- and outsourcing considerations. (B) There is a 
tendency to regard pragmatic and epistemic values as separate features: (5) is pragmatic and (7) & 
(12) are (by L phrased as) aiming at epistemic value. (C) Some core activities are recognized as such 
and insourced, i.e. algebraic reduction of polynomial expressions such as ∆𝑦 for 𝑦 = 𝑎 𝑥2 + 𝑏 𝑥 + 𝑐 
- partly insourced to paper and pencil, partly to CAS. Other core activities are outsourced, i.e. use of 
sliders on the graph 𝑦 = 𝑥 + 2 to find lim

𝑥→0
𝑥 + 2, as last step in the 3-step method with 𝑥 replacing 

∆𝑥; (D) non-core activities are not spelled out. What is it that sliders can do for secant-tangent 
considerations without sacrificing core activities? (E) Affective aspects are outsourced: ‘CAS tools 
should … activate students and challenge their desire to … explore mathematical problems’ (our 
transl.) From L’s reflections, it appears that the outsourcing (D) is indirectly motivated by the 
textbook treatment of the subject. Textbooks rarely have core activity considerations, but rather bold 
instigations to CAS use. This risk of dilution of mathematical competency is pinpointed by the 
concept ‘outsourcing core activities’.  

Further use and development 
L is an example of a teacher with neither desire nor reputation to be a front-runner, but navigating 
resourcefully and dedicatedly under post-modern circumstances of mathematics teaching. Our 
observations (A), … (E) apply to many teachers (CMU, 2015; CMU, 2016) so the sketch of an out-
/in-source analysis of L’s project is testimony that our approach may have potential for shedding light 
of the kind of decisions, with shortcomings and potentials, that ordinary teachers make. The business 
metaphor seems confluent with natural praxis of resource considerations, thus providing a framework 
for large-scale investigations much similar to studies of business economics forces that govern trade 
and production. One may fear a risk of introducing yet another business corporation model to 
education. Outsourcing is growing in business due to the incitement of fierce competition. While 
perhaps tempting, a flat educational interpretation of this is misleading. The rooting in a business 
model is motivated within a local or regional mathematical organization through its level of didactic 
co-determination. Even though mathematics may be seen as a productive force, learning outcome is 
not a commodity. It cannot be bettered simply through optimization tactics. 

Our sketch has focused on director decisions, i.e. the teacher’s planning. Further development must 
include employees, i.e. students, that is, the last step of the didactical transposition: matter taught  
matter learned. 
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The ministry of education is launching a national project to implement the use of ICT in the Israeli 
education system. To prepare pre-service teachers with whom we work for this kind of 
implementation, we designed a model, which supports them to learn to use digital tools effectively 
while integrating a particular pedagogy for teaching a specific mathematics or science content. The 
goal of the present research is to study the development of these pre-service teachers’ 
Technological, Pedagogical and Content Knowledge (TPACK), attitudes toward computers and 
their ICT proficiency. For this purpose, we used and adapted questionnaires from different sources. 
The research results show significant improvement in the TPACK level and ICT proficiency, but no 
significant effect of the preparation on most of the components of the teachers’ attitudes toward 
computers, being positively high before and after the preparation. 

Keywords: Pre-service teachers, TPACK, digital tools, professional development.  

Introduction 
Shulman (1986) suggested the PCK (pedagogical content knowledge) model to represent the 
interaction of two types of teachers’ knowledge: content knowledge and pedagogical knowledge. He 
proposed that this interaction be considered in order to understand teachers’ expertise in teaching a 
particular subject matter. Various researchers (for example Koehler and Mishra, 2009; Niess et al., 
2009), built on Shulman’s PCK to describe the interaction of teachers’ understanding of educational 
technologies with their PCK that results in effective teaching with technology. Specifically, they 
talked about the technological pedagogical and content knowledge of teachers (TPACK), where this 
model describes the interactions between and among the three main components of teachers’ 
knowledge: content, pedagogy, and technology. These interactions result in new types of teachers’ 
knowledge, namely PCK, TCK (technological content knowledge), TPK (technological pedagogical 
knowledge), and TPACK. In this paper, we describe the development of pre-service teachers’ 
TPACK as a result of preparing them in the use of digital tools over one academic year.  

Technological, Pedagogical and Content Knowledge 
Though some researchers consider TPACK too blunt an instrument (e.g., Clark-Wilson & Hoyles, 
2016; Thomas & Palmer, 2014), other researchers refer to it when studying mathematics teacher’s 
professional development (e.g., Balgalmis, Shafer, & Cakiroglu, 2013; Bowers & Stephens, 2011). 
Generally speaking, TPACK is the knowledge of how to integrate technology in teaching the subject 
matter. This knowledge also includes the appropriation between a specific technological tool, the 
teaching of a specific topic and being aware of the difference between various technological tools in 
teaching a specific topic. Further, this knowledge means being aware of students’ problems of the 
subject matter that could be overcome by using specific technological tools. It also includes the 



awareness of students’ difficulties of the subject matter that result from using specific technological 
tools and how to overcome these problems (Koehler & Mishra, 2009).  

Robova, and Vondrova (2015) studied mathematics teachers’ awareness of the specific 
technological skills needed for their teaching (making functions visible on the screen, changing 
visual appearance of graphs, interpreting numerical results, using dynamic features of a tool) and 
their ability to design teaching which takes the specific skills into account. Furthermore, Koh and 
Divaharan (2011) described an instructional model for developing pre-service teachers’ TPACK. 
We follow the previous attempts to suggest a preparation model for developing pre-service teachers’ 
TPACK in utilizing digital tools in their teaching. 

Pre-service teachers’ attitudes toward computers 

Fishbein (1967) defined attitude as a learned tendency to respond to an object in a consistently 
favorable or unfavorable way. Other researchers (Zan & Di Martino, 2007) defined attitude in terms 
of emotions: a positive or negative emotional reaction toward a specific situation. These definitions 
show the possible influence of attitudes on behavior in general and on pre-service teachers’ 
behavior in particular. Attention to attitudes has risen when ICT started to emerge as a possible tool 
for the improvement of teaching and learning. In this context, researchers found that these attitudes 
have major influence on the success and meaningful use of the ICT in their teaching (Albirini, 
2006).  

In our research, attention was given to pre-service teachers’ attitudes toward computers, together 
with the development of their TPACK and ICT proficiency, as a consequence of their preparation in 
the use of digital tools. We used the ‘teacher’s attitudes toward computers’ questionnaire (TAC) as 
it probes teachers’ attitudes toward ICT use in teaching and their intention to do so (Baya’a & 
Daher, 2013). We were also interested in the pre-service teachers’ proficiency level in ICT as an 
indicator of their intention to use ICT in their teaching as the proficiency variable is reported to 
affect teachers’ readiness to use ICT in their teaching (Granger, Morbey, Owston & Wideman, 
2002). 

The research questions 
The main research question is: How will the preparation of pre-service teachers in the use of digital 
tools, according to the model that we designed, affect their TPACK level, ICT proficiency and their 
attitudes toward computers?   

Research context, participants and the preparation model 
This current research accompanies the preparation of pre-service teachers to study how to use 
effectively digital tools in the mathematics or science classroom. This knowledge is the core of the 
TPACK model. We administered questionnaires to measure the advancement of the TPACK levels 
and attitudes toward computers of the pre-service teachers who implemented the model, as well as 
their ICT proficiency. Approximately 55 students majoring in mathematics and science teaching in 
intermediate schools completed the questionnaires at the beginning and end of the preparation. 
These students were in their third year of training alongside two courses that provided a background 
in the use of ICT for teaching mathematics and science. 



The preparation model aimed to improve the pre-service teachers’ selection of a suitable digital tool 
for a specific pedagogy and subject. It also tried to improve the integration of digital tools to teach 
some specific content. This preparation model concentrated on two aspects. First, knowing the tool 
technically and being able to adapt it to teach some specific content. Second, developing the ability 
to select and integrate suitable digital tools for some specific content and pedagogical method. In 
more detail, each pre-service teacher worked independently to learn to use at least two digital tools 
and to prepare user guides (as PDF file or digital book) that included descriptions of the most 
significant functions of these digital tools. Furthermore, the pre-service teachers were required to 
record video clips of screen shots while performing operations in these digital tools as explanations 
for another user. The pre-service teachers were asked to select the digital tools from a catalog of 
general digital tools prepared by the ministry of education in Israel. This catalog includes various 
digital tools that could be adapted for use in various subjects and levels, such as: Flipsnack for 
creating online digital books, Linoit for creating collaborative bulletin board, Socrative for personal 
and class assessment and Mindomo for creating mind maps. 

Moreover, each pre-service teacher was required to prepare pedagogical materials on how to use the 
digital tools that she was engaged with in teaching mathematics or science, and then present the 
materials in the training workshop to receive comments from her peers and the pedagogical 
supervisor. Following that, the pre-service teacher reflected on her developed materials, adjusted it 
and uploaded all the materials to an internet site that was constructed by the pre-service teachers and 
the pedagogical supervisors. This internet site constituted a data bank for digital tools. In addition, 
each pre-service teacher was requested to prepare at least two lessons for teaching mathematics or 
science and pick three digital tools from the catalog (including one that she was engaged with) to 
use them in her teaching. These lessons had to involve also collaborative investigations that 
encourage the use of higher order thinking skills. Finally, each pre-service teacher picked a subject 
from within a digital textbook for teaching mathematics or science, and added connections to 
pedagogical activities based on using digital tools from the data bank site.  

During the first semester, the pre-service teachers had two options: to start from the digital tool and 
integrate it for teaching some specific content, or starting from the content and selecting a suitable 
digital tool to teach that content. In the second semester, each pre-service teacher was asked to 
experiment with the prepared materials and lessons in her training school with at least one of the 
chosen tools, and reflect on the experience. This reflection was on the actual implementation of the 
digital tool in the classroom environment, and it was posted in the data bank for digital tools for 
other pre-service teachers to consider as they selected digital tools for their own use. 

Research instruments 
The research instruments included three questionnaires as follows: Questionnaire 1: Technological, 
Pedagogical, and Content Knowledge (TPACK) (revised) questionnaire, constructed on the basis of 
the TPACK instrument for pre-service teachers developed by Schmidt et al. (2009).  

Questionnaire 2: Teachers’ Attitudes toward Computers (TAC, v. 6.1) questionnaire: This 
questionnaire was tested by Christensen and Knezek (2009) who concluded that it is a well-
validated and reliable instrument for teachers’ self-appraisal of their attitudes toward computers.  



Questionnaire 3: The Use of ICT in Colleges of Education (UICT): This questionnaire was 
developed by The MOFET Institute (A Center for the Research, Curriculum and Program 
Development in Teacher Education in Israel) to track the professional development of pre-service 
teachers’ use of ICT. We used the ICT proficiency part of the questionnaire. 

The validity of the questionnaires was considered by giving the Arabic translations to a group of 
pre-service teachers who were requested to examine if the questionnaires’ statements were clear to 
the reader. As a result, some items of the questionnaires were rephrased to clarify their meaning. 

The pre-service teachers’ scores in the overall constructs and their categories, before the preparation 
and after it, were examined for internal reliability using Cronbach alpha. The results showed high 
Cronbach alpha (above 0.85 for all the categories and for the overall construct) indicating adequate 
internal reliability for the questionnaires and their categories. These results were expected due to the 
extensive use of these questionnaires in the literature.  

Data processing 
Data was analysed using paired-samples t-test to determine if there were significant differences 
between scores of pre-service teachers in the various questionnaires before and after the preparation. 
Cohen’s d (the ratio between the difference of the means and the average of the standard deviations) 
(Cohen, 1969) was used to compute effect sizes to assess the practical significance of results.  

Results 
Pre-service teachers’ ICT proficiency 

Table 1 shows the proficiency level of the pre-service teachers before and after the preparation 
(values between 1 to 5), as well as paired sample t-test between the two observations.  

 Before Preparation  After Preparation  

Outcome M SD M SD     t     d 
Score of ICT 
proficiency in UICT 3.80 0.56 

 
4.20 0.59 4.17*** 0.70 

          *** p < 0.001 

Table 1: Means, standard deviations and t-test for pre-service teachers’ ICT proficiency level (n=54) 

As displayed in Table 1, the results show that the pre-service teachers’ ICT proficiency level differs 
significantly before and after the preparation. Large positive effect size of 0.70 was derived for the 
preparation on the pre-service teachers’ ICT proficiency level. This advancement was mainly the 
result of the major improvement in their ‘multimedia tools proficiency’.  

 

Pre-service teachers’ TPACK level  

The TPACK level comprised the total score of the TPACK questionnaire and six other scores for 
each partial type of knowledge for technology, pedagogy, content and intersections between them. 
Table 2 shows the TPACK components’ scores of the pre-service teachers before and after the 
preparation (values between 1 to 5), as well as paired sample t-test between the two observations.  



 Before Preparation  After Preparation  

Outcome M SD  M SD       t d 
TPACK 3.93 0.53  4.50 0.46 8.19*** 1.15 
TK 3.90 0.63  4.44 0.59 6.31*** 0.89 
PK 4.04 0.52  4.57 0.46 6.35*** 1.08 
PCK 3.81 0.57  4.57 0.49 8.49*** 1.43 
TCK 3.78 0.76  4.45 0.52 7.02*** 1.05 
TPK 4.02 0.67  4.50 0.63 4.85*** 0.74 
TPCK 3.88 0.78  4.51 0.68 5.19*** 0.86 

  *** p < 0.001  

Table 2: Means, standard deviations and t-test for pre-service teachers’ TPACK level (n=54) 

As displayed in Table 2, the pre-service teachers’ scores in the components of TPACK differ 
significantly before the preparation and after it. Large positive effect sizes of 0.74 and more were 
derived for the preparation on the pre-service teachers’ TPACK and its components. 

Pre-service teachers’ attitudes toward computers  

Attitudes toward computers were assessed using 9 categories. Table 3 shows components’ scores of 
the pre-service teachers’ attitudes toward computers before and after the preparation (values 
between 1 to 5, except perception 1 to 7), as well as paired sample t-test between the two 
observations.  

 Before Preparation  After Preparation   

Outcome M SD  M SD t d 
TAC General 3.86 0.47  3.99 0.53   2.09* 0.26 

Interest  4.37 0.64  4.32 0.74  -0.42  -0.07 

Comfort  4.11 0.99  4.17 1.11   0.38 0.05 

Accommodation  4.65 0.59  4.38 1.04  -1.86 - 0.33 

Interaction  3.82 0.90  4.19 0.87   2.53* 0.41 

Concern  2.54 0.69  2.82 0.85   2.55* 0.36 

Utility  4.29 0.51  4.39 0.74   1.01 0.16 

Absorption  3.45 0.91  3.82 1.07   2.28* 0.37 

Significance 4.18 0.67  4.27 0.78   0.88 0.12 

Perception  5.60 1.06  5.79 1.19   1.25 0.16 

            * p < 0 .05  

Table 3: Means, standard deviations and t-test for pre-service teachers’ TAC level (n=54) 

As displayed in Table 3, the pre-service teachers’ scores in the categories of attitudes toward 
computers differed significantly before the preparation and after it in the categories: interaction, 
concern, absorption and TAC general. In these constructs, a small effect size of 0.26 was derived for 
the preparation on the pre-service teachers’ general TAC score, and moderate effect sizes of 0.41, 



0.36 and 0.37 were derived for the preparation on the interaction, concern and absorption 
respectively. 

Discussion and conclusions 
The research aimed to examine how the preparation course affected the pre-service teachers’ ICT 
proficiency, TPACK level and their attitudes toward computers. The research results indicated 
several significant positive effects of the preparation model used in that preparation that related to 
the pre-service teachers’ abilities and knowledge regarding the integration of digital tools in 
teaching. 

Pre-service teachers’ ICT proficiency   

The research results indicated significant improvement in the pre-service teachers’ ICT proficiency 
as a consequence of the preparation, especially in multimedia tools proficiency. The mathematics 
and science pre-service teachers usually have high ICT proficiency, but the requirements in the 
preparation model led to significant improvement particularly in their multimedia proficiency. 
These results are due to a consideration of the technology knowledge related to the digital tools in 
the preparation process. This resulted in the pre-service teachers increased competence in their use 
of digital tools for personal and professional purposes, which caused them to feel confident to 
utilize new digital tools independently and individually (Prestridge, 2012), and thus improved 
significantly their ICT proficiency. This suggests that pre-service teachers need to be given the 
opportunities to work with technological tools in order to improve their ICT proficiency and their 
readiness to integrate ICT in their teaching (Muir-Herzig, 2004).  

Pre-service teachers’ TPACK level   

As a result of the preparation, the general TPACK level of the pre-service teachers, as well as its six 
partial types, were significantly improved. These results could be due to the attention of the pre- 
preparation model to the ability of the pre-service teachers to appropriate the digital tools 
pedagogically to teaching a specific content, and vice versa. It could be said that the pre-service 
teachers’ diverse experiences in the workshop improved their knowledge in different types of 
knowledge related to their teaching mathematics or science. Thus, the preparation model provided 
the pre-service teachers with opportunities to maintain and shift their instructional approaches 
enriched with innovative educational technologies (Martin, 2015). This preparation model could be 
implemented worldwide when taking into consideration the particular background and conditions of 
the pre-service teachers involved.  

Pre-service teachers’ attitudes toward computers 

The results of this research show that following the preparation process, no significant improvement 
was detected in the pre-service teachers’ attitudes toward computers for most of the TAC 
components, with exception of TAC general, interaction, concern and absorption. We should note 
that in both cases, before and after the preparation, the attitudes were very favorable toward 
computers.  

As for the positive change in some attitudinal categories, such as absorption, the pre-service 
teachers had, during the workshop, the chance to be actually involved and improve their knowledge 
in computers and ICT. This might have improved their ability to solve problems related to the 



computer use in the classroom; which encouraged them to insist to solve these problems, even the 
hard ones. This influence of teachers’ experience in technology on their ability to solve 
technological problems is supported by DeLuca (1991) who claims that technological knowledge 
overcomes technological problems in the classroom. This could improve pre-service teachers’ 
attitudes toward computers.  
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Beyond a positive stance: Integrating technology is demanding on 
teachers’ mathematical knowledge for teaching 
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Research on technology in mathematics education highlights the importance of teachers having a 
positive stance towards technology for successful integration into classroom practice. However, 
such research has paid relatively little attention to teachers’ knowledge of specific mathematical 
concepts in relation to technology. This paper examines the innovative use of technology by a 
teacher, Robert, as a critical case study, to argue that the significance of mathematical knowledge 
for teaching using technology should not be overlooked nor underestimated. 
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TPACK, situated abstraction. 

Introduction 
Seeking to understand teachers’ integration of technology, research on technology in mathematics 
education (e.g. Zbiek et al., 2007) has documented the important role teachers’ beliefs and 
conceptions play in their integration of technology into classroom practice. For example, Zbiek et al 
(2007) identify the constructs of pedagogical fidelity and privileging as useful in understanding the 
extent and nature of technology integration in a teacher’s classroom practice. Pedagogical fidelity is 
described as the degree to which teachers’ beliefs about the way a digital technology allows students 
to act mathematically coincides with their beliefs about the nature of mathematical learning (Zbiek 
et al., 2007). Privileging is a notion developed by Kendal and Stacey (2001) to describe how 
teachers, consciously or unconsciously, frequently use or place a priority on certain things in their 
practice, for example, types of representation, skills or concepts and by-hand or by-technology 
methods (Zbiek et al., 2007). Both these constructs relate to teachers’ conceptions of mathematics as 
a discipline (Thompson, 1992), their beliefs about the nature of teaching and learning mathematics 
and how these interact with their beliefs about technology. 

Such studies have in common a focus on teachers’ global conceptions of mathematics as a 
discipline and on teachers’ beliefs about the nature of teaching and learning mathematics with 
technology. They do not tend to focus on teachers’ knowledge of specific mathematical concepts in 
relation to technology. This is an important omission since the documented shifts in teachers’ views 
suggest a move towards models of teaching aimed at developing conceptual understanding. Such 
models may require a great deal of knowledge for successful implementation and inconsistencies 
between teachers’ professed beliefs and practices may be the result of lacking sufficient knowledge 
and skills necessary to implement them (Thompson, 1992).  

Whilst highlighting the role of teachers’ conceptions in technology integration is important, this 
paper argues that the significance of mathematical knowledge for teaching using technology should 
not be overlooked nor underestimated. For example, Bowers and Stephens (2011, p. 290) assert that 
the set of (teachable) knowledge and skills for teaching mathematics using technology may be 
empty, emphasising instead that teacher educators should seek to nurture a favourable conception of 



“technology as a critical tool for identifying mathematical relationships”. Whilst it may be that 
teacher educators should seek to nurture favourable conceptions towards using ICT in their trainees, 
this paper argues the knowledge required to put such conceptions into practice should not be 
neglected. 

Theoretical framework 
The central Technology, Pedagogy and Content Knowledge (TPACK) construct of Mishra and 
Koehler’s (2006) framework is useful in highlighting mathematical knowledge for teaching using 
technology, by emphasising technology as a knowledge domain alongside pedagogy and content 
knowledge (Bretscher, 2015). Whilst space does not allow for a full description of the framework, 
the central TPACK construct serves to highlight the situated nature of such knowledge. In 
particular, in this paper, mathematical knowledge for teaching using technology is viewed as a 
situated abstraction (Noss & Hoyles, 1996), that is, ‘abstract’ mathematical knowledge 
simultaneously situated in the context of teaching with technology. 

Borrowing from Shulman (1986), mathematical knowledge for teaching using technology is 
assumed not only to be a matter of knowing how – being competent in teaching mathematics using 
technology - but also of knowing what and why. That is, although much of teachers’ knowledge 
may be tacit, craft knowledge (Ruthven, 2007), at least some of their know-how is underpinned by 
articulated knowledge that provides for “a rational, reasoned approach to decision-making” 
(Rowland et al., 2005, p.260) in relation to teaching mathematics using technology. In other words, 
mathematical knowledge for teaching using technology, as defined in this study, is when know-how 
or knowledge-in-action is underpinned by and coincides with the teacher’s articulated knowledge. 
This intersection between articulated knowledge and knowledge-in-action is important because it is 
this type of knowledge that initial or in-service teacher education programmes focus on developing. 

Method: Robert as a critical case 
Four teachers were selected from a group of English mathematics teachers who took part in a survey 
of secondary school mathematics teachers’ use of ICT (n=183) and who further agreed to be 
contacted as case study teachers (Bretscher, 2011; 2014). The four case study teachers were chosen 
along two dimensions of variation likely to be associated with mathematical knowledge for teaching 
using technology, based on their responses to survey items. Firstly, the case study teachers were 
chosen to be two of the most student-centred and two of the most teacher-centred in their approach 
to mathematics teaching in general (not limited to ICT use) of those who volunteered. Secondly, 
two teachers were chosen to be from schools with a high level of support for ICT and two with a 
low level of ICT support. In addition, the four case study teachers had described themselves as 
being confident with ICT. As technology enthusiasts, the case study teachers were likely to display 
mathematical knowledge for teaching using technology; the variation in case selection aimed to 
highlight such knowledge – making it more ‘visible’. 

Each case study teacher was observed teaching one lesson in a computer suite where pupils were 
given direct access to ICT. These observations provided opportunities to infer the case study 
teachers’ knowledge-in-action in a situation involving the work of teaching mathematics with 
technology. Post-observation interviews then provided an opportunity to infer the case study 



teachers’ articulated knowledge and hence, triangulated against their knowledge-in-action observed 
in the lesson, provide evidence indicating mathematical knowledge for teaching using technology.  

Robert was selected as a case study teacher because he was one of the most student-centred teachers 
in the survey sample. In addition, his school appeared to be generally supportive of ICT use 
compared to the other schools surveyed. He stood out, even amongst the case study teachers, as 
being a critical case of a teacher likely to display mathematical knowledge for teaching using 
technology for two main reasons. Firstly, Robert showed a favourable conception of technology, as 
described in the following section, in relation to mathematics teaching and in line with Bowers and 
Stephen’s (2011) description of viewing “technology as a critical tool for identifying mathematical 
relationships”. Secondly, Robert’s lesson appeared to be exceptional: he used GeoGebra software to 
affect his pupils’ learning in an innovative way that would not be easy to achieve without digital 
technology, in comparison to the other lessons observed where software was used to replicate and 
enhance paper-and-pencil activities. He had 4-6 years of teaching experience, held a management 
position within the mathematics department and had completed a Masters in Education degree. 
Robert was also the most technologically proficient of the four case study teachers: his 
undergraduate degree was a Bachelor of Engineering in Computing.  

Analysis and discussion 
Robert’s favourable conception of technology use in mathematics teaching 

For the first part of his lesson, Robert had created a series of maze activities, embedded in 
GeoGebra files, designed to take advantage of his 12-13 year old pupils’ tacit understandings of 
reflection as a means of making them explicit and thus leading towards a more formal 
understanding of reflection. Using the mouse to direct the movement of a point, coloured in blue, 
the pupils had to guide the blue point’s reflection, shown in red, successfully through a maze (see 
Figure 1).  

 

 

 

 

 

 

 

 

Figure 1: One of Robert's GeoGebra maze activities - by dragging the blue point, guide the reflected 
red point through the maze  

The reflection line was super-imposed on the maze diagram and the path of the red point was traced. 
Robert hoped that the activity would encourage pupils to predict how the reflected red point would 
move in relation to movement of the blue point as a means of increasing their chances of 

Blue point 
Red point  

and trace 

Reflection line 



completing the maze successfully. By predicting the movement of the red and blue points, he hoped 
his pupils intuitive understandings of reflection would be made more explicit. 

In the post observation interview, Robert explained what inspired him to create the maze activities. 
He provided a critique of similar GeoGebra activities as lacking an impetus to focus attention on 
and articulate tacit understandings:  

Robert:  I had a look on the GeoGebra wiki and most things tended to be ‘Here’s a mirror 
line, here’s a shape, if you drag this, what’s happening?’ just kind of ... and say 
what you see. And I could imagine them sitting there with that and basically just 
dragging the mouse a bit and seeing it happen and ... and then where does it go 
from there?  

He also described a pedagogic strategy of predict-then-test that he aimed to use in the lesson to 
make pupils’ understandings of mathematical relationships explicit:  

Robert:  just you know introduce that ‘pause’ of what do we think is going to happen and 
then let’s test that it’s going to happen  

and how he intended to formalise these understandings during the lesson by introducing 
mathematical vocabulary:  

Robert:  So one of the things I wanted to talk about was that if you’re moving that point 
parallel to the mirror line, the point moves in the same direction, whereas as soon 
as you’re moving it in a direction that’s not parallel, the point doesn’t move in the 
same way.  

Summarising at the end of the lesson, he did introduce mathematical vocabulary during class 
discussion, in a similar way to the intention described above, describing the movement of the red 
and blue points. Thus Robert’s design of the maze activities, his use of them in the lesson and his 
comments about the lesson in the post-observation interview demonstrate the strong emphasis he 
placed on the use of technology to explore the mathematical relations behind the mathematical 
phenomenon of reflection, consistent with Bowers and Stephens’ (2011) description of a favourable 
conception of technology. 

Robert’s mathematical knowledge for teaching using technology 

Using the series of maze activities successfully to meet the aims of the lesson depended on 
transforming students’ strategies for completing the mazes into more formal understandings of 
reflection that could be used as strategies for constructing the image given an object and line of 
reflection. As indicated above in excerpts from the post-observation interview, Robert recognised 
his interventions with individual pupils and directing whole class discussion as being critical to 
effecting this transformation.  

The maze activities potentially addressed two complementary strategies for using geometric 
properties to construct the image given the object and line of reflection: 1) using the local geometry 
of the object together with the properties of reflection, namely, preservation of length and of 
direction parallel to the line of reflection and reversal of direction in the axis perpendicular to the 
line of reflection, to construct the image; and 2) using the geometric property that the line of 



reflection is the perpendicular bisector of line segments connecting corresponding points on the 
object and image.  

The first strategy was addressed through the maze activities by the necessity of considering how to 
drag the blue point, i.e. in what direction and how far, to guide the reflected red point through the 
maze. In particular, the main challenge in completing the maze is derived from the reversal of 
direction caused by the reflection. Less obvious perhaps is that length is preserved: dragging the 
blue point causes the red point to move the same distance. The second strategy was addressed in 
later maze activities by the addition of the line segment connecting the blue and red points as a 
possible aid to maze completion.  

Robert was not satisfied with his interventions during the lesson. In the post-observation interview, 
he pointed to technical difficulties, his desire to let the students enjoy the maze activities and his 
rush to move onto the second activity as contributing to the result that he did not spend as much 
time as intended on discussing the geometric implications of the pupils’ maze-solving strategies. 
Timing was certainly a factor and technical difficulties meant that he was unable to direct a whole 
class discussion juxtaposing the identical mazes with and without the line segment joining the red 
and blue points. As a result, Robert was unable to address the second strategy outlined above 
involving recognition of the line of reflection as the perpendicular bisector of the line segment 
joining the red and blue points. However, he did have two opportunities during the lesson to elicit 
the geometric properties of reflection that underpin the first strategy through whole class discussion.  

The first opportunity came when Robert brought the class back together after some time engaging 
with the maze activities. He displayed one of the early maze activities with a vertical line of 
reflection and asked pupils to give instructions to a pupil-volunteer to direct their movement of the 
blue point. Robert summarised their responses, drawing attention to the relative direction of 
movement of the red and blue points i.e. that when the blue point was dragged up or down the red 
point moved in the same way but that dragging the blue point left or right caused the red point to 
move in the opposite direction. Whilst drawing their attention to the direction of movement, Robert 
did not mention that dragging the blue point causes the red point to move the same distance, thus he 
did not draw his pupils’ attention to the geometric property that length is preserved under reflection.  

Robert then displayed a maze with a horizontal line of reflection and, employing his predict-then-
test strategy, asked the pupils to predict whether the relative direction of movement would be the 
same or different. The pupils correctly predicted it would change: now, dragging the blue point left 
or right would result in the red point moving in the same way but dragging the blue point up or 
down would cause the red point to move in the opposite direction. Contrasting these diagrams made 
the point that the relative direction of movement of the red and blue points was connected to the 
orientation of the line of reflection. At this juncture, Robert could have introduced the mathematical 
terms parallel and perpendicular to specify the nature of the connection between the relative 
direction of movement and the orientation of the line of reflection, thus generalising to state the 
effect of reflection on direction. He could also have noted that in both maze diagrams, independent 
of the orientation of the line of reflection, dragging the blue point causes the red point to move the 
same distance, hence length is preserved under reflection.  



Robert did not introduce the mathematical terms parallel and perpendicular at this point nor did he 
note the geometric property that length is preserved under reflection. Instead, apparently on impulse, 
he offered his pupils a new challenge: to find out whether turning the mouse back to front would 
help them to complete the mazes, presumably by double-reversing the direction of movement. This 
challenge risked distracting from the aims of the lesson, since turning the mouse back to front 
involves a rotation of 180 degrees and not a reflection. Later in the post-observation interview, 
Robert dismissed it as “just a silly question to get a few of them thinking”. However, in asking this 
question, he missed an opportunity to capitalise on his pupils’ correct predictions to generalise their 
maze-solving strategies towards a shared, formal understanding of the geometric properties of 
reflection. In particular, Robert’s challenge highlights the situated nature of mathematical 
knowledge for teaching using technology in terms of weighing up the pedagogical value of 
interpreting how the mouse movement relates (or not) to the geometric properties of reflection. 

The second opportunity occurred at the end of the lesson. Due to the shutdown of the computer 
system, the students were unable to begin the second GeoGebra activity Robert had prepared. After 
spending some time wrestling with the technology, Robert gave up and gathered the pupils to 
summarise the lesson. In this moment of contingency, Robert was inspired to ask his pupils to 
imagine the join between two rectangular tables, where they met along their longest edge, was a 
mirror. One of the pupils sitting at the table was holding a ball: this became the de facto ‘blue 
point’. Robert discussed moving the ‘blue point’ close to the mirror, through the mirror (which he 
noted you can’t do in reality), and finally parallel to the mirror. He did not have another chance to 
discuss what happens when the ‘blue point’ moves perpendicular to the mirror nor to discuss the 
preservation of length under reflection because, at that point, the bell rang for the next lesson.  

Although his second opportunity to elicit the geometric properties of reflection was cut short, in the 
post-observation interview, when asked what he wished to do had there been more time, Robert did 
not articulate that he meant to discuss what happened when the blue point moved perpendicular to 
the line of reflection and to note that distances remained the same under reflection. These missed 
opportunities, together with the post-observation interview, suggest that Robert had not planned 
precisely what and how he would use mathematical terminology in his interventions to support his 
pupils’ interpretation of controlling the red and blue points via the mouse, thereby transforming his 
pupils’ maze-solving strategies into more formal understandings of reflection to connect with the 
aims of the lesson. In addition, when asked what he would have done differently in preparing the 
lesson, he focused solely on planning to prevent the technical difficulties arising rather than 
suggesting he could have been more precise in his use of mathematical terminology. Although 
Robert did not have much time to deliberate over the lesson (as the author has) and it is 
understandable that the technical difficulties that were so disruptive were uppermost in his mind, 
this suggests his experience during the lesson did not prompt Robert to recognise the need to plan 
his interventions more precisely to connect his series of maze activities with the mathematical aims 
of the lesson. In particular, Robert appeared to lack a frame of reference to help him identify what 
his mathematical difficulties were in using technology to make his pupils’ tacit understandings 
explicit and, as a result, why his interventions appeared unsatisfactory. However, such a frame of 
reference can be seen as part of mathematical knowledge for teaching using technology, since in this 
study such knowledge is assumed not only to be a matter of knowing how – being competent in 
teaching mathematics using technology - but also of knowing what and why (Shulman, 1986, p.13).  



Conclusion 
Despite his favourable conception of technology, using the maze activities in practice was not trivial 
and Robert did not entirely succeed in making explicit the mathematical relationships the pupils 
were exploring using the GeoGebra software. His difficulties, in supporting his pupils’ 
mathematical interpretation of controlling the red and blue points via the mouse to elicit the 
properties of reflection, appear at once mathematical and yet simultaneously situated in the context 
of teaching using technology. In particular, the strength of Robert’s maze activities lay in the real 
difficulty of controlling the direction of movement of the reflected red point via the mouse. This 
difficulty focused attention on how the direction of movement changes under reflection, which 
Robert drew to his pupils’ attention through his interventions, albeit without making use of precise 
mathematical terminology. However, dragging the blue point using the mouse results in the red 
point moving the same distance unproblematically. Thus the maze activities did not draw attention 
to preservation of length in the same way, underlining the need for teacher intervention to highlight 
this property of reflection. The strain placed on his mathematical knowledge for teaching using 
technology was most evident perhaps when Robert included a challenge relating to rotation, finding 
out what happens when the mouse is turned back to front, which distracted from his stated lesson 
aims regarding reflection. This challenge again highlights the situated nature of mathematical 
knowledge for teaching using technology in terms of weighing up the pedagogical value of 
interpreting how the mouse movement relates to the geometric properties of reflection. 

This suggests that a positive stance towards technology, in terms of global aspects of teacher 
knowledge (e.g. Bowers & Stephens, 2011; Zbiek et al., 2007), may not be sufficient to ensure a 
teacher’s use of technology enhances mathematical instruction. The missed opportunities to 
transform pupils’ maze-solving strategies into more formal statements of the geometric properties of 
reflection, using precise mathematical terminology to make connections between the maze activities 
and the aims of the lesson, suggest that mathematical knowledge for teaching using technology has 
a significant role to play in successful technology integration. Thus, whilst highlighting the role of 
teachers’ conceptions in technology integration is important, this paper has argued that the 
significance of mathematical knowledge for teaching using technology should not be overlooked 
nor underestimated.  

References 

Bowers, J., & Stephens, B. (2011). Using technology to explore mathematical relationships: a 
framework for orienting mathematics courses for prospective teachers. Journal of Mathematics 
Teacher Education, 14(4), 285–304.  

Bretscher, N. (2011). A survey of technology use: the rise of interactive whiteboards and the 
MyMaths website. In M. Pytlak, T. Rowland & E. Swoboda (Eds.), Proceedings of the Seventh 
Congress of the European Society for Research in Mathematics Education CERME7 (pp. 2228–
2237). Poland: Rzeszow. 

Bretscher, N. (2014). Exploring the quantitative and qualitative gap between expectation and 
implementation - a survey of English mathematics teachers’ use of ICT. In A. Clark-Wilson, O. 
Robutti & N. Sinclair (Eds.), The Mathematics Teacher in the Digital Era (pp. 43–70). 
Dordrecht: Springer. 



Bretscher, N. (2015). Mathematical Knowledge for Teaching using Technology. Unpublished PhD 
thesis, King’s College London. 

Kendal, M., & Stacey, K. (2001). The impact of teacher privileging on learning differentiation with 
technology. International Journal of Computers for Mathematical Learning, 6(2), 143–165.  

Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A Framework 
for Teacher Knowledge. Teachers College Record, 108(6), 1017–1054.  

Noss, R., & Hoyles, C. (1996). Windows on Mathematical Meanings: Learning Cultures and 
Computers. Dordrecht: Kluwer Academic Publishers.  

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary Teachers' Mathematics Subject 
Knowledge: the Knowledge Quartet and the case of Naomi. Journal of Mathematics Teacher 
Education, 8, 255–281.  

Ruthven, K. (2007). Teachers, technologies and the structures of schooling. In D. Pitta-Pantazi & G. 
Philipou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in 
Mathematics Education CERME5 (pp. 52–67). Cyprus: Larnaca. 

Shulman, L. S. (1986). Those Who Understand: Knowledge Growth in Teaching. Educational 
Researcher, 15(2), 4–14. 

Thompson, A. G. (1992). Teachers' beliefs and conceptions: a synthesis of research. In D. A. 
Grouws (Ed.), Handbook of research on mathematics teaching and learning pp. 127–146). 
Oxford: Macmillan.  

Zbiek, R. M., Heid, M. K., & Dick, T. P. (2007). Research on Technology in Mathematics 
Education: a perspective of constructs. In F. K. Lester Jr (Ed.), Second handbook of research on 
mathematics teaching and learning. Charlotte NC: Information Age Publishers. 



What influences in-service and student teachers use of MathCityMap? 
 

Iwan Gurjanow1, Matthias Ludwig2 and Joerg Zender3 
1Goethe Universität-Frankfurt am Main, Faculty of Mathematics and Computer Science, Germany; 

gurjanow@math.uni-frankfurt.de 
2Goethe Universität-Frankfurt am Main, Faculty of Mathematics and Computer Science, Germany; 

ludwig@math.uni-frankfurt.de 
3Goethe Universität-Frankfurt am Main, Faculty of Mathematics and Computer Science, Germany; 

zender@math.uni-frankfurt.de  

At the Goethe University Frankfurt am Main a new digital tool was developed to easily create 
mathematics trails as a mathematical outdoor activity aimed at school education, called 
MathCityMap. Following the articles and studies of many others, the usage of a new tool is quite an 
issue for teachers. Following some teacher training activities offered by our team, we offer interim 
results of user behavior based on data from an online survey. Our results can be useful for the 
implementation other digital tools. 

Keywords: Mathematics activity, handheld devices, computer uses in education, teacher education. 

Introduction 
In their publication “Learning Outside the Classroom” the English and Welsh Department of 
Education and Skills strongly recommended that more lessons should take place outside of the 
classroom. They listed many benefits “nurture creativity, develop skills, improve attitude to 
learning, stimulate and improve motivation” just to name a few. (DfES, 2006) 

The advantage is quite obvious, going outdoors means to encounter real life objects. For 
mathematics education, it is possible to create authentic tasks such as: What is the height of a 
certain building? how many stones have been used to build that wall over there? how much water is 
in that pond? and so on. Tasks such as these immediately require many process competences such as 
problem solving, reasoning and proof, communication, connections and representations. In the early 
1980s Blane and Clark proposed the idea to connect those kind of tasks to form a mathematics trail. 
This requires a map on which to find the tasks, a description of the tasks (both together is called the 
trail guide) and then you can start to walk around and solve mathematical problems. (Blane & 
Clark, 1984) 

In short, a mathematics trail is a set of mathematical outdoor tasks in walking distance. To solve the 
tasks you normally will need tools like a measuring tape and so on, which should be listed in the 
trail guide. 

Although mobile devices and computers are widely used in every aspect of our daily lives 
(especially among pupils), they play a small role in education (Chen & Kinshuk, 2005). Going on a 
mathematics trail could be greatly enhanced by the use of mobile devices, since they allow learning 
to occur in an authentic context and extend to real environments. At the Goethe University of Frank-
furt am Main we started the MathCityMap Project (MCM) which combines traditional mathematics 
trails with the opportunities of new technologies. In 2013 the first ideas were made concrete 



(Ludwig, Jesberg, Weiss, 2013), but it took until 2016 to finally launch an accompanying web portal 
and mobile application. These have been released mainly for teachers to use in class, but are openly 
available to anyone who wishes to use it. 

In spring 2016 we started to promote mathematics trails in combination with MCM by providing in-
service teacher training and student courses at the university. Although the feedback on the training 
and courses was highly positive, the real usage of the MCM tools falls short of our expectations. In 
this article, we investigate reasons for this phenomenon we have encountered. 

Theoretical background 
Challenges creating a mathematics trail 

Many mathematical tasks today are contextualized and appear to be realistic. But are they authentic? 
Following the definition Vos (2011) has given, an object is authentic, if it is clearly not created for 
educational purposes. Consequently, it is not easy to find authentic tasks. The objects in the tasks of 
MCM can be described as real-life objects, however, the authenticity of the tasks depends on the 
creators. We provide assistance by offering training alongside best-practice examples. 

Usually the creation process of a mathematics trail consists of designing appropriate tasks and the 
trail guide or trail booklet (Cross, 1997). On the one hand, creating the tasks can be challenging for 
teachers as studies have shown (Jones & Pepin, 2016). On the other hand, manually putting the 
tasks together into a trail guide which should also contain a map overview and a title page, may be 
time consuming.  

Difficulties integrating new technologies into mathematics classes 

Given the availability of new technology in schools, questions have always arisen such as, do 
teachers work with the new tools? how do they use them? and so on. Drijvers made a study in 2012 
about the factors for successful use of new technology amongst teachers. One of the three important 
factors is the role of the teacher (Drijvers, 2012). In Germany, a majority of teachers report to have 
not enough time alongside their daily tasks at school (Schneider, 2015 p. 20). Consequently, the 
time a new tool needs to be set up is an important issue. The MathCityMap project tries to simplify 
the creation process of designing tasks and trails to make it less time consuming for teachers.  

In addition, Kuntze, Siller and Vogl (2013) have shown that both pre-service and in-service teachers 
self-perception towards mathematical modelling is mainly negative. Especially the in-service 
teachers lack of knowledge about new technologies and modelling. They feel unprepared for 
modelling by their university education. Pre-service teachers on the other hand feel a lack of 
diagnostic pedagogic skills and feel unable to give good hints to the pupils. There is a difficulty to 
integrate modelling into classes, especially with new technologies. 

GPS-based applications in mathematics education 

Two examples of applications in mathematics education, that already successfully use mobile GPS-
data, are Wijers, Jonker & Drijvers (2010), who developed a game which allows students to walk 
along the shape of geometric objects outside the school, and Sollervall and de la Iglesia, who have 
developed a GPS-based mobile application for embodiment of geometry (Sollervall & de la Iglesia, 
2015) 



The MathCityMap project 

The intention of the MathCityMap (MCM) project is to automate many steps in the creation of the 
mathematics trail booklet/guide and to provide a collection of tasks and trails that can be freely used 
or just viewed to get inspiration for own tasks. Furthermore, it gives users (e.g. groups of pupils) the 
possibility to go on a mathematics trail more independently by using mobile devices’ GPS functions 
to find the tasks location, by giving feedback on the users answer and by providing hints in the case 
that one got stuck at a particular task. The core of the MCM project can be divided into two parts, 
the MCM web portal and the MCM app. 

MCM web portal - www.mathcitymap.eu 

The web portal is a mathematics trail management system. After a short registration, the user can 
view public trails and tasks or create his own tasks and trails by typing in the necessary data (e.g. 
position, the task itself, the answer, an image of the object etc.) into a form (see Figure 1). For every 
mathematics trail, the mathematics trail booklet can be downloaded as PDF or accessed via the 
MCM App (see Figure 2). It contains all task information, a map overview and a title page. 

   

Figure 1: The MCM web portal form for tasks 

MCM app for mobile devices 

The MCM app allows the user to access mathematics trails created within the web portal. The trail 
data, such as images and map tiles, can be downloaded to the mobile device. After this procedure, it 
is possible to use a trail without an internet connection (see Figure 2). This design decision 
minimizes technical issues when using the app without mobile internet or in an area with low 
connectivity. Furthermore, the app offers an open street map overview for orientation purposes, 
feedback on the entered answers and a stepped hint system. The hint system enables pupils to solve 
the tasks independently and additionally has a positive impact on learning performance, learning 
experience and communication (Franke-Braun, Schmidt-Weigand, Stäudel, & Wodzinski, 2008).  



           

Figure 2: Screenshots of the MCM App 

To describe the pedagogic functionality of MCM, we use the model by Drijvers, Boon and Van 
Reeuwijk (2010). It divides digital technologies into three groups of didactical functionalities: (a) do 
mathematics, (b) practice skills, (c) develop concepts. MCM offers mathematical tasks at real life 
objects where the user mainly can practice his skills.  

Research question 

Following the teacher training events, we had expected more teachers to become active by creating 
own mathematics trails with MCM. This leads us to the research question: 

Why do (and don’t) in-service teachers and student teachers use MathCityMap? By this question we 
follow Drijvers study of the usage of digital tools by teachers (Drijvers, 2012). 

Methodology 
To promote MathCityMap as a digital tool (and therefore the usage of mathematics trails in school) 
we have implemented three teacher trainings with 143 participants and two university student 
courses with 30 students during spring/summer 2016. To evaluate the trainings and gather further 
information for future improvements of the MCM tool, an online questionnaire was created. 
Additionally, we have analyzed the usage statistics. 

Teacher training 

The training is a half-day intensive training for in-service teachers. Since they have already studied 
mathematics and have a lot of teaching experience, we keep the theoretical parts on outdoor 
mathematics and task design rather short and prefer to go out on a prepared mathematics trail so 
they can experience this kind of activity. Later on, we also let them find tasks and focus more on the 
handling of the web portal and the app. After this course every teacher will have experienced doing 
mathematics outdoor with MCM, but also how to create new tasks in the web portal. 

Student courses 

The student courses took place at Goethe-University in Frankfurt (11 students) and the University of 
Potsdam (19 students) in the summer semester of 2016. The following topics formed part of the 
seminar: Theoretical introduction to mathematics trails, introduction to the MCM App and going on 



a mathematics trail with the app, aspects of outdoor task design, creating new tasks and setting them 
up in the MCM web portal, arranging a mathematics trail, testing the trail with a school class (grade 
nine), reworking the trail, testing the trail with another class (grade eight). Compared to the teacher 
trainings the students had to really engage themselves in mathematics trails with MCM. 

Online survey 

About 200 people (143 participants of the teacher trainings plus registered users of the web portal), 
who have agreed to receive e-mails about MCM, were invited to take part in the survey. Twenty 
(eight students and twelve teachers) of them completed the questionnaire.  

The online survey consists of 27 items, from which twenty are closed questions or statements and 
seven are open text fields. The questionnaire is divided into five sections: 

1. General Information (Five closed questions)  
Sample item: How did you hear about MathCityMap? 

2. Usage of the MCM web portal (Seven mainly closed questions)  
Sample item: Do you already have created a task in the web portal? 

3. Statements about the MCM web portal (Seven 5-point Likert scale items: I do not agree – I 
agree) 
Sample item: The interaction between web portal and app is easy to understand. 

4. Feedback on MCM (Four mainly open questions)  
Sample item: Which are the reasons for you to use MathCityMap? 

5. General use of digital tools in mathematics classes (Four closed and open questions)  
Sample item: What are your requirements for using a digital tool in mathematics classes? 

Results 
Questionnaire 

Four of twelve teachers stated that they had created their own tasks. Two of them had already used 
the mathematics trail with a class. All eight students had created tasks and went on a mathematics 
trail, because it was part of the seminar. 

Due to the low number of participants we report the reasons why MathCityMap was used or is 
going to be used and the reasons why it was not used yet in a qualitative way by forming categories. 
The answers were collected by an open text field, so multiple reasons could be given. The following 
categories are sorted by the number of mentions. 



  

Figure 3: results of the survey about the reasons for using / not using MCM (13 / 8 persons in total, 
open text answers) 

If we take a look at the things teachers do require from a digital tool to be used by them, MCM is 
doing quite fine. MCM is easy to get and free to use. It is not time consuming to learn it and some 
of the teachers already have positive experiences (see Figure 4). 

 

Figure 4: results of the 
survey about the 

requirements to use a digital 
tool in class (17 persons in 

total, preset answers, several 
selections possible) 

 

 

 

 

 

Usage statistics 

Independent of the online survey, we also analyzed the statistics relating to the web portal and the 
app to describe the current state. In September 2016 74 users were registered in the web portal. 
Thirty of these were in-service teachers who participated in the trainings, about 20 were students 
who were part of the student courses. The other users were not part of the trainings or courses. In 
total 33 unique users (45%) created 140 tasks. About 25 mathematics trails were created by 22 
unique users (30%). The app has been installed 210 times which means that there must be some 
people who use only the app, without being registered in the portal (e.g. pupils).  



Discussion 
MathCityMap as a digital tool seems to be mainly used as the mathematics trail idea is considered 
positively (high motivation for students and connecting mathematics to the reality). Hereafter the 
integration of digital tools in mathematics classes is another reason to use MCM (see Figure 3).  

The lack of time, difficulties in creating appropriate tasks and the integration into the current lessons 
are the most mentioned reasons for why MCM had not yet been used. However, the findings also 
suggest that the task and trail creation processes in the web tool might be too complex at its current 
state (see Figure 3). All of these reasons could be interdependent. If one has difficulties in finding 
tasks or difficulties in integrating the mathematics trail into the lessons, it will take more time to 
solve these problems. Since many teachers report that they are short of time, this might lead to not 
using MCM (Kuntze, Siller, Vogl 2013, Schneider 2015). 

Conclusions 

In our case the reasons for not using the tool (web portal and app) were mainly identified not in the 
tool itself, but in the mathematics trail concept (creating tasks, implementing the trail in classes). 
The teacher training events and student courses need adjustments so that they pay more attention to 
the following identified difficulties: 

1. Higher focus on task design – guidance, best practice examples, blueprint tasks which can be 
easily adopted to the participants’ school surroundings. 

2. Creating a teaching concept – concrete example of how to integrate mathematics trails in 
combination with MCM into mathematic lessons for a particular topic. 

In addition, ‘doing mathematics outdoors’ could be integrated into the school curriculum to increase 
its significance. On the technical side, further research is needed on how to improve the usability of 
the MCM web portal to make the creation process more intuitive. 
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The aim of this paper is to investigate the potential of Ruthven’s (2009) framework the Structuring 
Features of Classroom Practice (SFCP) as a tool to analyze empirical data to conceptualize and 
analyze teachers’ reasoning about technology integration in the mathematics classroom. The 
framework is tested on interview data from a Swedish design research project seeking to develop 
design principles for Classroom Response System (CRS) tasks. The results show that the framework 
captures a large part of teachers’ ways of reasoning, while the parts it does not capture are related 
to students’ attitudes and behaviors. If the SFCP framework aims at capturing key features of 
classroom practice, and is to be built on a system of constructs closer to the ‘lived world’ of teacher 
experience and classroom practice, it would benefit from an extension.  

Keywords: Technology integration, framework, classroom response system.  

Introduction 
Recent years have seen a remarkable increase in technology investments in education, and 
nowadays many teachers and students have constant access to computers or tablets in the classroom 
(OECD, 2015). The reasons for these investments are likely related to expectations that digital 
technology can enhance students’ learning, and there are several studies that suggest this (e.g., 
Cheung & Slavin, 2013; Li & Ma, 2010; Lynch, 2006). However, the mere presence of digital 
technology in the mathematics classroom does not guarantee improved student learning. For 
instance, a report on PISA 2012 (OECD, 2015) showed that increased time spent with the computer 
at school can decrease students’ learning in mathematics. It may be possible to explain these 
ambiguous findings by studying how the technology was used in the classroom (Drijvers, 2013; 
Hattie & Yates, 2014). Nevertheless, integrating technology in the classroom seems to present a 
challenge, and one of the most important factors influencing successful integration is the teacher’s 
expertise (e.g., Drijvers, 2013; Ruthven, 2013). Hence it is important to learn more about how to 
successfully integrate the technology within mathematics education. There is a need for practical 
analytical research tools and frameworks that offer the potential to analyze teachers’ technology 
integration in mathematics. A commonly used framework, derived from Shulman’s (1987) 
pedagogical content knowledge, is Koehler and Mishra’s (2009) Technology Pedagogical and 
Content Knowledge (TPACK), which focuses on the aspects of teacher knowledge that are needed 
for the effective use of technology in the classroom. Other researchers have used the theory of 
“instrumental orchestration” as an interpretive framework for analyzing technology-mediated 
teaching and learning (cf. Drijvers, Doorman, Boon, Reed, & Gravemeijer, 2010; Trouche, 2005). 
This theory focuses on a process of “instrumental genesis” whereby a tool evolves into a functional 
tool and, simultaneously the teacher evolves into a proficient user. Another recently developed 
framework for analyzing and identifying critical aspects of technology integration in the 
mathematics classroom is Ruthven’s (2009) Structuring Features of Classroom Practice (SFCP). 
TPACK and “instrumental orchestration” are commonly used frameworks for analyzing technology 



integration in the classroom, but as Ruthven (2009, 2013) stresses, the SFCP framework includes 
aspects such as the complexity and importance of a teacher’s “craft knowledge”, which other 
frameworks largely overlook. This is the main reason I have chosen to explore the SFCP 
framework. A second reason is that the SFCP framework is relatively new and needs to be tested 
using empirical data from other contexts (Ruthven, 2009). Thus, my contribution to research is that 
I have investigated the potential of this framework using interview data from a Swedish design 
research project seeking to develop design principles for classroom response system1 (CRS) tasks in 
a multiple-choice format. Hence, the aim of this paper is to investigate the potential of the SFCP 
framework as a tool to analyze empirical data to conceptualize and understand teachers’ reasoning 
about technology integration in the mathematics classroom.  

Participants, context and data  
The framework was tested on interview data from two cases of CRS integration in mathematics 
classrooms within grades 6-9 in lower secondary school in one of Sweden’s largest municipalities. 
One teacher participated in Case 1, and six teachers in Case 2. The reason for working with only one 
teacher in Case 1 was that this case was a pilot study, which prioritized the depth of the intervention 
and analysis in the beginning of this design research project. Further, the choice of teachers at these 
particular schools was partly due to the fact that during these academic years, I was a mentor to 
mathematics teachers at these schools. In addition, the schools were one-to-one schools, where all 
students had access to their own computer. These teachers were not explicitly chosen for the 
research project, they just represent ordinary Swedish teachers in ordinary schools. The reason for 
working with six teachers in Case 2 was that all of the mathematics teachers at that particular school 
wanted to improve their teaching and asked me to guide them. Further, the teachers had no (or little) 
experience in utilizing a CRS, and had received training in how to use the digital resource in 
practice. In both cases, CRS supported with specific tasks was used to engineer mathematics 
classroom discussions that could both elicit evidence of learning and also give the teacher an 
opportunity to advance the students’ mathematical thinking. These tasks were often used in the 
beginning of the lessons or after a short lecture on the topic. Additionally, in Case 1, tasks were also 
used to evaluate the lessons and obtain information about the students’ knowledge at the end of 
lessons. Based on the teachers’ own wishes in Case 2, the teachers also used flipped classroom 
method to gain more time for classroom discussions, and Peer Instruction method as support for 
orchestrating the discussions. Based on the teachers’ lesson goals and a pilot of the design 
principles, the researcher constructed and supplied suggestions for tasks to be used with the CRS. In 
both cases the topic of fractions was chosen, determined by the timing of the study along with the 
teachers’ wishes. The teachers used and evaluated a total of 31 tasks. Figure 1, which follows, 
shows an example of one evaluated task type with different multiple defendable answers (Beatty, 
Gerace, Leonard, & Dufresne, 2006).  

                                                 
1 Using a computer or smartphone, students can answer their teacher’s question and the teacher can instantly see the 
results compiled in a chart in the software program and display this for all the students on a shared screen.   



 
All CRS tasks were built on the idea that tasks that produce a spread in students’ answers, are more 
likely to prompt a mathematical classroom discussion (e.g., Crouch, & Mazur, 2001). This 
particular task was developed to be used as a repetition of some important properties of fractions 
that students had already encountered. Semi-structured interviews were conducted to support one 
phase of the evaluation of the intervention. In order to explore the SFCP framework, I chose to test 
the framework using the data from one interview with the teacher in Case 1 and one group interview 
from Case 2. The interviews were audio-recorded and then transcribed and analyzed in NVivo 10.  

The SFCP framework 
The idea of the SFCP framework is to support the identification and analysis of certain crucial 
features of technology integration (Ruthven, 2009). The framework was developed by synthesizing 
and extending concepts and constructs from earlier research on classroom organization, interaction 
and teacher craft knowledge, which resulted in five crucial features (Ruthven, 2009). These features 
of classroom practice shape the ways in which teachers integrate new technologies (Ruthven, 2013). 
Ruthven’s own summary of the framework is presented in Table 1 (Ruthven, 2013, p. 12).  

Structuring 
feature 

Defining characterization Examples of associated craft knowledge related 
to incorporation of digital technologies 

Working 
environment 

Physical surroundings where 
lessons take place, general 
technical infrastructure 
available, layout of facilities, 
and associated organization 
of people, tools and materials 

Organising, displaying and annotating materials 
Capturing or converting student productions into 
suitable digital form  
Organising and managing student access to, and use 
of, equipment and other tools and materials 
Managing new types of transition between lesson 
stages (including movement of students) 

Resource 
system 

Collection of didactical tools 
and materials in use, and 
coordination of use towards 
subject activity and curricular 
goals 

Establishing appropriate techniques and norms for 
use of new tools to support subject activity 
Managing the double instrumentation in which old 
technologies remain in use alongside new 
Coordinating the use and interpretation of tools 

Activity 
structure 

Templates for classroom 
action and interaction which 
frame the contributions of 
teacher and students to 
particular types of lesson 
segment 

Employing activity templates organised around 
predict-test-explain sequences to capitalise on the 
availability of rapid feedback 
Establishing new structures of interaction involving 
students, teacher and machine, and the appropriate 
(re)specifications of role 

Curriculum 
script 

Loosely ordered model of 
goals, resources, actions and 

Choosing or devising curricular tasks that exploit 
new tools, and developing ways of staging such 

Figure 1: A constructed CRS task with multiple defendable answers 



expectancies for teaching a 
curricular topic, including 
likely difficulties and 
alternative paths 

tasks and managing patterns of student response 
Recognising and responding to ways in which 
technologies may help/hinder specific processes and 
objectives involved in learning a topic 

Time 
economy 

Frame within which the time 
available for class activity is 
managed so as to convert it 
into “didactic time” 
measured in terms of the 
advance of knowledge 

Managing modes of use of tools so as to reduce the 
“time cost” of investment in students’ learning to 
use them or to increase the “rate of return” 
Fine-tuning working environment, resource system, 
activity structure and curriculum script to optimise 
the didactic return on time investment 

Table 1: The SFCP framework components 
Method of analysis 

The interview data was used as a means to explore the potential of the SFCP framework. In this 
exploration, the framework was used as an analytical tool to capture teachers’ reasoning about 
utilizing a CRS. To support the exploration of the framework’s potential, I used two analytical 
questions: 1) How much of teachers’ reasoning ends up in the various categories in the SFCP 
framework? and 2) Are there parts of teachers’ reasoning that do not fit the categories of the SFCP 
framework? If so, does a new theme emerge? To answer these questions, I conducted a content 
analysis with systematic quantification (Kvale & Brinkmann, 2009), with text segments in the 
transcriptions of the interviews coded in NVivo 10 based on the categories in the SFCP framework. 
I then compiled the text segments from every category and wrote an accompanying narrative.  

Summary of the content analysis  
Due to space limitations, the outcome of this content analysis is not presented in detail here; instead, 
some of its main findings are discussed. 

Working environment 

The teacher in Case 1 pointed out that when the projector screen is pulled down it blocks a large 
part of the whiteboard surface. This can constrain the usage of the CRS. When the teacher wants to 
write students’ solutions to or explanations of CRS tasks on the whiteboard she has to pull up the 
projector screen and blacken the computer projection, and then pull the screen down again to 
continue the CRS tasks. This may constrain the possibility to conduct a classroom discussion. 
Further, in both cases the teachers declared that students sometimes do not bring their computer, 
and sometimes do not have access to the internet. Students without a functional computer or internet 
access constrain the work in the classroom. The teachers solved this by letting students work with a 
peer who had a computer.  

Resource system 

The teacher in Case 1 emphasized the importance of combining CRS tasks aiming at engineering a 
discussion with a demonstration of methods. This suggests that the teacher needed to coordinate 
these two curricular elements to achieve the lesson’s goal. The teacher also mentioned that students 
seemed to be reluctant to work out solutions to the CRS tasks on paper before submitting an answer 
in the software program. According to the teacher, this constrained her opportunity to identify and 
see students’ reasoning behind their answers before the discussion. A teacher in Case 2 did not 



believe students needed access to paper and pencil before responding to a task, but thought this 
could be useful afterwards if they were to proof their own or others’ answers. Further, teachers in 
Case 2 told of struggling with the software and launching tasks in the wrong mode. This gave all the 
students access to all the tasks at once, which resulted in the teachers decision to shut down the CRS 
work for that particular lesson. They then discussed the possibility of trying out the different modes 
before the lesson.  

Activity format 

The teacher in Case 1 said that the CRS tasks were a great way to get all of the students focused. 
The students interacted with their computer, and were forced to contribute with an answer to the 
tasks. They then interacted with their peers through peer and whole-class discussions. The activity 
formats used in both cases were: first alone, then peer discussion, and finally a whole-class 
discussion; and also first alone and then a whole-class discussion. One teacher mentioned that it was 
hard to decide whether to orchestrate a whole-class discussion or a group discussion in tasks with 
multiple correct answers when applying peer instruction, which holds that students benefit from a 
group discussion if 30-70% of the students responding correctly. Further, the teachers also discussed 
the importance of allowing time before the students are to respond to the CRS task. Several of the 
teachers let the students take as much time as they needed, which led to some students having to 
wait a couple of minutes. 

Curriculum script 

Teachers mentioned that the CRS tasks made them aware of some student misconceptions, and gave 
them an opportunity to deal with them. Further, the teacher in Case 1 pointed out the improvement 
of feedback, both the possibility to use instant feedback through the computer in CRS tasks and the 
feedback in the peer and whole-class discussions related to the discussion tasks. The technology and 
tasks 1) gave the teacher information about students’ knowledge, and 2) added a new form of 
feedback resource which, together, developed the teacher’s curricular script. Moreover, in Case 2, 
several teachers identified and talked about different types of CRS tasks and their characteristics, 
and how they had succeeded in engineering a discussion. One teacher realized that you could not 
always have tasks with several correct answers, because the students quickly realize this. The 
teachers also stressed that it is hard to conduct whole-class discussions on CRS tasks, and one 
teacher mentioned the importance of having a clear teaching strategy for every CRS task to improve 
the whole-class discussion.  

Time economy 

The teacher in Case 1 believed that having CRS tasks at the end of the lesson makes students more 
focused on mathematics for a greater part of the lesson. These tasks improved the “rate of return” in 
two ways: firstly, students worked with mathematics for a larger part of the lesson; secondly, the 
software program automatically gave students instant feedback on their answers. One teacher said 
she would continue using CRS, although it takes time to prepare. Thereafter, she mentioned that 
“it’s worth the time because it activates every student…when I activated one student who usually 
doesn’t participate she said ‘ahaaa’ in front of the whole class. It was amazing”. Several teachers 
pointed out that the discussions take time, and that it is a challenge to decide how long to work on 
each task and how many tasks to use in one lesson.  



Results 
In this section I present the results of the analysis of the framework’s potential according to the 
analytical questions.  

How much of teachers’ reasoning can be categorized within the SFCP framework? 

Table 2 shows the coverage of the different categories in the transcription of the interviews 
regarding teachers’ reasoning in Cases 1 and 2. Some text fragments were coded in several 
categories. I have also rounded the figures. All features captured some parts of the teachers’ 
reasoning, and a total of 90% of the interview in Case 1 and 65% of the group interview in Case 2 
were captured by the framework.  

 Table 2: The SFCP frameworks coverage of teachers’ reasoning in the interviews 

Are there parts of teachers’ reasoning that do not fit the categories of the SFCP framework? 
If so, does a new theme emerge?  

Approximately 10% of teachers’ reasoning in Case 1 and 35% in Case 2 did not fit the SFCP 
framework categories, and when the parts the framework did not capture were analyzed a clear 
theme emerged. Almost all reasoning that the framework did not capture was related to students’ 
attitudes and behaviors. I will continue with a summary on this theme. 

All teachers reasoned about their students’ attitudes and behaviors concerning the lessons. Some 
classes and students greatly enjoyed working with CRS tasks in mathematics. As one teacher said, 
“they think it’s fun to discuss things”. Another teacher reported that “the students were crazy about 
the CRS tasks”, and another talked about how the students want very much to respond correctly to 
the tasks and demanded to do it again in the next lesson if they failed the first time. In some classes 
the students were eager to discuss the CRS tasks; the teacher commented that “the students want to 
hear their peers’ opinion and they want to tell the class about their own perception”. Further, 
teachers also mentioned that some students did not want to participate, especially in the discussions, 
during which they simply sat quietly. Some teachers had difficulty in handling students who wanted 
to respond quickly and could not wait for others to think and respond to the tasks. All the teachers in 
Case 2 talked about the difficulty of getting students to do the homework and to be prepared for the 
work with the CRS tasks in the classroom. One teacher mentioned: “In one of my classes, only one 
student had done the homework and watched the flipped movie at home.” 

Conclusions and discussion  
The exploration of the SFCP framework showed that it captured a large part of teachers’ reasoning 
about technology integration in the mathematics classroom. Most of the teachers’ reasoning was 
related to features of activity format, curriculum script and resource system. My conclusion is that 
the SFCP framework could be useful as an analytical tool for conceptualizing and analyzing 

 Working 
environment 

Resource 
system 

Activity 
format 

Curriculum 
script 

Time economy 

Case 1 5% 20% 25% 20% 20% 

Case 2 5% 15% 15% 25% 5% 



teachers’ reasoning about technology integration in the mathematics classroom in the context of 
Sweden and CRS technology. However, the framework did not capture all the teachers’ reasoning 
about important aspects of technology integration. Almost all of the reasoning that did not fit any 
category was related to students’ attitudes, and students’ behavior. According to Ruthven (2009), 
the SFCP framework aims at identifying and making key structuring features of classroom practice 
analyzable for the integration of technology into a classroom. Further, Ruthven (2009) states that the 
benefit of the SFCP “is in providing a system of constructs closer to the ‘lived world’ of teacher 
experience and classroom practice” (p. 145). This study’s results indicate that students’ attitudes and 
behaviors are an important factor that teachers reason about when discussing the implementation of 
technology in the mathematics classroom in Sweden. Like all five features of the SFCP, I suggest 
that students’ attitudes and behavior are also important factors for successful technology integration 
in classroom practice. Research on CRS points out that students’ attitudes and behaviors are a 
challenge that teachers face (e.g., Kay & LeSage, 2009; King & Robinson, 2009; Lee, Feldman, & 
Beatty, 2012). If the SFCP framework aims at capturing key features of classroom practice and is to 
be built on a system of constructs closer to the ‘lived world’ of teacher experience and classroom 
practice, it would also benefit from taking into consideration students’ attitudes and behaviors. This 
could be done by adding a new, sixth construct to the framework relating to teacher craft knowledge 
for managing different types of student behaviors or attitudes.  

The main contribution of this paper is that it investigates the potential of the SFCP framework with 
empirical data from a new context and new types of data. It was partially tested on data from group 
interviews in the context of CRS integration in mathematics at Swedish lower secondary schools. 
Further, this study and the conceptualization of teachers’ reasoning about CRS integration can 
contribute to the knowledge regarding challenges involved with utilizing a CRS in the mathematics 
classroom. This conceptualization may also be useful for teachers intending to integrate CRS into 
their practice. For instance, they could gain knowledge about different activity formats and common 
challenges, as well as how to deal with these challenges. Finally, the results from this study need to 
be further investigated with empirical data from similar or other contexts.  
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Abstract: Knowledge of instructional software programs that can meet mathematical curricula 
objectives, motivate and engage students in problem-based learning/inquiry is essential for teachers. 
This is the first of a series of studies tracking the implementation of instructional technology in a 
mathematics methods course. Data were collected from surveys, power point presentations of an 
instructional technology lesson, and the reflections written post lesson presentations. The data were 
used to classify where preservice teachers were on the five steps Apple Classroom of Tomorrow 
(1994) inclusion of instructional technology in the classroom. Of the 24 preservice teachers, 21 were 
solidly on Step 2 – limited use of technology. There were 3 who stood at Step 3 creating their lesson 
plans to use technology on a daily basis. 

Keywords: Instructional technology, preservice teachers, mathematics education. 

Introduction 
Teaching mathematics in 2016 requires far more than a deep understanding of mathematics. Multiple 
pedagogical methods and strategies are needed to address student learning needs. Today, teachers 
need to use instructional technology that applies scientific processes and stored knowledge to solve 
practical tasks (Earle, 2002). Knowledge of computer software that can meet curricula objectives, 
motivate students, and engage students in problem-based learning and inquiry is essential. The ground 
work for applying technology with intent and purpose should be part of the responsibility of teacher 
preparation programs. Defining instructional technology in education has been evolving since the 
American Educational Communications and Technology group produced a broad definition in 1963 
that matched the elements of pedagogical courses of the time (Ely, 1963, p. 18-19). While the 
technology sections of learned societies grappled refining the definition of instructional technology, 
the Association of Mathematics Teacher Educators (AMTE) created standards for the preparation of 
preservice mathematics teachers for grades Pre-Kindergarten to grade 12 (PK-12). These standards 
devoted a section of the Adolescence to Young Adult (AYA) grades (C.1.6. Using Mathematical tools 
and technology) identifying the types of mathematical software preservice teachers should master. 
AMTE explained C.1.6. with the following statement: 

Well-prepared beginning teachers of secondary mathematics must be proficient with tools and 
technology designed to support mathematical reasoning and sense making, both in doing mathematics 
themselves and in supporting student learning of mathematics. In particular, they should develop 
expertise with spreadsheets, computer algebra systems, dynamic geometry software, statistical 
simulation and analysis software, and other mathematical action technologies, as well as other tools 
such as physical manipulatives (AMTE, 2017, p.133). The AMTE elaboration aligns with the goals 
of this research to help mathematics preservice teachers become competent and frequent users. 



Integration of instructional technology into curricula issues 
Ertmer, Conklin, Lewandowski, Osika, Selo, and Wignal (2003) found that preservice teachers 
needed specific ideas and examples of how to put instructional technology into their mathematics 
instruction. Wang’s (2004) research noted that goal setting increased self-efficacy. Dexter and Riedel 
(2003) identified clinical educators use of instructional technology as a key to helping preservice 
teachers increase their classroom technology self-efficacy. For this research, instructional technology 
was practiced in the methods course providing teaching ideas and strategies to the preservice teachers. 
A teaching assignment goal required use of a software program following Wang’s (2004) finding.  

Introduction of technology to pre-kindergarten to Grade 12 
In the 1970’s, Apple® created the Apple®II for classroom work. By the 1980s, computers became 
part of some PK-12 classrooms. School districts developed technology plans to implement the use of 
computers at each grade level. However, the districts were missing measurable objectives to track 
and identify the educational impact of computer use by the teachers and student. By the 1990s, schools 
had a computer on every teacher’s desk and computer laboratories. The 2000s students worked with 
personal devices such as Chromebooks and iPads. Graphing calculators span the decades since 
Demana and Waits (1988) noted the importance of creating multiple graphs to grasp a mathematical 
concept.  

Preservice teachers using technology for knowledge production  
Preservice teachers are well versed in the use of electronic devices as are today’s PK-12 students. 
Applying that understanding beyond word processing, communications, and gaming to using 
technology for knowledge production should be part of every teacher preparation program. Doering, 
Hughes, and Huffman (2003) did a five-year study that provided the hardware and software for their 
preservice teachers and content faculty at the University of Minnesota. Initially, they found that 
preservice teachers had solid knowledge of technology use, but integrating technology into daily 
instruction and problem-based learning was not a skill they had. By the end of the study, integrating 
instructional technology into content and pedagogical classes, preservice teachers became productive 
users of instructional technology in their field experiences. Franklin (2004) reported on the attitudes 
of University of Virginia elementary level teacher graduates. The participants noted a clear 
understanding of classroom technology to foster student curiosity and construct ideas. These teachers 
had a deep comprehension of electronic pedagogical content knowledge as the reason for their smooth 
transition to classroom implementation. The use of Web 2.0 tools in the classroom by preservice 
teachers was examined by Sadaf, Newby, and Ertmer (2016). Use Web 2.0 tools to increase learning, 
preservice teachers needed: support of their clinical educator; easy access to those tools; and to hold 
a high level of self-efficacy regarding their ability to help student learning. Only when these elements 
were met did the preservice teachers use instructional technology in their classrooms.  

Assessment scales for instructional technology implementation  
A long term study by, Dwyer, Ringstaff, Haymore, and Sandholtz (1994) working with Apple 
Classroom of Tomorrow (ACOT) examined how teachers adapted their classrooms and pedagogy to 
using technology when provided with multiple computers, an abundance of software, technical 
support and training. The researchers identified a five step progression of how teachers developed 
technology-based pedagogy naming it the ACOT stages of classroom change. Step 1 - Entry. The 



teachers are acquainted with the basic tools of the computer and classroom programs. Step 2 – 
Adoption, the teachers adopted the computer programs for limited use (defined as practice not 
knowledge building). Step 3 – Adaptation, the teacher thoroughly integrated the use of computers 
into the curriculum. This step resulted in students learning more, being engaged with the content, and 
producing better knowledge products. Step 4 – Approbation, teachers who cannot teach without 
computers. Step 5 – Invention, teachers created their own programming that enhanced student 
learning. The ACOT (1994) study noted that teachers’ development was not done in leaps, but moved 
forward in increments over time. As the teachers embraced technology, their pedagogical strategies 
shifted from being teacher-centered to student-centered.  

Theoretical framework 
The researcher selected the ACOT (Dwyer et al., 1994) steps to serve as the theoretical framework 
for this study to judge how preservice teachers developed using technology. The ACOT instrument 
focused on the changes in teacher practice whereas, other instruments focused on the partnership of 
the teacher and the students. The case study descriptive quality lends itself to using the ACOT 
descriptions to define advancement on these steps. This research is to learn how far preservice 
teachers can grow using instructional technology in one semester. 

Method 
This article is the first report of a long term descriptive case study following American preservice 
mathematics teachers in a mathematics methods course that required a lesson using instructional 
technology to be taught during a 90-hour field experience. A case study format fits this research as it 
describes the conditions necessary to produce knowledgeable preservice teacher’s regarding 
instructional technology. The research question is: How far can preservice teachers develop using 
instructional technology on the ACOT Steps in one semester?  

Participants 

The 24 preservice teachers in this study were enrolled in a course entitled Secondary Mathematics 
Methods, which was required for state licensure to teach. Eleven majored in Adolescence to Young 
Adult Mathematics Education (AYA). Thirteen were Middle Childhood Education (MC) 
mathematics. There was one male in each licensure group with 10 AYA females and 12 MC females.  

Setting 

The university is a private, non-profit school in the south-western, urban section of a Midwestern 
state in the USA. There are approximately 8,529 undergraduates and 3,117 graduate students. The 
Teacher Education department conducts classes at the undergraduate and graduate levels. 

Procedure 

In the methods course, a survey was given asking how frequently students used: 1) word processing; 
2) spreadsheets; 3) power point presentations; 4) photomath; 5) Wolfram Alpha; 6) DESMOS; 7) 
GoogleSketchUp; 8) Polling apps; 9) GeoGebra; added in 2016 10) Kahoot. Likert scales from 0-
never used to 5-used all the time were the choices. The course introduced freeware mathematical 
programs, demonstrated them and provided practice teaching. During the clinical experience, the 
preservice teachers were required to create and teach an instructional technology lesson. 



Study history: Equipment survey of partnership schools  

One of the elements needed for preservice teachers to use instructional technology was easy access 
to Web 2.0 tools in the classrooms (Sadaf et al., 2016). This study interviewed the university’s 
partnership school districts to learn what technology was in their classrooms. The schools reported 
that they had invested in computers for all teachers and individual laptops, iPads, or Chromebooks 
for the students. The more frugal districts had multiple computer carts with 30 individual devices for 
classroom use. Regarding educational software programs, freeware was the programming of choice. 
The availability of Web 2.0 tools and software programs allowed the researcher to create an 
assignment goal requiring the use of instructional technology that Wang (2004) recommended.  

The search for mathematical freeware and program criteria  

The criteria used to evaluate the appropriateness of the instructional technology were the eight 
Common Core State Standards Mathematical Practices (CCSSM) (National Governors’ Association 
& Council of Chief State School Officers, 2012) and the eight National Council of Teachers of 
Mathematics (NCTM) Teaching Practices (Leinwand, 2014). Any mathematical program had to 
require students to perform six of the eight Mathematical Practices and the teacher to use all eight 
NCTM Teaching Practices. At an NCTM affiliate meeting, in a Skype session by DESMOS creator 
Eli Luberoff taught the participants to use the program in minutes. At the NCTM Interactive Institute 
2015, the program focused on freeware of GeoGebra, DESMOS, and polling programs to engage 
students in discourse to evaluate the solutions of others. These polling programs required smart 
phones rather than clickers. Wolfram Alpha could be used for higher levels of mathematics. This 
program had many more options for teachers to integrate other content areas. This search for 
instructional technology was not exhaustive. Once these major programs were found, the researcher 
stopped the search. The study included: DESMOS, GeoGebra, Wolfram Alpha, PollEverywhere.  

Data collection 
The data collection began with a survey at the start of the mathematics methods class asking 
preservice teachers how frequently they used software programs. The instructional technology lesson 
plans with preservice teacher reflections were collected after the six weeks of field experience. The 
reflections served as a record of the preservice teachers’ comfort level, frequency, and self-efficacy 
using technology. The preservice teachers presented their instructional technology lesson in a power 
point presentation that included video clips of their teaching with instructional technology, their 
classes discussing and completing the mathematical work, and voting on the most elegant solutions. 
The video tape clips verified what was stated in the lesson plans and reflections. Data were recorded 
regarding the frequencies that the preservice teacher used: instructional technology; had students use 
that software; and the issues that arose while teaching a technology-based lesson.  

Data analysis  
Analysis of survey 

The Survey of Classroom Technology for Knowledge Production was conducted to learn how 
familiar the preservice teachers were with use of instructional technology. The Likert scale scores 
were totaled and measures of central tendency were calculated.  



Assessment of class assignment  

The researcher created an assignment with a goal matching the findings of Wang (2004) to learn what 
level the preservice teachers reached on the ACOT scale of proficiency – could they use and integrate 
technology smoothly into their teaching? Each preservice teacher created and video-taped an 
instructional technology lesson plan using a real world problem for their classes to solve by using a 
mathematical software program. Once the students had solutions, they were grouped and each student 
explained their solution to the group. The group debated the solutions and modified their work to 
create their best solution. Each group presented their work to the class. PollEverywhere was used by 
students to vote on the elegant solution. The projects were graded using the rubric found in Table 1.  

 16 points of the total possible of 21 points is the minimum passing grade 

 
Elements 1 2 3 Score 

1. Completed 
UD lesson plan 
format 

Hard copy of the 
lesson passed in 
with the incomplete 
reflection. The 
lesson plan lacks 
the sections and 
requirements of the 
AYA/MC UD 
Lesson Plan format.  

Hard copy of the 
lesson passed in 
with the completed 
reflection. The 
lesson plan follows 
most of the section 
requirements of the 
AYA/MC UD 
Lesson Plan form 

Hard copy of lesson 
passed in with written 
reflection. The lesson plan 
format follows all the 
requirements of the 
AYA/MC UD Lesson 
Plan format. The 
reflection provides clear 
and thoughtful responses. 

 

2. Use of 
DESMOS, 
GeoGebra, or 
GoogleSketch-
Up 

Your presentation 
shows your attempt 
to use DESMOS, 
GeoGebra, Google-
Sketch-Up to 
present the problem  

Your presentation 
shows your use of 
DESMOS, 
GeoGebra, 
Google-Sketch-Up 
posing the problem 

Your presentation clearly 
shows your mastery of 
DESMOS, GeoGebra, or 
GoogleSketch-Up as the 
presentation mode for 
posing your problem  

 

3. Problem 
solving with 
engaging real 
world problem 

Evidence of the 
students solving a 
mathematical 
problem. 

Evidence of the 
students solving a 
real world math 
problem. 

Evidence of solving an 
engaging, real world 
problem. The problem is 
posted and easily read. 

 

4.Math 
discourse: 
explain,defend, 
challenge the 
ideas of others 

Evidence of 
students engaged in 
classroom 
discourse, but not 
on topic. 

Evidence of 
engaged classroom 
discourse. Types  
of discourse are not 
clear. 

Evidence of classroom 
discourse that includes 
explaining, defending, 
and challenging the 
solutions/ideas of others. 

 

5. Student 
presentations 

Evidence of 
presenting solutions 
with no reasoning. 

Evidence of 
solutions with little 
explanations. 

Evidence of presentations 
explaining/defending 
their solution. 

 

6. Student use 
of polling  

No use of polling 
devices 

Some students use 
polling devices. 

Evidence of the students 
using electronic polling  

 

7. Clear video 
of the voted 
solution. 

No clear result to 
the voting. Or the 
solution is not clear 

Problem solution is 
correct, but not the 
voting.  

Evidence of the problem 
solution selected by the 
class can clearly be read. 

 

Total Score               _______/21 
Table 1: Technology and mathematics project rubric  

During the power point presentations, notes were taken by the researcher regarding the frequency of 
use and the issues that the preservice teachers had when implementing this lesson. Lesson reflections 
were reviewed for common themes and attitudes.  



Results 
The results of the Survey of Classroom Technology for Knowledge Production revealed that the AYA 
preservice teachers used mathematics instructional technology more than the MC preservice teachers 
prior to the methods course. All 24 preservice teachers used word processing, 11 used spreadsheets, 
and 19 used power point presentations. When the preservice teachers reached the specific 
mathematical instructional technology questions, many scores were zero. See Table 2 for median 
scores, standard deviation and standard error measure. 
Table 2: 2015 Survey of Classroom Technology for Knowledge Production, N=24 
     _____________________________________________________________________ 

      Question   1 2 3 4 5 6 7 8 9 10 

     _____________________________________________________________________ 

 Median   5 1 2 0 2 2 0 0 1 0  

 S.D.   0 0.65   0.79   0.2    1.57    1.31   0      0      1.4    0 

 S.E.M.   0    0.13   0.16   0.04   0.32    0.27   0      0      0.29   0 

     _____________________________________________________________________  

The preservice teachers were able to implement the instructional technology lesson to varying 
degrees. The AYA preservice teachers were able to create a real-world problem around which they 
built their lesson using instructional technology. The preservice teachers taught the students how to 
use their selected computer program on one day and the lesson the next day.  

The MC preservice teachers created their real-world problems, but those who taught in grades 4 and 
5 were not able to use any program. Their cooperating teachers believed that this technology was not 
developmentally appropriate for the students. Since a majority of the students in these grades did not 
own smart phones, many of the preservice teachers used Kahoot. The preservice teachers used this 
software program to project questions for voting.  
Table 2a: 2016 Survey of Classroom Technology for Knowledge Production Pre-Field, N=15 

     _____________________________________________________________________ 

      Question   1 2 3 4 5 6 7 8 9 10 

     _____________________________________________________________________ 

 Median   5 3 4 0 1 0 0 2 2 2 

 S.D.   0.52 1.26   1.39   0.60    1.21   0.85   0 .28   1.72   1.34   1.59  S.E.M.   0.14 0.35   

0.39   0.17   0.34   0.24   0.08    0.48   0.37   0.44 

     _____________________________________________________________________  

 
Table 2b: 2016 Survey of Classroom Technology for Knowledge Production Post Field, N=15 

     ___________________________________________________________________ 
      Question   1 2 3 4 5 6 7 8 9 10 

     ___________________________________________________________________ 
 Median   5 2 4 0 0 1 0 1 0 2 

 S.D.   1.3 1.35   1.06   0.52    1.10   1.22   0 .74   1.20   1.10   1.46 

 S.E.M.   0.34 0.35   0.27   0.13   0.28   0.32    0.19    0.31   0.27   0.38 

     _____________________________________________________________________  
The 2015 scores from the project rubric were reported in the following data for Year 1: 
Table 3a: 2015-Data Results from Technology + Mathematics Methods Project Rubric Scores. 
  



_________________________________________________________________ 
Rubric  # 1   2    3     4      5      6   7 N=24 

_______________________________________________________________________ 

Median       3   2       3       3       2       3       3   S.D.  0.64   0.63    

0.51     0.52    0.51    0.26    0.74 

S.E.M.  0.17   0.16    0.13    0.13    0.13    0.07    0.19 

Table 3b: 2016-Data Results from Technology + Mathematics Methods Project Rubric Scores.  
_________________________________________________________________ 
Rubric  # 1   2    3     4      5      6   7 N=9 

_______________________________________________________________________ 

Median       3   3       2       3       3       3       3   S.D.  0.0   0.0    

0.71     0.44    0.0     0.0      0.0  

S.E.M.  0.0   0.0     0.24    0.15    0.0     0.0      0.0 

Over all, the 2015 and 2016 rubric scores were 2 or 3. There was one student who did not do the 
assignment. The preservice teachers were successful having the students vote on the elegant solution 
to their problem. The high mean score with the lowest standard deviation and standard error measure 
confirm the attention the preservice teachers paid to this element of the assignment. The power point 
presentations with video clips demonstrated the ease with which the preservice teachers acquainted 
their classes with instructional technology. This assignment matched the attributes needed for success 
by preservice teachers learning instructional technology found by Ertmer et al., (2003) specific ideas, 
Sadaf et al., (2016) available Web 2.0 tools, and Wang (2004) providing goals. The overall theme in 
the preservice teachers’ reflections found that using instructional technology was a positive 
experience. They solved technology issues including: the internet working only on laptops in half of 
the classroom; no internet accessible; reserving the cart of tablets then found another teacher took the 
cart without regard for the reservation list. Observing the power point presentations and reading the 
lesson reflections for Year 1, the preservice teachers noted the number of times they used instructional 
technology beyond the assignment. Given the one preservice teacher who did not do the assignment, 
20 preservice teachers were solidly on ACOT Step 2 – limited use of technology. Three of the 24 
used some version of instructional technology almost every day placing them on Step 3 – Adaptation 
where they built more lessons implementing instructional technology. For Year 2, there was a wider 
variation in the levels achieved. Three pre-service teachers were at Step1entry use of technology. 
They only used technology for this unit. Ten pre-service teachers achieved Step 2 which is defined 
as limited use of technology. Five pre-service teachers (four AYA, one MC) achieved Step 3 where 
they incorporated technology as a major teaching tool on a regular basis. 

Discussion   
Implications and connections to mathematics teacher education 

Adding program elements for instructional technology into the curriculum for preservice teachers is 
not a simple fix. Instructional technology needs time to present, model, and practice. The research by 
Carlson and Gooden (1999) suggests that the responsibility for teaching preservice teachers to 
integrate technology be done not only in education courses, but also in mathematics classes. If these 
two departments can collaborate sharing this responsibility, the preservice teachers would witness the 
power and benefits of teaching with technology. Preservice teachers need to learn how to use 
instructional technology in order to create student-focused classrooms that engage their students in 
the learning process from their first day of teaching mathematics.  
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The purpose of this paper is to introduce an ongoing Erasmus+ project “Maths Teachers’ Adventure 
of ICT Integration (MTAII)” and its outputs. The main aim of the project is to provide professional 
development for mathematics teachers to integrate Information and Communication Technologies 
(ICT) into their lessons. To achieve this, three intellectual outputs have been designed; an open online 
course (OOC), open educational resources (OER), and an online teacher community (OTC). In the 
scope of the OOC teachers should gain insights about ICT integration into mathematics classrooms. 
Through development and dissemination of OER we aim to help overcome the scarcity of resources. 
Through support of peer teachers and researchers at participating organizations we hope to establish 
an OTC including the teachers participating in the OOC. This paper focuses on the design of the 
three outputs.  

Keywords: Erasmus+ project, online learning, open educational resources, online community, 
professional development 

Introduction 
Numerous research studies (Li, & Ma, 2010; Cheung, & Slavin, 2013) have shown that technology 
integration can play an effective role in tackling the challenges of teaching mathematics. In their study 
Hew and Brush (2007) have determined several barriers of technology integration for teachers: 
resources, institutional constraints, subject culture, attitudes and beliefs, knowledge and skills, and 
assessment. They also describe strategies to overcome these barriers such as: having a shared vision 
and technology integration plan; overcoming the scarcity of resources; changing attitudes and beliefs; 
reconsidering assessments; and conducting professional development. Bingimlas (2009) and Kopcha 
(2012) have also pointed out that professional development activities for teachers play an important 
role concerning technology integration in education and, in relation to this, several studies indicate 
the potential of active professional communities (Arkün, & Aşkar, 2013; Duncan-Howell, 2010; 
Vrasidas, & Glass, 2004).  

MTAII 
The project “Maths Teachers’ Adventure of ICT Integration”1 (MTAII, www.mtaii.com) aims to help 
overcome the barriers of knowledge and skills in relation to ICT integration (Hew and Brush, 2007) 
into mathematics teaching by creating a professional development environment for teachers that 

                                                 
1 The project Math Teachers' Adventure of ICT Integration (2015-1-TR01-KA201-021561) has been funded by the 
Erasmus+ program of the European Union. The European Commission's support for the production of this publication 
does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission 
cannot be held responsible for any use which may be made of the information contained therein. 



includes several of the abovementioned strategies. To achieve this, three intellectual outputs have 
been designed, focusing on a different strategy each, and combined with each other, forming a 
professional development environment for mathematics teachers from different countries.  

Addressing the need for direct professional development opportunities, an open online course (OOC) 
is designed as the first output of the project. The goal is to help teachers gain some insight into the 
potential benefits of using technology for education, particularly for learning and teaching 
mathematics. As part of the OOC teachers are guided towards developing interactive instructional 
materials and integrating them into their own classroom teaching. The second output addresses the 
scarcity of high quality, yet ready-to-use educational materials through the development and 
dissemination of open educational resources (OER). The project’s third output will provide the 
infrastructure and expertise to establish and foster an online teacher community (OTC) that is 
expected to support the participating teachers beyond the duration of the project. Social, instructional, 
and technical support will be provided to teachers through the OTC by peers (other teachers) and 
researchers from the participating organizations.  

In addition, the project partners will provide a series of face-to-face workshops, with different content 
targeting the specific needs of mathematics teachers in each of the participating countries. These 
events will also serve to promote and disseminate the project’s outputs. 

Output 1: Open online course 
The MTAII OOC is underpinned by three modules that address different aspects of ICT integration 
for teaching mathematics: (a) Module 1 – ICT use for learning and teaching, (b) Module 2 – Design 
and development of instructional materials with GeoGebra, (c) Module 3 – Implementation, and 
evaluation of ICT integration. 

After a general introduction of ICT integration and its potential benefits for teaching and learning 
mathematics (Module 1), participating teachers will be guided through the process of analyzing, 
designing and developing their own instructional materials based on the interactive mathematics 
software GeoGebra (Module 2), before they are encouraged to implement their designed lesson in 
their classrooms and evaluate their experiences supported by experts and peers (Module 3).  

As Hew and Brush (2007) have highlighted the necessity for teachers to be able to have easy access 
to technology, the GeoGebra Math Apps (www.geogebra.org) have been selected for the project. This 
set of educational mathematics software applications has been developed for teaching and learning 
mathematics and are freely available all over the world. In addition to the apps being available in a 
multitude of different languages, the accompanying GeoGebra Materials platform offers additional 
support and features related to the creation and dissemination of interactive educational materials. 
The sharing of such materials with students is achieved by the use of GeoGebra Groups, a simplified 
Learning Management System (LMS) for mathematics educators and their students.   

The Technology Integration Planning (TIP) model (Roblyer and Doering, 2014) was selected as the 
theoretical framework for the OOC. Organized in three phases, the TIP Model provides a practical 
approach to lesson planning by guiding teachers towards methods and strategies of using ICT for 
their teaching in an effective way. It also helps them to identify and address the potential challenges 
involved in this process. Thus, Module 1 of the OOC is based on Phase 1 of the TIP model, the 
analysis of learning and teaching needs, whilst Module 2 focuses on Phase 2, planning for integration. 



Finally, Module 3 will conclude the course by implementing Phase 3, post-instruction analysis and 
revision, of the TIP model. 

Module 1: ICT use for Learning and Teaching 

The main goal of Module 1 is to illustrate the purpose and benefits of using ICT for the teaching and 
learning process, by introducing a variety of suitable technology applications, as well as sharing best 
practice examples with the participating teachers, in order to demonstrate effective strategies of 
technology integration. In addition to providing their expertise in ICT integration, the project partner 
HU (Hacettepe University, Department of Computer Education and Instructional Technology, 
Ankara, Turkey) will also guide the participants of the OOC through phase 1 of the TIP Model 
(Roblyer and Doering, 2014). In the second step, teachers are led towards assessing their own 
technological pedagogical content knowledge necessary for teaching a self-selected topic in their own 
classroom, based on the Technological Pedagogical Content Knowledge (TPACK) framework 
suggested by Koehler and Mishra (2009). 

TPACK is a model to emphasize the types of knowledge needed by a teacher for effective 
instructional practice in a technology based learning environment. This framework suggests that ICT 
integration for teaching specific content like mathematics, requires understanding of the three 
components Technology (T), Pedagogy (P) and Content (C), as well as of the relationships between 
them, resulting in seven different knowledge (K) areas: CK, PK, TK, PCK, TCK, TPK, and TPCK. 
According to Koehler and Mishra (2009) teachers should have technological pedagogical content 
knowledge in order to be able to effectively integrate ICT into teaching. 

In order to support the TPACK framework, each of the project partners contributes according to their 
area of expertise, with HU providing TPK, JKU (Johannes Kepler University, Department of 
Mathematics Education, Linz, Austria) contributing PCK and AIGB (GeoGebra Institute Association 
of Botoşani, Romania) adding TCK. By creating an interdisciplinary OOC, the participants of the 
OOC should be able to form TPC Knowledge, which represents the intersection of all three 
knowledge areas. Roblyer and Doering (2014) suggest teachers assess the knowledge they already 
have and either use this knowledge or identify what they need to learn and broaden their technology-
based teaching methods.  

Module 2 – Design and Development of Instructional Materials with GeoGebra 

Following a general introduction of ICT integration into mathematics teaching and assessment of 
their TPC Knowledge in Module 1 of the OOC, Module 2 provides an opportunity for the participants 
to plan their own technology-supported lesson, deepen their technology content knowledge by 
learning about the basic use of the GeoGebra Math Apps, as well as create their own instructional 
materials and integrate them into their lesson plans. Both AIGB and JKU will combine their expertise 
and experience concerning the introduction of teachers to mathematics software, its use for teaching 
and learning, as well as the development of interactive instructional materials, while developing 
Module 2. 

The main aims of Module 2 of the OOC are: to raise participants’ awareness of pedagogical aspects 
of integrating ICT into their teaching (Bingimlas, 2009) by providing best practice examples for 
different methods of successful ICT integration into mathematics teaching; and to guide them towards 
planning and developing their own technology-supported lesson tailored to their own classroom 



teaching. The participating teachers are first encouraged to select a mathematical topic relevant for 
their teaching. They are then guided through the planning process of a technology-integrated lesson 
by implementing the following steps: (a) deciding the objectives of the lesson and selecting effective 
assessment strategies to evaluate the success of the lesson; (b) analyzing and preparing their 
technological teaching environment and inquiring about potential technical support available during 
the lesson; (c) selecting appropriate instructional strategies and planning how to implement and adapt 
them to their students’ needs; and finally (d) designing and creating appropriate instructional 
materials and activities that will help their students reach the objectives of the lesson. 

Awareness of the different technology-related skills of the course participants, as well as of their 
potential previous knowledge of using the GeoGebra Math Apps, Module 2 of the OOC will also 
provide the opportunity to broaden the participants’ technology content knowledge by learning about 
the basic use and features of certain GeoGebra Math Apps, as well as introducing online tools to 
create instructional materials on the GeoGebra Materials platform.  

By providing a series of different tutorial components to introduce the GeoGebra Math Apps, 
participants will have the option to select the app most relevant to the mathematical topic of their 
lesson (e.g. geometry, function graphing, manipulation of equations). As suggested by Preiner (2008), 
the content and structure of the tutorial components are carefully selected, taking into account the 
potentially different technical abilities and diverse backgrounds of the OOC participants, as well as 
the difficulty level of mathematical content and the potential complexity of the introduced features 
of the software. Thus, the content of each tutorial component will be partitioned into a series of 
interactive worksheets containing one task each, that can be solved quite easily and enable 
participants to progress steadily through the chosen content. Being aware of the different 
technological abilities of the course participants, basic tasks will be optional, but will guide the 
participants towards gaining the skills necessary to also solve more complex, mandatory tasks of the 
respective tutorial component.  

In order to allow for an individual learning pace and the option of selecting content relevant for each 
of the course participants, each tutorial component will provide automatic and immediate feedback 
to the user’s work on the provided interactive tasks. However, expert course moderators will be 
available throughout Module 2, providing feedback or assisting with potential technology-related 
problems participants might encounter.  

Furthermore, the participating teachers will learn how to create their own interactive instructional 
materials by using the online editors for interactive worksheets and online books provided on the 
GeoGebra Materials platform. Thus, they will explore the option of creating new interactive 
worksheets relevant for their lesson ‘from scratch’, as well as experience the possibility of searching 
the platform for suitable ready-to-use interactive online worksheets of other authors and collecting 
them in a so called GeoGebra Book. In this process, the participants will be able to decide themselves 
whether to share their developed materials with their peers or keep them private, only sharing them 
with the course moderators for feedback purposes. During the entire planning and lesson preparation 
process, course moderators and experienced GeoGebra material authors from JKU and AIGB will be 
available to support the participating teachers on a pedagogical and mathematical content level, as 
well as providing technical support, an aspect that Bingimlas (2009) identified as being a potential 
barrier for effective ICT integration if lacking. In addition, the course team will offer constructive 



feedback about the newly developed materials and lesson plans, increasing the likeliness of a 
successful and effective implementation of the lesson in the teachers’ classrooms.  

Module 3 – Implementation, and Evaluation of the ICT Integration  

By the end of Module 2, the course participants are expected to have finished the planning stage of 
their technology-supported lesson, which should be ready to be implemented in their classrooms at 
the beginning of Module 3. Subsequently, Phase 3 of the TIP Model (Roblyer and Doering, 2014) 
will be applied in order to guide teachers through analyzing and reflecting about their lesson, as well 
as to help them to revise and improve their initial lesson plan. During this process, participants will 
be encouraged to share their lesson plans, as well as reflection about the implementation with their 
peers, allowing for further revisions and improvements of their instructional materials, based on the 
expertise of the experts and their peers. 

After completion of the OOC, i.e. by the end of Module 3, each of the course participants is expected 
to have designed and carried out an effective technology-supported lesson, which can be shared 
among and reused by peer teachers, contributing to an online pool of ready-to-use interactive 
instructional materials that foster ICT integration into mathematics teaching.  

Implementation of the OOC 

As the project is a transnational cooperation of the three countries Austria, Romania, and Turkey, the 
participating teachers are expected to be from diverse backgrounds with different native languages. 
Consequently, a nurturing and meaningful online environment for the participants is needed. The 
following guidelines for increased participation in online communities suggested by Çoban and 
Arkün-Kocadere (2016) have been taken into account for the implementation of the developed OOC: 
limiting the number of participants and forming communities from small groups; giving the 
opportunity to interact in their mother tongue; focusing on participants’ direct needs; giving feedback; 
gamifying the online environment; limiting the workload of the participants; expressing the aim of 
community and expectations from participants explicitly. 

Being aware of the local needs of teachers to support communication, feedback and development of 
educational materials in their native languages, as well as to encourage participation in the 
accompanying online discussions (Çoban, & Arkün-Kocadere, 2016), the OOC will take place in four 
language branches - English, German, Romanian and Turkish - as opposed to offering one course 
requiring all participants to use English for communication. Each of the four language branches will 
be supported and moderated by the project partners, as well as additional experts fluent in the 
respective languages. Also, limiting the number of course participants per language will allow for 
smaller discussion groups as well as individual feedback by moderators and peers, who will be able 
to directly address the needs of each of the participating teachers, keeping in mind the different 
educational backgrounds and teaching methods in the respective countries. Each of the four language 
branches of the OOC will use a different GeoGebra Group as the platform for communication and 
sharing of materials, providing valuable insights into the needs of different language groups, which 
will allow us to repeat the OOC in the future and make it available to the educational community in 
even more languages. 

Some gamification elements will be integrated into the OOC to encourage teachers’ continued 
involvement and active participation, as well as to attempt to minimize the drop-out rate during the 



course. Gamification can be defined as using game elements in a non-game context. Literature shows 
that gamification has the potential to solve engagement, motivation, and especially participation 
problems in online courses (Çağlar & Arkün Kocadere, 2015). In their applied study, Borras-Gene, 
Martinez-Nunez, Fidalgo-Blanco (2016) found that participation in online courses can be increased 
by developing online communities and gamification methodologies, in addition to providing support 
for students’ learning and participation, by increasing their motivation. Being aware of the potential 
benefits of gamification elements for online courses, like rewards, badges, leaderboards, progress 
bars, and levels, the project team is currently planning a potentially gamified environment for the 
different Modules of the OOC, including the subdivision of each Module into levels, allowing 
participants to keep track of their progress in each level, as well as awarding the successful completion 
of each level. Furthermore, the course participants might be able to compete among each other, taking 
into account their current level of progress, their activity level of participating in the course, as well 
as their readiness to support their peers throughout the duration of the course. Finally, successful 
completion of each of the tutorial components in Module 2 might result in awarding a badge on the 
respective participant’s GeoGebra Profile page, while MTAII certificates will be awarded for a 
successful completion of the entire OOC.  

As a professional development opportunity for in-service mathematics teachers, the time-frame and 
duration of the OOC were planned carefully and took account of the limited time available to teachers 
during the school year in general, as well as the potentially different schedules of the school year in 
the countries of the participating teachers. Thus, the OOC will be implemented over 6 weeks with an 
expected workload of about 3 hours per week for the participants (M 1 - one week; M 2 - three weeks; 
M 3 - two weeks). Since the implementation of the developed lesson plans involves students, the 
participating teachers will be informed about the general expectations of the course and the required 
classroom teaching at the beginning of the OOC to allow for sufficient time for organizational issues 
related to technology-supported teaching methods. 

Output 2: Open Educational Resources (OER) 
After the OOC, the materials developed by the participating teachers will be reviewed by the 
GeoGebra experts at JKU and AIGB and selected materials will then be transformed into OER, to 
help overcome the aforementioned scarcity of resources for ICT integration (Bingimlas, 2009; Hew, 
& Brush, 2007). The project partners will develop best practice examples and make lesson plan 
suggestions for different teaching methods that can be added to the interactive GeoGebra materials 
developed as part of the OOC. By translating these materials into multiple languages involved in this 
transnational project and publishing them on the GeoGebra Materials platform, a large community of 
teachers will have access to these high-quality instructional materials. In this way, teachers (and 
especially those who are new) to the concept of ICT integration in their everyday teaching, can benefit 
from the outputs of the project by getting access to a variety of ready-to-use interactive instructional 
materials, as well as to the experiences and expertise of teachers, who are expert ICT users for 
teaching and learning mathematics.  

Output 3: Online Teacher Community (OTC) 
The third output aims to establish an online teacher community to complement the OOC and ensure 
sustainability of the project outcomes. Literature shows the success of online teacher communities 



for professional development in general, as well as for supporting the ICT integration into teaching 
and learning process in particular (Arkün, & Aşkar, 2013). 

The OTC will be designed and conducted with the support of the 3 project partners (JKU, HU, AIGB) 
who developed the OOC and will use GeoGebra Groups as the underlying platform. Again, four 
different OTC branches will be provided, allowing participants to communicate in their native 
languages, while the moderators of the OTC groups will also communicate in English across these 
language groups. In addition, high quality interactive instructional materials developed in either of 
the languages might be translated and adapted to the teaching methods of the other language OTC 
branches, making them available to a larger community of teachers across the different countries.  

Throughout the lifespan of the project, the OTC will provide a platform for teachers to discuss their 
experiences with technology-supported teaching and learning, exchange their lesson plans and 
educational materials, and share their reflections and improvement suggestions. The participating 
teachers will receive support from peer teachers as well as from the experts in the partner 
organizations through the teacher community. The OTC is expected to have a long life cycle as it will 
be supported by the project partners as well as GeoGebra experts, with the goal of becoming self-
sustaining community groups by the end of the project, being complementary to other efforts of ICT 
integration and sharing of high-quality interactive instructional materials. Furthermore, as opposed to 
the teacher communities on some other subjects, the project’s OTC will be a math teacher community 
focused on ICT integration into teaching and learning, developing ready-to-use high-quality 
instructional materials in different languages tailored to the diverse needs of mathematics teachers 
and students in different countries.  

Conclusion 
The main aim of the project described in this paper, is to combine the diverse expertise of the project 
partners for the design and development of a professional development environment for mathematics 
teachers consisting of an open online course, open educational resources and an open teacher 
community, and focusing on overcoming a selection of different barriers of ICT integration into 
teaching and learning of mathematics.  

The online course is designed to support the participating teachers throughout the entire process of 
planning and developing materials, while also supporting them during the implementation of their 
technology-integrated lessons and subsequent revision of their materials. Through the development 
of high-quality and ready-to-use resources in different languages, many mathematics teachers will be 
able to benefit from the project’s efforts by joining an online community of mathematics teachers 
willing to integrate ICT into their everyday teaching. By building a community that combines the 
expertise of researchers and actual classroom teachers from different countries and languages, the 
project aims to develop a network providing continuous support for teachers at all stages of ICT 
integration into the teaching and learning process, that we hope will become self-sustaining and 
outlast the duration of the actual project.  

While the content of this paper focuses on the design and implementation of the described project, 
further studies will describe the accompanying research design and analyze its outcomes. 
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Integrating technology in education is still not an easy task, teachers’ adoption of technology in their 
teaching is even more problematic and the wide availability of technology made things more 
challenging. This research is a multiple case study that aims to study in depth the effect of a GeoGebra 
(a free mathematics software) intervention on the teaching of in-service mathematics teachers in 
secondary schools who follow the Lebanese curriculum. The type of the study is Design-Based 
Research that focuses on working closely with practitioners in collaborative and iterative manner in 
the real context to add principles to theory and practice. Results showed an increase in the extent 
teachers use GeoGebra in their student-centered teaching approach.  

Keywords: Technology integration, professional development, in-service secondary teachers, 
GeoGebra, design based research.  

Introduction 
When new technologies appear in medical or industrial fields, there is often a rush to replace 
obsolete tools with new ones, the staff get immediate training on their use and the adoption level is 
high and quick. Why does this not happen in the education field? Answering this question is not an 
easy task due to the multiple factors are involved in adopting technology and the rate of change in the 
education field, which is known to be slow. 

Literature review 

Research has extensively focused on the problem of technology integration in general and in 
mathematics in particular. First, research in many countries has shown that technology still plays a 
marginal role in mathematics classrooms and that access to technology resources, educational 
policies, and institutional support are insufficient conditions for ensuring an effective integration of 
technology into teachers’ everyday practices (e.g., Cox, Abbott, Webb, Blakely, Beauchamp, & 
Rhodes, 2004; Cuban, Kirkpatrick, & Peck, 2001; Goos & Bennison, 2008). Second, research studies 
in general focused on some aspects of the integration problem such as lack of teachers training (e.g., 
Law, 2008; Tondeur et al., 2008) or lack of theory (Mishra & Koehler, 2006). Others suggested 
certain solution(s) such as conducting professional development of specific characteristics, working 
with mentors (Kratcoski, Swan, Mazzer, 2007), working in a community-based inquiry environment 
(Lavicza, Hohenwarter, Jones, Lu, & Dawes, 2010), or working based on a theoretical framework 
such as TPACK, but most of these suggestions “have crashed on the hard rocks of the classroom” 
(Herrington, McKenney, Reeves, & Oliver, 2007, p. 9). Third, in most studies the methodology used 
is not sufficient for such a complicated multi-faceted problem, and this partially explains why 
research has had limited impact on practices (Herrington, McKenney, Reeves, & Oliver, 2007). A 
key factor is that teachers should be able to actively participate in the process of technology 
integration (Voogt et al., 2011). To summarise, this research aims to study how a collaborative and 



iterative work with in-service mathematics teachers affects their level of GeoGebra integration in 
their teaching to answer the following research questions:  

1. How does a cooperative and iterative intervention affect in-service secondary mathematics 
teachers' practices regarding the integration of GeoGebra in their teaching? 

2. How do participants’ Valsiner’s three zones mediate the impact of the intervention on 
teachers’ practices regarding the integration of GeoGebra in their teaching? 

In this study we have used the Valsiner’s zone theory, which states that the factors that affect teachers’ 
use of technology can be categorized into three zones: (1) Zone of proximal development (ZPD) 
which includes skill, experience, and general pedagogical beliefs; (2) Zone of free movement (ZFM) 
which includes access to hardware support, curriculum and assessment requirements, students (3) 
Zone of promoted action (ZPA) which includes pre-service education, practicum courses and 
professional development (Goos et al., 2010).  

Methodology 
Three iterations of a design based research (DBR) methodology were used in this study across two 
stages (Figure 1).  

The first pre-intervention stage was dedicated to understanding the situation of integrating GeoGebra 
in the Lebanese curriculum, piloting the GeoGebra activities and testing the instruments. Six 
workshops were conducted over two years and a pilot study with two teachers. At the end of this 
stage four teachers (other than the ones in the pilot study) were selected as cases for the study. After 
selecting the participants, a 3 hour-workshop was conducted by the researcher with the four 
participants to ensure that all participants had acquired the basic features of the software (GeoGebra). 
In addition, we discussed as a group the topics in the secondary mathematics Lebanese curriculum 
that could be better taught with the use of GeoGebra. The second stage was the intervention stage, 
which comprised two iterations. In this stage collaboration was one-to-one between the researcher 
and each of the participants. In the first iteration, the participating teachers decided which lesson they 
wanted to teach with GeoGebra in accordance with their school mathematics scope and sequence. 
They were provided with a ready-made GeoGebra activities (made by the researcher) to 
be implemented in their classes. In the second iteration, teachers adapted already made GeoGebra 
activities and/or made their own GeoGebra activities. Three visits were conducted with each 
participant at his/her own school and according to his/her available time. The first visit was to prepare 
for the first lesson. The second visit was to evaluate the first lesson and prepare for the second lesson. 

 

Figure 1. The stages of the study 



Analysis of data collected from the instruments was done before starting the second iteration as 
required by a design based research methodology. The last visit was to evaluate the second lesson 
and give a general overview of the whole experience. 

Instruments  

For the pre-intervention phase, three questionnaires were administered by the participating teachers: 
(1) Demographics questionnaire, (2) Instructional Practices in GeoGebra Questionnaire IPGQ (Form 
1), (3) Barriers (grouped in zones) in Using Technology Questionnaire BUTQ (Form 1). The purpose 
of these questionnaires was to measure teachers’ current (before the intervention) 
integration practices of the GeoGebra software in their teaching and the barriers (grouped in three 
zones) that affect their technology integration. After conducting the first lesson, a semi-structured 
interview parallel form was used (IPGSI (Form 2) and BUTSI (Form 2) to measure the impact of the 
intervention on teachers’ practices and to find out to what extent the zones could mediate that effect. 
In addition, another instrument was used to assess the GeoGebra activity itself, the Lesson 
Assessment Criteria semi-structured Interview (LACI), which is based on instrument by Harris, 
Grandgenett & Hofer (2010).  

The analysis was done in general for the four participants and later individually. The general analysis 
looked for the general impact of the intervention and for the dynamicity of change in the extent of 
use in each category of the practices and its subcategories. For the impact of the intervention we were 
interested in the change in the extent of use of GeoGebra at the end of implementation, whereas for 
the dynamicity we were interested in the pattern in the extent of use of GeoGebra of change happened 
in between the implementation stages. The dynamicity could be: (1) static: there was no change in 
extent of use in between the implementation stages or (2) dynamic: there was a change in extent of 
use in between the implementation stages. 

Participants 

In the sixth (last) workshop conducted by the researcher attendees were given the pre-intervention 
questionnaires mentioned above. Based on the answers, for the practice instrument, the values were 
0 (never use GeoGebra), 1(sometimes use GeoGebra), and 2(most of the time use GeoGebra). The 
average of all the questions was calculated. Similarly the average for each zone was calculated in the 
zone questionnaire that consists of 27 questions. Based on these results, four cases were selected 
(Pseudonyms: Tima, Sara, Amani, and Hazem) in a way that they differ among themselves in practice 
level and/ or in at least one barrier level. Table 1 represents the characteristics of each participant.  

Table 1. Participants domographics, practice and zones level 
*Not: the zone is not considered as a barrier to GeoGebra integration 

  

Name Age 
Highest 
degree 

Teaching 

experience 
Practice level ZFM ZPA ZPD 

Amani 50-55 BS 25 years Low Moderate Moderate Low 
Tima 23-26 Masters +TD 2 years Moderate Low Moderate Not* 
Sara 33-40 BS 7 years Moderate Moderate Low Not 

Hazem 41-50 Masters 31 years High Moderate Not Not 



GeoGebra modules 

The criteria used for lesson selection are based on those identified by Angeli & Valanides (2009) 
called ICT-TPCK. The GeoGebra activities were prepared by the researcher and tested on both 
students and teachers. The activities were designed based on the following criteria: Each activity: 1) 
should be student centered, 2) can be conducted by students in a computer lab or elsewhere (classroom 
or at home), 3) allows student to discover the concept or theorem under study, 4) includes immediate 
application of the concept under study, 5) does not require prior knowledge of the software.  

Each teacher selected an activity according to his/her scope and sequence, so each teacher applied a 
different GeoGebra activity. Table 2 shows type and place of activities applied by each teacher.  

 Activity 1 Place  Activity 2 Place 

Amani Sign of quadratic polynomials In class Derivative In lab 

Tima Vectors In lab 3D In class 

Hazem Equation of a straight line In class Thales Theorem In class 

Sara Translation of functions In lab Vectors In lab 

Table 2. The intervention activities conducted by participating teachers 

 
Results 
Stage of Use of GeoGebra 

Figure 2 shows that the pattern of impact was the same for using GeoGebra in lesson presentation, 
lesson implementation, and lesson enhancement but different for assessment. For lesson presentation, 
implementation, and enhancement, in general, participants started with ‘sometimes use GeoGebra’ 
and ended with ‘most of the time’ after the second lesson. For assessment, there was a slight 
breakthrough from ‘never use of Geogebra in assessment’ to ‘sometimes use’ for each of the four 
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lesson preparation
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Lesson implementation
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Figure 2. The extent of using GeoGebra by the participating teachers over the three stages:  

Before the intervention, after implementing the first lesson , after implementing the second lesson. 

0: Never; 1: sometimes; 2: Most of the time 

A: Amani; T: Tima; S: Sara; H: Hazem 



participants. For all the stages of using GeoGebra, in general, the change was static then dynamic. 
Probably more time was needed for the change to happen prior to the second implementation, which 
was due to teachers’ need to: become more confident in using the software; be more knowledgeable; 
and have more free movement. 
Concerning the stage of teachers’ use of GeoGebra the intervention resulted in: (a) an increase in 
using GeoGebra in most stages mediated positively by teachers’ ZPD, and (b) an increase in teachers’ 
appreciation of GeoGebra as a teaching tool due to the characteristics of the activities. There was 
interdependence between confidence and the extent of using GeoGebra in each stage. When teachers 
applied the activities, this led in an increase in teachers’ confidence which in turn led to an increase 
in the extent of GeoGebra use in each of their teaching stages. There was a low impact on using 
GeoGebra in assessment mediated by teachers’ ZFM. Three particular ZFM factors mediated 
negatively the impact of the intervention on assessment, these factors were: (a) Lebanese national 
curriculum which is so demanding with little time left for discovery, (b) Lebanese national 
assessment policies which assess mostly procedural knowledge, and (c) school assessment policies 
which are mainly set by the school administration and teachers have little impact on changing them. 
The characteristics of the GeoGebra activities that made impact of the intervention more effective 
were: (a) the effectiveness of the GeoGebra activity, (b) the ease of operating the software by students, 
(c) the strong alignment between the activity and the curriculum, and (d) lastly the strong fit of the 
activity with the instructional strategies each teacher uses. 

Method of use 

It is important to use GeoGebra, but what is more important is how to use it. In this category of 
practices the intervention had, in general, no to a slight increase in the extent of use in most 
subcategories and the general pattern of change was static with minimum dynamicity. For example 
the intervention did not affect Amani’s use of GeoGebra for ‘presenting a lesson’ or for ‘conducting 
an activity with the help of students’. Amani used for the first time GeoGebra for ‘discovery activity 
done by students’ or for ‘students to present their work’ but that change was static (never use) then 
dynamic. The impact of the intervention on Amani’s method of use was a change in her teaching 
method to become more student-centered (activity done with the help of students) mediated positively 
by her ZFM and her ZPD. A second example is Tima, despite her ZFM factors that mediated Tima’s 
extent of use of GeoGebra in her methods of teaching she applied for the first, time discovery 
activities done by students in the computer lab and/or in class. The collaboration between Tima and 
the researcher increased her self-confidence, skills and knowledge and that mediated positively her 
GeoGebra application. A third example is Sara. Before the intervention Sara was a moderate user of 
technology in general, and GeoGebra specifically, but the lack of a computer lab in her school and 
the lack of hardware in her class were the main barriers to increase technology integration. Sara used 
to show her students some applets using her class LCD connected to her own laptop but for the first 
activity she made a huge effort to take her students to the computer lab to apply discovery activities 
and she said: 

After this experience (applying GeoGebra activity) for the first time and in a lab I will change a 
lot of things (in my teaching) now I have a lab for secondary. Frankly I will not use that with an 
LCD in the class to show students such things, there is nothing called to show (not effective) 



showing them is like treating them as babies not capable of applying and concluding results, when 
they do it, it is different even for me I felt different. (Interview 2, November 7, 2015). 

The intervention had an important effect on increasing the use of conducting discovery activities done 
by students in the computer lab and that change was not the same dynamicity for all teachers. The 
barriers teachers faced in this part of the practices were the accessibility to the computer lab and 
curriculum requirements (ZFM) but these barriers minimally mediated the impact of the intervention. 

Place of use 

Similar to method of use category there was no to slight effect of the intervention on the extent of use 
of GeoGebra in their classroom or at home. There was a noticeable impact on the use of GeoGebra 
in the computer lab since three out of the four teachers tried one or both of the GeoGebra intervention 
lessons for the first time in the computer lab. This was not a surprise because to use GeoGebra in 
class or in the computer lab is related to availability of equipment and the way of using GeoGebra. 
This change was not the same dynamicity for all of the teachers. Amani’s change was static then 
dynamic, Tima’s change was dynamic then static, Sara’s change was dynamic, and Hazem’s change 
was static then dynamic. 

An example is the case of Sara, her first student-centered discovery activity was the activity she 
applied in her first lesson of the intervention. In this lesson she sensed the importance of discovery 
activities and how this students motivated the students and she said: 

I gave them four cases with aim of acquaint to GeoGebra trace, animation, and sliders. They liked 
a lot so and got their attention and interest. Gave them the function act printed and they started 
working, one student volunteered to help me… Students enjoyed a lot the activity and attained all 
the required objectives. They could see things (Interview 2, November 7, 2015). 

A second example is Hazem’ case, the intervention did not affect the place where Hazem uses 
GeoGebra. He mentioned availability of a computer lab and/or the accessibility to the laptops (ZFM) 
to be the only barriers to more extent of using GeoGebra in his teaching. He did overcome that barrier 
by asking every student to bring his own device mainly tablets. Since his first interview Hazem 
affirmed his continuous use: 

I am willing to use GeoGebra if it is related to my lesson, I consider working with GeoGebra as 
‘clean work’ contrary to board drawing (draw, redraw…). I encourage my students to use it; I 
already introduced them on its features and how to use. (Interview 1, November 7, 2015) 

In his second interview he said: “all students contributed [in the activity discussion], to a certain 
extent, according to their motivation. If they bring their own device things would be more beneficial.” 
(Interview 2, February 11, 2016) 

Summing up, due to the intervention the extent of using GeoGebra for discovery by students in the 
computer lab increased. For all categories of the practices the accessibility and availability of 
hardware were the main negatively mediating factors to higher levels of practices for all participants. 
The general pattern of change in the practices was more from static to dynamic in the stages of use, 
static in the method of use and in the place of use.  

  



Discussion 
It seems that unlike the medical or the industrial fields, the educational field is more complex in 
integrating technology in terms of social and psychological factors of all the stakeholders. 
In the medical field for example the instrument for measuring blood pressure is one tool that is used 
for all people, young or old, under-weigh or over-weight… To use this instrument or an updated 
version of it does not require social acceptance or/and making the medical staff believes of its 
importance. On the other hand, in the educational field there is no technology that fit all ages, abilities, 
and intelligence levels… Deciding to use any instrument in a certain class needs to pass many filters 
in order to be an integral part of the teaching-leaning process.  

Recommendations 
To see change in mathematics teachers’ extent of using GeoGebra in particular and technology in 
general it seems one day workshop is not the perfect choice according to this study. Maybe with such 
professional development teachers’ knowledge might change quickly but more has to be done in order 
to change their practices. How should universities prepare their pre-service teachers to be ready to 
use technology most of the time in their teaching? How should professional development be designed 
to make sure teachers’ practices are changed regarding integrating technology in teaching? Maybe 
this study answers some of these questions but more work still needs to be done to solidify them.  
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“One of the beauties of Autograph is … that you don’t really have to 
think”: Integration of resources in mathematics teaching 
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This paper introduces part of a larger study on the use of technology, specifically mathematics-
education software, by secondary mathematics teachers. It presents some of the data collected with 
the aim to investigate teachers’ use of mathematics-education software: why are certain settings 
used, or underused, how are they used, and what are the reasons behind such use? The findings will 
be discussed by drawing on the documentational approach (Gueudet & Trouche, 2009) and 
teaching triad (Jaworski, 1994). The data comprised one interview and one lesson observation with 
a secondary mathematics teacher. While the documentational approach provides an overview of the 
set of resources being integrated to achieve a specific goal, the teaching triad offers a lens to 
observe teachers’ considerations when implementing a task in a mathematics lesson.  

Keywords: Tasks, documentational genesis, teaching triad, mathematics education software. 

Introduction 
The complexity of the teaching profession imposes several factors that impact upon teachers’ 
classroom actions, that include not only their beliefs and knowledge but also their experiences and 
the educational context in which they act (Biza, Nardi, & Joel, 2015; Speer, 2005). Teachers, while 
planning and teaching, consider the contexts they work within: their students, school environment, 
curriculum, etc. In other words, any study of teachers’ practices should take into account the 
different contextual conditions in which these practices develop to include personalities, 
institutions, circumstances, epistemology, time issues and materials (Herbst & Chazan, 2003). The 
study presented in this paper forms part of the PhD research of the first author and it investigates 
mathematics teachers’ ways of balancing the different elements in their working environment, 
especially when using technology (in this study mathematics education software, i.e. software 
designed for mathematics teaching and learning purposes), by looking at their practices or intended 
practices within specific contexts. Furthermore, our work examines any gaps between intended 
technology use in mathematics classrooms and actual teachers’ practices. To this aim we invite 
teachers’ views on hypothetical classroom situations that involve teaching with technology in 
written responses and follow-up interviews. Then, we observe teachers’ use of technology in their 
classroom. In this paper we present preliminary analysis from one participant, Adam, by drawing on 
two theoretical perspectives: the documentational approach (Gueudet, Buteau, Mesa, & Misfeldt, 
2014; Gueudet & Trouche, 2009) and teaching triad (Jaworski, 1994). 

The documentational approach 
The documentational approach looks at teachers’ interactions with resources where a resource is 
defined as “anything that can possibly intervene in [a teacher’s] activity”, it can be an artefact (e.g. a 
pen or a mathematical technique), a teaching material, or even a social interaction (Gueudet et al., 
2014, p. 142). Adler (2000, p. 207) adds that “resource” can be also “the verb re-source, to source 
again or differently”. During their interaction with resources, teachers develop schemes. A scheme 



is a set of organised procedures carried out on an artefact (Gueudet & Trouche, 2009). It consists of 
“the goal of the activity; rules of action; operational invariants; and inferences” (Gueudet et al., 
2014, p. 140, italics in original). Here, operational invariants are cognitive concepts established 
throughout the activity to be used in comparable situations (Gueudet et al., 2014). For teachers, 
these constitute “professional knowledge” (Gueudet et al., 2014, p. 142). The documentational 
approach describes a two-way influence between a resource and a teacher: a resource affects the 
teacher’s actions and knowledge; and the teacher’s perceptions and experiences impact on the way 
the resource is used (Gueudet et al., 2014, p.140). A management process, which Gueudet & 
Trouche (2009) call instrumental orchestration, is required in order to organise the learning 
environment (e.g., space, time, dialogue) by the teacher, whose responsibility is to manage the 
process according to the requisites of the task (Gueudet et al., 2014). When a teacher uses a set of 
resources according to a specific scheme for a specific goal, s/he creates a document. Such a 
development of a document is called documentational genesis. Thus, the documentational genesis is 
the process of a teacher developing schemes for adapting different sets of resources to achieve a 
specific target (Gueudet et al., 2014). The documentational approach studies the development of 
“structured documentation system[s]” that represent teachers’ work and progress as a result of 
influencing and being influenced by different resources (Gueudet et al., 2014). In this study we have 
conjectured that teacher’s schemes are dynamic and are being re-adapted from one situation to 
another and that the teaching triad (Jaworski, 1994) can help the exploration of those schemes. 

The teaching triad 
Jaworski’s (1994) teaching triad (TT) addresses classroom management as an act of harmony 
between three domains of activity: sensitivity to student (SS), mathematical challenge (MC) and 
management of learning (ML). These domains are evident when a teacher plans a lesson and starts 
to think of how to consider teaching a specific mathematical idea (MC), particular students’ needs 
(SS), the best way to work on the task with the students (ML) (group work, individual work or 
classroom discussion). The same domains will be in play during lessons, but within a different 
context as this time the interactions with the students are happening and the teacher should respond 
on demand, in many cases by diverting from what was planned.  

As Jaworski (1994) and Potari and Jaworski (2002) suggest from the “macro analysis” of classroom 
interactions, alongside the TT domains, teachers’ plans and practices are also influenced by social 
factors, such as: time pressure; having to complete a set syllabus; the requirement that students 
know specific things for exam purposes; expectations from the teacher; school ethos; and the 
training provided for teachers. Such factors seem to be at the centre of teachers’ considerations and 
they include students’ social culture, teaching resources and materials, syllabus, assessment 
schemes, time restrictions, room constraints, and cultural considerations of what constitutes good 
teaching practices (Goos, 2013, p.523). Hence, the TT domains, along with these factors, reflect the 
range of considerations mathematics teachers have to balance. The TT can be “used as an analytical 
device (by researchers) and as a reflective agent for teaching development (by teachers)” (Potari & 
Jaworski, 2002, p. 351). We are conjecturing that the teaching triad domains are related to schemes’ 
development regarding the use of resources. Sustaining the goals of the resource use, depends on 
how teaching is balanced by the teacher. Operational invariants can be derived from artefacts, 
mathematical concepts or social environments. All the above can be used to satisfy a specific goal 



and produce a proper usage and inferences, but these are flexible techniques of balancing and 
rebalancing of the TT domains from one lesson to another. The analysis presented here aims to 
investigate this conjecture. 

Technology in mathematics teaching - A view through the lenses of the 
documentational approach and the teaching triad  
Technology software and hardware devices are “artefacts” (Gueudet et al., 2014, p.141) and can be 
adapted to provide access to formal mathematical knowledge. They afford “opportunities for 
additional student actions, such as the manipulation of on-screen objects and the ability to make a 
range of mathematical inputs, which places an additional demand on teachers as they strive to make 
sense of a diversity of student activity in real-time” (Clark-Wilson & Noss, 2015, p. 95). Thus, 
interactions with technological resources influence teachers’ documentational geneses by 
developing the ways they organise their classroom activities and manage learning situations with 
impact on the shape of the teaching process and on the way knowledge is communicated. When 
employing technology, resources become more complex, and so do the TT domains. Sensitivity to 
student becomes more evident (e.g. if students know more about technology than their teacher). 
Tasks can be more challenging for teachers to design, and the management of learning becomes 
more complicated with the higher chances of distraction. We also re-emphasise the importance of 
social factors when technology is used based on several premises. First, the technology use 
dependency on the teacher training provided (Gueudet et al., 2014, p.144; OECD, 2015, p.69). 
Second, the availability of hardware and internet connection (Bretscher, 2014, p. 66; OECD, 2015, 
p.61 & p. 146). Third, the national curriculum obligations (OECD, 2015, p.70). Fourth, and most 
importantly, the education policies that aim to embed technology (OECD, 2015, p.50). 

Methodology 
This paper reports from the first phase of a project that looks at secondary mathematics teachers’ 
work with technology that involves participants’ written responses to situation-specific tasks 
alongside follow up interviews and classroom observations. Situation-specific task methodology has 
been suggested by Biza, Nardi, & Zachariades (2007, p. 301) where tasks are given classroom 
situations that “are hypothetical but grounded on learning and teaching issues that previous research 
and experience have highlighted as seminal; are likely to occur in actual practice; have purpose and 
utility; and, can be used both in (pre- and in-service) teacher education and research through 
generating access to teachers’ views and intended practices”. The study is conducted in England and 
participants are secondary school mathematics teachers with different levels of experience and 
training. The work is based on providing qualitative findings established on an interpretative 
research methodology (Stake, 2010, p. 36).  

In this paper we discuss the written response to the situation-specific task presented in Figure 1 (we 
call it the 3D Task), the follow-up semi-structured interview and the lesson observation (75 
minutes) of one participant, Adam. Both interviews and observations were conducted by the first 
author. The situation described in the 3D Task regards an open investigative question to be given to 
the students. It did not suggest any specific use of technology, and left that to be decided by the 
teacher. The situation regards a geometrical problem with a potential consideration of the 
affordances of software available at the school where the data were collected, such as Autograph 



(http://www.autograph-math.com/) or Geogebra (https://www.geogebra.org/). Adam was invited to 
offer a written response to the 3D task and, then, he was interviewed, to clarify the answers and 
offer more elaboration where needed. Then, a lesson was observed of a Year 12 class (17-18 year-
old 4 female and 5 male students) and was audio-recorded. The focus of the observation was 
Adam’s use of resources, especially his use of Autograph or Geogebra, which he said he frequently 
used, and his classroom management. At the time of the data collection, Adam was a mathematics 
teacher with four years’ experience, during which he taught students aged 12-18 years. He held 
degree in economics, a postgraduate certificate for teaching mathematics at secondary level, and 
was about to finish his master’s degree in educational practice. The school had interactive 
whiteboards, a computer lab, and Geogebra and Autograph software installed on all computers. 
3D Task 
A group of Year 11 students are asked the following question: 
Design a milk container with capacity of 1L. What dimensions and which design uses less materials? Why? 
- What are the mathematical ideas and activities addressed in this question?  
- Would you use this question in class? Why or why not? What are the learning objectives for which you would use 

this question? Would you modify it? 
- Would you use technology with this question? If yes, what type of technology? If no, why? 
- If you were to use technology, how would you use it? 
- What teaching approaches and resources would you suggest for this question? 
- Do you anticipate any problems or challenges (either with students or resources)? 

Figure 1: The 3D Task 
A preliminary analysis of teachers’ comments and interactions during interviews and lessons was 
performed for the transcripts (May, 2001). This was coded according to the Teaching Triad 
(Jaworski, 1994) into SS, ML, and MC. During each interaction, we explored the teacher’s 
interactions with the resources, according to the documentational approach (Gueudet et al., 2014). 
We then reviewed the results from the interview and observation, and offered a discussion 
according to TT and documentational approach together.  

Adam’s responses to the 3D Task and follow up interview 
Adam identified mathematical ideas involved in the 3D Task, such as “volume”, “surface area” and 
“calculus”. In his response to the task, he frequently repeated the word “scaffold” to state that he 
would try to adapt the task according to the students’ needs and “prior knowledge”. He emphasised 
that he would not use the problem as it is because it needed a lot of scaffolding and it included “too 
many variables”. During the interview, he explained that the scaffolding would include giving hints 
and examples and even values to work on for weaker students. He said he will not use 1L in this 
problem, but would use a bigger number: 

I think straight away students having to think of a length width and height that times to get 1 will 
be quite difficult for students… They might be able to go 1 1 1 and they might be able to go 2 ½ 
1 or something like that. That will be it, they’ll really struggle. 

He wrote that he would use technology with the task for “gradient of curves on Autograph” and “to 
visualise the shapes”. During the interview, when asked how and when he would use it during a 
lesson, Adam suggested “I think as a group activity. It wouldn’t be the focus of the lesson though it 
would just be almost the point at the end”. When asked to elaborate he said: 

I think it is because one of the beauties of Autograph is that it means that you don’t really have to 
think... I want the student to be thinking about problems and how to approach problems. I think 



almost Autograph gives you too much, too much help and then you don’t have to think about the 
shape of the graph because you can just plot it in Autograph. And then other, obviously other 
reasons a lot of my students have never used Autograph even at key stage five1. So, to start 
understanding it, it will take quite a long time and a lot of effort just to get the students to 
understand it to start with. 

Adam said he will not use the task as it is because although it works well in “an ideal world”, it 
does not go well with the way the syllabus is set. He anticipated problem with keeping track of 
calculations, prior knowledge and many involved variables (e.g. Adam suggested if a student chose 
to design a cylinder container, the case would be very confusing because s/he would have to think of 
adjusting the radius and height of the cylinder in order to find the minimum surface area). 

Adam’s teaching observation 
The observation was on a revision lesson about solving simultaneous linear and modulus equations 
(i.e. equations that include absolute value). Adam started by moving a stick in the air in order to 
draw a specific graph, and asking the student to recognise the graph. One of these graphs was the 
sine graph, but the students seemed to be confused about what graphs were being drawn. Then, 
Adam asked his students to solve some problems that were displayed on the board. All the problems 
apart from one (which was designed by Adam) were chosen from the textbook. During the lesson, 
Adam used Autograph to check the answers given by the students, he entered the functions and the 
graphs were projected on the board. Then a discussion/demonstration of the algebraic solution was 
led by him on the white board. For example, for the simultaneous equations: y = ǀx + 2ǀ and y = 3, he 
asked students to draw the graphs on their notebooks and see the solution before solving it 
algebraically: “You will get two points, you can see this graphically”. Then, he started to write one 
of his student’s algebraic answers on the board: “3 = x + 2 or -3 = x + 2”. He then commented on the 
student’s answer: “So, math says x = 1 or -1... What text book would say is y = (x + 2) or y = - (x + 
2). Textbook would just say that, I’ll probably do it this way”. Later, with the problem that 
followed, he commented that: “This is GCSE grade C2 […] This is mark C in C13”. He repeatedly 
encouraged the students to solve another problem he displayed on the board by saying that it is an 
“exam question”. When the students asked Adam why they should learn modulus equations, he 
went to his computer and googled “when to use modulus equations in real life” and gave the 
answers accordingly “Distance, currency exchange…”. Two of the students finished with the 
problems on the board earlier than the rest of the class and Adam gave them an extension problem 
which might have been suggested spontaneously in response to the need of extra work. The 
extension problem was in two parts, the first asked for two different modulus functions that do not 
intersect, the second asked for two that intersect once. “Is that possible? Can you give me two that 
intersect once?”, Adam asked the class, and the dialog below followed: 

                                                 
1 Key stage five is post-16 school education in England i.e. for students aged 16-18. 

2 GCSE stands for the General Certificate of Secondary Education. It is the qualification taken by school students aged 
14–16 in the UK (except Scotland). Its exams are graded on a scale of A* to U, with A* being the highest grade and U 
the unsatisfactory. A grade/mark C reflects an average progress (pass). 

3 C1 stands for Core1 and it refers to one of the mathematics textbooks, used at Adam’s school, for students aged 16-18. 



Student A: y = ǀ x ǀ and y = 2 ǀ x ǀ, shift across  
Adam: Oh, ya it is.  
Student A: Ya, you’ve translated it. 
Student B: y = ǀ x – 4 ǀ and y = 2 ǀ x ǀ. 
Adam looked at the graphs on Autograph and nodded in what seemed like a hesitant agreement 
Student C: Change the slope. 
Adam amended the equations as student C suggested and wrote y = 2 ǀ x – 4 ǀ and y = 2 ǀ x ǀ 
without commenting on student’s B answer  

Adam did not follow up student’s B response or student’s C correction, but moved straight to a 
completely different activity by which he concluded the lesson.  

Analysis 
From his responses to the task and the observation we notice that Adam’s resources were the 
textbook used at his school, help cards, a computer, Autograph, Excel, Google, interactive 
whiteboard, the stick he used at the beginning of the lesson observation, information about exam 
grades and questions, past experiences with students along with the mathematical concepts and 
methods. Adam’s appreciation of Autograph’s ease of use as a tool for visual representation was 
evident, so he used the software to check students’ work, and present graphical solutions before 
going for algebraic ones. So, he would ask his students to solve graphically, check that their 
graphical solutions are right according to the answers on Autograph, and then ask them to find the 
same answers algebraically. However, Adam seemed being confused by the Autograph when it 
came to student B’s answer on which he seemed to hesitantly agree. This might be because only one 
intersection point was visible within the displayed part of the graph. In this case, Adam missed the 
opportunity to use the full affordances of Autograph in order to improve student’s B answer and to 
explain the correct answer to the rest of the class. There was no evidence that the rest of the class, 
apart from student C, realised where the problem was and how it was amended. 

In terms of the TT, Adam indicated sensitivity to students “they don’t know Autograph”, “prior 
knowledge”, “scaffold”, “weaker students” (SS). In his teaching choices, he also showed 
consideration of the syllabus he had to follow, exam questions and the timeframe he had to adhere 
(MC and ML). The way he intended to use resources showed an attempt to balance mathematical 
challenges (MC) (e.g., change 1L, exercises from the textbook) with students’ needs (SS) (e.g. 
students do not know how to use Autograph, providing extension question when needed), and 
management of teaching (ML) (e.g., use technology at the end of the lesson as a group activity, 
encouraging pair work when solving textbook exercises, graphing the equations to see the answers 
and then doing the algebraic solution because “Putting it in a graph might be easier”) with attention 
to management of learning with technology (e.g. technology takes a lot of time). 

Now, we will look at how Adam used the available resources to design and implement his teaching. 
Along with the textbooks that are being used at his schools, he mentioned he would also use help 
cards with hints or examples. These will help him “scaffold” and build on “prior knowledge”, these 
terms seem to be adopted during Adam’s teaching practice or teacher’s education courses for 
reflection on students’ needs (SS). Also, he drew on his teaching experience (as a resource) when he 
mentioned in the interview that students would struggle to “keep track of their calculations” (ML 
and SS). In terms of Autograph as a resource, Adam would use it as a graphing software that helps 



visualise graphs and shapes and shows answers (ML and MC). The data showed the two-way 
influence between Adam and the resources. For example, Adam’s belief that students do not think 
when using Autograph (SS) was influencing the way the resources were used, so he used Autograph 
to show or check answers (MC). Also, the resources available influenced the teacher’s decision, so 
in this instance he used Autograph to show the graphical solution and then asked the students to do 
the algebraic solutions keeping the answers from Autograph in mind. Additionally, Adam frequently 
used the textbook as a source for exercises, so the textbook influenced which mathematical 
challenge he gave the students (MC). At the same time, Adam used the textbook exercises along 
with Autograph and, by doing so, Adam’s way of managing the teaching affected the way the 
textbook was used. Adam’s management of the teaching situation led us to conjecture that his use of 
resources is connected with a potential scheme developed in order to properly use the resources 
available and achieve a specific goal, which in the lesson observation was revising the topic of 
linear and modulus simultaneous equations. We have identified some operational invariants in 
Adam’s schemes, for example the use of Autograph as a class activity managed by the teacher on 
the board. However, we believe that more data and observations are needed to further investigate 
Adam’s schemes. 

Discussion and summary 
The preliminary findings we present in this paper derive from a study on mathematics teachers’ 
practices/intended practices in relation to the used resources and especially mathematics education 
software.  

Adam’s attempt to balance the different domains of activity described by the teaching triad was 
evident in the interview and during the lesson observation; and his interactions with resources were 
influenced by considerations of these domains as well as considerations of exams’ questions and 
grades, time management, and the syllabus. His use of technology resources was led by him on the 
board, because of his concern that he would be teaching mathematics and technology use if his 
students were to work independently or in pairs on computers. Although the teacher used Autograph 
frequently, his use was mainly for checking answers and displaying visual representations. This is 
due to his concern that Autograph offers excessive help and would stop students from thinking 
about the mathematical problems. The pilot observation proved that more clarification about the 
teacher’s actions should be sought from future observations along with pre- and post- lesson 
interviews. This is because the pre- and post- lesson interviews will give more space for the 
teachers’ interpretations of their classroom actions. More observations are also needed to explore 
the teacher’s documentational work and investigate how the teaching triad helps clarify teachers’ 
considerations when working with resources. 
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This paper describes a PhD research project addressing the issue of the quality aspects of dynamic 
materials. Platforms with user-generated Educational Resources for mathematics teaching show a 
wide variety in terms of the quality of the materials. The presented project investigates possible 
quality criteria for dynamic materials based on the opinions of experts in electronic resource 
development, who describe their views on educationally valuable use of dynamic materials. The 
relevance of the findings that have emerged is examined through a further quantitative study. 
Results of this project offer new inputs and ideas for designing manual and/or automatic review 
systems for dynamic material platforms such as the GeoGebra Materials platform. 
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Introduction: Quantity vs. quality of resources  
Numerous online platforms provide a large number of Open Educational Resources (OER) for 
teaching mathematics (e.g. GeoGebra Materials, 2016; LearningApps, 2016; I2Geo, 2016). The 
enormous quantity and variability of quality make it difficult for users to quickly find appropriate 
resources for their teaching (Trgalova, Jahn, & Soury-Lavergne, 2009). The problem of inconsistent 
quality particularly appears on platforms with user-generated Educational Resources, not supported 
by a dedicated editorial team. They are often free or low-cost materials, which are created and 
shared by different types of users (Camilleri, Ehlers, & Pawlowski, 2014; Ott & Hielscher, 2014).  

An example of a large repository of dynamic mathematics materials – GeoGebra Materials 

One example of such a platform is GeoGebra Materials (2016) that already offers more than a half 
million public dynamic materials (as of November, 2016). Since dynamic worksheets – created 
using the dynamic mathematics software GeoGebra – can be uploaded, copied, edited and organized 
into collections by every user, this platform is subject to the aforementioned problem of inconsistent 
quality (Kimeswenger & Hohenwarter, 2014, 2015). According to interviews with GeoGebra users, 
it is not always easy to find high-quality resources on this website that comply with users’ own 
quality standards. Thus, it might be desirable to reconsider the review and ranking systems of a 
platform that might influence the appearance and order of search results. 

Quality and assessment of mathematics materials on platforms 
Several platforms with materials for mathematics teaching have different mechanisms to assess the 
quality of their resources with a similar aim: influencing the search results and ranking the high-
quality materials first (Libbrecht et al., 2008; Ott & Hielscher, 2014). For instance, the project 
Intergeo, Trgalova et al. (2009, p. 1163) characterized nine “relevant indicators” of quality of 
dynamic geometry resources on their platform I2Geo: “metadata, technical aspect, mathematical 
dimension of the content, instrumental dimension of the content, potential of the DG, didactical 



implementation, pedagogical implementation, integration of the resource into a teaching sequence, 
[and] usage reports.” For example, one criterion according to the indicator “content” is “validity” 
with the question “Are the activities in this resource correct from the mathematical point of view?”. 

Intentional vs. non-intentional reviews 

To facilitate the development of a new review system for the GeoGebra Materials platform I 
considered combining an intentional and non-intentional review system. Under the project Intergeo, 
a questionnaire was developed based on the above-mentioned quality indicators. The assessment of 
the quality of a particular resource on the I2Geo platform requires users to respond to 9 broad 
statements, which can be extended optionally to 59 questions – using a scale from ‘I agree’ to ‘I 
disagree’ (Kortenkamp et al., 2009; I2Geo, 2016; Trgalova et al., 2011). Alternative ways for users 
to intentionally contribute to the evaluation of a resource are through ‘likes’, comments or star 
ratings, which are also often implemented on platforms with a large number of resources for 
teaching mathematics – for instance, on CK-12 (2016) or LearningApps (2016). These review 
possibilities are highly depend on the willingness of individual users to contribute to the review 
process of certain materials.  

In many cases, only a small number of the materials that have been viewed have also been reviewed 
by a user. For example, on average, only 0.22% of viewed resources on the video-sharing website 
YouTube have been reviewed by likes or comments (Siersdorfer et al., 2010). Therefore, Ott and 
Hielscher (2014), who investigated the issue of the quality of interactive exercises on the platform 
LearningApps, considered assessing quality in an automatic way. For instance, one quality criterion 
is related to the communication with other users. It turns out that authors of exercises of 
LearningApps with an average well-rated content (4-5 stars out of a maximum of 5 stars) 
communicate more than the average authors. Thus, the absolute number of authors’ messages could 
be used as an evaluation criterion for their created content according to Ott and Hielscher (2014). 

In summary, I am interested to identify suitable methods for reviewing dynamic materials that are 
different to traditional practices, such as solely by questionnaire. It is possible that elements of both 
approaches, where users assess quality intentionally or non-intentionally/automatically, might be 
combined within a new conception of a review system for dynamic instructional materials on the 
GeoGebra Materials platform. 

OECD results – Does technology provide benefits? 

The recent OECD results highlighted the necessity to regard the quality of mathematics teaching 
materials supported by technology. According to the report of OECD (2015) there is no evident 
improvement of students’ achievements in countries that invested heavily on educational ICT 
(Information Communication Technologies) concerning their performance in PISA. Drijvers (2016) 
reflected to the state of the art, and questioned OECD's rather generally formulated claims. 
Assuming that digital technology is generally good or bad is not a proper approach according to 
Drijvers (2016). He emphasized the necessity to ask HOW technologies should be used to benefit 
mathematics learning and encourage high-quality teaching. Higgins, Xiao, and Katsipataki (2012, p. 
3) also highlighted the urgency to think carefully about HOW technology should be used for 
teaching mathematics: 



We need to know more about where and how it is used to greatest effect, then investigate to see if this 
information can be used to help improve learning in other contexts. 

Drijver's interpretation of the OECD results and the above quote of Higgins et al. (2012) also 
indicate that technology use does not always result in good teaching. The interpretation within the 
OECD (2015, p. 3-4) report emphasizes that solely using technology without educational 
considerations is clearly insufficient. Nabb (2010) highlighted that the availability of different 
available devices has forced a fundamental question: “How should such devices be used in the 
teaching and learning of mathematics?”. In my research, I investigated the quality of technology-
supported teaching materials and their ‘valuable’ uses in education. I believe that my study will 
assist to fill the gaps suggested by OECD and Drijvers by offering possible guidelines for 
identifying high-quality technology materials for teaching and learning of mathematics. In 
particular, I aim to address how to recognize and create high-quality materials, which leads me to 
the research questions of this project. 

Research questions 
Q1: What quality criteria for dynamic materials exist according to experts?  

Q2: How do experts describe the educationally valuable use of dynamic materials? 

Q3: How could the conclusions from research questions 1 and 2 contribute to the conceptual design 
of a new review system and the further development of platforms, e.g. “GeoGebra Materials”? 

Research design 
I began by investigating the complexity of quality aspects of dynamic materials using qualitative 
research based on Grounded Theory (Strauss & Corbin, 1996). Experts, in particular mathematics 
teachers and mathematics educators, were interviewed to enquire about their perspective of quality 
materials. I selected international participants who were deeply involved in different projects and 
had been working on the development of instructional materials with GeoGebra for many years, 
thus they can be named as “GeoGebra experts”. I considered different nationalities and cultures to 
reflect on different perspectives concerning decisive criteria for a high-quality material for 
mathematics teaching, because the GeoGebra Materials platform is also used by wide-range of users 
from all over the world. Consequently, I interviewed experts from Hong Kong, Uruguay, England, 
Austria, Hungary and Germany. 

After analyzing the interviews, I created a category system that described core dimensions that 
contributed to the quality of a dynamic material. In addition, I expressed a list of quality criteria for 
dynamic resources in a “theoretical and detailed quality catalog” obtained from the expert 
interviews. These considerations about quality criteria and the educational value of the use of 
dynamic materials should provide new ideas for a conceptual design of a review system for 
platforms like the GeoGebra Materials website. and that might combine different elements of 
existing review systems used by other platforms. Based on the initial results of this stage, I also 
conducted quantitative research and received responses from 84 Italian and Austrian mathematics 
teachers using an online questionnaire and investigated the relevance of the emerged results. 



Examples of quality criteria – The orthocenter of a triangle 
The following example offers an idea what quality aspects were mentioned by experts, in this case 
by a highly-experienced teacher and user of GeoGebra, who referred to a specific dynamic resource 
on the GeoGebra Materials platform focused on the orthocenter of a triangle (see Figure 1). 

     

Figure 1: Dynamic worksheet, Interview 2014-12-11, https://www.geogebra.org/m/mXFpXfza 

The interview with the expert revealed one of many quality criteria for a dynamic resource is 
“supporting the learning of mathematics”. A related question that could be asked of users 
concerning the resource shown in Figure 1 is, “Does the dynamic material support the learning of 
mathematics?”. An answer, from the perspective of the expert, might be, according to the 
instructions next to the construction, students should move point C and observe the effect of its 
position to the triangle orthocenter’s shape and position. The potential of the material is from the 
expert's point of view that the dynamic worksheet allows students to explore through the dynamic 
construction. Depending on the location of the vertices of the triangle, the position of the 
orthocenter changes. For instance, students could discover that the orthocenter lies inside an acute 
triangle and outside of an obtuse triangle. Such materials are intended to encourage students to 
come up with their own assumptions and formulate insights, as in Table 1 summarized. 

Quality 
criterion 

Question How? 

“Supporting 
the learning of 
mathematics” 

 

“Does the dynamic 
material support the 

learning of 
mathematics?” 

Allows students to explore with the dynamic construction 
Allows students to discover mathematics 
Encourages students to make their own assumptions 
Encourages students to formulate insights 

Table 1: Quality criterion “Supporting the learning of mathematics”, Interview 2014-11-12 

This example shows that often many different quality aspects come together to influence the overall 
quality of a particular material. Experts were asked about their opinion and perspectives on the 
potential of instructional dynamic materials in order to investigate the complexity and different 
facets of the issue of quality of dynamic materials. Table 1 summarized the aspects that concerned 
the quality criterion “Supporting the learning of mathematics” considering the dynamic worksheet 



about the orthocenter and showing that many aspects could contribute to the quality of this dynamic 
worksheet. Additionally, I would like to highlight the difficulty to express guidelines or criteria 
defining the quality of a dynamic material: 

[T]he issue of how to maximize the benefits of the integration of technology is hard to capture in 
overarching guidelines. (Drijvers et al., 2010, p. 86) 

Nevertheless, in this paper, I summarize and describe dimensions developed in this study that could 
contribute to the quality evaluation of dynamic materials.  

Eight quality dimensions of dynamic materials 
The analysis of the expert interviews revealed eight core “quality dimensions” as crucial factors: (i) 
author, (ii) mathematical content, (iii) resource type, (iv) supporting the learning of mathematics, (v) 
integration into teaching, (vi) advantages of dynamic material, (vii) design and presentation, and 
(viii) technical aspects.  

These dimensions were compared to the literature and could significantly influence the quality of a 
dynamic material created for mathematics teaching. The “author” (i) can be considered as a main 
quality dimension influencing all of the other above-mentioned items (ii-viii) and is therefore listed 
first. This importance is due to the fact that the creator has a considerable effect on the resource that 
she or he has developed and can assist in the decision of what mathematical content is presented to 
support learning. The creator should consider how to integrate technology to benefit classroom 
activities and to exploit the potential of the dynamic material. Depending on these considerations 
and on the available technology in the classroom, the author adopts the dynamic material's design to 
be as user-friendly as possible and considers teaching aspects related to this kind of material. Next, I 
present examples showing the importance of the author and how certain conditions – such as 
available technology and the author’s view on learning – effect the development of GeoGebra 
resources. 

Importance of the author of a dynamic material 
The majority of experts stated that there is a strong correlation between the quality of the author and 
the created material (see Figure 2). 

    
Figure 2: Correlation between quality of author and dynamic material 

When I asked experts to describe their search strategies to find high-quality materials, the 
importance of the author was pointed out several times. It seems nearly impossible to decide in 
general, whether a specific resource is of “high quality” or not: “A given resource can be ‘good’ in 
one context and ‘poor’ in another.” (Trgalova et al., 2009, p. 1162). Nevertheless, there seem to be 
certain strategies for searching for “good” dynamic materials on the GeoGebra platform and certain 
“authors” were often named. For instance, a British expert mentioned an author, whose: “materials 
are brilliant and if you see something of [him] then it is a guarantee of quality.” (Interview 2015-07-
15) Expert users of GeoGebra seem to search particularly on profile pages of already known “high-



quality authors”, which they expect to produce “good” dynamic materials according to their own 
standards of quality: 

If you get to know people who produce quality materials, they don’t tend to produce quality materials by 
accident. Once, you find one or two things by somebody which is good, you can expect pretty much more 
materials with high quality. (Interview 2015-07-15) 

As mentioned in the beginning, inconsistent quality especially occurs, when users with different 
quality standards share their dynamic materials online. However, this can be regarded not only as a 
disadvantage, but also as an advantage. These user-generated Educational Resources provide a vast 
number of instructional materials ready to be used in classrooms created by different authors 
considering varying circumstances such as diverging curriculums, technical requirements or quality 
standards. 

Available technology 

An author's creation of a dynamic material depends on the available technology and the individual 
classroom situation. In a computer lab, pupils can work independently and actively on dynamic 
materials, but they require clear instructions and questions complementing the applets. In contrast, 
dynamic materials do not necessarily contain instructions if it is the intention for the teacher to 
demonstrate the concepts using a projector. In this case, the teacher can explain the purpose of the 
resource to students during the presentation. Another example of the influence of available 
technology on the design of a dynamic material could be derived from mouse driven approaches as 
opposite to working on touch-sensitive devices. On tablets and mobile phones, learners may directly 
use their fingers to work with a dynamic resource, while on non-touch devices, dynamic materials 
are manipulated with a mouse. In addition, displays of these devices are usually smaller than 
computer monitors and this should be considered within the design of the resource (Kimeswenger & 
Hohenwarter, 2014). In summary, the classroom situation, especially the available technology, 
strongly influences the design and use of dynamic material's design to include task instructions and 
the usability. 

The author's views on learning – learning theories 

Authors' views on learning and on the acquisition of knowledge considerably affect the use of the 
created materials. The structure and design is influenced by teachers’ intentional or non-intentional 
views on learning theories such as behaviorism, cognitivism or constructivism. 

The value of students’ own constructions has been often discussed in educational research papers. 
Mercat, Soury-Lavergne, and Trgalova (2008) mentioned that principles that draw on a 
constructivist approach to teaching and learning are commonly accepted in mathematics education. 
Nevertheless, the development of an instructional material depends on the author’s view on learning 
theories (behaviorism, cognitivism or constructivism). A platform should draw users’ attention to 
high-quality authors who have similar views on learning. On the one hand, this would simplify 
finding “good” materials within a vast number of resources in repositories. On the other hand, these 
high-quality authors should be recognized and honored for their effort and top-quality materials. 



Identification and recognition of high-quality authors 
Experts suggested to allow users to follow particular authors on the website. Based on these 
interview results, the "Followers" Badge was released on the resource-sharing platform GeoGebra 
Materials (March 2016). It seems to be important that a review system of a platform enables users to 
find materials of specific authors quickly who adhere to similar quality standards. It should also 
allow following these authors and support finding of these dynamic materials by giving resources of 
the ‘followed’ authors a higher priority among the search results. 

The “Followers” Badge could help identifying high-quality authors chosen by other users. It 
represents some kind of recognition outlined by a mathematics educator of Hong Kong: 

If the material is good [on the platform GeoGebra Materials], I think the designer has paid a lot of effort. 
He or she need more encouragement or appreciation. (Interview 2015-07-13) 

Caprotti and Seppälä (2007, p. 7) also emphasized that authors should be respected and recognized 
for their high-quality resources. Users will share more materials if their work is recognized – 
“Credits to creators”. 

Conclusion 
This study addresses the key issue: What is a high-quality material for mathematics teaching 
supported by technology? The internet offers an immeasurably large number of diverse mathematics 
teaching and learning resources proving it difficult to navigate for ordinary teachers and students. 
Therefore, it would be beneficial to identify and assess the quality of dynamic materials before using 
them in the classroom. It seems important that a review system influencing the search result order of 
a platform enables users to quickly find materials of specific authors who adhere to similar quality 
standards as well as to allow following these authors. Additionally, the platform should give 
resources of followed authors higher priority in search results, but it is also important to offer 
chances for new authors to be represented among the highlighted search results. Further analysis of 
different expert interviews and 84 responses of an online questionnaire will examine the complexity 
of the quality of dynamic materials in greater detail resulting in a detailed catalog of quality criteria. 
With this background knowledge, additional suggestions for intentional and non-intentional review 
systems for dynamic material platforms such as GeoGebra Materials could be devised. Beyond the 
PhD project described in this paper, software developers may implement further results of this study 
on the material sharing platform GeoGebra to improve finding of high-quality materials for 
mathematics teaching and learning. Further research will be necessary to investigate these new 
releases and support their continued improvement. 
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This study focuses on the design of a novel genre of e-books incorporating dynamic constructionist 
artefacts-widgets that aim to induce mathematical creativity allowing students to interact with their 
content in significant ways (called ‘c-books’, c for creativity). The design of the c-books is addressed 
through collectives of educational professionals with a diversity of expertise. The analysis of the 
design process of a c-book on Curvature shows that the interactions fostered by the socio-technical 
environment allowed diverse practitioners to learn from, work with and collaborate across their 
boundaries supported by collectively evolving artefacts as boundary objects. The end-product of this 
social creative process, the c-book on Curvature, evolved through the constant versioning of a 
narrative intertwined with malleable dynamic constructionist artefacts.  

Keywords: Curvature, design of digital resources, social creativity, documentational approach of 
didactics, theory networking.   

Introduction 
Curvature is weakly addressed as a conceptual field (Vergnaud, 2009) with respect to its potential to 
generate environments rich in opportunities for mathematical meaning making by students. In 
traditional curricula it lies disparately in Euclidean Geometry sections, in Algebra and Calculus 
depicting systematic co-variation, in 3D Geometry but in simple applications like conic sections. The 
dynamic and diverse representational repertoire provided by digital media allows us to approach 
curvature anew with a disposition to re-structure (to use Wilensky & Papert's term, 2010) the ways in 
which mathematics is conceptualized in education in the quest to make it more attractive to students, 
affording meaning making, creative mathematical thinking (through problem-solving/posing and 
constructionist activity) and engagement. Previous research has shown that dynamic digital 
environments and especially 3D spatial environments support students in constructing meanings about 
challenging conceptual fields (Kynigos & Psycharis, 2003; Zantzos & Kynigos 2012). In this study, we 
look at a digital medium affording the meshing of narrative with malleable constructionist artefacts 
such as half-baked microworlds (Kynigos, 2007) and study the ways in which a diverse community of 
professionals jointly design narratives around curvature with an explicit interest to afford creative 
thinking in their prospective students. We perceived of the medium which we called the 'c-book', as 
potentially affording thinking out of the box, allowing for restructuration of mathematical conceptual 
fields. We also began from the premise that collaborative design by educational professionals with 
diverse expertise would generate a socio-technical environment more likely to produce creative ways 
to enhance creative mathematical thinking (CMT) for students. In this study, the designed c-book 
eventually focused on a story involving comparisons between Archimedes' and exponential spirals. In 
addition, by involving in-service teachers in all stages of the design process, we aimed to induce their 
reflection on the affordances and pedagogies incorporated in the tools, the tasks and narratives under 



development, as well as the changes to the mathematical content and the classroom practices that the 
presence of technology brings about.  

Theoretical background 
The design of digital educational resources for fostering mathematical creativity and meaning 
generating in a mathematically rich conceptual field like curvature is a complex task, which brings 
the issue and study of creativity in the design to the fore. In the design, process and product are 
inextricably linked in the sense that the former draws its very existence on the pursuit of the creation 
of some novel products, and that a creative product acquires its substance as the end-result of some 
design processes. However, the role of creativity in instructional design, or specifically in 
educational resource design, has been only recently acknowledged (Clinton & Hokanson, 2012).  In 
this study, we looked at the process of designing such a resource collaboratively, focusing on the 
emergence of Social Creativity (e.g., Fischer 2005; 2014) which we employed as a theoretical frame 
to both understand and foster creativity in collective design. Our designer communities were 
engineered to include diverse expertise and personal histories of educational professionals (we 
borrowed Fischer's term 'communities of interest' or CoI) working together and using digital tools 
specially designed to amplify the outcome of their collaborative efforts. We hypothesized that social 
creativity builds on the wealth of diverse individual perspectives brought in by different 
stakeholders in addressing a design problem of common concern and focuses on the interactions 
occurring in socio-technical environments (Fischer, 2014) i.e., among the individual members of a 
community and between them and particular technologies and artefacts. 

The diversity within a CoI although being a source of discontinuities and breakdowns in 
communication, can be also a source of new ideas, insights and artefacts. According to Akkerman and 
Bakker (2011) boundaries are defined as the “sociocultural differences that give rise to discontinuities 
in action and interaction” (p. 139), which can be overcome through boundary crossing processes, i.e., 
efforts made by individuals or groups ‘at boundaries’ to establish or restore continuity in action or 
interaction across practices, leading to learning, identity development and re-conceptualization of 
practice. These efforts are facilitated by boundary objects (Fischer, 2005) which are externalizations of 
ideas that help to establish and maintain a common ground supporting communication and shared 
understanding. They come in the form of artefacts (such as specially designed computer tools), 
discourses (as a common language), or processes that allow the coordination of actions. Thus, 
computational support for CoIs should enable the creation, discussion and refinement of boundary 
objects that allow different knowledge systems to interact (Fischer, 2005). 

In our study, we worked with educational designers and thus needed to also employ a framework to 
help us understand the context particularly of teachers as resource designers. Thus, we adopted the 
documentational approach of didactics (Gueudet & Trouche, 2009), which focuses on the 
interactions between mathematics teachers and resources and their consequences for professional 
growth. Teachers ‘learn’ when selecting, transforming, implementing and revising resources in the 
course of their teaching. The documentational approach proposes a specific conceptualisation of this 
learning as a documentational genesis, which jointly generates a new resource and a scheme of 
utilisation of this resource in an ongoing process. In relation to collectives instead of individual 
teachers, community documentational genesis describes the process of gathering, creating and 



sharing resources to achieve the teaching goals of the community. The result of this process, the 
community documentation, is composed of the shared repertoire of resources and shared associated 
knowledge (Gueudet & Trouche, 2012). A collaborative design activity, and more particularly an 
activity involving teachers as designers of creative educational resources, is thus a process that is 
expected to trigger collective documentational genesis. The present study aims to unfold social 
creativity, located in and nurtured by the boundary crossing encounters among the CoI members, 
and collective documentational genesis processes in the design of digital creative mathematical 
resources for curvature, which takes place in a socio-technical environment consisting of a 
community of diverse educational professionals and a digital environment specially designed to 
allow them coordinate their efforts in designing these resources. 

Method 
The Community of Interest (CoI) 

A wide range of expertise was brought together in the design of the c-book “Curves in Space”. The 
seven CoI members participating in this joint design were practitioners in different levels of 
education (from primary to tertiary education) specialized in mathematics, mathematics education, 
creative writing, computer mediated communication and the design of digital tools for mathematics 
education. This diversity in knowledge domains, perspectives and cultures was meant to enhance 
the CoI’s creative potential. 

The Computational environment 

The C-book environment provides the ‘CoICode workspace’, a tool for asynchronous online 
discussions allowing designers to choose between a threaded forum discussion organised in a tree-like 
structure (see Figure 1) and a mind map view. When posting a contribution, CoI members have to state 
its nature (i.e., alternative, contributory, objecting, off task or management) by using a specific icon, 
and can attach and refer to objects like online resources, texts or widget instances that reside in the c-
book under construction. In addition, the environment contains a platform which is the space for 
authoring (the C-book authoring tool) and the space where students interact with the c-book (the C-
book player). The platform is designed to incorporate pages with dynamic and configurable widget 
instances accompanied by corresponding narratives (see Figure 2). In this case, MaLT+, a 3D Logo-
Based Turtle Geometry tool affording dynamic manipulation of variable values was used 
(http://etl.ppp.uoa.gr/malt2). Spirals are generated by either constant or incremental curve and torsion 
changes to a turtle respectively repeating very small displacements.  

Data and analytical approach 

Our data were the 124 contributions uploaded in the ‘Curves in Space’ workspace from the outset of 
the design process (6/4/2015) until the final version of the c-book was released (23/7/2015). The 
analysis of the contributions posted in CoICode involved the selection and analysis of critical 
episodes, i.e., relatively brief and uninterrupted periods in CoICode discussion, shedding light on 
some important aspect of the social creativity processes and/or products developed, by focusing on 
the interactions among the CoI members and with the C-book technology. Furthermore, we traced 
paths of socially creative ideas, which stretch over longer periods of time and include several critical 
episodes, in terms of the critical moments in their evolution from the initial to the final idea (i.e., an 



idea implemented and incorporated into some part of the c-book). The emphasis was on unveiling 
the social nature of the processes involved in the development of ideas and in the examination of the 
C-book environment features which added to the formulation, elaboration and cross-fertilisation of 
the CoI members’ ideas.  

  

Figure 1: Excerpt from the CoICode 
workspace depicting critical episode 1 

Figure 2: A ‘Curves in Space’ c-book page asking students 
to fix the code for designing the Olympic rings 

Results 
Critical episode: The design of a widget instance 

The episode selected (see Figure 1) started one month after the outset of the design process, it lasted 8 
days (14/5-20/5/15) and the participants in it were three CoI members: George, Mathematics teacher 
and graduate student in Mathematics education, Dimitra, Literature teacher and graduate student in 
ICT in Education, specialised in creative writing and Marianthi, MA ICT in Education graduate and 
developer. At that time an exchange of resources was taking place on the mathematical idea of Helix-
Spiral between a senior mathematician (Stefanos) and George. The discussion is initiated by Dimitra 
(14/5) who, inspired by the airplane functionality in MaLT+, suggests that students calculate the 
distance covered by airplanes performing spiral movement during air shows. George (14/5) responds 
enthusiastically, elaborates on Dimitra’s idea and provides a Wikipedia link on jets streams. Marianthi 
then puts forth a suggestion on a half-baked widget instance (i.e., a ‘buggy’ procedure where students 
are asked to experiment, figure out what is wrong or superfluous in the code and correct it): 

Marianthi (19/5): […] in MaLT+ I created a procedure where the airplane movement forms the 
Olympic rings. I am sending you the complete code so that we can half-bake it, 
e.g. it can turn by a 45-degree angle in the last two turns so that the rings do not 
come out straight (attaches ‘Olympic_correct.txt’) 

Marianthi (19/5): I am sending you the one I wrote with the wrong angles (attaches 
‘Olympic_wrong.txt’) 



George (20/5): I like it a lot! I suggest not to half-bake it, but ask students to create it by 
themselves by looking at an image of the Olympic rings […]  

Marianthi (20/5): […] I think if it’s half-baked it will be more challenging for students to correct 
it than create it from scratch. Also, we can focus on specific mathematical topics 
like the turn angle or the distance of cycles. 

George (20/5): […] Since the unit addresses senior students it would more creative to allow them 
work without such restrictions. If we half-bake it though, wouldn’t it be better to 
use variables for the angles? 

George (20/5) refers to drones as a more innovative alternative to airplanes and designs two alternative 
versions of the widget instance in which he adopts Marianthi’s proposal. Finally, one of his versions 
was incorporated in the c-book without further negotiation including his suggestion of imprinting the 
traces of a drone instead of a plane (see Figure 2). This episode shows how the collective resource 
system is enriched through the sharing, reflection and transformation of individual resources to 
boundary resources. What is more, boundary crossing interactions between CoI members allowed the 
cross-fertilization of diverse perspectives: mathematics, digital tools development and creative writing. 
Dimitra, having studied existing resources is inspired to articulate the airplane idea stating in what 
ways it deviates from what has been heard before. Marianthi turns Dimitra’s idea into a ‘tangible’ 
object, i.e., a widget instance, while George expresses considerations initiating an interesting exchange 
on the pedagogical affordances of different types of activities. He brings CMT to the fore and poses 
the challenge to other members to directly argue on specific pedagogical and technical affordances of 
the proposed activities. The final version of the instance appears in the c-book as a result of the 
coordination of George’s and Marianthi’s ideas. Social creativity is thus enhanced by exchanging, 
discussing on and modifying half-baked curve designs acting as boundary objects, allowing the 
communication and coordination of diverse perspectives. Mathematical resources thus take a 
mediational role between diverse perspectives undergoing several transformations and revisions until 
they are reified as widget instances in the c-book. As teachers negotiate over an emergent 
mathematical construction, they are challenged to reflect on and reconsider their beliefs and practices 
as well as their meanings of mathematical objects and relationships, thus expand their learning. 

The evolutionary path of the narrative 

The path presented below is related to the evolution of the narrative of the c-book. The respective path 
includes 52 contributions and stretches along the entire workspace. Early on in the design process, CoI 
members were concerned with devising a narrative that, together with appropriate widget instances, 
would provide opportunities for mathematization and meaning making around curvature. The 
mathematical affordances of various digital tools also became an early topic of discussion so that tools, 
narrative and mathematical concepts were interrelated in the design of the c-book. Below we provide 
decisive contributions from individual CoI members and stress the social nature of the processes 
involved in the development of the scenario from its first appearance to its incorporation in the c-book. 
At that time a number of widget instances designed to afford creativity and meaning making in 
curvature took the role of boundary objects by evolving through multiple cycles. However, a cohesive 
narrative that would incorporate and join together these elements was pending, despite the fact that 
some interesting ideas had been already suggested. The path sheds light into how the CoI members’ 



conceptions about their productions in terms of didactical design (widget instances and corresponding 
learning activities) intertwined with their ideas about the narrative of the c-book. Stefanos (22/6) 
presents a -rather loose- synthesis of his own and other members’ ideas on the c-book narrative 
integrated in a new version of the c-book: the history of curves, two detectives working to solve a 
crime, a 3d printer laboratory, and solving riddles related to spirals. George (24/6) reacts 
enthusiastically and attaches an elaborated version of Stefanos’ story incorporating Sylvie’s comments 
on enhancing the story: two renown detectives (Hercule Poirot and Sherlock Holmes) try to solve a 
mysterious robbery in a laboratory, which is connected to constructions related to curvature. Sylvie, a 
teacher and creative writing specialist who joins the discussion at that time, presents a totally different 
idea on the structure of the scenario relying on contemporary characters, which fuels an intense debate. 
Stefanos (25/6) objects to Sylvie’s suggestion on the grounds that the storyline should blend with the 
widget instances so that students follow a learning trajectory working with tools of gradual increase in 
complexity. He also posts a document in which he justifies his rationale for building his own version 
in which mathematical concepts are presented in a coherent and meaningful way. George and Katerina 
(computer mediated communication specialist) react to Stefanos’ post: 

George (26/6): Very insightful comments, especially in relation to the way the current narrative 
supports the smooth integration of the learning sequence on curvature. […] 
Wouldn’t it be better to make some corrections without discarding what we’ve 
done until now? […] (He attaches ‘What a strange morning in the laboratory.doc’ 
where he expands his previous version to include logarithmic spirals). 

Katerina (27/7): […] I don’t think that the new version rejects previous constructs and ideas […] 
but rather promotes them by organically binding them with a fresh, creative story. 

Up to this point there are two opposing views on the scenario; a mathematics oriented strict, 
structured and robust learning scenario mainly supported by a senior member who is an experienced 
Mathematician, teacher and researcher (Stefanos) and a more innovative one which embodies a set 
of characters and situations of contemporary culture. This tension is released when George (28/7) 
replying to Katerina, posts a new synthetic version of the scenario. In the next two versions of the 
scenario Sylvie, Katerina and George collaborate so that Sylvie presents a more robust synthetic 
version that organically integrates the designed widget instances. The coordination of the two 
prevalent perspectives in the design of the c-book, i.e., the mathematics and the creative writing 
perspective, made possible the infusion of creative elements in the narrative, while not losing sight 
of its mathematical focus on curvature. It is noteworthy that these two perspectives are not only 
gradually reconciled after the catalytic intervention of George, they also enrich each other; the 
senior mathematician later proposes two additional ideas on the scenario much more innovative 
than his initial ones, while the creative writing specialist, after closely collaborating with 
mathematicians, comes to adjust her story in a synthetic version. These reflective processes are 
essential for the interweavement of widget instances with the narrative into a concise whole. Social 
creativity is thus facilitated by the meshing of the Sherlock Holmes narrative with curvature, which 
can only have emerged because of the diversity in the CoI. Furthermore, the process of story 
versioning boosts social creativity as it allows for the generation of new ideas which capitalize on, 
object to and finally synthesize previous ones. It is an ongoing process where ideas are adjusted, 
adapted and combined to produce new documents. 



Conclusions 

The analysis of social creativity in the design process of a c-book on Curvature focused on the 
boundary crossing interactions between the CoI members and the role of the narrative and the widget 
instances as key resources for the development of social creativity. Two important boundary crossing 
processes, coordination and reflection, have enhanced social creativity establishing communication 
between different communities of practice: Mathematics, Literacy/creative writing and Digital tools 
development. Reflection, on the other hand, is the process which gave ground to the fertile synthesis of 
different views. Moreover, the story and its versions as a key resource was paramount to social 
creativity within the CoI. The story versioning process allowed for warm debate and idea exchange to 
take place: it created common ground for all CoI members to unfold their expertise, as well as the 
meshing of narrative with constructionist artefacts-widgets on curvature. As a result, a collective 
document, that is the c-book, was developed, associating various shared resources (activities, widget 
instances, text, and CMT representations) and a scheme for interweaving all these elements in a 
coherent whole. The issues that emerged during the construction of successive c-book versions 
challenged teachers’ perceptions with respect to the teaching and learning of curvature resulting in 
innovative approaches fostering creativity and meaning-making. Embedding the comparison of 
constant to incremental turn and torsion changes to generate spirals in space within a Sherlock Holmes 
'who dun it' story involved stepping out of curriculum structures for curvature and making a new 
conceptual field available to students connecting curvature with functions and 3D geometry.  

The use of different theoretical perspectives, i.e., Social Creativity, Documentational Genesis and 
Boundary Crossing, has helped us gain a deeper insight in the phenomena in question. In our framework 
of analysis, the Social Creativity perspective provides the lens thought which the social dimension of 
teachers’ documentational genesis process can be approached. Moreover, resources take the role of 
boundary objects allowing the coordination of diverse perspectives leading to the generation of creative 
products (the c-book as an end-product). Thus, by coordinating these theoretical approaches, we seek to 
develop a networked understanding (Prediger, Bikner-Ahsbahs, & Arzarello, 2008) of the collective 
design of a c-book as a novel digital medium to foster students’ creative mathematical thinking; a single 
theory would not suffice for understanding such a complex process. Even though drawing connections 
between theories is not a trivial task, such networks are potentially powerful and useful for the further 
development of mathematics education as a scientific field. (Prediger et al, 2008). 
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This paper investigates how mathematics teachers plan lessons with a recently implemented Danish 
learning platform designed to support teachers in planning lessons in line with a recent objective-
oriented curriculum. Drawing on data from observations of and interviews with teachers, three 
mathematics teachers’ joint planning of a lesson in geometry with a learning platform called 
Meebook is analyzed using the instrumental approach. It is concluded that the interface in Meebook 
orients the teachers work toward what the students should do rather than what they should learn, 
although the latter is a key intention behind the implementation of the platform. It is also concluded 
that when the teachers succeed in using learning objectives actively in their planning, the objectives 
support the teachers to design lessons that correspond with their intentions. The paper concludes 
with a discussion of the dialectics between learning objectives and planned activities.   

Keywords: Planning lessons, objective-oriented curriculum, learning platforms. 

Introduction 
Teachers’ planning of lessons is an important aspect of teaching as the decisions made at this stage 
shape students’ opportunities to learn (Superfine, 2008). Planning is especially important for 
mathematics teachers as techniques and tools are closely linked to mathematical conceptualizations 
(Haspekian, 2005). It is therefore essential that teachers’ choices of resources and tasks resonate 
with the teachers’ intentions of what the students should learn. Currently, an increased number of 
technologies are becoming available that support teachers to plan lessons (Johnson, Adams Becker, 
& Hall, 2015) by giving teachers access to new resources and allowing them to design their own 
materials (Gueudet, Pepin, Sabra, & Trouche, 2016). Although such technologies bring new 
opportunities, they also bring challenges as new resources and materials often require mathematics 
teachers to reconsider how environments that give the students the right opportunities to learn can 
be designed (Haspekian, 2005). 

In Denmark, learning platforms are currently being implemented that are an exemplar case of new 
technologies that support teachers in planning lessons. Among other things, the learning platforms 
serve to give students, parents and teachers access to plans for students’ learning progression, and 
the platforms are designed to support teachers in planning and sharing lessons (KL, 2014). The 
learning platforms share a number of characteristics with learning management systems (LMSs; see, 
for example, Watson & Watson, 2007), but learning platforms also integrate affordances that are not 
typically associated with LMSs. Although LMSs typically are designed to handle all aspects of 
student learning, the learning platforms also support teachers to design lessons by giving the 
teachers access to online curriculum materials and enabling the teachers to create their own. 
Previous research about platforms that support teachers’ planning has identified a need to support 
teachers to design lessons and choose resources that are in line with the teachers’ intentions for 
students’ learning (Hodgson, Rønningen, Skogvold, & Tomlison, 2010). Danish learning platforms 



were implemented in the wake of a recent curriculum reform that foregrounds learning objectives, 
and the idea is that learning objectives will support teachers to make choices that reflect the 
teachers’ intentions for student learning. Although the learning platforms are already used widely in 
Danish primary schools, there is yet little research on how teachers plan lessons with these 
platforms. This paper investigates how Danish mathematics teachers plan lessons with one of the 
most widely chosen platforms, called Meebook (https://meebook.com/). It derives from a small-
scale pilot study in an ongoing PhD-project. The paper contributes to the literature as it offers the 
first empirical analyses of how Meebook mediates teachers’ planning and discusses the 
consequences of this planning for the orientation of their planning and of the foundation on which 
teachers build their choices of resources and tasks. The data in the study consists of a case of three 
teachers’ joint planning and individual interviews with the same teachers. I begin the paper by 
explaining the Danish context and some of the key ideas behind the implementation of the learning 
platforms. I then introduce the instrumental genesis framework and my methodological approach 
and analyze a case of three teachers’ joint planning with Meebook. I conclude with a discussion 
about the dialectics between learning goals and planned activities in which I draw on a concept of 
rational and relation modes of planning (John, 2006; Superfine, 2008).   

Context 
In 2014, as part of building a national digital infrastructure, the national government decided that all 
municipalities in Denmark would be required to purchase and implement a learning platform during 
the 2016/2017 school year. Instead of developing a common, national learning platform, the 
Government and Local Government Denmark (KL) allowed municipalities in Denmark to choose a 
platform that best meets their needs. As some degree of uniformity was needed, KL stated 64 
functional requirements that the learning platforms must fulfill in order to be approved (KL, 2014). 
Among other things, these requirements included that the platforms should support the 
implementation of an objective-oriented curriculum reform and that they should support teachers to 
define the learning objectives for each lesson (KL, 2014). The idea was that teachers would begin 
their planning by defining a learning objective and then design or choose activities and resources 
that will enable the students to attain the objectives. Currently, six platforms are available that fulfill 
the 64 functional requirements of Local Government Denmark. These platforms differ in design, the 
amount and type of support that teachers are offered in planning lessons and how the national 
curriculum is considered as part of teachers’ planning.  

The school in which the present study took place is in a municipality that has chosen Meebook, one 
of the most widely chosen platforms. In contrast to some of the other available platforms (for 
example, https://minuddannelse.net), Meebook is characterized by an interface that allows teachers 
to choose how and when to integrate learning objectives in their planning. For example, 
MinUddannelse requires teachers to define a learning objective as the initial step of planning a 
lesson. The school had begun a gradual implementation of Meebook in December 2014 when the 
teachers initially were encouraged by school leaders to experiment with the platform. In August 
2015, school leaders made it mandatory for teachers to use Meebook to plan lessons in both 
mathematics and native language education.  



The Meebook interface 

Figure 1 illustrates Meebook’s interface to create a course and add a chapter, text, picture, video 
material, a PDF document, a hyperlink, a task or activity, e-textbook material or a student reflection. 
In this interface, the teacher defines what should happen in the lesson and which resources should 
be integrated. The learning objectives are in a separate tab that is illustrated in Figure 2 and can be 
accessed at individual teachers’ convenience. However, a learning objective must be defined before 
the course can be saved.  

 
Figure 1: Meebook’s interface for teachers to plan a course/lesson 

Figure 2 illustrates the interface in Meebook where teachers can define learning objectives for the 
course. Here, the teachers can also access the learning objectives from the national curriculum 
through a link and select those addressed by the course or lesson. Teachers can also define their own 
objectives.   

  
Figure 2: Meebook’s interface in the tab called “Add skill, knowledge and competence objectives”  

Theoretical framework and research questions 
In this paper, I draw on the instrumental approach (Guin, Ruthven, & Trouche, 2005). The 
instrumental approach is a framework developed to study the consequences of different kinds of 
tools, technologies and software for learning and teaching mathematics (Gueudet, Buteau, Mesa, & 
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Misfeldt, 2014). A key aspect of this approach is the assumption that the relation between design 
and use is dialectic rather than one-sided (Haspekian, 2005). When a subject uses an artifact in an 
activity with a specific objective in mind, the artifact can shape the appearance of the activity or 
even force the subject to redefine the objective of the activity. The subject’s use of the artifact can, 
however, also exceed the intended uses of the artifact. The latter is referred to as design that 
continues in use (Ejsing-Duun & Misfeldt, 2015).  

The instrumental approach distinguishes between artifacts and instruments. An artifact is defined as 
a cultural social construct that offers mediations of human activity, and an instrument is defined as 
the product of a subject’s use of the artifact for certain activities with a certain objective (Gueudet & 
Trouche, 2009). An artifact therefore becomes an instrument when the artifact is used by a subject. 
This process is called instrumental genesis and results in a change in the mediating artifact and in 
the activity the artifact is used for. These two opposite processes (the shaping and the being shaped) 
are referred to as instrumentation and instrumentalization (Haspekian, 2005). Instrumentation is the 
process in which the subject’s use of an artifact shapes the artifact, while instrumentalization is the 
process in which the artifact shapes the subject’s activity (Gueudet & Trouche, 2009). The approach 
also distinguishes between pragmatic and epistemic mediations (Rabardel & Bourmaud, 2003). 
Pragmatic mediations are the use of technology to perform a task (Rabardel and Bourmaud use the 
hammer as an example) while epistemic mediations are the use of technology that allows the subject 
to learn about the object through the use of the technology (Rabardel and Bourmaud use the 
microscope as an example). Finally, the framework distinguishes between different orientations of 
instrumentations and proposes three main orientations: orientations toward the object of the activity, 
toward other subjects or toward oneself (Rabardel & Bourmaud 2003). I use this framework to 
address the following research question: Which mediations of the teachers’ work occur as they plan 
lessons with Meebook, what are the consequences for the orientation of their work and for the 
foundation on which they build their choices of resources and tasks for the lesson?  

Method 
The data in this study comprised observations of two 2-hour meetings during which three teachers 
collectively planned lessons, and of individual interviews with the three teachers. In general, the 
teachers expressed a positive attitude towards Meebook, although none of them had previous 
experience of using LMSs. The observations focused on: 1) the materials and task that was chosen 
by the teachers; 2) whom or what their planning was directed towards; and 3) what the foundation 
of their decisions seemed to be. The meetings, which took place at the school where the teachers 
worked, were documented by video recordings and field notes taken during the session. The video 
was recorded with a high-resolution camera that showed how the teachers maneuvered in Meebook. 
All video recordings were subsequently transcribed as closely to the spoken word as possible and 
supplemented by the notes taken during the observation.      

The interviews were carried out after the observations and supplied data about what the teachers 
found important to consider when planning lessons—in general and related to the observed sessions. 
The interviews also collected data about the teachers’ educational backgrounds and their seniority.  

For this paper, I use a single case (Yin, 2014) that was selected as it gives insight into the relation 
between the teachers’ planning practices and their use of the different interfaces in Meebook. 



Although the amount of data in this study is sparse, the case reveals important problems and 
prospects associated with supporting mathematics teachers’ planning with technologies, such as 
learning platforms. The case also identifies issues that future research in this area could consider.  

Case 
This case took place during three teachers’ joint planning of a lesson on geometry in middle school 
(students aged 10–11). The three teachers were Karen, Miriam and Gina. At the time this session 
took place, the teachers were two weeks into a three-week course on geometry. Karen is 29 and has 
2 years of teaching experience, Gina is 40 years of age and has 5 years of experience and Miriam is 
46 and has 22 years of experience teaching.    

During the meeting, the teachers alternately discuss how to plan the lesson and write their decisions 
in Meebook in the tab illustrated in figure 1. While working in this tab, they decide that the students 
should work in groups and categorize the geometric figures they had been working with for the last 
two weeks (rectangles, squares, trapeziums, parallelograms and rhombuses). The teachers agree that 
each group should be given cardboard figures in the shape of these five figures and that the students 
should categorize the figures by placing them on an A2 piece of paper. Gina then openly poses the 
question whether the students should categorize the figures ‘freely’ or whether they should follow 
certain instructions. As the teachers discuss this matter without immediately reaching an agreement, 
Karen turns to the tab in Meebook where they have written the learning objectives for the course 
(illustrated in Figure 2). Karen reads the objectives aloud to her colleagues: “According to the 
objectives, the students should be able to distinguish between the five figures and categorize 
different types of figures according to their side lengths and angle sizes.” Miriam argues that if these 
objectives should be addressed, then the students should identify the figures from their properties 
and that they therefore should be given instructions to do so. The two other teachers concede. Gina 
then comments: “If we give them figures to categorize, how do we make sure that they actually talk 
about the properties of the figure?” This comment makes the teachers aware that there is a risk that 
the students will categorize the figures from what they spontaneously believe the figures look like. 
The teachers find this likely, as the students have been working with the same five figures for two 
weeks at this point. This method of categorizing the figures would not target the objective for the 
lesson. The teachers therefore agree to hinder this from happening by cutting the cardboard figures 
into shapes that are unlike the figures the students have been exposed to during the last two weeks 
(for example, a ‘crooked’ trapeze, as Miriam calls it). They believe that this will make it difficult for 
the students to recognize the figures and that this will prime the students to actually investigate the 
properties of the figures and to do their categorization from this. The teachers also decide to instruct 
the groups to take turns picking a figure from a pile of cardboard with the figures facing downward, 
then place the figure in the category on the A2 paper where they believe it belongs and explain to 
the rest of the group why they believe it belongs there.  

Results 
The teachers’ planning of the lesson initially takes place in the interface illustrated in Figure 1. This 
interface in Meebook displays an overview of the resources available to the teachers and presents a 
blank field for them to fill. This blank field refers to the content of the lesson: which resources they 
will draw on and which activities they will include in the lesson. Meebook’s visualization of the 



content as the first aspect of the lesson to consider seems to be reflected in the teachers’ initial 
decision that the students should categorize laminated geometric cardboard figures and that this 
activity should be carried out in groups. At this stage, the teachers’ activity is oriented toward the 
object (the lesson to be planned), and their objective seems to be to decide which resources and task 
to include in the lesson. This priority of the content contradicts all three of the teachers’ statements 
in the interviews where they emphasized the importance of beginning their planning by defining the 
objectives for the lesson. Miriam expresses it in the following way: “We always begin our planning 
with the learning objectives. That way, we can find or design the resources and tasks that fit the 
objectives. That’s the whole starting point when we plan lessons.” This suggests that the teachers’ 
use of Meebook leads to a shift in the orientation of their activity from being oriented toward 
learning objectives toward being oriented toward defining the content. A consequence is that the 
choice of the cardboard figures does not reflect considerations about which specific geometric 
learning the students should obtain. This choice seems rather to reflect that the current topic is 
geometry. In the interviews, Karen and Miriam stated that they found it important that students have 
the chance to verbally express themselves in mathematics, as they believe that this creates good 
opportunities to learn. It is possible that the teachers’ choice of organizing the lesson in groups is a 
reflection of this belief. The teachers’ choice of using cardboard figures and that the students should 
categorize the figures, however, rather seems to reflect an objective of deciding what the students 
should do than what the students should learn. As previously stated, a subject’s use of an artifact in 
an activity can shape the appearance of the activity or even force the subject to redefine the 
objective of the activity. In this case, Meebook’s visualization of the activity ‘planning lessons’ 
seems to instrument the teachers’ activity and orient it toward deciding the content for the course 
instead of prompting discussions about what the students should learn and which resources and 
tasks would enable this learning to occur. The case does not clearly illustrate an epistemic nor a 
pragmatic mediation. The case however illustrates that the teachers’ use of Meebook does not lead 
to a new understanding of how the lesson could be planned according to their intentions.   

As the teachers’ meeting continues, they discuss whether the students should categorize the figures 
freely or whether their categorization should be guided by specific instructions. This decision 
requires a basis, and to find this basis, Karen turns to the tab in Meebook’s interface where the 
teachers previously have written the learning objectives for the course. By turning to the objectives, 
the teachers become aware that the setting requires certain instructions if the learning objectives 
should be addressed. In this manner, the teachers use their knowledge about the students to 
anticipate how they would engage in solving a task and what learning in which this would result. 
This can be seen as an instrumentation of Meebook as the teachers merge two otherwise separate 
interfaces in Meebook. This results in the opportunity for an epistemic mediation of their activity 
that did not occur when the teachers worked in Meebook’s content interface. As the learning 
objectives in Meebook become available for the teachers to use, they are enabled to explore their 
design of the lesson and modify it according to their intentions. At this point, the teachers’ activity 
is characterized by a shift in orientation from the content of the lessons toward other subjects: the 
students, and more specifically, the students’ learning. In other words, the teachers’ activity shifts 
from being oriented toward what the students should do toward designing a lesson that creates 
opportunities for the students to learn something specific.  



Discussion and conclusion 
One of the main ideas behind implementing learning platforms in Denmark is the assumption that 
integrating learning objectives in the platforms will support teachers in choosing resources that 
correspond to the teachers’ intentions for student learning. However, this pilot study suggests that it 
is not sufficient that learning objectives are integrated as a part of teachers’ planning in the 
platforms, but that the ways the learning objectives are integrated in the design of technologies are 
important. In the case presented here, Meebook’s interface separates the objectives from the content 
of the course that in this case implies that the teachers’ choice of resources is separate from the 
learning objectives. Considering the importance of techniques and tools for mathematical 
conceptualizations, it is crucial that the choice of resources and tasks is carefully considered. This 
does not seem to be the case here. The case demonstrates that learning objectives can be valuable 
assets and work as epistemic mediators for teachers when they plan lessons. The teachers’ use of the 
learning objectives enables the teachers to explore their lesson design and modify it so it 
corresponds with their intentions. However, it is remarkable that this opportunity arises as a 
consequence of the teachers’ instrumentation of Meebook rather than of Meebook’s 
instrumentalization of their activity. In addition, the initial choices (that the students should 
categorize cardboard figures in groups) are not changed or reconsidered during the session. In the 
case presented here, the teachers succeed in building a lesson with the cardboard figures and group 
organization a way that reflects the teachers’ intentions. However, it remains to be known whether 
the teachers would have changed or discarded the cardboard figures or not if it turned out that these 
resources were incompatible with the learning objectives. This point suggests that this is an issue to 
be aware of in future research.  

Previous research in mathematics teachers’ planning distinguished between a rational and a 
relational mode of planning (John, 2006; Superfine, 2008). The rational mode views education as a 
linear input–output relation in which the planning begins by defining the objectives and 
resources/activities then are decided. The relational mode is planning focused on how students 
encounter each other, the mathematical content and with the teacher in a specific setting and the 
opportunities to learn arising thereof (John, 2006). The rational mode has been criticized for 
resulting in lesson plans that overlook and fail to anticipate the complexity and contingency of 
educational contexts while the relational mode is often referred to as a ‘better alternative’ (John, 
2006). The results in this paper challenge that these modes should be separated sharply. It is exactly 
when the teachers foreground the learning objectives that they are able to engage in a relational 
mode of planning and design tasks and resources in ways that reflect the teachers’ intentions. 
Through combining these modes, this potential is exploited, and neither the rational nor the 
relational mode in itself would enable this process. This result suggests that future research in this 
field could benefit from considering how learning objectives are integrated in technologies that 
support teachers’ planning and what kind of planning modes these objectives en- or disable.  
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Multiple choice (MC) items are the natural choice for automated online assessment. Ideally, making 
a choice should be based on knowledge and reasoning. Nevertheless, studies demonstrate that often 
various techniques (e.g. guessing) are the common practices. In the last decade technology has been 
employed to support real-time feedback as formative assessment for teaching and learning. This 
study examines whether and how learner generated examples, when required as support to the 
choice made in MC task, could be automatically identified to give insights into learners' 
understandings. Results show discrepancies between chosen correct statements and their 
supporting examples. Other automatically assessed characteristics are related to learner's 
approaches and strategies. 

Keywords: Reasoning with examples, geometry, multiple choice questions, automatic online 
assessment, formative assessment. 

Theoretical background 
Multiple choice (MC) tasks are the most well-known tasks when it comes to automatic assessment 
(Farrell & Rushby, 2016; Sangwin & Kocher, 2016). They are used for testing various topics of 
study as well as different levels of abilities from basic through high order thinking. They hold 
several advantages including objectivity of scoring, and availability of more items in each 
assessment due to short solving times (Farrel & Rushby, 2016). However, MC tasks are often 
criticized for being biased (Hassmen & Hunt, 1994), for sometimes being measurements of how fast 
a student could make an educated guess or use elimination techniques, and not necessarily assessing 
what the MC tasks were designed to assess (Lau, Lau, Hong, & Usop, 2011).  

Recent use of technology has made it possible to automatically assess responses by not only using 
MC tasks (Stacey, & Wiliam, 2012; Sangwin & Kocher, 2016). Immediate presentations of 
information on tasks performed in a technological environment are used as means to formative 
assessment: serving as feedback to modify teaching and learning activities (Black & Wiliam, 1998). 
One of these avenues is by automatically assessing learner generated examples (LGE) in a dynamic 
geometry environment (DGE) (Leung & Lee, 2013). Example generation tasks may serve as 
possible means to show conceptions of mathematical objects, or concept images (Vinner, 1983), 
informing about possible difficulties and inadequacies (Zaskis & Leikin, 2007). Another use of 
examples is for determining the validity of mathematical statements (Nagari-Haddif & Yerushalmy, 
2015), in which systematic analysis of LGE could shed light on the evolving understanding of the 
status of examples in proving or refuting a mathematical claim (Buchbinder & Zaslavsky, 2009). 
Combining the accessibility of MC tasks in assessment with the potential reasoning abilities and 
demonstration of understanding by generating examples in a technological environment has the 
potential to enhance formative assessment in the mathematics classroom. 



Methodology 
This study is part of a long-term project aiming to explore ways in which automatic assessment 
could give more insight about student understanding in mathematics (Olsher, Yerushalmy, and 
Chazan, 2016). Specifically, we ask whether the requirement to provide examples to support a 
chosen answer gives the assessor additional insight into students’ understanding in MC tasks. The 
participants were 32 secondary Israeli geometry teachers, from all over the country who taught 
different levels and ages ranging from 7th to 12th grade. The study was conducted as part of a 
broader national professional development effort to expose teachers to innovations in mathematics 
education. 

Tasks 

The study included three tasks and the context was mathematical similarity. The tasks were 
designed as interactive diagrams describing a geometrical context, using the STEP platform1. The 
interactive diagrams were constructed using GeoGebra and they enabled the participants to drag a 
set of elements in the diagram, according to the predefined characteristics determined by the 
designers of the task. The context was described in the task, and several statements were provided 
for the participants to consider. The participants were required to select the statements that are 
correct in regards to the diagram. More than one statement could be correct in relation to the 
interactive diagram in any single task. The tasks were similar to conventional multiple choice tasks 
accompanied by an interactive diagram, with one main difference: In these tasks the participants 
were expected to experiment and manipulate the interactive diagram into a state that fits one or 
more of the statements. In order to add another layer of reasoning, we asked the participants to 
attach a screen capture of the applet in a state that exemplified each of the statements they have 
chosen, thus requiring the participants to add an example instead of just select a statement as in 
traditional multiple choice tasks. 

Automatic checking of tasks 

The STEP platform enabled an automatic analysis of the predefined mathematical properties of the 
submitted solutions in order to characterize these solutions pedagogically and mathematically 
(Olsher, Yerushalmy and Chazan, 2016). The tasks in this study were designed so that the system 
would indicate if the corresponding example fits the criteria in the relevant statement2, and enable 
the teacher to immediately have access to filtered answers accordingly. Yet, it is important to state 
that at the present time technology cannot determine correctness on its' own for these types of rich 
tasks. For each task, a well-defined set of conditions should be applied in order to determine the 
type of feedback affording formative assessment. Meeting the conditions of the checking algorithm 
does not mean correctness. It just means that this is what was automatically checked, and any 

                                                 
1 Seeing the Entire Picture - STEP – is a formative assessment platform developed at the University of Haifa’s Center 
for Mathematics Education Research and Innovation (MERI). For more detail about this platform, see 
www.visustep.com. 

2 When automatically checked, a margin of accuracy was determined by the teacher in which solutions are considered 
sufficiently accurate. For example, in this case, parallel lines, or coinciding points. 



interpretation about correctness is purely suggestive, and should be carefully examined by both the 
assessor and the assessee. 

Analysis 

Our unit of analysis was the task. The first stage included locating discrepancies between a correct 
choice and the accompanying interactive example. We checked which participants chose the set of 
correct statements and compared it with the number of participants to correctly attach examples for 
all of the statements. The second step included a refinement of the analysis. We counted how many 
correct statements were chosen per-task (more than one choice could be correct for a single task), 
and compared it with the number of incorrect examples that do not meet the required answers' 
conditions. The third stage included the coding of the discrepancies according to pre-set categories 
(e. g. familiar mistakes or additional reasoning) in order to study the characteristics which could be 
subsequently assessed automatically. 

Results 
       Table 1 shows the distribution of answers (consisting of chosen statements and supporting 
examples submitted by the participants (n=32) to the 3 different tasks. 

Task 
(number of 
correct 
statements) 

No. of 
participants 
which 
submitted 
an answer 
(n=32)  

Sum of correct 
statements chosen 
by submitting 
participants  

Sum of correct 
examples 
attached to 
correct chosen 
statements  

No. of 
participants 
with all 
correct 
statements 
chosen 
(n=32)  

No. of 
participants 
with correct 
answers and 
correct 
supporting 
examples. 
(n=32)  

1 (3) 30 66  49 13 5 

2 (2) 28 40  32 11 7 

3 (3) 21 39  27 7 5 

Total N.R* 145  108 N. R.* N. R.* 

* N. R = Not relevant 

Table 1: Answers submitted, statement choices, and examples provided for 3 tasks  

As can be seen in Table 1, a total of 145 correct statements were chosen and submitted. For 108 of 
them (74.5%) correct examples were submitted. The remainder (25.5% of the correct choices) were 
submitted with incorrect or no examples. We now investigate the work related to two statements of 
task 3 in order to learn the nature of the examples that did not seem to be coherent with the choice 
of statement. In this task (Figure 1), the topic is the recognition of similar triangles, and ratios 
between areas of similar triangles. The context of the dynamic figure is presented to the participants 
in multiple representations: a verbal description in the task description, starting with: "point D is the 
midpoint …", a symbolic representation in the digital geometry environment (DGE): ED┴AB, 



AD=DC, and a DGE construction: A draggable triangle ABC with point D and E. Measurement 
tools and numerical feedback are not supported in this task. 

 

Figure 1: Multiple choice with supporting example task 

In terms of correctness, the red points in the diagram could be dragged to create an example for any 
of the three statements in this task, making all the choices potentially correct ones. In order to 
construct a supporting example for the first statement, the lines ED and BC should be parallel3, in 
order to construct a supporting example for the second statement points E and B need to coincide. A 
supporting example for the third statement would be any position where AB>5AE. But in order to 
construct such examples (mostly for statements 1 and 2) participants are required to have some 
understanding regarding similarity and ratios of areas of similar triangles. 

Automatic assessment of this task was performed with the STEP platform, which is designed to 
present the submitted examples in several representations, including a visual representation of all 
examples attached to each of the statements (Figure 2), while enabling the assessor to automatically 

                                                 
3 There is also another option to construct this where E is outside ABC and AE=AB. 



filter the results according to mathematical and pedagogical criteria (Olsher, Yerushalmy, and 
Chazan, 2016), as will be demonstrated for this task. 

 

Figure 2: A sample of supporting examples for statements presented on the STEP platform 

Incorrect examples that do not meet the required answers' conditions  

Analyzing the collection of examples per-statement suggest a finer categorization. Statement 3-1 
(the first statement in task 3) stated that the ratio between the area of triangle ABC and the area of 
triangle ADE is 4:1. Triangles ABC and ADE are similar as ED is perpendicular to AB. In addition, 
AD has the same length as DC. Thus, any example in which ED is parallel to BC, which means AE 
has an equal length to EB and vice versa provides a supporting example. There were a total of 17 
examples submitted for this statement. 13 of which met the criteria for correctness. In Figure 3 
appear the 4 submitted examples that were automatically marked as incorrect, as the automatically 
calculated ratio between the relevant triangle areas was not approximately 4:1.  



Figure 3: Incorrect submitted examples for task 3-1 

The main characteristic that could be automatically assessed with this representation is the 
possibility that these participants did not address the characteristics relevant for this statement in 
their submitted examples - ED is not even approximately parallel to BC. 

Incorrect examples in line with familiar student mistakes  

Statement 3-2 stated that the ratio between the area of triangle ABC and the area of triangle ADE is 
2:1. Triangle ABC and ADE are similar. Thus, any example in which points E and B coincide 
provides a supporting example. There were a total of 12 examples submitted for this statement. 8 of 
which met the criteria for correctness. In Figure 4 appear the 4 submitted examples (a, b, c and d 
from left to right) that were automatically marked as incorrect, as the automatically calculated ratio 
between the relevant triangle areas was not approximately 2:1. 

 

Figure 4: Incorrect submitted examples for task 3-2 

In Figure 4, we see two incorrect examples (4a, 4b) that were further automatically categorized as 
"familiar mistakes". In these examples, the ratio between the lengths of BC and DE is 
approximately 2:1. These examples are a possible indication of holding the image of “linearity” 
between ratio of lengths and ratio of areas, a familiar phenomenon from the literature and teacher 
practice. 

Examples with additional verbal, symbolic or free-hand graphic reasoning  

Figure 4c shows an example that includes a correct verbal explanation but without any matching 
change to the dynamic diagram. One of the functionalities of the STEP platform is a free-hand pen 
tool which can be used for making annotations and marks, or any other use that the participant 
might find helpful. The participants were aware that the platform automatically checked their 
figures, and that text or graphical markings, if submitted, are presented for the teacher to review but 
not analyzed automatically. The example above is one of 18 submitted examples (across all three 
tasks in this study) that were accompanied with free-hand markings on the interactive diagram. 
Apart from verbal explanations, the examples also included annotations in the form of either 
symbolic writing or in graphical marks on the diagram. There are numerous possible explanations 



for such responses. The participant might not have been able to construct the example, but thought 
about its mathematical properties, and wanted to demonstrate his knowledge. Annotation could also 
indicate that the participants needed to justify their example in a more robust, mathematical fashion, 
not fully accepting the diagrammatic example alone as a valid justification for a statement, which is 
closer to Israeli standard classroom practice.  

The example in figure 4d was not automatically categorized beyond its' incorrectness, as it did not 
fit the predefined filter for a familiar student mistake.  

One other aspect of the automatic assessment of MC tasks is the correctness of the entire task (e. g. 
choosing all of correct statements and providing them with correct supporting examples). In this 
study 13, 11, and 7 participants made a correct choice of statements in the three tasks respectively 
(Table 1). The number of participants who chose both the relevant statements and also provided a 
correct corresponding supporting example is lower: 5 (of 13), 7 (11), and 5 (7) (Table 1). This might 
be because the tasks were not clear enough, not specific about the relevant conditions; or perhaps 
ill-defined in terms of level of accuracy required. In order to enable efficient formative assessment 
these analyses are presented to the assessor in various graphic (e. g. Figure 2) and analytic (e. g. 
Venn diagrams) representations for further investigation. 

Conclusions 
This study provides initial information about discrepancies between choosing a correct statement, 
which could be a result of a guess or good examination tactics (Hassmen & Hunt, 1994; Lau, Lau, 
Hong, & Usop, 2011; Sangwin & Kocher, 2016), and providing an example to support this 
statement, which requires the translation of the conditions into a DGE context.  

Many of the automatically assessed characteristics of submitted examples were not related to the 
correctness of the example in supporting the claim, but to other aspects such as student approaches 
and strategy (e.g. construction of prototypical figures, unexpected solutions). Although, due to space 
limitations, this report has focused on the limited analysis of discrepancies between chosen correct 
mathematical statements and their supporting examples, it has provided several additional insights 
into the MC tasks. Some of the solvers did not attend to significant characteristics required to 
support the answer (e. g. a line that needs to be a mid-section therefore to connect mid-points of two 
sides of the triangle and to be parallel to the third one), or the fact that they construct an example in 
line with a familiar student mistake (e. g. the ratio between the areas of similar triangles is the ratio 
of their sides squared, not the exact same ratio as reflected in the submitted example). These types 
of phenomena could help teachers better assess the performance level on these types of tasks, in the 
relevant mathematical topic, providing meaningful real-time analysis in the service of instruction. 
The automatic analysis and categorization alongside the visual representation methods played a key 
part in discussions of the results with teachers. This practice is well aligned with what Olsher et al. 
(2016) claim that the viability of this assessment in the mathematics classroom lies within the 
ability to automate the assessment process as much as possible, and to provide the teachers with 
suggestive insights as part of a better picture of their classroom example space and answers.  
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The main aim of this paper is to analyse the experience of a MOOC for mathematics teacher training 
implemented in France, in parallel with a similar experience in Italy1. The study focuses on teacher 
collaboration within such an online learning environment, in terms of co-working and co-learning. 
The Italian and the French teams outlined a common starting point for the research and some 
common research concerns. Each team then reformulated the research questions and sought to 
answer them through specific theoretical lenses. In the case of the French MOOC eFAN Maths, we 
study the trainees’ collaborative design of a pedagogical resource, by focusing on the efficiency of 
an evaluation grid designed by trainers to be used within a global process of peer evaluation. A 
comparison with the results of the Italian experience is shown in the conclusion. 

Keywords: MOOC, teachers’ professional development, meta-didactical transposition, community, 
collaboration. 

Introduction 
Internet communication tools provide the opportunity to develop new types of teaching methods that 
combine online courses, resources and discussions. MOOCs (Massive Open Online Courses) were 
conceived in 2008 at the initiative of prestigious American Universities (MIT, Harvard, Stanford, ...) 
that sought to enlarge the courses they offered to a wider audience. Since then, the MOOC 
phenomenon has been growing steadily and worldwide, the number of MOOCs doubled between 
2014 to 2015 (Shah, 2015). Although there is a wide choice of many different topics, when looking 
specifically for a MOOC aimed at teacher training, the range is limited, especially in mathematics. 
Nevertheless, there is a growing interest in MOOCs involving mathematics teachers as participants, 
as shown by the TSG44 work during the 13th ICME2. In particular, from our experiences, there is a 
need for designing and implementing a MOOC for teacher training in mathematics education with a 
particular focus on the development of communities of practice (Wenger, 1998) and collaborative 
work among teachers as the basis for their professional development. Indeed, when people co-work 
(work together collaboratively) they can also co-learn (learn together collaboratively), as highlighted 
in the ICME survey of Robutti et al. (2016). The authors found that teachers can learn through 
discussion, conversation and reflection on their own teaching, on students’ learning and the teaching 
of others. The methodology of the French MOOC eFAN Maths aims to create collaborative contexts 

                                                 
1 See Taranto et al. (2017). Since the French MOOC and the Italian MOOC were delivered at the same period of time, 
even if the contents were designed independently, our teams had the opportunity to discuss and exchange about them. 
2 For more information, see http://www.icme13.org/files/tsg/TSG_44.pdf 



for teachers’ work, where they can learn from these kinds of practices. Taking into account the 
necessity for teachers to be supported in exploiting the affordances of technology, the shared 
objectives of both the French and Italian MOOCs are shared, namely: accompanying teachers in the 
production of teaching resources, by examples of activities and reflection on their ongoing resource 
design; fostering a reasoned use of technology, encouraging teachers to choose appropriate digital 
tools for the classroom. Such aims are related to the interest in the design and the implementation of 
teacher professional development programmes to include the role of teachers working and learning 
in communities (Wenger, 1998; Jaworski & Goodchild, 2006). 

The originality of our research based on the data collected from two MOOCs (in Italy and in France) 
that share similar aims and objectives, is twofold. First, it focuses on the specific dynamics of online 
interactions – among trainees and between trainees and trainers – to study the trainees’ use and 
appropriation of a tool (an evaluation grid) designed by trainers, for supporting peer evaluation of 
collaborative projects. It is topical and urgent to analyse the efficiency of such tools and interactions 
in the context of distance learning, because of the increased interest in this approach in recent years. 
Second, it analyses such dynamics according to the cultural constraints that shape MOOC design and 
development. French and Italian school environments have some remarkable differences and one of 
the most palpable is a wider freedom that institutional regulations traditionally give to the Italian 
teachers, compared to the major institutional constraints met by the French teachers. The Italian 
Indicazioni3 (guidelines) highlight for each discipline the fundamental learning goals that students 
have to achieve at the end of each cycle of instruction (two or three scholastic grades). These 
guidelines have the character of general didactic guidelines and require teachers to take the 
responsibility to choose and link the specific mathematical contents to be developed in the classroom 
in order to reach the required learning goals. The French Programmes4 (syllabus) are also based on 
competences for a given cycle of instruction, but they appear to be more detailed and normative: for 
each mathematical content, they provide some examples of activities. Moreover, they are 
accompanied by several additional resources intended to support the curriculum implementation in 
the classroom. 

In this paper, and in parallel with the Italian contribution to the symposium, we draw on the common 
theoretical element of the Meta-Didactical Transposition (Arzarello et al., 2014) to highlight how the 
concepts of community and of collaborative work evolve, taking new and different forms, and how 
these processes impact on teachers’ professional learning. As members of the French team, we are 
working together with members of the Italian team to compare data from the two MOOCs. In our 
conclusion, we will discuss the relevance of cultural and institutional aspects to the specific dynamics 
of the two experiences.  

                                                 
3 http://www.indire.it/lucabas/lkmw_file/licei2010/indicazioni_nuovo_impaginato/_decreto_indicazioni_nazionali.pdf 

4 Links to the French curriculum and supporting material are available at http://eduscol.education.fr/ 



Description of the MOOC eFAN Maths 
The MOOC eFAN Maths5 was delivered on a French national platform (FUN, France Universités 
Numérique) and its target was the world-wide French-speaking community, namely mathematics 
teachers and teacher educators willing to improve their practices in using technology in their 
classrooms. The second season of the MOOC, which is reported in this paper, lasted from early March 
to mid-April 2016 over a period of five weeks. The MOOC eFAN Maths is part of the Stratégie 
Mathematiques of the French Ministry of Education, which stresses the relationship of mathematics 
with other sciences and with the world, and aims at training teachers in this perspective in order to 
give students a refreshed image of mathematics. More specifically, this season of the MOOC was 
created with a dual institutional aim: to support teachers and teacher educators to understand and 
implement the new French curriculum (introduced in September 2016 in all French primary and 
secondary schools); and to promote collaboration within the French-speaking community. Courses, 
activities and discussion were especially focused on the new themes involved in the French 
curriculum, namely algorithmics and interdisciplinary work. The MOOC was grounded on a project-
based pedagogy, aimed at the design and the analysis of a classroom activity involving the use of 
digital tools. Every week, trainees took courses on specific topics of mathematics education from 
three video-based lessons, answered the related quizzes and worked on specific activities. The courses 
were constructed to provide trainees with elements to develop their reflections and projects about 
teaching and learning mathematics with technology. They showed brief episodes of classroom 
observation and their analysis, or were based on existing resources, showing and commenting 
animations or programs created with technology. Collective work was strongly encouraged among 
trainees. For this purpose, they were invited to join the “MOOC eFAN Maths 2016” group, created 
on Viaéduc6, a professional social network specifically designed for teachers’ exchanges. Viaéduc 
essentially allows members to post comments, to create subgroups, to create and publish documents 
and to comment/recommend/share them. Group members can work collaboratively either 
asynchronously, being authors of the same online document, or synchronously, writing on the same 
online collaborative board (padlet). 

During week 0, on Viaéduc, trainees were invited to propose a theme, an idea or a project to work on 
and to start to establish relationships with others. Week 1 was devoted to the characterisation of digital 
or non-digital resources that can support teachers’ and teacher educators’ work. On Viaéduc, trainees 
gathered together around a project constituting public subgroups of the main “MOOC eFAN Maths 
2016” group, so that any trainee could read the work of any subgroup and follow any discussion. 
Week 1 activity involved the selection of resources to constitute a “toolkit”, deemed relevant to the 
group project. Week 2 was devoted to the analysis of students’ activity using technology in 
mathematical situations. On Viaéduc, each group had to design a mathematical situation and to 
analyse it from the students’ point of view using an analysis grid proposed by the trainers. Week 3 
was devoted to the analysis of the teacher’s role in the designed mathematical situation. An analysis 
grid that focused on instrumental orchestration was presented through the courses and trainees were 

                                                 
5 eFAN Maths stands for Enseigner et Former avec le Numérique en Mathématiques (Teaching and Training in 
Mathematics with technology). See https://www.fun-mooc.fr/courses/ENSDeLyon/14003S02/session02/about 
6 See www.viaeduc.fr 



invited to apply it to their situation. During week 4, trainers organised a process of peer evaluation of 
the different projects (submitted as versions 0) and proposed an evaluation grid grounded on the 
theoretical frames presented in the course, underpinned by the analysis of digital resource quality 
(Trgalová & Richard, 2012). Finally, every group was supposed to use the feedback received to refine 
and revise their project, submitted as version 2. 

Theoretical framework 
The MOOC eFAN Maths was analysed using a combination of three main theoretical frameworks: 
the Meta-Didactical Transposition (Arzarello et al., 2014), the documentational approach to didactics 
(Gueudet & Trouche, 2009) and the concept of communities of practice (Wenger, 1998). 

The Meta-Didactical Transposition (MDT) model and the documentational approach to didactics, 
which places a major emphasis on the collective aspects of teachers’ work, both required a theory to 
support the analysis of the development of teachers’ (and researchers’) collective work. Both 
approaches adopted the theory of communities of practice (CoP), mainly because these communities 
are structures where learning occurs. CoP are formed by people who engage in a process of collective 
learning in a shared domain of human endeavour. For Wenger (1998), a condition for the development 
of such communities is to balance participation and reification, where reification means producing 
resources, symbols, stories etc., recognised by the whole community as common products. Such 
communities may develop by themselves, or be “cultivated” (Wenger et al., 2002), i.e. encouraged, 
supported by an organisation. Indeed, organisational knowledge develops in a constellation of CoPs, 
and each CoP plays a specific role in this organisation. 

The MDT model captures the dynamic interactions between teachers’ and researchers’ practices when 
these two communities interact, typically in training contexts, and in particular in the case of training 
programmes in mathematics education. Using the MDT lens, we can address research questions that 
infer the influence of the practices of one community on the other. Such practices are described 
through the notion of praxeology (Chevallard, 1999): a praxeology for a given task consists of a 
practical block comprising techniques to accomplish the task, and a theoretical block justifying and 
supporting these techniques. In a teacher education programme, trainees and trainers bring into play 
the components of their respective praxeologies. The objective of the programme is to transpose, in 
the sense of Chevallard, some components of the trainers’ research practices into the teachers’ 
practices, taking into account the classroom reality and teachers’ expertise for effectively enacting 
such components. Thus, the two communities together contribute to creating a shared praxeology, 
which both communities can adapt in their future practices. This occurs through the phenomenon of 
internalisation: a community internalises a component of the praxeology of the other community, 
that was previously external to it, entailing an evolution of practices. 

The documentational approach to didactics (Gueudet & Trouche, 2009) analyses teacher professional 
development through the interplay of practices and resources. This interplay is modelled as a 
documentational genesis, extending the notion of instrumental genesis introduced by Verillon and 
Rabardel (1995) between artefact and instrument. A documentational genesis involves different steps, 
such as looking for resources, selecting/designing mathematical tasks, planning their sequence, 
managing available artefacts, etc., to achieve a given teaching goal. This genesis gives birth to a 
document, which is a mixed entity composed of the revised and recombined resources and the 



associated usage schema. Each documentational genesis is then a means to trigger teacher 
professional development. The genesis of a document combines two processes: instrumentation, 
when the affordances and constraints of the resources influence the subject’s activity, and 
instrumentalization, when the subject shapes the resources that he/she appropriates. The 
documentational approach to didactics, from its beginning, and even more in its recent developments 
(Pepin et al., 2013), gives a major importance to the collective aspects of teachers’ work with 
resources, evidencing the importance of interactions within teacher collectives for spurring 
documentational genesis and teachers’ professional development. 

The combination of these three frameworks supports our analysis of what happened during the 
MOOC, seen as a constellation of cultivated CoPs. These communities are not created at once, they 
emerge in the dynamics of a shared project. First, the community of trainers emerges as they design 
and implement a new teacher education programme. Then the communities of trainees emerge, each 
one developing through the advancement of the individual projects. The elaboration of a project 
involves the design of a pedagogical activity from selected existing resources that are subsequently 
adapted, modified and combined by the group members. Thus, this process can be seen as a collective 
documentational genesis. In such a process, we are interested to analyse the efficiency of the tools 
designed by the trainers, as elements of their meta-didactical praxeologies, to foster both collaboration 
and project development. We study the phenomenon of internalisation in interaction with the process 
of documentational genesis as a reification process, addressing the following research questions: How 
does each trainees’ CoP emerge through the process of documentational genesis according to CoP 
criteria? How do the CoP of trainers and each trainees’ CoP interact through the MDT lens? 

Methodology of the study 
In this paper, we focus on the final week of the MOOC and in particular on the trainees’ use of the 
evaluation grid. This tool had been constructed by the trainers to include all of the phases of the 
pedagogical design, developed in the MOOC week after week. Analysing the way trainees used it 
can provide insights into the way they have understood and internalised the principles underpinning 
each phase of design. Moreover, the final week revealed an interesting dynamic between individual 
activity (the evaluation of another project through the grid) and collective work (of each group on the 
delivered version 0 for improving it). The evaluation grid was structured around the following four 
criteria: 1. Accuracy of the definition and description of the project; 2. Relevance of the mobilised 
digital resources with respect to the educational goal of the designed mathematical task; 3. Relevance 
of the analysis of the students’ activity; 4. Relevance of the analysis of the teacher’s role. For each 
criterion, aimed at evaluating the work done by a group during a specific week, some guiding 
questions were proposed with a double objective: to foster the production of justified feedback; and 
to deepen the reflection carried out in the previous weeks of the MOOC. The grid finally asked for a 
brief global feedback on the project and some suggestions to improve the work. Trainers provided 
this tool to support trainees in the process of peer evaluation, with the implicit aim to facilitate the 
internalisation of the evaluation criteria. Each trainee was invited to use the grid individually to 
evaluate the project of another group, by answering each guiding question with an appreciation: very 
good, satisfactory, weak or insufficient, accompanied by a justification. Trainers gradually collected 
feedback and comments in a table and shared it in a specific space on Viaéduc, called “Project 
evaluation”, so that all the trainees could access them. 



Data analysis 
2500 people were enrolled in the MOOC, and more than 700 registered on Viaéduc, of which 
approximately 11% contributed to the work of a group, generating a large amount of data from 
multiple sources. In this paper, we analyse some discussions on Viaéduc related to how trainees used 
the evaluation grid and illustrate the main finding of our study: the trainees’ internalisation of the 
evaluation criteria, through the tools provided and the process established by the trainers. 

The evaluation grid became a resource for trainees. It was used both to provide feedback to other 
projects (instrumentation) and for reflecting on and refining their own project (instrumentalization). 
We illustrate this double action, that of the grid on the trainees and that of the trainees on the grid, 
through some excerpts of Viaéduc discussions. The comments, written by some trainees (CC, CM) 
on the wall of the “MOOC eFAN Maths 2016” group, show a formative value of the peer evaluation 
and specifically refer to an introspective use of the grid. 

CC  It is clear that the peer evaluation of the projects is also an exercise [...] I think that 
the aim is not marking “very good” everywhere, so I try to use the grid with its 
criteria that I start to understand [...]. A difficulty that I encounter is that, when I 
perceive a small flaw in one of the aspects of the whole structure of the project, this 
flaw seems to impact on several items of the grid...? [...]” 

CM  Indeed, by evaluating another project, you discover much better how to improve 
yours. The evaluation grid is a great support but I join CC on the domino effect of 
some points. 

In particular, CC’s and CM’s comments show a well-thought-out use of the grid, especially the 
awareness that the evaluation criteria are interrelated. The double process of instrumentation and 
instrumentalization of the grid shows that trainees internalise the evaluation criteria using the grid 
also for reflecting on the quality of their own document. 

Moreover, the remote collaboration on Viaéduc allowed trainees to evolve version 0 of the document 
into the version 1, taking into account both peers’ external feedback and each member’s introspective 
feedback. An example of this step in the collective documentational genesis is represented by the use 
of the padlet “TO DO List” within one of the groups. In this padlet, the group members organise the 
different tasks to be done in order to make the common document (version 0), seen as a resource, 
evolve into a new document (version 1). When a comment is ticked off and an author and a date are 
specified, this is the sign that the task has been done. This to-do list consists of feedback coming from 
peers but also of some personal comments, such as “For the resources I think that we must orient the 
reading of the first ones according to the soma cube activity”. We can reconstruct the story of this 
proposal to reorganise the project resources, due to the parallel discussions that had occurred in the 
group. Such discussions show that trainees (JP in this case) benefited from both peers’ feedback and 
introspective feedback, coming from the action of evaluating other projects. 

JP  [on the wall of the group] Hello, after having read several projects I actually 
expected that someone “criticises” a little bit our profusion of resources. […] 
Perhaps, we could prune it in the v1 of the project by keeping only those that are 
actually usable in the SOMA cube activity. What do you think? 



In terms of remote collaboration, it is worth noting that some groups used such collaborative tools for 
organising their remote work. This organisation guided the transformation of the version 0 into the 
version 1 of the project, as a reification of the collaborative participation within the CoP. 

Discussion 
Each community of practice benefited from the feedback of others and from the introspective 
reflections that the members, who were engaged in the design process, made during the evaluation 
process. Crossing the external and the introspective feedback allows the trainees to work 
collaboratively on the refinement of their version 0 and to produce the version 1 of their project. This 
new version of the document is both a stage in the documentational genesis and the result of the 
internalisation of the evaluation criteria which occurred through the participation in the evaluation 
process. On the one hand, the evaluation grid is a technical tool of trainers’ meta-didactical 
praxeologies, based on the theoretical concepts tackled in the courses and justified within the global 
process of peer evaluation. On the other hand, the trainers’ choice of collaborative tools, seen as a 
trainers’ technique, is grounded on the trainers’ objectives to foster the emergence of communities of 
practice among trainees. Our analysis shows how these praxeological choices influence the trainees’ 
work when they improve the version 0 of their project into the version 1. In return, this analysis 
influences the trainers’ meta-didactical praxeologies in the perspective of a re-design of the new 
season of the MOOC. In particular, the organisation of the MOOC schedule will be modified taking 
into account the emergent question of time. Communities of practice need time for establishing an 
effective remote collaboration, so that participation and reification equilibrate as much as possible. 
At the same time, the evaluation process and the documentational genesis need time for being 
effectively carried out. In that sense, we can observe the double phenomenon of internalisation: from 
trainers to trainees as well as from trainees to trainers.  

Comparison with the French experience and conclusion 
As French team, we observed local communities of practice. We studied the phenomenon at a micro 
level, intervening in the groups’ discussions to support and encourage the development of the 
collaborative work. The Italian team (Taranto et al., 2017), instead, observed a general community. 
They studied the phenomenon at a macro level, that is to say not intervening in the interactions 
between trainees.  

During MOOC Geometria (the Italian MOOC) local groups are generated “emerging from chaos” 
(Siemens, 2004), namely they are subject to a spontaneous generation. During MOOC eFAN Maths 
trainers induce the generation of local groups and regulate peer relationships. Despite the fact that the 
cultural aspects affect these differences for sure (as we underline in our similar introduction), for both 
MOOCs there is an affinity that relies on the fact that trainees’ learning is often generated by self-
feeding discussions and instrumentalization processes. 
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Using a flipped classroom approach in the teaching of mathematics: A 
case study of a preservice teachers’ class 
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This study investigates the usefulness of a flipped classroom approach in tertiary education. This 
exploratory study was conducted to understand the efficacy of the flipped classroom approach that 
was implemented by a lecturer teaching mathematics education. The study was conducted with the 
lecturer and her 185 pre-service teachers who attend her online course. Data collection instruments 
included a survey designed to investigate the dynamics of the flipped approach, semi-structured 
interviews for the pre-service teachers and the lecturer. The study adds to the literature related to the 
flipped classroom approach and the role of the lecturer in a flipped classroom.   

Keywords: Digital technologies, flipped classroom, flipped learning, mathematics education, tertiary 
education 

Introduction 
The integration of digital technologies is becoming central in our mathematics classrooms. Some 
schools use digital technologies to replace or supplement teaching resources (Geiger, Goos, & Dole 
2015). Multiple studies have been conducted that show that teachers and schools find it challenging 
to integrate such resources within mathematics lessons (Gueudet, Pepin, and Trouche 2012; Clark-
Wilson, Robutti, and Sinclair 2014). Flipped classrooms integrate digital technologies allowing the 
teacher to implement the restructuring and re-organisation of teaching materials in both synchronous 
and asynchronous modes. The facilities of the classroom approach can be accessible from anywhere, 
in both real time or otherwise. How to best take advantage of digital technologies implemented in 
flipped classrooms is a challenge while attending at the same time to the dynamics of a flipped 
classroom and what is entailed in flipped learning. Given that research on the flipped classroom 
approach is in its infancy, there is limited research that has examined the approach under a 
pedagogical microscope.  

Flipped classroom and flipped learning 
Bergmann and Sams (2012) distinguished between the terms ‘flipped classroom’ and ‘flipped 
learning’, pointing out that they are not synonymous and that flipping the classroom does not 
necessary lead to flipped learning (FLN 2014). There are different interpretations of this approach 
and associated variations in implementations strategies. According to Bergmann, Overmyer and 
Wilie (2013), the characteristics of flipped learning are:                        

 increased interaction and personalized contact time amongst students and teachers; 
 students take responsibility for their own learning; 
 the role of the teacher is not the ‘sage on the stage’, but the ‘guide on the side’; 
 a blending of direct instruction with constructivist learning; 
 students who are not able to attend the class due to illness or extra-curricular activities such 

as athletics or fieldtrips, don’t get left behind; 
 content is permanently achieved for review or remediation; 



 all students are engaged in their learning; 
 all students can receive a personalised education. 

Abeysekera and Dawson (2015, p. 3) defined the following typical characteristics of a flipped 
classroom within higher-education settings:  

 a change in use of classroom time; 
 a change in use of out-of-class time; 
 doing activities that were traditionally considered as ‘homework’ in class; 
 doing activities that were traditionally considered as in class work out of class; 
 in-class activities that emphasise active learning, and problem-solving; 
 pre-class and post-class activities; 
 use of technology, especially video; 

For this article, I will use the term ‘flipped classroom’ as defined by the Flipped Learning Network 
(FLN) to refer to the mode of teaching and learning ‘in which direct instruction moves from the group 
learning space to the individual learning space, and the resulting group space, and the resulting group 
space is transformed into a dynamic interactive environment where the educator guides students as 
they apply concepts and engage creatively in the subject matter’ (FLN 2014 para. 1). The FLN 
propose the ‘Four Pillars of Flip’ that recognise the significant features that are essential for learning 
to occur in a flipped classroom: (1) flexible environment, (2) a shift in the learning culture, (3) 
intentional content, and (4) professional educators (FLN 2014). This framework was considered to 
account for diverse learning modes, and its implementation necessitates the arrangement of flexible 
learning environments that may include, for example, the rearrangement of learning spaces and the 
use of digital technologies.  

The Four Pillars of Flip framework is appropriate for gaining a better understanding of how the 
flipped classroom approach is implemented in practice. This framework is appropriate when 
analysing data about the teacher’s role in organising the teaching materials in the flipped classroom. 
Abeysekera and Dawson (2015) proposed a theoretical model for the flipped classroom (see Fig. 1) 
that identifies the capacity of the flipped classroom to help students have a sense of competence, 
relatedness, and autonomy that will lead students to increased extrinsic and intrinsic motivation.  

  

Figure 1 Theoretical model for the flipped classroom  

Moreover, a flipped classroom approach is characterised by tailoring teaching material and activities 
to students’ different expertise that allows students’ self-pacing of pre-recorded lectures that may 
reduce cognitive load and help learning in a flipped classroom.  



The theoretical model for the flipped classroom was considered appropriate for interpreting data 
pertaining students’ engagement and motivation while it is required measurement of the cognitive 
load and motivation that are useful mechanisms for learning. The flipped classroom approaches are 
being adopted with enthusiasm despite the lack of specific evidence about their efficacy. However, 
substantial research questions remained unanswered. This article is particularly interested in 
university lecturer’s implementation of the flipped approach in her practices. A small-scale localised 
intervention, including an experimental study, was conducted to understand the significant features 
of the lecturer’s role against the essential criteria for learning to occur in a flipped classroom 
approach.  

Methodology 
An exploratory case study methodology was chosen as it involves a detailed study of a group of pre-
service teachers’ experiences. The data collected for the case study was both qualitative and 
quantitative. Analysis methods were employed (Creswell 2003) to provide richness and depth to the 
empirical investigation of a single university unit within its real context using multiple sources of 
evidence such as the lecturer, the entire cohort of preservice teachers who enroll in and attend the unit 
of study, and the teaching and learning resources that were used by the pre-service teachers.  

The choice of the lecturer and her class was purposive in that the lecturer had indicated a strong desire 
to improve aspects of her online teaching related to student engagement, motivation, and self-pacing. 
The lecturer used a flipped classroom approach, and the appropriate technological infrastructure and 
digital technologies was in place to provide students with access to all teaching resources.  

The study was conducted with the lecturer and her 185 pre-service teachers who attended an online 
unit that was required for a bachelor in Primary education or master in teaching Primary Education. 
The unit covered the content and pedagogy appropriate to teaching primary school students at stage 
3 (year 5 or Year 6) in the strands of Data, Chance, Patterns and Algebra, and Number (numeracy). 
Students were asked to demonstrate their personal content knowledge in these strands, discuss 
associated teaching strategies, and create developmental learning sequences. The prescribed 
textbook, (Siemon, D., Beswick, K., Brady, K., Clark, J. and Faragher, R., 2015) was used to guide 
decisions about the sequence of mathematics topics to be taught. The textbook was used in 
combination with the Australian Curriculum (ACARA, 2016).  

The lecturer prepared lectures recorded by Echo360, and offered two interactive online tutorials that 
were offered in real time by Adobe Connect. Each online tutorial was scheduled for two hours and 
students were able to ask questions and complete the tutorial activities with the help of the lecturer. 
Students who were not able to attend the online tutorials had access to the recording of the tutorials 
(in asynchronous mode).  Additionally, demonstrations, electronic resources and relevant readings 
were available for students’ use on the Moodle learning platform, which served as an online learning 
space were students interacted with each other, posted questions and engaged with collaborative 
activities (i.e. students were constantly experiencing feedback).  

All students had access to the internet, and the online materials were also available for downloading 
in their own computers. The students were encouraging to assess the recordings of the online lectures, 
online tutorials, resources and assessment tasks for each topic.  



Participants included one lecturer (Dr. April, pseudonym) and 185 students who attended the online 
unit. 142 students completed the online survey and 5 (3 females and 2 males) volunteered to 
participate in the semi-structures interviews. Dr. April, the lecturer had been teaching tertiary 
education for 7 years and was qualified to teach mathematics education to pre-service teachers and 
in-service teachers within primary and secondary and post-graduate programs. She had experience in 
using features of flipped classrooms for 7 years.  

Data collection instruments consisted of an online survey that contained 18 questions about the use 
of the lecturer-prepared online resources. Responses were recorded against a five-point Likert scale. 
Semi-structured interviews were developed by the researcher to allow the lecturer to probe the pre-
service teachers’ experiences of the flipped classroom approach in this discipline. Pre-service 
teachers’ online activities, postings, pre-service teachers’ participation per day and the semi-
structured interview of the lecturer were used to triangulate the data collected from pre-service 
teachers. All interviews were audio-taped and transcribed. Pre-service teachers’ responses were coded 
and ascribed to five thematic categories as identified by Abeysekera and Dawson (2015). Lecturer’s 
responses were also analysed and coded in four thematic categories based on the four Pillars of FLIP 
framework.  
Results  
In this section we present an analysis of the data collected from interviews with the lecturer, which 
was analysed using the Four Pillars of FLIP as a framework to recognise the significant features of 
the lecturer’s role against the essential criteria for learning to occur in a flipped classroom: (1) flexible 
environment, (2) a shift in the learning culture, (3) intentional content and (4) professional educators. 
The data is supplemented with survey and interview data from the pre-service teachers.  

Flexible environment:  

When the lecturer was asked about the flipped teaching environment in an interview, she commented: 
Dr April: Students are expected to view the online lectures and the online resources (videos) any 

time that is best for them because they are mature students who study this online 
unit and they prefer working during night hours.  

Dr April: I am trying to extend classroom into their home where students cover the weekly teaching 
content and work the routine tasks and examples at home prior to the weekly 
lecture.  

Students reported to making very good use of the online resources prepared by the lecturer and the 
recordings of the online tutorials at home, indicating that both were helpful for their mathematical 
learning and the completion of their assessment.  As stated by two students, George and Sarah: 

George: I do not worry if I missed the real-time online tutorial due to my family commitments. I 
have the capacity to access the recordings of the online tutorials and lectures at any 
time I wish.  

Sarah: It is fantastic because I can watch the entire online tutorial or lecture without pausing it. 
But sometimes, I will watch it and pause it to write my notes about it. If I would 
like to repeat a part of it, I will simply go back to the part I need to listen again. I 
refer to certain parts many times because they are very essential for the online 
course.  



A shift in the learning culture 

Dr April relegated the more procedural demonstrations of solving a mathematical problem or 
constructing a mathematical application using mathematical software for the pre-service teachers to 
watch outside of the online tutorial time. As she commented:  

Dr April: It is fantastic because it frees up teaching time instead of spending half of the time of the 
tutorial to show students the procedure of solving a mathematical problem with or 
without the use of mathematical software. I am trying to maximise the tutorial time 
by covering the key aspects of the weekly content taught and the teaching 
techniques of teaching school students a target content.  

The students reported that they make good use of Dr April’s video based procedural presentations 
and demonstrations. For example, John and Jill (pseudonyms) said during an interview: 

John: I first listened to the online tutorials. I do find the online tutorials very helpful because the 
lecturer explains the mathematical content by applying the mathematical concepts 
in real life situations and solving mathematical problems. If you first watch the 
online tutorial very carefully it explains the mathematical content, application of 
mathematical content, primary students’ difficulties in understanding specific 
concepts and pedagogical approaches and appropriate to teaching these primary 
students.  

Jill: Dr April’s video based resources are very helpful to understand the content at home on my 
own without attending traditional classrooms.  

George: The online tutorials allow me to interact in real time with a group of other students and 
the lecturer, so I do not feel lonely during my studies. I post my questions on 
Moodle platform when I am stuck or unsure of the correct process.  

Intentional content  

Dr. April selected the content, decided on ways to present this content, and what resources (e.g., 
interactive whiteboard activities, or interactive games) would be appropriate for the online tutorial. 
As Dr April said: 

Dr April: In the video-based resources that students are expected to view before the tutorial, I 
demonstrate how to use technology when they teach, for example I demonstrate 
how they insert data in a table using Tinkerplots and create various graphical 
representations of data and analyse data. Or I explain the use of interactive board 
activities or educational games that would help pre-service teachers to teach 
students how to compare fractions using computer based interactive tasks.  

Dr April’s approach included the use of technology to transform the teaching content from the 
textbook into video format that allowed her to unpack mathematics in more depth during the online 
tutorials and lectures. She also prepared materials and videos that related mathematics more directly 
to cross curriculum priorities such as Aboriginal and Torres Strait Islander history and cultures, Asia 
and Australia’s engagement with Asia, and sustainability.  

Moreover, pre-service teachers commented that the digital technologies employed by their lecturer to 
teach mathematics had provoked rich discussions amongst the pre-service teachers, allowing them to 
access the step-by-step instruction as the lecturer intended.   

  



Professional educators  

As Sarah noted, when asked if there was anything about the online teaching of Dr April that helped 
her particularly to develop her mathematical learning: 

Sarah: The technology she uses helped me to visualise abstract mathematical concepts … the 
presentations help me to visualise the graphical presentations as she manipulates 
the graphical representations to help me to observe the impact of dragging the graph 
to the algebraic equation of the function. She is explaining very well and clearly all 
the step-by-step procedures and their dynamic behaviours. I am really amazed by 
the animations that she provided to show the dynamic behaviour of mathematical 
concepts.  

John also pointed out: 

John: I feel that Dr April’s videos are giving mathematics life. They explain mathematics better 
than the textbook does. I really prefer the recordings of the online tutorials because 
Dr April explains in detail what she is doing step-by-step using a very simple 
language.  

George and Sarah also mentioned that: 
George: the presentations are very professional and the quality of the sound is perfect. The 

recordings of the online lectures and online tutorials were easy to follow and 
although mathematics was not my strongest subject of study, I enjoyed my study. I 
found those recordings very engaging. 

 Sarah: I had all the online resources on my laptop and I study them while I am writing my 
assignment. I listen also to the online tutorials and lectures to write my assignment, 
but I do not use the prescribed textbook.  

As indicated, the online resources were more appealing to the pre-service teachers and preferable to 
the prescribed textbook. The preparation of the online materials used for the pre-service teachers to 
access on their own exemplifies the enactment of the first, second, and third pillars of the flip 
framework. There was a shift from a static to a dynamic representation of the content and an 
intentional selection of the aspects of direct instruction that could be assessed in students’ individual 
spaces.  

Summary of 142 pre-service teachers’ responses to the Likert items 

Pre-service teachers indicated that they found the online resources prepared by Dr April to be very 
helpful for their mathematical learning (Q1, 96%). They also indicated that the online resources 
prepared by the lecturer are easy to follow and flowed well (Q2, 97%) and they agreed that they are 
engaging and interesting (Q3, 100%). The resources prepared by their lecturer were favoured over 
other online resources (Q4, 89%). Responses to the survey also indicated that pre-service teachers 
did not use the internet resources to help them with their mathematics learning (Q5, 73%). Pre-service 
teachers indicated that they found the online lectures relevant and meaningful, and they assist them 
with their mathematics learning (Q6, 96%). They also indicated that the online lectures were easy to 
follow (Q7, 99%) and they were about the right length (Q8, 95%).  Significantly, respondents also 
found that the online tutorials offered them a great opportunity to answer questions about the 
mathematical content (Q9, 95%), fitting nicely into their schedule (Q10, 87%), being interesting and 
engaging (Q11, 89%; Q12, 2% boring). Interestingly, responses indicated that they make use of the 



'Online tutorials' to explore mathematics (Q14, 5%) and they rarely use the 'Online tutorials' as a last 
resort when they were stuck on problems (Q15, 12%). However, they seemed to believe that they did 
better on the assessment because they watched the online tutorials (Q16, 82%). Importantly, pre-
service teachers also believed that the step-by-step 'Demonstration of Mathematics software' was 
simple to use and it was beneficial (Q17, 93%), with only 1% of the responses indicated that the 
'Demonstration of Mathematics software' was lacking and it required more technical tools (Q18, 1%); 
a possible consequence of the selection of the intentional content that Dr April expected students to 
cover before attending the online lectures and tutorials.  
Conclusion  
Dr April’s attempt to implement aspects of a flipped classroom approach to her online course was 
made possible within a highly structured teaching and learning content because of the robust 
technological infrastructure in the university. Nevertheless, the pre-service teachers’ engagement 
with their study of the online course was a consequence of the online resources developed by the 
lecturer to support her students’ online learning. It would appear that pre-service teachers appreciated 
the opportunity they were offered to progress through materials at their own pace exercising a degree 
of autonomy in developing their own mathematical competence.   

The four Pillars Framework afforded insights into the specific features of Dr. April’s implementation 
of the essential features of flipped learning. The analysis of the data showed that Dr. April has 
provided students with a flexible environment that provided students with a sense of autonomy and 
self-pacing. Reflection on lecture’s practice indicates a shift in the learning culture by transferring 
direct instruction from the classroom environment to home. The flipped classroom approach was 
implemented without removing the synchronous interaction of pre-service teachers with other 
students and the lecturer. It is noteworthy to point out that the interactive online tutorials aided in 
preventing students from being alienated from other students, the lecturer and the teaching materials. 
The selection of the intentional content was challenging in order to tailor the content to different 
students’ expertise. Pre-service teachers appeared to be motivated to access the online resources 
prepared by Dr. April stressing the importance of relatedness between students and materials 
prepared by the lecturer to foster a version of an online flipped classroom. There was evidence that 
pre-service teachers engaged in rich mathematical discussions about the content of the teaching 
materials, showing that a flipped classroom can increase motivation and interaction amongst students 
and learning of ideas aimed by the provided teaching materials. The fourth Pillar of the flipped 
learning, the professional educator, appeared to be the agent of the flipped classroom approach. A 
professional educator (as Dr. April demonstrated) could foster the implementation of the flipped 
classroom approach in teaching and learning practices without making radical change to their current 
pedagogical approaches― a finding consistent with research conducted by Muir and Geiger (2016) 
who found that a flipped classroom approach could be implemented without radically reforming a 
teaching practice. Future studies could examine the suitability of flipped mathematics classroom 
approaches in different teaching contexts, such as inquiry learning contexts, teaching school 
mathematics, and whether or not it would be effective in improving students’ learning outcomes.  
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In this paper we report an experimental activity involving working with functions and graphs in a 
grade 6 class in a Norwegian primary school. We argue that working with graph loggers in the 
form of an echo sound system enhances student conception of mathematical graphs.  
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Background and literature review 
The research reported in this paper was part of the EU FaSMEd project1, which brings together 
seven European countries and South Africa, researching the use of formative assessment and 
technology in mathematics and science education. Part of each country’s work has included case 
study interventions in ordinary classrooms in close cooperation with school teachers. In this paper, 
we focus on a particular set of lessons concerning functions and graphs, and how one particular type 
of technology was used to increase student activity and engagement, leading to enhanced learning.  

The function concept is generally regarded as a difficult concept for students to grasp (Dreyfus & 
Eisenberg, 1982; Sajka, 2003; Sierpinska, 1992). Dreyfus and Eisenberg (1982) point out that the 
function concept is not a single concept by itself, but has several aspects and sub-concepts 
associated with it. DeMarois and Tall (1999) connect this to the learning of functions, saying that 
“for many students, the complexity of the function concept is such that the making of direct links 
between all the different representations is a difficult long-term task” (p.264). Also in Norway, 
national and international tests have shown that mathematical functions is a problematic topic area. 
It took humanity several thousand years of mathematical activity until functions were introduced in 
the 17th century; and even then it took time to place functions on a solid foundation within 
mathematics. It is therefore not surprising that pupils struggle with functions and how to respond to 
this struggle has been addressed in various ways. During the “New Math” movement in the 1960-
70s, it was believed that school mathematics should resemble research mathematics, and attempts 
were made to introduce functions during the first years of primary school. Eicholz, Martin, Brumfiel 
and Shanks (1963) did exactly that. This American textbook was translated into several languages, 
including Norwegian. The pendulum turned away from this with the “back to basics” movement, 
and, in Norway, functions were moved to the secondary school. As a consequence, most research on 
students’ understanding of functions and graphs is conducted with secondary school students. In this 
paper, we report on work done in primary school.  

                                                 
1FaSMEd = Improving Progress for Lower Achievers through Formative Assessment in Science and Mathematics 
Education, see https://research.ncl.ac.uk/FaSMEd/  



According to Duval (2006) we can only gain access to mathematical objects by semiotic 
representations. Janvier (1984) distinguished between four representations of functions: situations; 
graphs; tables; and formulae; and how to work with transitions between these. Duval (2006) stresses 
that “What matters is not representations but their transformation” (p. 107). That is, when learning 
about a mathematical concept, students deal with a representation of the object, and the main 
difficulty is to change between different representations of the same object. Duval distinguishes 
between conversions and treatments. Here, treatments take place between the same registers (e.g., 
changing y = 2x from one particular form to another), while conversions take place between 
registers (e.g., reading a table and using the numbers within it to interpret a situation). The latter 
seems to be far more difficult, while the former is the most common activity format in school. 
Consequently, Janvier’s framework helps teachers to focus on the change of registers rather than 
algebraic manipulation alone. To support the learning of functions, many different kinds of digital 
tools have been developed and used. Regardless of any particular view on learning outcomes from 
using technological tools, it is important to realize that use of technology is more than the 
introduction of new tools. In a survey on mathematics teachers’ use of technology in England, 
Bretscher (2014) found that while ICT might contribute to change, the direction of this change was 
as likely to be towards “more teacher-centered practices rather than encouraging more student-
centered practices” (p. 43). The tools used in our study are a particular type of data loggers. These 
are mainly used in science, but we claim that inclusion of these types of tools may be beneficial also 
in the mathematics classroom, and may contribute to more student-centered practices. According to 
Newton (2010) “data-logging methods involve the use of electronic devices to sense, measure and 
record physical parameters in experimental settings.” (p. 1247). Measurements and results of the 
logging can be displayed on a computer screen, either subsequently or simultaneously. We used this 
type of technology to study students’ early understanding of graphs. The use of motion experiments 
in the learning of functions has been studied by several authors. Nemirovsky (2003) conjectures that 
"mathematical abstractions grow to a large extent out of bodily activities" (p. 106). Arzarello and 
Robutti (2004) claim that students can grasp mathematical concepts through meaningful sensory-
motor experiences if they are encouraged to communicate and have the necessary support (p. 308). 
Arzarello, Pezzi and Robutti (2007) point out that teachers can use new technology to design 
experiences for students “where graphs can be presented in a dynamical and genetic way” (p. 135). 
Robutti (2009) conducted research on time-distance graphs with kindergarten children using motion 
sensors and calculators, finding that even very young children were able to make connections 
between the movements they made in front of the sensor and the graph sketched by a calculator.  

The research question addressed in this paper is: How can a primary school teacher use data logger 
technology to enhance primary school students’ engagement and conceptual knowledge about 
function graphs? 

Method 
The teaching experiment was carried out in a grade 6 class (students around 11 years old) in a 
primary school in Norway. The number of students in the school is close to 600, and the number of 
teachers around 35. The participating teacher has background from general teacher education, with 
specialization in mathematics and history. At the time of the experimental sessions, he had been 
working as a teacher for 7 years, the last three years at the school in question. He had been teaching 



mainly mathematics, and also some science. During his participation in the FaSMEd project he was 
teaching the same group of students, which began in grade 5 and continued with the same group of 
students into grade 6. There were 31 students in his class, 15 girls and 16 boys.  

The theme of the teaching sessions was time-distance graphs. Several technological tools and 
software had been introduced to the participating teachers at FaSMEd meetings at the university. 
Teaching material from the FaSMEd toolkit that addressed time-distance graphs had also been 
introduced. The planning of the experimental lessons began at this meeting. The teacher would give 
one lesson introducing the students to graphs and to the connection between graphs and real life 
situations. Working with mathematical graphs connecting situations and graphical representations is 
usually not done in Norwegian primary schools. According to the national curriculum, functions and 
graphs is not a specified learning goal for students until after grade 10. This would therefore be the 
first time this teacher had worked with students in primary school on graphs. Because of this, he 
wanted to first pilot the lesson on a small group of students that he considered high achieving and 
with an interest in mathematics. Subsequently the lesson was repeated with a group of students 
considered to be lower achievers.  

The technology used was two echo sounder devices developed by Pasco. This was chosen as the 
entry level for using it was not too high, and therefore the teacher considered it could be 
experimented with grade 6 students. It facilitated students to walk back and forth in relation to a 
logging device, such that a graph was immediately drawn on the computer screen indicating how 
near they were the device during a time lapse of ten seconds. The immediate live update of the 
graph distinguishes this activity from most regular science data logging activities. The computer 
was loaded with an app with premade tasks that were presented to the students. When students 
walked in front of the echo device, the computer would give a live display of graph in a time – 
position coordinate system. The tasks2 were a mix of practical tasks: “Walk a graph”, and open-
ended questions about interpretation of the graphs from the “walks”. All the results were saved and 
could be used by the teacher for assessment and feedback to the students. These data were e.g. used 
by the teacher at the end of the sessions to determine which student groups should present their 
work in a plenary. Students were chosen deliberately to give good examples of graphs made and 
how to interpret them.   

Data sources collected during the experiment include a) observation sheets from two sessions; b) 
audio recordings from two sessions, from teacher pre- and post-interviews, post-lesson reflections, 
interviews and q-sorting activities with students; c) video recordings from two sessions; d) 
transcriptions of audio and video recordings; e) photos taken at sessions and of student work; f) files 
and screen shots from PC during student activity; g) teacher lesson plans for two sessions. 

After the “walking a graph” activity, students were interviewed in a q-sorting3 activity; i.e. they 
were presented with a set of statements printed on cards and asked to sort the cards according to 

                                                 
2 The echo sound activity used some tasks taken from the software bundled with the Pasco software. Instructions for 
using the software and tasks were translated into Norwegian by the FaSMEd team. Some additional tasks were added.  

3 https://en.wikipedia.org/wiki/Q_methodology 



whether they agreed, disagreed or were undecided about, the statement on the card. This activity 
was carried out in groups of 3 to 4 students.  

Findings 
The echo sound activity made this lesson stand out from an ordinary mathematics lesson. One 
student said, 

Student A: It was very different (…) In maths lessons we never move, we sit at our seat; 
except sometimes we go out to do measurements, but that is always during 
summer. 

The tasks were also considered different to normal mathematics exercises on two accounts. First, 
students were not used to doing mathematics tasks using computers. Second, in the classroom they 
usually have to compute things, whereas in these lessons  

Student B: There were word problems and we had to do things. 

The q-sort revealed that students generally agreed to statements that connected mathematics to real 
life. E.g., students agreed to the statements “Mathematics helps us to understand our surroundings” 
and “Mathematics is used in everyday life”, whereas they disagreed with the statements 
“Mathematics is only for the classroom, not for real life outside school”, “I can do without 
mathematics” and “Mathematics is not relevant for my future life”. The q-sorting activities were 
completed around two weeks after the time-distance graph lesson. We may therefore claim that 
there is some evidence indicating that the lesson had made students aware of, or strengthened their 
awareness of, connections between mathematics in school and real life situations that can be 
described by mathematics or where mathematics is used. Students agreed that “Mathematics is 
important”, claiming that  

Student C: We use it all the time. Everywhere. In the shop. (…)  On trains. Airplanes. The 
bus.  

It seems that these groups of students held positive attitudes towards mathematics, and that they 
were able to see mathematics as relevant for themselves and for real life situations. During the echo 
sound activity, the students had to relate what they were doing, i.e. the way they were walking in 
front of the sensor to the graph the software would display on the PC screen. We can see evidence 
that students were able to connect the pace of their walking to the slope of the graph:  

Student E: It rises earlier because you walk faster.  

This relates the time (horizontal axis), distance from the sensor (vertical axis) to speed (how steep 
the curve is), a fundamental relationship in understanding time distance graphs, and a fundamental 
relationship in physics, and of course in everyday life. There were several student utterances 
showing the same kind of understanding:  

Student F: It will be more slanted the faster you walk. So you start slow, then you walk faster. 

The teacher asked another student how you can find from the graph where you walked faster. The 
student said that 

Student H:  You can see, because, first it is quite slanted, and then it goes straight up. 



Students also developed understanding of the fact that a graph does not have to start at the origin. 
When trying to walk in a way that would produce a W as graph:  

Student I: You have to start far away [from the sensor] because then it goes downwards and 
then it goes upwards and then it goes downwards.  

We see here that they understand that a graph can cross anywhere on the vertical axis, and the 
relationship between distance from the sensor and time passed. Their descriptions and discussions 
did not use mathematical vocabulary or concepts. Rather, they described what they saw in everyday 
terms, which shows that they are able to change registers and not only operate within the same 
register. These examples show how such an activity helps students in the process of conversion.  
The activity offers two aspects of working with graphs. On the one hand, students had to translate a 
given situation into a movement in front of the echo sound device, observe the graph being plotted 
on the computer screen and adapt their movement to change the graph as needed. On the other hand, 
students would interpret a graph plotted on the screen into what kind of movement that this would 
correspond to. In the interviews, students said the tasks in this lesson were more challenging than 
the mathematics tasks they normally work with, e.g., in that they had to explain how they did things. 
Being challenging is not really a bad thing, and students said they found the sessions to have been 
great fun and exciting. They claimed that they had learned a lot about graphs. During q-sorting, 
students who agreed to the statement “I can better understand when I use the technology tools in our 
mathematics lessons” also agreed that the statement referred to learning about graphs: 

 Student E: I learned a lot about graphs and how they change with the computers 

When the lesson was repeated with students that were considered to be lower achievers, the setup 
remained unchanged, making it more relevant for comparison. Notably, we found that it was not 
possible to distinguish any big differences between the first session with higher achievers and the 
second session with lower achievers.  

Teacher:  It was indeed very similar (…) maybe these were a bit slower. And I would be 
tougher, push the others more. (..) But I think they were clever, they were good at 
cooperating, learning on each other. (…) It shows that if you have open and good 
tasks, you have a lot of differentiation included. 

The activity prompted student communication and discussion. The teacher found that students who 
normally keep quiet were engaged in discussion. 

Teacher: In particular, some of the girls in the last group, they were talking, usually they are 
very quiet. Now they talked, without me having to point at them, prompting them; 
now they gave their opinion (…) And I was positively surprised at how easy it was 
for them, to listen to each other’s arguments.  

It was obvious that, even if these types of activities with graphs are common in Norwegian primary 
schools, it had not been too difficult and that this is a topic that could easily have been done with the 
whole class. The teacher said that  

Teacher: I think, interpreting graphs, it could have been done quite easily. (…) I think this 
might be more fun in primary than in lower secondary school. They still find it 
exciting with graphs (...) they are more curious and less biased. 



In the interviews, all students said that they had enjoyed taking part in the project and performing 
the lessons with graphs.  

Student: In my opinion everything was good (…) We learned a lot about graphs. 

Discussion and conclusions 
The echo sound graph plotting activity was very useful to give the students hands-on experience in 
using modern technology and use their own physical movements to create something to talk about 
mathematically. Acquiring experience with new technologies can be an educational goal in itself, 
and in particular, echo sound technology is not common in the classroom, but it is well known in 
other aspects of life. In the interviews, students claimed this was an important part of what they had 
learned and which distinguished these lessons from ordinary mathematics lessons. In traditional data 
logging experiments, students might see the data collection and the data analysis as two separate 
entities as these are separated in time (Barton, 1997). In our experiment, the gap between the 
collection of the data and the displayed graph is narrowed down to practically zero. In this respect, 
this activity also resembles working with dynamical graph tools, like GeoGebra4. These software 
tools allow students to explore graphs by manipulating parameters within designated bounds, while 
walking a graph changes freely the look of a graph only limited by the range of the echo sound 
device. This is more in line with work by e.g. Arzarello and Robutti (2004) and Robutti (2009). 

When looking at the Janvier table we see that what the students had engaged in was making a 
transition between a situation and a graph. However, the typical sketching activity proposed by the 
Janvier framework when working with functions usually has a different feel than in this experiment. 
Not only is the sketching part of the activity itself done in a kinesthetic manner. There is also a dual 
aspect in that the students continually interpret the graph whilst the graph is sketched by the 
program on the screen. This way we can say that students work simultaneously with two elements of 
Janvier’s framework, giving further evidence that changing registers is a difficulty that can be 
overcome by giving appropriate teaching materials. 

The kinesthetic part of the activity, the walking, is in itself an important aspect of the experiment. 
As it turned out, the designated low achievers were able to perform well and display great 
enthusiasm during the session. This can be related to the way learning through movement can be an 
alternative approach to put students in a receptive state, ready for learning. Learning through 
actually moving your body is rarely an aspect of mathematics lessons, but can certainly encourage 
engagement, as seen in this experiment.  

The type of activity exemplified in this experiment is completely devoid of focus on algorithms or 
procedural performance in the form of computations. Students do not know in advance how to solve 
the problems presented, and so focus is on developing conceptual knowledge about function graphs. 
From their statements, we also see that they relate mathematical concepts, like slope, to real world 
experiences, like speed. This is similar to findings in Robutti (2009, p. 68). A well founded 
conceptual understanding of functions and graphs in a time-distance setting will contribute to better 
understanding of functions on a more general level. When students encounter functions at higher 

                                                 
4 http://www.geogebra.org  



grades, their conceptual foundation will make it easier to grasp other aspects and algorithmic 
approaches to functions. 

The literature suggests that teachers need support of different kinds in order to conduct teaching 
with new technologies in a meaningful manner. For example, building on a large teacher survey in 
Singapore, Tan, Hedberg, Koh and Seah (2006) suggest that teachers need support from laboratory 
technicians, data logger training, and instructional material to use data loggers effectively. In our 
case, none of these were present. We do however acknowledge the collaborative effort between 
teacher and researchers as instrumental to the success of the sessions. It is also important to stress 
that learning is not an automatic outcome from playing with technological tools, no matter how 
sophisticated the tools are. The role of the teacher is instrumental in bringing about learning, as 
highlighted by Clark-Wilson, Robutti and Sinclair (2014, p.396).  
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“Pépite” is an online automated assessment tool for elementary algebra for students in secondary 
education (12-16 years-old) in France. Pépite was initially developed for students at the end of 
compulsory schooling in France (16 years-old). At CERME9, we presented its transfer at different 
school levels and illustrated it with the design of Pépite test for grade 8th students. Information 
provided by Pépite allows identifying students’ consistent reasoning and calculation in order to 
organize teaching corresponding to students’ learning needs. In this paper, we focus on the use of 
Pépite test for grade 8th students to learn the domain of equations. We defined an epistemological 
reference of the algebraic domain that allows us not only to build the tasks selected for the test and 
to analyze students’ responses but also to propose suitable courses adapted to students’ learning 
needs. 

Keywords: diagnostic assessment, Information and Communication Technology (ICT), elementary 
algebra; equations, student’s profile, teaching suggestions. 

Context of the study 
This paper deals with the issue “Digital assessment of and for learning” of TWG16 “Students 
Learning Mathematics with Technology and Other Resources”. Since the 1990s, our team has 
developed several multidisciplinary projects (Delozanne & al., 2010; Grugeon-Allys & al., 2012) 
concerning the design, development and use of online tools for diagnostic assessment and student 
learning. One of these tools, named “Pépite”, is relevant for learning elementary algebra for students 
of secondary education (12-16 years) in France. We have disseminated Pépite online tool on 
platforms1 largely used by teachers and students. 

In this paper, we deal with the use of Pépite online assessment for learning the domain of equations 
for grade 8th students. First, we revisit the theoretical foundations of Pépite online assessment. Then, 
we illustrate it with Pépite assessment for grade 8th students in France (13-14 years). We specify both 
the didactical model and the computer model that automatically generates generic tasks, analyses 
students’ work and provides descriptions of students’ profiles. Finally, we discuss the potentialities 

                                                 
1 Pépite tools are available on LaboMep platform (developed by Sésamath, a French maths’ teachers association): 
http://www.labomep.net/ and on WIMS environment (an educational online learning platform spanning learning from 
primary school to the university in many disciplines). 



of Pépite online assessment to propose suitable courses adapted to students’ learning needs for the 
domain of equations for grade 8th. 

The theoretical and methodological framework 
In the educational system, assessment is a complex issue. Usually, assessment results are generated 
from standardized and psychometric models. Studies highlight the strengths and limitations of such 

approaches to make instructional decisions (Kettelin-Geller & Yovanoff, 2009). To identify the 
features of appropriate online assessment for learning, we have chosen both a cognitive and 
epistemological approach and also an anthropological approach, the potentialities of which are 
described in Grugeon-Allys & al. (2012). 

Epistemological and cognitive approach 

Designing a test requires the selection of a set of tasks that enables the assessment to be realized. We 
agree with Vergnaud who stated, “Studying learning of an isolated concept, or an isolated technique, 
has no sense” (Vergnaud, 1986, p. 28). Furthermore, Vergnaud introduced a strong assumption: 
dialectics between genesis of a student's knowledge and mathematical knowledge structure. Beyond 
a quantitative analysis of responses, we have to define a qualitative didactical analysis (based on a 
collection of students’ responses to the tasks) to identify the type of procedures and knowledge used 
by students in solving the tasks. To provide descriptions of a student’s consistent reasoning, it is 
necessary to define a reference for modelling the mathematical competence, in a mathematical 
domain, at a particular school grade. 

Anthropological approach 

The epistemological approach is not sufficient so as to take into account the impact of the institutional 
context on students’ learning. According to the anthropological approach, mathematical knowledge 
is strongly connected to the institutions where it has to live, to be learnt and to be taught; it is strongly 
connected to mathematical practices (curricula, etc.). Chevallard (1999) analyses knowledge in terms 
of praxeology, that is to say in terms of type of tasks, techniques used to solve these tasks, 
technological discourses developed in order to produce, explain and justify techniques, and last, 
theory that justifies technological discourses. 

A reference epistemological praxeology for algebraic knowledge 

For a given mathematical domain, we defined a reference epistemological praxeology (Garcia, 
Gascon, Higueras & Bosch, 2006) that makes it possible to create an a priori design that describes 
features of an appropriate assessment. For algebraic knowledge, such reference is based on results 
from didactics of algebra (Chevallard, 1989; Artigue & al., 2001; Kieran, 2007). In its tool dimension 
(Douady, 1985), there are tasks for generalizing, modelling, substituting, proving. In its object 
dimension, there are tasks focused on calculus with algebraic expressions (calculating, substituting a 
number for a letter, developing, factorizing) or equations (solving). This reference makes it possible 
to define appropriate technology for an intelligent and controlled algebraic calculus, based on 
equivalence of algebraic expressions and the dialectic between numeric and algebraic treatment 
modes.  



The domain of equations for grade 8th students 

The three following types of tasks are specifically related to equations (we will give some precise 
examples later about our experimentations): 

- Modelling and putting a problem into equation (tool dimension). These tasks motivate the 
production of an equation in order to solve modelling problems and require semiotic 
conversions (Duval, 1993). 

- Solving an equation using an algebraic technique; proving that two equations are equivalent 
(object dimension). These tasks use the concept of equivalence and require transformational 
activity (Kieran, 2007). 

- Testing if a number is a solution of an equation; identifying the degree of an equation (object 
dimension). These tasks are based on substitution and polynomial properties. 

Features of Pépite online assessment 
The Pépite online diagnostic assessment is based on a reference epistemological praxeology of the 
algebraic domain, both for designing tasks and for analyzing responses to the test. We will base this 
on the Pépite test for grade 8th students. 

The didactical model 

Pépite test 
The test (targeting 13-14 years old students) is composed of 10 diagnostic tasks and 22 individual 
items covering the types of tasks defined below (Table 1). The tasks may be multiple-choice or open-
ended items (Figure 1). 

Types of tasks Number of items Test items 
Calculus 4 / 22 7.1 / 7.2 / 8.1 / 8.2 
Producing numerical expressions 1 / 22 5 
Producing algebraic expressions  2 / 22 3.1 / 6 
Translation or recognition 14 / 22 1.1 / 1.2 / 1.3 / 2.1 / 2.2 / 2.3 / 3.2 / 4.1 / 4.2 / 9.1 / 

9.2 / 9.3 / 9.4 / 10 
Problem solving in different 
mathematics frameworks 

1 / 22 6 

Table 1: Organization of the 8th grade level test in terms of types of tasks 

Exercise 6: Proof and calculation program 
A student says to another student: “You will always find the same result if you take a number, you add 6 to 
that number, you multiply the result by 3, you subtract triple the initial number”. 
Is this statement true for any number? Justify your answer. 
Justification 
 
 
Result 
The statement is true for any given number: true or false? 
 

Figure 1: Example of generalization task 

Responses analysis: the multidimensional model of algebraic assessment  



At the local assessment level (for each task), students’ responses are not only evaluated as 
correct/incorrect, but also according to their technological discourse, that justifies the techniques. The 
analysis concerns validity of response (V) and seven dimensions: meaning of the equal sign (E), 
algebraic writings produced during symbolic transformations (EA), numerical writings produced 
during symbolic transformations (EN), use of letters as variables (L), algebraic rationality (J), 
connections between a semiotic register to another (T) and skills with negative and decimal numbers 
(N) (Table 2) (Grugeon-Allys, 2015). We code the responses with assessment criteria, which depend 
on knowledge and reasoning involved in the techniques2. 

Assessment dimensions  Assessment criteria 
Validity of response V0: No answer 

V1: Valid and optimal answer 
V2: Valid but non optimal answer 
V3: Invalid answer 
Vx: Unidentified answer 

Algebraic writings produced 
during symbolic transformations 

EA41: Incorrect rules make linear expressions a²->2a 
EA42: Incorrect rules gather terms 
… 

Connections between a semiotic 
register to another 

T1: Correct translation 
T2: Correct but non optimal translation 
T3: Incorrect translation taking into account the relationships 
T4: Incorrect translation without taking into account the relationships 
Tx: No interpretation 

Table 2: The multidimensional model of algebraic assessment (partial view) 

We illustrate the multidimensional model of algebraic assessment on the task “Proof and calculation 
program” (Figure 1). In order to solve this task, two a priori strategies are possible: an arithmetic 
strategy using a number or an algebraic strategy mobilizing a variable. Several incorrect techniques 
can illustrate an arithmetic strategy (Table 3) according to the rules used to translate or transform 
numeric expressions. Algebraic strategy may be incorrect (J3) if the conversion rules (T3 or T4) or 
algebraic transformation rules (EA3 or EA4) are inadequate (Table 4). 

Solutions Reasoning and technological discourse Coding 
For number 5 
(5 + 6)  3 – 3  5 =18 

Correct arithmetic strategy with global 
expression that uses parenthesis 

V3, L5, EA1, 
J2, T1 

For number 5 
5 + 6 = 11; 11  3 = 33; 3  5 = 15; 
33 – 15 = 18 

Correct arithmetic strategy with partial 
expressions 

V3, L5, EA1, 
J2, T2 

For number 5 
5 + 6  3 - 3  5 = 8 

Erroneous arithmetic strategy with global 
expression that uses no parenthesis 

V3, L5, EA3, 
J2, T3 

For number 5 
5 + 6 = 11  3 = 33 – 3 = 30  5 = 150 

Erroneous arithmetic strategy with 
calculus by step (procedural aspect) 

V3, L5, EA3, 
J2, T4 

Table 3: A priori analysis for arithmetic strategies 

  

                                                 
2 Contrary to usual practices in assessment, we do not attribute a code by technique for each task. This would lead to a 
multiplicity of codes on various tasks and would be unusable for a cross analysis on all the tasks of the test. 



Solutions Reasoning and technological discourse Coding 
(x + 6)  3 – 3  x 
= 3x + 18 – 3x 
= 18 

Correct algebraic strategy with global 
expression that uses parenthesis 

V1, L1, EA1, 
J1, T1 

(x+6)  3 = 3x + 18; 
(3x + 18) - 3x = 18; 

Correct algebraic strategy with calculus by step 
(procedural aspect) 

V2, L1, EA1, 
J1, T2 

x + 6  3 – 3 x  
= x + 18 - 3 x 
= - 2x + 18 

Erroneous algebraic strategy with global 
expression that uses no parenthesis 

V3, L3, EA32, 
J3, T3 

(x + 6)  3 = 3x + 18 = 21x ; 
21x - 3x = 18x; 

Erroneous algebraic strategy with calculus by 
step (procedural aspect) 

V3, L3, EA42, 
J3, T4 

Table 4: A priori analysis for algebraic strategies 

Student’s profile, groups and differentiated strategies 

The Pépite diagnostic assessment proposes both individual and collective assessment. The individual 
assessment, at the global assessment level (on a set of tasks), builds the student’s profile which aims 
to identify features of algebraic knowledge and skills for the seven dimensions. The collective 
assessment locates a student on a scale with four components: skill in Algebraic Calculus (CA), skill 
in Numerical Calculations (coded CN), Use of Algebra for solving tasks (UA) and flexibility in 
Translating a semiotic register to another (TA). For each of those four components, different 
technological levels and appropriate benchmarks have been identified (Grugeon-Allys & al., 2012). 
Regarding to a class, students are divided into three groups according to their skill in Algebraic 
Calculus: CA1 (group A) - reasoned and controlled calculation preserving the equivalence of 
expressions -, CA2 (group B) - calculation based on syntactic rules often in blind, not always 
preserving the equivalence of expressions - and CA3 (group C) - meaningless and non-operative 
calculation. Therefore, for a given learning objective, it is possible to assign tasks to each group, 
depending to didactical variables related to the associated technological levels (Delozanne & al., 
2010, Pilet & al., 2013). 

The computer model 

An iterative process between educational researchers, computer scientists and teachers was used to 

design and test different Pépite prototypes in order to improve the didactical model. We defined the 
conceptual IT model of classes of tasks, which allows the characterizing of equivalent tasks 
(Delozanne & al, 2008). The software PépiGen (Delozanne & al., 2008) automatically generates the 
tasks and their analyses, at different grade levels. It uses Pépinière, a computer algebra system, to 
generate anticipated student correct or incorrect answers (according to the a priori analysis). Pépite 
automatically calculates a student’s profile as well as profiles for groups of students. According to a 
learning objective defined by the teacher, Pépite generates tasks adapted to the related technological 
levels (Grugeon-Allys & al., 2012). 

Results and discussion 
The information provided by Pépite diagnostic assessment allows the teacher to identify students with 
close profiles in algebra. Then, Pépite automatically generates differentiated routes corresponding to 
these algebraic profiles. As mentioned above, these routes were designed on the basis of a reference 
epistemological praxeology. 



Differentiated routes for learning equations 

Three differentiated routes were created concerning equations. The first route “Motivating the 
production of an equation and solving it with an equation solver” motivates the production of an 
equation. It includes tasks like “equalizing two calculation programs” (see the example below). 
Students have to solve them using an equation solver. The second route “Algebraic resolution of an 
equation” requires technologies for solving equations by algebraic methods (by using the concept of 
equivalence of equations). In the last route “Algebraic resolution of problems that lead to an 
equation”, tasks that require a problem to be expressed as an equation and then solved, such as, 
“equalizing two perimeters of dynamic figures”, are proposed. 

We give now two examples of tasks for the first route. The first one aims to introduce equations and 
to highlight the inadequacy of arithmetic techniques to solve problems of first degree. As we can see, 
thanks to a thoughtful choice of the didactic variables, this task prevents arithmetic strategies – 
because of the presence of the unknown in both calculation programs – or “trial and errors” methods 
– because the solution of this problem which is 7

3
 cannot be easily obtained by successive trials. 

Algebraic techniques are necessary. 
For groups A, B and C 

Program A Program B Alex and Brenda choose the same start number. 
Alex tests the calculation program A and Brenda tests the 
program B. 
Then, Alex and Brenda find the same final result. 
Which start number did they choose? 

Choose a start number 
Multiply it by 3 
Add 5 to the result 

Choose a start number 
Multiply it by 6 
Subtract 2 to the result 

Table 5: Task for motivating the production of and equation and solving it with an equation solver 

The second task is differentiated (Table 6) to take into account students' algebraic activity and makes 
the students work on semiotic conversions (from the representation register of algebraic writing to 
the representation register of calculation program). Differentiation relies on didactical variables: the 
left member of the equation for group A is a product and solving the equation needs to use the 
distributive property, while the equation for groups B and C do not require it to be solved. Moreover, 
the multiplication sign is used for groups B and C to suggest that one or more multiplications are 
expected in the expression. 

For group A For groups B and C 

Write a problem with two calculation programs that 
correspond to the equation 2(𝑥 + 7) = 5 − 3𝑥. 

Write a problem with two calculation programs that 
correspond to the equation 2 × 𝑥+ 7 = 5 − 3 × 𝑥. 

Table 6: Task for working on semiotic conversions solver 

Experimentation in a grade 8th class 

We now present the results of research carried out in 2016 with a mathematics teacher we will call 
M2. M2 has been working in a REP establishment (high-priority education network) for three years. 
We chose him because he is not an expert. After an observation phase (6 hours) of his teaching 
practices, we proposed a whole teaching sequence to him on equations that takes into account the 
main epistemological aspects of the reference epistemological praxeology. M2 was free to adapt this 
sequence to his practices; however, both teacher and researcher have worked together to plan the 
implementation in the class. 



M2 is required to introduce equations in his grade 8th class. First, his 20 students (14 years old) 
completed the Pépite test. Then, they were been divided into three groups A, B and C. Only one 
student belonged to group A (reasoned and controlled calculation preserving the equivalence of 
expressions). The others students belonged to groups B (15 students who can calculate correctly 
expressions but without using semantic rules) and C (4 students who do not understand the calculus 
on algebraic expressions). M2 proposed to his students the three routes mentioned above, in the same 
order. Due to the fact that most of his students were in group B (15/20), M2 chose to give the same 
tasks to the whole class. After working on the three routes, the 20 students completed a written test 
on equations. We chose to focus on two tasks from this test to present our results. The first task was 
about solving three first-degree algebraic equations. Depending on the equation they solved, 7 to 11 
students among the 20 students found the correct solutions. We particularly studied how many 
students used an algebraic technique. We observed that 17 out of 20 students solved the equations 
using the equivalence of equations. Even if they did not find the right solution, they had a strategy 
and transformed the equations in order to “eliminate” the unknown; they respected the concept of 
equivalence to do so. For the second task, equalizing two calculation programs (as presented above 
in table 5), 11 out of 20 students succeed for putting the problem into an equation. 

Discussion 
The Pépite assessment tool, based on an epistemological reference of the algebraic domain, allows 
the teacher to identify students’ consistent reasoning and calculation in order to plan differentiated 
courses adapted to grade 8th students’ learning needs for the domain of equations. The mathematics 
routes tested in our experimentation seemed to have effects on the students’ technological level: most 
of them used algebraic techniques to put a problem into equation. But this experimentation only 
concerns one teacher. So, in the ERASMUS + project “Advise me” which has just started in 
September 2016, we aim to carry out a larger scale research study.  

We intend to validate these results for the field of arithmetic of integers for grade 3-4 pupils. Grapin 
(2015) carried out a multidimensional model of assessment for this new domain in elementary school. 
She defined an epistemological reference of arithmetic of integers to design an assessment tool in 
order to define pupils’ profiles and to highlight the epistemological aspects of arithmetic to work 
according to pupils' learning needs. She organized an experimentation to study the evolution of 
pupils’ profiles according to differentiated routes adapted to students’ learning needs for the domain 
of arithmetic of integers. Data analysis is underway. 
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The main aim of this paper is to analyze the experience of a MOOC for mathematics teacher training 
implemented in Italy, in parallel with a similar experience in France1. The study focuses on teacher 
collaboration within such an online learning environment, in terms of co-working and co-learning. 
The Italian and the French teams outline a common starting point and set of concerns for the research 
(the two papers have a similar Introduction for this reason). Each team then reformulated the 
research questions and tried to answer them through specific theoretical lenses. The Italian team 
used a fresh theoretical framework called MOOC-MDT. We concentrate on practices implemented 
by teachers who attend the MOOC, in particular on their contributions to communication boards and 
the consequent conception and growth of their particular community. In the conclusions, we contrast 
our results with those of the French experience.   

Keywords: MOOC, teachers’ professional development, meta-didactical transposition, community, 
collaboration 

Introduction 
Internet communication tools provide the opportunity to develop new types of teaching methods that 
combine online courses, resources and discussions. MOOCs (Massive Open Online Courses) were 
born in 2008 at the initiative of prestigious American Universities (MIT, Harvard, Stanford, ...) that 
sought to enlarge the courses they offered to a wide audience. Since then, the MOOC phenomenon 
has been regularly growing and the worldwide number of MOOCs has doubled from 2014 to 2015 
(Shah, 2015). Although there is a wide choice of many different topics, when looking specifically for 
a MOOC aimed at teacher training, the range is limited, especially in mathematics. Nevertheless, 
there is a growing interest in MOOCs involving mathematics teachers as participants, as shown by 
TSG44 work during the 13th ICME2. In particular, from our experiences, there is a need for designing 
and implementing a MOOC for teacher training in mathematics education with a focus on the 
development of communities of practice (Wenger, 1998) and the collaborative work among teachers 
as a basis for their professional development. Indeed, when people co-work (work together 
collaboratively) they can also co-learn (learn together collaboratively), as highlighted in the ICME 

                                                 
1 See Panero et al. (2017). Since the Italian MOOC and the French MOOC were delivered at the same period of time, 

even if the contents were designed independently, our teams had the opportunity to exchange and to discuss about them. 
2 For more information, see http://www.icme13.org/files/tsg/TSG_44.pdf 



 

survey of Robutti et al. (2016). The authors found that teachers can learn through discussion, 
conversation and reflection on their own teaching, on student learning and on the teaching of others. 
The methodology of the Italian MOOC Geometria aims to create collaborative contexts for teachers’ 
work, where they can learn from these kinds of practices. Taking into account this necessity for 
teachers to be supported in exploiting affordances of technology affordances, the objectives of both 
the French and Italian MOOCs are shared, namely: accompanying teachers in the production of 
teaching resources, by examples of activities and reflection on their ongoing resource design; 
fostering a reasoned use of technology, encouraging teachers to choose appropriate digital tools for 
the classroom. Such aims are related to the interest in the design and the implementation of teacher 
professional development programmes to include the role of teachers working and learning in 
communities (Wenger, 1998; Jaworski & Goodchild, 2006). The originality of our research based on 
the data collected from two MOOCs (in Italy and in France), that share similar aims and objectives, 
is twofold.  

First, our new framework (MOOC-MDT: see below) facilitates the study of the specific dynamics of 
the interactions among trainees and between trainees and trainers, which occur online and in totally 
virtual environments. It is topical and urgent to analyze these interactions in the context of such 
distance learning due to the increased interest in this approach in recent years. Consequently, we 
reviewed and revised an existing framework that had been used to describe face-to-face meetings for 
teacher professional development, namely the Meta-Didactical Transposition (see below).  

Second, our new framwork analyzes suech dynamics according to the cultural constraints that shape 
the MOOCs’ design and development. The French and Italian school environments have some 
remarkable differences and one of the most palpable is a wider freedom that institutional curriculum 
regulations traditionally give to the Italian teachers, compared with the major institutional constraints 
met by the French teachers. The Italian Indicazioni3 (guidelines) highlight for each discipline the 
fundamental learning goals that students have to achieve at the end of each cycle of instruction (two 
or three scholastic grades). These guidelines have the character of general didactic guidelines and 
defer to teachers the responsibility of choosing and linking the specific mathematical contents to be 
developed in the classroom in order to reach the established learning goals. The French Programmes4 
(syllabi) are also based on competences for a given cycle of instruction, but they appear to be more 
detailed and normative: for each mathematical content, they provide some examples of activities. 
Moreover, they are accompanied by several additional resources intended to support for the 
curriculum implementation in the classroom. 

In this paper, and in parallel with the French one, we draw on the common theoretical element of the 
MDT to highlight how the concepts of community and of collaborative work evolve to new and 
different forms, and the impacts on teachers’ professional learning. As members of the Italian team 
we worked alongside members of the French team to compare the data from the two MOOCs, so in 
the conclusion we will discuss the relevance of cultural and institutional aspects in the specific 
dynamics of the two experiences.    

                                                 
3 http://www.indire.it/lucabas/lkmw_file/licei2010/indicazioni_nuovo_impaginato/_decreto_indicazioni_nazionali.pdf 
4 Links to the French curriculum and supporting material are available at http://eduscol.education.fr/ 



 

The description of MOOC Geometria 
The “MOOC Geometria” is the result of a long development process over many years by the 
researchers of the Mathematics Department of Turin University, and characterized by many previous 
experiences of teacher education projects in which the team has been involved (e.g. the M@t.abel 
project https://goo.gl/Q30Dn0) alongside years of research into teacher education. The MOOC was 
delivered on a Moodle platform (http://difima.i-learn.unito.it/) between October 2015 to January 2016 
(6 modules in 8 weeks), and the 424 participants, all teachers in secondary school, were from all over 
Italy. 36% of the teachers completed all of the MOOC activities, which compares with reported 
average completion rate of about 5% (Bayne & Ross, 2013). 

The MOOC team comprised 13 people (university researchers and expert in-service teachers). The 
MOOC had two main teacher education aims: professional training and raising awareness of the 
possibilities for technology use in schools. Every week the trainees worked individually to become 
familiar with different approaches. These activities included: watching a video where an expert 
introduced the conceptual knot of the week; watching a “cartoon video” with some guidelines to carry 
out the units; reading the geometry activities based on a mathematics laboratory (and the option to 
experiment with these in their classroom). Trainees were invited to share thoughts and comments 
about the activities and their contextualization within their personal experience, using specific 
communication message boards (forum, padlet, and tricider: see Table 1 for an outline description of 
each). The team of trainer chose to limit their own interventions in these message boards to a 
minimum in order to support the birth of a trainees-only community. The trainers were more active 
within the webinars: educational online event for trainees.  

TOOL AFFORDANCES REASON OF THE 
CHOICE 

IN WHICH 
MODULE 
WAS IT 
THERE? 

Forum 
(web 1.0 tool) 

For public discussion, where 
everyone can read and answer to 
messages, using nested replies. 

To give teachers a friendly 
and known tool for 

discussion. 
1, 2, 3 

Padlet 
(https://it.padlet.com/) 

(web 2.0 tool) 

Board of collaboration/sharing 
material (images, videos, 

documents, text) on common 
tasks. 

To give a communication 
mode different from the 
forum, for supporting 

teachers in participatory 
methods. 

1, 2, 3, 4, 5, 6 

Tricider 
(https://www.tricider.c

om/) 
(web 2.0 tool) 

For easy brainstorming and 
voting. For decision making, 

crowdsourcing and idea 
generation. 

To facilitate decision 
making after any discussion 

by the request of a vote. 
2, 3 

Table 1: Collaborative a-synchronous tools for interaction 

Theoretical framework 
As previously mentioned, we developed the MOOC-MDT framework to suitably describe and 
analyze the MOOC’s dynamics (presented by Taranto in TSG 44 of ICME 13). It integrates three 



 

theoretical frameworks in a new form: the Meta-Didactical Transposition5 (MDT: Arzarello et al., 
2014), Connectivism (Siemens, 2004; Downes, 2012), and the Instrumental Approach (Verillon & 
Rabardel, 1995). In what follows we give a synthetic idea of this framework.  

First, a MOOC can be considered as an artifact, that is a static set of materials. Connectivism allows 
us to picture the MOOC-artifact with its own network-based knowledge: its nodes are the content, 
the ideas, the images and videos used; the connections are the links between their node pairs. When 
a MOOC module is activated, it dynamically generates a complex structure (Siemens, ibid; Downes, 
ibid) that we call ecosystem: “all the relations (exchange of materials, experiences and personal 
ideas/points of view) put in place by participants of an online community thanks to the technological 
tools through which they interact with each other, establishing connections within the given context”. 
The network-knowledge of the MOOC-ecosystem is dynamic: it evolves as the MOOC-artifact’s 
network, thanks to the participants’ contribution. Also, the network-knowledge of individuals evolves 
as a personal self-organization (Siemens, ibid, p. 4) of the ecosystem. The process of transformation 
from artifact to instrument (Verillon & Rabardel, ibid) is here replaced by the evolution artifact-
ecosystem-instrument. 

In a MOOC there are two communities, a community of inquiry (the researchers and designers of 
MOOC) and one of practice (in the sense of Wenger, 1998), that is teachers as trainees in the MOOC6. 
The trainers evolve from their meta-didactical praxeologies (m-dp), to new ones, to deal with the 
MOOC’s training in Geometry. These new m-dp are based on a double awareness. One is that learning 
within the MOOC is connectivist: each trainee is part of a community, with the opportunity to share 
her/his own views, self-organizing information, with which (s)he comes into contact, for creating new 
connections, and questioning the existing ones. The second is that what is shown in the MOOC should 
encourage experimentation. The trainers’ m-dp constitute the network of the MOOC-artifact. During 
the implementation of the MOOC-artifact’s network-knowledge, in fact, trainers foster its nature of 
ecosystem, sharing tools and posing appropriate key questions. Moreover, the tasks designed by 
trainers suggest to trainees, in a more or less explicit way, to use the proposed material in their classes. 
In such a way, the MOOC is enriched with reports about trainees’ teaching experiences: this process 
increases a virtuous circle that encourages other trainees to experience the same materials. For this, 
the trainers’ m-dp evolve themselves, because trainers analyze, observe and monitor the MOOC 
activities as an ecosystem, to understand what did work or not. 

The community of trainees is not a unitary subject of learning: the MOOC-ecosystem is an instrument 
that belongs to each single trainee. The trainees have to solve multi-tasks, through multi-techniques, 
properly justified. In fact, they must look at the proposed material, share their thoughts through 
sharing tools, and experience their activities. These tasks are not predetermined, depending on the 

                                                 
5 MDT is a model that describes the process of teachers’ professional development with the aim of grasping its 

complexity. It is a tool to analyse the dynamic aspects of this process, namely the evolution of teachers and researchers’ 
activity over time. This activity is described through teachers’ and researchers’ meta-didactical praxeologies (Arzarello 
et al., 2014, pp. 353-355), which consist on the task in which they are engaged in the educational programme, with the 
techniques used to solve it, along with its theoretical justification.  
6 In the following we use trainers to indicate both researchers and designers and trainees for participants of the MOOC.  



 

time, approach and depth with which trainees address them. The multi-techniques are the ways in 
which the trainees extend and modify their network-knowledge, drawing on that of the ecosystem, 
and influencing it in turn (thus affecting all other trainees). The m-dp of each trainee trigger a “double 
learning process”: firstly the MOOC-ecosystem is a specific learning tool for the individual, and 
secondly the use of MOOC-instrument by the individual generates learning for the whole ecosystem. 
The dynamic process has the following components, intertwined and self-feeding each other: 

i. Instrumentation/Self-organization (from the ecosystem to the individual): process by which the 
network of MOOC-ecosystem expands the individual’s network-knowledge. In particular, the 
instrumentation (Verillon & Rabardel, ibid) is the process by which the chaos (Siemens, ibid) 
of the ecosystem network reaches the individual. The many novelties of views and experiences 
make sure that the individual compares himself with new usage schemes. A phase of self-
organization (Siemens, ibid) of the MOOC’s information follows this process: when the 
individual selects which usage schemes proposed by the MOOC are valuable and which are not. 

ii. Instrumentalization/Sharing (from the individual to the ecosystem): process by which the 
individual’s network-knowledge expands the network of MOOC-ecosystem. The 
instrumentalization (Verillon & Rabardel, ibid) is the process by which the individual, with 
her/his renewed network-knowledge independently builds new connections. The individual is 
stimulated by a task requested by MOOC and (s)he caters to the ecosystem to turn it according to 
her own (new) usage schemes. (S)He wants to integrate it with her/his own cognitive structures. 
Sharing is the process by which the MOOC welcomes the contribution of the individual and 
makes it available to all: information goes towards all members. 

Within this complex, iterative learning process lies the inherent difference between the frame of the 
MDT and the MOOC-MDT. In fact, in the MDT, the trainers shape their proposal according to the 
practices they think appropriate, and so they can realize how much the trainees learn such proposal. 
On the contrary, inside the MOOC-MDT the process appears to be more difficult to control. The 
trainers do not know “what” the user has really looked at among the presented materials, nor they can 
know how (s)he interpreted them. At the same time, the trainees benefit from material provided not 
only by trainers, but also by other trainees that share some of their own materials and ideas using the 
communication boards. The process evolves stochastically: a determining role is played by the 
individual trainees, and by their feeling as a community with whom to collaborate, to inspire and to 
share results. Basing on such a theoretical framework, it is now possible to suitably formulate a 
specific research question as follows: How effective and in which form is the collaboration between 
involved teachers (trainers and trainees), and how does it develop because of the support of tools 
designed by the trainers? 

Data analysis 
The accesses of the trainees in the MOOC (distinct from watching videos, reading materials and 
interventions in communication boards) have been in the order of tens of thousands. Accessing the 
MOOC, each trainee enters into an ecosystem, living in it through the use of free collaboratively a-
synchronous tools (as shown in Table 1), through which (s)he interacts with a community. Each of 
these interactive tools has been carefully monitored by the trainers’ team during the weeks of the 
MOOC delivery. The trainers’ team met regularly and, at the end of each module, they shared what 



 

they had observed during that specific module. In particular, the most significant trainees’ 
interventions or sharing actions were discussed. After the first few weeks we realized that we were 
dealing with a unique community of trainees, which we will expand on in the last section. We explain 
below how the trainees have used these interactive tools, showing some examples (in italics). 

The forum played a predominant role with respect to the other tools. Despite being an almost out-
dated mode (based on web 1.0), the trainees were very fond of it and used it to share their experiences 
of learning or of working. There was no moderator in the discussions: each trainee had the opportunity 
to read a diversity of opinions and experiences, and when (s)he understood how it worked, then (s)he 
introduced her/himself, became an author of posts, influenced other colleagues, or appreciated the 
idea expounded by a colleague. For example, in the second module of the MOOC, the geometrical 
topic was the widespread (at least in Italy) misconception that students have between angle and arc. 
Several activities have suggested to teachers to tackling this problem and a forum was inserted in this 
module. It collected 31 discussions, each of them with from 1 to 21 response replicas. In the 
following, just an extract: “The proposed activities have made me think about (a) how the conceptual 
articulation "Angle vs. arc" is delicate. When the guys study trigonometry at high secondary school 
(b), they know the Radian that […]allows you to no longer distinguish between (width of) angle and 
(length of) arc. I would like to know your thoughts (c), especially those who teach at lower secondary 
school”. In (a) there is an evident phase of Instrumentalization: the trainee is creating new connections 
between his network-knowledge and that of the ecosystem. He was stimulated by the activities that 
he saw in this module and he is connecting this thinking to his classroom (b). In particular, he invites 
another person to share their thoughts about this topic (c).   

If the forum was the right place for the trainers to talk about themselves, including their strengths and 
weaknesses, the Padlet was the place where the trainees began to share photos, videos and, 
spontaneously, their own materials. It is clear that the Padlet did not help to structure the exchange, 
but many trainees obtained inspiration from the exchange of materials in this place. For example, it 
was re-used and proposed by a participant as a tool to track her training programme with the 
construction of a Learning Diary: “I am reviewing all of the course materials ... Because of my age, 
I can hardly remember the various proposals, ideas offered in this course surely professionally 
enriching and among the best I've attended to! So I thought to produce a Learning Diary with Padlet. 
Step by step it will enrich it, even with external links, with the materials I have looked for during this 
course or suggested by colleagues in the forums. Can it be useful to anyone?”.  

The Tricider had the goal of triggering simple threads, most of all confined to the approval or not of 
ideas, by voting through “likes”. However, the participants used it more for collecting ideas and 
comparing their didactical experiences – as a forum – rather than for the expected use. Practically, 
the trainees realized a catachresis (Verillon & Rabardel, 1995): an artifact is used to do something it 
was not conceived for. Due to the fact that they explored the tool for the first time, and also because 
they usually need to explain and to go in depth when they express an idea, so the simple vote would 
not have let them satisfied. The posts written in Tricider are rich of ideas for both trainees and trainers. 
The trainees were introduced to a new tool for them. The trainers acquired awareness about the 
necessity to be clear in writing the tasks, in exemplifying the use of the tools and in providing tutorials 
on their affordances. 



 

Beyond some trainers’ interventions in the forums, or email communications with administrative 
aims, the actual contact between trainees and trainers was realized through three online webinars 
(using the chamber BigBlueButton of Moodle): they supported the community with synchronous 
interaction. While the trainers in the webinar could use video and chat, the trainees could use only 
the text chat. The trainers (in this case, only the academic professors) presented themes linked to the 
didactics of geometry and from mathematics education research. In all the three webinars there was 
a high participation (from 90 participants in the first one to 50 in the last one) of trainees, who posed 
questions and doubts.   

Discussion 
The complex ecosystem structure developed as soon as the trainees had begun to access the MOOC. 
They are asked to enter into what, at first glance, may look like chaos, because of the multitude of 
materials and available technological resources. In fact, initially the trainees may not have enough 
self-confidence with the situation (instrumentation). Gradually they implemented the self-
organization phase: appropriating the use of the MOOC’s usage schemes, they began to use resources 
and materials (instrumentalization) and also to contribute comments to the communication boards 
(sharing). A community, in the sense of Wenger (1998), began to take shape. It is a community 
comprising individuals who are both looking for answers and helping others, by sharing their 
practices - a community that seeks to grow collaboratively. The will to establish the threads often 
leaks out, though it is very difficult that they take shape in a broad and articulated manner. In fact, 
the threads tend to split into different groups, which are formed and split locally and for a certain 
period of time, depending on the needs felt by the individual, but generally they contribute to give to 
all trainees the sense of a common participation in one unitary event, precisely the MOOC. Using a 
term from neuroscience, we call this property plasticity, which makes it possible to adapt to various 
situations in different groups and times. It is true that situations and times change, but within a 
community that preserves its global unity. This unity consists in the collaborative sharing of what 
happens, even if the active participation converges on more than one local theme. The sharing 
processes (of materials, thoughts, ideas, experiences) in fact gives life to the ecosystem, enhancing 
the materials and expanding the individual’s network-knowledge. Even the “contact points” with 
trainers via webinars contribute to this purpose. Through sharing processes the ecosystem becomes 
more and more structured; fragments from the history of web communication (from web 1.0 on) 
coexist and complement each other, and are used by the trainees. This aspect is interesting and little 
pointed out in the literature. It is something similar to the multimodal interactions that take place in 
the classroom thanks to the activation of different registers: we call it technological multimodality. 

Plasticity and technological multimodality are the two main properties distinguishing the evolution 
of a community in a MOOC from that in a traditional training course. It is primarily for this reason 
that we needed to change the framework of the MDT elaborating the lens of MOOC-MDT: it allowed 
us to give a first answer to our research question. 

Comparison with the French experience and conclusion 
The Italian team worked to observe a general community, studying the MOOC phenomenon at a 
macro level and they did not intervene in the interactions between trainees. By contrast, the French 
team (Panero et al., 2017) observed local communities of practice. They studied the phenomenon at 



 

a micro level, intervening in the groups’ discussions to support and encourage the development of the 
collaborative work. During MOOC Geometria local groups are generated “emerging from chaos” 
(Siemens, 2004), namely they are subject to a spontaneous generation. During MOOC eFAN Maths 
(the French MOOC) trainers induce the generation of local groups and regulate peer relationships. 
Despite the fact that the cultural aspects affect these differences for sure (as we underline in our 
similar introduction), for both MOOCs there is an affinity that relies on the fact that trainees’ learning 
is often generated by self-feeding discussions and instrumentalization processes. 
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The extensive use of CAS at upper secondary school in Denmark provides a laboratory for research 
on the development of standards for CAS teaching. The poster focus on action research into teachers’ 
development of lessons and student activities in an ongoing collaboration between university and 
high schools on use of CAS in mathematics teaching. Coaches mediate design processes, reflection 
and documentation, and enable sharing. We discuss coaching as a valuable part of action research, 
and how to draw findings from such collaboration. 

Danish CAS context  
Starting with handheld devices in the 90’s, the use of CAS in upper secondary mathematics education 
has accelerated. The reform in 2005-07 of Danish high schools opened the door to extensive use of 
computers, resulting in a move to PC based programs like Maple or TI-Nspire, used in the classroom 
as well as for homework. Powerful CAS tools such as Maple drastically change the teaching 
environment, but have only led to minimum adjustments in the final examinations since the earlier 
CAS-days. Early adopting teachers do give access to their own material, but there is no systematic 
sharing of experiences or standards for use of CAS within Danish mathematics education.  

CMU’s1 Agenda 
Many teachers experience instances where CAS provides new insight or furnishes new possibilities 
to handle examples that are more interesting or more realistic. CAS can also provide possibilities for 
extensive drill and practice of taught methods. However, and especially when use is allowed in the 
final exams, CAS can turn mathematics into merely an instrumental enterprise and thus trivialize 
mathematics education. Moreover, this trivialization is hard to see, outside looking in. From a policy 
maker’s, school leaders, parents or even students point of view, you hardly know what is missing. 
Understanding that CAS can work in ways where skilled students learn less because tasks are too 
easy, while at the same time the less able students are performing poorer, because they try to rely on 
a tool they do not know how to use, demands insight. Addressing these issues, lead to establishing 
CMU.  

Principles for coached teacher training 
CMU collaborates with teachers interested in developing and sharing their experience with the use of 
CAS as an instrument for learning. We used a bottom-up approach, drawing upon models for action 
research (Asiale et al., 1996, Borba & Skovsmose, 2004), to designed a project management model 
(Figure 1). In Denmark, teachers have wide latitude to organize their teaching, but a limited tradition 
                                                 
1  CMU, Center for Computer Based Mathematics Education, Department of Mathematical Sciences, University 
of Copenhagen, Denmark, founded in 2013.  



for addressing teaching and learning in didactical terms. Through individual or group coaching2 we 
support teachers to develop their own ideas about mathematics with CAS. The coaches play an 
important role to promote teachers’ reflections before, during and after teaching - our goal being 
twofold; to draw on teachers’ experience and to promote teachers’ professionalism (Dale 2003). We 
have designed a project report template to capture teachers’ reflections alongside the teaching 
material, and made the projects available on our website (http://cmu.math.ku.dk/projekter/). The 
coaches also assist in this documentation process. 

 
Figure 1: Systems model for a CMU project 

Participants present their projects, goals and standards on an annual basis. It is essential to develop a 
common language and understanding of how mathematical content, and student activity changes in a 
CAS environment. From the discussions at our seminars, we can point to themes such as: 

- which non-CAS activities should be introduced when working with CAS? 
- what is the value of students mastering (details of) the CAS program or put in another way – 

how well should students know the CAS program in order to make real investigations? 
- How can you work in ways that students both acquire useful skills and concept knowledge? 

CMU has a double agenda of promoting sound use of CAS and of in service teacher training, so we 
pose our own research questions: 1. How to draw general conclusions about CAS standards based on 
individual projects? 2. Which teacher competences - CAS, didactical and mathematical - should 
coaching promote? 
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Introduction 
The implementation of CAS in the teaching of mathematics introduces new challenges that concern: 
content, technology and didactics. There is a change in the mathematical focus from pragmatic to 
more epistemic, since the routine work is taken over by digital tools (Artigue, 2002).  Furthermore 
the didactic changes, not only by the change in the mathematical knowledge, but also due to the need 
for the teacher to orchestrate a new component in the classroom (Drijvers, Doorman, Boon, Reed, & 
Gravemeijer, 2010). In the course “Numbers, Arithmetic and Algebra” for mathematic student 
teachers for lower secondary school on the Faroe Islands we implement the format of lesson study as 
a tool for the student teachers to develop their knowledge on teaching with CAS. This is a preliminary 
study of the transcripts from a reflection meeting, which will later form the basis for a more detailed 
study as part of my work towards the PhD.       

Theoretical framework and research question 
The anthropological theory of the didactic (ATD) suggests considering human activity as an amalgam 
of praxis and knowledge: praxeology. The praxis, also named the praxis block of the praxeology, 
consists of the constituting task and the corresponding technique. A technique can consist of several 
actions. The task and technique are in one-to-one correspondence. The knowledge, also called the 
logos block, is the discourse of the techniques and the theory that explains and verify the discourse. 
For more details see (Bosch & Gascón, 2014). This study considers the didactical praxeology and the 
mathematical praxeology of mathematics student teachers when implementing CAS in research 
lessons. Within ATD the task of solving an equation with CAS is categorized as mathematical 
praxeology, while the task how to teach the students to solve an equation using CAS is categorized 
as a didactic praxeology. The research question is “What didactical logos developed during the 
reflective meeting of a lesson study cycle?”       

Context and study 
The study is situated within a course focused on numbers, arithmetic and algebra. As part of the 
course, groups of three to four students participate in four lesson studies where CAS has to be 
implemented in the teaching of algebra in grade 7 and 8 (14 - 15 year). Each lesson study cycle 
consists of a planning phase resulting in a lesson plan, a research lesson, a reflection meeting and a 
new lesson plan. In the lesson plans, the student teachers will not only describe the intended lesson 
but also have to justify the instrumental orchestration, part of the didactical technique, in relation to 
the mathematical praxeology of the lesson. Reflection meetings in lesson studies are a rich 
environment for the development of knowledge for teaching (Miyakawa & Winsløw, 2013; 



Rasmussen, 2015). As part of the protocol for these meetings, the student teachers reflect on the 
relationships between the instrumental orchestrations used during the research lesson, the 
development of the mathematical praxeology of the students and the mathematical praxeology of the 
teacher.  

Conclusion 
As an example, the mathematical praxeology of making two integer sliders in GeoGebra and the 
related didactical praxeology of how to teach students to make two integer sliders in GeoGebra is 
considered. As a didactical technique, the student teachers chose to hand out a booklet with step-by-
step instructions in order to guide the students through the lengthy technique. Focusing on the 
didactical logos related to the technique of handing out a booklet during the reflection meeting the 
teacher students concluded that if the student did not get the exact same picture as in the booklet such 
as slider b above slider a instead of slider a above slider b, they would consider it an error and not 
usable. Additionally, the students were discouraged by having to read text in addition to carrying out 
the  GeoGebra technique. It was agreed upon by the student teachers that a booklet is still a good 
didactical technique but has to be complemented or preceded by a board-demonstration for the 
students.        
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Mobile digital technologies, such as tablets, hold great potential for teaching and learning, but they 
are being introduced into schools with little evidence to guide how they are implemented. With little 
impact on learning outcomes there is increasing attention on the need for greater focus on the role 
teachers play in the use of digital technology in the classroom. This study investigates the way 
teachers at an English school, which has one tablet per student, view and use tablets in teaching 
mathematics. The results of my study form a framework on how tablets are used in teaching. 
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Introduction 
“Despite considerable investments in computers, Internet connections and software for education use, 
there is little solid evidence that greater computer use among students leads to better scores in 
mathematics and reading” (OECD, 2015, pp. 145). Mobile technologies are increasingly being 
introduced in schools with little evidence to guide how they are implemented (Kiger et al., 2012). 
With the technology available today, some argue that there is a need for renewal of pedagogy 
(Jouneau-Sion & Sanchez, 2013), and greater understanding of the teachers’ perspectives and practice 
regarding the integration of technologies in schools (Ertmer, 2005). Using a paper poster, I outline 
how my study addresses this by investigating how a group of lower secondary school mathematics 
teachers in the south of England – who meet regularly as a group to reflect on and develop their 
practice – view, use, and develop their use of tablets in their teaching.  

Theoretical Lens 
Within the second facet of Ruthven’s (2008) examination of the incorporation of new technology into 
educational practice - the process of integrating a tool at the level of a community - Laborde (2001) 
identifies four stages of increasing degrees of mathematical/pedagogical innovation. This is the base 
of my analysis.  

Methods 
My study ran in two phases over the course of one year. Phase one established the context of the study. 
In phase two data was gathered by (1) group meetings in which teachers reflected on, and developed, 
their practice; (2) classroom observations; (3) post observation interviews with teachers.  

Findings 
I developed a framework of how mathematics teachers use tablets in their teaching. I adapted 
Laborde’s (2001) framework of instrumental evolution, to which I developed new categories that are 
organized in the two distinct groups of efficiency and engagement. Efficiency includes tasks that help 
to organize the class structure to give more time to focus on the mathematics. An example includes 
the use of quick response (QR) codes, which speeds up the distribution of online material to students. 



Engagement includes tasks that help to capture the attention of students so that they focus more 
intently on the mathematics. An example includes using virtual games to practice numeracy skills.  

My study addresses the criticisms of education research that it does not investigate questions that are 
important to teachers, thus impacting on the lack of disruptive change in schools (Pring, 2002). Other 
studies have investigated the use of technology in mathematics education by (Ruthven et al. 2009; 
Galligan et al. 2010). However, the combination of a natural school setting, regular collaboration 
among teachers, observation of use over a longer period of time, focusing on the use of tablets, and 
focusing on multiple lessons per teacher, makes my study unique. This research can help guide future 
implementation of new technologies in schools and the associated teacher professional development.  
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The tools … 
By “automated proving of geometry statements” we refer to tools that mechanically output a 
mathematically rigorous (e.g. not based upon a probabilistic proof) yes/no answer to the conjectured 
truth of a given geometric statement. By “automated derivation of geometry statements” we refer to 
tools that, rigorously, output some/all geometric relations verified by a collection of selected 
elements within a geometric construction. Finally, by “automated discovery of geometry 
statements” we refer to tools that systematically find complementary, necessary, hypotheses for a 
conjectured geometric statement to become true.  

The community of mathematicians and computer scientist has been working on these goals for the 
past 50 years, with a variety of approaches, outcomes and popularization results (cf. the pioneer 
work of Gelertner (1959) in the Artifical Intelligence context, or the algebraic geometry framework 
to automated reasoning in geometry disseminated by the book of Chou (1988)). On the other hand, 
although we can mention the development of some intelligent tutorial systems designed to assist 
students to construct proofs in Geometry such as GRAMY (Matsuda and Vanlehn, 2004) or 
GeoGebraTutor (Tessier-Baillargeon, Richard, Leduc and Gagnon, 2014), it is fair to say that, up to 
now, the dissemination, use and impact of these findings in the educational context is very limited.  
Thus, the very recent survey by Sinclair et al. (2016), on geometry in education, although it includes 
a full section on the role of technologies and another one on “Advances in the understanding of the 
teaching and learning of the proving process”, does no refer at all about automated reasoning tools. 

…and the issues 
Hence, we consider it quite relevant to address, in our poster, two issues: one, to announce the very 
recent implementation (2016) of tools for the automatic proving and discovery of geometric 
theorems over a free dynamic geometry software, with tens of millions of users worldwide, and a 
great impact in mathematics education. See Abánades, Botana, Kovács, Recio and Sôlyom-Gecse 
(2016) and Hohenwarter, Kovács and Recio (2016).  

Then, recalling that the program where we have implemented our automatic reasoning tools (ART) 
is available over computers, tablets, smartphones, with and without internet connection, the second 
issue we would like to pose here is the consideration of the following questions: what could be the 
role, in mathematics instruction, of the ample availability of such tools?  It was already 30 years ago 
(cf. the visionary ICMI Study “School Mathematics in the 1990's” (Howson and Wilson, 1986) or 
the inspiring paper by Davis (1995), with a section that refers to the “transfiguration” power of 



computer-based proofs of geometry statements) when educators started reflecting about the 
potential role in education of software programs dealing with automatic theorem proving (automatic 
discovery and derivation were inexistent at that time). But these reflections were formulated rather 
as considerations about the future than as proposals for the present time of their authors… 

Thus, in view of the current implementation of ART in well spread, dynamic geometry programs, 
our final goal is to make an open call to the community of math teachers and math education 
researchers, in order to join us preparing a research project to address the following questions:  Are 
ART in geometry education good for anything? If yes, what are they good for? What should be the 
necessary changes and requirements in the educational context, if ART are to be considered good 
for anything?  
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The rationale of the study 
More recently, a need for further studies examining the process of integrating digital technology into 
classroom practice in order to support the development of a better, more comprehensive 
understanding of classroom practice with digital technologies, and to refine evolving frameworks 
has been emphasised by a number of researchers (Artigue, 2010; Hoyles, Noss, & Kent, 2004). In 
this context, the present research is useful in various different areas. First, the study is concerned 
with the concept of geometric similarity in geometry teaching using Dynamic Geometry Software 
(DGS). This particular topic makes our study beneficial, specifically because geometric similarity 
has been overlooked in recent studies. Given the significance of geometric similarity to benefit 
students’ spatial and geometric reasoning skills (Watson, Jones, & Pratt, 2013), the fact that this key 
area of mathematics has not received sufficient attention seems surprising. Secondly, this study uses 
and adapts a contemporary theoretical framework (the Structuring Features of Classroom Practice 
(SFCP) framework) (Ruthven, 2009) that aims to assist researchers in the identification and analysis 
of classroom practice using digital technology. Our study, therefore, helps identify how the SFCP 
framework supports and/or hinders the researcher in the process of such identification and analysis. 
Furthermore, an exploration of teachers’ classroom practice using the new technological tool 
provides deeper insight into the issue of digital technology integration through the detailed analysis 
of two case studies.  

Research design 
The purpose of this research is to develop a holistic understanding of how the Cornerstone Maths 
(CM) software is integrated by teachers into their classroom practice when teaching geometric 
similarity. This entailed conducting a qualitative research study in order to gain a detailed in-depth 
understanding of teachers’ use of the CM tool in the classroom. We adopted the case study approach 
where data is collected through multiple sources of information; i.e. in this study, observation 
followed by semi-structured post-lesson teacher interview based on the observations made during 
the lessons. While the more experienced teacher’s classroom practice was observed in two lessons, 
the less experienced teacher’s classroom practice was observed in one lesson. With each teacher, 
one follow-up teacher interview took place.  

In addition, a multiple-case study design was used, so that a better holistic understanding of 
teachers’ technology integration into classroom practice could be accomplished by comparing the 
teachers’ two cases. Between the teachers who participated in the CM project professional 
development programmes, the participants were chosen based on their different experiences of 
teaching using digital technology because this offers a productive comparison that will highlight the 



variables in the teachers’ integration of technology in the classroom (see Bozkurt & Ruthven, 2015). 
The data analysis was made according to the five factors in the SFCP framework, namely: working 
environment, resource system, activity structure, curriculum script, and time economy. 

Findings 
Data analysis suggests several key findings related to five structuring features of classroom practice 
using digital technology. For instance, the varying levels of teachers’ experience in using digital 
technology to teach have a considerable influence on the degree and type of their technology use 
during classroom activities. In addition, teachers think that pre-designed technological resources 
with good ideas support them to better exploit the didactic potential of digital technologies in 
classroom practice because they do not have enough time to prepare such resources. The evidence 
shows that teachers’ preparation for integrating technology into classrooms leads them to not use 
their time productively enough on the mathematical content to be taught in the course of planning 
their lessons. Lastly, despite some technical difficulties appears during classroom practice, the use 
of digital technologies facilitates and accelerates students’ learning of mathematical ideas. 
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Introduction 
I report on the resource systems (Gueudet & Trouche, 2009) of a sample of mathematics teachers’ 
in England. An influence on these teachers’ appropriation of resources for learning and teaching is 
current mathematics education reform that is focused on how mathematics performance in England 
compares to the highest attaining systems internationally. The OECD’s Program for International 
Student Assessment (PISA, 2012) ranked England in the 25th position in mathematics achievement, 
with the assessment table headed by a clutch of south-east Asian jurisdictions. PISA results also 
showed that England’s performance in mathematics has stagnated over the years. There is a 
government-backed mandate to explore, adapt and embed the Singapore/Shanghai model of mastery 
teaching and assessment for learning approaches across England (Hodgen, et al., 2014; NCETM, 
2014). “Mastery learning can be described as a set of group-based, individualized, teaching and 
learning strategies based on the premise that virtually all students can and will, in time, learn what 
the school has to teach” (Anderson, 1975 p.4). Although mastery learning has morphed into various 
adaptations, essential elements remain the feedback, corrective and enrichment (Drury, 2014). 
Extant research points to the potential of well-implemented mastery teaching as enabling higher 
levels of achievement, deep understanding and confidence (Drury, 2014).  

This study combines an activity theoretic approach with the more recent ‘documentational 
approach’ (Gueudet and Trouche, 2009) from French didactics as theoretical tools for developing an 
understanding of the teachers' appropriation of digital resources and building up a coherent 
explanation for its impacts on classroom practices. In this investigation, I document the context for 
the current motivation for adopting mastery teaching and examines the emergence of the resource 
systems of seven English mathematics teachers’ as they ‘resource for mastery’, and the potential 
impact of this on classroom practices. The major aims of this study are to: 

 Analyze how teachers’ appropriate digital resources for classroom practices. 
 Explore teachers’ resource systems for mastery teaching. 
 Contribute to the discourse on teachers’ appropriation of digital resources. 

Research design, methodology, data collection and analysis 
A qualitative case study approach (Creswell, 2013) was adopted. Purposive sampling was used to 
select seven teachers from three schools based on the use of digital resources, access, proximity and 
the opportunity to observe rich and real life-context of teacher practice with digital resources. Data 
collection was undertaken during the 2015-2016 school year through periodic whole day school 
visits. Data were collected through: audio-recorded semi-structured interviews; classroom 
observations using an adapted systematic classroom analysis notation for mathematics lessons 
(SCAN, Beeby, Burkhardt & Fraser, 1979); screen capture software; and collation of documents. 



Data analysis is ongoing at the time of writing and includes: coding and analyzing transcribed 
interviews using thematic analysis and taking into account key concepts from the literature and 
information emerging from the data alongside the SCAN analysis of classroom observations. Data 
is organized by teacher and by data type. The thematic mappings will be constantly grouped and 
regrouped into categories and themes for discussion.  

Emergent results and implications 
Preliminary results from ongoing data analysis includes: 

1. Teachers’ appropriation of digital tools for formative assessment (student seat-work is e-
analyzed during lessons which allows the teacher to enact changes in the tasks).

2. The reality of ‘emergent (in lesson) task design’ afforded by access to multiple resources.
3. The emergence of Twitter as a key platform for ‘massive live staffrooms’ (teachers are

constantly collaborating, developing task, and sharing expertise and resources on mastery
approach).

I believe that this research will contribute to the ongoing discourse on issues and challenges of the 
integration of digital resources in classrooms and offer ‘working hypotheses’ for future research. 
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The use of technology and other resources for mathematical learning is a current issue in the field of 
mathematics education and lags behind the rapid advances in Information and Communication 
Technology. Technological developments offer opportunities, which are not straightforward to 
exploit in regular teaching. In CERME10 TWG16, the recent research findings, issues and future 
questions have been explored and discussed in detail. In this introductory chapter, we will outline the 
scope and focus of the work, describe the results with respect to existing questions, and identify 
upcoming topics as well as missing topics that might set the agenda for future work in this domain.  

Keywords: Digital resources, mathematical learning, educational technologies. 

Scope and focus of the Working Group 
In recent years, discussions within the CERME-technology-group have confirmed the relevance of 
Information and Communication Technology (ICT) for the learning of mathematics. ICT provides a 
range of resources, such as software, handheld devices and online classroom activities. This range of 
resources has been compared to non-digital resources, such as textbooks, worksheets and other types 
of tools and manipulatives. The impact of both digital and non-digital resources on mathematical 
learning has been of great interest to our working group. The scope of this working group was to 
explore and discuss opportunities and possibilities, as well as challenges and limitations, of 
technological resources for student learning. We wanted to establish an overview of the current state 
of the art in the use of technology in mathematics education, including both practice-oriented 
experiences and research-based evidence, as seen from an international perspective and with a focus 
on student learning, as well as to suggest important trends for technology-rich mathematics education 
in the future, including a research agenda. TWG 15 is closely related to this theme, but focuses on 
the teachers’ roles and practices.  

In the pre-conference call for papers and poster proposals, theoretical, methodological, empirical or 
developmental contributions were particularly welcomed on the following topics:  

 Analyses of the impact of using digital and non-digital technology on students' learning;
 New forms of digital resources, including mobile devices and dynamic e-textbooks;
 Digital assessment of and for learning;
 E-learning, blended mathematics education and (Massive Open) Online Courses for mathematics;
 Influence and use of social media in students' perception of learning mathematics;
 Promoting communication and collaborative work between students through ICT;
 Using ICT for out-of-school informal mathematics learning;
 Examples of the use of technologies devoted to the support of students with disabilities.



This introduction provides an overview of the 24 presented papers and 6 posters and the discussions 
in TWG16 building up on theories and past research on digital technologies and other resources for 
mathematical learning. We especially refer to the CERME history of this technology group and 
consider the results of the 2017 conference as a continuation of the background, aims and scope of 
the conferences since 1999 (Trgalova, Clark-Wilson & Weigand, to appear). To do so, we will first 
address “old” questions, then describe upcoming topics, and close off with topics we missed.  

Taking up “old” questions  
Some contributions to TWG16 continued the discussion on topics that had been addressed in the past, 
such as the potential of digital tools to evoke the dynamical aspect of manipulating objects within a 
digital tool, functional thinking, and the use of e-books.  

Interactivity, dynamics and multiple representations  

Since the early years of using digital technologies in mathematics education in the 1970s and 1980s, 
interactivity, dynamic and multiple representations played an important role in developing new 
strategies for understanding mathematical concepts. Dynamic manipulations were prominently 
present in dragging opportunities in Dynamic Geometry Systems (e.g. Leung, 2008). Digital 
technologies created easy access to multiple representations and interactions between the user and 
the software (e.g. Noss & Hoyles, 1996; Moreno-Armella, Hegedus & Kaput, 2008). On a more 
elaborated level, the interactions between the knowledge, the tool and the learner built three main 
aspects of digital technologies and were also strongly represented in TWG16 of CERME 10. 

Dynamic digital tools can promote conceptual understanding (e.g. Drijvers, 2015) and potentially 
support low-achieving students. An example is the interactive environment presented by Swidan, 
Daher and Darawsha, to support the learning of the concept of equivalent equations. An applet gives 
the possibility to work with numerical, algebraic and/or graphical representations. Moreover, a pan 
balance represents enactive experiments with “weights” and a slider allows to dynamically change 
the x-values. The idea is to represent enactive actions and to allow students to work with a visual 
mediator while changing mathematical objects. The difficulties, limits and obstacles of working with 
multiple representations are also highlighted. Low-achieving students, for example, can become 
overwhelmed when faced with a large number of representations, which may prevent their progress. 
The consequence is not to avoid working with multiple representations, but to create didactical 
reflected learning environments with a successive introduction of multiple representations and 
reciprocal interpretation of the transition between these representations.   

Functional thinking 

Another “old” question concerns the prototypical dynamic view of functions while filling bowls with 
water and asking for the height of water in a bowl as a function of the volume of water in the bowl 
(Carlson et al., 2002). Lisarelli’s contribution to TWG16 involved the outcomes of investigating 
different dragging modalities in the frame of the above-mentioned problem, as shown in Figure 1. 
Users had to be familiar with different kinds of dragging possibilities: (quasi) continuous dragging, 
discrete dragging (e.g. if only natural numbers are allowed), or impossible dragging, (i.e. where the 
user tries to drag a dependent point). She argued for the importance of recognizing the aim for a 
specific type of dragging and considering whether it is a random movement, a movement for testing 



possibilities or a guided dragging to reach a special configuration. Such a classification of dragging 
modalities gives the possibility to observe, describe and analyze students' processes involved in the 
exploration and solution of dynamic problem solving activities. This example shows clearly a digital 
tool as a medium, which is – or mediates – between the user and the mathematical concepts. 

 
Figure 1. The Bottle Problem task and its dynamic representation 

The interactive worksheets presented by Lindenbauer and Lavicza focus on functional thinking 
through a situational model (the area of a triangle) and a related graphical representation. The 
explanation and interpretation of the graphical representation is – especially for lower achieving 
students – challenging and as the author stated, the help of the teacher may be crucial. These graphical 
representations allow students to reflect on what the impact of moving the point on the x-axis is by 
showing the small or big changes to the area of a triangle. Such an approach provides students with 
an intuitive access to the concept of rate of change.  

E-books 

A great variety of digital books or e-books for classroom use exists. Such books may be more or less 
extended versions of the traditional schoolbooks, including dynamic activities and in-built 
assessments (Gueudet et al., 2017). The “Creative Electronic Book on Reflection” presented by 
Geraniou and Mavrikis allows students to explore mathematics situations individually and 
interactively, and it also encourages them to reflect on their actions while they are exploring and 
solving mathematical tasks. A key role in the students’ reflection is played by the so-called “bridging 
activities” which emphasize the mathematics integrated into the book. As claimed by the authors, the 
design and evaluation of such interactive learning environments, learning paths or trajectories and the 
promotion of their wider use in classrooms is a new challenge.  

Theories 

The discussion on theoretical approaches regarding digital technologies for mathematical learning is 
also an on-going one within CERME (Trgalova, Clark-Wilson & Weigand 2017). There are some 
well-developed and experimentally confirmed theories like semiotic mediation (Bartolini Bussi & 
Mariotti, 2008), instrumental genesis (Trouche, 2004) or the documentational approach (Gueudet & 
Trouche, 2009), which are also used in many papers and discussions in TWG16. Murphy and Calder, 
for example, applied a framework including social semiotics and multimodality to interpret screen 



casts of students working in a problem-solving application on an ipad, to understand the learning that 
took place.  

In spite of theoretical developments in the field (e.g., see Monaghan, Trouche & Borwein, 2017), 
Schacht’s was the only contribution to TWG16 that paid attention to a new theoretical field. Taking 
an inferential perspective, he investigated the relationships between mathematical and tool language 
while working with digital technologies and the transition – or non-transition – from one to the other. 
He showed how the way in which this transition can be accomplished can have implications on the 
individual concept formation processes. He especially emphasized the meaning – but also the 
obstacles – of the transition in the language use (by students) from a tool-oriented language to a 
mathematical-oriented language. The philosophical discourse about the concept of “digital” (see 
Galloway, 2014) - “Any discourse that produces or maintains differences between two or more 
elements can be labelled digital” (Schacht) - might give orientation also in the evaluation of the 
language transfer in mathematics education.  

Upcoming topics 
The continuous development of technological tools, which are used both in and out of school, requires 
us to address old questions under a new perspective. On one hand, this new perspective has to consider 
new developments in hardware (tablets, smartphones) but also in software (social media, cloud 
computing). On the other hand, we have to consider new developments in society, science and 
(mathematics) education, for example with respect of online communication without any limitations 
in time and space. Goals in education have to be continually rethought and evaluated.  

3D-geometry 

Regarding the future development and progress of our working group, there are different topics for 
which we see the potential for further investigations. Kynigos and Zantzos presented a study, during 
which students were asked to construct the shortest path between two points on a cylindrical surface. 
To solve the problem, they had to see the relationship between 3D- and 2D-geometry and activated 
the “old idea” of a turtle geometry which allowed access to difficult concepts like the curvature of a 
special surface.  

MOOCs and new kinds of e-learning 

A second aspect is the meaning and the impact on mathematical learning of free available massive 
open online courses (MOOCs). Khan Academy1 offers a free tool that allows teachers to monitor 
students’ activity and provide them with feedback and guidance. Vančura used this tool at a Czech 
high school to provide feedback for students’ homework. The investigation showed that weak 
knowledge of the English language might not be a barrier for students. Vančura also sees the danger 
of using such courses just for the training of algorithms without developing knowledge of underlying 
mathematical concepts.  

Gray, Lindstrøm and Vestli also used the Khan Academy (KA) tool for pre-service teachers in 
mathematics who were allowed to substitute their compulsory mathematics assignment with exercises 

1 www.khanacademy.org/ (06.04.2017)



in KA. They compared their results with those of a control group, learning in the traditional way.  At 
the end, there was no statistically significant difference in the performance of the two groups. 

It is an open question whether MOOCs or SPOCs2 will have an influence on the teaching and learning 
at schools and universities. Nevertheless, identifying good ways of e-learning will remain important, 
whether open resources on the internet or special courses integrated in learning management systems 
are used.  

Tablets 

Since the very first CERME conference, an important question has always been what kind of 
interactions take place between the tool and the learner. The goal has always been to bring the 
individual into the centre of learning. Digital technologies can mediate between mathematics and 
understanding. Nowadays, the relatively straightforward and intuitive use of digital technologies in 
the form of laptops and smartphones gives users the chance to not put too much emphasis on the 
technical aspects of the tool, but to concentrate on the learning. Palha and Koopman created the tablet-
driven project Interactive Virtual Math: a tool to support self-construction of graphs through 
dynamical relations. The aim of the project is to develop a visualization tool that supports students’ 
learning and relational understanding of graphical situations. The medium – here a tablet – allows the 
students to “draw” graphs using a finger, a digital pen or a mouse, to ask for help and to compare 
their own solution to the expected solution. According to the authors, this tool has the potential to 
help students understand functional relationships, but more importantly, allows the students to work 
on their own, experiment, create self-productions and reflect on them. Until now the authors only 
evaluated their tool in a small qualitative study. 
 
Tablets will be important tools in the years to come. With multi-touch technologies, gestures have 
become an essential feature of user interface. The relation between touching and meaning-making 
might become more important. De Freitas and Sinclair used multi-touch technology and tangible 
gestures with young children to promote counting on and with fingers. These children used their 
fingers – one after another – while counting sequentially, they used their fingers simultaneously to 
represent numbers and they left a trace on the screen with one or more fingers. With the touchscreen 
interface, and particularly the multi-touch actions, they see the hand involved in a process of 
communicating and a process of inventing and interacting. “We interpret these speculative comments 
as an indication that the future of the gesturing hand in relation to new media may involve all sorts of 
surprises, and that perhaps even pre-school children may count ‘on their hands’ to 100 as they engage 
with these media” (De Freitas and Sinclair). 

Smartphones 

Nur Cahyono and Ludwig used smartphones to help students engage in meaningful mathematical 
activities. A math trail is a walk in which mathematics is explored in the environment by following a 
planned route and solving outdoor mathematical tasks related to what is encountered along the path. 
In the MathCityMap-Project students are confronted with special situations and questions along the 
path, supported by a GPS-enabled mobile phone app. Students were intrinsically and extrinsically 
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motivated and engaged in this project. Moreover, they got to know more about their environment and 
model problems related to it.  

Digital games 

Computer game characteristics could also be exploited for the purpose of mathematical learning. As 
an example, Gjovik and Kohanova developed a mobile app on the topic of linear functions. The 
mobile phone is a tool we can expect to see more in mathematics education as learning becomes 
further individualized and online. In the “Lucky Hockey” game students have to strike a hockey puck 
along a straight line by entering a linear expression. Prior knowledge concerning the properties of 
linear functions is required when playing this game and in order to identify the path of the puck so 
that it hits the coins. The results of this project especially concerning the long term effect have not 
been satisfactory. The authors conclude that it might be difficult to make applications that facilitate 
exploration and discovery while doing mobile learning. It might be more effective if quite narrow 
mathematical topics are used. The concept of linear function might already be a too elaborate topic. 

There are many questions around the use of games in mathematics classrooms which still need to be 
examined. How do we integrate games into the curriculum? When do students play these games? Is 
the motivation to play these games just an initial effect? What is the impact on students’ learning and 
understanding? How sustainable is that knowledge over time? 

Computational thinking 

Robots are starting to play a more important role in our daily life. Robot competitions are quite 
popular in schools, but these activities usually take place outside regular lessons. The control of the 
robots, e.g. while walking through a labyrinth, needs algorithmic thinking similar to the turtle 
geometry of the 1980s. Seymour Papert (1980) originally created the label “computational thinking”, 
but nowadays this concept has a much wider scope: it includes collecting, analysing and visualizing 
data, programming, creating computational models, and understanding relationships in systems. 
Broley, Buteau and Muller presented a model of computational thinking practices based on Weintrop 
et al.’s (2016) taxonomy for computational thinking in mathematics and science practices. The 
authors ask for further clarification of this concept and ways to integrate it into mathematics lessons. 

Missing topics 
If we compare the TWG16 call for proposals with the actual contributions made by the participants, 
we see some interesting gaps. Firstly, no attention was paid to digital assessment of and for the 
learning of mathematics. There are on one hand questions concerning written (final) examinations: 
Which technologies are allowed? Which tools are needed (Drijvers et al., 2016)? Which tasks are 
appropriate? How do students report their thinking? On the other hand, the question of how formative 
assessment might be a means to develop student competences is also of interest (Beck, 2017; Black 
& Wiliam, 2009). These topics have been addressed in some aspects in TWG 15 and in more detail 
in TWG21 on assessment. 

Moreover, the topics of e-learning, blended mathematics education and (Massive Open) Online 
Courses for mathematics may set the agenda for CERME11.  This includes issues such as 
personalized and adaptive learning, and the design of online feedback for students. The opportunities 
and constraints of using social media in students’ perception of mathematics and their learning have 



also been absent, as was the case for the intriguing topic of virtual and augmented reality. Examples 
of the use of technologies devoted to the support of students with disabilities have not been addressed 
either. 

With respect to the methodologies in the reported studies, the focus was on small-scale qualitative 
studies, whereas large-scale experimental studies were not presented. Even if the latter may have 
pitfalls, the field might benefit from an integration of both qualitative and quantitative approaches, so 
as to gain sustainability and applicable knowledge on how mathematical learning can benefit from 
the interaction with digital resources.  

Concluding remarks 
Digital technologies are now an element across all CERME groups (e.g., see Ferrara & Ferrari, 
TWG24; Hogstad, Norbert Isabwe & Vos, TWG14; Montone, Faggiano & Mariotti, TWG4). This 
indicates how digital tools permeate the mathematics education research landscape and have gained 
legitimacy across the field. In today’s mathematics classrooms, different types of digital technologies 
are integrated in daily practice: interactive whiteboards, tablets, notebooks, graphing calculators with 
and without CAS. We have noticed a significant gap between research findings and mathematics 
teaching and learning practices in the regular classroom. The overall impression is that we cannot yet 
speak of a sustainable change through the use of digital technology, scaled up beyond the incidental 
level. We should acknowledge that integrating digital tools in a way that is beneficial to student 
learning is not as straightforward as we might have thought some decades ago. Thus, a specific 
working group on digital tools in mathematics education is appropriate within the frame of CERME, 
even if the impact of technological developments is hard to isolate from its context and from the 
topics central to other CERME working groups. A TWG dedicated to this issue could make a distinct 
contribution to important questions on the future of mathematics education.  
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This paper reports on a pilot study concerning a first implementation of a collaboration script, 
aiming at developing students’ argumentative competences in mathematics, as part of an interactive 
digital storytelling. We discuss the outcomes of the transcripts’ analysis, which seem to show that 
the collaboration script fosters the introduction of the student to the construction of arguments as 
cohesive texts, independently on the student’s skill in mathematics, and that the success of the script 
depends on the learners’ engagement in the story and on the team mood. 
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Introduction 

This paper focuses on a part a wider research (Dello Iacono, 2015; Albano, Dello Iacono, Mariotti, 
2016; Albano, Dello Iacono, Fiorentino, 2016), aimed to investigate the effectiveness of  the design 
and implementation of a Digital Interactive Storytelling in Mathematics (DIST-M), that is a 
platform model organizing mathematical learning activities based on social virtual interactions. The 
DIST-M consists in collaboration scripts implementing a work methodology for the students that, 
according to Vygotskian perspective, is expected to mediate specific mathematical competences. A 
collaboration script is a scheme that regulates and structures roles and interaction in a collaborative 
setting (King, 2007). The choice of the use of storytelling is related not only to motivational aspects 
and cognitive effectiveness, but also to the possibility of integrating narrative and logical-scientific 
thought (Zan, 2011). In our DIST-M the student does not create the story, but she interacts with it. 
In “Programma Discovery” the student assumes the role of a scientist at NASA, member of a team 
led by Professor Garcia (head of story and voice platform). The goal of the team is to analyse the 
data coming from a probe launched on a new planet, trying to figure out if this can accommodate 
life. During the fruition of the story, the student will face problems, whose solution is needed to 
continue the work of the team. This paper reports on a pilot study concerning an implementation of 
the DIST-M focusing on the development of students’ communication competences in expressing 
argumentative mathematical sentences, as they can be considered as critical to the advance of 
mathematical thinking (Ferrari, 2004). The goal is to introduce the student to the construction of 
arguments written according to a register shared in the mathematical scientific community. We 
analyse, from a qualitative point of view, the arguments produced by the students under a linguistic 
perspective, focusing on the organization of the verbal texts, as cohesive texts, which means words 
and sentences perceived as a whole entity. We also look at the functioning of the collaboration 
script in terms of the team work and its impact on the success of the activity. We expect that the 
collaboration script in organizing the roles and actions within the team fosters the production of 
arguments and counter-arguments, allowing each member to interiorize the so-born practice. 



Theoretical framework 
Collaboration script 

In cognitive psychology, the internal memory structure corresponding to a sequence of actions that 
define a well-known situation is named script (Schank and Abeson, 1977). Here each actor has 
specified roles and actions to take. The script is activated every time the individual is in the same 
situation. In educational context such constructs differ mainly because of its external definition and  
they aim to regulate roles and actions of students in collaborative/cooperative learning in order to 
succeed in learning (King, 2007). The use of external scripts has been incremented in computer-
supported environment, where the need of pre-structuring and regulating the social and cognitive 
processes is much more evident. Concerning argumentation, it is well known that the simple request 
of collaborating does not guarantee the development of argumentative competences. This can be 
fostered by means of computer-based scripted collaboration (Weinberger et al., 2007), taking 
advantages on the use of text-based interfaces that allow the students to have more time to read their 
written argumentations and their peers’ ones and to come back to their writings every time they 
want. According to Vygotsky (1930), “Every function in the child’s cultural development appears 
twice: first, on the social level, and later, on the individual level; first, between people (inter-
psychological) and then inside the child (intra-psychological)”. Although the scripts are externally 
designed and imposed to the learners, the goal is that they are internalised along the time through 
the social practice. Only when the external script is interiorised, then it is successful; otherwise we 
have once again a repetition of actions externally imposed and learned by heart. 

Language and cohesion 

As the defined script aims to the construction of arguments, we are interested in how the student can 
propose verbal arguments to support the solution to a given question, apart from the correctness of 
the solution. Although some theoretical models regard arguments with no reference to language, as 
a matter of fact, a written argument is, first of all, a written text, and for the student, the tasks of 
producing a correct text and an acceptable explanation are closely intertwined. This is why we will 
use a linguistic perspective with related specific tools such as cohesion. This latter allows creating 
the texture, which is the quality of being a text instead of a disorganised set of words and sentences 
(Halliday and Hasan, 1976). Though related, cohesion is different from coherence. The first one 
refers to the linguistic devices needed to realize the second one, which is instead a mental process, 
proper of the individuals involved in the discourse. The production of an acceptable argument can 
be hindered by the lack of either mathematical or linguistic competence. Often students produce 
written explanations that are plain descriptions of the procedures they have carried out, by means of 
a set of more or less disconnected clauses where cohesion is marked just by the fact that the text 
they produce is semantically congruent to the actions they have performed. In other words, their 
cohesion markers are extra-linguistic, and we cannot tell whether or not the writer is aware of the 
semantical links among the clauses. We believe that the construction of cohesive texts is the first 
step towards the development of logically acceptable arguments. The script has been designed with 
the aim of fostering the student to construct cohesive arguments, which can be interpreted by their 
pairs, independently on their mathematical abilities.  



DIST-M script 
The DIST-M script presented here aims to allow the student to grasp a method of construction of 
mathematical arguments expressed verbally. The student is involved in tasks alternately individual 
and social. Social tasks are realized by means of chat and group forum (Figure 1).  

 

Figure 1: Design of the script 

The chat supports the explicit comparison and it mediates (Bartolini Bussi & Mariotti, 2008) a 
modality of communal acting (to get an answer, an argument that supports its correctness, a reply 
adapting to the possible contradictory) that from social activity becomes an own way of working of 
the student. The forum, through its rules of use, supports the sharing and discussion, and in this 
way, it mediates the interaction inducing everyone to give their own contribution and to listen the 
one of others. In the forum, each student writes a description of his/her solution, reads / interprets 
the writings of others and can / must compare his/her texts with those of others. All this requires 
significant semiotic processes that besides being expected to foster the development of 
 mathematical meanings, are expected to promote social argumentation experiences that might be 
internalized and become own internal process of each student. Thus, according to Vygotsky (1930), 
there is a development of “higher mental functions”. In our case we refer to experiences of argued 
debate on manner of thinking / solving / answering the question, thus with higher mental functions 
we refer to argumentative skills, concerning the need to support the correctness of their answers 
with relevant topics, socially and mathematically acceptable. The functioning of the DIST-M 
requires different types of interactions: interaction with the script and interaction between the 
members of the team. The goal is to give a shared solution for the task, but the main achievement 
for the single student is to formulate his/her own argument (as a text) supporting the correctness of 
such a solution. In the script specific constrains have been designed to induce the production of 
personal arguments, their comparison and eventually the elaboration of a final answer, mediating 
the moving from an informal to a formal expression of the final individual answer.   

In the following, we give a brief description of the various tasks constituting the script (Figure 1). 
At first the group chooses its own Captain talking to group friends in the group chat (Task 1). He is 
in charge of engaging all the team members in following the tasks of the script. The next task is the 
interaction with a GeoGebra interactive construction (Task 2). The aim is to investigate and solve a 
problem posed by the story. After a more purely experiential phase and subsequent guided 
reflection, the student answers on the forum to an open question aimed to generalize the experience 
and the results to which the student has come (Task 3). When all students have submitted the 
response to the Forum, the discussion continues chatting with the aim of achieving a common 
response that the captain reports on the chat (Task 4). In the next task, the student responds 
individually to a semi-open interactive question (Task 5). The interaction consists in manipulating 
the words-blocks available to build the response and motivation to the previous individual and 
group question, and in receiving a feedback on the correctness. The words-blocks have been 
constructed using some answers collected in a pilot. In order to highlight the causal structure of an 



argument, the causal conjunctions, which are responsible of the cohesion, constitute separate words-
blocks from the other ones. Then the student is required to report on the forum the phrase built by 
words-blocks with the received feedback and he can see the ones by his peers (Task 6). It follows a 
chat group discussion to reflect on the words-blocks sentences proposed by all the members with 
the aim of clarifying the correct answer and argument (Task 7). Finally, the student writes in the 
personal Log Book all information considered useful for the mission, the impressions on the 
activity, the difficulties encountered and how they were overcome (Task 8). 

Experimentation 
The prototype used for the experimentation has been realized by means of open-source or free tools, 
that have allowed to create new interactive graphical applications and semi-open interactive 
applications (Dello Iacono, 2015). The pilot study has involved 23 10th grade students of Liceo 
Scientifico in Pompei (NA, Italy). The students have been split into 6 teams, each of them 
constituted of 4 students, except one constituted of 3. The teams have been randomly assembled, so 
that each student at the beginning did not know his/her team mates. Students belonging to the same 
team could communicate only through the forum and the chat. In the following, we analyse and 
discuss the experiment with respect to the following key points: (i) the production of verbal 
arguments for supporting of the solution to a question;  (ii) evidence of the different functioning of 
the script (that is the implementation of the designed learning activity) according to the student’s 
engagement with respect to the story and the team work. 

Concerning the first point, we analyse, from a qualitative point of view, the arguments produced 
during the individual open question and the answer in forum (Task 3 and 6 in Figure 1), that is 
before and after the semi-open interactive question, in order to investigate the effectiveness of the 
script. The students are required to answer if and why, fixed a sector in an aerogram, the angle 
varies according to the radius variation. As we will see in the following, the comparison between 
the nature of the individual arguments produced during the two tasks shows evidence of an 
improvement in the cohesion of the explanations constructed. In order to verify the cohesion, we 
look for the following cohesion markers in the texts produced by the students: lexical repetition 
(consisting in repetition of words), grammatical repetition (reference, that indicates something 
already appeared in the text, and ellipsis, that consists in the deliberate omission of words that are 
required to make up the sense), conjunction which allows to link two parts of a discourse (external, 
when it refers to a fact, internal, when it refers exclusively to the organization of the text). 

Let us consider the team 2. At Task 3 only 1 student provides an argument explaining his/her 
answer, and he/she is the one who draws team’s attention on this request, actually, replying to a 
mate enquiring of the platform’s feedback on his/her answer, he/she says in chat: 

1           S7    me too, but we are required to justify our answer 
So next his/her answer in the forum is the following: 

2 The quantity to be represented is 
equivalent to 20%. 

A first reformulation of the data of the problem 

3 
4 

360°:100%=x:20% 
x=(360x20):100=72° 

S7 carries out a calculation 



5 Although the radius changes, the size of 
the angle does not change 

A conclusion is drawn on the previous 
calculation. 

What is posted in the forum is mostly like a report of his reasoning (thinking aloud) without any 
cohesion marker. It can be seen as a report the mental process in the mind of the writer S7 and in his 
view it is coherent. This may not be the case for a reader, as it was for another student who asked 
for clarification. So S7, in order to explain to him, transformed such a personal reasoning in a new 
text.  

6 The angle of the coloured part does not 
change varying the radius 

The conclusion becomes the first statement 
expressing the answer to give. 

7 Because in a circle the angle is always 360° 
and then 20% is always 72° 

The previous calculation has been interpreted to 
become an explanation of answer. 

The new text is cohesive. As a matter of fact we note lexical repetition (angle), external 
conjunctions (because, then), ellipsis (20% refers to 360°). The difference between the two texts 
consists in the fact that the cohesion of the text can help the reader to grasp its coherence, which 
may remain inaccessible for the first text. An effective use of cohesion promoted the shift from a 
personal report of reasoning to an argument: the sequence statement – calculations – conclusion 
became a statement plus an explaining argument. Such a cohesive text was generated for 
communication goals: the request of sharing his/her personal answer seems to have induced the 
student to better articulate the solution process transforming the calculations into a verbal text 
providing the reason of such calculation. So the collaborative script has promoted the construction 
of cohesive argumentations, because of the need of improving communication within the group.  

In Task 6, we note a clear improvement: 4 students (that is all members of the team) produce an 
answer that includes an argumentation. In particular, 2 students (S5 and S8) who did not justify in 
Task 3,when  reporting the answer made of words-blocks, not only produce a justification, but both 
of them go further the request and rephrase with their own words the arguments.  

At Task 3, S8 writes the non-cohesive sentence (there is only an internal conjunction “anyway”): 

8           S8   Varying the radius anyway the angle does not change 

Then, at Task 6, he writes: 

9 The angle does not vary because it is always 
equal to 20% of the circle angle. 

External conjunction (“because”), 
reference (“it”). 

10 The other scientists completely agree with me 
as varying the radius there is only an extension 
of it and the angle remains unchanged. 

External conjunction (“as”), reference 
(“it”), lexical repetition (“angle”). 

The first sentence is the one constructed by the words-blocks, as required in the Task. Then the 
student get back in touch with the story and he/she seems engaged and making reference to the 
scientists, he/she explains in his/her words why all the scientists agree and produces his/her own 
arguments for supporting the given answer. The second sentence is cohesive. Also in this case the 
script, requiring reporting the answer constructed by words-blocks and the scientists’ feedback, 
seems to promote the construction of arguments in terms of cohesive texts.   



A similar evolution is shown by student S5. At Task 3, she produces a non cohesive text with no 
markers of cohesion: 

11           S5   The angle does not change, only the radii vary 

In following tasks, he/she writes: 

12 The angle does not change because it is 
always equal to 20% of the circle angle. 

External conjunction (“because”), 
reference (“it”). 

13 All the members of my team has the same 
idea. I have the angle is always the same 
because in a circumference the angle is 
always 360°, then 20% of 360° is always the 
same 

Two lexical repetitions (“angle”, 
“360°”), two external conjunctions 
(“because” and “then”) 

Also the student S5 at beginning reports the answer made by the words-blocks, but later he/she 
refers to the story and he/she seems so engaged to say “my team”, the team of the scientists to 
which he/she belongs in the story, and when he/she refers to the story, he/she rephrases with his/her 
own words the answer and its motivation. The sentence constructed by S5 is cohesive.  Thus, it 
seems that the functioning of the script, based on sharing the answers and impelling to find an 
agreement might lead to appropriate the meaning of argument as explaining and supporting the 
correctness of the solution by means of cohesive texts.  

Let us consider a case where, even if the answer given by the student is not correct, we can anyway 
observe a shift towards the production of an argument. The student S22 at Task 3 writes: 

14 Greater is the radius as much as the angle 
decreases. 

This text is not cohesive (there is no 
markers). 

At Task 6 he/she writes: 

15 The angle decreases because it is inversely 
proportional to the radius but the other 
scientists do not agree 

Two external conjunction (“because” and 
“but”), ellipsis (“the angle” is omitted in 
the secondary sentence) 

Here we have a cohesive text constructed by means of the words-blocks. Even if the answer is not 
correct, there has been the production of arguments. So, the script seems to work according our goal 
(to foster verbal argumentation) independently on the correctness of the mathematical content. 

Similar behaviour can be observed in the other teams: we have only 8 students among all teams that 
produced argumentation at beginning, whilst at the end all of the 23 students do it. In particular, the 
request of sharing on the chat seems to have a mediating function leading to transform a personal 
reasoning into a public argument. As shown above, the students do not limit themselves to report 
the sentences constructed with the words-blocks, but they also reproduce arguments with their own 
words assembled in a structure similar to the ones suggested by the script. 

Concerning the second point, the transcripts show evidence that the effectiveness of the activity is 
strongly influenced by the students’ engagement with respect to the story and to working in group. 
The effective work of Team 2 seems to occur because all the members were engaged in the story 
and shared a good mood allowing collaboration. However, in some other cases, we can see that the 



activity fails if this does not occur. Let us consider for instance, team 5. The Task 3 seems to work 
well, the students are engaged in the activity and produce quite different argumentations: 

16    S17  360:100 
17                        3.6x20=72 
18                        varying the radius the angle does not change 
19                        because the percentage is always the same 
20      S20  varying the radius the angle indicating the percentage of the considered  
21                       stone does not change because 20% of 360° is always 72°, 360.1/5=72      

Arriving at the Task 6, we find that they seem to have lost interest in the activity. Looking at the 
chat transcripts, there is evidence of a change of the team’s mood. Actually, students start to 
become nervous around the end of Task 4: 

22   S20  but we have not yet given the first agreed answer beep 
23    S18  WE ARE DISCUSSING NOW TO HAVE AN AGREED ANSWER 
24                        20, you are a genius of evil, connect you brain       

Team mood in chat get worse until the beginning of Task 6: 
25   S18  HAVE YOU UNDERSTOOD?! 
26                        DO IT ALL OF YOU 4 IF YOU DID NOT DO IT YET! 
27                        I said to you in the session share not in the notes, I was sure that you did it 
28                        Hurry up to write in the sharing session 
29                        THERE ARE TWO SESSION OF beep. S20 who are you? 

At the Task 6 the students have lost their initial engagement and do not satisfy completely the 
requests. It seems evident that the mode of operation has been strongly affected by the negative 
engagement, in particular of the Captain, and by the impossibility of collaborate. 

Conclusions and future directions 
In this paper we have reported on a pilot study concerning a computer-supported collaboration 
script, aiming at developing students’ verbal argumentative competence. The analysis of the 
students’ transcripts seems to show that the collaboration script fosters the introduction of the 
student to the construction of arguments as cohesive texts, independently on the student’s skill in 
mathematics. Some students shift from producing computations to constructing cohesive 
argumentations that make use of the previous calculations; some other students, although they do 
not get the correct answer from the mathematics point of view, also produce cohesive texts as 
expression of their reasoning. We are now working on a quantitative data analysis, by means of 
statistical test, coding cohesion of the written students’ productions to compare Task 3 and Task 6, 
in order to confirm the effectiveness of the script as shown by the transcripts in the previous section. 
Moreover, in order to check that students really interiorized the script and not only repeat what they 
did before, as well as the use of the cohesion, we are implementing a new script, as continuation of 
the story, without the word-blocks. There is also evidence that a negative mood in the work team 
can compromise the success of the learning activity. To this aim, we are implementing a new 
version foreseeing the introduction of a role for each member of the team, behind the Captain, 
avoiding that somebody in the group gives away the responsibility. We are going to prove that the 



designed script, suitably modified in order to create a positive mood in the work team, promotes 
effectively the construction of cohesive texts and the fact that there is a strict interconnection 
between them and logically acceptable arguments.    
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“Computational thinking” is a hot topic in math education, among teachers whose curricula now 
include the term, and researchers who wish to pinpoint what it means and how it could be promoted 
in classrooms. A recent study resulted in a theoretical model of the computational practices of 
professional mathematicians and scientists, with the aim of offering teachers a set of competencies 
around which to build activities for their students. Nonetheless, concrete examples that validate the 
model and exemplify its use in math classrooms have yet to be discussed. We wish to open up this 
discussion, which we see as crucial to understanding how to empower students to participate in the 
computational thinking that has become integral to the mathematics community and beyond.   

Keywords: Computational thinking, mathematicians’ practices, legitimate peripheral participation.  

Introduction 
Parallel to the invention of the personal computer, Papert (1980) envisioned a world where children 
fluently use the tool as young mathematicians. Some thirty years later, we’ve witnessed a 
widespread resurgence of interest in that vision, taking shape in educational reforms (e.g., in 
Europe; Bocconi, Chioccariello, Dettori, Ferrari, & Engelhardt, 2016) and research regimes (cf., 
www.ctmath.ca) in the name of computational thinking, deemed a 21st century skill. Yet, there is 
little consensus on what this “new” term encompasses or how/if it should be conceptualized within 
subject areas beyond computer science (Grover & Pea, 2013). In response to these issues, Weintrop 
et al. (2016) developed a taxonomy of computational thinking practices geared towards science and 
mathematics. They based their work on a literature review, an analysis of learning activities, and 
interviews with “biochemists, physicists, material engineers, astrophysicists, computer scientists, 
and biomedical engineers” (p. 134). They also show, through concrete examples, how the practices 
might be promoted in physics, biology, and chemistry classrooms. To build on this work, we could 
ask: What might the computational thinking practices look like in mathematics classrooms? 
Moreover, are they representative of professional mathematicians’ practices? 

In this contribution, we attempt to provide some answers to these questions by drawing on two 
resources: 1) fifteen years of experience in a sequence of three undergraduate Mathematics 
Integrated with Computers and Applications (MICA) courses at Brock University, where students 
create and use computer environments to explore mathematics concepts or real-world situations; 
and 2) reflections of mathematicians whose research falls within an area recognized by the 
European Mathematical Society in 2011: “Together with theory and experimentation, a third pillar 
of scientific inquiry of complex systems has emerged in the form of […] modeling, simulation, 
optimization, and visualization” (p. 2). The next section outlines the perspective underlining our 
work and our approach in preparing this paper. We then present our results, i.e., we exemplify 
(empowering legitimate peripheral) computational thinking practices in mathematics.  



Theory and methods 
The way we interpret “Learning mathematics with technology” in the context of this paper is well 
explained by Lave and Wenger’s (1991) concept of “legitimate peripheral participation”, whereby 
students are invited to become mathematicians through engaging in their shared practices. 
“Mathematics”, then, is not seen as a body of knowledge to be acquired by the student, but rather as 
a social community to which the student gradually gains membership. Hence, we do not discuss 
computer “technology” from a cognitive point of view, for example, as a helpful tool in illustrating 
concepts. We focus, instead, on how mathematicians, the old-timers of their discipline, and 
students, the new-comers, create and use computer tools to engage in practices considered to be 
integral to the mathematical community.  

 
Figure 1: Computational Thinking Practices, taken from Weintrop et al., 2016, p. 135 

In recent work, Weintrop et al. (2016) outline what they believe to be these integral practices 
(Figure 1). Their framework provides a detailed description, specific to STEM (i.e., science, 
technology, engineering, and mathematics), of one of three dimensions introduced by Brennan and 
Resnick (2012) to characterize “computational thinking”: namely, computational concepts, 
practices, and perspectives. Such frameworks seek to elaborate on the general definitions on which 
they are grounded; for instance, that of Cuny, Snyder, and Wing, who describe computational 
thinking as “[t]he thought processes involved in formulating problems and their solutions so that the 
solutions are represented in a form that can be effectively carried out by an information-processing 
agent” (2010). Computer programming plays a particularly important role, as it “is not only a 
fundamental skill of [computer science] and a key tool for supporting the cognitive tasks involved 
in [computational thinking] but a demonstration of computational competencies as well” (Grover & 
Pea, 2013, p. 40). Such ideas invoked in us vivid images of our own experiences with/as 
mathematicians and students creating and using computer tools to do mathematics. And this 
inspired us to address an apparent void: that is, a comparative picture that highlights the powerful 
computational thinking employed by professional mathematicians, on the one hand, and, on the 
other, the potential of students to participate in the same kind of thinking. 

To prepare this picture, we re-examined Broley’s (2015) research, which explored the use of 
programming by 14 mathematicians in their research and teaching. In an interview, each participant 
described research where they developed and used computer tools. Unbeknownst to us at the time, 
this provided examples of how some full-membership mathematicians engage in computational 



thinking. Amongst them, we chose four that align with the groupings in Weintrop et al.’s (2016) 
taxonomy. We then reconsidered the data from another study (Buteau, Muller, Marshall, Sacristán, 
& Mgombelo, 2016) – the 14 MICA projects completed by one student, Ramona – as a source of 
four examples of peripheral computational thinking. MICA’s goal of responding to society’s need 
for professionals proficient in programmable technology made it a natural database for comparison.  

Results 
This section provides examples of computational thinking as it might be experienced by full and 
peripheral participants in the mathematics community. For each category identified by Weintrop et 
al. (2016), we describe a mathematician’s project that we feel effectively exemplifies it. This is 
contrasted to a MICA project that we see as providing access to the same kind of practices.  

Data practices 

Adèle uses her expertise in mathematics and computing to solve problems in financial engineering. 
In one project, she developed a model that enables investors to judge the investment potential of 
various market entities. In particular, the model calculates the risk that an investor will lose money 
because the investee is unable to pay back what they owe. The tricky part is that most investees have 
never had such financial problems (e.g., with bankruptcy). To assess a given company or individual, 
Adèle considers their portfolio: She collects their history of actions (e.g., investments, bonds, 
shares) on the financial market. The basic idea is that as others agreed to invest a certain amount of 
money in the company or individual, they implicitly demanded to be compensated for the risks they 
were taking, thereby predicting the probability that the investment would be a good one. 
Mathematically-speaking, the problem is of an extremely high dimension: Adèle’s model contains 
over 20 parameters that must be estimated for each portfolio by manipulating the corresponding 
data with optimization techniques. Intensive numerical methods are then applied to the specified 
model to generate the data necessary for evaluating the risk of the investee(s) being considered. The 
result is not a simple measure of the average risk. Adèle must perform a nuanced analysis to meet 
her clients’ needs, calculating and visualizing probability distributions in order to portray the best 
and worst case scenarios. About the place of computation in her work, Adèle was blunt: She said 
there would be no project without it. In fact, when tasked with assessing the risk associated to 
hundreds of companies at once, she must use computer clusters to get the job done.  

In their second of three MICA courses, students in Ramona’s cohort were assigned a project similar 
to Adèle’s. During lectures, they were introduced to mathematical ideas related to the stock market. 
In regards to programming, they also learned how to read data from files. Up to this point, they had 
worked with data they created through simulation; but during this project, they had to use data from 
Stock Market sources. During two (two-hour) lab sessions, the students initiated their individual 
work by collecting the S&P index, a measure of market conditions, from 1950 to 2002, and writing 
a program to manipulate, visualize, and analyze the data using standard statistical techniques. 
Students were also required to select ten stocks and, like Adèle, make recommendations to a fictive 
client based on their own analysis. In her report, Ramona grounded her recommendation on the 
mean and average yearly percentage of her stock selection. Then, as requested, she conducted a 
regression analysis of a stock over a decade and described how visualizing the data as a cloud of 
points confirmed her interpretation of the coefficient as representing a weak correlation. 



Modelling and simulation practices 

Alice’s projects are often inspired by a collaborator in need of her modelling and simulation skills. 
She spoke, for example, of a kinesiologist who initiated a multi-year project about muscles. Alice 
began by learning about the application, which she knew little about. She could then design a 
system of equations that would allow her to study the features of interest, i.e., tensions, bulges, and 
fibers; but only once the model was implemented on a computer. During her interview, Alice joked 
that computation was essential because, unfortunately, the solution to a real-world mathematical 
model never simplifies to the quadratic formula. While some researchers use existing simulators to 
gain access to their models’ solutions, Alice prefers to have the control of constructing her own. 
This comes at a price: Even if her team starts with an existing code, they still have to think very 
hard about how they implement their equations, import data, generate meshes, and so on. But all 
this hard work apparently paid off in this project: Alice described the resulting computational model 
as “the most complex simulator of its kind”, and was hesitant to share its massive code during her 
interview. This tool was used systematically to investigate issues the researchers initially sought out 
to understand. But by varying parameters in an exploratory mode, they also found and tested 
solutions to an unreported problem: the forming of well-defined fiber structures. During her 
interview, it was clear that Alice was excited by this discovery, for her collaborator had observed 
the formation of the exact same fiber structures, but in a real human! In the end, the data collected 
during this ultrasound experiment of a person on a bicycle assessed Alice’s model, confirming that 
it represented “the real thing” in more ways than expected. 

       
Figure 2: Ramona’s epidemic simulator (left) and discrete dynamical system program (right)  

Modelling and simulation practices that resemble Alice’s are central to the MICA courses. At the 
end of the third course, students in Ramona’s cohort were asked to use the theory of cellular 
automata to model and simulate the spread of an epidemic. Students worked individually to 
construct the computational model (i.e., to implement it in VB.Net), complete with a dynamic 
visualization of the cellular automatum and a complementary graph (Figure 2, left). Using this 
model, students were invited to observe real-time simulations of certain scenarios with the goal of 
coming to understand the effects of vaccination on the proliferation and diminution of epidemics.  
They were then told how to extend their models to include the cost of immunization and medical 
treatment, so to find (estimate) the solution of a minimal medical cost problem. In her report, 
Ramona went beyond finding the solution; as required, she also assessed the ability of her extended 
computational model to provide an accurate estimate, finishing with suggestions for improvement.   



Computational problem solving practices 

To understand Norman’s pure mathematics research, some preparation is in order. In his work, a 
permutation of length n is just a string, σ = σ1σ2…σn, where each σi is a unique element from the set 
{1, 2, …, n}; for example, α = 624531 is a permutation of length 6. Given another permutation, e.g. 
β = 231, we say that ∝ contains the pattern β if we can find in ∝ a subsequence (not necessarily 
consecutive) whose numbers have the same relative order as 231. The fact that ∝ contains the 
subsequence 451 – 1 is the smallest number, 5 is the highest, and 4 is in between – means that it 
contains β (we could have equally used subsequences 241, 251, 231, or 453). If a permutation does 
not contain a pattern, it is said to avoid it; for instance, α avoids 1234. An interesting problem for 
mathematicians is to determine the number of permutations pn of length n that avoid a given pattern. 
It is known that pn grows almost exponentially with n. The growth rate, however, is still unknown 
for many patterns. In search of one such rate, Norman’s team had to build a complex computer tool. 
The programming was delegated to a student, whose life was simplified by the development of a 
modular solution based on an existing subroutine for another pattern. The creation of the entire 
algorithm, nonetheless, was a team effort, for it involved the careful assessment of different 
approaches and solutions. One option was to calculate the exact value of pn for as many n as 
possible and then extrapolate the growth rate. But according to Norman, this approach was 
inefficient: At the time of his project, they could calculate the exact values only for n ≤ 25, which 
was not enough to provide an acceptable solution. The mathematicians hence chose a probabilistic 
approach that uses estimates for pn rather than exact values. This enabled them to calculate more 
data points; but their program was still slow. Seeking to troubleshoot and debug the problem, 
Norman suggested that his team try to visualize the permutations. Their decision to represent a 
permutation σ = σ1σ2…σn as a function that sends i to σi led to the discovery of an unexpectedly 
striking structure (Figure 3, left). Norman insisted on the importance of creating this particular 
computational abstraction: The pattern would not have been observable, for example, had they 
produced only a list of matrix entries. And then Norman might have missed out on a novel research 
direction that occupied him for many years. 

Since all MICA projects involve programming, computational problem solving practices like 
Norman’s always form a major part of their completion. Starting in the first MICA course, students 
discuss what makes a math problem amenable to exploration through programming. Since this is 
new to most of them, they are also led to develop their computational skills through a carefully 
selected progression of projects, which increase in complexity in terms of both the mathematical 
content and the programming requirements. For example, Ramona and her peers learned about 
discrete dynamical systems alongside techniques of displaying graphics in VB.Net, which they 
applied by creating a program to numerically and graphically explore the logistic map. In a later 
project, the students were asked to build on this work (i.e., borrow modular computational solutions 
from it) and program a tool to explore the system of a two-parameter cubic (Figure 2, right). This 
new problem required more serious preparation for a computational solution, as the domain of the 
cubic called for the consideration of different cases. Inherent to the programming process was also 
troubleshooting and debugging, creating computational abstractions, and assessing different kinds 
of solutions, which may have contributed to Ramona’s conclusion in her written report that 
“creating and working with this program has assisted me to fully grasp the way a dynamical system 
works by observing the table, the graphs, and the cobweb with countless test values.”  



    

Figure 3: Norman’s discovery of structure in pattern-avoiding permutations (left) and Albert’s 
computation of trajectories resulting from a perturbation off an orbit close to the moon (right) 

Systems thinking practices 

Albert has studied many complex systems, including those defined in celestial mechanics. The 
three-body problem, for example, seeks to describe the motion of a spaceship in the presence of two 
bodies, like the Earth and its moon. The complexity of the system is managed by ignoring the 
presence of other bodies, taking the spaceship to have negligible mass, and assuming that the 
massive bodies move in circular orbits. These explicit boundaries do not render the system useless. 
In fact, the model has provided initial approximations for real space missions. Moreover, it serves as 
a rich source of problems that allow Albert to show off the mathematically and numerically 
sophisticated software he has developed, software that according to him can compute “amazing 
things” that are simply “not computable” by traditional methods. Albert’s team has computed the 
uncomputable at different levels. Macroscopically-speaking, they have investigated the three-body 
system as a whole by finding and classifying an infinity of its periodic solutions (i.e., closed 
trajectories where a spaceship could remain in orbit). On a microscopic level, they have explored 
these orbits in family groups and individually. This latter consideration also helps them understand 
some relationships between elements within the system: For a given orbit, the researchers can 
determine the set of trajectories that a spaceship could follow after experiencing a slight 
perturbation. The resulting tube-like structures are like highways that enable space travel to far-
away places with minimal effort (and money). One image (Figure 3, right) is enough to convey the 
importance of visualization in communicating Albert’s results.  

In each MICA course, the last two weeks are dedicated to challenging original projects wherein 
students select topics of interest to them. Ramona’s terminal (14th) project is an example of how 
students might engage in practices similar to Albert’s and, as the MICA course creators aimed, 
“develop their own strategies for handling complex real world problems” (Buteau et al., 2016, p. 
144). With two of her colleagues, Ramona investigated, as a whole, the complex system associated 
to the water level changes in Lake Erie (Canada). In particular, they were interested in explaining 
how and why the level changes over time (i.e., in understanding the relationships within the 
system). They described their initial research in existing literature as “a crucial starting point in 
[their] project, allowing [them] to obtain an understanding for the changes in the water supply of 
Lake Erie.” Based on the information gathered, they designed and programmed stochastic and 
deterministic models of the phenomenon. They then performed an analysis, through simulation, of 
six case studies, representing the system in various ways on a different, more microscopic, level. 
They used their initial research to justify the assumptions they made, the parameters they chose, and 



the case studies they considered in order to manage the complexity of the system. This explanation 
was part of the 26-page report where Ramona’s group communicated their results.  

Discussion and conclusions 
The four pairs of examples provided above aim to render Weintrop et al.’s (2016) framework more 
concrete, validate its correspondence with a diverse set of authentic professional practices, and 
provide some insight as to how students might be invited to gain access to them, all within the 
context of mathematics. Ramona’s work differed from the mathematicians’ in its magnitude: Her 
projects were more restricted in scope and length, her computer programs were more naïve, and her 
findings had less immediate value for the community at large. This is not surprising since Ramona 
was in a peripheral phase of participating in the mathematics community, where she was 
simultaneously negotiating entrance into a community of students at a particular university, with its 
own norms limiting engagement in full-membership mathematical activity. Nonetheless, in 
exposing Ramona to the computational practices of mathematicians, programs like MICA support a 
nuanced discussion of what it means to integrate digital tools in students’ learning of mathematics.    

Many scholars have reported on the ways in which building and/or interacting with digital tools 
might assist students in meaningfully acquiring mathematical ideas or ways of thinking that are 
embedded in current curricula. The collection of papers presented in the working group on learning 
mathematics with technology at this year’s CERME conference provides numerous examples. In 
fact, the main framework used in this paper was built on the premise that learning activities 
involving computational thinking practices can enrich students’ understanding of mathematics and 
science (Weintrop et al., 2016). This said, the framework was equally inspired by the ever-
increasing computational nature of STEM-related disciplines. As evidenced by our examples, and 
much work that precedes us, the power of the computer has had a major impact on the way that 
STEM professionals (can) do their work. And so, the computational thinking trend presents an 
opportunity (or perhaps a necessity) for mathematics educators at all levels to reconsider not just the 
“how” of mathematics teaching, but also the “what”, i.e., the knowledge and skills to be taught. 
After all, students’ participation in the computational thinking practices of mathematicians might 
not just prepare them for a computational future in general; it may also widen their perspectives of 
the nature of mathematics and who is capable of learning (and doing) it.    

Both research and experience tell us that reflecting on the above issues, developing curricula to 
address them, and enacting that curricula in classrooms are quite different feats. Detailed and 
extensive frameworks like the one developed by Weintrop et al. (2016) can certainly help support 
researchers, curricula developers, and teachers. But there is still a need to examine more closely and 
completely the experiences of students who are peripheral participants in computational 
communities of practice: What skilled knowledge (i.e., practices) do they actually develop? 
Moreover, how do they identify with communities they are both entering and (eventually) 
influencing? Given our analysis in this paper, the MICA program provides a rich context within 
which to study such questions. The answers could lead to an enlightening discussion about 
challenges and opportunities in bringing about a nuanced technology-rich mathematics education. 
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The MathCityMap-Project was developed by combining the concept of a math trail program with 
advanced mobile technology. It aims at providing a new approach to promote student motivation to 
engage in meaningful mathematical activity. An explorative study was conducted as a pilot using nine 
secondary schools in the city of Semarang, in Indonesia, and 272 students and nine teachers were 
included. Using self-determination theory as a framework, we explored the motivation of students to 
engage in mobile app-supported math trail activity. Data collection procedures comprised 
observation, interviews, questionnaires, and student work analyses. Findings indicate that intrinsic 
motivation and identified regulation established an essential part of students’ motivation to engage 
in this activity. The design of the learning environment, the use of mobile app, and the value of the 
mathematical task have contributed to this result. 

Keywords: MathCityMap, mobile app, math trail, student motivation. 

Introduction 
A math trail, a path for discovering mathematics, was created as a medium for experiencing 
mathematics in all its characteristics, namely, communication, connections, reasoning, and problem 
solving (Shoaf, Pollak, & Schneider, 2004). In such a trail, students can simultaneously solve 
mathematical problems encountered along the path, make connections, communicate ideas and 
discuss them with their teammates, and use their reasoning and problem-solving skills. Although the 
math trail project is not new, supporting this outdoor education with mobile technology is an 
innovative approach to the program. This idea appears together with the fact that, in recent years, 
mobile technology has significantly improved and mobile phone use has significantly increased 
(Lankshear & Knobel, 2006). These advancements have been followed by the creation of many 
mobile phone applications (apps), including those intended for use in outdoor activities. In learning 
activities, Wijers, Jonker, and Drijvers (2010) suggested that mobile devices could be employed to 
facilitate learning outside the classroom. They also suggested that mobile technology could be 
exploited to support the outdoor educational program. Integrating advanced technology with the math 
trail program is the basis for the development of our project, called the MathCityMap-Project, in 
which math trails are facilitated by the use of GPS-enabled mobile phone technology. This project 
has been developed and implemented in Indonesia since 2013 and has been tailored to this country’s 
situation. The main focus of this paper is to explore the motivation of students to engage in a math 
trail program supported by the use of a mobile app. 

Theoretical background 
The MathCityMap-Project is a project of the math trail program, which is supported by the use of a 
GPS-enabled mobile phone app and uses specialized mathematical outdoor tasks (Jesberg & Ludwig, 
2012). This project was not conceived merely to design and/or use the math trails. Instead, it includes 
the entire process: preparation (how to design it), implementation (how it runs), and evaluation (how 



it impacts student motivation). The mobile phone app, as a supporting tool, was also created and used 
during this project. Therefore, the theoretical framework for the MathCityMap-Project study is 
underpinned by the concept of the math trail program, the use of mobile technology in mathematics 
education, and student motivation in mathematics. 

A math trail is a walk in which mathematics is explored in the environment by following a planned 
route and solving mathematical outdoor tasks related to what is encountered along the path (English, 
Humble, & Barnes, 2010). In math trail activities, "children use mathematics concepts they learned 
in the classroom and discover the varied uses of mathematics in everyday life" (Richardson, 2004, p. 
8). They discover real problems related to mathematics in the environment and also gain experience 
connecting mathematics with other subjects. Among the many benefits of a math trail (Richardson, 
2004) is the creation of an atmosphere of adventure and exploration resulting from the fact that it is 
located outside the classroom. A math trail guide, such as math trail map or human guide, must be 
prepared to inform walkers about the math trail task stops and to show the problems that exist at each 
location. It also tells about the tools needed to solve the problems, so that the walkers are prepared 
before starting to walk on a trail. With the rapid development of technology nowadays, it is possible 
to collect the tasks and design a math trail guide based on a digital map and database. 

In recent years, rapid developments in technology have occurred in the scope, uses, and convergence 
of mobile devices (Lankshear & Knobel, 2006). These devices are used for computing, 
communications, and information. Mobile devices are portable and, usually, easily connected to the 
Internet from almost anywhere. This makes them ideal for storing reference materials and learning 
experiences, and they can be general-use tools for fieldwork (Tuomi & Multisilta, 2010). Their 
portability and wireless nature allow them to extend the learning environment beyond the classroom 
into authentic and appropriate contexts (Naismith, Lonsdale, Vavoula, & Sharples, 2004). Wireless 
technology provides the opportunity for expansion beyond the classroom and extends the duration of 
the school day so that teachers can gain flexibility in how they use precious classroom activities. The 
use of mobile devices can also promote positive emotions for students toward learning mathematics 
(Daher, 2011). These advantages have been exploited through the MathCityMap-Project. Math trail 
blazers can create and upload math trails into a database through a web portal, then the math trail 
walkers can access them and complete the math trail with the help of a GPS-enabled mobile app 
(Cahyono & Ludwig, 2014; Jesberg & Ludwig, 2012). 

In this paper, we focus on the exploration of the factors that motivate students to engage in mobile 
app-supported math trail activity. The academic literature distinguishes between two motivational 
concepts namely: extrinsic motivation and intrinsic motivation. An influential theory that explicates 
intrinsic–extrinsic motivation in depth is self-determination theory (SDT, Deci & Ryan, 1985). The 
SDT model conceptualizes a range of regulation from intrinsic motivation to amotivation. Between 
these, there exist identified regulation and external regulation. Intrinsic motivation exists when a 
student is engaged in an activity for his/her own sake/pleasure/satisfaction. Identified regulation refers 
to engagement that is valued as being chosen by oneself. External regulation is the type of motivation 
when engagement is regulated by rewards or as a way to avoid negative consequences. Lastly, 
amotivation is associated with engagement that is neither intrinsically nor extrinsically motivated 
(Guay, Vallerand, & Blanchard, 2000).  



Having outlined the theoretical background for this study, we can clarify the research question: what 
is the nature of student motivation to engage in a math trail program supported by the use of a mobile 
app? 

Methods 
An explorative study was conducted in the city of Semarang in Indonesia involving nine secondary 
schools. The participating schools represent three levels (high, medium, and low) and two location 
types (downtown and suburban). This study is a part of development research on the MathCityMap-
Project for Indonesia. There were two main phases in this research, namely the design phase and the 
field experimentation phase. Here, we focused on studying student motivation to engage in the 
activity that was conducted in the second phase. This phase consisted of an introduction session, a 
treatment (math trails guided by the app), and a debriefing session. Student motivation was measured 
using the self-reported Situational Motivation Scale (SIMS) developed and validated by Guay, 
Vallerand, and Blanchard (2000) based on self-determination theory (SDT). The results of their study 
exposed that the SIMS represents a brief and adaptable self-report measure of situational intrinsic 
motivation, identified regulation, external regulation, and amotivation. ‘Situational motivation’ refers 
to the motivation individuals experience when they are currently engaging in an activity (Guay, 
Vallerand, and Blanchard, 2000). Therefore, this questionnaire is appropriate to be employed in this 
project to explore motivation of student to engage in the activity.  

The SIMS is a 16-item questionnaire consisting of 4 subscales, intrinsic motivation (IM), identified 
regulation (IR), external regulation (ER), and amotivation (AM). In the first part of the instrument, 
the questionnaire asks, ‘Why are you currently engaged in this activity?’. Respondents are to rate a 
number of answers using a 7-point Likert scale from 1 (not at all in agreement) to 7 (completely 
in agreement) for each item. The items are ‘because I think that this activity is interesting’ (IM), ‘I 
am doing it for my own good’ (IR), ‘because I am supposed to do it’ (ER), ‘there may be good reasons 
to do this activity, but personally, I don’t see any’ (AM), ‘because I think this activity is pleasant’ 
(IM), ‘because I think this activity is good for me’ (IR), ‘because it is something that I have to do’ 
(ER), ‘I do this activity, but I am not sure if it is worth it’ (AM), ‘because this activity is fun’ (IM),‘it 
was my personal decision’ (IR), ‘because I don’t have any choice’ (ER), ‘I don’t know; I don’t see 
what this activity brings me’ (AM), ‘because I feel good when doing this activity’ (IM), ‘because I 
believe that this activity is important for me’ (IR), ‘because I feel I have to do it’ (ER), and ‘I do this 
activity, but I am not sure it is a good thing to pursuit it’ (AM). 

The four subscale scores are then used to calculate a single motivation score called the Self-
Determination Index (SDI) for each student using the following formula: SDI = (2 x IM) + IR – ER 
– (2 x AM) (Sinelnikov, Hastie, & Prusak, 2007). The SDI score ranges between (2 x 1) + 1 – 7 - (2 
x 7) = -18 and (2 x 7) + 7 – 1 - (2 x 1) = 18. A higher SDI score indicates the student is more self-
determined and more intrinsically motivated to engage in the activity. A positive SDI score indicates 
that, overall, more self-determined forms of motivational type (IM & IR) are predominant (Vallerand 
& Ratelle, 2002). Then, open-ended follow-up questions were given to students to deepen the 
information about deciding factors affecting student engagement in this mathematical activity. Data 
were analyzed using qualitative methods to discover whether and what kind of motivations influenced 
these students. Quantitative data were also collected and analyzed. Non-parametric statistical 



calculations were performed because the data consisted of ordinal scores, and normality could not be 
assumed. 

Results and discussion 
In the first phase of the MathCityMap-Project study in Indonesia, technical implementation of the 
project was formulated, and a mobile app was also created to support the program (Cahyono & 
Ludwig, 2014). Thirteen math trails containing 87 mathematical outdoor tasks were also designed 
around the city of Semarang (Cahyono, Ludwig, & Marée, 2015). Task authors found mathematical 
problems that involved objects or situations at particular places around the city. They then created 
tasks related to the problems and uploaded them to a portal (www.mathcitymap.eu). In this portal, 
the tasks were also pinned on a digital map and were saved in the database. Each task contained a 
question, brief information about the object, the tools needed to solve the problem, hint(s) if needed, 
and feedback on answers given. Math trail routes can be designed by connecting a few tasks (6-8) in 
consideration of the topic, level, or location. In designing the trails, it is also necessary to consider 
several factors such as: safety, comfort, duration, distance, and accessibility for teachers who would 
observe and supervise all student activity. 

             
Figure 1: App interfaces (Map: ©OpenStreetMap contributors) 

Figure 1 shows examples of the app’s interfaces including an example route, task, feedback, and hint. 
Math trail routes can be accessed by students via the mobile app, a native app that was created by the 
research team as part of this project. Installation of a file in *.apk format was uploaded to the portal 
as well as the Google PlayStoreTM. From there, students could download and install the app, which 
works offline and runs on the Android mobile phone platform. Students can then carry out math trail 
activities with the help of the app. They follow a planned route, discover task locations, and answer 
task questions related to their encounters at site, then move on to subsequent tasks. The app informs 
them of the tools needed to solve the problems, the approximate length of the trail, and the estimated 
duration of the journey. On the trail, the app, supported by GPS coordinates, aids the users in finding 
the locations. Once on site, users can access the task, enter the answer, get the feedback, and ask for 
hints if needed. 

In the second phase, field experiments were conducted with 272 students and nine mathematics 
teachers. Each school was represented by a class consisting of an average of 30 students. They were 
divided into groups of five to six members. Four schools carried out activities outside the school 
while five schools conducted activities in the school area. These choices were made because of 



conditions and situations (such as: safety and availability of teaching and learning time) unique to 
each school. The activities were conducted during normal school hours over two 45-minute periods 
beginning with the teachers giving a brief explanation of the learning activities and goals. Groups 
then began their journeys, each from a task location that was different from the others (Group I started 
at task I, Group II from task II, and so on). As the groups trekked the trail, teachers observed and 
supervised student activities but were not expected to provide assistance because all the necessary 
information was to be provided by the app. Once the activity was completed or maximum time 
allowed for the activity had passed, the students moved to the next task. After completing the trail, 
each group returned to class, then had a discussion with the teacher about the task solutions and what 
they learned along the trail. At this time the questionnaire was also completed by the students. All 
272 students’ SIMS responses and SDI scores are summarized in Table 1. 

 IM IR ER AM SDI 

N 272 272 272 272 272 

MIN 3.50 2.25 1.00 1.00 2.00 

MAX 7.00 7.00 6.25 5.50 16.25 

AVERAGE 5.9770 4.7215 3.4651 2.9779 7.3180 

SD 0.82939 1.23314 0.93080 0.91471 2.92629 

Table 1: Students’ SIMS and SDI scores 

Averages SIMS scores for the four subscales varied considerably, ranging from 1.00 to 7.00. The 
standard deviations indicated adequate variability in all subscales. It is apparent that the nature of 
these students’ motivations to engage in the activity is diverse. However, all had positive SDI scores 
(ranging from MIN = 2.00 to MAX = 16.25 and average  SD = 7.3180  2.92629). This result 
indicates that overall, their motivation was more self-determined. Positive scores in this case indicate 
that internalized forms of motivation, namely intrinsic motivation and identified regulation, were 
predominant. Students perceived the activity to be interesting or enjoyable (an indicator of IM) and 
meaningful or valuable (an indicator of IR). They were engaged in the activities for their own 
sakes/pleasure/satisfaction, and their engagement was considered to be a self-choice. This finding is 
supported by the Independent-Samples Kruskal-Wallis Test (Table 2), which shows that there was a 
statistically significant difference in score between the SIMS subscales, χ2(2) = 623.583, p = 0.000, 
with a mean rank score of 886.37 for IM, 637.52 for IR, 379.97 for ER and 274.15 for AM.  

Compared with others subscales scores (Table 1), the amotivation subscale had low average SIMS 
scores (AMaverage = 2.9779  0.91471), which were contributing factors to the positive SDI scores. 
These low scores indicate that students enjoyed the activity and found value in it, which was reflected 
in the intrinsic motivation scores (IMaverage = 5.9770  0.82939) and identified regulation scores 
(IRaverage = 4.7215  1.23314). Students also reported being motivated by and were reacting to external 
demand, an indicator of extrinsic regulation. However, the ER scores (ERaverage = 3.4651  0.93080) 
show they tended to be neutral on this subscale. 

  



 

 Subscale N Mean Rank   Score 

      
Score 

IM 272 886.37  Chi-Square 623.583 

IR 272 637.52  df 3 

ER 272 379.97  Asymp. Sig. .000 

AM 272 274.15    

Table 2: Kruskal-Wallis Test using subscale (IM, IR, ER, AM) as the grouping variable. 

The open-ended questions asked in the next step focused on two types of motivation, namely intrinsic 
motivation and identified regulation. The first question was, ‘Why did you enjoy the activity?’ We 
found that 30% of the students enjoyed learning outside the classroom, 23% were excited to use the 
advanced technology, 18% were satisfied with applying mathematics, 16% liked collaborating, 11% 
reported different reasons, 2% mentioned negative feelings, and 0% did not give a reason. The second 
question was ‘What experiences influenced your consideration that this activity was valuable?’ (each 
student could mention more than one experience). Students mentioned application of mathematics in 
real life 158 times, outdoor mathematical activities 96 times, advanced technology for math 87 times, 
use of non-standard measuring tools 79 times, team work 72 times, activities in public places 65 
times, and other 19 times. These answers showed that most students were delighted to engage in this 
activity because it was conducted outside the classroom, an unusual setting that offered comfortable 
conditions and it was a free and fun activity. The use of mobile devices for outdoor mathematics 
learning activities has become an attraction, encouraging students to engage in this activity. However, 
as a serious mathematical learning activity, it was not only enjoyable, but the students considered it 
a valuable activity. They reported that through this activity they learned how to apply mathematics in 
the real world, even where they had never thought about it in the past. The use of the latest technology 
in the learning process has also been reported as a valuable experience and new knowledge for them. 

The self-reported data and answers to the follow-up questions were cross-checked with information 
obtained through field observations and the student works analyses. For example, here is one of the 
results of observations and analysis of student work on the Flood Gate Task, a task located on the Old 
Town Route. In this task, the problem statement is, ‘Suppose your city is now in an emergency, and 
you are asked to raise the floodgate one meter from its original position. How many times must the 
worm drive be rotated to raise the sluice one meter from its original position?’. This task is situated 
at one of the tourist attractions, an icon of the city, namely the Old Town area of Semarang City. All 
students agreed this was a pleasant place for learning math, and it was near the school where there 
were lots of trees, a pond, a garden, nice old buildings, and traffic was not too congested. These 
conditions made them feel joyful and comfortable in performing the activity there. Not only the 
location was exciting for them, the task was also considered by students to be a meaningful 
mathematical task because it was an important issue for them as citizens to know how this floodgate 
works. In this way, they could save their town if there were an impending disaster. Figure 2 shows 
an example of students working on this task.  



      
Figure 2: Students work on the flood gate task 

It appears that the students had the opportunity to learn and practice ways of solving real problems 
by following the stages of mathematizing, namely, understanding a problem situated in reality (I), 
organizing the real-world problem according to mathematical concepts and identifying relevant 
mathematics (II), transforming the real-world problem into a mathematical problem that represents 
the problem situation (III), solving the mathematical problem (IV), and interpreting the mathematical 
solution in terms of the real situation (V). In addition, working in the environment to find the hidden 
task location was interesting and challenging for the students. They reported that the more hidden the 
task location, the more curious they were to find it. It was breathtaking for them when they had to 
match the coordinates of their current position and the coordinates of the task location. Here, students 
recognized the importance and attractiveness of utilizing a GPS-based mobile app as a navigation 
tool in the math trail activity. This is just one example task, and in general, the students' activities in 
this field experiment were similar. This explanation proves that the results of the student self-report 
instrument to determine their motivation to engage in activities coincided with actual conditions in 
the field. 

Based on these findings, we conclude that the design and arrangement of the math trail and the mobile 
app as well as a combination of both have been successful in creating a pleasant situation and 
attractive environment offering valuable knowledge and experience in mathematics. They embody 
the aspects of enjoying or being interested in the activity and the use of advanced mobile technology 
for learning mathematics (an indicator of intrinsic motivation) and of value and meaningfulness of 
the mathematical tasks and the activity (an indicator of identified regulation), which were generated 
through the implementation of this project. 

Conclusions 
In conclusion, our findings indicate that student motivation to engage in the math trails program 
supported by the use of a mobile app was complex. Both intrinsic and extrinsic types of motivation, 
as well as amotivation, were found in the reasons for completing the activity. However, we also found 
that students reported and demonstrated more intrinsically motivating rather than extrinsically 
motivating and amotivating factors for engaging in the activity. While intrinsic motivation was an 
essential part, identified regulation was also important. The design of the project and its technical 
implementation contributed to these results, as reported by the student through the self-report 
instrument, and it was demonstrated through their activities and work. Therefore, in the 
implementation of the MathCityMap-Project, we must be aware of the important role of influencing 
student motivation when designing a mobile app-supported math trail activity. The relevance and 
value of the task must be clearly identified and linked to the objective of the project. Most importantly, 
students must enjoy and be attracted to the activity, both in completing the math trail task and in using 
the mobile app. These are the main factors that need to be considered when implementing the 
MathCityMap-Project. 
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This paper is about the threshold between gesture and touch in mathematical activity, focusing on 
the role of multitouch technology. Drawing on the work of gesture theorist Jürgen Streek, we 
propose and discuss the notion of the tangible gesture, in the context of mathematical explorations 
of young children with a novel, multitouch iPad environment called TouchCounts designed to 
promote counting on and with the fingers. 
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Introduction 
With the advent of multitouch technologies, gestures have become an essential feature of user 
interface. Touch technologies break with previous computer-based norms, where the hand’s actions 
were indirectly related to changes on the screen through mouse and keyboard manipulation. Touch 
technology invokes earlier drawing technologies in which the hand’s actions had a more direct 
relation with a given surface. The digital nature of contemporary surfaces, however, significantly 
alters the relation between touching and meaning-making.  

In this paper, we draw attention to the distinctive gestures new media elicit and produce and the way 
these new manual activities are changing the way we perform mathematics. We also interrogate the 
taken-for-granted distinction between the touchscreen gestures common in the technology world 
and the in-the-air gestures that have been the focus of study in mathematics education research. At 
first blush, they may seem quite distinct—albeit having the same word—but we follow Streeck 
(2009) in seeing them as being on a continuum, a perspective that enables us to better appreciate the 
role that touchscreen gestures might have in mathematics learning. 

In the context of mathematics education research, many studies have focused on student and teacher 
use of gesture in classrooms, but this work tends to code and sort gestures insofar as they are 
representations of thinking. These studies tend to divorce the motoric hand from the feeling swipes 
and swishes of fingers on screens. Material semiotic approaches to the study of interaction, on the 
other hand, consider gesture less as representations and more in terms of the material effects they 
achieve (Roth, 2001; Radford, 2002; Nemirovsky, Kelton & Rhodehamel, 2012). Our goal in this 
paper is to unpack the implications for understanding mathematics learning in relation to new 
media. In order to illustrate how these new media gestures operate as expressions of numeracy, we 
draw on research involving a novel multitouch App in which fingers and gestures are used to count 
(Jackiw & Sinclair, 2014). 

Gesture as movement 
The predominant line of research in gesture studies focuses on movements of the body (especially 
the hand) and their interactions (i.e. correlations) with speech in communication (Kendon, 2000, 
2004; Kita, 2003; McNeill, 1992; 2005). Researchers have identified different categories of gestures 



(icon, metaphoric, deictic and beat) so as to distinguish different relations between gesture and 
speech. McNeill has drawn on Peirce’s (1932) semiotics in which signs (icons, symbols, and 
indices) differ in terms of the nature of the relationships between the signifying sign and the 
signified. These categories have been used extensively in mathematics education research. 

Research that codes gesture only in terms of linguistic potential tends to overlook the physicality of 
the hand movement, except insofar as such movement contributes to or obscures linguistic meaning 
(Rossini, 2012). As Streeck (2009) indicates, “it is common to treat gesture as a medium of 
expression, which meets both informational and pragmatic or social-interactional needs, but whose 
“manuality” is accidental and irrelevant” (p. 39). Streeck (2009) defines gesture: 

… not as a code or symbolic system or (part of) language, but as a constantly evolving set of 
largely improvised, heterogeneous, partly conventional, partly idiosyncratic, and partly culture-
specific, partly universal practices of using the hands to produce situated understandings. (p.5)  

Thus he studies gesture for how it is “communicative action of the hands” with emphasis on the 
term action (p.4). This focus on action allows Streeck to study gesture for how it couples with and 
intervenes in the material world in non-representational ways. Researchers often distinguish 
between hand movements in the air and hand movements that make graphic marks, where the 
former is deemed a gesture and the latter an act of inscription. However, such distinctions become 
fuzzy when we study the movement of the hand across and through media, where ‘media’ can be 
more or less receptive of trace or mark. In other words, all hand movements traverse and incorporate 
media. We see a trace in certain media, and not in others, but since the logic of new media is to 
break with current conventions of perception, this distinction is provisional. New media allow for 
new kinds of traces. This insight allows for new ways of studying numeracy and multitouch 
technologies. In the next section, we discuss a case study of children working with such 
technologies, showing how this material encounter entails a very different concept of number 
precisely because of the indexical aspect of gesture.  

The question of trace and inscription returns us to how the indexical is different from the iconic. 
The contiguity aspect of indexicality (the smoke is materially caused and coupled with the fire) is 
aligned with touch and the way our body connects with another through touch. This approach to 
gesture supports the systems approach to bodies by which bodies become coupled with the 
environment they inhabit (Maturana & Varela, 1987). Streeck studies gestures as part of a nested 
scaling approach to this system, beginning in the world that the “hand knows best”, and then 
examining how gestures operate at greater distance or remove from that world (p. 58). The touch or 
haptic factor of hand movement is precisely how the fragile interface of inscription or trace is 
currently produced. Again, we emphasize that this production of a trace is contingent on current 
configurations of sensory perception and material media.  

Most of the hand’s features (digits, degrees of freedom of movement, fatty palms, flexure lines, 
papillary ridges) evolved to facilitate grasping (prehension), and thus the hand “became a 
‘compromise organ’” in serving multiple purposes (Streeck, 2009). Prehensile “postures” are 
formed as the hand reaches its target (in our case this will be a screen), during which a pre-
conscious calibration of speed and collective force determines the particular movement of the digits, 
hands and arm. As the hand moves towards the target, there is a strong reliance on peripheral vision 



rather than vision directed at the target (Streeck, 2009, p.47). The speed of the gesture reduces as the 
hand reaches its target. But the moment of contact entails the forming of a new assemblage, when 
the entire body of the gesturer links up with that which it touches. Thus, we are focusing on how 
gesture is a hand action that does more than identify or code particular aspects of an object.  

The video data discussed below is part of a larger project exploring the power of touchscreen 
technologies in teaching and learning mathematics in early childhood. Several research studies have 
already been carried out concerning the way that children learn various concepts using 
TouchCounts, including ordinality (Sinclair & Coles, 2015), place value (Coles & Sinclair, 2017) 
and finger gnosis (Sinclair & Pimm, 2015). The focus of this paper is less on the learning process 
using TouchCounts than on the various and distinctive forms of hand actions that are involved in 
creating and manipulating number in this environment.  

What is distinctive about the index is that it is a sign that is materially linked or coupled to “its 
object”. According to Peirce (1932), an index “refers to its object not so much because of any 
similarity or analogy with it, (…) as because it is in dynamical (including spatial) connection both 
with the individual object, on the one hand, and with the senses or memory of the person for whom 
it serves as a sign, on the other” (2.305). For instance, the chalk drawing of a parallelogram on a 
blackboard is often considered to be an iconic reference to a Platonic conception of parallelogram, 
but it is (also) an indexical sign that refers to the prior movement of the chalk. This latter indexical 
dimension is usually not emphasized in the semiotic study of mathematical meaning making, since 
we tend to focus on the completed trace and dislocate it from the labour that produced it. This focus 
on the completed sign neglects how the activity of the body and various other material encounters 
factor in mathematical activity. 

TouchCounts: A multitouch early number App 
In this paper, we discuss an application that author Sinclair has been involved in creating in which 
the digital gesture plays an even more central role in the mathematical activity. TouchCounts 
(Jackiw & Sinclair, 2014) is an application that permits young learners to coordinate simultaneously 
various forms of number: number names like ‘three’, number of taps on the screen, number of discs 
on the screen and number symbols like 3. It enacts a multimodal correspondence between finger 
touching, numeral seeing and number-word hearing (a one-to-one-to-one correspondence of touch, 
sight and sound). The App has two worlds: the Enumerating and the Operating worlds. In this paper, 
we focus on the Enumerating world, which is the one that children usually first experience. 

In the Enumerating World, the screen starts almost blank, except for a horizontal bar called a shelf. 
In this world, a learner taps her fingers on the screen to summon numbered discs. The first tap 
produces a new yellow disc on which the numeral “1” appears. Subsequent taps produce 
sequentially higher numbered discs. As each tap summons a new numbered disc, TouchCounts 
audibly speaks the name of its numeral (“one,” “two”). As long as the user’s finger remains on the 
glass, it holds the numbered disc, but as soon as she “lets go” (by lifting her finger) virtual gravity 
makes the number object fall to and “off” the bottom of the screen. If the user releases her 
numbered disc above the shelf, or “flicks” it above the shelf on release, it falls only to the shelf, and 
comes to rest there, visibly and permanently on screen, rather than vanishing out of sight “below” 
(see https://www.youtube.com/watch?v=7xD-pqnsce0). Since each time a finger is placed on the 



screen, a new numbered object is created, one cannot “catch” or reposition an existing numbered 
disc by retapping it. We note that, at least initially, the eye plays a prominent role in directing the 
finger above or below the shelf, but that if one does not care where the disc alights, the tapping of 
the finger needs little visual direction. 

If we take the finger tap as a gesture involving the placement of a finger on the screen, and the 
subsequent production of an event featuring visual, mobile and aural aspects, then we might say that 
the gesture is iconic in its relation to the production of unitary quantities, or perhaps even 
metaphorical for the children for whom such unitary quantities are still “abstract”. But what seems 
much more pertinent for the children as they engage with this application is the indexical nature of 
the gesture. The tap both points to the screen, designating one place of contact with it, but also 
creates a new numbered disc under the soft skin of the finger-pad, a disc which often falls with 
gravity-like weight. In addition, each tap produces a simultaneous sound. The children can also tap 
the Reset button, which makes all the numbered discs disappear and resets the count to 1.  

While TouchCounts was designed to support the development of one-to-one correspondence 
between number and hand movement, by drawing on the tangible dimension of counting, its use by 
young children has prompted us to examine both the particular ways in which they use their hands 
and the implications of their hand actions on the meanings they make around counting, in particular 
the concepts of ordinality and cardinality (see Sinclair & Pimm, 2015).  

A case study 
This case study is drawn form a broader research project that was conducted in daycare and primary 
school settings over the course of three years. In the excerpt we present, co-author Sinclair was 
engaged in a clinical interview with a five-year-old kindergarten child named Katy, who is 
interacting with TouchCounts for the first time. (Indeed, it was the first time she was using a 
touchscreen tablet.) The interview occurs in June and therefore close to the end of the school year. 
We have chosen the excerpt because it illustrates a range of gestures that have been observed over 
the course of the research study, while also showing hand motions that have not been explicitly 
taught. In this case study, the hand actually operates very close to the surface of a screen: pointing to 
objects on the screen by tapping them; sliding objects along on the screen so as to leave visual and 
aural traces of the finger’s path; pinching objects together in order to make new ones.  

The room is quiet. Without prompting, Katy’s hand approaches the screen, and her finger touches 
the top of it and slides down to the bottom. A yellow disc appears under her finger with the numeral 
‘1’ on it and the sound ‘one’ is made. The index finger moves back to the top of the screen, slowly 
swimming downwards. A chorus of ‘two’ comes both from her mouth and the iPad. This happens 
repeatedly, although sometimes only the iPad can be heard announcing the new numbered disc 
while Katy’s lips move in synchrony (Figure 1a). The appearance of ‘10’ on the tenth yellow disc 
attracts attention, perhaps because of its double digits, and Katy bends over to look closely.  

Katy looks up again and her finger resumes touching the screen, but now only the iPad counts the 
numbers (Figure 1b): she no longer says them aloud herself. After ‘seventeen’, several fingers fall 
on the screen at once, and then ‘twenty-one’ is heard (since she has tapped the screen with several 
fingers, only the sound of the final number is said aloud, but the four discs all appear under where 
she has touched). This produces a pause in the action, and Katy’s lips spread into a smile. All but 



the index finger are tucked away, as the rhythmic tapping continues along with the chorus of named 
numbers. At ‘twenty-seven’ Katy looks up, no longer watching the screen (see Figure 1c), and she 
continues swiping and saying numbers. This continues until a finger accidentally land on Reset. 

     

Figure 1(a). Katy swiping; (b) Following the yellow disc; (c) Tapping while looking up. 

Katy’s finger – as the main organ of touch in this encounter – takes on new capacities through the 
reset button. It is no longer the organ that can only move or drag the yellow circle. The power of the 
reset button to recalibrate the tempo and rhythm of this encounter, becomes part of the finger’s 
potentiality, thereby redefining what is currently entailed in the sense of touch. 

Discussion 
Fingers can serve as both a physical extension of what Rotman (1987) calls the ‘one-who-counts’ 
(p. 27) (usually with an extended pointed finger reaching out to the world) as well as the thing-to-
be-counted (in which the gaze is directed towards one’s own fingers): fingers are thus 
simultaneously subject and object, both of the person and of the world (Alibali & diRosso, 1999). 
And this is what makes the finger actions of Katy so interesting; the mathematical act of counting 
with TouchCounts fuses this duality and in so doing changes the relationship between the hand and 
eye, as well as the ears. 

Katy’s hand actions change over the course of the episode, not only in the particular muscular form 
they take, first sliding down the screen as if lingering on the yellow discs to produce or partake in 
their falling off the screen, and then tapping impetuously so that each new touching of the screen 
follows the end of the sounds of the voiced numerical. The swiping gesture seems more exploratory 
while the tapping gesture seems to concatenate into a unit the touch-see-hear bundle of sensations 
involved in making a new disc-numeral-name. As Streeck writes, tapping is also “characteristic of 
ritualized behavior” (p. 76), which suggests that Katy has moved from exploration to practice. In 
both the swiping and the tapping, the finger can be seen as making an indexical gesture, with the 
trace being both visible and audible, not to mention tangible for Katy.  

Although the initial movement and touch of her finger is what produces the disc, it is the disc that 
drives the swiping movement of her finger. Indeed, both her finger and her eyes follow the yellow 
disc as it heads down the screen. In shepherding the numbered disc off the screen, Katy sees when 
it’s time to lift her finger and start making a new disc. But with the tapping, the eyes attend to the 
numerical sign on the disc—indeed, when 10 appears, Katy notices the change from the previous 
one-digit numerals. In this sense, the eye and the finger do very similar things in the swiping, the 



visible trace is followed closely by Katy’s eyes as the swiping takes place, so that the hand is 
subordinated to the watchful eye. With the tapping, the hand seems less subordinated, with the eye 
only interested when there’s a novel situation. When Katy looks up, the hand is no longer 
subordinate. When Katy’s eyes close, her fingers do the seeing and touching as they repetitively tap.  

But of course, there is more than the eye and hand involved in this situation. The ear and voice 
feature importantly as well. Indeed, while the voice is subordinate to the touch (it only speaks while 
Katy taps), Katy’s hand is also subordinate to the ear in that the ear judges the moment of the next 
tap. And the ear is disrupted by the hand, when several fingers touch the screen at once, causing the 
voice to jump from “seventeen” to “twenty-one.” The eye, which was about to drift off, must return 
to survey the situation. And the hand returns to its single digit tapping. The importance of the aural 
and the vocal in this context is interesting in terms of the counting activity at play. Indeed, the ritual 
origins of counting are oral in nature, and counting with young children is often undertaken as the 
learning of a song that one memorises and chants. The involvement of the hand in this otherwise 
oral event provides a visual and tangible trace of the count, while also associating each counted 
number with a single swipe or a single tap.  

One might question whether Katy’s actions on the screen, which we might think of as touch-
pointing, can really be thought of as gestures. Streeck argues that such touch-pointing gestures (and 
indeed all gestures) emerge from the touching and handling of things—the tracing (or other “data-
gathering devices” such as caressing, probing, cupping) of objects that allows one to discover its 
texture and temperature (and, for young children, for instance, the difference between a cylinder and 
a pyramid). When the hand has done its exploring of the object, which fulfills an epistemic function 
in gathering information, it may then be lifted off the object and inclined to repeat the same 
movements ‘in the air’: “the hands’ data-gathering methods are used as the basis for gestural 
communication” (p. 69). Streeck identifies such gestures as being communicative, which for him is 
the characteristic feature of a gesture. So perhaps Katy’s touch-pointing becomes a gesture once she 
lifts her hand form the screen to do her tapping. 

Distinguishing hand movements that explore from ones that communicate is problematic though. As 
Streeck writes, exploratory actions can become communicative when they are made visible to 
others, who may join in the action or infer tactile properties. If we look at Katy’s swiping and 
tapping gestures, we might say that they are both exploratory, with the swiping gestures involving 
prolonged tactile contact that enables her to discover what would happen when her finger touches 
the glass—that a yellow disc would appear, with a numeral on it; that the disc would move down 
the screen; that the iPad would speak the numeral’s name aloud, and that this could all be repeated 
as often as she wished. But Katy’s swiping and, later, her tapping, are also communicative inasmuch 
as they tell TouchCounts what to do and say. The same might be said for clicks of the mouse or key 
presses of the keyboard, with the difference that the touchscreen is acted upon by direct hand 
motions. Instead of disentangling the tracing from the pointing (the exploration from the 
communication), we suggest that re-assembling them into an indexical enables us to see how Katy’s 
hand movements can tap into the potentiality of the body by reconfiguring the relationships between 
sensations of touch, sight and sound that are at play. This potentiality mobilizes new mathematical 
meanings as Katy uses her fingers to count on, to count with and to count out one by one and 
indefinitely. Streeck recognises that hand-gestures “enable translations between the senses” (p. 70) 



as tactile discoveries provide visual information for interlocutors. With Katy though, the tactile 
discoveries provide visual and auditory information to herself. She is her own interlocutor. 

Conclusion 
Streeck argues that hand-gestures cannot be taken only as components of a language system cast 
apart from the material world and used only to communicate about the world. Rather, they are of the 
world, and part of how we feel the world around us. This perspective requires us to see the moving 
hand as “environmentally coupled” (Goodwin, 2007), that is, as inextricable from the things it 
touches and engages with. But while Streeck implies a vector from the exploratory hand action to 
the communicative hand-gesture, our case studies reveal how the exploratory hand frees itself from 
the optic regime and invents meaning as much as it communicates it. This new kind of gesture is 
possible in large part because of the feedback mechanism of digital technologies, which can talk, 
push and show back. With the touchscreen interface, and particularly the multitouch actions, the 
hand is involved in a process of communicating that is also a process of inventing and interacting.  

In the example we presented, we have shown that the gestures made by Katy in TouchCounts had an 
indexical nature both because they involved some kind of pointing (with one finger or more) and 
they left a trace that is both visible and audible. The trace is important in drawing attention to the 
material engagement of the gestures. The gestures arise out of movements of the hand, but they also 
result in material reconfigurations that can give rise to new movements of the hand. In discussing 
the effect of new digital technologies in mathematics, Rotman has written about the future cultural 
neoteny in which speech would “become reconfigured (as it was once before when transformed by 
alphabetic writing), re-mediated and transfigured into a more mobile, expressive, and affective 
apparatus by nascent gesturo-haptic recourses” (p. 49). We interpret these speculative comments as 
an indication that the future of the gesturing hand in relation to new media may involve all sorts of 
surprises, and that perhaps even pre-school children may count ‘on their hands’ to 100 as they 
engage with these media. 
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This theoretical paper reports about our perception of the contributions that the working group TWG 
16 about the learning of mathematics with digital media have made during the last CERME 9, taking 
into consideration the previous and the upcoming ERME conferences. Our analysis highlights the 
evolution of research questions, methodologies and theories through the lenses of the “didactical 
tetrahedron” metaphor and the networking strategies and methods. Finally, we point out themes that 
are, to our opinion, insufficiently addressed and need further discussions within the technology 
group. 
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Introduction and rationale 
‘State of the art’ is a common expression used in surveys, review papers and up to date books 
reporting on the newest achievements in the research. This is also the ambition of the tenth Congress 
of the European Society for Research in Mathematics Education (CERME 10) TWG 16 leaders as 
they have announced: 

We want to establish an overview of the current state of the art in technology use in mathematics 
education, including both practice-oriented experiences and research-based evidence, as seen from 
an international perspective and with a focus on student learning [...] (Call for papers, CERME 10 
TWG 16). 

There are studies trying to establish such overviews (e.g., Drijvers et al., 2016), but also some 
claiming to report on the ‘state of the art’ research without sufficient argumentation and full 
justification of their statements throughout the text. The phrasal adjective ‘state of the art’ fits to 
advertise a ‘product’ but has our community become mature enough to respond to a challenge of 
offering ‘state of the art’ descriptions of complex phenomena like the use of technology in 
mathematics education which has a characteristic of enormous dynamism? 

In this article, we do not claim that we have undertaken a meta-research beyond the scope of the 
CERME although we are aware of the variety of working groups on similar themes at other 
conferences as ICME, ICTMT, CADGME or ATCM and special issues of journals. Aiming to 
investigate how the CERME TWG 16 could capitalize knowledge of discussions regarding the 
learning with technologies, we have rather devoted ourselves to focus on two main issues: 1) how 
have the research questions and methodologies about the learning of mathematics with technologies 
evolved and 2) is there a substantial progress regarding the use of the theories. We begin discussing 
these two issues through the relations in a “didactic tetrahedron”.  



The “didactic tetrahedron” metaphor 
The “didactic tetrahedron” metaphor (Fig. 1 right) was introduced by Tall (1986, p. 6) as an 
enlargement or adaptation of the “didactic triangle” (Fig. 1 left) commonly used before the advent of 
technology to analyze the teaching and learning of mathematical knowledge.  

 

 

 

 

 

 

Figure 1:  From a “didactic triangle” (left) to a “didactic tetrahedron” (right) 

The integration of an artefact, e.g. an ICT tool, introduces a new component into the teaching/ learning 
system and creates new relationships between the components of the didactic triangle. Thus, for 
example the face ALK (A for Artefact or ICT, L for learner and K for Knowledge) represents 
phenomena related to learning mathematics with technology, such as students’ conceptualizations of 
given mathematical concepts mediated by technology, or the edge AK highlights phenomena related 
to new approaches to given mathematical concepts offered by the affordances of a given digital 
artefact. The didactic tetrahedron has by now been used for analyzing mutual participation of artifacts 
and their users in a socio-cultural context (e.g. Rezat & Sträßer, 2012) or as a heuristic for studying 
the implementation of digital media in the teaching and learning praxis (Ruthven, 2012). In this paper, 
we use it to position the scopes of technology groups at the ERME conferences.  

Until CERME 8, issues related to any vertex, edge or face fell within the range of a unique technology 
group, initially called “Tools and Technologies”. The subsequent changes of the name into “Tools 
and technologies in mathematical didactics” from CERME 2 to 5 and “Technologies and resources 
in mathematics education” from CERME 6 to 8 indicate the appearance of enhanced specifications. 
The growing interest in the theme and the amount of research have led to splitting the technology 
group into two groups at CERME 9 which  have progressed discussing topics focusing on edges and 
faces having “teacher” and “learner(s)” as a vertex, respectively. 

Research method 
In this paper we propose an analysis of the two issues 1) and 2) stated above based on the “didactic 
tetrahedron” through the: a) Calls for papers of the CERME 8-TWG 15, CERME 9-TWG 16 and 
CERME 10-TWG 16, b) Introductions to papers and posters of the groups published in the 
proceedings of the CERME 8 and 9, and c) Papers of these groups published in the proceedings of 
the CERME8 and 9. In this analysis we also refer to “networking strategies and methods” (Prediger 
et al., 2008, p. 170). 

 



Findings and discussion 
a) Evolutions tracked through the Calls for papers since the CERME8 

The Call of the CERME 8-TWG 15 guided the discussions by posing three themes referring to design 
and uses of technologies, students’ learning, and teacher professional development in presence of 
technologies. These three themes clearly refer to the three vertices of the triangular face “ALT (T for 
Teacher)” in the didactic tetrahedron (Figure 1). Although such structured shape for questioning the 
themes of interest may not appear straightforward by reading the text in the CERME 9 and 10 Calls, 
they are indeed meant to contribute to research related to the face “AKT” (TWG 15) and to the face 
“AKL” (TWG 16). Besides the split of the technology group in two groups, the relation between 
learning, teaching and digital tools is still present in the issues of the CERME 9-TWG 16 Call, as 
stated for example in the items “designs of teaching experiments with software and technologies 
concerning student learning” or “results of empirical studies and investigations especially concerning 
long-term learning with ICT, massive courses, national programmes of teachers’ professional 
development”. Thus, the face “ATL” remains relevant to both groups. 

b) Evolutions tracked through the Introductions to the papers and posters of the CERME 8-
TWG 15 and CERME 9-TWG 16 

The Introduction of the CERME 8-TWG 15 corresponds to the Call and is structured according to the 
three themes (stated in a), i.e. the face “ATL”. Moreover, it goes beyond the affirmed issues by raising 
a general one for “capitalization of research results” (Trgalová et al., 2013, p. 2500). This general 
issue has been addressed in an overview for mathematics, technology interventions and pedagogy 
based on systematic literature review by Bray (CERME 8, 2013) and in a survey reporting about 
undergraduate, master and doctoral studies for promoting the use of technologies in mathematics 
education by Scheffer (CERME 8, 2013). Further on, in this Introduction, it is claimed that a 
development of “specific methodologies enabling to assess the effectiveness of ICT in learning 
processes” (Trgalová et al., 2013, p. 2501) is required. The call for a “proper usage of research 
methods, which are informed by contemporary theories” (Lokar et al., 2015, p. 2438) is present in 
the Introduction of the CERME 9-TWG 16. 

This paper builds on this claim and attempts to further investigate the usage of theories referring to 
the learning of mathematics in technology-rich environments in the next subsection.  

c) Evolutions tracked through the Papers published in the proceedings for CERME 8-TWG 15 
and CERME 9-TWG 16 

Evolution of research questions (RQs) and methodologies 

Unlike the frequent use of several methodologies and theories for exploring teaching (e.g. TPACK 
or instrumental approach), a large assortment of RQs and methodologies comes out from the papers 
regarding learning phenomena with technologies. We organize them in the following two categories: 

 Category 1: RQs referring to at least two of the edges of the face “ALK” 

While the most of the papers from this category discussed at CERME 8 focus on the impact of using 
technology on students’ behavior, learning or performance, there is a greater variety of research issues 
addressed in papers at CERME 9. For example, the qualitative-empirical study by Kaya, Akçakın, & 
Bulut (CERME 8, 2013) related to the RQ: “does the use of Geogebra via interactive whiteboards as 



an instructional tool affect students’ academic achievement on transformational geometry?” (p. 2596) 
seems to meet all edges in this triangle. Likewise, a quasi-experimental study by Kilic (CERME 8, 
2013) considers concepts in geometry (K), a development of geometric thinking and ability of proving 
in geometry (L) by using a Dynamic Geometry Software (A). Based on teaching experiments with 
high school students and prospective teachers, Bairral and Arzarello (CERME 9, 2015) have raised 
the RQ: “which domain (constructive or rational) of manipulation touch screen could be fruitful to 
improve student’s strategies for justifying and proving?” (p. 2460). In this contribution, there is 
evidence not only of the three edges of the face “ALK” but also of the teaching component of the 
“didactic tetrahedron” by pointing out a lack of research about the teaching of mathematics with the 
use of touch screen devices besides task design concerns and cognitive implications (p. 2464-2465). 

 Category 2: RQs referring to one of the edges of the face “ALK” 

Exemplary studies addressing the edge “AL” are: a design based study by Misfeldt (CERME 8, 2013) 
about the students’ instrumental genesis with GeoGebra board game, a study by Persson (CERME 8, 
2013) grounded on students’ interviews and teachers’ questionnaires about instrumental and 
documentation genesis, or empirically based case study by Storfossen (CERME 8, 2013) about 
instrumented action of primary school students. It seems that the emphasis on RQs and methodologies 
studying instrumental genesis regarding the relation “AL” has slightly decreased from CERME 8 to 
CERME 9. 

A paradigm which is noticeable in the CERME 9-TWG 16 papers and was not present before, except 
for one paper, is the online learning. Although the significant amount of RQs referring to learning 
through the Web (e.g., peer learning, collaborative learning, networking, flipped classroom) is visible 
(e.g., Biton et al., CERME 9, 2015; Triantafyllou & Timcenko, CERME 9, 2015), many specific 
questions related to the face “ALK” remain unanswered. For instance, what is the most relevant 
mathematical content available on the internet and how to locate it or what is a good quality of online 
teaching/ learning materials for mathematics and how to measure it. Another such question referring 
to the edge “AL”, is about “students’ perceptions if and how online resources contribute to 
mathematics learning and motivation” (Triantafyllou & Timcenko, ibid., p. 1573). The diverse nature 
and the complexity of these questions about online learning, in addition to the methodological 
approaches applied, mainly small scale studies or online surveys, do not allow generalizing 
conclusions about its truthful effects for the mathematics education. 

Looking at the face “ALK” of the “didactic tetrahedron”, an interesting question that could be worth 
exploring is whether a possession of a “(piece of) mathematical knowledge” leads to gaining an “other 
(piece of) knowledge” embedded in an ICT tool, e.g., knowledge in computer engineering. Except 
for one contribution by Misfeldt & Ejsing-Duun (CERME 9, 2015) about learning mathematics 
through programming and algorithms, we have not found others which would report on any kind of 
connections between learning mathematics and computer science or informatics. Neither have RQs 
about the learning of mathematics in relation to robotics, augmented reality and artificial intelligence 
been proposed in any of the calls, the introductions to papers or the papers in the technology group 
for the learning of mathematics at the CERME 8 and 9. This issue is neither mentioned in the 
CERME10-TWG16 Call, although we could expect that it may become an emerging one due to 
curricular changes in some European countries (e.g., France) highlighting algorithms in mathematics 
education. 



Evolution of theoretical frameworks 

Several observations can be drawn about theories and their networking in the papers. 

First, the instrumental approach (Rabardel, 1995) appears as a widespread theoretical framework at 
CERME 8, while it is seldom mobilized at CERME 9. The hypothesis that may explain this fact is 
related to the shift in research questions reported above. However, in the terminology of “landscape 
of networking strategies and methods” (Prediger et al., 2008), it appears that the instrumental 
approach has been used for local organization and coordination, rarely combined with other theories. 
The heterogeneity of research questions at CEMRE 9 may be related to a greater diversity of ICT 
tools usage. Besides the commonly used technologies as dynamic geometry systems (DGS), computer 
algebra systems (CAS) or spreadsheets, innovative artefacts, such as multi-touch screen, Arbol 
software for developing combinatorics thinking or non-digital Fraction board, raise elderly and new 
concerns akin to those of tool affordances and multiple representations (“AK” edge of the didactic 
tetrahedron). Two main frameworks are called for exploring such questions: the theory of semiotic 
mediation (Bartolini-Bussi & Mariotti, 2008) and the approach of registers of semiotic representation 
(Duval, 1993). These two theories seem to go along one with another and have a relatively high 
degree of integration founded on the strategies for understanding and making understandable, 
comparing and synthesizing (Prediger et al., 2008). Original digital devices, and possible novel 
teaching methods enabled by them (e.g., flipped classroom, learning on the Web) may lead to 
modifications of learners’ perceptions of their efficiency or performance. These are explored through 
the Vygotskian perspective of object/meaning ratio. 

Further observation leads to an assumption that there is a greater variety of theoretical frameworks 
used in CERME 9 compared to CERME 8 papers (Fig. 2). This seems to correspond to the previous 
argumentation. Besides the recognizable continuity of the usage of three theoretical frameworks, 
instrumental approach, constructionism and learning by scientific abstraction, there is a vivid 
occurrence of numerous others. Yet, “the multiplicity and isolated character of most theoretical 
frames used in technology enhanced learning in mathematics”, brought to the fore by Artigue (2007) 
and considered by the author as “an obstacle to the exchange and mutualisation of knowledge” (p. 
75), is still not overcome. The heterogeneity of the networking space may further be analyzed by 
using the flexible triple of principles, methodologies and paradigmatic questions (Radford, 2008). 

 
Figure 2: Theories used in paper at the CERME8-TWG15 (left) and CERME9-TWG16 (right) 



It is worth noticing that most of the theoretical frameworks considered in the papers are not 
technology specific. In fact, the instrumental approach, human-with-media concept (Borba and 
Villareal, 2005) and the theory of semiotic mediation are rare frameworks addressing the interactions 
between learners and artifact(s), digital or not, besides those between learners and teachers. A widely 
used technology non-specific theoretical framework is the theory of didactical situations (Brousseau, 
1997), which is occasionally combined or integrated locally with other theories. 

Finally, we wish to draw attention to theoretical concepts that are not mentioned in the papers, 
although they are particularly relevant for addressing the relation “AK”. Some of them, such as 
computational transposition (Balacheff, 1993) and epistemological domain of validity (Balacheff & 
Sutherland, 1994) are powerful means for ICT tool analysis in reference to a given field of knowledge 
and in terms of their possible contribution to the teaching and learning.  

Conclusion 
Looking through the lenses of the “didactic tetrahedron”, the split of the CERME 8 technology group 
in two groups since the CERME 9 is not only a practical, organizational necessity due to the rapid 
growth of the number of scholars interested in the theme. It rather seems as a temporary solution to 
tackle and deeply investigate challenging questions about each of the faces of the tetrahedron before 
fabricating ‘state of the art’ reports.  

Thinking about the capitalization of knowledge disseminated by the CERME 8-TWG 15 and the 
CERME 9-TWG 16 relating each of the two main issues in this survey paper, we may conclude the 
following.  

1) Evolution of RQs and methodologies. Miscellaneous RQs are emerging rapidly, before the previous 
are being sufficiently explored. On the one hand, it seems that the trend of publishing findings about 
the influence of the World Wide Web including social networks and online educational platforms 
will continue in a relatively large amount despite an apparent lack of specific methodological and 
theoretical frameworks that could be commonly used to approach topical issues in the field of 
technology in mathematics education. Applied methodologies for approaching these questions belong 
within the frame of small scale qualitative empirical studies. On the other hand, research questions, 
appropriate methodologies and theories about attitudes, accomplishments and inclusion of specific 
groups of learners as low achieving, gifted and/or disabled students in technology supported learning 
environments remain urgent in the research agenda. 

2) Evolution of theories. Is the use of current general theories like those referring to the “didactic 
triangle” sufficient or is there a need for a development of new ones, which would allow addressing 
issues specific to technology enhanced teaching and learning of mathematics? The latter seems to be 
more likely, as shown by a new item in the call for papers in the theory working group welcoming 
contributions on “theories for research in technology use in mathematics education” (CERME 10-
TWG 17 Call for papers), which has not been part of the previous call of the group. Our analysis also 
shows that exploitation of the networking strategies and methods for understanding, comparing, 
contrasting, coordinating, combining, synthesizing and integrating theoretical frameworks (Prediger 
et al., 2008) may be beneficial for further truthful studies of the learning mathematics with 
technologies.  
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With frequent predictions of upcoming technological and economic difficulties triggered by an 
impending shortage of information and communications technologies (ICT) professionals, the calls 
are growing stronger to include coding as a core element of school curriculum. These calls are 
bolstered by the suggestion that coding supports the development of thinking skills – which echoes a 
longstanding argument for teaching mathematics. Motivated by the parallel, we attempted to 
investigate some of the common ground between learning to code and the development of core 
mathematical concepts. We photographed and video recorded children, aged 9–10, as they learned 
to build and program Lego MindstormsTM EV3 robots over four days. Our findings suggest that 
programming supports children’s understandings of decimal numbers and their transitions from 
additive to multiplicative thinking.  

Keywords: Coding, robotics, arithmetic, number concepts, elementary education. 

Introduction 
In recent years there has been a growing recognition that information and communications 
technologies (ICT) are a major contributor to innovation and economic growth. For instance, the 
Organization for Economic Cooperation and Development (OECD, 2016) considers computer 
programming a necessity for a highly skilled labour force. Shortages are already felt across the 
world and demand for highly skilled ICT professionals is expected to rise. In our home country of 
Canada, for instance, there are predicted shortages of more than 150,000 skilled ICT workers in the 
next few years. This shortage is impacting IT innovations and revenues (see Arellano, 2015; 
Clendenin, 2014). 

Canada is hardly unique on this count, as evidenced by major pushes around the world to include 
coding as a core part of school curriculum. In response, some educators and educational systems are 
shifting from teaching “how to use” software programs toward “how to code.” Estonia and England, 
for example, have implemented a national curriculum that makes computer programming 
mandatory for all school-aged students across all grades, and other nations appear to be moving in 
this direction. For instance, it is currently a topic of political debate in Australia, where the 
opposition party is calling to have computer programming taught in every primary and secondary 
school in the country (Roumeliotis, 2015; Sterling, 2015). 

In North America, national-level discussions and calls have yet to gather the same sort of 
momentum, but more and more initiatives are emerging at the local level. For example, the Chicago 
school district is adopting computer science as a core subject in all public high schools – prompted 
in large part by support from Google and Microsoft and through initiatives such as Code.org and 
Hour of Code, which are dedicated to expanding access to computer science for all U.S. students. 
Despite the absence of a national strategy in the U.S., messages on the importance of learning to 
code are frequent, with some emanating even from the President’s office. In fact, coding skills have 



been associated not only with empowering individuals and meeting employment needs, but with 
many aspects of the country’s future and security (Pearce, 2013).  

Trends toward including coding in school curriculum were preceded by a broadly effective 
worldwide push to get computers in schools. In 2011, most students (71%) in OECD countries 
reported having access to computers and the Internet at school. However, most students reported 
using the computers at school for email, browsing the Internet, word processing or doing individual 
homework. For the most part, such activities require low-level cognitive thinking and do not 
challenge students to develop more than basic user skills. Learning how to program a computer, it is 
typically argued, involves higher-level cognitive processes and provides opportunities for 
developing higher-level ICT skills.  

These sorts of arguments for teaching computer coding parallel long-standing rationales for 
teaching mathematics. Similarly, many of the structures and strategies within coding bear strong 
resemblances to elements of mathematical concepts (Papert, 1980). We discuss a few of these 
resemblances in this paper, focusing on arithmetic.  

Conceptual metaphors are one of the ways we understand mathematics (Núñez, 2000).  With regard 
to the concept of number, Lakoff and Núñez (2000) describe “four fundamental metaphors of 
arithmetic”: arithmetic as object collection, arithmetic as object construction, the measuring stick 
metaphor, and arithmetic as object along a path. The metaphor of arithmetic as an object collection 
is based on a one-one correspondence of numbers to physical objects. With this metaphor a greater 
size corresponds to a bigger number. For instance, 5 is greater than 2 because it forms a bigger 
collection. The metaphor of arithmetic as object construction is based on fitting objects/parts and 
arithmetic operations. For instance, 5 is greater than 2 because an object comprising 5 units is larger 
than one comprising two. The measuring stick metaphor maps numbers onto distances, whereby 5 
is greater than 2 because it is longer. The metaphor of arithmetic as an object along the path is 
based on arithmetic as motion, by which 5 is greater than 2 because it entails moving further from a 
common starting point (i.e., zero). Programing robots provides opportunities for illustrating and 
experiencing these arithmetic metaphors.  

Context 
In this interpretive study we asked what mathematics children learn by building and programming 
Lego MindstormsTM EV3. Interpretive research is about what meaning individuals construct in their 
lived experiences (Bhattacharya, 2008). We co-designed learning tasks with a graduate engineering 
student and co-taught the tasks with the classroom teachers over a course of four sequential days in 
three-hour daily sessions. The study’s participants were 22 children, Grades 4-5 (aged 9–10), at 
Pakan School at Whitefish Lake 128 First Nation in rural Northern Alberta. Once the children knew 
the basic coding blocks for moving the robot, they were given Papert’s (1980) task of programming 
a robot to follow a trace out of a triangle, square, pentagon or hexagon. On the third day, they were 
given the final challenge of building a robot that could find and douse a fire in any of four rooms in 
a building. Data included video-recordings, GoPro digital images, field notes, and artifacts 
including saved computer programs. 

We video-recorded the four sessions to obtain rich contextual detail of children’s mathematical 
interactions when programming the robots. Using interpretive video analysis (Knoblauch, 2013) we 



selected videos and GoPro digital images that exemplified instances of children’s mathematical 
thinking. Video data enables repeated viewing, slow motion, fast motion and frame-by-frame 
analysis. The selected videos formed the basis for emergent understandings of the children’s 
experiences. The analysis developed through an iterative process of rereading the literature, 
reviewing the video and GoPro data, and rewriting. As is evident in our analysis, below, video data 
was vital. In particular, it permitted us to slow down the process and identify the integrated/nested 
processes of learning that occurred. The three instances that we use to focus our discussion were: 
(1) a trio of girls learning to program their robot for the final challenge to move a certain distance 
into the hallway to illustrate a developing understanding of number, (2) a boy tapping the vertices 
and sides of a triangle to count the number of programming steps necessary for the robot to move 
around the triangle as an example of additive thinking, and (3) a boy learning how the number of 
sides and angles of a polygon connects to the number of repeats in a loop, which illustrates a 
developing shift from additive to multiplicative thinking.  

Findings 
In the numberline video (see https://vimeo.com/144996708video), Krista was helping the pink team 
program their robot to move into the building. This action required manipulating one block of EV3 
code to move the wheels a specified number of rotations. The team members started out with a 
guess of 0.4 rotations to move the robot into the first corridor of the building. After testing how far 
the robot moved and observing that the robot needed to move a considerably greater distance, Krista 
prompted the girls by asking what they should try next. Celina suggested they try 0.5. The small 
incremental change was still not enough, so Krista suggested they try 2. Two rotations moved the 
robot too far. 

Krista: What is between 0.5 and 2?  

Celina: 5.  

Suspecting that Celina’s response indicated that she and her teammates were unable to summon an 
appropriate interpretation of decimal numbers, Krista drew a simple number line on the whiteboard. 

Krista: What is between 0.5 and 2? 

Celina: Oh! 1.8.  

The number Celina chose was close to the number of rotations actually required, which indicated 
she understood the meaning of 1.8. In the exchange above, we take Celina’s immediate and 
satisfactory response to the repeated question as evidence that Krista was justified in her suspicion 
that the learners were lacking an appropriate interpretation for understanding decimal numbers – or, 
at least, were unable to extend whatever interpretations that had available to a situation in which 
distance was measured in wheel rotations. Coding the robot to move compelled the learners to 
elaborate their understandings. Invoking the number line appeared to provide an appropriate 
metaphor for helping Celina understand.  

In the following sequence of images and descriptions, we summarize how the task of coding the 
robot to move into a room calls for all four of Lakoff and Núñez’ (2000) representations of 
arithmetic. To begin, the metaphor of arithmetic as an object collection is used in most counting 
situations, whenever the forms being counting are perceived as discrete objects. It is by far the most 



common interpretation of number through the task of assembling a robot, by simple virtue of the 
fact that the robots begin as large collections of separate items. Less obviously, it is also called for 
in coding moments as programmers translate complicated actions into discrete steps or instructions. 
And more obscurely too, such conceptual moves as the discretizing of wheel turns, so that they can 
be counted and thus used as a tool in programming, might be argued to rely on this metaphor. 
Figure 1 (left) presents an instance of this metaphor, showing that 2 turns is less (i.e., forms a 
smaller set than) 5 turns. 

 

Figure 1: Arithmetic as object collection. Number of wheel rotations | Arithmetic as Object 
construction – combining portions of wheel rotations into single objects 

Figure 1 (right) shows how the metaphor of arithmetic as an object construction might be 
encountered when programming a robot to move. Celina wanted a larger wheel rotation than 0.4, so 
she added an incremental amount of 0.1 wheel rotations to make 0.5 wheel rotations. Contrasted to 
the previous metaphor, in this instance, wheel turns are not perceived as discrete objects, but as 
parseable continuities. Those parsed elements can then be assembled into an appropriate object to 
move the robot a precise distance. 

The measuring stick metaphor also featured prominently in the children’s programming, and was 
particularly prominent in the frequent need to interpret wheel turns in terms of actual distances (e.g., 
when the phrase “1 wheel turn” was deployed not as a description of movement but was a reference 
to a distance of roughly 12 cm). Figure 2 (left) in reference to the instance in which the room of the 
hall was shorter than approximately 1.8 wheel turns. In this instance, programming the code block 
requires understanding measurement. 

 

Figure 2: Measuring Stick: The length of hall | Arithmetic as an object along the path. The robot 
travels further with 2 than 0.5 

Figure 2 (right) shows how programing the robot to move draws upon the metaphor of arithmetic as 
on object along the path. In this case, starting place becomes a critical element is that, for example, 
occurs when the robot enters the room and recurs in the opposite direction when the robot leaves.  



To re-emphasize, we observed each of Lakoff and Núñez’ four metaphors of arithmetic to be 
present in programming the robot to move a required distance in the room. The ability to identify to 
the particular metaphor(s) that a situation is calling for is a critically important teaching 
competence, as Krista demonstrated in the interaction with Celina. Re-interpreting that brief 
episode, Krista recognized that Celina was not interpreting number as a distance (i.e., she was not 
using a measuring stick metaphor), and thus reminded her of that metaphor by offering the image of 
a number line. No explanation other than an image of number that fitted the application at hand was 
required. 

Arithmetic Topic 2 – Moving from “additive” thinking to “multiplicative” thinking. 

The need for appropriate metaphors and images of number isn’t sufficient for making sense of that 
entire episode, however, closer analysis reveals a further issue with the children’s arithmetic, 
namely the tendency to default to additive actions rather when multiplicative actions would have 
been more suitable. That episode began with the group’s realization that an entry of “0.4” moved 
the robot only a small portion of a desired distance. Asked what else they might try, they increased 
the distance only incrementally by 0.1 (to 0.5) rather than the necessary factor of (roughly) three. 

This same tendency to default to additive actions when multiplicative action would have been more 
productive was witnessed many times across many groups over the four-day project. The additive 
thinking video (see https://vimeo.com/144820583) provides a window into any instance of the same 
phenomenon. In this case, Gene, who was on the floor in orange, is figuring out how many blocks 
of code were needed for the program. As he counted “one, two, three, four, five, six,” he tapped 
each vertex and side of the yellow triangle, finally announcing that six steps are needed. Gene’s 
step-by-step of the same two steps (straight, turn, straight, turn, straight, turn sequence) is an 
example of additive thinking – that is, of construing the situation in terms of a sequence of 
increments rather than a repetition. 

Phrased in terms of coding, Gene opted to repeat the same line of instructions six times rather than 
employing a loop that ran six times. This happened in spite the fact that he and his group mates had 
learned how to use loops the day before when they programmed their robot to dance. 

In fact, only one of the 8 groups in the class used a loop for the polygon task – suggesting that the 
move from additive/increment-based thinking to multiplicative/loop-based thinking is more 
conceptually demanding than is often assumed. The additive to multiplicative thinking video (see  
https://vimeo.com/144826969) further illustrates this point, as the classroom teacher along with 
Krista attempted to help Liam program with loops. Liam, on the left, identified that a pentagon has 
three sides. When asked to count the sides, he walked around the pentagon counting aloud and 
announced “5 times.” Krista explains that 5 times is the number of times to repeat the two block 
codes (go straight and turn) in the loop. In response, Liam exclaimed excitedly, “Yes!” 

In the same clip there are two boys who were fine-tuning their robot’s program to follow a triangle. 
Their robot never stopped, which indicates that they are using an infinite loop – suggesting that they 
are making use of a concept of “repeating,” but likely not a concept of multiplication. After three 
attempts at tracing out a triangle, they still hadn’t crafted a program that would stop their robots. 

Davis and Renert (2014) have identified a number of common instantiations for multiplication that 
are encountered in elementary school classrooms, including grouping, hopping, repeated sums, 



stretching and compressing, array- and area-making, and making combinations. Looping, it seems, 
is another, distinct instantiation of multiplication that is particularly powerful in the activity of 
programming – in a manner, we suspect, that might be used reflexively to support mathematics 
learning. Figure 3 below, illustrates two programs for following a triangle. Additive thinking is 
found with the sequential accumulation of six programming blocks: move forward, turn, move 
forward, turn, move forward turn. Multiplicative thinking requires recognizing that the triangle can 
be traced by repeating the move forward and turn blocks three times in a loop. In the exchanges 
above, Liam appeared to be developing fluency with multiplicative thinking.  

 

Figure 3: An additive and a multiplicative program for moving a robot in a triangle 

Across the participants there was a pervasive tendency to program robots to trace out polygons as a 
sequence of same-steps rather than as a repetition of a set of steps (i.e., as enabled with a loop). This 
tendency was not easily interrupted through instruction, which provides evidence of the complexity 
of thinking multiplicatively. Even at the end of the four days, during the final challenge, only two of 
the teams had managed to appreciate the power of loops sufficiently to incorporate them into their 
programs. Not surprisingly, theirs were also the robots that performed the best. In one of these 
cases, the code for the winning robot (see https://vimeo.com/145404678) involved a loop 
determining if a fire is present, announcing “Yes” or “No” as appropriate, and activating an arm 
motion to dump retardant if “Yes.” 

Part of the reason that we dwell on this point is that the operation of multiplication is, arguably, the 
most important concept in grade-school mathematics. Multiplicative thinking is the cornerstone of 
proportional thinking, which is foundational to advanced mathematics for reasons that include the 
access it affords to an extended range of numbers (for example, larger whole numbers, decimals, 
common fractions, ratio and percent), its role in recognizing and solving a range of problems 
involving direct and indirect proportions, and the power it offers with its prominent place in school-
based concepts and processes (Education and Training, 2013). In brief, multiplicative thinking is a 
key in the transition from early ideas to later ideas (see, e.g., ACME, 2011, p. 20).  

Closing remarks 
Our preliminary findings suggest programming robots can support learning mathematics. In the 
episodes reported, the tasks of programming robots required more than parsing complicated actions 
into singular direction; they entailed flexible engagement, Lakoff and Núñez’ (2000) conceptual 
metaphors and mathematical models.  

Computer programming aligns closely with concepts and structures in mathematics and we suspect 
that it might provide other powerful instantiations for mathematical concepts that have not yet been 
noticed. That suggestion is perhaps not surprising, given the mathematical roots of computer 
programming. However, to our reading, it is not an aspect of programming that has garnered much 
consideration in either mathematics education or the technology education literature. Considering 



that mathematics literacy and competency with coding are of growing relevance, engagement with 
emergent technologies can complement and co-amplify mathematics learning, and contribute to 
evolving understandings of what “basic” mathematics might be for our era. 

With regard to important complementarities between learning mathematics and learning to code, the 
Lego MindstormsTM EV3 robots and the associated programming language provide a powerful 
instance of multiple solutions. They afford tremendous flexibility for accomplishing a range of 
tasks, from the trivial to the complex. None of the coding tasks set for the children in our study had 
pregiven or optimal “solutions.” Despite that – or perhaps because of that – the children were able 
to engage in manners that they could recognize as successful, even when “complete” solutions were 
not reached. With incremental tasks and iterative refinements, children were able to learn more 
sophisticated and efficient methods for programming the robot. It is not difficult to imagine a 
mathematics class with similar standards of success. 

That said, it is not a coincidence that the winning robot had the most efficient and sophisticated 
program of the group. Some answers are better than others, and those answers appear to reflect 
powerful mathematical thinking. Our future longitudinal research will investigate how children’s 
understandings of mathematical concepts and programming robotics develop over several years.  

We believe that the results of this study underscore the importance of developing and implementing 
a computer programming curriculum in schools. Coding is an emergent literacy that can amplify 
other critical literacies, while affording access to a diverse range of cultural capitals. The reasons to 
teach coding go beyond the technical and economic; for us, they are fundamentally ethical. 
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This paper explores the potential impact of a full teacher-driven design and implementation cycle of 
an electronic book (c-book). We analyse data gathered from a school case study and identify the 
potential of the affordances of the c-book technology that allow the integration of various 
mathematical widgets and reflective activities. Our conjecture is that encouraging flexibility on 
playful tasks and reflection on ‘bridging’ activities early in the structure of the book prepared the 
students to more complex constructionist tasks around the concept of Reflection. Looking into the full 
cycle from design to evaluation this study demonstrates a successful integration of a digital resource 
in the mathematics classroom and highlights some of the successful components of the resource 
namely: playful activities for students, matched with carefully designed bridging activities, followed 
by constructionist activities that allow deeper exploration of the subject matter. 

Keywords: Mathematical creativity, e-books, transformations, reflection, bridging activities.  

Introduction 
There is a lot of research and many projects that focus on developing digital resources for the teaching 
and learning of mathematics. Issues though regarding their successful use and integration in the 
mathematics classroom still remain (Clark-Wilson, Robutti & Sinclair, 2014; Geraniou & Mavrikis, 
2015). One of the issues is whether and how students who may become experts in using a digital tool 
reflect and consolidate their mathematical knowledge (Geraniou & Mavrikis, 2015). Teachers then 
may not be convinced of the potential value of using digital tools in their mathematics lessons. In our 
view, a successful integration of such tools also involves the successful transition from interacting 
with a digital tool to a metacognitive understanding on behalf of the students that the interaction can 
support their knowledge ‘outside’ the tool.  

Our work continues to focus on building ‘bridges’ to the maths involved (and may be ‘hidden’) in 
digital resources. We are looking into how we can encourage the consolidation of knowledge within 
digital tools and the ‘transfer’ of knowledge aiming at finding strategies to integrate them successfully 
into the classroom and the learning process. We define bridging activities as short tasks or questions 
that are used to intervene and encourage students to reflect upon mathematical concepts and problem-
solving strategies they use throughout a sequence of activities (or simple interactions) with a digital 
tool. Such activities could take various arrangements from questions or prompts within the digital 
tool to paper-based worksheets or verbal teacher’s interventions. In this paper, we focus on an 
electronic book resource and, particularly what the Mathematical Creativity (MC) Squared project 
(http://mc2-project.eu/) calls ‘c-books’, which are extended electronic ‘creative’ books that include 
widgets i.e. objects, other than text ranging from simple hyperlinks or videos to a broad range of 
interactive digital environments for mathematics such as GeoGebra and other microworlds (c.f. 
Kynigos, 2015). The project also includes an authorable intelligent support and data analytics engine 
that allows designers (e.g. teachers) to author the feedback that the system could provide to a student 
and the data they would like to see from their interaction (Karkalas & Mavrikis, 2016). The idea 



 

behind the MC Squared project is to focus on social creativity in the design of digital media intended 
to enhance creativity in mathematical thinking (CMT). Researchers collaborating with math 
educators and teachers join Communities of Interest (COI) that work together to creatively think and 
design c-book resources reflecting 21st-century pedagogy for CMT. 

The focus of the small study presented in this paper has been on designing a c-book including 
appropriate resources, such as bridging activities (Geraniou & Mavrikis, 2015) with the aim of 
enabling students to make connections to the mathematical concept the c-book is designed to teach 
them, in this case, Reflection1. We conjecture that designing resources that encourage flexibility on 
playful tasks and reflection early in the structure of the book prepared the students to more complex 
constructionist tasks. Looking into the full cycle from design to evaluation we demonstrate a 
successful integration of the c-book in a mathematics classroom and highlight some of its key 
components namely: playful activities for students, matched with carefully designed bridging 
activities, followed by constructionist activities that allow deeper exploration of the subject matter.  

Theoretical framework 
CMT has been given many definitions by various authors (e.g. El-Demerdash & Kortenkamp, 2009; 
Mann, 2005). In the MC Squared project, CMT has been drawn on Guilford’s (1950) model of fluency 
(the ability to generate a number of solutions to a problem), flexibility (the ability to create different 
solutions), originality (the ability to generate new and unique solutions), and elaboration (the ability 
to redefine a problem). CMT has also been approached as a thinking ‘process’ that takes place in the 
context of a mathematical activity in order to produce a ‘product’ (e.g. a solution to a mathematical 
problem). As such the product and process are intertwined. For example, the construction of a 
geometric artefact is seen as a product that was started as a response to a task (problem), continued 
with the identification of a set of points, lines etc. that are underpinned by some properties that provide 
an answer to the task (product). Taking the above CMT’s aspects as a starting point, we align our 
views to Papadopoulos et al.’s (2015; 2016) who consider CMT as the (i)‘construction’ of math ideas 
or objects, in accordance to constructionism that sees CMT being expressed through exploration, 
modification and creation of digital artefacts (Daskolia & Kynigos, 2012), (ii) Fluency (as many 
answers as possible) and Flexibility (different solutions/strategies for the same problem) and (iii) 
novelty/originality (new/unusual/unexpected ways of applying mathematical knowledge in posing 
and solving problems). Even though CMT seems to be at the core of mathematical thinking, its 
development through the use of exploratory and expressive digital media hasn’t been thoroughly 
investigated (e.g. Healy & Kynigos, 2010) and the question about the best possible strategies for 
developing appropriate resources for integrating such digital media and promoting CMT inside and 
outside of the classroom remains. 

  

                                                 
1 To distinguish between ‘reflection’ as a thought process and the mathematical concept ‘Reflection’, we will use capital 
letter ‘R’ for the mathematical concept. 



 

Authoring c-books 

As mentioned above, c-books are special electronic books that are designed within the Digital 
Mathematics Environment (DME)2 which has been designed to allow teachers to create sequences of 
activities involving a number of widgets. It allows teachers to change the feedback messages students 
receive during their interactions with the c-book and stores all user interactions and scores. As part 
of a teacher training course, and based on our previous work, we encourage teachers to use DME’s 
affordance to design bridging activities that promote students’ reflective thinking on their interactions 
aligned with the various widgets. We expect these activities to ‘bridge’ the students’ transition to the 
mathematical concepts, which the digital resource is designed to support  (Geraniou & Mavrikis, 
2015). These are questions presented and directly linked to the widget’s tasks and can be viewed as 
interventions that encourage students’ reflections on their interactions throughout a sequence of tasks, 
but also introduce and encourage the use of mathematical notation, not necessarily presented within 
the widgets. Authoring bridging activities within the digital medium of a c-book and recognising the 
potential value to students’ learning progress and outcomes may encourage teachers to use such 
digital media more often. 

The case of a c-book on reflection 
The c-book on Reflection consists of a number of pages involving different tasks mostly in GeoGebra. 
This c-book (as opposed to others created in COI meetings, during which COI members brainstormed 
about ideas and activities that could be part of a c-book on a specific mathematical topic), was initially 
created by the class teacher in this study, who already had a number of prepared resources, which 
they put together using the affordances of the DME platform to form the c-book. These were resources 
like book chapters and GeoGebra worksheets. The c-book was also shared with the COI in an effort 
to gain constructive feedback and improve it. 

The learning objective for the c-book was to remind students of the definition of Reflection, which 
had already been introduced about seven months before, define the Reflection (‘mirror’) line, 
consolidate students’ prior knowledge and develop their understanding of the concept of Reflection. 
Even though the c-book technology allows a non-linear browsing of the c-book and students can work 
on any activity they want, this c-book was designed (and used) as a linear progression for constructing 
students’ knowledge on Reflection by: (i) revising prior knowledge on Reflection through a series of 
multiple choice questions on certain reflected images where students had to decide which of the four 
images was the correct reflected image, (ii) revising and practicing on the GeoGebra widget (Figures 
1A and 1B), (iii) challenging their understanding of Reflection through a competition task (Figures 
1C and 1D) that promoted ‘flexibility’ in their solving approaches, (iv) challenging further their 
understanding of Reflection through a problem that challenged further their understanding and took 
them away from the standard style of questions such as ‘Reflect this shape across the given Reflection 
line’ (by not giving them the Reflection line, adding a constraint of the squared frame and giving 
them a story context to think about) (Figures 1E and 1F), and finally (v) a final assessment task mostly 
for those who finish faster aimed at recapping what students should know at the end of this c-book 
unit. We need to emphasize that all GeoGebra tasks were presented as bridging activities through the 

                                                 
2 See http://ws.fisme.science.uu.nl/dwo/site/index_en.html and http://mc2-project.eu/ 



 

use of added text and reflective questions (see Figures 1A, 1C and 1E) on the side. These were 
designed as such to challenge students’ thinking and understanding of Reflection and help them 
consider carefully their interactions rather than simply undertake the tasks. The feedback provided to 
students was of different types: (i) as a tick or cross for correct and incorrect responses, (ii) as a score 
for the GeoGebra competition task, which identified the number of correct Reflections students 
reached within the 5 minutes timeframe set by their teacher (Figure 1D) and (iii) as a written text to 
provoke their problem solving. 

 
Figure 1: (A – F) Excerpts from the Reflection c-book and (G) a sample solution of (F) 

Data collection 
The aim of this case study was to explore the potential of both the Reflection digital book in the light 
of the affordances of the overall c-book technology i.e. beyond the ability to sequence activities, the 
potential for automated feedback and reflection that could be used to support bridging activities. The 
methodological tool used was that of a “design experiment” (Collins et al., 2004), that could act both 
as a way to ‘engineer’ and support the didactical situation and to systematically study it (Cobb et al., 
2003). In this case, we, as a research team, collaborated with a teacher but left the decisions and 
responsibility of the classroom to the teacher. 

Twenty-one 11-12 year old (Grade-7) students together with their class teacher and two researchers 
participated in the study, which was completed in two lessons in the school’s computer lab. The 
students had been introduced to the concept of Reflection earlier in the year by working on some 
simple activities involving reflecting 2D shapes across the Reflection line. According to the teacher, 
the aim of these two sessions was to revise and consolidate their knowledge, but also to challenge 
their mathematical thinking against the concept of Reflection. The plan for the first lesson was (i) to 
remind them of what Reflection is and introduce the mathematical term of ‘Reflection line’ as 
opposed to ‘mirror line’ when they were first introduced to Reflection, (ii) introduce the c-book 
technology and (iii) allow students to familiarize themselves with GeoGebra through a challenging 
task, which acted as a bridging activity to recap prior knowledge. It involved working on some 
bridging activities, which included mathematical questions (such as ‘find the coordinates’) and 
reflective questions (such as ‘what was your strategy?’) within the platform. At the end of the first 
lesson, most students had reached the ‘Church Challenge’ task (see Figure 1E and 1F). During the 



 

second lesson, students continued to work on the ‘Church Challenge’ and then answered a 
questionnaire to evaluate the c-book.  

In addition, at the end of the second lesson, they were given a questionnaire to share their feedback 
on their learning experience with the Reflection c-book. The questionnaire was a Likert multiple-
choice questionnaire consisting of questions such as: (1) How satisfied were you after completing the 
c-book activities?, (2) How easy to use do you think the c-book is?, (3) How free did you feel to 
experiment with the c-book and try out your ideas?, (4) I feel I understand Reflection now. Another 
two questions (5 and 6) gave them options to pick on their thoughts on the c-book and their preferred 
features. The questionnaire finished with three more questions to request suggestions from students 
(out of the scope of this paper).  

Researchers took the role of ‘participant observers’ focusing on students’ interactions with the digital 
medium and taking field notes. Besides working with the researchers and other COI members to 
design the Reflections c-book, the teachers’ role was to offer assistance in technical issues when 
required during the two lessons and ensure that all students were on task and answered the bridging 
activities. Our data consists of the logged answers in DME and voice recordings as students 
elaborated on their interaction and answers. The data analysis was carried out by retrieving students’ 
interactions with the c-book from the system and interpreting their responses against the CMT criteria 
presented earlier and by going through their answers on the questionnaire.  

Results 
The main outcome based on the data from the bridging activities, in particular, was that students were 
encouraged to reflect on the GeoGebra task from the start of their interactions. The teacher reminded 
students of the reflective questions (Figure 1A) and encouraged them to record their answers. The 
designed automated feedback supported all students to identify correctly the missing coordinates for 
the ‘F’ shape, its Reflected image and the equation of the Reflection line. In this first bridging activity, 
students were reminded of what Reflection is and the definition of the ‘line of Reflection’. Both these 
terms were also introduced to the whole class and discussed with the class teacher at the start of the 
first lesson. But, we envisaged the repetition would give students a sense of familiarity and they would 
eventually start using mathematical terms in later tasks and would adopt mathematical ways of 
thinking. Fourteen (14) of the students provided sensible answers to the bridging question in relation 
to their strategy. Looking at students’ responses to the bridging activity questions for the first couple 
of GeoGebra tasks, students were mostly using informal terminology: 

Student: we have to flip the shape. 

Student: count how many down from the mirror line. 

But, in later bridging activities questions, students started to use mathematical terms, such as “the 
reflected church” or the “reflection line”. For the question on what they notice when they move the 
‘F’ shape, their responses were rather superficial: 

Student: if you move the green shape, the orange shape moves with it. 

They seemed to have noticed that the two shapes (green and orange ‘F’) are linked, but only 2 were 
able to articulate that they maintain the same distance from the Reflection line. Retrospectively, 
observing the students talking about their strategies, it might have been better to include some explicit 



 

scaffolding questions here such as “What is the distance from the ‘F’ shape to the reflection line?”, 
“What do you notice?” etc. These could be followed up by the teacher to clarify what reflection is 
and how the reflected images are defined. 

The bridging activities questions revealed students’ solving strategies and consequently their CMT. 
For the Competition task, students claimed to use three different strategies: (i) counting boxes across 
and down, (ii) tilt their head so that the reflection line becomes vertical and (iii) imagine using tracing 
paper on the screen. In this way, students demonstrated not only that they can come up with some 
original (for them) solutions but that they can also provide elaborate reflections on their strategies, 
which is linked to the originality/novelty CMT criteria described earlier. In retrospect, the c-book 
could have been designed to ask students for different strategies after they come up with one to 
challenge further their CMT in terms of the fluency and flexibility criteria.  

Asking students about their strategy seems to promote reflection on their actions that helped them 
reach a solution. In particular, the Church Challenge (Figures 1E and 1F) posed a problem that ignited 
students’ thinking ‘process’ and resulted in a ‘product’, i.e. the reflected church image. In all the 
previous activities, students were given the Reflection line and their aim was to reflect a given shape. 
On the contrary with the Church challenge, students had to find the Reflection line and reflect the 
church image within the square town (see Figure 1G). By writing down their strategy, they recognised 
the solution ‘steps’ they took, questioned their actions and corrected them when needed. This open-
ended problem allowed for exploration, construction of mathematical ideas and flexibility, which are 
all aspects we used to define CMT earlier (e.g. Papadopoulos et al., 2016).  

Sixteen students (16/21 or 76%) managed to complete the task, whereas the rest ran out of time in the 
lesson. 10 of those got a correct answer. To reach the solution or the ‘product’, students produced 
creative solving strategies, which they were asked to justify. These strategies involved imagining a 
tracing paper used on the screen to reflect the church (14% or 3/21), which could be considered 
original in this context; trial and error technique by reflecting the church in all 4 quadrants and then 
thinking about reflecting each image within a quadrant to the corner of that quadrant to see which one 
fits within the square town (33% or 7/21); or another trial and error technique by constructing different 
Reflection lines and reflecting the church in one or more quadrants (52% or 11/21, see Figure 1G). 
These two latter strategies demonstrate students’ flexibility through the CMT criteria lens.  

As far as the questionnaire is concerned, we are mostly interested in this paper on question #4 where 
most of the students (85% or 18/21) responded with an answer above 4 in the Likert scale. In relation 
to their thoughts on the c-books about 60% (13/21) answered that it helped them see the idea of 
reflection in different ways. This is really encouraging as one of our objectives was indeed to help 
students expand their understanding. About 43% (9/21) said that it included problems that they would 
not have tried to solve. This is also interesting as we want to encourage students to appreciate their 
mathematical abilities. In the open-ended questions, most students complimented the affordances of 
the c-book by commenting on enjoying the free explorations, testing of their ideas, experimenting, 
working on new questions and being challenged. While some students had comments for aesthetic 
improvements (fonts, games, colours etc.) three (3) students made comments that showed that they 
appreciate the advantages of digital technologies: 



 

Student: the digital book help[s] because you could have actually test[ed] out your ideas and 
improve if it’s wrong or not. 

They recognised the dynamicity of such resources and how seeing the immediate feedback on their 
actions helps them validate their solution. At the end of the two lessons, the teacher also shared his 
reflections with the researchers and later with the COI. The teacher was impressed with how students 
were so engaged with the c-book, compared to past lessons without any digital resource and 
commented on the value of bridging activities and shared ideas on how to improve them. 

Conclusion 
This paper provides a good indication of the value of having a digital medium that combines free 
exploration, but encourages students to reflect upon their actions and make a link between their 
interaction in a digital environment and their mathematics through bridging activities. Such activities 
focus on mathematical terms, the definition of concepts, but also the justification for their solutions, 
throughout their work and ‘bridge’ the actions to solving a problem in the digital tool to the underlying 
mathematics (which could otherwise be ‘lost’).  

Authoring activities using various widgets, designing Bridging Activities and in general, participating 
in the creation of the Reflection c-book re-enforced the teacher’s keenness to continue to use digital 
technologies in their classroom. As a result of this study, the teacher and the COI revisited the c-book 
that led to further improvements in the book. The most notable of those was breaking down the 
bridging questions to smaller questions with guidance, and using the feedback affordances to 
encourage flexibility in terms of the strategies, as an aspect of CMT. 

To conclude, this case study demonstrates how the c-book technology can be integrated into the 
mathematics classroom and promote a positive learning experience through the use of playful 
activities for students, matched with carefully designed bridging activities, followed by 
constructionist activities that allow deeper exploration of the subject matter.  
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In this paper, we report on a project about developing mobile applications for learning mathematics 
through game playing. Several different types of applications were developed in a collaboration 
between universities in Norway and Slovakia, and between teacher education and information 
science. We give some preliminary results on how two of these applications were received and used 
by Slovakian pupils. 
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Introduction 
Mobile devices, such as smartphones, tablets and laptops, have become an integral part of our lives. 
Teachers and pupils use them daily for communication, searching for information or for 
entertainment. Pupils today, born from 1990 to 2010 and recognized as generation Z, are the most 
technologically advanced generation, often known as digital natives. They were born into the era of 
the Internet and Facebook; they always want to stay connected with their friends and to use high-
speed digital devices (Baker & Evans, 2016). Hence, the wide spread of mobile devices causes a 
natural social pressure and challenge for educators to include these devices into education, to support 
learning. Computers, laptops, and netbooks have all been added to classroom settings with the hopes 
of revolutionizing education, promising vast improvements to pupil outcomes. These technologies, 
largely, have left education unchanged and in a continual state of need for improvement (McQuiggan, 
Kosturko, McQuiggan & Sabourin, 2015). Mobile learning offers a novel approach to reach current 
pupils. By the term mobile learning we follow McQuiggan, Kosturko, McQuiggan and Sabourin 
(2015, p. 31).  

It is anywhere, anytime learning enabled by instant, on-demand access to a personalized world 
filled with the tools and resources we prefer for creating our own knowledge, satisfying our 
curiosities, collaborating with others, and cultivating experiences otherwise unattainable. Mobile 
learning implies adapting and building upon the latest advances in mobile technology, redefining 
the responsibilities of teachers and students, and blurring the lines between formal and informal 
learning. 

Mobile learning offers flexibility in when learning takes place, personalization of content, and gives 
pupils experience with contemporary technology and relevant skills for the future. So unsurprisingly, 
mobile learning has been considered as the future of learning or as an integral part of any other form 
of educational process in the future (Trifonova, 2003).  

In June 2016, gaming apps were the most popular apps based on availability, as about 23 % of all 
apps available in the Apple App Store fit in this category. The second most popular category was 



Business (10.22 %), closely followed by the Education category (9.21 %) (‘Most popular’, 2016). 
Shuler (2012) has analyzed the Education category from Apple App store. In 2011, more than three 
quarters (77 %) of the top selling apps targeted preschool or elementary aged children. Early learning 
was by far the most popular subject/skill-set (47 %), followed by mathematics (13 %). Drigas and 
Pappas (2015) have analyzed the most representative studies of recent years (2002 - 2013), involving 
online and mobile applications and tools for mathematics as well as their effect in the educational 
process. The results of the studies revealed that online and mobile learning applications motivated 
pupils, making mathematics instruction more enjoyable and interactive than ordinary teaching 
practices. The analyzed applications were targeted towards one specific area of mathematics, like 
graphs and functions, arithmetic, algebra, geometry, problem solving or mathematical programming 
and they were available only in English or Spanish. In light of this, we see it as an important 
contribution to ongoing research into mathematics education to engage in projects that examine the 
process of developing applications for mobile technologies as well as studying the effects they could 
have on learning. Also, providing tools readily available for school teachers was an important factor 
for running the Apps in Math project, as detailed in the next section. 

Design and implementation of the Apps in Math applications 
The main goal of the Apps in Math project (AiM) was to develop 25 applications in 15 months for 
supporting teaching and learning mathematics in lower and upper secondary schools in Slovakia and 
Norway. In Norway, pupils have relatively good access to technology, compared with European 
countries. Almost 90 % of pupils use Internet in schools but the most common use is probably the 
computer and not mobile platforms. After school hours, as much as 94 % of all children aged 9-16 
have access to a mobile phone, and 83 % have a smartphone. (Medietilsynet & Trygg bruk, 2014) 
Several schools have a policy of buying one laptop for each child in school. Most publishing houses 
have their own apps and games connecting to their textbooks, and there are usually many choices 
teachers can do regarding software for their pupils. Much is not translated into Norwegian, but this is 
generally not seen as a big difficulty. 

In Slovakia not all pupils have their own smartphone or tablet; the further east one goes, the less 
pupils have their own mobile device (Michálková, 2016). In the primary and secondary schools – the 
typicality is to have three computer rooms per school, in which Informatics is mainly taught, so there 
is rarely room for mathematics lessons in these specialized classrooms. Pupils usually do not have 
their own PC. During 2013-2015, thanks to national project supported by EU funding, 22 000 tablets 
were given to Slovak schools, which usually meant set of 30 tablets per school. Pupils in one school 
are sharing those tablets; teachers bring them for lesson, at the end of the lesson pupils have to return 
them, because they will be used in other classrooms. In Google Play or App Store there are very few 
mathematical apps in Slovak language that are intended to be used in mathematics classes at lower 
or upper secondary schools. So there is a need for applications, which teachers could use in math 
classes and for different levels of schooling. 

The applications (modules) developed within Apps in Math project focus on various mathematical 
topics that are part of Slovak or Norwegian curriculum for pupils aged 9-19. The development of 
modules went in coherence with Design based research (Wang & Hannafin, 2005) and its iterative 
cycles. The mathematics teacher educators from Trondheim and Bratislava have cooperated with 
academics and bachelor students of applied informatics at the Comenius University in Bratislava. 



Slovak bachelor students in Applied Informatics have programmed the modules based on the 
specifications from mathematics teacher educators and master and PhD students, as part of their 
bachelor thesis in informatics. The modules were tested extensively within the local participating 
groups in Slovakia and in Norway, as well as with pupils in Slovak and Norwegian schools. Reflective 
analysis of problems and obstacles was done and changes were implemented after each testing. All 
modules are part of one framework application called Apps in Math and they are divided into five 
main categories: Numbers, Functions, Geometry, Chance and Logic. Apps in Math is available for 
Android and iOS1 platform and in Slovak, Norwegian and English language. Ebner (2015) has 
divided applications into four categories: stand-alone learning apps, game-based learning apps, 
collaborative apps and learning analytics apps. Apps in Math has the characteristics of being game-
based learning application. Diah, Ehsan and Ismail (2010) have introduced the framework for mobile 
educational games consisting of four important segments: Learning Theories, Mobile Learning 
Approach, Games Development Approach and Learning and Education Medium. Most of the 
modules in Apps in Math apply the constructivism as the learning theory and for the mobile learning 
approach the games use activity-based themes for informal and lifelong learning.  

Case studies 
This section describes two case studies (Study 1 and Study 2) that were conducted to evaluate the 
effectiveness of mobile learning with Apps in Math application in real-world settings, with lower and 
upper secondary school pupils. We have chosen the SAMR-model for a quick categorization of the 
modules, where digital technologies can be placed on a scale from just replacing already existing 
practicing to facilitate types of tasks that could not have been done without the digital tools (Hudson, 
2014). Limited resources and limited time made it necessary to choose for evaluation those modules 
that were closest to being finished. The module Lucky Hockey is based on the classic learning game 
Green Globs (Dugdale, 1982), and several versions of this game has been implemented over the years. 
The pupils who play the game are going to shoot a hockey puck across an ice hockey arena in order 
to collect as many coins as possible. The coins are shattered around the play field, sometimes in a 
random manner, sometimes to provoke a particular shot. The pupil shoots by entering a function 
expression, using the touch screen controls to alter the parameters of the function (Figure 2). By 
playing this game pupils should understand what impact the parameters of the function have on a 
graph. Using the SAMR-model we can say that Lucky Hockey acts as a direct tool substitute, but that 
the functional improvement allows for a more dynamic and dual view of the representations of a 
linear graph and the corresponding expression. Hence we can say this app is an augmentation of 
traditional instruction. 

                                                 
1 http://www.project-aim.eu/eng/download 



   
Figure 1: Learn mode of Lucky Hockey  Figure 2: First level of Lucky Hockey 

The module House of cards focus on arithmetic and geometric sequences in two separated 
submodules called Arithmetricks and Geometricks. By playing this game pupils should discover 
relations between the terms of the sequence and be able to write down basic formulae related to these 
relations. The number sequences are displayed on playing cards. Both submodules have a Learn 
mode, in which basic principles of the sequence are explained. The pupil has to determine the number, 
which is added/multiplied to/with each of the following sequence terms (Figure 3). The pupil has to 
answer five tasks correct within the time limit. After 3 incorrect attempts the correct answer is shown. 
In the next three levels the pupil should select the card, which belongs to the empty red spot in the 
given sequence within time limit (Figure 4). In the first level first 3 terms are given and the pupil 
should select the missing card for 4th and 5th term. Again, using the SAMR-model on Arithmetricks 
and Geometricks, we note that the effectiveness and readiness of the app makes work with sequences 
easier than in traditional teaching, or teaching done with real cards. Hence this app too provides an 
augmentation over traditional instruction. 

  
     Figure 3: Learn mode of Arithmetricks        Figure 4: Third level of Arithmetricks 

The target group for the Lucky Hockey game study was Slovak pupils between the age 14 and 15 
(grade 9), who had had no experience in linear functions yet. The goal of Study 1 was to determine 
which aspects of the linear function concept students seem to approach more effectively through the 
use of the Lucky Hockey game. Time limited gaming (25 minutes) was meant as an adidactical 
situation (Brousseau, 1997). The adidacticity was promoted by giving the students full responsibility 
for the technology-supported exploration of mathematical tasks by retroacting only with the milieu 
and not the teacher (Sollerval, de la Iglesia, 2015). All together 54 pupils from 2 different schools in 
Slovakia participated in Study 1 in November and December 2015.  

The target group for the House of Cards game study was Slovak pupils between the age 16 and 17 
(grade 11), who had not learned about sequences yet and had no previous knowledge about arithmetic 



and geometric sequences. The goal of Study 2 was to determine which aspects of the 
arithmetic/geometric sequence concept students seem to approach more effectively through the use 
of the House of Cards game. All together 49 pupils from schools in Bratislava participated in Study 
2 in March 2016. They first played the Arithmetricks game (starting with Learn mode and 
consequently going through all three levels) for 25 minutes. The next lesson (in the same day) they 
played the Geometricks game with the same conditions. During both Studies 1 and 2 all pupils used 
an iPad. No pre-test was conducted since pupils did not have any knowledge on these topics. The 
post-tests were used to determine the level of acquired knowledge. All pupils of Study 1 and 2 
completed the post-tests as part of the evaluation, right after playing the game. The phase of 
institutionalization took place a few months after Studies 1 and 2, due to prescribed curriculum.  

A preliminary study was conducted in September 2015 with 77 pupils of different age (7 - 16), in 
order to introduce them the early versions of five different games, including the Lucky Hockey game. 
At this stage, the game was more or less fully working, apart from minor graphical issues. Part of the 
group (about 20 pupils) tested the Lucky Hockey game. During the testing pupils thought (while 
playing the Learn mode – Figure 1), that the expression is always y = 0x + b, because they were able 
to hit the goalie only by changing parameter b. This was an obstacle in Level 1, so we had to refine 
Learn mode and control the possible movements of a shooting player. Most of the pupils liked the 
game and did grasp the notion of linear function. In the preliminary study we also asked all the pupils 
about their interest in using smartphones or tablets to learn mathematics in school. Figure 5 shows 
their answers. 92.3 % of pupils, who answered positively on this question, also said that they would 
like to play tested games at home. Out of them 46.7 % in the situation when they are bored, 28.3 % 
for practicing mathematics and 25 % when doing homework. 

 
Figure 5: Interest of pupils to learn mathematics with mobile devices 

Results 
Figure 6 shows that pupils performed quite well in the post-test of Study 1. The average score was 
5.11 and median score of 5. Pupils could obtain a maximum of 7 points, which were obtained by 13 
pupils (24 %). Half of the pupils (50 %) scored 4-6.5 points, but there was also one pupil whose score 
was 0. The results indicate that most pupils learned the slope and intersection-aspects of the function 
concept on an acceptable level. The lowest score performance they had occurred in the last task, in 
which they were asked to explain what impact the parameters a and b in the expression y = ax + b 
had on the corresponding linear graph. Only 46 % of pupils explained it correctly. Nevertheless, they 
performed better in tasks in which they were supposed to draw a line in correspondence with a given 
equation (76 %) or select the correct line/equation out of four possibilities that is corresponding to a 
given equation/line (86 %). 



 
Figure 6: Box and Whisker Chart of Lucky Hockey Post-test Results 

Figure 7 shows the results of pupils in the post-test of Study 2. It is clear that these pupils performed 
better in the Geometricks post-test. Here, 50 % of the pupils obtained 8-10 points, while 10 was the 
maximum. 18 pupils (36.7 %) obtained maximum score, and one pupil obtained the minimum score 
of 2. The second lowest score was 5, also obtained only by one pupil. The lowest performance was 
in the last task in which they had to write down the formula for how to find the 10th term, if they knew 
the quotient (𝑞 =

1

3
) and the 1st term was given as 𝑎1. Only 51 % of the pupils wrote the correct 

formula and explained their answer correctly. The most frequent error was made by 7 pupils (8.2 %), 
claiming that 𝑎10 = 𝑎1.

1

310
. In all the other tasks pupils were able to determine the unknown term, if 

they knew specified values of the 1st term and the quotient, or specified values of two consecutive or 
two nonconsecutive terms, with successfulness of 89 % - 100 %. The scores in the Arithmetricks 
post-test were slightly lower, with an average 6.82 and 6 as a median score. 8 pupils (16.3 %) obtained 
the maximum score and two pupils obtained the minimum score of 3. Distribution of scores within 
the box chart shows that approximately one quarter of the pupils obtained the same score, 6 points.  

  
Figure 7: Box and Whisker Charts of Arithmetricks and Geometricks Post-tests Results 

Discussion and conclusive remarks 

We note from the results that most of the pupils did learn the important principles of linear functions 
or sequences at an acceptable level. However, only about 50 % of the pupils were able to answer the 
last questions correctly. This might have improved if the pupils were to play the games additional 
times. This hypothesis also arises from differences between how the pupils scored in Arithmetricks 
and Geometricks post-tests. The pupils did play the Geometricks game after playing the Arithmetricks 
game and since the principle is not very different, it could cause that they performed better in the 
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Geometricks post-test. As mentioned above, the phase of institutionalization took place 6 months 
after the Studies 1-2. While pupils who participated in Study 1 did not remember much about the 
linear function, it was different with pupils of Study 2. Pupils recalled the main principles of 
arithmetic/geometric sequence and told the teacher that it was not needed to explain it again: “It’s 
like in that game we have played.” From observation of the teacher we also note that traditional 
teaching of sequences went this time easier, probably also due to the mobile learning. The low 
performance on the last task of the Lucky Hockey post-test could be caused by the nature of the task. 
In all the previous questions we used numerals instead of parameters a and b, whereas on the last 
question some generalization and explanation were expected. While some pupils may have 
misunderstood the meaning of the parameters, some didn't give any reply at all or they only explained 
the role of one parameter. If the phase of institutionalization in form of, say, a discussion among 
pupils and a teacher took place right after the gaming activity, pupils’ understanding of the 
parameters’ role might have been better. The interest of pupils to learn mathematics with a mobile 
device was visible during testing both in Slovakia and in Norway. According to the results of the 
questionnaire it seems that most of the Slovak pupils would like to include mobile learning in their 
schooling. Testing of the other various applications from the project, not mentioned in this paper, also 
confirms that Slovak pupils and teachers consider mobile learning as a motivational way of learning 
and teaching mathematics (Michálková, 2016; Kapitulčinová, 2016). Mobile phone games in 
classroom is a novel idea and it might still cause the engagement of being a contemporary, “fresh” 
way of learning mathematics, which could be the reason of pupils’ and teachers’ enthusiasm.  

The results of Study 1 and 2 suggest that mobile learning can be both motivational for pupils when 
learning mathematics, and helpful when acquiring new knowledge effectively. Gamification of 
education has also reached mathematics instruction but resources and research are just beginning to 
surface. Ideas from the project are being further developed at both participating institutions. Current 
issues can include utilizing the small touch screen sensibly and also collecting data from how and 
when pupils use the applications. The mobile phone is a tool we can expect to see more in 
mathematics education as learning becomes further individualized and online. One lesson learned 
from this project is the difficulty of communicating mathematical ideas from the idea stage to the 
actual implementation. This became quite apparent when collaborating with different countries, 
different levels of study and different study branches. Another lesson from the project is that it turned 
out to be much easier to develop ideas with a narrow mathematical theme, than to make applications 
that facilitates exploration and discovery. 
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Khan Academy1 (KA) is an online learning system of videos and exercises that is freely available and 
widely used. In this study, 131 students in a mathematics education class were split into two groups. 
Both groups followed normal instruction, but the treatment group was introduced to KA and given 
the opportunity to substitute their compulsory mathematics assignment with exercises in KA. This 
paper presents the results of students' performance on a mathematics pre- and post-test. The results 
show a statistically significant learning gain for both groups, but there were no statistically 
significant differences between the two groups on either test. This suggests that using the free and 
automated KA for self-study and assigned work was as effective for students' learning as other 
standard resources. Student usage of KA beyond the compulsory exercises, however, did not correlate 
with results on the mathematics test, possibly due to the limited focus of the test.  

Keywords: Mathematics education, electronic learning, teacher education. 

Introduction 
Pre-service teachers in many countries struggle with mathematics. In Norway the TEDS-M study 
concluded that “a big problem in Norwegian teacher education is the poor academic skills of students 
in mathematics” (Grønmo & Onstad, 2012, p. 55, our translation). To address this challenge, the 
mathematics entry requirements for all Bachelor of Education students were increased from 2 to 3 
(where 2 is the passing grade and 6 the highest grade) in 2005 (UFD, 2005), and increased again to 4 
in 2016 (KD, 2014). 

Fluency in school mathematics is essential for studying mathematics education. A consequence of 
pre-service teachers’ weaknesses in mathematics is that class time has to be devoted to learning 
mathematics rather than mathematics education material. Khan Academy (KA) is one of many recent 
online resources offering structured sequences of videos and exercises. This paper reports on a first 
attempt to integrate KA as part of the mathematics instruction in a mathematics education class. More 
specifically, the research questions were: How do the learning gains of KA users compare to those in 
a control group? How much did the students use KA, and what were the associated learning gains? 

Khan Academy 
Khan Academy began as a collection of YouTube videos made by the founder Salman Khan to help 
his cousins with their schoolwork. These videos were later integrated into an online learning tool, 
which had 10 million unique users a month in 2014 (Murphy, Gallagher, Krumm, Mislevy, & Hafter, 
2014). Beginning in 2010, the Bill and Melinda Gates Foundation and Google made a significant 

                                                 
1 https://www.khanacademy.org/ 



investment in KA to develop new content and to translate it into other languages (Murphy et al., 
2014). 

One of the features of the tool is “missions”, which are suggested sequences of videos, exercises and 
other materials. Learners can reach a level of “practiced” on an exercise by correctly answering 3–5 
(depending on the exercise) questions correct in a row without using any hints. The level “mastered” 
is achieved by answering a mixed selection of questions a set time after the student has achieved the 
level “practiced”. Gaming features, such as “badges” and “energy points”, are designed to further 
incentivise completion of exercises and missions. 

A KA user can also be a “coach” for other users, such as a class of students. A coach can see the time 
used by each learner, exercises practiced and mastered, and suggest other exercises, which then 
appear on the learners’ KA home page.  

Related research 
There is a small but growing amount of research literature on use of videos for learning mathematics. 
These report that students see them as useful learning resources (Kay & Kletskin, 2012; Loch, Gill, 
& Croft, 2012; Loch, Jordan, Lowe, & Mestel, 2014; Wilson, 2013) and there is some indication that 
such videos can improve exam performance (Jordan, Loch, Lowe, Mestel, & Wilkins, 2012).  

Wilson (2013) reports on the use of a flipped classroom approach with a university level statistics 
class, which resulted in increased student examination performance. KA was one of the resources 
used by Wilson to supply content to the students. A similar flipped classroom approach was employed 
by the second author in a physics course for pre-service science teachers (Lindstrøm, 2015). KA was 
found to have added value to the course based on the following: student compliance with using KA; 
positive student attitudes to KA; a learning gain measured using a pre-test–post-test design; and useful 
data in KA for the instructor to tailor teaching to the students’ needs. 

In California, (Murphy et al., 2014) conducted an implementation study using KA in nine schools. 
Schools were of varying type (public, charter and independent) and level (elementary, middle and 
high schools), and were located in areas with a spread of social-economic profiles. The amount of 
class time spent on KA varied, and KA was not used outside of school hours. The teachers who used 
KA reported positive outcomes for student engagement, and an increased capacity to meet the 
mathematical needs of all students. There was a positive relationship between KA use and test scores 
as well as students’ attitudes towards mathematics. 

In all of the studies mentioned above, the learning gains cannot be uniquely attributed to the online 
resources, because a control group was not used and there may have been other unreported factors 
that influenced the learning. This project is a first attempt at a controlled study of mathematics 
learning with KA. 

Context 
The requirements to qualify as a primary teacher in Norway are a four-year Bachelor of Primary 
Education or a relevant bachelor degree and a one-year Diploma of Education. The majority of 
primary teachers take the Bachelor of Primary Education. In this programme, students must take 



courses in mathematics education equivalent to half a year of full time study, and have the option of 
taking additional courses in mathematics education to become a mathematics specialist teacher. 

The students in this study were in their second year of the Bachelor of Primary Education. By the end 
this year, the students had completed the compulsory mathematics education requirement, which was 
spread evenly over the first two years. Teaching comprised of 22 sessions of 2 hours and 45 minutes 
over the course of the academic year with occasional breaks for study trips, thematic weeks and two 
placement periods (of two and four weeks duration). There were also four 2 hour and 45 minute 
plenary lectures for the whole year group. 

Methodology 
Four of the five parallel classes were included in the study, and two instructors each taught two 
classes. The first author held two of the four plenary lectures and taught the fifth class that was not 
included in the study, but was otherwise not involved with the instruction of the students. The other 
authors were not involved in the instruction of the students in any way. 

One class from each of the two instructors was selected at random to be the KA group (the treatment 
group). There were 59 students in the KA group and 72 in the control group. In the third week of the 
first semester, the first author gave these two classes a short introduction to KA (10–15 minutes), 
which included showing how to set up an account, and an example of the videos and the exercises. 
The students were encouraged to get an account with the first author as coach. Only four students 
created an account in the first half of the semester, however, so the first author visited these classes a 
second time in the tenth week of the first semester to remind the students of how to set up an account. 
Throughout the first semester, the first author sent suggestions to the students for exercises related to 
the content in their mathematics education course both in KA and through the students’ online 
learning management system, which was the main portal for communicating with the students. At the 
end of the semester there was still only four students with an account. 

During the second semester, the students in the KA classes were given the option of completing  their 
obligatory mathematics assignment in KA or as a written assignment. The KA assignment consisted 
of reaching the level “practiced” in the following KA exercises2: Recognizing fractions 2; Finding 1 
on the number line; Equivalent fraction models; Naming the whole; Understanding multiplying 
fractions by fractions; Percentage word problems 1; Ordering fractions; Multiplying fractions by 
fractions word problems; and Converting multi-digit repeating decimals to fractions. The written 
assignment consisted of eight multi-part questions covering the same topics. For example two of the 
questions were: 

Write a number story for the following calculations and illustrate the last two:  
a) 13 × 0.8         b) 10,5 ÷ 0.3        c)  1

2
+

1

3
        d)  1

2
×

1

3
 

Convert to a fraction or a mixed number. Show your working.  
a) 0.375      b) 0.545454…      c) 1.88888…      d) 2.16666…      e) 0.461538461538̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

                                                 
2 KA is under constant development. These were the names of the exercises in the spring semester of 2015. 



The assignment included instructions on how to set up an account (identical to that given in the first 
semester), and included the names of the KA exercises. The first author also sent the exercises as 
suggestions (three per week for three weeks corresponding to when the topics were covered in class). 
For the final submission, 42 students chose the KA assignment and 17 the written assignment. The 
control classes submitted the written assignment. 

Progress was measured in all classes by a pre-test–post-test design using a 24-item mathematics test 
developed by the authors. The items were on mathematical topics associated with the second year 
mathematics education course, and all were within the scope of the grade 10 Norwegian mathematics 
curriculum (KD, 2013). The test contained: 11 items on fractions, decimals and percentages; 3 items 
on multiplication and measurement; 4 items on functions; and 6 items on algebra. There was an 
emphasis on fractions, decimals and percentages because that was the focus of the assignment. The 
authors wrote eight of the items and used published sources for the other items (Brekke, 1995; Brekke, 
Grønmo, & Rosén, 2000; Gjone, 1997; McIntosh, 2007; Utdanningsdirektoratet, 2011). Here are two 
examples of the questions on fractions: 

Which of these fractions is half of the value of 3/8?    A: 3/4   B: 6/4    C: 3/16    D: 6/16 

Place in ascending order: 5/8    7/6    1/2    2/3    4/9 

The pre-test was administered during the first teaching session of the first semester for each class. 
The same test was used for the post-test and was administered in the second semester during a session 
for the whole year group approximately one month before the final exam and after the compulsory 
mathematics assignment was submitted. The students had 30 minutes to complete the test on both 
occasions. On the cover page of the post-test, there were four brief questions about the students’ use 
of KA, including an estimate of how many hours the student had used KA during the academic year. 
This information served as a check on the data collected from KA, and to see if anyone in the control 
group had used KA. The students filled out this information before the 30-minute testing period 
began. The first author marked the pre-test and post-test according to a marking key written by all the 
authors. Every item was allotted 2 points, so there was a maximum possible score of 48. 

Matched pre- and post-test data were available for 51 students in the KA group and 58 students in the 
control group. Of the 51 students in the KA group, six students did not register any activity in KA or 
report using KA on the post-test cover sheet and were thus omitted from the analysis. Of the 58 
students in the control group, two students reported on the post-test cover sheet that they had used 
KA during the trial period, and were also omitted. 

The student data from KA on time usage was inconsistent (e.g. some students had completed many 
exercises but had a time usage of 0 minutes) and was thus discounted. On the post-test cover-sheet, 
not all of the students gave an estimate of their KA usage. In the KA group, those who did, reported 
an average of 4.4 hours total usage (SD = 3.6; N = 45). Historical self-reporting of work time is very 
unreliable (see e.g. Chambers (1992), so this estimate is only a very rough indication. 

Results 
The average score on the pre-test for the KA group was 24.1 (SD = 8.3; N = 45) and for the control 
group 25.9 (SD = 7.2; N = 56). This difference was not statistically significant (t(99) = 1.17; p = 
0.246). The average score on the post-test for the KA group was 28.8 (SD = 8.1; N = 45) and for the 



control group 31.4 (SD = 7.8; N = 56). Again, the difference was not statistically significant (t(99) = 
1.63; p = 0.107). However, the gain for both groups was statistically significant: the gain for the KA 
group was 4.7 (t(44) = 5.86; p = 0.000) and for the control group was 5.5 (t(55) = 7.74; p = 0.000). 
Corresponding results were obtained when just the items on fractions, decimals and percentages were 
analyzed: there was a statistically significant improvement for both groups, but the difference 
between the groups was not statistically significant on either the pre-test or the post-test. 

 
Figure 1: Post-test vs. pre-test results for KA and control groups 

Analyzing the post-test versus pre-test scores, the linear regression lines for the two groups show 
similar trends (Figure 1). Again, corresponding results were obtained when performing the analysis 
using only the items on fractions, decimals and percentages. 

“Improvement” refers to be the pointwise improvement on the mathematics test from pre to post. 
When compared with the pre-test results (Figure 2), there is no discernable difference between the 
two groups. 



 
Figure 2: Improvement vs. pre-test results for KA and control groups. The diagonal line shows the 

ceiling for the scores, i.e. the total number of available marks minus the pre-test score. 

Of the 59 students in the KA group, 49 set up a KA account with the first author as a coach by the 
end of the trial period, of which 44 registered activity by watching videos or doing exercises. Since 
the data on time usage was unreliable, “KA usage” refers to number of exercises in which the 
students achieved the level “practiced”. The average KA usage was 44 exercises (SD = 21; N = 44).  

 
Figure 3: Improvement in raw marks on the mathematics test vs. KA usage, as measured by number 

of exercises completed. 



Of the students who registered KA activity, there were 39 who submitted both the pre-test and the 
post-test. In Figure 3, KA usage is plotted against improvement for these students. The "vertical line" 
corresponding to 36 exercises represents completing the compulsory assignment. There were 21 
students whose KA usage was greater than 36 exercises. It is clear from Figure 3 that there is no 
correlation between KA usage and improvement on the mathematics test. A similar analysis for the 
subset of items on fractions, decimals and percentages also showed no correlation. 

Discussion 
There were no statistically significant differences between the groups on either the pre-test or the 
post-test. Both groups had statistically significant gains over the trial period and they showed similar 
patterns in the scatter plots in Figures 1 and 2. Thus, in this study, KA was equally beneficial to the 
students as the other learning resources available to them. This non-significant result is of interest 
because KA has practical advantages over other learning materials (e.g., it is free and easily 
accessible) and the marking time saved by the instructor can be invested in other learning activities. 
In addition, Lindstrøm (2015) found KA to be beneficial for the instructor as a tool for formative 
assessment. KA may have yet other advantages for the learners, which could be investigated using 
qualitative methods. We are aware that the similar gains of the two groups may be due to the testing 
instrument being too coarse. However, addressing this is outside the scope of this study, and would 
require a qualitative analysis of students’ learning processes with KA to develop a new testing 
instrument. 

In the first semester, despite encouragement from the first author and messages with links to relevant 
topics, only four students set up an account. In the second semester, without any additional 
interventions, 45 students set up an account when the compulsory mathematics assignment could be 
completed using KA. This is consistent with the findings of Lindstrøm (2015) and Murphy et al. 
(2014) that high KA use is associated with a well planed integration into the course, including using 
it as part of the compulsory assigned work with consequences for non-compliance.  

There were 21 students whose KA usage was greater than 36 exercises (which corresponded to the 
compulsory assignment), and some of these made extensive use of the tool (Figure 3). It may be 
surprising that there is no correlation between KA usage and improvement, with no indications of 
additional gains for the students who completed additional exercises. This may indicate a failure of 
the test to detect the learning gains; however, it may also be that the students worked on topics not 
covered by the test. Further qualitative research may be conducted to investigate what motivated these 
students and what possible learning gains resulted from the additional exercises completed. 

Conclusions 
A group of students who used KA showed similar learning gains to a control group that had no 
restriction on their learning resources but were not encouraged to use KA (and indeed did not, with 
two exceptions, use KA). As has been seen in earlier studies with KA, high use of KA was associated 
with a well-planed integration in the course. Some students made extensive use of KA, but there were 
no correlations between KA usage and measured learning gain. This raises the questions of what 
motivated the students to complete more exercises than required and whether there were other 
benefits not detected by our test. 
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Digital media warrant a reappraisal of established conceptual fields and a search for new ones 
densely providing access to powerful mathematical ideas. This study reports secondary students' 
meaning making around the notion of intrinsically defined curvature in space by means of a tool 
integrating programming, dynamic manipulation of variable values and a simulation of 3D space. 
The study involved 15 ninth grade school students’ attempt to design the shortest path between two 
points on a cylindrical surface are presented in this paper. Camera perusal and zoom allow for a 
change of viewpoints of the constructed figure. The findings yield meanings around concepts 
notoriously difficult even in undergraduate mathematics, such as differential stereometry, limits and 
curvature as systematic trihedron state change.   

Keywords: Curvature, helix, stereometry, meaning-making, programmable media. 

Introduction  
Although curves appear in abundance in primary and secondary curricula, they are given the status 
of an auxiliary mathematical object to diverse structures either from geometry, e.g. circles-arcs, 
stereometry, e.g. cylinders-conic sections, or from algebra where the focus is of course on functions. 
Curvature is hardly discussed as a central notion, particularly in 3D space. Yet, in real physical 
space curves are truly abundant, in navigation they are key. Representations and notations from the 
pre-digital era are certainly one of the obstacles for students to access conceptual fields with 
curvature at their centre (we are intentionally using Vergnaud's construct, 1988). Here we use a 
digital medium integrating programmability with dynamic manipulation in simulated 3D space to 
get a sense of the meanings high school students may generate around differential curvature in 
space.  

Curvature can be uniquely defined (apart from its position in space) by three elements of its arc, 
length, curvature and torsion (Lipschutz, 1969). The notion of curvature, the study of the properties 
of a curve and of the ways it can be approached consist one of the most important issues in tertiary 
education, as, for example, in differential geometry. The pre-digital formalism as well as the 
complicated formulas required consist a significant obstacle so that these notions and differential 
geometry in general can become approachable to many a student even at the tertiary level 
(Henderson, 1995; Kawski, 2003).  

The encoding of the knowledge about curves, has historically gone through different stages. Euclid 
defines the curve as 'length without width' or 'end of a surface', without giving its definition in a 
general form restricted by general findings. But with the emergence of analytic geometry by 
Descartes, curves were defined as a mathematical sequence of points uniquely identified by two 
values. Later, the prevalence of the concept of  function as a central concept in the curricula of 
secondary education, established functions as an umbrella under which large parts of mathematics 



can be interpreted. As a consequence the only curves introduced in secondary education are 
graphical representations, namely curves which are represented only as secondary data 
representations or equations. The appearance of Turtle Geometry (Papert, 1980) constituted a first 
but most significant suggestion to consider restructuring knowledge (Wilensky, 2010) about 
curvature.  

Papert proposed an intrinsic approach to geometry as a way to use digital media to provide kids with 
access to powerful ideas in environments rich in opportunity for meaning making (Kynigos, 1993). 
The intrinsic definition of curve on the plane was thus by means of the 'turtle', the cybernetic 
programmable unit vector (heading, position, zero length), making alternative state changes with a 
value approaching zero. So, this geometry addresses the problem of the local description of a curve 
using the kinematic picture of the curve as the line resulting from position changes (Loethe, 1992). 
But what about curvature in space? The first digital tool to simulate programmable turtle geometry 
in space appeared relatively early by Reggini in 1985, so it may be surprising that there was no 
further epistemological or pedagogical analysis regarding curvature represented with this medium. 
In space, the intrinsic description of a curve can be achieved by using a mobile system of 
perpendicular vectors describing the tangent vector and the osculating plane of a curve. The turtle 
moves only in the direction of the nose and 'sits' on the osculating plane (Loethe, 1992, p.72). 
Rotation of the trihedron as it moves is given by the curvature and torsion. Precisely, as the rate of 
change of the tangent is characterized by the curvature, thus the rate of change of the osculating 
plane is characterized by the torsion of the curve (Aleksandrov et al., 1969, p.75). Our research 
group has been interested in identifying meanings generated by students around the field of 
intrinsically defined curvature on the plane, using a tool we developed (we called it 'Turtleworlds') 
to integrate programmable turtle geometry with dynamic manipulation of variable procedure values 
(Kynigos & Psycharis, 2003). In this paper we address meanings of intrinsic curvature in space with 
a new version of the tool which we now call 'MaLT-Turtlesphere' (Kynigos & Latsi, 2007) and start 
from giving students the problem of the shortest path between two points on a cylinder.  

The theoretical frame 
Vergnaud (1988), introduced the notion of conceptual field as a set of situations the mastering of 
which requires mastery of several concepts of different nature. He claims that “a single concept does 
not refer to only one type of situation, and a single situation cannot be analyzed with only one 
concept” (p. 141), and he argues that teachers and researchers should study conceptual fields rather 
than isolated concepts. In our study we wanted to study meaning making on curvature by giving 
students the problem of finding the shortest path between two points on a cylinder. We thus 
perceived the problem as belonging to the conceptual field of ‘curvature in space’ as the notions, for 
example, of rate of change and arc length which are involved in the procedure of designing a curve 
based on the polygonal approximation, are directly related to the notions of curvature and torsion in 
space. With our basic aim being to examine the meanings the students develop (Noss and Hoyles, 
1996) in relation with the notions of differential geometry we designed activities based on 
constructionism (Kafai and Resnick, 1996). Students would engage in meaning making through 
bricolage with digital artefacts. In recent years, we have developed a pedagogical design construct 
and method where we start students off by providing them with a 'half-baked microworld' (Kynigos, 
2007). It is a specially designed digital artefact with one or more built in bugs resulting in some 



faulty appearance and/or behavior when it is manipulated dynamically. It is designed to challenge 
students to decompose, change and debug the artefact and then construct something by using the 
correct version as a building block. Half-baked microworlds serve as starting points for the user to 
be acquainted with the ideas hidden behind the procedure of their construction.  

The computational environment  
The computational environment we used in our present research is MaLT-Turtlesphere 
(http://etl.uoa.gr/malt2) integrating Logo-based turtle geometry with dynamic manipulation of 
variable values resulting in DGS-like continuous change of the turtle figures at hand. This version 
of turtlesphere also afforded the insertion of stereometrical objects one of which was a cylinder, 
dynamically manipulable with respect to some key properties. The turtle movements are determined 
by following commands: fd(:n) and bk(:n) which command the turtle to  take steps forwards or 
backwards, lt(:n) and rt(:n) move the turtle n degrees to the left or the right in its plane (osculating 
plane), and borrowed from Reggini's definition, dp(:n) and up(:n) turn the turtle upwards or 
downwards and rr(:n) , rl(:n) move the turtle around its axis. The basic tools of MaLT-Turtlesphere 
are the uni-dimensional variation tool (1DVT) which enables the user to dynamically manipulate the 
values of variables in a represented object and the 2d variation tool which is a two dimensional 
orthonormal system and is used to determine the co-variation of the values of two variables. An 
additional characteristic is its 3d Camera Controller which gives students the ability to dynamically 
manipulate the camera by means of the active vector and observes the object in the simulated 3d 
space from any side and direction he/she wishes. We should also point out the ability the user has 
got to insert ready-made 3d objects, such as a sphere or a cylinder, in a 3d virtual space and 
dynamically manipulate them. 

The problem 
The students were given the following problem: ‘Calculate and design the shortest path between 
two points on a cylindrical surface’. Our students were informed that this program would enable 
them to work out the way they could design such a path and that, at the end, they themselves could 
use it in order to construct their own models. The students were told that they were allowed to use 
any method and materials they liked (for example, paper and scissors) and the following half-baked 
microworld under the name the ‘shortest path’: 

to shortestpath :n :s :dx :c 

repeat :n  [rl(:s)  lt(:c)  fd(:dx)] end ('end' is on a separate line, placed here to save space).  

This microworld comprises a program with four variables each of which express the following: n 
expresses a number of repetitions, s expresses the turning of the turtle around the directions of its 
path, dx defining the length of the turtle step and c defining the turning of the turtle in its plane. The 
execution of the above code produces a polygonal line (either in space or in plane) or a straight line. 
But in the case when dx is very small, three kinds of curves can result from the aforementioned 
microworld, with the characteristic of stability of proportions ‘turning and twisting relative to 
traveled space’. If s=0, then we have a curve on a plane. For s=0 and c=0 line segments. For s=0 
and 0c   circle arcs. Solving the problem requires finding the shortest path between two points on 
a cylindrical surface, which means that the target is achieved when dx tends to zero. This leads to 



limit procedures:
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 which gives the curvature of the circle. If s is different from zero, 

helical lines are generated in space and similar conclusions are drawn (in case c = 0, a straight line 
arises). So, this code for creating a helix around the surface of a specific cylinder is half-baked in 
that it does not contain the property of each of the two turns being a function of the value of 
displacement (fd) and that the value of dx needs to tend to approach zero. If in the preceding code, 
we replace arguments with suitable functions and introduce a tail recursion, any line in space can 
occur. For example, if we replace the arguments of turning and twisting with trigonometric 
functions, a closed curve in space can occur. 

The method 
We adopted a design research method (Cobb et al., 2003). In this paper we discuss part of a broader 
research, which was developed in three phases: the first phase involving two students 3rd grade 
secondary school, in the second phase with the participation 15 students (a class 3rd grade secondary 
school) and which lasted 24 hours, and finally, in the third phase involving five higher education's 
students. These particular students of the second phase had already been familiarized with 
constructions in the logo programming language in the Turtleworlds environment. A sound and 
picture software (HyperCam 2) was used to record data and enabled the researcher to record the 
students’ actions and the conversations amongst the participants. In order to analyze the students’ 
mathematical thinking we were interested in the ways the students interacted with the available 
components of the software and in the ways they constructed mathematical meanings. We centrally 
used the notions of meaning making and situated abstractions, which enabled us to describe how the 
students construct mathematical meanings based on the functions of the particular software they 
were using and on the conversations between them (Noss & Hoyles, 1996). We also found the 
construct of 'instrumentalization' taken from the theory of instrumental genesis (Guin and Trouche, 
1999, Kynigos & Psycharis, 2013) helpful in showing us was how the students were trying to 
change the functionalities of the ‘faulty’ microworld they were given aiming to produce a different 
artefact which automatically gives a circle and a helix with the shortest length. 

Findings 
The circle approach through limiting curvature  

Even if the majority of students at first turned to the software they had been given in their effort to 
give an answer, they soon realized something else should be done first to make sense of the 
problem. They decided to use tangible objects first, paper, pen and the scissors, they had also been 
given. By selecting two points on the cylindrical surface and then rolling a piece of paper to form a 
cylinder and un-rolling it, they came to the conclusion that the shortest path could be a circle, a 
helical or a straight line. Upon un-rolling the cylinder they noticed that the line which was formed 
would be a straight line on the plane (geodesic in plane) but when they re–rolled up the cylinder, a 
helix or a circle was formed. Nevertheless, this conclusion, although it seemed to be the solution, 
did not seem to satisfy the students at all. Here is a typical answer from two students: 

Student 1: If we could suppose that the cylinder opens, then okay it is a straight line 
Student 2: But if the cylinder could not open? (Meaning: then how could we design the helix?) 



They then started exploring the half-baked code firstly by dragging the variable values. All students 
decided to focus first on getting the code to create a circle around a fixed cylinder. Some kept the 
value of the rl command to zero, some decided to chuck it out of the procedure, starting to work on 
the formalism. The students at hand took the latter option and tried out dragging to understand the 
behavior of the turtle path (Brunström & Fahlgren, 2015). For this circle, a common technique was 
the winding of the polygonal line at a constant circle or at the bottom of an inserted cylinder from 
the software library. The completion of the first winding lead students to put values dx =1, c = 29. 
But when the researcher asked the question about the kind of path that was formed, students 
concluded by zooming that it was a polygonal line, and a further reduction of dx was needed. 
Students, with the help of changes decreased the value of dx from dx = 1 to dx = 0.1, and then did 
the same for dx = 0.01, while modifying the value of c as well, as the polygonal line continued to 
wind in a solid circle. Their attempts brought them to conclude that the turn value should be 
dependent on the displacement value if the turtle trace was to be a good fit to the base of the given 
cylinder. They then decided that the code should contain a proportional relation of the variables c 
and dx, and modified the half-baked microworld engaging in an intrumentalization activity. The 
result for these students and, as it turned out, for the majority of the participants, was a code like the 
following, with a differentiation in the arguments of the turtle turn: 

to shortestpath  :n  :dx 
repeat :n  [lt(29*:dx)  fd(:dx)] end 
The dialogue continued yielding that the students considered the circle as a polygon with 
sides that are constantly decreasing in length: 
Researcher: so, for which rates do you get the requested circle? 
Student 1: for small dx, for example 0.1 
Researcher: ie for dx = 0.1 will we have a circle? 
Student 2: we will have a polygon 
Researcher: and which may be the required rates? 
Student 2: we can’t be exact because as we put smaller numbers, it will be approaching the 
solid circle (at the same time the student zoom and manipulate the slider of dx to 
continuously lower numbers to prove their claim) 

The students' efforts show a change in the way they thought about curvature, starting from a static 
approach (with dx equaling a constant value of 1) to a dynamic (the more dx diminishes, the better 
approach to curvature). This was evident in their correction of the code initially achieved with dx to 
be small (usually teams chose for dx a tenth or hundredth approach). Thus, initially the circle 
formed by the mean curvature (c / dx = constant) determined the forward movement of the turtle in 
relation to the dx. This instrumentalization action resulted in a modification of the shortest path 
code and provided us researchers with a lens to students' development of a situated abstraction on 
the concept of curvature. The problem that was given to find the shortest path, thus led them at first 
to think of  curvature as a limit and the circle as resulting from a limiting process and not simply by 
dx small. Although a strictly symbolic form of a limit was unknown to the students, the role of the 
limit process seemed to be played by the slider of dx. 

From a static to a dynamic aspect of the helix  

For the construction of the helix with Turtlesphere, students at first could not implement a technical 
approach as in the circle, since there was not a preplanned helix on the cylindrical surface. So they 



resorted to properties discovered during the deformation process of the flat surface and the situated 
abstraction for the notion of helix which was delivered by them as follows: ‘helix is a curve that is 
wrapped in a cylindrical surface and if it unfolds, a straight line emerges’. The designing of such a 
curve though without the use of tangible materials, and the ability to generalize such a procedure 
demand the use of differential geometry notions which reflect the Frenet-Serret frame movement in 
space. The students appeared to realize the limitations of tangible materials, and the inability to 
generalize the procedure in situations when their use is impossible. 

The students’ speculation stimulated the researcher to turn their attention to the half–baked code 
they had already had at their disposal. The students chose again to insert a model cylinder with 
specific dimensions, and by dragging the variation tools they tried to achieve the construction of a 
helical line which twisted round the cylinder with its two ends being the ends of the generator of the  
cylinder with the above characteristics. Their initial suppositions referred to values which, although 
at first sight seemed to have achieved their goal (that is the helical line to twist round the cylinder), 
the use of the perusal camera proved wrong. Thus, from that time on each and every attempt of 
theirs initially comprised finding the values for n, c, s and dx with the simultaneous use of the 
camera and change of the values of the variables. A group of students, at their first correct attempt 
(with dx=1), came to the following values: n=14, c=25, s=5 and dx=1. Although they seemed to be 
satisfied with the result of their experimentations, they continued to experiment after the following 
questions on the researcher’s part: 

Researcher: Is this a helix? (They play with the camera, zooming in at the same time) 
Student 1: They look like lots of straight lines (they are referring to the line segments which the 

helical line is composed of and with the execution of the half –baked microworld 
provides them with) 

Researcher: What can you do so that you can turn it into a helix? 
Student 1: Eliminate the angles 
Researcher: How can you eliminate the angles? 
Student 1: If we decrease dx, let’s say to 0.1 

Students' instrumentalization initially started by dragging the slider of dx and with the help of 
graphical feedback. Since dragging dx to dx = 1 gave a polygonal line and not the curve as the 
paper-folding approach, the students started to drag the slider of s. Their attention now concerned 
the discovery of the relationship between the three variables (c, dx, s) and the consequent changes to 
the half-baked code. The situated abstractions that this particular group of students seemed to have 
built arise from the need to prevent the distortion of the figure and satisfy the 'definition' that had 
created for the concept of helix based on the paper- folding approach. As dx took smaller and 
smaller values a line was given which looks like a helix with a length constantly decreasing and that 
the ratios c/dx and s/dx remain invariant and equal to 25 and 5 respectively. In fact, the rate of 
change of directions of the segments the turtle is moving on and its plane remain invariant. The 
replacement of the ratios they discovered in their initial code provided them with what they claimed 
was the 'correct' code and the solution in demand: 

to shortestpath :n :dx 
repeat :n [rl(5*:dx)  lt(25*:dx)  fd(:dx)]  end 
Researcher: Which values provide us with the helix we are looking for?  
Student 1: The smaller dx is the better. 



The students seemed to realize that the solution they were looking for did not only consist of the 
specific values of the variables but it should also combine a limited procedure for dx.  

Conclusions 
The purpose of the present research was dual: Firstly, to study the degree to which this particular 
digital tool and microworld could form the basis for secondary level students to study notions in the 
conceptual field of curvature in space and secondly, to study the meanings developed by these 
particular students in their attempt to design the shortest path between two points on a cylindrical 
surface. The students expressed mathematical meanings for a number of notions of differential 
calculus (rate of change, limit) as well as of differential geometry (curvature, torsion and geodesic) 
which has been shown to be notions difficult to be approached by even math students. One of the 
major advantages of the method applied is the fact that, not only were students able to visualize the 
way a normal curve is constructed by the motion of a movable trihedron in space (the role of which 
was replaced by the 'turtle') but the students were also given the ability to study, explore and 
symbolically represent these movements via programming and dynamic manipulation. For example, 
the circle is constructed by the turtle avatar with the characteristic of working stability, and not just 
through the stability of the ratio c / dx, i.e. the curvature formula in Logo. The dynamic 
manipulation resulting in figural change helped the students focus on the limiting process of this 
ratio which reflects the notion of curvature. The students changed their conception of helix from a 
static approach to a dynamic aspect, i.e. as a line made from an avatar with the characteristic of 
stability in both its turning and rotating around the line of motion. Although the way they used to 
design the helix did not tally with the strict formalism of differential geometry, the answers the the 
meanings they generated are indicative of the fact that a restructuration of the notion of curve 
relying on concepts of curvature and torsion, and with the turtle replacing the role of the moving 
trihedron to create a curve in space, is feasible in secondary education.  
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This paper reports on a current case study about the use of dynamic worksheets in a middle school 
in Austria. These worksheets were designed based on typical problems and misconceptions outlined 
in the literature concerning functional thinking, and they focus on the representational transfer 
between situational model and graphical representation. Grade 7 students were video recorded while 
working on these worksheets, pre- and post diagnostic tests and diagnostic interviews were conducted 
to examine their conceptions in relation to functions. This case study particularly pays attention to 
the intuitive conceptions of students, the influence of the dynamic worksheets on these conceptions, 
and whether or not dynamic worksheets are able to support students in developing appropriate 
mathematical conceptions. In this paper, some preliminary results are to be discussed. 

Keywords: Functional thinking, technology, representational transfer, lower secondary school. 

Introduction 
Functional thinking is an important concept in mathematics education. For students, a variety of 
problems arise while working with functions and thus functional thinking has been widely 
investigated by numerous researchers. Considering the development of dynamic mathematics 
software, additional aspects of functional thinking appear. It needs to be examined whether or not 
dynamic mathematics tasks are able to support students in an early stage of learning functions in 
developing appropriate conceptions. Based on these issues, we developed dynamic worksheets 
visualizing the transfer between situational and graphical representations and integrated them into a 
qualitative case study to examine their influence on students’ conceptions. 

Theoretical background 
Working with functions is a usual activity in mathematics lessons in school. Vollrath (1989) describes 
functional thinking as a typical way of thinking when dealing with function and he mentions different 
aspects of functional thinking. Malle (2000) refers to it and specifies the following aspects in a slightly 
altered version, which is better suited than Vollrath’s (1989) description for the purposes of this 
research project: Relational aspect (each argument x is associated with exactly one function value 
f(x)) and co-variational aspect (if the argument x is changed, the function value f(x) will change in a 
specific way and vice versa). The relational aspect represents a static perspective of functional 
thinking whereas the co-variational aspect describes dynamic processes; particularly in this project, 
functional thinking comprises of both aspects.  

In the context of functional thinking, various difficulties have been found and examined in the 
research literature. The graph-as-picture error occurs in various forms and means that students see 
function graphs as photographic images of a real situation (Clement, 1989; Schlöglhofer, 2000). 
Illusion of linearity means the preferable use of linear or direct proportional models for the description 
of relations, even if they are not appropriate (De Bock, Van Dooren, Janssens, & Verschaffel, 2002). 



Difficulties arise also in the interpretation of slope and growth, for example, if the point of maximum 
growth is confused with the largest function value. This slope-height-confusion leads also to 
difficulties in the interpretation of path-time graphs (Clement, 1989). These problems can cause 
students’ misinterpretations of functions and especially of graphs of functions. Vosniadou and 
Vamvakoussi (2006) suggest – to avoid that intuitive conceptions develop to misconceptions – 
considering the introduction of mathematical concepts at an earlier stage in mathematics education. 

Vogel (2007) stresses that multiple representations of functions, such as graphs, situational 
representations, terms, and tables are able to represent aspects of functional thinking (relational as 
well as co-variational aspect) externally, and they have the potential to support students’ ability to 
interpret functions. According to Duval (2006), only the flexible alternation between different 
representations allows a differentiated approach to mathematical content and forms the basis for 
sustainable acquisition of skills. But representations have to be considered critically as they influence 
ways of thinking, they may constrain students’ thinking about the concepts involved and are 
interpreted by students according to their prior knowledge (Vosniadou & Vamvakoussi, 2006).  

Dynamic mathematics software such as GeoGebra may support students’ development of functional 
thinking, because it is suitable to emphasize different functional aspects through interactive 
representations (Barzel & Greefrath, 2015). Research findings in relation to the use of technology in 
teaching often only show small positive effects on students’ learning achievements (Drijvers et al., 
2016). Results concerning dynamic representations are more encouraging, because these 
representations can help students in understanding mathematical concepts (Hoyles, Noss, Vahey, & 
Roschelle, 2013). Thus, we need to examine in more detail the influence of technology on students’ 
individual conceptions. 

Conceptions in a dynamic mathematics environment 
Based on problems and examples concerning misconceptions mentioned in literature several dynamic 
GeoGebra worksheets were designed reflecting multimedia design criteria (Clark & Mayer, 2011). 
We chose GeoGebra for this study, because it is the most widely employed mathematics software in 
Austrian schools. Due to the prior knowledge of selected students (experiences mainly with path-time 
diagrams, direct and inverse proportionality including their graphical representations, but none with 
the explicit function concept), these worksheets primarily address the representational transfer 
between situational model and graphical representation. Figure 1 displays a typical worksheet based 
on a task of Schlöglhofer (2000) addressing a graph-as-picture error.  

This GeoGebra worksheet consists of a situational model, in particular an iconic representation of the 
situation, as well as a Cartesian coordinate system displaying the corresponding graph. In the 
situational representation on the left side a triangle is displayed. The shaded area left of the dotted 
line inside the triangle is treated as a function of x, which is the horizontal distance between the vertex 
A and the dotted line. Students can move the line and change the size of the coloured area. Afterwards 
they should formulate a hypothesis about the shape of the graph. In the diagram the coloured area is 
a function of the distance x. After clicking the checkbox, the size of the area is displayed. At the end, 
students should display the graph in order to examine their assumptions about the shape of the graph. 
In this research project, accompanying tasks assist the students in working with the representational 
transfer, which is considered particularly difficult conceptually. 



 
Figure 1: “Triangle”, http://ggbm.at/GYeY4ayO 

As the situational model shows an iconic representation, the corresponding task is likely to trigger a 
graph-as-picture error (Schlöglhofer, 2000). It is especially interesting if the dynamic worksheet has 
the potential to support students’ ability to comprehend the graph. 

Such problems concerning functional thinking and theoretical considerations have led to the research 
questions below. The first two offer a basis for research question three, as we believe this third 
question contributes the most to the field of inquiry about technology use related to misconceptions. 
Due to space restriction this paper focuses only on the first and third research question. Future papers 
will offer further details on research question two as well as more in-depth analyses. 

1: What conceptions, with particular attention to pre- or intuitive conceptions, emerge concerning 
functional thinking of students in an early phase of learning functions (grade 7/8)? 

2: How should dynamic materials addressing to this topic be designed to support students in 
developing appropriate mathematical conceptions? 

3: What kinds of influence of these dynamic materials exist on conceptions and internal 
representations of students of lower secondary school concerning functional thinking? 

Research design  
To offer answers to the research questions, we selected a qualitative research approach. The 
overarching methodology for this research project is an exploratory and collective case study 
research, but integrating elements of Grounded Theory (Eisenhardt, 1989). The study was conducted 
in a 7th grade classroom of a rural middle school1 in Austria with 28 students aged 12 to 13, who had 
some experience in working with graphs (mainly distance-time-graphs) but none with the function 
concept itself. 

Figure 2 shows an overview of the research design. Piloting A was the first phase of the study aimed 
to evaluate the technical details of the recording procedure, to choose the tasks for the diagnostic tests 
and the worksheets for the intervention. The second phase – piloting B – consisted of one complete 

                                                 
1 Rural middle schools in Austria usually have the most diverse student population concerning achievement levels. This 
is especially true for the selected school in this study, thus this choice offers us the possibility to examine as many different 
students and their conceptions as possible. 



data collection process. After the data collection, the data was transcribed and analysed with 
qualitative methods described later in detail.  

The data collection included five stages. First, all students participated in a diagnostic test based on 
ten different tasks from literature concerning conceptions (Schlöglhofer, 2000; De Bock et al., 2002) 
as well as a test instrument called CODI (Nitsch, 2015). Afterwards, eight students were chosen for 
diagnostic interviews (Hunting, 1997) depending on their test responses so that their – incorrect – 
results represent a wide range of different conceptions related to the various test tasks to obtain an in-
depth view of their individual conceptions. 

 
Figure 2: Research design overview 

During the three-lesson-intervention, students worked in pairs with GeoGebra worksheets addressing 
different topics guided by accompanying tasks. While working, ten students were audio- and 
videotaped and the screens of their laptops were recorded. Also, students’ paper worksheets were 
collected. After completing the intervention, another diagnostic test with slightly altered tasks was 
conducted. Based on the observational data and an analysis of the test results, eight students were 
selected for diagnostic interviews to investigate the influence of the worksheets on the students’ 
conceptions. 

Data analysis and preliminary results 
The collected data is divided by the data source to address different research questions (the first test 
results and the corresponding interview data to approach the first research question, the recordings 
from the intervention and students’ paper worksheets, the second test results and the corresponding 
interview data to focus on the second and the third research question). 

Based on the research methodology, we conducted, for each student or pair of students, a within-case 
analysis using initial (or open) coding, then compared cases and searched for cross-case patterns using 
focused coding (Eisenhardt, 1989; Saldaña, 2013). 

Further qualitative analysis of the observational data and the interview recordings will give an insight 
into the conceptions of the students concerning functional thinking as well as the influence of dynamic 
worksheets on these conceptions. In this section, preliminary results concerning the task “Area” from 
both diagnostic tests are to be presented, because both task and results exemplify the process of the 
research.  



Diagnostic test 1 

Figure 3 displays a task from the diagnostic test 1 that is similar to the GeoGebra worksheet in Figure 
1 and was based on a standard test example concerning the graph-as-picture error from Nitsch (2015). 
The picture shows a trapezoid, and in the exercise students had to choose one diagram out of four that 
showed the grey marked area left of the dotted line as a function of the distance x, and to explain their 
decisions.  

 
Figure 3: Screenshot task “Area” from diagnostic test 1 

Students’ explanations reveal different levels of conceptual 
understanding. A categorization of students’ solutions and 
argumentations is visualized in Figure 4. The arrows represent 
the direction of the representational transfer from the situational 
model to the function graph, and the categories are arranged 
according to the correctness and elaborateness of students’ 
understanding.  

The first two categories represent the choice of the first graph 
addressing the graph-as-picture error. Either the students 
marked the similarity between both representations, or they 
already recognized an increase of area but ‘remained’ at the 
shape of a trapezoid. These answers reveal reasoning from a 
situational perspective of students, who did not manage to 
transfer the situational model into a function graph. 

Students with explanations of the next three categories 
achieved transfer to a graphical representation by recognizing 
an increasing function value, and these explanations were essentially correct. The third category of 
students, who selected the linear function, did not recognize the irregular change of the function value. 
Students who chose a correct graph form the last two categories. They either reasoned their choice 
with an increasing area or – the most elaborated explanation – with an irregular growth of area.  

In the next section, we present three student answers to the corresponding task from the second 
diagnostic test. Students were chosen from the first category (Graph as Picture, Similarity) to 

 
Figure 4: Categorized solutions 

task “Area” 



demonstrate the range of possible developments of their conceptions. The answers represent different 
extent of influence, also based on the achievement level of these students. 

Diagnostic test 2 

In the second diagnostic test after the intervention, the corresponding task was slightly altered – a 
trapezoid of another shape is displayed (see Figure 5).  

 
Figure 5: Trapezoid of task “Area” of diagnostic test 2 

Corresponding to the four function graphs in diagnostic test 1, there are four possible choices for the 
solution. These function graphs represent the graph-as-picture error, the correct solution, a 
combination of graph-as-picture and correct graph, and a linear function.  

Table 1 presents three students’ solutions and explanations from the diagnostic test 1 category “Graph 
as Picture (Similarity)” exemplifying a possible diverse influence of the applets. These students were 
chosen because all three students changed their answers after working with the dynamic worksheets, 
and due to their different achievement levels they gave a wide range of changes in their results.  

Achievement level Solution Explanation (translated from German) 

High (student 1) 

 

“In the beginning it [the area] increases 
strongly, then a bit more slowly, …” 

Average (student 2) 

 

“The area is always increasing, except in … the 
middle of the trapezoid, it [the area] remains 
the same.” 

Low (student 3) 

 

“You have to consider the x-axis, and because 
the x-axis is straight, the last … ought to be 
correct.” 

Table 1: Students’ answers concerning task “Area” of diagnostic test 2 

Student 1 (high achiever) chose the correct solution, and the explanation reveals a correct 
understanding of irregular changes of the function value. Also student 2 (average achiever) described 
the change of area correctly, but he decided for the graph representing a combination of correct graph 
and graph-as-picture error.  

Unlike in the diagnostic test, the GeoGebra worksheet displayed only a triangle and not a trapezoid. 
Student 2 managed to translate corresponding parts of the situation correctly to the graphical 



representation, but was not able to transfer his knowledge to the part of the situational model where 
the dotted line is moved over the ‘horizontal line’ of the trapezoid. 

The explanation of student 3 (low achiever) reveals a lack of understanding concerning the 
representational transfer and the meaning of Cartesian coordinates. It refers to the students’ look for 
visual similarities, a solution strategy sometimes used by students during the intervention when 
confronted with a problem. Further results about students’ test answers, their discussion during the 
work with the dynamic worksheet (Figure 1) as well as a detailed description of this worksheet and 
included instructions will be presented in upcoming research papers. 

Discussion 

For each task in the diagnostic test, several intuitive and incorrect conceptions appeared. For example, 
different levels of students’ conceptual understanding have emerged during analysis of the diagnostic 
test answers. These levels are representing the translation process from situational to graphical 
representation. Concerning the graph-as-picture error, explanations also made visible that 
standardized multiple-choice test items were not always able to detect a corresponding incorrect 
conception. Other results reveal different tendencies of students to use relational or co-variational 
aspects of functions for explanations. Also the influence of everyday experience is visible in the data, 
and the influence of formal and informal language (e.g., when students interpret ‘highest speed’ as 
‘leading’ or ‘winning’ in distance-time-diagrams) is especially interesting.  

The dynamic worksheets have different purposes, for example, visualization, experimentation, and 
testing hypotheses. The visualization function is supporting students in translating the text into a 
situational model or into a correct identification of the interesting variable (e.g., the meaning of ‘area’ 
in the corresponding task in Figure 3). Also, the worksheets have an adaptational influence on 
students’ conception (e.g., from linear to non-linear increase of function value). In other words they 
did not alter the conceptions but changed them partly to the direction of a correct conception. 

Preliminary results seem to reveal that the extent of influence of these worksheets on students’ 
conceptions depends on the intuitive conceptions of students and their achievement level. The 
interpretation as well as the perception of the GeoGebra worksheets is based on the prior knowledge 
of the students. The observational data repeatedly demonstrated that students tried to connect new 
content to their experience and knowledge. Considering that students worked without teacher 
instructions, for high achieving students the dynamic worksheets seem to be more appropriate, 
whereas lower achieving students would probably profit of teachers’ assistance to reflect their 
perceptions and interpretations or to draw the attention to the important features of the worksheets.  
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The concept of function has a central role both at school and in everyday situations. A dynamic 
algebra and geometry software program allows students to experience the dependence relation and 
to explore functions as covariation. In this paper we propose a description of different dragging 
madalities and the analysis of a protocol in which two students work together on a problem that 
involves coordinating two covarying quantities. The analysis has been carried out through this 
classification of dragging modalities, that can be efficiently used to observe, describe and analyze 
students' processes involved in the exploration and solution of dynamic activities. 

Keywords: Function, variation, dynamic algebra and geometry software, dragging. 

Introduction and conceptual framework 
The concept of function is very important both in secondary school and university mathematics but 
it also has a central role in everyday situations. For a long time, this notion has been at the core of 
several studies in mathematics education, and a rich literature has revealed students’ difficulties in 
understanding the concept in all its aspects (Vinner & Dreyfus, 1989; Tall, 1991; Dubinsky & Harel, 
1992; Carlson & Oehrtman, 2005). Difficulties in interpreting the dependence relation as a dynamic 
relation between covarying quantities are widely reported (Goldenberg et al., 1992; Carlson et al., 
2002). Falcade et al. (2007) suggest that the use of a dynamic algebra/geometry software, such as 
GeoGebra, allows students to experience functions as covariation, that is a crucial aspect of the idea 
of function (Confrey & Smith, 1995; Tall, 1996). According to these assumptions we are interested 
in studying students' cognitive processes involved in approaching functions represented in a specific 
dynamic environment. 

Our study is an exploratory study aimed at analyzing students' use of movement in the exploration 
processes of the dynamic functions. We have adopted the idea of analyzing the movement because 
several studies have revealed that it can support a cognitive analysis of students’ reasoning processes. 

In order to analyze students' appropriation of movement Arzarello et al. (2002) identified different 
types of dragging which students use investigating a geometric problem, according to their different 
purposes. Antonini & Martignone (2009) proposed a similar classification in the case of physical 
artifacts. They introduced a classification of students' utilization schemes of pantographs, that are 
particular mathematical machines designed for geometrical transformations. Although the differences 
due to the different nature of the instruments these two studies concern, there are certain similarities. 
Especially the common purpose is to identify students' utilization schemes in order to analyze the 
cognitive processes involved in the investigation of geometric problems. 

In this paper we shall present the first steps of our research: a classification of dragging modalities 
and the analysis of a protocol, that has been carried out through this classification. Some of our 
descriptions echo the classifications presented in the above-cited studies, but they have been 
completely transformed in order to suit the use of particular function representations in a specific 
dynamic environment. This is the original contribution of this paper. Indeed, while in literature we 



can also find other studies on the use of dragging (Baccaglini & Mariotti, 2010; Robutti, 2013) they 
concern in particular the dynamic geometry.  

Contextualization of the study 
We analysed a sequence of classroom activities, 14 hours in total, implemented in an Italian high 
school for Math and Science, in which students explore the functional relationship in dynamic 
interactive files (in GeoGebra). The subjects of this investigation are 16 years old students who never 
met the concept of function before. The activities were led by the teacher and they have been video-
recorded by three cameras present in the classroom simultaneously. The analysis is mainly based on 
the transcripts of the activities and it was led by paying a special attention to the use of dragging, the 
language employed and the gestures. 

In this paper we present one of the activities carried out by two students. The activity selected 
concerns The Bottle Problem: an open problem about bottles filled with water (the task is reported in 
Figure 1), which involves coordinating the variations of two quantities. Students are asked to work 
in pairs so that they can form conjectures and explain their reasoning to each other. They have no 
time limits and are video-recorded through a camera behind them pointing at the computer screen. 
They are given the following task with an interactive dynamic file (in GeoGebra) for the explorations 
and some sheets of paper for the answer.  

Figure 1: The task of the Bottle Problem   

Figure 2: The dynamic file 

Figure 2 shows a part of the GeoGebra file in which are presented the graphs of five functions 
representing the height with respect to the volume of water. They are not the “usual” graphs in the 
Cartesian plane: there is an unnamed horizontal line with a black point attached to it that represents 
the x-axis and five other horizontal lines, parallel to it and labelled “Bottle1, Bottle2, ...” with blue 
points moving on them. The motion of the blue points, bounded at the lines, is an indirect motion 



because these points can not be dragged directly: they represent the dependent variables so their 
movement is determined by the dragging of the black point, that represents the independent variable. 
The height of each bottle is fixed equal to six, for this reason the blue points move in the interval [0, 
6] and there are six notches on the lines which they move on. The black point can be dragged 
everywhere along the line without the magnetism, that is a property that GeoGebra allows to give to 
a point and makes it move on the real axis as if it has a magnet that attaches it to the whole numbers; 
and disabling this tool the dragging of the point is more uniform.  

Dragging modalities 

In this section we introduce a classification of dragging observed during students' exploration of 
dynamic interactive files. It can be efficiently used to observe, describe and analyze students' 
cognitive processes, involved in the exploration and solution of problems about functions represented 
in a specific dynamic environment.  

The identified dragging modalities are divided into two families: the first one describes the quality of 
the movement, this type of dragging could be also recognized by a computer that captures how the 
mouse moves on the screen (Table 1) and the second one describes the use of dragging with regard 
to an aim, that is associated through the study of the language employed, the sight and the gestures 
(Table 2).  

One of the potentialities of this classification is the fact that the two families of dragging modalities 
can be combined and, for example, keeping an element from the first one and an element from the 
second one allows a complete description of a students' process in solving problems.  

First of all we observe that in our cases it is always a bound dragging, that according to Arzarello et 
al. (2002) consists of moving a semi–dragable point (a point which it is already linked to an object). 
Because the only point that students can move is bound to the x-axis, all the other points move 
depending on it. 

 Description 

Continuous dragging Continuous movement 

Discrete dragging Movement with jumps, associated with counting 

Impossible dragging Trying to move a dependent1 point that can not be dragged 

Table 1: Types of dragging  

 

 Description 

Wandering dragging Random movement, exploring the construction  

Dragging test Movement aimed at testing a possibly implicit conjecture 

                                                 
1 We use this term to identify the point but we do not know if the students are aware of this dependence relation. 



Handle dragging Movement of the object as if it was a handle, in order to observe 
other objects’ movements 

Guided dragging Movement aimed at reaching a particular configuration 

Table 2: Dragging with an aim  

A protocol 

In this section we present an activity in which two students, Luca and Mara, work together at the 
bottle problem and we can identify some of the dragging modalities described before. 

Their first approach to the problem involves dragging the black point, representing the volume of 
water filling the bottle, with a continuous movement (continuous dragging) and without apparently 
paying attention to the dragging of such point: it is used as a sort of handle that allows them to see 
the movement of the blue point, representing the height of the water in the bottle (handle dragging). 
Indeed, as we can see in Figure 3, during the dragging the arrow representing the mouse does not 
overlap the black point in every moment, suggesting a weak haptic control because the students’ 
attention seems not on the dragged point.  

Figure 3: An example of handle dragging 

The students do not express, through their words and gestures, awareness that as one variable changes, 
the other variable changes; they seem more concentrated on the differences between the movements 
of the blue points than on the relation that links the movement of a blue point to the movement of the 
black point. For example, they look for which one is the fastest in order to associate it to the tightest 
bottle, because the speed of blue points represents the speed at which the height increases if the water 
is poured in at a constant volume per time, and the tighter the bottle is, the faster the height increases; 
in the same way the slowest blue point will be associated to the widest bottle. 

For example, the following dialogue takes place while students explore the file, dragging the black 
point very slowly and trying to keep a constant speed (continuous dragging): 

Luca: The bottle three is the steepest in the lower part. 

Mara: The bottle one goes very slow, also the bottle two. 

Luca: Also the fifth, the bottle two is the slowest respect all the others. 

Mara: No the five, the five does not move! 

Luca: Yes and then it is steeper at the end. 



What we can infer from this excerpt is that the students’ attention is on the blue points and the 
independent black point is used as a handle (handle dragging), they compare the speed of these points, 
observing for example that the second is the slowest, or probably the fifth. Luca, in the last sentence, 
says “is steeper” instead of “goes faster” and this suggests that he mixes up the trend of the height of 
water in the bottle with the shape of the bottle. 

Their initial approach changes: when they have to decide which one of the blue points represents the 
bottle B, shown in Figure 1 (that in the lower part has a cylindrical shape). They search for a point 
that has a constant speed and, in doing this, they compare the movements of the black and the blue 
points. So, first of all, they look at the picture of the bottle on the sheet of paper and imagine how the 
height of the water in the bottle should evolve, then they drag the point representing the volume of 
water in order to see whether there is a point, representing the height, with the needed properties 
(guided dragging).  

In particular, they count how many notches of volume are necessary to let the blue point reach the 
first notch of height and then to let it reach the second and finally the third and finally they compare 
these numbers: if they are equal to each other they conclude that the bottle has a cylindrical shape. It 
is an example in which the two quantities that are varying are coordinated in order to establish the 
average speed of the blue point. This seems an attempt to make a continuous situation discrete and it 
is also suggested from their use of dragging: they drag the black point with jumps, while counting the 
notches (discrete dragging). 

The following excerpt shows this combination of discrete and guided dragging. Luca summarizes 
their idea about how the blue point representing the bottle B should behave and searches for it: 

Luca: So we have to find a point that is constant till the third notch and then it goes faster. 
I would see the bottle one, look: first, second, third more or less goes in the same 
way. 

He drags the black point counting 1,2,3 and stops, 1,2,3 and stops, finally 1,2,3 and stops and during 
this process the mouse makes some jumps (discrete dragging). 

Luca: We could say that it is constant till the third notch and then... 

He drags the black point again, this time with a continuous movement and an almost constant speed 
(continuous dragging). 

Luca: Then it goes faster! 

The last part of the analysis reports students' explorations and conjectures when they have to draw 
the bottle looking at the movements of the points: the black point seems no longer to be only a handle 
for them. Indeed, as the next excerpts show, the students relate the changing values of height and 
volume in order to find whether the speed of the blue point is constant; their question is: how many 
notches of volume are necessary to have one notch of height? They fix the amount of change of the 
height (uniform increments) and find out the relative rate of change of the volume. In doing this, they 
consider the average rate of change locally, for a specific interval of the domain of the function.  

It is not so clear how they conclude that “it is constant till the first notch” and this could be considered 
as an advanced statement because it requires an awareness that the instantaneous rate of change results 



from smaller and smaller refinements of the average rate of change. From what they say it seems that 
at the beginning they observe a constant speed from the zero to the second notch:  

Luca: Slowly at the beginning, it is wide, then it seems a constant velocity, then it is tighter 
and then wider again: this is a clepsydra. But a clepsydra that in the upper part is 
wider than in the tighter part. Wait, go back for a moment (she goes back with the 
black point onto the zero again: dragging test). How many notches of volume do 
you have to do, to have one notch of height? 

Mara drags the black point very slowly and they count how many notches it crosses till the blue point 
reaches the first notch. 

Luca: Five and a half, say five. Are these (notches) five again to reach the second notch? 

The black point is dragged slowly again and they count how many notches it crosses till the blue point 
reaches the second notch. They count five notches, more or less. Therefore they conclude: 

Luca: Yes, at the beginning it has a constant velocity. 

Then by a similar process (discrete dragging) they observe that from the first to the second notch the 
average speed of the blue point is greater than from the zero to the first notch; so they decide that the 
bottle has to shrink at the first notch of height and before that point it has a cylindrical shape.  

Luca: Now, count how many notches of volume: one, two, three, four, five let's round off 
(for a moment he stops dragging the black point, the blue point is on the first notch). 
Then from the first notch: one, two, three, four so it is tighter (for a moment he 
stops dragging the black point, the blue point is on the second notch), I mean the 
lower part is bigger than... 

Finally, they check what they found out and they start drawing the bottle on the sheet of paper: 

Luca: Therefore, constant till the first notch, then it is tighter and the third notch is the 
point in which it is the tightest. So: the first notch constant like this (he draws a 
vertical segment) then it starts to be tighter (he draws an oblique segment) up here. 
This is the tightest point (indicating the third notch on the sheet of paper). 

Mara drags the black point (continuous dragging) without apparently paying attention to its 
movement, indeed the arrow representing the mouse is far from the point (handle dragging). She 
probably wants to find out where the blue point moves faster, because she puts the point on the second 
notch and explores a neighborhood of the third notch, that is the point suggested by Luca (dragging 
test). 

Mara: It is in this passage that it is steeper (she stops dragging and indicates with the arrow 
of the mouse an interval between the third and the fourth notch). 



Therefore they agree that the bottle has a choke point at half height. They conclude that in the upper 
part the bottle widens and it is wider than in the lower part because the height increases ever slower. 

Figure 4: Luca's drawing of the bottle 

Discussion 
The studies on the interaction between a subject and a software have to take into account a variety of 
aspects because several components are involved. In this paper we have presented a study to better 
understand the explorations of functional dependence in a dynamic algebra and geometry 
environment: in particular, we have identified different dragging modalities and we have shown an 
analysis carried out through this classification. The analysis highlights how the proposed description 
of dragging modalities allows an insight into students' problem solving processes. 

We noticed that the handle dragging is often recognizable through the observation of the mouse's 
position: if the attention is placed on an object that is not dragable, it is possible that the arrow 
representing the mouse does not overlap the dragged point in every moment, suggesting a weak haptic 
control of the solver. But this is not a generalization, because there could be some cases of handle 
dragging, recognizable for example from student’s words, in which the student seems to reveal a 
good haptic control. We observe that there are two types of continuous dragging, in some cases it 
reveals a movement of the object trying to keep a constant velocity, in other cases the object is 
dragged with a continuous movement, without jumps, but with a variable velocity, for example a 
point that is dragged back and forth on a line. In the selected protocol there are no examples of 
impossible dragging, probably because the task says explicitly that the only dragable point is the 
black one; but we identified various examples of this type of dragging in other activities that we 
analyzed. 

One of the potentialities of this classification is that, in order to better describe students' problem 
solving processes, it is possible to combine two dragging modalities, one indicating the quality of the 
movement and the other associated with an aim. It could be interesting to develop this study to 
investigate how a description of students' use of movement in a dynamic algebra and geometry 
environment is intertwined with the processes involved in conceptualization of functions, that could 
give an insight into covariation in the concept of function. 
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This paper examines the potential of using screen casting with an iPad to enhance learning in 
mathematics.  Data are presented from two seven-year-old students as they use the Explain 
Everything app to solve a division with remainder problem (DWR). A social semiotic perspective was 
used to interpret students’ use of multiple modes as they represented the mathematical ideas within 
the context of the problem. We consider how a social semiotic perspective has the potential to draw 
attention to the students’ interests and emerging expressions in representing mathematical 
relationships. We further consider how the use of representations in the app might relate to student 
learning.  

Keywords: Mobile technologies, multimodality, primary mathematics, representations, social 
semiotics.  

Introduction 
Several decades ago, Kaput (1987) predicted that the opportunities afforded by new digital 
technologies would mean “students of the near future … will be choosing how to represent given 
relationships” (p.21), and that students’ choice in building and interpreting their own representations 
would be seen as important as the calculations themselves. With the recent introduction of mobile 
devices into mathematics classrooms, student choice in creating, selecting, and using representations 
has continued to widen and such new media has been seen to have the potential to “augment and 
enhance” student learning (Clark & Luckin, 2013, p. 2). In this paper we present data from part of a 
larger project that examined teacher and student use of iPad apps in primary mathematics classrooms 
in New Zealand. In particular, we focus on Explain Everything, a screen-casting app, with two 
students (aged seven years old) as they represented their solutions to a problem involving division 
with remainder (DWR).   

Screen casting involves the use of a digital white board screen, which the user can write or draw on. 
The user can also add images and text. The digital board can then be recorded to capture the images, 
static or dynamic, along with a vocalisation of the user’s thoughts. As such, in mathematics, students 
can create and present their solutions in real time and in a multi-modal format using text and images 
along with voice recording. Such apps are generally used as a tool for students to show their 
explanations in solving problems (Soto, 2015) as they have the appeal of exposing the students’ 
thinking.  

Screen casting enables multiple modes of communication, and can provide teachers with further 
insight into students’ thinking and identification of misconceptions (Soto & Ambrose, 2015). Hence, 
their use as a tool for formative assessment. But might the creation of a screen cast go further than 
providing insight into thinking? Students can select from a range of modes, including writing, 
drawings, downloaded images, mathematical symbols, spoken and written language, so there is the 



potential for choosing, creating and interpreting different representations for a given relationship (as 
predicted by Kaput). Furthermore, the use of the screen interface on iPads means that the students 
can manipulate representations by touch and hand actions (Sinclair & de Freitas, 2014). If the students 
are choosing to build and create their own representations along with hand actions, can such use go 
beyond the reporting of solution strategies? We also query whether screen casting, as an example of 
new media, has the potential to augment and enhance learning.  

Theoretical framework: Social semiotics and multimodality 
In order to understand the potential for learning with this new media we require a way of 
understanding how representations are selected and used by students in creating their screen casts. 
Whilst previous representational theories in mathematics education have been based on an 
epistemological view of learning as a constructive activity (e.g. Janvier, 1987), further theorising on 
representations in mathematics has focused on semiotics as intrinsic to mathematical thinking (Duval, 
2008; Ernest, 2006). Ernest proposed that a study of mathematics teaching and learning from a 
semiotic perspective follows sociocultural Vygotskian theories in studying the appropriation of 
cultural signs and the underlying meaning structures that embody the relationships between signs.   

In mathematics, signs are related to mathematical relationships and can only be understood as part of 
a complex system; there is a “pull towards abstraction” (Ernest, 2006, p.71). If mathematical signs 
become isolated as purely structural systems they lose meaning. A fundamental view of semiotics 
refers to representations, as sign production in a broader sense, standing for something else in order 
to make meaning. Ernest referred to such sign production as “primarily an agentic act” that “often 
has a creative aspect” (p.69). The students’ use of representations in a screen cast may indicate this 
agentic, creative act, where the sign relates to a form that “strongly suggests the meaning [we] want 
to communicate.” (Kress, 2010, p. 64). Rather than using a sign that pulls to abstraction, the student 
may choose a representation that indicates what he or she sees as critical in regard to their ‘bit of the 
world’ and the mathematical relationship in the context of a problem. As such, we can determine the 
interest and agency of the sign-maker, and what they attended to, in order to make meaning. 

Drawing on both Ernests’ theorisation in relation to semiotics in the teaching and learning of 
mathematics, and to broader theorists, such as Kress and social semiotics, students’ choices of 
representations (text, image, verbal explanations, and hand actions) could be interpreted as sign-
making with the potential to make meanings of mathematical relationships within their view of their 
world. These new meanings may then have the potential to change their understanding of 
mathematical relationships within a given problem.  If we see learning from a social semiotic 
perspective as generating meaning through sign making (Kress, 2010) then screen casting may have 
the potential for students’ representations to have a role as social and material resources “in and 
through which meaning is made and by which learning therefore takes place” (Kress, 2010, p.178).  

Furthermore, direct interaction with the screen of an iPad allows students not just to choose 
representations, but to manipulate them through hand actions. The screen cast app also enables 
students to record verbal explanations. As such, the use of the app allows for students to be agentic 
in creating signs across a multiplicity of modes. In this paper we consider how a multimodal social 
semiotic theoretical perspective (Jewitt, 2013) can inform the interpretation of students’ choices and 
dynamic use of symbols, and images along with their use of language. Social semiotics has been used 



as a theoretical tool to explain phenomena by revealing things, which might not be evident otherwise 
(Jewitt & Oyama, 2001). In this paper, the intention is to examine the students’ choices of 
representations, how they manipulate them, and to consider what they see as critical between their 
world and the mathematical relationship in the context of the problem.  

In following a social semiotic theoretical perspective, the intention was to interpret the students’ 
syntactic positioning of images as a source for representational meaning as well as temporal 
components (Jewitt & Omaya, 2001). That is, how the students placed images on the screen. For 
example, how the centrality of their placements and connections of objects showed some elements as 
held together, in contrast to more marginal or disconnected elements. In addition, the intention was 
to interpret the students’ narrative and hand actions as syntactical temporal components. For example 
how the students’ verbal explanations related to how they moved images or drew on the screen.  

The study 
Two seven-year-old students’ use of the Explain Everything app are presented in this paper. These 
data come from a larger research project investigating how iPads apps were used in primary 
mathematics classrooms. The project involved researcher observation and the collection of video data 
over one year with three teachers experienced in using iPads in their mathematics classrooms. Further 
data was collected through student and teacher interview to investigate their views of using the apps. 
The research team met with the three teachers throughout the year for collaborative analysis and 
critical reflection of classroom practice and student learning. The use of screen-casting apps such as 
Explain Everything featured several times in the teachers’ classrooms and in comments made by 
students and teachers as they were seen as beneficial for reporting solution strategies.  

The data presented here come from one class of seven-year-old children. The problem was set by the 
class teacher and regarded sixteen dog biscuits shared equally among three dog bowls. The students 
were given five options, as shown in Figure 1. They were asked to determine which option gave the 
correct solution, and to explain their reasons using the Explain Everything app. The teacher projected 
the problem onto the screen in the classroom. The students took a photo of the problem to insert into 
a screen on their iPad, so that they could refer back to the five options.  

 
Figure 1: The division with remainder problem 

Students worked individually on the problem with the intention to create a screen cast of their solution 
process for the teacher for her assessment. As they worked in the classroom, six students were selected 
at random by the researchers to explain more fully their solution strategies in relation to the 
representations on the screen cast they were developing.  As Soto and Ambrose (2016) suggested, the 
completed screen casts of students may not “capture all the intricacies of students’ explanations” 



(p.282). As the research team was interested in gaining as much insight as possible, the researchers 
asked the students to elaborate on their thinking in representing their solutions in the screen cast. 
These elaborated explanations were videoed to show the iPad screen and students’ hand actions, and 
to capture the students’ explanations and responses to the researchers’ questions. In this short paper, 
data from two of the students are presented. These two students are presented here because they 
showed contrasting approaches in relation to their mathematical solution using partitive and quotitive 
models. In the partitive or sharing model, the divisor indicates the number of groups and the quotient 
indicates the number of objects in each group. In the quotitive or grouping model, the divisor indicates 
the number of objects in each group and the quotient indicates the number of groups (Roche & Clarke, 
2009).  

Student 1: Fred 

Fred downloaded images of dog bowls and biscuits from the internet and positioned five dog biscuits 
onto each bowl, see Figure 2.  

                   
Figure 2: Fred’s screen with his solution (a sketch is also provided as the iPad screen is not clear) 

Fred:  This shows that the answer is (d) because five and five and five is fifteen with one 
more it’s sixteen. So this is the one up here left over. (Fred circled the biscuit in the 
top right hand of the screen.) So they each get five. (Fred circled the five written 
above each dog bowl). So that makes it fair and there’s one left over for nobody, so 
nobody has that because they’re all full. 

Researcher:  Did you try any other questions using the bowls? Did you try (a) with the bowls?  

Fred:  No, I basically knew it was (d) from the start because there were three bowls and 
you have sixteen biscuits and you have to have one left over. 

Fred chose to use realistic images. The dog biscuits were piled onto the dog bowls in a realistic 
fashion. Fred had also given different names to the dogs. Fred wrote the numeral five above each dog 
bowl as if in a ‘bubble,’ and placed the left over biscuit in the top right hand corner of the screen. As 
Fred said, the dog bowls were “full and fair” and the remaining biscuit was for “nobody.”  When 
talking to the researcher Fred used dynamic recordings and hand actions in circling the five numerals 
and the one biscuit left over in the top right hand corner. 

Student 2: Jan 

Jan had drawn three circles at the top of the screen. She downloaded images of dog biscuits from the 
internet and grouped them at the bottom of the screen. Then Jan moved each biscuit one by one to 
line up underneath each circle (see Figure 3). 



Jan:  I’m doing five and then I’ve got one left over. (Jan moved the left over biscuit 
around the screen with her finger.) 

Researcher:  Why do you think that is? 

Jan:  Ummm, I don’t know. (Jan scanned back to the screen with the original problem 
and the options). Because (a) and (b) are not going to be right, but I haven’t tried 
six (referred to the last option). So if I put six… 

 
Figure 3: Jan’s screen with her solution  

Jan placed six biscuits under two bowls but then moved one biscuit from the middle line to the line 
of four to make five in two of the lines. She then counted the third line as six and moved the sixth 
biscuit away. Jan then moved the left over biscuit around the screen (Figure 3).  

Researcher:  What could you do with the spare one? What would you do if they were your dogs? 

Jan:  Ummm… I’d probably cut it in half so they’d have equal numbers. 

Researcher:  If you cut it in half how many pieces would you have? 

Jan:   (Jan used her finger to draw two lines on the left over biscuit) I’d have three halves. 
One for that one, one for that one, and one for that one (Jan indicated with her finger 
to the three lines of biscuits). 

Jan used realistic images of the dog biscuits but drew circles for the bowls, and placed the dog biscuits 
in a vertical line underneath each bowl. Jan did not use any numerals, but she referred to the numbers 
in her oral explanation. Jan seemed in a quandary about the one left over, to the extent that she tried 
six biscuits, only to find she needed to redistribute them. Jan also moved the left over biscuit around 
the screen. She then marked the biscuit into three “halves” in order to share the remainder, pointing 
to each line as she did so. Whilst she used the term ‘halves’ incorrectly she was attempting to further 
divide the left over biscuit between the three dogs.  

Discussion 
In relation to the students’ use of models of division, Fred used repeated addition to explain his 
solution; “five and five and five is fifteen with one more it’s sixteen.” Fred’s solution demonstrated 
a quotitive model, in that he focused on the quotient as the size of the subset from one of the solutions 
in the options (i.e. five in each bowl). Jan, on the other hand, used a partitive strategy to share out the 
dog biscuits. Jan focused on the divisor as the number of subsets, that is the three dog bowls, and so 
she shared out each of the dog biscuits by counting. Jan then moved to the use of rational numbers 
by including fractions in further dividing the left over biscuit, although maybe she was influenced by 



the reviewers’ question. It is noted that neither of the students wrote their solution using mathematical 
symbols formally, such as 16 ÷ 3 = 5 remainder 1, and this may have been due to the way the problem 
was set where the options were stated verbally.  

In relation to the use of representations, Fred used realistic images and features, along with the 
mathematical symbols. Fred’s ‘bubbles’ over the dog bowls with the number five suggested a close 
connection between the number symbol and the quantity of dog biscuits in each bowl. Furthermore, 
he centralized the dog bowls, piled the dog biscuits onto the bowls and then positioned the left over 
dog biscuit in the corner of the screen, stating it was for nobody. Interpreting the positioning of the 
representations from a spatial syntax perspective, it could be said that Fred marginalized the left over 
dog biscuit both in positioning it on the screen and in verbally stating it was for no one and so 
indicating his own perspective of the remainder in the context of this problem. Interpreting the 
temporal syntax, Fred’s hand actions in circling each of the five numerals and the left over biscuit, 
along with his explanation, suggested an emphasis on key features, and mirrored a formal recording 
of the solution. 

Jan also used realistic images for the dog biscuits, but used drawn circles for the dog bowls. These 
circles represented a container in a more general sense, focusing on the shape but not the features. 
Jan did not include any number symbols, although she referred to the numbers in explaining her 
solution. Jan also centralized the circles and dog biscuit images as key features of the problem but 
she placed the circles at the top of the screen and aligned the biscuits under each bowl. This 
positioning was not as realistic as Fred’s as he piled the biscuits onto the bowls.  Interpreting the 
temporal syntax, Jan’s movement of the biscuit around the screen suggested a dynamic visual 
‘doodle’ as she thought about the remainder.  Her uncertainty in where to position the dog biscuit was 
reflected in her comment “Ummm I don’t know.” Unlike Fred she did not seem satisfied that the left 
over biscuit should be for no one. In the end, Jan solved this problem in a realistic context that made 
sense to her, and used hand actions in drawing lines to show how the biscuit could be cut into three 
pieces.  

In interpreting the students’ use of representations in creating the screen cast, the intention was to see 
further into the students’ placing of different semiotic modes (symbols, images and drawings) 
alongside temporal narrative and dynamic movements. As the students chose to use mathematical 
symbols and ‘made up’ the signs, they were being critical in relating the mathematics with their ‘bit 
of the world’, in order to make meaning. Fred already knew the solution and selected realistic 
representations to show this solution, tying the key mathematical signs, the chosen images and the 
quotient closely together. The remainder was redundant and hence placed marginally representing his 
understanding of the relationships in regard to his bit of the world. Jan chose a less real life 
representation of the problem but appeared to explore the solution with these representations. Her 
exploration then led her to the use of fractions in relation to sharing as her bit of the world.  

Concluding remarks 
The interpretation of the students’ use of representations in relation to spatial and temporal syntax 
may provide further insight into what students attended to in order to make meaning of the 
mathematical relationships. In this regard, this paper has, arguably, presented an illustration of 
Kaput’s prediction that students will choose to build and interpret their own representations, and that 



their choice of representations will be seen as important as the calculation. However, how these 
choices relate to or augment learning is less clear.  

It has been possible to consider how Jan was ‘settling’ an understanding of the mathematical ideas in 
solving a problem, maybe by virtual ‘doodling’ with the remainder. Her use of the representations 
was agentic and indicative of how she related to the problem, but they also appeared to change her 
understanding of the mathematical relationships in the problem. For Fred the representations were 
used to explain thinking that was already formed. He knew the solution. It is not clear that the use of 
these representations, whilst agentic and indicative of his bit of the world within the context of the 
problem, changed his understanding of the mathematical relationships. Although, they may have 
helped him explain or report his thinking.  

In these examples it would seem that for Fred, as an example of a student who appeared to understand 
the mathematical relationships within the problem, the meaning making of the representations in the 
screen casting referred to an explanation or reporting of a solution strategy, and that this would relate 
to studies by Soto (2015) and Soto and Ambrose (2016). However for Jan, as an example of a student 
less certain of the mathematical relationships within the problem, the meaning making of the 
representations in the screen casting may also have changed her understanding and hence may have 
augmented her learning about the mathematical relationships in the given problem.   

The intention of this paper was to consider whether screen casting, as a way of agentic sign making 
across multiple modes, has the potential for students’ representations to make meaning and hence 
augment learning. Only two examples are presented here, and whilst a social semiotic approach may 
shed light on what the students attended to, the use of the screen casting app as new media to augment 
learning needs further investigation. 
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An essential condition to use mathematics to solve problems is the ability to recognize, imagine and 
represent relations between quantities. In particular, covariational reasoning has been shown to be 
very challenging for students at all levels. The aim of the project Interactive Virtual Math (IVM) is to 
develop a visualization tool that supports students’ learning of covariation graphs. In this paper we 
present the initial development of the tool and we discuss its main features based on the results of 
one preliminary study and one exploratory study. The results suggest that the tool has potential to 
help students to engage in covariational reasoning by affording construction and explanation of 
different representations and comparison, relation and generalization of these ones. The results also 
point to the importance of developing tools that elicit and build upon students' self-productions. 

Keywords: Visualization, virtual reality, interactive tool, mathematical modeling, reasoning. 

Introduction 
Students’ difficulties with constructing graphs that model dynamic events are well documented in  
literature (e.g. Thompson, 2011; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Carlson, Oehrtman, & 
Engelke, 2010). When modeling a dynamic situation into a graph (e.g. the speed variating with time 
or the height of water in a bottle variating with volume), it has to be conceptualized as a covariation 
relation, that is a relationship between two variables that vary simultaneously (Thompson, 2011; 
Carlson et al., 2002). However, students have a tendency to view functions in terms of symbolic 
manipulations and procedures rather than as relationships of dependency between two variables. 
These students might encounter difficulties imagining how the output values of a function are 
changing while imagining changes in function input values. And therefore they might fail in 
successfully construct a graph of a function modeling a dynamic situation.   

Research has revealed that traditional approaches have not been successful in overcoming the above 
described difficulties. Technological tools can however afford alternative approaches to the subject. 
Also, most of the research that provides insight in students difficulties with understanding graphical 
situations is done in clinical environments. We need to develop a better understanding of students 
learning in classroom settings.  

In our research we developed a tool that intends to provide an alternative way to approach the learning 
of graphs by dynamic events and an opportunity for examining its learning in the classroom. The tool 
Interactive Virtual Math (IVM), which can be found at https://virtualmath.hva.nl, is designed to 
support 14-17 years old students at secondary school to understand the graphical representation of 
relations between variables in dynamic situations. IVM supports this process by addressing the 
visualization of these relationships. The aims of this paper are to introduce a prototype of the tool, its 



main features and design and, to discuss its added value for students' learning based on the results of 
one preliminary study and one exploratory study. 

Theoretical framework 
Covariational reasoning 

An example of a mathematical task that requires understanding of covariational reasoning is Task A 
from Figure 1. The task is about a dynamic situation involving the height of water in a bowl and the 
volume and, it was taken from Carlson et al. (2010), who used it to diagnose students’ understanding 
of graphs of this type of events.  

Figure 1: tasks used in preliminary study 

Task A 

Imagine this bowl is steadily being filled with water.  

Sketch a graph of the water height in the bowl as a function of 
the amount of water in the bowl. 
Explain the thinking you used to construct your graph.  

Task B 

Assume that water is poured into a spherical bowl at a constant rate.  
a) Which of the following graphs best represents the height of water in the bowl as a function of the amount of water in the 

bowl? 
b) Explain the thinking you used to make your choice. 

 

 

Task C 

Assume that water is poured into a bowl at a constant rate. The 

graph in the figure represents the height of water in the bowl 

as a function of the amount of water in the bowl. Describe the 

filling in of the bowl in words, 

 

a) Explain the thinking you used to make the 
description. 

b) Draw a possible bowl 
 

 

 

To solve task A, students will need to consider how the dependent variable (height) changes while 
imagining changes in the independent variable (volume). The coordination of such changes requires 
the ability to represent and interpret relevant features in the shape of the graph (Carlson et al., 2010). 



Carlson et al., (2002, 2010), developed a framework that allows to investigate students’ covariational 
reasoning abilities when responding to dynamic function tasks. The framework describes 
covariational reasoning as entailing five mental actions, which are successively more complex: (M1) 
coordinating the value of one  quantity with changes in the other; (M2) coordinating the direction of 
the change; (M3) coordinating the amount of change of one quantity while imagining successive 
changes in the other quantity; (M4) coordinating the average rate of change of the function with 
uniform increments of change in the input variable; (M5) coordinating the instantaneous rate of 
change of the function with continuous changes in the independent variable for the entire domain of 
the function. We used this framework to evaluate the quality of students' graphs and explanations in 
our study.  

Guiding principles and main features of the tool 

There are many technological tools available for learning graphs from dynamic events, but very few 
request students’ own productions. They are often simulation-tools, which involve whole figures or 
part of figures that have to be moved, changed or dragged. When students are asked to construct a 
graph with these kind of tools, construction actually means using representations that are already 
given or can be synthesized by putting parts together. In this case there is not a true visualization of 
students’ concept image (Vinner, 1983), since part of the representation is already given. A 
distinguishing feature of the IVM is that it builds solely on students’ graphical productions.  

The tool Interactive Virtual Math allows students to draw, analyze and compare graphs for themselves 
and improve the graphs if they conclude this improvement is needed. At CERME 10 we presented a 
second prototype version of the tool in which the students work on an assignment involving a single 
graphic situation: the dynamic event described in task A (Figure 1). In later versions we expect it to 
be possible to use more contexts and varied assignments so that all students can practice at their own 
level. In Table 1 we present a short description of the main features of the tool: Self-construction, 
Contrast, Help 1 and Help 2, Reward and flow. These features are based on general learning principles 
that include building on students’ previous knowledge, interaction and feedback. We expect that the 
use of the tool will  challenge students to create their own graphs and explanations, to make 
assumptions, conjectures and to reflect upon these (feature Flow).  

The tool was also built according to topic specific learning principles. Thompson (2011) states that it 
is critical for students to first engage in mental activity to visualize a situation and construct relevant 
quantitative relationships prior to determining formulas or graphs. Therefore, the graphs in the tool 
must be drawn by the student themselves and the tool elicit students to imagine relationships from 
scratch, without presenting any (partial) graphical representation that has not been drawn by the 
student themselves (feature Self-construction).  

A second guiding idea behind the tool-design is the focus on visualizing quantities. Results from Ellis 
(2007) indicate that instruction encouraging a focus on quantities can support generalizations about 
relationships, connections between situations, and dynamic phenomena. To help students to focus on 
the relation between the height of the water and the volume we provide two kinds of help with the 
tool: the features Help and Help 2. In Help 1 the student visualizes the increasing height of the water 
in the bowl and he can start and stop the water falling in bowl.  In Help 2 students must assume the 
height of the water in the bowl and represent it in the graph with dots. We expect that the students, 



while guessing where to put the dot for the height, will notice that the difference in height between 
consecutive dots (values of the height) decreases in certain situations and increases in others.  

Another guiding principle was to provide constructive feedback to the students’ final graph and to 
give them a way to evaluate their production. The students get to see, after submitting their graph, the 
corresponding bowl-figure to the graph they draw (feature Reward).  

Finally, the tool also includes the use of Virtual Reality (VR), which is still limited to Help 1. Here 
the use of VR (sound, movement, interaction) is expected to improve the experience of the graphic 
situation. 

 

Table 1: main features of Interactive Virtual Math 

Feature Description 

 

 

Self-construction 
The student is given two assignments. The first assignment is task A from Fig.1 and the 
second assignment is a variation of the same task with a cylinder instead of a bowl. In 
both assignments they are requested to draw a graph that describes the relationship 
between two variables in the corresponding dynamic situation. The student constructs 
the graph with a finger, a digital pen or a mouse.  

 

Contrast 
The student compares her/his own graph and explanation of the two situations, referred 
to as a and b. The student can then submit the graphs or improve them. 
 

 

 Help 1 
The student visualizes the increasing height of the water in the bowl. He listens to the 
water he moves the platform with the ball and he can start and stop the water falling. 
Using a mobile device and a cardboard, Help 1 can be experienced as Virtual Reality 

 

 Help 2 
The student connects the graphical representation to the context representation. A  
Cartesian coordinate system in the plane and the bowl appear next to each other. The 
student must construct a dot graph that represents the height of the water in the 
Cartesian graph. He does this by dragging and dropping dots into the graph.  

 

Reward 
The student gets the corresponding form of the bowl.  

 
 
  



Methodology 
Preliminary study 

Previous to the development of the first version of the IVM tool, we conducted a preliminary study 
to explore students’ knowledge, skills and difficulties with constructing covariation graphs. The study 
(February-March 2016) involved N=98 students from 4 classes age 15-17 years old and we used three 
versions of the same task with different questioning (Figure 1). The students in each of the four classes 
were divided into three groups and each group was presented with one of the three versions.  

Analyses of students’ written answers showed that the majority of the students (64%) failed to 
successfully solve task A (see also Table 2). Nineteen of them presented an increasing but incorrect 
graph, suggesting that they understand that the water increases or that the height increases with the 
amount of water but they don’t have a consistent concept image of this process. Most of these students 
(13 out 19) produced one straight line (9 students) or a combination of two/three straight lines (4 
students). These findings point that the majority of students that solved the self-construction tasks 
(tasks A and C) could not construct for themselves an acceptable representation. These results 
motivated the importance of engaging students in self-construction assignments and the development 
of the IVM-tool. 

Table 2: results of preliminary study 

 Task A (self-construction graph) Task B (multiple choice ) Task C (self-construction bowl) 

Acceptable 12 (36%) 25 (66%) 3 (11%) 

Incorrect 19 (58%) 11 (29%) 22 (79%) 

No answer  2 (6%) 2 (5%) 1 (4%) 

Exploratory study about the first version of the tool 

The first version of the tool was developed in February –April 2016 by a team composed by one 
researcher-math educator (first author), a high school teacher (second author) and ICT -designers. We 
decided to use task A (Fig.1) that we considered suitable to explore students’ understanding of 
covariation and within a broad age group. To explore its learning potential and usability we 
investigated through a small qualitative study the learning of four students age 14-15 years old (two 
boys and two girls) with different school performance for mathematics. Kevin1 has high grades for 
mathematics, Lisa and Anton have average grades and Wilma has low grades. We observed and 
interviewed the students while working with the tool. The aims of the exploratory study were: (i) to 
understand how the students construct a graphical representation with IVM; (ii) to identify features 
of the tool that support or constrain students' successful construction; (iii) to get a better understanding 
about how the guiding principles work and can be used to develop later versions of the tool. The 
collected data consisted of video records and students’ written work and it was collected at two 
different moments in April 2016. In both situations the students were asked to go first through the 
whole application on their own. Lisa was the first student to be interviewed; she used the application 
on a computer. The other three students Kevin, Wilma and Anton were interviewed together at their 
                                                 
1 The real names of the students were modified 



school. Wilma and Anton use a tablet and Kevin a mobile device. The data was first organized 
chronologically with relation to each student's attempt to construct the graph and use of the tool. 
Secondly, a global description of how each student attempted to construct and transform the graph 
was made and how they used the main features of the tool. We used the covariational framework 
(Carlson et al., 2002) to get insight in students’ covariational reasoning abilities. A summary of the 
results are presented in Table 3. These results and the data were shared and discussed with the ICT-
team and used to evaluate the tool and to make decisions for the development of a next version.  

Results and discussion 
As we can see in Table 3, all four students improved their graphs on basis of the tool. Kevin produced 
in the first trial an incorrect graph with three straight lines and he improved it in second trial after 
comparing the form of the bowl he got in the Reward with the bowl in the bowl-assignment. Wilma 
produced in the bowl-assignment, in the first trial two incorrect graphs: a straight line and afterwards 
a raising curve. She ‘improved’ the graph after seeing the cylinder- assignment (Contrast). Through 
consulting Help 1 and Help  2 she constructed in a second trial a final acceptable graph. Anton 
produced in the bowl-assignment several incorrect graphs. His final graph in the first trial is a curve 
raising slowly. He consulted Help 1 several times and, based on that, he produced a graph with three 
straight lines and adapted the length of the line segments. Anton’s improvement did not lead to a final 
acceptable solution and the student remained in doubt whether the pieces of the  graph should be 
curved or not.   

Table 3: students’ use of the features of the tool during the exploratory study 

Features  Kevin  Wilma  Anton  Lisa  

Construction   
(round bowl) 

 Acceptable final graph 
after two trials 

Acceptable final graph 
after two trials 

Incorrect final graph 
after two trials 

Acceptable final 
graph after two trials 

Construction  
(cylinder bowl) 

 All students have produced an acceptable graph at first trial (straight line) 

Contrast   First, all students draw a straight line at assignment one but improve their drawing after 
constructing the graph of assignment two. 

Help 1: Bowl is 
being filled up 

 Doesn’t consult help 1 
in first trial 

changes a straight line 
into a rising curve  

changes the middle 
line of the graph,  

Consults but doesn't 
improve the graph 

Help 2: relation 
figure - graph 

 Doesn’t consult Help 
2 in first trial 

changes a rising curve 
in an acceptable curve  

 Consults Help 2 Does not understand 
how it works 

Reward  Improves straight line 
to a curve. 

Not observed Not observed Does not understand 
the reward  

Flow   Constructs graphs 
without consulting 
Help 1 and 2. 

Consults Help 1 and 
Help 2 

Consults Help 1 and 
Help 2 several times 

Consults Help 1 and 
Help 2 

VR (Help 1 with 
cardboard) 

 Not used Not used Not used rich experience  

  

Based on the analyses of students reasoning while constructing and explaining their graphs, we 
identified a number of aspects through which students could be brought to a better understanding of 



graphical situations, while working with the tool. One aspect is students engagement in covariational 
reasoning and their progression through the mental actions (Carlson et al., 2002). For instance, Wilma 
identifies and represents the two quantities changing together (M1). She draws initially a straight line 
which suggests that she attends only to the direction in which the height changed while imagining 
increases in the amount of water (M2). After consulting help 1 she changes her straight line into a 
rising curve and then into a curve-down followed by a curve- up graph and she is able to explain how 
changes in the amount of water were related to changes in the height of the water at various locations 
in the bottle (M3).  

Another aspect is students' involvement in actions that underpin mathematical reasoning such as the 
construction and explanation of different representations and, comparing, relating and generalizing 
these ones. Examples that we observed include students comparing their own graph and bowl filling 
up with water, which was the case of Wilma when she used Help 1 or Anton switching from Help 1 
to his own graph several times; students evaluating the relation between the reward and initial graph. 
Visualizing the bowl of the reward made Kevin to think about the relation between the form of the 
bowl and the form of the graph. He used the reward to improve the smoothness of the graph curve; 
students contrast the relation between graphical situations of assignment one and two. For instance, 
Anton switches between one and two and adapt the graph one after seeing assignment two.  

As Table 3 shows, different students used different features to improve their graph, which suggests 
that tool with possibilities to choose to view additional help or not and to be able to switch between 
the graphical situations, allows for diversity. Furthermore, all students had difficulty with 
constructing a graph, even with the tool support. This result suggests that self-construction tasks are 
needed to reveal these difficulties, which can remain unnoticed when using simulation-tools or tools 
in which the representations are already given. 

A final aspect concerns the usability of the tool. Students valued the opportunity of choice and the 
interactivity of Help 2 (one can drag and decide where to put the point). And, one student (Lisa) who 
view Help 1 in VR with the cardboard valued this experience as a more enriching one.  

There are also some critical issues with regard to the methodology of the study and the tool design. 
The small amount of students involved in the use of the IVM tool allowed for a fairly detailed study 
of their interaction with the tool. But, we should carefully interpret our findings since they regard 
only 4 students. We need to experiment more with the tool in classrooms,  in combination with other 
tasks and forms of interaction and teacher support to better understand its potential and to what extend 
these findings can be generalized. With regard to the tool design, a number of aspects should be 
improved in follow up versions. One challenge concerns the self construction- and reward-features. 
It is left to the tool to decide what is an acceptable representation and how accurate it can be. We 
programmed the tool to accept any sketch of concave up followed by a concave down graphs starting 
at the origin. And, for the graph to be considered accurate, the line must be smoothly drawn. 
Sometimes the tool rejects answers that are accepted by the researchers and teachers. Another concern 
is the amount of variables involved in the assignments (height, accumulated volume, time, volume 
per unit of time, shape of the bottle). It is reasonable that the students should focus on one or two 
variables but not so many that are changing simultaneously. At the CERME conference we also 
received useful suggestions to improve the tool. For instance the time-counter in Help 1 can be 
replaced by a volume-counter and, students could fill the bowl by adding themselves cups of water. 



This could help students to focus on the relation between height and volume rather than height and 
time. Another suggestion was allowing students to change the shape of the bottle as this might afford 
students’ awareness of the phenomenon.  

Concluding, this paper reports on the experiences of students learning graphical representations by 
dynamic events with the aid of a new learning technology (IVM); a topic which many students 
struggle to understand. We have learned that the prototype-tool has potential to engage students in 
covariational reasoning and we identified a number of aspects that could bring the students, while 
working with the tool, to a better understanding of graphical situations. Namely, the tool affords 
construction and explanation of different representations and, comparison, relation and generalization 
of these ones. The results also point to the importance of elicit and build upon students self-
productions.  
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Starting from Silver’s (1997) approach for the importance of the interplay between problem solving 
and posing in the agenda of creativity, a new kind of e-book, aiming to promote creative 
mathematical thinking to students, in which its designers enriched the posing element with a 
constructionist approach, is used and examined in a real classroom. The paper follows a pair of 
Grade-8 students while they are working on this book. The contribution of this new interplay in the 
meaning-generation process around the concept of covariation is examined and the change in the 
creativity landscape by the analogy between problem posing and constructionism is discussed.  

Keywords: C-book technology, meaning making process, constructionism. 

Introduction 
According to Silver (1997) deep flexible knowledge is closely related to creativity and emerges 
during the interplay between problem solving and problem posing. On the other hand, new 
exploratory and expressive digital media provide users with access to and potential for engagement 
with creative mathematical thinking and meaning-generation activities (Hoyles & Noss, 2003). 
However, education systems fail to rise this challenge due to restrictions stemming from the 
emphasis given on conformity and standardization in testing (Chevallard, 2012). So, new designs 
are needed to support students’ engagement with dynamic digital media that aim to foster creative 
mathematical thinking. In this spirit, a pair of students are working collaboratively to solve a 
problem using a new digital medium, we call ‘c-book’, (‘c’ for creativity), a new genre of 
authorable e-book, extending e-book technologies to include diverse dynamic widgets, 
interoperability and collective design. In this paper we draw on end-users’ interactions examining 
their interplay between problem solving and constructionism as enabler of meaning-making and try 
to analyze the effect of this affordance of the medium to the meaning making process of the pair as 
well as to comment on this new role of Constructionism as facilitator/substitute of problem posing.         

Theoretical framework 
The close connection of mathematical knowledge with the interplay between problem solving and 
problem posing flows from the fact that most of the mathematicians do their research, mainly by 
formulating their own questions and problems and then trying to solve them, rather than solving 
problems posed for them by others (Borwein, Liljedahl, & Zhai, 2014). In this sense, the generation 
of new mathematical meanings for students, as an action, may be related with this kind of interplay. 
Cai and Cifarelli (2005) further refined this link between problem solving and problem posing, 
considering the posing and solving process to be mathematical exploration structured by this 



recursive process. In the context of technology Abramovich and Cho (2015) found that a 
technological environment facilitates problem posing and turns it into discovery experience. And it 
is possible for meaning-generation processes to take place during such experience. Obviously, the 
affordances of the digital environment determine so much the kind of interplay that takes place as 
well as the meaning-generation process. Papadopoulos, Diamantidis and Kynigos (2016) describe 
how specific affordances of an expressive digital medium (c-book) led students to meaning-
generation process around the concept of angle. However, in their study a possible relation between  
constructionism and posing is hardly examined. Constructionism is a theory that examines design 
and learning processes focusing on the ways in which these are part of individual or collective 
construction of digital artefacts. It illuminates how the representations, the affordances, the rules 
behind the behaviour of digital objects and the fields in which they reside and the ways in which 
these representations can be manipulated can all constitute representational registers around which 
meanings are generated, shared and developed (Kynigos & Psycharis, 2003). It thus provides an 
analytical lens to study the design and construction process in close interaction with the changes 
made to the artefact in question and the meanings those changes carry (Papert & Harel, 1991). In the 
case of a jointly constructed artifact by a group of students, the changes made to the artefact 
constitute externalization of the group’s knowledge. Microworlds are such environments, allowing 
at the same time personal construction of objects and new meaning. C-books exploit half-baked 
microworlds which are incomplete by design, challenging students to fix them fostering thus 
learning through tinkering (Healy & Kynigos, 2010). Students have to solve problems that they 
encounter, in between and may come up, as a result of students’ efforts to make new constructions, 
in order to fix the initial bug of the microworld. So, the question now is: How the affordance of the 
c-book technology to support the interplay between problem solving and problem 
posing/‘Constructionism’ might contribute to a process of meaning-generation?   

The digital medium and the Don Quixote c-book unit 
C-book is a new expressive medium that affords the design of modules named c-book units. Each c-
book-unit is based on a storyline, and includes diverse ‘widgets’ between the lines of the narrative. 
The term ‘widgets’ is used for objects, such as hyperlinks, videos and mostly instances, or activities, 
from a range of educational digital tools such as Geogebra and MaLT2, a web-based Turtle 
Geometry environment that affords Logo-mathematics symbolic notation and dynamic manipulation 
of 3D geometrical objects, using sliders as variation tools. Most of the widgets refer to 
mathematical inquiries, constructions and problems. Students can navigate through the pages of the 
c-book unit and be involved in the included tasks through experimentation, reconstruction and 
problem solving.  

The c-book unit used in this study presents a different twist of Don Quixote’s story. It begins with 
Don-Quixote confronting 30-40 windmills he mistakenly considers giant enemies (first pages of the 
c-book unit). But, after being close to them he realizes that they are damaged windmills and he 
wants to repair them. Half-baked logo codes in MaLT2 represent the windmills’ fans and sails in 
various geometrical figures and Don Quixote has to modify the codes so as to repair and reconstruct 
the fans and the sails.   



The study 
This study presents an educational intervention designed and implemented in a classroom. Adopting 
the methodology of “design experiments” (Collins et al., 2004) the focus was on seeking 
relationships between the learning process and the use of digital media used by the students during 
the implementation phase. Twenty-four students (18 from Grade-8 and 6 from Grade-9) from a 
public Experimental School in Athens participated in the study which took place in the pc-lab of the 
school during after-class mathematics courses for totally eight teaching hours within four weeks. 
The students were divided into pairs. Most of them were familiar with the usage of 2D E-slate 
Turtleworlds. Two teachers served as facilitators for technical issues, when necessary, whereas two 
researchers undertook the role of observers recording instances of the students’ interactions with the 
digital medium. Voice recorders and a screen-capture software (HyperCam2) were used to record 
students’ interactions with the c-book unit tools and their discussions, since both of them 
constituted our data. The students’ interactions were transcribed and the protocols were parsed into 
episodes with emphasis on the transitions between episodes since these were the points at which the 
change from solving problems to creating new ones used to happen (Schoenfeld, 1985).   

 

Figure 1: The ‘buggy windmill’s fan’ task in the c-book unit environment 

In this study, we follow two students as they are coping with a task asking them to fix a broken 
windmill. A Logo program was already developed producing a buggy and half-complete fan of 
windmill (Figure 1, left). It was needed to make changes in the Logo program, to fix the bug and 
shape up the fan.  

Results 
The students initially had to fix the bug on the windmill (Figure1, left). The fan was ill-constructed 
since its wings had not been joined in a proper way. So, they started using the variation tool to 
observe changes and identify the role/function of each slider/variable. The initial Logo-code 
construction contained three variables a, b and k, for the ray of the fan, the angle between two 
consecutive wings of the fan, and the total number of wings, respectively (Figure 1, right). 

There are two procedures in this code. The “wing” which uses variable “a” to make an equilateral 
triangle with side length “a”, and the “sail” (main procedure) which constructs the whole fan using 
“wing” as sub-procedure. Fixing the bug, is an open-ended problem with a variety of solutions (for 
example, for a polygon-shaped fan a feasible solution would be to replace b with 360/k).  



After some back-and-forth of changing dynamically the values of all variables in the code, and 
examining the results of their actions on the screen the students found a pair of values that made the 
figure to look like a windmill’s fan:  

S1-23:  We managed to make it well shaped, but only for a certain pair of values; 12 for k 
and 30 for b. We must put certain values instead of variables. 

S2-24: It is not a fair solution; we should find a way to keep the fan well shaped, for any 
set of values. Is there a possibility that a, b and k vary analogous to each other?  

S1-25: What do you mean by “analogous”? 

S2-26: I mean that the change of only one value through the variation tool, results to 
changes for all of them, without our intervention. 

S1-27: Let’s see [she changes dynamically the value of a]. It is not worth dealing with a. 
It only changes the length. We should find a relation between k and b. 

In the extract above, it seems that according to Student-2 the specific pair of the variable values 
cannot be considered as a proper solution. The references to “analogous” and “without our 
intervention” are indicative of the student’s confidence that a more generic solution such as a 
relation between the variables, is needed. Therefore, they started actually talking about covariation.   

 

Figure 2: Three pairs of values that make the shape look like a fan. 

Thus, in order to find the relation between “b” and “k”, students went on with their investigation 
through dynamic manipulation, identifying pairs of values for b and k that made their construction 
to look like a proper fan (Figure 2). Their investigation resulted to the conclusion that “b” and “k” 
might be inversely proportional. Although they reached a conclusion about the kind of relation 
between “b” and “k”, they did not take the next step to express this finding as a formula, so as to use 
it for fixing the bug, reducing thus the number of the necessary variables. On the contrary, they 
decided to go on with their investigation, adding a new variable in the sub-procedure “wing”: 

S1-33:  We found the solution. But I think that we must go further. You see, in the 
program “wing”, there is a right turn by 120 degrees, which means that our 
solution works only for this amount of turning. 

S2-34: Yes, we should put a variable instead of 120, let’s use the letter “k” again, in order 
to find out what is going on, and solve the problem for every case of turning right. 



 

Figure 3: The role of right turn by 120o (left) and by ko (right) 

Variable “k” now refers to the right turn for each new wing (instead for the total number of wings). 
Students made their own construction, by adding a variable in the ‘wing’ sub-procedure, which 
actually made the problem more complicated. The choice of a constant right turn by 120o is crucial 
for having the wings evenly delivered across the fan, since right turn by 120 degrees means that the 
sails will be equilateral triangles. Substituting the constant right turn by the new variable “k”, has an 
impact on the angles of the triangular wing (Figure 3). Technically, this choice results to a fan even 
buggier than the original one. However, students did not see it as an obstacle. On the contrary, they 
accepted the challenge to solve a new problem that seemed to be more challenging to them: 

S1-46:  Let’s use the same variable k, for both, the number of wings in ‘sail’ and the 
amount of right turn in ‘wing’. [They ran the program and moved hastily the 
slider that stands for k. This action changed not only the number of wings, but the 
shape of each wing of the fan as well.] What a strange shape!  

S2-47: Are b and k still inversely-proportional or proportional amounts? [They moved the 
sliders, in order to find pairs of values, as they had done before (Figure 4).] 

S1-48:  Variables b and k do not seem to be proportional. 

S2-49: Nor inversely proportional. This is not fair! 

S1-50: Is it possible that there is no connection, no relation between b and k?  

S2-51: What other kind of relation other than proportional and inversely proportional may 
exist between them? 

This question became the starting point for the students to be engaged in a new inquiry, about a new 
meaning that seemed to emerge. They started speaking about the notion of covariation in a more 
abstract sense than before (S1-25, S2-26). The spirit of this negotiation is mirrored in the final 
remark they made in order to solve the problem: “We think that there must be a relationship 
between b and the new k. We found that for b=30, if k equals to 120 or 240 or 480 or 960 the sail 
stays well-shaped, so there is a relation like k=120∙2x. We also discovered a pattern for the values of 
b that is much more complicated.” They refer to their observation that if for example b=45 then the 
most ‘acceptable’ shapes are the ones with k multiple of 5 (Figure 4). 



 

Figure 4: Snapshots for pairs of values of b and k 

Discussion 
The Don Quixote c-book unit is designed in alignment with the view that creativity lies in the 
interplay between problem-solving and problem-posing, an idea which is very much in accordance 
with Silver’s approach (1997), arguing that it is in the interplay of formulating, attempting to solve, 
reformulating, and eventually solving a problem where creative activity may lie in. Indeed, as 
Papadopoulos et al. (2016) describe, students who used this c-book were able to show creative 
mathematical thinking that did not emerge instantly but was the result of the above mentioned 
continuous interplay combined with the provided affordances. In this paper we focus on the 
meaning-generation processes that took place before the creative moment, relating them with the 
entrance of constructionism in the agenda of creativity. The members of the designing team of the c-
book unit showed an inclination to connect creativity with constructionist activities due to their 
background and familiarization with this theoretical tradition (Papadopoulos et al., 2015). This 
resulted to a fostering of the problem-posing element by a constructionism view. So, in this c-book 
unit the students were working in a context that enabled a continuous and more distinct interplay 
between problem solving and posing/constructionism and this interplay is examined in relation to 
whether it operates as enabler of meaning-making in mathematics. As we presented above, the 
students had initially to explore the problem of an ill-structured windmill and find the part of the 
problem that is ill-defined. The problem seemed to be solved for a specific set of values (S1-23, S2-
26) but this does not ensure the generality of the solution. So, the new problem was to keep the fan 
well-shaped for any set of values. To solve this task, it was deemed necessary to identify the role of 
each variable in the solution of the problem which resulted to the knowledge that variable ‘a’ is not 
related to the bug (S1-27). This actually transformed the last problem to a new one, asking for the 
relation between variables ‘b’ and ‘k’. This new problem contributed to the shift of the focus 
towards the notion of covariation. In order to find the relationship between the variables, a series of 
new constructions took place. They resulted to a collection of pairs of values for ‘b’ and ‘k’ that 
made the fan look like a proper one. This made the students think that the two variables were 
inversely proportional. However, the formula was still missing and this became their next problem. 
Therefore, a new variable was added to the code (S1-33, S2-34). A new, more complex construction 
took place. The feedback on their screen from their constructions made them doubt their claim for 
the proportionality of the variables (S1-48, S2-49) and the phrase “This is not fair!” (S2-49) opened 
the discussion about possibly another kind of relationship (S1-50, S2-51). That was the new 



problem which resulted to the more focused discussion on covariation and the possible formula that 
might fix the bug. 

It seems that students made a step further. They tried to answer two interim questions they 
themselves posed and which came up as they tried to fix the buggy windmill, reconstructing it in a 
way consistent and meaningful for them. So, they reformulated the initial problem, starting from 
their reconstructing efforts and came back to solve it anew in a process where new and perhaps 
more creative aspects of mathematical knowledge were expected to emerge. Thus, the interplay 
between problem solving and constructionism was apparent, while the interplay between problem 
solving and posing was not direct. The formulation of new inquiries by students indicates that 
constructionism facilitated problem posing. Actually, this view of constructionism is close to what 
Brown and Walter (1990) argue about the problem-posing process: the solver first makes a list of all 
attributes included in the statement of the original problem, and then, he proceeds in negating each 
of them formulating thus an alternative proposal, a new problem. However, negating an attribute 
makes the original problem ill-defined (or ‘half-constructed’), and so the solver is challenged to 
proceed to the ‘construction’ of a ‘new’ problem. It is in this sense, we argue, that an interesting 
connection between problem-posing and the Constructionism perspective arises within the context 
of the c-book technology and c-book units, never having been identified in the literature so far. At 
the same time there is evidence that during this interplay a meaning-generation process takes place. 
The problem of finding the bug of an ill-structured windmill’s fan, which seemed to be mostly 
related to spatial observation and Geometry, turned to be investigated by the students through 
algebraic procedures, use of symbols and looking for relationships between variables. Students 
while trying to understand what was going on with the shape of the fan by reconstructing it, actually 
moved back and forth between processes of problem solving and construction. It was during this 
interplay that students started moving from the specific notions of proportional and inversely 
proportional variables to the more abstract notion of covariance. 

Conclusions 
The problem solving and posing approach in creativity (Silver, 1997) attributes creative moments in 
the interplay between them. The entrance of Constructionism in the agenda of creativity seems to 
have an impact in the creativity landscape and perhaps opens new research challenges. The new c-
book units that aim to foster creative mathematical thinking in students are based on a design 
principle that is characterized by ‘Constructionism fostering/substituting problem posing’. Then the 
whole story is evolved around the continuous interplay between problem solving and 
posing/constructionism. So, on the one hand some new research questions arise about the role of 
Constructionism in fostering creative mathematical thinking. On the other hand, there is evidence 
that this interplay between problem solving and posing/constructionism in the path towards creative 
moments facilitates meaning-generation processes by the students.  
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How can the academic success of students be better ensured? Many math teachers ask this question. 
Educational researchers have proposed multiple solutions. In our own works we have considered 
three of them: diversifying the taught knowledge's sources of references and re-contextualize it, 
involving students in their learning process by giving them various responsibilities, enriching the 
class's didactical “milieu” with resources and digital tools. In this report we will focus on the second 
and third propositions with one main question: how can information and communication technologies 
help increase students' responsibilities in learning? We will expose three examples of how this aim 
could be achieved. 

Keywords: Cooperative learning, teaching methods, computer assisted instruction, students’ topos, 
anthropological theory of didactics. 

Focus and rationale 
Giving responsibility to students for their learning is a concern that educational researchers have taken 
for many years. For example Barnes (1977) or Lee and Smith (1996) show that achievement gains 
are significant when teachers enhance collective responsibilities, Scardamalia (2002) explores some 
possibilities of computer-supported environments and Coffman (2003) proposes strategies to increase 
students' roles. Theories also exist that give a frame to this issue, such as the Joint Action Theory in 
Didactics (Sensevy, 2010) or the Cooperative Learning theory (Slavin, 1995). Our purpose in this 
paper is to expose three examples of how web resources and digital intelligent systems allow math 
teachers to involve their students in cooperative activities where they are authors of the lesson tracks, 
where peer learning is promoted and where curricula are individualized. The intelligent system that 
will be used in the classroom is the web platform LABOMEP (http://www.labomep.net/). We will 
show that it is a tool likely to foster student-to-student monitoring, autonomous training and self-
evaluation. 

Theoretical framework 
We will use in this paper concepts from the Anthropological Theory of Didactics (ATD) (Chevallard, 
2006; Wozniak et al., 2008; Winslow, 2011), In ATD, learning and teaching are interpreted as 
ordinary human activities that can be described and analysed through the general concept 
praxeologies: “A praxeology is, in some way, the basic unit into which one can analyse human action 
at large.” (Chevallard, 2006). At first a praxeology is built around a type of task which is usually 
expressed by a verb and a precise object. For example, “to climb a staircase” is a type of task, but to 
climb, short, is not one” (Chevallard, 1998, our translation). Secondly a praxeology precise a 
technique, a way to realize the type of task, a know-how. This technique is then often justified and 
lightened by a technology, a reasoned discourse which states that the technique is suitable for the type 
of task and explain how to perform it. “At his turn, the technological discourse contains some 



statements, more or less explicit, for which one can ask the reason. We then reach a higher level of 
justification-explanation-production, the theoretical one” (Ibid.).  

Another theoretical concept on which we rely in this paper is that of topos: 

In some contexts, didactic tasks actually are cooperative, meaning that they must be performed 
together by several persons x1,…,xn, the actors in the task. It will be said that each of the actors xi 
must in this case perform certain gestures, the whole of which constitutes its role in the 
fulfillment of the cooperative task t, these gestures being both differentiated (according to the 
actors) and coordinated by the collectively implemented technique τ. Some of these gestures will 
be seen as separate tasks, t’, in the accomplishment of which xi will act (momentarily) in a 
relative autonomy compared to the other actors in the task. The set of all these tasks, which is a 
subset of the role of xi when t is performed according to τ, is then called the topos of xi in t. 
(Chevallard, 1998, p. 108, our translation) 

A student’s topos is thus the set of all of the gestures he will have to accomplish in didactic autonomy. 
In his dictionary of didactic, Chevallard (1996) describes at least three types of student’s or teacher’s 
topos: 1/ the math disciple/pupil who just listens and observes what is done by the master/teacher; 2/ 
the math practitioner who masters some techniques in order to realize some tasks and is guided by 
the animator/teacher; 3/ the math student/researcher who masters the theoretical and technological 
parts of the praxeologies and has a relative didactic autonomy when studying research question under 
the direction of its director/teacher. A way to look at the students' topos is to focus on what happens 
with their public speeches or texts. Most of time, these discourses are just communicated and appear 
in the milieu (Brousseau, 1997), but they are not included in the shared praxeologies which constitute 
the lesson and that is here termed the class's praxeological equipment (Salone, 2015b). Writing the 
class's praxeological equipment is usually a type of task reserved to the teacher; it is an element of 
his topos. The topos of the students relatively to the class's praxeological equipment is then just to 
copy and memorize it.  But, in some contexts, it may be a cooperative work, so we proposes a four 
levels scale to analyse how students’ public discourses evolve in a classroom: 1/ they are 
communicated; 2/ they are discussed; 3/ they are included in the class’s praxeological equipment; 4/ 
they program the study. At first level, students’ public discourses exist in the class’ milieu. At second 
level, they become a local reference: students and teachers refer to them when debating. At third 
level, excerpts of the students’ public discourses constitute the class's praxeological equipment and 
excerpts of them are directly inserted, with no rewording by the teacher; at fourth level, their function 
is to organize the study 

In order to give the teachers some tools to go through these for levels, we develop some didactic 
plans. A didactic plan is a teaching technology, a way to conduct the study in a classroom. Chevallard 
(2006) proposes some examples: a lecture course is “teaching by giving a discourse on some subject”, 
a seminar is “a small group of advanced students […] engaged in original research or intensive study 
under the guidance of a professor […]”. Thus a didactic plan aims to shape the didactic relation 
between the teacher’s topos and the students’s topos; in this respect it contributes to the evolution of 
the didactical contract (Brousseau, 1997).  



In this paper we describe didactic plans where students are involved in cooperative tasks with a 
relative autonomy, where they have a math practitioner topos and where their public discourses are 
at second and third levels (see above).  

Methodology 
Our research was conducted from 2010 to 2016 in math classes ranging from primary school to high 
school levels. It began with a team of three teachers, including myself, and twelve classes in middle 
school (students aged from 11 to 15 years), with two classes per grade (from grade 5 to grade 9). 
Later the team was joined by three more teachers from middle school (four classes per teacher), two 
teachers from high school (grade 10 to 12, three classes per teacher) and five teachers from primary 
schools (grade 4 and 5, one class per teacher). In addition two teacher’s trainers joined the team. All 
the teachers involved in the research project agreed to implement study and research activities on 
specific topics and various didactic plans designed by an upstream engineering in order to diversify 
knowledge's sources of reference and to open classes on their surrounding world (Salone, 2015a). 
Teachers remained free to adapt and insert these activities and plans into their own mathematical 
progressions. For the research needs, they collected data in their classes:  lectures, students’ 
documents, teacher’s online textbooks1, students' notebooks. Twice or three times a year, we visited 
one of these teachers (that means we observed their classes without interacting) in order to make 
audio recordings of sessions, to take photographs of the classrooms and to interview some students 
that were chosen randomly. We did informal interviews with open questions on how the students 
appreciated the course and where notes were taken. From 2014 to 2016, the whole team also met 
twice a year in order to share teaching experiences. This was an opportunity to improve the didactic 
plans and to realize informal interviews of the teachers or to refine some of our a posteriori analysis. 

Learning the Pythagoras’ theorem 
In France, the Pythagoras’theorem is studied in grade 8. The Ministère de l’Éducation Nationale 
(2008) imposes two abilities: 1/ to characterize the right-angled triangle with the Pythagorean 
equality; 2/ to calculate the length of a side of a right-angled triangle from the lengths of the two 
others. It states also that the direct theorem must not be distinguished from its reciprocal (nor from 
its contraposed form). The case we report here concerns a class at third level of the middle school, 
with pupils aged 13-14 years (grade 8). The objective was the study of the Pythagoras' theorem. The 
teacher’s online textbook shows his progression: 1/ a survey, at home, of the Pythagoras' theorem; 2/ 
group works to product synthesis on what is the Pythagorean theorem and its uses; 3/ a tutored training 
with Labomep; 4/ a selection of exercises' models 

Exploration of the theorem and of its uses 

As already said, the study began with an exploratory survey conducted at home, on the web and by 
asking the close family. In the first session students had realized written presentations on Pythagoras 
and his theorem (Salone, 2015a, p. 323): 

                                                 
1 In France, teachers are required to write each day a summary of what they have taught in an online textbook. This 
textbook can be consulted by the students and their parents. 



 

The questions we ask about Pythagoras’ theorem 
What are its uses? 

It is used to calculate the length of a right-angled 
triangle. It is also used in architecture. 

Who invented it? 

Pythagoras from Samos invented the Pythagoras’ 
theorem 

What is it?  

Figure 1: Excerpt of a presentation on Pythagoras (left) and our translation (right) 

Four of these presentations were exposed on the blackboard and orally presented by their authors (10 
minutes). The teacher then asked some questions: “Does someone have found some more information 
about Pythagoras?”, “Do you agree with these statements of the theorem?”, “What the Pythagoras' 
equality allows us to calculate or to do?” Then he invited the students to freely constitute six peer 
groups (4 to 6 students per group) to answer these questions and to produce a shared synthesis. In the 
groups, the students collected and compared their presentations. Their works lead to the emergence 
of shared statements of the theorem, some uses of it and some problems in line with the official 
programs. After 30 minutes, the teacher ordered each group to copy one single statement on the 
notebooks. He had a glance to these statements but, since they all were right, he did not reword them. 
His first teaching objective was thus reached. In addition, he exposed five of the students’ synthesis 
on the classroom's walls. In this session, the students' topos was thus quite unusual; indeed they were 
first responsible at home of their own first encounter with the theorem (Chevallard, 1998); second 
they produced a synthesis in peer groups, by reviewing collaboratively one another's works, while the 
teacher facilitated their work; third they were the authors of the theoretical part of the class’s 
praxeological equipment (third level on the students’ public discourse scale). In this didactic plan, 
the ICT were a tool to access web resources. In the interviews, some students reported being 
pleasantly surprised by all the uses of the theorem. 

Tutored training with a digital media 

During a second session, the teacher animated a computer training shaped by a didactic plan we call 
a “tutored training” (Salone, 2015a). It’s a moment where students perform training exercises and 
where they help each other and self-evaluate. In this didactic plan a digital media, here the web 
platform for math teachers Labomep (http://www.labomep.net), provides series of type of tasks. The 
teacher has to subscribe and then he is allowed to access and deposit resources to organize his courses. 
Many exercises are thus available, sorted by school grades, chapters and themes. Students may access 
Labomep freely, without subscription. But the teachers of our team preferred to enrol their students 



so that they could control their works (see further). At first the teacher video-projected one problem 
from the series (Figure 2, left). Each student then individually sought an answer for it. Then the first 
students who had one consulted with the teacher who evaluated them. After a few minutes, some of 
the students who had correct responses were invited to help others. At this moment, these students 
had a topos enlarged with teaching task: they gave technological-theoretical explanations and 
methodological advices, they realized assessments. Meanwhile the teacher too had a specific topos: 
he regulated the activity, reminding some rules, giving some advices. When everyone had come to 
an answer techniques were finally discussed by the whole classroom and a common solution was 
chosen and copied in the notebooks (Figure 2, right). The process could then start again with a new 
exercise from the same set or from another one. In a third session, not observed, the students had also 
to gather in a file the problems along with their solutions (one problem from each Labomep series). 
Thus in these sessions several types of mathematical tasks associated with the Pythagoras' theorem 
appeared through problems and techniques gradually emerged. The students' topos was enlarged with 
monitoring tasks usually reserved for teachers and with writing tasks in order to constitute the class’s 
praxeological equipment. ICT were at the heart of this didactic plan as they provided sequences of 
problems and allowed the existence of a joint action. In interviews, students often reflected the feeling 
they had that tutored trainings, with peer to peer exchanges, improve their understanding of 
mathematics. Teachers also highlighted that a long-term regular use of such a didactic plan enables 
students with learning difficulties to keep up with their classmates.  

 

 

Figure 2: An exercise from Labomep (left) and a shared one (right) 

Self-training and assessments 

Websites as Labomep are not only resources for interactive exercises. They are also intelligent 
systems that assess the performance of individual students. In several of the classes involved in our 
research, teachers took advantage of this potential to develop training sessions in relative autonomy. 



Each student had a personal account on Labomep and trained alone or with a classmate. The sets of 
exercises are either freely decided or defined in advance by the teacher. At the end of a series, 
Labomep assigns a score and suggests trying again if needed. Video animations reminiscent of 
technological-theoretical elements are also directly accessible or proposed. The greatest advantage of 
this didactic plan is that it can be continued outside the class. Indeed each student can extend the 
studies conducted in classroom by training, revision or exploratory sessions at home. Figure 3 shows 
an example of individual assessment which is made by Labomep and which the teacher can view. 
The first column is the name and first name of the student (here a generic one), the second column 
contains the title of the series, the third one is a score, the forth and the fifth ones are day and time. 
In the third column, the score is at first a mark (1 over 5 here) and the five rectangles corresponding 
to the five exercises of the series are coloured: when the colour is red, that means the student didn't 
succeed at all (he had two attempts to succeed), when it is light green he succeeded at the second try, 
when it is green he succeeded at the first try, and when it is blue he didn't answer the exercise. 

 
Figure 3: An individual assessment with Labomep 

To go back to Pythagoras’ theorem, Figure 4 shows the activity of two students on it and on the 
Pythagorean triples. This is an extract from a page with global statistics generated by Labomep that 
informs us about the different issues they addressed, adding scores or achieved grades, and the dates, 
times and durations of sessions. The two students, which we will call here Ali and Ame, had different 
profiles: Ali was ranked among the top students in his class, whereas Ame was facing some learning 
difficulties. Data on dates and hours show that both have used Labomep 3 times: twice during 
classroom sessions, on 24/09/2012 and 01/10/2012, and once outside the classroom on 03/10/2012. 
In class, within an hour and forty minutes of activity (rows 1 to 7), Ali mastered the first two types 
of tasks (applying the theorem and showing that a triangle is not right-angled). For the first type of 
task (rows 1 to 4), his score is three times 0/5 and then it becomes 5/5. For the second task (rows 5 
and 6), his scores are 1/5 and 5/5. But he only achieved a score of 1/5 for the third type, at row 7 (use 
the Pythagorean triplets). Within the same time frame, Ame successfully completed the first two types 
of tasks, with a maximum score of two out of five for the first one (rows 13 to 18) and one out of five 
for the other (row 19).  



Figure 4: Excerpt from statistical assessments of students in Labomep 

Out of the classroom the path differences are even more marked. Ali returned to Labomep, two days 
later, more than two hours in the evening (rows 8 to 12); he trained himself to solve the third type and 
didn't succeed (his best score is 2/5). After that he went on working on two other types of more 
complex problems (rows 11 and 12). Ame just spent a quarter of an hour taking the first two types, 
in the afternoon one day after the second session (rows 20 and 21). He partially succeeded the second 
type of tasks, reaching a score of three out of five. Thus, with intelligent digital systems such as 
Labomep in such a didactic plan, courses and students' paths can be individualized. According to 
teachers, it is very beneficial for learning: it consolidates the skills of all students. Those who have 
difficulties have tools to progress at their own pace and perform better evaluations, those who already 
have a good level complement their knowledge. Some teachers have also chosen to look at these 
individual activities outside the classroom so that everyone's work is rewarded regardless of the initial 
or achieved levels in mathematics. Quarterly average scores are thereby increased, which greatly 
helps to maintain students' motivation. 

Conclusion and perspectives 
Through these examples we have therefore tried to identify some benefits on learning induced by the 
use of didactic plans including ICT and which enlarge students’ topos. The first one concerns the 
class’s praxeological equipment: students become authors of the lecture, of its content and its 
programming. The second benefit is related to the joint action: ICT facilitate peer exchanges in 
didactic plans where students endorse teaching tasks that are usually assigned to teachers. The third 
benefit is the differentiation of learning: intelligent tutoring systems such as Labomep allow tasks to 
be performed in individualized ways and to be continued at home. Can we conclude that students are 
more motivated when using ICT? And does this improve their learning of mathematics? The general 
consensus amongst the participating teachers and students was yes. But there are other factors that 
might explain this conclusion. First we worked with an extremely motivated team of teachers who 
were very dynamic and keen on interesting their classes. Second today’s students easily understand 
and appreciate ICT related activities. So it is not sure that these methods would ensure success for all 
students. Our research objectives are now to study the conditions and constraints of implementing 
such didactic plans in regular classes. 
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This paper introduces the concept of digital discourse in Mathematics using a philosophical 
framework by Alexander Galloway. The notion of the digital is discussed and the concept of digital 
discourse is elaborated on that basis. The empirical data shows its value by reporting on transitions 
in language when working with digital tools on geometrical tasks. Existing research findings show 
effects of DGS on language changes referring to geometrical objects and actions. The present study 
analyses qualitatively both students’ language referring to mathematics as well as to the digital tool 
in the context of geometrical constructions. The empirical results give insights into processes and 
transitions in the language use (by students) from a tool-oriented language (e.g. referring to 
buttons) to a mathematical-oriented language (referring to mathematical concepts) and aim to 
explore the nature and the characteristics of digital discourse. 

Keywords: Language, digital tools, geometry, discourse. 

There are substantial research results concerning the changes in language used for describing 
mathematical actions and objects when working with DGS (Kaur, 2015; Sinclair & Yurita, 2008). 
This paper shows results focusing on empirical phenomena concerning a language that students use 
in order to describe actions and objects referring to the digital tool. The interplay between these two 
layers referring to the tool as well as to the mathematics is analyzed in detail. The analysis will give 
empirical insights into the transition-process between the language of mathematics and technology 
and, by doing so, will examine a central facet of digital discourses.  

Etymological and philosophical aspects of digital discourse 
What is digital discourse? Initially one might think of SMS-chats, of instant messaging via Skype or 
WhatsApp, of blogging or the like of tweets, of posting messages on social network sites, or of 
video-based online-discussions (e.g. Llinares & Valls, 2009). There is no doubt that all these forms 
of discursive practices have their roots in the way new media is used. But is it adequate to use the 
predicate digital for such discursive practices? For the examples above, this paper will rather use the 
term discourse “in the New Media” (Thrulow & Mroczek, 2010) to differentiate it from the term 
digital. But what is the digital? This paper wants to stress the notion of the digital in the 
mathematics classroom, especially the notion of what can be seen as digital discourse in 
mathematics. To do so, we will follow a philosophical path drawing on a work by the philosopher 
Alexander Galloway (2014), in which he gives an introduction to the work of the philosopher 
François Laruelle and—by doing so—tracing back the notion of the digital in philosophy to Plato 
and Sokrates and, especially, to Hegel’s work. For Galloway, rather than distinguishing zeros and 
ones (the digital) compared to continuous variation (the analog), the “digital is the basic distinction 
that makes it possible to make any distinction at all. The digital is the capacity to divide things and 
make distinctions between them. Thus not so much zero and one, but one and two.” (Galloway, 
2014, p. xxix) In that sense, the digital is closely connected to the notion of difference. This 
philosophical perspective on the digital is used here to discuss its value for the mathematics 



classroom and especially for discursive practices and processes of concept formation in it. By doing 
so, this approach does not claim to adopt Galloway’s perspective on philosophy and his non-
standard philosophical approach drawing on Laruelle (c.f. Laruelle 2010). It rather uses perspectives 
he offers to introduce the concept of digital discourse in mathematics and to better understand its 
nature and characteristics. 

The understanding of discursive practices and the underlying norms have been a major subject of 
study in mathematics education. And yet there is a need for reactivating such analytical approaches 
in the light of the use of digital tools since digital tools “give rise to new ways of thinking that may 
conflict with the established discourse of formal mathematics” (Sinclair et al., 2016a). In their 
analysis, Sinclair and Yurita (2008) outline the way in which the use of dynamic geometry changes 
discourse, e.g. transitions from static to dynamic forms of discourse. Also, Schacht (2015a; 2015b) 
reports on shifts in language regarding student’s documentations, in which the students use a 
language that clearly refers to the digital tool and not to mathematics. Both examples show—in 
different ways—that the digital tool affects the discursive practices in class. And still we know little 
about normative rules affecting the discursive practices: the conceptual (mathematical) norms 
involved, the social- and socio-mathematical norms, the norms established and the norms brought in 
by the technology in use. By introducing the concept of digital discourse, this paper approaches an 
understanding of discursive processes by using Galloway’s perspective on the digital in order to 
distinguish different discourses referring to the tool or to mathematics with specific underlying 
norms. Therefore, we will first briefly highlight Galloway’s (2014) notion of the digital, then 
introduce the definition of digital discourse in mathematics before applying it to the empirical data. 

What is the digital? 
Building on the broad definition of the theoretical concept of the digital that points at the notion of 
difference (see above), Galloway describes the operation of the digital as follows: “the making-
discrete of the hitherto fluid, the hitherto whole, the hitherto integral. Such making-discrete can be 
effected via separation, individuation, exteriorization, extension, or alienation. Any process that 
produces or maintains identity differences between two or more elements can be labeled digital.” 
(Galloway, 2014, p. 52) Although the digital can be seen as an archetype of philosophical thinking 
in general (tracing it back to Plato and Sokrates), Galloway (2014) describes the digital as 
fundamental to the dialectics of Hegel with its two moments: “the (digital, F.S.) moment of 
analysis, where the one divides in two (12, F.S.), and the (analog, F.S.) moment of synthesis, 
where the two combines as one (21, F.S.)” (Galloway, 2014, p. xxix). Galloway also attributes 
analog and digital to both moments (p. xxxi). Although Galloway (2014) does not focus on 
computers or new media in this work but rather on discussing the theoretical concept of the digital 
in general, the (digital) process of discretization and of computation however, of extending the one 
(or, in a mathematical context: the mathematical concept) “beyond its own bounds, thereby 
branching the one, splitting it” (Galloway, 2014, p. 52) is inherent to computers and hence to digital 
tools. In this sense, the dialectic idea is existentially present and closely related to the digital: “Hegel 
is dead, but he lives on inside the electric calculator.” (Laruelle, Introduction aux sciences 
génériques, 28, cited in Galloway, 2014, p. xxxiv) 



Digital discourse in mathematics 
Following Galloway’s discussion of the digital, the following definition is used here: Any discourse 
that produces or maintains differences between two or more elements can be labeled digital. This 
definition does not necessarily focus on technology. Also, the notion of digital discourse presented 
here certainly differs from studying discourses in the new media (Llinares & Valls, 2009). As a 
theoretical concept, this notion can be applied to any discursive practice. However, the analysis of 
the empirical data will demonstrate that the concept of digital discourses can be used to structure 
and describe conceptual processes and transitions underlying the work with digital tools because the 
(digital) distinction between expressive reference to the mathematics and to the digital tool and, in 
line with that, the corresponding underlying norms seem to play a central role in these processes. In 
this sense, the approach follows the “need to study the transition phases in the progress of 
geometrical concept formation” (Sinclair et al., 2016b, p. 696).  

The term discourse is used here in a pragmatic (more precise: from an inferential) perspective 
(Schacht & Hußmann, 2015): Individual conceptual processes and mastering mathematical concepts 
is understood as being able to give reasons for the use of concepts within discursive practices 
(=master the inferential relations), similar to Wittgenstein’s idea of mastering the rules of the 
language game. In this perspective, individual conceptual acting is highly normative since the 
individual acknowledges the reasons one has for applying a concept to be true or at least to be 
adequate in a certain situation. Hence, it is one of the tasks of this analytic approach to reconstruct 
the (normative) rules that the individuals (as concept-appliers) follow. Discursive practices, in this 
perspective, give access to individual conceptual processes and the underlying social and individual 
norms. Galloway’s notion of the digital is used here for digital discourses to differentiate between 
different (normative and conceptual) discursive layers, and especially between the following two 
layers discussed in this paper concerning the mathematics and the tool. In this sense, it is the aim of 
this paper to introduce the concept of digital discourse and to better understand its characteristics 
and nature when working with digital tools exemplified by an example from geometry class.  

Language, written documentations and digital tools in geometry 
Before analyzing the digital discourse in the empirical example from a dynamic geometry 
environment (DGE), this paragraph will briefly highlight research findings on the changes in 
language when working with digital tools. Such tools affect the conceptual thinking and acting with 
the mathematical objects as well as the written solutions (Ball et al., 2005; Weigand, 2013). In 
geometrical contexts, DGS can support the grasping of both the geometrical objects as well as the 
actions conducted with these objects (Jore & Parzysz, 2005). Also, the use of DGS changes 
language and discourse in various ways. Hölzl reports that students tend to use active verb forms 
while working with the dragging mode (Hölzl, 1996) which mirrors the movement and the dynamic 
actions. Also young children (ages 7–8) tend to change forms of reasoning using action verbs 
influenced by dynamic and temporal elements of the DGS like the dragging tool (Kaur, 2015). In 
line with that, changes in discourse and vocabulary could be observed regarding the transition from 
static to dynamic forms of discourse about geometrical objects: “[S]hapes were discussed as if they 
were a multitude of objects, changing over time, rather than as a single object” (Sinclair & Yurita, 



2008). Hence, not only the understanding of the objects and actions change, but also the language 
used in order to make actions and objects explicit.  

Whereas most of these findings report on transitions of language regarding mathematical actions 
and objects when working with DGS, Schacht (2015) shows that students also use a rather 
naturalistic language to describe the manual actions precisely to get to their solution as well as 
objects referring to the tool like buttons or commands. This paper focuses on the way in which 
students describe actions and objects both referring to the mathematics and referring to the digital 
tool as well as on the transitions between these layers when working on geometrical constructions. 
These different referential units—the mathematics and the digital tool—each reflect certain 
conceptual—and, following the pragmatic approach, also normative—layers e.g. it makes a 
difference whether one describes the solution process in terms of the mathematical process or in 
terms of the manual actions conducted with the digital tool.  

This paper studies the transitions of using tool language to using technical language. This paper 
reports on results of a qualitative study, in which processes like these were studied based on 
students’ involvement on construction tasks using DGS (GeoGebra) with respect to the following 
underlying research question and the overarching interest to explore the nature and characteristics of 
digital discourses: Which language transitions can be observed between a tool- and a maths-
oriented language when working on construction tasks? 

Methods and design 
The empirical study was conducted with N=20 students (age 13–15) from different schools. All 
students worked in pairs with GeoGebra within clinical interviews. This paper uses some of the data 
of this bigger project in order to demonstrate the potentialities of digital discourses as a way to 
understand lexical transition processes better . A systematic analysis of such lexical processes is 
given in Schacht (in revision). All pairs that did the construction tasks were videotaped during the 
construction and afterwards. The interviews were analyzed qualitatively focusing on the oral and the 
written language by using lexical categories (Schacht, 2015). The written documents were also 
analyzed. Three to four geometrical tasks were given to each pair; the duration of working on these 
tasks ranged between 40 and 80 minutes. All students were introduced to the DGS first and they 
were encouraged to explore some main functionalities since most of the students had not have much 
experience working with GeoGebra. Most tasks had an explorative character, meaning for example 
that the students were asked to construct certain objects and try to formulate a description. Within a 
task aiming at exploring the concept of symmetry, the students were asked to describe and give 
reasons for their findings. In this sense, the information the experimenters were trying to obtain 
from the interviews focused on the way the students work on such geometrical tasks and the 
language they use when speaking and writing. A detailed description of the tasks relevant to this 
paper is given below.  

Results and discussion: Transitions in language  
The pairs of students were given a geometrical configuration and they were first asked to 
(reconstruct) the given Figure 1 with ruler and compass (on a sheet of paper) and formulate a 
written description of the given construction by using ruler and compass for themselves (line 1 



below shows the description of student 1 (S1)). After that the students worked in pairs with a DGS. 
They were then asked to construct the same figure with GeoGebra and then formulate a description 
of the construction together (lines 2 & 3 shows the common description of S1 and S2 with the 
DGS).  
Line 1  S1 (r&c):  Draw a 5,7cm 

straight line (German: Linie) from A. 

Line 2 S1&S2 (DGS):  Click on the button 
“segment” at the top. 

Line 3 S1&S2 (DGS):  Segment from the center to 
each point of intersection. 

 

Figure 1: The given geometrical configuration 

The analysis focuses on the language the students use to describe the objects they deal with. Using 
ruler and compass, S1 refers to a term from everyday language (line (German: Linie)) which is—in 
the German translation—not considered to be a proper mathematical term. When the students work 
with the DGS, they document their manual action (line 2) precisely by describing which button to 
click on. In this case, they choose the segment-button. In the version of GeoGebra they use, the 
name of the button “segment” is shown. Hence, the term segment refers to a button (c.f. Schacht 
2015a) which is an object that refers to the digital tool. It is important to note that although segment 
can be considered as a mathematical object, the students describe a button, hence an object referring 
to the tool. On the other hand, in line 3 the students refer to the segment from the center to the 
intersection points. This description refers to the mathematical object of segment.  

This analysis shows two transitions in the students’ language within their documentations. First, 
there is a change from the description of a given object in everyday language (line 1) to the 
description of a certain button (line 2). For the students in line 2, segment is a signifier of the button 
that they use for their documentation. The second transition shows in which way this signifier is 
used as a mathematical term to refer to the mathematical object of the segment (line 3). The students 
do not refer to a button. They rather use the term segment within a mathematical description. Hence, 
the analysis gives insights into the process of the description of buttons (as objects referring to the 
tool) to the description of segments (as mathematical objects). This is a central characteristic of 
digital discourses: The distinction between the tool-oriented and the mathematical language offers a 
possibility for the students to use terms common in mathematical discursive practices. The example 
shows that digital discourses can follow a linear structure in which the difference between the tool 
oriented layer and the mathematical layer can even be bridged by the digital tool since it offers 
expressive resources that students adopt.  

This first example has limitations though: The students can easily adopt the term segment because it 
connects to a colloquial use of the term. As the following contrasting example will show, obstacles 
may occur when students use terms that do not connect easily to a colloquial understanding. In this 
task, the students explored the phenomenon of symmetry. The students were given a GeoGebra file 
with two quadrilaterals, where one quadrilateral was the image of the other under a line reflection. 
The line itself was not depicted. By dragging the one quadrilateral, the other one moves according to 
the line reflection. The students were asked to construct a new geometrical figure by starting with 
the two rectangles (Figure 2) and the two students S3 and S4 formulated a description for a 
construction he made with the DGS afterwards.  



   ⇒    

Figure 2: Exploring the properties of a line reflexion. By dragging ABCD (left) the image moves correspondingly 

In the next step, only the written description was given to the other student who then had to (re-
)construct the original figure with the DGS. In the following example, student S3 draws a triangle 

by using the polygon-button . He had seen the signifier of the button during his 
construction. In both descriptions below the student S3 refers to the triangle using the term polygon. 

 

 

line 2  S3 (DGS): 2. Choose polygon 
(toolbar) 

lines 6-8  S3 (DGS): 5. Colour the polygon 
green  

Transcript of the oral description:  
Turn 1  S3 (DGS): By pulling at the left polygon, here at the points, coordinates, in order to have three 

rectangles. 

First, the student refers to the polygon-button (line 2) in order to describe a manual action precisely 
and the objects (referring to a button) needed in order to handle the DGS. Next, the student adopts 
the signifier in order to refer to the mathematical object (lines 6–8). In lines 6–8, the polygon is seen 
as a static object that has to be colored in green. Third, this mathematical object is used dynamically 
since the student describes how to pull at it (turn 1). Hence, this example shows a transition from 
the description of an object that refers to the tool (polygon button) to the description of first a static 
and then a dynamic mathematical object (polygon).  

Although this transition seems to mirror the process that could be observed in the first example, 
there are significant differences. It is important to note that student S3 does not refer to the term 
triangle at all. Instead he sticks to the term polygon throughout the interview. When (his partner) S4 
has difficulties with the description and asks S3 to describe precisely what he meant by choose 
polygon, S3 does not refer to the three points that his specific polygon (as a triangle) has (turn 1). 
Hence, this example shows that although S3 uses the signifier to deal with the mathematical object, 
he has difficulties with grasping the concept to distinguish between a polygon and a triangle since 
he has no conceptual understanding of this term. This analysis shows interesting obstacles. First, 
S3’s description to choose a polygon is viable, but it is not precise enough for S4 to understand that 
he has to create a triangle. There are several other scenes in this interview, which lead to the 
conclusion that S3 does not grasp this concept as he cannot connect it to other mathematical 
concepts. Especially, it is not obvious for S3 that a triangle is a certain polygon. This example raises 
the question of how it is possible to support a semantic connection to the students’ knowledge by 
using the digital tool and the given signifier. In terms of the characteristics of the digital discourse, 
the student does not manage to make the mathematical concept explicit by giving reasons for it in 
the course of the interview. He rather incorporates the expression polygon offered by the user 
interface. The second example gives insights into a divergent digital discourse because there is no 
mediation between the two layers in order to establish a commonly shared mathematical 



understanding of the construction. The reason for that is the missing conceptual transition between 
the two layers mathematics and tool.  

Final remarks 
The two examples discussed in this paper show similar transitions in students’ language when 
working with digital tools and give insights into digital discourses. They give insights into the 
process of the descriptions from objects related to the tool (e.g. buttons) to mathematical objects. 
Regarding the research question, the examples show different lexical phenomena when working on 
construction tasks. Example 1 reveals that digital tools can support lexical processes by adopting the 
signifiers’ names in the description of the construction. The students manage the shift from a 
language that focuses on technology to a rather mathematical language. In other cases this can lead 
to obstacles which show the need for a conceptual connection to concepts the students already know 
(example 2). These different lexical transitions show that the use of a rather calculator-oriented 
language has potentialities as well as limitations. Although it is important for the mathematics 
classroom to support the use of both language referring to the tool (e.g. in exploration situations) as 
well as to the mathematics, it remains a challenge to develop means to bridge and support language 
processes in a way that students not only adopt signifiers but rather grasp a conceptual notion of the 
mathematical objects and actions. Hence, studying language processes like these shows the 
importance of a lexical consciousness of the different lexical norms of adequacy when language is 
used in specific situations (Schacht, 2015).  

Studying such language transitions illustrates the role of the notion of difference in discursive 
practices when working with digital tools. The two examples in this paper show two different digital 
discourses, understood as discourses that produce or maintain differences between the mathematical 
and the technological discursive layer. On the one hand, a digital discourse can have a linear 
structure in which the difference between the mathematical and the technological discursive layer is 
bridged. On the other hand though, that difference between these two layers maintains throughout 
the discussion. Regarding the characteristics of such digital discourses, the examples show that it 
makes a difference if the students use expressions referring to the mathematics or to the digital tool. 
One the one hand, each layer implies specific underlying norms and specific conceptual aspects, 
which refer either to the mathematics or to the digital tool. On the other hand, the processes above 
show the dynamic of such discourses and the way in which these—linear or divergent—transition 
processes can have implications on the individual concept formation processes.  

The results also show possibilities for further studies of the digital discourses in respect (i) to the 
underlying conceptual processes, (ii) to a deeper insight into the nature and characteristics of digital 
discourses and (iii) to the potential for classroom practices to foster digital discourses within 
conceptually supporting environments.  
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Mathematics education researchers have been interested in students' understanding of the equality 
as equivalence relations. Doing so, they pointed out that the notion of equality is difficult for students 
to perceive. We provided one pair of 16-year-old low-achieving students with a productive 
environment (technological tool, supportive teacher and an authentic activity) to support their 
learning of equality sentences as equivalence relations. We examined the pair of students’ routines 
in this environment. The research results indicated that the students followed a sequence of routines 
where the teacher and the technology had an effective role. Moreover, students’ substantiation 
routines relied on empirical argument that utilized concrete realizations afforded by the applet. 

Keywords: Commognition, dynamic technology, low-achieving students, equation, equivalence. 

Introduction 
The mathematics education of low-achieving students has attracted educators' attention for a long 
time. To support the mathematics learning of these students, one of the recommendations is to conduct 
a classroom environment that is conducive to learning (Leone, Wilson, & Mulcahy, 2010). This can 
be done, among other things, by giving students authentic tasks and dynamic tools (National Council 
for Curriculum and Assessment, 2003; National Council of Teachers of Mathematics, 2000), and, at 
the same time, by maintaining effective teaching (Ball, 2003), for example through questions. By 
authentic tasks we mean, tasks that are situated in meaningful contexts that reflect the way tasks might 
be found and approached in real life. In the present research, we tried to follow these principles by 
giving low-achieving students authentic activities related to equivalence relations. At the same time, 
the students worked with an applet suited for learning equations as equivalence relations; issues that 
have been indicated as critical to algebra (e.g., Stacey & Chick, 2004).      

Students' understanding of the equivalence relations  

Mathematics education researchers have been interested in students' understanding of the equivalence 
relations (e.g., Kieran, 1981, 1992; Knuth, Alibali, Hattikudur, McNeil, & Stephens, 2008). Knuth et 
al. (2008) argue that the notion of equality is often complex, and thus difficult for students to perceive. 
Furthermore, Kieran (1992) considered the equivalence relations as a pre-requirement for 
understanding structural representations such as equations. 

Knuth et al. (2008) examined middle school (grades 6-8) students' definition of the equal sign. They 
found that those students had three types of conceptions: a relational conception (when the student 
expressed the idea that the equal sign represented an equivalence relation between two quantities), 
operational conception (when the student expressed the idea that the equal sign meant "add the 
numbers" or "the answer"), and other conceptions; for example, when the student used the word 



"equal" in the definition. Several researchers expressed the view that helping students acquire a 
relational conception of the equality sign would help them succeed in algebra and beyond (e.g., 
Hunter, 2007; Knuth et al., 2008). Generally, this concept, together with the related concepts, as 
equivalence and equation, are complex ones and difficult for students to understand (Hunter, 2007; 
Kieran, 1981). 

A productive environment for students' learning of the equivalence relations 

Students' difficulties in understanding the equivalence relation could be lessened in a learning 
environment that includes authentic tasks (Taylor-Cox, 2003), technology (Jones & Pratt, 2006) and 
teacher's guidance. As to the use of technology to assist the learning of the equivalence relations, 
Jones and Pratt (2006) report an experiment in which two students connected an onscreen '=' object 
with other arithmetic objects, which supported them in developing relational conceptions of the equal 
sign. As to the use of authentic activities to assist the learning of the equivalence relation, Taylor-Cox 
(2003) describes the Pan Balance scales as a tool to demonstrate equality, where students need to use 
and make scales. As to the teacher's guidance as means to facilitate students' learning of the 
equivalence relation, researchers have indicated the importance of the teachers' role and guidance in 
learning mathematics in general (NCTM, 2000), and learning the equivalence relation in particular 
(e.g., Taylor-Cox, 2003). Taylor-Cox (2003) describes the mathematics teacher's role in enhancing 
students' learning, for example by asking questions that promote mathematical dialogue and 
understanding. The mathematics teacher’s actions are part of the classroom routines (using Sfard's 
terms) that assist the students in their mathematics learning.  

We designed the learning environment taking into consideration the role of technology, the role of 
the teacher, and the type of the tasks. To better understand the students' learning in this environment, 
we analyzed this learning using Sfard’s commognitive approach. Especially, we concentrated on the 
evolution of routines’ use. In the following section, we briefly outline the commognitive approach.   

Routines in the mathematics classroom   

Sfard (2008) presents four components of the mathematical discourse that help analyze it: words, 
visual mediators, narratives and routines. Mathematical words are used by the participants in a 
mathematical discourse to express and communicate with the other participants about mathematical 
ideas. In this discourse, a student learns new uses of previously encountered mathematical words, but 
may also learn new mathematical words. Visual mediators are visual objects and means with which 
participants of mathematical discourses identify mathematical ideas. They include symbols such as 
numerals, algebraic letters, tables, graphs and diagrams. A narrative is a spoken or written text that 
describes objects, or relations between objects or activities with or by objects, and that could be 
accepted or rejected within the mathematical discourse. Mathematical examples of narratives could 
be theorems, definitions and equations.  

Sfard (2008) defined Routines as “repetitive patterns characteristic of the given discourse” (p. 134). 
They characterize the use of mathematical words and visual mediators or the creation, substantiation 
or change of mathematical narratives. Examples on typical mathematical routines are methods of 
calculations and of proof (Sfard, 2008). She divides routines into explorations that aim to further 
discourse through producing or verifying endorsable narratives (as verifying a mathematical 
conjecture or proving a mathematical relation); deeds that aim to change the actual objects, physical 



or discursive, not just the narratives; and rituals that aim to create and sustain social approval with 
other participants in the mathematical discourse. Furthermore, rituals could involve imitations of 
other participants’ routines (Berger, 2013). Sfard further divided explorations into three types: 
construction that aims to create new endorsable narratives, substantiation that aims to decide whether 
to endorse previously created narratives, and recall that aim to summon narratives endorsed in the 
past. 

Previous research has used the commognitive framework in different ways to examine the four 
components of the mathematical discourse, or just some of them (e.g., Berger, 2013; Viirman, 2012). 
Little research has been done on students' routines while learning the equality sentences as 
equivalence relations, where most of the research was done on students' word use or narratives related 
to these concepts. The present research intends to study the routines of low-achieving students while 
learning equations as an equivalence relations between quantities. The main research question is: 
what are the characteristics of low-achieving students' routines in the course of learning equations as 
an equivalence relations between quantities in a productive learning environment? 

The design of the study  
To answer the research question we analyzed approximately three hours of learning by Noha and 
Maha, one pair1 of 16-year-old low-achieving students in the math class taught by the third author. 

The experiment took place in a school of low-achieving students who want to graduate as car 
mechanics or house/car electricians. The students volunteered to participate in four after-school 
meetings that aimed to teach the equations as an equivalence relations. In this study, we concentrated 
on the third meeting, which dealt with learning the equivalence between the two sides of an equation 
when performing arithmetic operation. The students who participated in this study had prior 
knowledge in operator precedence and the substitution of numeric values in algebraic expressions. 
They were not familiar with using technological software in learning mathematics. The two students 
shared a single computer, and the third author briefly introduced them to the functions of the software.  

The students were video-recorded and their computer screens were captured. The video recording 
was performed with a computer program that captured the footage in two different windows; one for 
the computer screen and the other for the student’s body. The third author conducted the learning 
activity. His main role was to ask clarification questions. The pair of students carried out four tasks 
presented in Figure 1.  

 
 
 
 
 

                                                 
1 For reasons of space, we decided to perform the micro-analysis of the learning process with one pair of students from 
the three pairs participating in the research project.    

Task 1 

 Enter the expression 6x in the red pan and 18 in the blue. What happened to the pans? 
Why?  

 Change the slider until the pans have equal values. Why do the pans have equal value? 
 Add the value 2 to the red pan. What happed and why? What should you do now to make 

the pans balanced? 
 Subtract the value 2 from the red pan. What happed and why? What should you do now 

to make the pans balanced? 
Task 2  

 Enter the expression 2x in the red pan and 10 in the blue pan. What 
happened to the pans? Why?  

 Change the slider until the pans balance. Why did the pans balance? 
 Multiply the expression in the blue pan by 2. What happened to the pans 

and why? What should you do to make the pans balance?  
 Divide the expression in the blue pan by 2. What happened to the pans and 



 
 
 
The technological tool used in the experiment  

The technological tool used in our study is the interactive applet Pan Balance Expressions (PBE; 
NCTM, 2015; Fig. 2). The interactive applet PBE allows numeric or algebraic expressions to be 
entered and compared. Students can "weigh" the expressions they want to compare by entering them 
on either side of the balance. Using this interactive applet, students can investigate the equivalence 
of equation. PBE consists of four main windows: a) the slider window, which allows the student to 
vary the x- values; b) the pans window, which contains symbolic expressions entered by the users; c) 
the keyboard window, which enables the student to enter and edit expressions in the pans; d) the 
graphic window, which represents the graphs of the expressions entered in the pans.  

Data analysis 

To analyze the data, we categorized the routines, as suggested in Sfard (2008). We considered a 
routine to be an exploration when the student's goal, from performing the routine, was to arrive at a 
narrative. More specifically, we considered a routine to be an exploration of the type 'construction', 
when its goal was to arrive at a mathematical relationship. Moreover, we considered a routine to be 
an exploration of the type 'construction', its goal was to verify a relationship that was arrived at or 
conjectured. Other categories that we found are: teacher’s request (when the teacher requested the 
students to do an action), and students’ actions with the applet (when the students worked with the 
applet for different reasons). 

 

 

 

 

 

 

 

Results   

The pair of low-achieving students worked with three groups of narratives; (a) Solving the equation 
Ax=B using the applet; (b) constructing the equivalence equations resulting from performing the 
same allowed operation on both sides of the equation; (c) solving linear equations using the 
equivalence principle. In the present paper, we will present students’ routines related to constructing 
the equivalence concept resulting from performing the same allowed operation on both sides of the 
equation. 

Figure 1. Example of a task given to the students 

Figure. 2: The interface of the Pan Balance applet 



Transcript 1 describes the pair of students' work while adding the same number to both sides of an 
equation. At this phase, the expression 6x was in the red pan and 18 in the blue one. The slider was 
at x=3, which mean the pans were in balance.  

25  T: Add the number two to the blue pan  
26 N: (she added two to the blue pan causing the red pan to rise) 
27     T:          What did you see? 
28     N:         Eighteen plus two 
29     T:          What happened? 
30     M:         It rose. 
31     N:         It is not equal; the red pan rose and the blue fell. 
32     T:          Why did this occur? 
33     M:  (Looking at the Pan Balance) Because we added the number two to the blue 

pan. They are not balanced; one pan is higher than the other. 
34     T:          Could they balance now? 
35     M:            (adds 2 to the red pan) 
36     M:         Yes, if we added the number two to the red pan. 
37     N:         Yes they are balanced now. 
38     T:         Why are they balanced now? 
39     N:        Previously there were 18 on both sides. Thereafter, we added two to the blue 

pan. It totaled 20. Now I added two to the 6x and it also totaled 20. It is now 
equal. 

Transcript 1: Adding the same number to the two sides of an equation 

This transcript illustrates the pair of students' routines, which led to the endorsement of the narrative 
"Yes, if we added the number two to the red pan" [36]. Students' routines started with a teacher’s 
request [26] with an overall intention to allow the student to construct a narrative related to adding a 
number to an equation. The students got engaged in actions with the applet [26]. The teacher then 
started a construction routine, with the intention to make the students aware of the effect of adding a 
number on one pan [27-31]. Then the teacher started a routine of substantiation [32-33]. It can be 
seen that the students’ exploration constituted of the following sequence of routines: teacher’s 
request, students’ actions with the applet, students' construction of a narrative, teacher's questioning, 
and students' substantiation of the narrative. The pair of students performed again the same sequence 
of routines to explore how to make the two pans equal: teacher’s request [34], students’ actions with 
the applet [35], students' construction of a narrative [36-37], teacher's question [38] and students' 
substantiation of the narrative [39].  

In their exploration of the narrative related to subtracting a number from the two sides of an equation, 
the pair of students needed just one sequence of routines. Moreover, in their exploration of the 
narrative related to multiplying the two sides of an equation by the same number, the pair of students 
skipped performing actions with the applet to construct the narrative. However, and as transcript 2 
shows, they performed these actions with the applet to substantiate the narrative about the equivalence 
of an equation under multiplication.  



86      T:        What would happen if you multiplied the expressions in the pans by the same 
number? 

87      N: When multiplying, the balance of the two pans would remain unchanged.   
     88      N:                 [she inserted the expression 6x on one pan and 18 on the other; thereafter she 

fixed x=3 to balance the pans].            
89      N:       I will multiply both sides by 2. 
90      N:           [She multiplied both sides by 2]. 
91      N:        I got it right. 

Transcript 2: Multiplying the two sides of an equation by the same number 

This transcript illustrates a modified sequence of routines: teacher’s request [86], conjecture (as a part 
of a construction) [87], actions with the applet [88], substantiation [89-91].   

The data analysis revealed some characteristics of students' routines. First, routines started with a 
teacher’s request or questioning. It seems that one of the teacher’s routines in the low-achieving 
classroom was to start the learning process by requesting the students to act or to answer. Second, the 
pair of students followed a sequence of routines to arrive at each of the narratives. This sequence 
consisted of teacher’s request, students’ actions with the applet, constructing a narrative, and 
substantiating it. This sequence of routines was not kept as is for every narrative, but a variation of it 
was followed. Third, students’ actions with the applet, what we could call deed routines, supported 
the low- achieving students in their exploration routines, whether they were constructions or 
substantiations. Fourth, the data analysis revealed a pattern of evolution of the routines associated 
with the successive narratives, where the number of routines needed for the students to endorse 
narratives was decreased for each group of narratives.  

Discussion 

The goal of the present research was to examine the routines of a pair of low-achieving students, 
while learning the equivalence relations in a productive learning environment. The students worked 
with the Pan Balance, which illustrate the equation concept. Working with it, they actually worked 
with visual mediator which signifying the mathematical objects and relations (Sfard, 2008, p. 224). 
Moreover, the students' routines regard using the visual mediator were visual and dynamic, where 
they could scan the Pan Balance and manipulate it, and consequently watch the effects of this 
manipulation on the equivalence relations. It could be claimed that these visual and dynamic routines 
helped the low-achieving pair of students to signify the equivalence relation through construction and 
substantiation routines. Furthermore, the applet constituted for the pair of low-achieving students a 
prompt for construction and substantiation routines.   

It was observed that the pair of low-achieving students used a sequence of routines:  teacher’s request, 
students’ actions with the applet, students' construction of a narrative, teacher's questioning and 
students' substantiation of the narrative. Moreover, students' use of the sequence of routines satisfied 
the variability and flexibility principles (Felton & Nathan, 2009; Sfard, 2008, pp. 202-205), i.e. the 
students varied their use of the sequence to meet their needs. This happened for example, when they 
engaged with multiplying the two sides of an equation by the same number. Constructing the 
appropriate equivalence narrative, they skipped performing actions with the applet, but performed 
these actions to substantiate the narrative. 



The sequence of routines described above shows the effect of the teacher's routines and of technology 
affordances on students' routines. It seems that the teacher’s initiation of students’ construction and 
substantiation routines was a prompt for them to follow routines that supported their successful 
construction of equivalence narratives. As for the technology affordances, the Pan Balance applet 
allowed the pair of low-achieving students to perform actions that supported them in their 
construction and substantiation of the equivalence narratives (e.g., scanning the equilibrium of the 
Pan Balance). Moreover, we argue regarding the pair of students’ substantiation routines, that they 
relied on empirical argument that utilized the "concrete realizations of the focal signifiers and relies 
on their perceptually accessible features" (Sfard, 2008, p.233). This type of substantiation is probably 
expected of low-achieving students.  

The present research reports the routines of one pair of low-achieving students. It shows that a 
productive learning environment that combines teacher’s initiation and questioning, technology and 
authentic tasks will support these students’ routines for arriving at mathematical narratives. Research 
that engages more low-achieving students’ is needed to confirm this research findings regarding their 
routines in similar environments.     
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Students’ reasoning on linear transformations in a DGS: A semiotic 
perspective 
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The aim of this paper is to analyze students’ reasoning on linear transformations while using a 
Dynamic Geometry System (DGS) from a semiotic mediation perspective. Considering design 
heuristics of Realistic Mathematics Education and the semiotic potential of certain tools and 
functions of DGS, I have developed a hypothetical learning trajectory and have designed a task for 
inventing fundamental properties of linear transformations. The task was field-tested in a case 
study with pair of undergraduate linear algebra students. An analysis of the task-based interviews, 
with a semiotic mediation lens, shows that the students managed to (re–)invent the fundamental 
properties of linear transformations. 

Keywords: Semiotic mediation, linear algebra, DGS. 

Introduction 
One major issue in the teaching and learning of linear algebra is providing students with ready–
made mathematics using different representations and different contexts (Dorier, 1998) without 
considering the students’ intellectual needs for learning (Harel, 1998). An example might be to 
introduce the notion of linear transformations with two fundamental properties as in numerous 
textbooks, where such introduction to the topic could trigger epistemological issues for students’ 
conceptualization of non–linear transformations (Dreyfus, Hillel, & Sierpinska, 1998). In this paper, 
I acknowledge a contrary introduction to the topic and consider a research question: Is it possible 
for students to (re–)invent fundamental properties of linear transformations? To answer this 
question, I consider a dynamic geometry system (DGS), which invite students into a progressive 
process of epistemic exploring, conjecturing and generalizing (Leung, Baccaglini-Frank, & 
Mariotti, 2013). Consequently, I focus on specific tools and functions of GeoGebra, such as 
dragging and grid functions, ApplyMatrix command and slider tool of the DGS as a tool of semiotic 
mediation for students’ reinvention of proposed mathematics. 

Theoretical Perspectives 
In this work, I consider two theoretical insights: (i) Realistic Mathematics Education and (ii) Theory 
of Semiotic Mediation, for designing instructional activity and analyzing the teaching–learning 
process. 

Realistic Mathematics Education (RME) 

RME is a domain–specific instructional theory developed by Dutch researchers (Van den Heuvel-
Panhuizen & Drijvers, 2014). The word realistic, here, does not directly refer to real–world task 
situations, but to paradigmatic situations that invite the development of meaningful mathematics. 
The problem situations do not necessarily come from real life directly, they can be related to an 
imaginary world or to real mathematics that students experience as meaningful: task situations have 
to be experientially real (Gravemeijer, 1999) to students. In parallel to such views, RME offers 
three interacting design heuristics for curriculum developers and educational designers 



(Freudenthal, 1983; Gravemeijer, 1999; Van den Heuvel-Panhuizen & Drijvers, 2014): guided 
reinvention, didactic phenomenology, and emergent modelling. Guided reinvention means 
providing students with an environment for their exploration, elaboration and inventing of 
mathematics. Didactic phenomenology refers to finding certain experientially real phenomena, 
which might form an environment where students create mathematics. The objective of emergent 
modelling is to enable students to shift from informal task situations to formal mathematics through 
support, enabling them to create their own informal mathematics.  

Theory of Semiotic Mediation (TSM) 

TSM was presented by Bartolini Bussi and Mariotti (2008) with the following main idea: to 
construct mathematical meanings, the teacher intentionally uses artefacts as a tool of semiotic 
mediation, which are used in carefully–designed tasks. The aim of the TSM is to transform 
students’ personal meanings to mathematical meanings. The teacher exploits the semiotic potential 
of the artefact, in which he or she uses an epistemological and didactical analysis to picture out 
possible learning steps from personal meanings to shared conventional mathematical meanings. 
Here, taking into account the didactic goals, the teacher considers what students know, what their 
experience with the artefact is and how they will accomplish the task by using the artefact. As a 
next step, the teacher designs a didactic cycle for classroom interventions. 

Students’ interaction with the artefact produces a complex semiotic process. Artefact signs (aS) 
appear when students who use the artefact relate in some way to the activity; specifically, to the use 
of artefact. Mathematical signs (mS) appear, when the students make a definition, conjecture, 
generalization or proof corresponding to didactic goals. Pivot signs (pS) have an interpretative link 
between personal meanings and mathematical signs and can appear in the accomplishment of the 
task. In the application of the didactic cycles, the teacher’s role is orchestrating students’ learning. 

Methodology 
This paper, in which I focus and present the results of a single task, is part of an extensive Design–
Based Research (project) (Bakker & van Eerde, 2015). Due to page limitation, I will present a case 
limited to a pair of students (A male, B female), who were sophomore level undergraduate linear 
algebra students, aged twenty. The students had experience solving linear equations, matrix algebra, 
(geometric) vector spaces and subspaces, and they had learned that every linear transformation can 
be represented through matrices. They also had experience in the use of GeoGebra’s main 
functions, specifically forming a slider and a matrix, and applying the ApplyMatrix construction 
tool from previous task sequences, where they constructed meaning of a transformation and linear 
transformation. However, the students did not know the fundamental properties of linear 
transformations. Task–based interviews were video–recorded and lasted around half an hour. The 
data was analyzed through a semiotic lens using categories of signs (Bartolini Bussi & Mariotti, 
2008): aS, mS and pS.  

Mathematical context, semiotic potential of DGS and task design 

A linear transformation is a specific transformation between V  and W can be represented as 
WVT :  for vector spaces V  and W , where T  satisfies: (i) )()()( vuvu TTT   for all 

vectors Vvu, , and (ii) )()( uu kTkT   for all Vu  and all scalars Rk  (Lay, 2006). Here, I 



took 2RWV  because of DGS availability (for example as in GeoGebra) and considered the 
semiotic potential of the following tools and functions of DGS for students’ (re–)invention of the 
fundamental properties above: (i) the dragging function allows the user to manipulate figures and 
explore independency–dependency of drawings and constructed objects, (ii) the grid function 
activates specific lines for integer values on the x and y axes and this function enables the user to 
observe variations of the coordinates of the objects in different windows, (iii) the slider tool offers a 
means to define a parameter and this may evoke meaning for dynamic (co)variation (Turgut & 
Drijvers, 2016), (iv) the ApplyMatrix tool works through an input line that enables the user to apply 
certain matrix transformations to geometric figures. I postulate that students’ dragging sliders 
connected to a matrix and applying matrix transformations to arbitrary vectors could provide an 
understanding for a meaning: matrix (and therefore linear) transformations preserve vector addition 
and scalar multiplication. 

The synergy between the definitions of guided reinvention and didactic phenomenology heuristics 
and the notion of semiotic potential in TSM implies the construction of a possible learning route, in 
other words, a Hypothetical Learning Trajectory (HLT) (Simon, 1995) which has to be elaborated 
on by the designer before the experiment by following four points (Bakker & van Eerde, 2015): (i) 
learning goals, (ii) students’ pre-knowledge, (iii) assumptions for students’ learning, and (iv) the 
teacher’s role (also in our case, the role of artefacts). Therefore, in Table 1, I express (i), (ii) and 
(iii) points of a HLT for invention of fundamental properties of linear transformations in a DGS.  

Associated 
Concepts 

Expected Steps in 
the DGS Exemplary Task 

Epistemic 
Artefacts in 

DGS 

Expected 
Mathematical 

Meanings 

–Geometric 
vectors 
–Addition of 
vectors 
–Multiplication 
with scalars 
–Matrix 
transformations 
–Fundamental 
properties of 
linear 
transformations 

–Exploring the 
effects of sliders on 
(arbitrary) linear 
transformations of 
arbitrary vectors 
–Comparing the 
initial and final 
versions of vectors 
while moving 
sliders or dragging 
the objects 

–Form sliders 
–Construct 
2´2 matrix 
–Form arbitrary 
vectors  
–Use Apply 
Matrix 
command 
–Move the 
sliders and drag 
the objects 

–Dragging 
–Grid 
function 
–Apply 
Matrix 
construction 
tool 
–Slider tool 

–Comprehending that 
the situation is 
independent from 
matrix entries or 
vectors  
–Formulating the first 
rule situation, 
T(u+v)=T(u)+T(v)  
–Formulating the 
second T(ku)=kT(u)  
–Proving such results 
in terms of matrix 
representations 

Table 1: HLT for the inventing of fundamental rules for linear transformations 

As aforementioned before, students worked on GeoGebra interface in the previous didactic cycles, 
which were about transformation of geometric vectors, figures, and constructing meaning for linear 
transformation. Consequently, the tools and functions of GeoGebra and proposed concepts were 
experientially real for them. Following Table 1 and considering guided reinvention heuristic, the 
task was formulated as follows (a possible interface for the task steps is presented in Figure 1), and 
also for students’ making their own models (cf. emergent modeling). 

Step 1: Open GeoGebra and activate grid function. Next, form two sliders a and b and, using a and 
b, form an arbitrary 22  matrix. Step 2: Form two arbitrary vectors vu,  and construct vu   



through an Input line. Step 3: Apply matrix transformation to vu,  and vu  . Name these vectors, 
respectively: u , v and w respectively, and then calculate vu  . Move the sliders and drag u  
and v  in itself. Discuss with your pair and explain your observations. Step 4: Form a new slider k . 
Now, obtain matrix transformation of uk  and also compute uk . Drag the vector u  and explain 
your observations, and make conjectures. What happens when you move the sliders? 

 
Figure 1: An expected DGS interface for the task 

Teacher’s (possible) underpinning questions in the interview are: What is the role of sliders here? 
What is the role of the matrix? What are the relationships between initial vectors and 
transformations? How do you prove this? [In case they make a generalization with matrix notation]. 
Within this task, I hypothesized that students would observe that the transformation of vu  , 
denoted by )( vu T , always overlaps on the )()( vu TT   vector and similarly, )( ukT  also always 
overlaps on )(ukT  vector, where situations were independent from the choice of matrix and/or 
choice of vector. This could be made possible through the semiotic potential of the aforementioned 
functions and tools of DGS and teacher’s (T) guidance role for reinvention of the mathematics. 

Analysis: Emergence of signs 
Students followed the line of the task. First they constructed two sliders, a and b. Next, using such 

values in the spreadsheet window of Figure 1, they defined a 22  matrix as 









ab
ba

A . Through 

the Input line, they formed two vectors  2,1u  and  3,1v . They first obtained the sum of the 
vectors and thereafter applied matrix transformation by the ApplyMatrix command. The software 
assigned u  for )(uT , similarly, v  for )(vT , and wvu   and dvu  . For a while, the 
students discussed the steps of the task to determine which matrix application is the first, the second 
or the third, which seemed rather confusing for them. After they had completed the three steps, 
while dragging the sliders, they were surprised because a number of vectors and some 
transformation vectors overlapped. At this moment a few aS appeared (see 18–20):  

18 A: … [pointing on the grid (see Figure 2a)] look, how this happened, these are 
overlapping…  

19 B: No. I think, it is because of matrix, look, [dragging sliders and pointing 
matrix entries with pencil (see Figure 2b)] it is changing. 



20 A: Let’s analyze them, which is which and why overlaps… [They are trying to 
separate the vectors (see Figure 2c) and taking notes] 

   
(a)        (b)            (c) 

Figure 2: a, b, c Emergence of aS during analyzing the overlapping situation 

Next, the teacher intervened to make the students focus on the transformations of the vectors, 
because they had spent a lot of time dragging sliders, changing matrix entries (i.e., trying a unit or 
zero matrix and so on) to figure out why some overlapped (see Figure 3a). Then students re–
checked the steps and wrote up the findings in their own way. Some pS appeared here, reflecting 
the students’ new meanings through the semiotic potential of the artefact (37–38), and also 
appeared on the students’ productions (Figure 3b). 

26 T: … what about the transformations of vectors? What did you observe? 
… 
37 B: … I think we will find a relationship between these [pointing on the notes 

(see Figure 3b)]. Here, we have the sum vector’s transformation and sum of 
each vector’s transformation. 

38 A: However, this could be dependent on the choice of matrix? What will 
happen for the matrices where their determinants are zero? … 

                
   (a)      (b) 

Figure 3: a, b Students’ productions as pS 

Interestingly, once more, they focused on the entries of the matrix, because in the previous step they 
had employed a unit or a zero matrix, and they began to check other possibilities for the cause of the 
overlapping situation. Consequently B figured ‘they always overlap’. Here, aS ‘overlaps’ in the 
previous analyses, and can now be considered a pS (see 63, 86), because it is mediating the 
transformation of personal meanings to mathematical meanings. 

63 B: It is clear that they always overlap … Why is this happening? 

64 A: Exactly… but why? 

… 



86 B: d  and w  always overlap and they are the same. I could not analyze the 
others.  

87 A: … because of matrix transformation, I think. 

As a next step, aS and pS interlaced with the students’ personal meanings associated with matrix 
transformations. They re–analyzed their findings, and finally, mS corresponding to students’ 
reinvention of the fundamental properties appeared (93-97). 

93 B: Just a second. What was the meaning of w? It was a transformation of 
vu ? … [moving sliders and thinking]…  

94 A: We also applied matrix transformation to vu ? 

95 B: Because, they are overlapping, this means, we have obtained the same 
vector. … Does transformation of the sum vector [meaning vu ] equals 
the sum of the separate transformations? 

96 A: Absolutely, right. …  
97 B: … [First, she is writing her conclusion, but not mathematically (see Figure 

4a), then she is trying to write it mathematically with her partner’s help (see 
Figure 4b)] …  

            
   (a)        (b) 

Figure 4: a, b Students’ conclusions for the first fundamental property as mS 

Next, while trying to express the situation mathematically, which was under the teacher’s 
orchestration, the students reinvented the first fundamental property (see Figure 5a). However, the 
teacher was orienting students to prove their result considering their pre–knowledge on representing 
linear transformations with matrices. Student B immediately related the situation with her pre-
knowledge and proved her conclusion (119 and Figure 5b). 

114 T: Ok right. Please remember the matrix representations of linear 
transformations. Considering this, how do you prove your result? 

… 
119 B: … [She is writing matrix representations (see Figure 5b), then explains], yes 

… I now realize why this is happening. We can show every linear 
transformation with a matrix and matrix algebra has distribution property. 
Then I can do like this [writing expressions in Figure 5b]… 



                
   (a)       (b) 

Figure 5: a, b Emergence of mS in relation to the task’s goal 

As a final step, the teacher asked the students to consider Step 4. As expected they placed a slider 
for k, and applied a matrix transformation to uk and also computed vector uk . As soon as one 
student saw that the transformation of uk  and uk  overlapped and were exactly the same, by the 
help of the first property she invented, B expressed her views. The final mS emerged in the 
discourse (129).  

129 B: … Oh yes, I think this is obvious; this is also a result of property of matrix 
algebra. For a matrix, k can be multiplied with each entry of a matrix or it 
can be expressed a factor [writing )( uu kfk  ]. Therefore, their [meaning 

uk  and uk ] transformations are the same. 

Conclusions 
In this paper, I consider the research question, ‘Is it possible for students to (re–)invent fundamental 
properties of linear transformations?’ Students work on the task formed through the design 
heuristics of RME and the semiotic potential of some tools and functions of GeoGebra provide an 
affirmative answer, but with some doubts and limitations. For instance, the students spent much 
time determining vectors when they overlapped. This issue to be considered is the students’ 
frequent analysis of matrix entries, where they think that an overlapping situation depended on this. 
I think that such frequent analysis of matrix entries stems from previous experience, where the 
students were continually trying to find matrices of linear transformations. Interestingly, in the 
students’ analyses for characterizing the matrix, different semiotic resources beyond aS, pS and mS 
appeared; for instance, gestures and mimics attached to students’ analyses process. A multimodal 
perspective (Arzarello, 2006) could provide a detailed view for our case. However, in the present 
case within a TSM perspective, I observe a semiotic chain (Bartolini Bussi & Mariotti, 2008), 
which shows the connection between semiotic resources of students’ learning, for inventing 
fundamental properties of linear transformations as follows (Figure 6). 

 

 
Figure 6: A semiotic chain for inventing fundamental properties 
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Research on the language barriers of students who use Khan Academy 
as a mathematics homework platform 
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Homework is a routine practice in maths classes, and research has shown that the immediate 
feedback and acknowledgement of effort is important for students. Unfortunately, the traditional 
classroom setting does not allow for this degree of feedback. Khan Academy offers a free tool that 
allows teachers to monitor students’ activity and provide them with feedback and guidance. In this 
study, we investigated one Czech high school’s use of Khan Academy as a homework platform, 
focusing specifically on language barriers and their impact on the ability of non-native English-
speaking students to benefit from Khan Academy. We found that students who faced a lower 
language barrier were able to make better use of Khan Academy’s educational resources. 
Surprisingly, we also found that a reported language barrier does not significantly correlate with a 
student’s English grades.   

Keywords: Homework, online assessment, language barrier, electronic resources. 

Introduction 
Every student does maths homework during his or her high school studies. I remember doing most 
of mine on the way to school or during the break before my maths classes. At the beginning of each 
maths class, my teacher would walk around the classroom, checking some notebooks randomly to 
see if there was anything that looked like homework. Since I really enjoyed maths, I did most of my 
maths homework by myself and then lent it to others to copy. We did not receive much feedback on 
our homework, so it was no wonder that many students were not very motivated to do their 
homework on their own. Unfortunately, maths teachers in large classes did not have much of a 
choice back then. Today, however, new online technologies, such as Khan Academy (KA), offer 
individualisation, guidance and immediate feedback for students, as well as a great amount of data 
about student activity for teachers (Khan Academy, 2016a). 

The Khan Academy (KA) is a non-profit organisation that runs the website www.khanacademy.org. 
Since 2008, it has undergone a great deal of development. What started as a list of instructional 
maths videos has developed into a network of vast educational resources, including interactive 
exercises covering mathematics, the natural sciences and more, from the elementary to the 
undergraduate level. Thanks to generous donors, KA is able to provide all of its content for free, and 
it probably will not be cancelled or monetised any time soon. At the moment, KA’s exercises and 
most of its educational videos are offered in English only, as is the case with many other online 
resources. We therefore decided to investigate the effects of language barriers on the preferences 
and attitudes towards KA of students who practise maths using KA exercises.  



Theory 
Homework and feedback 

Homework assignments are routine in most mathematics classes, including those in high schools in 
the Czech Republic. There is a great deal of evidence suggesting that monitoring students’ work and 
acknowledging their efforts is very important for students, as it increases the effort they put into 
their homework (Strandberg, 2013). When teachers do not grade a homework assignment and return 
it promptly, students report feeling like they have wasted their time on this activity (Strandberg, 
2013; Wilson & Rhodes, 2010). Students need to believe that their homework is meaningful and 
that teachers value their efforts (Bempechat, Neier, Gillis & Holloway, 2011).  

When it comes to feedback, there are still important gaps in our understanding (Shue, 2008). There 
is some evidence suggesting that when a task requires material or procedural understanding and 
analytical problem solving (e.g. mathematics), providing hints and allowing multiple attempts may 
lead to a greater increase in student performance than simply revealing the correct solutions (Clarina 
& Koul, 2003; Attali, 2015).  

Students benefit greatly from timely and meaningful homework feedback. Unfortunately, it is often 
beyond a teacher’s capacity to provide this to every student in a traditional classroom setting. 
However, technology might be able to help teachers with this. Moreover, technology can prevent 
misunderstandings between students, teachers and parents about the amount of time students spend 
on homework, as accurately estimating this can be difficult for teachers in the traditional classroom 
setting (Strandberg, 2013). 

Language barriers 

We did not find many recent studies investigating English language barriers in terms of learning 
mathematics or learning in general. There have been some studies that have investigated non-native 
English-speaking students in an English-speaking environment, both at the high school (Adams, 
Jessup, Criswell, & Weaver-High, 2015) and university (Variawa & McCahan, 2012) levels. 
However, these are not very relevant to our investigation, as they study foreign students in English-
speaking communities and focus on different subjects (e.g. chemistry, engineering). 

For the purposes of this study, we define a language barrier as English language difficulties, as 
perceived by students when interacting with the Khan Academy website. 

Khan Academy 

KA has been providing interactive exercises for only a few years, so it has not yet been heavily 
researched. However, videos have been used for educational purposes for decades. Two recent 
studies have investigated data from several Massive Open Online Courses to determine the 
attributes of the more engaging videos (Guo, Kim, & Rubin, 2014; Kim et al., 2014). In our 
previous study, we concluded that KA’s videos align well with most of the aforementioned 
recommendations (Vančura, in press). Our investigation into the possible impact of KA as a 
homework platform on student attitudes towards mathematics demonstrated that negative impacts 
are very unlikely (ibid). 

A large study was also conducted concerning the implementation of KA in U.S. classrooms 
(Murphy, Gallagher, Krumm, Mislevy & Hafter, 2014). The results revealed that only 45% of 



American students reported being able to learn new skills using KA without teacher assistance. We 
found similar results (46%) in our previous study (Vančura, in press). 

Context 
In this study, student participants were assigned homework on a weekly basis in the form of KA’s 
interactive exercises.  

 

Figure 1: Interactive exercise (Khan Academy, 2016b) 

Every exercise consists of a series of problems related to very specific topics. In the exercise shown 
in Figure 1, students are asked to practise estimating equation solutions using graphs. Specifically, 
students are required to select the shape of the graph for function g [1]; to graph the function g using 
the interactive graphing tool [2]; and to estimate the lower solution of equation f(x) = g(x), where 
function f is given by the graph. Students cannot move on to the next problem until they solve the 
exercise correctly. If they cannot solve the problem, there are hints [4] that demonstrate step-by-step 
solutions. Even after the whole solution is revealed, students are still required to graph the function 
g and estimate the solution correctly. Only then can they continue on to the next problem. Students 
can also watch instructional videos that explain the solutions to a sample problem in detail [5]. Each 
student’s progress is captured and displayed at the bottom of the screen [6]. Students receive a 
check mark for solving the problem correctly on the first try without any hints. They get an x mark 
for entering the wrong solution and a light bulb icon for solving the problem correctly on the first 
try with some hints.  

In order for students to successfully finish an exercise, they must get five (or sometimes three) 
check marks in a row (i.e. solve five problems on the first try without any hints). This multiple-try 



mechanism aligns well with the findings on feedback (Attali, 2015). However, this feedback does 
not tell students where they have made their mistakes, and it usually provides only one way to solve 
a problem. Some exercises consist of multiple-choice answers, and students might be tempted to 
guess the solutions—although the requirement of solving five problems in a row makes guessing 
time consuming. For example, even if students were able to narrow the choices down to two, they 
would still need to answer 62 questions on average in order to get 5 in a row correct. If students 
guessed blindly from 4 choices, they would need to answer 458 questions on average.  

Another important tool that KA offers is the teacher dashboard, which allows teachers to monitor 
student activity. Teachers can see when students work on exercises, which exercises they work on 
and how well they solve the problems. Teachers can even see the amount of time students spend on 
each problem, as well as the total time they spend on KA. This data allows teachers to monitor, 
acknowledge and assess students’ homework objectively and meaningfully. Moreover, in our study, 
these attributes allowed teachers to grade homework on a weekly basis. 

Based on the results of one SRI study (Murphy et al., 2014), student participants were not required 
to learn new skills on KA; rather, they had to practise skills they had already acquired. 

Methodology 
Research questions 

1. Does a student’s language barrier influence whether he or she prefers KA homework over 
homework from traditional textbooks? 

2. How does the language barrier influence students’ attitudes towards KA and their ability to 
learn maths while using it? 

As the research progressed, we saw that language barriers did play an important role, which made us 
add a third question of interest: 

3. Can the language barriers of individual students be easily and reliably estimated (i.e. by 
asking the student’s English teacher)? 

Data collection 

We developed two surveys based on the surveys used in the SRI study (SRI, 2015), although we 
added some questions about English language usage and omitted some questions that were 
irrelevant to our investigation. The first survey was administered in December 2015, and the second 
was administered in June 2016. Both surveys contained several pairs of verification questions to 
detect inconsistencies or carelessly filled-out surveys. To measure the language barrier, we used 
Likert-scale questions, such as, “My limited English knowledge prevents me from using Khan 
Academy effectively.” To measure the preference for the KA homework platform, we used Likert-
scale questions, such as, “I prefer to solve examples from common textbooks rather than from Khan 
Academy.” Surveys were administered during an ordinary maths class so that the students had no 
reason to hurry. We also collected students’ midterm and final grades in mathematics and English 
for the 2015–2016 school year. 

At the beginning of September 2016, we asked the students’ English teachers to estimate the 
reading and listening abilities of the participating students, as well as the effects of the students’ 



language barriers when using English mathematical software. The teachers were asked to use the 
Common European Framework of Reference for Languages (A1–C2) for their estimations (Council 
of Europe, 2016), which were then recoded on a scale of 1–6. 

Participants and criteria of analysis 

The first survey was administered to 141 non-native English-speaking students aged from 15 to 20 
years old from 7 maths classes in 2 Prague high schools. For the second survey, the participants 
included 83 students from 5 out of the 7 classes that participated in the first survey. All of the 
students were learning English as their second or third language. A total of 64 students participated 
in both surveys. The students in our study were taught by six different English teachers, who were 
asked to estimate the students’ language barriers. The author of this paper was the maths teacher for 
two of the seven classes. Therefore, we looked for relative patterns (i.e. connections between the 
students’ language barriers and their learning independence) rather than for absolute results. When 
investigating absolute results, such as student preference for KA over traditional textbooks, we also 
considered the differences between the students who were taught by the researcher and those who 
were not.  

To measure the language barriers, we required Cronbach’s alpha to be greater than 0.7, which is 
generally considered to be an acceptable level of consistency. When it came to correlations and 
hypothesis testing, we used the 5% significance level. 

Results 
In the first survey, students reported a strong preference for KA over traditional textbooks (Vančura, 
in press). This preference decreased significantly in the second survey, although KA was still 
preferred. In both surveys, the students who were taught by the researcher did not report a stronger 
preference for KA than the other students. Students’ preference for KA was significantly correlated 
with reported language barriers (see Figure 2). Students with greater language barriers tended to 
prefer KA less. Even so, students who reported significant difficulties with English preferred KA 
over traditional textbooks.  

Both surveys revealed a significant connection between the students’ reported language barriers and 
several other factors. In both surveys, students with lower language barriers 

a. found KA videos and exercises to be more helpful for them (correlations 0.18–0.45); 

b. reported higher autonomy when learning new skills using KA (0.17–0.28); and 

c. reported a more adequate understanding of their skills while working in KA (0.22–0.29). 

The reported levels of language barriers decreased slightly between the two surveys, but this 
decrease was not statistically significant. Surprisingly, the reported language barriers did not 
significantly correlate (-0.02, 0.14) with the English grades. We assumed that different teachers 
would have different grading strategies and standards, so we normalised the English grades within 
the groups of students taught by each teacher. The resulting correlation increased slightly to 0.16, 
which is still insignificant in our case. We also calculated the correlation between English grades 
and the decrease of language barriers between the two surveys; again, the correlation was 
insignificant (0.02). 



 

Figure 2: Student preference for the KA homework platform by language barrier in the first survey 

Driven by these results, we asked the English teachers to evaluate the students’ English listening 
and reading skills, which correlated moderately (0.45, 0.48) with the language barriers reported by 
the students.  

Conclusions and discussion 
Homework remains an important part of mathematics education in the Czech Republic. KA can 
provide students with guidance and immediate feedback, which we believe is the main factor that 
leads students to prefer KA over traditional textbooks. The decrease in KA preference over time 
may be attributed to the novelty of this new system wearing off. Still, it is worth noting that even six 
months (and many working hours) later, KA remained the preferred choice of the majority of the 
student participants.  

We found that language barriers play an important role in both preference and reported utilisation of 
KA. Students with greater English-language capabilities reported a higher ability to use KA learning 
resources, which we believe to be a strong factor behind their stronger preference for KA over 
traditional textbooks. We can assume that similar patterns would appear with other online 
educational resources—the number and quality of which continues to grow rapidly, and which 
would take a great deal of time to translate into Czech. Notably, KA is one of the most-translated 
educational resources in the Czech Republic. However, despite great effort from the non-profit 
organisation Khanova Škola (Khanova škola, o.s., 2016), only about 35% of KA’s videos have 
subtitles, while fewer than 1% have Czech dubbing. If we want students to benefit from these 
growing resources, then we need to prepare our students for learning in English.  

The last result of our study was that students’ English grades did not significantly correlate with 
their reported language barriers (i.e. the ‘best’ English students did not typically feel better able to 
overcome their language barriers than the struggling students). This pattern held true even after six 
months of using KA. We assumed that the students would learn to overcome these barriers over 
time, as they used the English resources over the course of the study. Our study did indeed show 
that the reported language barriers decreased slightly, albeit insignificantly.  

The teachers’ evaluation of the students’ English reading and listening skills correlated significantly 
(0.45, 0.48) with the language barriers reported by the students, so such evaluation could provide a 



very rough estimate of the language barriers faced by a group of students. However, this correlation 
was not strong enough to provide a reliable estimate of the barriers faced by the individual students, 
as it only explained about 23% of it (0.482 = 0.23). Ultimately, we were unable to find a quick and 
reliable way to estimate the individual students’ self-reported language barriers. 

Limitations and future research 
The small size of our sample made it impossible for us to find small correlations or inconspicuous 
patterns. Larger samples would have also allowed us to verify our results at a higher confidence 
level. The disconnection between the reported language barriers and the students’ English grades 
could also be a local phenomenon, since every Czech school has its own curriculum. 

In this study, we relied mostly on students’ opinions, which might not have been completely 
accurate (i.e. even though students reported that they could make good use of KA resources, that 
does not necessarily mean that they did). 

The results also showed that the English courses currently being offered to students might not be 
sufficient to prepare them to learn mathematics in English using tools like KA. Therefore, 
determining how to help students learn in English might be an interesting question for researchers 
and a challenge for both maths and English teachers. 

While KA offers a great variety of exercises, its narrow focus (i.e. graphing quadratic functions in 
vertex forms) and repetitive nature might produce very formal knowledge that cannot be transferred. 
In future study, we would like to investigate what students actually learn using KA and how it might 
be affected by their language barriers. 

As with every digital resource, KA sometimes experiences technical problems. Exercises can fail to 
load properly and data might not show up in the teacher dashboard. Therefore, it is a good idea to 
consider possible technical problems before judging students too quickly.  
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In 2012, the University of Namur (Belgium) launched the PUNCH project (‘PUNCH’, 2012). Within 
this framework, many experiences to rethink our teaching practices were sponsored.  Among many 
others, the POD-EN-MATH project aims to help students in computer science to complete 
praxeologies (Chevallard, 2006; Winslow, 2008) when learning mathematical concepts and doing 
this with the help of high-quality podcasts. Students will gain experience by analyzing step-by-step 
our own procedure to make the link between theory and technics. Doing so would permit us to make 
the didactic contract more explicit (Brousseau, 1984). Indeed this procedure is not documented but 
only transmitted orally. The next step of the project is that students themselves provide content to our 
podcast database. This experience put into evidence the difficulty we had to help students to 
communicate, to teach their own knowledge focusing on a more didactic point of view.  

Podcast we proposed  
At the end of their graduate program, Computer Science students should be able to model the 
customer’s need, compute the complexity’s program (in terms of number of needed operations to 
perform) and prove that proposed program architecture fulfills the customer’s demand. Discrete 
mathematics is mandatory as a corner stone to reach these outcomes. However, our students have 
great difficulties in building up the connection between theory and practice due to, among others, our 
ex cathedra teaching habit, as mentioned by Winslow (2008). Our podcasts aimed at filling this gap. 
We proposed high-quality podcasts of five to ten minutes. Our objective is to explain step-by-step, 
the reasoning that permits us to obtain the solution of a problem. Indeed the difficulty they often 
mention is to translate the problem into a mathematical model that needs to be solved, and not the 
theory they should use once the mathematical model is obtained. As proposed in Houston (2009), we 
want them to build up their mathematical reasoning and one way to do it is by viewing our own 
podcasts. As future analysts, the mathematical reasoning is of crucial interest for our computer 
scientists. Indeed they will have first to analyze the customers’ needs and next to rephrase them in 
terms of programming objects and methods to programmers they manage. Mathematical reasoning is 
using the same skill.  

Podcast they had to build 
Our final objective was that students should be able to build up their own podcast in the second level 
of discrete mathematics program. They were expected to build these podcasts, with the same level of 
quality and accordingly contribute to the podcast database. The problem they have to solve is on 
building up a podcast explaining their proof using the so-called recursive method. A specialist in 



mathematics education was available to answer all their questions via personal meetings. Our students 
did present almost all the difficulties reported by Grenier (2012) as explained in the poster. In the 
light of the personal didactic supervising, some have been corrected and others have unfortunately 
not. The question then arises on how to improve our methodology to give them the ability to discuss 
about how to build up an inductive proof.   

Return on experience 
None of the submitted podcasts reached our didactic quality requirements and could not be shared 
between peers. However, students greatly enjoyed producing podcasts as well as the personal 
coaching. They mentioned their understanding of the recursive approach increased in quality. Grades 
obtained at the final examination confirmed their belief.   

This experience has highlighted to us the difficulty students have when building up their own 
expertise independently, as well as the difficulty they have to explain to their peers how to build up 
their own mathematical reasoning. The question that remains is to decide what kind of approach 
should be used to let our students become more and more autonomous in their learning of 
mathematics. 
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Introduction/Literature review 
Previous studies of courses with both face-to-face lectures and online lectures/videos (Inglis, 
Palipana, Trenholm, & Ward, 2011) have identified clusters of students based on their resource 
engagement. They found that students who attended face-to-face lectures or the maths support 
centre achieved higher grades than students who predominantly used online lectures. Inglis et al. 
(2011, p. 490) furthermore discuss how “what remains poorly understood is the overall pattern of 
study choices made when students are presented with many options”, and comments on how 
valuable research into examining student choices would be. Other studies have made suggestions as 
to why students might opt for a particular engagement pattern including: performance in course to 
date; proficiency of IT; convenience; and personality type (Bassili, 2006). Bassili found that both 
promotion and prevention factors influence students’ engagement decisions. This study seeks to 
expand on the literature by explaining reasons behind students’ choices. Subsequently, the research 
questions for this study are: 

 Which resources do students engage with when studying the course content? 

 Why do students choose to engage with these resources? 

Method 
This study took place in University College Dublin (UCD). Data was collected from a large first 
year undergraduate module, Maths for Business. This is not a traditional, blended or e-learning 
course. Maths for Business is a unique course in that students have a choice of whether to complete 
the course material through lectures, online videos or a combination of both. The e-learning 
segment of the course consists of 68 short videos with average length of 7.6 minutes. The module 
co-ordinator has chosen to offer online support for students in response to: the large class sizes; 
acknowledging differences in learning styles and abilities of students; and additional support needed 
by ‘weaker’ students. This form of online learning is particularly suited for procedural mathematics 
courses of large mixed ability cohorts. For our study, we combine quantitative and qualitative 
survey data to identify engagement clusters based on resource usage, and explain the reasons behind 
students’ engagement clusters. 

In order to develop a complete understanding of students' engagement, the data for this study 
broadly covers three areas: survey response data, background information of students, and 
engagement data. Students’ data was linked together from each of the sections. The first stage was 
cluster analysis. Rather than cluster students under total videos and lectures, we decided to cluster 
students based on what resources they engaged with for the lecture material they covered. We 
developed three variables to describe this; lecture usage, video usage and overlap of resources. 
Subsequently, cluster analysis was performed on the three variables; lecture usage, video usage and 
overlap of resources using model-based clustering. Qualitative data analysis is currently being 



performed under the Braun and Clarke (2006) framework. Themes are considered to be semantic as 
students’ responses are direct. 

Initial results 
Cluster analysis has identified four distinct clusters: high lecture usage cluster; high video usage 
cluster; a cluster with high lecture, high video usage and high overlap between resources; and a 
cluster which features both lecture usage and video usage but with little overlap. Initial qualitative 
analysis has suggested the high lecture usage cluster is formed by students who perceive videos as a 
secondary tool; they find the lecture content has more depth, and enjoy the interactive lecture 
environment. In comparison, the high video usage cluster is formed by students who have issues 
with the lecture environment, and find little if any benefit from lectures. Videos offer these students 
an efficient and flexible method to study. The third cluster, the cluster with high overlap, has 
occurred owing to weak students accessing all available resources and needing extra support. The 
final cluster with little overlap of resources is formed by students who have switched from lectures 
to videos during the semester or are avoiding a specific lecture every week owing to the 
inconvenience of the timetable.  

Mathematical procedural courses differ in their nature and design from other disciplines. Maths for 
Business use of e-learning allows ‘stronger’ students to progress at a fast, flexible pace while 
supporting the ‘weaker’ students through providing access to multiple resources which can be 
repeatedly used. Students can choose their resources to suit their learning. Overall there is an 
opinion from students that “[online learning] works very well for maths however [students] don’t 
know if it would work well for other modules”. Understanding students’ reasons for choosing their 
engagement pattern may help in the future design of resources, and identifying whether online 
resources are particularly beneficial for large mathematics classes of mixed abilities. 

The poster will expand on the initial qualitative analysis of the survey responses by explaining in 
detail the reasons behind each engagement cluster. We would like to thank UCD IT services for 
providing the Virtual Learning Environment data. 
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Scope and objective of the presented project 
Based on the assumption that activity (as opposed to the passive consumption of verbal instruction) 
supports learning, and accompanying the rise of learning theories that take into account the bodily 
grounding of the brain and its development, the usage of manipulatives – tangible learning materials 
– enjoys widespread trust among algebra teachers. Over the last two decades a variety of virtual 
adaptations of such manipulatives on personal computers and touch devices has been developed. 
The potential of such programs lies in the possibility to discover a range of configurations that 
would not be feasible in the real world, and to get automatic feedback about the correctness of the 
chosen manipulations. However, these qualities come at the price of abandoning the materiality of 
the manipulatives. The miniaturization of existing technologies and the creation of new input and 
output channels raise the question if and how manipulatives in mathematics education could be 
conceptualized as smart objects or tangibles – manipulatives that have the ability to interact with its 
users. Such objects have already been designed for learning purposes in other domains (Marshall, 
2007). For the field of school algebra, the possibilities and challenges of their implementation is to 
be investigated in the MAL (Multimodal Algebra Learning) project, a collaboration between 
mathematics education and digital media researchers, experts in data collection and evaluation, and 
commercial enterprises. This contribution focuses on the didactical conceptualization that underlies 
the work of the consortium. 

Theoretical framework 
Many theoretical approaches assume bodily action to be beneficial or even defining for learning 
processes. Bruner’s well-known model proposing the distinction between enactive, iconic and 
symbolic action offers a starting point. Following Nakahara (2008), a distinction can be made at the 
enactive level (between hands-on manipulation and other real(istic) settings) and at the symbolic 
level (between natural and mathematical symbolic language). Although neither Bruner’s nor 
Nakahara’s terminology implies a strict proceeding order, the progression from concrete action with 
the smart objects to symbolic algebraic language follows from the pedagogical setting at hand. 

Design ideas and questions for investigation 
Because research regarding traditional manipulatives suggests that only prolonged engagement with 
such objects reliably supports learning (Sowell, 1989), the MAL project wants to design one set of 
smart objects that can be used for a whole range of topics (e.g., for the generation of algebraic 
expression from pattern sequences, for transforming expressions, building relations, and for solving 



equations). To achieve this, we turn to algebra tiles, which are already integrated in some North 
American algebra textbooks (e.g., Dietiker, Kysh, Sallee, & Hoey, 2010). 

Marshall (2007) offers a framework that allows for the systematic design analysis of tangibles in 
learning environments. For example, he points to possible learning benefits: the playfulness that can 
be designed, the potential novelty of links, enhanced accessibility, chances of collaboration, and the 
learning benefits that may arise from physicality itself. Furthermore, he proposes a distinction 
between expressive and exploratory activities, which reminds of the more algebra-related work by 
Drijvers, Boon, and van Reeuwijk (2011), who distinguish between (technological) tools for doing 
algebra and tools for learning algebra, with the latter being subdivided into practicing skills and 
developing concepts (p. 185). It seems that the existing implementations of algebra tiles are more in 
the expressive realm of doing algebra, as they always start with a given definition of variables as 
unknowns, opposed to the possible exploration of their potential in describing change. It is a central 
goal of the MAL project to bring these two together. In the process, the following questions can be 
addressed: How do the physical and technical features of the designed objects interact with the 
didactical goals? To what extend is the integration of many algebraic concepts into one system of 
smart objects helpful in creating a multi-faceted image of the role of variables in algebra? What are 
limitations of the smart algebra tiles that could be resolved by either returning to traditional 
manipulatives or going virtual? 
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Theoretical background 
Roth (2015) defines computer-based learning environments based on mediawiki software as a 
structured pathway with a well-matched sequence of tasks. Central contents are interactive materials 
like for instance GeoGebra-applets. Roth adds that learners are encouraged to work self-regulated, 
self-reliant and activity-oriented within these pathways. In Germany suchlike learning environments 
are for example available on the website of ZUM-Wiki (https://wiki.zum.de/wiki/Hauptseite), a web 
page that is called on to yield a well-kept surrounding in which everybody is invited to add 
something (Vollrath & Roth 2012). In our study, we will focus on quadratic functions. The area of 
functional relationships is a central theme during secondary education in Germany in which 
commonly occur some learning difficulties as for example on figuring out the meaning of 
parameters (Nitsch 2015). A computer-based preparation is called to promote the understanding of 
the parameters due to the option to easily include dynamic and interactive visualizations (Vollrath & 
Roth 2012). Furthermore, the importance of feedback for learning is mentioned in several 
publications (e.g. Black & Wiliam 1998; Vollrath & Roth 2012; Hattie & Gan 2011). Hattie and 
Gan (2011) for example identified feedback as one of “the top 10 influences on achievement” 
(Hattie & Gan 2011, p. 249). Thereby the dimension of this influence would vary depending on 
different kinds of feedback. Apart from this, we are interested in the influence of feedback on self-
assessment as a specific component of metacognition (cf. Ibabe & Jauregizar 2010). More specific 
we will look at students’ self-rating ability. In our study, we will focus on feedback, which is 
typically encountered in computer-based learning environments. Suchlike feedback concerns the 
right answer and, in some cases, comments on how to get to this conclusion. Beside it “help me”-
buttons with hints about how to proceed are added. Both the right answer and the hints can be 
activated by mouse click.  

Research questions  
1. Is students’ self-assessment better if they work with a computer-based learning environment, 
including immediate feedback, than it is when they get the feedback outside the learning 
environment (research based on quadratic functions)? 

2. Does a computer-based learning environment, including immediate feedback, have greater benefit 
on students’ math achievement in comparison to their achievement when they get the feedback 
outside the learning environment (research based on quadratic functions)? 



Method 

 Main study (QUANT)  
We are currently conducting some preliminary studies, including a qualitative (pre-study I) and a 
quantitative part (pre-study II). The quantitative pilot study includes testing the self-assessment 
scales and the achievement test. Within this study, self-assessment is used in a context of self-rating 
the expected performance in the upcoming achievement test. The achievement test includes items 
about functional thinking as anchor items and items about linear functions (pretest) alternatively 
quadratic functions (posttest). In the qualitative pre-study, we are proving the designed computer-
based learning environment about quadratic functions. Our aim is to reveal problems and 
misunderstandings and thus to rework and improve the learning environment.  

The main study will be a quantitative research study with a quasi-experimental between-subject 
design. Students will work with the computer-based learning environment. The experimental group 
receives the learning environment including immediate feedback and hints for the tasks. The control 
group gets the same learning environment with absent feedback. Instead, this group gets correct-
answer-feedback in outlying paper-sheets. Students’ self-assessment as well as math achievement 
will be measured in a pre- and posttest design. The achievement test will measure the students’ prior 
knowledge about linear functions (pretest) and their concepts on functional thinking (pre- and 
posttest) as well as their increase of learning after the self-regulated learning with the different types 
of feedback (posttest). As further research interest, we are going to compare the self-assessment 
ability of both groups related to the passage of time.  
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Introduction 
The aims of this project are to design and develop formative assessment resources for first year 
undergraduate mathematics modules and to evaluate the impact of these resources. The types of 
resources that have been developed to date include: targeted Khan Academy playlists and mastery 
challenges, a smart phone based audience response system that allows mathematical input, Moodle 
lessons, student generated screencasts and interactive tasks using Geogebra. The mathematical 
topics which are the focus of these resources were chosen based on the results of surveys of staff 
and students (Ní Shé, Mac an Bhaird, Ní Fhloinn, & O’Shea, 2016). In this poster we will present a 
snapshot of the resources, the evaluation methods and initial results. Augmented reality software 
and/or QR Codes are used in the poster to demonstrate the resources. 

Theoretical framework 

The National Research Council (National Research Council, 2001, p. 116) defined mathematical 
proficiency as comprising of five interwoven and interdependent strands: conceptual understanding, 
procedural fluency, strategic competence, adaptive reasoning, and productive disposition. This 
description of mathematical proficiency guided our design of resources. We used the Black and 
Wiliam (Black & Wiliam, 1998, pp. 7–8) definition of formative assessment: ‘encompassing all 
those activities undertaken by teachers, and/or by their students, which provide information to be 
used as feedback to modify the teaching and learning activities in which they are engaged’ to advise 
our implementation of formative assessment techniques. We used technology to design and deliver 
the formative assessment in this project. This is not a new idea; according to the JISC report (JISC, 
2010, p. 9) the benefits of using technology in assessment include allowing a greater range of types 
of assessments, a greater flexibility on timing and location of assessment; improved student 
engagement especially with interactive tasks which incorporate instant feedback, timely evidence on 
the effectiveness of course design and delivery.  

Methodology 
The resources were developed by researchers affiliated to five different higher education institutes 
in Ireland who lecture on first year undergraduate mathematics. The resources were trialed in the 
2015/2016 academic year. According to McKnight et al. (Mc Knight, Magid, Murphy, & McKnight, 



2000, p. 10) mathematics education research is ’inquiry by carefully developed research methods’ 
that provides evidence of the nature of teaching and learning. For the evaluation we chose to 
conduct student surveys, resources usage, student grades and think aloud interviews. The 
questionnaires, developed from similar questionnaires (MacGeorge et al., 2008; Zaharias & 
Poylymenakou, 2009) contained 4 dimensions; confidence when learning mathematics; impact on 
engagement, impact on learning and usability of the resource.  

Results, analysis and conclusions 
Students were generally positive about the use of the resources, though there were differences 
between students’ opinions on the different resources. For example students using the audience 
response system found that the resource encouraged them to engage more in class (over 80%) 
whereas only 32% of students using the interactive tasks reported accessing the extra resources 
when not assigned on homeworks. Based on the results of this analysis the resources are currently 
being modified for use in the next academic year, 2016/2017. The data from the evaluations will be 
further analysed to answer the research questions that we have: What are the benefits of using 
technology in formative assessment design? How effective are the resources in developing 
mathematical proficiency? 
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Relevance 
Living in a world strongly influenced by intelligent technology, it is indispensable to know in which 
contexts this technology can be beneficial and in which contexts the ‘real world’ should be used for 
teaching mathematics. Considering the topic of functional relationships, the need to foster pupils’ 
functional thinking (FT) from the very first beginning arises. Even though the topic is important for 
mathematics education in every grade, pupils show a lot of misconceptions (Leinhardt et al., 1990). 
Therefore and because of our multimedia life, we need to ask, if FT should be fostered with 
computer-simulations (GeoGebra) or real materials (like cubes, pencils…). 

Theoretical background 
FT consists of three fundamental aspects: mapping, covariation, and function as object (Vollrath, 
1989). Previous research shows that the use of real materials as well as the application of computer-
simulations can lead to a learning progress in this complex topic. On the one hand, real materials 
make it possible to experience functional relationships physically (Ludwig & Oldenburg, 2007). 
Learning in such a setting has long-lasting effects, i.e. pupils can recall results and working methods 
better (Vollrath, 1978). On the other hand, simulations enable pupils to explore functions in 
different ways. Pupils can vary variables systematically and use the multiple-representation system 
(Balacheff & Kaput, 1997). Thus, e.g. covariation gets perceptible. Summing up, simulations 
become a mediator between pupils and mathematical phenomena (Hoyles & Noss, 2003).  

Methodology 
After constructing a test to measure FT we derived topics that can be used to foster FT with real 
materials and simulations from theory: the relationship between volume and fill height of vessels, 
edge length and volume of a cube, diameter and circumference of discs, rotation-number while 
sharping a pencil and its remaining length. 

 

 

 

 

 

 

 
 

Figure 1 Interfaces of the used simulations done with GeoGebra  

Then we designed an intervention-study (pre-post-control-group-design, randomized experimental-
groups) that was implemented in grade 6 (age 11-12, N = 282). During the intervention (4 lessons) 
pupils had to work on learning-tasks individually to foster their FT. They were not instructed or 



supported by a teacher. While part of them were using real materials (experimental-group 1, N = 
111) the others worked with computer-simulations (experimental-group 2, N = 123). The learning-
tasks in both groups were equivalent, only the medium differed. The control-group (N = 49) worked 
on pre- and posttest, only. Data analysis was done with item-response-theory (IRT). First, we 
estimated item difficulties by use of virtual persons. Then we did a 2-dim. Rasch-model (dim. 1: 
pretest, dim. 2: posttest) with fixed item difficulties to estimate the person ability FT. Finally, a 
mixed ANOVA (Field et al., 2013) using 10 sets of plausible values to compare pupils’ FT in pre- 
and posttest was conducted.  

Results 
The mixed ANOVA (between: intervention, within: time) leads to the result, that there is a 
significant main effect of time (F(1, 22.71) = 68.16, p < .001, ² = .089) and also a significant 
interaction effect of time and intervention (F(1, 23.69) = 7.65, p = .003**, ² = .044) . A pairwise t-
test showed that real materials as well as computer-simulations lead to a significant increase of FT 
(real materials: p < .001, Cohen’s d = .49, computer-simulations: p < .001, Cohen’s d = .83). In 
contrast, the control groups’ FT increases not significantly (p = 1, Cohen’s d = .22). Thus, it needs 
to be concluded that FT can be fostered by use of real materials as well as computer-simulations. 
Nevertheless, effect sizes show that computer-simulations should be the method of choice for 
fostering FT.  
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This poster refers to a project concerning an educational teaching experiment that focuses on the 
development of the curriculum on the 7th grade of basic education, by integrating technology. Using 
a learning environment with an exploratory nature, based on diversified tasks involving the use of 
graphing calculator, we aim to create an innovative curriculum in this level of education.  

The teacher is the mediator of all the curricular decisions, having the responsibility to reorganize the 
main curriculum proposal, adapting, transforming, innovating and setting methodological teaching 
strategies that foster motivation and improve student outcomes (Pacheco, 2001). 

According to several authors, the implementation of technology in the teaching of mathematics, 
namely computers and calculators (Domingos, 1994; Lee & McDougall, 2010; Tan & Tan, 2015) 
influences the way in which it is taught and enhances students' learning, for they build themselves 
their knowledge by premise creation. There are several benefits that emphasize the incorporation of 
technology in learning environments, namely, the increase of motivation, involvement, cooperation, 
hands-on learning opportunities, confidence and technological skills of students (Costley, 2014). In 
addition, those tasks are tools that generate activity in an interactive form, supporting the 
mathematical knowledge (Ainley et al., 2013). 

This study is supported by the Activity Theory and seeks to understand how students, in solving 
specific tasks with the aid of the graphing calculator, builds their mathematical knowledge 
embedded in a learning community. Being the activity system within the classroom the unit of 
analysis, the third generation of the Activity Theory (Engeström, 2001) allows us to understand 
what happens when different activity systems interact. More specifically we seek to understand the 
instrumental genesis (Rabardel, 1995) and the semiotic potential played by technology in a student’s 
activity system, developing the process of semiotic mediation (Bussi & Mariotti, 2008). In this 
sense, we intend to investigate how the graphing calculator influences, reinforces and facilitates the 
quality of teaching and learning and promotes the processes of instrumental genesis and semiotic 
mediation in the performance of tasks in curriculum development. We seek to get answers to the 
following research questions: Which are the instrumental action schemes created by students when 
they use a graphing calculator? How does the teacher promote the process of semiotic mediation? 
How does the graphing calculator act as semiotic mediation tool? How does the integration of 
technology in the curriculum influence the process of teaching and learning? What is the quality of 
the achieved learning? 

Based on research of an interventionist nature, using innovative practices that aim to promote new 
ways of learning, enabling improvements on an educational level, a qualitative paradigm based on a 
Design Research process will be adopted. The techniques used to collect the data shall be based on 
the planning of the study units, the elaboration of reports by the students as a result of completing 
the tasks and reports resulting from the participant observation of the teacher as a mediator. We will 



also consolidate the structured observation of lessons, using a logbook, photographs of the graphic 
representations in the calculator, videos and audio recordings, during the performance of the tasks 
(Cobb, Confrey, diSessa, Lehrer, & Schaube, 2003). Empirical data will be collected in the school 
year of 2016/17 in a public school in the district of Setúbal, in Portugal. 

We therefore intend to present an innovative curriculum development project, that integrates a 
strong technological component in an educational level where traditionally this kind of approach is 
not commonly used. The use of tasks permeated by graphic technology seek to highlight the 
semiotic dimensions present in the instrumental genesis that are activated in different activity 
systems. 
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Line of thought of the previous working groups in CERME5 to CERME9 
Since CERME4 in 2005, theoretical approaches and perspectives have been the topic of an ongoing 
CERME working group. The idea of the “networking of theories” emerged at CERME 4 and was 
explored in the subsequent conferences. At CERME 5 (Arzarello et al., 2007), the diversity of 
theories in the field of mathematics education was regarded as a source of richness, and the 
networking of theories as a multi-theoretical approach which preserves theoretical identity but also 
while allowing to bridge the boundaries of theories for a better understanding of teaching and 
learning. Thereby, the effort was made to make hidden assumptions and relationships of theoretical 
approaches visible. Principles and heuristics of handling the diversity of theories in empirical 
research were explored as a new possibility to better grasp the complexity of empirical situations of 
teaching and learning mathematics, such as the interplay between the individual and the social. 
Typical heuristics to network theories were to relate different approaches based on research: 
bottom-up on the one hand and starting from theoretical views top-down on the other, but also 
mixed types were presented. One interesting result was that not only theoretical principles may be 
hidden in the use of theories but also the view on the nature of mathematics can be an implicit but 
relevant feature in the specific theoretical approach.  

The central theme of TWG 9 of CERME 6 (Prediger et al., 2010) was investigating how the use of 
networking strategies may lead to a more comprehensive understanding of the empirical world, 
what kind of limits have to be faced, and what kind of difficulties have to be considered. In this 
respect, the questions of commensurability and complementarity of theories came into play. 
Radford’s conceptualizing of theories (2008) as a triad of principles, methodologies and research 
questions built as a cultural entity of research practice in the semiosphere, a cultural-semiotic space 
of research as activities, was applied to structure the way networking strategies were used as 
guiding heuristics which link different aspects of theories. Examples showed that through the 
networking of theories new questions of ‘balance’ can be posed, concepts at the boundary of 
theories may become relevant to solve problems, and theoretically “zooming-in and zooming-out” 
can be a strategy when theories of different grain size are coordinated. The discussion in this TWG 
was captured by a dynamic view on theory “as a ‘living entity’ embedded in the researchers’ social, 
cultural and institutional heritage” (Prediger et al., 2010, p. 1533). 



Two years later, the TWG 16 at CERME 7 (Kidron et al., 2011) re-addressed meta-theoretical 
views on the networking of theories and recognized the need for a meta-theoretical frame for the 
networking of theories. Projects began to implement the networking of theories as a research 
practice following the new research aim of building a relationship between corresponding concepts 
of different theories. Besides the semiosphere (Radford, 2008) which was re-used in the paper 
presentations as a space where the networking of theories may be conducted, Artigue, Bosch and 
Gascón (2011) applied the Anthropological Theory of the Didactics to investigate the networking of 
theories as a research praxeology leading to specification of the relevance of problems and 
phenomena. Monaghan (2011) described Theoretical Genesis as an analogy to instrumental genesis 
on the part of the researcher adopting a theoretical view. It is a meta-view on the process of 
theorizing through the practice of “writing, learning, engagement with research and other voices” 
(ibid., p. 2498). The interesting point was the insight that also meta-theoretical views on theories 
largely depend on the cultural-semiotic way (meta-)theories are considered in the specific 
community. The contributions and discussion of this TWG substantiated the view that the 
networking of theories may advance the quality of research and lead to more linked and 
comprehensive results of research.  

Whereas teaching and learning mathematics has been the main focus before, in TWG 16 of CERME 
8, teacher education provided new directions of considering theories that involve new ways of 
theorizing on new research objects. This new topic also renewed the understanding of theories as 
epistemological tools: “the theoretical approaches need to be considered by what they enable 
researchers and practitioners to do, the questions raised, the regularities identified and described, 
that is, in a sense the results obtained” (Kidron et al., 2013, p. 2788). Besides addressing goals and 
practices of networking theories in research, the aspect of time as an additional dimension was 
emphasized; for example, because the networking strategy of coordinating theories may be 
executed as an intermediate step in time when theoretical elaborations have reached a particular 
status, or because coordinating theories may be executed fruitfully in a sequential way.  

Although the networking of theories has also been an ongoing topic in TWG 17 of CERME 9, the 
main focus of this working group was on the notion of theories (Bosch et al., 2015). The 
discussions once more emphasized that theories are living entities that develop through processes of 
theorizing in research, beginning with local models, and developing towards more global entities 
dependent on the requirements of research. These processes result from exploring specific research 
questions, which may or may not broaden the theories’ scope in mathematics education and beyond.   

The Thematic Working Group 17 of CERME 10 
The TWG 17 of CERME 10 continued the discussion on multi-theoretical approaches (the use of 
more than one theory in research, see the paper of Chan and Clark in the proceedings), particularly 
on the networking of theories, but also shifted its attention towards multi-theoretical approaches in 
design research and the problem of transfer inherent in the tension between home-grown and 
borrowed theories. The latter aspects have been an ongoing theme, already addressed by Steiner in 
the conferences on Theory of Mathematics Education of 1985 (Steiner, 1985). The description of 
the call of TWG 17 of CERME10 showed what kind of contribution was expected: 



This networking of theories approach is also addressed in the TWG 17 of CERME 10. With this working 
group we want to build on previous work of the group but this time we also want to address more specific 
topics: theories as prerequisite and result of design research, theorizing in research which involves technology, 
theories involved in interdisciplinary research with mathematics education. We want to explore how theories 
are used and built to better understand their role in and beyond mathematics education and the use of theories 
to inform practice. 

Twelve papers and five posters were presented in the TWG 17. All but one poster abstract are 
published in the proceedings. They are grouped in three topics, the essentials of which will be 
extracted in the subsequent summary. 

Networking of theories approaches  

As in previous CERMEs, the discussion within this TWG has addressed the question of how to deal 
and work with theories, particularly concerning multi-theoretical approaches, which respect the 
theories’ identities and at the same time are able to connect them fruitfully to solve problems in the 
field and understand the complexity of teaching and learning mathematics better. In terms of the 
networking of theories approach, the subsequent contributions witness a growing methodological 
maturity of handling the diversity of theories in research. This maturity is strongly related to 
deepening and broadening insight about the complex nature of the teaching and learning settings on 
two intertwined levels, the level of data analysis as well as the level of methodological and 
theoretical considerations and decisions, both being intertwined. 

For example, Tabach, Rasmussen and Dreyfus conduct research to understand how learning in 
inquiry-based classrooms takes place individually and collectively and how these two learning 
planes are linked. They coordinate two theories, namely Abstraction in Context and Documenting 
Collective Activity, in a way that represents an innovative methodological step of research within 
the networking of theories strand that allows to identify how specific ways of coordinating may lead 
to in-depth insights into the functioning of inquiry-based learning, individually and collectively.  

The effect of using networking strategies is directly investigated by Shinno, who has undertaken 
two case studies following two consecutive networking strategies; namely, coordinating and locally 
integrating. His research reveals: While coordinating preserves the meanings of the concepts 
involved as parts of theories, locally integrating theory elements changes the meanings of concepts. 
The reason for this seems to be that the concepts were integrated into a new theoretical framework, 
with new kinds of issues, questions, and aims. This result substantiates the fact that the meaning of 
a concept is deeply determined by the theory to which it belongs.  

The mathematical workspace (MWS) presented by Nachache and Kuzniak even requires to be 
networked with further theory elements. The MWS originates in practical work with teachers, 
preserving its pragmatic character in linking semiotic, epistemic and cognitive genesis. Kuzniak et 
al. illustrate the plasticity of the model by connecting it to several theories or models for teaching 
mathematics. The reason why this connection is possible is the empirical load: The mathematical 
workspace model is empirically empty, and therefore allows models with high empirical load to 
complement it according to the three components offering ways to navigate through them. 

Chan and Clarke’s purpose in using a multi-theoretical approach is to explore the notions of 
complementarity and commensurability in an empirical way, a theme that has repeatedly been 



addressed in previous working groups. They have instantiated a research project allowing to clarify 
the concepts of complementarity and commensurability based on analysis of the same data sets of 
problem solving activities from three different theoretical perspectives. Thus, the common data sets 
function as boundary objects (Star, 2010), objects that can function in different practices for 
different purposes, even without the need for consensus (Star, 2010).  

In the fifth example, Behrens and Bikner-Ahsbahs add the perspective of the indexicality of signs to 
their theoretical framework for analyzing gestures related to speech, representations, and a 
technological tool. This choice is driven by the need to better understand the development of 
gestures from hand movements on the iPad’s digital place value chart towards epistemic gestures, 
contributing to build knowledge. They show that the process of conceptualizing decimal fractions 
proceeds as an epistemic shift from gesture-of towards gesture-for, thus justifying their choice by a 
methodological result: The indexical nature of signs is a fruitful theoretical perspective for the 
analysis of epistemic processes as it allows tracing these processes back to their origins.   

(Multi-)theoretical approaches in design research  

The call explicitly asked for examples of theory use; specifically, in design research. This is 
particularly challenging because the purpose of theory use in this area is different from that in 
studies considered before in the networking of theories cases in the previous CERME-TWGs and 
the previous section. What is special about design research is that the justification of an educational 
goal requires normative theories, and the ways in which means are implemented to reach the goal – 
for example in design principles – require prescriptive theories. Finally, there is also a need for 
theoretical tools to analyze the empirical data of the implementation of the design, using descriptive 
or explanatory theories (Prediger, 2015). The normative and prescriptive theories developed, for 
example in the form of design principles, conjecture maps or hypothetical learning trajectories, raise 
the issue of methodology in relation to theory (cf. Radford, 2008). Kelly (2004) challenged design 
researchers to come up with what he calls an argumentative grammar – the reasoning from methods 
via analysis to warranted conclusions, which in the case of randomized controlled trials largely 
relies on the structure of argumentation.  

Bakker takes up the challenge and argues that in design research, as in many other qualitative and 
mixed methods approaches, scholars cannot rely purely on the structure of argumentation. They 
need to account for the content too (content of the learning goals, content of core concepts used, 
context etc.). Bakker argues that design research may need several argumentative grammars and 
proposes elements of an argumentative grammar that he proposed to experts in design research 
during an interview study.  

Given the multi-theoretical focus of the TWG, it was interesting to see how theories could play 
different roles in the design of curriculum or learning activities. For example, Johnson and 
colleagues used different theories for the design of their learning activities and for analyzing the 
resulting learning processes. The authors show how making theories of different grain sizes — 

grand theories (Piagetian theory), intermediate theories (Marton’s variation theory), and domain 

specific theories (Thompson’s theory of quantitative reasoning) — interact with each other allows 

designing effective dynamic computer environments and tasks to promote students’ learning. 
Kouropatov and Dreyfus, on the other hand, used two theories for the design of a task-based 



curriculum and for analyzing resulting learning processes to feed back into improved design. The 
two theories – Abstraction in Context and Proceptual Thinking – were of different grain size and 
had different focuses, which made them complementary. The authors argue that in the process of 
designing learning units, the different theories have been interwoven while keeping different roles 
from stage to stage.  

Simon and his colleagues, building on constructivist theory and their empirical research, developed 
an elaboration of Piaget’s construct of reflective abstraction for the purpose of undergirding an 
instructional design theory for promoting mathematical concepts. In conjunction with this 
elaborated construct, they have articulated an instructional design approach that fosters reflective 
abstraction of particular concepts. In doing so, they have afforded a change in design research (i.e., 
teaching experiment methodology) from a focus on students’ mathematical reasoning and 
operations to a focus on the conceptual learning process and designs for promoting that process. 

Transfer of theory elements: The tension between home-grown and borrowed theories  

The tension between home-grown and borrowed theories was one question previous working 
groups have dealt with by several contributions. In this working group, the discussion focused on 
two main interrelated issues. On the one hand, home-grown concepts may bear with them meanings 
specific to the social and cultural context or the field in which they have been elaborated, and that 
raises the question how to transfer them into a foreign context or field. Research is needed to 
address the viability of adapted concepts. On the other hand, theoretical tools or perspectives which 
are borrowed from other fields must either be adapted to mathematics education or particularized or 
complemented with content-related theoretical tools in order to be fruitfully put to work. Some of 
the contributions presented in the working group faced one of these two issues.  

For example, Roos’ contribution shows how a home-grown concept which emerged in specific 
cultural context may be difficult to transfer or translate into a different one. More specifically, Roos 
presents an overview about the concept of Grundvorstellungen. This concept emerged in German-
speaking countries as a practical tool for teaching. It is impossible to translate and even difficult to 
explain in English, even if one can recognize the existing links with the notion of concept image or 
with Vergnaud’s theory of conceptual fields. This difficulty raises the question of how ideas, or 
even entire theories, which emerge within a specific cultural context and therefore bear cultural-
historical meanings, can be communicated on an international scale.  

In other cases, home-grown concepts seem to have the potential to be more easily tranferred and 
adopted in foreign contexts. This is shown in Liljekvist’s contribution. She uses the concept of 
prosumer, which stems from sociological research, to understand mathematics teachers re-sourcing 
and using social media in a Web 2.0 world, linking the two activities of consuming and producing. 
Even if the concept of prosumer bears meanings and values from its native context and has to be 
futher developed for mathematics education purposes, it has the potential to be easily translated and 
spread outside as it carries its ‘origins’ in the term itself. 

Adapting borrowed concepts and theories from other fields is not only a question of translation. 
Mathematics and mathematics education have their own specificities, which must be taken into 
account when borrowing theoretical tools and concepts from other fields. How that can be done is at 
the core of the tension between home-grown and borrowed theories. For example, Haspekian and 



Roditi faced the issue of adopting general concepts from the field of assessment research in 
education to a specific research study in mathematics education. The authors developed a 
methodological tool for analyzing teacher-student interactions in mathematics classes as an adaptive 
dynamic process. The discussion on their uses of concepts from the assessment field illustrates a 
way of locally connecting research areas via a shared methodological tool. 

Similarly, Georget and Sabra draw on general sociocultural theories to investigate the professional 
development process occurring in mathematics teachers’ communities; however, their study 
emphasises the need to resort to a complementary theoretical focus addressing specifically the place 
of mathematics in such communities in order to account effectively for the dynamics which take 
place in the community. The same tension is also present in the contribution of Zerafa. Zerafa 
developed an intervention programme addressed to children experiencing mathematics learning 
difficulties. The design of this programme relies upon the adoption of a large number of borrowed 
theoretical tools. That raises the question of how to complement borrowed theoretical framework in 
order to take into account the specific mathematical content at stake.  

Researchers can also meet problems concerning the adaptability of theories in context or for 
purposes different from those in which and for which theories have been developed, even within a 
given specific field. For example, Benedicto, Gutiérrez and Jaime faced such a problem when 
applying an existing model, developed to analyse cognitively demanding tasks in the areas of 
arithmetic and algebra, with the aim to analyse tasks in different mathematical topics. In fact, the 
original model revealed not to fit adequately their research needs. Their contribution illustrates the 
processes of analysing the model and the difficulties emerged. Thus, they adapted the model to the 
new needs and obtained an improved model that did not lose its core meaning while being more 
widely applicable.  

Issues to be considered in future meetings 
For future development, several participants expressed the wish to make progress on broader 
themes that superseded individual presentations. One way to do so is by proposing themes that 
participants commit themselves to for the next TWG, as was done in previous groups. This would 
allow the working group to continue working by themes, and discuss the studies in relation to a 
central theme (say one per day). This can make each author’s contribution a case of a more general 
issue, and allows us to do cross-case analyses in the working group. However, the challenge of this 
theory group is to balance concreteness and generality in the discussions to make the huge number 
of theories (48 theories in TWG17) being presented in this working group accessible to all the 
participants even if they are familiar with some of them. Suggestions for central themes are: 

1. Progress and quality: On what grounds can we decide whether the networking of theories is 
a contribution to the field? Concepts often used are: complementarity, commensurability, 
consistency, usability, and fit to purpose. What methodologies for research with networking 
theories are suitable? What criteria are suitable for selection and adaptation when 
networking theories? Criteria may be different for researchers who have a fundamental 
interest than for educators who work with models that teachers need to work with. Theories 
can be placed in a framework of different levels (diSessa & Cobb, 2004); are there any 
heuristics we can derive on good practices of how to coordinate multiple theories; and what 



do disciplines outside mathematics education have to offer us in this respect (history and 
philosophy of science?) 

2. What work do you do with theories to be able to use them for your purposes? In what 
respect do you have to adapt a theory or combine it with others? What is the nature of 
theories used: Describing and explaining learning processes versus offering design heuristics 
or guidelines? The incompleteness of theoretical models (discussed by Kuzniak et al.) can 
be an advantage because generality or emptiness can make a model or construct easy to 
transport (transportable). However, there are also risks when there is a lack of specificity. 
An issue raised was how theories are insensitive to differences that may matter.  

3. What are appropriate argumentative grammars for types of research that explicitly have a 
normative and/or prescriptive element, such as design research? How do we ensure that 
design embodies theoretical ideas, and how to study the resulting learning as a consequence 
of the design?  

4. How can we deal with concepts that are hard or even impossible to translate into English 
(milieu, Grundvorstellung, Stoffdidaktik, types of participation in Asian countries, …)? The 
Lexicon Project will have a lot to offer in this respect.  

To deepen the understanding of theory and methodology in European research, this thematic 
working group of CERME should in the future address the issues of quality of the networking of 
theories in research practice, of the specificities of theories, of identifying different argumentation 
grammars and scientific ways of communicating culturally bound concepts and theories on the 
international plane. 
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In this report we advance the methodological and theoretical networking for documenting 
individual and collective mathematical progress. In particular, we draw together two approaches, 
Abstraction in Context (AiC) and Documenting Collective Activity (DCA). The coordination of 
these two approaches builds on prior analysis of grade 8 students working on probability problems 
to highlight the compatibility among the epistemic actions that ground each approach and drive the 
respective methodologies. The significance of this work lies in its contribution to coordinating what 
might otherwise be viewed as separate and distinct methodologies.  

Keywords: Methodology, theories coordination, individual cognition, collective meaning making.  

Background 
In this report we advance the methodological and theoretical networking (Bikner-Ahsbahs, & 
Prediger, 2014) of two different approaches, the Abstraction in Context (AiC) approach with the 
RBC+C model commonly used for the analysis of knowledge construction by individuals or small 
groups; and the Documenting Collective Activity (DCA) approach with its methodology commonly 
used for establishing normative ways of reasoning in classrooms. In previous work related to this 
goal (Hershkowitz, Tabach, Rasmussen, & Dreyfus, 2014; Tabach, Hershkowitz, Rasmussen, & 
Dreyfus, 2014) we demonstrated how this coordination can illuminate the processes by which ideas 
shift from individuals and small group to the classroom community as a whole or vice versa. This 
combination revealed that some students functioned as “knowledge agents,” meaning that they were 
active in shifts of knowledge among individuals in a small group, or from one group to another, or 
from their group to the whole class or within the whole class. 

We take the coordination between AiC and DCA a step further by explicating theoretical and 
methodological commonalities between the two approaches. These commonalities, which we first 
pointed to at CERME9 (Tabach, Rasmussen, Hershkowitz, & Dreyfus, 2015), drives further the 
integration of the two approaches, including what we refer to as environmental, underlying, and 
internal commonalities. The analysis in the present case led us to enhance the theoretical 
commonalities with data driven ones. We explicate these commonalities to set the stage for the 
analysis of students’ work, but first begin with a brief summary of the AiC and DCA approaches. 

Abstraction in Context and the RBC+C model  
Abstraction in Context (AiC) is a theoretical framework for investigating processes of constructing 
and consolidating abstract mathematical knowledge (Hershkowitz, Schwarz, & Dreyfus, 2001). 
Abstraction is defined as an activity of vertically reorganizing previous mathematical constructs 
within mathematics and by mathematical means, interweaving them into a single process of 



mathematical thinking so as to lead to a construct that is new to the learner. According to AiC, the 
genesis of an abstraction passes through three stages (ibid): (i) the arising of the need for a new 
construct, (ii) the emergence of the new construct, and (iii) the consolidation of that construct. AiC 
includes a theoretical/methodological model, according to which the description and analysis of the 
emergence of a new construct and its consolidation relies on a limited number of epistemic actions: 
Recognizing, Building-with, Constructing, and Consolidating (RBC+C). 

These epistemic actions are often observable as they are expressed by learners verbally, graphically, 
or otherwise. Recognizing takes place when the learner recognizes a specific previous knowledge 
construct as relevant to the current problem. Building-with is an action comprising the combination 
of recognized constructs in order to achieve a localized goal, such as the solution of a problem or 
the justification of a claim. The model suggests Constructing as the central epistemic action of 
mathematical abstraction. Constructing consists of assembling and interweaving previous constructs 
by vertical mathematization to produce a new construct. It refers to the first time the new construct 
is expressed by the learner. Recognizing actions are nested within building-with actions, and 
recognizing and building-with actions are nested within constructing actions. Therefore, the model 
is called the nested epistemic actions model of abstraction in context, or simply the RBC+C model. 
The second “C” stands for Consolidation. The consolidation of a new construct is evidenced by 
students’ ability to progressively recognize its relevance more readily and to use it more flexibly in 
further activity. 

Documenting Collective Activity 
The methodological approach of documenting collective activity (DCA) is theoretically grounded in 
the emergent perspective (Cobb & Yackel, 1996), a basic premise of which is that mathematical 
progress is both an individual constructive process and a process of enculturation into the emerging 
norms and practices of the local classroom community. That is, the personal and collective 
mathematical progress can be seen as two sides of the same coin. Collective activity of a class refers 
to the normative ways of reasoning that develop as students work together to solve problems, 
explain their thinking, represent their ideas, etc. These normative ways of reasoning can be used to 
describe the mathematical activity of a group and may or may not be appropriate descriptions of the 
characteristics of each individual student in the group. A mathematical idea or way of reasoning 
becomes normative when there is empirical evidence that it functions in the classroom as if it is 
shared. The empirical approach makes use of Toulmin’s model of argumentation (1958), the core of 
which consists of Data, Claim, and Warrant. Typically, the data consist of facts or procedures that 
lead to the conclusion that is made. To further improve the strength of the argument, speakers often 
provide more clarification that connects the data to the claim, which serves as a warrant. It is not 
uncommon, however, for Rebuttals or Qualifiers to arise once a claim, data, and warrant have been 
presented. Backing provides further support for the core of the argument. 

The following three criteria are used to determine when a way of reasoning becomes normative: 1) 
When the backing and/or warrants for particular claim are initially present but then drop off, 2) 
When certain parts of an argument (the warrant, claim, data, or backing) shift position within 
subsequent arguments, or 3) When a particular idea is repeatedly used as either data or warrant for 
different claims across multiple days (Cole et al., 2012; Rasmussen & Stephan, 2008). 



Environmental commonalities 
The use of both methodologies, RBC+C and DCA, requires quite specific classroom social norms 
(Yackel & Cobb, 1996). First, they require classrooms in which students routinely explain their 
thinking, listen to and indicate agreement or disagreement with each other’s reasoning, etc. If such 
norms are not in place, then evidence is unlikely to be found of challenges, rebuttals, and 
negotiations that lead to ideas where knowledge is constructed and starts functioning as if shared by 
the whole class. We call such classrooms “inquiry-oriented classrooms” (Rasmussen & Kwon, 
2007). Second, these classrooms require the intentional use of tasks designed to offer students 
opportunities for constructing new knowledge by engaging them in problem solving and reflective 
activities allowing for vertical mathematization. Both methodologies focus on the ways in which 
mathematical progress is achieved and spreads in the classroom. RBC+C focuses on individuals or 
small groups working in the classroom and DCA focuses on group or whole class discussions. In 
this sense, the two methodologies complement each other in analyzing a sequence of lessons 
including individual and group work and learning in whole class discussion and in tracing how 
knowledge is constructed and becomes normative.  

Underlying commonalities 
Other characteristics of a classroom culture in which DCA and RBC+C methodologies might be 
enacted together are that the tasks are designed to afford inquiry and the emergence of new 
constructs from previous constructs by vertical mathematization (Treffers, & Goffree, 1985); such 
learning materials allow for interweaving collaborative work in both small-group work and whole-
class discussions, where the teacher adopts a role that encourages inquiry in the above sense. 
Another underlying characteristic relates to the centrality of the shared knowledge. RBC+C 
characterizes shared knowledge as a common basis of knowledge which allows the students to 
make further progress. We find its counterpart in sociological terms, in the phrase “function as if 
shared” used by the DCA approach. What is common between the two constructs is the point that 
each operationalizes when particular ideas or ways of reasoning are, from a researcher’s viewpoint, 
beyond justification for participants. At the collective level, ideas or ways of reasoning that function 
as if shared have the status of accepted mathematical truths for the group. At the individual level, 
consolidation results in individuals accepting something as a mathematical truth. 

Internal commonalities 
DCA analysis helps illuminate what is happening on the social plane, while RBC+C analysis helps 
illuminate what is happening on the cognitive side. To elaborate, we highlight relationship between 
constructs suggested by the cognitive RBC+C analysis and their sociological counterparts suggested 
by the DCA analysis. We do that from a theoretical perspective and from an empirical perspective. 
To achieve this goal we begin with the following excerpt 1, used also in Hershkowitz et al. (2014) 
but for different purposes. It is a discussion between Noa and Gil, two eighth grade students 
working on a probability problem (see turn 95) during a group work period taken from the third 
lesson on this topic, and a bit of whole class discussion. This excerpt includes a DCA analysis, in 
particular classification of the marked parts of students talk (shaded) according to Toulmin’s model 
as data [D], claim [C], warrant [W], backing [B], rebuttal [R] or qualifier [Q]. In addition, RBC+C 
actions were identified in students’ talk (italic), and marked as recognizing (R), building-with (B), 



end of the constructing action (C) or consolidating (CC) with respect to two knowledge elements: 
Exp - experiment is needed in order to determine the chances and Exd – experiment detailed. 

No.  Utterance [DCA analysis] RBC
+C 

95 Noa (reads) ‘Is it possible to determine without experimenting what the chances 
are that we will take out a defective match from a matchbox? If yes, what is 
it?’ You can’t know! [D1] Unless … you have to experiment [C1]! You can’t 
know! You need to experiment! I’m writing “You need to experiment!” 

 

RB 

96 Gil You don’t have to! [C2, counterclaim]  B 

97 Noa Of course you do!  

98 Gil “What the chances are of taking out a defective match from a matchbox?” 
It’s 1 out of the number of matches in the box. [D2] 

R 

100 Noa Right, so you take many boxes, how many, if, in the box [W1]… B 

101 Gil Noa, it depends on how long you have been using the box, if you used it once 
then maybe it will be less … [Q1] 

B 

102 Noa No! If it’s defective! You have to take many boxes [D1] and see in each one if 
there is … if there are let’s say 50 matches in each box and 1 is defective so 
it says on the box 1 out of 50 [W1], so you have to experiment! [C1, referring 
back to turn 95] 

B 

103 Gil So it’s 1 per the number of matches in each box [W2]. R 

104 Noa Not 1, there may be 2 defective matches in the box [R2]. B 

105 Gil But what are the chances?  

106 Noa But with 2 defective ones?  

107 Gil But Noa, you are speculating … you can say 50 out of 50 [R to 104]. B 

108 Noa But you can’t say 1 out of 50! Out of … whatever! [W to 104] What is the 
probability? It’s not correct what you are saying! 

B 

109 Gil What isn’t correct?  

110 Noa Because just like you can’t say 2 out of the matches because you don’t know 
that it’s 2 or that it’s 1 [W1 = R2]. 

B 

111 Gil (writes) “can’t determine without experimenting.” [C3] Cxp 

112 Noa We can, if we experiment. [C, slightly new claim of how to do the 
experiment] 

CCxp 

113 Noa Ok, so what is the probability? It’s, we have to write that we won’t know 
[D1] until we experiment [C1]. 

RB 

114 Noa Let’s write at the bottom, that we need a few boxes [D4], suggest an 
experiment (dictates: “we need to take a few boxes of matches and see out of 
them  [D4]…” [Dictate together].) 

B 

115 Noa No, wait! How many matches does the box contain, and see how many 
defective matches are in it [D4]… [Dictate together]. 

B 



116 Gil (continues to dictate) “then, check how many defective matches are in the 
box [W4]” [Dictate together]. 

B 

117 Noa Then we will write “the probability is the number of defective matches in the 
… [C4, together with turn 123]” [Dictate together]. 

Cxd 

…    

122 Gil Noa, each box will come out differently. R 

123 Noa So it’s average [C, note Data is previous argument], not precise [Q4]!  CCxd 

  Back to whole class discussion  

135 Noa In my opinion you need to experiment [C10]!  

136 T Why?  

137 Noa I don’t know. I can suggest an experiment [Q10]  

138 T Friends, listen, you need to express your opinion on what they said  

139 Gil [addressing Noa] Why can’t you say why you need an experiment, you can’t 
know how many matches there are in the box [D10]. 

B1 

140 T Let’s say I can reveal to you that there are 45 matches in the box.  

141 Gil And inside you have to [check]. B 

142 Noa [you need to take some] matchboxes [D11], you need to see how many 
matches are in each box, and how many of them are defective [W11]. 

 

143 T Let’s say we know that information, what do I do with it?  

144 Noa So …  

145 Gil So I do the average [C11, with 147] B 

146 T What average?  

147 Gil Of the defective matches in each box [C11, with 145] Cxd 

148 T And how is that going to help us know what the probability is that we take 
out a defective match? 

 

149 Noa Let’s say we have 2 defective matches in a box with 50 matches, so it’s 2 
divided by 50. 

 

150 T 2 to 50, what do you think?  

151 Gil We are saying that you can’t do it without an experiment [C10]. You can’t 
know how many defective matches there are because we don’t know how 
many matches are in the box and we don’t know either … We can’t speculate 
how many defective matches there are [W10]. We wrote that we need to take 
a number of matchboxes and see how many matches they contain, then count 
how many out of them are defective and do an average of how many 
defective matches in each box [C11]. If we got 3 then it’s 3 divided by 50. 

CCxd 

Table 1: Excerpt 1, Transcript from the class 
                                                 
1 From this point on it is Gil who does the B and C actions 



RBC+C and DCA analysis 
We begin by relating elements of the RBC+C and DCA analyses to each other, and then we relate 
the three criteria of the DCA approach to consolidation. 

Relationship between Recognizing and Data. Theoretically, we argue that Recognizing actions are 
largely associated with Data. One uses some piece of information as Data because that piece of 
information makes sense to him/her. That is, this piece of information is relevant for the person; it is 
what the person selects for use (as Data). In the above excerpt, we see that Recognizing actions are 
primarily associated with Data. In some cases (e.g., turn 103), Recognizing actions can be 
associated with Warrants. In carrying out the DCA analysis, disentangling Data and Warrant is at 
times non-trivial, in which cases Recognizing actions can be sensibly associated with Warrants. 

Relationship between Building-with and Warrants. Theoretically, Warrants establish a connection 
between data and claim; in order to establish such a connection, one needs to build-with what one 
has recognized. In the above excerpt this commonality is largely the case with some exceptions that 
need clarification. In turns 95/96 we had claims associated with building-with. These are the first 
building-with actions of this excerpt and thus the first ones of the part where the students are 
working on the present task. As a consequence, the building-with actions are somewhat shallow and 
make only claims without really warranting them. As such, this example does not pose a substantive 
threat to the theoretical conjecture. Similarly, turns 114 - 116 and 139 do not pose a substantive 
threat to the conjecture. These are the final utterances belonging to a constructing action; as such, 
they complete the constructing by explicitly stating the claim that was constructed. As we noted 
above, at times data and warrant are difficult to disentangle with certainty, hence building-with can 
be associated with data. Empirically, this is the case for turns 114 and 115. 

The relationship between Constructing and Arguments as a whole. Constructing requires vertical 
mathematization. Constructing actions are usually much more extended than Recognizing or 
Building-with actions; they incorporate sequences of interweaving Recognizing and Building-with 
actions (plus the ‘glue’ between them). Similarly, arguments interweave data-claim-warrants and 
backings as a whole. Hence, in a line by line coding it is not feasible to indicate the holistic nature 
of an argument and it is typically indicated after a line by line coding (see for example Tabach et 
al., 2014). Moreover, arguments are usually co-constructed by several participants over several 
turns. Such interaction is also frequent in constructing actions. 

Consolidating and the three criteria for identifying function-as-if-shared ideas. In consolidating 
actions as well as across the three DCA criteria for identifying when an idea functions as if shared, 
repetition, reuse, revisiting, or repurposing of earlier ideas frequently occurs. To clarify, in Criterion 
1 there is a repetition, but the repetition is partial in the sense that some parts of the argument (Data, 
Warrants) cease to be explicitly stated. In Criterion 2 there is repurposing of previous part of an 
argument (e.g., Claim) as either Data or Warrant. In this sense there is a repeating and reusing, but 
for a different purpose. In Criterion 3 there is a revisiting of either Data or Warrants to establish 
new Claims. In consolidation, previous constructs are recognized as relevant (i.e., revisited), and 
then built-with, which means they are reused, often for a new purpose such as a new constructing 
action. Hence there are strong parallels between consolidation and the three DCA criteria. For 
example, in 151, DCA analysis shows that W10 (the warrant for Claim 10) turns into D11 (i.e. the 



data for Claim 11); hence Criterion 2 is satisfied: the same part of the argument is reused with a 
different function. RBC+C analysis shows that knowledge construct xd is consolidated by being 
used again, and at the same time elaborated. 

Further commonalities between consolidating and the DCA criteria can be seen by considering the 
characteristics of consolidation: awareness, self-evidence, flexibility, immediacy, and confidence 
(Dreyfus & Tsamir, 2004). Self-evidence links to Criterion 1 because the evidence is the Data, 
which drops off in subsequent arguments. The subsequent argument also then relates to immediacy 
and confidence in the validity of the idea. Flexibility links to Criterion 2 because components of an 
argument are being reused and repurposed (as sign of flexibility) in subsequent arguments. 
Similarly, Criterion 3 relates to flexibility, but in a different way. Here the flexibility lies in the fact 
that one is able to use an idea (e.g, Build-with) as Data or Warrant for a variety of different Claims. 
Hence close relationships exist between the criteria and characteristics of consolidation.  

We conclude this report by returning to vertical mathematization, which was highlighted as an 
Environmental commonality. We also see vertical mathematization as an Internal commonality. 
Both methodologies work from the premise that vertical mathematization is core to mathematical 
progress. In the RBC+C approach, consolidation is vertical mathematization and, as we argued 
above, the consolidation is closely linked to the three criteria. 

Conclusion 
We now turn to discussing some implications for research. In addition to offering a theoretically 
and empirically grounded approach for coordinating methodologies for individual and collective 
mathematical progress, there exist specific ways in which this coordination can play out. For 
example, one could choose an individual student within the classroom community and trace their 
constructing actions for the ways in which they contributed to the emergence of various normative 
ways of reasoning. Alternatively, when considering a normative way of reasoning, a researcher 
could investigate who the various individual students are that are offering the claims, data, warrants, 
and backing in the Toulmin analysis used to document normative ways of reasoning. How do those 
contributions coordinate with individual student constructions? For instance, does a student ever 
utilize an utterance that a different student authored as data for a new claim that they are authoring, 
and in what ways may that capture or be distinct from other students’ individual mathematical 
meanings? Future research could take up more directly the role of the teacher in relation to 
individual and collective level mathematical progress. More generally, however, this report 
contributes to an emerging discourse on theories and ways in which different theoretical approaches 
can be profitably networked (e.g. Bikner-Ahsbahs & Prediger, 2014). 
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Networking strategies and the present study 
In the past decade, strategies for connecting theories have been intensively discussed (e.g., Prediger et 
al., 2008). According to Prediger et al. (2008), the networking strategies are structured as follows: 
understanding and making understandable; comparing and contrasting; combining and 
coordinating; and integrating locally and synthesizing. The purpose of this study is to show my/our 
two case studies related to the networking theories in order to consider some meta-theoretical aspects 
of these studies. I will briefly introduce the two case studies, which have been developed by myself 
(Shinno, 2016) and by a Japanese research group (Shinno et al., 2015). The first study is concerned 
with combining and coordinating, and the second study is concerned with locally integrating. 

By reflecting the researchers’ practice on the two case studies at meta-theoretical aspects, I attempt to 
reconsider different treatments of theoretical terms in different strategies. This may allow us to 
analyse transition between pre/post statuses of the networking, although different strategies can be 
utilized for different purposes. Comparing the two studies, by focusing on the treatments of terms, I 
discuss how the elaboration of the original terms may influence the degree of integration. 

The two case studies: Overview 
Case study 1: Combining and coordinating 

Shinno (2016) aims to characterize the development of mathematical discourses in a series of lessons 
in terms of the model of semiotic chaining by Norma Presmeg and the commognitive framework 
(Sfard, 2008). One of the research questions of this study is as follows: In what ways can the model of 
semiotic chaining be combined with the commognitive framework in the analysis of reification in the 
learning of square roots? For gaining multi-faceted insight of the reification phenomenon, Shinno 
(2016) attempts to coordinate the commognitive terms (such as keywords, visual mediators, endorsed 
narratives, and routines) with the semiotic terms (such as signifier, signified, and interpretant). By 
doing so, Shinno (2016) intends that the implicit meta-discursive rule (routine) may become 
explicitly identified as the semiotic component (interpretant). 

Case study 2: Integrating locally 

Shinno et al. (2015) aims to construct a theoretical framework for curriculum development for 
teaching proof by means of integrating different theoretical constructs related to proof. In developing 
a framework, the notion of Mathematical Theorem comprised of the three elements – statement, 
proof, and theory – is used as the foreground of the framework. Some other theoretical constructs, 
such as mathematical proof by Nicolas Balacheff and local organization by Hans Freudenthal, are 
locally integrated into the framework in order to consider the wide range of contents and levels of 



statement, proof, and theory in curriculum. As a result, Shinno et al. (2015) elaborate some additional 
categories by introducing new terms, for example, real world logic, local theory, and quasi-axiomatic 
theory, which are included in a category of ‘nature of system’ based on the concepts of local 
organization. 

Discussion: Meta-theoretical aspects 
In the first study, when coordinating the semiotic and discursive terms, it seems that a theoretical term 
is interchangeable with another term (e.g., “an interpretant” with “a routine”). Therefore, even after 
the coordinating, it seems that the treatments of the terms can be preserved in both theoretical 
contexts. In other words, the results of the empirical studies can feedback to the original theories. In 
the case of Shinno (2016), it allows to analyse the reification phenomenon from the two different 
perspectives and to gain a deeper understanding of the phenomenon. In the second study, it seems that 
the basic constructs to be networked are ‘concepts’ rather than ‘theories’. Some original concepts 
such as local organization can be elaborated and integrated locally into new terminologies or 
categorizations in the constructed theoretical framework. Since elaborated terms have a consistency 
within the new framework and these can create new meanings, such terms cannot preserve their 
original senses. Thus, this networking strategy may contribute to establish a new theoretical discourse 
rather than to understand a certain empirical phenomenon. It seems that this strategy also can be 
utilized for developing or elaborating a new theoretical model. 

References 

Mariotti, M. A., Bartolini, M., Boero, P., Ferri, F., & Garuti, R. (1997). Approaching geometry 
theorems in contexts: from history and epistemology to cognition. In E. Pehkonen (Ed.), 
Proceedings of the 21st Conference of the International Group for the Psychology of Mathematics 
Education, (Vol. 1, pp. 180–195). Lahti, Finland: PME. 

Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for 
connecting theoretical approaches: first steps towards a conceptual framework. ZDM Mathematics 
Education, 40(2), 165–178. 

Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourse, and 
mathematizing. New York, USA: Cambridge University. 

Shinno, Y. (2016). Reification in the learning of square roots in a ninth grade classroom: combining 
semiotic and discursive approaches. International Journal of Science and Mathematics Education. 
doi:10.1007/s10763-016-9765-3  

Shinno, Y., Miyakawa, T., Iwasaki, H., Kunimune, S., Mizoguchi, T., Ishii, T., & Abe, Y. (2015). A 
theoretical framework for curriculum development in the teaching of mathematical proof at the 
secondary school level. In K. Beswick, T. Muir & J. Wells (Eds.). Proceedings of the 39th 
Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 
169–176), Hobart, Australia: PME.  

Note: The digital poster can be available from the following link: 
http://www.osaka-kyoiku.ac.jp/~shinno/shinno/poster.html 



On dialectic and dynamic links between the Mathematical Working 
Space model and practice in the teaching and learning of 

mathematics  
Alain Kuzniak1 and Assia Nechache2 

1Université Paris-Diderot, LDAR (EA 4434), Paris, France; alain.kuzniak@univ-paris-diderot.fr  
2Université d'Orleans, LDAR (EA 4434), Paris, France; assia.nechache@hotmail.fr 

In this communication, we address the specific relationships between the Mathematical Working 
Space model (MWS model) and practice in the teaching and learning of mathematics. The strong 
and positive interactions existing between these two aspects are illustrated with two examples from 
geometry and probability teaching. They show how some theoretical constructs as MWS diagram 
can enlighten practice and, conversely, how studies on practice nourish the model with new tools 
such as “comics”, “complete mathematical work” or “emblematic tasks”. 
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A decade ago, the Mathematical Working Space (MWS) model has been introduced as a theoretical 
and methodological framework dedicated to identify and shape the mathematical work in schooling. 
Developed by researchers working collaboratively in various countries with, sometimes, very 
different educational approaches in Europe (France, Spain, Cyprus), Latin America (Chile, 
Mexico…) and North America (Canada), the model is deeply rooted in the teaching of mathematics 
in real classrooms. This communication aims at showing dynamics and dialectics between the 
MWS model and relevant questions to education practice. After a short presentation of the MWS 
model, we show first how it can be used to deal with the question of planning series of tasks in the 
teaching and learning of geometry. That leads us to introduce two new constructs: the 
methodological tool of “comics” used to describe the evolution and circulation of the mathematical 
work and the more theoretical idea of “complete mathematical work” which allows qualifying the 
final nature of this circulation within the diagram. Then, these two new tools are used for the study 
of the teaching of probability and statistics. In France, this teaching is relatively new and it is now 
initiated on modeling tasks with use of technological tools. This leads us to check the relevance of 
the above constructs and identify two kinds of incompleteness of mathematical work and, in 
addition, to draw out certain specific tasks, named “emblematic tasks”. Designed on these former 
results, our present research aims at tracking transformations made by teachers when they adapt 
these “emblematic tasks” to their classrooms.  

A short insight in the MWS model 
Extending the research work developed by Houdement and Kuzniak (2006) in didactics of 
geometry, the MWS model emerged during the last decade. The model, especially in geometry, had 
already been presented during former CERME meetings (Kuzniak and Nechache, 2015). A recent 
issue of ZDM-Mathematics Education (48-6, 2016) is devoted to this model and we refer the reader 
to this issue for further details and discussions about the MWS model. Some elements of the 
introduction (Kuzniak, Tanguay and Elia, 2016) to this issue are used to present the framework. 



The theoretical model of Mathematical Working Space (MWS)  provides a tool for the specific 
study of the mathematical work in which students and teachers are effectively engaged during 
mathematics sessions. The abstract space thus conceived refers to a structure organized in a way 
that allows the mathematical activity of individuals who are facing mathematical problems. It 
establishes the reference to the complex setting in which the problem solver acts. In this approach, 
the crucial function of educational institutions and teachers is to develop a rich environment which 
enables students to properly solve mathematics problems. To describe the specific activity of 
students solving problems in mathematics, the idea of organizing the MWS into two articulated 
planes is retained: one of an epistemological nature in close relation to the mathematical content in 
the field being studied; the other of a cognitive nature, related to the thinking of the individual 
solving problems. Three components in interaction are characterized for the purpose of describing 
the work in its epistemological dimension, organized according to purely mathematical criteria: a 
set of concrete and tangible objects, the term sign or representamen1 is used to summarize this 
component; a set of artifacts such as drawing instruments or software; a theoretical system of 
reference based on definitions, properties and theorems.  

The second level of the MWS model is centered on the subject, considered as a cognitive subject. In 
close relation to the components of the epistemological level, three cognitive components are 
introduced as follows: visualization related to deciphering and interpreting signs, and to internally 
building (psychological) representation of the involved objects and relations; construction 
depending on the used artifacts and the associated techniques; proving conveyed through processes 
producing validations, and based on the theoretical frame of reference. Furthermore, the 
development by communities or an individual, whether generic or not, of appropriate mathematical 
work is a gradual process by which a suitable MWS is settled through a progressive approach and 
fine tuning. Therefore, analyzing mathematical work through the lens of MWSs allows tracking 
down how meaning is progressively constructed, as a process of bridging the epistemological plane 
and the cognitive plane, in accordance with different specific yet intertwined genetic developments, 
each being identified as a genesis related to a specific dimension in the model: semiotic, 
instrumental and discursive geneses. This set of relationships can be described proceeding from the 
elements of the following diagram (Figure 1) which, in addition, shows the interactions between the 
two levels with three different dimensions or geneses: semiotic, instrumental, and discursive:  

 The Semiotic genesis is the process associated with representamen (or signifiers), and 
accounts for the dialectical relationship between the syntactic and the semantic perspectives 
on mathematical objects, displayed and organized through semiotic systems of 
representation. 

 The Instrumental genesis enables making artifacts operational in the construction processes 
contributing to the achievement of mathematical work.  

 The Discursive genesis of proof is the process by which the properties and results organized 
in the theoretical reference system are being actuated in order to be available for 
mathematical reasoning and discursive validations.  

The epistemological and cognitive planes structure the MWS into two levels and help to understand 
the circulation of knowledge within mathematical work. How then, proceeding from here, may one 



articulate efficiently the epistemological and cognitive levels in order to make possible the expected 
mathematical work? How may one organize and describe interrelationships existing between our 
former three geneses? In order to understand this complex process, the interactions that are specific 
to the execution of given mathematical tasks will be associated to the three vertical planes, naturally 
occurring in the diagram of Figure 1: the [Sem-Dis] plane, conjoining the semiotic genesis and the 
discursive genesis of proof, the [Ins-Dis] plane, conjoining the instrumental genesis and the 
discursive genesis of proof, the [Sem-Ins] plane, conjoining the semiotic genesis and the 
instrumental genesis (Figure 2). The three planes are valuable tools for describing the 
interrelationships between the different geneses, for identifying and characterizing phases in the 
solving processes, for analyzing the shifts occurring in the course of these processes when specific 
aspects are, unexpectedly or gradually, either left aside or given more prominence.  

 
 

Figure 1: The Mathematical Working Space Diagram Figure 2: The three vertical planes in the MWS 

The exact definition and precise description of the nature and dynamics between these planes during 
the solving of a series of mathematical problems remains a central concern for a deeper 
understanding of the MWS model. They vary with the mathematical field at issue, with the tasks, 
with the schooling level, with the type of work promoted or expected, etc. 

Planning of a teaching sequence in geometry at primary school 
In France, at primary school level, numerous and interesting tasks in geometry are available and 
relatively easy to access. By contrast, few resources are available to help teachers to plan a series of 
geometrical tasks and activities for elementary schools students. To move forward on this issue, the 
MWS model (Kuzniak & Nechache, 2015) was used to identify some key points in organizing a 
long teaching sequence on a specific topic. Designed by two well-known French researchers in the 
domain (Fenichel & Taveau, 2009), the selected sequence “Le cercle sans tourner en rond” is 
dedicated to Grade 4-6 students. The sequence includes eight sessions from half an hour to one 
hour. Its main objectives are the introduction of the global notion of circle as the set of all points 
equidistant from a given point, named the center; to use this property for solving distance problems 
and make constructions with compass used also to transfer distances. The MWS diagram was used 
to analyse each of the sessions and to observe various circulations of the geometrical work through 
the different planes of the MWS diagram (Figure 2). For example, in session 1, the objective is to 
identify the circle as the set of all points equidistant from a given point, the centre. Students are 



asked to place a point A on a white sheet and then a point B (semiotic dimension). After that, they 
have to place 15 points “situated at a distance from A which is the same as the distance of B from 
A” (semiotic dimension). They may use various artifacts: blank and tracing paper, twine, square set, 
compass (instrumental dimension). The geometric work starts in the [Sem-Ins] plane. Then, during 
a formulation phase, some students’ productions are displayed on the blackboard and discussed. 
The strategies used by the students to carry out the task are clarified and formulated. The notion of 
equidistance from a given point is expected to emerge. Some geometric terms are institutionalized 
and the characteristic property of the circle is given by the teacher and enriches the theoretical 
referential (discursive dimension) in the MWS. In summary, the geometric work starts in the [Sem-
Ins] plane and is concluded in the discursive dimension (Dis). The same analysis has been made on 
five sessions and allows describing the dynamic evolution of geometric work. This evolution is 
visualised with the following “comics” which highlight the key-points of the sequence.  

 

Session 1 Session 2 Session 3 Session 4 Session 5 

Figure 3: The dynamic evolution of the mathematical work during the five sessions 

The analysis, supported on “comics”, demonstrates a comprehensive circulation through the three 
vertical planes of the MWS model (figure 2) leading to what we identify as a “complete geometric 
work”. More generally, a mathematical work is considered “complete” when both conditions (A) 
and (B) are satisfied:  

(A) A genuine relationship between the epistemological and cognitive planes. This aspect means 
that students, be they generic or not, are able to select the useful tools to deal with a problem and 
then to use them appropriately as instruments to solve the given task.  

(B) An articulation of a rich diversity between the different geneses and vertical planes of the 
model. This aspect means that various dimensions of the work related to tools, techniques and 
properties are taken into account.  

Identifying blockages and misunderstandings and checking if the mathematical 
work is complete and coherent 
Identifying blockages and misunderstandings requires observing how teachers implement tasks in 
their classroom. That allows us to describe what we call suitable MWS which depends on the 
institution involved, and is defined according to the way the knowledge must be taught, in relation 
to its specific place and function within the institutional curriculum. 



Identifying blockages and misunderstandings through the study of circulation within the 
MWS diagram 

Our analysis is based on a classroom session at Grade 10 (age 15) (Kuzniak, Nechache & Drouhard, 
2016) in which a task is given to the students with two questions on the probability values of an 
event. The statement of the exercise is written as follows in the textbook used by the teacher:  

Two identical wallets are at disposal. The first contains 3 banknotes of 10 euro and 5 
banknotes of 20 euro. The second contains 2 banknotes of 10 euro and 4 banknotes of 20 
euro. One wallet is chosen randomly and a banknote is drawn “blindly” from this wallet. 
What is the probability of choosing one banknote of 10 euro? One banknote of 20 euro?  

The underlying probabilistic model is that of equal probability. This model is not explicit, but the 
text makes reference to it with the following terms: identical, randomly, blindly. Moreover, this 
exercise involves a random experiment with two successive and not independent draws. The use of 
a weighted tree to solve the problem would be the most effective way to solve the problem. But, this 
particular type of tree only appears officially in Grade 12, the introduction of this kind of tree is 
something that is left for teachers to do. In the textbook, weighted trees are introduced before the 
exercise which is not the case in the observed class. 

After some time left to search for a solution, a 
student is invited by the teacher to write his answer 

on the blackboard. He draws a non-weighted tree 

semiotic dimension to represent the situation and 

then gives his answer in the form of a fraction 

(Figure 4). The student gives numerical results 

without any justification and the tree is not only 

used for representing the situation but also as an 

implicit support for calculation instrumental 

dimension. His mathematical work starts in the 

semiotic dimension, which allows him to convert 

the problem into the form of a tree, the latter being 

then used to get the solution of the given problem. 

The student has performed his work in the [Sem-

Ins] plane.  

 

 

 

 

 

 

 

 

Figure 4: The student’s tree on blackboard 

Unsatisfied with the student's solution, the teacher asks him to explain his answer, and in particular, 
to explain the two results written on the blackboard (namely 5/14 and 9/14). Arguments given by 
the student are uniquely grounded on the semiotic dimension and the teacher is expecting one based 
on the discursive dimension, using properties. Then, asking various questions to the whole 
classroom, he attempts to shift the mathematical work to discursive dimension in order to develop a 
discursive proof of the results. The teacher emphasises strongly the importance of justification 
based on tools coming from the theoretical system of reference and this focus prevents him to notice 
the non-validity of the results provided by the student (the right results are 17/48 and 31/48). In fact, 
the mistake is linked to the student’s insufficient knowledge about the nature and use of the tool 
“tree”. The student draws a choice tree which allows counting the outcomes, but which is not a 



weighted tree. At this Grade, the teacher avoids the use of probability trees which are spontaneously 
used by his students. The mathematical work done by students remains in the [Sem-Ins] plane while 
the teacher confines it in the discursive dimension to promote a discursive proof. Thus, this leads to 
a misunderstanding and blockages among some students which can be related to the two different 
forms of mathematical work expected to solve the task.  

Mathematical work: Completeness and mathematical coherency  

The following example is based on the analysis of a class session at Grade 9 (Kuzniak, Nechache & 
Drouhard, 2016) in which students are asked to solve the following task taken from Education 
Ministry resources:  

On a segment S, two points A and B are taken randomly. The following outcome is 
considered “The length of segment [AB] is strictly superior to half the length of segment S”. 
What is the probability of this event?  

The event “The length of segment [AB] is strictly superior to half the length of segment S” is 
labelled D. The solution suggested into the resource document is divided in two parts. In the first 
part, the reasoning work starts with an visual exploration on the segment (semiotic dimension) 
which is closely related to the use of an artefact (here a spreadsheet) for calculating numbers 
randomly with the random function (instrumental dimension). So, the mathematical work begins in 
the plane [Sem-Ins]. Then, based on the results given by the artefacts, an estimated value, closed to 
0.25, is given and the estimation process is justified with the law of large numbers. The work done 
in this phase ends in the plane [Ins-Dis].  

 

 

 

 

 

 

 

                 Figure 5: Geometric solution 

 

 

 

       

 

 [Sem-Ins][Ins-Dis]            [Sem-Dis] 

  Figure 6: The evolution of the mathematical work  

In the second part, the exact value (0.25) is justified with a 
discursive proof. It is first suggested to find all the couples 
(X ;Y) such that |X-Y| > 1/2, where  X and Y are two 
random variables with a continuous uniform distribution 
on the interval [0 ;1] (use of the theoretical referential). 
The inequation is solved graphically (Figure 5) on the 
square [0 ;1] [0 ;1] (semiotic use of the square). Thus, the 
suitable couples (X ; Y) belong to the gray zone (Figure 5), 
hence the probability of the event D is equal to ¼ (based 
on visualisation). The mathematical work, really 
implemented, is placed in the [Sem-Dis] plane. 

In summary, the analysis, with the MWS 
model of the solution given by authors, of the 
resource document, serves to identify a 
circulation of the mathematical work through 
the three vertical planes of the diagram 
(Figure 2). Thus, a priory, the mathematical 
work can be regarded as potentially complete 
and mathematically coherent.  

 



 

In the session we observed, the suitable MWS implemented by the teacher, and, thus, the resulting 
mathematical work, is really different from the potential one described above. The teacher asks the 
students to realize the random experiment first. They have to draw a segment with a given length, 
place two points randomly on this segment and, measure the distance between this two points and, 
compare the measure to half the length of segment S. Then, the teacher engages students to use a 
discrete model of the experience with throws of two six-sided dice to get an experimental value of 
the probability of D and, they get 0,3. Finally, the teacher gives the students a table (6 6) with 36 
cells to complete and asks them to calculate the probability of D, which is equal to 1/3.  

In figurative terms, we can say that each phase favors one of the MWS vertical planes (Figure 2) 
moving from the [Sem-Ins] plane to help the understanding of the random experiment, to the [Ins-
Dis] plane to obtain an experimental value of the probability, and finally to the [Sem-Dis] plane to 
give a theoretical validation based on counting numbers. In summary, the mathematical work 
proposed by the teacher provides an articulation between the various working contexts and can be 
considered complete. But, the probability of D in the model chosen by the teacher is 1/3 and is 
different from that expected in the official resource, which is 1/4. This difference is due to the fact 
that the teacher wants to adapt the task to his classroom and changes the initial task by using a 
discrete model instead of a continuous model. This difference highlights the contradiction between 
the reference MWS expected by the authors of the resource document and the suitable MWS 
developed by the teacher. The consequence is that the mathematical work is not mathematically 
coherent according the expectations of the reference MWS, at this level, even if the mathematical 
work can be considered complete. 

On mutual influence of theory and practice on the MWS development 

In this paper, we intend to show how analysis of tasks and teaching-learning sessions can benefit 
from and participate in the development of the MWS model. Is it possible to generalize our results 
to other theoretical approaches? We cannot assert, because the MWS model is still an emerging and 
growing model that is difficult to compare with mature theories. As Artigue (2016) underlines, one 
of the current characteristics of the model is precisely its plasticity and adaptability that, according 
her, big and mature French theories do not have. Moreover, conceived to describe and ensure the 
dynamics of mathematical work, the MWS model cannot be improved without a close and dialectic 
link with researches on tasks and activities favoring the tuning of the mathematical work. 

Research perspective: Teaching trajectory and mathematical work 
In the previous section, we have shown how, in some cases, teachers have transformed tasks in such 
a way that students have been blocked or engaged in mathematical work far from the intended one. 
In our present research and using the MWS model, we address the following questions: When do 
some blockages arise in the mathematical work? How can they be characterized? What is their 
origin? Which kind of teachers' adaptations and changes allows keeping (or not) a complete and 
mathematically coherent mathematical work? The research objective is to identify 
misunderstandings or resistance points or, instead, favorable rebounds which allow that an activity 
goes on nicely in the classroom. It is also possible to focus on tasks transformations leading to 



denaturing when the intended mathematical objective is lost and questions of reproducibility and 
didactic obsolescence can be addressed. 

To do this, some specific tasks, named “emblematic tasks” and verifying several conditions, are 
chosen. They must benefit first from an institutional recognition which ensures their compatibility 
with the intended mathematical work. Then, they are already provided by textbooks and, above all, 
implemented in some regular classrooms. Lastly, they may convey a complete mathematical work 
as defined above. We make the assumption that adequate and solid learning can result from the 
implementation of these tasks in classrooms if they are not too distorted through the teaching 
process. To study this assumption, these emblematic tasks are first implemented in pre-service 
teachers training by experienced teachers trainers and their transformations by the pre-service 
teachers are studied. The teachers training framework helps us to monitor the development and 
implementation of tasks in classrooms and makes easier the study of teaching trajectories according 
our research objectives. Moreover, two other specific objectives related to teacher training can be 
added to our research program: the use of “emblematic tasks” may initiate students to new and 
interesting forms of mathematical work for those who are not familiar with; the assessment of the 
impact of this approach on students' belief by analyzing the different transformations and 
adaptations of the tasks. In a way, emblematic tasks can help to understand the link between 
teaching and learning. 
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For more than a decade, a theoretical approach focusing on mathematical work in schooling has 
been developed by an international community of researchers. Grounded on geometry education 
research, the Mathematical Working Space (MWS) model emerged from this collaborative work 
and has been developed during symposia, the fifth of which being held in Florina in July 2016. 
Recent publications in English, French and Spanish (Relime 17(4), 2014; Bolema 30(24), 2016) and 
in English (ZDM-Mathematics Education 48(6), 2016) may be helpful for discovering this model 
and its current state.  

This poster aims at illustrating and discussing one of the specificities of the model, which means 
that it was conceived to interact with other approaches. As Artigue (2016, p. 938) underlies: 

But the MWS construction is an object of a very different nature, at least in its current 
state. Its logic seems more that of an assembly that would incorporate, possibly with 
adaptation, a diversity of constructs and perspectives developed in the field, without 
privileging any of them. This gives the MWS structure a plasticity that big theories (...) 
do not have, and certainly contributes to its accessibility and attractivity. 

Conversely, this plasticity and attractiveness pose the challenging question of the real nature of its 
relationships with other theoretical approaches, which may be grounded on very different 
epistemological and methodological principles. In this poster our purpose is to address this question 
through some examples. For that reason, some key-points of the model will be presented and, in 
particular, how the study of mathematical work in schooling is framed. Then, some examples will 
be given to illustrate possible interactions with other theoretical and exogenous frameworks. All the 
examples come from special issues on MWS model and MWS symposia. The list of examples is not 
complete and other frameworks have been used, although they do not appear in the poster 
(Didactical Situation Theory, Anthropological Didactical Theory, Semiotic registers, etc.). 
Naturally, all the examples cannot be considered in detail but the fact that the model is supported on 
a diagram assists to illustrate interactions. The poster is organized around diagrams showing the 
findings of the different papers and questioning the openness and adaptability of the MWS model.  

Combining the model with Drouhard's epistemography. Drouhard's epistemography use has 
changed the view on tool and instrument in the MWS model (Kuzniak, Nechache & Drouhard, 
2016). Depending on their nature and on the way they are being exploited to solve the problem, 
tools may be situated in any of the three poles of the epistemological plane. In the cognitive plane, 
one speaks of an instrument whenever a subject interacts with a tool in order to tackle a task 
effectively. Thus, a tool is associated with a corresponding instrument in the cognitive plane.  

Interactions with Activity Theory. Hitt, Saboya and Cortés (2016), investigate the articulation 
between arithmetic thinking and early algebraic thinking, through the analysis of an experiment 



which focuses on secondary school students’ spontaneous productions. The experiment is 
conducted within a research methodology based on Activity theory. The MWS model, used as a 
framework, is here adapted into an ‘Arithmetic-Algebraic Working Space’ (A-AWS), whose 
cognitive plane displays an articulation between arithmetic and algebraic thinking.  

Completing APOS theory with the MWS model. Camacho Espinoza and Oktaç (2016) provide a 
study, using APOS Theory, on an University teacher in Mexico solving a task in linear Algebra. 
APOS helps to understand the work at a micro level using the mental mechanism of 
desencapsulation of an Object into a Process, and the authors use the MWS model to understand the 
global logic of this work at a macro level. 

Integrating the MWS model in cognition and affect studies. In a technological (with Dynamic 
Geometry Software) collaborative setting, Gómez-Chacón, Romero Albaladejo and García López 
(2016) study the interplay between cognition and affect in geometrical reasoning. Their study 
integrates the MWS frame to enable a detailed exploration of the transitions from instrumental to 
discursive geneses of reasoning, within teacher-student and student-student interactions, and also of 
the cognition-affect dynamics in this process, with a focus on mathematical attitudes.  

Coordinating the MWS and MTSK model to understand teachers' knowledge and the role of 
the teacher in the classroom. The MWS model describes the mathematical work development by 
teachers through the teaching implemented. Carrillo et al. (2016) suggest an articulation between 
the MWS model and the MTSK theoretical model (Mathematics Teacher ́s Specialised Knowledge) 
to emphasize the specific role of Teacher’s Knowledge in this learning process.  

See the poster: www.irem.univ-paris-iderot.fr/~kuzniak/publi/ETM_EN/2017_Cerme10_poster.pdf 
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The utilisation of multiple theories in a single research study requires careful consideration with 
respect to the complementarity of the theories and the commensurability of the associated research 
accounts in relation to the specific setting or research site. This paper proposes that 
commensurability is constructed to facilitate the comparison that researchers are trying to make. 
The Social Unit of Learning project is conducted in a laboratory classroom facility equipped with 
10 built-in cameras and up to 32 audio channels allowing structured, rigorous, fine-grained 
investigation of the social aspects of classroom practice. The rich and detailed data generated 
allows parallel analyses predicated on different theories. Complementarity of theories is 
distinguished from commensurability of research accounts, which requires the identification of 
operationalised constructs (e.g., categories or measures) common to the accounts generated. 

Keywords: Classroom research, video technology, research methodology, research design. 

Comparability as a challenge in learning research 
With the abundance of theories and perspectives that have been generated through research over the 
years, a continuing challenge that researchers face relates to the difficulty of navigating the 
multitude of theories available (Bikner-Ahsbahs & Prediger, 2014; Cobb, 2007). In this paper, we 
consider the conditions under which multiple theories might be deployed for the simultaneous, 
parallel analysis of a single social setting, with a specific focus on the roles of complementarity and 
commensurability in undertaking comparison of either the theories or the analytical accounts arising 
from any such multi-theoretic research design. 

Clarke and his colleagues (e.g., Clarke, Emanuelsson, Jablonka, & Mok, 2006) have advocated 
“complementarity” as central to the contemporary conceptual management of theory and 
methodology, particularly in their use of “complementary accounts” (Clarke, 1997). In the same 
way that two research accounts of a social situation may be different but equally legitimate and 
informative, so two theories may be complementary in their foregrounding of different constructs. 
Like the accounts, both may be simultaneously “true” within their own coherent conceptual 
framework so that they are disjoint but separately coherent. Tensions between theories emerge 
when we juxtapose the analytical accounts derived from two different theories in relation to the 
same research setting and the coherent body of practice that occurs there. A specific difficulty with 
juxtaposing and connecting existing theories and their associated constructs is the possible 
incommensurability of the accounts generated by their application, particularly because theories 
arise historically from observations based on different research designs, settings and participants.  

Direct comparison of analyses employing different theories, without considering the contexts or 
settings in which the theories are being applied and the intended purpose of their application, 
empirically undermines the integrity of the comparison and the legitimacy of the conclusions drawn 



from the comparison. Consideration of “the right to compare” (cf Stengers, 2011; Clarke, 2013) 
must take into account differences between findings or interpretive accounts that relate to different 
physical spaces, different times, and/or involve different actors, activities, or cultural contexts. 
Clarke (2013) expressed an analogous concern regarding international comparative research, where 
a single theory is applied across multiple culturally distinct settings for the purposes of comparison 
with respect to a specific construct (e.g., student achievement). In such studies, researchers can risk 
compromising the validity of the comparison made in their study by misrepresenting the valued 
performances, school knowledge, classroom practice, etc. that are differently conceived by the 
communities being compared. A construct such as “student participation” can be conceived so 
differently (both theoretically and in practice) in different cultural settings that it cannot be 
employed as a “boundary object” (Akkerman & Bakker, 2011), that is, as a point of connection by 
which classroom practice in the different settings might be compared. In the application of a single 
theory across different cultural settings, it is the questionable validity of application of the same 
construct in the compared settings that renders the accounts incommensurable. 

We are employing commensurability in the sense of the construction of common points of 
distinction1, which can be seen as related to the notion of boundary objects. Boundary objects have 
been described as “artifacts that live in different practices, but can be used in different ways” 
(Bakker, 2016, p. 272). Consistent with Akkerman and Bakker (2011), we caution against the 
identification of a boundary object simply on the basis of similarity of name without an empirical 
grounding suggesting functional equivalence. In the case of “participation,” such assumed 
functional equivalence can conceal profound differences in nature. To illustrate the extent of such 
differences, the significance attached to student talk as facilitative of learning in Western theories 
(and practice) is contested by theorists writing from a different cultural and theoretical position 
(e.g., Kim & Markus, 2004), leading to entirely different theorisations of the constitution of student 
participation. Attempts to connect theories in which definitions of student participation were 
predicated on such different epistemologies would lead to accounts that not only lacked 
comparability, but were in fact incommensurable, since the connecting construct “student 
participation” would admit no common points of distinction in the application of the two theories to 
any setting. In this sense, one might describe the two theories as being incommensurable in their 
application, but we suggest that the theories are better thought of as complementary (disjoint, but 
separately coherent), and it is the accounts arising from their application that are incommensurable. 
Accounts, like theories, can be complementary (disjoint but separately coherent), but 
commensurability is an attribute of accounts alone, implying consideration of context and purpose. 

We argue that the commensurability of two theories cannot be meaningfully examined except in so 
far as they are “put to work” in the analysis of data. The interpretive accounts generated by such 
analyses (whether qualitative or quantitative) can then be compared and assessment made of the 
points of correspondence or dislocation in the accounts (e.g., through the identification of common 
points of distinction). Such points of correspondence take the form of operationalised constructs 

                                                 
1 Our usage of “points of distinction” draws on the comments of John Mason during a conversation on 10 February 
2017. 



having similar meaning within both theories and which therefore serve to align the interpretive 
accounts for the purposes of comparison and connection. Such operationalised constructs may be 
thought of as boundary objects (Akkerman & Bakker, 2011). A “boundary object” in this discussion 
is an operationalised construct that has conceptual legitimacy and similar meaning in both theories 
being applied, connected, and compared. Where no such constructs exist, the theories are disjoint 
and each may be applied independently of the other to investigate the same or different settings 
(Clarke et al., 2012). In such a case, the disjoint theories are complementary, although 
incommensurable with respect to any setting to which they might be applied analytically, sharing no 
constructs by which comparison of the resultant accounts might be undertaken.  

How might different theoretical perspectives be juxtaposed and connected in a way that allows the 
commensurability of the analytical accounts to be examined? This paper proposes as one solution 
the construction of research designs that involve the generation of data, which are complex and rich 
in detail, while sufficiently structured to allow systematic investigation of both the research setting 
and the multiple theoretical perspectives employed. The affordances of such research designs are 
illustrated with examples from the Social Unit of Learning Project, which utilises the newly 
established laboratory classroom facility to generate data amenable to multi-theoretical analysis. 

The Social Unit of Learning Project 
The recent development of a laboratory classroom at the University of Melbourne (see 
https://pursuit.unimelb.edu.au/articles/high-tech-classroom-sheds-light-on-how-students-learn) has 
made possible research designs that combine better approximation to natural social settings, with 
the retention of some degree of control over the research setting, task characteristics, and possible 
forms of social interaction. Such designs allow conclusions about connections between interactive 
patterns of social negotiation and knowledge products (learning) to be made with greater 
confidence. The Social Unit of Learning Project used the Science of Learning Research Classroom 
(SLRC) at the University of Melbourne to examine individual, dyadic, small group (four to six 
students) and whole class problem solving in mathematics and the associated/consequent learning. 
The project aims to distinguish the social aspects of learning and, particularly, those for which “the 
social” represents the most fundamental and useful level of explanation, modelling and instructional 
intervention. The project conforms to an experimental rather than a naturalistic paradigm. The 
caveats for the experimental approach are discussed in greater depth elsewhere (Chan & Clarke, in 
press). The SLRC has the capability to capture classroom social interactions with a rich amount of 
detail using advanced video technology. The facility was purposefully designed to allow 
simultaneous and continuous documentation of classroom interactions using multiple cameras and 
microphones. The project collected multiple forms of data for analysis including student written 
products and high definition video and audio recordings of every student and the teacher in the 
classroom. This allows the examination of data from multiple perspectives by multiple researchers 
as well as the reciprocal interrogation of the different theoretical perspectives through answering 
research questions such as the following: 

1. What commonalities and differences in process and product are evident during problem 
solving activities undertaken by learners as members of different social units (individual, 
pairs, small groups and whole class groupings)? 



2. Which existing theories best accommodate the documented similarities and differences in 
process and product and in what ways do the accounts generated by parallel analyses 
predicated on different theories lead to differences in instructional advocacy? 

The following presents work currently being carried out to lay the foundation for considerations of 
complementarity and comparability in a multi-theoretic research project. 

Data generation 

The SLRC is equipped with 10 built-in video cameras and up to 32 audio channels. Intact Year 7 
classes were recruited with their usual teacher in order to exploit existing student-student and 
teacher-student interactive norms. Two classes of Year 7 students (12 to 13 years old; 50 students in 
total) provide the focus for this report. Each of the classes participated in a 60-minute session in the 
laboratory classroom involving three separate problem solving tasks that required them to produce 
written solutions. The students attempted the first task individually (10 minutes), the second task in 
pairs (15 minutes), and the third task in groups of four to six students (20 minutes). 

The problem solving tasks used in the project were drawn from previous research (e.g., Sullivan & 
Clarke, 1991). All three tasks had multiple possible solutions, included symbolic or graphical 
elements, and afforded connection to contexts outside the classroom. These features can make the 
thinking and/or social processes of the problem solving activity more visible, as the students can 
express their thinking through multiple modes (e.g., verbal, graphical, textual, etc.) and approach 
the task using different strategies or prioritise different forms of knowledge or experience. 
Nonetheless, despite sharing some similar features, the content foci of the three tasks were 
deliberately disconnected to avoid carry-over effects between tasks. 

Task 1 provided students with a graph with no labels or descriptions with the following instructions: 
“What might this be a graph of? Label your graph appropriately. What information is contained in 
your graph? Write a paragraph to describe your graph.” Task 2 was specified as follows: “The 
average age of five people living in a house is 25. One of the five people is a Year 7 student. What 
are the ages of the other four people and how are the five people in the house related? Write a 
paragraph explaining your answer.” Task 3 stated that “Fred’s apartment has five rooms. The total 
area is 60 square metres. Draw a plan of Fred’s apartment. Label each room, and show the 
dimensions (length and width) of all rooms.” 

The resulting data collected in the project include: all written material produced by the students; 
instructional material used by the teacher; video footage of all of the students during the session; 
video footage of the teacher tracked throughout the session; transcripts of teacher and student 
speech; and pre- and post-lesson teacher interviews. 

Parallel data analyses 

As an entry point for analysing the project data, the written solutions, transcripts, and video record 
are used to understand the social process that took place to produce the written solution. The 
instructional material and teacher pre- and post-lesson interviews provide insights about the class 
capabilities and social relationships that the researchers would not otherwise be able to access. 

Several parallel analyses are currently being undertaken drawing on the established research 
expertise of classroom research communities in three countries. For example, in Australia, Clarke 



and Chan are conducting an analysis which identifies the negotiative foci of the students’ social 
interactions during collaborative problem solving taking the social negotiation of meaning as a key 
constitutive element of learning (e.g., Clarke, 1997); in Spain, Díez-Palomar is conducting an 
analysis of the dialogic character (Mercer & Howe, 2012) of the spoken interactions of students 
working in collaborative groups; and in Finland, Tuohilampi is carrying out an investigation of the 
affective enablers and disablers of student participation in collaborative group work that uses 
Goldin’s motivating desires (Goldin, Epstein, Schorr, & Warner, 2011) to explore the extent to 
which a group of students established a productive affective micro-culture. A theory is recruited to 
this study for its capacity to address constructs, artefacts or situations distinct from those addressed 
in other theories being employed – that is for its capacity to complement those already selected. 

Connection of these three analyses is made possible by their application to a common set of social 
events occurring in the same research setting. The validity of any connections between the parallel 
analyses is heightened by their grounding in data from the same source and their application to a 
common interactive sequence. For example, consider the following excerpt when Anna and Pandit 
were writing up their response to Task 2 (pair task): 

Anna: Okay. So let's explain it here. 
Pandit: So - so 7 ... //One kid... 
Anna: //Because we have to write it in words. (Note. // indicates overlapping 

speech.) 
Pandit: So one kid has to be four... 17. 
Anna: No, no, no. So ... 
Pandit: (Laughs) 
Anna: I'm going to write it. 
Pandit: One kid has to be 17. 
Anna: So ...   
Pandit: So wait, no, no, no, no. 
Anna: ... because ... 
Pandit: Oh a seven - a Year 7 is 13. 
Anna: I'm ignoring you. 
Pandit: You can't - So - So sad. I’ll draw. 

From the excerpt, we can examine the focus of the students’ negotiation on the task requirements or 
sociomathematical focus (Anna: “Because we have to write it in words.”), the coordination of the 
mathematical components of the task or mathematical focus (Pandit: “One kid has to be 17.”), and 
the social obligations of the participants or social focus (Anna: “I am ignoring you”; Pandit: “You 
can’t.”). 

At the same time, the transcript allows the investigation of the dialogic character (García-Carrión & 
Díez-Palomar, 2015) of the participants, where the excerpt began with Pandit offering information 
to Anna for her writing up of the results and ended with Anna rejecting Pandit’s contribution. The 
conversation shifted from the dialogic interaction initiated by Anna (“So let's explain it here … 
because we have to write it in words.”) to non-dialogic or authoritarian talk (Anna: “I’m ignoring 
you.”; Pandit: “You can’t.”). 



From an affective perspective, Anna and Pandit both appeared to share the same motivating desire 
to “Get the Job Done” (Goldin et al., 2011, p. 553). However, Pandit appeared to also appeal to the 
motivating desire of “Let Me Teach You” (p. 554) by dictating the information to be written down 
by Anna (“So one kid has to be four... 17 … One kid has to be 17. … Oh a seven - a Year 7 is 13.”). 
Her attempt to take on the higher epistemic role did not appear to be well received by Anna. Upon 
being rejected by Anna, Pandit’s desire quickly changed to “Don’t Disrespect Me” (p. 553) by 
being disengaged from the task and switched to off-task drawing. 

Although all three analyses focus on the same interactive episode during collaborative problem 
solving, each analysis highlights different aspects of the social interaction. The multitheoretic 
research design of the project provides the context for the consideration of how commensurability 
may be conceptualised in relation to the parallel analyses. 

Discussion and conclusion 
This paper presented three analyses that are currently being applied to the data that have been 
generated from the laboratory classroom concerning the same interactive episode of collaborative 
problem solving. The approach allows direct comparisons to be made between the applications of 
the three analyses (negotiative foci; dialogic theory; and motivating desires) in terms of what 
constitutes evidence within the realm of each analytical framework, the unit of analysis, and the 
conclusions that can be drawn from the analyses, all of which could form the basis for the 
evaluation of the commensurability of the separate analyses. In the case of the project, 
commensurability can be evaluated in relation to a common construct with respect to which each of 
the analyses might be employed to make comparative distinctions (either descriptive or evaluative).  

For example, for the purpose of distinguishing between different interactive episodes with respect to 
the construct of “student engagement”, the analytical accounts derived from dialogic theory and the 
theory of motivating desires can be seen as commensurable, whereas it is more difficult for an 
analysis with respect to negotiative focus to make useful distinctions with respect to engagement. 
The analyses based on dialogic talk (in terms of the ways in which students put forward their 
arguments) and on motiving desires (in terms of the fulfilment of goals or beliefs through social 
interactions) can each be seen as potentially capable of distinguishing between interactive episodes 
in terms of some conception of the quality of “student engagement” during collaborative problem 
solving, even though the premises on which the two analyses might make such evaluative 
distinctions would be different. On the other hand, the consideration of the negotiative foci of 
particular interactive episodes distinguishes between types of “student engagement” in a descriptive 
but non-evaluative way. In this sense, the account provided by the analysis of negotiative focus 
does not suggest any points of evaluative distinction in terms of student engagement, in the way that 
is possible with the accounts provided by the other two analyses. This renders it incommensurable 
with the other two analyses with respect to the construct "student engagement". 

We want to emphasise that commensurability between theoretically-grounded analytical accounts 
should not be seen as “an ideal state” but as a reference point for examining the connections 
between theories. Stengers (2011) makes the essential point: “Commensurability is created and it is 
never neutral, always relative to an aim” (p. 55). In the case of multi-theoretic research designs, 
researchers are obliged to construct commensurability to facilitate the comparison that they are 



trying to make between theoretically-grounded analytical accounts. The utilisation of multiple 
theories is enhanced through the identification of shared operationalised constructs (such as 
“student engagement”), intrinsic to or derivable from the interpretive accounts in question, the 
existence of which is prerequisite for their commensurability. Complementarity between the 
theories discussed can be accommodated independently of arguments concerning 
commensurability. The emphasis on complementarity removes the obligation that interpretive 
accounts should converge to a single truth. We posit that theories can be complementary in their 
conceptual totality (having different epistemological and ontological bases) but nonetheless invoke 
operationalised versions of specific constructs common to both theories which could be used to 
interrogate the setting, and form the basis for interpretive accounts which can then be juxtaposed 
with respect to their implications for practice. The viability of multi-theoretic designs does not 
demand that all accounts be commensurable. Some accounts may be simultaneously coherent and 
consistent with the data, but disjoint, in that they employ different operationalised constructs. 

In conclusion, this paper argues for the importance of considering the roles of complementarity and 
commensurability in multi-theoretic research designs. We suggest that the consideration of 
complementarity resides between theories while commensurability can only be examined in relation 
to the interpretive accounts arising from the application of the theories. By juxtaposing theories 
applied analytically to data generated from the same setting, the research design of the Social Unit 
of Learning Project accommodates the complementarity of theories and affords an informed 
judgement of the commensurability of the parallel interpretive accounts. The consideration of 
commensurability obliges researchers to articulate the nature of the comparability between 
theoretically-grounded interpretive accounts when juxtaposing theories. We feel that the explication 
of complementarity and commensurability in this paper should contribute to the further theorisation 
of multi-theoretical research approaches.  
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The perspective of indexicality: How tool-based actions and gestures 
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In this paper we apply the theoretical perspective of indexicality to gesture use on a digital place 
value chart on the iPad and show that this perspective allows for explaining how mathematical 
meaning is accumulated linking specific gestures to the actions performed on the digital devise. 
Thus, practical dragging leads to structural dragging via operational dragging, resulting in a shift 
of the representational function of gesture (gesture-of) to the epistemic function of gesture (gesture-
for). 

Keywords: Digital tool, indexicality of gesture, gesture-of and gesture-for, modes of dragging.   

Introduction 
De Freitas and Sinclair (2013) have proposed to adopt a new materialistic view in research on learn-
ing mathematics, specifically for technology use. In this respect, the indexicality of signs is relevant 
(Sinclair and de Freitas, 2014). This paper investigates the added value of the theoretical perspec-
tive of indexicality while adopting it to the analysis of technology-based epistemic processes in the 
design project DeciPlace, to understand more deeply how acting based on a multi-touch surface 
contributes to building mathematical knowledge. 

DeciPlace is a design-based research project. Its main goal is to develop a task sequence for concep-
tualizing decimal fractions as structures in small groups of students by the use of a digital place 
value chart (DPC) on the iPad (Behrens, 2016; Behrens & Bikner-Ahsbahs, 2016). The core ap-
proach is to act tool-based with the DPC. Thereby, conceptualizing is not considered as a pure indi-
vidual cognitive process but as a collective communicative process of constructing mathematical 
structures in an embodied and multimodal way (see Krause, 2016). For this kind of learning, the 
instrumental approach (see Drijvers, Kieran & Mariotti, 2010), which is often used for research on 
technology learning settings, fails to attain insight into the epistemic process in all its aspects. Our 
focus is on tool-based acting and interacting. However, the way this contributes to knowledge con-
struction is not yet understood in-depth. In this paper, we will first present the tool, then outline 
what we mean by indexicality and finally apply this perspective in the analysis of some episodes 
from the DeciPlace data corpus to show how the adoption of this perspective deepens insight into 
tool-based collective learning.  

The digital place value chart (DPC) 

The digital place value chart on the iPad (designed by Ladel & Kortenkamp, 2013; itunes-App: 
“Place Value Chart”) can represent a number on three different levels in parallel: In the bottom row 
of the chart tokens can be displayed by tapping on the screen. In the upper row the name of the 
place value as well as the number of tokens in each column of the place value chart is indicated. 
Additionally the standard notation of the represented number can be displayed above the chart. 
When the user drags a token to the next (after next) column to the right, the token is de-bundled 



automatically into ten (hundred) tokens and so on (see Figure 1). The other way around, by drag-
ging a token to the next (after next) column to the left, either nine (99) tokens move along with the 
dragged token bundling together to one token in the new column or – if there are not enough tokens 
to come along with – the dragged token slides back to its origin. Hence, in contrast to traditional 
place value charts (paper and pencil or material tokens) this digital version de-bundles and bundles 
(if possible) automatically, while the represented value is kept constant, and it gives feedback if the 
intended manipulation is impossible.     

 
Figure 1: De-bundling a token from ones to tenths in the digital place value chart 

Recent results: Three modes of dragging  

In the analysis of activities on the DPC by a pair of grade 6 students who were introduced to the 
extension of the place value system from natural to decimal numbers, we noticed a shift in the stu-
dents’ activities from dragging-actions on the iPad to dragging-gestures (incorporated by the char-
acteristic movement to the right or left), becoming more and more independent from the representa-
tion on the screen during the course of interaction with the DPC (see Behrens & Bikner-Ahsbahs, 
2016).  

Using an epistemic analysis based on ideas developed by Krause (2016) we were able to distinguish 
three modes of dragging:   

 Practical dragging comprises actions of dragging tokens performed directly on the digital place 
value chart, when students use the function of bundling or de-bundling by dragging with a prac-
tical aim without scrutinizing the underlying principle. 

 Operational dragging can be observed when students are able to foresee the result of bundling 
or de-bundling or when they want to test something by dragging a token intentionally in the 
chart, so that they use both transformations to fulfil a particular goal. This mode of dragging can 
be manifested either as a direct act of dragging in the digital place value chart or as a dragging-
gesture referring directly to the chart. 

 Structural dragging becomes apparent, when a particular mathematical structure is being de-
scribed generally and the movement of dragging is represented in a gesture from left to right or 
vice versa performed independently from any concrete representation.  

Aim of this paper 

Using these three modes of dragging, we were able to describe the epistemic role of gestures in pro-
cesses of building the decimal fractions’ concept, which is mainly based on the principle of bun-



dling and debundling (see Behrens & Bikner-Ahsbahs, 2016). However, we were not able to under-
stand in detail how these three modes of dragging contributed to processes of learning based on the 
digital artifact. In this paper, we will address this topic by answering the following research ques-
tion:  

How do actions and gestures “regarded as indices” contribute to conceptualizing the decimal frac-
tions’ concept based on the digital place value chart on the iPad?  

Describing the theoretical approach: Actions and gestures regarded as indices 
In this paper, we focus on the connection between the digital place value chart and a pair of indi-
viduals interacting with each other with regard to the device. To examine this interaction we focus 
on signs which are produced in the setting, such as gestures, inscriptions, tokens on the display, the 
artifact itself and so on. 

The students’ collective epistemic process is manifested in their actions (based on the tool), their 
verbal utterances and other semiotic resources. These actions can be analyzed in a multimodal way 
based on the concept of the semiotic bundle (Arzarello, 2006), which consists particularly of ges-
tures, speech, inscriptions and relations among each other. To emphasize the influence of tool-based 
actions on speech, gesture and inscriptions, we adapt the perspective of the indexicality of actions 
on multi-touch devices described by Sinclair and de Freitas (2014). This perspective draws on 
Peirce’s notion of semiotics, “in which signs (icons, indices and symbols) differ in terms of the na-
ture of the relationships between the signifying sign and the signified” (Sinclair & de Freitas, 2014, 
p. 355). According to Peirce, a sign is defined by a triadic relation between sign, object and inter-
pretant:  

A sign, or representamen, is something which stands to somebody for something in some respect 
or capacity. It addresses somebody, that is, creates in the mind of that person an equivalent sign, 
or perhaps a more developed sign. That sign which it creates I call the interpretant of the first 
sign. The sign stands for something, its object. It stands for that object, not in all respects, but in 
reference to a sort of idea, which I have sometimes called the ground of the representamen. 
(Peirce, 1932, 2.228, emphasis in the original)1.  

As a consequence, a sign comes into being when there is an individual who produces an interpretant 
according to the relation between the sign and the object. This relation distinguishes a sign to be an 
icon, an index or a symbol (Peirce, 1994, p. 239).  

While an icon is characterized by producing the idea of resemblance of sign and object in individu-
als and symbols are defined to be conventionalized signs, an index  

refers to its object not so much because of any similarity or analogy with it, […] as because it is 
in dynamical (including spatial) connection both with the individual object, on the one hand, and 
with the senses or memory of the person for whom it serves as a sign, on the other (Peirce, 1932, 
2.305, cited in Sinclair & de Freitas, 2014, p. 355f.). 

                                                 
1 This refers to Peirce in terms of ‘(section/page)’, where 2.228 stands for ‘volume 2, paragraph 228’.   



By this, indexical signs “show something about things, on account of their being physically con-
nected with them” (Peirce, [1894] 1998, p.5; cited in Sinclair & de Freitas, 2014, p. 355). 

Sinclair and de Freitas (2014) emphasize that also the action that resulted in the emergence of an-
other sign may be included in the concept of indexical signs:  

For instance, the chalk drawing of a parallelogram on a blackboard is often considered to be an 
iconic reference to a Platonic conception of parallelogram, but it is also an indexical sign that re-
fers to the prior movement of the chalk. This latter indexical dimension is usually not empha-
sized in the semiotic study of mathematical meaning making, since we tend to focus on the com-
pleted trace and dislocate it from the labour that produced it. (Sinclair & de Freitas, 2014, p. 356) 

Taking this assumption into account, we can further assume that every process of producing a sign 
is an indexical sign referring to the sign and the sign itself refers indexically back to the effort 
which produced it.  

They conclude that “indexation becomes part of an experience that exceeds itself, and is thus self-
generative” (p. 359). Thus an action on multi-touch screens leaves traces, hence, these traces as well 
as a hand gesture may refer to the original action when this gesture is produced in a similar way to 
the action on the device. Taking up this theoretical perspective we want to examine the above de-
scribed modes of dragging with respect to “how they function as indexical, material actions” (p. 
360) trying to explain how dragging movements contribute to build the concept of decimal frac-
tions.  

Applying the theoretical approach: Indexicality in dragging modes 
We are re-analyzing episodes of our design-study DeciPlace (Behrens & Bikner-Ahsbahs, 2016) in 
order to answer the above posed research question. This way we will investigate the added value of 
this indexicality perspective. 

As described above, practical dragging takes place when tokens are dragged directly in the digital 
place value chart from one column to the other either to the right or to the left without observable 
intention. The digital place value chart reacts to this practical dragging of one token to the next col-
umn on the right by de-bundling this token into ten tokens. Likewise, the DPC can bundle ten to-
kens to one in the next column, when one token is dragged into the next column on the left. Bun-
dling and de-bundling by dragging keeps the value of the decimal number the same. This way, 
dragging can be linked to bundling or de-bundling in a material way being performed as an action 
of dragging from right to left or vice versa on the DPC. According to Sinclair and de Freitas (2014) 
an action of dragging leaves traces – e.g. the new arrangement of tokens within the chart – which 
refer back to the original action of dragging and vice versa.  

In the following scene, two students are asked to find different representations for the number 101 
in the place value chart: 

1 Bella:  I’ll just try (drags a token from hundreds to tens within the digital place 
value chart on the iPad (in the tens’ column ten tokens emerge), see Figure 
2) Woah 

2 Hanna:  Ten and One. 



 
Figure 2: De-bundling as dragging from hundreds to tens  

In this scene of practical dragging the newly emerged bunch of ten tokens in the tens’ column can 
be seen as an iconic sign representing ten tens and therefore the number 100. Additionally the 
bunch of ten tokens refers back to the action of dragging a token from the hundreds’ column to the 
tens’ column on the DPC and at the same time to the DPC’s reaction by letting the token explode 
into ten tokens without changing the represented number (concept of de-bundling). Thus, a new 
sign emerged by indexation linking the action of dragging on the DPC with a visual representation 
of de-bundling. This in turn produced a reaction of astonishment expressed by Bella (“Woah”), 
again referring back to the DPC’s reaction on her dragging. 

When the students get more and more familiar with the DPC in phases of practical dragging, they 
may apply movements of dragging intentionally for a specific purpose, for example while making a 
conjecture or predicting what will happen in the case of dragging directly in the DPC. Operational 
dragging can take place as an action of dragging on the surface of the device and also as a gesture 
directly above the surface referring to the DPC but without touching it (the so-called potential level, 
see Krause, 2016, p. 134–139). Because of the material link between dragging actions and dragging 
gestures both being performed by a similar movement from left to right or vice versa, dragging ges-
tures may refer to previous actions of dragging and what is already linked with them. In this respect, 
operational dragging being conducted as a gesture on the potential level of reference is materially 
linked to the performance of dragging in the DPC and at the same time linked to the traces which 
are potentially and materially produced by that.  

In the following situation the place value “tenth” is just introduced by the interviewer adding the 
new column named “tenth”. The students are asked to find further representations for the number 4. 
At first, the students tap in four tokens into the ones’ column of the DPC.  

3 Bella:  Can I drag over one (moves her right hand at the bottom of the iPad from 
the ones’ column to the tenths’ column; see Figure 3) and see what gets out? 

4 Interviewer: Try. 
5 Bella:  (drags a token from the ones’ to the tenths’ column, where ten tokens 

emerge; see Figure 4) 
6 Hanna:  Ohh. 
7 Bella:  So ten are (1 sec.) one one (pointing to the ones’ column) are ten tenths 

(moves her hand to the right flexing and extending her index finger pointing 
to the tenths’ column).  



 
Figure 3: Dragging-gesture to the right from ones to tenths above the chart 

 
Figure 4: De-bundling ones to tenths by dragging 

In this scene Bella intentionally exploits the DPC’s function of de-bundling to get insights into the 
relation between ones and tenths (lines 3 & 7). Thus, the two dragging-gestures (lines 3 & 7) as well 
as the dragging-action (line 5) represent operational dragging. From the perspective of indexicality, 
both dragging-gestures from left to right (acc. to the view of the students) can be assumed to be 
linked to previous actions of dragging from left to right on the DPC and their traces, because of the 
close resemblance between gesture and action. By this, dragging-gestures become indices of drag-
ging-actions including the experiences and assumptions that have been made by dragging tokens on 
the DPC from left to right, e.g.: “when I drag a token to the right, the number of tokens changes / 
increases” or “when I drag a token to the right, the represented number remains the same”.  

Although both dragging-gestures are executed more or less equally, in relation to speech they func-
tion differently. The first dragging-gesture seems to focus on the movement of dragging to the right 
from ones to tenths specifying “what” and “where” (Krause, 2016, p. 125) to “drag over” (a word-
ing frequently used by the students). In contrast, the second dragging-gesture adds the way by 
which the insight that “one one are ten tenths” (line 7) was gained, referring back again to the expe-
riences and assumptions made by the action of dragging rightwards on the DPC just before (line 5). 
Similar to the notion of model-of and model-for (van den Heuvel-Panhuizen, 2003, p. 14) we have 
identified the development from a gesture-of (representing the action of dragging) to a gesture-for 
(representing the procedure of arriving at this particular conclusion) mediated by operational drag-
ging.  

Structural dragging is done when a dragging-gesture is conducted in the gesture space without visi-
ble references to any concrete representation of a place value chart. This was used particularly when 
describing the concept of bundling within the digital place value chart, which is a main step of con-
ceptualizing the decimals’ structure. Assuming that the characteristic movement from left to right or 
vice versa indicates the material link between dragging-actions and dragging-gestures, we can con-



sider structural dragging to be an indexical sign on the traces left by practical and operational drag-
ging including all experiences, intentions, and conjectures made before.  

During the whole design experiment, the two students established a shared context where they ob-
served the other student dragging and negotiated shared answers to the tasks. In the first situation 
here, Bella performs the dragging (line 1), while Hanna sums up the emerged result (line 2). In the 
second scene Hanna reacts to Bella’s dragging on the chart (line 5) and the chart’s reaction by 
astonishment (line 6) and is therefore likewise involved in conceptualizing de-bundling. Thus, a 
dragging-gesture of one student can also be taken as an index to previous dragging-gestures by the 
other student. This way, both students and the device constitute an ecology of tool-based interaction 
to build the concept of decimal fractions.   

Discussion: Reflections and consequences 
Applying the theoretical perspective of indexicality we have reconstructed how the action and the 
gesture of dragging can accumulate more and more aspects about bundling and de-bundling. This 
process of mutual reference between indexical actions and gestures brought forward the conceptual-
ization of bundling and de-bundling as the basis for the concept of decimal fractions. At the same 
time the dragging-gestures detached more and more from the concrete dragging-actions on the DPC 
and became shared signs by enriching indexical references.  

Similar to the shift from model-of to model-for (van den Heuvel-Panhuizen, 2003, p. 14), a shift 
from gesture-of to gesture-for was observed, that is: A dragging gesture first represents the action of 
dragging (gesture-of), later the dragging-gesture is used as an epistemic means to structure the de-
scription of the base-ten structure (gesture-for). Operational dragging can be considered as an in-
termediate state. It produces a change of view from dragging tokens to bundling and de-bundling as 
the underlying concept. Hence, adding indexicality to gesture analysis may improve our understand-
ing in how epistemic processes progress.   

Whether or not this theoretical perspective keeps being fruitful for tool-based learning in general 
can only be answered by further empirical research. The main issue will be how this perspective can 
be fruitfully linked with local theories and models for learning specific contents, such as expanding 
natural numbers to decimals fractions. For that, we will apply the indexicality perspective to addi-
tional data from design experiments with another 15 student pairs in the DeciPlace project, attempt-
ing to prove our results and gain further insight into the role of tool-based dragging-actions and -
gestures for contributing to conceptualize the decimal fraction’s structure.  
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Towards argumentative grammars of design research 
Arthur Bakker 
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Design research is considered a valuable but demanding methodological framework that continues 
to generate theoretical and methodological reflection. An important topic to address is that of 
argumentative grammar, the logic guiding a method and supporting warranted claims, because 
critics consider it a weak spot of design research. With reference to the history of logic, I challenge 
these critics’ demand of an argumentative grammar that relies solely on structure rather than also 
on content. The purpose of this paper is to think through what argumentative grammars of design 
research could look like. Because the literature is so limited on this topic, I draw on interviews with 
experts in design research to evaluate and discuss my own attempt to formulate an argumentative 
grammar in relation to possible research questions. One conclusion is that design research 
requires multiple argumentative grammars depending on the design and the research focus. 

Keywords: Design-based research, expert interview study, methodology. 

The need for an argumentative grammar of design research 
In a special issue on design research, Kelly (2004) argues that design research (DR) is a valuable 
emerging set of methods in education, but he has methodological concerns. In his view, “[t]he next 
task is to establish the logos of design research so that we can argue, methodologically, for the 
scientific warrants for its claims.” (p. 105) For design research to become a methodology (method + 
logos), he proposes, we need an “argumentative grammar,” which he defines as “the logic that 
guides the use of a method and that supports reasoning about its data” (p. 118).  

A methodology that already has a clear argumentative grammar is that of randomized field trials as 
introduced by Sir Ronald Fisher in the 1920s for agriculture. In such trials, also called randomized 
controlled trials, researchers randomly attribute objects or subjects to an experimental or control 
condition so that they can assume that these two groups are equal on average except for receiving 
the treatment or not. Any differences between these two groups as measured by means of pre- and 
posttests can therefore be attributed to the difference in treatment. One advantage of this 
methodology is that its argumentative grammar is a structure that can be 

described separately from its instantiation in any given study so that the logic of a proposed 
study and its later claims can be criticized. Thus, many reviewers reject studies not on the choice 
of method (procedure), but on their violation of the underlying logos that one expects to see with 
that choice of method. (Kelly, 2004, p. 118, emphasis in the original). 

Kelly and other critical friends such as Shavelson et al. (2003) thus push design researchers to make 
warranted claims and go beyond purely narrative accounts. With Cobb et al. (2014), I think design 
researchers should indeed work towards an argumentative grammar (or grammars) to increase DR’s 
methodological quality. However, drawing on the history of logic, I problematize the preference for 
a separate logical structure for design research (DR) that is irrespective of content. The purpose of 
this paper is then to think through what an argumentative grammar for design research could look 
like instead. Because the literature is so scant on this topic, I decided to interview experts in DR on 
a provisional grammar that I formulated myself.  



Problematizing the need of a separate argumentative structure 
This section first addresses randomized field trials (RFTs) as the best known example of a 
methodology with an argumentative grammar that relies on the structure of argumentation. Next I 
use the history of logic to argue that logic that is based only on the structure and not on its content is 
of limited scientific value. I argue that DR requires argumentative grammars that acknowledge 
content as part of their logic, where content can refer to many things including key concepts used in 
the research, information on local circumstances (context), and the content of what is learned or 
aimed to achieve. 

Randomized field trial 

With respect to RFTs, I highlight three themes to prepare the discussion of an argumentative 
grammar of DR. Theme 1: In an RFT the design of an intervention and the evaluative research are 
separate. From some theoretical perspective or hypothesis, educational design with particular 
characteristics is developed and then evaluated. When the effects of its implementation are positive, 
these are attributed to characteristics of the design, operationalized in particular variables. Where 
does this leave the design researcher who typically intertwines intervention and evaluation? 

Theme 2: Typical research questions reveal the type of knowledge that RFT are often after: What 
are the effects of intervention I on D? Is intervention I1 better than I2? The design researcher 
typically asks how particular learning can be supported or how some problem can be resolved (of 
course RFTs can also focus on mechanisms rather than just effects). 

Theme 3: RFTs have a clear argumentative structure that is separate from the content of what is 
researched. This allows the audience, even those who may not have the expertise to engage with the 
content of the studies (e.g., key concepts, learning content, situation, mechanisms) to judge the 
structure of the procedure and the scientific reasoning. What could an argumentative grammar of 
DR look like if it, as I argue later, cannot depend on structure alone?  

Despite their power, RFTs also have their limitations (MRC, 2000). To know “what works” in 
general is of little value if it is unknown “how and under what conditions things work” or what the 
mechanisms or “active ingredients” are that make an intervention work (Biesta, 2007). It is further 
acknowledged that valid measurement is difficult and that RFTs typically have good internal but not 
necessarily good external validity (cf. Shavelson, 2008).  

Logic: Content matters as much as structure 

I now use examples from logic to clarify that Kelly’s (2004) and others’ focus on the structure of 
argumentation may hold back educational research. The discipline of logic started in Aristotle’s 
Prior Analytics with syllogisms such as “All men are mortal; Socrates is a man; therefore Socrates 
is mortal.” This logic purely depends on the structure of the inference: The non-logical terms such 
as “mortal,” “Socrates,” and “man” can all be replaced by other terms without loss of validity. The 
interpreter does not even need to know the meaning of these terms to judge the validity of the 
reasoning. This reasoning is thus rigorous but irrelevant in scientific reasoning: 

This kind of logic based on syllogisms came into disrepute in the seventeenth century when 
science was born. Scientists like Descartes found that all interesting propositions, all interesting 
inferences are in fact nonsyllogistic. (Lakatos, 1999, p. 39) 



Logic has developed in multiple ways. One nonsyllogistic type of reasoning relevant to science is 
what Brandom calls non-monotonic. This means that new conditions can turn a valid inference into 
an invalid one. Brandom (2000, p. 88) gives an example from physics: 

1. If I strike this dry, well-made match, then it will ignite. (p→q) 
2. If p and the match is inside a very strong electromagnetic field, then it will not ignite." 

(p&r→¬q) 
3. If p and r, but the match is in a Faraday cage, then it will light. (p&r&s→q) 
4. If p and r and s and the room is evacuated of oxygen, then it will not light. (p&r&s&t→¬q) 

Scientific reasoning in educational research is clearly non-monotonic: There are overwhelming 
numbers of factors that can influence learning. Any relevant positive factor can probably be 
counteracted by a negative one. Given the pragmatic nature of education, it is also worth 
mentioning progress on pragmatic reasoning: Walton et al. (2008), for example, identified 96 
argumentation schemes that people use in reasoning. It has also become evident that valid 
argumentation does not depend purely on structure but also on content (and context). So-called 
material inferences even purely depend on content rather than on their structure. Brandom (2000, p. 
85) uses the inference from “Pittsburgh is to the west of Philadelphia” to “Philadelphia is to the east 
of Pittsburgh,” as an example of an inference that is materially valid because it depends only on the 
content of the concepts of east and west. 

These brief observations from logic suggest that scientific progress relies not only on the structure 
of argumentation but also on content. Why then should research methodology in education be 
judged by the separate structure of its argumentation? But what would an alternative look like? 
Design researchers are faced with the challenge to come up with an alternative grammar or, more 
likely, grammars. One attempt is that by Cobb et al. (2014):   

1. Demonstrating that the students would not have developed particular forms of 
mathematical reasoning but for their participation in the design study.  

2. Documenting how each successive form of reasoning emerged as a reorganization of 
prior forms of reasoning. 

3. Identifying the specific aspects of the classroom learning environment that were 
necessary rather than contingent in supporting the emergence of these successive forms 
of reasoning. (p. 490)  

The function of such grammars is that they “link research questions to data, data to analysis, and 
analysis to final claims and assertions” (p. 489). Given that little has been written about this, I 
formulated an argumentative structure myself based on discussions with Karel Stokking and my 
own experience with doing and supervising DR. The most efficient and sensible way to gauge its 
quality seemed to be an interview study with expert design researchers. In this way I could explore 
what they thought about the need for an argumentative grammar of DR, what they thought of my 
attempt, and how it could be improved.   

Method: Interview study with experts 
I interviewed eighteen well-known international design researchers on argumentative grammars of 
DR and related themes for about 60-90 minutes. These experts represent a variety of different 



disciplines and traditions in DR (seven were mathematics educators). Before presenting my own 
grammar proposal, I asked them about issues that might elicit their view on the logic accompanying 
DR and the type of claims it renders. First, I asked about the intertwinement of design and research 
because it can make particular claims difficult: In line with the argumentative structure of RFTs and 
thinking in terms of variables, many researchers prefer to keep design of an intervention and the 
(evaluative) research separate. Second, I asked experts’ views on Kelly’s (2004) claim that DR has 
no clear argumentative grammar. Third, I asked if they had a preference for types of research 
questions (what- vs. how-questions). An example of a what-question I showed to the interviewees 
is: “What are characteristics of a valid and effective teaching and learning strategy to teach students 
about correlation and regression in such a way that they experience coherence between mathematics 
and the natural sciences?” (Dierdorp, 2013). A how-question I presented is: “How can students be 
fostered in their connecting of gene as a molecular-level concept to phenomena at higher levels of 
biological organization?” (reformulation of Van Mil’s, 2013, question). Fourth, I asked experts 
about the argumentative grammar I propose in the next paragraphs. 

The focus on how to support learning in DR implies that in my view at least four things need to be 
captured in an argumentative grammar of a DR project. First, learning goals need to be underpinned 
(or a problem or needs analysis should be done). A design criterion could be relevance and a 
research criterion content validity (Plomp & Nieveen, 2013). Several existing methods (review 
study, expert interviews, Delphi study) can be used to this end. Second, a design (e.g., tool, 
teaching-learning strategy, or program) could be described in relation to theoretical and empirical 
considerations. Criteria here can be “empirically and theoretically underpinned” and 
“innovativeness,” but some may want to emphasize “feasibility or practicability.” Third, only if 
intentions are realized, particular intended phenomena can be studied (e.g., whole-class scaffolding; 
Bakker & Smit, 2017). In RFTs, the criterion would be formulated as “implementation fidelity,” 
necessary to check if any effects can be attributed to the intervention having particular 
characteristics (cf. Sandoval, 2014). Fourth, information about to what extent learning goals are 
achieved, or a problem solved, needs to be given in order to answer the main question. The main 
criterion here is effectiveness. 

The structure of a DR project presented to all interviewees for their feedback was the following: 

How can goal X be achieved for a particular group of learners (in particular conditions or under 
particular constraints)? To answer this main question, a sensible list of research questions could 
be: 

1. What is an appropriate learning goal for….?  
2. What is a design that would help students/teachers to achieve this goal? 
3. How well was this strategy/trajectory implemented? 
4. What were the effects of this intervention? 

In discussing this structure, several topics arose that are related to aspects of argumentative 
grammar such as links between different parts of research (data, claims), in particular in contrast to 
RFTs. I summarize the experts’ responses in three themes. 



Theme 1: Intermingling design and research 
A key feature of DR is that design and research progress hand in hand. In response to this issue, the 
interviewees noted the following points. First, any natural scientist knows that scientific practice, in 
particular the context of discovery, is much messier than presented in textbooks or reports of 
experiments. Of course, there is a place for experiments, but a large part of science—even in 
physics—is trial and error with set-ups, designing new arrangements, philosophizing, thought 
experiments et cetera. In certain disciplines, take astronomy, experiments are even impossible. 
Serendipity (e.g., the discovery of penicillin) also points to the importance of the context of 
discovery. The relative importance of RFT as a methodology rests on the side of justification. 
Several experts said that RFT-type research often produces “false security” or that it struggles with 
similar issues as other types of research, but somehow it has become common practice to ignore 
particular problems or trust researchers on doing it well (e.g., validity of measurement, identifying 
relevant variables). However, many noted there is also a place for RFT as it helps for example 
policymakers to decide between various well-established options to be implemented.  

Second, two interviewees emphasized that DR is about how education could be. Where much 
research is about current educational practice, and some about its past, DR is about its future. 
Design researchers may argue that educational goals should be different from current educational 
practice, and design for these new goals. Such DR is thus after proofs of principle, not proof of 
doing better than current practice which may have very different goals. Comparison with a control 
group that worked towards different learning goals would be unfair. The argumentative grammar of 
this type of “proof of principle” DR is thus clearly different from DR that aims for causal claims 
about effectiveness of particular means of support. This points to the need for multiple grammars. 

Third, several interviewees noted that DR conceptualizes learning environments as ecologies rather 
than systems that can be captured with a few manipulable and unmanipulable variables. Attributing 
an effect to particular variables then becomes challenging. Rather the focus should in the experts’ 
view be on design principles, hypothetical learning trajectories, or mechanisms of learning, in line 
with DR’s intention to produce knowledge about how things work (cf. Sandoval, 2014). 

Theme 2: Research questions 
Most interviewees considered the examples of what- and how-questions presented to them as too 
broad. Some did not have a strong preference for either formulation: The researcher wants to know 
similar things in both cases. However, most experts preferred the how-questions because these 
emphasize the process of achieving particular learning goals or solving a particular problem. In 
terms of Cobb et al. (2003), DR typically aims to provide insight into how particular means can 
support particular learning. This hints at the type of knowledge claims that DR purports to deliver.  

A view, expressed by Abrahamson and diSessa, was that DR is a methodological framework (not a 
method or a strategy) that provides a generative context (about how education could be). Because 
new types of learning are promoted, new phenomena may emerge and thus in turn become objects 
of investigation. This view fits with the image of DR as a context of discovery for researchers. Once 
such phenomena are implicated and objectified, they can be studied as interesting in their own right, 
with little or no reference to the broader design research context (e.g., Abrahamson et al., 2016). In 



line with the generativity of DR, many interviewees emphasized that interesting research questions 
often emerge rather late in the research process. They are hard to formulate in advance.  

Theme 3: Argumentative grammar 
The interviewees were overall positive about the proposed grammar. The elements of 
learning/educational goals, design, implementation, and effects are key to DR, and can be studied 
empirically, perhaps even in separate publications. One interviewee expressed some resistance to 
categorizations and structures in research because each project is unique and requires flexibility and 
creativity. Yet structures could be useful to early career researchers as a starting point.  

The experts’ further comments were matters of detail. With regard to the learning goals, diSessa 
noted that he sometimes preferred learning goals that colleagues thought were impossible to achieve 
with certain age groups (e.g., comprehending velocity and acceleration as vectors in Grade 6). 
McKenney pointed out that design researchers often encounter obstacles that can become the topic 
of research. She tends to do a lot of “front-end” work in the early phases of DR in areas where too 
little is known to arrive at effective designs. 

Judging the quality of implementation was considered a good idea, although several experts noted 
that the implementation process could be interesting to study even without judging its quality. 
diSessa remarked that failure can be interesting from a design perspective. In his experience, many 
colleagues respond with surprise when he reports failure, but as long as important lessons can be 
learned, contributions to the knowledge base can be made. 

The terms “interventions” and “effects” elicited some resistance due to connotations with the RFT 
paradigm of thinking in terms of variables. Several experts preferred to talk in terms of learning 
ecologies instead. However, some found it important to measure what was achieved and thought 
that design researchers had measured too little in the past. Many noted that there is certainly a place 
for RFTs, as well as for quantitative measurement, in DR. Some indicated that RFT ideally gives 
insight into mechanism too, and can be part of DR. 

Ruthven suggested a fifth element, namely an improved re-design, which is indeed in line with 
DR’s emphasis on the hypothetical status of any claims. Citing Cronbach, Plomp emphasized this 
holds for any type of research: “When we give proper weight to local conditions, any generalization 
is a working hypothesis, not a conclusion” (Cronbach, 1975, p. 125). 

Plomp noted that although he did not write about argumentative grammar, his approach with 
Nieveen (Plomp & Nieveen, 2013) has such a function. For each phase of a DR project one 
criterion was central: relevance for the exploratory phase (e.g., problem analysis), consistency (of 
the design), practicability (of using the design), and last effectiveness. 

An issue raised was whether different criteria were needed for DR than for some other research 
approaches. Because many readers and reviewers are used to different commissive spaces, experts 
such as Cobb stressed that DR has to become clear on the criteria on which it wants to be judged. 
For example, we have to acknowledge that design researchers are part of the research, and that their 
qualities as designers and researchers matter. As Confrey noted in the interview: “You build a 
reputation for doing good work (…), but that’s not great for newcomers because they don’t have the 
track record yet.” It certainly goes against the more conventional norm of reliability that research 



should be independent of the researcher. Hence it seems necessary to think through the criteria by 
which design researchers want to be judged. However, McKenney preferred the research part of DR 
to be treated with the same criteria as other qualitative or mixed-methods approaches. Kelly 
suggested DR can learn from other research approaches such as single-subject and repeated-
measures designs. 

Not only the design researcher, but the audience has to make judgments as well. Where RFTs can 
yield results that sometimes seem to require little understanding of the topic at hand, DR asks for an 
audience that can appreciate the relevance of the educational goals chosen, the innovativeness of the 
design, and the learning processes reported. diSessa noted that the typical reasoning in DR is to 
show what types of reasoning can be promoted in a particular way, for instance by using particular 
software. Any well-informed domain-specific educational researcher with knowledge of the 
disciplinary (e.g., mathematical) content will know how rare or relevant such types of reasoning are 
for particular age groups, so will appreciate qualitative examples of even small samples. 

Conclusion 
In this paper I have argued that it is unreasonable to expect that educational research including DR 
should use an argumentative grammar that depends solely on structure rather than also content (key 
concepts, mathematical learning content, context etc.). Examples from logic illustrate the 
importance of types of reasoning that are also based on content. Argumentative grammars for DR 
should thus acknowledge content too. Cobb et al. (2014) offered an argumentative structure that can 
help convince readers about the development of students’ mathematical reasoning and the aspects 
of the learning environment that supported them (see also Sandoval, 2014). My own proposal 
focused on the grammar of a DR project with the aim to contribute to knowledge about how 
particular educational goals could be achieved in general (or problems solved). Based on the 
interviews with experts, my proposal—after some modification—seems to make sense as a starting 
point for design researchers when they write a proposal or want to demarcate phases in their overall 
project (cf. McKenney & Reeves, 2012; Plomp & Nieveen, 2013) with criteria that are central in 
each phase. However, there is a need for more explicit argumentative grammars, for instance for 
“proof of principle”-type DR and for smaller-scale design studies that focus on interesting 
phenomena that are discovered during a larger DR project. 
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We explicate how we used different theories of learning to design dynamic computer environments 

and tasks to promote secondary students’ discernment of covariation—central to students’ study of 

fundamental mathematical ideas such as rate and function. Using Marton’s variation theory, we 

designed task sequences to foster students’ discernment of the critical aspect of covariation. Using 

Piaget’s constructivist theory, we defined the critical aspect, covariation, in terms of students’ 

conceptions of a relationship between attributes whose measures vary. Using Thompson’s theory of 

quantitative reasoning, by quantities we mean attributes of objects that students can conceive of as 

being possible to measure. We provide data to demonstrate how a student’s discernment of 

covariation advanced during her work on a task sequence. We discuss implications for the design of 

dynamic computer environments and tasks focused on the mathematics of change and variation. 
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theories. 

By drawing on more than one theory of learning, researchers can combine tools and lenses to 

investigate complex phenomena (e.g., Cobb, 2007; Sfard, 1998; Simon, 2009). Cobb (2007) 

recommended that researchers “act as bricoleurs by adapting ideas from a range of theoretical 

sources” (p. 29). Sfard (1998) argued that researchers should not assume that theoretical “patches of 

coherence” somehow would combine to form a single, unifying theory of learning. Yet, using 

multiple theories can pose challenges, particularly if researchers view theories as competing, rather 

than complementary (Simon, 2009). To address challenges, it is useful for researchers to take into 

account the grain sizes of different theories (Kieran, Doorman, & Ohtani, 2015; Watson, 2016). 

By distinguishing between the grain sizes of theories, researchers can more effectively interpret and 

use theory for task design purposes (Kieran et al., 2015; Watson, 2016). Broadly, grain sizes include 

grand theories (e.g., Piaget’s constructivist theory), intermediate theories (e.g., Marton’s variation 

theory), and domain specific/local theories (e.g., Thompson’s theory of quantitative reasoning). 

Furthermore, it is useful for researchers to acknowledge interrelationships between theories of 

different grain sizes. Theories of smaller grain size depend upon or address particular aspects of 

theories of larger grain size (Watson, 2016). For example, Thompson’s theory of quantitative 

reasoning depends upon Piaget’s constructivist theory to define quantities in terms of students’ 

conceptions. By drawing on theories of different grain sizes, researchers can adapt and interpret 

grand theories for task design and implementation (e.g., Cobb, 2007; Kieran et al., 2015; 

Thompson, 2002; Watson, 2016). 

When researchers engage in task design, they should make explicit how their theory choice informs 

their task design (Watson, 2016). Using Marton’s variation theory (2015), we designed task 



sequences to engineer opportunities for students to discern critical aspects central to fundamental 

mathematical ideas, such as rate and function. We posit that one such critical aspect is covariation. 

Using Piaget’s constructivist theory (1985), we define covariation in terms of individuals’ 

conceptions. Using Thompson’s theory of quantitative reasoning (1994, 2002), we articulate the 

conception; by covariation we mean a conception of a relationship between attributes whose 

measures vary. Students’ conceptions of covariation impact their understanding and use of function 

(Thompson & Carlson, 2017).  

We build on the work of researchers who have designed dynamic computer environments and tasks 

to foster students’ study of the mathematics of change and variation (e.g., Kaput & Roschelle, 1999; 

Saldanha & Thompson, 1998; Thompson, 2002). In this paper, we explicate how we used theories 

of different grain sizes to design dynamic computer environments and tasks to promote secondary 

students’ discernment of covariation. To avoid remaining only in the abstract, we provide data to 

demonstrate the utility of our approach in fostering students’ discernment of covariation. 

Theoretical and conceptual framework 

We use Piaget’s constructivist theory to orient our research. We foreground students’ conceptions to 

explain how researchers might design dynamic computer environments and tasks to foster students’ 

development of difficult to learn mathematical ideas such as function and rate. We focus on 

students’ mental operations, which refer to actions that individuals can enact in thought or in the 

physical world (Piaget, 1985).  

We use Marton’s variation theory to guide the design of our dynamic computer environments and 

related task sequences. Broadly, Marton (2015) argued that instructional designers should develop 

task sequences that provide students opportunities to discern critical aspects. The task sequence 

should involve patterns of variation, then invariance in the critical aspects (Marton, 2015). We draw 

on Piaget’s constructivist theory to orient our interpretation of the critical aspect that we intend for 

students to discern. By critical aspect, we mean a conception. The critical aspect—covariation—

refers to a conception of a relationship between attributes whose measures vary. 

When using variation theory it is important for instructional designers to determine if the critical 

aspect is comprised of a single aspect or of interrelated aspects (Marton, 2015). For example, 

suppose a designer intends for students to discern the color blue, which students could conceive of 

as being comprised of a single aspect. A task sequence should begin with variation in color and 

invariance in some unrelated feature (e.g., blue ball, green ball, red ball), then invariance in color 

and variation in the unrelated feature (e.g., blue ball, blue block, blue cone), and then variation in 

both. In contrast, if a designer intends for students to discern the depth of blue color, students would 

need to conceive of interrelated aspects (depth, color) that comprise the critical aspect. In this case, 

the task sequence should include variation and invariance in each interrelated aspect (e.g., different 

colors of the same depth, then different depths of the color blue), then move to variation in both 

aspects. A conception of covariation necessitates a conception of a relationship between interrelated 

aspects (attributes whose measures vary). For example, in a situation involving the varying height 

and distance of a car in a turning Ferris wheel, the height and distance are the interrelated aspects, 

and students’ conceptions of a relationship between measures of height and distance (covariation) is 

the critical aspect. 



We found Marton’s variation theory and Piaget’s constructivist theory to complement each other for 

the purposes of our task design. From a constructivist perspective, we do not assume that a 

relationship between attributes whose measures vary (covariation) is something that is “out there” 

for students to perceive. Marton (2015) argued that researchers should not assume that students 

already attend to the critical aspect prior to encountering a task sequence; therefore, task sequences 

should include variation in critical aspects (contrast) prior to variation in noncritical aspects. To 

foster students’ discernment of covariation, we incorporated variation in the types of interrelated 

aspects (height, width, distance) prior to variation in the representation of those aspects.  

We use Thompson’s theory of quantitative reasoning to explain what we mean by the attributes 

whose measures vary—the interrelated aspects comprising the critical aspect of covariation. 

Drawing on Piaget’s constructivist theory, Thompson (1994) defined quantities in terms of 

individuals’ conceptions of attributes of objects. Therefore, quantities are not “things” that exist in 

the physical world. Following Thompson (1994), we claim that an individual conceives of some 

attribute as a quantity, if the individual can conceive of the possibility of measuring that attribute. 

For example, we would claim that a student conceived of “height” as a quantity if the student 

provided evidence of envisioning the possibility of measuring the height of some object.  

We selected Thompson’s theory of quantitative reasoning because we found it to be useful for 

interpreting Piaget’s constructivist theory. Accordingly, the mental operations on which we focus 

are quantitative operations, which involve actions on attributes that students can conceive of as 

measurable, or in other words, actions on quantities (Thompson, 1994). Specifically, we focus on 

students’ conceptions of covariation, which entail the quantitative operations involved in forming 

and interpreting relationships between attributes whose measures vary. For example, a student 

conceiving of covariation could form and interpret relationships between the varying measures of 

height and distance for a Ferris wheel car traveling around one revolution of a Ferris wheel.  

The diagram in Figure 1 illustrates how we used different theories to inform our task design.  

 

Figure 1: Relationships between the different theories we used to inform our task design 

We placed Marton’s variation theory at the top to foreground our intention to design a task sequence 

to foster students’ discernment of a critical aspect comprised of interrelated aspects. We placed 

Piaget’s constructivist theory in the center to communicate how we used this grand theory to define 

the critical aspect, covariation, in terms of individuals’ conceptions. We placed Thompson’s theory 



of quantitative reasoning at the base to show how we used this local theory to explain what we mean 

by covariation—a conception of a relationship between attributes whose measures vary. 

Ferris wheel dynamic computer environments 

Using Geometer’s Sketchpad software, Johnson developed two dynamic computer environments for 

use with the task sequence. The environments consisted of a Ferris wheel animation and linked 

graph, each of which students could control separately or in conjunction. The environments related 

either the height of a Ferris wheel car from the ground or the width of the car from the center to the 

distance traveled around one revolution of the wheel (Figure 2 shows height and distance). See 

Johnson (2015) for more details about the environments. 

 

Figure 2: Ferris wheel dynamic computer environment, distance and height 

The Ferris wheel environments contained three affordances particularly relevant to our use of 

variation theory. First, students could vary each of the interrelated aspects (e.g., height and distance) 

individually by dragging or animating the dynamic segments on the vertical and horizontal axes. 

Second, the environments included different interrelated aspects—height and distance (Figure 2), 

and width and distance (not shown). Third, the environments included variation in the axes used to 

represent the interrelated aspects on the Cartesian plane (e.g., height and distance represented on the 

vertical and horizontal axes [Figure 2], then horizontal and vertical axes, respectively [not shown]). 

Our use of Piaget’s constructivist learning theory and Thompson’s theory of quantitative reasoning 

informed our choices about the types of quantities to include on each of the axes. Specifically, we 

included quantities measurable with linear units, because it is less difficult for students to conceive 

of using linear units to measure quantities (see also Piaget, 1970). Furthermore, Thompson (2002) 

recommended students use their fingers as tools to represent change in individual quantities. In the 

Ferris wheel environments, students could use either their fingers or the dynamic segments on the 

vertical and horizontal axes to represent change in individual quantities. 



The Ferris wheel task sequence 

Purpose and setting 

We view tasks as problems designed for particular audiences and settings (see Sierpinska, 2004) 

Johnson designed the Ferris wheel task sequence to provide students opportunities to discern 

covariation. In a small neighborhood school in an industrial region of a large U.S. city, Johnson 

conducted a series of small group interviews with five ninth grade students (~15 years old), enrolled 

in an introductory algebra course. Interviews occurred approximately once per week. During the 

interviews, students completed the Ferris wheel task sequence (see Table 1). Johnson designed the 

task sequence for a small group interview setting; however, teacher/researchers could adapt the 

tasks for use in different settings (see Johnson, Hornbein, & Azeem, 2016).  

Variation and invariance in the Ferris wheel task sequence 

To foster students’ discernment of critical aspects comprised of interrelated aspects, Marton (2015) 

recommended that instructional designers begin with task sequences containing variation in 

individual interrelated aspects, then variation in the both interrelated aspects, against a background 

of invariance. In the Ferris wheel task sequence, we intended for the situation of a turning Ferris 

wheel to provide a background of invariance. Furthermore, Marton (2015) recommended variation 

in features (or dimensions) of those interrelated aspects. We provided two types of variation in 

features: the type of interrelated aspects (width, height, or distance), and the representation of each 

aspect on the Cartesian plane (horizontal or vertical axis). Table 1 shows the Ferris wheel task 

sequence, including variation in interrelated aspects and representations on the Cartesian plane. 

Task Interrelated aspects Representation on axes on Cartesian Plane 

1 Height, Distance Distance – horizontal, Height – vertical 

2 Width, Distance Distance – horizontal, Width– vertical 

3 Height, Distance Height – horizontal, Distance – vertical 

4 Width, Distance Width – horizontal, Distance – vertical 

Table 1: Ferris wheel task sequence: Variation in interrelated aspects and representation 

Covariation and quantity in the Ferris wheel task sequence 

When the critical aspect is a mental operation, instructional designers should provide students 

opportunities to engage in activities in thought as well as action. Each task in the Ferris wheel task 

sequence contained five parts: (1) Explain what the interrelated aspects measure in the Ferris wheel 

situation; (2) Sketch a graph relating both aspects; (3) Use dynamic segments to represent change in 

individual aspects (e.g., height or distance); (4) Predict a car’s location on the Ferris wheel given 

only dynamic segments representing the changing individual aspects; and (5) Compare the computer 

generated graph to the sketch in (2). Through each of the five part tasks, Johnson provided students 

multiple opportunities to discuss and represent their thinking about how the interrelated aspects 

(height and distance or width and distance) were changing individually and together. For example, 

students sketched a graph relating the interrelated aspects prior to viewing any facets of the dynamic 

graph. Furthermore, Johnson provided students opportunities to discuss and show the possibility of 



measuring interrelated aspects of the Ferris wheel situation (e.g., “height” represents the vertical 

distance from the car to the base of the Ferris wheel, see Figure 2).  

A case of a student’s discernment of covariation 

We use the work of one student—Ana—to demonstrate the promise of this design approach for 

fostering students’ discernment of covariation. Ana’s work demonstrates the range of reasoning of 

all five students who completed the Ferris wheel task sequence. Building from Ana’s work, we 

present a case of a student’s discernment of covariation.  

We share data from Ana’s work for Part 2 of Tasks 1 and 3: Prior to viewing the dynamic graph, 

sketch a graph relating both aspects. We selected data from Part 2 to illustrate how Ana’s sketches 

changed prior to viewing aspects of the dynamic graph. We attribute the changes in her sketches to 

changes in her conceptions of a relationship between varying measures of height and distance. 

Figure 3 shows Ana’s written work for Part 2 of Tasks 1 and 3. For Part 2 of Task 1 (left), Ana drew 

the curved graph, labeling it “height,” and then drew the line graph, labeling it “distance” (Figure 3, 

left). When asked what her labels meant, Ana stated: “This (points to the curved graph) would be 

the graph shape if we were dealing with the height, and this (points to the line graph) would be the 

shape if we were dealing with the distance.” For Part 2 of Task 3, using one continual motion, Ana 

sketched a single graph (Figure 3, right). When asked to explain her thinking, she stated that the 

“distance keeps on going,” but the height will reach “a certain amount,” and then “it goes back 

down.” To illustrate, she drew an arrow along the left of the distance axis. Next, she drew a small, 

darkened segment on the graph, and two arrows extending along the graph. 

 

Figure 3: Ana’s graphs in Part 2 of Task 1 (left) and Part 2 of Task 3 (right) 

For Part 2 of Task 1, we interpret that Ana represented individual variation occurring in the 

measures of height and distance. Not only did she sketch two graphs, she labeled the actual 

sketches, rather than the axes. We use Ana’s work for Part 2 of Task 1 to demonstrate that Ana did 

not enter the Ferris wheel task sequence already conceiving of a relationship between the varying 

measures of height and distance, or in other words, conceiving of covariation. Moving forward to 

Part 2 of Task 3, Ana used a single graph to represent a relationship between the varying measures 

of height and distance. Not only did she sketch a single graph, she annotated the graph to show how 

the single graph represented variation in the measures of both height and distance. Therefore, we 

claim that Ana demonstrated discernment of covariation during her work for Part 2 of Task 3 



(conceived of a relationship between attributes whose measures vary). Furthermore, Ana’s 

discernment of covariation was not limited to the aspects of height and distance. She also 

demonstrated discernment of covariation when working with width and distance in Tasks 2 and 4. 

Discussion/Implications 
When critical aspects involve interrelated aspects, Marton (2015) recommended that instructional 

designers develop task sequences that include different backgrounds. In our task sequence, we used 

only a Ferris wheel situation, and we recommend that researchers designing task sequences to foster 

students’ discernment of covariation also include different situations. However, we provide our 

recommendation with a caveat—the different situations should include interrelated aspects 

measurable with linear units. For example, if we were to design a task sequence for a filling bottle 

situation, we might ask students to relate the height of the liquid in the bottle to the diameter of the 

liquid in the bottle. Our caveat stems from our use of Piaget’s constructivist theoretical perspective. 

It is less difficult for students to conceive of the possibility of using linear units to measure 

attributes (e.g., Piaget, 1970). Therefore, we recommend that task sequences designed for students 

to discern covariation (a critical aspect involving interrelated aspects) should include interrelated 

aspects measurable with linear units. Researchers have shown that even successful university 

students have difficulty using graphs to represent relationships between height and volume in a 

filling bottle situation (e.g., Carlson, Jacobs, Coe, Larsen, & Hsu, 2002). If students have difficulty 

conceiving of the possibility of using a three-dimensional unit to measure volume, it may impact 

their discernment of covariation for situations involving such attributes. 

By using theories of different grain sizes, we were able to employ multiple, compatible lenses to 

engage in task design that looked both across and within the sequence of tasks. By guiding our 

variance and invariance of interrelated aspects, Marton’s variation theory informed design across 

the task sequence. By fostering our choices about the kinds of aspects to vary, Thompson’s theory of 

quantitative reasoning informed our design within tasks in the sequence. The ability to view a task 

sequence from different perspectives—in our research, looking both across and within—is a 

productive result emerging from the use of multiple theories to do compatible explanatory work to 

augment the design of task sequences intended to foster students’ discernment of critical aspects. 
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We show how a combination of two theories, Abstraction in Context and Proceptual Thinking, 
served as basis for design decisions in the framework of a research study about learning the 
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Introduction 
Designing learning units involves decisions about the transition from syllabus to curriculum 
(Dreyfus, Hershkowitz, & Bruckheimer, 1987); Mathematics Education offers home-grown theories 
supporting this transition; curriculum designers use these theories when design is a main goal.  

Here, we present a case study of using theories for the design of a didactical tool – a learning unit 
intended for students’ construction of a specific mathematical notion. This study is part of a larger 
research project (Kouropatov, 2016) offering a didactic approach supporting high school students in 
acquiring a conceptual understanding of the integral. For this purpose, we asked ourselves: a) What 
does "a conceptual understanding of the integral" mean? and b) How can we support students in 
acquiring such understanding? Answering question (b) required design. The design was preceded 
by a thorough didactical-mathematical analysis of approaching integration via the idea of 
accumulation (Thompson & Silverman, 2008). A tight interrelationship developed between the 
design process and the relevant theories, Abstraction in Context and Proceptual Thinking. In this 
paper, we exhibit this relationship via the need for and effect of these theories in the design process 
and hence the contribution of these theories to a basis for the transition from syllabus to curriculum.   

Theoretical frameworks and their influence on the design 
We follow Tabach, Hershkowitz, Arcavi, and Dreyfus (2008) in distinguishing 

 a pre-design stage involving considerations before starting the actual development and 
research work with students; 

 an initial design-research-redesign stage of sporadic and isolated activities, and the 
observation, data collection, and analysis of their implementation with a few students; 

 a final stage that comprises further redesign, for the creation of a coherent, complete task-
based curriculum, and its implementation )limited, in our case, to four pairs of students(. 

These stages indicate what to do but not how to do it. Design decisions require theories. For our 
study, we have adopted Abstraction in Context (AiC) because its roots in constructivism and in 
activity theory make it suitable to design for and analyse the construction of abstract knowledge 
during the learning process (Hershkowitz, Schwarz, & Dreyfus, 2001). We have also adopted the 
theory of Proceptual Thinking (PT) because of the proceptual nature of the mathematical notions in 
focus, in particular accumulation (Gray & Tall, 1994). The theories are compatible but different: PT 
deals with how students see mathematics; AiC deals with how students acquire knowledge.  



Theoretical considerations at the pre-design stage 

AiC as basis for design 

AiC takes abstraction to be a learner’s activity of vertical (in the sense of Freudenthal) 
reorganization of previous mathematical constructs in order to arrive at a new (to the learner) 
construct. Abstraction leads from an initial, vague first form, which may lack consistency, to an 
elaborated form (Davydov, 1990). The activity is interpreted in terms of epistemic actions 
performed by a learner, or a group of learners, for a specific purpose, in a particular context. The 
context includes the social setting as well as the learners’ personal background, in particular the 
previous mathematical constructs resulting from previous processes of abstraction. ‘Reorganization’ 
includes establishing new connections between previous constructs, making mathematical 
generalizations, and discovering new strategies for solving problems. ‘Vertical’ implies building a 
new level of abstraction on top of a previous level. For the researcher, the question arises how to 
support and unveil the processes by which the students’ new constructs may emerge as a vertical 
reorganization of previous constructs in the current context. AiC argues that for this purpose, it is 
crucial to carry out an a priori analysis. This theoretical content analysis aims at identifying the 
elements of knowledge (mathematical facts, notions, claims, strategies, representations, etc.) that 
together constitute ‘learning a concept’ and have a didactical perspective, namely can be 
constructed by learners in a suitable context using appropriate didactical tools. The results of the a 
priori analysis are descriptions of the elements of knowledge that belong to the world of 
mathematics but may be linked to the current context, and operational definitions that constitute 
descriptions of observable student behaviour: utterances or actions that provide criteria for assessing 
whether a student’s constructing action corresponding to the said knowledge element has occurred.  

AiC has originally been proposed in the framework of a curriculum development project, in which 
abstraction was a central concern, and Hershkowitz et al. (2001) have already then expressed the 
hope that it will be useful not only for analysing students’ processes of abstraction but also for 
designing sequences of activities supporting students in such processes. At the pre-design stage, 
AiC requires a sequence of activities, each intended toward the construction of an appropriate 
element of knowledge, while the sequence is hierarchically structured as imposed by verticality. In 
other words, AiC helps us find a structure of the subject knowledge that is appropriate for 
implementation in the design. For example, based on the a priori analysis of the mathematical 
content, we decided that the unit should be designed as a four level vertical structure of the 
following conceptual components: Approximation in the context of given geometrical objects; 
Accumulation Value (the definite integral) in the context of given analytical objects or situations; 
Accumulation Function (the definite integral with varying upper bound); and Integration-
Differentiation interplay, mainly the Fundamental Theorem of Calculus (FTC). Further analysis of 
each level provided the vertical structure of the elements of knowledge intended to be constructed 
by the students. We present two of the four levels in some detail.  

For didactical reasons and based on verticality, Approximation was interpreted as Geometrical 
Shapes Approximation (GSA) with the following three knowledge elements:  

APG "General approximation": The size of a given object can be approximated by replacing the 
given object with known objects; 



APR "Refined approximation": The approximation can be made more precise by decreasing the 
size of the replacing objects and increasing their number;  

APL "Approximation limit": The size of a given object can be determined as precisely as one 
wants by continued refinement. 

The corresponding operational definitions are that we will say students have constructed  

APG if they explicitly (verbally and/or graphically) replace a given object with known objects; 

APR if they explicitly (verbally and/or graphically) refine the approximation by decreasing the 
size of the replacing objects and increasing their number; 

APL if they explicitly (verbally and/or graphically) identify a value as the exact size of a given 
object by continued refinement. 

Knowledge elements for the other three conceptual components were similarly described and 
defined (Kouropatov, 2016; Kouropatov & Dreyfus, 2014). These descriptions and definitions 
constitute the framework for the design of activities in the learning unit. In other words, by means 
of the description of the elements of knowledge, AiC informs the decisions of what should be 
designed and in what hierarchy it should be organized. AiC does not inform how to design for each 
notion by means of micro-tasks. For that purpose we used PT.  

PT as basis for content design  

Gray and Tall (1994) defined the notion of procept as an aggregate of three things: process, concept 

(or object), and symbol. For example, the symbol 
0

( )
x

f t dt  is meant to evoke both the process of 

accumulation (integration) and the concept of accumulation function (integral), with the cognitive 
combination of all three, process, concept, and symbol, being called a procept. This stance has 
crucial didactical implications: students might first meet a process; later, a symbol is introduced for 
that process and/or its product, and this symbol takes on the dual meaning of the process and the 
object created by the process. Proceptual Thinking is then defined as the ability to switch one's 
focus between these dual roles of the symbols as is useful and efficient in the current context, for 
example solving a problem. Someone who has the ability to think in this way may be described as 
versatile (Tall & Thomas, 1991). Versatility includes a global picture of a concept as well as the 
ability to break it down into a process, seeing each stage as part of the whole concept. According to 
Hong and Thomas (1998) versatility is critical for comprehension of the integral concept. 

We see the integral as a multilevel, hierarchic procept, which is composed of (in the sense of AiC, 
and hence intended to be constructed by students from) other procepts including function, graph, 
approximation, sum, and accumulation; hence, we continue the pre-design stage by 

 using the result of the above a priori analysis in order to identify and describe the main sub-
procepts of the integral procept; 

 identifying the hierarchic structure of the integral as an aggregate of procepts.  

The main didactical flow of ideas was derived directly from the procept hierarchy of the 
mathematical notion of the concept of the integral. In particular, the didactical goals are: to create 
an opportunity for the learners to carry out a process that is meaningful for them (e.g., to 



approximate an unknown area of some shape by accumulating the known areas of small parts of this 
shape); to give the learner the possibility to internalize this process as a concept (e.g., by 
quantifying the process, by discussing the characteristics of this process); to introduce the learner to 
the common mathematical symbol as encapsulation of the completed process and the internalized 
object; these considerations became the leading considerations of the initial stage of design. In other 
words, PT allows us to answer the question of how the learning activities should be designed.   

We present two examples from the learning unit that show how we took into account the proceptual 
nature of the intended elements. The first one, is the initial activity for introducing Approximation 
via GSA. And the second one is from the middle of the unit, and is intended to lead students to 
constructing the concept of Accumulation Function. As mentioned above, these two concepts, 
together with the Accumulation Value and the FTC, are the four components of the vertical structure 
of the suggested design of the unit.  

Regarding GSA, students carried out the process of approximating the length of a given (sketched) 
curve (interval, semicircle, non-standard curves) using a ruler, compass, protractor, square paper 
(with two different mesh sizes) and calculator. Then, students discussed the "quality" of the 
resulting approximation and were asked to refine it (for example by using more sophisticated 
measurements) with the intention to lead to internalization of this process as a concept. Finally, 
students were asked to find the length as precisely as possible (the existence of such a value was 
taken as intuitively obvious). This “process, concept, existence” triad constitutes the GSA procept 
according to the above analysis. 

Regarding the notion of accumulation function, the activities offered students opportunities to carry 
out the process of co-variational change of the accumulation value according to the value of the 
right end-point of a certain sub-interval (using approximation or algebraic considerations); students 
dealt with a table and/or graph and/or verbal representation of this change with the intention to lead 

to internalization of this process as a concept; finally, the symbol ( ) ( )
x

a

A x f t dt   was introduced. 

This “process, concept, symbol” triad constitutes the accumulation function procept. 

Theoretical considerations at the initial stage of design  

The influence of AiC and PT on the design of the unit could, in principle, best be demonstrated by 
the design of activities about the procept of accumulation, the central notion of the learning unit. 
Because of space limitations, we concentrate instead on a small part of this: When describing a 
process of accumulation, one should know "how to start accumulating" - in other words, how to 
calculate an initial quantity. Then, one should know how to calculate further pieces of the 
accumulating quantity. The general answer to this problem is approximation. Here, the proceptual 
nature of approximation is particularly important: We see approximation as a process, and the result 
of this process, of calculating (as accurately as required) some unknown value (length, area or 
volume) by using known values. 

While approximation refers to many kinds of quantity, verticality suggests a sequence of activities 
that starts with concrete geometrical shapes (lines, 2-dimensional and 3-dimensional shapes) 
followed by geometrical shapes that are given analytically (using elementary functions) in a 
coordinate plane (space); only then, more general quantities, given analytically, are considered. 



Such a sequence allows students to construct their knowledge, starting in a concrete context of 
geometrical drawings and bodies that is intuitively clear to them, and where all quantities (i.e. 
length, area, volume) have positive values. This context requires relatively little previous 
knowledge and allows for rather linear and smooth vertical reorganization. Next, follows a more 
formal context of analytically given objects or situations (all quantities still having positive values). 
And finally, students are asked to deal with general quantities. Practically, approximation may be 
made by measurement, by geometrical consideration (with known formulas), or by algebraic 
considerations (analysing some algebraic term). In light of these considerations we have designed a 
sequence of activities, which we now, following an a priori analysis, interpret as focusing on (i) 
GSA with its three elements of knowledge ‘General Approximation’ (replacing the given object by 
known objects), ‘Refined Approximation’, and ‘Approximation Limit’; and (ii) parallel elements of 
knowledge for ‘Analytical Shape Approximation’. 

Similar considerations apply to the concept of accumulation function. We see the accumulation 
function as a process of change (e.g. the change of accumulating area beneath the graph of the 
function while "the upper bound is moving") and the product corresponding to this process (e.g., a 
graph of this process demonstrating the ability to characterize it). This approach to the accumulation 
function immediately leads to the following conclusions: for constructing the accumulation function 
element of knowledge, students should know (even if only intuitively) that if we change the upper 
end-point of some sub-interval of the function domain, the appropriate value of the given function 
and the accumulation value of the given function will also change; and they should know how to 
characterize the process of the changing of the accumulation value. In light of these considerations, 
we have designed a sequence of activities, focusing on the Accumulation Function element of 
knowledge via its component elements (not specified in this paper). 

On the basis of the above we claim that the combination of AiC and PT allows us to make decisions 
regarding the design of activities for the learning unit.   

Theoretical considerations at the final stage of design  

As a result of the two previous stages (pre-design and initial design) we developed a sequence of 
activities that were organized according to the above four component vertical structure. Each of its 
four components constitutes a hierarchical procept that is vertically composed of sub-procepts. We 
interpret this whole structure as the procept of Integral. 

At the final stage of the design we analysed the developed activities with the purpose of avoiding 
inconsistent usage of terms, symbols, and visual representations. Another important issue we took 
into account at this stage was adaptation of the unit to students' previous knowledge. Thus, for 
example, at the previous stages we had used the number e for some of tasks. We recognized that 
this notion is not familiar to the students, so at the final stage of the design certain activities have 
been changed (e.g., by using π instead of e). 

The implementation of the unit was organized in the form of learning sessions of pairs of students 
with in the presence of a researcher. The time interval between the sessions was typically between 
one and two weeks. We considered that for every part of the unit, students need some introductory 
and some summarizing activities. These activities aimed to provide a smooth flow of the learning 



process and were developed (in the form of a short discussion that was led by researcher) at the 
final stage of design. 

As a result of the final stage, we created a task-based curriculum unit introducing the concept of 
integral via the idea of accumulation with a fair measure of internal coherence. This unit has been 
implemented with four pairs of students. 

AiC as a tool for design evaluation  

An essential component of AiC is the nested epistemic actions model for describing and analysing, 
at the micro-level, processes of abstraction by which learners construct new knowledge. The model 
uses the three epistemic actions of Recognizing (previous constructs as relevant in the present 
situation, R), Building-with (the recognized constructs to achieve a local goal, B), and Constructing 
(assemble and integrate previous constructs so that a new construct emerges by vertical 
mathematization, C). In processes of abstraction, R-actions are nested in B-actions, and R and B-
actions are nested in C-actions.  

Following Dreyfus, Hershkowitz and Schwarz (2015) the core of the method is the analysis, 
utterance by utterance, of transcripts to identify R, B and C epistemic actions as building blocks of 
abstraction. The RBC methodology helps making processes of knowledge constructing observable. 
This claim is based on empirical results regarding many content areas including integration 
(Kouropatov & Dreyfus, 2014). 

RBC analysis of the learning sessions has been successfully used for evaluating the design of the 
activities by identifying problems with the implementation; this evaluation has uncovered instances 
where the design (or micro-design) of activities or their sequencing needed to be improved. We 
present two examples. 

The first example concerns the concept of approximation limit (APL) referred to above. The RBC-
analysis of the performance of one pair of students (A and B) supplied empirical evidence about 
students' constructing processes of APG and of APR but not of APL, which is a crucial component of 
approximation. Therefore, the design of the activity for the following groups of students has been 
refined in a way that supports the constructing process of APL. The elaboration consisted of adding 
questions leading the students to intuitively distinguish between overestimates (decreasing to the 
exact value) and underestimates (increasing to the exact value) of the approximated value. The 
revision was successful in the sense that all following student pairs succeeded in constructing APL. 

The second example relates to the issue of lacking previous constructs assumed by the design. For 
example, when constructing the procept of approximation via GSA, students M and N demonstrated 
a lack of previous constructs such as identifying coordinates of points on a graph, or calculating 
lengths of segments. For example, in the activity of finding the length of a quarter-circle, the 
students quickly recognized the relevance of approximation. They replaced the curve with a set of 
chords but then got stuck because they didn't know how to calculate the chord-lengths. The idea of 
choosing the segment endpoints according to some division of the given interval was new them and 
outside their current grasp. The teacher's intervention was needed and was locally helpful. So, we 
can argue that there was a need for an additional element of knowledge that our design did not take 
into account: division of the given interval creating an appropriate division of the graph.  



Conclusions and further questions 
We presented a case study of using theories for design decisions; this case dealt with learning the 
integral concept in high school via constructing knowledge about accumulation. The theories were 
most significant but not the only resource for decision making. The decisions were inspired by 
theory (e.g., in the case of verticality of the structure of the elements of the intended knowledge), by 
practical experience (e.g., in the case of assumption regarding intuitive accessibility of some 
elements of knowledge for students), or by both (e.g., in the case of building the system of sub-
procepts of the procept of the integral or in the case of designing the sequence of learning 
activities). However, we argue that in the process of designing the learning unit on integrals for high 
school students, the theories have been interwoven and have played crucial roles in the process of 
development and implementation of the unit at all stages: the pre-design, the initial, and the final 
stages, as well as for fine-tuning the design after its evaluation.  

The theories that we adopted for the purpose of the design are Abstraction in Context (AiC) and 
Proceptual Thinking (PT). These theories were adopted on two levels: AiC on a cognitive-
epistemological level with the purpose of coming to design decisions regarding the nature and the 
structure of knowledge be learned (at a macro-level, which seems to be efficient in a more general 
context); PT on a didactic-implementation level with the purpose of coming to design decisions 
regarding how to help learners to achieve this knowledge (at a micro-level, which seems to be 
efficient in the context of mathematics procepts). The role of the theories differed from stage to 
stage: AiC was more essential at the pre-design stage while PT was more fruitful at the initial stage. 
However, the synergy of the theories was more influential than their diversity: Our design aims at 
supporting students in constructing proceptual knowledge of the Integral that we interpret as a 
hierarchical procept that is vertically composed of sub-procepts. Our research allows us to follow 
how students acquire a proceptual view while they construct their knowledge. We speculate that 
students' behaviour that is coherent with the suggested operational definitions (in terms of AiC) can 
be interpreted as evidence for the acquisition of a proceptual view (in terms of PT).  

Following the research, we find ourselves in a better position to pose two relevant yet unsolved 
problems, a practical and a theoretical one. The practical problem is how to optimally profit from 
theory when designing instruction. The findings of the research show that the AiC and PT 
frameworks can be used for development and evaluation of an important instructional instrument – 
a learning unit. What about other instructional instruments, such as homework assignments, tests, 
and so on? Could we also use these theories for the design of such instruments? Additional research 
and experiments are needed in order to suggest the adaptation of the discussed theories for these 
types of instrument. The theoretical problem concerns the consistency of theories: Could we have 
used other theoretical frameworks instead or in addition to AiC and PT, what consistency issues 
would have arisen, and how different a design would have resulted?  
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Sociocultural theory (Vygotsky, 1978) has left the process of internalization relatively unexplored. 
In the Learning Through Activity (LTA) research program, we use basic constructs of 
constructivism to address this issue. The goal of our empirical and theoretical work has been to 
elaborate an integrated theory of mathematics learning and teaching. Towards this end and 
grounded in our empirical research, we have engaged in explicating reflective abstraction for 
mathematical concepts and developing a design approach for fostering reflective abstraction. The 
LTA approach is complimentary to a problem-solving approach; learning engendered by the LTA 
approach is not dependent on the uncertainty inherent in solving authentic problems. 

Keywords: Constructivism, learning theories, task design, mathematical concepts, learning 
trajectories. 

In Simon (2009), I argued that different theories of learning can be thought of as different tools for 
research affording different kinds of work. It is the job of mathematics education 
researchers/theorists to not only develop and articulate theories, but to specify the work for which 
they are designed. Such specification allows fruitful discussion about the relationship of different 
theories and the possibilities of particular multi-theoretical approaches. In this paper, I describe a 
developing theory and the work for which it is intended. 

Background 
In the Learning Through Activity (LTA) research program, we use multiple theories. In particular, 
we use sociocultural theories to think about cultural factors and the role of artifacts, social theories 
to think about the norms negotiated in situations of learning and teaching, and cognitive 
(constructivist) theories to think about the development of particular concepts. The latter has been 
our primary theoretical tool and the theoretical area to which we have been contributing.  

Sociocultural theory views all knowledge as socially constructed. Knowledge development 
proceeds from a social level to an individual level through a process termed “internalization” 
(Vygotsky, 1978). Bereiter (1985) wrote, “How does internalization take place? It is evident from 
Luria’s first-hand account (1979) of Vygotsky and his group that they recognized this as a problem 
yet to be solved (p. 206). My colleagues and I see constructivism as a theory that has the potential 
to explicate internalization. 

Constructivism, particularly the work of Piaget (1985), is a major theory of learning and has been 
the basis of important research on the learning of mathematics (Steffe & Kieren, 1994). However, 
Piaget’s work has not had a comparable effect on mathematics pedagogy.1 DiSessa and Cobb 
(2004) observed, “Piaget’s theory is powerful and continues to be an important source of insight. 
However, it was not developed with the intention of informing design and is inadequate, by itself, to 
                                                 
1 I use “pedagogy” to refer to all contributions to instruction, instructional design, instructional planning, and teaching. 



do so deeply and effectively” (p. 81). We believe that it is Piaget’s later work on reflective 
abstraction, rather than his earlier work on equilibration, that has the potential to be the basis for 
pedagogical theory development.  

The goal of our empirical and theoretical work is to elaborate an integrated theory of mathematics 
learning and teaching. This involves articulating a theory of conceptual learning that is useful for 
orienting mathematics pedagogy and building on that theory to explicate mathematics instructional 
design and teaching. Towards this end and grounded in our empirical research, we have engaged in 
explicating reflective abstraction for mathematical concepts and developing a design approach for 
fostering reflective abstraction. This empirical and theoretical work has focused on the learning and 
teaching of mathematical concepts (as opposed to problem solving or other areas of mathematics 
learning), and on the generation of hypothetical learning trajectories (Simon, 1995), including the 
design of task sequences. 

The term “mathematical concept” is an underspecified construct. Because it is central to our 
empirical and theoretical work, I have characterized the construct for research and development 
purposes (Simon, 2017). I refer to one aspect of that characterization here: 

A mathematical concept is a researcher’s articulation of intended or inferred student knowledge 
of the logical necessity involved in a particular mathematical relationship. 

Elaborating reflective abstraction 
Outline of the theory2 

One challenge that we accepted in explaining the development of new mathematical concepts was 
that the explanation must account for building more advanced concepts from prior concepts. Thus, 
we endeavored to describe a recursive structure in which the result of conceptual development at 
one level serves as a building block of a concept at the next level. Piaget (1980, p. 90) described 
reflective abstraction as a “coordination of actions.” We built on this idea in the following way. 

1. We specify a concept as a complex of a goal and an action (represented as Gn-An) 
constructed through reflective abstraction. We represent the prior concepts of the learner as 
G0-A0 and the concept whose development we are attempting to explain as G1-A1.   

2. The learning process begins with the learner setting a new goal (generally in response to a 
mathematical task) and calling on a sequence of available actions to achieve that goal. This 
sequence of available actions is what we call an activity, represented as (A0a → A0b → A0c). 
An activity is the precursor to a new concept.  

3. The actions that are part of the activity do not exist in isolation. Each is part of an existing 
concept (e.g., G0a-A0a), and each is called upon, because the goal of that existing concept 
(e.g., G0a) is a subgoal of the activity used to solve the task. Thus, the set of actions that 
make up the activity are part of a set of concepts that are activated to achieve the goal 
(solution of the task). Thus, whereas Piaget defined reflective abstraction as a coordination 

                                                 
2 This description has been abbreviated. In particular, there is no discussion of the stages of concept development. For a 
full treatment of reflective abstraction and discussion of the stages, see Simon, Placa and Avitzur (2016). 



of actions, we assert that this coordination takes place in the context of a coordination of 
concepts. This point is important, because it allows us to explain how concepts build on 
concepts recursively. 

4. The coordination of actions results in a new, higher-level action linked to a goal (G1-A1). 
Reflective abstraction results in a learned anticipation. That is, the learner can now solve the 
task without going through the sequence of actions that was originally necessary, but rather 
by enacting the higher-level action. (This will be demonstrated in the example.)  

Example from data 

The following example is taken from Simon, Placa and Avitzur (2016). The data derived from a 
single-subject teaching experiment focusing on learning fraction concepts. Kylie was 10 years old at 
the time of the study. “R” refers to the researcher, Simon, and “K” to Kylie. 

In this example, Kylie is developing an abstraction of recursive partitioning (i.e., a unit fraction 
of a unit fraction). Hackenberg and Tillema (2009) defined recursive partitioning as “partitioning 
a partition in service of a non-partitioning goal, such as determining the size of 1/3 of 1/5 of one 
yard in relation to the whole yard” (p. 2).  

• Task 4.1: [Using JavaBars, R draws a bar on the screen.] This is one third of a unit. Make a 
bar that is one sixth of a unit. Kylie made it clear that she did not know how to just “cut up” the 
bar on the screen. She made the whole by iterating the third three times and then cut the first 
third in half. She indicated immediately that one of the small pieces is one sixth. 

• Task 4.2: This is one fifth of a unit. Make one tenth of a unit. Kylie used the same process. 
She iterated the one fifth 5 times to make the whole and then partitioned the first fifth into two 
subparts. She reported, “Here, you have one tenth of a unit.” 

• Task 4.3: This is one third of a unit. Make one ninth of a unit. This time Kylie immediately 
divided the one-third bar into three pieces (without iterating to make the whole). 

K: One of those is one ninth. 

R: How do you know? 

K: Because, um. How many times does three go into nine? . . . Three times. And it’s one third! 
So. Three times three is nine, and one of—if you cut it up into thirds again. That is, um. . . . And 
you take one, it would be . . . one third. . . . But that’s really one ninth of a unit. 

Kylie seemed to indicate that she thought about what number of parts would iterate three times 
to the whole. She therefore knew that one third of the one third would iterate nine times in the 
whole. 

• Task 4.4: This is one fifth of a unit. Make one twentieth of a unit. She immediately cut the 
fifth into four pieces. She went on to complete two more tasks in this way. (pp. 77-78) 

In this example, Kylie developed an abstraction that taking 1/m of 1/n creates 1/mn, that is, a part 
that when iterated mn times recreates the unit. The example illustrates several aspects of the theory 
discussed above. Initially, Kylie had no way to think about making 1/mn by simply partitioning 1/n. 
However, she did have knowledge that allowed her to make 1/mn. That is, she had concepts that she 



was able to call on producing a sequence of actions (an activity) to achieve her goal. She 
conceptualized 1/n of a unit as a part that can be iterated n times to make the unit. She also knew 
that she could partition the unit to make any unit fraction. In Task 4.1, she called on these two 
concepts. She sequentially iterated the original part, 1/3, three times to make the unit and then 
partitioned the unit to make 1/6 of a unit. However, because the unit bar that she created was 
already partitioned into three parts, she called on her concept of partitive division (6 divided by 3) 
to determine how many times to partition each of the three parts. Thus, Kylie created an activity 
made up of three actions involving three extant concepts: iterating the part to make the unit, using 
partitive division to determine the number of subparts per part, partitioning a subpart. 

The activity Kylie employed for Tasks 4.1 and 4.2 led to the abstraction that was apparent in Task 
4.3 and beyond. In Task 4.3, Kylie no longer needed to go through the sequence of actions used in 
the preceding tasks. The actions that made up the activity were now coordinated into a single 
higher-level action. She knew immediately in Task 4.4 that cutting 1/5 into 4 subparts allows a 
subpart to iterate 5x4 times to the whole.3 That is, she had developed an anticipation that the 
denominator of the part has a multiplicative effect on the number of times the subpart iterates to the 
unit. 

Building a pedagogical theory: the LTA instructional approach 
As stated our goal was to generate a theory of mathematics concept learning that can serve as a 
basis for mathematics pedagogy. In this section, I describe how we have built an instructional 
design approach on the basis of the explication of reflective abstraction, discussed above.  

The first two steps in our design of instructional sequences are part of various design approaches. In 
Step 1, we specify the prior knowledge needed to engage with the sequence. This is particularly 
important in our design approach, because it identifies the concepts that students can call upon as 
components of their activity. In Step 2, we identify specific learning goals

 
for the students, that is, 

we articulate the particular abstractions we intend to promote. 

Step 3 makes direct use of our explication of reflective abstraction. In this step, we specify an 
activity (sequence of concepts/actions) available to the (actual or hypothetical) students that could 
serve as the raw material for the intended abstraction. There are two requirements here. First, the 
students must be able to call on the activity. Second, the researchers/designers must be able to 
describe how the students could come to the abstraction as a result of engaging in the activity. In 
our example above, the activity would be iterating the part to make the unit and then partitioning the 
unit by subdividing each part – the number of partitions determined through partitive division.  

Step 4 involves generating a sequence of tasks designed to elicit the activity specified in Step 3 (in 
our example Tasks 4.1-4.4) and promote reflective abstraction. Sometimes the tasks that promote 
the activity are sufficient as in the example presented (by the third task, Kylie had made the 
abstraction). In some cases, subsequent tasks are created that restrict the student’s ability to carry 
out the sequence of actions in the activity – prompting the students to use developing anticipations 

                                                 
3 Although Kylie’s justification was given for Task 4.3, I refer to the numbers from Task 4.4, because in Task 4.3, the 
use of 1/3 as both the fraction of the unit and the fraction of the part makes articulation of the ideas confusing. 



if available. For example, in our work on promoting a reinvention/abstraction of the multiplication 
of fractions algorithm, Kylie had developed a reasoned activity beginning with thinking through the 
effect of the denominator of the multiplier on the denominator of the multiplicand. Her reasoning 
then included the numerator of the multiplicand and finally the numerator of the multiplier. Each 
step was dependent on the prior one. To promote and elicit use of a developing anticipation, we 
gave her tasks with the denominators hidden and asked for the numerator of the product. She was 
only able to do these tasks when she had developed sufficient anticipation of the effect of the 
numerator of the multiplicand in the context of her activity. In other cases, particular tasks are 
sequenced to increase the probability that students will attend to the commonality in their activity. 
In Simon et al (2010), Erin was reinventing/abstracting a common-denominator algorithm for 
multiplication of fractions. She had developed diagram solutions to division tasks whose dividend 
and divisor had common denominators. She had also developed the ability to talk through a diagram 
solution (without drawing). For example, she was able to talk through 37/31 ÷ 17/31. However, she 
also made it clear that without talking through the solution, she could not come up with the 
quotient. At this point, I gave her consecutively two tasks with the same pair of numerators, but 
different common denominators (e.g., 7/167 ÷ 2/167 and 7/103 ÷ 2/103). Although she needed to 
talk through the first, she was able to give the answer immediately to the second. Not only that, she 
was able to elegantly explain the abstraction she had made and do subsequent tasks (involving 
common denominators) simply by dividing the numerators. 

I have highlighted the first four steps. However, as in other approaches to instruction, these steps 
might be followed by symbolization, introduction of vocabulary, and institutionalization of ideas.4 

A couple of clarifications are in order. First, when we refer to a task, it includes the resources 
available to the students for solving it. Second, the goal of our research is to specify a sequence of 
tasks that can promote a particular abstraction. Thus, the sequence should work without the 
instructor asking leading questions, telling or showing solutions, or giving hints or suggestions. 
Also, the sequence should allow students to make the abstraction without needing to hear the 
solutions of others. This does not mean that there is not a role for teachers. The teacher is important 
in developing norms for the mathematical work, promoting justification at appropriate times, 
introducing symbols and vocabulary, and leading discussions that institutionalize the learned 
abstraction. Also, teachers should be able to monitor student progress and modify task sequences in 
response to student progress. 

Affordances of the LTA instructional approach 

To provide a context for discussing the affordances of the LTA instructional approach, I first 
discuss a commonly used and important approach to instruction, a problem-solving approach. I will 
then highlight some of the contrasts and complementarities between the LTA approach and a 
problem-solving approach.5 

                                                 
4 See also Simon (2016). 

5 Discussion of contrast with Harel’s DNR can be found in Simon (2013). 



Although there is no single problem-solving approach, I will discuss some typical features. One of 
the main strengths of a problem-solving approach is the engagement of students in the critical 
activity of mathematical problem solving, attacking a problem for which the student has no solution 
at the outset. I will not highlight here the abilities and dispositions that can be developed through 
regular engagement in problem solving; these have been well documented. Rather, I will focus on 
one feature of this approach that provides a contrast with the LTA approach. Problem solving is by 
definition uncertain. There is no assurance that those who engage in solving an authentic problem 
will succeed in solving it. When a diverse set of students in a mathematics class attempt to solve a 
problem, it is likely that only those who are the stronger problem solvers and who have the more 
powerful mathematical concepts will succeed in solving the problem. The other students must try to 
follow the reasoning (in small groups or whole class discussions) of their more able peers.  

The LTA approach is intended to provide a complimentary approach, one in which learning of a 
concept is not dependent on the uncertainty inherent in attempting to solve authentic problems. If an 
LTA sequence is designed effectively, students should be successful in solving every task in the 
sequence.6 In the LTA approach the learning (the new abstraction) is not the ability to solve the 
task. Rather it is the insight that is gleaned through the students’ solutions to tasks using available 
activity. In our example, Kylie was successful in solving each of the four tasks.  She was not trying 
to learn anything – just to solve the tasks presented. However, by the third task, she understood 
something that she had not understood at the beginning of the instructional sequence. 

We conceive of the LTA instructional approach as a technology for engendering the construction of 
particular mathematical concepts on the basis of particular prior knowledge. I call attention to two 
potential contributions of this approach: 

1. For concepts that tend to be difficult to teach and learn, the LTA approach provides a 
technology for building up those understandings (promoting particular abstractions). 

2. For students who have previously been unsuccessful in learning mathematical concepts, it 
provides a specific methodology for building up their conceptual foundation.    

Affordances of the LTA theory for research and development 

The elaboration of reflective abstraction discussed above provides a lens for looking at conceptual 
learning in different situations, not just in situations designed using the LTA instructional approach. 
For example, the LTA elaboration of reflective abstraction could be used to understand conceptual 
learning in the context of a problem-solving approach to instruction. How do we explain the success 
or failure of a lesson for particular students? Of course, the students’ prior knowledge and problem 
solving skills are important. But how can we consider the usefulness of the problem or problems? 
The LTA elaboration of reflective abstraction allows for analysis of the students’ activity and its 
relationship to the abstraction that they make. 

                                                 
6 Of course, there is no curriculum that works flawlessly for all students. The issue is not whether we can create a 
sequence in which every student can solve every task. Rather the issue is that we intentionally create tasks that we 
predict students will be able to solve. This is in contrast to putting them in a problem-solving situation. 



In Simon (1995), I postulated the construct of a hypothetical learning trajectory (HLT). An HLT 
can describe a hypothesized trajectory for a single lesson or for a sequence of concepts in a 
conceptual area (also referred to as a “learning progression”). Learning trajectories has become a 
hot area for mathematics education researchers. HLTs are not just a series of conceptual steps 
through which learners progress, they involve articulation of sequences of learning situations and 
hypotheses of how these situations will be used by the students to learn the target concepts. 

The LTA integrated theory of teaching and learning can provide the framework for learning 
trajectories in various conceptual areas. As a framework, it provides a basis for selecting and 
sequencing tasks and for hypothesizing how the students will abstract from their activity in working 
with those tasks. In our current project, we designed, enacted, and modified in teaching experiments 
nine trajectories for different concepts involving fractions.7 This work has been grounded in and 
contributed to the LTA theory of teaching and learning. Also essential to the design and 
modification of the trajectories has been (but beyond the scope of this short paper) our work on 
reversibility (Simon, Kara, Placa, & Sandir, 2016) and on the stages of concept development 
(Simon, Placa, & Avitzur, 2016). Both build on the theory described in this paper. 
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In this article, we discuss the German construct of Grundvorstellungen and highlight the 
connection with mathematical aspects. After recalling the definition of these terms, we compare it 
with similar notions used in the literature such as “concept image/concept definition”, and 
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Grundvorstellungen and aspects for the analysis of the concept of extreme points. Finally, we 
briefly sketch how it may be used for the discovery and interpretation of students’ misconceptions.  
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Motivation 
There exists a vast literature on problems, mistakes, and misconceptions of mathematical topics in 
school. In order to discuss these misconceptions in connection with “correct” ideas, several 
approaches have been proposed, such as the construct of so-called “Grundvorstellung” (or GV, for 
short), which is mainly used in German literature (e.g. vom Hofe, 1995; Greefrath et al., 2016b). In 
this article, we briefly recall this construct and compare it with similar constructs appearing in the 
literature. In particular, we show how the GV construct can be applied to extreme points, with an 
emphasis on the transition from school to university. To this end, we give a short overview over 
GVs for extreme points, which helps us to classify students’ problems concerning extreme points.  

Theoretical background 
Let us first explain the notion of Grundvorstellungen. Grundvorstellungen originate from the 
traditional German didactical approach of subject-matter didactics and have a long tradition in 
German mathematics education (see vom Hofe, 1995). Vom Hofe extended the subject matter 
didactics approach by his understanding of Grundvorstellungen: he suggested to additionally take 
into account the learners’ perspectives (see Straesser, 2014, p. 569). As a consequence, he 
distinguishes between GVs from a normative viewpoint, on the one hand, and GVs from a 
descriptive viewpoint, on the other hand. Vom Hofe (1992, p. 347) recalls the main characteristics 
of this construct: It gives meaning to a concept by connecting it with already known facts or 
experiences. It brings along the development of corresponding representations and the ability to use 
the concept. Scrutiny reveals that it is useful to introduce different types of GVs, which read as 
follows: A primary GV is a GV which gives meaning to a concept by connecting it with concrete 
experiences and objects from everyday life. A secondary GV is a GV which gives meaning to a 
concept by connecting it with ideas and representations of other mathematical concepts (see e.g. 
vom Hofe & Blum, 2016, p. 234). 

To clarify the connection between GVs and the mathematical content of a concept, Greefrath et al. 
introduce a distinction between aspects and GVs of a mathematical concept: 

“A Grundvorstellung of a mathematical concept is a conceptual interpretation that gives meaning to 
it.” (Greefrath et al., 2016a, p. 101). However, an aspect of a mathematical concept is a part of this 



concept, which refers to its mathematical content, like its definition, theorems related to the 
concept, its properties, or connections to other concepts. It is a part of this concept, which can be 
used to characterize it (see Greefrath et al., 2016a, p. 101).  

Another distinction is given by Greefrath et al. (2016b, pp. 18–19) who introduce the notions 
universal and individual GVs: A universal GV works as a normative guidance for teachers and 
answers the question what students should think of a concept, i.e. a universal GV refers to vom 
Hofe’s normative viewpoint. Universal GVs refer to mathematical aspects. However, there is no 
one-to-one correspondence between GVs and aspects: One GV can refer to several aspects, and one 
aspect can be the basis for several GVs (see ibid., p. 17–18). On the other hand, an individual GV 
answers the question what a special student actually thinks of a concept, i.e. an individual GV is 
related to vom Hofe’s descriptive viewpoint. Individual GVs can be detected by watching students 
solving problems or by analyzing their explanations with regard to certain questions. Therefore it is 
a GV that an individual person possesses regarding a certain concept. 

For our purposes–to find reasons for students’ misconceptions–it is necessary to introduce yet 
another kind of GV which we call partial GV. A partial GV is an idea that gives meaning to a 
concept in a limited context. It also goes back to mathematical aspects of a concept, and thus to a 
normative viewpoint. However, it loses its generality through restrictive premises. Depending on 
the goal, it could also serve as a (preliminary) educational objective. An example is the idea 
“multiplication makes bigger” which is correct only in certain cases, e.g. the natural numbers 
(larger than 1). To highlight the differences between these types of GVs, we want to add the 
following point to the description of a universal GV: “Universal” means that it works in every given 
context. Consequently, we categorize an individual GV either as a universal GV, as a partial GV, or 
as a part of them. The following graphic puts the characterization of the GVs in a nutshell: 

 
Figure 1: Connection of universal, partial and individual GVs  

The notion Grundvorstellung could be translated, loosely speaking, as “basic idea”, “basic notion” 
or “basic mental model” (see vom Hofe & Blum, 2016, p. 226; Greefrath et al. 2016a, p. 101). 
However, we decided not to translate the notion to not mix it up with other (mainly in Germany 
used) constructs like fundamental ideas, universal ideas, central ideas, big ideas, leading ideas (for 
further details see Vohns, 2016). 

GVs are especially interesting regarding misconceptions. These “erroneous conceptions” have 
different names (preconceptions, alternative conceptions, misconceptions) and are defined in 
various ways in the literature (see e.g. Leinhardt et al., 1990; Hammer, 1996). We just recall the 
main facts: They are a repeatable, robust, “well-formulated system of ideas” (Leinhardt et al., 1990, 
p. 5) and they are cause for errors, although they do not need to constitute a complete theory (ibid., 
p. 5–6). If one takes a closer look at these, one can categorize some as so called epistemological 



obstacles (see e.g. Brousseau, 1989), or overgeneralizations, like in our background as partial GVs 
used in the wrong context. Vom Hofe (1996, p. 259) describes the importance of GVs regarding 
misconceptions as follows: Firstly, GVs as a normative guidance should help during the learning 
process so that individual ideas become individual GVs and not misconceptions (see vom Hofe, 
1996, p. 259). In this respect, GVs work as a prevention of misconceptions. Secondly, GVs should 
work as a plausible alternative to already existing misconceptions. If learners already have 
misconceptions they need not just be dissatisfied with the former idea, but also need to be given an 
intelligible, plausible and fruitful alternative by the teacher (see Posner et al., 1982, p. 214). In this 
respect, GVs work as a remedy for misconceptions. 

The purpose of this article is to give a survey on universal and partial GVs at university level that 
refer to aspects of the concept of extreme points. To begin with, let us briefly recall the role of GVs 
in the existing literature. 

GVs and concept image/concept definition 

One of the most important and popular works on the properties of concept image, concept 
definition, and their distinction is due to Tall and Vinner (1981). A concept definition consists of 
the words used to specify a concept. The definition of a concept given by the mathematical 
community is called formal concept definition, whereas the definition given by an individual is 
called a personal concept definition. A concept image consists of all non-verbal connections to and 
connotations inferred by an individual regarding a certain concept. These connections and 
connotations may include all kinds of representations. There exists some literature describing 
similarities and differences between concept image/concept definition and GVs: vom Hofe and 
Blum (2016, p. 237) state that GVs refer to the concept image from both a normative and 
descriptive level. Greefrath et al. write: 

“A concept image may contain several individual Grundvorstellungen that conceptualize different 
perspectives of that concept. Individual Grundvorstellungen are central components of a valid 
concept image[…].” (Greefrath et al., 2016a, p. 103) 

However, for some learners, also misconceptions may be part of their concept image. The 
individual GVs can either be partial GVs or universal GVs. As Greefrath et al. write: 

“These Grundvorstellungen give meaning to mathematical concepts that may be studied with 
respect to various aspects. Each of these aspects may be expressed with one of the various [formal] 
concept definitions that one reads in textbooks. Thus, a [formal] concept definition is a specific 
realization of an aspect.” (Greefrath et al., 2016a, p. 103) 

The personal concept definition could either be similar to the formal concept definition or differ 
from it. It also has a relationship to the concept image. 

GVs and metaphors 

Apart from concept image/concept definition tools, metaphors have also been used to describe 
mathematical cognitive processes (see Lakoff & Núñez, 1997, 2000).  First, we recall some facts 
about the concept of metaphors used by Lakoff and Núñez. They analyze the (conceptual) structure 
of mathematics and therefore use results of metaphor theory of cognitive linguistics. This theory is 
about how mathematics is constructed. To describe mathematics, they distinguish several kinds of 



metaphors, the two crucial ones being grounding metaphors and linking metaphors, which are 
defined as follows: 

“Grounding metaphors ground mathematical ideas in everyday experience.” In addition, “[...] 
linking metaphors allow us to link one branch of mathematics to another. For example, when we 
metaphorically understand numbers as points on a line, we are linking arithmetic and geometry.” 
(Lakoff & Núñez, 1997, p. 34) 

Let us now point out some similarities and differences between the concepts of GV and metaphor. 
Both GVs and metaphors reveal several perspectives of one concept through a detailed analysis of 
it. GVs and metaphors suggest using this analysis for educational purposes. Grounding metaphors 
resemble primary GVs, since they connect everyday life experiences with mathematics. Linking 
metaphors resemble secondary GVs, because they connect different domains within mathematics. 
However, a fundamental difference is the aim of these theories: finding of GVs through a subject 
matter analysis aims at making the most important aspects of a concept comprehensible and giving 
them meaning, respectively. Referring to metaphors in the sense of Lakoff and Núñez (1997, p. 31), 
this educational aim is named “peripheral” for the theory of metaphors. The discussion about 
metaphors tends more toward revealing the structure of mathematics and unconscious connections 
to non-mathematical concepts as mentioned above. Metaphors are used to explain our linguistic 
vocabulary when talking about mathematical contents. 

There are also connections with other theories like the theory of conceptual fields of Vergnaud 
(1996), which also works as a framework for organizing didactic situations. For lack of space we do 
not go into detail, but just remark that an exact analogue to the GV construct does not exist in the 
literature, but constructs which exhibit some similarities with GVs. 

Aspects and GVs of extreme points 
After defining the concept of GVs and comparing it with other concepts from the literature, we are 
now going to use it for the concept of extreme point, which is the major topic of this article. The 
following GVs were identified by both discussions with lecturers of analysis courses and a subject 
matter analysis of the concept of extreme point. 

Aspects of extreme points 

We will discuss three aspects of the concept of a (local) extreme point: 

The aspect of “largest/smallest value” 

Extreme points are the points (x,y) with the largest/smallest y-value with respect to a 
neighbourhood  of x. 

This aspect refers directly to the definition of an extreme point. It illustrates the connection of an 
extreme point (of a graph of a function) with the maximum/minimum of a (totally ordered) set: 
extreme points are the points, whose y-values coincide with the maximum/minimum of the range 
(on a given domain). Already children have some experience with this aspect. 

Non-mathematical examples: 

 Searching for the highest point (of a mountain) 



 Searching for the best object of category (fastest car, most expensive house, highest 
building) 

Mathematical examples: 

 Interpretation and discussion of graphs: where is the highest/lowest point? 

The aspect of “largest/smallest value” is the most fundamental one for the concept of extreme point. 

The aspect of “derivative zero”  

Extreme points are located at points where the derivative becomes zero. 

In this connection, however, one has to be careful and take into account two important points. First, 
there are points, which are not extreme points, although the derivative becomes zero at these points. 
Second, since this aspect refers to the necessary condition for the existence of (local) extrema, one 
has to impose two additional premises: the point must be an interior point of the domain, and 
differentiability of the function is required. By dropping one of these premises, one can easily find 
examples of extreme points where the derivative does not become zero (e.g. boundary points of an 
interval). 

Non-mathematical examples: 

 From a physical viewpoint: searching for the points where the velocity becomes zero. 

Mathematical examples: 

 The algorithm for the identification of extreme points most frequently taught at school: find 
the zeros of the first derivative. Afterwards, check the sign of the second derivative at these 
zeros to detect maxima and minima. 

The aspect of “change of monotonicity” 

Extreme points are located at points where the sense of monotonicity of a function changes, i.e., 
from increasing to decreasing or vice versa. 

It is, in fact, easy to see that a change of monotonicity always implies the existence of an extreme 
point. The converse, however, is false: not every extreme point induces a change of monotonicity 
(consider again extreme points at the boundary of an interval). 

Non-mathematical examples: 

Change of the direction of movement: 

 Activities: mountain climbing (change of uphill to downhill), bike riding (change from 
pedaling to idling). 

Mathematical examples: 

 At school (premise: differentiable functions): a table of sign changes for the first derivative 
(distinguishing extreme points from saddle points). 

GVs of extreme points 

Let us now study three GVs of the concept of (local) extreme points of a real function (defined on a 
nondegenerate interval). The first GV is universal, the second and third are partial. 



Universal GV 

The GV of “largest/smallest value” 

This GV refers directly to the aspect of largest/smallest value and may be interpreted in a concrete 
geometrical way: extreme points are the points with the largest/smallest y-value with respect to a 
certain neighbourhood. The students should: 

 Identify extreme points through analyzing y-values of points of a function graph 
algebraically or graphically. 

 Demonstrate the connection between a maximum/minimum of a (totally ordered) set and an 
extreme point of a function by projecting (pieces of) the graph onto the y-axis. 

Table 1: Subcategories of extreme points  

Once the students understand this GV correctly, they can specify different subcategories of extreme 
points, such as those sketched in the synoptic Table 1. 

This GV is universal and should thus be emphasized when introducing the concept of extreme 
point. For applications, however, it is not that useful: it would take an infinite long time to analyze 
every point with regard to the value of its y-component, because the domain of definition is a 
continuum. However, there exist another two GVs, which are more helpful in applications. 

Partial GVs 

The GV of “slope zero” 

This GV reflects the fact that the graph of a function has slope zero at an extreme point. Since this 
idea is intimately related to the aspect of “derivative zero”, it should be assumed that the function is 
differentiable at the (interior) point in question. As this is usually the case for functions dealt with at 
school, it is mainly consolidated as a consequence of math classes. The GV of “slope zero” calls 
upon the GVs of the derivative of a function like the GVs “Tangent slope” or “Amplification 
factor” (see Greefrath et al., 2016a, pp. 106–113): 

 Tangent slope: slope zero entails the existence of a horizontal tangent at the extreme point in 
question that approximates the graph locally. This means that the graph is also almost 
horizontal. 

 Amplification factor: slope zero implies here that a change of the independent variable x 
leads to almost no change in the dependent variable y. 

The reason, why this is just a partial GV is the fact, that neither the argument “extreme point 
implies slope zero” nor the converse argument “slope zero implies extreme point” is true. 

A B C D   E 

Extrema as hill/valley 

(differentiable 

function) 

Extrema as hill/valley 

(not differentiable 

function) 

Extrema at the 

boundaries of an 

interval 

Extrema of a constant 

function 

Extrema at a 

discontinuity point 



The GV “change of monotonicity” 

If you look at the graph of a function and see that it is strictly increasing up to a certain point x0, and 
then strictly decreasing, you could intuitively argue that x0 is a (local) maximal point. This idea 
exhibits an analogy to the curvature of a graph at inflection points; if a function changes at some 
point from left curvature to right curvature, or vice versa, this is an inflection point. As far as 
differentiable functions are concerned, passing from an increasing piece to a decreasing piece can 
be interpreted as the transition of the first derivative from the upper half-plane to the lower half-
plane. The GV of “change of monotonicity” goes back to a specific “dynamical” experience of the 
students: if you regard the graph as trajectory of a moving particle, the movement changes in the y-
direction precisely at minimal or maximal points. The students should: 

 Partition the graph of a function into monotonically increasing and decreasing pieces and 
identify extreme points as boundary points of the partition intervals. 

The reason, why this is just a partial GV is the fact that it works only “in one direction”, because the 
logical converse is again false: not every extreme point leads to a change of monotonicity. 

Discussion 
These GVs play an important role when analyzing mistakes of students in their first semester at 
university concerning the concept of extreme point. The partial GVs especially can lead to mistakes 
when their restrictive premises are not considered. Our study aims, on the one hand, at finding 
mistakes and misconceptions of mathematics students after their first analysis course and, on the 
other hand, at giving insight into possible reasons for these mistakes. It turns out that the concept of 
GVs helps to find normative education objectives of extreme points, and it supplies–used in a 
descriptive way–an orientation of what ideas students have of extreme points. 
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Poster summary 
The interrelated roles of social media as both a platform and a phenomenon of interactivity, invite 
teachers to produce and consume knowledge of teaching and learning mathematics (e.g., Liljekvist, 
2016; van Bommel & Liljekvist, 2015, 2016). The availability and user-friendliness of the social 
media platform alter the behaviour of the mathematics teacher, and ‘stories’ of the good 
mathematics teaching are made (e.g. kinds of curricular material, or kinds of questions raised, see 
e.g., Liljekvist (2016)). Analysing the affordances of this new environment is necessary to 
understand how the subject didactical discourse on learning and teaching is simultaneously 
constructed and consumed in mathematics teachers’ digitalized every-day practice. It is a matter of 
probing the characteristics of the interaction, that is, the ways in which the activity on the Internet 
supports knowledge development and re-sourcing in mathematics teaching (cf. Liljekvist, 2016; 
Ruthven, 2016).  

The primary aim of this poster is to initiate a discussion in the TWG17 that elaborates on theoretical 
constructs that may be fruitful in the research of mathematics teachers’ digitally extended every-day 
practice and collaboration. This arena for teacher learning and collaboration is under-researched 
(see, e.g., Robutti, Cusi, Clark-Wilson, Jaworski, Chapman, Esteley, Gnoos, Isoda, & Joubert, 
2016)). 

The prosumer concept, that is, people as producers and consumers of products and services (cf. 
Beighton, 2016; Ritzer, Dean, & Jurgenson, 2012; Zajc, 2015) shows some possibilities to 
theoretically model mathematics teachers’ re-sourcing on social media as it centres on the 
phenomenon per se (i.e., producing and consuming ‘value’ for the user). Thus it is closely tied to 
the raison d’être of social media (Zajc, 2015) and mathematics teachers’ activities there (van 
Bommel & Liljekvist, 2015, 2016). However, the concept needs to be operationalized in an 
educational setting and in a mathematical discourse in order to have sufficient explanatory power 
for our purposes. Here are some examples; In business and sociology, the driving forces for 
investigating ‘prosuming’ is to understand consumers’ behaviour (e.g., Ritzer et al. 2012; Zajc, 
2015), but in educational research mathematics teachers’ performance, for instance, as a learner and 
as a colleague is of interest (e.g., Liljekvist, 2016; Ruthven, 2016; van Bommel & Liljekvist, 2015, 
2016). Further, Beighton (2016) discusses in his article how the prosumeristical behaviour can also 
work as a tool for control, where creativity and knowledge development, and professional learning 
may not be supported. This aspect of mathematics teachers’ online activities is relevant, as it, for 
instance, may explain some of the quality problems in the curricular material shared (e.g., 
Liljekvist, 2016). 



Mathematics teachers nowadays use social media to re-source and collaborate. This is an arena 
where the every-day practice of subject didactics is made (Liljekvist, van Bommel, & Olin-Scheller, 
2017). Analysing this activity is to understand teachers as both producers and consumers of subject 
didactical contributions and of peer-learning. The core research question, then, is how we can 
theoretically describe mathematics teachers’ simultaneous processes of producing and consuming 
subject didactical knowledge on social media. 

Acknowledgment 

The research was funded by the Swedish Research Council (Dnr. 2015-01979).  

Access to the poster: www.kau.se/files/2017-04/CERME_YL.pdf 

References 

Beighton, C. (2016). Groundhog day? Nietzsche, Deleuze and the eternal return of prosumption in 
lifelong learning. Journal of Consumer Culture. doi: 10.1177/1469540515623607  

Liljekvist, Y. (2016). Mathematics teachers’ knowledge-sharing on the Internet: pedagogical 
message in instruction materials. Nordic Studies in Mathematics Education, 21(3), 3–27. 

Liljekvist, Y., van Bommel, J., & Olin-Scheller, C. (2017). Professional Learning Communities in a 
Web 2.0 World: Rethinking the conditions for professional development. In: I. H. Amzat & N. P. 
Valdez, Teacher empowerment toward professional development and practices: Perspectives 
across borders. Singapore: Springer Singapore. doi: 10.1007/989-981-10-4151-8 

Ritzer, G., Dean, P., & Jurgenson, N. (2012). The coming of age of the prosumer. American 
Behavioral Scientist, 56(4), 379–398. doi:10.1177/0002764211429368 

Robutti, O., Cusi, A., Clark-Wilson, A., Jaworski, B., Chapman, O., Esteley, C., & Joubert, M. 
(2016). ICME international survey on teachers working and learning through collaboration: June 
2016. ZDM, 48(5), 651–690. doi:10.1007/s11858-016-0797-5 

Ruthven, K (2016). The re-sourcing movement in mathematics teaching: some European initiatives. 
In M. Bates & Z. Usiskin (Eds.), Digital Curricula in School Mathematics (pp. 75–86). 
Charlotte, NC, USA: Information Age Publishing.  

van Bommel, J., & Liljekvist, Y. (2015). Facebook and mathematics teachers’ professional 
development: Informing our community. In K. Krainer & N. Vondrová, Proceedings of the Ninth 
Congress of the European Society for Research in Mathematics Education (pp. 2930–2936), 
Prague, Czech Republic: ERME. 

van Bommel, J, & Liljekvist, Y. (2016). Teachers’ informal professional development on social 
media and social network sites: when and what do they discuss? Paper presented at the ERME 
Topic Conference on Mathematics teaching, resources and teacher professional development, 
Berlin, Germany. 

Zajc, M. (2015). Social media, prosumption, and dispositives: New mechanisms of the construction 
of subjectivity. Journal of Consumer Culture, 15(1), 28–47. doi:10.1177/1469540513493201 



Analyzing verbal interactions in mathematics classroom: Connecting 
two different research fields via a methodological tool 

Mariam Haspekian1, Eric Roditi2 

University of Paris Descartes, Sorbonne Paris Cité, France, 
1mariam.haspekian@parisdescartes.fr, 2eric.roditi@parisdescartes.fr  

This paper presents a small case of junction of two research fields that remained, until recently, 
relatively cut off from each other. Using concepts of the Assessment field, specified in a didactic 
approach, we develop and test a methodological tool on the analysis of students-teacher interac-
tions in mathematics classroom. We discuss then its potential in the Assessment field. This illus-
trates a way of locally connect research areas, via a shared methodological tool. 
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Introduction 
Initially inscribed in a particular research area of the didactics of mathematics field, the Double 
Approach (didactic and ergonomic) theory (Robert & Rogalski, 2005), our study aims at investigat-
ing the teacher’s coherence in the processes of information-adaptation, when adjusting the situa-
tions, making decisions on the spot. Research on Assessment, a field traditionally cut from didactic 
ones, though with some exceptions (Vantourout and Goasdoué, 2014; Veldhuis, 2015), handles 
these questions with concepts as formative assessment or regulations. How can we describe these 
regulations and understand the way interactions guide them?  

To study these questions, we thus went beyond the specific fields of didactics theories and carried 
out a literature review on formative interactions in Assessment, a research field in education, with 
its own models and conceptual frames1. Our review briefly summarized in section 1 shows needs 
for didactic references on learning and teacher activity, and led us to a theoretical and methodologi-
cal development (reported in section 2) to support our analyses regarding the teacher-students 
interactions in mathematics as an adaptive dynamic process. The last part tests potentialities and 
limits of this tool on a short episode, before coming back to theoretical questions.  

Literature in the field of assessment: Needs for a didactic approach  
Various theoretical concepts relate to teacher-students interactions, for instance the “diagnosis and 
responsiveness” of “scaffolding”, (Bakker et al., 2015). In Assessment research, they relate to three 
overlapping concepts we focus on: feedback, formative assessment (or for learning), and regulation.  

Theoretical needs for a didactic approach  

The teachers’ feedback to learners’ activities constitute an element of the process of formative 
evaluation, and research has been deepened to understand their different effects according to their 
nature. Yet, Crahay (2007) notes that research on this concept is full of opposed results. He propos-
es to focus on the processual aspect of the link between teachers’ reactions and students’ learning 
considered as an activity rather than a product, and taking into account the characteristics of the 
                                                 
1This includes research on measurement in education, psychometric and edumetric approaches. 



tasks, the school disciplines or the taught objects.  

As for the concept of formative assessment, initially restrained to dedicated moments, it has been 
extended to “all those activities undertaken by teachers, and/or by their students, which provide 
information to be used as feedback to modify the teaching and learning activities” (Black & Wiliam 
(1998, p.10). Research points out a new concept, that of regulation, which can be interactive, retro-
active or proactive. In this widened sense, the interactive regulations that may happen in didactic 
situations make a junction between evaluation and teaching-learning situations. This also fits the 
idea of “whole-class scaffolding” (Smit et al.). Crahay’s synthesis (2007) or that of Allal and Motier 
Lopez (2005) evoke a strong dependence between the formative evaluation and the very organiza-
tion of teaching, encouraging research to integrate didactic issues (task, disciplinary contents…) in 
the analyses. More recently, Vantourout and Goasdoué (2014, p.142) claim the need for taking into 
account both didactical and psychological approaches by arguing that willing to foster learning 
requires understanding students’ cognitive functioning with a task. Although some attempts exist in 
mathematics education, they stress the lack of research investing in this joint perspective. 

The theoretical needs addressed in this review join our didactic concerns, i.e. to pay particular 
attention to specificities of the taught and evaluated contents by analyzing the teacher-students 
interactions. In this perspective, the concept of interactive regulation described in research on 
formative assessment seems an interesting object regarding our didactical concern. 

Regulation in formative assessment  

Formative assessment research has been driven by two underpinning teaching and learning theories: 
originally the neo-behaviorism, then the cognitivist one with its strong necessity to consider class-
room interactions, particularly real-time regulations. In Allal and Mottier Lopez’s synthesis (2005), 
the concept of regulation is a process referring to the features of the concept of formative evaluation 
(collect, interpret, decide). Our didactic concerns relate to one of the five distinguished conceptual 
forms of regulations they bring out from literature: the online regulations resulting from interac-
tions. Their model of regulations includes the situation; the teachers’ interventions; and the interac-
tions between students based on a Vygotskian approach using the ZPD concept, which makes again 
a link with scaffolding. Aligned with this, recent research on assessment for learning (e.g., Pryor & 
Crossouard, 2008) is referring to Activity theory (Leontiev, 1975/84) in order to consider the forma-
tive assessment as a cultural historical activity shaped by teachers’ and students’ reciprocal acting, 
and co-determined by the subject and situation, which should not be considered separately. 

The Double Approach also borrows from Activity theory, exploited in the field of ergonomics, but 
with a different unit of analysis, there the term “activity” focuses on that of an individual subject 
(Leplat, 1997). This didactic approach considers not only the mathematical knowledge to be taught, 
but also the procedures and the student’s activity to solve problems. Also considered as cultural-
historical processes, the activity of a subject is here again co-determined by the subject herself and 
the situation carried out, which includes socio-cultural interactions with other subjects (Robert & 
Rogalski, 2005). In these interactions, we are interested in how the teacher’s activity depends on 
that of the students; particularly while adapting, adjusting teaching to optimize learning. Activity 
theory constitutes thus a theoretical link, enabling us to articulate teaching practices and students’ 
learning. The next part clarifies these links and outlines our theoretical and methodological tool.  



Connecting with a didactical approach of regulations of students learning 
Towards tools for a didactic analysis of the formative regulations  

We consider two “sub-activities” of one activity system, reciprocally influencing each other: that of 
teacher, whose result is a situation for the students, impacting them; that of the students, co-
determined by the students and the situation produced by the teacher. The teachers’ activity there-
fore involves two levels: the double regulation, resulting from the activity they address to them-
selves (to teach) and that resulting from the activity they address to the students (to make learn). 

As for Crahay, in the Double Approach, teachers’ feedbacks should not be studied independently of 
student’s activity that creates them. From the didactic point of view, the analysis of the students’ 
activity needs to consider the situation at stake, including the task and possible elements of the 
didactic contract; the students’ knowledge and procedures (that are contextual elements), needed to 
solve the task; and the product (oral or written) of students’ activity (answer and any element on 
how the task has been realized). Aligned with research on assessment, we consider that the teach-
er’s activity in class interactions, is formative when he/she takes information on the students’ activi-
ty in order to act on the learning. Our analyses of the teacher’s regulations therefore need to specify 
the nature of information she collects and the actions (in Leontiev’s sense, 1975) she subsequently 
carries out to reduce the gap she can observe with her learning objectives.  

Our research is therefore guided by the principle of identifying what is the gathered information 
about: a product (answer, result), a procedure, or a piece of knowledge; and what the feedback 
directly aims at (again a result, procedure or knowledge). Even if we do not have hierarchical 
assumptions on these types of intervention as for learning, not all interventions are equivalent. In 
case of an error for example, some interventions aim at correcting by giving the expected result 
(this lets the student the responsibility to find the underlying mathematical concept). Other interven-
tions address the underlying procedure or knowledge (conforms or not with what was aimed at). All 
constitute forms of accompaniment of the student’s learning. 

Results, procedures, knowledge  

Activity theory (Leplat, 1997) distinguishes the result of the activity from the procedure implement-
ed and from the state of knowledge of the subject. This framework adapted to teaching, leads to 
associate to the student (the subject) a state of knowledge, which allows him to analyze and redefine 
the task prescribed by the teacher, to implement a procedure leading to an answer, guided by some 
knowledge (explicit or implicit). This student’s activity (generally carried out in thought, but possi-
bly verbal or written) can thus be observable in what it produces: an answer/ a mathematical result... 
Among the possible feedback of the teacher, one can also distinguish those addressing the result 
only (indicating for example that the answer is false), or the procedure (indicating for example that 
the theorem used does not correspond to the hypotheses of the statement), or the student’s state of 
knowledge (indicating for example confusion between a theorem and its reciprocal etc.). The choice 
of a type of feedback depends on various factors (time, prior explanations/examples, teacher’s 
experience, etc.). In the same way, if the student says he ignores how to apply such theorem, the 
teacher perceives information on the procedure thought by the student. The possible feedback varies 
here again. It can remain on the procedure level, for example explain that the rule is not adapted; or 
change level by giving the solution (or begin the resolution and let the student finish), or it can 



approach the student’s difficulty by clarifying the mathematical knowledge.  

This way of analyzing interactive regulations leads to identify in each student-teacher interaction a 
couple information-feedback where the information, as well as the feedback, could be associated to 
a result (R), procedure (P) or knowledge (“connaissance”, C), leading to 9 possible types (table 1). 
A qualitative didactic analysis of each interaction in a class session allows reporting the dynamics at 
play in these interactions by associating each of them to one of the nine possible types of regulation.  

Action 
Information 

Result Procedure Connaissance 

Result RR RP RC 
Procedure PR PP PC 
Connaissance CP CP CC 

Table 1: Information-Action: 9 possible pairs 

In some case, the “coding” could depend on what has been previously done, so that there is a need 
for interviews to support the coding.  

The following section implements this tool to analyze an effective classroom episode.  

A minute of verbal interactions in class of mathematics  
We use a classroom video, collected from the French research project NEOPRAEVAL on evalua-
tive practices in mathematics to analyze there the students-teacher interactions with the “RPC tool”. 
The extract, situated at the beginning of a one-hour session with Grade 8 (14 y.o.), consists of 
“Flash”, a series of calculations ritual in this class, intended to be treated quickly. A slide titled 
“Mental calculus” then five calculations are successively displayed 30sec each, during which the 
students carry out calculations. Their written answers/calculations are neither collected nor looked 
at by the teacher. After the fifth calculation, the teaching undertakes a collective correction, ques-
tioning students and writing the answers herself on the board. Our analysis concerns the collective 
1min dialogue-correction of the very first calculation displayed: 3x10-2. We aim at identifying 
verbal interactions that can be interpreted as moments of formative regulation, based on an a priori 
analysis of the task, of the knowledge concerned (presented in Appendix), of possible interventions; 
and an a posteriori analysis of the effective interactions (presented in the next section). 

Analysis a priori of the teacher’s interventions 

In situations of interaction, the teacher faces various cases (answers are correct or not, wished or 
not, expected or surprising…), which could raise various types of regulation (explicitly agree or not, 
develop the procedure or not, indirectly disapprove by repeating an explanation/ not reacting/ 
questioning someone else…), depending, among others, on the objectives fixed by the teacher prior 
to the session and/ or on the spot. In all cases, the intervention is said formative if it enables the 
student to recognize whether a behavior, answer, is correct or not2. 

For the calculation 3x10-2, answers a or b, or even f (Annex) would be the acceptable correct ones 
(expected/not). Answer a could bring a simple approval or a development to clarify the procedure, 
for example by an oral explanation on the product by 10-2, leading 3 at the hundredths digit by a 

                                                 
2 The exactness of an answer does not prejudge the teacher’s reaction. A correct and awaited answer could still draw to 
repeat the solution, to develop a procedure, take the opportunity to review some concepts, etc. 



technique on the rows of the decimal writing, or by using one of the other possible answers b, f, g, 
h, i, j or k as intermediate calculus. As for the answer b, it contains already a calculative step of 
procedure, but here again; the teacher could accept it or add an explanation via the answer c, even d 
or e. These a priori reactions not only depend on the mathematics aimed at but are to be adjusted 
with the context where the task takes place. As already underlined, neither the task alone, nor the 
students’ answers (correct or not) suffice to explain the feedbacks. Here, the mental calculations 
context, in the “flash” ritual, requires not to spend too much time on the task; therefore answers c, d, 
e, or j, k (fractional answers) are less likely to be acceptable (even if the teacher may want to expose 
them during the correction). We assume that these answers will lead the teacher to some “negative” 
feedback, i.e. indicating, by a way or another, that it’s not the expected answer in such context.  

Analysis of the 1 minute interactions 

Table 2 transcribes the turns to speak that occurred during the minute of this correction. The two 
last columns indicate whether the information (I) brought by the student’s relate to result (R), 
procedure to obtain it (P), or subjacent knowledge (“connaissance”, C); the same for the resulting 
teacher’s action (A). The coding actually limits the researchers’ inferences by addressing the facts: 
the nature of the feedback (from a mathematical point of view: a result, a procedure or knowledge). 
This feedback can be done by addressing the result level, others the procedure, still others the 
knowledge. When the teacher does not react verbally to an answer3, we consider this silence an 
information too about the validity (or not) of the student’s answer.  

N Turns of speak I A 

01 P : so / Camélia ?   
02 Camelia : three times one over ten times ten/ P  
03 P : what is ten to the negative two ?  P 
04 Camelia : one over ten times ten P  
05 P : and we know how to calculate it ?  P 
06 E2 : one over three hundreds R  
07 E3 : what’s that ?   
08 P : you don’t know how to calculate one over hundred??  R 
09 Camelia : Ah yes ///   
10 E2 : it makes one over three hundreds.   P: -- R R 
11 E3 : it’s not possible R  
12 P : Orlane  R 
13 Orlane : one over three hundreds.    P: -- R R 
14 E5 : three hundreds…  one over three hundreds R  
15 P : there is indeed a negative here [showing the sign of the exponent – 2 on the statement]  P 
16 E5 : bah / negative one over three hundreds. P: -- R R 
17 E6 : zero point zero three R  
18 P : Yasmine  R 
19 Yasmine : zero point zero three R  

20  P : [writing on board 0,03 then 10-2 = ] So ten, negative two/ indeed Camélia 
/ this is one / over ten times ten / so / one over hundred / one hundredth / you know how to write this? 

 P 

21 Camélia : yes    
22 E8 : this is one percent ! R  
23 P : [she writes 0,01 after 1/100] It is 0,01 / so if one asks to make 3 times this/ 0,03  P 

Table 2: A minute of verbal interactions 

The pairs (I; A) then constitute basic units of formative evaluation and finally, the analysis of the 
interactions in this extract results in the following table: 

                                                 
3 We consider only obvious cases (the student action is clearly audible and the teacher takes a time “not paying atten-
tion”) and we count only utterances directly linked to the task as R, P or C, no other ones (as lines 7 or 21). 



 
Information/Action Result Procedure Connaissance (knowledge) 

Result 6 3 0 
Procedure 0 2 0 
Connaissance 0 0 0 

Table 3: Synthesis of the interactions 

Several observations can be made: 1) a majority of pairs remain on the same level, with a majority 
of RR among these. Only 3 feedbacks are changing the student’s level of information making it 
pass from result R to procedure P; 2) Very few student intervention are situated at the P level in this 
particular case; 3) No interactions from students, nor from teacher, directly address knowledge. 
Many of these remarks could reasonably be explained by the specific nature of this episode: mental 
calculation, intended to be already mastered by students, the correction of which should be easy and 
short. Yet, we can notice a swift along teacher’s interactions. After a time respecting the students’ 
“result” level, she switches feedbacks towards procedural level. Indeed, the rare RP events occur all 
at the end of the exchange (line 15/20/23). This can reflect teacher’s up-taking of information from 
the students’ speeches. Seeing numerous mistakes instead of the expected answer, she adapts her 
feedback by entering into a procedural level. She does not always verbally react when the answer is 
wrong (see E2; repeated twice; or E3; E5); she possibly prolongs the interaction when the answer is 
acceptable even if not expected (it is the case for Camelia’s answer, but not for the answer “1%” of 
E8) and writes on the board what is correct and acceptable (“10-2=0,01 and 0,03”). Thus, when 
Camelia starts an answer that could lead to d (fractional expression) or g or j (decimal expression), 
she interrupts her to orient the discourse towards the meaning of the powers of 10 (here 10-2) that 
lead to decimal notations (“0,01”). Referring to our a priori analysis, we assume that the teacher 
thus expects the answer b (direct decimal expression) not f, nor i that have intermediate fractional 
steps. Yet, the student goes on with fractions. The expected answer turns to be long delayed. Stu-
dents make the classical mistake which is not picked up by the teacher (E5), then an answer using 
percentage is expressed, not much taken into account by the teacher, who seems to get eager for the 
expected decimal. Observing the mistakes and students’ difficulties, she reconsiders the change of 
the power of ten into decimal notation via fraction calculation, in accordance with the procedure 
suggested by Camelia, thus finally accepting to align with the cognitive path taken by her students. 

Discussion and perspectives on didactic regulations 
Aiming at analyzing, in a didactic approach, teachers’ practices of formative regulation, we re-
viewed literature, which characterize these practices as both very few and little diversified. We thus 
looked for a theoretical and methodological tool that enables comparison between teachers and also 
various contents, in order to agglomerate results from various data and seek correlations. The analy-
sis of the short episode above brings up many questions on the observed session as on the RPC. On 
the data, it suggests to test longer episodes, other contexts, other mathematical contents, and with 
other teachers. In the purpose of describing and understanding the teachers’ adaptive activities to 
the students’ one, it would be interesting to enrich analyses with various mathematical contents, and 
various didactical contexts of learning (application of former knowledge, problem solving, institu-
tionalization…). The RPC tool makes possible the determination of trends in the regulating practic-
es (between-variability of teachers or within-variability of teacher). On the theoretical tool, it results 
in prolonging the use of these RPC tables by devising tables being “average” of many same contex-



tual tables, to characterize the regulation types for a given teacher. One could indeed calculate a 
table of the variations to the average of the tables corresponding to several sessions for the same 
teacher (intra-variability, to characterize the regulation practices for a given teacher), or examine 
the variations to the average for several teachers on a given content (inter-variability to characterize 
the profession, or how regulating practices depends on the specific knowledge). 

Similarly, the other few analyses we have carried out with this tool look quite promising for re-
search on teaching regulations. They confirm the variability of the practices observed in former 
research. Yet, they also reveal some tendencies: 1) the couples information-feedback observed are 
not of the same type but distributed among five or six of the nine possible types; 2) these regula-
tions were not numerous in our data; 3) the couples RR are dominant for all the teachers, a result 
converging with research on evaluative practices quoted in our literature review; 4) the distribution 
of interactive regulations, for a given type of information (R, P or C) is higher along the diagonal, 
i.e. pairs RR are more frequent than RP or RC; pairs PP are more frequent than PR or PC. This 
suggests that teachers generally produce feedbacks on the same level as the students’ answers. They 
rarely turn a R-answer onto a procedure level; or help a student, who is indicating a procedure, to 
formulate the underlying knowledge C. Therefore, are these specific cases of regulation (when the 
teacher’s feedback and received information are not on the same level) fostering the students’ 
learning? And are the ascending ones (RP, RC, PC) more supportive for learning?  

In conclusion, the joint perspective taken here led us to a tool to analyze the mechanisms of forma-
tive regulation in classroom interactions. If the tool appears fruitful here, could it be applied more 
largely to other forms of formative assessment in mathematics education? Indeed, “formative” 
evaluation requires means from the teacher to collect information on the students’ learning. Identi-
fying results, procedures or knowledge in interactions could a priori be means of taking into ac-
count the specificity of the savoirs in the forms of formative assessment set-up by the teacher 
(questioning, discussions, peer/ self-assessments…). Such considerations lead to reflections about 
the nature of the beginning networking case here. The connection between didactic fields of re-
search and the assessment one is realized here by elaborating a possible common methodological 
tool that possibly informs both research fields. This case of networking is rather original, although it 
is justified in Radford’s remark: Using the semiosphere’s spatial metaphor, theories Ti and Tj can 
be visualized as being “closer” or “further” depending on their own (Pi, Mi, Qi) and (Pj, Mj, Qj) 
structures. The connection ck of Ti and Tj requires the identification of research questions Qij 
(tasks, problems, etc.) that guide the enterprise as well as the building of a new methodology Mij to 
answer the research questions under consideration. (Radford, 2014, p. 284). 
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Appendix: Excerpt of the a priori analysis of the task  
Possible answers and procedures: Various categories of correct procedures and answers can be discerned following 
the knowledge used. I) Use of the scientific notation: directly move from this notation to the decimal one: a.3x10-2 =0,03 
(note that the lack of explicit calculation can lead students to reject this procedure by didactic contract effect). II) Use of 
the decimal notation in calculation: b.3x0,01=0,03 III) Use of the fractional notation: different procedures according to the 

fractional form applied to ten powers: c.  d.  e. . 
IV) Mix fractional/ notation: various procedures depending on the forms applied to ten powers: 

f.  g.  h.  

i.  j.  k. .  
Mathematical knowledge at stake: The task could be legitimately interpreted in multiple ways. Yet, in the context here 
(a series of quick calculus), short procedures (and short corrections), mentally easy, might be awaited by the teacher, so 
a, b, c, f or i. There, the passage from 10 powers to decimal or fractional form, do not explicitly rely on the definition of 
the exponent. This is important to interpret her feedbacks taking into account professional constraints as the time factor.  
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Existing research about communities of mathematics teachers mainly draws on sociocultural 
theories. In complementarity, our project consists in studying more deeply the place of mathematics 
within communities of teachers. We also define the notion of didactical study of communities of 
mathematics teachers to focus on a general research project on the place of mathematics in teacher 
community dynamics. We propose a theoretical model to analyze the problems of the community 
stemming from the network of several theoretical frameworks and approaches. The theoretical 
model is particularly based on arguments given by the members of the community and mathematics 
teaching resources. Two contrasted case studies show the relevance of our focus on mathematics.  

Keywords: mathematics teaching, teacher communities, problem of a community, argumentation, 
mathematics teaching resources. 

Introduction  
This paper focuses on communities of mathematics teachers. We are particularly interested in the 
role of mathematics in community dynamics, its epistemological characteristics, its validation 
modes and its conditions of teaching. We wonder about the singularity of a community of 
mathematics teachers: in what way the study of a community of teachers in mathematics education 
is different from the same study in physics education, in geographic education and so on? 

In this contribution, we discuss a general question which is the focus of our research project: “What 
network of theoretical approaches is needed to determine the singularity of communities of 
mathematics teachers?” We are in an exploratory stage in which we develop theoretical constructs. 
In the three last CERME workgroups about networks of theoretical approaches, two authors 
discussed the issue of communities of mathematics: Palmer (2013) and Castela (2013). Palmer 
notes that Wenger´s (1998) theory of communities of practice does not focus on mathematics 
education and/or teaching. Castela (2013) stresses the fact that the activity of communities of 
teachers and different modes of validation of mathematical knowledge in these communities are 
determined by the institutional conditions and constraints. For instance, teacher’s communities do 
not have the same role as the researcher communities in the knowledge validation process. These 
researchers mainly draw on sociocultural theories in order to understand some phenomena. In 
complementarity to these research works, we aim to determine the singularity of communities of 
mathematics teachers. Our research also contributes to the French ReVEA1 project, which concerns 
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the interactions between teachers (individual and collective aspects of their work) and their 
resources in four disciplines, including mathematics.  

Before presenting the kind of networking needed to study the communities of mathematics teachers, 
we shall define the way we use some words in the following. Many researchers use communities of 
teachers to talk about the forms of collaboration between teachers (Robutti et al., 2016). In the same 
line, we use the term community, loosely defined and not aligned with particular theoretical ideas. A 
community of teachers designates several teachers engaged together professionally to achieve a 
common project related to mathematics teaching. We propose also to characterize “community 
dynamics” as the role of the members and their individual projects, the verbal interactions, and the 
interactions with the resources for teaching. 

Communities of mathematics teachers: Networking of theories needed 
For a didactical study of communities of mathematics teachers 

Several researchers on the practices of mathematics teachers have already studied the issue of 
communities of teachers (Graven, 2004; Gueudet, Pepin, Sabra, & Trouche, 2016; Jaworski, 2006; 
Krainer, 2003).  

Some researchers explore the place of collective work in teacher training (Llinares & Krainer, 2006; 
Jaworski, 2006) and more recently its place in online teacher training (Borba & Llinaras, 2012). 
Furthermore, relying on the theory of CoP, Jaworski (2006) develops the communities of inquiry 
approach. She stresses that developing critical thinking on teaching practice takes place in long-
term processes of collaboration between teachers, trainers and researchers. This approach takes the 
specifics of mathematical epistemology in teaching and learning practices into account. However, 
from the standpoint of research, the communities of inquiry approach only allows the study of 
communities determined by the particular operational process of this approach. 

Other researchers in mathematics education characterized different forms of communities but the 
place of mathematics is not always considered as central in the theories mobilized and developed 
(for example, see Krainer, 2003).  

In order to identify the singularity of communities of mathematics teachers, we define the notion of 
didactical study of a community of mathematics teachers as the study of the conditions and the 
constraints of learning and sharing knowledge related to mathematics education through the design 
of resources and interaction between members of this community. Let us specify each element of 
this definition:  

 The conditions and constraints of learning and sharing knowledge are those that allow, 
encourage, restrict or inhibit learning in the community.  

 Knowledge related to mathematics education consists of subject matter knowledge and 
pedagogical content knowledge (Ball, Thames, & Phelps, 2008) that affect the condition of 
mathematics diffusion. 

 Resources are anything that is developed and used by teachers (and students) in their 
interaction with mathematics to teach or learn inside/outside the classroom (Pepin, 



 

 

Gueudet & Trouche, 2013). This element is preponderant in the study of a community and 
plays the role of a mediation and communication tool.  

 By “interaction between members”, we do not only mean simple verbal, oral or written, 
exchanges but also sharing resources and experiences through online activities.  

The next sections discuss the theories and approaches that help us to take into account each of the 
elements above. 

Learning and sharing knowledge in CoP: through problems of the community? 

Wenger (1998) proposes a general theory built in the context of knowledge management to study 
communities of practice (CoP) defined as apprenticeship communities. He emphasizes that learning 
takes place during the exchanges between members, especially those exchanges related to their joint 
(community) problems. The treatment of these problems leads to new knowledge emerging from 
the participation process.  

Wenger’s theory does not give specific tools to consider mathematics, though we rely on this 
general idea proposed by Wenger of considering the problems of the community. We distinguish 
between problems of the community – identified by the researcher – and community problems – 
identified by the members – even if both can sometimes be the same. In this contribution, according 
to our focus on mathematics, a problem of the community is a phenomena or event that prevents or 
hinders the achievement of the common project and that is linked with mathematics as a science or 
as a teaching field.  

At this point of our contribution, we hypothesize that the study of the problems of a community 
permits to determine a part of the community dynamics. We propose to realize it by following up 
the resources and the argumentation process. 

Resources for teaching mathematics 

The documentational approach of didactics (Gueudet & Trouche, 2012) attempts to frame the 
process of the design of teaching from the point of view of the teachers’ work. It is a socio-cultural 
approach that permits us to study the interleaving between the community resources and the 
teachers resources that are involved (Gueudet et al., 2016). The teacher interacts with resources, 
selects them, and works on them (adapting, reviewing, reorganizing, etc.) in some processes where 
design and enacting are intertwined. The intertwining of new resources and interactions with other 
actors in the educational system creates new teaching knowledge and carries teachers’ professional 
development (Gueudet & Trouche, 2012).  

In order to achieve common projects, the different individual documentational geneses interact 
(Gueudet et al., 2016). The consideration of resources in the community of teachers should take into 
account: 1) the gathering, creating and sharing of resources in order to achieve the mathematics 
teaching goals of the community; 2) the result of this process, the shared resources and shared 
associated knowledge (what teachers learn together from conceiving, implementing, and discussing 
resources).  

In the documentational approach, we use the definition given by (Pepin, Gueudet, & Trouche, 
2013): “all the resources which are developed and used by teachers (and pupils) in their interaction 



 

 

with mathematics in/for teaching and learning, inside and outside the classroom”. The advantage of 
this definition is that it determines the documentation work in terms of interaction with 
mathematics. In this perspective, the resources of the community could be considered like a highly 
structured system, where resources are linked according to the level of teaching, the mathematical 
topic, the teaching mode, and the evolution of the curricula. 

The documentary approach is a framework designed to articulate with some other ones. To answer 
our question, we need a complementary framework to consider the epistemological characteristic of 
mathematics. 

Interaction between members: the place of argumentation 

Taking into account the interaction between the members of a community implies taking the oral or 
written verbal exchanges into account. We have chosen to identify the arguments given by the 
members during the exchanges and to interpret them with the help of the resources that were 
mobilized or designed. We define argument as the reason that one presents to defend a certain point 
of view (Plantin, 1990). It is always oriented toward the decision that speaker wants to take (Ibid.).  

Pedemonte (2007) stresses, in the case of mathematics, what can be considered an argument. She 
notes that is necessary to look at the proposition and at the context, which allows us to remove 
misunderstanding. More specifically, she distinguishes between arguments to convince – based on 
rationality – and arguments to persuade – for example based on authority.  

Plantin (1990) and Pedemonte (2007) considered argumentation in the learning processes. Which 
kind of transfer could we make in the case of teachers? Some aspects need to be developed and 
clarified in our future work: typology of arguments, impact on the community dynamics.  

Emerging model for analyzing a problem of the community: criss-crossing of 
several theories and approaches  
Problems of the community that we consider are linked to mathematics as subject matter knowledge 
and as pedagogical content knowledge (Ball et al., 2008). We hypothesize that the treatment of 
these problems is related to: (1) the role of members in the community of teachers; (2) the 
arguments given by members; and (3) the use of resources that the teachers mobilize or produce to 
support the process of argumentation. We aim to determine the articulation between these 
components that could emerge (or not) in the treatment of these problems (members, arguments, 
resources) and the decision-making. We consider two case studies. 

Problem of the community treatment: two contrasted case studies of a didactical study of a 
community 

We developed the model on two contrasting cases to: 1) highlight the importance of considering the 
problem of the community; 2) extend the validity of the model.  
We conducted the first case study at high school level. The community is spontaneous. The 
mathematical knowledge considered is the notion of “function”. The researcher is outside of the 
community.  



 

 

We conducted the second case study at the primary level. The community is intentional. The 
mathematical knowledge considered are research situations and proof. The researcher is within the 
community. 

In both cases, we present some elements of context, the arguments given by the members of the 
community and their role in the treatment process of the problem of the community. Finally, we 
present the interpretation of the arguments exchanged by specifying the determining factors in the 
decision-making. We provided the details of the analysis in another paper (Georget & Sabra, 2015). 

First case study: grade 10 textbook project 

Sesamath is a mathematics teachers association founded in 2001. It aims to design and disseminate 
free and open resources. Interactions between the Sesamath members take place on online platforms 
and by mailing lists. Sesamath is structured around several project communities. We consider one 
of these communities: the grade 10 textbook project.  
The chosen corpus corresponds to a thread of discussion about the progression of the topic 
“functions” in the textbook it is intended to design. “Functions” is the main topic to introduce in 
mathematical analysis at secondary level in France. The curriculum introduces functions for the first 
time at the grade 10 (15-16 years old), which generates a problem of the community that led to a 
controversy that we formulate by the following words: “What progression of the topic 'functions' 
must be adopted?”  

Three members of the community are mathematics teachers with more than ten years of experience 
each. They play a particular role in the discussions: Mr W as a designer and a commentator and 
reviewer of resources, Ms A as a designer and a reviewer and a commentator of resources, and 
Mr H as a coordinator for several Sesamath projects and coordinator between Sesamath and other 
external communities.  

This first case study illustrates arguments given to treat a problem of the community: (1) 
mathematical arguments with a discussion on the mathematical contents (connectivity between 
some concepts); (2) epistemological arguments about “functions” with a level of abstraction, 
depersonalization, and decontextualization of associated concepts; (3) didactical arguments coming 
from a personal experience or by consideration of the topic “functions” in the different level of 
teaching; and (4) arguments mainly linked to the design of resources. 

The interpretation of the arguments during the discussions cannot be made independently of the 
context of the problem (structuring of the "functions" topic in the textbook). The mathematical 
argument takes importance in the formulation of the decision. We consider some arguments made 
by Mr H (argument to persuade) as a strong determinant factor in the decision. Mathematical 
arguments launched by Mr W and confrontation of his proposal with existing textbooks are also a 
second determinant factor in the decision. The members formulated the decision in terms of 
mathematical arguments.  

Second case study: CoP and situations of research and proof at the primary level 

The second case study is about an experiment of an intentional CoP during three years. We 
implemented a CoP to develop the practice of situations of research and proof between peers in 



 

 

some classes at the primary level. It was composed of teachers and the researcher-coordinator of the 
CoP. We proposed several “mathematical situations” on online resources to the teacher and the 
design of these resources has been a key point in this CoP. 

The data analyzed are about an extract of transcription of a meeting at the end of the second year 
with three teachers and the researcher-coordinator. One of the teachers, Mr D, does not understand 
the proof of a mathematical problem. He brings the usability of the resources into question by 
pointing out that the resources do not take his lack of mathematical knowledge into account.  

For Mr D, the introduction of the proposed situations in his practice is rather exceptional. Ms S is 
voluntary in her implication in the CoP and for practicing these situations with her pupils. Mr H is 
more experienced than Mr D and Ms S, who have also problems of understanding for several 
resources, especially Mr D about a certain resource which Ms S understands well. Some exchanges 
help Mr D to understand the proof of the mathematical problem after which Mr H closes the debate 
implicitly. Mr D and Ms S do not rekindle it. Following some controversies about the usability of 
several resources, there is therefore an implicit decision not to modify them.  

During the interactions, both kinds of arguments are exchanged: (1) resource design arguments 
about the usability of the teaching resources given by Ms S and Mr D who launch the interactions; 
and (2) mathematical arguments given by Mr H and the researcher/coordinator that permit the 
understanding of the proof by Mr D. 

At the end of the exchanges, the decision is implicitly validated by mathematical arguments: the 
proof presented by the resource is valid and understood by the majority of those present at the 
meeting, so it is not necessary to modify the resource once the explanations have been given. 

Results and discussions 
In both cases studied, community members use mathematical arguments to validate the final 
decision. Mathematics appears to have at least two different roles. In the first case, the validation by 
some mathematical arguments seems to be essential to legitimate the decision-making even if the 
determining factor concerns the design of teaching resources. In the second case, the decision-
making is implicit and validated by mathematical arguments while the common project of the 
community concerns the design of “pertinent” teaching resources. 

Thus, from a methodological point of view, it is relevant to analyze the specific role of mathematics 
in the exchanges about a problem of a community. From the study of both case studies, a model 
emerges (see figure 1) as a proposal for understanding the community dynamics. We base this 
model on three components: (1) The members of the community depending on their role and their 
implication in the treatment of the problem, (2) the arguments, and (3) the resources for 
mathematics teaching that support the argumentation. The model gives the opportunity to analyze 
the problem of all type of communities.  



 

 

 
Figure 1: Model to analyze the role of mathematics (didactical, epistemological, etc.) in the treatment 

of a problem of the community 

Conclusion 
Existing research about mathematics teacher communities draw mainly on sociocultural theories. In 
complementarity, our project consists in studying more deeply the role of mathematics within 
communities of teachers. We propose a model of analysis resulting from articulation of several 
theories and approaches. We have also defined the notion of didactical study of communities of 
mathematics teachers to clarify the frame of this general research program. We have presented a 
model based on (1) the identification of a problem of the community, (2) the analysis of this 
problem in terms of community dynamics, (3) the characterization of the specific role of 
mathematics among arguments and resources for mathematics teaching. Both contrasted case 
studies contribute to show the relevance of our proposals. The model of analysis allows us to 
distinguish two roles of mathematics in the treatment of problems: 1) to explicitly formulate a 
decision already taken; 2) to implicitly validate a decision that might even be against the goal of the 
community. However, the model must now be tested on other data and on other kinds of 
communities. We also aim to test it in the perspective of identifying other roles of mathematics in 
community dynamics. 
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As a theoretical framework I chose to use social constructivism on development and learning, 
mainly Vygotsky’s perspectives. As highlighted by Ernest (1998), social constructivist theorists 
propose that knowledge is constructed through socially situated interactions or conversations. My 
study is underpinned by social constructivism because in this paradigm: 

 The teacher has a fundamental role as the more knowledgeable other in guiding the learner 
through the learning process; 

 Rich social interaction can enhance learning especially through the rich tool of social 
conversation and other forms of language; and  

 Resources and language can be used to facilitate learning and thus to take the learner from 
the current point of learning to that which s/he has the potential to get to. 

In Vygotsky’s works the learner’s developmental trajectory is often referred to as the Zone of 
Proximal Development (ZPD), “the distance between the actual development level as determined 
by independent problem solving and the level of potential development as determined through 
problem solving under adult guidance, or in collaboration with more capable peers” (1978, p. 86).  
In this journey, the role of the More Knowledgeable Other (MKO) is thus crucial. Vygotsky 
frequently makes use of specific terms in his works. In the poster, I intend to provide a brief 
explanation for each term. Vygotsky’s perspective accentuates that a child develops through a 
transformative collaborative practice which involves cultural tools, cultural influences, and other 
significant adults (Vianna and Stetsenko, 2006). This process, known as ‘cultural mediation’ 
underlies my use of an intervention programme to support learners with MLD. The programme 
sought to provide the participants with meaningful interactions that would help them to master the 
ten numeracy components (Catch Up, 2009). Vygotsky (1978) suggests that the analysis of the data 
collected by himself and his team “accords symbolic activity as a specific organizing function that 
penetrates the process of tool use and produces fundamentally new forms of behaviour” (p. 24).  
Therefore, whilst analysing the initial data I looked closely at situations in which the interactions 
provided would have altered the child’s behaviour to such an extent that they now have mastered a 
specific concept, skill or knowledge vis-à-vis a specific numeracy component being focused on. 
Dunphy and Dunphy (2003) suggest that there are four stages within the ZPD, the first being that in 
which performance is assisted by the MKO, hence the choice of a teacher-led intervention 
programme. Based on Vygotsky’s works, Tharp (1993) identifies seven means of supporting the 
learners to develop within their Zone of Proximal Development. These are: modelling, feedback, 
contingency management, instructing, questioning, cognitive structuring “explanations” and task 
structuring (Tharp, 1993, p. 271-272). Internalisation might take place through the use of what 
Vygotsky names as “cultural tools”. Vygotsky (1978) distinguishes between technical tools and 
psychological tools. Technical tools “serve as the conductor of human influence on the object of 
activity; it is externally oriented” (p. 55).  Such tools include the use of a ruler or protractor, for 



example. Psychological tools are directed inward and gear the mind and the process of thinking 
such as language.  In my programme I made use of both forms of tools.   

Poster format chosen 
The study focuses on exploring effective strategies for helping 9 – 10 year old Maltese children 
struggling with mathematics. Six participants were selected through standardised tests for numeracy 
and reading. Three children were identified as having only mathematics learning difficulties (MLD) 
and three having comorbid difficulties in mathematics and reading (MLDRD). In the poster, I 
present some crucial theoretical perspectives and the process of data collection. Its focus is to 
present the analytical tool developed to analyse the data collected through the multiple case studies 
carried out as part of an intervention programme conducted on a one-to-one basis with each of the 
participants. 

Possible implications for existing research in the area 
Research about what works with children having MLD is still very limited. Hence the importance of 
this study and the process of analysing the data gathered from the multiple case studies. Through 
the data analysed so far some important annotations have been made. These include the observation 
of two other modes of assistance that had not been mentioned by Tharp (1993). These I decided to 
label as ‘recapturing’ and ‘role inversion’. Moreover it also seemed evident that interaction between 
the learner, the MKO and Cultural Tools was fundamental in providing the necessary assistance in 
guiding the learner within the ZPD to towards the potential zone of development.  This means that 
this interplay was crucial in supporting the internalisation process. Therefore strategies that are 
effective with learners having MLDRD seem to be those that bring together all these aspects.  This 
is represented in the analytical tool developed, which shows this symbiosis and its facilitation of 
internalisation. 
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Some theoretical models emerged from specific mathematical contents or educational levels, so 

they are well adapted to the context where they were created but, sometimes, they do not fit well in 

a different context. Related to the issue of the need to go beyond a specific theory when researching 

a phenomenon, to solve the tension between home-grown needs and borrowed theories, we present 

the reasons for and steps of an adaptation we have had to do of the Cognitive Demand model so 

that it fits the requirements of our research questions, methods and data. We systematized the defi-

nition of the model stated by its authors, and completed this definition with some necessary state-

ments. Then, we re-stated some characteristics of the model to avoid inconsistencies when using it. 

Finally, we particularized the general model to several specific mathematical topics. 

Keywords: Theoretical framework, adaptation, cognitive demand, mathematical problem solving. 

Introduction 

The choice of a specific theoretical framework is a key decision for researchers when they start 

working on a new research project. However, sometimes, researchers wish to use a theoretical mod-

el in a context that the model does not fit well, and they decide to modify the theoretical model to 

adapt it to the new requirements. We present our experience of fitting a theoretical model with flex-

ibility so it can be adapted to contexts and used in ways the model had never been used. 

We are developing a research project1 aimed to better understand the cognitive processes of primary 

and lower secondary mathematically talented students (i.e., students showing mathematical abilities 

clearly over average students) when solving problems. A characteristic of those students is that they 

demand problems making them engage in high level of reasoning. A way for teachers to succeed in 

it is by posing them that kind of problems. Then, we had to find a way to determine the cognitive 

effort required by problems and done by students when solving them. The Cognitive Demand model 

(Smith & Stein, 1998) fitted our requirements, so we integrated it in our theoretical and methodo-

logical research frameworks. However, when we used this model to analyze our data, we found 

some difficulties in applying it due to ambiguity or inconsistency of results, so we decided to adapt 

it to our needs. We detail in next pages the steps in the process of adaptation, the reason for each 

step, and the resulting theoretical model. We present a reconstruction of the main parts of the real 

recurrent process, which has taken several years and still has not been finished. 

The next section presents the characterization of the Cognitive Demand model as stated by its au-

thors. Third to sixth sections present examples of the difficulties we found and the steps we fol-

lowed to adapt the original model: organizing the original characterization, completing such charac-

                                                 

1 The results presented are part of the R&D&I research projects EDU2012-37259 (MINECO) and EDU2015-69731-R 

(MINECO/FEDER), funded by the Spanish Government and the European Fund for Regional Development. 



terization with some new statements, re-wording some characteristics of the model to avoid incon-

sistencies when using it, and particularizing the new general characterization of the model to differ-

ent specific mathematical topics. Due to space limitations we cannot show the details for all levels 

of cognitive demand, but only an example of each step for certain levels. 

The starting point: The levels of Cognitive Demand 

The Cognitive Demand model resulted after a process of characterization of mathematical tasks ac-

cording to their “potential to engage students in high-level thinking” (Smith & Stein, 1998, p. 344). 

It includes four levels of cognitive demand that assess the cognitive effort required from students to 

solve a mathematical task. These levels are labelled (Smith & Stein, 1998) as memorization, proce-

dures without connections to concepts or meaning, procedures with connections to concepts and 

meaning, and doing mathematics, when complex mathematical thinking is required. Each level is 

defined by a set of characteristics paying attention to different aspects of the solutions of problems. 

We present in Table 1 the characteristics of two levels that are the ground for the rest of the paper. 

Procedures without connections 

2.1. Are algorithmic. Use of the procedure either is specifically called for or is evident from prior 

instruction, experience, or placement of the task. 

2.2. Require limited cognitive demand for successful completion. Little ambiguity exists about what 

needs to be done and how to do it. 

2.3. Have no connection to the concepts or meaning that underlie the procedure being used. 

2.4. Are focused on producing correct answers instead of on developing mathematical understand-

ing. 

2.5. Require no explanations or explanations that focus solely on describing the procedure that was 

used. 

Procedures with connections 

3.1. Focus students’ attention on the use of procedures for the purpose of developing deeper levels 

of understanding of mathematical concepts and ideas. 

3.2. Suggest explicitly or implicitly pathways to follow that are broad general procedures that have 

close connections to underlying conceptual ideas as opposed to narrow algorithms that are 

opaque with respect to underlying concepts. 

3.3. Usually are represented in multiple ways, such as visual diagrams, manipulatives, symbols, and 

problem situations. Making connections among multiple representations helps develop meaning. 

3.4. Require some degree of cognitive effort. Although general procedures may be followed, they 

cannot be followed mindlessly. Students need to engage with conceptual ideas that underlie the 

procedures to complete the task successfully and that develop understanding. 

Table 1: Definition of the levels of cognitive demand of procedures without connections and procedures 

with connections (Smith & Stein, 1998, p. 348). Order numbers are added for easy reference 

To attain our research objectives, we created rich problems intended to be posed to whole-class 

groups, consisting of several related questions of increasing complexity, in such a way that all stu-

dents should be able to solve the first questions but only the more able students could solve all of 

them. The levels of cognitive demand allow us to classify the questions in a problem and decide 

whether each question is more appropriate for average students or for talented students. 



The Cognitive Demand model was created after the analysis of problems that, most of them, were in 

the quite algorithmic areas of school arithmetic and algebra (Stein & Smith, 1998; Stein et al., 

2009), but we are trying to use the model to analyze problems in mathematical topics very different 

from the previous ones, as are plane geometry, geometric patterns (pre-algebra) and visualization. 

Identifying inconsistencies between the characteristics of the levels 

After using the model to analyze different problems, a difficulty related to lack of consistency be-

tween some levels arose. We exemplify it by analyzing a problem consisting of several questions 

guiding students to discover and prove a formula to provide the number of diagonals of any poly-

gon. The problem has two parts: the first one can be seen in Figure 1; the second part asks students 

to draw and count all the diagonals of the same polygons and to fill in a table, to calculate the num-

ber of diagonals of a 20-sided polygon, to generalize the procedure of calculation of the diagonals 

to any given polygon, and to prove this relationship. We present our analysis of question 1a (Figure 

1) by considering typical average students’ solutions that do not go further than what is asked to do. 

 

1a) In each polygon, draw all the diagonals starting from the marked vertex. Change the shape of the 

polygons by dragging that vertex. Count the number of diagonals. Fill in the table below. 

Polygon Nº of sides Nº of diagonals from one vertex 

Triangle   

Quadrilateral   

Pentagon   

Hexagon   

Heptagon   

1b) What is the relationship between the number of sides of a polygon and the number of diagonals from 

one vertex? Why? 

Figure 1: First part of a problem focused to discover the number of diagonals of any polygon 

Regarding the level of procedures without connections, question 1a is algorithmic and the statement 

suggests the procedure to be used, namely to draw the diagonals from a given vertex and count 

them to fill in the table, so it fits characteristic 2.1 in Table 1. The polygons drawn in the statement 

guide students to draw the diagonals from a specific vertex, so there is little ambiguity about what 

they have to do and how to do it (it fits 2.2), and it does not require explanations (it fits 2.5). On the 

other hand, the procedure to be used has connections with the relationship between the number of 

sides and diagonals from a vertex of polygons (it does not fit 2.3), although question 1a is focused 

on producing correct answers, not on developing understanding of that relationship (it fits 2.4). 

Regarding the level of procedures with connections, question 1a does not fit 3.1, since it is not fo-

cused to make students develop understanding of the underlying relationship. However, it fits 3.3, 



since, to answer it, students use geometric and numeric representations of information about poly-

gons and diagonals: the numeric representation shows the general relationship between number of 

sides and diagonals, while the geometric representation may help students understand why it is true. 

So the question has the potential to let students connect both representations, which would help 

them develop the meaning for the relationship. Question 1a fits 3.2, since it explicitly suggests a 

procedure that is closely connected to the underlying concepts, the number of sides and diagonals 

from a vertex of polygons. Question 1a does not fit 3.4 since its procedure may be followed without 

need of being mindful, and a correct solution to it does not require understanding the underlying 

relationship between number of sides and diagonals from a vertex of polygons. 

The epistemological conception of the levels of cognitive demand is that they are mutually exclu-

sive. We see that question 1a fits several characteristics of each level procedures without connec-

tions and procedures with connections, so it is unclear to which level of cognitive demand should it 

be assigned. This happens because some characteristics of these levels, as stated in Table 1, are not 

precise enough, which can lead to errors when trying to assign a level of cognitive demand to some 

problems. The most evident vagueness, or contradiction, happens with characteristics 2.1 and 3.2. 

Organizing the characteristics of the levels and filling their gaps 

After having identified the difficulty analysed above, we made a detailed comparison of the charac-

teristics of each pair of consecutive levels, to identify possible weaknesses and modify their word-

ing to correct them. We noted that the characteristics of levels (see examples in Table 1) focused on 

six domains of objectives of a problem or its process of solution. These six domains of characteris-

tics are: Procedure of solution, objective of the problem, required student’s cognitive effort, mathe-

matical contents implicit in the problem, kind of explanations required, and types of representations 

used in the solution. The domains helped us arrange the characteristics of the levels of cognitive de-

mand provided by Smith and Stein (1998) and identify some gaps in the definitions of the levels. 

Levels of cogn. 

demand 

Domains Memorization 

Procedures 

without  

connections 

Procedures 

with  

connections 

Doing  

mathematics 

Procedure of solution 1.2 2.1 3.2 4.1, 4.5 

Objective 1.1 2.4 3.1 4.2 

Cognitive effort 1.3 2.2 3.4 4.3, 4.6 

Implicit contents 1.4 2.3 3.4 4.4 

Explanations -- 2.5 -- -- 

Representations -- -- 3.3 -- 

Table 2: Domains of the characteristics of the levels of cognitive demand in Smith and Stein (1998) 

Table 2 shows the assignation of the characteristics of the levels to the domains. It also shows that 

two domains are considered only in the definitions of a level, and that 3.4 includes references to two 

domains, while several characteristics of the level doing mathematics refer to a same domain. 

Next step to improve the usability of the original definition of the Cognitive Demand model was to 

complete the definitions of the levels, by including characteristics referring to the missed domains, 

taking care that each new characteristic is consistent with the corresponding characteristics of the 

other levels. Table 3 shows the new characteristics, to be added to those in Table 1 to make a more 



complete description of the levels of cognitive demand. 

Procedures without connections 

2.6 (representations). One or more representations may be used (arithmetical, geometrical, visual 

diagrams, manipulatives, etc.). When several representations are used, students use them inde-

pendently, i.e., without establishing connections neither between them nor with the underlying 

concepts and ideas. 

Procedures with connections 

3.5 (explanations). Require explanations that focus on the underlying relationships by using specific 

examples. 

Table 3: Characteristics added to the levels of procedures without and with connections 

Having completed the definitions of the levels by merging Table 1 and Table 3, we were ready to 

refine the characteristics that induced wrong or multiple identifications of the cognitive demand in 

some problems, like the problem analysed above (number of diagonals of polygons). 

Refining the characteristics of each level 

A necessary feature of any set of disjoint categories is that their definitions have to make it clear the 

border between adjacent categories. As we showed above, this is not the case for the levels of cog-

nitive demand. To refine the definitions of the levels, we made a systematic comparison of the char-

acteristics in the same domain and decided to do some changes in their wording to make them more 

explicit and to clearly raise the particularities of each level. 

The key difference between the levels of procedures without connections and procedures with con-

nections is that, in the lower level, students do not need to be aware of the mathematical relation-

ships implicit in the problem to solve it correctly but, in the higher level, students need to use con-

sciously such relationships to solve correctly the problem. Table 4 shows the result of the compari-

son between those levels, where we have italicised the new characteristics (see Table 3) and the 

characteristics in Smith and Stein (1998) that we re-worded. Characteristic 3.4 was split because it 

included parts corresponding to two domains. The new wording of the characteristics of the levels 

has highlighted this key difference and now the border between those levels is clear. 

If we repeat now the analysis of the problem in Figure 1, question 1a fits new characteristics 2.1, 

2.3 and 2.4, because it focus students’ attention to draw the diagonals from a vertex of each polygon 

and count them, so it can be easily solved without being aware of the relationship between the num-

ber of sides and diagonals from a vertex. 

Levels of cognitive demand 

Domains Procedures without connections Procedures with connections 

Procedure of 

solution 

2.1. Are algorithmic. The procedure to 

be used either is specifically called 

for or is evident from the context. It is 

a simple procedure that students can 

follow without the need to connect to 

underlying concepts and ideas. 

3.2. Are algorithmic. They suggest ex-

plicitly or implicitly pathways to fol-

low, that are general procedures that 

students can follow only if they have 

established a close connection to un-

derlying concepts and ideas. 



Objective 2.4. Focus students’ attention on pro-

ducing correct answers. Students can 

solve them correctly without the need 

to understand underlying concepts 

and ideas. 

3.1. Focus students’ attention on the use 

of procedures for the purpose of de-

veloping deeper levels of under-

standing of underlying concepts and 

ideas. 

Cognitive 

effort 

2.2. Require limited cognitive effort for 

successful completion. Little ambigu-

ity exists about what needs to be 

done and how to do it. 

3.4a. Require some degree of cognitive 

effort. Although general procedures 

may be followed, they cannot be fol-

lowed mindlessly. 

Implicit 

contents 

2.3. There may be implicit connection 

between the algorithms used and un-

derlying concepts or ideas. However, 

students do not need to be aware of it 

to solve the problem correctly. 

3.4b. Students need to engage with con-

cepts and ideas that underlie the 

procedures to complete the problem 

successfully and that develop under-

standing. 

Explanations 2.5. Require explanations that focus 

solely on describing the procedure 

that was used. 

3.5. Require explanations that focus on 

the underlying relationships by using 

specific examples. 

Representa-

tions 

2.6. One or more representations may 

be used (arithmetical, geometrical, 

visual diagrams, manipulatives, etc.). 

When several representations are 

used, students use them independent-

ly, i.e., without establishing connec-

tions neither between them nor with 

the underlying concepts and ideas. 

3.3. Usually are represented in multiple 

ways, (arithmetical, geometrical, 

visual diagrams, manipulatives, etc.). 

To solve correctly the problem, stu-

dents have to establish connections 

between different representations by 

using underlying concepts and ideas, 

which help them develop meaning. 

Table 4: Comparison between the characteristics of problems in two levels of cognitive demand 

Question 1a also fits new characteristics 2.2 (since there is no ambiguity about how to solve it) and 

2.6 (students will use geometrical and arithmetical representations but without needing to connect 

them), but it does not fit characteristic 2.5, since this question does not ask for an explanation (so, 

this analysis is also useful to uncover flaws in the statements of problems). On the other hand, ques-

tion 1a does not fit new characteristics 3.1, 3.2, 3.3, 3.4a, 3.4b and 3.5. So, now it is clear that ques-

tion 1a requires a cognitive demand in the level of algorithms without connections, which agrees 

with our experimental analysis of real students’ answers. 

Particularizing the new cognitive demand model to specific topics 

As mentioned above, the Cognitive Demand model was generated after analysing problems that, in 

most cases, were related to school arithmetic or algebra. When we tried to use it to analyze prob-

lems in other areas of mathematics (plane geometry, geometric pattern problems and visualization), 

we found that the wording of quite characteristics of the levels were too generic and they did not 

help us to give meaning to the levels specific to those contexts. This forced us to re-word those 

characteristics of the levels to mention specific features of a given topic. We present here the par-

ticularization we have made to the context of geometric pattern problems. 



Geometric pattern problems have proved to be a very fruitful way to introduce basic algebra to stu-

dents (Amit & Neria, 2008; Rivera, 2013). A typical geometric pattern problem presents (Figure 2) 

a graphical representation of the first terms of a sequence of whole numbers, and asks students to 

calculate the value of certain terms of the sequence, to verbalize a general procedure to calculate the 

value of any given term, and to write an algebraic expression to calculate the value of any term. 

You can see below a shape made with one dot, another shape made with three dots, and so on. 

 

1. How many dots has the shape in the 4th position? 

2. How many dots has the shape in the 6th position? 

3. How many dots has the shape in the 20th position? How do you know it? 

4. Is there some rule that could allow us calculate the number of dots of any given shape, for in-

stance the one in the 100th position? Justify your answer. 

5. Is there some rule that could allow us calculate the number of dots of the shape in the nth po-

sition? Justify your answer. 

Figure 2: A typical statement of a geometric pattern problem 

We are interested in analysing the relationships among the geometric patterns and the cognitive de-

mand required by different kinds of students’ answers. When we first used the definitions of the 

levels of cognitive demand (Tables 1 and 4) to classify answers to geometric pattern problems, we 

found that some characteristics were meaningless in this context, so we made a complete particular-

ization of the characteristics of the levels to describe the answers to this specific type of problems. 

Table 5 presents, as an example, the characteristics of the level of procedures without connections 

for the context of geometric pattern problems. It may be noted that most characteristics include ref-

erence to peculiar and unique aspects of those problems. 

Procedures without connections (question 2) 

Procedure of  

solution 

• Are algorithmic. The procedure consists in drawing a few terms by following 

the pattern of the terms in the statement, and counting the items. It can be fol-

lowed without the need to connect to the arithmetic structure of the sequence. 

Objective • Focus students’ attention on producing a correct answer, the number of items 

in an immediate or near term, but not on developing understanding of the struc-

ture of the sequence. 

Cognitive effort • Solving it correctly requires a limited cognitive effort. Little ambiguity exists 

about what has to be done and how to do it, because the statement clearly 

shows how to continue the sequence. 

Implicit contents • There is implicit connection between the underlying structure of the sequence 

and the procedure used. However, students do not need to be aware of it and 

they may answer the question by drawing terms and counting their items. 

Explanations • Require explanations that focus only on describing the procedure used. It is 

not necessary to identify the relationship between the answer and the term. 

Representations • A geometric representation is used to get the number of items and an arithme-



tic one to write the result. Students use the representations without establishing 

connections neither between them nor with the structure of the sequence. 

Table 5: Particularization of the Cognitive Demand model to the geometric pattern problems 

This description of the levels of cognitive demand has proved to be very useful to analyze this kind 

of problems and students’ answers to them. 

Conclusions 

We have presented a case of modification of a theoretical model to adapt it to the specific require-

ments of the analysis we had to do of our data. The Cognitive Demand model was a pertinent theo-

retical framework for our research project, with the potential to ground a deep analysis of our data, 

although the practice showed that the initial definition of this model, as formulated by its authors, 

did not fit well the requirements of our analysis. We have shown some difficulties that arose when 

we tried to apply the initial model. The way to overcome these difficulties was to analyze the theo-

retical model, to identify and understand the origin of and the reason for the difficulties, and to 

make adequate changes in the definition of the levels of cognitive demand to make it more accurate 

and useful. Finally, we had also to particularize the new definition of the levels to the specific con-

text of geometric pattern problems. This general way of proceed may be applied, perhaps after an 

adequate adaptation, to modify other theoretical models not fitting adequately researchers’ needs. 
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Rationale  

The study of mathematics teacher education and professional development has been a central focus 
of research during the last decades. Various research activities have focused on this topic. Within 
TWG 18, we focus on mathematics teacher education (pre-service and in-service), professional 
development and teachers’ professional growth, teachers' professional development practices, 
collaboration and communities of practice, models and programmes of professional development 
(contents, methods and impacts) and the professional development of teacher educators and academic 
researchers. TWG 18 offers a communicative, collegial and critical forum for the discussion of these 
and other related issues, which allows diverse perspectives and theoretical approaches and which 
contributes to the development of our knowledge and understanding as researchers, educators and 
practitioners. 

Participants 

52 papers were originally submitted to TWG18. 22 of them were re-directed to other TWGs. Thus, 
30 papers underwent a peer review process in TWG18: during this process, all papers were revised 
by authors, according to reviewers’ remarks. 29 papers were accepted as paper presentations, one was 
re-submitted for a poster presentation. One of the accepted papers was withdrawn. Finally, 28 papers 
were presented during the TWG sessions. 

Two posters were originally submitted and underwent a peer review process in TWG18: both authors 
revised their posters, according to the reviewers’ remarks; both posters were accepted. Together with 
the re-submitted poster (see above), finally, 3 posters were presented during the conference poster 
session. 

Organisation 

TWG sessions comprised both plenary and sub-group working phases. During the plenary phases, 
two (or three) papers were presented for a maximum of five minutes each, in which the authors 
provided their paper’s central message(s) and challenging questions for discussion. These plenaries 
were followed by parallel sub-groups, which were each managed by one of the presenting authors. 



Participants were free to choose and join one sub-group, where they discussed the paper for 20-30 
minutes. Afterwards, the TWG’s participants met in plenary to hear reports of each sub-groups’ 
central topics and to summarise emerging issues.  

Topics 

The presentations were categorised into four main topics:  

• Noticing Students’ Work 
• Teacher Instructional Practice 
• Impact of Professional Development 
• Pre-Service Teachers.  

Open questions and emerging issues 

This section provides several questions and issues, which emerged during the sessions of TWG18: 

Noticing Students’ Work: 

• Open questions: 
o How do we guide pre-service student teachers to notice particular things such as 

children’s learning? 
o How do the different global country contexts and the constraints of each system 

locally, make a difference when you apply a learning trajectory? 
o Is there a connection between different teachers’ views, what they see and their beliefs, 

based on noticing?  
 

• Emerging issues: 
o Use of the language of the teacher educators in talking about errors e.g., concept 

image. 
o Different points of views about errors in different teacher education programmes and 

how we use/ understand errors in our teacher education programmes. Also differences 
in practices of ‘noticing’. 

o Importance of context of the countries and coming to understand these to understand 
the organisation of the different teacher education programmes. 

Teacher Instructional Practice: 

• Open questions: 
o How to motivate teachers to document more of their work? 
o How do we change teachers feeling judged when getting feedback? 
o How do we understand the different notions of inquiry? What are the effective 

strategies to implement this approach in mathematics lessons? 
o How do we get to the mathematics? What mathematical knowledge do teachers need 

for inquiry approaches in mathematics lessons? 
o When we do our research, we use different tools such as philosophical perspectives 

and analytical frameworks. Is it the different tools that lead to different results? Is it 
the analytical framework that produces the results? What do we learn as teacher 
educators? Is that dependent on the frameworks used? Does working with multiple 
perspectives help us? 



 
• Emerging issues: 

o Ethical and practical issues of using children to make interventions in the professional 
development of teachers e.g. use of video. 

o There might need to be different kinds of innovation dependent on the teachers. 
o Publishing negative cases as well as positive ones. 

 

Impact of Professional Development: 

• Open questions: 
o How could we ask questions to measure impact (e.g. changing of beliefs)? Are there 

other ways to what we do now? 
o What impact do ‘we’ want to sustain? Static image of change or dynamic change of 

teachers? 
o In discussing professional development, how do you track development/ learning, 

through the discourse, through anecdotes and, or? 
 

• Emerging issues: 
o Comparing behaviour of teachers in lessons and in PD raises lots of ideas to consider, 

such as the perceived gap between what teachers do in classrooms and how they 
articulate their practice in PD.  

o The challenge is how to sustain the impact of professional development beyond its 
delivery. 

o There are differences in language and discourses between teachers, teacher educators 
and politicians. There is the need to define what is a good argument in the different 
contexts. 

o Describing frameworks when they are not familiar. 

 

Pre-Service Teachers: 

• Open questions: 
o Of the language use, such as theory, used in professional discussions at the university, 

what do pre-service teachers learn? Are they just naming names rather than gaining a 
deeper understanding of pedagogical concepts? 

o Can we measure the process of pre-service teachers’ development and conclude 
something from it? Do we want to measure these kinds of dimensions? 

o What does it take for one to become explorative both in learning and in teaching? 
 

• Emerging issues: 
o Using videos and not having access to videos in the language of the teachers e.g. any 

non-English language. Resource implication for creating a local bank of videos. 
o The relationship between the mathematics that a teacher has to teach and the 

mathematics learned by pre-service teachers in education courses offered by the 
teacher educator focused on conceptual development. 



o Finding ways to disrupt previous experiences of teaching and learning mathematics 
that pre-service teachers bring with them.  

 

Moreover, some further general questions and issues concerning mathematics teacher education and 
professional development were discussed during the TWG sessions: 

• Open questions: 
o Can we observe the development of teachers in their pupils’ learning? 
o Does research in mathematics teacher education support the work in schools? Are we 

critical about our own practices? 
o How do we recruit participants for professional teacher development? How do we 

promote PD effectively? Use of social media? 
 

• Emerging issues: 
o Complexity of appropriation of frameworks, the language across cultures does not 

always transfer.  
o Writing scientific and professional journal papers with teachers that address teachers’ 

communities. 
o There is work to be done to create dynamical relationships between theories. 
o In researching with teachers, we attend to different things, such as the teacher might 

be focusing on the learning of the children and the teacher educator the development 
of the teacher, and we need to find ways to understand each other. 
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In 2013 the German Centre for Mathematics Teachers Education (DZLM) developed a professional 
development course called “stochastics compact”. This course was held three times during the 
period from 2013 to 2015 and reached more than 270 teachers. One of their goals was to increase 
the upper secondary teachers’ competence of teaching probability and statistics in combination 
with the use of graphic calculators (GC). A part of the research was to examine the stages of 
concern (SoC) linked to the implementation. Questionnaires were used as a survey method. In this 
paper, we present two selected and preliminary findings. At first we point out the development of 
SoC from 2013 to 2015. After that we will present the changes of SoC while participating in the 
course of 2015.    

Keywords: Professional development, stages of concern, probability and statistic, graphic 
calculator. 

Context of the professional development course 
Our research is related to a four-day long (spread over several months) professional development 
course on teaching probability and statistics at upper secondary schools (grade 10-12) in the German 
federal state of North Rhine-Westphalia (NRW) from 2013 to 2015. About 270 teachers participated 
in this course. Due to new national standards (KMK, 2012) and subsequent new state curricula in 
NRW, probability and statistics became an obligatory part of the curriculum and the final 
examination (Abitur). Moreover, the use of graphic calculators became obligatory in the classroom 
and in the examinations. This was a challenge for many teachers and caused a high need for 
professional development. The German Center for Mathematics Teacher Education (DZLM) 
recognized this need and gathered a team of experienced school teachers and researchers to 
originate a professional development course called “stochastics compact” (Biehler, 2016). The 
design of this course was based on results from stochastics education (Biehler, Ben-Zvi, Bakker, & 
Makar, 2013; Burrill & Biehler, 2011; Oesterhaus & Biehler, 2014), their interpretation of the 
standards and the design principles of the DZLM (Barzel & Selter, 2015). The first implementation 
was done in 2013 and was followed by the second in 2014 and a third one in 2015. Accompanying 
research addressed the change of competences and beliefs of the participating teachers as well as 
teachers’ feedback to the courses they attended. Moreover we were interested in the teachers’ stages 
of concern related to the innovation. The main purpose of this article is to present results of the 
stages of concern questionnaire (SoC), which may be a relevant instrument for doing research on 
professional development courses and on teachers’ attitudes to innovations.  

Theoretical framework and related research on the Stages of Concern 
The research of interests and concerns of teachers described in this article is based on the Concern-
Based Adoption Model (CBAM). This model was developed by the Research and Development 
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Center for Teacher Education at the University of Texas in the early 1970s (Hall, Wallace, & 
Dosset, 1973). This model is partly based on Fuller’s work on concerns of teachers (Fuller, 1969). 
One of the three diagnostic dimensions of CBAM is the Stages of Concern Model.1 It is a 
framework which helps to understand the personal aspects of adopting an innovation and the 
connected change progress. The researchers of the University of Texas identified seven stages (see 
Table 1) which a person runs through while implementing an innovation. There are several 
techniques to monitor the SoC such as one-legged interviews, open-end concerns statements or the 
SoC questionnaires. For several reasons the most rigorous method for measuring SoC is the 
questionnaire (Hall & Hord, 2006). The team around Hall developed a SoC specific questionnaire 
with 35 questions, 5 per stage (Hall, George, & Rutherford, 1977). As Hall points out, changing 
anything besides the word “innovation”2 will risk the reliability and validity of the items (see 
Schaafsma and Athanasou (1994) as a negative example).  

Stages of Concern Label Typical items 

Se
lf 

0 Unconcerned I am more concerned about another innovation. 

I Informational I would like to know how this innovation is better than what 
we have now. 

II Personal I would like to know the effect of the innovation on my 
professional status. 

Task 
III Management I am concerned about time spent working with non-academic 

problems related to this innovation. 

Im
pa

ct
 

IV Consequence I am concerned about how the innovation affects students. 

V Collaboration I would like to develop working relationships with both our 
faculty and outside faculty using this innovation. 

VI Refocusing I now know of some other approaches that might work better. 

Table 1: Typical items of the different Stages of Concern, based on George et al. (2008) 

The course “stochastics compact” took place in Germany, so there was a need for a German 
translation of the English SoC Questionnaire. We used the translation that was used by Pant, Vock, 
Pöhlmann, and Köller (2008a)3. There are three international studies and three German studies 
which we compared our data to and whose results we will shortly summarize. 

One of the first studies of SoC was executed by Hall et al. (1977). Hall’s team identified several 
profiles and their characteristic graphical shape. These profiles were the basis for other SoC 
                                                 
1 The development process of the SoC-Model is in greater detail described in George, Hall, Stiegelbauer, and Litke 
(2008). 

2 The innovation can be replaced by the name of the innovation or other phrases which respondents are more familiar 
with. 

3 We are grateful to Doreen Prasse for providing a copy of the German version of the questionnaire. 
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research like Liu and Huang (2005), who examined American teachers and their problems related to 
the integration of technology. They found out that the greatest concerns depend on the teachers’ 
experience. Inexperienced teachers tend to have personal and informational concerns, while 
experienced teachers were mainly concerned about the consequences for their students, and 
renewing4 educators placed their focus on collaboration and refocusing concerns. A second finding 
was that the strongest concerns were in the early stages of personal, informational and refocusing 
concerns. The three SoC profiles that were re-identified by  Liu and Huang were first constructed by  
Hall et al. (1977). A second survey regarding concerns of 659 American pre K-12 teachers about the 
use of technology like computers in school was conducted by Casey and Rakes (2002). Peaks in the 
SoC profiles were found in informational, personal and collaboration concerns. The interpretation 
was that school teachers are still uncomfortable and in an initial stage of understanding the benefits 
of technology in school. Pant, Vock, Pöhlmann, and Köller (2008b) came to the conclusion that 
most German elementary and middle school teachers of their study have high self and impact 
concerns regarding the recently implemented national standards, thus they show a typical M-shaped 
profile (see Figure 1) of a cooperator. This profile was also found by other researchers like Bitan-
Friedlander, Dreyfus, and Milgrom (2004) or Pöhlmann, Pant, Frenzel, Roppelt, and Köller (2014). 
Bitan-Friedlander et al. were able to identify five types of primary school science teachers which 
were confronted with the implementation of an innovation. Another result was that most of the 
participants were able to “adopt”5 the innovation and developed a personal perception. Pöhlmann et 
al. (2014) chose a control group design to measure the efficiency of a new developed intervention to 
help teachers who are dealing with the new German national standards for the first time. The SoC 
Questionnaire shows that control and test groups were on a comparable level at the beginning and 
the participants show a high level of self-concerns. Impact concerns were secondary in both groups. 
After a year of training an increase in impact concerns as opposed to self-concerns was observed. 
This can be interpreted as consequences for teachers, for pupils, and for their mutual cooperation, 
which resulted in different foci. The control group also showed a different SoC profile, similar to 
one of an earlier test. There were no peaks recognizable, which might be due to a feeling of 
exaggerated demands.  

Research question 
We will address the following research questions in this paper: 

1. How does the SoC differ when a PD course is backed up by an official obligatory innovation 
and not only by an innovation suggested by the PD course designers? 

2. How are the SoC towards probability and statistics (including the use of the GC) change 
distributed before and after a professional development course on the topic?  

3. Does a professional development course change the stages of concerns of the participants? 

                                                 
4 Liu and Huang defined renewing teachers as persons who understand the innovation and are adopting or thinking about 
different kinds of use of the innovation based on their experience.  

5 For primary school teachers the meaning of adoption needed to be redefined, because they did not challenge the 
theoretical knowledge or ground or mentioned a personal opinion about the implementation of the innovation.  
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Those questions are just one facet of a wider research project. We used our access to the participants 
not only to determine their SoC levels but also to identify other important aspects which we plan to 
associate with the SoC-profiles in our future research.  

From a methodological point of view we were interested how well the SoC scales can be used to 
identify important characteristics and sub-groups of teachers, which are important to take into 
account, when designing and evaluating PD courses. 

Design of the intervention 
There was a fundamental difference between the 2013 course and the 2014 and 2015 course. The 
2013 course was run before the new curricula became obligatory and the GC was prescribed. The 
2013 focused in day 3 and 4 on an approach to the teaching of hypothesis testing that was 
innovative for most German teachers, focusing on p-value hypothesis testing as a start, using 
authentic examples from real statistical studies instead of artificial problems, and discussing 
possible misinterpretations of hypothesis testing that are well known from studies in school and in 
statistical practice. We called our approach Best@Kontext (Oesterhaus & Biehler, 2014). The 2014 
and 2015 courses (after the new state curricula) build on this approach but included more 
systematically the use of GC for interactive visualizations, simulations and calculations not only on 
day 3 and 4, where hypothesis testing remained the focus. Day 1 and day 2 was completely revised 
and restructured using simulation and the GC technology. 

The SoC in 2013 was related to day 3 and 4 of our course and “our own” innovation Best@Kontext, 
the SoC in 2014/2015 was related to the whole course and to the state innovation “Teaching 
Probability and statistics with graphic calculators”. We communicated to the teachers that our 
course is compatible with the new state innovations, but that our specific foci are based on research 
in probability and statistics education related to student difficulties, valuable teaching approaches 
but also on normative aspects concerning the fundamental ideas in probability and statistics that 
should structure the course. 

Data collection and data analysis 
In our study we collected 38 questionnaires in 2013 (post test), 55 in 2014 (post test) and 74 in 2015 
(pre and post test) which were accepted for evaluation. The others had incomplete SoC 
Questionnaires or were not traceable in the pre and post test design of 2015.  

We used the manual of Hall et al. (1977) as a guideline for the program SPSS 23 for analyzing our 
data. Therefore our statistical analysis is comparable to the above mentioned studies.  For the 
determination of SoC subgroups, we used a cluster analysis of the individual subscale means. The 
ward method was chosen with the squared Euclidean distance as measure in every step of our 
analysis to divide the participants as recommended by Bortz and Schuster (2010). The clusters were 
created with the data of all four measurements so that we are able to analyze shifts in the 
distribution of participants into the identified clusters  

Results 
The reliability of the SoC subscales (see Table 2) can be compared to other studies like Pant et al. 
(2008b) or George et al. (2008).  
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Subscale 0 I II III IV V VI 

 Unconcerned Informational Personal Management Consequence Collaboration Refocusing 

Cronbach’s α 0.717 0.560 0.729 0.727 0.782 0.836 0,765 

Table 2: Cronbach’s α of the seven SoC subscales in our sample 

To answer research question 1, we constructed average SoC-profiles for the three years (including 
pre- and post test in 2015). Figure 1 shows that the subscale means of the 2013 questionnaire are 
considerably different to all other years. This observation is supported by t-test for every 
combination of subscales except for stage III of 2014 (p=.057) and 2015’s post test stage 0 (p=.176). 
The graph shape of  2013 belongs to an interested nonuser (George et al., 2008).  
The differences of stages I, II and IV in 2014 compared to the pre test 2015 and stage 0 of the  
post test 2015 are above the significance threshold of p=.05. In the comparison between the pre and 
post test of 2015 stages 0 and IV are the only stages without a significant difference (p>0.35). 
Therefore it is unsurprising that those three measurements’ graph shapes only deviate slightly and 
can be interpreted as cooperators (Bitan-Friedlander et al., 2004). Attendants of those three years 
have got a split attention focus in self (peak at stage I informational) and impact concerns (peak at 
stage IV collaboration) regarding the implementation of statistics and the GC at school and show an  
M-shaped profile.  

This very clear difference can be related to different kind of innovations (related to our project in 
2013 – state based innovations in 2014/2015). We have to be aware that below the  
average there is a lot of variability in the individual SoCs. We will discuss this 
below.

 
Figure 1: Subscale means divided by measurement 

With regard to research question 2 and 3 we do not see a substantial difference between 2014 and 
2015 (although one might have expected this because the teachers had been aware of the state 
innovations for one more year. On the level of the average profile we see a systematic difference, 
which however is not statistically significant. 

Related to research questions 2 and 3 we did a cluster analysis to identify different types of 
participants and how often they occur in the various points of measurement. We decided to put all 
data (n = 167) together for identifying clusters. This is useful, when the distribution into the clusters 
is to be compared for the different measurement points. At first six clusters were identified by our 
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cluster method and upon closer inspection of these groups, two times we found two clusters that 
were identical in their graph shape and were shifted by one scale point. So we decided to combine 
those two similar clusters into a bigger group. Finally, we worked with four clusters, which had 
been identified in a very similar way before in other studies (George et al., 2008; Pant et al., 2008b) 
These clusters can be labeled as unconcerned innovation user (n=4), typical nonusers (n=29), 
information seeking cooperator (n=59) and self-orientated cooperator (n=93) after their 
characteristic graph shapes (see Figure 2).  

 
Figure 2: Subscale means profile by cluster  

 

 

Figure 3: Distribution of persons of one measurement into clusters in percent.  

It is noteworthy that all four people belonging to the unconcerned innovation user cluster were 
found in 2013, see Figure 3. Also the majority of the typical nonuser group attended the course in 
2013. As mentioned before, the 2013 year differed from the other years. This impression continues 
for the distribution of persons into clusters. The differences to the others measurements are below 
the significance threshold (p<0.001). Participants in 2014 and 2015 are often assigned to one of the 
two cooperator clusters. The 2014 distribution shows an insignificant difference (p=0.444) to both 
tests from 2015.  The pre and post test from 2015 show a slight deviation of the cluster distribution 
(p=0.057). In 2015 there is a migration of 14 persons into different clusters. 71.42% of those (n=10) 
shift from the information seeking cooperator cluster to the higher self-orientated cooperator 
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cluster. Another person switched from typical nonuser to information seeking cooperator. Only 
three swapped to a “lower” cluster. 

Discussion and remarks 
According to the study we can distinguish two main groups in the 2014 and 2015 course, the 
information seeking cooperator and the self-orientated cooperator. One of the “effects” of the 
course is the shift from the first to the second. We have to study in more detail in which respect 
these two groups differ and what factors influence to which cluster teachers belong. The design of 
the course can take this into account by addressing specific course elements to the two different 
groups. As mentioned before, our further goal is to combine the SoC profiles with other parts of our 
study. Doing so will allow us to validate our results, gain new insights and recognize a correlation 
between to aspects. In 2016/2017 we are implementing a fourth course. We also intend to expand 
our study by adding questions to the level of use (Hall, Loucks, Rutherford, & Newlove, 1975), 
interviewing participants and conducting another surveys six months after the course’s end in order 
to measure the long term effects. 
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The aim of this research is to characterise how pre-service primary teachers notice students’ 
reasoning related to the fraction concept sub-constructs: part-whole, measure, quotient, ratio, 
operator and reasoning up and down. 82 pre-service teachers analysed primary school students’ 
answers to five fraction problems. Each student’s answer shows different characteristics of 
students’ reasoning in each sub-construct of the fraction concept. Five profiles of pre-service 
primary teachers have been identified according to how they used the mathematical elements to 
recognise students’ reasoning.  

Keywords: Fraction, students’ reasoning, noticing. 

Introduction and theoretical background 
The study reported here is part of a larger study focused on how pre-service primary school teachers 
notice characteristics of students’ proportional reasoning (Buforn, & Fernández, 2014). Several 
studies have indicated that the development of primary school students’ fraction concept is 
important in order to develop relational thinking and proportional reasoning (Empson, & Levi, 
2011; Lamon, 2007; Naik, & Subramaniam, 2008). However, the fraction concept is complex since 
it consists of multiple sub-constructs: part-whole, measure, quotient, ratio and operator (Behr, 
Harel, Post, & Lesh, 1992). In this paper, we are going to focus on how pre-service primary teachers 
notice students’ reasoning related to the fraction concept sub-constructs. We also include the sub-
construct reasoning up and down since it is an important component to develop proportional 
reasoning (Lamon, 2007; Pitta-Pantazi & Christou, 2011). 

The skill of noticing students’ mathematical reasoning 

Recent research has shown that being able to identify relevant aspects of teaching and learning 
situations and interpret them to take instructional decisions (Mason, 2002) is an important teaching 
skill (professional noticing). Focusing on the skill of noticing students’ mathematical thinking, 
Jacobs, Lamb and Philipp (2010) characterise this teaching competence as three interrelated skills: 
(1) attending to students’ strategies that implies identifying important mathematical details in 
students’ strategies; (2) interpreting students’ mathematical reasoning taking into account the 
mathematical details previously identified; and (3) deciding how to respond on the basis of students’ 
reasoning. 

Studies, in this line of research, have indicated that identifying the relevant mathematical elements 
of the problem plays an important role to recognise characteristics of students’ mathematical 
reasoning and also to take instructional decisions (Bartell, Webel, Bowen, & Dyson, 2013; Callejo, 
& Zapatera, 2016; Sánchez-Matamoros, Fernández, & Llinares, 2015). In the last years, researchers 



have focused on different mathematical domains such as the derivative concept (Sánchez-
Matamoros et al., 2015), classification of quadrilaterals (Llinares, Fernández, & Sánchez-
Matamoros, 2016), algebra (Magiera, van den Kieboom, & Moyer, 2013) and ratio and proportion 
(Son, 2013) showing that the development of the noticing skill is not easy for pre-service teachers 
during teacher education programs.  

Our study is embedded in this line of research and focuses on analysing how pre-service teachers 
interpret students’ reasoning related to the fraction concept and how they use their interpretation of 
students’ reasoning to propose new activities to help students progress in their reasoning. 

Sub-constructs of the fraction concept 

In our study, we consider the following sub-constructs of the fraction concept: 

 Part-whole: it is defined as a situation in which a continuous quantity or a set of discrete 
objects is partitioned into parts of equal size (Lamon, 2005). 

 Measure: it can be considered as a number which expresses the quantitative character of 
fractions, its size; or the measure assigned to some interval (Behr, Lesh, Post, & Silver, 
1983; Pitta-Pantazi & Christou, 2011). 

 Quotient: it can be seen as a result of a division situation (Pitta-Pantazi & Chrsitou, 2011) 
and interprets a rational number as an indicated quotient (it is exemplified by sharing 
contexts).  

 Operator: it is seen as a function applied to a number, an object or a set (Berh et al., 1992). 

 Reasoning up and down: it is a particular case of the part-whole sub-construct where the unit 
in a task is implicitly defined (Lamon, 2005) and students need to reason up from a rational 
number to the unit and then back down from the unit to another rational number. 

Participants and the task 
The participants in this study were 82 pre-service primary teachers (PTs) during their third year in 
an initial teacher education program at the University of Alicante (Spain). In previous years, pre-
service teachers had attended a subject focused on numerical sense (first year) and a subject focused 
on geometrical sense (second year). In the third year, they were attending a subject related to the 
teaching and learning of mathematics in primary school. One of the units of this subject was about 
teaching and learning of the fraction concept and proportional reasoning. The aim of this unit is 
focusing pre-service teachers’ attention on how primary school students learn the fraction concept 
including features of students’ understanding of the different sub-constructs. Data were collected 
after this unit. 

Pre-service teachers solved a professional task focused on interpreting three primary school 
students’ answers to five primary school problems related to the five sub-constructs of the fraction 
concept (part-whole, measure, quotient, operator, and reasoning up and down) (Table 1).  



 

Problems Characteristics 

1. How many spots are in 2/3 of the set?  

Explain your answer. 

Part-whole. Partitioning the set in 3 
equal groups and selecting 2. 

2. Indicate which number is X in the following number 

line. Explain your answer.  

Measure. Identifying a unit fraction 
(for instance 1/10) and iterating it to 
find X. 

3. Four people are going to share three identical 
pepperoni pizzas. How much pizza will each person get?  

Quotient. Result of a division situation 
in which it is required the division of 3 
pizzas between 4 people. 

4. The teacher asked Nicolas to make some photocopies. 
Nicholas made a mistake and pressed the button that 
reduce the size of each copy by ¾. By how much should 
Nicholas increase each of the reduced copies to reproduce 
the original size? 

Inverse operator. Inverse function has 
to be applied: ¾·x=1.  

5. The shaded portion of this picture represents 3+2/3. 
How much do the 4 small rectangles represent?           

 

Reasoning up and down. Reasoning 
that implies identifying the unit “3 
small rectangles” and then, 
representing a fraction. 

Table 1: Problems related to the five sub-constructs of the fraction concept considered in the task 

Each student’s answer shows different characteristics of students’ reasoning in each sub-construct 
of the fraction concept. In Figure 1, the three primary school students’ answers to the part-whole 
problem presented to pre-service teachers are given. To interpret students’ answers, pre-service 
teachers answered the following four questions (Table 2). 

Questions Aim 
a) What mathematical concepts must a primary school student know 
to solve this problem? Explain your answer. 

Identifying the learning 
objective of the primary 
school problem 

b) What are the characteristics of students’ mathematical reasoning 
involved in each student’s answer? Explain your answer. 

Recognising characteristics 
of students’ mathematical 
reasoning 

c) How would you change the problem to help students progress in 
their mathematical reasoning if they have had difficulties solving 
the problem? Explain your answer. 

Responding on the basis of 
students’ mathematical 
reasoning, supporting 
(question c) or extending 
(question d). 

d) How would you change the problem to help students progress in 
their mathematical reasoning if they have not had difficulties 
solving the problem? Explain your answer. 

Table 2: Questions of the task  



 

Figure 1: Primary students’ answers to the part-whole problem 

Analysis 
Data of this study are pre-service teachers’ answers to the first two questions (a and b) of the 
professional task (Table 2). Therefore, we focus on how pre-service teachers interpret students’ 
reasoning related to the fraction concept in this paper. The answers to each question were analysed 
individually by three researchers and agreements and disagreements were discussed. We observed 
how pre-service teachers identified the mathematical elements involved in each problem and how 
they used them to recognise characteristics of students’ mathematical reasoning. 

From this analysis, we have identified six different profiles of pre-service teachers considering how 
they used the mathematical elements of the problem to recognise students’ reasoning (Table 3).   

Results 
Results show that 41 out of 82 pre-service teachers had difficulties in recognizing characteristics of 
students’ reasoning (Profiles 0 and 1). However, 19 out of these 41 pre-service teachers identified 
the mathematical elements involved in each problem. This data suggests that recognising the 
important mathematical elements of the problem is not enough to recognise characteristics of 
students’ reasoning.  

 

 



 How pre-service teachers identified and used the mathematical elements of the 
problem to recognise students’ reasoning 

Number 
of PT’s 

Profile 0: They do not identify the mathematical elements and do not recognise 
characteristics of students’ reasoning in any task 22 

Profile 1: They identify the mathematical elements related to all sub-constructs of 
fraction concept but do not recognise characteristics of students’ reasoning in any task 19 

Profile 2: They identify the mathematical elements and recognise characteristics of 
students’ reasoning related to part-whole, measure, quotient, and operator  8 

Profile 3a: They identify the mathematical elements related to all sub-constructs of 
fraction concept and recognise characteristics of students’ reasoning related to part-
whole, measure, quotient, operator and reasoning up and down (but not related to the 
inverse operator) 

25 

Profile 3b: They identify the mathematical elements related to all sub-constructs of 
fraction concept and recognise characteristics of students’ reasoning related to part-
whole, measure, quotient, operator and inverse operator (but not related to reasoning 
up and down) 

5 

Profile 4: They identify the mathematical elements related to all sub-constructs of 
fraction concept and recognise characteristics of students’ reasoning related to all sub-
constructs of the fraction concept 

3 

Table 3: Profiles of pre-service teachers identified 

Pre-service teachers of Profile 0 did not identify the mathematical elements and used general 
expressions such as “fractions and operations with fractions”. Pre-service teachers of Profile 1 were 
more specific, identifying the mathematical elements implied in all the problems. For example, pre-
service teachers of Profile 1 indicated: “In problem 1, the mathematical element involved is part-
whole. In problem 2, the idea of measure or number line. In problem 3, quotient. In problem 4, the 
idea of operator. In problem 5, part-whole and unit”. However, pre-service teachers in these both 
profiles did not recognise characteristics of students’ reasoning. These pre-service teachers provided 
general comments based on the correctness of the answer: “answer 1 is correct; answer 2 is correct; 
answer 3 is not correct, the student doesn’t understand the concept”; gave a description of the 
student answer “the student 1 divides in 3 groups and choices 2 groups, student 2 makes a 
multiplication and then a division, and student 3 doesn’t understand the problem”; or interpreted 
incorrectly students’ answers “the three students solved the problem correctly but using different 
strategies”. 

Pre-service teachers of profiles 2, 3a, and 3b identified the mathematical elements involved in each 
problem and recognised evidence of students’ reasoning in some sub-constructs. Particularly, pre-
service teachers of Profile 2 recognised characteristics of students’ reasoning related to the sub-
constructs part-whole, measure, quotient and operator. For instance, the next excerpt is a pre-service 
teacher’s answer to the part-whole problem (problem 1): “Answer 1: the student shows the 
understanding of the part-whole concept because identifies the whole and re-group the spots in 
equal groups (dividing the whole in equal parts). Answer 2: the student identifies the total of spots 
(whole) and selects 2/3. He interprets the fraction as an operator. Answer 3: He doesn’t identify the 
whole and doesn’t re-group in equal groups”; to the measure problem (problem 2): “Answer 1: he 



solves the problem correctly because he identifies the unit fraction (1/5) in the number line. Answer 
2: he solves the problem iterating 2/5 and then uses the idea of operator to obtain ½ of the interval. 
Answer 3: he doesn’t identify the unit fraction and doesn’t take into account what means 2/5 in the 
number line”; and to the quotient problem (problem 3): “In answers 1 and 2, the student 
understands the fraction as a quotient because he divides the pizzas in equal parts. Answer 3: he 
doesn’t understand the meaning of quotient because he divides the pizzas in different parts”.  

Pre-service teachers of Profile 3a identified the mathematical elements and recognised 
characteristics of students’ reasoning related to the sub-constructs part-whole, measure, quotient, 
operator and reasoning up and down (but not related to the inverse operator). The difference with 
pre-service teachers of Profile 2 is that pre-service teachers of Profile 3a recognised characteristics 
of students’ reasoning related to the reasoning up and down sub-construct: “In answer 1, the student 
doesn’t identify the unit and the unit fraction. In answer 2, the student identifies the unit but doesn’t 
identify the fraction that represents 4 small rectangles. In answer 3, the student identifies the unit 
and identifies correctly which fraction represents 4 small rectangles”; and pre-service teachers of 
Profile 3b recognised characteristics of students’ reasoning related to the inverse operator instead of 
the reasoning up and down sub-construct “A1: he uses an additive wrong strategy. A2: he doesn’t 
know how to make the reduction and the enlargement. A3: he knows how to obtain the original 
paper multiplying by the inverse fraction of 3/4”. 

Finally, only 3 pre-service teachers (Profile 4) identified the mathematical elements and recognised 
characteristics of students’ reasoning in all the sub-constructs of the fraction concept. 

The different sub-constructs of the fraction concept were used by pre-service teachers to recognise 
characteristics of students’ reasoning in different ways. The way in which pre-service teachers used 
the sub-constructs operator (and its inverse) and the reasoning up-and-down promoted the 
emergence of different pre-service teachers’ profiles. 

Conclusions 
The five pre-service teachers’ profiles show characteristics of the way in which pre-service teachers 
notice students’ fractional reasoning. The difference between profile 0 and profile 1 is that pre-
service teachers start to identify the mathematical elements of the problems but continue giving 
general comments based on the correctness of answers. The difference between profile 1 and 2 is 
that pre-service teachers of profile 2 are able to recognise characteristics of students’ reasoning 
related to part-whole, measure, quotient, and operator sub-constructs. However, these pre-service 
teachers were not able to recognise characteristic of students’ reasoning in problems where the unit 
was implicit (inverse operator and reasoning up and down). The difference between profile 2 and 
profile 4 is the fact that pre-service teachers of profile 4 recognise characteristics of students’ 
reasoning in all the sub-constructs. However, there are two possible profiles between the profile 2 
and profile 4 characterised by: recognising characteristics of students’ reasoning related to the 
inverse operator (but not related to the reasoning up and down, Profile 3a), and recognising 
characteristics related to the reasoning up and down sub-construct (but not related to the inverse 
operator, Profile 3b).  

These results provide information about different pre-service teachers’ stages in the development of 
the skill of interpreting students’ mathematical reasoning related to some sub-constructs of the 



fraction concept. This information provides data to conjecture a pre-service primary teacher’s 
hypothetical learning trajectory of noticing students’ mathematical reasoning related to those sub-
constructs (Figure 2). This hypothetical learning trajectory could inform us about the pre-service 
teachers’ learning process of the skill of interpreting students’ mathematical reasoning in the 
particular mathematical domain of the fraction concept. 

 

Figure 2: A pre-service primary teacher’s hypothetical learning trajectory of noticing students’ 
mathematical reasoning related to the fraction concept 
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The purpose of this paper is to analyse mathematics teacher knowledge incorporated during one 
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Lesson Study and models of knowledge for teaching 
Lesson study is a collaborative model of professional development which supports teacher learning 
(Huang & Shimizu (Eds.), 2016). Originating in Japan, this model has grown in international 
popularity over the past two decades, particularly in the field of mathematics education, and much 
research has detailed evidence of mathematics teacher learning through lesson study (e.g. Lewis et 
al., 2009; Murata et al., 2012; Ni Shuilleabhain, 2016). 

Lesson study provides teachers with opportunity to contextualize representations of their classroom 
activities, while also making their implicit knowledge and practices explicit through their 
conversations within the group (Fujii, 2016). Each lesson study cycle consists of a number of steps 
where teachers begin by studying the curriculum and deciding on a research theme, planning a 
research lesson according to that theme, conducting and observing the live research lesson, and 
reflecting on student learning within the lesson (see Fig. 1) (Lewis 2016; Lewis et al., 2009) 

With increased international educational research on lesson study, there have been calls to deepen the 
knowledge base of the development of teacher knowledge within this model in order to provide a 
solid theoretical foundation for its use in teacher education (Clivaz, 2015; Miyakawa & Winsløw, 
2009). In this paper, we hope to contribute to the literature on professional development for 
mathematics teachers by analysing the mathematical knowledge utilized by teachers in their 
participation in lesson study, utilizing our proposed theoretical framework.  

The two authors of this paper, in their analysis of teacher knowledge and learning in lesson study, 
seek to deliberately build on previous existing frameworks of teacher knowledge: Mathematical 
Knowledge for Teaching (Ball et al., 2008) and the Levels of Teacher Activity (Margolinas et al., 
2005). Through analysis utilizing a combination of these frameworks (Prediger et al., 2008), we will 
detail features of the mathematical knowledge for teaching utilized by teachers in their participation 
in lesson study and will also track the movement of this knowledge.  



MKT/ levels in LS: Towards a coordinated model  
In this paper, we propose a framework which was developed  based on data generated in two case 
study sites - with eight participating primary (grade 3-4) teachers in Switzerland and five lower 
secondary (middle school, grade 7) teachers in the Republic of Ireland. Analysis began by utilizing 
the Mathematical Knowledge for Teaching framework (Ball et al. 2008) to investigate the 
contributions by teachers in a lesson study cycle. However, we found that this model did not fully 
incorporate all the elements of teacher knowledge included in the lesson study cycle, particularly in 
capturing the educational values and conceptions of teaching and delineating between the layers of 
planning sequenced content of instruction, while also attending to students’ thinking during the 
lesson. At this point in the analysis, Margolinas et al.’s (2005) Levels of Teacher Activity was 
identified as a framework which could encapsulate these elements of teachers’ knowledge. Building 
on qualitative data generated through audio/video recordings of teacher conversations during lesson 
study meetings, teacher notes from lesson study meetings, researcher field notes, and selected samples 
of student work from research lessons, we present an extended model of the categorization of 
knowledge required for the teaching of mathematics. Our first example of analysis presented is from 
the Swiss case study and future work will present further analysis from the Irish case study data. In 
analysing and comparing these sets of local data, we attempt to demonstrate a more global sense of 
this proposed framework of mathematics teacher knowledge in lesson study. 

Mathematical Knowledge for Teaching 

In their ground-breaking work in 2008, Ball, Thames and Phelps addressed the concepts of content 
and pedagogical content knowledge in their model of Mathematical Knowledge for Teaching (MKT 
- see upper part of Figure 1). In this paper, they identified domains of Subject Matter Knowledge 
(SMK) and Pedagogical Content Knowledge (PCK) used in teaching, which further defined the 
knowledge and skills required of mathematics teachers in relation to student learning and to 
mathematics content.  

Research on these different categories of MKT has demonstrated direct links between teacher 
knowledge and high-level teaching practices (Clivaz, 2014; Hill, Ball, & Schilling, 2008) and with 
subsequent student learning outcomes (Hill, 2010). 

Incorporating this model of MKT with teacher learning in lesson study, research has shown that 
Knowledge of Content and Students and Knowledge of Content and Teaching (features of PCK as 
defined by Ball et al. (2008)) are important elements of teacher knowledge utilized in lesson study 
cycles (Leavy, 2015; Ni Shuilleabhain, 2015b; Tepylo & Moss, 2011). However, considering the 
multitude of teacher knowledge and practices incorporated within each lesson study cycle in planning, 
conducting, and reflecting on a mathematics lesson, this model may not capture all the decisions, 
actions, practices, and skills required of mathematics teachers participating in lesson study. 

Levels of teacher activity and MKT 

To describe teacher activity, both in and outside of the classroom, Margolinas developed a model of 
the mathematics teacher’s milieu based on Brousseau (1997). This model was designed to take into 
account the complexity of teachers’ actions and to capture the broad range of activities contained in 
teaching and learning (Margolinas et al., 2005, p. 207). 



+3 Values and conceptions about learning and teaching 
+2 The global didactic project 
+1 The local didactic project 
  0 Didactic action 
- 1 Observation of pupils’ activity 

Table 1: Levels of a teacher’s activity (Margolinas et al., 2005, p. 207) 

At every level of environment (or milieu) the teacher must consider all that is occurring at the current 
level as well as those levels that are directly above and below. These multidimensional tensions relate 
to a non-linear and non-hierarchical interpretation of teacher’s work (Margolinas et al., 2005, p. 208). 
In addition to commonplace professional opportunities where teachers speak about their beliefs and 
experiences on general educational concepts or about teaching and learning mathematics (level +3), 
about teaching and learning of a particular mathematical subject (level +2), or about the lesson they 
are preparing (level +1), during the phases of planning and reflection in LS teachers also have 
opportunity to discuss their classroom activities (level 0) or observations of student activity from a 
lesson (level -1). 

This activity model was used by Clivaz (2014) and aligned with the MKT model in order to capture 
the movement of didactical situations, beyond the possible static characterisation which may be 
interpreted in the MKT model (Ball et al., 2008, p. 403). The combination of these frameworks 
allowed teacher knowledge to not only be analysed in terms of mathematical knowledge for teaching, 
but also mathematical knowledge in teaching (Rowland & Ruthven, 2011). Similarly, Ni 
Shuilleabhain (2015a) used the MKT model to analyse teacher learning in lesson study, but combined 
this with the idea of the ‘student lens’ (as suggested by Fernandez, Cannon, & Chokshi, 2003, p. 180), 
in proposing an additional layer of the model put forward by Ball et al. (2008). This concept of a 
‘student lens’ incorporated the PCK a teacher utilises in seeing mathematics “through the eyes of 
their students” (Fernandez et al., 2003, p. 179). 

When aligned with Margolinas et al.’s (2005) model, this layer of teacher knowledge relates partly to 
the -1 ‘Observation of pupils’ activity’ which can be anticipated and interpreted, but extends this 
observation to thinking of the mathematical content from the students’ perspective. In our proposed 
framework, we therefore see this view of the mathematics through the eyes of the student as a layer 
below the observation of a students’ work and include a new level of -2 level relevant to teacher 
knowledge titled the “student lens” (see Figure 1). 

Proposed theoretical framework 

Explicitly combining these two approaches to analyse the knowledge utilized by mathematics 
teachers during lesson study, the authors here present a new theoretical framework (see Figure 1). 
This framework attempts to capture the knowledge required of mathematics teachers, in the broad 
and complex range of teaching and learning activities, and represents teacher knowledge and 
activities incorporated during each phase of a lesson study cycle (see Lewis & Hurd, 2006, p. 4). 



 

Figure 1: MKT and levels of teacher activity at lesson study phases 

We first utilize the model to categorize the knowledge (MKT and levels of activity) appearing during 
the lesson study cycle. The knowledge about a particular mathematical topic will then be tracked over 
each phase of lesson study and the relations between the occurrence of this knowledge examined. At 
this stage, ‘knowledge’ is considered as collective (e.g. Ni Shuilleabhain, 2016). 

Analysis  
In this paper, data generated though video recordings of the Swiss case study are analysed utilising 
the proposed framework. Eight primary generalist teachers, new to lesson study, and two facilitators 
(one specialist in teaching and learning and the other a specialist in mathematics didactic (first author 
of this paper)) participated in the research which occurred over two academic years. Four cycles of 
lesson study were undertaken in this time, with a meeting held on average every two weeks during 
the school year (Clivaz, 2016). Each of these 37 meetings (about 90’ each) were videotaped and 
transcribed and form the base of the analysis utilizing the framework outlined above (Figure 1) and 
incorporating defined features of KCS and KCT as utilized in lesson study (Ni Shuilleabhain, 2015b). 

We present analysis of the first lesson study cycle where teachers chose to focus on the topic of 
integers and place value. The main reason for choosing this subject was the difficulty students had 
with whole numbers. In the first session, teachers discussed a particular difficulty their students had 
with counting through to new groups in base 10: 

Océane: The counting through to the next ten. 
Caroline: But each time they have to count through to (tens, hundreds, …) 
Stéphane (facilitator): What’s happening with counting through to the next ten? 
Caroline: It’s… that we have no more to write here! We have to use the digits which already 

exist. So, we count through to come back to one… In fact… Yes, it is the 
abacus, in fact, we need to move by one each time we arrive at a nine at the 
end. We need to move by one. 

Océane: We exchange one packet of ten. 



In this passage, during the study curriculum phase, teachers are at level of the global didactic project 
(+3) and this unpacking of mathematical knowledge is a Specialised Content Knowledge (SCK) i.e. 
the mathematical knowledge needed to perform the recurrent tasks of teaching mathematics to 
students (Ball et al., 2008, p. 399). At this stage, the place aspect of number system was predominant 
in teachers’ discourse and, when the value aspect appeared, it was linked with the value. To further 
address this knowledge, the facilitators suggested working on students’ actual mistakes. Teachers and 
facilitators proposed mistakes like:  

5 hundreds + 12 tens + 3 units = 515 

This work prompted teachers to do the task as if they themselves were students. At some moments 
during the activity teachers even spoke like students - placing them at the level of student lens (-2). 
This allowed the teachers to go deeper into potential difficulties for students and by further studying 
curriculum materials (referred to as kyozai kenkyu by Takahashi & McDougal, 2016), teachers had 
opportunity to clarify this aspect for the research lesson. This passage is situated at the same phase, 
level and type of MKT as the previous excerpt above.  

Anne (facilitator):  […] It’s a particular type of exchange since it’s in the place value system. So, 
we can distinguish the two dimensions: the dimension of the place and the 
dimension of the decimal value which is revealed in the exchanges. 

Stéphane: In fact, I prefer to talk about grouping/ungrouping instead of exchanging. 

Océane: Oh, I see! 

Following these two excerpts, we will briefly summarize the work undertaken by these teachers 
planning the second research lesson and focus on this phase for analysis. The group chose a task in 
the form of a board game involving the exchange of “1 hundred”, “1 ten” and “1 unit” cards. 
Following a planning exploration of the task, this research lesson was taught by one of the group and, 
during the post lesson discussion, teachers agreed that the task should be modified to allow students 
practice the exchange of values and relate these to aspects of the number system. This revised lesson 
was taught by another member of the group to a different group of students. 

At the beginning of the game a student, Julie, arrived on the square “give 35”. She had three cards of 
“1 unit”, three cards of “1 ten” and four cards of “1 hundred”. In order to get three cards of “1 ten” 
and two cards of “1 unit”, Julie wanted to exchange two “1 hundred” cards. The teacher, Edith, wanted 
to explain to Julie that two “1 hundred” cards were worth more than these three cards of “1 ten” and 
two cards of “1 unit”. 

Edith: So, two hundreds - that’s how many? 
Julie: Two hundred. 
Edith: That’s two hundreds. If you tell me: “I want three tens and two units.” Three tens, how 

many is that? 
Julie: Thirty. 
Edith: You told me three tens makes thirty. And what about two units? 
Julie: Two. 
Edith: If you put the thirty and the two together? How many is that? 
Julie: Thirty-two. 



Edith: So you swap two-hundred for thirty-two! You’re very generous! 
In this passage situated during the conduct lesson phase, at level 0 (didactic action), the teacher 
converted all cards into numbers to compare them, instead of doing direct exchanges. Julie followed 
the teacher without expressing her own way of reasoning (which can be observed in another passage 
and demonstrates a ‘direct exchange’ way of thinking). In this case, we categorize the MKT in two 
ways. First as a KCS, where Edith did not notice or interpret Julie’s mathematical thinking or 
strategies. Second as a SCK, related to the unpacking of mathematical knowledge, as detailed in the 
following excerpt.  

During her dialogue with the class, Edith had to explain that one hundred is the same as ten tens. 
Here, again, her argument is to convert to units - which requires students to already understand place 
value. This argument can be summarized as follows: 

1 hundred = 100 units 
and 10 tens = 100 units 

therefore, 1 hundred = 10 tens 
In the final lesson plan, the group of teachers reflected on this strategy and argued against it: 

“Often exchanges are not really carried out and we go through the number. For example, when 
asked to exchange 12 hundreds into tens, many students (and adults) will go through the number 
1200, namely 1200 units, to say that that 1200 is 120 tens, without being able to make a direct 
exchange from hundred to tens. Teachers also often explain this exchange in this way. In this case, 
we are in a type of vicious circle, since it means that it is necessary to have understood number 
system to understand the grouping/ungrouping in the place value system.” 

This episode appears in our data in the research lesson (conduct and observe lesson phase, level 0), 
in the notes of the observing teachers (conduct and observe lesson phase, level 0), in the post lesson 
discussion (reflect on lesson phase, level 0) and, in the above extract, in the lesson plan (reflect on 
lesson phase, level +2) where observations and analysis of the group were generalized and 
decontextualized from the particular lesson to the level of a global didactic project. In each case the 
knowledge represents a typical SCK. 

The final example of this knowledge was found at the end of the reflect on the lesson phase. After 
discussing the lesson and the mathematical difficulty of directly converting hundreds into tens, 
Valentine (a teacher with over 30 years of teaching experience) realized she had observed a similar 
difficulty her own students in this topic, outside of the lesson study group. As a result of their 
collaborative reflection conversations, she began to realize that her students’ errors were likely due 
to her use of only one strategy in teaching this topic:  

Valentine: But, I’ve got a question. For example, in nine-hundred-sixty-three - how many tens 
are there? Ninety-six. But my students, they learned a trick - they write the number 
963 and just go to the tens digit and write what is left: 96. I’m convinced they just 
use this trick. I probably didn’t know how to explain that to them! Myself… I 
always convert in money! You will have nine hundred and sixty three one-franc 
coins. If you need to only have ten-francs notes… then you will have ninety-six ten-
francs notes. 



Although this observation was not directly related to observations during the research lesson, we still 
categorize it as level -1 since Valentine put herself in the position of observing her students converting 
963 into tens. This conversation incorporates teacher KCS in interpreting students’ responses and is 
situated at level -1 (observation of pupils' activity). 

Utilising our proposed framework and building on our analysis of teachers’ collective conversations, 
we can detail the types and levels of knowledge incorporated by mathematic teachers in their 
participation of lesson study. Utilising this framework provides us with opportunity to track the 
knowledge included in the planning and reflection of mathematics research lesson over various phases 
of lesson study. 

Conclusion 
This paper proposes an extended theoretical framework of mathematics teacher learning in lesson 
study combining the existing frameworks of Mathematical Knowledge for Teaching (Ball et al., 2008) 
with Levels of Teacher Activity (Margolinas et al., 2005). In this paper the proposed framework is 
situated as a tool used to detail and analyse the use and movement of mathematics teacher knowledge 
in planning, conducting, and reflecting on research lessons. Based on case study data generated 
through mathematics teachers’ participation in lesson study, we have analysed teachers’ qualitative 
conversations and considered the potential evolution of mathematics teacher knowledge over a cycle 
of lesson study. Analysis to date has demonstrated that in planning and reflecting on research lessons, 
teacher knowledge of various forms (e.g. SCK and KCS (Ball et al., 2008)) and across varying levels 
of activity (Margolinas et al., 2005) are incorporated in these separate phases of lesson study. 

We hope this model will contribute to the literature on professional development of mathematics 
teachers and may serve to underpin further evidence of teacher learning in lesson study. 
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This paper aims to potentiate the teaching of mathematics through hands-on experimental activities 
at the primary school level and by promoting teachers’ professional development, using innovative 
practices. A Teacher Design Research cycle involving a group of primary school teachers during 
one school year was performed. This cycle consists in teacher training sessions, including an 
introduction to science and mathematics content, hands-on workshops for teachers and also 
classroom interventions in order to promote experimental activities and observe teachers in action.  
A particular case study of teacher Luísa will be presented. It was found that she gained motivation 
and self-confidence to innovate her practices, showing enhanced ability to perform experimental 
activities with her students. 

Keywords: Teacher professional development, training practices, hands-on, teacher knowledge, 
primary school. 

Introduction 
This paper aims to potentiate the teaching of mathematics, through hands-on student-centered 
experimental activities at the primary school level and by promoting teachers’ professional 
development using innovative practices. 

Several studies show the importance of teaching mathematics and science through experimental 
activities in the early years of schooling to motivate the younger generations to scientific and 
technological areas, considered crucial for economic development and scientific literacy (Coll, 
Dahsah, & Faikhamta, 2010; Hallstrom, Hulten & Lovheim, 2014; Osborne, 2009; Perera, 2014). 

Treacy and O'Donoghue (2014) also refer to scarce research about the integration of mathematics 
and science in classroom contexts as well as the lack of a widely-adopted teaching model. These 
authors advocate that “hands-on, practical, student-centered tasks should form a central element 
when designing an effective model for the integration of mathematics and science” (p. 1). 

This study is part of a first round of a Teacher Design Research programme involving a group of 
primary school teachers in a cluster of schools of a region of central Portugal, held during the 
2015/2016 school year. This experiment was carried out in the framework of a pedagogic 
intervention project that aims at introducing new methodologies to promote the learning of 
mathematics and science through hands-on experimentation and using the "inquiry" method.  

To achieve this purpose, a lifelong training course was designed, with the collaboration of university 
researchers and a formation center, to include mathematics and science hands-on workshops, in 
order to help teachers develop their teaching skills and update their knowledge on these topics.  



In this study, a particular case of a teacher, who used one of the proposed science experimental 
activities, to explore mathematical concepts and student-centered tasks, using the inquiry-based and 
problem-solving approach, will be presented. 

Literature review 
The great lack of professionals in the STEM (Science, Technology, Engineering and Mathematics) 
areas must be countered with an intervention at the level of the early years of schooling, being 
crucial to provide quality scientific practices (DeJarnette, 2012; Eshach & Fried; 2005; Johnston, 
2005). The incorporation of hands-on experimental activities into the classroom, with scientifically 
well-prepared adults, lead to significant improvements in performance and produce positive 
attitudes towards science and learning (Mody, 2015; Myers Spencer & Huss, 2013).  

The inquiry approach calls on the natural curiosity of children and develop their creativity and 
critical questioning at an age when they have the urge to discover the world around them (Alake-
Tuenter et al., 2012; Krogh & Morehouse, 2014; Rocard et al., 2007).  

Teachers are the cornerstone of any renewal of science education and being part of a network 
motivates them, contributes to improve the quality of teaching and promotes the sustainability of 
their professional development (Abell & Lederman, 2007; Rocard et al., 2007; Zehetmeier & 
Krainer, 2011). Martins (2006) claims to be a priority to strengthen investment in scientific research 
in the field of science education in the early years of schooling and continuing teacher training. 
Murphy, Varley and Veale (2012) recommend a professional development for teachers that will 
allow them to enhance their conceptual and pedagogic knowledge on the inquiry-based approach. 
Ball (2003) says that an intervention to combat failure in math’s performance will only be effective 
if it is focused on teaching methods: "No curriculum teaches itself and standards do not operate 
independently of professionals’ use of them" (Ball, 2003, p. 1).  

Ball, Thames and Phelps (2008) investigated competences that are required to teach and developed 
an empirical approach to determine the content knowledge needed for teaching (figure 1). 

 

Figure 1: Mathematical knowledge needed for effective instruction (Ball, Thames, & Phelps, 2008)  

Ball (2003) concludes that to improve children's mathematical learning, it is crucial to provide 
learning opportunities to teachers such as tailored courses, workshops and well-designed and taught 
materials. Afonso, Neves and Morais (2005) recommend that teachers should be given the 
opportunity to explore and experiment the contents to be developed in class in a reflective, 
collaborative environment where they feel supported. Also, Kuzle and Biehler (2015) sustain the 



importance of “stimulate cooperation among the participants, and between the participants and the 
professional developer” (p. 2849). 

Methodology 
Teacher Design Research 

Teacher Design Research (TDR) (Kelly, Lesh, & Baek, 2014) aims to promote the development of 
teachers as adaptive experts, using inquiry. This approach involves a collaborative work with 
research teams and teachers participating in the process, with the main objective to promote their 
professional development, leading them to innovate their practices and improve the whole teaching 
and learning process. The TDR premise is that the involvement of teachers in long-term (e.g. one 
year) design research periods can promote in-depth content learning and improve their ability to 
adapt to classroom environment and rethink their teaching beliefs and practices. 

The pilot experiment: First cycle of the TDR 

A pilot experiment with primary school teachers has been conducted in the academic year 
2015/2016. This experiment included continuous training sessions where proposals of new content 
and experimental mathematics and science hands-on activities, to be used in the classroom, have 
been put forward. The teachers had the opportunity to explore the content and manipulate the 
materials to be able to apply them later with their students. In addition, the instructors also visited 
the trainees' own classroom to carry out experimental activities to exemplify them, and observe the 
teachers in action with their students. The teachers have also been encouraged to develop their 
autonomy by creating and implementing their own experimental activities. 

Focus Group (FG) (Williams & Katz, 2001) was one of the working methodologies used throughout 
the training sessions to support the teachers and improve their practices. The last session was mainly 
focused on FG to promote reflection on the practices developed and make proposals for the 
following cycles of TDR. “Innovations need to be owned by the person implementing them on a 
personal level and transformed into their own practice in order to have practical effect” (Zehetmeier, 
Andreitz, Erlacher, & Rauch, 2015, p. 168). 

This paper describes the case study of teacher Luísa (fictitious name) who participated in the study, 
proposed and carried out math-based activities using the inquiry method. 

Participants 

The participants in the pilot project comprised 14 teachers of 5 primary schools. These teachers 
participated in a first round of design research beginning in September 2015 and ending in July 
2016. In this paper, we will study teacher Luísa who is 56 years old, has 37 years of service and is in 
charge of a third-year grade class with 25 students aged 8 and 9 years. 

Data collection   

Data collection consisted in observations (first author of the paper was a participant observer), semi-
structured interviews, written records, and video (Cohen, Lawrence, & Keith, 2007). The action 
took place in two main moments: workshops with the teachers (to learn and practice what they are 
expected to implement) and at their classrooms (to support and observe them in action). At the end 



of the training action, the participant teachers presented a written report, with a critical account on 
the pilot experiment and their proposals of innovative practices. 

Data analysis and discussion 
Teacher Luísa participated in the first TDR round. For about nine months, she attended the 
continuing training programme that consisted of seven workshops with, 3 to 4-hours duration, 
which introduced content, hands-on activities and methods of implementation in the classroom.  

The first experimental activities carried out on the workshops was about electricity 
(http://www.academiacap.ipt.pt/pt/atividades/ciencia/fisica/77/). Before the intervention, Luísa 
completed a questionnaire that characterized her and her class. On the questionnaire, she refers that 
"the experimental aspect was not addressed in my graduation course" and "in the complementary 
training program (BA-equivalent degree) I attended it was dealt with only too briefly". Although she 
has attended several training sessions throughout her career, none of them was about electricity. 

In the course of the training programme, Luísa was very participatory showing a great interest in the 
tasks performed. However, on several occasions she stated that: “I’m not comfortable to teach some 
of the content because I don't have full mastery of concepts and techniques and don’t know how to 
apply them”. She also admitted that: “I’m not able to handle some of the materials used in the 
experimental activities”. As early as in the first sessions she posed a series of questions such as: 
“What if the students ask me a question about this theme and I don't know the answer?” or “And 
what if an experiment does not yield the expected results?” 

In addition to concerns about specialized content knowledge, the teacher also reveals concerns about 
pedagogical content knowledge. These insecurities have led us to rethink the approach to content 
and experimental activities, because we realized that it was very important to adapt training to the 
knowledge and the needs of the teacher, to make her feel secure and motivated to implement the 
tasks. We also realized that she gives great importance to specialized content knowledge and that 
she hardly will perform experiments that involve concepts she does not fully understand.  

Given the great commitment of teacher Luísa to learn and her pedagogical concerns, she has been 
selected to receive the trainers in her own classroom to carry out experimental activities with her 
students, to exemplify the experiments, support the teacher and observe her in action.  

During the intervention in the classroom, we have observed that teacher Luísa had a posture of 
inquiry, making questions to her students to guide them through the tasks, leading them to 
investigate, in order to find answers to the questions. It was interesting to observe Luísa making a 
reflection with her students, questioning them about the classroom hands-on activities, what they 
had learned, and what they would like to explore in the next experiments. Observations and 
interviews revealed she has a good knowledge of her students and knows how to introduce and 
adequate the content to each of them, according to their individual needs (KCS and KCT). 

Two more sessions with teacher Luísa's students have been held which included tasks not covered 
by the training course with the other teachers. She again felt insecure and reported that she wouldn't 
be able to implement it without the support of the instructors. This shows the importance of the 
training workshops with the teachers before going to their classroom. 



It has been suggested to her that she should propose activities involving mathematical content. Due 
to the difficulty shown by the teacher to achieve this objective, the researchers proposed a 
worksheet in which, based on experimental records like weigh, fruit diameter, potential difference 
measurements, it was possible to address the topic “organization and processing of data” that is part 
of the primary school syllabus.  With this proposal, the teacher created some tasks (figures 2, 3 and 
4). Figure 2 shows the method used by the teacher to propose mathematical problems, based on the 
classroom experiment performed by the team of instructors. In writing "electromagnet" she is 
showing that she knows the content acquired in training but she chooses to present mainly math 
specific content: problems involving operations, specially multiplication. 

When you used the nail in the electromagnet it was wrapped 
in copper wire. 
I unwrapped one and measured the wire. It measured 40 cm. 

 
1. How many meters of wire were 
needed for the whole class? 

2. One meter of wire costs 5 euros. How much was spent 
to wrap all the nails?  

Figure 2: Math exercises suggested and implemented by teacher Luísa inspired by the activity 
performed in the classroom by the instructors  

Based on the same experiment Luísa was invited to suggest tasks for data handling and processing, 
but she decided to collect data with her students (Figure 3) for further processing (Figure 4). 

OCTOBER 2015  APRIL 2016 

NAME WEIGHT HEIGTH  NAME WEIGHT HEIGTH 

Adriana 30,7 Kg 129 cm  Adriana 32,2Kg 133 cm 

André 31 Kg 139 cm  André 31,9 Kg 142 cm 

António 36,4 Kg 139 cm  António 38,4 Kg 142 cm 

Figure 3: Recording of heights and weights of the students in teacher Luísa's class 

 

I grew ________kg                                                             I gained ________kg 

In October, the tallest in my class was________________________________________ 

In May, the heaviest in my class was______________________________________ 

Which student grew the most? _____________________________________________ 

Which student gained more weight between October and May? __________________ 

Build a chart with the weights of the students in the class (October-May)  

Figure 4: Math activity suggested and implemented by teacher Luísa 

This attitude shows some autonomy on the part of the teacher to propose activities that are not 
provided for, in the school books. It also shows ability to adapt content to the specific needs of 
students. On the other hand, this could mean some resistance in using an experiment that was not 
familiar, preferring to use a context where she felt more comfortable, i.e. collecting data from the 
students.  A possible explanation can be drawn from her report, where she shows lack of SCK: 

However, and given the nature of the subject matter addressed and the tools used, I do not 
feel comfortable to implement, in a natural/individual and consolidated process, many of the 
tasks proposed. (Teacher Luísa final report) 



It also appears that she realized the importance of finding new ways of teaching math as she says in 
her report that math is part of day-to-day life: “The math activities performed in the class gained a 
new meaning as it was applied to practical real-life situations of individual students to complete the 
tasks proposed” (Teacher Luísa final report). 

Luísa gained SCK and KCT, showing ability to do research, particularly on the internet, collecting 
information that she uses to make new approaches on teaching: 

(…) finding new ways of teaching math so that people understand that we think 
mathematically all the time and solve problems at several moments during the day (…) Math 
is thus part of our life and can be learned in a dynamic, challenging and funny way. (Teacher 
Luísa final report) 

Finally, the teacher recognizes the impact of the project on her students: 

The class revealed very motivated when completing the tasks proposed by the instructors. 
The students adopted a cooperative, experimental attitude in which failure was regarded as a 
part of the scientific process. (Teacher Luísa final report) 

In fact, student’s comments such as "this is the best experience of my life" "this is awesome", "you 
should come more often", among others, had impact on teacher Luísa motivation, contributing to 
make her recognize the importance of implementing hand-on experiments. 

Final considerations 
Visits to the classroom to support the teacher during the implementation of the experimental 
activities revealed very useful to improve teacher knowledge and confidence. Also, the enthusiasm, 
involvement and participation of the students in the classroom activities (mentioned in the teacher's 
final report) served to raise her awareness to the importance/relevance of these approaches. Such 
motivation has been observed in teacher Luísa who gained confidence to innovate her practices after 
receiving training and guidance. This teacher developed and implemented hands-on experimental 
activities with her students in classroom context, exploring their curiosity (using inquiry) and 
proposing problems requiring the use of math.  

Although she created mathematics hands-on experiments, there still was, on the part of the teacher, 
some lack of confidence to innovate without the support of instructors. Like her, almost all teachers 
who participated in the continuous professional course suggested, during the final FG, that some of 
the experimental activities should be carried out by the instructors in their classrooms. All teachers 
were reluctant to propose innovative activities promoting by resorting to the inquiry method. It was 
noted that strong encouragement and responses on the part of the instructors were required to make 
the teachers change habitual teaching practices. However, throughout the sessions increased trust of 
teachers on their instructors and a better response to the tasks proposed has been observed.  

It follows therefore that it is necessary to invest more in training and monitoring of teachers to 
further engage them in these approaches and improve their confidence and autonomy. Special 
mention should be made to the importance of getting the teachers to work out the activities before 
implementing them. Finally, it is concluded that this is a process that takes some time to be 
implemented and further work is needed to achieve the desired results. 
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As part of a larger research project, we asked third-year PSTs to reflect on what they had learned 
about being mathematics teachers of the teacher education programme. The reflections were 
intended as presentations for first-year PSTs. In this article, we analyse the films by the third-year 
PSTs to understand the messages more experienced PSTs choose to communicate to novices. 
Concepts from Gert Biesta are the framework for the content analysis, and we find a complex 
picture of how qualification, socialization and subjectification interact in the narratives. 

Keywords: Preservice teacher education, mathematics education, mentors. 

Introduction 
This article presents partial results from a research project examining pre-service teachers’ (PSTs) 
developing identities as mathematics teachers, and, in particular, their experiences of mathematics 
in school placement. Previously published results from the project report how first-year PSTs value 
what they learn from mentors in practice more than the ‘theoretical’ input of the university based 
courses, not seeing the theoretical knowledge as transferable into teaching practices (Bjerke, 
Eriksen, Rodal, Smestad, & Solomon, 2013). In one intervention addressing the challenge, third-
year PSTs presented to the first-year PSTs films describing experiences of becoming mathematics 
teachers in the course of the first three years of the programme. In this article, we analyze the third-
year PSTs’ presentations to understand how they view their own emerging professional identities. 

Our research question is: What domains of their educational experiences do PSTs highlight in their 
presentations of their first three years in mathematics teacher education? 

Research background and theoretical underpinnings 
While learning to teach is about acquiring professional knowledge and skills, it is also about 
developing a teacher identity (Haniford, 2010). Adding to the identity work of experienced teachers, 
PSTs have the responsibility of successfully positioning themselves in relation to their teacher 
education programmes and cooperating teachers (Haniford, 2010). Identity formation is driven by 
the individual’s goal state of what he/she wants to become (Smeby, 2007). Biesta (2012) discusses 
these processes under the headings of qualification, socialisation and subjectification, and we 
choose his concepts as the starting point of our analyses of PSTs’ narratives. 

For Biesta (2012), all education (including teacher education) is a question of judgement, because 
educators' decisions about the purpose of what they do occur within domains that may be in synergy 
with each other, but may also be in conflict. He notes three such domains, which interact and 
overlap: the domains of qualification, socialisation and subjectification. Qualification is about 
knowledge, skills and dispositions; socialisation and subjectification can be seen as opposites: while 



socialisation applies to the induction of novices into existing practices, subjectification denotes how 
education contributes to a process of individuation, of becoming an independent subject. 
Educational judgements are underpinned by an understanding of the interdependencies between the 
three domains. In teacher education, the situation is more complex still: the purpose should not just 
be PSTs own qualification, socialisation and subjectification, but also to enable PSTs to become 
‘educationally wise’, aspiring towards virtuosity in making educational judgements themselves. 
Such judgements are situated: they are made during the practice of teaching, and cannot be set out in 
advance, or in general - they are rooted in concrete situations and relate to the need to handle 
tensions and see possible synergies. To become ‘educationally wise’, one needs experience, together 
with opportunities to see more experienced others in action, and to discuss those actions in terms of 
the virtuosity of judgement which underpins them.  

Method 
The 32 PSTs in this study were enrolled in a four-year programme for primary school teachers 
(grades 1-7, ages 6-13) in Norway. They had chosen to continue with mathematics beyond the 
compulsory course spanning the two first years in teacher education, and were asked to look back on 
their mathematics education course and four school placements and to prepare group presentations 
describing their development as mathematics teachers in grades 1-7. They were asked to reflect on 
what they know now which would have been good to know in their first year; how they plan their 
mathematics teaching now compared to in their first year; what they have learned along the way; 
and what are the pitfalls and experiences to bear in mind for future mathematics teachers. 

Six presentations were made - all short films (F1-F6) incorporating line drawings and sometimes 
photographs, with voice-over commentary and music. Five of the six films were organised as 
developmental stories from their novice anticipation and preparation of their first placement, to their 
reflective  stance as third-year PSTs. The remaining film focused on four pitfalls for novice PSTs. 

To analyse the data, we operationalised Biesta’s (2012) concepts in terms of: descriptions of their 
knowledge, skills and dispositions; processes and accounts of making educational judgements and 
justification of judgement; and accounts of being and becoming a mathematics teacher, as 
exemplified below: 

Qualification:  References to knowledge, skills and dispositions, processes and practices from the 
teaching profession. 

Socialisation:  References to learning and to expectations in the school context. 

Subjectification: References to inner feelings, identity and becoming a teacher and to perception of 
self (as a teacher). 

The presentations were transcribed and analysed in several steps. First, they were coded according 
to Biesta’s terms qualification, socialisation and subjectification, synergies and conflicts between 
these domains, and professional judgement. Then disagreements among the researchers were 
resolved, and all presentations were re-read and coded by another member of the group. A decision 
was made to organise the analysis in two parts - one around PSTs’ novice anticipation, and one 
around their reflective stance in third year. Finally, we re-read each presentation to make sure that 
important longitudinal messages were not lost in our attempt to organise the analysis in two parts. 



Looking back at early experiences in school placement - Emergency sirens 
Qualification 

In the films, there are a few examples of what PSTs learned in the first year, for instance pieces of 
‘theory’, such as the importance of using multiple representations, giving feedback, and using the 
“didaktisk relasjonsmodell” (F1) (a hexagon connecting elements relevant for lesson planning: 
topic, learning objectives, the pupils in that class, etc.). The first-year PSTs are, however, uncertain 
about how to put the knowledge into practice. The uncertainty about effective use of manipulatives 
is most usual (F1, F4, F5), but other dilemmas are also identified: 

I also thought about all the theory I learned at university: Piaget’s theory of stages of 
development, Bruner’s representation theory and theory of scaffolding, Vygotsky’s focus on 
cooperation, Bandura and his theories on motivation and self-efficacy. How should I use these 
theories to plan a lesson on fractions? [...] Which pupils should work together: the ones that are 
on the same level in terms of subject knowledge, or should the strong ones help the weak? (F1) 

Several of the films show students meeting concepts as an overwhelming mass of words (Figure 1). 
At the same time, there are many statements about elements of qualification the PSTs perceive as 
lacking, both in terms of knowledge (“Do I know enough about this topic?” (F5)) and of processes: 

Just think if I have to explain several ways of doing something, to support conceptual 
understanding! It won’t work. It just won’t work. Manipulatives, manipulatives. (F5) 

It’s only natural to carry on from where we left off [in the textbook]. It’s not like I have other 
suggestions on what to do from here onwards. (F2) 

   
Figure 1: Knowledge in overwhelming amounts in the first year (F1, F4, F5) 

Socialisation 

The mentor is, naturally, the main role model for students in their first year of teacher education, 
and the mentor features in most of the (few) examples we find of socialisation when describing the 
first year. The PSTs are uncertain about what the mentor expects of them, other than using the 
“didaktisk relasjonsmodell” (mentioned above) which is common in Norway: 

As first-year students we used it [the didaktisk relasjonsmodell] slavishly (F6) 

...I have to carry on from here [in the textbook], that must be what [the mentor] expects (F2) 

The mentor can be viewed as an evaluator:  

Shit! This took the entire hour. The mentor glares at me. It didn’t go as planned. (F3) 



However, the anxiety of seeing the mentor write “like there was no tomorrow” is followed by “I had 
so many questions” - suggesting that the mentor is regarded as a person to ask for advice, as well.  

Subjectification 

A basis for subjectification is the development of a certain degree of self-confidence. In the 
description of the first year, we see little self-confidence - uncertainty and fear dominates: 

What if I don’t succeed? (F5) 

I went from being one of the best in mathematics to being perplexed when the pupils asked me 
questions about the subject. (F1) 

Conflicts and synergies between domains 

The three domains of education overlap. These non-empty intersections are implicitly present in the 
films. There are clear examples that a perceived lack of qualification (being overwhelmed by new 
concepts and by making sense of these in practice) leads to a lack of self-confidence - “I felt unsure 
and very, very small” (F1) - which we regard as part of subjectification. This can also work the other 
way: lack of confidence leads to lack in qualification:  

In the first school placement, I struggled a lot with getting the class to settle down. Later on I 
came to think it was because I did not feel like a confident and clear classroom manager. (F1) 

There can also be a conflict between qualification and subjectification, in the sense that learning 
more makes you aware of your shortcomings:  

The more I learnt, the more I discovered what I didn’t know. [...] Based on Piaget’s theory I 
knew most of the pupils were at the concrete-operational stage. But which of Bruner’s 
representations should I use? [...] Or should I use the strange Cuisenaire rods that I still haven’t 
really gotten to grips with? (F1)  

Drowned in the curriculum he feels puzzled. What is most important? (F4)  

Inside the domain of qualifications there are interactions between elements. In one case, the 
confidence in mathematics is shaken by the practice of teaching:  

I went from being one of the best in mathematics to being perplexed when pupils asked me 
questions. (F1) 

At the same time, during the first year the process of lesson planning is weighed down by the 
awareness that there are many considerations to be taken. This is visible in form of the time that 
goes into writing a lesson plan (shown with clocks in the films), and the number of books that fill 
the desk in the process (Figure 2).  

There can be a tension between socialisation and subjectification in meeting the mentor: in one 
example, the role model (supposed to provide socialisation) is so impressive that the PST’s self-
confidence suffers:  

The meeting with the mentor was scary. I saw him as a Superman who really knew his work. He 
was confident, clear and, not the least, had strong subject knowledge. (F1) 



   

Figure 2: Lesson planning during first-year school placements (F1, F4, F6) 

In another example, a PST’s attempt at making a choice outside of the textbook is struck down by 
the mentor: 

Hmmm….I think maybe we should stick to the textbook. (F3) 

With an emerging sense of agency, the PST questions the mentor’s view and asks herself: “Should 
we always stick to the textbook?” (F3). 

To conclude, there are synergies between (a lack of) qualification and (a lack of) subjectification, 
but also a conflict between qualification and subjectification, as well as between socialization and 
subjectification. 

Practicing educational judgement 

Judgement is difficult. A lack of self-confidence leads to a very detailed plan with little room for 
judgement on-the-fly.  

As a first-year PST the plan for the lesson was a long script. We had written down word for word 
what to say during the lesson. We were dependent on this script and could not improvise along 
the way. We even planned how to explain simple mathematical things that we actually knew 
well. This is also about lack of experience and confidence as a teacher. (F6)  

At the same time, a lack of qualification translates into constraints on opportunities for judgement in 
the process of lesson planning:   

It’s natural to continue from where we left off, it’s not like I have other suggestions. (F2)  

Looking at their recent experiences in school placement - Birdsong 
Qualification 

Changes from first to third year are visible in all aspects of qualification, from subject knowledge 
and knowledge of students and teaching, to the practices of teaching. In terms of knowledge, some 
films refer to knowing more mathematics, but, in terms of mathematics pedagogy, the films stress 
that the understanding is deeper, the knowledge can be operationalised to a greater extent.  

The process of lesson planning during the first year involved long hours dedicated to the task (F1, 
F4, F6), and resulted in long scripts produced for each lesson (F4, F6). The films highlight, in 
comparison, how much quicker lesson planning goes (F1, F6), and how much shorter the scripts 
become (F1, F4) by third year, but the films give different suggestions on how to take advantage of 
the reduced burden, from watching TV and playing with the dog (F6) to investing time and energy 
on the ‘frills’ of differentiation and using a variety of teaching methods (F1).  



Teaching practices out of reach during the first year are now on the agenda (F1): motivating pupils, 
providing them with opportunities to feel both confident and challenged, seeing the individuals as 
well as the class as a whole, giving more room to children’s contributions, and encouraging enquiry. 

Socialisation 

The main presence that embodies the socialisation component is the teacher mentor, although some 
PSTs also mention peers and other colleagues playing a role. At this stage the mentor has 
transitioned from a feared judge to a colleague (F1), in some cases a role model (F2, F4), although 
disagreements between the views of PSTs and their mentor may occur, for example regarding the 
role of textbooks (F3). However, adopting established practices of the teaching community, such as 
body language (F1) or ways of saying or doing things in the classroom, seems to be perceived by 
PSTs as a sign of having become teacher-like: 

I’ve even put together extra handouts [for those who might need another type of challenge]. (F2) 

Subjectification 

Through the journey from first to third year, the PSTs have grown into teachers who are aware that 
teaching is not just about what you know, it is about making choices about complex situations. As 
there are no deterministic answers to these dilemmas, neither objectively speaking nor in terms of 
what is the established way of the teaching community, these choices come down to the individual, 
they are drawing on the domain of subjectification: “We're more aware that there should be a reason 
behind our choices” (F4), “I understand my own thoughts” (F5). In their third year, we hear the 
PSTs stress the importance of trusting their own choices (F1, F2, F4), and being yourself (F2).  

Planning lessons is now an altogether more positive experience, described with attributes such as 
joy, and belief in oneself. Importantly, some of the PSTs realize that becoming a teacher is a 
continuous process, and experimenting is a part of it:  

Don’t be afraid to try out new things. (F2) 

A lesson plan can never be too good. It’s like a piece of silverware that you take out and polish 
from time to time. (F4) 

Conflicts and synergies between domains 

As PSTs become more comfortable as teachers (subjectification), some find reassurance in their 
theoretical knowledge (qualification) as well as their awareness of what is acceptable among 
teachers (socialisation): 

Not everything has to be perfect [...]. The theory I used to think about while planning lessons in 
my first year is now under my skin. (F1) 

The routines of teachers (socialisation) also contribute to being more successful in the practices of 
teaching, such as lesson planning (qualification): “You don’t have to reinvent the wheel (F1)”. 
There is an aspect of growing confidence (subjectification) when the PSTs reuse lesson plans they 
have had positive experiences with (F1).  

Unlike in their first year, lesson planning in the third year takes less time (F1, F6) and the scripts for 
the lesson are shorter (F1, F4) or even disappear altogether (“We’ve thrown out the script”, F6). The 



change is attributed in general to an increase in confidence (subjectification) but in some cases also 
to an aggregated influence of all three domains:  

… more confident in myself and the mathematics, I know more about the pupils’ level in 
mathematics, I have become a clear leader, I dare to make mistakes, I am better at dealing with 
things as they happen. (F1) 

In another film, the three domains come together in synergy to express the PSTs’ development:  

By contrast with first year, when we used the the syllabus for the course a lot, we now have more 
knowledge of the subject and of pedagogy. We’ve become better at making use of our own 
knowledge, we cooperate more closely with colleagues. (F6) 

The way these sentences are linked, makes it possible to interpret it as meaning that better 
qualification leads to better self-confidence (subjectification) which again leads to better 
cooperation with others (socialization).  

Practicing educational judgement 

Increased self-confidence by the third year is not synonymous with knowing just what to do:  

How can I connect algorithms and conceptual understanding? I need to be able to show them 
different strategies, to be sure as many as possible understand. How many strategies for division 
are there? Maybe they come with some I haven’t thought of? Maybe some misconceptions will 
surface during the lesson? How can I then, in the best possible way, deal with this? (F4) 

The difference from the first year is being able to deal with dilemmas, to practice professional 
judgement, guided by what they see as the goals of teaching: 

There’s still a lot to think about, but I understand my own thoughts now, I know where I’m 
heading (F5) 

In the third year practicing educational judgement features as a defining factor of the PST-mentor 
relationship at this stage: the detailed scripts for lesson plans that were in the first year in part 
written for the sake of the mentor (and in part to boost one’s confidence, to feel prepared) are now 
shorter. A mentor’s voice sets expectations: 

Just show me that you are aware of the choices you make, and that you can argue for them (F2) 

During the third year, educational judgement is visible in reflections on one’s own teaching:  

I’ve become better at assessing myself, and I can more readily explain what went well and what 
could have been done better in class (F1) 

Teaching analysis draws on and at the same time feeds into the domain of qualification and perhaps 
also socialization. This way of assessing oneself - and the knowledge that you do it well - can be 
regarded as an engine for development also after graduation, it feeds into subjectification.  

Concluding remarks 
The titles of two subsections of the analysis reflect the soundtrack of a film where the experiences 
of first- and third-year school placements are introduced with emergency sirens and birdsong 
respectively. In terms of Biesta's (2012) framework, the overall picture the presentations paint is 



that, looking back on their first-year school placement, PSTs remember a combination of a lack of 
qualifications, unclear expectations from mentors and low self-confidence. The fear many PSTs 
report on, seems rooted in their low self-confidence and the unclear expectations. Although first-
year PSTs are allowed to try different approaches and to fail, the same combination of a lack of 
repertoire, uncertainty of the mentor’s role and lack of self-confidence holds them back. By the third 
year their qualifications have increased, their role as PSTs is clearer and their self-confidence has 
grown. Because of this, they also find themselves practicing educational judgement more often.   

Such narratives, perhaps in combination with logs from early placements, could be part of 
educational experiences, supporting PSTs' identity work. First-years might also benefit from 
watching the films, as not all challenges discussed can be dealt with by the teacher educators. While 
teacher education can and should make explicit what is expected of PSTs in their school placement, 
it cannot rush becoming educationally wise. However, we hypothesise that creating spaces where 
first- and third-year PSTs can discuss their experiences would contribute to the domain of 
socialisation and subjectification for both groups. Analyzing the students’ contributions in terms of 
Biesta’s concepts reveal the complex relationships between qualification, socialization and 
subjectification in teacher education. The three domains are interdependent, with conflicts and 
synergies which influences PSTs overall experience. More insight into these conflicts and synergies 
may contribute to better understanding of PSTs’ experiences of their school placements.  
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In order to successfully carry out ambitious mathematics teaching, awareness about the underlying 
mathematical tasks of teaching involved is necessary. This paper presents the case of Martin, who 
started mathematics teacher education because he likes mathematics and feels that he knows the 
subject. We observe him in a period of field practice where he is supervised by an experienced 
mathematics mentor teacher. While planning, conducting and reflecting on a lesson on multiplication 
of fractions, neither Martin nor his mentor teacher focus on core tasks of teaching mathematics. We 
use this case as a starting point for discussing challenges and possibilities of increasing the emphasis 
on core practices and the embedded mathematical tasks of teaching mathematics in teacher 
education.  

Keywords: Core practices, mathematical tasks of teaching, teacher education. 

Introduction and theoretical background 
Mathematics teaching is complex, and different attempts have been made to decompose it. Some have 
tried to identify the most critical practices involved in the work of teaching mathematics, and they 
describe them as “core practices” (e.g., McDonald, Kazemi, & Kavanagh, 2013) or “high-leverage 
practices” (Ball & Forzani, 2009; Forzani, 2014). These practices are fundamental for supporting 
students’ learning. Others emphasize the mathematical tasks of teaching that are embedded in the 
professional work of teaching mathematics (e.g., Ball, Thames, & Phelps, 2008; Hoover, Mosvold, 
& Fauskanger, 2014). In this paper, we focus on skills necessary to carry out the work of teaching 
mathematics by emphasizing mathematical tasks of teaching that are embedded in core teaching 
practices in teacher education. High-leverage practices and the underlying mathematical tasks of 
teaching “are essential for skillful beginning teachers to understand, take responsibility for, and be 
prepared to carry out in order to enact their core instructional responsibilities” (Ball & Forzani, 2009, 
p. 504). It is thus important to develop these practices during teacher education (TeachingWorks, 
2015). The mathematical tasks included in these practices are instructional tasks that are mathematical 
and not pedagogical. When referring to “mathematical tasks of teaching”, we follow the 
conceptualization by Ball et al. (2008). 

Researchers have made various attempts to categorize core practices (Forzani, 2014). In the 
TeachingWorks project (2015), a register of high-leverage practices is presented to serve as the basis 
for a core curriculum for the professional training of teachers. For instance, the first two of the 
nineteen high-leverage practices are: 1) “leading a group discussion”, and 2) “explaining and 
modeling content, practices, and strategies.” Both of these practices contain some mathematical tasks 
of teaching. For instance, the second practice obviously involves the task of “presenting mathematical 
ideas.” It may also involve “finding an example to make a specific mathematical point” (Ball et al., 
2008, p. 400), a mathematical task of teaching that has proven to be difficult for pre-service teachers 
(Zodik & Zaslavsky, 2008). This practice may also involve the tasks of “recognizing what is involved 



in using a particular representation” and “linking representations to underlying ideas and to other 
representations” (Ball et al., 2008, p. 400). Other mathematical tasks of teaching—some are 
embedded in more than one high-leverage practice—include using language carefully, highlighting 
core mathematical ideas while sidelining potentially distracting ones, and make their own thinking 
visible while modeling and demonstrating. The third high-leverage practice presented by 
TeachingWorks (2015) is “eliciting and interpreting individual students’ thinking.” This practice may 
involve asking and responding to questions, or presenting the students with exercises that provoke or 
allow them to share their mathematical thinking in order to evaluate student understanding, guide 
instructional decisions, and surface ideas that will benefit other students. When engaging in these 
practices, the teacher is faced with several mathematical tasks of teaching. For instance, teachers are 
challenged to ask “productive mathematical questions” and to evaluate “the plausibility of students’ 
claims” (Ball et al., 2008, p. 400). The mathematical tasks of teaching included in various core 
practices may vary depending on the context. 

In Norway, the new national guidelines for primary and lower secondary teacher education use “core 
practices” as a term of reference (Ministry of Education and Research, 2016). Our study aims at 
discussing challenges and possibilities of implementing core practices and identifying underlying 
mathematical tasks of teaching mathematics in mathematics teacher education. 

The Norwegian teacher education context 
Norwegian teacher education is politically controlled (Hammerness, 2013), and national curriculum 
guidelines direct the focus and content of all teacher education programs. There are differentiated 
teacher education programs for primary (years 1–7) and lower secondary (years 5–10) levels; both 
are four-year bachelor programs. In the primary teacher education program, a mathematics course of 
30 ECTS is compulsory for all pre-service teachers, whereas the lower secondary teacher education 
program requires 60 ECTS in mathematics for pre-service mathematics teachers.  

Field practice is a compulsory part of teacher education, but studies indicate that pre-service teachers’ 
opportunities to learn in this context are not sufficiently utilized (Hammerness, 2013). Pre-service 
teachers are required to complete 100 days of field practice at partner schools. The aim is that field 
practice should focus on the subject that pre-service teachers study on campus the current year. In 
field practice, pre-service teachers normally work in groups that are supervised by an experienced 
mentor teacher. Prospective mentor teachers are required to take a training course of 15 ECTS, and 
they are employed by the universities as teacher educators. From 2017, the Norwegian teacher 
education will be a five-year master program, and the field practice component will be extended to a 
minimum of 115 days spread across five years (Ministry of Education and Research, 2016). 

Methods 
In order to discuss challenges and possibilities of implementing high-leverage practices (e.g., 
TeachingWorks, 2015) and identify underlying mathematical tasks of teaching (e.g., Ball et al., 2008), 
we consider an empirical case from a cross-disciplinary project in Norwegian teacher education 
entitled Teachers as Students (TasS). The TasS project has a focus on pre-service teachers’ learning 
in field practice.  

Data collection includes video recordings of group interviews held with each group of pre-service 
teachers before and after their period of field practice. Based on analyses of these interviews, Martin 



(pseudonym) stood out as a special case. He was one of only two pre-service teachers in the project 
who selected mathematics because they liked it and were good at it. A recent literature review 
suggests that being good at mathematics is important for pre-service teachers, for instance in 
perceiving and interpreting students’ work (Stahnke, Schueler, & Roesken-Winter, 2016). In this case 
we only know that Martin sees himself as good, and this was a criterion for selecting him as a case. 
We observed Martin in a period of field practice in his fourth semester. In the previous semester, he 
had completed the 60 study points (ECTS) in mathematics/mathematics education that is required to 
teach mathematics in grades 5–10. Even though Martin enjoyed mathematics, his teaching practices 
cannot be seen as ambitious teaching practices (Lampert et al., 2010) fundamental for supporting 
students’ learning (e.g., McDonald et al., 2013). In the following, we first show some glimpses from 
a lesson where Martin teaches multiplication of fractions in grade 7, followed by his discussions with 
the mentor teacher in the post-lesson mentoring session. The selected episode was typical for Martin’s 
lessons in his three weeks of field practice. The lesson lasted for 38 minutes (we only focus on the 
whole class teaching in the selected episode), whereas the mentoring session lasted for 13 minutes.  

The case of Martin 
After a brief repetition from the previous lesson, Martin introduces multiplication of fractions as the 
focus of this lesson. He writes 1

3
 of 3

4
 =  1

3
 × 3

4
 on the blackboard and emphasizes that we say “one third 

of three quarters” when we write an expression like this. “What this means,” he continues, “is that 
we first have a fraction of one third and split it into three by using two horizontal lines.” He draws a 
quadrilateral on the blackboard, partitions it and shades the top third part. He draws another 
quadrilateral, partitions it vertically into fourths and shades three of these (see Figure 1). He then 
draws a third quadrilateral and says, “If we now want to take a third of this, we partition it into three 
[draws two horizontal lines in the figure]. How much is one third now?”  

 
Figure 1. Martin’s illustration of 𝟏

𝟑
 × 

𝟑

𝟒
 

When the students struggle to respond, Martin points at one of the parts in the figure. “It is one of 
these. And then we only have a third of what is shaded—look at this one! Did you understand that?” 
Some students say no, whereas others shake their heads. Martin tries again: “What we can also do, is 
to say that we put the two fractions on top of each other.” He points at the first figure, pretends to 
move it over to the second figure and draws two horizontal lines in the middle figure. “What we focus 
on,” he continues, “is that which has been shaded twice.” When noticing that the students still do not 
seem to understand, he writes the expression. “It is as simple as taking this one [pointing at the first 
numerator] times this one [pointing at the second numerator], and then we take the first denominator 
times the second denominator.” While saying this, he writes it out on the blackboard. “Do you see 



that 3

12
 is the answer?” When the students are still hesitant, he quickly wipes everything out. “Let’s 

take one more example,” he continues.  

In the next example, Martin writes 1

2
 of 1

3
 on the blackboard and draws two figures that he partitions 

and shades—this time by using colored crayons. The figures are of different sizes. “How much of 
this is both red and blue?” he asks. A girl presents 4

6
 as an answer, whereupon Martin repeats, “That 

is both blue AND red?” When a boy provides the answer, 1
6
, Martin confirms. “We have one part that 

is both blue and red, meaning both fractions. There are six parts altogether, and then we get one sixth,” 
he continues. Martin tries to point the students’ attention to the procedural approach. “If I want to 
solve this expression [pointing at 1

2
 × 1

3
 on the blackboard], the operation, how do I do it?” A boy 

mumbles that you are supposed to multiply, and Martin continues, “We are going to multiply 
denominator by denominator [pointing at the numerators (!) in the expression], and numerator by 
numerator [pointing at the denominators (!)].” He writes it out on the blackboard, seemingly ignorant 
about the fact that he has just mixed numerators with denominators. “Do you think you can make it 
if you try the tasks for yourselves now?” He then turns to the blackboard again and emphasizes how 
important it is to remember that although we write 1

2
 × 1

3
, we say one half of one third. “Important to 

remember,” he says. “If we don’t remember this, it will be very, very hard to solve the word 
problems!” Then he writes down 3

7
 × 

10

2
 as another example. “How many of you know how to solve 

this one?” he asks. “The very operation,” he continues, “forget about the figures!” After this 
introduction (14 minutes into the lesson) the students start working on similar tasks from their 
textbooks. When realizing that many students still have problems, Martin presents another example 
on the blackboard (after 18 minutes). Towards the end of the lesson, when summing up, he tells the 
students that he forgot to mention that the quadrilaterals (in Figure 1) are supposed to be equal in size.  

Martin introduces the post-lesson mentoring session by saying that he can see what went wrong. 
When asked to elaborate, he points out that he should have used different colors from the beginning, 
and that he should have presented more examples before letting the students work individually on 
tasks. He continues to say that in his figures (e.g., Figure 1) he should have “mentioned that they [the 
quadrilaterals] were equally big”. The mentor teacher supports this by saying: “When you don’t show 
on the blackboard that they are equal, you cannot expect the students to understand it.” In the next 
part of the mentoring session, they discuss what different students managed to do during the part of 
the lesson that involved individual work on textbook tasks. This part of the lesson is not the focus of 
attention in this paper. Towards the end of the mentoring session, the mentor teacher ends the 
discussion about the figures used to illustrate fraction multiplication by saying, “I think they [the 
quadrilaterals] would have worked out very well, as you are pointing out, if you had used colors. And 
if you had thought about making them equal in size, it would have worked out very well.” Martin 
agrees, and adds that it is important to be careful about how you draw such figures. 

Learning from the case of Martin 
The case of Martin illustrates the core practice of “explaining and modeling content, practices, and 
strategies” (TeachingWorks, 2015). A simplified response to the presented episodes and vignettes 
could be that Martin does not carry out the core practice of explaining and modeling content, 
practices, and strategies well, and he needs more practice. Based on research indicating that pre-



service teachers do not necessarily learn from their field practice (Hammerness, 2013), we believe 
there is more to it than this. Although Martin and his mentor teacher discuss his explanations and 
modeling of the content, they do not appear to get to the heart of the issue. Ball and Forzani (2009) 
suggest that certain mathematical tasks of teaching are embedded in these core practices (e.g., Ball et 
al., 2008; Hoover et al., 2014). In our discussion of challenges and possibilities of implementing core 
practices, we identify four challenges and discuss the possibilities for highlighting some of the 
embedded mathematical tasks of teaching.  

First, and most importantly, Martin is faced with the mathematical task of “recognizing what is 
involved in using a particular representation” (Ball et al., 2008, p. 400). In his attempt to use the area 
model to represent multiplication of fractions, Martin draws three quadrilaterals (Figure 1). The area 
model for multiplication of fractions requires use of one rectangle only as unit. Martin does, however, 
say that the third rectangle illustrates the two others “on top of each other”, and he points at the first 
rectangle and pretends to drag it over the second rectangle. Still, this use of the model appears to 
confuse the students, and it would have been natural to focus on this mathematical task of teaching 
in a post-lesson mentoring session. In the given example one can draw three horizontal lines to show 
four equally large horizontal strips and then divide an area of three of these in three columns by 
drawing two vertical lines. Then there is still some work to do in order to understand that numerators 
can be multiplied as well as denominators. Martin tries to help the students develop this understanding 
by drawing two horizontal lines in the middle figure to illustrate how the four parts have now been 
divided into three and saying: “what we focus on, is that which has been shaded twice.”  

In the post-lesson mentoring session, Martin starts by stating that he can see what went wrong. He 
points out that he should have used different colors (instead of double shading) and that he should 
have presented more examples. He continues to say that he should have “mentioned that they [the 
rectangles] were equally big.” The mentor teacher expresses his agreement. The area model requires 
use of one rectangle only as unit, but this is not discussed. “Recognizing what is involved in using a 
particular representation” (Ball et al., 2008, p. 400) is a mathematical task of teaching which might 
be fruitful in order to facilitate student teachers’ learning to carry out the core practice of explaining 
and modeling content in teacher education. This mathematical task of teaching is, however, not 
discussed in the post-lesson mentoring session. 

Second, and related to the first, Martin consistently reads the product as “1

3
 of  3

4
” indicating another 

model for multiplication of fractions than the area model: the multiplicative comparison model. In 
this model, one of the fractions is an operator, one is represented as a portion of the area of one 
rectangle, and the result is represented as another portion of the area of the same rectangle. In this 
case the rectangles might well be drawn separately, but Martin’s comment that the two first rectangles 
in Figure 1 should be placed on “top of each other” to make the third indicates that he does not have 
this model in mind. This is also not discussed in the post-lesson mentoring session.   

Third, and related to the mathematical task of selecting appropriate examples “to make a specific 
mathematical point” (Ball et al., 2008, p. 400), Martin could have selected more appropriate examples 
when presenting the students with the area model for multiplication of fractions. In using this area 
model, it is necessary to not only use simple fractions as one-third and three-fourth. One can clarify 
much better that numerators can be multiplied as well as denominators with say three-fifth of four-



seventh. This illustrates an embedded mathematical task of teaching related to finding examples to 
make specific a certain mathematical point. In the post-lesson mentoring session, only the number of 
examples is discussed. For instance, they discuss that Martin should have presented more examples. 
Selection of examples, which has proven to be difficult for pre-service teachers (Zodik & Zaslavsky, 
2008), is not discussed. One way to meet this challenge of randomly generated examples, when 
careful choices should be made, is to exemplify and discuss carefully selected examples in 
mathematics teacher education 

Fourth, Martin is faced with the mathematical task of using correct mathematical language when 
presenting the mathematical idea of multiplication of fractions. On a couple of occasions, we observe 
that he mixes numerator with denominator. This might be regarded as a minor mistake of speaking 
mathematics, and we do not believe it is the most critical issue in the case of Martin. Correct use of 
mathematical language and notation is still important, however, and we suggest that this is a 
mathematical task of teaching that the mentor teacher could have discussed with Martin.  

Martin is using a model for representing multiplication of fractions (Figure 1), but the students 
struggle to understand it. The high-leverage practice of eliciting and interpreting students’ thinking 
(TeachingWorks, 2015) focuses on teachers’ practice related to posing questions or tasks that provoke 
or allow students to share their mathematical thinking in order to evaluate student understanding and 
guide instructional decisions. To do this effectively, a teacher needs to draw out a student’s thinking 
through carefully selected questions and tasks and to consider and check alternative interpretations 
of the student’s ideas and methods. Although Martin knows the mathematical content himself, he 
struggles to understand the problems faced by the students. This illustrates the importance of pre-
service teachers’ mathematical knowledge in order to perceive and interpret students’ work (Stahnke 
et al., 2016). In his communication with the students, Martin does not invite the students to engage 
in mathematical discussions and reasoning. Instead, the students are invited to give short and 
confirmative responses only. During the 14-minute whole-class introduction, as well as in the brief 
wrapping up of the lesson, the students were mostly invited to answer yes or no questions. Two 
examples of such questions are: “Did you understand that?” and “Do you think you can make it if 
you try the tasks for yourselves now?” Some questions are asked when the answer is already visible 
through the example presented on the board, like: “How much is one third now?” and “How much of 
this is both red and blue?” These questions invite students to answer by single words. Only once were 
the students invited to answer a how-question, and this question was related to how to carry out a 
routine procedure. Based on our analyses of how Martin invites the students to participate, we 
conclude that they are not invited to speak or reason mathematically. This kind of communication 
does not allow Martin to elicit students’ thinking. We thus suggest that the core practice of eliciting 
and interpreting students’ thinking is important to develop in teacher education. 

Conclusion 
Learning to successfully carry out high-leverage practices in mathematics teaching requires 
awareness about the underlying mathematical tasks of teaching involved (Ball et al., 2008), and 
mathematics teaching is a professional practice that requires training (Hoover et al., 2014). In this 
paper, we have used illustrative data from field practice in Norwegian mathematics teacher education 
as a starting point for our discussion. From this challenging case, we observe that neither the pre-
service mathematics teacher (Martin) nor his mentor teacher appear to be conscious about the 



mathematical tasks of teaching that are embedded in the high-leverage practices that have been 
analyzed and discussed in this paper—all of which are involved in the planning, conducting and 
reflecting on a lesson on multiplication of fractions.  

What challenges and possibilities of implementing core practices and identifying underlying 
mathematical tasks of teaching mathematics in mathematics teacher education can be identified by 
analyzing Martin’s lesson? In this lesson, the pre-service teacher was challenged to carry out the 
practice of “Explaining and modeling content, practices, and strategies” (TeachingWorks, 2015). 
Previous research indicates that strong teacher knowledge supports teachers in using representations 
to attach meaning to mathematical procedures (e.g., Charalambous, 2010). Although he has 
completed all of his coursework in mathematics, Martin does not appear to be prepared to carry out 
this core practice. Martin is also challenged to elicit students’ thinking (TeachingWorks, 2015), but 
he does not seem prepared to carry out this core practice of teaching mathematics either, at least not 
in an ambitious way (Lampert et al., 2010). From these illustrative data, it appears that there is a lack 
of awareness about the underlying mathematical tasks of teaching, and the post-lesson mentoring 
session includes little discussion of these underlying mathematical tasks of teaching.  

At least four lessons can be learned from the case of Martin. First, the task of recognizing what is 
involved in using a particular representation challenges teacher education to include detailed 
discussions of the area model for representing multiplication of fractions, highlighting the importance 
of using only one rectangle and how this model relates to numerators are multiplied as well as 
denominators. Second, selecting appropriate examples using carefully chosen numbers is important 
in order to clarify that numerators can be multiplied as well as denominators, and therefore important 
to discuss in teacher education. Third, Martin could have selected better examples when presenting 
the students with the area model for multiplication of fractions. Fourth, and finally, the case of Martin 
illustrates the mathematical task of presenting mathematical ideas using correct mathematical 
language. These mathematical tasks of teaching all seem related to the high-leverage practice of 
explaining and modeling content (TeachingWorks, 2015).  

Mathematics teacher education needs to focus more on preparing prospective teachers to carry out 
high-leverage practices. Discussions of the embedded mathematical tasks of teaching are then 
necessary. The vignettes and episodes discussed in this paper indicate that the “unnatural” and 
complicated work of teaching needs to be explicitly taught in teacher education. One way of 
approaching this is to practice carrying out the mathematical tasks of teaching on campus as well as 
in field practice. The national guidelines for current primary and lower secondary teacher education 
that are now being developed focus on core or high-leverage practices (Ministry of Education and 
Research, 2016). More research and development efforts are needed to ensure a high-leverage 
implementation of these ideas in teacher education.  
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The aim of this study is to describe changes in the way that prospective secondary school teachers 
notice students’ mathematical thinking related to the limit concept in a learning environment 
designed ad hoc. The learning environment progressively nests the skills of attending to, 
interpreting and deciding as three interrelated skills of professional noticing. Results show 
characteristics of how prospective teachers gained expertise in the three skills since four out of five 
groups of prospective teachers interpreted students’ mathematical reasoning attending to the 
mathematical elements of the dynamic conception of limit. The links between attending to and 
interpreting helped prospective teachers justify the teaching activities proposed to support the 
progression of students’ mathematical reasoning: from a mathematical point of view or considering 
mathematical cognitive processes involved.  

Keywords: Noticing, prospective teachers’ learning, learning environment. 

Introduction and theoretical background 
Research has shown that noticing is an important component of teaching expertise (Mason, 2002). 
Teachers need to attend to students’ mathematical reasoning and make sense of it in order to teach 
in ways that build on students’ thinking (Choy, 2016; Sherin, Jacobs, & Philipp, 2011). Noticing has 
been conceptualised from different perspectives. One of them consists of two main processes: 
attending to particular teaching events and making sense of these events (Sherin et al., 2011). 
Jacobs, Lamb, and Philipp (2010) particularise the notion of noticing to children’s mathematical 
thinking, conceptualising this notion as a set of three interrelated skills: attending to children’s 
strategies, interpreting children’s mathematical thinking, and deciding how to respond on the basis 
of children’s mathematical thinking. 

Previous research has focused on pre-service teachers’ ability to interpret students’ mathematical 
thinking (Bartell, Webel, Bowen, & Dyson, 2013; Callejo, & Zapatera, 2016; Fernández, Llinares, 
& Valls, 2012; Llinares, Fernández, & Sánchez-Matamoros, 2016; Magiera, van den Kieboom, & 
Moyer, 2013; Sánchez-Matamoros, Fernández, & Llinares, 2015) showing that the identification of 
the mathematical elements involved in the problem (mathematical content knowledge) plays a 
significant role in interpreting students’ mathematical reasoning. Furthermore, previous research has 
shown that some contexts can help pre-service or prospective teachers develop the noticing skill: 
watching video clips (Coles, 2012; van Es, & Sherin, 2002), participating in online debates 
(Fernández et al., 2012) or participating in learning environments (interventions) designed 
considering specific mathematical topics. For example, Schack et al. (2013) in the area of early 



numeracy; Magiera et al. (2013) in algebra; Callejo and Zapatera (2016) in pattern generalization; 
Llinares et al. (2016) in classification of quadrilaterals; Sánchez-Matamoros et al. (2015) in the 
derivative concept; and Son (2013) in the concepts of ratio and proportion. These previous studies 
underline that the skill of deciding how to respond on the basis of children’s mathematical thinking 
is the most difficult one to develop in teacher education programs. As Choy (2013) pointed “the 
specificity of what teachers notice while necessary, is not sufficient for improved practices” (p. 
187). In other words, teachers can be very specific about what they notice without having a teaching 
decision in mind. So, the relation between how prospective teachers develop the skills of 
interpreting students’ mathematical thinking and deciding how to respond on the basis of students’ 
mathematical thinking deserves further research. 

On the other hand, the concept of limit of a function is a difficult notion for high school students 
(16-18 years old) and is a key concept in the Spanish curriculum (Contreras, & García, 2011). 
Cottrill and colleagues (1996) indicated that the difficulty of students’ understanding of the limit 
concept could be the result of a limited understanding of the dynamic conception. A way of 
overcoming this difficulty is by coordinating the processes of approaching in the domain and in the 
range in different modes of representation. Knowing these characteristics of students’ understanding 
could provide prospective teachers with information to interpret students’ mathematical thinking 
and to make instructional decisions based on students’ reasoning.  

Therefore, our study analyses changes in the way that prospective teachers notice students’ 
mathematical thinking (attending to, interpreting and deciding) in relation to the limit concept when 
they participate in a learning environment designed ad hoc. The learning environment designed 
progressively nests the skills of attending to, interpreting and deciding and its relations. We 
hypothesise that the structure of the learning environment help prospective teachers to decide how 
to respond taking into account their previous interpretations of students’ mathematical thinking. 

Method 
Participants and the learning environment 

The participants were 25 prospective secondary school teachers (mathematics, physics and 
engineering) who were enrolled in an initial secondary mathematics teacher training program. One 
of the subjects of this program is focused on developing the skill of noticing students’ mathematical 
thinking in different mathematical topics and on planning the instruction attending to students’ 
mathematical thinking. One of the mathematical topics considered was the limit concept.  

The learning environment consisted of 5 sessions of two hours each and was designed taking into 
account the nested nature of the skills of attending to, interpreting and deciding (Jacobs et al., 2010). 
Prospective teachers were divided into five groups of 5 persons to perform the tasks of the learning 
environment. Firstly, prospective teachers solved three problems related to the limit concept 
selected from high school textbooks (Figure 1) in order to unpack the important mathematical 
elements of the limit concept (session 1). Then, prospective teachers had to anticipate hypothetical 
students’ answers to these problems reflecting different characteristics of conceptual development 
(session 2). That is, they had to anticipate what students are likely to do. Prospective teachers had a 
document with the definition of the dynamic conception of limit and its mathematical elements 
(Pons, 2014): (i) approaches from the right and from the left (in the domain and in the range), and 



(ii) coordination of the processes of approaching in the domain and in the range considering 
different modes of representation (graphical, algebraic and numerical).  

 
Figure 1: The three problems related to the limit concept 

The aim of the tasks of identifying the mathematical elements in the resolution of the problems and 
anticipating hypothetical students’ answers was to help prospective teachers focus their attention on 
the relationship between the specific mathematical content and students’ mathematical thinking. We 
conjecture that focusing on this relationship is needed to develop the skill of noticing in a first step. 
Next, prospective teachers analysed a set of four high school students’ answers (Pablo, Rebecca, 
Luiggi and Jorge) to the same problems. Prospective teachers had to attend to students’ strategies, 
interpret students’ mathematical thinking and propose new activities (or modify them) to help 
students progress in their conceptual reasoning (according to their previous interpretations of 
students’ mathematical thinking) (session 3 and 4). The high school students’ answers, provided to 
prospective teachers, reflected different levels of high school students’ reasoning of the limit 
concept (Table 1; Pons, 2014). We also provided prospective teachers with theoretical information 
that summarise the characteristics of high school students’ reasoning of the limit concept from 
previous research to solve the task (Cornu, 1991; Cottrill et al., 1996; Swinyard, & Larsen, 2012). In 
figure 2, the answers of Pablo to the three problems are given. 

Prospective teachers had to answer the next three questions: (i) which mathematical elements has 
the student used in each problem? Indicate if he/she has had difficulties with them; (ii) identify 
some characteristics of how the student understands the limit of a function. Explain your answer 
using the mathematical elements identified before; (iii) considering the student reasoning, propose 
an activity that helps the student progress in their conceptual reasoning of the limit concept. 
Therefore, the objective of sessions 3 and 4 was that prospective teachers focus their attention on 
the relation between identifying-interpreting and between interpreting-deciding. We conjecture that 
these relationships are necessary to develop the skill of noticing. Finally, in the session 5, 
prospective teachers had to answer a similar task individually. 



High 
school 

students 

Level Levels of students’ reasoning about the dynamical conception  of the 
limit concept 

Pablo and  
Luiggi 

High Pablo and Luiggi coordinate the processes of approaching in the domain 
and in the range in the three modes of representation 

Rebecca Low Rebecca coordinates the processes of approaching in the domain and in 
the range in the graphical mode of representation when limits coincide 

Jorge Intermediate  Jorge coordinates the processes of approaching in the domain and in the 
range in the algebraic and graphical mode of representation (when limits 
coincide in this last mode of representation) 

Table 1: Characteristics of high school students’ answers 

Answer to Problem 1 

 
 
 

Answer to Problem 2 
a1) x1 is approaching to 1 from 
the left and from the right and x2 
is approaching to 1 from the left 
and from the right 
a2) The images of f(x1) are 
approaching to 2 from the left 
and from the right 
a3) The images of g(x2) are 
approaching to 2 from the right 
and is approaching to -1 from 
the left 
b1) when x1 is approaching to 1, 
images of f(x1) tend to 2 
b2) when x2 is approaching to 1, 
the images of g(x2) tend to -1 
from the left and tend to 2 from 
the right. 

Answer to Problem 3 
a) Graph 3 because the limit of 
the function in x=2 from the 
right and from the left is 2. 
b) Graph 2 because the limit of 
the function in x=2 from the 
left and from the right is 5. 
c) Graph 1 because the limit of 
the function in x=2 is not the 
same from the right and from 
the left. 

Figure 2: Pablo’s answers to the three problems  

Data and analysis 

Data of this study are prospective teachers’ answers to the tasks of session 2 (anticipation) and 
sessions 3 and 4 (interpretation). Through an inductive analysis (Strauss & Corbin, 1994), we 
generated similarities and differences about how prospective teachers conceived high school 
students’ reasoning of the limit concept and the type of activities they provided to help students 
progress in their conceptual reasoning. To carry out this analysis, five researchers analysed 
individually prospective teachers’ answers to the anticipation and interpretation tasks and then, the 
agreements and disagreements were discussed to reach a consensus on these issues.  

This analysis let us identify two ways of how prospective teachers conceived high school students’ 
reasoning: as dichotomous (right or wrong) and as a progression (identifying different levels of 
students’ reasoning). The type of activities that prospective teachers provided were categorised in 
three categories: general decisions, decision based on curricula contents and decisions based on 
cognitive processes. Examples of these categories are presented in the results section. 



Finally, we compared categories obtained in the anticipation task with the categories obtained in the 
interpretation task to identify changes in the way of how prospective teachers conceived high school 
students’ reasoning and proposed activities to help students progress in their conceptual reasoning. 

Results 
Our results show that prospective teachers changed the way that they conceived students’ reasoning 
from a dichotomous to a progression way and this shift influenced the type of activities that they 
proposed to help students progress in their conceptual reasoning. 

Changes in the way that prospective teachers conceived students’ reasoning: From a 
dichotomous to a progression  

In the anticipation task, three out of five groups conceived students’ reasoning as dichotomous 
(right or wrong). For example, the group of prospective teachers G2 anticipated that a high school 
student with high level of reasoning of the limit concept (Maria) would coordinate in all modes of 
representation. For example, this group of prospective teachers anticipated the next answer for the 
algebraic representation: 

 
Furthermore, these prospective teachers (G2) anticipated that a high school student with a not 
suitable level of reasoning of the limit concept (Pedro) would not coordinate in any mode of 
representation pointing out: “Pedro only approximates (from the left or from the right) when the 
function is defined”. 

Then (in the interpretation task), four out of five groups of prospective teachers were able to 
interpret students’ mathematical reasoning. They linked students’ reasoning with the mathematical 
elements of the dynamic conception of limit: the approaches from the right and from the left (in the 
domain and in the range), and the coordination of the approaches in the domain and in the range 
considering different modes of representation (graphical, algebraic and numerical). For instance, the 
group of prospective teachers (G2) interpreted the student’s answer of problem 1 (Figure 2) as: 

 The resolution of the student is correct (Pablo). We can notice that the student has identified the 
kind of function (piecewise function) since he (the student) has approximated in the range (he has 
calculated the approximation to x=1 from the left and from the right and the approximation to x=2 
from the left and from the right) and in the domain (taking the correct definition of function in 
each interval). Furthermore, he has coordinated the processes of approaching in the domain and in 
the range since he has written, for example, that when x tends to 1 from the left, the image of the 
function tends to 3 (using the function 2x+1).    

Maria understands the limit concept. The idea of approximation in 
the domain corresponds to the fact that she properly selects the 
branch of the function and uses the notion of approximation in the 
range adequately. It is demonstrated when she replaces on the 
limit the approach of the independent variable. This student also 
coordinates the approximations to establish the value of the limit 
according to the branch.  



This group gave similar comments for the student’s answers to the other two problems linking 
students’ reasoning with the important mathematical elements in the other two modes of 
representations (problems 2 and 3). Afterwards, they wrote a summary about this student level of 
reasoning: 

 This student understands the limit concept since he approaches from the right and from the left (in 
the domain and in the range), and coordinates the processes of approaching in the domain and in 
the range in the three modes of representation (graphical, algebraic and numerical). This student 
would be in the high level of reasoning. 

These prospective teachers were able to identify different levels of students’ reasoning. Therefore, 
they conceived students’ reasoning as gradual. 

Changes in the type of activities they proposed to help students progress in their conceptual 
reasoning 

Prospective teachers who conceived students’ reasoning as dichotomous did not propose specific 
activities to help students progress in their reasoning. These prospective teachers gave general 
comments about teaching as instructional actions. For instance, the group of prospective teachers 
G2 proposed to Maria (in the anticipation task) the representation of the graph of the function of 
problem 1. This decision was not based on the conceptual progression of the student. 

When prospective teachers interpreted students’ mathematical thinking identifying different levels 
of students’ reasoning (linking students’ mathematical reasoning with the important mathematical 
elements), they were able to provide specific activities to help students progress in their conceptual 
reasoning. For the students who only coordinate the approaches in the domain and in the range in 
one mode of representation, they proposed new activities to integrate these mathematical elements 
gradually in the different modes of representation. The proposed activities required a coordination 
of approaches in the domain and in the range in the different modes of representation. For the 
students who coordinate the approximations in the domain and in the rage in all modes of 
representation (such as the student of Figure 2), they also provided activities to help students 
progress in their reasoning.  

We have identified two ways in which they justified their new activities: some justifications were 
based on the mathematical elements and others on the cognitive processes involved. In the first case, 
prospective teachers focused their attention on introducing a new mathematic content. In the 
following example, they introduced a new type of discontinuity – an avoidable discontinuity. The 
justification of this type of activities was based on the use of new mathematical elements (in this 
case, introducing other type of functions). 

The activity: We would modify the function of problem 1 and we would use: 

 

Our justification: The student (Figure 2) seems to understand the limit concept in the three modes of 
representation, so we would provide him a more difficult function with an avoidable discontinuity. 



In the second case, prospective teachers focused their attention on the cognitive processes involved 
to understand the limit concept. In the next example, prospective teachers focused on the reversal as 
a cognitive mechanism that leads students to a new reasoning level. That is to say, prospective 
teachers justified the proposed activity by the need of generating learning opportunities to develop 
the reverse mechanism that allows the construction of cognitive objects.  

The activity: Represent a graph of a function which limit in x=-1 is 4 and that there is not limit in x=1.    

Our justification: with this activity students need to do the inverse process that is, they need to use all the 
important mathematical elements to build that function. 

Discussion and conclusions 
Results show that after the participation in a learning environment that progressively nests the three 
interrelated skills of professional noticing (attending to, interpreting and deciding), prospective 
secondary school teachers gained expertise in noticing. Four out of five groups of prospective 
teachers were able to interpret students’ mathematical thinking linking students’ reasoning with the 
important mathematical elements of the dynamic conception of limit. These findings support the 
claim that some characteristics of the learning environment such as considering the nested nature of 
the skills help prospective teachers develop the skill of noticing (Sánchez-Matamoros et al, 2015; 
Schack et al., 2013). 

Furthermore, prospective teachers were able to provide specific activities to help students progress 
in their conceptual reasoning. Therefore, the characteristics of the learning environment in which 
prospective teachers were engaged in the analysis of mathematical elements of limit problems, in 
the analysis of students’ reasoning and in proposing new activities to support students’ conceptual 
development enable them to gain more accurate understanding of the relation between the 
mathematical content and students’ mathematical thinking. This new understanding provides 
prospective teachers with the needed knowledge to give their teaching decisions based on the 
progression of students’ reasoning: from a mathematical point of view or considering the cognitive 
processes involved.  
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The program Math.Researchers (“Mathe.Forscher”) funded by the German foundation “Stiftung 
Rechnen” has the goal to implement discovery, inquiry- and project-based learning in mathematic 
school lessons. The students are meant to explore and discover mathematics in their every-day-life 
with the help of their teachers. The teachers are well educated in supporting their students by in-
service education organized by the program. In addition to finding out if the in-service education is 
well established and if any correlation between the students’ or the teachers’ view on mathematics 
and the positive identification with the program is detectable, an evaluation was planned. The goal 
is to investigate if while taking part in the program Math.Researchers teachers’ beliefs concerning 
mathematics are influenced and if an effect on the students’ view on mathematics is detectable. 

Keywords: In-service education; secondary school mathematics; discovery, inquiry- and project-
based learning; beliefs. 

Theoretical framework 
The program Math.Researchers (“Mathe.Forscher”) funded in 2010 by the German foundation 
“Stiftung Rechnen” has the goal to implement discovery, inquiry- and project-based learning in 
mathematic school lessons. One motivation is that inquiry-based learning may increase the students’ 
mathematical achievement (Hattie, 2015). Bruner considers the benefit of learning through 
discoveries that one makes for oneself in the 60’s (Bruner, 1961). His discussed main benefits are 
similar to Winter’s arguments consisting the thesis that active discoveries by students themselves are 
the more effective way of especially learning mathematics (Winter, 1989, p. 1–3).     The students are 
meant to explore and discover mathematics in their every-day-life with the help of their teachers. The 
program Math.Researchers supports the teachers in several sessions, with training, booklets and 
material for best-practice-activities. In addition a team of scientific assistants and process assistants 
support the program members. One example for a Math.Researcher activity is “Mathematics at the 
Zoo” (Ludwig, Lutz-Westphal, 2016). The pupils have to leave their classroom and visit the zoo to 
develop their own research questions there. The teacher supports the students’ ideas with 
mathematical knowhow. Back at school they work on their research questions and present their 
results. A reflection on the presented solutions completes this Math.Researcher activity.Although the 
teachers were supported in the terms of the program they were insecure whether their lessons were 
Math.Researchers-lessons. To improve transparency in this respect five special normative program-
dimensions were developed by experts of the program in 2014 that can be used as a kind of checklist. 

Math.Researcher-dimensions 

Derived from the program goals, the following five Math.Researcher-dimensions were determined in 
2014: using the Math.Researcher-principles (MRP), opening the classroom (OC), working with 
researchers’ questions (RQ), acting as a learning guide (LG), and visualizing mathematics (VM).  



Each dimension consists of three main elements (Table 1). The more elements considered, the more 
Math.Researcher-like is the planned unit. The table can be used as a checklist so that the teachers are 
able to find out whether their planned lessons are conforming to the program. An ideal 
Math.Researcher-activity contains a minimum one element of each dimension.  

Dimension Main Elements 

Using the Math. 
Researcher 
Principles (MRP) 

Inquiry-based 
learning 

discovery learning project-based 
learning 

Opening the 
Classroom (OC) 

interdisciplinary 
instruction 

inviting experts outdoor lessons 

Working with 
Researcher’s 
Questions (RQ) 

including the 
students living 
environment 

exercising asking 
questions with the 
students  

allowing multiple 
approaches 

Acting as a Learning 
Guide (LG) 

enable active 
students role 

constructive 
handling with 
students ideas 

working out 
milestones together 

Visualizing and 
presenting 
Mathematics (VM) 

documentation of 
mathematics 

using mathematical 
language 

talking about ideas 

Table 1: The five dimensions and its main elements 

Considering the above-mentioned Math.Researcher activity’s example “Mathematics at the Zoo” 
elements of all dimensions can be found here. The activity is project-based (MRP) and includes 
outdoor lessons at the zoo (OC). The pupils develop their own mathematical questions in an 
environment they usually do not connect to an educational context (RQ). The teacher enables student 
activities and supports them in mathematizing their ideas (LG). The phase of presentation and 
reflection at the end of this project represents the fifth dimension (VM). 

To establish the dimensions a special PD course was conducted (figure 1). At a kick-off-meeting in 
December 2014 with all participating teachers the dimensions were introduced. The following months 
the teachers were meant to implement the dimensions in their teaching to get more familiar with them. 
So called process-assistance visited the teachers at school, watched the lessons, gave feedback. At 
the Math.Researchers’ camp in May 2015 concrete activities were planned. 17 teachers met with 
program’s scientific and process assistance to develop units focusing the dimensions. These units 
were conducted in May, June and July 2015. Every unit should be documented by a uniform document 
tool provided on the internet platform. The assistants analyzed these documentations and gave 
individual feedback.  



 
Figure 1: Timeline of treatments 

While carrying out the Math.Researcher program with a special focus on the dimensions it was not 
sure whether and how the terms and ideas of the program were implemented in mathematical school 
lessons after May 2015. The dimensions can be seen as a kind of program characteristics. So a natural 
research question came up: Did the development and application of these dimensions succeed 
sustainable? That means on the one side that they are helpful for the teachers to plan their 
Math.Researcher lessons, and on the other side that the included main elements are recognizable by 
the students in the way the teachers planned it. Furthermore, we wanted to know if there is any effect 
on the view on mathematics of the teachers and also the students. By taking part in the program the 
students are meant to explore and discover mathematics in their every-day-life. Does this goal reach 
the students, or is the main opinion after they have taken part in the program that mathematics is still 
a school topic where you have to learn formulas and not necessary for every-day-life?  

Presenting  the design principles of in-service education by the German Centre for Mathematics 
Teacher Education (DZLM) Barzel and Selter (2015) reviewed the current state of research on in-
service education with a special focus on mathematics. The effectiveness of in-service education is 
possible on different levels: Among other things there can be an impact on the acceptance of the 
training, an impact on the professional competencies and an impact on the classroom teaching (Barzel 
& Selter, 2015, p. 266). To improve transparency in the respect which impact can be found with the 
Math.Researcher-program an evaluation was planned with a focus on the following research 
questions: 

- Are the dimensions well established, do the teachers identify with them and integrate 
belonging elements in their classroom teaching? (1)  

- Which view on mathematics has been built up by the participants identifying with the 
Math.Researcher program? (2) 

July 2015
Evaluation

May - July 2015
Documentation Tools

May 2015
Camp

Dec - May 2015
support by process assistance

Dec 2014
Kick-Off



Therefore the dimensions were related to the mathematical beliefs. The mathematical world view of 
teachers (Törner, 1997) can be described by a belief system including four main aspects: the aspect 
of formalism (F), the schematic aspect (S), aspect of process (P) and the aspect of application (A). 
The aspect of formalism and the schematic aspect can be interpreted as a static view on mathematics 
education: mathematics as a system. The dynamic process character allows understanding facts, 
recognizing connections and building knowledge: mathematics is an activity. This belief system is 
also part of the competencies framework for in-service education of the DZLM (Barzel & Selter, 
2015,p. 263).   

The pilot study 

A pilot study was conducted from May to July 2015 in the region Rhein-Neckar to find out whether 
the dimensions are well established and if any correlation between the students’ or the teachers’ view 
on mathematics and the positive identification with the dimensions are detectable. The program 
started in this region in 2012 in ten secondary schools. All respondents – students and teachers – of 
the pilot study have taken part in at least one Math.Researcher-activity within the last two years and 
especially in the PD course focusing the dimensions listed above. 

Methods 

The questionnaire contained belief-questions (taken from surveys by Grigutsch/Raatz/Törner, 1998), 
questions belonging to the  program and its dimensions and some general questions (mostly 
developed by ourselves and taken from an earlier Math.Researcher evaluation in the region Nord 
conducted by the TU Berlin, Lubke et al., 2011). The teachers (n=20) answered an online-
questionnaire containing 139 questions. The students (n=168) answered a paper print-version with 79 
questions. The items were scaled with 1=”totally don’t agree” to 5= “totally agree”. The higher the 
scale of questions belonging to the dimensions the higher is the identification with the program. All 
questions were formulated to be understandable for students not familiar with the dimensions. For 
example the students were asked whether they liked talking about their own mathematical ideas, 
which can be related to the dimension visualizing and presenting mathematics (VM). Or if they 
sometimes do outdoor mathematics, which is related to the dimension opening the classroom (OC). 
Compared to that the teachers were asked whether their students’ have to present own results at the 
end of a project (VM). Or if they sometimes do outdoor mathematics with their students (OC). The 
items were related to the dimensions by an experts’ rating.   

Additionally, some teachers (n=14, 8 congruent with the respondents of the questionnaire) and some 
of the students (n=31, all of them also filled a questionnaire) were interviewed. The interviews only 
contained questions about the program. For example both groups were asked to characterize 
Math.Researcher lessons by identifying features or describing which special Math.Researcher-
activity they did. 

Results 

The analysis of the data (factor analysis and experts’ rating) showed that the identification of the 
separate Math.Researcher dimensions was not possible. So in the following results the dimensions 
are considered in total, the belief aspects are separate. The five resulting factors formalism (F), 
scheme (S), process (P), application (A) and Math.Researcher-Dimension (Dim) can be seen as 
reliable (Cronbachs Alpha ,728 to ,800, Table 2).   



 
F S P A Dim 

Number of Items 11 8 10 7 25 

Cronbachs α  ,728 ,764 ,798 ,800 ,769 

Table 2: Number of items and Cronbachs Alpha of each main factor 

Figure 2 shows the means of the four belief-aspects and the mean of the Math.Researcher-dimensions 
of all teachers in total. Comparing them, application (A), process (P) and the Math.Researcher-
Dimensions (Dim) are rated similarly positive. 

 
Figure 2: Means of the teachers’ belief aspects and the M.R-dimensions in total (1= do not agree at all, 

5= totally agree) 

The exact scales can be seen in Table 2.The aspect of formalism (F) is rated not as positive as these, 
but considerably better than the scheme aspect (S). Scheme (S) is rated worse. (P) and (Dim) show a 
significant correlation of r= .59 so 35 % of the processes variance can be explained by the dimensions. 
The other beliefs cannot be explained significantly by the dimensions. Comparing the standard 
deviations of the beliefs and the dimensions in total shows that the teachers have rated the single 
items reasonably homogeneously (Table 2). The scheme aspect rated average worse is perceived the 
most ambivalent.  

n=20 F S P A M.R-Dim 

M 3,51 2,26 4,35 4,34 4,22 

SD 0,44 0,56 0,42 0,51 0,35 

Table 3: Mean and standard deviation of the teachers’ belief aspects and the M.R-dimensions in total 
(1= do not agree at all, 5= totally agree) 

Comparing the teachers’ results with the students’ a decline in the values of the scheme aspect is not 
recognizable (Figure 3). The five means do not differ that noticeably. Comparing the standard 
deviations (Table 4) shows that the students’ answers differ a lot. The process aspect has the highest 
standard deviation of nearly 1. 



 
Figure 3: Means of the students’ belief aspects and the M.R-dimensions in total (1= do not agree at all, 

5= totally agree) 

The process aspect has the highest standard deviation of nearly 1.The students´ values are much more 
ambivalent than the values of the teacher´s evaluation. 

n=164 F S P A M.R-Dim 

M 3,55 3,39 2,91 3,02 3,01 

SD 0,69 0,68 0,91 0,85 0,47 

Table 4: Mean and standard deviation of the students’ belief aspects and the M.R-dimensions in total 
(1= do not agree at all, 5= totally agree) 

The students were also asked whether they would recommend the Math.Researcher program. It is 
noticeable that the students who would recommend the program to friends and other students (values 
of 4 and 5) show a significantly higher identification with the Math.Researcher dimensions. The 
correlation of students’ (P) and (Dim) is low but highly significant (r= .43).  

In order to answer the question whether the dimensions are well established (1) the dimensions have 
also been considered separately. The analysis revealed that the dimension “working with researchers 
questions” (RQ) could not be identified separately. Items of this dimension (RQ) were assigned to 
the dimension “using the Math.Researcher principles” (MRP) or the dimension “acting as a learning 
guide” (LG). That’s why in the following (RQ) is not included.  

N=20 MRP OC LG VM RQ 

M 4,26 3,56 3,99 4.43 - 

SD 0,43 0,43 0,33 0,41 - 

Table 5: Mean and standard deviation of the teachers’ M.R dimensions separated (1= do not agree at 
all, 5= totally agree) 

The dimensions “using the Math.Researcher principles” (MRP) and “visualizing mathematics” (VM) 
were high and homogeneously rated (Table 5). The identification with the dimension “opening the 
classroom” (OC) is the lowest. This assumption gets strengthened by the students’ data. In interviews 
they were asked to characterize Math.Researcher lessons by conspicuous features. Compared to the 
teachers who are familiar with the dimensions, the students have not been educated in the 
Math.Researcher dimensions. Features belonging to the dimension (OC) with its main elements 



“interdisciplinary instruction”, “inviting experts” and “outdoor lessons” were only rated by 10 % of 
the interviewed students. Features belonging to the dimensions (MRP), (LG) or (VM) were more 
often mentioned noteworthy. 

Discussion 
In summarizing these results we can say that the dimensions are well established (1). During the 
interviews the teachers often answered that the Math.Researcher program became more structured 
and concrete since the dimensions were introduced. They reported that the dimensions made them 
more certain about their planned lessons.  

We can also say that a dynamic view on mathematics is more predominant if the participants identify 
with the Math.Researcher program (2). 

However, the pilot study gives no data about a sustainable impact of the Math.Researcher program. 
So the researched questions of the evaluation of the pilot study were reused and extended into a main 
study.  The main study still wants to investigate whether the dimensions are well established (1) and 
which view on mathematics is connected to the participants’ identification with the Math.Researcher 
program (2).  Additionally, the main study wants to find out whether taking part in the program 
influences the students’ or the teachers’ view on mathematics (3). This third question is similar to 
previous research questions, for example of Cooper and Touitou (Cooper, Touitou, 2013). They 
wanted to find out, which beliefs can be found and how these identified beliefs change during a one-
year PD course.  

 
Figure 4: Three survey periods 

The program-region Heilbronn-Franken joined in the Math.Researchers program in December 2015 
and started activities in February and March 2016. Three survey periods from 02/2016 to 06/2017 are 
planned:  one before, one during and one after taking part in the program (figure 4). The experimental 
group (EG) fills in a questionnaire in all of the three periods. In addition, teachers and students of the 
experimental group get interviewed in the second and third survey period. The control group (CG) 
gets the same questionnaire as the experimental group in all the three survey periods, but the control 
group will not be interviewed. If the control group and the experimental group show the same results 
at all of the three times of measurement, it is not possible to attribute any influence on the view on 
mathematics to the Math.Researcher program. 

The questionnaires of the pilot study were shortened with the help of factor analysis and expert 
ratings. Items that were rated clearly by the experts, items with loadings exceeding ,39 and some 

June 2017
EG: Questionnaire, Interview CG: Questionnaire

October 2016
EG: Questionnaire, Interview CG: Questionnaire

February 2016
EG: Questionnaire CG: Questionnaire

Math.Researcher Activities 

 

Math.Researcher Activities 

 



items of special interest stayed in the questionnaires. For example, the students’ questionnaire had 79 
content-related questions in the pilot study. Their questionnaire in the main study only has 29 content-
related questions.   

The next step is the second survey period in October 2016. First comparisons to the results of the first 
survey period and further details of the pilot study will be presented at CERME 10 in Dublin. 
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Early career primary school teachers in the UK enter a varied and complex situation in terms of 
professional development opportunities and support for their ongoing career progression as teachers 
of mathematics. Literature suggests that the professional development a teacher receives impacts on 
both their subject knowledge for teaching and their beliefs and attitudes to the subject. This multiple 
case study looks to fill gaps in the research undertaken in this area through detailed analysis of the 
personal perspectives of the participants over a two year period. This paper reports on the initial 
findings of a comparative analysis of the trajectory of two teachers to date. These teachers were in 
seemingly similar contexts for their first year of teaching, yet had very different experiences and held 
very different perspectives on their development.   

Keywords: Teacher characteristics, professional development, elementary school mathematics.  

Introduction 
Students start a primary teacher education course in England with a range of qualifications in 
mathematics, a range of experiences in school mathematics and a range of attitudes and beliefs about 
the subject. During the course student teachers develop their subject and pedagogical knowledge and 
gain experience in mathematics teaching. They then enter a complex and changeable situation in 
schools in terms of provision for their ongoing development (Advisory Committee on Mathematics 
Education, 2013). Using a multiple case study approach, the aim of this study is to gain a deeper 
understanding of how the effectiveness of early career primary school teachers’ mathematics teaching 
develops and what impacts on this, with a particular focus on each teacher’s own perspective.  

Theoretical background 
The notion of effectiveness as applied to mathematics teaching is complex and ideas vary about what 
this looks like and even what its impact should be (Cai, 2007). Although generally agreed that 
teaching can only be considered effective if there is an impact on those being taught, i.e. effective 
teaching leads to effective learning and gains in understanding (Bryan, Wang, Perry, Wong, & Cai, 
2007), the notion of ‘understanding’ is complex. Skemp (1976) made a clear distinction between 
instrumental understanding, simply knowing rules and procedures at a shallow level, and relational 
understanding which enables pupils to build conceptual schemas. Most mathematics educators agree 
that this second type of understanding is the most desirable and teachers internationally agree that an 
indicator of mathematical understanding is that pupils can use this understanding to problem solve 
flexibly in a range of situations (Byran et al., 2007). The significance of understanding the connected 
nature of mathematics is very apparent (e.g. Askew, Brown, Rhodes, Johnson, & Wiliam, 1997) and 
is consistent with the notion of relational understanding. The concept of effective learning in 
mathematics being based on this type of understanding within the context of appropriate intellectual 
challenge is endorsed by current policy makers and teacher inspection systems in the UK (Department 
for Education (DfE), 2013; Ofsted, 2012) and is the definition used in this study. 



The literature suggests that teachers’ effectiveness is impacted by their subject knowledge and by 
affective dispositions including beliefs, attitudes, motivations and emotions.  Definition of these 
constructs are debated in the literature and indeed there are a range of ideas as to how they overlap 
and directions of influence (Lewis 2016). In agreement with Hannula (2011) I consider beliefs are 
both cognitively and affectively situated. As a starting point for discussions of attitude and emotion, 
I am adopting the three dimensional model of attitude from Di Martio and Zan (2010): emotional 
disposition towards mathematics, vision of mathematics (relational/instrumental) and perceived 
competence in mathematics. 

Many studies, e.g. Ernest (1989) and Askew et al. (1997), have looked at teachers’ beliefs about the 
nature of mathematics and the impact these beliefs have on their teaching. Ernest (1989), for example, 
argues the most effective teachers see mathematics as a dynamic, creative, problem solving subject 
and adopt a ‘Facilitator’ teaching approach.  

Teachers’ attitudes to the subject, including their emotional disposition, also impact on effectiveness. 
Particularly in primary teaching, teachers and student teachers find themselves teaching subjects that 
they have not necessarily enjoyed or been particularly successful at learning themselves. Many feel 
insecure with their subject knowledge in mathematics and recount their experience of mathematics at 
school as a subject that caused difficulties and even “real emotional turbulence” (Brown, 2005 p. 21). 
For many teachers therefore, mathematics is linked with negative emotions, particularly anxiety, and 
this can impact on their wider attitudes to it. It seems that teachers even protect pupils from 
mathematics and, in seeking to simplify it, emphasise the step by step procedures that are likely to 
lead pupils into developing instrumental understanding and potentially negative attitudes (Hodgen & 
Askew, 2007), reducing their effectiveness.  

A further influence on the effectiveness of teaching of mathematics is subject knowledge. Indeed, 
evidence suggests that the impact of beliefs and attitudes and subject knowledge are interdependent 
(Askew et al., 1997). Most recent research on teachers’ subject knowledge for mathematics uses 
Shulman’s (1986; 1987) seminal papers as a starting point. Others have applied his ideas to 
mathematics teaching, debated which aspects are most essential and relevant, and sought to measure 
or evaluate them. Ball, Thames & Phelps (2008) argue that there is knowledge that is specific to 
teachers of mathematics and that might have an identifiable impact on the effectiveness of their 
teaching; Specialised Content Knowledge. This includes, for example, the understanding needed to 
be able to explain procedures, to analyse errors and strategies, and to consider appropriate examples. 
Baumert et al. (2010) conclude that pedagogical content knowledge (PCK) makes the greatest 
contribution to pupil progress, but weaknesses in mathematical content knowledge are not offset by 
greater PCK. Askew et al. (1997) found that it was not the formal qualifications or the amount of 
subject knowledge that the teachers had which was significant in the effectiveness of their teaching, 
but rather the connectedness of their subject knowledge “in terms of the depth and multi-faceted 
nature” of the meanings and uses of concepts in mathematics (p. 69). Other authors highlight the 
importance of pupil voice and the ability of the teacher to choreograph classroom discourse as key 
characteristics of effective teaching in mathematics (e.g. Schoenfeld, 2013), and Barwell’s (2013) 
discursive psychology perspective emphasises that knowledge is contextual and can be changed or 
reconstructed accordingly.  There is much critiquing of Shulman’s and Ball’s ideas but there seems 



to be general agreement that the subject knowledge needed for effective teaching goes further than 
just having a strong conceptual knowledge of the subject being taught.   

There is considerable evidence that a teacher’s depth of reflection and their beliefs and attitudes 
towards mathematics are a crucial influence over their trajectory of development (Di Martino & Zan, 
2010; Turner, 2008). Hodgen and Askew (2007) and Schoenfeld (2013) suggest that the development 
of some teachers is hindered by their linking of mathematics with emotion and that, for some teachers, 
professional development activities and goals should be much more about changes in their beliefs 
and attitudes than about improving their subject knowledge.  

Teachers’ work is within a social context, (Levine, 2010), and this can have a significant impact on 
the nature of a teacher’s professional development. The community within the school might have a 
range of different foci and agendas and there seems to be a wide variation in practice between schools. 
The very structured collaborative approach to teacher development in China seems high effective 
although dependent on the considerable time given to teachers to discuss, prepare and analyse their 
work (Paine & Ma, 1993). In contrast Ball, Ben-Peretz &Cohen (2014) consider that in the US most 
teachers work in isolation and the potential benefits of sharing good practice are lost. In England, 
although the need for quality on-going professional development opportunities for primary teachers 
is recognised and highlighted by Ofsted (2012), the current context is of variable provision in formal 
professional development (ACME, 2013).   

In summary, the literature suggests that a teacher’s trajectory as a teacher of mathematics is influenced 
by the interaction of their beliefs and attitudes, their subject knowledge and the professional 
development they receive, through both formal education opportunities and personal reflection, and 
these factors therefore influence the effectiveness of their teaching and the effectiveness of their 
pupils’ learning. My study sits within this theoretical framework and seeks to extend the existing 
literature particularly though highlighting teachers’ own perspectives on this process.   

Methodology 
A multiple case study approach is being employed to follow the trajectories of a small sample of 
teachers as they progress into their first two years as a qualified teacher. Four participants were chosen 
for the pilot study, two with mathematics qualifications beyond the minimum required for primary 
school teachers in England.  An initial interview at the end of their one year postgraduate teaching 
course focused on their relationship with, and attitude to, mathematics and their progress in teaching 
the subject as a student teacher. To facilitate discussion, Lewis’s (2016) idea of a graphic display was 
adopted; participants were asked to draw and explain their relationship with mathematics over time. 
This gave insights into participants’ attitudes to mathematics and their perspectives as learners of the 
subject as well as in their student teacher role. Participants were able to reflect on how their 
relationship with the subject influenced their current teaching approaches. Twice yearly interviews, 
including further graphing at the end of each year, and discussion of documentation related to their 
progress as early career teachers, such as formal observation feedback, provide evidence of their 
ongoing development as teachers of mathematics. Interview questions have been designed to probe 
about the participants’ beliefs, attitudes and subject knowledge for teaching mathematics, what they 
perceive to be the characteristics of effective teachers of mathematics and their perspectives on their 
development as teachers of the subject. Within each interview they also describe two particular 



lessons: their chosen ‘best’ and ‘most challenging’ lessons since the previous interview, providing 
insights into what they consider to be effective and ineffective teaching and their subject knowledge. 
In addition, they keep records of their professional development in teaching mathematics.  

To begin to analyse the data, a mind map has been drawn of each data collection point for each 
participant. The mind map contains evidence of the participants’ changing context and development 
as a teacher of mathematics, including both factual and non-factual information, and also the 
participant’s interpretation and my interpretation of this evidence. The mind maps allow for a 
thematic approach, enabling identification of concepts and themes such as ‘awareness of self as a 
mathematician’ and ‘priorities in teaching mathematics’. In regard to their relationship with 
mathematics and their development as teachers of the subject, the participants have stories to tell and 
thus narrative analysis techniques are being used to support analysis of these stories. Whilst these 
techniques have enabled useful analysis of the early findings, the next stage is to further research and 
develop these analysis methods so that data can be analysed increasingly effectively and efficiently.  
Results and discussion 
In this paper the focus is on the early findings of a comparative analysis of the trajectory in the first 
year of the study of two of the teachers, Gina and Rama (pseudonyms), who in their first year as 
qualified teachers were in seemingly similar contexts: they both taught children aged 5-6 years in 
schools with a two class entry, working alongside more experienced colleagues and teaching 
mathematics to their own, mixed attainment, classes. Rama has a stronger mathematics background 
and also chose to study a mathematics specialism as part of the teaching course, but both students 
achieved the highest teaching course grade in all areas of the Teachers’ Standards (DfE, 2011). In 
their interviews, both were able to identify many ways in which they had evolved as teachers of 
mathematics to date, but they answered questions in ways that revealed very different perspectives 
on their development. In addition, their professional development records indicated that they received 
very different opportunities and approaches to their professional development. This raises questions 
about why these are so different and the extent to which this is school dependent or dependent on the 
approach and philosophy of the teachers themselves. 

Descriptions of each participant’s relationship with mathematics and how this had evolved over time 
revealed interesting and complex relationships (Figure 1) and it was clear that past experiences 
impacted their current thinking. Whilst the graphs drawn are not directly comparable as the 
interpretation of the vertical scale was left open, the trajectories illustrated and discussion of these 
provide some scope for comparison. The two peaks in Gina’s relationship with mathematics indicate 
two different perceived aspects of success in mathematics.  Firstly she recalls being successful in the 
subject in Year 9 (aged 13-14) when she felt she responded well to the high expectations her teachers 
had of her. The second period of success, during the teaching course, was due to her own development 
of the conceptual understanding that the literature suggests is essential for learners to gain for long 
term, secure understanding of mathematics. This enabled her to reflect on her previous period of 
‘success’ which she then realised was based on superficial learning:  

   Gina: I could do the methods, but I didn’t understand them.   



       
Figure 1: Gina and Rama’s relationship with mathematics, drawn at end of teaching course  

Gina’s personal experience seems to have given her a particular focus in her own teaching of 
mathematics, particularly how strategies she is aiming to use in her teaching could prevent the 
children taking the path of superficial learning that she had followed.  Discussing how she developed 
her teaching in her first few months as a qualified teacher, for example, she identified the use of 
representations as significant and something that she perceived as missing in her own learning: 

Gina: And the pictorial things, definitely.  I don’t think I’ve ever done that as a maths learner myself 
and I think maybe if I had it would have been much more easy.   

Rama’s mathematical background also seems to have impacted on her priorities in teaching 
mathematics. Although she finished her studies with a degree where she used mathematics, she 
finished primary school not enjoying the subject and lacking in confidence. She seems to have been 
a shy and hesitant learner, fearful of getting the wrong answer in a subject she saw as right or wrong. 
At secondary school she was initially placed in lower sets but talked with great enthusiasm about her 
Year 11 class (aged 15/16), a top set, where the environment of the classroom was such that she felt 
she could make mistakes without fear. She described too a change at this point from memorising how 
to do certain methods to taking ownership of her learning and finding her own ways of solving 
problems. Priorities identified by Rama in her teaching include the importance of children enjoying 
mathematics alongside gaining conceptual understanding, both aspects that for her were missing until 
the later stages of her schooling.   

It seems that Gina and Rama entered two very different teaching communities with different agendas 
which also impacted on the nature of their professional development (Levine, 2010), and graphs 
drawn at the end of their first year of teaching revealed very different perspectives on their year (see 
Figure 2). Rama’s saw her journey as a teacher of mathematics as a smooth upward trend, with 
occasional dips when she taught poorer lessons. Whilst having few formal professional development 
opportunities, she indicated that she is confident in her own subject knowledge and in independently 
planning and teaching the subject. Gina described a much more structured and intensive programme 
with regards to the support she received. However, her graph illustrates her perspective that she has 
had a sometimes difficult year and narrative analysis revealed, interestingly, that the intense 
involvement of her school in her professional development seems to have led to a crisis in her 
confidence and a turbulent second half of her first year of teaching. 



    
Figure 2: Gina and Rama’s relationship with mathematics during their first year of teaching 

This analysis highlights the emotional impact on Gina of the series of intervention events that 
followed on from a formal observation of her teaching that she labelled several times as a ‘disaster’, 
and then her subsequent recovery. In her story particular emphasis is evident of the impact on both 
the perceived competence and emotional disposition aspects of her attitude (Di Martino and Zan, 
2010), with a consequent impact on her confidence in her ability to teach mathematics: 

 Gina: It seemed no matter what I was doing to change, I was still getting negative feedback and it 
was disheartening. There was a big period of time when I literally dreaded every single lesson, 
because you just think “What could happen? I don’t know what I’m doing” 

The records of professional development kept by Gina and Rama over the year confirm that Rama’s 
in school support has been much more informal and she places a high priority on targets she generally 
sets for herself, seeking to improve the quality of her teaching through a reflective approach (Turner, 
2008).  In contrast to Gina’s record of events, her record is a series of targets. Contrasts in their 
priorities in planning and teaching of mathematics, and indications of their subject knowledge have 
been evident through different ideas about the characteristics of effective teachers and descriptions 
of their best and most challenging lessons. It seems that both teachers are seeking to teach with a 
relational approach, with Rama at this stage in a stronger position regarding subject knowledge. It is 
interesting that end of year assessment information indicates that children in both Rama and Gina’s 
classes progressed well in their mathematical understanding over the year; this seems to have 
contributed to Gina finishing the year in a more confident frame of mind.  

Conclusion 
The findings of these case studies to date confirm my analysis of the literature in that there are two 
related and interwoven, but distinct, categories of factors that might influence an early career 
teacher’s trajectory in relation to the effectiveness of their mathematics teaching - those that are 
related to the teacher themselves, in terms of beliefs, attitudes and subject knowledge and those that 
are related to their teaching context. Gina’s experience during her first year of teaching provides a 
particularly interesting example of professional development that impacts in complex ways on beliefs 
and attitudes to the subject. Although it is too early to draw more than very tentative conclusions, it 
is interesting to ponder to what extent Gina and Rama’s trajectories would have been different had 
they been in one another’s school, and this leads to potential implications for initial teacher education.  

These case studies align with current professional documentation (ACME, 2013) to suggest that there 
is a lack of uniformity in teachers’ professional development experiences despite there being systems 
in place in the UK promoting uniformity. The existence of these issues has implications for the 



preparation of student teachers in Initial Teacher Education (ITE) and suggest that ITE providers 
could seek to more explicitly discuss differences and similarities in primary school approaches to 
teacher development and further strengthen their policies of students gaining experience in a range 
of contrasting placements, within which they can not only participate in whole school professional 
development events, but also talk with teachers about their development experiences.  
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The thoughts on the primary schoolteacher training have led to the production of many resources 
for primary schoolteachers. Faces of the abundance of such documents, teacher educators need 
some tools to identify the knowledge potentially at stake in training situations and to allow them to 
implement such situations according to their own objectives and context. We present a five-level 
analysis framework that characterizes the training tasks, taking account of the activities induced by 
the task, according to the expected posture of the prospective teacher, to the type of the knowledge 
at stake and to possible degrees of decontextualization. We illustrate this analysis framework by 
presenting an example of a training scenario based on the principle of role-play. 

Keywords: Teacher education, professional development, primary education, knowledge for 
teaching, analysis framework. 

Introduction 
The research about primary schoolteacher education in mathematics and professional development 
has led to the production of many resources for educators. In France, the COPIRELEM1 group 
produced many of them. These resources provide “training situations” based on various training 
strategies (Houdement & Kuzniak, 1996), and are generally accompanied with information about 
their implementation (phases, steps, instructions, elements of institutionalisation) with regard to the 
stakes of the training. But their quality does not guarantee an accurate appropriation by teacher 
educators. Our questioning is: how is it possible to help teacher educators to exploit any “training 
situations” in a relevant way, according to their objectives? 

The research literature usually provides studies about knowledge for teaching, teacher conceptions, 
and their evolution (Shulman, 1986; Houdement & Kuzniak, 1996; Ball, Thames, & Phelps, 2008). 
Other studies present one training situation, and generally focus on its effect on the prospective 
teachers. For example Horoks and Grugeon (2015) “analyse the contents and methods of an 
initiation course in research in mathematics education, and […] how it can influence the beginner 
teachers’ practises” (p.2811). To our knowledge, no study focuses on the characteristics of training 
situations nor provides specific framework in order to analyse any training situation. This led us to 
develop an analysis framework for training situations. The paper presents this COPIRELEM’s work 
in progress. 

                                                 
1 The COPIRELEM is a commission dedicated to the education to the primary school. It is stemming from the network 
of IREM (French institute of research on mathematical education). 



Presentation of the analysis framework 
We define a training situation as a situation that involves prospective teachers (students, pre-service 
or in-service teachers) and educators within an institution of teacher education. It is composed of a 
set of tasks that could be conducted by a teacher educator. We take into account all the tasks 
proposed by the teacher educator. From a training situation, the educator may elaborate a training 
scenario that is to say a set of chronologically organized tasks chosen among all the tasks that 
constitute the training situation. We voluntarily distinguish situations from “scenarios” because we 
intend to underline the dynamic aspect of the scenario.  

In response to each task of a training situation, prospective teachers develop an activity that 
corresponds to “what [they engage] in during the completion of the task” (Rogalski, 2013, p.4). We 
distinguish five different types of activity: “mathematical activity” (doing maths during the 
completion of a mathematical task), “mathematical analysis activity” (analysing the maths at stake 
in a mathematical task), “didactical and/or pedagogical activity” (highlighting didactical and/or 
pedagogical choices related to the mathematical task), “didactical and/or pedagogical analysis 
activity” (analysing didactical and/or pedagogical choices related to the mathematical task), 
“problematisation activity” (identifying and investigating professional issues by mobilizing 
mathematical, didactical and pedagogical concepts). For each type of activity we take into account 
three dimensions (Fig. 1): the type of knowledge at stake; the degree of decontextualization of this 
knowledge; the posture of the prospective teachers expected by the teacher educator. These 
dimensions are specified in the next sections. 

 
Figure 1: Three dimensions for characterizing a type of activity 

Three types of knowledge 

We rely on the three types of knowledge for teaching mathematics identified by Houdement and 
Kuzniak (1996): mathematical knowledge, pedagogical knowledge and didactical knowledge. 
“Mathematical knowledge corresponds to mathematics that a teacher needs to know in order to 
prepare, regulate and evaluate his lesson and his students” (Houdement, 2013, p.12). It “includes 
and specifies the content knowledge” identified by Shulman (1986). It roughly can be related to 
Subject Matter Knowledge (Ball and al., 2008), and the specific didactical nature of mathematical 
knowledge can be identified to the Specialized Content Knowledge (SCK). According to 
(Houdement, 2013), didactical knowledge is linked to the mathematical content and fed by research 
in the field of mathematics didactics. It corresponds to analysis of teaching and learning 
phenomenon and to propositions of engineering. Therefore it can be associated with at least two 
categories (Ball and al., 2008): Knowledge of Content and Students (KCS) and Knowledge of 
Content and Teaching (KCT).  



Pedagogical knowledge2 is characterised as “knowledge of experience” (Portugais, 1995). It is 
related to teaching and learning conceptions and to the organisation and management of the class. It 
is less dependent of the mathematical content than other types of knowledge. It is important to take 
this knowledge into account because schoolteachers deal with various school subjects. 

Three degrees of decontextualization 

Brousseau (1997) and Douady (1985) identify three degrees of decontextualization of a 
mathematical knowledge: implicitly mobilized, explicitly mobilized in context or decontextualized 
(to become available in other contexts). We extend this notion to didactical and pedagogical 
knowledge. A mathematical knowledge is (implicitly) mobilized in context (in act) if it is used as 
tool (Douady, 1985) in a mathematical task. This task can be carried out: what is asked is effectively 
achieved (manipulation, elaboration and writing a solution for example). But the task can only be 
evocated: it is mentally achieved. A mathematical knowledge is explicit in context if its use (as tool) 
is identified and formulated. At least, a mathematical knowledge is decontextualized if it is 
identified as an object of learning: a status of object is given (by the educator) to the concept used 
previously as tool, usually during an institutionalisation phase3 (Brousseau, 1997). The 
didactical/pedagogical knowledge is mobilized in context when the didactical/pedagogical choices 
are made for the considered mathematical task. It is explicit in context during the analysis about the 
consequences of these choices. At least, it is decontextualized when the underlying 
didactical/pedagogical concepts are highlighted. 

Four postures of the prospective teachers 

In conjunction with the teacher trainer’s relationship to the prospective teachers identified by Sayac 
(2008), we define four specific postures of prospective teachers, which are expected by the educator 
during a training situation4. Prospective teachers are in a posture of student relatively to the 
mathematical knowledge when they have to perform mathematical activity or when they are 
concerned with the mathematical knowledge of this activity. They are in a student/teacher posture 
when they investigate mathematical tasks for students or students’ works, or when they analyse the 
conditions of implementation of a task in the classroom. They are in a teacher posture when 
entering in a broader questioning on classroom practices and issues of mathematical learning. 
Finally, they are in a practitioner/researcher posture when they problematize a professional issue 
related to mathematical learning or teaching.  

Five study levels 

In order to analyse a training situation, we define five study levels. To each level corresponds a type 
of activity, that induces (implicitly or explicitly) a posture of the prospective teacher (expected by 

                                                 
2 According to (Houdement, 2013), Ball’s, Phelps’ and Thames’ typology doesn’t seem to take into account this type of 
knowledge. 
3 In institutionalisation phase (Brousseau 1997), the teacher gives a cultural (mathematical) status to some knowledge 
emerging from students’ actions during the situation. 
4 We notice that prospective teachers are not always aware of these postures. 



the educator), and that involves different types of knowledge in a certain degree of 
decontextualization (see Fig. 2). 

  

 
Figure 2: Characteristics of the five study levels 

Level 0. A task may induce a mathematical activity. This activity can be performed or evocated 
(mentally performed). The mathematical knowledge is mobilized (implicitly or explicitly) in 
context. The prospective teachers are in a posture of student (relatively to the mathematical 
knowledge). 

Level 1. A task may induce a mathematical analysis activity related to the activity of level 0 when it 
highlights decontextualized mathematical knowledge and the prospective teachers are in a posture 
of (learning mathematics) student. In this task, the didactical and/or pedagogical knowledge can be 
implicitly mobilized in context and then initiates the change toward a student/teacher posture of 
prospective teachers.  

Level 2. A task may induce a didactical and/or pedagogical activity related to the activity of level 0 
when it corresponds to the analysis of implementation conditions - actual or anticipated only of the 
mathematical task. The didactical and pedagogical knowledge is explicit in context. The prospective 
teachers are in a student/teacher posture. 

Level 3. A task may induce a didactical and/or pedagogical analysis activity related to the activity of 
level 2 when it is for example a questioning on classroom practice (specific learning tasks, 
professional actions...) or on issues of mathematical learning for one or several contents 
(curriculum, progressions...), or even a highlighting of didactical analysis concepts (didactic 
situation phases, types of tasks...). This analysis leads to the decontextualization of didactical and/or 
pedagogical knowledge. The prospective teachers are in a posture of teacher. 

Level 4. A task may induce a problematisation activity when it corresponds to the problematisation 
of professional issues related to classroom practices, learning issues and/or didactical analysis tools. 



The prospective teachers are in a posture of practitioner/researcher, especially when it comes to 
developing an analysis methodology of this issue and to infer results.  

Each study level is based on the study of the activity of previous levels and involves some 
mathematical, didactical and/or pedagogical knowledge. The change from study level n to study 
level n + 1 is linked either to a change of the prospective teachers’ posture or to a change of degree 
of decontextualization for at least one type of knowledge (from implicitly mobilized in context to 
explicit in context, from explicit in context to decontextualized). But the different activities induced 
by a training situation don’t usually appear in a chronological order (from level 0 to level 4). For 
examples, see the analysis of various training situations developed in French context by the 
COPIRELEM group (Guille-Biel Winder, Petitfour, Masselot & Girmens, 2015; Bueno-Ravel and 
al., 2017). We think that the analysis could be extended to situations based on different training 
strategies. That is why we present here the analysis of a training scenario based on the principle of 
role-play developed in an international context (Lajoie and Pallascio, 2001; Lajoie and Maheux, 
2013; Lajoie, accepted).  

An example of use of the analysis framework 
Definition of role-play 

As Lajoie and Pallascio (2001) state “role-play involves staging a problematic situation with 
characters taking roles”. It is used over many years in mathematics education course in UQAM 
(University of Québec in Montréal) and is organized as follows: 

First, the ‘theme’ on which students will need to role-play is introduced (introduction time). 
Second, students then have about 30 minutes to prepare in small groups (preparation time). Third 
comes the play itself (play time), where students chosen by the educator come in front of the 
classroom and improvise a teacher-student(s) interaction (sometimes, like in the case reported 
here, involving the whole class). Finally, we have a whole classroom discussion on the play 
(discussion time). (Lajoie, accepted)  

We designed a role-play on the teaching of proportions based on a problem from a textbook. We use 
the analysis framework to illustrate an example of analysis aimed at highlight the potential of this 
situation. 

An example of role-play 

The role-play presented below is intended for pre-service schoolteacher education. We describe the 
different phases. 
Introduction time. The educator distributes to prospective teachers an excerpt from a fifth grade (10-
11 year old pupils) handbook presenting a problem of proportions (Fig. 3), and various productions 
of pupils. The teaching issue announced by the educator is the following: to manage a class 
discussion about the pupils’ strategies and about their ideas and solutions, in order to share them in 
the class community and to determine their validity and efficiency. 
Preparation time. The prospective teachers have to prepare the discussion class about the pupils’ 
strategies. 



Play time. At the end of the preparation time, the educator chooses prospective teachers to play the 
game: some of them play pupils, one of them plays the teacher, while the others are watching the 
discussion class and taking notes. 
Discussion time. The debate intends to highlight and to analyse the choices of the « teacher » during 
the play game: what worked well during the implementation of the discussion class? What was 
difficult? What seemed to be important? What alternative implementations could be realized? 
Institutionalisation time5. The educator institutionalizes the knowledge at stake: he generalizes 
some elements about how to manage a discussion class or about proportion problems solving. 

 
Figure 3: A proportion problem  

Analysis of this role-play 

The initiating task is a professional situation and corresponds to a level 2 activity: the prospective 
teachers are initially in a student/teacher posture. But they will need « to go down » to a student 
posture and « to go up » to a teacher posture during the phases of the scenario. The preparation time 
of the discussion class leads the activity of the prospective teachers “to go back and forth” to the 
study levels 0, 1 and 2. The problem solving corresponds to a level 0 activity and the mathematical 
analysis of the problem solving to a level 1 activity. Moreover there are various strategies to solve 
this proportion problem. Preparing the discussion class of the pupils’ strategies (level 2 activity) 
hence needs to analyse and rank them (from the least to the most elaborate). This analysis 
corresponds to a level 2 activity. The prospective teachers don’t have the same activity during the 
playtime. The study level is different according to the role to play: mostly levels 0 and 1 for the 
students’ roles and level 2 for the teacher’s role. The discussion time corresponds to a level 2 
activity when the prospective teachers analyse how the discussion class has been managed. But it 
can also correspond to lower levels activities, when they discuss about pupils’ strategies, 
difficulties, mistakes and their exploitation during the discussion class. Various institutionalisations 
can be considered, according to the knowledge that was developed at different study levels. The 
institutionalized elements will be more or less developed according to the teacher educator’s 
objectives and progression, the prospective teachers’ knowledge, etc. Here are some propositions 
organized in ascending order of study levels. The teacher educator can institutionalize some 

                                                 
5 We add this new time to the four ones proposed by Lajoie and Pallascio (2001). 



mathematical knowledge at stake (level 1) and related to the proportionality field: various methods 
to solve a proportion problem, mathematical justifications and mathematical theories they are relied 
on. He can situate the proportion problems in the more general category of multiplicative problems, 
or he can explicit some didactical variables usually at stake in proportion problems (level 3). He 
also can identify some difficulties or mistakes revealed by the pupils’ productions as « usual » and 
highlight mistaken conceptions: identification of quantities, choice of an adapted strategy, 
persistence of an « additive model », etc. At least, in regard of the announced objective of the role-
play, the teacher educator also can institutionalize some didactical knowledge, relatively to the 
organization of a discussion class (level 3): formulation and validation in mathematics; teacher’s 
tasks before, during and after the discussion class… 

Conclusion 
The example of role-play situation shows how the analysis framework can be a tool for an a priori 
analysis. Moreover this example shows that the organization of the study levels is not a 
chronological but a hierarchical one: the initiating task can induce an activity of level 0, 1, 2, 3 or 4. 
But the transition to lower levels activity is often necessary. The conceptual maps of the knowledge 
for teaching developed by Houdement and Kuzniak (1996) or by Ball and al. (2008) have a 
descriptive, predictive and prescriptive dimension (Ball & al., 2008, p.405). But beyond their 
interest, (Houdement, 2013, p. 21) stressed the importance of the knowledge reconfiguration in 
connection with the mathematical content. The analysis framework reports how, during a training 
situation, the types of knowledge for mathematics’ teaching are dynamically hinged to one another 
in connection with the mathematical content. The analysis framework allows teacher educators to 
identify the potentialities of a full range of training situations. We intend to extend its use to study 
other types of training situations (for example e-learning situations). By clarifying the stakes of the 
various phases of the implementation, the analysis framework reveals various possible strategies for 
the teacher educator. Thereafter it could be a useful tool for elaborating different training scenarios. 
Hence, the teacher educator should be able to implement situations in a specific context according 
to his objectives and constraints (time and period of training, place in a progression which take into 
account the mathematical, didactical and pedagogical knowledge ever studied…). Besides it is 
possible to consider a sequence of successive scenarios. The analysis framework could also 
highlight various possible “training paths”, which should reveal the educator’s training strategy at a 
more global scale. A perspective is now to study how teacher educators appropriate this framework 
and how it supports their teaching practises.  
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In this paper, we discuss results of a qualitative part of a research project aiming to investigate the 
impact of a professional development course with a specific focus on reflecting of students’ learning 
results on teachers’ beliefs towards teaching and learning of mathematics. We refer briefly to some 
aspects of teachers’ professional development. Afterwards, we discuss teachers’ beliefs as the main 
theoretical construct for our research. Data for this paper about teachers’ beliefs were collected by 
semi-structured interviews with three teachers after the professional development course. Results 
show that teachers report in interviews changes referring to teaching and learning of mathematics 
from a transmission-oriented view to a more constructivist-oriented view. 

Keywords: Beliefs, belief change, professional development, reflecting students’ learning results. 

Introduction 
There is a consensus that university studies and internships are not enough to prepare future teachers 
for all challenges in their professional career (Mayr & Neuweg, 2009). For this reason, professional 
development (PD) is understood as being a key factor for innovating and reforming mathematics 
teaching in school (Garet et al., 2001). However, every change seems to be dependent on specific 
characteristics of PD: Desimone (2009) summed up five key features of high quality teacher PD. She 
described that PD will be effective, if a PD course is content-focused, enables active learning, is 
coherent, has a critical duration and if teachers take part in a PD course collectively. In addition, 
Franke et al. (1998) reported that reflecting students’ learning results makes teachers’ learning 
sustainable. Reflecting students’ learning results means, that teachers collect in distance phases of a 
PD course students’ results when working in a specific learning environment or working on a specific 
task developed in the PD course. Afterwards these students’ learning results were the basis of the 
next face-to-face meeting in the PD course.  

Although research identified several features of PD, in most cases the effectiveness is not clear (Yoon 
et al., 2007). In addition, it is not clear how they influence teachers’ learning. For example, Franke et 
al. (1998) could show that a mix of several characteristics including reflecting students’ learning 
results is effective for teachers’ learning, but they did not focus on reflecting students’ learning results 
as a single variable. In a qualitative design, for example also Strahan (2003) found that teachers 
reflecting on students’ learning results increased students’ achievement on elementary school level. 
In addition, Schorr (2000) showed that students’ achievement increases when teachers completed a 
PD including the analysis of students’ problem solving processes. Like a conclusion, Little et al. 
(2003) state that reflecting students’ learning results has the potential to bring students more explicitly 
into deliberations of teachers. However, more research is needed to understand how teachers learn 
from reflecting students’ learning results and whether it impacts on teachers’ professional competence 
including particularly teachers’ beliefs. 

To investigate the efficiency of reflecting students’ learning results in PD courses on the teachers’ 
knowledge, beliefs or motivation, the study as a whole considers two PD courses with a quasi-



experimental setting. Content, teacher trainer and learning time were mostly the same in both courses. 
However, we integrated reflecting students’ learning results in the first PD course, but not in the 
second. In this paper we will not refer to quantitative results of our research that we reported 
elsewhere (e. g. Hahn, & Eichler, 2016). We further do not refer to differences between the effects of 
the two PD groups, but we emphasize results of a qualitative interview study including three teachers 
of the PD course with reflecting students’ learning results. In these interviews, we primarily refer to 
the teachers’ beliefs concerning the teaching and learning of mathematics. 

Beliefs about teaching and learning of mathematics 
Beliefs can be defined as “psychologically held understandings, premises, or propositions about the 
world that are thought to be true. […] Beliefs might be thought of as lenses that affect one’s view of 
some aspect of the world or as dispositions toward action.” (Philipp, 2007, p. 259).  

For our research a crucial question is whether beliefs could be viewed to be stable or changeable. 
Partly, researchers use stability as a part of their definition of beliefs (Fives & Buehl, 2012; Liljedahl, 
Oesterle, & Bernèche, 2012). In contradiction to that, there are studies which demonstrate belief 
change by a special intervention. For example, Decker, Kunter, and Voss (2015) reported changes 
referring to teaching and learning of preservice teachers and teacher trainees. Liljedahl et al. (2012) 
analyzed related literature and conclude that there is a different meaning of stability in research 
studies. As a result, they propose to avoid stability in the definition of beliefs. For them, belief change 
is a natural process that requires a sufficient extent of time. For this reason, in this research study 
beliefs are described as changeable. 

A further crucial question concerns the definition of the belief object that should be changed by PD. 
Beliefs can refer to a special subdomain of mathematics (Eichler & Erens, 2015), to mathematics 
itself, teaching and learning of mathematics or an overachieving orientation that is independent from 
a subdomain (Staub & Stern, 2002). Beliefs referring to teaching and learning of mathematics can be 
divided into two paradigms: the transmission-oriented and the constructivist-oriented view of 
learning (Fives, Lacatena, and Gerard, 2015). Transmission-oriented beliefs of teaching imply that 
knowledge is directly transmitted from teacher to the learners and learners absorb all information. In 
this case, learners are passive recipients. For this reason, teachers’ role is to prepare all information 
for students to enable an effective storing and an optimal recall. In contradiction, the constructivist-
oriented view of learning reflects the active role of learners as constructers of their own knowledge 
structures. In this case, students learn new information based on their existing knowledge and beliefs 
to enable an integration of information in their mental networks (Decker et al., 2015; Staub & Stern, 
2002). For this reason, teachers take a role as constructor of learning environments that enable 
students to learn self-directed.  Voss, Kleickmann, Kunter, and Hachfeld (2013) proposed evidence 
that these two dimensions are not the endpoints of a continuum. Instead of this, the authors proposed 
to understand these two dimensions as two distinct, negative correlated dimensions. These 
dimensions can be assessed on different scales. For this reason, it is possible that teachers have a high 
extent of both views on teaching and learning of mathematics.    

Based on the definition of beliefs and the two main aspects of beliefs for our research, we primarily 
focus on the following research question: 



Which influence show the PD course with reflecting on students’ learning results on teachers’ 
beliefs referring to teaching and learning of mathematics out of teachers’ perspective? 

Methods 
We regard three groups of teachers in our study as a whole. Two groups of teachers were enrolled in 
a PD course that focused on problem solving and modelling in secondary school. An ongoing task 
for both PD courses was to develop tasks that meet different criteria of problem solving and 
modelling. The first group further was asked to give these tasks to their students and to collect the 
results of students’ work that we call results of students’ learning. These results of students’ learning 
were the basis of the next face-to-face phase of the PD course. Teachers of second group were asked 
to improve problem solving tasks and a third group of teachers did not get any intervention.  

We conducted pre- and posttests to measure the efficiency of the mentioned specific aspect of 
teachers’ PD, i.e. reflecting students’ learning results. Further we conducted interviews with the 
teachers. In this paper we regard three teachers of the first group who took part in the interview session 
voluntarily. The interviews took place about one month after the last meeting of the PD course. In 
semi-structured interviews the teachers were asked to report about their changes towards beliefs of 
teaching and learning of mathematics. All teachers are teachers of upper secondary schools and at the 
age of 40 to 50 and were women. These teachers could be representative for the whole group, because 
it consists of 21 teachers at the mentioned age. In addition, seventeen of these teachers were women. 

We analyzed the interviews with a coding method including deductive and inductive codes (Mayring, 
2015). The deductive codes were based on existing research referring to teaching and learning of 
mathematics considering the transmission-oriented and the constructivist-oriented beliefs. According 
to both types of beliefs, we created codes for teachers’ answers. In this context, we distinguish 
between teachers’ beliefs before and after the professional development course. The distinction is 
based on hints in teachers’ statements which enables us to match beliefs to the appropriate point in 
time. In addition, we analyzed the role of “reflecting students’ learning results” for teachers’ learning 
during the PD course. 

Results   
The results section is structured into three parts. At first, we want to show how teachers’ statements 
are coded according to beliefs about teaching and learning of mathematics. Second, we sum up beliefs 
of the three teachers. And third, the effects of “reflecting students’ learning results” are considered. 

In the interviews teachers were asked to report about their beliefs before and after taking part in the 
professional development course. In particular, they should consider changes in their statements. For 
example, Mrs. B states: 

Mrs. B: […] it has changed that the tasks are different. Students should argue more and I do 
not have to work off stacks of tasks. I can work off all facets more determined and 
I do not have to say that I must work off a model and then practice, practice, practice 
…. 

Mrs. B reported about changes in her beliefs about teaching and learning mathematics. We interpreted 
her statement as follows: At the end of her statement, she mentioned that she now does not have to 
introduce a mathematical model followed by many exercises in the lessons. Furthermore, she reported 



on working off stacks of tasks before the PD course. Both parts of the statement are coded as 
transmission-oriented beliefs, because she emphasized practicing as repetition of information or 
procedures which is represented in stacks of tasks. In addition, the mentioned parts of the statement 
were coded as beliefs at the beginning of PD course, since she reported about changes during the PD 
(see table 1). In the first part of her statement, she considered a change in tasks and argumentation in 
her classroom. She also mentioned that she can work off the mathematical ideas more determined. 
These parts of the statement were coded as constructivist-oriented beliefs, because Mrs. B reported a 
student centered teaching style where students are asked to argue about mathematical concepts and 
to talk about mathematical problems with each other (see student-oriented perspective in teaching in 
table 2). In addition, these parts of the statement were coded as beliefs after taking part in the PD 
course, because in the whole statement Mrs. B reported about changes. In conclusion, the statement 
of Mrs. B shows a belief change from a transmission-oriented view to a constructivist-oriented view 
of teaching. 

The three teachers showed similarities in reporting aspects of a transmission orientation and a 
constructivists orientation. A code that seemed to be crucial for all three teachers, but was not included 
in the quotation of Mrs. B, was expressed by Mrs. C: 

Mrs. C: Students should do more and I have to restrain myself a little bit more. 

We interpret the statement as following: Mrs. C also reported changes in her beliefs. The whole 
statement was coded as constructivist-oriented belief, because she wanted the students to be more 
active in her classroom when they are learning mathematics. In addition, Mrs. C reports on restraining 
herself in lessons. This is in line with the constructivist view, because on this perspective, teachers 
are creators of learning environments and students shall learn self-directed. For this reason, it is 
necessary that teachers shall restrain themselves in lessons. This statement was coded as beliefs after 
taking part in PD course, since “more” indicates that she had other beliefs at the beginning of PD. In 
particular, the beliefs at the beginning compared to those reported in the statement included that Mrs. 
C was more in the center of the lesson and students were more passive which are in line with 
transmission-oriented beliefs. 

The results of the analysis of the three teachers’ beliefs showed that they were transmission-oriented 
before they took part in the PD course. However, they seem to change their beliefs towards a 
constructivist-orientation during the PD course. The teachers also reported existing constructivist-
beliefs they had at the beginning of PD course, but they stated changes towards more constructivist 
beliefs while they reduced the strength of transmission-oriented beliefs. Table 1 shows the results of 
coding for beliefs before teachers take part in the PD course: 

 Mrs. A Mrs. B Mrs. C 

repetition of information (practicing) X X X 

frontal teaching X X X 

exact instruction X X  

teacher is in center of lesson X X X 

Table 1: Predominant beliefs before taking part in PD course (mentioned by teachers) 



Teachers reported in the interviews that they changed their beliefs referring to teaching and learning 
from a teacher-centered perspective to a more constructivist-oriented teaching perspective. The 
following table shows statements of teachers referring to beliefs of teaching and learning of 
mathematics after taking part in the PD course. 

 Mrs. A Mrs. B Mrs. C 

active role of students X X X 

knowledge construction X   

teacher withdrawing in lessons X X X 

students’ discussions are important X  X 

students should analyze own mistakes X  X 

tasks with a meaningful context within real life   X 

cooperative learning (group work, …) X  X 

student-oriented perspective in teaching  X  

pool of teaching methods  X X 

Table 2: Predominant beliefs after taking part in PD course (mentioned by teachers) 

Both tables show different beliefs of teachers before and after the PD. These tables do not imply that 
all teachers had only teacher-centered beliefs at the beginning of the PD. They reported also that they 
had constructivist beliefs. For example, the statement of Mrs. C shows that she has more constructivist 
beliefs about teaching. This does not imply that she has not had constructivist-oriented beliefs at the 
beginning of the PD course. In her statement, Mrs. C only reported about more constructivist-oriented 
beliefs after taking part in PD. In addition, all the coded statements show that they also have 
transmission-oriented beliefs after PD course, but they report to think of teaching with more student-
centered beliefs. Note, both tables only show predominant beliefs of teachers before and after PD. 
For this reason, peripheral beliefs about teaching and learning of mathematics are left out. 

The results about beliefs show changes. For this reason, we want to know how reflection of students’ 
learning results impact on teachers learning. In this context, Mrs. A and Mrs. C state: 

Mrs. A: […] I have learnt a lot about my students and I have also learnt a lot about myself 
and for this reason I have tested some things. 

Mrs. C: I think it was good. The students’ learning results show how other teachers proceed 
in teaching, which approach they use and how they describe. Within this action, 
you could take new ideas that I found in students’ solutions. […]. 

The statements of the three teachers show that “reflecting students learning results” were used to 
reflect the own practice of teaching. In this context, these teachers learnt about characteristics of their 
students and about themselves as teachers. As a consequence, Mrs. A tested some ideas contained in 
the PD course. In addition, the three teachers recognized other teaching styles when they reflected on 
students’ learning results. For this reason, they also reflected about the practice of other teachers and 
their teaching approaches. In particular, they also reflected about their own practice compared to the 



one of others to get new ideas (Mrs. C). These statements are typical for all three teachers. According 
to this, the reflection of teaching style could be understood as one factor that result in changes of 
beliefs about teaching and learning. 

Discussion 
The data from the interviews indicate that the three teachers changed their beliefs from a more 
transmission orientation to a more constructivist orientation of teaching and learning of mathematics. 
This is shown by statements of teachers after taking part in the PD course. The phrases in both tables 
consider the aspects of both beliefs about teaching and beliefs about learning. Based on the analysis 
in the results section, statements of table 1 refer to transmission-oriented beliefs and statements of 
table 2 to constructivist-oriented beliefs (e.g. Fives et al., 2015). In fact, teachers focused on 
constructivist-oriented beliefs, but they still expressed some transmission-oriented beliefs. This is in 
line with research findings of Voss et al. (2013), who supposed that both types of beliefs can co-exist. 
The statement of Mrs. C supports this assumption. Although she expressed transmission-oriented 
beliefs before the PD, she said that students should be more active, which indicates that she has had 
constructivist-oriented beliefs at the beginning of the PD. 

Belief changes in teacher education are also shown in the study of Franke et al. (1998) for teachers 
on primary level who examined a student-centered framework in their PD. In this context, our results 
are similar to those of Franke et al. on secondary level, because we also used reflecting students’ 
learning results to emphasize student-centered teaching. Furthermore, the teachers reported that they 
used students’ solution to reflect their own teaching and to get to know information of other teachers’ 
approaches and also about their students. This is in line with the results of Little et al. (2003), because 
teachers consider the ideas of their students in their deliberations more strongly after taking part in 
the PD course. In addition, belief change caused by reflection is reported by Decker et al. (2015) in 
the way that there is a relationship between the extent of reflection and teachers’ belief change. For 
this reason, it is possible that all teachers of this study changed beliefs because they reflect intensively 
about their own practice. Skott (2015) stated that substantial new experiences are necessary to change 
beliefs. Concerning our research, we hypothesize that the intensive reflection of the own classroom 
practice includes the mentioned new experiences.  

There are some limitations of this research. At first the interviews took place after the whole PD 
course. For this reason, teacher reports about the practice before the PD course can be influenced by 
the experiences of the PD. For a more precise research approach it would have been necessary to 
interview the teachers at the beginning of the PD. Considering the external circumstances in this 
research project, it was not possible to interview teachers, because they took part in PD voluntarily 
and the first meetings last about the whole day. In addition, these qualitative data provide no proof 
for “reflecting students learning results” as a feature of effective PD, but there are hints that beliefs 
can change and teacher reflect their own practice during this part of PD. Furthermore, the teachers of 
the second group were not interviewed. For this reason, it is not possible to indicate whether the 
teachers of the second group also changed their beliefs. In addition, we do not know whether second 
group teachers reflect on their own practice as deep as teachers of the first group.  



Future research 
This part of the whole research project considers qualitative data of the first PD course. Future 
research should use also quantitative data (measured by items of Staub & Stern (2002)) to support the 
results of teachers’ belief change during PD. This could also show whether reflecting students 
learning results is one element that is connected with teachers’ belief change empirically. In addition, 
it is necessary to link the qualitative data analyzed in this paper and the quantitative data which will 
we analyzed in the future. Combination of both resources can show the positive impact of reflecting 
students’ learning results on teachers’ knowledge, beliefs and motivation. 
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The case of one middle school teacher’s change in practice is examined through the lens of “shifting 
frames” from ritual to explorative instruction. These frames are collection of coherent mathematical 
as well as subjectifying (people-related) meta-rules. The teacher, who participated in a year-long PD 
program, started out in a ritual frame and gradually shifted to a more explorative frame. The shift 
was not uniform, and could be seen first in the subjectifying meta-rules, and only later (and very 
partially) in mathematical meta-rules of exploring objects. In addition, newly learned practices were 
partially distorted through the old ritual frame. 

Keywords: Mathematics instruction, professional development, frames, explorative practice. 

 

Classrooms where students engage in explorative mathematical learning produce more robust, 
conceptual learning, and more positive mathematical identities (Schoenfeld, 2014).  Despite these 
findings, teaching in the US and worldwide still provides mostly opportunities for ritual participation, 
where learning is made up of reciting procedures and facts (McCloskey, 2014; Resnick, 2015). Efforts 
at changing mathematical instruction, have shown ritual instruction is difficult to change (e.g. 
Santagata, Kersting, Givvin, & Stigler, 2011). However, the complex processes of change that do 
occur in teachers’ practice, in the context of certain professional development (PD) programs, have 
largely remained obscure, perhaps because of the lack of theoretical frameworks for examining such 
complex processes. In this study, I offer the concept of “frames” for tracking subtle changes in one 
teacher’s practice over a period of a school year.  

Theoretical background 
I take as a starting point Sfard’s (2008) view, that the gist of mathematical activity, both in the 
classroom and over history, is the construction and exploration of “mathematical objects.” These 
discursive objects, like numbers, triangles, and functions are not existing objects in the physical 
world, yet the “metaphor of object” is used by any skilled mathematician to talk about them as though 
they were indeed such physical objects. Mathematical objects can have many realizations, or physical 
symbolic representations. A function, for instance, can be represented as a graph, a table, an algebraic 
expression or a verbal statement. In the process of learning, according to Sfard, students come to see 
all these realizations as signifying one object. Once they do that, they start talking about it as an object 
existing of itself, a process termed “objectification.” 

Within this view, Sfard and Lavie (2005) theorize the process of mathematical learning as moving 
from a ritual, peripheral phase, where activity is first and foremost aimed at pleasing the experts of 
the discourse (e.g. the teacher), to an explorative phase where new mathematical narratives are 
produced by oneself for the sake of the activity itself. In contrast to explorative participation, the 
focus of ritual participation is activity itself, not the mathematical narrative produced by it. Ritual 
participation is often characterized by syntactic mediation, where instead of using mathematical signs 
as signifiers of objects, these signs are manipulated according to prescribed (often memorized) rules. 



Ritual and explorative participation are governed by certain meta-rules or “patterns in the activity of 
the discursants” (Sfard, 2008, p. 201). These rules can be divided into mathematical meta-rules, which 
dictate how mathematical narratives are to be derived from each other (for example, by proof or by 
computation) and subjectifying meta-rules which govern the actions of people (e.g. asking questions, 
giving directions, talking with each other).  To capture the fact that meta-rules have a certain structure 
and coherence, Heyd-Metzuyanim, Munter & Greeno (in review) suggested the term “frames”, 
borrowed from socio-linguistic and socio-cognitive research to describe “a set of expectations an 
individual has about the situation in which she finds herself that affect what she notices and how she 
thinks to act” (Hammer, Elby, Scherr, & Redish, 2005, p. 9). Accordingly, they defined “frames” in 
mathematical classrooms as a set of meta-rules, both mathematical and social, which includes 
appropriate questions, answers, justifications and other discursive actions in a situation of solving a 
mathematical problem or performing a mathematical task. Whereas frames of explorations would be 
sets of meta-rules that cohere around the goal of producing mathematical narratives based on logical 
justifications, ritual frames would be more aligned with goals such as performing a procedure 
accurately according to a prescribed set of steps, and adhering to external authority. 

Method 
The case of Mr. M is taken from a larger study, where we followed 7 teachers and 5 teacher leaders 
throughout 8 months of professional development (PD) during 2014 – 2015. The PD was led by 
Margaret Smith and Victoria Bill from the University of Pittsburgh. It centered on Smith & Stein’s 
(2011) “5 Practices for Orchestrating Productive Mathematics Discussions” and on Accountable 
Talk™ (see http://ifl.pitt.edu/index.php/educator_resources/accountable_talk). Teachers were 
supported via four full-day PD sessions and in-school individual coaching sessions. 

Mr. M was chosen for closer inspection because he showed a steady growth in the “implementation” 
score of the Instructional Quality Assessment tool (Boston, 2012), used in the larger study (Heyd-
Metzuyanim, Smith, Bill, & Resnick, 2016) to score lessons for cognitive demand. Mr. M’s lesson 1 
scored a 1, lesson 2: 2, lesson 3 & 4: 3 (where 4 is highest). Though his lessons never achieved the 
highest level of cognitive demand, in the last two lessons cognitive demand was partially preserved.  

Data collection included four cycles (September, December, February and May), each containing: 1. 
Pre-lesson and post-lesson interviews with the teacher; 2. Lesson recording and students’ worksheets. 
Frames of mathematical instruction were searched in four data categories: 

(1) The potential of the task to engage students with different realizations of mathematical objects 
and with mathematical meta-rules of justification and generalizations. (2) Teacher’s plans as collected 
from the pre-lesson interviews, as well as his post-lesson reflections. In these we looked for evidence 
of mathematical and subjectifying aspects of explorative frames. (3) Students’ work: evidence of 
engagement with different realizations of objects and with connecting between them. Evidence for 
justifications and explanations based on mathematical logic. (4) Whole-classroom discussions: 
evidence for ritual vs. explorative meta-rules. Is there only talk about routines for manipulating 
symbols detached from their meaning, or are the symbols also related to mathematical objects? 

Findings 
During the first, introductory interview, Mr. M declared himself to be aligned with what may seem 
to be explorative instruction. Describing quality instruction, he said: 



… where groups get together in giving a situation in which they come up with strategies on their 
own, as opposed to a teacher standing up in front of the room and just saying “okay, this is how 
you do this, this is how you do this, now just take this problem and solve it”. So … I keep trying 
to look for my own stuff that I’m doing, so I would look to see that in other peoples. 

Notably, in remarking that such instruction was “my own stuff that I’m doing”, Mr. M attested for 
practicing quality instruction. To this, he added: 

one of my philosophies (is that) there’s never, ever, only one way to solve a problem, that there’s 
many different strategies and many different pathways you can take to find different problems … 

Mr. M also described his challenges in encouraging students to take on agency and not rely ritually 
on his guidance. 

I would say a majority of the students I’ve worked with over the last 7, 8 years pretty much when 
they were on a challenging problem, their first shot is to ask me to give them help and guidance 
along the way. I used to do that more often, …, so I tried to step back away from that for a moment, 
getting to know the kids a little bit better helps me understand those that are just being lazy and 
those that truly don’t know it.  

Thus, in his introductory interviews, Mr. M seemed to be well aligned with “reform” mathematical 
pedagogy, especially with regard to letting students struggle and encouraging them to look for 
“different strategies” for solving problems.  

Lesson 1 

Despite these declarations, the first lesson revealed Mr. M’s actual practices were not well aligned 
with the explorative frame. For the main task of the lesson, Mr. M chose the task seen in Figure 1:  

 

  
Figure 1 - Pythagorean Task given in lesson no. 1 

The task was part of a module that introduced irrational numbers through the Pythagorean Theorem. 
The EngageNY1 teacher guide encourages explicitly to present the task only after students had 
become familiar with this Theorem. The task was taken verbatim from the module, which assumed 
this previous experience, thus including the “use what you know” phrase. However, Mr. M. was well 
aware of the fact that his students were probably not familiar with the Pythagorean Theorem. In the 
pre-conference of the lesson he said: 

                                                 
1 See https://www.engageny.org/resource/grade-8-mathematics-module-7 

The triangle below is an isosceles triangle. 
Use what you know about the Pythagorean 
Theorem to determine the approximate 
length of the isosceles triangle (EngageNY, 
Module 8.7) 



The first challenge that I’m expecting is that we’ve not introduced Pythagorean Theorem at all last 
year. …. Um, I’d like to hear where their conversation goes and what they’re focusing on –… 
when they’re trying to find an opposite base, … given the a2+b2=c2 idea, do they put the numbers 
in the right place – do they remember the square numbers, do they remember to take the square 
roots of numbers to get themselves back to what the – the single variable would be? … So I’m 
looking to see – what kind of challenges working with square roots and squares creates. 

Though Mr. M was anticipating “challenges” in working with the problem (aligned with the PD 
encouraging letting students struggle), the way he talked about students coping with these challenges 
was through “remembering”. Thus, meta-rules belonging to the explorative frame (student agency) 
were distorted through the ritual frame into meta-rules of fact-retrieval, and memorizing procedures.   

During the lesson, the launch of the task proceeded as follows: 

90. T Okay, so when we take a look at this (pointing to a right triangle on the board, the sides 
of which are labeled ‘a’, ‘b,’ and ‘c’) I'm going to give you a little bit of a formula. And 
it may help you today in doing some of your work (writes a2+b2=c2  on the board) ... 
Who can read this out loud for me, please?  

91.-95.  Three students are prompted to read the formula ”in different ways”. One reads “a two 
plus b two equals c two”. The second “a to the second power, b to the second power, 
and b to the second power”, the third “a squared plus b squared equals c squared” 

96. T You see, all three of those ways that they said say the exact same thing. … So when 
we're looking at this, can you now start to see that knowing two of the three sides will 
allow me to figure out the third side? … I'm gonna have you work in groups today to 
see if you can't use …any knowledge that you have plus anything that you've seen today. 
Alright?  

The subjectifying meta-rules enacted in this excerpt bore resemblance to explorative frames. Students 
were asked to provide “different ways” of saying the “exact same thing”, and were directed to “figure 
out” and “work in groups” to “use any information” they have to solve the problem. Yet the 
mathematical meta-rules, that is, the ways to derive one mathematical narrative from another, were 
obscure at best. a2+b2=c2 was written on the board, detached from the right triangle, with no indication 
of a2, b2, and c2 signifying the geometrical squares adjacent to the triangles sides. By that, Mr. M was 
treating the a2+b2=c2 Pythagorean Theorem syntactically, as a series of signifiers, detached from their 
meaning as signifying geometrical objects. 

Not surprisingly, since students had no access to the meaning of the Pythagorean Theorem mediated 
by geometrical objects, they struggled over where to place the a, b, and c labels given by the formula, 
on the newly presented triangle. After some leading questions from Mr. M. students concluded they 
should label the base of the triangle as ‘C’ or ‘C2’. They subtracted 92-72=32, but then were unsure 
as to what to do with that result.  Some students thought it should simply be divided between the two 
halves of the base, labeling the whole base as ‘32’ and halves of it with ‘16’. Others simply labeled 
the whole base as ‘16’ or went another step and labeled the halves with ‘8’. Only 3 or 4 students, out 
of 24, figured out that the 32 should be square-rooted and multiplied by 2. However, even they did 
not label the triangle’s base with the resulting number 11.4 (or estimated 12). The mathematical meta-
rules governing the classroom activity were thus primarily ritual. They could be summarized as 
“apply a set of symbols, somehow related to a right-triangle, to a new triangle”.  



It was not that Mr. M was intending students to apply the ‘a’,’b’, and ‘c’ symbols randomly. He did 
have a certain type of reasoning he was looking for. After having asked a student to come to the board 
and present her solution, and while the student was labeling the triangle sides, he said: 

289. T Yeah, please notice - … if we looked at that formula - A squared plus B squared 
equals C squared, and then I asked this question of some of you: Does it make a 
difference where C is? …( Student answers C has to be bigger than A and B) 

291. T  So if it's bigger than all the other ones, then the question becomes where does the 
C have to go - which side? 

292. Student On the longest side. 
293. T The longest side. Now the one misconception I saw that I didn't expect was that 

some of you thought that this (the base) was the longest side, the whole way 
across. Just be careful about that, you're focusing on just one of those two 
triangles, okay?  

The meta-rules of the activity, as gleaned from Mr. M’s words were thus “figure out where the C is 
according to it being bigger than a + b. Then figure out the longest side and label it as C”. However, 
this was detached from the physical meaning of the Pythagorean Theorem. In relation to the confusion 
or “misconception” the students had, regarding where to place the C, Mr. M did not have much advice 
besides “be careful about that” [293]. There was no other indication why they should be focusing on 
one of the right triangles, and not the whole triangle.  

In the post conference, Mr. M seemed reasonably content with the results of the activity. He explained 
that since students were unfamiliar with the Pythagorean Theorem, he expected them to struggle, but 
that that wasn’t the focus of the lesson. Rather the focus was discussing imperfect squares, to which 
they got at the end of the discussion, when one student said 32 should be rooted and Mr. M led 
students to estimate the root between 5 and 6. Yet having detached the geometric, physical realization 
of the Pythagorean Theorem from its algebraic formula, the rationale behind the existence of 
imperfect squares had no way of being foregrounded. The fact that Mr. M was not concerned with 
students struggling considerably with something that was not “the focus of the lesson”, indicates that 
through his frame, the whole process of working in groups and discussing solutions was not a central 
measure for achieving the mathematical goal of the lesson. Rather, it was a sort of a “side effect”, 
performed for the sake of the lesson recording or for students to practice working in groups.  

I now move to a similar examination of the last lesson. A description of the two middle lessons is out 
of the scope of this paper. However, evidence for movement from a ritual frame to a more explorative 
frame were starting to show during the 3rd lesson, where Mr M received, together with the rest of the 
teachers of the PD, a high-level task selected by the PD leaders and directed explicitly on the different 
solution paths that should be sought in the lesson. Lesson no. 4 seems to have reaped the benefits of 
this process, though as we shall see, the shift between frames was still very fragile. 

Lesson 4 

The first indicator that Mr. M’s practice was starting to align with an explorative frame could be seen 
in his choice of a task. This task involved modeling of real-life processes with a quadratic equation. 
Following is the task as presented on the worksheet (taken from EngageNY, Algebra 1): 

The baseball team pitcher was asked to participate in a demonstration for his math class. He took 
a baseball to the edge of the roof of the school building and threw it up into the air at a slight angle 



so that the ball eventually fell all the way to the ground. The class determined that the motion of 
the ball from the time it was thrown could be modeled closely by the function: h(t) = -16t2 + 64t 
+ 80, where h(t) represents the height of the ball in feet after t seconds.  

Students were then asked to find the behavior of the function (maximum, minimum, vertex), to graph 
it and to indicate how many minutes passed until the ball fell to the ground and what was the meaning 
of h(0). The task thus had ample potential for using different realizations for a mathematical object – 
namely the quadratic formula.  

The next indication for Mr. M’s movement between frames was his talk about expectations for 
students' work during the pre-lesson interview. This is how he presented the choice for the task: 

I’ve been working on questions … like “how do you know that that’s where your graph crosses 
the X axis?” So more than just– what is that value, how do you know what it is. How did you 
figure it out. Um, why does your graph continue past zero? In the context of the problem, what 
does that mean? … And try to gain some understanding of their understanding. 

Instead of “remembering”, Mr. M now talked about students’ “understanding”. He was also working 
hard on preparing questions that would assess students' understanding, a skill specifically taught in 
the PD sessions. 

Examination of students’ worksheets showed that most students performed the calculations involved 
in the problem correctly. 4 out of the 27 students wrote that h(0) indicated the height in which the 
ball was thrown was 80 feet, and 3 more related h(0) to the initial stage, before the ball was thrown 
in the air. Other students, however, either left this question blank, or stated that h(0) means “the ball 
is on the ground” indicating incongruence between the physical situation and the graphical 
realization. Thus, in contrast to the first lesson, there was evidence that a small part of the classroom 
was able to flexibly move between different realizations of the quadratic function.   

During the whole classroom discussion, students’ explanation on the board were mostly concentrated 
on the calculations involved in the problem. Mr. M encouraged this by calling on students to present 
“different ways to solve the problem” which referred to factoring by dividing the expression by 16 or 
by 8. He also referred to finding the value of h(0) by substituting t=0 or by just “looking” at the last 
term in the equation, as two different ways to find h(0). Yet these two “ways” were, in fact, both 
tending to the algebraic realization and could be considered as “different” only when looking at the 
function’s expression syntactically. There was no mentioning in the whole classroom discussion of 
the graphical realization of the function or the physical “real life” story modeled by it. It was thus still 
mostly characterized by meta-rules of carrying out prescribed procedures using syntactic mediation, 
rather than meta-rules of exploring mathematical objects. However, some slight changes could be 
observed. One of the students who talked in the whole classroom discussion did, even if very briefly, 
mention the physical “real life” situation that the function was modelling. He talked about the ball 
(“the ball hasn’t been thrown yet”) and hinted at the height of the roof in “throw the ball at 80”. Also, 
there was brief mentioning of the physical realization when Mr. M elicited from one student that the 
maximum was at “2 minutes”.  

In terms of social meta-rules, there were many more prompts for students to “restate” what other 
students have done. Mr. M made every effort to use this talk move, taught in the PD, albeit somewhat 
inflexibly, whenever a student made a mathematical statement he deemed as important. 



Discussion 
In this paper, I have used the concept of “framing” to examine subtle changes in one teacher’s practice 
over a period of one school year, through which the teacher was receiving support both through PD 
sessions and through in-school coaching. These changes, including the different aspects of frames, 
are summarized in table 1. 

Table 1 - Social and Mathematical aspects of frames in two lessons 

 Social (subjectifying) meta-rules Mathematical meta-rules 

Lesson 
1 

Beginnings of explorative social 
meta-rules through teacher’s 
declarations (students expected to 
persevere, work together). In 
practice, most of the talking is 
done by the teacher.  

Ritual: Meta-rules only have to do with recalling 
facts and procedures from memory. Mathematical 
signifiers are detached from the object they are 
representing. Students’ work indicates syntactic 
mediation with no connection to geometrical 
realizations.  

Lesson 
4 

Explorative social meta-rules 
are more dominant. Students 
are asked to restate each other’s 
ideas. Two students explain their 
thinking to the whole class. 
Evidence that some student listen 
to each other. 

Beginnings of explorative mathematical meta-
rules: Teacher seeks students “understanding”, 
not just rule following. A small portion of 
students’ work indicates connections between 
multiple realizations of the quadratic function. 
Still ritual meta-rules in teacher’s discourse still 
dominate instruction. 

As can be seen from Table 1, the shift from ritual to explorative frames in Mr. M’s case was not 
uniform. The shift occurred first in the social meta-rules and only later in mathematical meta-rules. 
Also, both shifts seemed to occur first at the level of declarations and only later in practice. Thus, talk 
about social meta-rules aligned with explorative participation was evident already in the first 
interview, but enacted mostly in the last lesson. Talk about expectations for explorative mathematical 
meta-rules was evident in the last lesson pre-conference interviews, and only very slightly evident in 
the enactment of the lesson. This finding corroborates earlier findings showing that teachers are 
quicker to adopt declarations about explorative instruction than they are to enact it (Cohen, 2001) as 
well as our previous findings regarding social meta-rules of teachers trying to enact “dialogic” or 
“reform”  instruction being more aligned with explorative instruction than mathematical meta-rules 
(Heyd-Metzuyanim et al., in review). Most importantly, the findings reveal that teachers’ learning of 
new practices is not a matter of acquiring new practices on a “tabula rasa” of non-existing former 
practices. Rather, at first, new practices are seen through the old frame. As such, they gain 
unpredictable “twists”, such as perceiving different syntactic procedures as “different solutions” 
sought after, or encouraging students to restate unimportant mathematical ideas.  
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Abstract: One main facet of teachers’ professional competences is diagnostic competence. While 
diagnostic competence of teachers becomes relevant in several situations within teaching and 
learning, this paper focuses on situation-specific diagnostic competence required by teachers within 
class. In a qualitative supplementary study of the TEDS-Follow-Up project, this situation-specific 
diagnostic competence is analysed using the video instrument of the TEDS-Follow-Up study. 131 
primary level mathematics teachers participated in the primary study of this project and examined 
specific learning situations in the video instrument. These instances were analysed using qualitative 
text analysis (Mayring 2015). Results indicate that teachers notice very different aspects in those 
teaching situations. Two different diagnostic types can be differentiated: content-related and judging 
diagnostic type versus student-related and action-oriented diagnostic type. 

Keywords: Professional competences of mathematics teachers, diagnostic competence, mathematics 
teachers’ knowledge, situation-specific skills of mathematics teachers, video study. 

 
Introduction 
Teachers are faced with many challenges in the context of teaching and learning. In order to plan and 
to conduct teaching sequences that enable students to achieve their best possible learning results, 
teachers need several characteristics such as professional knowledge and situation-specific skills. 
According to Weinert et al. (1990, p.172), diagnostic knowledge is one of the “four areas of 
knowledge […] as constituting the cognitive components of teacher expertise” in addition to 
classroom management subject matter knowledge and instructional competence. With this 
perspective, this article focuses on the diagnostic competence of primary school mathematics 
teachers, more precisely on their diagnostic competence that becomes relevant during class – the so-
called situation-specific diagnostic competence.  

Theoretical background 
Theoretical background of the study is the discussion on mathematics teachers’ professional 
competences, which will be described specifically focusing on their diagnostic competence. 



Professional competences of teachers 

According to Weinert (2001), competence involves two main facets: a cognitive facet as well as an 
affect-motivational facet. The cognitive facet is often differentiated following Shulman (1986, 1987) 
into (Mathematics) Content Knowledge (MCK), (Mathematics) Pedagogical Content Knowledge 
(MPCK) and General Pedagogical Knowledge (GPK). Several empirical studies that deal with 

teachers’ professional competences use 
this conceptualization of competence 
(see for example Mathematics Teaching in 

the 21st Century (MT21); Blömeke et al. 

2008, Teacher Education and Development 

Study in Mathematics (TEDS-M); Blömeke 

et al. 2014 and Cognitive Activation in the 

classroom (COACTIV) Kunter et al. 2011). 

In addition to teachers’ knowledge, these 

studies assess affective-motivational 

aspects such as epistemological beliefs, 

motivational aspects and those about the teaching profession (cf. Blömeke et al. 2008, Blömeke et al. 

2014, Baumert and Kunter 2011). Thus, cognition and affect-motivation are hypothesized to build 

the basis of competent performance in classroom situations. 

More situated approaches to assess teachers’ professional competences are based on models of 

competence that also include more situated facets such as teachers’ perception, interpretation and 

decision-making that become especially relevant during classroom interaction. According to 

Blömeke et al. (2015), competence is a continuum from personal traits such as cognition and affect-

motivation that underlie and affect situation-specific skills which again determine the actual 

performance or behaviour in specific situations. Here, the perception, interpretation and decision-

making in concrete situations “mediate between disposition and performance” (ibid., p. 7). A content-
based specification of this broader concept of competence is the diagnostic competence (Abs 2007). 

Diagnostic competence 

Diagnosis and diagnostic tests are usually associated with medicine. Doctors need to diagnose 
illnesses on the basis of symptoms. However, teachers need diagnosis in their profession as well. 
They may use diagnostic (clinical or standardized) tests to detect learning disabilities (Ketterlin-
Geller and Yovanoff 2009) but they also need to diagnose students’ achievements and learning 
processes during class without using standardized educational or psychological tests. Both described 
instances require teachers’ diagnostic competence. However, we describe the process of diagnosing 
in the course of teaching and learning as teachers’ situation-specific diagnostic competence as 
opposed to the facet of diagnostic competence that becomes relevant in adequately choosing, using 
and evaluating diagnostic tests (see Hoth et al. 2016). 

For this situation-specific diagnostic competence, teachers’ situation-specific skills become relevant 
as proposed by Blömeke et al. (2015) in their model of competence (see figure 1). On the basis of this 
theoretical background, the study presented in this paper focuses on the following research questions: 

Figure 1: Modeling competence as a continuum (Blömeke et al. 2015, p. 7) 



1. How do the perception, interpretation and decision-making of primary mathematics teachers 
differ? 

2. Can different diagnostic types be reconstructed? 
3. How do these diagnostic types relate to their professional knowledge regarding the three 

knowledge facets mathematics content knowledge (MCK), mathematics pedagogical content 
knowledge (MPCK), general pedagogical content knowledge (GPK)? 

To address those research questions, the methodological approach that was used to analyze the data, 
will be described. 

Methodological approach 
The study presented in this paper is a qualitative supplementary study of the TEDS-Follow-Up project 
(Follow-Up to the international Teacher Education and Development Study in Mathematics, TEDS-
M). For the specific purpose of analysing teachers’ situation-specific diagnostic competence, the 
focus of the supplementary study lay on the video instrument of the TEDS-FU study. TEDS-FU, its 
conceptualisation and design will be described in the following, prior to the outline of the 
methodological approach that was realised in this specific supplementary study. 

The TEDS-FU study 

The TEDS-FU study is the German Follow-Up-study of the international comparative study about 
mathematics teacher education TEDS-M. A subsample of primary and secondary school mathematics 
teachers who participated in TEDS-M was reassessed after four years of work experience. A total of 
300 mathematics teachers participated in the primary school study, including 131 primary school 
teachers who are at the focus of this paper. Therefore, the TEDS-FU study analyses the teachers’ 
development in their first years of work experience. 

The study is based on an understanding of competence as a continuum (Blömeke et al. 2015, figure 
1) and closely refers to research in the field of teachers’ expertise (cf. Li & Kaiser 2011) and the 

concept of ‘Teacher Noticing’ (cf. Sherin, et al. 2011). In order to assess more situated facets of 

teachers’ professional competences, three situated facets are distinguished in TEDS-FU in addition 

to knowledge-based facets of teachers’ professional competencies (MCK, MPCK, GPK): 

 “(a) Perceiving particular events in an instructional setting, (b) Interpreting the perceived activities 

in the classroom (c) Decision making, either as anticipating a response to students’ activities or as 

proposing alternative instructional strategies” (Kaiser et al. 2015, p. 373). 

Therefore, different test instruments are used in the study. An online-survey assessed different 

contextual components such as beliefs, working conditions and school characteristics, a newly 

developed video analysis instrument assessed teachers’ situation-specific skills and a shortened 

version of the TEDS-M proficiency test was used to assess teachers’ MCK, MPCK and GPK. In 

addition, a time-limited test was included where teachers had to identify typical student errors (see 

Pankow et al. 2016). 

With the aim to analyse teachers’ situation-specific diagnostic competence, all tasks were focused 

from the TEDS-FU primary school study that required situation-based diagnostic competence. This 

was ensured by the video analysis test instrument as well as in some verbally described situations of 

the reduced proficiency test. The video test consisted of three short video clips of a primary school 



mathematics classroom and corresponding questions concerning didactical and pedagogical aspects 

of the teaching sequence. A total of 19 questions were selected for the analyses, 14 questions from 

the video analysis test and five questions concerning verbally described situations in the MPCK 

proficiency test. Teachers’ answers to the selected questions were analysed using qualitative text 

analysis (Mayring 2015; Kuckartz 2014). All answers of all teachers to all 19 selected questions were 

analysed using reducing and structural procedures (Mayring 2015).  

To exemplify the coding process, one example item will be introduced as well as teachers’ responses 

to the item and the result of their analysis. The example item refers to the video analysis instrument, 

more specific, it refers to the video ‘real world problem’ that shows a third grade mathematics 

classroom in Germany dealing with a real world mathematics problem that is shown in figure 2. In 

the video, three students’ working groups are shown who discuss their working results. The students 

use very different approaches, one student produces a symbolic result while another student solves 

the task using a visual drawing of the situation. Referring to this scene, the teachers were asked to 

characterise the two solution approaches contrastingly. Teachers’ responses to this task were coded 

using reducing processes of qualitative 

context analysis, capturing the content 

of the teachers’ answers. In this 

regard, the following teacher’s answer 

was categorised as ‘contrasting the 

students’ form of representation’: 

Teacher 1: “Lea does mental 

arithmetic and uses a symbolic approach. She does not have to use an iconic or enactive solution 

while Kim needs an iconic approach. She should try an enactive approach to see that Lea’s 

approach is correct as well.” 

This coding approach categorized each of the teachers’ answers with regard to their content. In 

another coding process using structuring procedures, the teachers’ answers were coded with regard 

to judgments. A teacher’s response that contained a judgment of the two students’ solutions is the 

following: 

Teacher 2: “Lea’s approach is more practical and more advanced than Kim’s approach 
because she already subtracted the amount that the girl has to give to the boy. 

Finally, in another structuring coding procedure, all teachers’ responses to the selected questions were 

coded with regard to proposed alternatives or continuations. A teacher’s response that proposes a 

possible continuation of the presented situation is the following: 

Teacher 3: “Lea does mental arithmetic and uses a symbolic approach. She does not have to 
use a visual or acting solution while Kim needs a visual approach. She should try an acting 
approach to see that Lea’s approach is correct as well.” 

Figure 2: Real world mathematics problem that is discussed in the video 
vignette 



These coding processes resulted in a category system that built the basis for type-building text 

analysis (Kuckartz 2014). Here, three dimensions emerged which further constructed a feature space 

to generate diagnostic types: the perspective that teachers’ chose on the teaching sequences, their 

tendency to judge and their tendency to propose alternatives and continuations. In order to reconstruct 

ideal diagnostic types, connections between these three dimensions were analysed and idealised. 

Finally, these diagnostic types were interrelated using contingency analyses in a Mixed-Method-

Design (Kelle & Buchholtz 2015) with the teachers’ knowledge scores that resulted from the reduced 

proficiency test of the TEDS-FU 

study. The teachers’ mathematics 
content knowledge, their mathematics 
pedagogical content knowledge and 
their general pedagogical knowledge 
is given in scale scores resulting from 
the TEDS-FU proficiency test. 
Contingency analyses between the 
teachers’ knowledge facets and the 
dimensions presented above give 
insight into connections between 

teachers’ situation-specific skills and their professional knowledge. Table 1 shows this contingency 
analysis between the perspective chosen and the professional knowledge for the example item. 
However, since the perspectives were coded in every selected question, these connections were also 
analyzed independent of specific teaching sequences. 

Results 
Resulting from the reducing and structuring procedures, teachers’ responses differed with regard to 
several aspects. On the one hand, teachers chose different perspectives on the classroom incidents. 
While some teacher focused on the content, other teachers focused on the students, their 
understanding, motivation, behaviour etc. On the other hand, it became obvious that teachers had 
varying tendencies (a) to judge the classroom events which they observed and analyzed and (b) to 
anticipate teaching alternatives or continuations. 

Relating the three dimensions that resulted from the coding processes–(1) the perspective chosen (2) 
the tendency to judge (3) the tendency to anticipate teaching alternatives or continuations and–showed 
that teachers who often chose a content-related mathematical perspective in classroom situations also 
often judged these incidents. In addition, the more often teachers chose a student-related perspective, 
the more teaching alternatives and continuations were anticipated. These connections between the 
three dimensions formed the basis for building diagnostic types. In this regard, the following two 
ideal diagnostic types could be identified:  

“Content-related and judging: This diagnostic type is characterized by a content-related 
perspective in the phases of perceiving and interpreting relevant incidents. These noticed 
criteria are subsequently used to judge the relevant incidents. The phase of decision-
making is also characterized by a content-related focus. Here, the teaching continuation 
is conducted by the subject’s (here mathematical) content.  

 Didactical 
perspective 

Didactical 
AND 

mathematical 
perspective 

Mathematical 
perspective 

Average 
MCK 519 567 597 

Average 
MPCK 536 552 543 

Average 
GPK 647 640 683 

Table 1: Contingency analysis between teachers' professional knowledge and 
their perspective 



Student-related and action-oriented: This diagnostic type is characterized by a student-
related perspective in the phases of perceiving and interpreting relevant incidents. This 
means that the students, their learning processes, understanding, motivation and 
behaviour are the noticing focus. If classroom situations show deficits with regard to 
students’ understanding and learning, this phase is automatically followed by a phase of 
deciding on alternatives that improve the given situation or possibilities to optimally 
continue the situations. The phase of decision making is primarily characterized by 
considering teaching methods and the instructional organization.” (Hoth et al. 2016, p.50) 

Connecting to these results concerning different diagnostic types, a Mixed-Methods Design was 
realised that interrelated the different perspectives chosen with the teachers’ knowledge that was 
assessed by the proficiency test in the TEDS-FU study. In this regard, connecting the perspectives 
chosen by the teachers to their professional knowledge showed the following results: 

- Teachers who often choose a mathematical perspective on teaching situations have average or 
above average mathematics content knowledge while their mathematics pedagogical content 
knowledge is below average.  

- The more often teachers choose a didactical perspective on teaching situations, the higher is 
their mathematics pedagogical content knowledge.  

- The general pedagogical knowledge of teachers who often choose a pedagogical perspective 
exceeds their content specific knowledge. 

- Teachers who often judge teaching instances have high mathematics content knowledge.  
- Teachers who often propose teaching alternatives and continuations possess high mathematics 

and mathematics pedagogical content knowledge while teachers who seldom do this have below 
average general pedagogical knowledge. 

With regard to specific teaching instances, the results indicate that teachers with comparatively high 
content-related knowledge (MCK and MPCK) plan their teaching with regard to the content while 
teachers with comparatively high general pedagogical knowledge focus to a greater extent on 
pedagogical facets while planning their teaching. Furthermore, other connections indicate that 
teachers with only little content knowledge more often miss aspects in teaching and learning that are 
relevant for the students’ learning processes but focus on behavioural aspects if they are very striking. 
Teachers who focus on aspects of understanding and learning despite of the striking student behaviour 
have above-average mathematics content knowledge. 

Summary and discussion 
In this paper, mathematics teachers’ situation-specific diagnostic competence is analysed. This is the 
diagnostic competence that teachers require during class. For this purpose, the answers of 131 
mathematics teachers are analysed who took part in the TEDS-Follow-Up study. In this video-based 
study, the teachers are asked to answer questions referring to video scenes of mathematics classroom. 
Analyses showed that teachers focus on very different aspects in the same teaching scene and two 
diagnostic types were differentiated: the content-related and judging type on the one hand and the 
student-related and action-oriented type on the other hand. In addition, contingency analyses showed 
that there are connections between the teachers’ professional knowledge and their focus on and 
analysis of teaching sequences. 



The results enrich the already existing findings in the field of teacher noticing (cf. Sherin et al. 2011). 
The proposed connection between teachers’ noticing and their knowledge is verified empirically. As 
a consequence, teachers’ practice is essentially influenced by their professional knowledge which in 
turn emphasizes the importance of mathematics teacher education. However, following questions 
arise about further connections between teachers’ identification, their beliefs and the perspectives that 
were distinguished in this paper. In addition, developing and implementing teacher education courses 
to foster teachers’ situation-specific diagnostic competence may give further insight into the 
development of this specific facet of teachers’ diagnostic competence. 
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The changes concerning the final state examination, determined by the novelty of Slovak university 
law, stimulated us to make serious changes in the examination model of Didactics of Mathematics at 
our university. Moreover, we have observed significant gaps in pedagogical content knowledge 
(PCK) of our secondary pre-service teachers during the last years. These two stimuli led us to an 
improvement of the course of Didactics of Mathematics. In this paper, we present our new approach 
which was mainly focused on the assessment of the lesson plans presented by the pre-service teachers. 
The assessment was based on the rubrics which were developed through the course. After the 
application of the new approach, we have observed growth in PCK. We have partially confirmed 
reliability of the rubrics as well. 

Keywords: Secondary pre-service teacher, pedagogical content knowledge, lesson plan, rubrics for 
PCK assessment.  

Introduction 
Before we introduce our new approach to secondary pre-service mathematics teacher PCK 
development, we bring a short description of the system of pre-service teachers’ preparation at our 
university. First, all the secondary pre-service teachers (PSTs) study two disciplines in various 
combinations, including combinations of natural and humanistic disciplines. Second, pedagogical, 
psychological and didactics studies are reduced to the minimum for the bachelor level. Therefore, we 
speak about the joint degree study of the particular two subjects (e.g. mathematics and physics) at the 
bachelor level. Most of the pedagogy is concentrated at the master level of university studies, where 
we talk about the teacher preparation program. Third, complex state exam from both disciplines and 
their didactics, Pedagogy and Psychology and the thesis defense are required for successful finish of 
the study. The aim of our university was to make state exams more efficient and foster mutual 
relationships of all parts of state exams. Moreover, we had found out serious gaps in the PCK of our 
PSTs, so the bigger pressure for its growth was necessary. Implementation of the PCK assessment 
into the state examination seemed to be a way, because “what you test is what you get,” is the broadly 
accepted quote (attributed to Lauren Resnick). As we realized, when the assessment is changed, the 
instructions should be changed as well. Therefore, we have prepared a new model of state exams and 
apply inevitable changes at the classes of Didactics of Mathematics. To be sure that the new approach 
has the positive impact on the PSTs’ learning, we posed following research questions: (1) Are the 
rubrics reliable tool to assess PSTs? (2) Was the pre-service teachers’ PCK developed effectively? 
Which of its components were developed?  

The novelty of the approach can be understood geographically - there are no serious studies on PCK 
development in Slovakia or even in neighbor countries (Depaepe, 2013). Moreover, we have not 
found any study which would consider utilization of general – not thematically specific – rubrics for 



development of PCK of secondary PSTs. The new approach is described and discussed below; 
however, some theoretical underpinnings are necessary to be stated first. 

Theoretical background 
Knowledge areas, in which should a good teacher of mathematics systematically grow and achieve 
a certain standard, are named for several decades. Shulman (1986) explained pedagogical content 
knowledge (PCK) which is beyond subject matter knowledge and  

„includes an understanding of what makes the learning of specific topics easy or difficult. Teachers 
need knowledge of the strategies most likely to be fruitful in reorganizing the understanding of 
learners, because those learners are unlikely to appear before them as blank slates” (p. 9).  

Furthermore, Shulman (1986) emphasized the importance of curricular knowledge, familiarity with 
the instructional materials and tools available for teaching distinct concepts at different levels. PCK 
in the domain of mathematics comprises mathematical knowledge a different kind to that used in 
everyday life and in other professions which need mathematics (Ball & Bass, 2000). 

Hill et al. (2008) built on Shulman’s (1986) definitions of different types of knowledge and proposed 
the model with three types of content knowledge and three types of PCK: 

Subject matter (content) knowledge 
(1) Common Content Knowledge (CCK) – knowledge which is used in the classroom in ways 
common with how it is used in other professions that also use mathematics. (2) Specialized Content 
Knowledge (SCK) – knowledge how to accurately represent mathematical ideas, provide 
mathematical explanations for common rules, procedures, understand unusual methods of solution. 
(3) Knowledge at the mathematical horizon – awareness of the large mathematical landscape in 
which the present experience and instruction is situated (Zazkis & Mamolo, 2011). 

Pedagogical content knowledge 
(1) Knowledge of Content and Students (KCS) – knowledge how students in general learn 
a concept, what mistakes and misconceptions are common, it involves understanding of students’ 
thinking and what makes the learning of particular concepts easy or difficult. (2) Knowledge of 
Content and Teaching (KCT) – knowledge about how to develop students’ thinking and how to 
deal with student errors effectively, ‘‘knowledge of teaching moves’’ (p. 378). (3) Knowledge of 
Curriculum (KC) – knowledge about the content of curriculum and knowledge how to utilize the 
content of curriculum to present. 

In our approach we suggest an authentic assessment in order to make bigger pressure for the growth 
of each component of PCK and to move forward PST beliefs about mathematics. There are four 
features of authentic assessment (Darling-Hammond, Ancess & Falk, 1995): (1) “they are designed 
to be truly representative of performance in the field” (p. 11); (2) “the criteria used in the assessment 
seek to evaluate “essentials” of performance against well-articulated performance standards.” (p.12); 
(3) “self-assessment plays an important role in authentic tasks” (p.12), (4) “the students are often 
expected to present their work publicly and orally.” (p.12). 



The course design 
Ten PSTs attended mandatory class in Didactics of Mathematics led by the second author and assisted 
by the first author. Total time of every week meeting was two hours and 15 minutes, the course lasted 
for 10 weeks, 5 of them were designed as follows: 

(1) All PSTs picked randomly one of the topics which were prescribed by the second author. They 
were asked to create a lesson plan due to a particular date. The lesson plan had to be focused on the 
mastering a new curriculum. The template they were asked to fill as the front page of the preparation 
contained following items: topic, grade, goals, necessary entry knowledge, didactics problem and 
misconceptions, tools, methods and forms. Only the front page was fixed, the rest of the preparation 
was in the hands of the PSTs. (2) The PST who was up to present his/her preparation the next week, 
sent his/her lesson plan in one week advance to the whole group. Everybody was expected to raise 
some questions. (3) The PST had 30 minutes for the presentation of the lesson plan. Next 20 minutes 
were reserved for discussion. The PST explained the main line of the new curriculum mastering, 
underlined the important connections between the information from the front page and the tasks and 
subsequently, in the discussion, clarified inconsistencies pointed out by the teachers or the PSTs. (4) 
Everybody who was actually present at the class was asked to assess the presentation and provide the 
feedback and score for the PST who presented the preparation. To minimize subjectivism of the 
assessment, following rubrics (Table 1) were created and used for the scoring. The PSTs were 
instructed how to use it, examples for the particular levels were supplied. 

Rubrics for lesson plan assessment 
The base for the initial rubric version was the observations which were conducted by the second 
author in the previous academic year. The PSTs were asked to fulfil the similar assignment. 
Nevertheless, the scoring was not conceptualized; everybody was expected to assess presenting PST 
an appropriate number of points. Such assessment did not produce pressure for specific part of PCK 
growth. That was the reason why we, for the next academic year, developed five rubrics that we 
believe to enhance PCK of PSTs during the preparation of the lesson. 

(1) Rubric Learning Objectives is defined as the ability to formulate and clarify essential objectives 
of the unit and to link them with the rest of the preparation. Learning objectives result from 
curriculum. The rubric is connected with KC. We assess whether PST applies this curriculum content 
to appropriate learning activities for students. (2) Rubric Motivation shows PSTs’ potential to present 
mathematical ideas in an attractive way, to provide reasons and mathematical explanations for the 
topic. It is linked with SCK. (3) Third rubric – Correctness - pertains to mathematical correctness of 
the lesson plan. It is associated with CCK and SCK. (4) Rubric Didactic Means (Tools) includes 
chosen didactic method, tasks and materials.  Using this rubric we assess PST knowledge about how 
to build on students’ thinking and how to address students’ errors effectively. The aim is to identify 
the level of KCT. (5) Last Rubric we called Didactic Problems and it contains assessment of the 
level of PST knowledge of how students think about the topic, how students typically learn a concept 
from the topic, what mistakes and misconceptions are common. Rubric is designed to determine the 
level of KCS. 



Level Learning objectives Motivation Correctness Didactic Means 
Didactic problem  

and misconceptions 

0 A PST cannot explain the 

objectives of the unit, or the 

explanation is only formal (there 

are only weak connection between 

the objectives and the preparation 

and/or the objectives are not 

appropriate for the students age 

group). 

There is no explicit motivation 

within the lesson plan, or the stated 

motivation is very formal (neither 

students’ activity nor questions 

cannot be expected).  

The unit curriculum is introduced incorrectly 

(mathematics terms definitions, mathematics 

statements or tasks assignments are not 

formulated correctly or comprehensively or they 

are not appropriate for the students age group,) 

and/or the learning trajectory is not respected at 

all.  

Chosen didactic means clearly support 

instructive approach to mathematics 

education, there is no prompt for 

students’ activity and/or the tasks are 

chosen superficially.  

A PST does not realize 

didactic problem and 

misconceptions connected 

to the unit topic or he/she 

realizes only marginal or 

general problems and 

misconceptions. 

1 A PST explains the objectives of 

the unit partially, and/or he/she 

does not propose certain of the 

important goals, and/or certain 

objectives are not appropriate for 

the students’ age group. 

The motivation stated in the lesson 

plan probably would be interesting 

only for a few students, and/or there 

are no tight relations between the 

motivation and the objectives.  

Language inaccuracies in oral or written 

communication are observable and/or the 

learning trajectory is respected only partially. 

Chosen didactic means lead to rather 

instructive approach, there is small 

prompt for students’ activity. The 

structure of the teaching unit is not well 

thought out and/or some important 

cognitive phase is missing and/or 

selection of the tasks is only partly 

thought out. 

A PST can name the 

didactics problem and 

misconceptions connected 

to the unit topic and he/she 

resolve them within the 

preparation just partially. 

2 A PST formulates and clarifies 

essential objectives of the unit, 

links them with the rest of the 

preparation and the objectives are 

appropriate for the students’ age 

group.  

The motivation stated in the 

preparation probably engages most 

of the students and it is linked with 

the objectives. If possible, the 

motivation suggests connection of 

mathematics and everyday life. 

The unit curriculum is introduced correctly 

(mathematics terms definitions, mathematics 

statements and tasks assignments are formulated 

correctly and comprehensively and they are 

appropriate for the students age group,) and the 

learning trajectory is respected. 

Chosen didactic means leads to a 

creative environment where activity of 

students dominates and the proposed 

teaching unit has a coherent structure, 

no important cognitive phase is 

missing.  Task selection is thought out. 

A PST can name the key 

didactics problem and 

misconceptions connected 

to the unit topic and he/she 

resolve them within the 

preparation. 

Table 1: Rubrics for PCK assessment



In the rubric Correctness, the term learning trajectory is not conceptualized, it is used in simplified 
meaning concerning the important entry knowledge before the new one is going to be taught and 
learnt. 

The presented lesson plans were not the first ones created by the PST. They had prepared and taught 
18 lessons during their practice teaching before the course started. Additionally, they developed 15 
lessons plans for the state examination, which was scheduled 5 months after the course finished. Some 
of PSTs worked on these lesson plans in groups. All these lessons plans were taken in account to 
track the PCK development. 

Each of the rubrics also provides three general development levels: Beginning, Developing, and 
Advancing (see table 1). In order to explain more precisely authors’ approach to assessment, we 
present two examples for the rubric Motivation from level 0 and level 1.  

Level 0 - Example for “the stated motivation is very formal (neither students’ activity nor questions 
cannot be expected)”: Lesson plan for the Topic: How to multiply decimal by decimal numbers 

PST: For the motivation, I chose the following task: A farmer stored fuel for the tractor in canisters 
of 0.5 hl. He has a) 10, b) 5, c) 2, d) 1, e) 0.5 canisters full of fuel. How much fuel 
does he have for the tractor (write result in hl)? 

T (teacher – the author): Explain the reasons why you consider this task as motivating one.  

PST: I think, in fact, this is not very motivating task. Maybe students could solve the last case of 
the task and found out how to multiply decimal by decimal number. 

Level 1 - Example for “there are no tight relations between the motivation and the objectives”: Lesson 
plan for the Topic: Definition of the concept Limit of a sequence 

PST: Motivation task: In the hotel we have an infinite number of single rooms. Rooms are 
sequentially numbered by natural numbers. The hotel is fully booked. To the hotel, 
however, added three other tourists who would like to stay. Is it possible to 
accommodate them? 

T: What is the connection between this task and the definition of the concept Limit of a sequence? 

PST: The task is about infinity and when we count limit of a sequence we work with infinity. 

Preliminary results and discussion 
We try to answer the research questions mentioned in the Introduction. 

(1) The concept of inter-rater reliability was used to find the answer to the first research question. The 
Table 2 depicts numbers of consistent and inconsistent decisions for each particular rubric.  

Only the authors’ assessment was taken in account because the PSTs’ assessment was obviously 
loaded by the social norms and the relationships within the group. Some inconsistencies between the 
authors were caused by the usage of the rule, that for one deficiency only one point should be get off 
and the authors included the same mistake in the different rubrics. As we can see, the rubrics worked 
well and after precise preparation of their user, they can be considered as reliable tool. The certain 
vagueness of the developing levels formulations does not seem to be a problem when comes to its 
identification within the actual presentation. 



The rubric Match One level differences Two level differences 

Learning objectives 9 1 0 

Motivation 9 1 0 

Correctness 9 1 0 

Didactics Means 7 3 0 

Didactics Problem 8 2 0 

Table 2: Inter rater reliability 

(2) At the beginning, PSTs filled the front page formally (see The course design). Most of the PSTs 
had no idea about how the front page tailors to remaining part of lesson plan. As the course continued, 
we could see how PSTs were moving forward in the development of their PCK. We explain it using 
examples from 3 rubrics (Learning objectives, Didactic Means, Didactics Problem). 
(2a) Development of PCK within the group of PSTs - Learning objectives 

At the beginning of the course, PSTs did not formulate any learning objectives or formally mention 
some objectives of prepared lesson but were not able to explain how to achieve it. Also, some of PSTs 
did not meet the learning objectives they have formulated.  

Example from the lesson plan for the topic: The Binomial Theorem 

PST: The student is able to formulate the binomial theorem and to write the binomial theorem by 
using the summation operator. 

T: Formulate the binomial theorem and write it by using the summation operator. 

PST: (Started to write on the blackboard, but did not remember correct formulation, then started 
to look for the correct formulation in the hard copy of the lesson plan.)  

T: The student should be able to formulate the theorem and the teacher is not? 

At the end of the course, PSTs started to formulate learning objectives in connection with chosen 
tasks and their solutions and they also explain more precisely what they expect. 
Learning goals for the topic: Increasing and decreasing function 

The student is able to identify whether the function is increasing or decreasing from the graph, 
from the table. The student is able to draw graph of increasing and decreasing function. The student 
is able to define increasing and decreasing function. The student is able to prove from the formula 
whether the function is increasing, decreasing or neither one nor the other.  

Additionally, in the prepared lesson plan we can found tasks as means to meet the formulated 
objectives.  
(2b) Development of PCK within the group of PSTs - Didactic Means 

In the first stage, PSTs chose the tasks superficially, e.g. the PST prepared lesson plan for the Topic: 
Law of sines and he explain the task selection as follows: 



PST: (Presents some task where students have to calculate side or angle of triangle using law of 
sines.) 

T: Explain us, why did you choose exactly these tasks.  

PST: I found them in the textbook. 

T: Did you solve them? 

PST: Only the last one because it looked hard.  

T: Do you think these tasks will help your students to understand deeply methods of solution using 
Law of sines? 

PST: Maybe some types of tasks are missing. (He started to draw on the blackboard.) 

At the last stage the PST who prepared for the topic Definition of the concept Limit of a sequence 
explained precisely the reasons for each selected task.  

T: Why did you solve the absolute-value inequality:|x − 4| ≤ 2” at the beginning of the lesson? 

PST: I chose this task because I wanted to recall the geometric properties of absolute-value which 
students meet in the definition of the limit.  

T: You suggest dividing students into 6 groups and each group will work with different sequence. 
Explain your reason. 

PST: Two groups will get increasing sequence, two groups decreasing and two groups oscillating 
sequence. I chose these sequences in order to prevent the following misconception: 
Only decreasing sequence has limit. Oscillating sequence cannot have a limit. 

During the presentation of the lesson plans on the state exams the most of students showed that they 
are better able to intertwine all the items from the front page of the lesson plan with the tasks and 
their solutions, activities, mathematical explanations. Students were also able to explain better their 
reasons for selecting the particular tasks and activities for the lesson.  
(2c) Development of PCK within the group of PSTs - Didactics Problem 

Firstly, most of PSTs did not see any didactic problem and misconception with the most of the topics, 
some PSTs wrote the most common misconceptions, such as problem with negative sign during 
working with algebraic expression, or they formulated didactic problem very generally such as 
students have problems while working with fractions.  Later, when PSTs were trying to identify 
didactics problems and misconceptions, they started to utilize experience from their life (this 
task/concept/method was a problem for my sibling, friend, me) and also from their teaching practice. 
The next example illustrates formulation of the misconception based on PST experience.  

PST: Students think that the following scalar products (1,1) ∙ (3,2) & (2,2) ∙ (3,2) are equal. To 
prevent this misconception I formulated the following task: Find out if following 
scalar products have the same value: 

A. 𝑢⃗ = (1,1); 𝑣 = (3,2);  𝜑 = 60° B. 𝑢⃗ = (2,2); 𝑣 = (3,2);  𝜑 = 60° 

Although the task is incorrect it shows PST’s effort not only to formulate the misconception but also 
to look for the way how to prevent it. 



Our experience indicates that the authentic assessment focused on PSTs’ lesson plans and 
objectivized by five rubrics, tied with the content knowledge and three types of PCK, can help PSTs 
to develop their PCK. Presented examples demonstrate development of KCS (identification of 
didactic problems and misconceptions), KCT (precise selection of tasks) and KC (formulation of 
learning objectives).  
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In this paper, we discuss a research project to measure prospective mathematics teachers’ beliefs 
towards their perceived disagreements between mathematics at university level and school 
mathematics that is known as double discontinuity. Firstly, we introduce the double discontinuity 
problem. Secondly, we refer to the construct of beliefs as the main part of our theoretical framework. 
Afterwards, we outline our method including a brief discussion on our approach of bridging the 
double discontinuity problem with so-called teacher-oriented tasks that are appropriate to illustrate 
connections between university mathematics and school mathematics. Furthermore, our results of 
pilot studies aiming to measure prospective teachers’ beliefs are provided. 
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Introduction 
Over 100 years ago, Felix Klein coined in the preface of his textbook “Elementary Mathematics from 
a Higher Standpoint” the term of a “double discontinuity” (Klein, 1908, p. 1). This notion embodies 
the challenges of transitions in the mathematical socialization of mathematics teachers. The first 
discontinuity, i.e. the transition from secondary to tertiary education, became a main topic in research 
on university mathematics education during the last decades (e.g. Gueudet, 2008; Thomas et al., 
2015). A challenge that accompanies the second discontinuity is the transformation of academic 
mathematics gained at university into educational forms of school mathematics (Prediger, 2013; 
Winsløw & Grønbæk, 2014). As a consequence of both discontinuities, teachers may lose sight of 
academic mathematics after university studies and, thus, teach on the basis of experiences from their 
own schooldays (Bauer & Partheil, 2009; Hefendehl-Hebeker, 2013).  

Although mathematics instruction in schools as well as teacher education in universities changed 
considerably since Klein’s claim, the phenomenon of a double discontinuity still seems to exist and 
prospective teachers nowadays frequently believe that the topics of university mathematics do not 
meet the demands of their later profession in school (cf. Ableitinger, Kramer, & Prediger, 2013; 
Hefendehl-Hebeker, 2013). The prospective teachers’ perception of the mentioned relationships 
between school mathematics and university mathematics could be regarded as part of teachers’ beliefs 
(Eichler & Isaev, 2016). Considering this background, we primarily rely on teachers’ beliefs as the 
main construct of our theoretical framework in the next paragraph. Subsequently, we outline the 
method for our research project with a specific focus on pilot studies. Finally, we use the results of 
these pilot studies to explain the development of our instrument aiming to measure prospective 
teachers’ beliefs concerning the double discontinuity.  



Theoretical framework  
Prospective teachers’ beliefs 

On the construct of beliefs we refer to the definition of Philipp (2007, p. 259), who defines beliefs as 
“psychologically held understandings, premises, or propositions” affecting an individual’s view of 
the world or a special part of it, such as filters for receiving information. Beliefs can be considered as 
a component of teachers’ mathematics related affect (Hannula, 2012), which itself can be defined as 
“a disposition or tendency or an emotion or feeling attached to an idea or object” (Philipp, 2007, p. 
259). Thus, in our research we regard prospective teachers’ beliefs as their propositions concerning 
the relationships between school mathematics and university mathematics. Following Calderhead 
(1996), teachers’ beliefs are understood not only to impact on teachers’ professional knowledge but 
also to potentially have an effect on teachers’ classroom practices (cf. also Skott, 2009). Therefore, it 
seems essential to tackle the issue early and to investigate, how beliefs concerning the double 
discontinuity develop in secondary teacher education. 

In related literature, beliefs are partially seen and sometimes even defined as relatively stable 
dispositions. In contrast, several studies provided a change of beliefs due to interventions, especially 
concerning prospective teachers (e. g. Decker, Kunter, & Voss, 2015). In this paper, we aim to provide 
an instrument in order to investigate, whether and how prospective mathematics teachers change their 
beliefs concerning the double discontinuity phenomenon based on our intervention project. From this 
background, we address beliefs being changeable and consider change as “a natural part of the 
development of beliefs and the reaction of beliefs in the face of experiences” (Liljedahl, Oesterle, & 
Bernèche, 2012, p. 35).  

Related Research 

Although numerous projects and institutions across the world aimed to overcome the perceived gap 
between school mathematics and university mathematics in recent years, not much research has been 
done on the perception of prospective teachers’ concerning the double discontinuity problem. 
Winsløw and Grønbæk (2014) distinguished three dimensions of Klein’s double discontinuity, which 
are not independent but important to separate: the institutional context (i.e. school vs. university), the 
difference in the subject’s role within the institution (i.e. student at university or school vs. teacher of 
mathematics), and the difference in mathematical contents (i.e. elemantary vs. advanced). In our 
research, we primarily refer to the content aiming to figure out possibilities of “building bridges” 
(Winsløw & Grønbæk, 2014, p. 64) and to investigate the effect of bridging activities on the 
prospective teachers’ beliefs referring to the double discontinuity.  

Becher and Biehler (2016) used narratives in order to ask prospective secondary teachers in their third 
year of university studies about what benefits they see in learning university mathematics for their 
future career as a school teacher and which aspects are articulated by the prospective teachers in their 
evaluation of benefits of university mathematics. The results revealed a wide range of prospective 
teacher’s beliefs on benefits of learning university mathematics with regard to school mathematics. 
Most of the statements can be matched with one of four levels of mathematical content knowledge 
based on Krauss et al. (2013), i.e. “A deep understanding of the content of the secondary school 
mathematics curriculum (e.g., ‘elementary mathematics from a higher standpoint,’ as taught at 
university)” (Krauss et al., 2013, p. 155). Taking these studies into account, we developed a 



questionnaire for measuring prospective mathematics teachers’ beliefs towards their perceived 
disagreements between mathematics at university level and school mathematics. 

 
Method 
The institutional frame 

Referring to this theoretical framework, the main target of our project is to investigate changes in 
prospective teachers’ perception of a double discontinuity that could be explained by our approach 
of building bridges. Prospective secondary mathematics teachers in Germany are usually enrolled in 
the same mathematics courses as mathematics majors (e.g. analysis), particularly in the first 
semesters. A big challenge for all students in the initial phase of the studies is the task to complete a 
range of exercises every week as homework (Ableitinger & Herrmann, 2013). These tasks can be 
solved on the basis of the plenary lectures (by usual four hours per week) and are reviewed in 
additional small courses (by two hours per week) which are organized by student assistants. Our aim 
is to develop and establish the desired bridges in these introductory mathematics courses for 
prospective secondary teachers. Our focus is here to enrich the set of tasks for homework with so-
called “teacher-oriented tasks” that are appropriate to illustrate connections between university 
mathematics and school mathematics to prospective secondary teachers.  

Teacher-oriented tasks 

We conceptualize specific tasks which potentially demonstrate bridges between school mathematics 
and university mathematics to a model of domains of teacher knowledge according to Ball, Thames, 
and Phelps (2008). More precise, we differentiate our teacher-oriented tasks referring to the 
subdomains of specialized content knowledge (SCK), knowledge of content and students (KCS), 
knowledge of content and teaching (KCT) as well as curriculum knowledge. One example that 
represents specialized content knowledge (SCK) within the notion of mathematical tasks for teaching 
is provided below. In this exercise, “Evaluating the plausibility of students’ claims” and “Giving or 
evaluating mathematical explanations” (Ball et al., 2008, p. 400) are requirements which can be used 
well to describe the setting. 

In the subsequent task from a mathematics contest for students (“Känguru der Mathematik 2009”) 
the participants were asked to solve which of the following figures is the greatest one. 

(A) √2 – √1  (B) √3 – √2  (C) √4 – √3  (D) √5 – √4  (E) √6 – √5 

A student in grade 12 chose answer (E) and stated: 

“√6 – √5 is the greatest figure, because roots are monotone. So, the greater is x, the greater is f(x). 
Thus, their difference is the greatest, as well (by going more to the right).” 

1. Analyze the student’s answer. Where do you see problems with the argumentation? 

2. Provide an own student-oriented answer to this topic. 

3. Show in general: lim
n→∞

√n – √n − 1 = 0 

Figure 1: Task “roots” for prospective secondary mathematics teachers 



The design 

In order to gain empirical evidence for the efficiency of our method, prospective teachers in the 
relevant mathematics courses are assigned at random to a treatment group and a control group. While 
the control group is taught traditionally, the treatment group gets an extra teacher-oriented task for 
homework every week that focuses on bridging mathematics at university level and school 
mathematics. Our main research question is whether and how prospective teachers change their 
beliefs about the double discontinuity phenomenon based on our intervention in the introductory 
mathematics courses. In this paper we only refer to pilot studies where prospective teachers got 
homework including an extra teacher-oriented task on a trial basis. The main aim of these pilot studies 
was to develop an instrument for measuring teachers’ perception of a double discontinuity. 

During the winter semester 2015/16, two basic mathematics courses at the University of Kassel were 
selected in which the mentioned teacher-oriented tasks bridging mathematics and mathematics 
education was administrated: “principles of mathematics” and “analysis”. Prospective mathematics 
teachers attend these courses usually in the first or in the third semester of their university studies. 
Three prospective teachers from the third semester were interviewed at the end of the semester. The 
data was analyzed by qualitative content analysis. We also developed a questionnaire with 16 items 
for measuring prospective teachers’ beliefs concerning their perceived disagreements between 
mathematics at university level and school mathematics. The questionnaire was piloted in a 
mathematics course for prospective secondary teachers (N = 60) and is outlined in the following 
paragraph.  

 
Discussion of results 

The analyses of the interviews revealed that all prospective teachers took the contents dimension into 
account when reflecting their university studies. For example, the first prospective teacher (PT_1), 
believes, that in university mathematics, there are too little relations to school with regard to the 
content. 

PT_1: “There are not many connections - direct contents connections, so - as well as in 
the other lectures. And also in analysis I notice, that it - that the university stuff of 
the mathematics lecture - almost simply goes beyond school and it is more or less 
by chance, if there are contents, which fall together with school mathematics - I 
have the feeling.“ 

Further, two of the prospective teachers also mentioned another aspect of the double discontinuity 
problem, i.e. their beliefs concerning the relevance of learning university mathematics with regard to 
school mathematics, such as can be found in the proposition of PT_2. 

PT_2: „If I finished school, I would have the same status, which I want to teach the 
students. And if now deeper questions arise, I would not be able then to answer 
them, for instance, because I myself have never had this and then - such a teacher 
one also did not want formerly, who could only tell, what he has just done.“ 



Indeed, Klein (1908) addresses both aspects in the double discontinuity phenomenon since on the one 
hand the problems at university may not suggest the things at school, and on the other hand, university 
studies may remain only a memory with no relevance upon teaching.  

The collected data from the interviews also supported the development of our current questionnaire. 
Our first version (cf. Eichler & Isaev, 2016) contained 9 items using a 6-point Likert scale to assess 
students' beliefs about the double discontinuity problem. The questionnaire was piloted in a 
mathematics course for prospective secondary teachers (N = 60) and seemed to provide good internal 
consistency (Cronbach's alpha 0.782). Interestingly, a higher reliability (Cronbach's alpha 0.831) was 
achieved when regarding only the prospective teachers in the course (N = 35) and not all university 
students in the mathematics course. As a possible reason for this phenomenon, we identified two 
theoretical discernable domains in our questionnaire. On the one hand, we asked items which 
contained a personal statement including the words “I” or “me” like “I think that I require a deep 
understanding of mathematics in order to teach mathematics in school.” On the other hand, we 
provided a few statements such as “University mathematics has mostly little relation to school 
mathematics”, which were rather matter-of-fact. These items might have led to a different extent of 
identification within the different groups of university students. To provide useful information, we 
applied both dimensions in our current questionnaire containing 16 items. 

Taking into account the four levels of mathematical content knowledge based on Krauss et al. (2013), 
we derived further items from the interviews such as “By the use of university mathematics, gaps are 
filled in the mathematical knowledge that is required in school”. We grouped all items into three 
subscales which we identified through our development process: “contents relationship”, “relevance 
for profession” and “higher standpoint”. In a further pilot study with prospective secondary teachers 
in higher semesters (N = 24), we approved these subscales to be internal consistent1 with a total 
reliability value of Cronbach's alpha .911. Moreover, we used our qualitative approach in order to 
validate our survey afterwards. 

 

Contents relationship – beliefs concerning the connections between university mathematics 
and school mathematics on the contents dimension (4 items; Cronbach's alpha .821): 

4. University mathematics offers many parallels to school mathematics with regard to 
contents. 

9. School mathematics and university mathematics are applied to each other in contents. 

11.* In university mathematics, there are too little relations in contents to school. 

12.* School mathematics and university mathematics are two different worlds with regard to 
contents. 

Relevance for profession – beliefs concerning the relevance of university mathematics for the 
later profession as a school teacher (6 items; Cronbach's alpha .814): 

                                                 
1 7 Personal items with Cronbach's alpha .845 and 12 non- personal items with Cronbach's alpha .858. 



1. University mathematics is very useful for the teaching profession. 

3.* I will hardly ever need university mathematics after studying. 

5. By the use of university mathematics, I am well prepared to the job profile of a mathematics 
teacher. 

10. Without university mathematics, I could hardly teach mathematics in school. 

15.* Learning mathematics at university is not so important for the teaching profession. 

19. The relevance of university mathematics for the teaching profession is2 

Higher standpoint – beliefs concerning the usefulness of university mathematics as a higher 
standpoint for elementary mathematics (6 items; Cronbach's alpha .818): 

2. University mathematics helps me to get deeper into school mathematics. 

6. By the use of university mathematics, gaps are filled in the mathematical knowledge that is 
required in school. 

7. By the use of university mathematics, I gain a deeper understanding of concepts in school. 

8. By the use of university mathematics, I understand relationships within school mathematics 
much better. 

14. Learning mathematics at university promotes me to be in thinking “one step ahead” of the 
students. 

16. As a mathematics teacher, an in-depth mathematical content knowledge is required. 

Table 1: questionnaire for measuring prospective teachers’ beliefs concerning a double discontinuity 

The possible range of scores for each component is between 1 and 6. Higher scores correspond to 
more positive beliefs (by reversing the responses to the negatively formulated items indicated with 
an asterisk*). 

Concluding remarks 
The main topic of this paper was to discuss our approach of measuring prospective mathematics 
teachers’ beliefs towards their perceived disagreements between mathematics at university level and 
school mathematics that is known as double discontinuity. In order to be able to investigate changes 
in prospective teachers’ beliefs referring to the double discontinuity problem, we chose a mixed 
methods design and developed a questionnaire including 16 items that actually seems to measure 
these beliefs. Grounded on our preliminary results, the following steps of our research will be a 
comparison between two groups of prospective teachers - one group in a traditional course and one 
group in a course using the mentioned teacher-oriented tasks to prove if the type of the course has an 
effect of the prospective teachers’ beliefs. Since a variety of other factors may be related to our 
outcomes, we also collect among others data to study interest (Schiefele, Krapp, Wild, & Winteler, 
                                                 
2 Whereas in the previous items the prospective teachers may choose an option in a scale from “strongly disagree” to 
“strongly agree”, the last item refers to a scale from “very low” to “very high”. 



1993) and study satisfaction (Dargel, 2005) in a pretest and a posttest as well as additional items 
referring to relevant demographic and academic background information. 
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Since noticing has been identified as a critical skill that teachers must develop, research on how 
pre-service teachers develop this skill in teacher education programs has emerged. In this study, we 
focus on how pre-service teachers notice students’ fractional reasoning through a task designed 
taking into account a students’ Learning Trajectory of fractional reasoning. Our results show that 
pre-service teachers’ learning of the Learning Trajectory helped them to notice students’ fractional 
reasoning in a structured way: identifying important mathematical elements of the problems and, 
establishing relationships between the mathematical elements and students’ fractional reasoning 
levels of the Learning Trajectory to help students progress in their fractional reasoning. 

Keywords: Noticing, fractional reasoning, learning trajectories. 

Noticing and learning trajectories 
Noticing has been shown as an important skill for teachers. This skill has been conceptualised from 
different perspectives (Jacobs, Lamb, & Philipp, 2010; Mason, 2002, 2011; Sherin, Jacobs, & 
Philipp, 2011) but all of them emphasise the importance of identifying the relevant aspects in 
teaching and learning situations and interpreting them to make teaching decisions. Mason stated that 
“noticing is a movement or shift of attention” (Mason, 2011, p. 45) and identified different ways in 
which people can attend (p.47): 

Holding wholes is attending by gazing at something without particularly discerning details. 

Discerning details is picking out bits, discriminating this from that, decomposing or subdividing 
and so distinguish and, hence, creating things. 

Recognizing relationships is becoming aware of sameness and difference or other relationships 
among the discerned details in the situation. 

Perceiving properties is becoming aware of particular relationships as instances of properties that 
could hold in other situations. 

Reasoning on the basis of agreed properties is going beyond the assembling of things you think 
you know, intuit, or induce must be true in order to use previously justified properties as the 
basis for convincing yourself and others, leading to reasoning from definitions and axioms. 

This perspective emphasises the importance of identifying the relevant aspects of the teaching-
learning situations (discerning details) and interpreting them (recognising relationships) to support 
instructional decisions (perceiving properties).  

On the other hand, research has shown that when pre-service teachers attend to students learning 
progressions in a particular mathematical domain, they are better able to make decisions about next 



instructional steps (Wilson, Mojica, & Confrey, 2013). In this context, students’ learning trajectories 
(Battista, 2012) can assist pre-service teachers in identifying learning goals for their students, in 
anticipating and interpreting students’ mathematical reasoning and in responding with appropriate 
instruction (Sztajn, Confrey, Wilson, & Edgington, 2012). Our study is embedded in this line of 
research and analyse how pre-service teachers’ learning of a fractional reasoning Learning 
Trajectory supports their development of noticing students’ fractional reasoning. Our research 
question is: how do pre-service teachers interpret student’ fractional reasoning and respond with 
instructional actions using a learning trajectory of fractional reasoning? 

A learning trajectory of fractional reasoning 

A Learning Trajectory consists of three components: a learning goal, learning activities, and a 
hypothetical learning process (Battista, 2011). A Learning Trajectory includes descriptions of 
learning activities that are designed to support students in the transition through intermediate stages 
to a more sophisticated level of reasoning. 

The learning goal of the fractional reasoning Learning Trajectory used in this study is derived from 
the Spanish Primary Education’s curriculum: the meaning of fraction and its different 
representations and, the meaning of fractions operations. This learning goal highlights two key 
aspects: a) the transition from an intuitive meaning of splitting into equal parts to the idea of 
fraction as part-whole taking into account different representations, and b) the construction of the 
meaning of operations with fractions. 

The student’s learning process takes into account how the student reasoning about fractions 
develops over time (Battista, 2012; Steffe, 2004; Steffe, & Olive, 2009). We have considered six 
different levels of students’ fractional reasoning (learning trajectory proficiency levels): at level 1, 
students have difficulties in recognising that the parts of the whole must be congruent; at level 2, 
students recognise that the parts could be different in form but congruent in relation to the whole. 
This allows them to identify and represent fractions in a continuous context but they have 
difficulties with discrete contexts. They also begin to use unit fractions as an iterative unit (i) to 
represent proper fractions (although they have difficulties with improper fractions) and (ii) to solve 
some fraction addition problems with the same denominator; at level 3, students identify and 
represent fractions in discrete contexts recognising that the groups must be equal. They also 
recognise that a part could be divided into other parts. When comparing fractions, they recognise 
that the size of a part decreases when the number of parts increases. They can use a part (not 
necessarily the unit fraction) as an iterative unit to represent proper (f<1) and improper (f>1) 
fractions. They can also reconstruct the whole using any fraction as an iterative unit (continuous and 
discrete contexts). In addition, they use intuitive graphical representations to add/ subtract fractions 
with different denominators; at level 4, students can solve simple arithmetic problems with the help 
of a guide or support. They can do equivalent fractions so that operations can be graphically 
represented. When they add or subtract fractions with different denominators, they understand that 
the parts must be congruent to join/separate although they need a guide that allows them to choose 
the unit correctly. When they multiply, they understand the fraction as an operator “a/b of c/d” and 
when they divide, they develop two types of reasoning; (i) division as a measure and (ii) division as 
a partition; at level 5, students can operate and solve arithmetic problems symbolically, identifying 
patterns. They can graphically justify what they do but only in simple situations. At this level, they 



are able to interpret the remainder of a division of fractions; at level 6, students can explain 
operations graphically. They do not need a guide to represent fraction operations. 

Method 
Participants and context 

Participants were 31 pre-service primary school teachers (PT) enrolled in a degree to become 
primary school teachers. They were enrolled in a subject of 150 hours (60/90 
attendance/nonattendance) related to teaching and learning of mathematics in primary school. In 
previous courses, these pre-service teachers had participated in a subject related to Numerical Sense 
and in a subject related to Geometrical Sense.  

Instrument: The task  

The task consists of three pairs of primary school students answers, with different learning trajectory 
proficiency levels of fractional reasoning, to a problem that implies the identification of a fraction  
(adapted from Battista, 2012) (Figure 1). These answers reflect characteristics of the first three 
levels of the Learning Trajectory. The answers of Xavi and Victor show characteristics of the level 1 
since they are not able to identify that the parts of a whole must be congruent. The answers of Joan 
and Tere reflect characteristics of the second level since they are able to identify that the parts of a 
whole must be congruent in continuous contexts but they still do not recognise that a part can be 
divided into other parts. This last characteristic is evidenced when they say that Figure E is not three 
quarters because it is divided into 24 equal parts and there are 18 shaded. Finally, the answers of 
Álvaro and Félix show that not only they are able to recognise that the whole must be divided into 
congruent parts but also they acknowledge that a part could be divided into other parts. 

Pre-service teachers had to answer the next four questions. To answer them, we provided pre-
service teachers with theoretical information about the mathematical elements of the fraction 
concept and about the Learning Trajectory of fractional reasoning used in this study.  

Q1- Describe the problem taking into account the learning objective: what are the mathematical 
elements that the student needs to know to solve it? 

Q2- Describe how each pair of students has solved the problem identifying how they have used 
the mathematical elements involved and the difficulties they have had with them. 

Q3- What are the characteristics of students’ reasoning (Learning Trajectory) that can be inferred 
from their responses? Explain your answer. 

Q4- How could you respond to these students? Propose a learning objective and a new activity to 
help students progress in their fractional reasoning. 

These questions and the theoretical information given (Learning Trajectory of fractional reasoning) 
focus pre-service teachers’ attention on relevant aspects of students’ answers (discerning details) 
identifying the relevant mathematical elements; on interpreting these answers (recognising 
relationships between the mathematical elements and students’ reasoning) and on supporting 
instructional decisions (attending students’ mathematical reasoning). 



 
Xavi and Victor’s answers 
Víctor: Mmmm, well we think Figures A, B, C and D represent three-quarters. 
Teacher: Xavi, do you agree with Víctor? 
Xavi:  Yes, A, B, C and D are divided in 4 parts, and 3 are shaded. 
Joan and Tere’s answers 
Tere: We believe that Figures B and D are three quarters because they are divided into 

four equal parts and three are shaded. Figures A and C have 3 parts of 4 shaded, 
but the parts are not equal... 

Teacher: And Figure E? What do you think about Figure E? 
Joan: Figure E is not three quarters because it is divided into 24 equal parts and there 

are 18 shaded. 
Tere: Sure, it is not three-quarters. 
Teacher: And the F? 
Both  It is not a fraction. In figure F, there are only 6 shaded squares.  
Felix and Alvaro’s answers 
Félix:  Well ... yes. We agree with Joan and Tere answers related to figures A, B, C, and 

D but we think differently about figure E... 
Teacher:  What do you think? Could you explain your answer?  
Álvaro:  Well ... mmm sure. If you look each line of Figure E, each line has 6 squares, and 

as there are 3 lines shaded of the 4 total lines then it is three quarters. In addition, 
Figure F also represents three quarters because if you group the squares in groups 
of 2, you get 4 groups of 2, and there are three groups shaded. 

  
Álvaro and Félix answer to Figure F 

Figure 1: Task to support pre-service teachers’ learning of a fractional reasoning Learning 
Trajectory to notice students’ mathematical reasoning 

Analysis 

Taking into account Mason’s work and the Learning Trajectory of fractional reasoning, we analysed 
pre-service teachers’ answers according to if they had (i) identified relevant elements of fractional 
reasoning in the student’s answers (discerning details); (ii) interpreted the student’s reasoning 
considering the characteristics of students’ fractional reasoning from the Learning Trajectory 
(recognising relationships between the elements identified and the different levels of students’ 
learning progress of fractional reasoning); (iii) made instructional decisions (reasoning about next 
steps providing different activities that promote students’ progression in the Learning Trajectory).  



To carry out the analysis, initially a subset of pre-service teachers’ answers was analysed by three 
researchers independently considering the points mentioned above. Then, we put together our 
respective analyses and compared and discussed our discrepancies until reaching an agreement. 
Afterwards, new data samples were added to review our allocation.  

Results  
From the analysis, we have identified three groups of pre-service primary school teachers according 
to the way that they used the Learning Trajectory to interpret students’ fractional reasoning and 
make teaching decisions. These results show that 20 pre-service teachers were able to use the 
Learning Trajectory to interpret students’ fractional reasoning, while the other pre-service teachers 
(group 1) had difficulties in using the Learning Trajectory to interpret students’ answers. The 
characteristics of the different groups of pre-service teachers are: 

 Group 1. Pre-service teachers who used some mathematical elements of the Learning 
Trajectory but in rhetoric way or without sense (11 PT). 

 Group 2. Pre-service teachers who used the mathematical elements of the Learning 
Trajectory to recognise different levels of students’ fractional reasoning, but they were not 
able to propose new activities considering the learning trajectory proficiency levels (11 PT) 

 Group 3. Pre-service teachers who used the mathematical elements of the Learning 
Trajectory  to recognise different levels of students’ fractional reasoning, and  proposed new 
activities to help students progress in their fractional reasoning taking into account the 
learning trajectory proficiency levels (9 PT) 

Group 1: Pre-service teachers who used some mathematical elements of the Learning 
Trajectory but in rhetoric way or without sense 

Pre-service teachers of this group used the mathematical elements implied in the problem (the parts 
of the whole must be congruent and a part can be divided in other parts) in a rhetoric way when they 
described students’ answers but they did not recognise characteristics of the different Learning 
Trajectory proficiency levels in students’ answers. For instance, the pre-service teacher E27 
answered question 3 of the task, pointing out (emphasis has been added underlying the 
mathematical elements):  

Víctor and Xavi: They are at Level 1 of the Learning Trajectory because they do not know the concept of 
congruence and they do not know that a part could be divided in other parts 

Joan and Tere: They are at Level 1 because they have difficulties in recognising that the part must be 
congruent and they do not recognise that a part could be divided in other parts. 

Félix and Álvaro: They are at Level 1 because, related to congruence they know the same that Joan and 
Tere, although they recognise that a part could be divided in other parts in continuous and discrete 
contexts. 

This pre-service teacher did not recognise differences between students’ fractional reasoning saying 
that all pairs of students have difficulties with the mathematical element the parts of the whole must 
be congruent although he used the mathematical elements to describe students’ answers.  



Group 2: Pre-service teachers who used the mathematical elements of the Learning 
Trajectory to recognise different levels of students’ fractional reasoning, but they were not 
able to propose new activities considering the Learning Trajectory proficiency levels 

Pre-service teachers of this group used the mathematical elements of the Learning Trajectory that 
correspond with the problem (the parts of the whole must be congruent and a part can be divided in 
other parts) to recognise the different levels of students’ fractional reasoning. However, these pre-
service teachers did not justify a new activity taking into account the students’ fractional reasoning. 
For instance, the pre-service teacher E09 answered to question 2 and 3 for each pair of students 
(emphasis has been added underlying the mathematical elements): 

Víctor and Xavi have difficulties in recognising that the parts must be congruent as they identify as a ¾ 
figures A and C whose parts are not equal. Another characteristic that we can identify is that they have 
difficulties in recognising that a part could be divided in other parts. They do not notice that figures E 
and F are divided in 4 parts, maybe they notice that E has 24 squares and F has 8 squares. Thus they do 
not realise that both are equivalents. So, these students are at Level 1. 

Joan and Tere are able to identify and represent fractions in a continuous context recognising that the 
parts must be congruent as they recognise that, although figures A and C are divided in 4 parts and 3 are 
shaded they do not represent ¾ because the parts are not congruent. They also identify that B and D are 
¾. They are not able to recognise that a part could be divided in other parts/consider a group of parts as a 
part since they do not identify that even though E and F are divided in more parts, they represent ¾. So, 
these students are at Level 2. 

Félix and Álvaro agree with Joan and Tere about figures A, B, C, and D, thus they recognise that the 
parts must be congruent. Furthermore they recognise that a part could be divided in other parts and they 
identify fractions in discrete contexts since for figure E they say that, although it is divided in 24 squares, 
it represents ¾ because there are 4 lines with 6 squares each and 3 of those 4 are shaded (they recognise 
the equivalence 18/24=3/4). Besides of that, in figure F they group in pairs the eight squares of the whole 
to represent the ¾. So, these students are at Level 3. 

Nevertheless, this pre-service teacher was not able to propose a specific activity considering the 
Learning Trajectory in order to help students progress in their conceptual reasoning. For instance, 
this pre-service teacher proposed for the first pair of students: “With Víctor and Xavi we would work 
with the recognition that the parts must be congruent. To do that, we could propose the same task but with 
other figures and they (students) could represent 4/6”.  

The answers of this group of pre-service teachers indicated the difficulty of making instructional 
decisions considering the Learning Trajectory proficiency levels. 

Group 3: Pre-service teachers who used the mathematical elements of the Learning 
Trajectory to recognise different levels of students’ fractional reasoning, and proposed new 
activities to help students progress in their fractional reasoning taking into account the 
learning trajectory proficiency levels 

Pre-service teachers of this group, after using the mathematical elements (the parts of the whole 
must be congruent and a part can be divided in other parts) to recognise different levels of students’ 
fractional reasoning, proposed new activities focused on helping students progress in their fractional 



reasoning according to the learning trajectory proficiency levels. For example the pre-service 
teacher E25 proposed the next objective and activity to help Victor and Xavi progress in their 
fractional reasoning: 

Objective: In order to progress from Level 1 to Level 2, students have to recognise that the parts of a 
whole must be congruent (although they could be different in form). 

Activity: Represent in the following figure (square) 2/4 in three different ways 

This group of pre-service teachers used their knowledge of the Learning Trajectory to interpret 
students’ fractional reasoning, and proposed new activities to help students develop their fractional 
reasoning. 

Discussion and conclusions 
The aim of this research was to analyse how pre-service teachers’ learning of a Learning Trajectory 
of fractional reasoning supports their development of noticing students’ fractional reasoning. We 
focus on how pre-service teachers interpret student’ fractional reasoning and respond with 
instructional actions using a learning trajectory of fractional reasoning. 

Twenty out of thirty-one pre-service teachers who participated in the task were able to use the 
mathematical elements to interpret students’ fractional reasoning considering the characteristics of 
the students learning progression of fractional reasoning and identifying different levels of students 
reasoning. This result indicates that the information about a Learning Trajectory of a particular 
mathematic topic can be used by pre-service teachers to begin to notice features of students’ 
mathematical thinking in a particular domain and therefore, to develop the skill of noticing. The 
Learning Trajectory can be seen as a powerful tool that help pre-service teachers focus their 
attention on important mathematical aspects of the problem, on the students’ mathematical 
reasoning and on making instructional decisions on the basis of students’ mathematical reasoning. 
The other eleven pre-service teachers had difficulties in using the Learning Trajectory to interpret 
students’ answers. This result is in line with other studies that have shown that interpreting students’ 
mathematical reasoning is a challenging task for some pre-service teachers (Llinares, Fernández, & 
Sánchez-Matamoros, 2016; Sánchez-Matamoros, Fernández, & Llinares, 2015). 

However, only nine out of these twenty pre-service teachers could use their interpretations of 
students’ fractional reasoning to propose new activities according to the Learning Trajectory in 
order to help students progress in their fractional reasoning. Previous research has pointed out that 
the skill of making instructional decisions is the most difficult one to develop in teacher education 
programs (Callejo & Zapatera, 2016; Ivars & Fernández, 2016; Llinares, Fernández, & Sánchez-
Matamoros, 2016; Sánchez-Matamoros, Fernández, & Llinares, 2015). Nevertheless, approximately 
one third of the participants, in our task, were able to design an activity to promote students’ 
progressions of fractional reasoning according to the Learning Trajectory. Therefore, we think that 
the task of our study, designed according to a Learning Trajectory, seems to have a relevant paper in 
the development of the skill of providing activities that could help students progress in their 
learning. The Learning Trajectory could be seen as a referent or guide for pre-service teachers that 
could help them to link the mathematical domain (mathematical elements), the student’s reasoning 
and the instruction that considers students’ learning progressions.  
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Teachers in Iceland are faced with challenges to differentiate teaching as they implement a policy 
of inclusive education. This collaborative inquiry into teaching of mathematics aims at learning to 
understand how teachers develop their mathematics teaching through participating in a 
developmental research. Seven primary teachers worked at improving their mathematics teaching 
and researched their practice together with a teacher educator for three years. Narrative inquiry 
was used as an analytical tool to study the teachers’ learning. In this paper the focus is on one of 
the teachers and her learning from participating in the project. The results indicate that she gained 
confidence in teaching mathematics in diverse classrooms while participating in workshops and 
that collaborative research can support teachers in developing their practice when meeting new 
challenges in their work.  

Keywords: In-service teacher education, developmental research, collaborative inquiry. 

Introduction 
This paper reports on findings from a three-year qualitative collaborative inquiry into mathematics 
teaching and learning with the purpose of deepening our understanding of how teachers meet new 
challenges in their classrooms. The aim was to learn about the processes that emerge through 
collaborative inquiry between classroom teachers and a teacher educator. In this paper the focus is 
on one of the teachers’, Pála, and her development in teaching mathematics while participating in 
the project. The research question that will be answered is:  

In what way did Pála affect the learning developed within the project and how is her 
participation reflected in her mathematics teaching?  

The study built on earlier research on teacher development in mathematics teaching in Iceland that 
revealed that teachers take a passive role in their mathematics teaching and lack experience in 
creating meaningful learning environments for all children (Guðjónsdóttir, & Kristinsdóttir, 2011; 
Savola, 2010). They have particularly focused on instrumental understanding as opposed to 
relational understanding (Skemp, 1976) and emphasised that their pupils learn to carry out the steps 
of the ‘traditional’ algorithm (Fosnot & Dolk, 2005). My fellow teacher educators and I have found 
that if teachers are given opportunities to collaboratively investigate ‘with’ mathematics and solve 
mathematical problems, they discover how the different experiences they bring into the community 
can contribute to their own understanding of the mathematics involved, as well as how individuals 
learn mathematics (Guðjónsdóttir & Kristinsdóttir, 2011; Gunnarsdóttir, Kristinsdóttir, & Pálsdóttir, 
2013). In our work with pre- and in-service teachers, we found that they must be offered 
opportunities to experience learning that enhances inclusive education. Our results correspond with 
those of Bredcamp (2004) and Moore (2005), who emphasised that if teachers’ work is expected to 
be aimed at diversity and mutual understanding, they require the opportunity to develop and 
enhance their knowledge about teaching and learning in an environment that reflects the very same 
aspects that they are expected to foster in their own classrooms.  



Teacher development in inclusive settings 
Teaching children mathematics requires teachers to understand how their students learn 
mathematics and they need to be skilled both in mathematics and pedagogy as well as the 
knowledge that combines knowing about teaching and knowing about mathematics. In recent years 
the Nordic countries have emphasized mathematical competences of which eight specific 
mathematical competences were identified. These form two clusters; the ability to ask and answer 
questions in and with mathematics; and the ability to deal with mathematical language and tools 
(Niss & Højgård, 2011). Niss & Højgård also outlined a model for mathematics teacher competency 
where the ability to develop one’s competency as a mathematics teacher as well as the competencies 
of working with students and others towards professional development were identified. It is 
important to note that development of teaching in classrooms is dependent both on the teachers’ 
knowledge and their ability to learn together with others, both their students and colleagues. 

Attention and awareness are important features of mathematics learning. Mason, (1998) holds that 
teaching is fundamentally about attention and teachers can enhance pupils’ attention by attending to 
their own awareness. When someone else points something out to us our awareness changes 
slightly; we become more explicitly aware of some features, and less aware of others. Thus in 
collaborating with colleagues, teachers are afforded the ideal conditions in which work on their own 
awareness, which can provide conditions for their students to experience them too.   

When gaining competence in teaching mathematics teachers build on their knowledge and 
experience and an essential factor in this process is the participation in learning communities. In 
order to be able to support learners in their classrooms in acquiring mathematics competence, 
teachers need to urge their pupils’ to ask probing questions, take risks and learn from their mistakes.  

In communities of learning the individual learner draws on knowledge in the community as well as 
on personal knowledge. Nevertheless the main emphasis has been on individualized learning in 
response to diversity in classrooms. Schools have thus adopted what Ainscow (1995) called 
integration by making only a limited number of arrangements for including all learners in classroom 
activities. Askew (2015) argued that learning communities are more inclusive than taking the 
individual as the starting point for planning learning experiences. In these communities teachers 
work with the collective construction of mathematical knowledge while still ultimately addressing 
the needs of the individuals within that community. This is the same position I took in working with 
teachers, attending to their diverse needs for improving their teaching and finding ways to work in 
inclusive ways with diverse groups of learners.  

Through collaborative activity a community learns from the thinking, practices, and development of 
the individual. Important features of such communities are discussions about the mathematics 
attended to in the classroom. In the communities learners listen to each other’s solutions and think 
about connections to their solutions while helping each other refine their methods and explanations. 
When learners participate in mathematical practices in whatever way they can diversity is no longer 
an obstacle to classroom talk. It is thus being enriched through the diversity of learners’ 
contributions (Askew, 2015).  



Methodology and methods 
The study is a collaborative inquiry into mathematics teaching and learning (Goos, 2004), and the 
aim is to build a co-learning partnership between teachers and a researcher in order to support 
classroom inquiry (Jaworski, 2006). The methodology of developmental research (Gravemeijer, 
1994) and the ‘developmental research cycle’ (Goodchild, 2008) guided the cyclic process of the 
research.  

In an attempt to make explicit the ‘practice’ in which teachers and researchers participate when 
collaborating, Jaworski (2003) suggested shifting from the notion of community of practice 
(Wenger, 1998) to that of ‘community of inquiry’, where teaching is seen as learning-to-develop-
learning. In such a community, teachers and researchers both learn about teaching through inquiring 
into it. In this project the vision was that all the participants would learn about teaching mathematics 
in diverse classrooms.  

For three years I worked with seven teachers at 90-minute workshops on monthly basis. They taught 
10 to 12 years old pupils in two neighbouring schools, four were homeroom teachers and three were 
support teachers that joined them in mathematics classes. The focus of the workshops was on 
reflection on mathematics, and on mathematics teaching and learning. To help the teachers develop 
their own understanding of mathematics, we worked with problems that had the potential to 
promote mathematical activity and thinking as well as to stimulate collaboration where discussions 
and sharing thinking were meaningful. We also discussed new research on mathematics education 
and stories from the teachers’ classrooms, reflected on their pupils’ mathematics learning and 
considered how their mathematical thinking developed. To learn about the teachers visions for the 
project and the cultures in their mathematics classrooms I interviewed them and observed their 
classrooms at the outset of the project, after the first year, and one year after the last workshop. Data 
was collected of videotapes from workshops, audiotapes from interviews and notes from classroom 
observations.  

Narrative inquiry was used as an analytical tool to study the teachers’ learning in participating in 
this project. It is a way of understanding and researching experience through collaboration between 
a researcher and participants and to research with practitioners their lived experience as a source of 
their knowledge and understanding (Clandinin, 2013). The stories the teachers told about their 
work, at the workshops and in interviews, are the basis of the narrative inquiry. The teachers read 
the drafts of their narratives and commented on them, and then on the final version.  

Findings 
Pála had been a general classroom teacher over 30 years in grades 5-7 when she participated in the 
collaborative project. In her teacher education her focus was on language skills and she had attended 
many in-service courses about language teaching but only a few about mathematics teaching. As a 
classroom teacher she taught mathematics to 10-12 year old children. 

Emphasis on instrumental understanding 

When I observed Pála’s classroom at the outset of the study her emphasis on carefully describing 
the steps of algorithms was dominant. She started the lesson by reviewing homework and then 



discussed the content of the lesson. She described carefully to her pupils how to work through the 
problems in their textbook that she wanted them to solve.  

Pála worked closely together with her colleague Dóra, at teaching pupils in their 5th grade 
classrooms. At our first workshop Dóra wanted to discuss the teaching of ‘traditional’ algorithms 
(Fosnot & Dolk, 2005). She had discussed the algorithm of long division with Pála and questioned 
her belief that is necessary for their pupils to learn the steps of the algorithm. Pála added: 

What we have been reflecting on is, is it bad, does it spoil anything for them? Does it destroy 
their thinking process, does it stop anything? 

Pála was eager to learn more about how to teach children to calculate. She had emphasised the 
memorising of facts and at her school children were regularly tested on multiplication facts. Dóra 
had also questioned this tradition and Pála was starting to review her beliefs about instrumental 
understanding (Skemp, 1976).  

Reviewing her own way of calculating 

Pála was eager from the beginning to improve her own way of solving mathematical tasks. When 
we at our forth workshop discussed how many cans there were needed to build a ten storey tower of 
cans she said: 

There would be 10 here [points to the bottom row of the 10 storey tower she drew]. Then I would 
count 9 and 1, 8 and 2, 7 and 3, 6 and 4. Then I have 10, 20, 30, 40, 50 and then add these 5 
[points to her drawing for each step] and have got 55. I do this to be quick at counting. 

Pála was reflecting on her own way of calculating when she said that she did this to be quick at 
calculating thus attending to her own awareness of learning (Mason, 1998).  

As the project developed Pála brought in problems she had been solving with her pupils and wanted 
to discuss her understanding of the problems with us. At Workshop 15 she told us about her 
discussions with her pupils about how many handshakes there would be in their class if they all 
shook hands with each other. The children decided to try this and were quick to realise that they 
would only shake hands once with each person. They developed a rule that could be used to 
calculate the handshakes in their group of 15 pupils: 14+13+12+ … +2+1. They then split into 
smaller groups to test if their rule could be applied to a group of any size. Pála had not thought 
about the solution of this problem before it was discussed in her class and therefore took an active 
part in the solution process. By comparing the total handshakes for different number of pupils, they 
then had developed a formula together. Pála was keen to discuss with us whether the formula n(n-
1)/2 could be applied to calculate the handshakes for a group of any size. Pála said:  

I do not understand why this equation works, why this connection. I know it works, we have tried 
it for many cases. Can you help me to understand why it works? I would like to proceed to work 
with the children in this way.  

By asking us to discuss her experience with us Pála was adding to her competence of learning 
together with colleagues and in discussing with her pupils she was developing her competence in 
learning with them. She was also supporting her pupils in developing their the ability to ask and 
answer questions in and with mathematics (Niss & Højgård, 2011). 



I reminded Pála on her earlier addition of consecutive numbers in relation to the tower of cans. Pála 
said that she remembered it but she still could not understand why the formula she had developed 
with her pupils worked. We then discussed their formula and why it could be used to calculate the 
handshakes and in doing so we were inquiring into our own mathematics learning (Goos, 2004) and 
cultivating our learning community (Jaworski, 2003). I pointed out that she took an active part in 
the learning process in the classroom. Not only did she learn about the children’s thinking but also 
about her own thinking about the problem. She had given them a problem that neither she nor they 
knew beforehand how to approach. Then they all started to investigate and look for patterns and 
developed a rule together. Through these discussions our co-learning partnership was cultivated as 
we focused on classroom inquiry (Jaworski, 2006). 

Learning together with her pupils 

Pála was starting to learn together with her pupils by exploring with them in the classroom as 
opposed to the beginning of our collaboration when she had carefully explained to her pupils, how 
to solve problems. At our final workshop she shared with us her discussions with her pupils. They 
had worked with different kinds of word-problems in their textbook. They were required to write 
their solutions to the problems with algebraic expressions. She gave examples of the pupils’ 
discussions about the problems and how they wrote the expressions. She had recorded these 
examples in her notebook and now wrote on the whiteboard to show us how the pupils calculated 
and how she interpreted their thinking about the problems.  

We discussed two of the problems:  

Klara is 4 years younger than her brother Kári. Their total age is 18 years. How old is Kári? 

A large apple costs 11 ISK more than a small apple. The total price of a small apple and a large 
apple is 59 ISK. What is the price of a large apple? 

Pála had solved the problems herself and her thinking was different from her pupils’ but they all 
came to the same conclusions. She wanted to discuss this experience with us and hear my 
interpretation of the different ways they solved the problems. She was particularly keen to hear my 
opinion with regard to the way she had accepted her pupils’ way of solving a problem instead of 
telling them to think about it in the same terms she did. 

Jónína: Pála, you said that the children wrote x+x+4=18 and you wrote x+x-4=18. 

Pála: Yes. And for the apples they wrote x+x+11=59 and I wrote x+x-11=59. 

We discussed how the value of the unknown variable in Pála’s equation was different from the 
value in the children’s equation. Still in both cases they came to the same conclusion about the age 
of the siblings and the price of the apples. Pála said that all the children in her class were able to 
solve the word problems by first trying some numbers and then adjusting them until they found the 
right numbers. Many of them could write the equations and they then supported each other in doing 
so. Finally Pála concluded: “These were just my thoughts. I found it interesting to see how they 
understood and thought about this”.  

When Pála shared this story with us she was cultivating our learning community (Askew, 2015; 
Jaworski, 2006). But she had also attended to her pupils’ way of learning and was now focusing on 
their way of expressing themselves instead of describing carefully to them the steps they needed to 



take as she did to begin with thus making herself aware of her pupils diverse ways of learning 
(Mason, 1998).  

Grouping pupils into ability groups 

In Pála’s school it had been the custom for many years to group children into groups in mathematics 
classes based on the outcomes of an end of term test. When the project began Pála and Dóra had 
divided the 43 children in fifth grade into three groups in mathematics classes. A special education 
teacher taught the pupils who got the lowest grades, Dóra taught those who got the highest grades 
and Pála taught the middle group. With this arrangement they were responding to diversity by 
making only a limited number of arrangements for including all learners in classroom activities 
(Ainscow, 1995). To begin with Pála was concerned that the pupils in her group were not capable of 
solving problems without her leading them step by step. Gradually as she became more confident 
with exploring with mathematical problems herself she started to listen to them and allow herself to 
join them in their explorations with problems as discussed above.  

When Pála shared her experiences of working with her pupils with us we discussed how her 
approach supported the children’s learning like the case with the handshake problem. She told us 
that some of her pupils understood why the formula could be applied to solve this problem and 
others did not. They though all understood that they could calculate the total number of handshakes 
by adding (n-1) + … + 1. We then related to our former discussions of tasks that can be solved at 
many levels and are therefore suitable to work with in diverse classrooms. Pála was satisfied with 
this experience and found that she was beginning to trust that all her pupils were capable of more in-
depth learning than she had realized before thus acknowledging that diversity is no longer an 
obstacle (Ainscow, 1995; Askew, 2015).  

The final year the project was running Pála and her close colleague, Dóra, had decided not to group 
their pupils into ability groups any more. They had become confident in investigating in 
mathematics with their pupils and found that all the children in their classes were capable of 
learning together and gained from sharing experiences with each other.  

Professional development and influence on our project 

Pála took an active part in using the tools for professional development that I offered the teachers in 
our learning community. She visited her colleague’s classrooms and discussed with them what they 
learned from their visits and she recorded her lessons to learn from her communication with her 
pupils. She also shared her experience from her learning in the classroom with us and gradually 
started to lead what to focus on at our workshops. Not only did she share this experience with us she 
also brought in problems she had found elsewhere and asked us to solve them with her.  

The project was only planned for one year to begin with. As we approached the end Pála expressed 
her wish to meet for a second year. She felt that she and the other teachers were just starting to 
develop their teaching and could not stop when they felt that they were gaining so much from our 
collaboration. The other teachers agreed with her and our project ran for three years as the teachers 
wished to extend it for the third year. With her willingness to share her thinking with us and take 
lead in what to focus on at the workshops Pála shaped the developmental process of the project and 
affected the ‘developmental research cycle’ (Goodchild, 2008). 



Conclusions 
Based on the narratives of Pála’s participation in the collaborative project I have concluded that she 
gained confidence in teaching mathematics in diverse classrooms and that collaborative research can 
support teachers in developing their practice when meeting new challenges in their work. The 
sketches from our collaboration are representative for the learning that emerged during our 
collaboration. In the communities of inquiry we managed to build at the workshops we supported 
each other in learning-to-develop-learning (Jaworski, 2003) by reflecting collectively on the stories 
the teachers told of their classroom experiences. From the stories Pála told us we learned how her 
pupils’ competences in dealing with mathematical language and tools were developing as well as 
their ability to learn about their own learning in working with their pupils (Niss & Højgård, 2011).  

By offering the teachers opportunities to experience learning that enhances inclusive education 
Bredcamp, 2004; Moore, 2005), the teachers were empowered to develop their teaching as was 
reflected in Pála’s learning.  

During our three years of collaboration I, as a teacher educator and a researcher learned about 
teachers’ capabilities to develop their own teaching if they are supported in reflecting on their 
learning of mathematics as well as their pupils’ learning. In reflecting on their learning about 
mathematics teaching my understanding has deepened of the opportunities and challenges teachers 
meet when including all learners in meaningful mathematics learning.   
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After a sketch of our ArAl project devoted to teaching/learning early algebra, we introduce our 
‘Progetto ArAl’ group in Facebook, conceived not only to share and discuss among teachers 
didactical experiences, theoretical questions and materials but, more in general, to educate in 
informal way teachers in early algebra. For its features it can be said a non standard group (NSG) 
in Fb. The main question we put ourselves is: may a NSG become a community of practice? To find 
an answer to this question we compared our group with a larger Italian group devoted to mathematics 
at primary school analyzing the interactions in the two groups launched by some common members. 
On the base of this comparison we delineate some hypotheses for the management of a NSG as a 
community of practice, where well known mentors and transparent theoretical guidelines allow the 
teachers consciously to approach the theory for the practice. 

Keywords: Early algebra, community of practice, informal on line education, teachers’ professional 
development. 

Introduction 
The ArAl project belongs to the stream of studies devoted to the renewal of the teaching in the 
arithmetic-algebraic area in the perspective of early algebra. It is characterized by the intertwining 
among: a) the activation in the classes of innovative didactical paths on early algebra; b) educational 
processes of teachers based on the critical analysis of the mathematical discussions developed inside 
the didactical paths. It promotes a relational approach to arithmetic of linguistic and metacognitive 
type, to be realized through socio-constructive modalities. The classroom activities are based on the 
negotiation of a didactical contract for the solution of problems according to the principle: “first 
represent, then solve”. For room questions we cannot discuss deeply our theoretical frame (we refer 
to Cusi et al. 2011 and related references), here we simply recall some key aspects of it: (i) the 
plurality of representations of a given quantity, beyond the canonical decimal representation1; (ii) the 
identification and making explicit algebraic relationships and structures underpinning concepts and 
representations in arithmetic2; (iii) the initiation to the essential algebraic cycle: representing, 

                                                 
1 For instance, the number twelve, has a canonical representation in base 10, i.e. 12, but expressions such as 3×4, (2+2)×3, 
36/3, 10+2, 3×22  are other ways to express the same quantity, we call them non-canonical representations of 12, each has 
its sense related to the process that characterizes it and offers pieces of information about the number. Being able to 
fluently shift among these forms allows pupils to easier recognize structural similarity among different numbers and  to 
build the basis for understanding scriptures as a.b, -4p, x2y, k/3). 

2 For instance to see the equal sign, in writings such as 3+4=7, not only in its procedural sense of connection between an 
operation and a result, but in its relational sense, as an indicator of equivalence between two different representations of 
the same number). 



transforming, interpreting (Bell 1996) through the devolution to the students of: a) the formalization 
of verbal relationships individuated during explorative numerical activities (process named by us 
algebraic babbling); (b) the interpretation of simple algebraic sentences both in themselves and with 
reference to a given context3; (v) the stress on natural language as didactical mediator in the slow 
construction of syntactic and semantic aspects of algebraic language4. 

Our work with and for teachers has always been realized in a community of practice, or better of 
inquiry in Jaworski sense5, where the practice of the researchers and the one of the teachers meet, 
compare and develop in co-partnership and where, in addition to theory, methods and aims, values 
and expectations are shared (Cusi & Malara 2015). Because of the teaching in an early algebra 
perspective requires in the teachers, mainly the ones of primary school, a deep rebuilding of 
knowledge, beliefs, behaviours, and manners in the class, we have conceived specific modalities and 
apposite tools for teachers education. We simply recall here our Multicommented Transcripts 
Methodology, we have enacted to promote in teachers awareness of their own ways of being in the 
class and to guide them in managing mathematical discussions. Key tools of this methodology are the 
teacher’s transcriptions of the classroom discussions enriched by written multiple comments (by 
tutors, maths educators and other teachers), the MTs. The joint reflections on each MT attain a shared 
development of the theoretical frame, of the classroom methodologies and of the teaching materials 
that shall create the basis for the teachers’ professional evolution. The productions of MTs became in 
the time a distinctive character of the Project Aral membership. 

The ArAl Project Group in Facebook 
Along the years many times we have been asked to make available ArAl materials to a greater number 
of teachers; for this in 2014 we opened the ‘ArAl Project’ group in Facebook. Fb is mainly used as a 
way to share experiences, practices and materials among teachers and other professionals (see for 
                                                 
3 For instance, to recognize that the sentence 85=4×21+1 represents 85 through the quotient and the remainder of its 
division by 4 (or by 21), and in the same time - looking for the letter which stays at the 85° place in a sequence generated 
by the ABCD module – to recognize that the same sentence allows to understand what the letter is (the pupils have to 
interpret the term 4×21 as the part of the sequence done repeating 21 times the module and the remainder as the number 
of place of the letter in the successive module). 

4 For instance, two pupils express in natural language, and then translate in mathematical language, their different ways 
to calculate the number of pearls in the necklace : the first 
pupil says “I counted white and black pearls and I added them” and translates: 2×6+3×6; the second says: “I saw that 
there are 6 groups, each group has 2 white and 3 black pearls and I multiplied 2 plus 3 by 6 and wrote (2+3)×6. The 
comparison of the two sentences allow the pupils to gain experience about the distributive property. 

5 We recall that a community of practice (CP) is constituted by a group of people who share a craft and/or a profession. 
The group can evolve because of the members' common interest in a particular domain or area, or it can be created 
specifically with the goal of gaining knowledge related to their field (Lave and Wenger, 1991). Jaworski (2003), referring 
to the joint work developed between maths educators and in service teachers about classroom teaching-learning processes, 
introduces the construct of Inquiry Community (IC) and underline that what distinguish a CI from a CP is that all the 
participants engage with inquiry as a tool to develop meta-knowing, a form of critical awareness that manifests itself in 
inquiry as a way of being. 



example Bodell & Hook 2011, Manca & Ranieri 2014), but in the last years it has also been used in 
educational activities for teachers (Staudt et al. 2013, Van Bommel & Liljekvist 2016). In our case, 
the initial idea was to spread themes and principles of early algebra among teachers and to motivate 
and help them in approaching it in the class but also to observe new, spontaneous didactical 
experiences, arising under the stimuli offered by the ArAl institutional courses. We believe that the 
Fb group can be a way to integrate institutional and informal education offering the teachers new 
occasions to promote their professional development. We started inviting expert  teachers 
collaborating since long time in our project to become supporters of the group and to share their 
experiences with the teachers, recently involved in ArAl courses promoted by the schools, who have 
been invited to become followers of the Fb group. The fundamental methodological choices in 
managing the group are: our daily on line presence and prompt reactions to the teachers posts; the 
stimuli offered by the expert teachers posts through videos or pictures of classroom activities; our 
periodical posts about: mathematics questions and related theoretical references; examples of 
innovative activities, equipped by MTs, papers, powerpoint presentations for deepening the discussed 
questions and stimulating free experiments among the followers. The posts in Fb are classified in: 
‘like-agree’ interventions; ‘propositive-constructive interventions’, doubtful-skeptical interventions; 
moreover meaningful sets of interventions related to interesting mathematical teaching questions are 
collected and commented in files put in our website. Periodical analysis of the data allowed us to 
highlight the interplay between our interventions and the teachers’ ones, and to reflect on the teachers 
change. We discuss their evolution according to three temporal phases.  

First phase (scholastic year 2014–15). In this first period, in front of a small group of teachers (in 
most part coordinators in the schools of the ArAl project activities), who were very active in posting 
documents related to their class activities as well as in commenting other posts, the other members 
were not so active, and their comments often were short and superficial. These teachers appeared 
awed: the most part of them had a feeble or null control over the early algebra topics and the strong 
difference among the competence of the expert teachers in the group and their knowledge in the 
arithmetic-algebra area did not encourage them to do more ‘important’ interventions. At the same 
time every day new members enrolled to the group. Some more expert teachers, members both in our 
group and in other groups for maths teaching, suggested us to visit them and in particular invited us 
to take part into the group ‘Mathematics at primary school’ (one of the most numerous and active 
Italian groups on maths teaching in the web, more than 5000 members), to offer our interventions 
whenever we seemed appropriate to do so. We call this last group a Standard Group (SG), in the sense 
that there are not pre-established leaders and that the exchange takes place freely through the sharing 
and negotiation of the individuals’ knowledge. The comparison with the SG and other groups dealing 
with teaching issues brings in evidence that ArAl Project group is different from them, mainly for 
two reasons: (a) it deals with a well defined subject area, early algebra, it is structured according to a 
clear theoretical perspective for facing it, and it proposes methodologies, problematic situations, tools 
fitting with this framework; (b) it is daily supported by us and it is animated by experts teachers who 
may act as mediators among the members. Therefore we call it a non-Standard Group (NSG). 

Second phase (scholastic year 2015-16): In this period we had continued to enter, as previously, 
examples of didactical activities, MTs, papers, powerpoint presentations but, at the same time - on 
our initiative or invited by the teachers - we had become more active in intervening on posts both in 
SG and in NSG. By way of example of this change in our strategy we focus on an episode: a post 



inserted by a teacher which received great attention (154 likers and 75 comments), started in the SG 
and developed, through reciprocal sharings, also in the NSG. The initial post contained a link to a 
note inserted in the Unit 12 of ArAl project and presented in the form of FAQ in www.progettoaral.it 
site. In this post it is developed a critical analysis of a typical Italian school practice, supported also 
by many textbooks, for introducing in primary school the decimal system of representation of the 
natural numbers: the indication of the units with the letter 'u', the tens with 'da', the hundreds with 'h' 
and so on (the so-called ‘marks'); thus there follow improper equalities such as 653=6h+5da+3u. 
Because of the impasse generated in the SG, a follower - a member of both groups - asked us for an 
intervention on this topic. In a comment of a theoretical and linguistic type Malara wrote: 

“The symbols h, da, u represent words of Italian language. They are categorical terms that refer to 
orders of magnitude and they are used as ‘indicators of quantity’. They are useful for bringing the 
pupils to shift from the experience with the abacus - where an assigned quantity is split into opportune 
multiple of powers of 10, operating for successive groupings of 10 – to the representation of the result 
of this operation through a string of symbols, each between 0 and 9 (extremes included), from which 
the name of the given quantity was born. This means that, for example the string 6h, 5da, 3u 
synthetizes the verbal sentence ‘the quantity is constituted by six hundreds, 5 tens and 3 units’ which 
generates the name of the number 653. The translation into the arithmetical language of this verbal 
sentence requires the conversion of the term ‘hundreds’ in the arithmetic operator ‘×100’, the term 
‘tens’ in ‘×10’ and the ‘units’ in ‘×1’ and the conversion of the connector ‘and’ in the operation of 
addition ‘+’. So, the total verbal sentence is translated into ‘3×100+5×10+3×1’. The sentence 
653=6h+5da+3u is improper because it mixes the two languages, verbal and arithmetic, and confuses 
the metacognitive plan with the operational one”. 

While the debate on this issue was developing in the GS, many teachers did not understand why in 
the ArAl project sentences as 653=60+50+3, 653=6×100+5×10+3×1, 653=6×102+5×101+3×100 were 
proposed as correct and not the one they used, and opposed resistance to accept the explanation that 
653=6h+5da+3u is to be discarded because it is not a correct representation in mathematical language. 
To facilitate this understanding, the improper mingling between verbal and arithmetic languages has 
been pointed also using examples of verbal sentences with words in two languages; the discussion 
then focused on the correct and incorrect representations of a natural number, the concept of ‘equality’ 
and on the meanings of the symbol ‘=’.  

Third phase (June 2016 to now) The analysis of the dynamics arisen and the kind of the comments 
posted in NSG and SG led us to the identification of some thematic questions who have given us 
valuable indications on a question that we did with increasing frequency: may a group with the 
characteristics of ArAl group become a community of practice? If the answer is yes, in which ways 
may this happen? How may a gradual constitution of a library of shared knowledge be put in place? 
This leads us to identify some answers to these questions concerning the prevailing attitudes of 
teachers who enroll in these groups. We discuss them articulating in the following points. 
Features of a SG and of a NSG 

Members of a SG feel all equal: they exchange information, questions, requests without demanding 
to receive in-depth and substantive answers; they hope to share with their peers working suggestions 
which are at the level of their knowledge and of their willingness to get involved. Individual growth 
stems from the strength of exchanges and the wealth of experiences put into circulation. Internal 



leaders emerge, who often are recognizable more by the diligence than by the quality of interventions; 
they often are the most convincing not for their knowledge but because they expose themselves more 
than others, writing frequently comments. Members may find appealing ideas for new activities but 
their enthusiasm is not supported by an adequate knowledge; they express insecurity when discussing 
their colleagues’ proposals of those embryos of new ideas. Everyone feels free to comment on 
impulse. On the contrary, a NSG as ‘Progetto ArAl’ gives the majority of subscribers some (cultural 
and psychological) constraints that limit them in exposing their contributions. The same dynamics 
occur in a working-group in which an expert is present. But then: if it is understandable, for the 
reasons explained, that a GS exceeds 5000 subscribers, how has to be interpreted the success of our 
NSG that in two years is approaching 1000 members? The answer could be given with a metaphor: 
the members have the impression of living a moment of institutional training. They know that in the 
NSG there are experts involved in the discussions, extemporary comments should be avoided and the 
participants are invited to put forth questions and to interact with others. At the same time they know 
that there are not ‘free rounds’ (as often happens in the SGs, where a rich variety of cues are offered 
but they often remain at a messy, unspecified, superficial level) and should deal with the theoretical 
aspects through an individual study. In fact, at the base of ArAl Project there is an organic vision that 
aims to propose a framework on early algebra, offering the participants opportunities to reflect on 
knowledge, beliefs, stereotypes. They accept a commitment which attracts them: to avoid free, trivial 
conversations or Pindaric flights. 

How can personal experiences, beliefs, inclinations be influenced by interventions based on strong 
theoretical references? 

The interventions on SG highlight different objectives between mathematics educators and teachers: 
basically, specialists focus their interest on the discipline, the teachers on their pupils. These different 
perspectives can create misunderstandings or misinterpretations. Then, in the NSG, mediations 
between them are necessary, that is: on one side the founding principles of mathematical knowledge 
– in our case of early algebra - have to be respected, but on the other side, at the same time, it has to 
be offered to the teachers a certain ‘serenity’ about the fact that deepenings and changes of 
perspectives in teaching do not affect learning, but on the contrary pave the way for subsequent 
extensions of mathematical concepts. There is a strongly felt concern that pupils do not understand 
or that a concept is too difficult or inappropriate (of course this concern is correct because teachers 
have the responsibility of the learning of their students, so they constantly consider the difficulty and 
feasibility of new proposals). 

Limited capacity to distinguish between different types of knowledge 

The posts and comments put in evidence that most teachers, along the years, reach their convictions 
grounding them more on the accumulation of heterogeneous strategies, methods, tools than on their 
consistency. One of the consequences of this behavior is that teachers confront themselves 
superficially with the theoretical references. For example: 

Elena: I think sometimes that famous ‘didactic contract’, of which we all partake the negative 
effects on pupils, has been moved up on teachers: “It is so, Tom said, Dick reiterated it”; someone 
makes it [i.e. the didactical contract] arguing and expressing his/her opinion (experience counts, 



anyway!); someone else makes it ‘getting on the chair'. But: be they teachers or pupils or 
propagandists or colleagues, always 'didactic contract' is. 

To what is Elena referring when she writes “the negative effects on pupils”? Her so peremptory 
statement was not reconsidered in the later comments: what does this mean? It could indicate that it 
has not been understood, or that it has been read superficially, or that it is not shared, or that it is an 
unfamiliar concept and no colleague wants to explore it. This short episode shows indeed that there 
are interactions between members, but in general they go on without reaching a real conclusion; at 
most, members achieve a superficial agreement, or a generic praise, or they remain on their positions. 
It would have been important to ask Elena what she means with this term (originally it is a theoretical 
construct by Guy Brousseau). Probably such statements would not have been made in our NSG. This 
might be a limit for the group because many convictions would not be expressed for a kind of 
compliance towards the coordinators experts. A low understanding of the key aspects of mathematics 
education (at the primary-secondary school level) favours the choice of cues - references, materials, 
paths, methods - that fit with the convictions and the personality of the teachers more than with the 
organicity of the knowledge taught. In this way, those facilitators that favour the perspective of 
making are privileged. The weak capacity to connect effectvely the suggestions of experts and 
mentors implies that one prefers a ‘do-it-by yourself’ shared with those who are felt as fellow-
travellers: if an activity, a text, a method are exalted or defended by other members of the group, they 
may be adopted, or at least tested. Often, the length of an experiments is short because the activities 
are heterogeneous, have ‘little oxygen’ (the interest on them goes out early); almost immediately they 
are put aside without any reflection in general terms, mostly on the basis of local success achieved 
by pupils (or, more trivially, because they appear ‘nice’). 

New characters emerging in NSG 
The dense interactions developed in the NSG together with the offered theoretical and practical 
supports brought some new attitudes and awarenesses in the members of NSG. The members begin 
to understand that a new approach to the arithmetic and algebra teaching lies on a different role of the 
teacher. As to this a decisive importance assumes what J. Mason has called the art of noticing the 
classroom micro-situations for being ready to adopt the opportune micro-decisions (Mason 2002), 
intertwined with the attention to the languages and  to the continuous recourse to the argumentation. 
Thanks to our frequent interventions where we underline that: a) a math teacher has to control a 
plurality of languages and that also a formal language must be monitored at two levels, the semantic 
one about the meanings and the syntactic one about the structure of the sentences into play; b) the 
weak control over grammatical/syntactical aspects of a sentence in mathematical language leads to 
temporary and unstable jargons in which the meanings assigned to the symbols are dictated by an 
apparent common sense that reduces the difficulties, promotes an immediate but feable understanding 
that leaves the problem unsolved; we observed in the activities posted by many members a bigger 
attentions forwards the translations questions between verbal and fromal languages and the increasing 
use of argumentations in their students. From a methodological point of view, thaks to our 
suggestions,when the teachers publish at the NSG the post of an activity, they begin to understand 
that it is not enough to insert some captivanting images, but that it is necessary to equip them with a 
presentation that synthetically shows the activated competencies and that includes  the most 
meaningful protocols, the path in which the activity is inserted, how it develops in the next steps, the 



theoretical references (ArAl Units, items on the website, Powerpoint presentations, papers). Our idea 
is to slowly bring them to approach the MTs methodology. An important contribution in this sense is 
offered by an increasing number of members the NSG, who are not involved in ArAl 
experimentations but following the project in a convincing way (teachers educators, mentors, 
collaborators of publishing houses, members of other research groups). Thanks to this people the 
posted comments begin to be richer and meaningful; the authors express their ideas also asking for 
experts’ suggestions aimed at promoting new and more adequate behaviours for teaching 
arithmetic/algebra in a relational perspective. So, posts and comments begin to produce virtuous 
relations which gradually enhance the system: the posts induce comments of increasing quality, which 
generate important feedbacks in the organization of the succesive posts. 

The recent mutations observed in the NSG members’ posts delineates a new character of their 
participation which appears in tune with our aim to build a shared identity in the NSG and effective 
in offering contributions which can bring it to become a community of di practice. As to this, 
particularly meaningful appear the recent initiatives generated by the NSG discussions concerning  
the publication in the ArAl project website (http://www.progettoaral.it/) of two documents, 
respectively devoted to: (1) the most interesting classroom episodes presented by the NSG members, 
with the main related comments; (2); the early algebra papers written by members external to the 
project and inspired by our previous productions. Next to this we have to consider the request 
expressed on the web by several members of NSG to organize some ArAl meetings of one or few 
days to allow the participant know themselves de visu and to plan some common work. It seem us 
that these new tends in NSG may generate inside the group, mainly with the more sensitive and expert 
members, an embryo of a community of inquiry. In this frame institutional and informal ArAl 
educational initiatives are developing important merging points. 

Final considerations 
A NSG as ‘Progetto ArAl’ may initially disorient new participants, but its own structure can be 
considered its force because many of them declare that they appreciate the possibility to join to a 
group where experts favor an organization of knowledge according to transparent and shared 
principles. On the base of the observations made, we formulate some key points related to early 
algebra for the management of the NSG so that it can become a significant community of practice in 
this field: (a) to help teachers understand not only merits and limitations of instruments and didactical 
strategies that they implement along the years, but above all the importance of their coherence and 
adherence to a set of theoretical principles, such as: the importance of languages and, consequently, 
of the translation between them; (b) to bring teachers to consider the perspective of the generalization 
since the first years of primary school, highlighting the structural analogy between representations of 
the various occurrences of a phenomenon and guiding their modeling; (c) to propose any time, during 
the discussion on the issues raised by the members, gradual general frameworks, accompanying them 
with clarifications, insights, extensions which give answers for doubts, perplexities, conflicts 
emerging from the discussion. The basic idea is that the theory should be gained through a gradual 
process of refinement of knowledge in a continuous exchange among the members of the group, 
adapting explanations and deepenings to the difficulties or to the resistances and injecting now and 
then proposals of mini-workshops.  
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We present a study about the development of interpretative skills in prospective teachers. In 
particular we discuss a kind of tasks designed by us for teacher education, containing the request of 
interpreting students’ answers. The task in this study was built on an item concerning the sum of 
powers of 10 and was proposed to a group of prospective secondary teachers who were attending a 
Math Education course. The task was first faced individually by them and then discussed in group. 
We present the interpretations proposed by two prospective teachers before and after the collective 
discussion, in order to reflect on the differences in terms both of mathematical knowledge put in 
play and of attitudes exhibited. 

Keywords: Teacher education, prospective secondary teachers, interpretation of students’ answers, 
arithmetic and algebra.  

Mistakes are the portals of discovery (James Joyce) 

Introduction 
In their daily practice, teachers are required to continuously interpret students’ responses and 
productions. This not only assists them in evaluating their difficulties and achievements, but also 
allows to plan the next steps of the teaching activities. Therefore, this “interpretation activity” is one 
of the most crucial (and often most difficult) tasks teachers perform. Empirical evidence suggests 
that the true quality of a mathematics teacher stems largely from his/her ability to interpret students’ 
productions, along with a flexible attitude to redesign the teaching approach based on them. 
However, the ability to make sound and accountable interpretations is rarely recognized as a crucial 
goal in teacher training. Moreover, in a previous research study (Ribeiro, Mellone, & Jakobsen, 
2013), we observed that teachers do not naturally develop this ability as they gain work experience. 
So, presently, our research questions are the following. Is it possible for a teacher to acquire these 
interpretation skills or is it a matter of innate talent? In the first case, how can a prospective teacher 
develop this ability? Should we engage prospective teachers in mathematical discussions 
concerning the interpretation of students' reasoning? 

Guided by our conviction that it is possible for a teacher to develop this ability, as a part of a joint 
research project, we explored a particular type of tasks we have conceptualized. In one part of these 
tasks, we asked the prospective teachers to interpret some students’ responses to a problem and 
reflect on possible feedback they could provide to each student. This exercise had a twofold aim: to 
support prospective teachers in developing the skills required for interpreting and commenting on 
student work, and to investigate to what extent the particular mathematical knowledge and skills 
possessed by the (prospective) teachers support or hinder them in their interpretations and 



“constructive” reactions. Our analysis shows that the abilities to interpret and to design an 
educational activity based on students’ productions are inhibited in prospective teachers with a poor 
mathematical knowledge, due to their limited understanding of the subject and lack of appreciation 
of various ways that problems can be solved (Ribeiro, Mellone, & Jakobsen, 2013). In particular, 
this is true for prospective primary teachers, many of whom have poor mathematical knowledge. 
However, we have also observed that prospective secondary mathematics teachers—who have 
studied more advanced mathematics during the three years of their Bachelor in Mathematics degree 
(Jakobsen, Mellone, Ribeiro, & Tortora, 2016)—also struggle with this kind of work. This led us to 
posit that the ability and knowledge to interpret student work depends not only on (prospective) 
teachers’ mathematical knowledge and its components, but also on their attitudes and beliefs toward 
mathematics and its teaching. 

The tasks described herein are presently used in our Mathematics Education courses in three 
different modalities. First, we ask prospective teachers to individually solve the problem, before 
interpreting and reflecting on some selected students’ productions, and finally engaging in group 
discussions on the mathematical aspects involved in these students’ productions. Given that the 
prospective teachers (both primary and secondary) have difficulties in interpreting and in giving 
meaning to some students’ answers, it was necessary to first assess their ability to solve problems 
that these students are given. This was informative, as some prospective teachers struggle with 
providing constructive feedback to the students even when they do not encounter any difficulties in 
solving the given problems for themselves. The findings yielded by this first phase of our research 
were utilized in the subsequent mathematical discussions of students’ solutions and corresponding 
teachers’ interpretations. These group discussions were helpful to most prospective teachers, as they 
were able to gain new perspectives on students’ work and strategies that can be employed in 
teaching.  

In this paper, we present the interpretations, given by a group of Italian prospective secondary 
teachers, of students’ responses concerning a problem where sums of powers of 10 are involved. 
(see Jakobsen et al. (2016) for details). Here, we present analysis of the interpretations teachers 
gave before and after the mathematical discussions, in order to document their progress, as most 
demonstrated more sophisticated attitudes and greater mathematical knowledge following group 
discussions.  

Theoretical framework 
In order to characterize and study the features of teachers’ interpretations of students’ productions, 
in some of our previous work (see for example Ribeiro, Mellone, & Jakobsen, 2016), we have 
introduced the notion of interpretative knowledge, framed within the general Mathematical 
Knowledge for Teaching (MKT) framework (Ball, Thames, & Phelps, 2008). We define 
interpretative knowledge as the knowledge that allows teachers to give sense to pupils’ answers, in 
particular to “non-standard” ones, i.e., adequate answers that differ from those teachers would give 
or expect, or answers that contain errors. We posit that interpretative knowledge is closely related to 
the ability of teachers to support the development of pupils’ mathematical knowledge, starting from 
their own reasoning, even if students’ ideas are incomplete or non-standard. Some similar ideas are 
implied in the notion of discipline of noticing (Mason, 2002). In particular, our construct 
encompasses the idea of teachers working “on becoming more sensitive to notice opportunities in 



the moment, to be methodical without being mechanical” (Mason, 2002, p. 61). The development of 
pupils’ mathematical knowledge starting from their own reasoning is, in our view, only possible if 
the teacher activates a real process of interpretation, shifting from a simple evaluative listening to a 
more careful hermeneutic listening (Davis, 1997). 

In this sense, the notion of interpretative knowledge incorporates into the MKT framework the idea that 
errors and non-standard reasoning are considered as learning opportunities (Borasi, 1996). Moreover, 
the content of interpretative knowledge shapes teachers’ ability to make informed choices in 
contingency moments (as defined by Rowland, Huckstep, & Thwaites, 2005), in order to respond to 
and deal with non-planned situations. In that sense, we felt the need to incorporate the role of 
beliefs and attitudes pertinent to the use of mathematical knowledge (Carrillo, Climent, Contreras, 
& Muñoz-Catalán, 2013).  

With the goal of better understanding (prospective) mathematics teachers’ act of interpretation, we 
characterized their interpretations of students’ productions and attitudes, using the following three 
categories: (i) Evaluative interpretation: a process through which the teacher determines congruence 
between pupils’ productions and the mathematical scheme of correct answers he/she has; (ii) 
Interpretation for the educational design: the manner in which the teacher designs educational steps 
based on the work produced by the students; (ii) Interpretation as research: teacher’s willingness 
and ability to revise his/her mathematical formalization in order to ensure that it is coherent with 
students’ productions (even when these seem in conflict with the traditional mathematics taught in 
school).  

In Webster dictionary, “interpretation” is defined as “The act of interpreting, explanation of what is 
obscure”; however, it is also defined as “An artist's way of expressing his thought or embodying his 
conception of nature.” This last definition stresses the potential creative nature of the act of 
interpreting that is in our context perceived as the potential new mathematical knowledge that can 
be developed owing to the process of analyzing students’ productions.  

Context and method 
For several years, we have been studying the nature of (prospective) teachers’ interpretative 
knowledge (e.g., Ribeiro et al., 2013; Jakobsen et al., 2016) by exploring the manner in which 
prospective teachers respond to specific interpretation tasks. In this design study the tasks are 
developed after the typical cycles of redesign of the design study method (Cobb et al., 2003). In 
their present form, essentially consist of three steps: (i) the teachers are initially required to solve a 
mathematical problem by themselves; (ii) they are given several students’ productions in response 
to the same problem, some containing errors and some mathematically valid but following less 
standard procedures, which they are asked to interpret; and (iii) teachers are prompted to provide 
what they deem would be appropriate feedback to these students based on their solutions. The 
teacher trainees are asked to address these requests individually and in paper format (they are 
usually given 90 minutes to complete all three steps). In the next phase of the study, the educator 
engages all prospective teacher participants in a collective mathematical discussion (which again 
typically lasts about 90 minutes). The framework of the mathematical discussion is based on that 
proposed by Bussi (1996), as the aim is to allow the group of prospective teachers create a 
polyphony of articulated voices on the mathematical object starting from the interpretation of a 



student’s production. Upon completion of the group discussion, the prospective teachers are asked 
to provide in writing a new individual interpretation of the students’ productions, allowing the 
researchers to determine if any progress has been made.  

The task utilized in the present study is depicted in Figure 1, and was adopted from the annual 
Italian national assessment (2010-2011) for grade 10 released by INVALSI (Istituto Nazionale per 
la VALutazione del Sistema educativo di Istruzione e di formazione). A group of 34 fourth-year 
master students of mathematics enrolled in a Mathematics Education course took part in this 
investigation. Since most of these students are going to become secondary school teachers, we 
consider them prospective secondary teachers. 

In our previous study, we focused on the interpretation these prospective secondary teachers gave to 
their students’ productions (Jakobsen et al., 2016). Our analysis revealed that they experienced 
problems in mobilizing their mathematical knowledge for interpreting students’ work. Indeed, while 
they were able to “see” some of the mathematical aspects involved in the solutions to the problems 
their students proposed, they seemed unaware of many important aspects relevant to mathematics 
teaching and problem solving.  

 
Figure 1: Item given to students to solve 

In the next section, we will present two out of seven students’ productions that were included in the 
task given to the study participants (for their selection, see Mellone, Romano, and Tortora (2013)). 
This will be followed by the interpretations of these students’ productions, provided by two 
prospective teachers—to whom we refer as Rossella and Gennaro (pseudonyms)—before (BF) and 
after (AF) the mathematical discussion.  

Interpretation of two students’ productions 
The following brief analysis of the students’ productions included in the task aims to elucidate our 
reasoning behind the decision to deem these two students’ productions effective for exploring 
prospective secondary teachers’ ability to interpret the work of others.  

Emanuela (Figure 2a) obtained the correct result, despite making three errors in her work: the first 
and the last can be described as lack of use of parenthesis and the second can be seen as a wrong 
application of linearity. Ciro (Figure 2b) arrived at the right answer using the arithmetical algorithm 
of the arrangement of the decimal representation of the numbers in column. In his responses, we can 
also recognize his perception of the algebraic structure connected with more general ideas implicit 
in calculus. Indeed, Ciro’s use of the ellipses reveals the potentiality of generalization of his 
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response to other two consecutive powers of ten, and not only to the particular case given (as one of 
the mathematics students that took part in our study noted during the collective mathematical 
discussion).  

 

 

 
(a) – From Emanuela’s protocol 

 
 

(b) – From Ciro’s protocol 

Figure 2: Two out of seven students’ productions 

Prospective teachers’ comments on students’ productions before and after 
mathematical discussion 
Reflections on Emanuela’s work 

When individually interpreting Emanuela’s response, prospective teachers seemed to experience 
difficulty in trying to understand the steps she used in arriving at the solution (see Jakobsen et al., 
2016). Here, we focus on the interpretations given by a secondary prospective teacher —Rossella—
before (BF) and after (AF) the discussion1:  

The second prospective teacher, Rossella, shared the following: 

Rossella (BF): There is no application of rules; it is pure invention. I don’t know what I would 
say to the girl, but I would think that she had copied the solution and then tried to 
invent a justification. 

Rossella (AF): Even if Emanuela’s answer is correct, her arguments are far from being 
mathematically founded. Still, we can observe an interesting aspect in them, 
namely that if we repeat the steps with two powers having the base different from 
10 and the exponents differing by one, we get the correct result. I followed this 
approach using different numbers, just to test this reasoning, which allowed me to 
assert that Emanuela’s thought process appeared to work. More specifically, when 
you change the bases and use two consecutive numbers as exponents, or even not 
consecutive, her logic gives the correct result. 

3725 + 3726 = 3725 + (1369)25 = 140625 = (38  37)25 = 38  3725 
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2-3+2-2 = 2-3+4-3 = 6-3 = 3  2-3 

xn + xn+1 = xn + (x2)n = (x+x2)n = ((x+1)x)n = (x+1)xn 

                                                 
1 Of course, the students' words were translated from Italian into English. We tried our best to retain the exact 
expressions, including some errors, but some nuances are inevitably lost. 



    In other words, the above three errors, made in sequence, yield a correct result that 
does not depend on the particular numbers used. This observation has prompted 
our reflection on how mathematics is usually managed. We are used to judge, 
without hesitation, arguments such as those mentioned above as wrong and 
completely invented. However, after our discussions, we were of view that errors 
should be seriously considered and, if possible, exploited as a stepping stone 
toward the construction of new knowledge. This is exactly what I tried to do in 
order to bring out something new from Emanuela’s reasoning. Indeed I also tried 
to build a new system of rules for powers according with her reasoning. Several 
attempts have convinced me that this is not possible. Thus, my conclusion is that 
no new knowledge about the rules of powers can be derived from Emanuela’s 
suggestions. However, her errors can be an invaluable tool to stimulate 
discussions and to highlight the need for a true comprehension of the rules of 
powers, which are often hard to grasp for students.  

Reflecting on Rossella’s BF and AF words, we can observe a change in the attitude when 
interpreting student’s work. The first interpretation is an evaluative one—there is no effort to 
understand the rationality of Emanuela’s steps. This results in Rossella’s bias towards a solution 
like that Emanuela offered (referring to an her possible unfair behavior), which can be due to fear of 
moving toward an educational path she cannot (immediately) control. 

The interpretation given by Rossella after the discussion is markedly different. She not only made 
an effort to derive a generalization from the errors in Emanuela’s production, but further concluded 
that the three steps Emanuela used in solving the problem will give the right answer with other 
bases and exponents. Rossella thus went beyond the simple observation that Emanuela’s steps are 
not mathematically sound, as she investigated the possibility to build “a new system of rules for 
powers according with her reasoning.” For this reason, her second interpretation can be considered 
a form of interpretation as research. 

Reflections about Ciro’s work 

Gennaro (BF):  Ciro reached the correct answer by a more practical method than those employed 
by his peers. In addition, the formalism seems original. He appears to have a 
strong expertise in the calculations with powers of 10, which highlights their 
significance and the importance of handling them correctly. Still, his method 
seems limited to powers of 10. It would be interesting to see how Ciro would 
proceed if presented with a different base. I think that Ciro’s protocol could be 
used as an opportunity to explore differences between the properties of powers of 
10 and those of other bases. 

Gennaro (AF): Ciro’s argument is of an arithmetic character. Nonetheless, it allows us to 
appreciate some deep algebraic insights. Moreover, although it seems confined to 
powers of 10, it can actually be generalized to any base, if one represents the 
number in the base of the power. Hence, from Ciro’s production going further, it 
would be possible to study the tables of operations in different bases, or even the 
divisibility rules in bases other than 10. 



In his first interpretation of Ciro’s protocol, Gennaro appreciates the originality of his method, 
while noting that it is limited to powers with base 10. Based on this observation, Gennaro proposed 
possible questions and issues that could be explored with Ciro and the rest of the students in the 
classroom, starting from his production. For this reason, Gennaro’s first interpretation is aimed at 
educational design. 

As with Rossella, whose interpretations we analyzed previously, the comments Gennaro gave on 
Ciro’s protocol after the discussion shifted in focus. First, there is a subtle distinction between 
arithmetic and algebra that could be investigated and debated endlessly. Moreover, Gennaro’s 
comments reveal his awareness that Ciro’s method can be applied to other bases (indeed, 100…0 
always represents the n-th power of the base). This fact was observed during the collective 
discussion by another prospective teacher, and for Gennaro, this discovery was so important that it 
became part of his new written interpretation. In other words, Gennaro’s knowledge and 
interpretation benefitted from the mathematical discussion on Ciro’s production. He reconceived the 
systems of representing numbers in different bases, which motivated him to explore the true 
meaning of digits, as well as of strings of digits. For this reason, Gennaro’s second interpretation is 
perceived as interpretation as research. 

Conclusive remarks 
We started this paper by asking if mathematics teachers can develop the ability to interpret their 
students’ productions in order to flexibly redraw the mathematical learning path, or if this should be 
considered as an innate talent. We are convinced that it is not only possible to develop this skill but 
is highly desirable. The observed difficulties these prospective teachers experienced when giving 
sense to student productions, along with the findings yielded by extant studies, indicate that the 
development of this ability requires a special attention in teacher education. These first results about 
our proposed method of working with prospective teachers appear to support its effectiveness. It 
stimulates prospective teachers’ interpretive and critical skills and increases knowledge they must 
possess in order to teach effectively, taking into consideration the specificities of such knowledge. 
The value of our method stems from the nature of interpretive tasks involving student productions, 
as well as subsequent discussions among peers under the guidance of an expert on these 
interpretation tasks.  

Our analysis of the interpretations given by two prospective teachers, before and after the collective 
discussion led by the educator, clearly demonstrates changes in terms of both their attitude and 
mathematical knowledge or awareness. We can hypothesize that the collective discussion mobilized 
mathematical knowledge that was previously present, but probably not put in play, and it also 
support the development of new mathematical knowledge, like for Gennaro. However, the 
improvements we witnessed were also due to the change in attitudes and beliefs supported by the 
discussion, and of course by the attitudes and beliefs incorporated in the educator’s practice. 

Still, our work leaves many questions to be answered in future research. It would be interesting to 
evaluate the sustainability of these changes, for example, by following the work of these 
prospective teachers in their future educational practices. Moreover, analysis of the mathematical 
discussion on interpretative task needs to be developed in order to clarify its features and dynamics. 



References 
Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it 

special? Journal of Teacher Education, 59(5), 389-407.  

Borasi, R. (1996). Reconceiving mathematics instruction: A focus on errors. Norwood, NJ: Ablex 
Publishing Company. 

Bussi, M. G. (1996). Mathematical discussion and perspective drawing in primary school. 
Educational Studies in Mathematics, 31(1-2), 11-41. 

Carrillo, J., Climent, N., Contreras L. C., & Muñoz-Catalán, M. C. (2013). Determining specialised 
knowledge for mathematics teaching. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), 
Proceedings of the Eigth Congress of the European Mathematical Society for Research in 
Mathematics Education (pp. 2985-2994). Ankara, Turkey: Middle East Technical University 
and ERME. 

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble L. (2003). Design experiments in 
educational research. Educational Researcher, 32, 1, 9-13. 

Davis, B. (1997). Listening for differences: An evolving conception of mathematics teaching. 
Journal for Research in Mathematics Education, 28(3), 355-376. 

Jakobsen, A., Mellone, M., Ribeiro, C. M., & Tortora, R. (2016). Discussing secondary prospective 
teachers’ interpretative knowledge: A case study. In C. Csíkos, A. Rausch, & J. Szitányi 
(Eds.), Proceedings of the 40th Conference of the IGPME (Vol. 3, pp. 35-42). Szeged, 
Hungary: PME. 

Mellone, M., Romano, P., & Tortora, R. (2013). Different ways of grasping structure in arithmetical 
tasks, as steps toward algebra. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings 
of the Eigth Congress of the European Mathematical Society for Research in Mathematics 
Education (pp. 480-489). Ankara, Turkey: Middle East Technical University and ERME. 

Mason, J. (2002). Researching your own practice: The discipline of noticing. London: 
RoutledgeFalmer. 

Ribeiro, C. M., Mellone, M., & Jakobsen, A. (2013). Prospective teachers’ knowledge in/for giving 
sense to students’ productions. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 
37th IGPME, Vol. 4, (pp. 89-96). Kiel, Germany: PME. 

Ribeiro, C. M., Mellone, M., & Jakobsen, A. (2016). Interpretation students’ non-standard 
reasoning: insights for mathematics teacher education. For the Learning of Mathematics, 
36(2), 8-13. 

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers' mathematics subject 
knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher 
Education, 8, 255-281. 



Investigating potential improvements of mathematics student 
teachers’ instruction from Lesson Study 

Reidar Mosvold1, Raymond Bjuland1, & Janne Fauskanger1 

1University of Stavanger, Faculty of Arts and Education, Stavanger, Norway; 
raymond.bjuland@uis.no 

This paper reports from a project where Lesson Study (LS) was implemented in the field practice 
component in four subject areas of two teacher education programs at one Norwegian university. 
Previous analyses of data from interviews and mentoring sessions indicate that mathematics was a 
challenging case that makes it interesting to investigate further. In the present study, we analyze 
classroom observations with the Classroom Assessment Scoring System (CLASS) in order to 
investigate potential improvements from the intervention. The results indicate that there were no 
significant differences between the control group and the intervention group. Possible explanations 
for this are discussed and implications for future implementations of LS in field practice are 
suggested. 

Keywords: Mathematics teacher education, field practice, Lesson Study. 

Introduction 
This paper has a focus on developing student teachers’ ability to teach mathematics through LS. When 
Stigler and Hiebert (1999) published the results from their comparative study of mathematics teaching 
in Japan, Germany and the USA, they argued that there was a “teaching gap” among these countries. 
The teaching quality of the Japanese classrooms appeared significantly higher than in German and 
US classrooms, and Stigler and Hiebert suggested that a main explanation for this teaching gap could 
be found in the incremental developments of teaching through LS in Japan. In the aftermath of this 
study, LS continues to gain popularity as a practice-based approach to professional development 
outside of Japan. There is also growing interest among researchers to adapt and use LS in teacher 
education (e.g., Ricks, 2011).  

In mathematics education research, numerous studies focus on how LS might increase mathematics 
student teachers’ knowledge and understanding of the mathematical content. For instance, Cavey and 
Berenson (2005) argue that their adapted version of LS has a potential to increase student teachers’ 
understanding of the mathematical content. Drawing upon the idea that knowledge for teaching must 
be learned in and from practice (Ball & Cohen, 1999), one might argue that LS has a potential to 
serve as a “professional development tool when faced with the challenge of providing high-quality 
learning experiences for student-teachers” (Murata & Pothen, 2011, p. 104).  

From an ongoing review of literature on LS in mathematics teacher education, we notice that, while 
several studies attempt to measure the effects of LS on student teachers’ knowledge and 
understanding, few studies report on effects of LS on the quality of instruction. Chassels and Melville 
(2009) suggest that LS “provides opportunities for teacher candidates to build professional learning 
communities, to deepen understanding of curriculum and pedagogy, and to develop habits of critical 
observation, analysis, and reflection” (p. 734). When investigating mathematics student teachers’ 
development of lesson plans, Fernandez (2010) suggests that implementation of LS appears to 
influence their development of professional knowledge. Jansen and Spitzer (2009) focus on 



mathematics student teachers’ reflective thinking, and their study includes analyses of student 
teachers’ own interpretations of their teaching. Although the issues raised in these studies are of 
importance, neither of them focus directly on effects of LS implementations on the quality of 
teaching. Leavy’s (2010) study includes a focus on observing teaching, but the analyses emphasize 
student teachers’ reflections and development of knowledge rather than their actual teaching. Ricks 
(2011) reports from an intervention study, but his focus is on mathematics student teachers’ 
reflections rather than on their teaching. With this as a background, the aim of this paper is to 
investigate possible effects of LS implementation on the quality of student teachers’ mathematics 
teaching. We consider the following research question: What potential influences can be observed 
from a LS intervention on the quality of classroom interactions in the field practice of mathematics 
student teachers? In order to approach this research question, we analyze classroom observations 
from a time-lagged design experiment where LS was implemented in the field practice of two 
Norwegian teacher education programs. Videos of classroom teaching are analyzed by using the 
Classroom Assessment Scoring System (CLASS). 

The Classroom Assessment Scoring System  
CLASS scores are related to students’ academic performance (Teachstone, 2012), and research 
indicates that substantial gains in measured student achievement is mediated by teacher-student 
interaction qualities (Allen, Pianta, Gregory, Mikami, & Lun, 2011; Teachstone, 2012). An important 
mediator for academic outcome is the extent to which the students’ interactions with their teachers 
motivate them (Pianta & Allen, 2008). Based on this, student-teacher interactions in the classroom 
are the focus of attention when observing classrooms using the CLASS instrument. This instrument 
is designed to assess the fit between teacher-student interactions and students’ developmental, 
intellectual, and social needs, i.e. elements of high-quality teaching that have been identified as 
central to student achievement (Allen et al., 2011). The CLASS instrument consists of three major 
domains that provide behavioral anchors for describing and assessing critical aspects of classroom 
interactions (Teachstone, 2012): 1) Emotional Support, 2) Classroom Organization, and 3) 
Instructional Support. Student Engagement is also included, due to the importance of observing 
student behavior in addition to behavioral anchors on the classroom and teacher level.  

The first domain, Emotional Support, relates to students’ social and emotional functioning in the 
classroom and is highlighted in the CLASS instrument because “relational supports and connections, 
autonomy and competence, and relevance are critical to school success” (Teachstone, 2012, p. 2). 
Second, Classroom Organization is included in the instrument based on research, highlighting the 
relationship(s) between aspects of organization and students’ opportunities to learn. The foundation 
for the third domain, Instructional Support, is constituted by the following teaching strategies that 
enhance learning: “consistent, process-oriented feedback, focus on higher-order thinking skills, and 
presentation of new content within a broader, meaningful context” (Teachstone, 2012, p. 4). 

These three domains can be further divided into twelve dimensions or CLASS indicators that are 
defined in the CLASS manual (see Tables 1, 2 and 3). In addition to these observable indicators of 
effective interactions, the CLASS manual includes behavioral markers that provide clear examples 
of how teacher-student interactions in the classroom can be observed and assessed. These descriptions 
are specified and examples of justifications are provided on the basis of concrete classroom videos, 
coded by CLASS experts.  



Method  
This study is situated within the larger, cross-disciplinary project, Teachers as Students (TasS), which 
involved mathematics, science, physical education, English as a second language, as well as 
pedagogy. The TasS project (2012–2015), supported by the Norwegian Research Council (grant 
number 212276), investigated student teachers’ learning during field practice, aiming at learning 
more about how student teachers develop the knowledge and skills required to promote student 
learning in schools. LS was used in a time-lagged design experiment (Hartas, 2010) in two Norwegian 
teacher education programs, both four-year integrated programs, one for grades 1–7 and one for 
grades 5–10. Subject matter and didactics (pedagogy) should thus be integrated in all subjects, and 
there should be a close relationship between what was taught on campus and in schools when student 
teachers had field practice (100 days within the four years). The mentor teachers have an important 
role and are considered teacher educators in field practice.   

The student teachers were organized in groups of three or four during a three-week period of field 
practice both in the Business as Usual condition (BAU) and in the LS intervention (INT). The TasS 
study recruited student teachers during the spring term of their fourth semester (except the science 
groups in the BAU condition, who were in their sixth semester). The TasS project includes data with 
two groups of student teachers from the four subjects in both data collection periods (see Munthe, 
Bjuland & Helgevold, 2016 for an overview). In this paper, we mainly report from analyses of 
classroom recordings of lessons taught in mathematics from the BAU and INT condition, using the 
CLASS (Classroom Assessment Scoring System) observational instrument (Allen et al., 2011; 
Teachstone, 2012). We also draw upon findings from previous analyses in the discussion section 
based on conversations in mentoring sessions and pre- and post interviews (before and after the field 
practice in both conditions).   

In the BAU condition, the mentor teachers were asked to conduct their mentoring sessions the way 
they normally did without any influence from the researchers in the project. In the LS condition (INT), 
it was crucial that mentor teachers were introduced to essential principles about LS since “they played 
the role as facilitator and knowledgeable other for the group of student-teachers who made up the 
Lesson Study group” (Munthe et al., 2016, p. 145). This required another approach. Three afternoon 
seminars were organized (from November 2012 to January 2013) for mentor teachers and the research 
group in order to discuss important characteristics within the LS cycle and to establish a shared 
understanding of implementing LS in student teachers’ field practice. An important component of 
these afternoon sessions was to develop a “Handbook for Lesson Study”, which included a text about 
important principles in LS and a list of questions which could support both the mentor teachers and 
the student teachers through pre- and post-lesson mentoring sessions.  

Three researchers (the authors of this paper) took part in the coding of videos from the four lessons 
in both conditions (INT and BAU). We divided the videos into 19-minutes sections. This resulted in 
22 sections (12 BAU and 10 INT). After watching a video section, we started the scoring for each 
dimension individually, using the 7-point range that is described in the CLASS manual, Low (1, 2), 
Mid (3, 4, 5) and High (6, 7). We made our judgements based on the general scoring guideline. Our 
scores were then discussed before we started to observe a new video section. The results that are 
presented in the three tables below illustrate the scores given by the three researchers (see Tables 1, 
2 and 3). Where two scores are given, our individual coding differed.  



Results 
The CLASS domain of Student Engagement intended to capture “the degree to which all students in 
the class are focused and participating in the learning activity presented or facilitated by the teacher” 
(Teachstone, 2012, p. 109), was coded as Mid for both BAU and INT. This code means that either 
the students are listening to, or watching the student teacher, rather than actively engaging in 
classroom discussions and activities, that there is a mix of student engagement, or they are engaged 
part of the time and disengaged for the rest of the time. Across all the videos, there is a lack of off-
task behavior and the students appear to be engaged.  

Emotional support 

The domain of Emotional Support is divided into three dimensions (Table 1)1. Across the first two 
dimensions, the code Mid was given by all three coders. A Mid score on the first dimension, Positive 
climate, indicates that the student teacher and students sometimes provide positive comments and 
appear quite supportive and interested in one another. A Mid score on the second dimension, Teacher 
sensitivity, indicates that the student teacher sometimes monitors students for cues and generally 
attempts to help students who need assistance, but these attempts are not always effective in 
addressing student concerns.  This code also indicates that some of the students sometimes seek 
support, respond to questions and share their ideas.   

CLASS dimension BAU INT 
Positive climate MID MID 
Teacher sensitivity MID MID 
Regard for adolescent perspectives LOW/MID LOW/MID 

Table 1. Results from CLASS analysis of Emotional Support. 

The third dimension, Regard for adolescent perspectives, was coded as Low/Mid, illustrating that 
individual coding differed among the coders. Low to Mid on this dimension indicates that the teaching 
is the teacher’s show. The students are rarely provided opportunities for autonomy and leadership.  

As can be seen from Table 1, the LS intervention did not affect the coding for any of the dimensions 
included in this domain.  

Classroom organization 

The domain of Classroom Organization is composed by three dimensions (Table 2). Behavior 
management encompasses the student teacher’s use of methods to maximize the learning time for the 
students. The code Mid indicates that there is some evidence that the student teachers encourage 
desirable behavior and prevent misbehavior. Productivity, the second dimension, does not relate to 
quality, but rather deals with the students’ opportunity to get involved and the extent to which the 
teacher makes sure that everyone has something to do. A Mid score on Productivity indicates that 
most of the time there are tasks for the students and some routines are clearly in place. However, 
transitions could be more efficient and the student teachers could be better prepared. 

                                                 
1 The CLASS domains are written with capital letters in both words (e.g., Emotional Support), whereas the CLASS 
dimensions are written with one capital letter (e.g., Positive climate). 



CLASS dimension BAU INT 
Behavior management MID MID 
Productivity MID MID 
Negative climate LOW LOW 

Table 2. Results from CLASS analysis of Classroom Organization. 

The dimension Negative climate is scored in reverse. A low score indicates that the overall level of 
negativity among student teachers and students is low or absent. This code counts for more than the 
others in this domain, indicating that the classroom processes related to the organization and 
management of time, student behavior and attention in the classroom provide the students with 
opportunities to learn. As can be seen from Table 2, the LS intervention did not affect the coding for 
any of the dimensions included in this domain.  

Instructional support 

The domain of Instructional Support is divided into five dimensions as shown in Table 3. The first 
dimension, Instructional learning formats, was coded Mid in both conditions, illustrating that learning 
objectives may be discussed, but they are not clearly communicated in order to support student 
attention which is an indicator for a high score. 

It is only in the second dimension, Content understanding, that there are indications of a possible 
effect, from discrete pieces of depth of lesson content to sometimes finding meaningful discussions 
in order to help students comprehend the mathematical content. The three last dimensions, which 
emphasize higher-order thinking among the students with a purposeful use of a content-focused 
discussion in the classroom, are all coded Low or Low/Mid. The focus on mathematical content is 
not strong in the teacher-student classroom interactions. A Low score on Analysis and inquiry 
indicates teaching that does not let the students think, or that students are neither engaged in higher-
order thinking, metacognition, nor have opportunities for novel application. The teaching is in a rote 
manner. A Low/Mid score on the dimension of Quality of feedback indicates that the feedback 
provided to the students neither expands or extends learning nor encourages student participation. A 
Low/Mid score on the dimension of Instructional dialogue indicates that the student teachers do not 
involve the students in content-based discussions in class. 

 

CLASS dimension BAU INT 
Instructional learning formats MID MID 
Content understanding LOW/MID MID 
Analysis and inquiry LOW LOW 
Quality of feedback LOW/MID LOW/MID 
Instructional dialogue LOW/MID LOW/MID 

Table 3. Results from CLASS analysis of Instructional Support. 

The results illustrate that our LS intervention had little effect on the quality of classroom interventions 
(Table 3). Across the videos, and in both BAU and INT, the classes are mostly dominated by student 
teachers’ talk. 



Concluding discussion 
Many studies suggest that LS has potential to contribute to mathematics student teachers’ 
development, but few studies analyze potential effects of LS interventions in mathematics teacher 
education on the quality of classroom interactions. CLASS analysis of classroom videos from a 
control group and an intervention group indicates that our LS intervention did not increase the quality 
of classroom instruction. One might argue that the challenging results that arise from this study are 
problematic since one would hardly expect the results to show any variance based on one LS cycle 
only. However tempting it is to bypass the reporting of such challenging results, we do the opposite. 
The majority of research reports in mathematics teacher education appear to be success stories, but 
we suggest that it is also important to discuss results that were not as positive as desired. In the 
following, we highlight three issues that might have influenced the results of this study: 1) experience 
and time, 2) lack of focus on critical aspects of LS, and 3) personal factors. 

First, we discuss the issues of experience and time. Stigler and Hiebert (1999, p. 109) describe LS as 
a “system that leads to gradual, incremental improvements in teaching over time.” Japanese 
improvements in teaching happen through systematic work over several decades, and it is unfair to 
expect significant improvements in teaching from groups of student teachers who have just been 
introduced to LS. Most implementations of LS in mathematics teacher education seem to involve 
participants with little or no previous experience with LS (e.g., Bjuland & Mosvold, 2015; Leavy, 
2010). In addition, most of these studies are short-term studies that often report results from 
participants who have completed one LS cycle only (e.g., Bjuland & Mosvold, 2015; Chassels & 
Melville, 2009; Leavy, 2010). It is not realistic to expect significant long-term effects from studies 
like this.  

Second, a possible explanation for the challenging results in this study might be that the participants 
failed to implement some important aspects of LS. Previous analyses of data from mentoring sessions 
and interviews support this. For instance, Bjuland and Mosvold (2015) identified four indicators of 
why the implementation was challenging in mathematics. First, the student teachers reported about a 
lack of emphasis on pedagogical content knowledge on campus before field practice, and they called 
for more focus on students’ difficulties and teaching strategies. A second indicator was related to a 
lack of formulating a research question. In a LS cycle, the student teachers should collaboratively 
plan, conduct and evaluate a research lesson with a focus on students’ learning, but they should also 
formulate a research question that focuses on their own learning. No signs of this were found in the 
mentor sessions in the mathematics groups (Bjuland & Mosvold, 2015). Third, there was little focus 
on student learning and structured observation – both of which are decisive in LS. The mentor 
teachers’ questions did, however, focus more on planning, observation and student engagement in the 
LS intervention (Bjuland, Mosvold, & Fauskanger, 2015). A fourth indicator was that student teachers 
organized research lessons around individual work with textbook tasks – making observation of 
student learning difficult (Bjuland & Mosvold, 2015). These observations may explain why the LS 
intervention was not successful and why the quality of classroom interactions did not increase.  

Third, other factors like the student teachers’ background, motivation and support may have 
influenced the results of this study. From analyses of data from mentoring sessions as well as focus-
group interviews, we learned that one group of student teachers in the intervention may have had a 
lack of motivation for participating in the study. In the other group of student teachers from the 



intervention, the mentor teacher was absent for a period of time, and the resulting lack of support 
from the mentor teacher might have influenced the quality of classroom interactions. Similar factors 
were also observed in the BAU groups. For instance, one of those groups struggled to collaborate 
(Bjuland & Mosvold, 2014), and we cannot revoke the potential influence of such problems. Although 
many problems can be avoided or taken care of in a research project, there will always be a potential 
influence of human factors that cannot be controlled by the researcher.  

Further long-term studies are called for in mathematics teacher education to investigate participants 
who have completed more than one LS cycle, emphasizing that teaching develops through 
incremental improvements over time (Stigler & Hiebert, 1999). We observe that many studies focus 
on potential effects of a LS intervention on student teachers’ understanding of the mathematical 
content. More studies are called for to investigate effects of LS implementations on classroom 
instruction.   
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In this paper we follow preservice elementary school mathematics teachers learning processes in a 
course that was organized around problem solving and aimed at providing opportunities for students 
to participate exploratively. The goal of this study is to characterize pre-service teachers' 
participation on the "ritual-explorative" continuum, to understand better what opportunities for 
explorative participation are given and taken up by students. Findings show that the request to 
suggest various solution paths seems to help students focus on the explorative question of "where do 
I want to get at?" rather than at the ritual question of "how do I proceed?".  

Keywords: Rituals, explorations, preservice mathematics teachers. 

 
Introduction 
This paper focuses on learning processes of pre-service elementary school mathematics teachers 
during a course whose goal was to promote students' mathematical thinking by engaging them in a 
discourse which is closer to that of mathematicians, and thus to provide our pre-service teachers 
opportunities to participate exploratively in doing mathematics. This resonates with Blanton (2002): 
“The development of a cadre of classroom mathematics teachers whose practices reflect current 
research on teaching mathematics rests in part on how pre-service teachers, as students, experience 
mathematics” (p. 117).  

In a former study about opportunities for learning in a prospective mathematics teachers’ classroom 
(Heyd-Metzuyanim, Tabach & Nachlieli, 2015), we found that despite what seemed to be an 
explorative environment, pre-service students still participated mostly ritually in a mathematics 
course. Since we believe that the opportunities to learn that preservice teachers provide their future 
students should be more explorative, it is obvious that they themselves should participate 
exploratively. We therefore designed a course that would provide opportunities for explorative 
participation. The course was taught in two separate groups by two instructors simultaneously. We 
are now starting to learn about what actually happened in those courses - could the participation of 
students be characterized as, at least sometimes, explorative? What characteristics of the course 
design and instruction seems to provide explorative learning opportunities? In the current study we 
focus only on one group of students, working on one type of tasks during two lessons, and follow 
learning processes in an attempt to characterize pre-service teachers' participation on the "ritual-
explorative" continuum.  

Theoretical framework 
In this study we adopt Sfard's socio-cultural approach to conceptualize and study learning – the 
communicational framework (Sfard, 2008), and refer to the on-going development and refinement of 
the discourse on rituals and explorations )Sfard & Lavie, 2005; Nachlieli & Tabach, 2012; Heyd-



Metzuyanim, Tabach & Nachlieli, 2015; Heyd-Metzuyanim & Graven, 2015; Sfard & Lavi, in 
process(.  

One of the main characteristics of a discourse is the routines participants perform. Routines are 
repetitive patterns that are repeated in similar situations. That is, when one views a situation as similar 
to one he had participated in, and performs the same action. This could be social – e.g. when entering 
your home and placing the keys at a particular place. It could also be a cognitive action – e.g., in a 
mathematics classroom, when a student refers to a certain problem as similar to one performed earlier, 
and adopts the same procedure to solve the problem. The participant is not always aware of this 
repetitiveness. That is, a routine is such in the eyes of the researcher. Sfard & Lavie (in process) 
define the term explorations as "routines whose success is evaluated by answering the single question 
of whether a new endorsed narrative has been produced". That is, the task of an exploration is to 
produce new "historical facts" or a new "truth" about mathematical objects. Exploration is hence an 
act of production. Performers of explorations focus on the question: "what it is that I want to get?".  

Rituals are "routines performed for the sake of social rewards or in an attempt to avoid a punishment." 
(Sfard & Lavie, in process). Ritual performance is usually initiated by, and addressed at, somebody 
else. Usually, the performance is an imitation of someone else's former performance. The procedure 
is rigid and the performer of the ritual never tries to make independent decisions. Performers of rituals 
ask themselves: "how do I proceed?".  

It is important to stress that the same procedure performed (even simply multiplying 26 by 31) could 
be an exploration or a ritual, depending solely on whether the participant is engaged in trying to 
produce a new narrative, or, simply socially engaging in class, doing what she is expected to do using 
given procedures.  

Former studies suggest that while explorative participation is desired, rituals are inevitable. Especially 
in the process of objectification, of developing new mathematical objects (such as the development 
of numerical discourse by children (Sfard & Lavie, 2005; Sfard & Lavie, in process) or the 
development of the discourse on function of 7th grade students, (Nachlieli & Tabach, 2012).    

In mathematics classrooms, students' participation is usually neither purely ritual nor explorative. 
Those could be seen as ends of some continuum that differ in the performer's ability to separate the 
procedure and the task. As long as the performer does not just strive to arrive at a particular outcome 
but also feels compelled to do this by performing a specific procedure, the routine cannot count as a 
pure exploration. 

The goal of this study is to characterize pre-service teachers' participation on the "ritual-explorative" 
continuum so that we could understand better what opportunities for explorative participation are 
given and taken up by students. 

Method 
Data collection 

The data for this paper are taken from a course about "promoting mathematical thinking", for 
prospective elementary school mathematics teachers studying at a college of education in Israel. The 
course was a one-semester course which was taught in 2014. It included 13 lessons, each lasting an 
hour and a half. During the first lesson, the project was described to the students and consent forms 



were collected and hence the lesson was not videotaped. The remaining 12 of the 13 lessons were 
videotaped and transcribed. Lesson plans and all of the students' written work (exams and the planned 
unit) were collected. The language of the data was Hebrew. This data was analyzed in its original 
language and parts were translated to English by the authors. To learn about students' ritual and 
explorative participation, we focus on their studying a specific type of problems - serial tasks 
(calculating sums of sequences). This topic was discussed in lessons 2 and 3. Assuming that students' 
participation may change when shifting to a new subject, we chose to focus on one specific topic in 
its entirety. The data analyzed include all whole class discussions that took place during each of the 
lessons. 

Participants 

The research participants include a group of 18 prospective elementary school mathematics teachers. 
The students are studying at their final academic year in a college of Education in Israel. The course 
instructor, the first author, has a B.Sc in mathematics and PhD in mathematics education. She had 
been teaching in this college for 15 years.  

The course 

Over the past two decades, accumulating evidence has shown that classroom environments that 
support “explorative” participation, that is, that encourage students' authority (Herbel-Eisenmann, 
Choppin, & Wagner, 2012); engage students in tasks that are cognitively demanding and are open to 
different solutions and procedures (Boston & Smith, 2009); and foster a community of learners that 
listen to each other and build on each other's ideas (Resnick, Michaels, & O’Connor, 2010) promote 
conceptual understanding. The aim of the designed course was for students to deepen their 
mathematical thinking by working on high cognitive-demand problems (Smith & Stein, 2011), 
solving problems in various ways and making connections between the different solutions as well as 
between the mathematical ideas related to the problems and the solutions. During the lessons, students 
worked in small groups to solve the problems and were encouraged to come up with as many solutions 
as possible. Whole-class discussions about the different solutions followed. The instructors chose to 
provide students with as much time as needed to work on certain problems alone or in groups, 
focusing entire lessons on discussing different solution paths suggested by the students. The students 
had to take three exams during the course and were required to plan a 3-lesson unit about any topic 
for elementary school students, which aim was to promote their students' mathematics thinking. Two 
groups (of around 20 students each) were taught simultaneously – by each of the two authors. This 
study refers to Talli's group only. 

Data analysis 

To identify whether students' participation is more ritual or more exploraitve, and to identify shifts in 
participation we followed all whole-class discussion around a specific type of tasks. The discussions 
were analyzed by addressing the questions in Table1.  

  Ritual Exploration 

1.  What is the question the 
performer is trying to address? 

How do I proceed? What is it that I want to 
get? 



2.  How does the performer 
evaluate its' success? 

Performing a specific task-
related procedure 

A new narrative had been 
produced  

3.  By whom is the routine 
initiated? To whom it is 
addressed? 

Initiated by former performer 
of a similar task. Addressed at 
the teacher (or other superior). 

oneself 

4.  Flexibility Applies a rigid routine. Seldom 
makes independent decisions  

Could consider various 
routines. Makes 
independent decisions on 
the way. 

5.  Separation between procedure 
and task 

Not separated as the main task 
is to perform a (certain) 
procedure. 

Separated 

6.  Authority  The teacher One's own 

Table 1: Rituals and explorations 

Findings and discussion 
To understand what opportunities for explorative participation were given and taken up by students, 
we present our findings about students' participation while working on a specific type of tasks 
(calculating sums of sequences). This learning took place during lessons 2 and 3.   

The first problem that the students solved was calculating the number of Hanukkah candles one lights 
during the 8 days of the Holiday (2 candles on the first evening, 3 on the second, … and 9 candles on 
the eighth night): 2+3+4+5+6+7+8+9 = (2+9) + (3+8)+ … = 4 ∙ 11 = 44 (following Gauss's idea of 
pairing elements of the sequence: first element with the nth, second element with the one in the (n-1) 
place, and so on. The sums of each of the pairs are equal.). Then, after quickly calculating the sum of 
integers between 1 and 99, the students were asked to calculate the following sum: 1+3+5+7+…. 
+997+999 = . 

The following conversation took place: 
1 Maya I remember that there's something, a formula, I don't remember it now. To find 

the element in the middle. 

2 Inst. To find a formula for finding the middle element? 

3 Maya no, no, there is a formula 

4 ….. [the class discusses a solution path suggested by a student] 

42 Sonya it could be factorial, right? 

43 inst. Factorial? 

44 Sonya yea, factorial, I remember something, I think this could be related. 

45 inst. [to the class] do you what factorial is? Remember what it is? 

  

The first student's (Maya) saying refered to the existence of a formula that could, perhaps, be helpful 
in this situation. Shse also talked of remembering.  That is, Maya's first reaction was to seek a formerly 
learned routine that could be helpful in this situation. Maya followed Gauss's idea to add pairs of 



numbers. As the number of elements in this sequence is even (500 numbers), Maya's search for the 
"middle number" is surprising. It is possible that either Maya mistakenly thought that there actually 
is an odd number of elements in the sequence. A different interpretation is that as all the problems 
that the students have worked on in the course so far have been of an odd number of elements, Maya 
looked for the "middle element" as part of performing a given routine practiced earlier.  

After Maya's remark, a whole-class discussion arose about the number of elements in the sequence, 
whether it was even or odd. After agreeing that there are 500 elements (half of the elements in the 
sequence 1, 2, 3, … ,1000), the students used Gauss' idea and calculated: (1+999)∙250 = 250,000. The 
instructor asked for a different solution when Sonya replied: "it could be factorial, right?" she then 
added: "I remember something, I think this could be related". That is, similar to Maya, Sonya seeks 
a formerly learned and used routine to be applied here. She does not remember the routine or what 
the idea behind "factorial" is, but something about this problem reminds her of this formerly learned 
idea. Considering Maya and Sonya's communication about the given problem, it has strong ritual 
characteristics:  

  Ritual Exploration 

1.  What is the 
question the 
performer is 
trying to address? 

How do I proceed? 

There is evidence of the students' attemps to seek a 
ready-made formula that could help them proceed. In 
Maya's case, the formula is not needed as there is an 
even number of elements. In Sonya's case – the idea 
she thiks of (factorial) is not relevant. Sonya is not 
sure what it actually is, but she does find some 
connection between the procedure and the problem 
at hand.   

What is it that I 
want to get? 

2.  How does the 
performer 
evaluate its' 
success? 

Performing a specific task-related procedure 

Although not yet performing the procedure, Maya & 
Sonya seek a task-related procedure to follow. Both 
turn to memory (1, 3, 44).   

A new narrative 
had been 
produced  

3.  By whom is the 
routine initiated? 
To whom it is 
addressed? 

Initiated by former performer of a similar task. 
Addressed at the teacher (or other superior). 

The routine was learned sometime in the past (not 
during this course). They do not try to develop a 
routine for the specific task by analyzing where it is 
they want to get at (1, 3, 44).  

oneself 

4.  Flexibility Applies a rigid routine. Seldom makes independent 
decisions  

The students do not make any decisions at this 
moment. They turn to the instructor to remind them 
of the formula / concept that they thought was 
relevant (42 ).  

Could consider 
various routines. 
Makes 
independent 
decisions. 

5.  Authority  The teacher (42) One's own 

Table 2: Analysis of Maya & Sonya's participation 



During the rest of the lesson, the students worked in groups and came up with three ways to solve the 
problem. Later in the second lesson, the students suggested and discussed different solutions paths 
different series.  

During the lesson the students learned: (1) that a problem could be solved by different solution paths; 
(2) that Gauss' idea could be helpful to solve sums of certain sequences; (3) to apply Gauss' idea, one 
needs to know the number of elements in the sequence. If the number is odd, then either the element 
in the middle should be identified or, the first or last element should be sided and later returned to the 
series. The students were encouraged to come up to the board to suggest solution paths, to make 
certain that they understand others' ways of solving the problem and ask questions when things were 
not understood.  

At the beginning of the 3rd lesson students were asked to suggest ways to calculate: 

20132012201120102009...87654321    
Solution paths suggested by two students (Nur and Sara): 

1 Nur so, I put the 1 aside, and saw that (in) each two pairs, the first gives me minus 
1 and the second pair gives me plus 1. So I have 2012 numbers here and then, 
if I divide this to pairs, I have 1006 pairs. So half of them give me 1, 503 
altogether, and the other half gives me minus, so it's (-503) and it cancels and 
so I have 1 left. 

2 Inst. Do you see what Nur did? Any questions? 
3 Ziv no. it's perfectly clear 
4 Nur now I found another one. After... I left the 1 aside here too, then I saw that if 

I take the 2 and the 2013, it gives me 2015. If I take then the minus 3 and the 
minus 2012 it will give me (-2015). So I have the sum of two negative 
numbers that give me (-2015) and the sum of two positive numbers give me 
(+2015). So it still cancels out and I have the 1 left. 

5 inst. What do you all say? yes? 
6 Sara I have another one. I saw here, my language is not that well, correct me, ok? 

like a sort of continuum, that every four, every three operations give (-4) each 
time, then its repeated.  

7 Inst. Every three operations, you mean, the sum of four numbers? 
8 Sara yes, the sum is (-4). So it's repeated till number 2012. So 2012 is divided by 

4 and I get 503 times that it's repeated. … then I multiplied 503 by (-4) cause 
every such part is, mm…. (-4). And this is the result so far [-2012]. Then I 
have plus 2013 and it's 1.  

The analysis of Nur and Sara's suggested solution-paths is in Table3.  

  Nur (2 solution paths) Sara 

1.  What is the question 
the performer is 
trying to address? 

What is it that I want to get? The student is trying to solve the 
given problem and create a new solution path.   

2.  How does the 
performer evaluate its' 
success? 

By creating narratives of two types 
– (1) the sum of the series (equals 
1), and (2) new solution paths to 

By creating narratives of two 
types – (1) the solution (the 
sum is 1). However, this 



solve the problem. In both, the 
first number of the sequence is left 
aside. In the 1st solution, adjacent 
numbers are paired. The sum of 
each pair is 1 or (-1) alternately. 
Therefore the solution is 1.  In the 
2nd solution, Gauss' principle is 
applied to create pairs of numbers 
whose sum is 2015 or (-2015) 
alternately. Therefore, the total 
sum is 1. 

narrative is already known 
from previous answers. (2) a 
new solution path to solve the 
problem: the sum of every 4 
adjacent elements is (-4). The 
sum of all quadraplets is 
503∙(-4)= (-2012). The last 
element of the sequence 
(2012) is added. Therefore, 
the sum of the sequence is 1.    

3.  By whom is the 
routine initiated? To 
whom it is addressed? 

The routine used by the student to solve the problem (placing the 
first or last number aside and checking sums of sets of numbers), as 
well as Gauss's principle were used by the class in the previous 
lesson. However, this is not simple mimicking of previously 
performed routines by others, as those routines have not been used 
together for the same problem yet. Some adaptation needed to be 
done. Therefore, the routine is initiated by the student.   

4.  Flexibility The student used previously perfomed procedures to create a new 
solution path to solve this problem. Considering the students' 
decision making – the student made all decisions for adapting 
previously used routines to this problem.  

5.  Separation between 
procedure and task 

It is not clear whether for the student the procedure is a part-and-
parcel of solving this problem or not.  

6.  Authority  One's own 

Table 3: Analysis of Nur and Sara's participation 

It seems that Nur and Sara participated exploratively: they produced narratives that include new 
solution paths for the task and reaching a solution. They articulate their solution path in a way that 
makes clear that they have made independent decisions while adapting different formerly performed 
routines to solve the given problem.  

Discussion 
In this study we tried to characterize students' learning while solving a specific type of tasks on the 
ritual towards exploration continuum. In the discussed course, in which students were constantly 
asked to work on problems on their own or in small groups, and suggest various solution paths to 
each problem, there is evidence of students shifting from more ritual to more explorative 
participation. It may seem obvious - the course was designed in a way that would invite students to 
engage exploratively. Yet, studies show that even when teachers design lessons that aim at certain 
opportunities to learn, this does not always happen. We found that when faced with a task that is of a 
new type (to the learner), the learner's immediate response is of a ritual type - to seek related 
procedures that would assist her in solving the task. The request to suggest various solution paths 
seems to help students focus on the question of "where do I want to get at?" and not remain focused 
on the question of "how do I proceed?". Also, once a student chooses a certain routine as a solution-
path, it is sometimes followed blindly, ritually, thus getting farther away from the task at hand. 
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In this paper, we present results of an inquiry based teaching implementation carried out on a 
teacher training course in the University. The framework of the Anthropological Theory of 
Didactics (ATD) is adopted, and a co-disciplinary Research and Study Course (RSC) whose 
generative question requires studying physics and mathematics together is carried out by N=25 
training teachers of Mathematics at University. Some conclusions concerning on the conditions, 
restrictions and relevance of introducing the RSC in teachers training courses at the university are 
performed.  
Keywords: Inquiry based teaching, pre-service teachers training, modelization; research and study 
course. 

Introduction 

The Anthropological Theory of the Didactic (ATD) has proposed the Paradigm of Research and 
Questioning the World (Chevallard, 2012, 2013 a) advocating an epistemological and didactic 
revolution (Chevallard, 2012) of the teaching of mathematics and school disciplines, where 
knowledge should be taught by its usefulness or potential uses in life. The present work shows 
results obtained in two courses of pre-service mathematics teacher education (N=25) during a 
teaching inspired in the paradigm of questioning the world, by means of a Research and Study 
Course (RSC). To learn what an RSC is, and which kind of teaching is involved in, the trainee 
teachers (TT) must deeply experience a genuine RSC. Thus, a physics and mathematics co-
disciplinary RSC is designed, implemented and analyzed with the students. Co-disciplinary means 
that in this case, physics does not only trigger the study of mathematics, but rather that both 
disciplines play a central role, being necessary to study both as well. The starting point of the RSC 
is the question Q0: Why did the Movediza stone in Tandil fall? Which, to be answered – in a 
provisional and unfinished way- needs study Physics and Mathematics jointly. The rationale of the 
paper is to describe the trainee teachers’ activities and their difficulties when they must experience a 
genuine RSC and to face a strong question. Some reflections on the ecology an economy of this 
kind of didactic devices for the pre-service teachers training are performed.  

The research and study courses (RSC) 

The ATD defines the RSC as devices that allow the study of mathematics by means of questions. 
The RSC establish that the starting points of mathematical knowledge are questions called 
generative questions, because its study should generate new questions called derivative. Teaching 
by means of RSC is complex and demands rootle changes in the roles of the teacher and students. 
The RSC are defined by the developed Herbartian model (Chevallard, 2013 b):  

[S(X;Y;Q){R◊
1, R◊

2, R◊
3,…, R◊

n., Qn+1,…, Qm+1,…,Om, Om+1,…,Op }] R♥ 



Where Q is a certain generative question; S is a didactical system around of the study of Q. S is 
formed by a group of people trying to answer the question (X) and by people helping the study (Y). 
In classrooms of mathematics, X represent the students and Y represent the teacher and other 
instruments helping in the search of answers to Q. S has to build a didactic medium M to study Q, 
whereas M is composed by different knowledge, expressed by R◊

i, Qj and Ok. The R◊
i are any 

existing answer or “socially accepted answer”, the Qj are derivative questions of Q, and the Ok are 
any other knowledge that must be studied developing the answers. Finally, R♥ is some possible and 
partial response to Q given by S. In the a priori analysis stage, the specific and didactic knowledge 
which could be involved within an RSC is set up and the Praxeological Reference Model (PRM) is 
elaborated. The researchers analyze the potential set of questions which the study and the research 
into Q might encompass together with the knowledge, mathematics and physics in this case, 
necessary to answer those questions (Chevallard, 2013). The PRM underlies the whole of the 
teacher, student and researcher´s activity, being always likely and desirable to identify and clarify it, 
emphasizing the dynamic nature of the PRM.  

Methodology 

This is a qualitative and exploratory research that aims to carry out inquiry based teaching as it is 
proposed by the ATD, in a mathematics teacher training course at the University. The RSC was 
implemented in a state university, in the city of Tandil, Argentina, in a discipline which is part of 
the didactic studies within the Mathematics Teaching Training Course, in which the researchers are 
also the teachers, where N=12 and N=13 students from the last year (4th), aged 21-33 took part in it. 
The students had studied the ATD in two Didactic courses; however, they had problems to 
understand what an RSC is, and how it works? To emphasize the inquiry dimension of the RSC, the 
lessons were carried out in the University Library, given the wide availability of books and internet-
based searching, during 10 weeks (the half of the course extension), with a total of 7 weekly hours 
provided in two lessons. Six work groups were organized with approximately 4 members each. 
During the lessons students and teachers interacted permanently. In a RSC, the generative question 
Q0 has to be pointed out by the teacher, and this was made in the first lesson. Then, the students 
started their research in the library, by selecting some texts, documents etc. as possible R◊

i. At the 
end of this class, each group presented and discussed with the teacher and the other groups their 
findings and possible ways to face Q0. In the second class, many emergent questions Qi were made 
explicit, and the teacher and students groups selected which questions Qi and their related 
knowledge Ok were to be studied. This was the regular dynamic during the RSC. Recordings of each 
meeting were obtained and the students’ productions were digitalized and returned in the 
subsequent meeting. The data analysis was performed by using the categories provided by the 
developed Herbartian model (Chevallard, 2013) summarized before, and all derivative questions Qi, 
all “socially accepted answers” R◊

i found by the students, together with the Ok studied were 
described and analyzed. 

The Praxeological model of reference (PMR) and the RSC 

The starting question Q0 is: Why did the Movediza Stone in Tandil fall down? This enormous basalt 
stone has remained the city’s landmark, providing it with a distinctive feature. Many local people 



and national celebrities visited the place to watch closely the natural monument. It was a 248-ton 
rock, sitting on the top of a 300-meter-high hill (above sea level), which presented very small 
oscillations when disturbed in a non-arbitrary spot, as shown in Figure 1. Unexpectedly, on 
February 28, 1912, the stone fell down the cliff and fractured into three pieces, filling the town with 
dismay at the loss of their symbol. For over 100 years the event produced all kinds of conjecture, 
legends, and unlikely scientific explanations for the causes of the fall. Within the two groups where 
the RSC has been performed, there existed a certain curiosity and interest in finding a scientific 
answer to this question.  

Once in contact with the available information, the question evolved into: What conjectures are 
about the causes the Movediza Stone fall, and which is the most likely from a scientific viewpoint? 
Considering that the fall can be explained by means of the Mechanical Resonance phenomenon, 
several questions Qi arose which are linked to the physical and mathematical knowledge necessary 
to understand and answer Q0. 

 
Figure 1: Photography of the Movediza Stone (Photo Archivo General de la Nación Argentina, available in: 

http://bibliocicop.blogspot.com.ar/2012/02/piedra-movediza-100-anos-de-su-caida.html) 

If we consider that the real system is an oscillating system, the study can be carried out within the 
Mechanic Oscillations topic, starting from the spring or pendulum models which are ideal at the 
beginning. In this case, frictionless systems are used, in which the only force in action is the 
restoring force depending in a linear way on the deviation respect to the equilibrium position, and 
which produces oscillating systems known as harmonic, whose motion is described by a second-
order linear differential equation, called by the same name. In the case of the pendulum, the 
restoring force can be considered depending on the oscillating angle (for small angles).  

Progressively, the system becomes more complex. If friction-produced damping is considered, it 
provides a new term to the differential equation connected to the first derivative of the position 
(speed). Finally, it is possible to study systems that apart from being damped, they are under the 
action of an external force, and therefore called driven systems. Whenever this given force is 
periodic and its frequency coincides with the natural (free of external forces) frequency of the 
oscillating system, a maximum in the oscillation amplitude is produced, generating the phenomenon 
known as mechanical resonance. By increasing the complexity of the model, it is possible to 
consider a suspended rotating body, instead of a specific mass. This leads to the study of the torque 
and the moment of inertia of an oscillating body. Here again, the linear system is for small 
amplitude oscillations and the damped and driven cases can be also considered, corresponding to 
the same mathematical model, but in which the parameters have a different physical interpretation.  



However, as it refers to a suspended oscillating body, this is not a suitable physical model for the 
Movediza stone system. Since that the base of the Stone was not flat, it is necessary to consider 
more precise models of the real situation. This leads to the mechanics of supported (and not 
hanging) oscillating rigid solids. In this case, we consider a rocker-like model in which the 
movediza stone base is curved and it lies on a flat surface, where the oscillation is related to a roto-
translation motion (Otero, Llanos, Gazzola, Arlego, 2016 a, b). The application of Newton Laws to 
the rocker model of the movediza stone leads to a differential equation of the type harmonic 
oscillator, where the parameters are now specific of the movediza system: mass, geometry, inertia 
moment, friction in the base, external torque, etc. It leads to the following effective Harmonic 
oscillator mathematical model of the movediza physical system: 

)cos()/( 0
2
0 wtIMw       (1) 

The solution to equation (1) is    wtt M cos)( , being the amplitude M  and the phase   

22222
0

0

)( 


www
IM

M


    











 

22
0

1

ww
wtg 



 

The maximum of M is for 22
0  ww . The parameters: M0 (external torque), I (inertia moment), 

w0 (natural oscillation system frequency) and  (friction coefficient), must be estimated. Detailed 
data about the shape, dimensions and center of mass position of the movediza stone are available 
(Peralta, et al 2008) after a replica construction and its relocation in 2007 on the original place 
(although fixed to the surface and without possibility to oscillate). These data bring us the 
possibility to fix some parameters in our model, as e.g. mass, inertia moment, and the distance of 
7.1 m, from which the external torque could be exerted efficiently by up to five people (per 
historical chronicles) to start the small oscillation. By using these values, it is possible to study the 
behavior of the )(wM  function for w0 in a range of frequencies between 0,7 Hz and 1 Hz, 
historically recognized as the natural oscillation frequencies in the movediza stone system and 
calculate for each case the maximum amplitude )( mM w  that occurs for 22

0m γww  .The Stone 
would fall if )( mMc w  , being  IwMwmM 00 /)(  the maximum value of the amplitude 
function, that is to say )/( 00  IwMc  . The value of c  can be determined by an elementary 
stability analysis, which according to the dimensions of the base of the stone and the center of mass 
position is estimated to be approximately of 6°. In the present model, we cannot estimate . If we 
adopt “ad doc” for this parameter, a magnitude order 210 , we obtain in the various situations 
considered with different torques and the interval frequencies previously mentioned, that all the 
scenarios support the overcoming of the critical angle, i.e., predict the fall. Later, in search of a 
more appropriate approximation of the physics model for the damping that is clearly not due to air, 
we can consider the stone as a deformable solid, where the contact in the support is not a point, but 
a finite extension. Therefore, the normal force is distributed on such a surface, being larger in the 
motion direction and generating a rolling resistance, manifested through a torque contrary to the 
motion due to friction. The rolling resistance depends on the speed stone, giving a physical 
interpretation to the damping term. Therefore, the physics behind the damping is the same that 



makes a tire wheel rolling horizontally on the road come to a stop, but in the case of the stone, the 
deformation is much smaller. Although the deformable rocker model has extra free parameters, 
tabulated values of rolling resistance coefficient for stone on stone, which are available in the 
specialized literature, allowed us to estimate and justify the damping values that we incorporate 
otherwise ad-hoc in the rigid rocket movediza model.  

Some results obtained in the two implementations 

During the implementations, the students aim at answering how and why the stone fell down the 
cliff. At the beginning, the TTs searched in the elementary physics textbooks for an “already-made” 
mathematical and physical model, which allowed them to solve a differential equation in a specific 
way. In both implementations, several physical and mathematical questions arose; the main 
preoccupation of the TTs was to study the oscillations subject, because it was a new knowledge to 
them. The implementation was carried out in parallel with a Differential Equations course, and none 
of the groups seemed to have difficulties with the underlying mathematics. In both implementations, 
the TTs tried to find a physical model suitable for the situation and they decided on the physical 
pendulum model initially, whose mathematical model might be adequate to the problem, although 
physically inadequate. However, the path performed in the first implementation was different from 
the second. In the first case, the TTs did not question the physical model, and spent most of the time 
to the study of inertia moment concept and their calculation for regular solids, which would result in 
an appropriate model for the irregular shape of the stone. Several interesting questions were 
therefore generated, for which the answers were provided by the teacher and the students together. 
After, the students calculated by themselves the characteristic frequency of the system, making use 
of the moment of inertia previously obtained. Thus, only a parameter resulted undetermined: the 
damping. But in the end, the physical pendulum model became an obstacle, because the stone was a 
supported body, and not hanged. On the other hand, the damping they considered was due to air-
friction, whereas in the case of the movediza stone the main source of friction is the contact with the 
support surface. 

At this point, the external torque (there were different trials to analyze and estimate it) and the 
solution of the equation remained unstudied. Until this moment, the solution for the differential 
equation did not seem to present any obstacles to the students, who considered they were facing an 
initial value problem. Once they had obtained the parameters, which they considered fixed, the 
solution seemed simple. However, they had problems to arrive at a final solution, even though this 
can be found in the physics textbooks (without its deduction). For this reason, it was discarded and 
they decided to do the calculation on their own. This event complicated the quantification they 
aimed to obtain, as well as the physical interpretation. Some groups in this cohort removed the term 
of damping, to reduce degrees of freedom; thus, the stone would have been in perpetual motion. 
This did not create any contradiction to them. Other ones adopted a damping value due to air-
friction, which also led to wrong results. In summary, instead of adopting and adapting the solution 
that was presented in physics books, the TTs in this cohort dismissed it and did not interpret the 
answer in the texts concerning the Stone. The decision of the teachers to delay their intervention 
was with the purpose to make students live the dynamics of progress and drawbacks typical of the 
research and study courses. In addition the TTs had problems to understand the utility and necessity 



of mathematical models, due to an epistemological conception close to pure or formal mathematics. 
The TTs did not understand how to use the mathematical models, neither the role that the 
parameters could play, which were considered as fixed and universal. In consequence, they failed to 
establish different sets of parameters and did not generate the feasible families of functions and 
values, whose compatibility with the physical situation could have been analyzed. These difficulties 
were considered for the second implementation of RSC. In the second cohort (TT2), the teachers 
had already perceived that the fundamental problem seemed to be in the models and in the 
modelization. For this reason, it was decided to devote 8 sessions to the development of two intra-
mathematical RSCs (Chappaz & Michon, 2003; Ruiz, Bosch, Gascón, 2007), that the TTs could 
experience by themselves, therefore emphasizing the role of the modelization and the use of devices 
as spreadsheets and plotters. Besides, in this case, the teachers intervener as soon as the students 
proposed the physical pendulum and spring models. One group studied the AMS for the simple 
pendulum, the spring, and the physical pendulum, another group studied the spring model in all its 
possibilities and the third one did not develop further than the AMS in simple pendulum and spring. 
The synthesis stage corresponding to that class allowed the production of a complete answer for the 
three models and its possibilities, from which the TTs and the teacher arrived at the conclusion that 
the same mathematical model represented (9) nine different physical systems (Figure 2). A large 
amount of time was devoted to pondering on the differences and similarities between the 
mathematical and physical models and their connection with the real system we aimed at modeling. 
Then, the answers to the equations presented in the books were checked out. 

 
Figure 2: Protocol of the student E17. Implementation 2 

In both cohorts, as a fixed route that is inevitably set by the books, the TTs came across the physical 
pendulum. However, in the second cohort some students presented strong objections to the 
possibility of using it in the case of the stone, not so much in relation to a body that is supported but 
as an “inverted” pendulum. This drew the discussion once more towards the real system and the 
standing point, so that the path went through the models which refer specifically to the system and 
that are not, usually in elementary books, like a rocker. 



Firstly, the equilibrium was analyzed and the critical angle was calculated, and then, the model of 
the base of the movediza stone was sophisticated. For the study of the rigid solid physical model, 
the teacher proposed to the students a little text, as a new Ok that could be introduced into the 
didactic medium M. Finally, the students and the teacher calculated and estimated the parameters of 
the differential equation solution, and the classroom elaborated an answer that allows the 
explanation, by means of a model, of the plausibility of the fall. 

Conclusions 

Despite of the difficulties, the TTs experienced a genuine RSC within its means. There is a visible 
initial reluctant attitude on the part of the TTs: Why physics should be studied if we are teachers of 
mathematics? Later, it was gradually understood that the idea was to experience a genuinely co-
disciplinary RSC, to analyze it and comprehend the teaching model supporting an RSC.  

Even though the TTs had studied the ATD and other didactic theories, they did it in a traditional 
way comparable to the traditional training they get. This is reflected in the difficulties they have to 
understand and to use both physics and mathematical models. It was not expected that the TTs 
developed the models by themselves, but it was expected that they used the mathematical answers 
presented in the physics textbooks in a pertinent and exoteric manner. This fact did not occur in the 
first group and improved in the second one from the didactic decision to make a previous incursion 
into mono-disciplinary RSC particularly suitable for evidencing the role of the functional 
modelization. In addition, this allowed teachers to discuss the relationship between the 
mathematical model and the physical model and the meaning and role of the parameters. 

The TT’s behavior is interpreted from the fact that although they have experienced four years of 
“hard” university studies, the utility of the science they aim at teaching had never been visible. The 
epistemological conception about the mathematics produced by the traditional paradigm is so 
ingrained, that it is complex to reverse it. This would be, in our view, the most relevant drawback to 
permit the TTS at least understand what an RSC is and how the modelization activity works? 
However, it is important to notice that the sporadic incursions in the modelization activity do not 
seem enough to allow the TTs develop such school practices. Although the predominant teaching is 
mainly traditional, the TTs will face increasing demands for a change to a mathematic teaching 
based on the research, questioning and modeling. It is unlikely that a teacher whose training has 
been answers-based teaching can teach by means of questions. Then the training of teachers has to 
change profoundly. 
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Writing fictional mathematical dialogues as a training and 

professional advancement tool for pre-service and in-service math 

teachers 
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Pre-Service and In-Service Math Teachers are often surprised to find themselves at a loss for words 
in the mathematics classroom.  This feeling is not limited to the first day of class or to beginning 
teachers.  Even experienced teachers describe unexpected classroom situations in which they 
cannot find the proper words to respond or to explain or mediate ideas. The teaching routine is 
fraught with on time decisions teachers must make. The objective of the current study was to 
promote the development of spoken and written mathematical discourse among pre-service and in-
service math teachers in the context of classroom scenarios they considered unexpected and 
complex. The training was directed toward developing argumentative mathematical discourse skills 
through writing, with emphasis on writing fictional dialogues. The research focuses on the 
characteristics of fictional mathematical dialogues written by pre-service and in-service math 
teachers and seeks to show that these dialogues can used as a professional advancement tool.   

Keywords:  Writing fictional mathematical dialogues; professional advancement tool; pre-service 
and in-service math teachers. 

Introduction 
Teachers make decisions based upon knowledge, goals, beliefs and orientations. Accordingly, 
developing all of these factors can help promote decision making in the mathematics classroom. 
For many years, I have been seeking creative ideas that will enable in-service and pre-service 
teachers to predict scenarios and unexpected situations in the mathematics classroom. Thus, they 
will be able to practice mathematical discourse before coming to class and to learn to provide 
argumentative responses that are quick, accessible and flexible.  Teachers' responses in class and 
their responsibility in developing mathematical discussions and discourse have been the topics of 
much investigation (e.g., Schoenfeld, 2008-2011). The literature has placed less emphasis on 
examining training methods for developing discourse management for predicting unexpected 
classroom situations in advance, particularly training all that through writing.  
Zazkis and Koichu (2015) describe a fictional dialogue on infinitude of primes between Euclid and 
Dirichlet and use this as a research method. The current study focuses on pre-service and in-service 
math teachers who write "fictional dialogues" as part of their training. The goal of this writing is to 
develop their ability to explain, respond and engage in argumentative mathematical discourse in a 
learning situation characterized by unexpected situations. The results of the current study indicate 
that the task of writing fictional dialogues has several advantages. One advantage relates to 
professional development and renewal. Veteran teachers tend to feel less challenged and less 
interested in preparing lessons in advance. Writing fictional dialogues challenges them to formulate 
unexpected mathematical situations for mathematical topics and ideas that for them are seemingly 



simple and trivial. In writing fictional dialogues, they discovered both mathematical and didactic 
innovations. Another advantage applies to training. In writing the dialogues, beginning teachers 
learned to develop written mathematical discourse that explains the essence of mathematical terms. 
Further, they learned to use visual or other representations in context and practiced giving 
explanations to learners with a variety of learning styles.  

Theoretical background 
Unexpected situations in the mathematics classroom differ from teacher to teacher due to 
differences in the extent and depth of their mathematical knowledge, their ability to identify such 
situations and their ability to make decisions in real time about the didactic concepts appropriate for 
each situation. Hence, I examined the research literature on major topics related to the current 
research. These include training pre-service and in-service math teachers by means of writing, the 
role of the teacher in discourse development and management in the mathematics classroom, 
mathematical argumentation as a teaching tool and interaction in the mathematics classroom 
(Malaspina, Mallart, Font, , & Flores, 2016). The conclusions of these studies led me to formulate 
ideas for a unique intervention "training" program with the potential to promote mathematical 
discourse in the classroom in general and argumentative mathematical discourse in unexpected 
situations in particular. In the following sections, I review the relevant literature in these fields and 
explain how these studies relate to the current research.  
Professional development and learning through writing 

Teacher training usually incorporates writing through writing assignments about ideas learned in 
class or as reflection on learning (Korkko et al., 2016). Turning writing into a goal in and of itself is 
an innovation in the training of mathematics teachers. Therefore, in order to construct an 
intervention program that emphasizes writing, I surveyed and studied research that examines the 
advantages of writing in teaching math and of pedagogy based on writing in general. 
In the study by Bostiga, Cantin, Fontana and Casa (2016), the students learned by writing diaries on 
mathematical argumentation. The research indicates that the process of writing develops students' 
in-depth thinking about mathematical concepts as well as underlining erroneous or other perceptions 
of concepts or phenomena. The writing process and the accompanying feedback prompted the 
students to write more precisely about mathematics, directed them to give arguments, explanations 
and reasoning in their writing and taught them to edit and rethink mathematical ideas. From this 
study among students, I decided to try to generalize the method for adults and to examine the 
results. Adults with a common professional interest often write together in a process that advances 
their shared understanding and learning in the field (Lowry et al., 2004). 
Griffin and Beatty (2010) examined the attributes of shared writing among adults with a common 
professional interest. Their research pointed to several advantages, including professional and 
personal growth among the writers, a greater degree of creativity, the generation of new ideas and 
understandings, diversification in areas of specialization, increased documentation and output 
abilities, and shared knowledge. Shared writing generates a unified voice, increases feelings of 
satisfaction and pride in integrating the personal voice into the voice of the group and expresses 
respect for individual knowledge. Therefore, in this study the writing took place in pairs or in small 
groups as part of the process of developing skills in argumentative mathematical writing. 



Read (2010) proposed the IMSCI model for supporting the writing process, with writing serving as 
a pedagogical tool for assimilating learning. In the IMSCI acronym, "I" stands for inquiry, "M" for 
modeling, "S" for shared writing, "C" for collaborative writing and "I" for independent writing. This 
scaffolding model was integrated into the intervention process in the current study. 
Spoken or written mathematical discourse 

According to Sfard (2008a; 2008b), discourse has four characteristics: vocabulary, visual mediators, 
unique routines and customary utterances. In the communicative approach, thinking constitutes an 
individual's discourse with the self. Such a discourse can yield ideas that express the thinking of 
those participating in the discourse. In contrast to those who talk, some people express themselves 
through writing and symbolic mathematical representations and have difficulty expressing their 
ideas verbally. Such individuals may eventually become teachers whose skills in developing and 
conducting mathematical discourse are not sufficiently developed. In most cases, this does not point 
to a lack of mathematical knowledge but rather to the difficulty teachers experience in translating 
this knowledge, which perhaps is represented in their minds through nonverbal symbols, into verbal 
tools. Mathematics teachers must generate significant discourse in their classrooms. Such discourse 
constitutes an organized and connected collection of all their students' and their own intellectual 
ideas. The job of the teacher is to conduct a discourse that reflects ideas and encourages participants 
to discuss these ideas, to endorse or refute them and to arrive at valid and agreed-upon mathematical 
rules that can be implemented in new situations that are similar or different. How can we promote 
and cultivate teachers who have the awareness and skills to cultivate this type of classroom reality? 
Wagganer (2015) proposed five strategies for supporting meaningful math talk in class. First, 
teachers must talk with their students and arrive at common insights regarding the importance of 
math talk in the classroom. Second, teachers are responsible for teaching their students to listen and 
respond appropriately to one another. Third, teachers must teach their students to write sentence 
stems to emphasize their responses. Fourth, teachers must teach and demonstrate the difference 
between explaining and justifying what someone else says. Finally, teachers must provide examples 
of all these actions in class. The current study implemented all of Wagganer's ideas with pre-service 
and in-service teachers in the general context of group mathematical discourse and the particular 
context of written mathematical discourse in unexpected situations in the mathematics classroom. 

Methodology 
Participants  

The research participants included undergraduate students taking a course that taught didactic and 
pedagogic skills for teaching math in elementary and junior high school and graduate students in 
mathematics education who teach math to all ages and at all levels. The two groups together totaled 
35 students, as half of them were teachers were in fact teachers. 

The research tool  

Intervention design –The two courses comprised the same several stages. First, the students read the 
article by Zazkis and Koichu (2015) about fictional dialogues in order to understand and define 
fictional dialogues in the context of their unique methodological role in the original article. Next, 
we adopted the skill of writing fictional dialogues as a tool for developing spoken and written 



mathematical discourse in lesson planning for unexpected situations in the math classroom. We 
embraced the following quote with the understanding that we as students also seek interesting 
learning methods.  "People are eager for stories. Not dissertations. Not lectures. Not informative 
essays for stories" (Haven, 2007, p. 8). 
Third, we defined and formulated conditions determining whether a potential fictional dialogue met 
the objective. In this stage, we read mathematical dialogues from various sources that resembled 
fictional mathematical dialogues and we reworked their mathematical discourse so it matched our 
definition of a fictional dialogue. Fourth, the students independently wrote fictional mathematical 
dialogues. In the fifth and final stage, the students showed their dialogues to their classmates. This 
generated an evaluative argumentative discussion and, if necessary, led to redesigning the dialogues. 
Throughout the course, we documented the sessions and their outcomes focuses on fictional 
Mathematical dialogues. 
Definition of "fictional dialogue" in the current study 

The definition of fictional dialogue emerged from agreement among all course participants and 
included the following characteristics: The dialogue must take place between two people with some 
sort of major gap between them. This gap may be rooted in culture, age, expertise, historical period 
(e.g., one speaker lives in contemporary times and the other lived 700 years ago), mathematical 
knowledge and more. One speaker is an expert in the field and should be able to bridge the gap 
through argumentative dialogue that leads the two speakers to understanding, definition and 
agreement on the mathematical topic they are discussing. The expert presents the mathematical 
explanation using formal intra-mathematical tools and extra-mathematical or other simple, practical 
and concrete examples and explanations. The non-expert participant's dialogue develops in 
unexpected directions, so that this participant can surprise the expert with questions or examples 
that seemingly contradict the mathematical concept under discussion or that present a challenge to 
the clear, simple and popular explanation. In the dialogue, the two participants express their 
perceptions of the mathematical topic being discussed, and each attempts to enrich the other's world 
through the mathematical knowledge at his or her disposal. Through the dialogue, the gap between 
the speakers becomes smaller in that all the relevant mathematical nuances in the field find 
expression in the dialogue. 
Data analysis  

The data analysis focused on the process of establishing the conditions for fictional dialogue. 

Findings  
In this paper, I describe one mathematical event representing two stages of the intervention period. 
Because the research focuses on the final product—"writing"—I give two examples of writing and 
discuss the processes involved in creating them. These two examples show that writing fictional 
mathematical dialogues can serve as a training and professional advancement tool for pre-service 
and in-service math teachers. The first finding refers to the third stage of the intervention period, in 
which we redesigned a dialogue and rewrote it as a group fictional dialogue. At this stage, each 
student individually redesigned the dialogue by writing a new dialogue based on the existing 
dialogue and thus creating a new personal product that conformed to the required conditions. In the 
next stage in the joint group work, the students showed their dialogues to their classmates for 



evaluation, leading to writing an agreed-upon group product. The dialogue is the unified product 
after the group discussed their differences and went through the entire learning process. 

Group design of a given dialogue and its transformation into a fictional dialogue 

The given dialogue is from an Abbott and Costello movie titled Buck Privates: 
Abbott:  You're 40 years old, and you're in love with a little girl, say 10 years old. You're four 

times as old as that girl. You couldn't marry that girl, could you? 
Costello:  No. 
Abbott:  So you wait 5 years. Now the little girl is 15, and you're 45. You're only three times as 

old as that girl. So you wait 15 years more. Now the little girl is 30, and you're 60. 
You're only twice as old as that little girl. 

Costello:  She's catching up? 
Abbott:  Here's the question. How long do you have to wait before you and that little girl are the 

same age? 
Costello:  What kind of question is that? That's ridiculous. If I keep waiting for that girl, she'll pass 

me up. She'll wind up older than I am. Then she'll have to wait for me! 
In order to determine whether this qualifies as a fictional dialogue, we mapped it to see whether it 
fulfills the conditions for fictional dialogues formulated in the second stage of the course. The 
mapping results indicate that the dialogue does not meet the conditions to qualify as a fictional 
dialogue. Hence, we redesigned the dialogue to fulfill the necessary conditions. Each course 
participant individually designed and wrote a fictional dialogue. In the next stage, the students as a 
group combined these individual dialogues into a fictional group dialogue. The group dialogue 
features an expert "player" called Achilles, provides intra- and extra-mathematical explanations, 
stresses the perceptions of each of the speakers so that it is clear who represents the erroneous 
perception and who represents the appropriate perception and stresses the unexpected situation. 
Using the ideas from the individual dialogues, the group wrote an argumentative fictional dialogue 
that gap the discrepancy between the speakers to the point of generating an unexpected situation in 
which the speakers "reverse" their roles, so that the rookie, Costello, triumphs over the expert, 
Achilles. The following lines from the dialogue demonstrate compliance to condition (4) as written 
by the group.  
…………….. 

Achilles: I, Achilles, run at a speed of 10 meters per second. My friend the turtle runs 1 meter per 
second. I decide to give the turtle a head start of 100 meters at the beginning of the race. 

Costello: Wait a minute. This is a fable, right? So I want to convert it to apply to me. I gave the 
girl a forty-year head start. Wow, that's a lot. I am four times older than she is! And you 
run ten times faster than the turtle. Great, I get it. 

………………… 
Costello: So let's assume I'm 240 years old. How old will she be??? She will always be 30 years 

younger than me, so she'll be 210 years old. So her age will be seven-eighths of my age. 
It appears we are slowly advancing to the point where we're the same age. 

Achilles: No. That's not right. Let's go back to my turtle. 



Costello: I'm not going back to your turtle because I've discovered the problem and also the 
solution. The girl and I will never get married because there will always be a fixed 
difference of 30 years in our ages. But there is not a fixed difference of 100 meters 
between you and the turtle because around 12 seconds after the beginning of the race 
you will already catch up with the turtle. In ten seconds you run 100 meters and in 
another two seconds you run another ten meters, so the race is over because the turtle 
continues to trail behind you. 

Achilles: Does that mean that the age difference problem is not representative of infinity. 
Costello:    Now we've switched roles. I'm the mathematician. What are you? The concept of infinity 
can be represented if the beautiful girl and I live forever and do not die. From a situation in which 
I'm four times her age and then three times her age, we get to a situation where the ratio is 7:8, and 
we can go on to 8:9 and even further. While the discrepancy in our ages is still thirty years, with 
time the relative difference in our ages gets smaller. In contrast, when you race against the turtle, a 
quick calculation tells me that you'll overtake your opponent after 12 seconds. The 100-meter 
difference between you is not fixed because you "grow at different rates" That is, you each run at a 
different speed and you are ten times faster than the turtle. 
Dialogue analysis "Age difference problem" 

In the above dialogue, the students completed all the conditions that were missing from the original 
given dialogue. They created two fictional characters and delineated a significant historical and 
mathematical gap between them. They defined an expert speaker who led the dialogue. They 
formulated intra-mathematical explanations (e.g., speed as the ratio between distance time) and 
extra-mathematical explanations (e.g., representing the concept of infinity by means of the girl and 
Costello, who grow forever and never die) for the age problem and for the paradox of Achilles and 
the tortoise. Furthermore, they created two unexpected situations in the dialogue. One was the 
comparison between the age problem and the Achilles paradox. The other was that Costello 
understood the difference between the problems and claimed that the turtle problem differs from the 
age problem ("Now we've switched roles. I'm the mathematician. What are you?"). They created a 
specific explanation for the problem and its concepts and accurately differentiated between the two 
problems. Using the dialogue, they understood that the age problem demonstrates Costello's 
misconception about the age gap, as he thought the gap would decrease over time. 
In contrast, the turtle paradox shows that the gap between the turtle and Achilles is not fixed and 
that the distance decreases with time. Using numbers, the students demonstrated the two situations, 
showing that the gap in the age problem remains constant while the distance between the turtle and 
Achilles continues to diminish. At this stage, they reduced the gap between the speakers' dialogue. 
During the group formulation, the students explored ideas and mathematical explanations. They 
designed and formulated the dialogue as a group exercise, so that in cases of disagreement they 
stopped and sought a consensus in the group. 

Discussion and conclusions 
The current study is a pioneer in this field. The research was inspired by studies that examined 
student writing in math classrooms (Bostiga et al., 2016) and writing-based pedagogies (Korkko et 
al., 2016; Zazkis, at el 2009). The study implemented Read's (2010) method using the IMSCI 



model. Implementing this model one-step at a time was found to be effective and to validate the 
results of studies claiming that only theories that are practically applied in the training process can 
be properly implemented in the field (Anderson & Stillman, 2013; Bråten & Ferguson, 2015; 
Cheng, Tang, & Cheng, 2012; Gomez Zwiep,. & Benken, 2013). That is, it would have been more 
effective to teach the theory of fictional dialogue in the course and then to practice it step by step 
(IMSCI) through actual writing.  
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The use of mathematics coaches as a means of professional development for teachers is an increasing 
phenomenon in North American schools. The research presented here identifies tensions experienced 
by mathematics coaches and how they cope with those tensions. Utilizing a framework that 
characterizes tensions as dichotomous pairings, the results indicate that there are tensions that are 
unique to mathematics coaches. This adds to a growing body of research into the role of mathematics 
teachers. 

Keywords: Tensions, mathematics coaches, professional development. 

Introduction and background 
In their search for school-wide models that support improvements in the teaching and learning of 
mathematics, districts are, “embracing coaching as a model of authentic professional development 
wherein teachers can learn in the context of their schools and their instructional practice” (Campbell 
& Malkus, 2014, p. 213). Underlying this development is the recognition that schools need to become 
places where both students and teachers can learn (Hawley & Valli, 1999). With this in mind, districts 
have begun placing mathematics specialists in their schools to work directly with practicing teachers 
(Anstey, 2010).  

Bearing a variety of labels, such as mathematics specialist, numeracy specialist, lead teacher or 
learning coach, a mathematics coach is generally a highly knowledgeable teacher hired to support the 
improvement of mathematics teaching and learning within a district (Anstey, 2010). An effective 
mathematics coach would have a deep understanding of mathematical content combined with 
pedagogical expertise and strong interpersonal skills. Usually they are former classroom teachers, 
recognized for their abilities and promoted from within (Campbell & Malkus, 2011).  

Mathematics coaches are responsible for providing ongoing professional development of the 
inservice teachers in their districts by “advocating for their change, nurturing their performance, 
advancing their thinking, increasing their mathematical understanding, and saluting their attempts” 
(Campbell & Malkus, 2011, p. 459). To reach this goal, mathematics coaches’ work varies from 
modeling mathematics lessons in a teacher’s classroom to observing and supporting a teacher as they 
teach (Campbell & Malkus, 2014). This is a varied, demanding role that Campbell and Malkus (2011) 
suggest “the profession does not understand and is only beginning to examine” (p. 449).  

The tensions experienced by mathematics coaches is one such unexamined area. A review of the 
literature reveals little information about the dilemmas mathematics coaches face. Literature 
regarding generalist coaches is much richer and suggests several common tensions. For instance, 
Neufeld (2003) identified a series of tensions experienced by generalist coaches that begins with a 
lack of time. This is a frequently experienced tension, whether it is a lack of time to conference with 
teachers or lack of time to prepare for working with teachers. Leaving the classroom environment 
causes tensions for some generalist coaches, as does the switch to working with adults. Tensions also 
occur when teachers are slow to uptake change or are actively opposed to its implementation. Finally, 
Neufeld (2003) suggests tensions for generalist coaches arise from working with uncooperative 



school cultures or administration and from a lack of opportunities for personal professional 
development. While there are perhaps some commonalities between these tensions experienced by 
learning coaches in general and those experienced by mathematics coaches in particular, it would be 
of benefit to identify whether there are any tensions specific to mathematics coaches. Jones (1995) 
suggests that “members of the mathematics education community, whether in schools, colleges, or 
universities, have a responsibility to help one another recognize and deal with tensions in a productive 
way” (p. 233). The intent of this paper then, is to identify some of the tensions experienced by 
mathematics coaches.  

Theoretical background 
Endemic to the teaching profession, tension encompasses the inner turmoil teachers experience when 
faced with contradictory alternatives for which there are no clear answers (Adler, 2001; Berry, 2007). 
Building on the work of Berlak and Berlak (1981) who identified sixteen dilemmas that illuminated 
the relationship between everyday school events and broader social, economic, and political issues, 
it was Lampert (1985) who first suggested the notion of teachers as dilemma managers who accept 
conflict as useful in shaping both identity and practice.  

For the purposes of this study, I turn to the work of Berry (2007) whose self-study of tensions in her 
role as a teacher-educator resulted in a binary categorization of tensions. Seeking to depict the inner 
turmoil she experienced from the competing pedagogical demands in her practice, she proposed a 
framework for both identifying and understanding tensions. Isolating the following six pairs of 
interconnected tensions, Berry used these as a lens to examine her practice: (1) Telling and growth–
between informing and creating opportunities to reflect and self-direct (2) Confidence and 
uncertainty–between exposing vulnerability as a teacher educator and maintaining prospective 
teachers’ confidence in the teacher educator as a leader (3) Action and intent–between working 
towards a particular ideal and jeopardising that ideal by the approach chosen to attain it (4) Safety 
and challenge–between a constructive learning experience and an uncomfortable learning experience 
(5) Valuing and reconstructing experience–between helping students recognise the ‘authority of their 
experience’ and helping them to see that there is more to teaching than simply acquiring experience 
6) Planning and being responsive–between planning for learning and responding to learning 
opportunities as they arise in practice (Berry, 2007, pp. 32–33). 

Although initially used as a framework to isolate tensions in the work of teacher education of pre-
service teachers, Berry’s (2007) framework has been used in other contexts as well. As part of a 
larger, ongoing project, of which this paper is a part, Liljedahl, Andrà, Di Martino, and Rouleau 
(2015) applied Berry’s tensions framework to a fictional composite of a mathematics teacher that 
comprised a collection of data sets. Their work expanded Berry’s framework by identifying new 
tension pairs and they concluded that some tensions may be the driving force behind a teacher’s 
pursuit of professional development by fueling a desire for change in practice.  

While considered relative newcomers, mathematics coaches are part of a mathematics community 
that includes both pre-service and inservice teachers. Given that developing a shared understanding 
of the tensions teachers face gives them the power to shape the course and outcomes of their teaching 
practice (Adler, 2001); it is likely the same would be true for mathematics coaches. Bringing the 



challenging aspects of their work to light would offer mathematics coaches the opportunity to 
recognise, talk about, and act on the tensions in their practice. 

My goal then, in this article, is to isolate some of the tensions experienced by mathematics coaches. 
Specifically, using Berry’s (2007) framework, I will identify and describe the tensions they face and 
how they cope with them. Thus, my research questions are as follows: (1) What are some of the 
tensions experienced by mathematics coaches? (2) How do mathematics coaches cope with those 
tensions? 

Context and method 
This study is part of an ongoing research project regarding tensions in teaching. In particular, it is the 
first look into the tensions experienced by mathematics coaches. This is a small scale, qualitative 
study that involves only three participants. As such, I am focusing on proving the existence of a 
phenomenon rather than its prevalence. It is important to note, however, that I chose to report only 
on those tensions that were experienced by more than one participant. While aware that a single 
instance of a tension can be as revealing as multiple instances, it is less likely to be seen as 
representative of a generalizable pattern. In keeping with that, the data corpus comprises interviews 
with three mathematics coaches working in three separate school districts. 

Tara is employed by a small urban school district that employs 430 teachers in 17 schools. She has 
been in the role of K-12 District Numeracy Coordinator for 4 years. Prior to that, she worked as an 
elementary classroom teacher for 18 years. Having had negative experiences as a learner of 
mathematics, Tara’s interest in math was only ignited 14 years ago after attending a mathematics 
professional development workshop. During the ensuing years, she attended every mathematics 
professional development opportunity offered and developed a passion for the teaching and learning 
of mathematics. She is about to begin a Master’s degree program with a numeracy focus.  

Pam works for a small rural school district with 23 schools and 320 teachers. Employed as a classroom 
teacher for over 30 years, she has taught all grades K-7. Pam completed a Master’s degree with a 
numeracy focus in 2011 and left the classroom in 2012 to take on the role of Numeracy Helping 
Teacher. She has always enjoyed and had a passion for math.  

Ray is employed by a large urban school district that employs over 1000 teachers in 49 schools. He 
worked for his district for 18 years as a secondary math teacher before taking on the role of Math and 
Science Program Consultant 4 years ago. During his time in the classroom, Ray completed a Master’s 
in secondary mathematics education and was involved with his province’s math teachers’ association. 
Ray went on to serve a term as the association’s president, while working as his district’s math 
consultant. Like Pam, Ray has always enjoyed math and wants to recreate that experience for the 
teachers and students in the classrooms he supports. 

Data was collected from the participants during semi-structured interviews that were transcribed in 
their entirety. The data corpus was then scrutinized using Berry’s (2007) framework as an a priori 
frame for identifying and coding tensions. To begin this was done by searching the interview 
transcripts for evidence of tensions. In particular, I looked for evidence of utterances with negative 
emotional components such as “I think what’s been difficult…” or utterances that conveyed doubt or 
uncertainty such as “I wasn’t 100% sure, but…”. The identified tensions were then grouped according 



to the pairings described by Berry. Additionally, the framework was extended to encompass a tension 
that did not fit within her established framework.  

Analysis 
In the following analysis, Berry’s (2007) framework will be used to identify and analyze the tensions 
experienced by the three participants in their roles as district mathematics coaches. During the 
analysis, the following four tensions pairs were evident. 

Safety and challenge - Unwelcome in the classroom 

All three of the participants mentioned the conflict they experienced between their desire to be 
working with teachers in their classrooms and not having that support seen as threatening. They 
describe the teachers as uncomfortable in having someone observe them and therefore are unable to 
utilize this valuable learning opportunity. A tension arises for the mathematics coaches who, like 
Berry (2007), want the teachers to feel safe, but who also recognize the value in challenging the 
teachers to open their doors. This is evident in the following excerpts: 

Ray: And I think that teachers are a little reluctant to have people in their classroom and do, sort 
of team teaching or have someone observe them… that hasn't happened as much as I kind of 
thought it would or as much as I’d sort of like. 

Pam: The kind of biggest piece, I think, for us, is how do you support those teachers that are too 
nervous or too anxious about having someone come in? 

Tara: If I get invited in, I'm in, I go. Absolutely. But unless I'm invited in, it doesn't, like, I don't 
just, well, I shouldn't say I don't just show up…. but to be actually modelling in a classroom and 
doing observations, that's all by invite. 

As a rationale for the teachers’ reluctance, both Pam and Ray offer related possibilities. Pam suggests 
that the teachers’ reluctance stems from a fear of being evaluated even though she feels she makes it 
clear that her role is one of mentorship and has no evaluative elements stating, “They haven’t shifted 
away from that fear yet, that I’m there to judge. I’m not, I’m there to support them.” Ray suggests 
that the teachers are concerned with the overall quality of their lesson, which then becomes a barrier 
to observation, “When it comes down right to it, you know, we’re all a little bit unhappy with every 
lesson we ever do so I don’t really want you seeing me because, you know, it's got its warts and all 
that stuff. And so, a lot of good people, but not necessarily wanting people in their classrooms.” 

For all three, this appears to be an unresolved, ongoing tension in that none have successfully found 
ways to make classroom visits an accepted part of their roles. Pam, in particular, mentions that this 
tension leads her to consider ways of presenting this opportunity to learn as risk-free noting, “Well, 
I’d really like to be in more rooms and influencing more teachers. I’m trying to think of ways I can 
do that to support them.” 

 

Valuing and reconstructing experience - Resistance to change 

Another of the tensions that was apparent for all three participants was similar to Berry’s (2007) 
tension of valuing and reconstructing experience. The mathematics coaches experienced a dilemma 
between acknowledging the authority of the teachers’ experience and helping them to see that there 



is more to teaching than simply having acquired a requisite amount of experience. This is best 
exemplified by Ray in the following excerpt: 

Ray: I think the biggest barrier tends to be, as teachers, we’ve gone through a system a certain way 
that we can visualize how it looks in the classroom. We’ve taught that way and we see successes 
in that, in either ourselves or some students, and we hang onto those successes as sort of validation 
for doing what we do. And we tend to say, ‘Well, those other kids just aren’t being successful. 
They’re not working hard enough. They’re not trying hard enough. They need to do things 
differently. They need to change.’ And I don’t think a lot of teachers are as good at saying, ‘Well, 
what do I need to do differently? What do I need to do to change?’  

The mathematics coaches value the experience their teachers have, but know that experience can 
always be broadened and improved. None of data from the participants suggest they use a deficit 
model approach to coaching teachers, but rather they believe there is always room for growth. This 
belief perhaps stems from their own experience with life-long learning. They want the teachers they 
work with to consider which areas of their practice would benefit from further learning and support. 
As Ray suggests, “And, I think if teachers just come out a little bit more with the willingness that, 
you know, as good as I am, (laugh) I probably could be a lot better. That would be very helpful.” 

The data suggests that all three mathematics coaches see this tension as a resistance to change and 
this manifests in different ways. For Tara, who described her own career in terms of ongoing growth 
and change, the tension stems from the assumption that her colleagues would be open to similar 
experiences. She finds it difficult to accept that change is slow stating, “So I made the assumption 
that was once other teachers kind of have these a-ha moments [as she did], they would just fly and 
I've come to realize that's not the case.” 

Ray also experiences tension in slow change, but notes that, while “teachers can be very confident 
about some things and don’t necessarily challenge themselves as much as they could”, it is possible 
that “as much as we sometimes want to change, it’s a lot of work to change and people only have so 
much time in the day so they sometimes just don’t even get started.” Ray’s view suggests that outside 
influences play a role in teachers’ readiness or willingness to change. 

Pam views the resistance to change as more of a readiness factor. Her tension lies in the fact that the 
teachers she works with are not as ready to reconstruct their teaching experiences as she would like 
them to be. She recognizes that she “wants them to try more than they’re capable of trying” and is 
aware that she’s “not giving them time to slowly implement what they’re comfortable with”. She 
values the experience they bring, but struggles to encourage them the consider new practices. 

This too appears as an unresolved tension that all three mathematics coaches deal with on an ongoing 
basis. Pam was the only participant to offer a partial solution, albeit unsatisfactory to her. She 
approaches this tension with perseverance tinged by frustration saying, “Well, I think, you kind of 
got to persist, but it can kind of get a little frustrating at times.” 

Confidence and uncertainty - Questioning role and ability 

A tension that surfaced for both Tara and Pam correlates closely with Berry’s (2007) tension pairing 
of confidence and uncertainty. Both coaches mention having had colleagues question their role and 
their qualifications. This created a tension between the necessity of exposing their vulnerability and 



maintaining the confidence of the teachers they mentor. Tara mentions, “You get the naysayers in the 
room that might, you know, question you on things. The biggest thing I get is what are your 
qualifications to do this job. That's what I get all the time.” And Pam adds: 

Pam: I've had people that have said to me, I know enough that I don't really need you and I don't 
understand why the district is wasting money on your job. It's the senior math people, the 10, 11, 
and 12, that are the hardest to influence and they don't want to be influenced by me. I've been told 
many times by them that I have not the experience. 

For both Pam and Tara, this appears to be a managed tension. Although the questions regarding their 
qualifications continue to be asked, neither seem to regard it as an ongoing source of tension. Both 
admit to limiting their role to elementary and junior high school and, for Pam, holding a Master’s in 
Numeracy was perhaps sufficient to manage any remaining tension. Tara chose two other methods, 
which appear to offer the credibility she needs to answer any questions—she outlines her credentials 
and acknowledges the research behind best practice in mathematics: 

Tara: So what I started to do more of after that was, whatever I was giving a recommendation for, 
I always had research to back up my recommendation. So I was always presenting what the 
research was saying. Always. […] I lay out what courses I've taken, the journey I talked to you 
about, and why it's a passion. They seem to be a little better once they hear that story. 

Initiative and systemic barriers - Working with learning assistants 

This is a tension pairing that extends Berry’s (2007) framework as it does not have a counterpart 
within her original set of tensions. It surfaced when the mathematics coaches were asked what they 
would like to implement in their role but have not been able to as of yet. Both Pam and Ray mentioned 
working with learning assistants. A strong desire to support every adult involved in the learning of 
students in their district drives them to want to work more closely with the learning assistants. Yet to 
do so would disrupt an existing functioning system. Ray expresses this clearly in the following 
excerpt: 

Ray: I’ve got a few things that are sort of happening, but not as deeply as I’d like. One of them is 
the learning support group in our district. They all work a little bit differently and it’s kind of hard 
to connect with them the way we’re set up in the system. 

Their initiative meets with resistant in the form of systemic barriers. In Pam’s case, it is a result of an 
administration system that limits her contact with colleagues to only classroom teachers. For Ray, it 
is a result of different priorities. Like Pam, the learning assistants in his district provide both numeracy 
and literacy support — and that support tends more towards literacy. Ray notes, “They tend to be 
very heavily focused on reading recovery/writing kind of stuff over the years and they just haven’t 
had a lot of time to get together and talk about anything around math.” 

Both Pam and Ray mention wanting to circumnavigate the systemic barriers and provide professional 
development to the assistants, who, in their respective districts, tend to work one-on-one in pullout 
environments with students. Ray wants the opportunity to offer more effective resources. Pam agrees, 
adding, “They are sending these support people out to work with students, but they’re working same 
old, same old. The child gets the same kind of repetitive practice over and over again and it never 
moves them forward.” 



This is an unresolved tension that has both mathematics coaches searching out solutions. Ray offers 
the vague “hope” that he will be able to connect with the learning assistants this coming school year, 
but does not go deeper into his plan. Pam plans on speaking with her assistant superintendent to seek 
her assistance in convincing the learning assistant teachers that she is capable of providing them with 
support. 

Discussion and conclusion 
The first goal of this study was to identify tensions experienced by mathematics coaches. Three 
tensions emerged that closely aligned with the tension pairings in Berry’s (2007) framework. The 
fourth was a tension the mathematics coaches experienced in their desire to support learning 
assistants. With no obvious parallel in Berry’s work, likely due to her role as a pre-service teacher 
educator, the presence of this tension requires the framework to be extended when considering 
tensions experienced by mathematics coaches.  

The findings also revealed tensions that could be considered unique to mathematics coaches, as there 
were two tensions they experienced that were not included in the list of tensions identified by 
generalist coaches. The first finding suggests that mathematics coaches may experience tension 
regarding their qualifications. This could be explained by the expectation that a specialist in one 
subject would be expected to have specific skills that a generalist, who works across all subjects, 
would not be expected to have. Additionally, given that many of the mathematics coaches are pulled 
from teaching positions within their districts (Campbell & Malkus, 2011), their former colleagues 
might question their abilities. Interestingly, Ray, who was a secondary mathematics teacher has never 
experienced this tension. Despite having no elementary experience, he stated that he has always been 
“well received” by the elementary staff. His status as a high school mathematics teacher appears to 
offer him credibility across all grade levels. The second tension experienced by mathematics coaches, 
but not generalists, was working with learning assistants. This might be the result of the relative 
newness of the role of mathematics coaches (Anstey, 2010). Districts are still in the process of 
determining the scope of the responsibility of the mathematics coaches in their employ. As Tara 
suggests, “As for the job itself, it was pretty much I just had to build the airplane as I was flying it.” 

The second goal of this study was to identify how the mathematics coaches coped with the tensions 
they experienced. The findings suggest that they appear to fit Lampert’s (1985) image of dilemma 
managers who accept and cope with continuing tension. This means that the mathematics coaches 
initially manage the tensions that surface while never fully resolving their competing conflicts. What 
was interesting was the managed tension that Pam and Tara, both of whom are elementary trained 
teachers, experienced regarding questions about their role and qualifications. Their method for 
managing this tension was avoidance of interactions at the high school level. Similarly to the finding 
in Liljedahl et al. (2015), this suggests that this tension is managed on some levels but there is a 
possibility it could resurface at some point. While both are only required to work with teachers who 
volunteer and are willing, both of their roles encompass grades K to 12. 

While the small number of participants in this study may limit its generalization, the findings do 
indicate the presence of tensions experienced by mathematics coaches. This language of tensions 
could be useful as a means for discussion and reflection on the practice of mathematics coaches. 
Whether managed or unresolved, identifying and describing these tensions will contribute to a small, 



but growing body of research into mathematics coaching. If employing mathematics coaches in 
schools is to be a viable complement to professional development, more study will be necessary. 
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Students often have difficulties with the content area of functions. If their teachers are not aware of 
these problems and lack of adequate teaching methods, they cannot counteract pointedly in their 
classrooms. This paper presents a project developing and evaluating a coaching to foster teachers’ 
pedagogical content knowledge about several learning difficulties with functions and about how to 
respond to them. As this work is still in progress, we here focus on the project description as well as 
on the development of the survey to measure teachers’ corresponding knowledge. 

Keywords: Mathematics education, teachers’ professional development, functions, learning 
difficulties, teacher survey. 

Introduction 
Being able to adequately reason with functions is considered to be a central goal of mathematics 
education (e.g. Eisenberg, 1992; KMK, 2003; NCTM, 2000). More precisely, reasoning with 
functions characterizes a specific way of thinking in interdependencies, relationships or changes 
(Vollrath, 1989) that is especially required when working on inner- and extra-mathematical 
problems (Hinrichs, 2008; NCTM, 2000). 

However, several studies show that learners have particular difficulties in this domain (see for an 
overview Nitsch, 2015 or Vogel, 2006). For instance, they may experience problems with the 
meaning of the parameters (e.g. Schoenfeld et al., 1993), conceive graphs as pictures (e.g. Monk, 
1992), confound the slope and the height of graphs (e.g. Hadjidemetriou & Williams, 2001) or have 
difficulties with word problems in the sense of the word-order-matching-process (e.g. Clement, 
1982). Often, their teachers are not aware of these difficulties (Hadjidemetriou & Williams, 2002; 
Sproesser et al., in press) and therefore cannot counteract explicitly. Moreover, the study of Nitsch 
(ibid.) revealed systematic differences between school classes referring to learning difficulties with 
functions. She concludes from this finding that some teachers are more successful than others in 
responding to such difficulties.  

Theoretical background 
The findings mentioned above raise the assumption that teachers’ professional development (TPD) 
focusing on such typical learning difficulties may enhance teachers’ pedagogical content knowledge 
(PCK, see e.g. Shulman, 1987), their instruction and mediate also students’ learning in this field. 
This is also in line with the general understanding that teachers need TPD in order to meet the 
challenges that they encounter in their professional lives as university studies cannot satisfy all of 
demands from practice (cf. Mayr & Neuweg, 2009). To our best knowledge, there is no empirical 



evidence about the effects of a TPD related to learning difficulties with functions, especially taking 
into account the interplay between the teacher and student level, yet. 

Particular TPD-characteristics that have already proven to be effective in general can be 
implemented in a TPD referring to dealing with learning difficulties in the domain of functions. In 
this context, Lipowsky (2013), for instance, found that TPD should be related to one specific 
domain instead of focusing on different domains. Furthermore, long-term TPD courses enable to 
integrate input, practice and reflection phases. The study of Lipowsky (ibid.) additionally confirmed 
that giving feedback (e.g. Shute, 2008) supports learning also in the context of TPD. Teacher 
coaching represents a specific form of TPD that can also implement the mentioned characteristics. 
In adaptive (teacher) coaching (Leutner, 2004), the coach refers back to the teachers’ statements and 
activities. If teacher coaching focuses on a concrete classroom situation, it is, for example, possible 
to encourage teachers to reflect on this situation (West & Staub, 2003) or to train them in giving 
supportive feedback to students showing a particular learning difficulty.  

In several studies, such a focus on responding to students’ difficulties or errors (e.g. through giving 
feedback) has already shown to be useful in order to measure or promote teachers’ PCK concerning 
different mathematical content areas: For instance Biza et al. (2007) propose to measure (pre-
service) teachers’ PCK by requesting them to analyze wrong student solutions and to formulate 
supportive feedback. The study of An & Wu (2012) revealed that teachers’ PCK can be fostered 
through asking them to analyze students’ errors and to develop approaches how to correct them.  

Research goals 
The teacher coaching developed in this project aims at building up teachers’ pedagogical content 
knowledge related to learning difficulties with elementary functions and hence to support also their 
instruction and students’ achievement in reasoning with functions. As a narrow content focus has 
proven to be a characteristic of effective TPD (Lipowsky, 2013), we here refer to specific PCK 
components as defined by Ball et al. (2008): In the case of 1) knowledge of content and students 
(KCS), we focus at fostering teachers’ knowledge about typical learning difficulties and about 
students’ thinking related to functions; in the case of 2) their knowledge of content and teaching 
(KCT), we train them in “adequately” responding to such specific learning difficulties. Within the 
content area of functions, we concentrate on linear functions and on the understanding of the 
concept of a bivariate functional relationship in order to assure a narrow content focus. The 
emphasis on this subdomain also takes into account that viable concepts about elementary functions 
appear to be crucial for understanding higher-order functional classes later on. 

As the majority of existing TPD courses is not carried out in an experimental design, it cannot be 
clearly identified which of their characteristics would be responsible for a certain effect (e.g. Yoon 
et al., 2007). Therefore, this teacher coaching is brought out via two variations, namely with and 
without focus on feedback. This procedure takes into account findings from other studies showing 
positive effects of giving feedback (see above) but additionally evaluates the effectiveness of this 
characteristic (explicitly training to give feedback to students showing concrete learning 
difficulties). In this sense, the main goal of the project described in this paper is to prove what 
effective aspects of an adaptive teacher coaching are.  

More precisely, we evaluate the following research questions:  



 What do teachers know about typical learning difficulties in the domain of functions and 
what ideas do they have how to react to them (pretest)? 

 To what extent can teachers’ KCS and KCT related to functions be fostered through two 
variations of teacher coaching (pre- and posttest)? 

 Which impact do the coaching treatments have on students’ domain-specific competence? 

Methods 
Pilot study 

The content of the coaching was identified via a pilot study in the academic year 2014/15 (see 
Figure 1 for an overview of the project’s structure): Part I of the pilot study revealed that all of the 
learning difficulties derived from the literature (see Introduction) occurred among students within 
our learning settings (paper-and-pencil-tests in 4 classes of grade 7 and 8). Moreover, we found that 
their teachers only knew some of these learning difficulties and that their knowledge about them and 
about how to respond to them was very heterogeneous (interviews with 4 teachers). Therefore, TPD 
in this domain appears to be useful. A summary of these results can be found in Sproesser et al. (in 
press). As to our knowledge there is no consensus about how to “accurately” respond to such 
learning difficulties or how to largely prevent them, teacher trainers and university educators were 
interviewed about these issues within part II of the pilot study. Via these expert interviews, we 
collected and further developed teaching ideas, methods and material for the coaching.  

Main study 

Within the main study, the teacher coaching (3 modules) accompanies the instructional unit of linear 
functions in grade 7 or 8, respectively: Module 1 is held before, module 2 during and module 3 after 
this unit. This structure enables to implement the content of the coaching in the teachers’ classroom 
as well as to reflect on the teachers’ experiences within the TPD. About 60 teachers of grade 7 or 8 
are assigned to one of two treatment groups or to a control group. Both treatments contain input, 
reflection and activity phases in order to foster teachers’ KCS and KCT related to learning 
difficulties concerning elementary functions. Only in one of the two treatment groups, teachers are 
specifically trained in giving supportive feedback to students facing a particular learning difficulty.  

In order to gain empirical evidence about effective characteristics of the coaching, the teachers’ 
PCK as well as their students’ knowledge related to elementary functions are assessed before and 
after the coaching / teaching unit. This data structure allows using analysis tools such as multilevel 
analyses and hence to evaluate the interplay between the two levels. The student survey (pre-, post- 
and follow-up-test) contains large parts of the test instruments developed by Nitsch (2015): Via a 
number of tasks referring to elementary functions, several learning difficulties (see above) can be 
identified. Moreover, covariates such as students’ cognitive abilities (Heller & Perleth, 2000) or 
motivational variables (Pekrun et al., 2002) are gathered.  

In order to measure KCT and KCS of the participating teachers, we developed a survey that 
particularly refers to several tasks of the student test. The development and the structure of the 
teacher survey will be presented in more detail in the next section. 

 



 

Figure 1: Outline and content of the project 

Teacher survey 
The participating teachers are requested to complete before and after the coaching a structurally 
identical paper-pencil-survey. This procedure allows directly investigating teachers’ KCS and KCT 
developed in the course of the coaching. The PCK items of the teacher survey are all structured in 
the same way (see Figure 2 for a sample item): The teachers are shown a task of the student test and 
they are asked about typical mistakes or learning difficulties referring to this task (questions a) and 
b) in Figure 2) and how they would respond to them (question c) in Figure 2). Hence, according to 
the classification of Ball and colleagues (2008) the questions a) and b) are part of the knowledge 
component KCS as “Teachers must anticipate what students are likely to think and what they will 
find confusing” (ibid., p. 401). These authors propose to measure teachers’ KCS for instance via 
questions about what students may find difficult or about interpreting students’ thinking. Within our 
survey, teachers in question a) are asked which mistakes and learning difficulties they had already 
noticed concerning the given type of task; in question b), on the basis of a wrong student solution 
they have to put theirselves in a student’s position in order to make transparent his or her thinking 
process when working on the task. Hence, these tasks require knowledge of typical student 
(mis)conceptions and errors as well as about students’ thinking. The third PCK item (question c) in 
Figure 2) corresponds to the knowledge component KCT (Ball et al., ibid.): Teachers need to know 
about mathematics and about teaching in order to sequence their instruction and hence to promote 
students’ understanding. For instance, they need to know different methods and procedures and 
choose appropriate ones for their instruction. This means that KCT is particularly relevant when 
teachers respond to students’ mistakes and difficulties or when they aim at building up viable 
concepts through their instruction. Ball et al. (ibid.) propose to measure KCT e.g. by asking for 
examples for simplifying particular content or how learning of a specific content can be facilitated. 
As displayed in Figure 2, such KCT items are also included within our test instrument: In question 
c), teachers are asked to outline how they would react to a concrete student mistake. 

Within the whole survey, the sequence of PCK items is always as displayed in Figure 2: The first 
question a) is open-ended in order to collect the teachers’ ideas and experiences without being 
influenced by specifications of the survey. Afterwards (question b)), teachers are confronted with a 
concrete students’ mistake referring to this task and they are requested which (mis)conception could 
cause the mistake. As in real classroom situations, responding to a student mistake (cf. KCT) 
happens after its noticing (cf. KCS), the question sequences are always ended up by the KCT item 
(question c) in Figure 2).  

This sequence of questions (a) open-ended, b) referring to a concrete mistake) was chosen to gather 
data about teachers’ knowledge and experience concerning several student problems in general and 
related to specific mistakes. Within the teacher interviews of the pilot study, this sequence was also 



used and proved to provide essential findings. However, one particular limitation of this sequencing 
should not be disregarded: Teachers could add the mistakes and learning difficulties displayed in b) 
to the open-ended question in a) even if they had not thought of them without the indication of the 
survey. We decided to accept this possible drawback that may occur in field studies as the our rather 
than in laboratory studies because interviews instead of the paper-pencil-survey would be extremely 
time-consuming for the numerous participants of the main study and could irritate them; 
furthermore, a digital survey with time markers could hardly be implemented as the coaching is 
brought out in different schools where we cannot count on a safe internet-connection. In the teachers 
writings it can mostly be identified if they have come back to a previous item or not.  

We consider the relevance and the validity of these PCK items as relatively high because of several 
issues: First, empirical studies show that the presented learning difficulties are common among 
students and hence they are relevant for teachers. In their research Ball et al. (2008) similarly have 
drawn typical student mistakes and learning difficulties from the literature. Furthermore and as 
pointed out above, the kind of questions that we use are also proposed by these authors. Hence, our 
approach is not arbitrary but systematical and can also be applied in other content areas.  

Student task 

Draw the graph according to the functional equation    

y = 5x – 2   

in the given coordinate system.  

Explain briefly how you proceeded.  
a) Which typical mistakes or learning difficulties would you expect from your experience in 

this student task? 

b) A student solved the task as displayed on the right. Which 
concept could underlie this solution? Please justify your 
answer.  

 

 

c) Imagine you would be confronted with this learning difficulty. How would you respond to it 
in your mathematics classroom? 

Figure 2: Sample item of the teacher survey 

In addition to the mentioned PCK items, the teacher survey contains covariates for instance about 
their professional background (e.g. university degree, teaching experience), beliefs related to 
mathematics education (e.g. their constructivist conviction (Stern & Staub, 2002), assumed 
determinants for mathematical ability (Stipek et al., 2001) or their experience with and motivation 
for TPD (see several scales in Jerusalem et al., 2007).  



Current status and future steps of the project 
As mentioned above, the pilot study has already been carried out in the academic year 2014/15 and 
its evaluation is almost concluded. Student assessment and teacher interviews revealed that a TPD 
referring to dealing with learning difficulties related to elementary functions would be useful for 
teachers within our learning settings. Moreover, the expert interviews were helpful to gather “best-
practice-methods” and material for the coaching.   

Concerning the content of the coaching, both treatments focus on the same learning difficulties 
(problems with the parameters, graphs-as-picture-mistake, slope-height-confusion, emphasis on the 
word-order in word problems). Teachers get information about their prevalence in empirical studies. 
Moreover, we illustrate the best-practice-methods and material how to prevent or overcome them 
that we have gathered through the pilot study. There are also active phases for the teachers: On the 
basis of the presented methods / material, they are asked to further develop tasks and material for 
their own classroom. Moreover, based on described classroom-situations showing concrete student 
mistakes, they are requested to think up a reaction to support the student to overcome his problem. 
In these tasks, the variation with / without focus on giving feedback comes into play: In the 
treatment with focus on feedback, teachers are asked to concretely formulate the feedback and 
explicitly explain the hints that they would use when being confronted with the corresponding 
student difficulty (e.g. “How would you respond to this learning difficulty in your mathematics 
classroom? Please be explicit: Verbalize your feedback and illustrate other ways to support the 
student.”). In the treatment without focus on feedback, teachers are simply requested to mention 
adequate ways of responding to these learning difficulties in a more general way (e.g. “How would 
you respond to this learning difficulty in your mathematics classroom?”). Furthermore, in both 
treatments teachers’ experiences in the course of the learning unit are discussed and reflected as 
well as their classes’ results - if the teachers agree with students testing before and after the unit.  

The coaching has already been carried out in the academic year 2015/16 and it is still offered in the 
year 2016/17. Hence, the main study is in progress at the moment and data will be gathered at the 
student and teacher level. Results are expected from the end of the academic year 2016/17 onwards. 
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This paper draws from a qualitative exploratory case study that aimed at exploring the learning 

experiences of teachers as they engage in professional learning project. The case study involved 

three elementary school teachers’ professional learning experiences as they engaged in developing 

a practical, research-based approach to differentiated instruction using a flipped classroom  and 

student-centered pedagogical approaches that would result in enabling students to be engaged with 

mathematics..  
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mathematics. 

Introduction 

Research indicates that professional learning, which is job-embedded (Joyce & Showers, 2002), 

collaborative (Garmston & Wellman, 2003), occurs over time, and is driven by the needs of the 

teachers involved (Fullan, 1995; Lawler &King, 2000; Little, 2002), is effective. Furthermore, 

effective professional learning is focused on student outcomes, integrated into the teacher’s day-to-

day culture, and often tied to the school’s improvement process (Way, 2001). The paper draws from 

a study that aimed at exploring the  learning experiences of three teachers engaged in a professional 

development project in Ontario at an Intermediate level (grade 6, grade 7 and grade 8). The 

professional development project is part of an initiative of The Elementary Teachers Federation of 

Ontario (ETFO). ETFO invited and provided support for teams of teachers from the same school or 

in similar roles at different schools to come together and conduct professional learning projects 

relevant to their specific professional needs, circumstances and interests.  In addition to the three 

teachers a university researcher was invited to collaborate with the group and conduct a case study 

of the professional development project. The three teachers in the professional development project 

collaborated in developing a practical, research-based approach to differentiated instruction using a 

flipped classroom approach and student-centered pedagogical approach that would result in 

enabling students to be engaged with mathematics. This flipped classroom approach and student-

centered approach involved the use of grade-appropriate math centers where students would engage 

in a variety of math problems and/or topics; have opportunities to practice and consolidate basic 

facts and operational skills; use technology and manipulative as learning tools; become efficient 

communicators in math; and develop a sense of self-awareness toward their own math skills. 

Students would also grow in their ability to work independently and cooperatively as they work 

through various math centers, allowing the teacher(s) to conference with individuals and small 

groups of students. In this paper we describe some of the findings from the case study. The case 

study is guided by two questions:  How did the professional development project facilitate teachers’ 

understanding of the use of math centers in a flipped classroom and student-centered approach for 



teaching and learning mathematics? How did the teachers negotiate constraints and possibilities as 

they engaged in their professional development project? . 

Research has demonstrated that engaging students in the learning process increases their attention 

and focus (Jonathan & Aaron, 2012). Further it motivates students to practice in higher-level of 

critical thinking while promoting meaningful learning experiences. Chickering & Gamson (1987.), 

states that  

“learning is not a spectator sport. Students do not learn much just by sitting in classes 

listening to teachers, memorizing pre-packaged assignments, and spitting out answers. They 

must talk about what they are learning, write about it, related it to past experiences and apply 

it to their daily lives. They must make what they learn part of themselves”.  

In this sense, a flipped classroom and student-centered learning is essential. Educators who adopt to 

a flipped classroom and student-centered approach as a pedagogical method find that it increases 

student engagement, which allows for learners to successfully achieve the learning objectives 

(Jonathan & Aaron, 2012). For a flipped classroom and student-centered mathematics class to be 

effective, a shift in the role of the teacher and students in the classroom must be adapted.  On the 

one hand, teacher’s role is viewed as a guide for students’ constructive processes towards 

mathematical meanings and mathematical ways of knowing. On the other hand, learning is viewed 

as an active, constructive activity in which students wrestle through problems that arise as they 

participate in the mathematical practices in the classrooms (Cobb, Yackel & Wood, 1992). Recently, 

there has been an upsurge of interest in instruction that focuses on flipped classroom approach for 

teaching mathematics.  

Type of Math Centers 

There were various types of math centers that each participating teacher used in their classroom. The 

choice of a math center was based on teachers’ professional judgment of the students and students’ 

needs.  

Inquiry based Center: - A group of 4-5 students rotated from one station to another to learn about 

various topics. Examples of these topics included: explore and connect station, “what happens 

when…”, various word problems, “Reflection on this”, “Test your knowledge.” Each station had the 

option of students either working by themselves and/or in their respective groups. Teachers used as 

one or more of inquiry based centers to develop curiosity of a given topic among the students. 

Resource Center: - This center was available for students all the time. This station consisted  of 

graph papers, blank papers, mathematics dictionaries, mathematics textbook (e.g. Math on call, Math 

on hand, and Math makes sense 8). This center also included measuring tools such as meter -sticks, 

rulers, weight measuring scale and measuring tape.  This center gave student the opportunity to select 

an appropriate tool for themselves in order to learn a topic/concept at hand.  

Online Research Center: - Students had the opportunity to use their own technology or/and the 

computer station located in class to deepen their understanding of topic/concept at hand. Students 

also had the option of exploring a given topic at home via online research. 

Debriefing Center: - This is usually available at the end of a lesson, where students come back into 

their respective groups. Here students are given the opportunity to consolidate their learning as a 

group, clarify any misunderstandings and learn from one another. 



 An example of inquiry based math center 

Students were given the opportunity to solve a real life problem, using a task called, “how big is a 

trillion?”. In this problem, students were asked two open-ended questions: 1) Is it possible for trillion 

rice to fit into this room? Explain your solution 2) How much distance around the Earth can the rice 

cover if each rice is lined up in a line? Compare this with another non-metric unit. Students were 

asked to solve this problem in group of 4-5. Each group was given 6-7 classes (40 minutes each) to 

solve the problem in class. Students were allowed to do any background inquiry that they thought 

was necessary at home. The purpose of working on this problem in class was to have a common 

working place as a group, where they negotiated their learning and solution. At the end of the 7th 

class, groups were asked to submit their solution in form of poster which each group presented in 

the following class. Mathematically, this problem required students to learn about how to measure a 

unit in real life, length, metric versus non-metric units, volume, and capacity. Other than the 

mathematical knowledge, students had to discuss their ways of solving the problem, which means 

selecting appropriate tool to solve the problem in most efficient way, while self-regulating their 

learning and progress as a group. By the time this particular problem was given, students often 

became competitive. Teacher noticed that while students helped members of other groups with 

background mathematical knowledge, groups often tried to keep their solution a secret. This was 

because groups often wanted their solutions to be a unique solution. 

Preparing the students for flipped classroom with math-center included teacher presenting and 

discussing math center code of conducts, where the purpose and the importance of self-regulation 

for one’s own learning was discussed in depth as a class. In order to utilize various centers, students 

were divided in groups of 4-5 students, these groups were often changed and redesigned either by 

the teacher or the students. Students were informed that they may seek help support from their 

teacher at any point, however they are encouraged to first discuss it with the members of their 

respective groups.  

 

Flipped classroom 

Flipped classroom approach for teaching mathematics is considered as an effective way for engaging 

students in active learning as well as in meaningful peer-to-peer and peer-to-teacher interactions 

during the in-class learning process (Forsey, Low, & Glance, 2013; Pluta, Richards, & Mutnick, 

2013). Moreover, Bergmann and Sams (2012) indicated that flipped classrooms enable teachers to 

take individual students’ needs into account as well as to facilitate more interactions among peers 

and teachers in the classroom.  The teaching and learning context of flipped classroom approach 

consists of two kinds of activities: in-class  and out-class. In-class time is utilized for inquiry, 

application and assessment in order to better meet the needs of the individual learners. Technology-

assisted out-of-class time involves personal instruction, where students acquire responsibility for 

their own learning, through studying course material on their own, using various sources (self-

discovered and/or provided by teacher). The main goal in flipping a class is to cultivate deeper, 

richer, and active learning experiences for students where the instructor is present to coach and guide 

them.  Further, emphasis is on higher-order thinking skills and application to complex problems, and 

which might include collaborative learning, case-based learning, peer instruction and problem set. 

In this sense the role of the teacher is to facilitate the learning process by helping students 



individually and in groups.  According to Bergmann & Sams (2012), there are many ways of 

implementing a flipped classroom approach. For this study, the participating teachers utilized 

various math-centers (discussed previously in the article) where students self-regulated their own 

learning in a math class. 

Methodology 

A qualitative research methodology was used to conduct this case study. According to Yin (2003) a 

case study design should be considered when: (a) the focus of the study is to answer “how” and 

“why” questions; (b) the behavior of those involved in the study cannot be manipulated; (c) you 

want to cover contextual conditions because you believe they are relevant to the phenomenon under 

study; or (d) the boundaries are not clear between the phenomenon and context. A case study was 

chosen because the study could not be considered without the context of flipped classroom approach, 

and more specifically the math centers classroom settings.  

This case study involved three mathematics teachers at a Canadian middle school, who taught 

intermediate level (grade 6, 7 and8) students. Two of the teachers were intermediate level  

mathematics teachers with their own classroom. One teacher was the resource teacher assigned  by 

the district school board. The role of the resource teacher was to support the two classroom teachers 

by finding necessary resources needed to run the project. The two classroom teachers applied the 

flipped classroom approach in their mathematics classes. In preparation for the project, all three 

teachers sought opportunities to enhance their professional knowledge of using technology in  

mathematics teaching and learning. Further, each teacher read a number of monographs provided by 

the Ontario Ministry of Education in order to develop efficient knowledge of the Ontario elementary 

school mathematics  curriculum, in particular knowledge of the mathematical processes such as 

problem solving, communicating, reasoning and proving.  

Data was collected from: 

1) Participating teachers’ observation of their teaching and learning experiences. Each teacher 

recorded field notes based on their own reflections  as well as observation of their students in-class 

events related to math- centers (e.g., counting the number of students being engaged per center, how 

teachers guided the off track students to get back to work, etc.). In addition to these data was 

collected from teachers’ notes of their conferencing with students as individuals and in groups.  

2) Transcriptions and field notes of group meetings (selectively audio-recorded). Each teacher’s 

observations were shared, discussed and reflected upon by teachers as a group for professional 

growth while focusing on their own professional growth and their students’ engagement in respective 

mathematics class.  

3) Teachers’ artifacts such as lesson plans and assessment rubrics, and the teacher team’s final 

project report. 

Findings and discussion 

All transcribed data, field notes and teachers’ artifacts were analyzed by the university researcher 
and one teacher independently to identify major themes related to the guiding questions— How did 
the professional development project facilitate teachers’ understanding of the use of math centers in 



a flipped classroom and student-centered approach for teaching and learning mathematics? How did 
the teachers negotiate constraints and possibilities as they engaged in their professional development 
project?  The findings will be discussed in the following themes which emerged from the analysis: 

time for teachers to meet; awareness of initial resistance from parents and students; enhancement of 

student learning; and challenges. Findings from the study suggest that in order to sustain a 

collaborative professional development project teachers need time and need to meet. Teachers in 

this study were able to plan collaboratively and develop a practical, differentiated math program 

based on flipped classroom and student-centered pedagogical approach using math centers. The 

flipped classroom approach using math centers allowed students to engage in purposeful practice 

while freeing up the teacher to meet with individual and/or small groups of students for teaching 

and/or learning. However the two participating teachers taught different grades in different buildings 

of the same school, which became somewhat challenging to coordinate schedules for sit-down 

meetings. Often, the conversation between the three teachers would occur either in between classes 

(as the teachers would pass by each other’s classroom) or through email (keeping each other 

informed on their status with the project).  Although the teachers planned collaboratively, they had 

fewer time to compare what they had initially planned. This however, had an unexpected positive 

outcome which ended up by providing teachers with two different ideas of math- centers and student 

engagement. Both classroom teachers did utilize flipped classroom, student-centered pedagogical 

approach, however during their final group meeting, teachers discovered that they had each taken a 

different approach to the math center idea. This allowed for each teacher to talk about their thought 

process behind their choice for developing the math centers the way they did. Further, this provided 

both teachers to learn from one another’s professional learning experience with their respective math 

centers. As different as each participating teachers’ math centers were, the participating teachers 

observed that there were common themed categories to the math centers (these categories were 

presented earlier in this paper).   

Another theme that emerged from the case study is that the professional development project 

provided opportunity for participating teachers to be aware of and understand about the initial 

resistance from the students and their parents toward flipped classroom and student-center 

pedagogical approach. Teachers developed awareness of the fact that both the students and their 

parents perceived mathematics teaching and learning in a traditional manner. And that for both the 

students and their parents, mathematics was a subject where the teacher taught a lesson, the students 

completed assigned tasks like doing practice questions from a mathematics textbook related to the 

lesson, followed by an assessment in form of a test. The students in participating teachers’ classes 

and their parents’ perception of how mathematics should be taught presented with complex 

challenges. This resulted in the professional development project allowing teachers to learn about 

strategies for alleviating these challenges including having to do a lot of community building 

exercise in class, while also having conversation with parents through emails, phone calls and/or 

one-on-one meeting, about the importance of math centers for their child’s learning. These 

conversations with parents often revolved around the topic of how math centers not only helped 

students to become more engaged with mathematics but also helped to develop importance skill set 

of becoming more self-regulated toward their own learning. 

Another theme that emerged is how the professional development provided opportunity for teachers 

to enhance students’ learning and development through using math centers. Teachers noticed that 



after the initial resistance, the students began to be engaged with math centers and by the end of 

school year, they began to self-regulate their learning. One teacher noted about a grade 8 student 

who reflected on his journey with math centers and stated that it helped him to become more resilient  

to mathematics learning. 

First, I did not know why we were doing math centers. I felt that the teacher did not want to 

teach anything…. but now, when I go through different centers in class I know that I am able 

to do things on my own…I feel happy…. I have done these many [math centers] 

today…which means I can do math…I just have to take my time with each center and not 

worry about how much time my group members are taking with centers. 

In relation to the same theme, another teacher expressed how her grade 8 student commented, 

 I used to think that my teacher should know everything…you know, like all the 

answers…but now I know that I can find all the answers…and if I am stuck, I can take help 

from my friends…which is okay, because we are learning together 

Both of the participating teachers experienced a sense of fulfillment in terms of their professional 

development experiences in relation to their impact on growth in their students in terms of both 

mathematical understanding and self-regulation toward their own learning. Teachers noted that 

many of their students grew stronger in their ability to self-regulate, as they had to make choices 

toward their learning in terms of what to work on, how long to work for and with whom. Teachers 

expressed satisfaction on how the one-on-one time with the teacher allowed the struggling learners 

to take risk and seek clarification without feeling restricted by the classroom environment. 

Given the many positive outcomes of the professional development project that focused on flipped 

classroom and student-centered pedagogical approach through math centers, there were some 

challenges. These were mainly due to the fact that teachers became aware that some students needed 

more time with this approach, which was not possible given that there was a limited time that these 

students were with their mathematics teachers and that the teachers were expected to cover the 

curriculum expectations. Also teachers in the professional development project realized that for a 

small number of students, it was extremely difficult to adapt to this approach, even if they loved 

mathematics. This was because these students had only experienced learning only from a textbook 

teaching approach in mathematics, and flipped classroom and math  centers approaches were a 

significant departure from their past mathematics learning experiences. 

Implications 

This project utilized a case study research design and was conducted at one Canadian middle school.  

Hence, the findings of the study should not be read in terms of generalizability, but of transferability 

to other cases (Creswell, 2008). Recently, mathematics educators have realized the potential for a 

flipped classroom and student centered pedagogical approach for enhancing student engagement and 

learning.  However, very little is known in terms of the implementation of this approach in 

elementary schools. This study explored the mathematics professional learning experiences of 

elementary school teachers as they implement the flipped classroom and student centered 

pedagogical approach. The professional development project provided opportunity for teachers to 

enhance their understanding of flipped classroom and its impact on students’ learning. Teachers 

noted that their students became engaged with mathematics and self-regulated toward their own 



math learning.  The findings suggest that given opportunity to learn in a professional development 

setting that ensures autonomy, teachers learn and are capable of teaching through flipped classrooms 

and student centered pedagogical approach. The study also suggests that professional development 

project provides opportunity for teachers to be aware of the need for communication and 

collaboration among teachers, parents and students regarding the benefits and implementation of 

flipped classroom. As a result, further research is needed on how professional development can 

facilitate teachers’  learning about how to communicate and collaborate with parents and students in  

flipped classrooms. 
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This paper investigates promoting knowledge of example use in mathematics education by way of 
analyzing a case using theoretical tools. Participants were both prospective and practicing teachers 
attending a university course. An event taken from a tenth grade geometry class was analyzed in 
terms of example use, and then discussed. Participants related to the type of example given, the 
timing of the example, agency, what the example was an example of, and the aim of giving the 
example.  

Keywords: Examples, case analysis, teacher education, theoretical tools.  

Introduction 
Examples and non-examples are an integral part of learning and teaching mathematics. They are 
used in concept formation, when seeking relations between elements, abstraction, and generalization 
(e.g., Smith & Medin, 1981; Watson & Chick, 2011). Acknowledging the importance of example 
use in mathematics education, Shulman (1986) included knowledge of examples within the category 
of pedagogical content knowledge (PCK). This knowledge, he claimed, is essential for representing 
the subject, so that it will be comprehensible to others. Rowland, Huckstep, and Thwaites (2005) 
also included teachers’ use of examples in their description of ‘the knowledge quartet’, a framework 
for thinking about the ways subject matter knowledge comes into play in the classroom. In their 
framework, the ways teachers use examples and the types of examples they use, are manifestations 
of teachers’ own content knowledge, their meanings and descriptions, being transformed and 
presented in order for students to learn the mathematics. Ball, Thames, and Phelps (2008) also noted 
the importance of teachers’ knowing how to sequence examples. 

Although example use is a complex matter and promoting teachers’ knowledge of example use 
could be quite challenging, few studies specifically investigated this aspect of teacher education. 
This study proposes fostering prospective and practicing teachers’ knowledge and awareness of 
example use by applying research and theoretical tools to analyze cases, helping to bridge theory 
and practice for mathematics teachers. The material, which is the focus of this paper, is a case based 
on a classroom event, and used as an exemplar. The case material consisted of a classroom 
transcript, along with guiding questions to be answered by each participant. This was followed by a 
group discussion with the teacher educator. Specifically, we ask: What aspects of example use do 
individual participants notice when studying an authentic case? Can those aspects be traced back to 
theories learned during the course? What additional aspects arise during group discussion?  

Example use in mathematics education 
There are many aspects of example use which have been investigated. To begin with, there are 
different types of examples. Arcavi (2003) discussed visual representations, while Tabach et al. 



(2010) focused on numerical examples. In addition to the form of the example, studies have 
categorized examples by how they are identified. For instance, there are intuitive and non-intuitive 
examples and non-examples (Tsamir, Tirosh, & Levenson, 2008). Intuitive examples are those 
examples which students immediately identify as such and are often derived from practical 
experience. Likewise, intuitive non-examples may encourage visual, rather than analytical thinking. 
On the other hand, it seems that non-intuitive examples and non-examples can encourage students 
to use reasoning based on critical attributes. Tsamir, Tirosh, and Levenson (2008) also discussed the 
sequencing of examples and non-examples and its effects on students’ learning. 

The difference between examples and non-examples is dependent on the mathematical lens one is 
looking through. When looking for polygons, a triangle is an example; when looking for 
quadrilaterals, a triangle is a non-example. In other words, another aspect of example use to 
consider is the way an example is being used. Zazkis and Chernoff (2008) introduced the idea of 
pivotal examples which can cause the learner to change his or her cognitive perception or way of 
approaching a problem. Rowland (2008) differentiated between two uses of examples in teaching. 
The first is when examples are used to motivate generality. In this case, the examples are examples 
of something where the aim is to teach a general procedure or to support abstraction and concept 
formation. The second type of example use is for students to practice what was taught. That is, 
students are given many examples to practice some procedure. This type of example use allows 
students to experience variation and can lead to additional awareness and understanding. Watson 
and Chick (2011) found that examples can be used as templates for dealing with other class 
members, indicating a relation between classes or to express equivalence. 

If we take into account that the way an example (or non-example) is used by a learner is determined 
by the focus of that learner, then it becomes the teacher’s task to choose examples and set them up 
in such a way that students will view those examples through the intended lens and focus on the 
intended pedagogical aim. Zodik and Zaslavsky (2008) identified six types of considerations 
employed by teachers when selecting or generating examples: starting with a simple or familiar 
case, attending to students’ errors, drawing attention to relevant features, conveying generality, 
including uncommon cases, and keeping unnecessary work to a minimum. They found that the most 
frequent consideration was choosing to begin with the simple or familiar example. They also found 
that on the spot, teachers often choose an example that will attend to an error which arose in class, 
whereas pre-planned examples tend more to consider uncommon cases. 

To notice something means to make a distinction, to stress some perceived feature and ignore others 
(Mason, 1991). As shown above, various aspects of example use can be considered when analyzing 
a classroom event. In this study we investigate which of these aspects, and perhaps other aspects of 
example use, practicing and prospective teachers notice when analyzing a case. 

Methodology 
The participants in this study were 13 practicing teachers (denoted as T) with between 1 and 11 
years of experience (mean years of experience was four) and 10 prospective teachers (PTs) who had 
completed their first degree in mathematics or a mathematically rich field of study, such as 
engineering. The specific course which is the context of this study, aimed to promote participants’ 
knowledge of explanations and examples, and the relationship between them in mathematics 



education. The course consisted of a total of 13 lessons which took place once a week for a period 
of 90 minutes each. The first six lessons were devoted to explanations in mathematics education. 
Different types of explanations were reviewed, such as conceptual, procedural, mathematically-
based and practically-based explanations (e.g., Levenson, Tsamir, & Tirosh, 2010), and theories 
concerning the roles of explanations in mathematics education were discussed (Levenson & Barkai, 
2008). The last seven lessons were devoted to examples in mathematics educations. Theoretical 
perspectives of examples, like those described in the background of this paper, were read and discussed.  

During the fourth course lesson on examples (lesson #10), the teacher educator handed out a 
transcript of a geometry lesson which took place in a tenth grade classroom. The geometry lesson 
had taken place within a few weeks of the course lesson and was observed by three of the 
prospective teachers attending the course, lending the case authenticity and relatedness. The overall 
aim of the geometry lesson was to introduce students to Thales’ theorem and show its connection to 
similar triangles. The students had previously learned about similar triangles in ninth grade. The 
case transcript began with the classroom teacher stating Thales’ theorem. This was accompanied by 
a drawing on the board, made by the teacher, of two similar triangles, under the headline: Geometry 
– Thales’ theorem. Next to the drawing it says that if the given is BC║DE then from Thales’ 
theorem we conclude proportional line segments (see Figure 1).  

 

 

 

 

Figure 1: Presenting Thales’ theorem on the board 

The case transcript was handed out in the beginning of the course lesson with instructions to read it 
from beginning to end, without interruption, in order to understand the context and get a feel for the 
classroom. After reading through the transcript, participants were asked to reread the transcript and 
fill out a worksheet with the following questions: What did you learn about the use of examples 
during mathematics instruction from the examples given in the case presented? What would you do 
the same as the teacher did with regard to examples? What would you do differently from the 
teacher with regard to examples? After the participants wrote their answers and handed them in, a 
discussion followed. This discussion was audio-recorded and transcribed. 

Data analysis 

When analyzing participants’ responses to the worksheet, our guiding question was, what aspects of 
using examples did the participants relate to when studying the case. We then used the literature 
background to help form a categorization scheme of those aspects. For example, we examined 
participant’s responses for comments related to various types of examples that were discussed in 
class and were present in the case, such as intuitive examples, non-examples, familiar examples, 
and uncommon examples. Participants also commented on didactical aims of giving examples, such 



as responding to a student’s error. Because participants wrote freely, it happened that one sentence 
could encompass more than one aspect of example use. For instance, one teacher (T12) wrote “the 
teacher gave a numerical example, which in my opinion served the purpose of making it easier for 
the students to understand and generalize the idea.” T12 refers to the type of example (numerical) as 
well as the purpose of the example (to help students generalize). Participants’ comments that were 
thought not to be related to the giving and use of examples were categorized as ‘unrelated’. Table 1 
lists the categories along with examples from the data of each category. 

Aspect of example use Sample data 

Type: What type of example is 
given? 

The example uses simple numbers; it is a visual 
example of Thales’ theorem. 

Agency: Who is giving the example? Only the teacher gives examples. 

Aim: what seems to be the aim of 
giving the example? 

The example is given to explain it again; the example 
shows the students how the theorem works. 

Timing: When is the example given? The example is good for the beginning of a lesson. 

Example of: What is the example an 
example of? 

The teacher gives examples of proportions.  

Unrelated The teacher presents a dry definition of Thales’ 
theorem. 

Table 1: Categorizing participants’ comments 

Findings 
This section analyzes participants’ comments from the worksheet on two segments of the case along 
with excerpts from the discussion which focused on those case segments. Thus, we review what 
participants noticed individually and what they discussed collectively. Analysis of participants’ 
comments is carried out according to the aspects of examples listed in Table 1.  

Segment one- Introducing Thales’ theorem 

The case transcript began a picture of the teacher at the board presenting to his students an example 
(see Figure 1). Accompanying the picture were the following lines from the case transcript: 

1 T: In Thales’ theorem, it is given that BC is parallel to DE. The conclusion is… 
wait, guess. If the length here (pointing to AB) is 6 and here (pointing to 
BD) is 2. And let’s say that the length here (pointing to AC) is 12, what is 
the length of CE? 

2 S: 4! 
3 T: Right! 

There are several ways to look at the examples in the above segment. One way is that there are two 
explicit examples. First, there is the drawing on the board (see Figure 1). Second, there is the 
numerical example given by the teacher in Line 1. However, the drawing on the board can be an 
example of Thales’ theorem or an example of similar triangles, and indeed, that is what the teacher 
is trying to convey. In addition, depending on one’s point of view, the example on the board and the 



numerical example may be considered one complete example, with the example on the board 
written in a general matter, using parameters (a, b, c, and d), and the oral example, a specific 
example given with numbers.  

The most frequent aspect of examples mentioned by participants was example type. Participants 
used such descriptions as: a simple example (PT2), an unfinished example (T8), a visual example 
(T12), a numerical example (T12, T13), and an intuitive example (PT 22). Although most 
participants wrote that the teacher gave the example, we do not take this as commenting on the 
agency, but rather as a description of what is going on. On the other hand, for a different segment, 
one participant wrote, “Only the teacher gives examples… but he should have requested examples 
from the students.” This participant is not merely describing the situation, but commenting on who 
is and who should be giving the examples. The aim of giving the examples was mentioned by T8 
who wrote, “In Line 1, the teacher gives an example that students have to finish. He is checking to 
see if the students are listening and if they understand.” T13 wrote, “The teacher gave a numerical 
example so that the students could understand the example and draw on their previous knowledge of 
similarity and proportional triangle sides.” Timing of the example, that the example was appropriate 
for the beginning of the lesson, was noted by PT2. Two participants commented on what the 
example was an example of – T12 wrote that it was an example of the theorem, meaning that the 
example showed how the theorem could be applied. PT22, referring to the numerical example in 
Line 1, wrote that it was an example of equivalent ratios. 

Segment two – Proportional segments 

The following case segment is a direct continuation of the first one: 

4-6.   (The teacher and students review the concept of similar triangles.) 
7.  T:  So, what is the ratio of their corresponding sides (referring to the example 

given in Line 1)? 
8-10. Students:  1 to 3. 3 to 1. It depends on how you look at it. 
11.  T:  The ratio is … 3 to 4 because BD and CE are not sides of the triangle. So 6 

is to 8 like 12 is to 16. Now, …, what came first in Euclidian geometry? 
First, there was Thales’ theorem and only after that came the similar 
triangles theorems. So, let’s say we are in ancient Greece and we don’t know 
yet about similar triangles, but we do know Thales’ theorem. With that 
theorem, we can prove proportional sides in similar triangles. 

In lines 4-11, no new examples are given. Instead, the teacher and students still refer to the first 
examples given on the board. Like the comments on the first segment, here too, most comments 
related to the types of examples being given: simple numbers (PT7), a non-intuitive example (T11), 
a general example with parameters (T17), and a numerical example with familiar numbers (T19). 
None of the participants mentioned aspects of agency, aim, or the timing of examples. T11 noted 
that the example was an example of ratios. Two PTs wrote remarks connected with the story of 
ancient Greece. PT23 wrote, “There is an example from real life that I like – in ancient Greece.” 
PT16 wrote, “In Line 11, the teacher made the material come alive when she told the story about 
Thales’ theorem from ancient Greece ... This example raises the question of why the students first 
learn about similarity and then about Thales.” T23 calls it an example from real life. Yet, it is not a 



mathematical problem related to real life. The term ‘example’ when describing the ancient Greece 
story is not in line with the notion of examples discussed in the course. 

Discussing the case 

After the worksheets were handed in, the teacher educator (TE) opened up the discussion by asking 
who wished to comment on the case. After nine minutes of discussing general ideas, the discussion 
turned to the example given in Line 1 of the case transcript. Note that PT21 was present during the 
geometry lesson as part of their field work.  

TE: Let’s look at Line 1. 

PT21: But it’s not complete… He wanted to give an example of a ratio, but… Instead, he 
asked the students... He told the students to guess. And they did. He didn’t really 
give an example, in my opinion. But, in the next example... 

TE: Where is the next example, in your opinion? 

PT21: Line 11… In my opinion, it’s an explanation with a few numbers and that’s so you 
can see… I can’t decide. It’s, like, a numerical example. Here (in Line 11) is what 
was missing beforehand (in Line 1). 

TE:  Is it an explanation or an example? Can an example also be an explanation? 

PT21: No. An explanation can be accompanied by an example. There can be an example 
and then the explanation generalizes it. 

T8: I felt that way about Line 1. It feels like an explanation, and also like an example. 
On the one hand, there are numbers. On the other hand, it’s not complete. 

The above excerpt gives us a glimpse into PT21’s and T8’s concept image of an example. Both 
infer that an example has numbers, but it must be complete, without any missing parts. There is also 
the question of the different roles an example may play in the classroom. Can an example be an 
explanation? Must all examples be specific and only the explanation can generalize it? These are 
some of the questions that the participants are grappling with. In the following excerpt, PT22, who 
was also present as an observer of the geometry lesson, tells what he observed.  

PT22: He was trying to show how Thales’ theorem is really intuitive. That is, he gave an 
intuitive example. 

TE:  An intuitive example of what? 

Many voices: Equivalent fractions. 

PT22: And most answered correctly. The teacher was trying to show how easy it is. 

TE: But what was it an intuitive example of? 

T12: Of proportions. I know that it’s proportional because I know, I recognize it. It 
doesn’t really have anything to do with Thales’ theorem. Simply, 6 is to 2 as 12 is 
to 4. That’s it. That’s the example. 

As stated in the background, what an example is an example of, depends on your focus and point of 
view. PT22 claims that the examples in Line 1 and Line 11 are examples of Thales’ theorem and 



that the teacher used intuitive examples to simplify the concept for his students. However, other 
participants, those not necessarily present during the geometry lesson, see those examples as 
intuitive examples of equivalent fractions or of a proportion.  

Discussion 
During teacher preparation and professional development, participants are introduced to various 
theories. While field work is important, theories can help prospective and practicing teachers make 
the most of their field work by focusing their attention on different elements of practice. Findings 
showed that analyzing the case gave participants a chance to apply their knowledge of example 
theory when examining a classroom situation. Findings also showed that participants did not 
necessarily draw on the same theories when analyzing the same event. The example given in Line 1 
of the case transcript was described alternatively as simple, numerical, visual, and intuitive. Each of 
these types can be traced back to different theories discussed in the course, but they focus on 
different issues. An intuitive example may also be numerical, but if the prospective teacher 
specifically comments on its intuitiveness, then that participant is remarking that a student will 
easily recognize it as an example (Tsamir, Tirosh, & Levenson, 2008). In other words, that 
participant is integrating knowledge of students (Ball, Thames, & Phelps, 2008) when analyzing 
example use and has appropriated a specific theory to accompany this integration. As teacher 
educators, we wish to encourage such integration of knowledge. 

During the discussion, additional aspects of example use arose. Participants grappled with the 
nature of examples, and whether or not an example can be an explanation. This link between 
examples and explanations could have stemmed from the first half of the course which dealt with 
the topic of explanations in mathematics education. In any event, this question can help teachers and 
prospective teachers focus on the roles examples may play in the greater picture of teaching and 
learning mathematics. Finally, we also note how the integration of an authentic case, one that at 
least some participants actually observed, can help bridge theory and practice. In the discussion, 
participants held different views regarding what the example in Line 11 was an example of. Those 
who had actually observed the lesson had a chance to review the lesson again, focusing now on 
example use. They were also able to share with others some background of the lesson, perhaps 
adding to everyone’s sense of ‘being there’. This excerpt illustrates how fieldwork may be 
integrated into course work. It also reminds us, as teachers and as teacher educators, that it is not 
enough to offer examples. As Goldenberg and Mason (2008) said, exemplification is dependent on 
one’s point of view. Analyzing a case using theories, and then discussing these analyses with 
participants, can raise awareness of how students may view examples and encourage planning 
example use in mathematics classrooms.  
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Impact analyses and evaluations of professional development programmes are mainly scheduled 
during or at the end of a particular programme. They aim at and provide results regarding 
immediate and short-term effects. However, apart from and beyond that, an analysis of sustainable 
effects is crucial. To address this issue, this contribution deals with the central question: What is the 
sustainable impact of professional development programmes? Theoretical models and empirical 
findings are introduced. In particular, this contribution provides two case studies’ results regarding 
Austrian professional development programmes’ impact. Here, the factors which foster or hinder 
the sustainability of impact are in the focus. Finally, implications for professional development 
programmes’ implementation and research are discussed. 

Keywords: Impact, sustainability, professional development programme, case study. 

 

Introduction 
The question of how to promote mathematics teachers’ professional development has been 
discussed in various papers (e.g. Krainer & Zehetmeier, 2013; Loucks-Horsley et al., 1996; Sowder, 
2007; Zehetmeier, 2010, 2014a, b; Zehetmeier & Krainer, 2011). In this context, the question of 
impact is of particular relevance. Evaluations and impact analyses of professional development 
programmes are mostly conducted during or at the end of a project and exclusively provide results 
regarding short-term effects. These findings are highly relevant for critical reflection of the 
terminated project and necessary for the conception of similar projects in the future (Fullan, 2006). 
However, apart from and beyond that, an analysis of sustainable effects is crucial (Loucks-Horsley 
et al., 1996). Despite its central importance for both teachers and teacher educators, research on 
sustainable impact is generally lacking within teacher education disciplines (Datnow, 2006; Rogers, 
2003). This kind of sustainability analysis is often missing because of a lack of material, financial 
and personal resources (McLaughlin & Mitra, 2001; Hargreaves, 2002). 

Theoretical framework  
The expected impacts of professional development  programmes are not only focused on short-term 
effects that occur during or at the end of the project, but also on long-term effects that emerge (even 
after some years) after the project’s termination. Effects that are both short-term and long-term can 
be considered to be sustainable. Sustainability may refer to both system and/or individual level. 
Sustainability can be defined as the lasting continuation of achieved benefits and effects of a project 
or initiative beyond its termination (DEZA, 2002). 

Empirical evidence concerning the impact of professional development programmes points to the 
finding that “prior large-scale improvement efforts (…) have rarely produced lasting changes in 
either teachers’ instructional practices or the organization of schools” (Cobb & Smith, 2008, p. 



232). Thus, it seems reasonable to focus on factors which might foster the broad effects and scale-
up of professional development programmes’ innovations. Cobb and Smith (2008) highlight 
networks, shared vision and mutual accountability as key factors. 

Teacher networks are described, for example, as groups of colleagues who provide social support in 
developing demanding instructional practices; this affords time built into the school schedule for 
collaboration among teachers and access to colleagues who have already developed relatively 
accomplished instructional practices.  

Moreover, a shared vision of high quality instruction fosters the scale-up of impact: this includes a 
shared vision concerning the question of instructional goals (what pupils should know and be able 
to do) and the question of how pupils’ development of these forms of knowing can be supported.  

Another key factor which fosters the scale-up of innovations and impact in teacher education is 
mutual accountability. This means, for example, that if school leaders hold teachers accountable for 
developing high-quality instructional practices, then – in turn – school leaders are mutually 
accountable to teachers for supporting teachers’ learning.  

Examples of Austrian professional development programmes 
This paper deals with the analysis of sustainable impact of professional development programmes. 
In particular, two Austrian professional development programmes are in the focus: the IMST project 
and the PFL courses: 

IMST project 

In Austria, a national initiative with the aim to foster mathematics and science education was 
launched in 1998: the IMST project. Since then, this initiative has undergone several adaptions and 
is still running. 

IMST was implemented in three steps: 

1. The task of the IMST research project (1998–1999) was to analyse the situation of upper 
secondary mathematics and science teaching in Austria and to work out suggestions for its further 
development. This research identified a complex picture of diverse problematic influences on the 
status and quality of mathematics and science teaching: For example, mathematics education and 
related research was seen as poorly anchored at Austrian teacher education institutions. Subject 
experts dominated university teacher education, while other teacher education institutions showed a 
lack of research in mathematics education. Also, the overall structure showed a fragmented 
educational system consisting of lone fighters with a high level of (individual) autonomy and action, 
but little evidence of reflection and networking (Krainer, 2003; see summarized in Pegg & Krainer, 
2008). 

2. The IMST² development project (2000–2004) focused on the upper secondary level in response to 
the problems and findings described. The two major tasks of IMST² were (a) the initiation, 
promotion, dissemination, networking and analysis of innovations in schools (and to some extent 
also in teacher education at university); and (b) recommendations for a support system for the 
quality development of mathematics, science and technology teaching. In order to take systemic 
steps to overcome the “fragmented educational system”, a “learning system” (Krainer, 2005) 
approach was taken. It adopted enhanced reflection and networking as the basic intervention 



strategy to initiate and promote innovations at schools. Besides stressing the dimensions of 
reflection and networking, “innovation” and “working with teams” were two additional features. 
Teachers and schools defined their own starting point for innovations and were individually 
supported by researchers and project facilitators. 

3. The IMST3 support system started to continuously broadening the focus to all school levels and 
to the kindergarten, and also to the subject German language (due to the poor results in PISA). The 
overall goal of IMST is to establish a culture of innovation and thus to strengthen the teaching of 
mathematics, information technology, natural sciences, technology, and related subjects in Austrian 
schools (see e.g. Krainer et al., 2009). Here, culture of innovation means starting from teachers’ 
strengths, understanding teachers and schools as owners of their innovations, and regarding 
innovations as continuous processes that lead to a natural further development of practice, as 
opposed to singular events that replace an ineffective practice (for more details see e.g. Krainer, 
2003). 

For the future, the ministry expressed its intention to continue IMST. The overall goal is setting up 
and strengthening a culture of innovations in schools and classrooms, and anchoring this culture 
within the Austrian educational system. 

PFL courses 

In Austria, in-service professional development courses (PFL - Pedagogy and Subject-specific 
Methodology for Teachers) support teachers in developing their teaching skills and updating their 
knowledge of the subject they teach. The participants systematically reflect their professional work. 
PFL started in 1982, has undergone several adaptations, and is still running (for more detail, see 
Rauch et al., 2014). The programme is designed for teachers from all types of schools across the 
nation, including all age groups of pupils. The overall focus of PFL is on the professional 
development of teachers in the fields of content, didactics and pedagogy. School development plays 
a central role without losing sight of classroom instruction. The PFL concept is based on the 
implicit knowledge, which teachers possess concerning their work in class, their experience and 
their individual strengths. The course is intended to contribute to the further development of the 
teachers as professionals. Teachers are introduced to the methods of action research (Altrichter & 
Posch, 2009). They investigate different aspects of their teaching by defining research questions of 
relevance to their work, by collecting data, interpreting and drawing conclusions and writing down 
their findings in reflective papers.  

The major goals of the teaching process should be primarily achieved through – and not detached 
from – the subject-related design of teaching and learning. PFL takes two years and focuses on the 
individual teachers’ own reflective practice using action research methods (Altrichter & Posch, 
2009). By the end of the course, each participant is obliged to write a reflective paper using the data 
he/she has gathered throughout the process using qualitative and quantitative research methods. 
Participants are part of a community of practice (Wenger, 1998), since their work is embedded in a 
structure of mutual assistance and external support. 

Case studies 
Within both professional development programmes (IMST and PFL) several case studies were 
conducted, with the aim to research the sustainability of the programmes’ impact. The case studies 



presented here were based on data from various sources and time periods to gain validity by 
“convergence of evidence” (Yin, 2003, p. 100): data collection contained documents (e.g. teachers’ 
project reports, which were written during and at the end of teachers’ participation in the project) 
and archival records (e.g. author’s field-notes, which originate from author’s activities as teacher 
educator in the project). Moreover, interviews were conducted from an ex-post perspective with 
former participating teachers, teachers’ colleagues, principals, and project facilitators and teacher 
educators. Data analysis included both inductive and deductive elements (Altrichter & Posch, 2009) 
to analyse both the impact and the respective fostering (or hindering) factors. For example: 
document analysis aimed at gathering information concerning short-term impact which (a) occurred 
during and/or at the end of the teachers’ participation and (b) might hold the possibility of 
sustainability and scale-up. Subsequently, this document analysis formed the basis for the interviews 
series. The interviews were semi-structured, since they were based on the analysis of existing data 
(document analysis), which identified various levels of short-term impact which occurred during 
and/or at the end of teachers’ participation. The interviews were designed accordingly (a) to gather 
data concerning the sustainability and scale-up of impact and (b) to reveal other types of impact 
which were not already coded. Data was analysed by qualitative content analysis (Mayring, 2003) in 
order to identify common topics, elaborate emerging categories, and gain deeper insight into 
teachers’ professional growth over time. The case studies’ results were validated by means of 
member checking. 

Exemplary case study from IMST 

The case of Barbara, a former participant of the IMST² project, provides exemplary results 
concerning the issue of sustainable impact: 

Barbara’s beliefs regarding inquiry based learning (IBL) and open learning environments were 
changed during her participation in IMST²: Due to her participation in the project, she regularly 
used IBL settings (which she did not before her participation) and experienced positive effects on 
students’ content knowledge, as well as on their self-confidence. In particular, she stated that there 
were positive changes regarding low-performing students’ self-esteem, as well as the further 
development of high-performing students’ competencies. This change was evidenced by data (both 
document analysis and interviews). In the interview, Barbara highlighted that this impact was 
sustained and enabled her to create and implement innovative teaching methods in a long-term way.  

Besides this impact, she also developed (due to her participation in the IMST²) an inquiry stance 
towards the content and the method of her teaching. This inquiry stance was mirrored by her new 
belief about the value of feedback: due to the teacher education programme, topics such as 
classroom atmosphere and teaching quality were discussed with and evaluated by her students on a 
regular basis. This impact on her own IBL was sustained: Barbara stated in the interview, that she 
was convinced of the importance of critically evaluating her teaching. Even after the programme’s 
termination, she continued to actively facilitate her students’ communication and discussion about 
her teaching practices.  

One of the central factors that fostered the sustainability of impacts was the engagement of the 
school’s principal. The school had an efficiently organized management and school development 
structure, which represented another fostering factor. Additionally, Barbara experienced personal 



benefit, which also helped the impact persist after the programme’s termination. Both the teacher 
and principal highlighted (in the interviews) the role of the IMST² project facilitator as a fostering 
factor. Yet another fostering factor was represented by the IMST² workshops and seminars, where 
Barbara (according the interview data) got support and opportunities to share her experiences and to 
make her success and remaining challenges visible. 

Exemplary case study from PFL 

Eve participated in the PFL course and had the goal to promote open learning settings by 
implementing new teaching approaches in her mathematics classes. Document analysis showed that 
she aimed at enhancing pupils’ inquiry-based learning opportunities. During her participation in 
PFL, Eve changed her teaching practices and implemented innovative teaching approaches to 
enhance her pupils’ self-directed and independent learning. Interview data clearly shows that this 
impact was sustained: the changes in Eve’s teaching practices stayed effective even after the 
termination of PFL. Core fostering factors were the school principal’s support and a high level of 
mutual appreciation within the school staff, and pupils’ benefit. In particular, Eve highlighted in the 
interview that the pupils’ joy and success are core reasons for her to keep this impact sustained. 

Document analysis further showed that Eve conducted various self-evaluations during her 
participation in PFL and gained new knowledge concerning action research methods. In the 
interview, she stated that she continued to reflect on her teaching practices, even after the end of her 
participation. This impact was sustainable, due to Eve’s direct advantage (by getting information on 
her classroom performance) and the support of the school’s principal (who was convinced that 
reflections and self-evaluations are important steps on the journey to school quality). This impact 
was also fostered by Eve’s colleagues’ joint reflection and communication. Interview data shows 
that teachers cooperated beyond school subjects and held similar values and standards concerning 
pedagogical or subject-related issues. The school’s principal showed great interest in, and provided 
support for, the teachers’ activities. He participated in the school’s mathematics study group and 
shared his perspective with the teachers. 
Discussion  
The factors that fostered the sustainability of the case studies’ impacts are mirrored by the 
theoretical framework (see above):  

IMST and PFL enabled networking (Cobb & Smith, 2008) by community building, mutual 
appreciation and joint reflection. A particular factor was the principals’ content knowledge (Cobb & 
Smith, 2008). Teachers’ colleagues provided communication and social support in developing and 
reflecting instructional practices (Cobb & Smith, 2008). Moreover, a shared vision (Cobb & Smith, 
2008) of values and standards regarding high quality mathematics instruction was established. In 
particular, the case studies’ results highlight that the promotion of reflection and networking as key 
interventions (Krainer, 1998) turned out to be supportive for the sustainability of the professional 
development programmes’ impacts.  

 



NOTE 
Parts of this paper are based on Krainer & Zehetmeier (2013), Zehetmeier (2015) and Zehetmeier, 
Erlacher, Andreitz, and Rauch (2015). 
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Description of the research topic  
The benefits to student academic and dispositional outcomes when exposed to autonomy supportive 
learning environments have been acknowledged for more than a decade (Assor, 2012; Reeve, 2009). 
Autonomy supportive teaching practices nurture students’ internal motivations to learn, resulting in 
learning that is self-directed and both cognitively and emotionally engaging (Wolters & Taylor, 
2012). While research affirms the benefits of instruction incorporating autonomy-supportive 
practices (e.g., Assor, 2012) it also shows that the mathematical beliefs of teachers can be an 
impediment to their commitment and enactment of such practices (Bobis, Way, Anderson, & 
Martin, 2016). With this in mind, an intervention study was conducted with mathematics teachers 
(grades 5-7) that aimed to enhance their use of engagement supportive teaching strategies in their 
mathematics classrooms. The intervention was a year-long professional development program that 
focused on shifting teachers’ beliefs about student engagement and building knowledge of 
instructional strategies for promoting student autonomy in the mathematics classroom. The specific 
research question addressed was: What impact did the professional development program have on 
teachers’ beliefs and practices that promote learner autonomy in mathematics? 

Theoretical framework and methodology 
Self-determination theorists (SDT, Deci & Ryan, 1985) advocate that autonomous motivation will 
improve students’ academic and dispositional outcomes because activities undertaken for 
autonomous reasons are likely to increase students’ willingness to apply effort when learning. 
According to SDT, students will be more intrinsically motivated to learn when teachers adopt 
autonomy-supportive pedagogy rather than controlling pedagogical approaches. SDT was used to 
guide our examination of self-reported data regarding mathematics teachers’ instructional beliefs 
and practices as a result of their involvement in the professional development program. 

Pre- and post-intervention data were collected from 32 grade 5 to 7 teachers of mathematics from 
four secondary and ten elementary schools located in Sydney, Australia. Participants included five 
male and 27 female teachers. Data were collected via focus groups and a 20 Likert-type item 
questionnaire that measured the extent to which teachers were committed to instructional beliefs 
and practices considered supportive of student engagement, including learner autonomy.  



Findings and conclusion 
Dependent T-tests were used to determine whether there were significant differences between 
teachers’ pre- and post-intervention responses on each dimension of the questionnaire. Results for 
two dimensions pertaining to teachers’ autonomy supportive beliefs and practices—discovery (the 
construction of ideas through student discovery) and teacher’s role (co-learner and constructor of a 
learning community) are presented on the poster. During the pre-intervention focus groups, most 
teachers described their roles as a ‘giver’ of knowledge to students. However, in the post-
intervention focus groups, teachers reported how they now tried to develop more autonomous 
learning strategies in their students and to encourage them to take greater responsibility for their 
own learning. The results indicate that teachers expressed beliefs and practices that were more 
supportive of student autonomy at the end of the intervention than prior to undertaking the 
professional development program. 

Presentation of the poster 
The poster is structured in four major sections: Section one provides a succinct introduction to the 
literature, providing a justification for the study and presents the research question. Section two 
presents a visual representation of the theoretical framework (SDT) underpinning the study and our 
analysis of results. Section three presents results from the questionnaire and focus groups. The final 
section presents implications of the findings and argues that such shifts in teachers’ beliefs/practices 
can have practical consequences in terms of improving students’ autonomy for learning 
mathematics. 
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The poster describes preliminary results from ongoing professional development with two U.S. 
mathematics teachers, one Algebra 1 and one eighth grade mathematics teacher, designed to 
increase and enhance teachers’ content knowledge and transform their classroom instruction by 
embedding the author (i.e., researcher) in teachers’ practices. The poster also articulates the 
embedded PD model. Preliminary results show participating teachers are engaging their students 
in more rigorous mathematics, teachers are demonstrating increased self-efficacy and are more 
frequently engaging students in mathematical sense making, reasoning, modeling, generalizing, and 
communicating. 
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Description of research topic 
The poster describes ongoing professional development (PD) in the United States with one eighth 
grade math teacher (students 13-14 years) and one ninth grade Algebra 1 teacher (students 14-15 
years) designed to increase and enhance teachers’ content knowledge and transform their classroom 
instruction by embedding the author (i.e., researcher) in teachers’ practices. The poster focuses on 
the following research questions: How does embedding a mathematics teacher educator in a 
mathematics classroom (embedded PD) impact (1) participating teachers’ content knowledge, (2) 
participating teachers’ instruction, (3) students’ self-efficacy, and (4) student achievement?  

Theoretical framework 
The embedded PD model is grounded in a constructivist approach to learning mathematics and 
aligns with Simon’s (1995) Mathematics Teaching Cycle and Thompson’s (2013) interpretive 
framework for the development of powerful Mathematical Meanings for Teaching (MMT).   

Method 
Throughout embedded PD, the author (i.e., researcher) and participating teachers relied on: 
participating teachers’ prior assignments, assessments and notes; textbooks and district generated 
documents (e.g., curriculum maps); state-level standards and documents; and a variety of Internet 
resources (e.g., GeoGebra, NRICH Project). Throughout the planning of a lesson, which may take 
multiple in-person or online meetings (or both), the researcher attempts to motivate the teacher to 
make explicit (and objects thought, discussion and subsequent reflection) her (i.e., teacher’s) 
understandings of: the mathematics inherent in the lesson, hypotheses of their students’ knowledge, 
theories of mathematics learning and teaching, activities and assessments (Simon, 1995; Thompson, 
2013). As such, notions of meanings, ways of thinking and the need for the teacher and her students 
to articulate their meanings, thinking, and reasoning are consistently addressed (Thompson, 2013).  

Participants 

Participating teachers reported on the poster involve Tami (eighth grade math) and Jeremy (Algebra 
1). Tami’s eighth grade class contained 15 students of both genders and multiple races. Five (of the 



15) students were on individual education plans. Jeremy’s Algebra 1 class contained 25 students of 
both genders and multiple races. 

Data and analysis 
Data consisted of: (1) video- and audio-recordings of and physical documents related to lesson co-
planning sessions; (2) video- and audio-recordings of lesson implementations (i.e., co-teaching); 
and, (3) video- and audio-recordings of and physical documents related to teachers’ reflection on 
student work and classroom instruction. Two embedded co-teaching descriptions will be described 
on the poster, one involving a co-planning session with Tami, the other involving co-teaching with 
Jeremy. Analysis will serve to characterize some of the differences exhibited in tasks, activities, and 
classroom interactions highlighted as a result of the embedded model.  

Preliminary results 
Teachers engaged in embedded PD have indicated their participation has provided them the support 
to do what they believe is best for their students and their practice while not feeling constrained by 
district and state demands. Rather than feeling the need to rush through content and focus on skills 
and procedures, embedded co-teaching has allowed participating teachers to focus on 
understanding, coherence, and discourse. Preliminary results show participating teachers are 
engaging their students in more rigorous mathematics and both students and teachers are 
demonstrating increased self-efficacy and are more frequently engaging in mathematical sense 
making, reasoning, modeling, generalizing, and communicating.  
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Introduction 
In many classrooms, from first grade through the whole school system, there are many students 
whose mother tongue is not the same as the teachers’ language used for instruction (Khisty, 2001). 
In Sweden, newly arrived immigrant children with limited Swedish language knowledge are 
learning Mathematics together with children who have spent their entire life in a Swedish context. 
Considering the large number of students with limited knowledge in the language of instruction one 
of the most important tasks for teachers in Swedish primary education is to create conditions to 
support the development of mathematical knowledge in these students.  

Lately, the role of language in mathematics education has received a profound interest in 
educational research. Researchers have emphasized the importance of teachers using specific 
strategies to facilitate the classroom communication to and support students’ mathematical thinking 
(O’Connor & Michaels, 1993).  

Specifically, in the syllabuses (Skolverket, 2011) it is particularly prominent that mathematics is 
dominated by discourse-intensive approaches, and the use of instructional tools such as talk moves, 
give ample opportunities for student learning (Chapin & O’Connor, 2007). Similar strategies for 
supporting students’ learning in mathematics have received attention among effective teachers of 
second language learners in mathematics (Khisty, 2001).  

This study uses action research which is characterized by ongoing processes of self-reflection, 
which can be thought of as a spiral of self-reflective cycles on planning a change, followed by acting 
and observing the process and reflecting on the process and then re-planning and so forth (Kemmis 
& Wilkinsson, 1998). Using PAR gives an attempt “to help people investigate and change their 
social and educational realities by changing some of the practices which constitute their lived 
realities” (Kemmis & Wilkinsson, 1998, p.22).  

Method 
The poster gives a brief presentation of a one-year research project where four primary teachers at 
the same school (year 2, 4 and 5) have been working together with a researcher, using participatory 
action research (PAR) (Kemmis & Wilkinsson, 1998) to develop their instructional tools in order to 
support students' mathematical development in multilingual classrooms. Data collection has 
continued throughout the whole action research process during the academic year. The empirical 
data includes teachers’ logs, teacher questionnaires with open answers, researcher’s notes, audio-



recorded discussions from the meetings twice a month in the project group and 3-4 video-taped 
mathematics lessons in each classes, 14 lessons altogether  

Results 
Although the focus in this project has been on instructional tools for supporting students’ talk in 
order to enhance their development in communicating and reasoning mathematically, it is 
noteworthy that the teachers express their development, not only in terms of (1) instructional tools 
but also regarding other aspects such as (2) classroom organization and (3) focus on mathematical 
content. 

Methods structured in these three themes above constitute a teacher tool kit to support students’ 
learning mathematics in multicultural classrooms. 

Conclusions 
By using PAR, the teachers had the opportunity to reflect critically, analyze and act as coparticipants 
in the challenge to change the practices in which they interact, which also challenged their approach 
to teaching. 

When teachers act and reflect on their use of specific strategies of classroom talk they also start 
reflecting and acting on other aspects of teaching, such as classroom organization and how to keep 
attention to the taught content. Thereby, the change in practice became more than just temporary  
changes. 
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Introduction 
TWG19 is one of three TWGs at CERME10 dealing with issues related to teaching and teacher 
education (the others being TWG18 and TWG20). The group is particularly interested in studies 
that aim to understand the development of classroom practices and teachers’ contributions to them. 
This includes the roles of other factors such as the available teaching-learning materials, modes of 
teacher collaboration at and beyond the school(s) in question, and school cultures as they relate to, 
for instance, teacher-student relationships, teachers’ individual and communal responsibilities, and 
the role of curricular materials and testing. Finally, studies concerned with how micro-level 
interactions are informed by macro-level structures (society, culture and the political) are also of 
TWG19’s interest. 

A total of 27 contributions were initially submitted (26 papers and 1 poster), involving authors from 
at least 14 different countries, primarily in southern or northern Europe. The papers were grouped in 
five thematic areas, each assigned to one of the five team leaders for overseeing the reviewing 
process. Each proposal was reviewed by a team leader and two authors, and 24 contributions (22 
papers and 2 posters) were accepted for presentation at the conference. Participants were expected 
to read the papers before the conference sessions. In the time slot allocated to each group of papers, 
the authors each gave a short presentation (5–7 minutes), sketching the key ideas of the work 
reported. This was followed by a reflection by the group leader on common themes and cross-
cutting issues (15 minutes), which were subsequently discussed by the participants in small groups. 
Ultimately, 22 papers and 1 poster are included in the conference proceedings.     

The five thematic areas according to which the TWG19 contributions were grouped are: (a) 
problem solving and general issues related to teaching practice, (b) lesson planning, lesson study 
and curriculum, (c) instructional quality and assessment, (d) in-the- moment teaching actions and 
decision making and reflection and (e) instructional practices. In the next two sections, we discuss 
the contributions first within and then across these thematic areas. 



Substantive issues 
In this section we present research considerations and concerns in the papers in each group, 
including the range of theoretical perspectives and methodologies employed. 

(a) Problem solving and general issues related to teaching practice 

Dominant perspectives on the teachers’ knowledge have changed and now focus on content 
knowledge closely connected to the profession. This is fueled by current reform initiatives that 
emphasise processes of mathematics, for instance in terms of problem solving. 

Three of the four papers in this section deal with problem solving. The paper by Kleve and Ånestad 
concerns a Norwegian teacher, who seems inspired by a process view of mathematics. The class 
works with subtraction and initially uses informal mental strategies. The authors argue that there is 
a need to link such methods to a standard algorithm, that the flexible use of both methods is needed, 
and that it should become socio-mathematical norm that both are acceptable. However, the 
teacher’s mathematical knowledge for teaching seems too weak for her to support the students in 
the transition from informal strategies to standard procedures. This makes it impossible for her to 
support socio-mathematical norms in line with the reform. 

Odindo’s study from Kenya is based on the expectation that problem-solving approaches may 
alleviate secondary students’ difficulties with their final exams. He uses Learning Study (LS) to 
support teachers in using problem solving when teaching algebra. The paper to some extent focuses 
on the students, but mainly asks what the learning opportunities are for the teachers. Odindo argues 
that the LS format allows teachers to consider general issues of, for instance, time management, but 
also to focus on patterns of task variation closely related to the contents. At least implicitly, then, 
the paper is concerned with how LS may support mathematical knowledge for teaching. 

The study by Villalonga and Andrews is also on problem solving, but less on mathematical 
knowledge for teaching. In fact, the teacher is conspicuously absent, as the paper deals with how 
Catalan students may self-scaffold when engaged in problem solving. The students use a resource, 
an Orientation Base (OB), which is to help them monitor their problem solving. The teacher is 
almost obsolete, and the OB may be read as a response to the problem that many teachers find it 
difficult to support their students’ problem solving. OB may be seen as an attempt to circumvent 
this difficulty and transfer responsibility to the students.   

The last paper in this group, by Mosvold and Hoover, report on a literature review of studies on 
mathematical knowledge for teaching.  The 12 studies in the review address questions of what, how 
and why such knowledge plays a part for the quality of instruction. The studies argue that 
mathematical knowledge for teaching is important for instance for teachers’ selection and 
adaptation of tasks, for their planning of instruction, and for how they listen to students and pursue 
student thinking. Based on the review, however, Mosvold and Hoover argue that the results are 
mixed and that there is a need to shift the emphasis towards more dynamic understandings of the 
relationship between mathematical knowledge for teaching and teaching. 

The discussions of these papers focus on what it may mean to adopt a dynamic perspective on the 
knowledge-teaching relationship. How, then, we may change the emphasis from teacher 
characteristics (e.g., their knowledge or beliefs) to the acts of teaching? The latter perspective 



requires greater attention to issues of context, to what we mean by practice, and possibly to 
alternative frameworks that allow us to reconsider what we mean by knowledge. 

 (b) Lesson planning, development and curriculum 

This group of papers focuses on planning for teaching, utilizing lessons learned in other contexts, 
and dealing with curricula and textbooks. Four papers approached these issues. 

In her case study of a Swedish mathematics teacher, Grundén targets the practice of planning. 
Reflecting on her own planning, the teacher conceptualizes planning as making informed decisions 
regarding the teaching of the mathematical content in different contexts, and she relates planning to 
other practices of the teacher as well as practices of other teachers. Relating to the practice of other 
teachers is also an issue in the study of Runesson Kempe, Lövström and Hellqvist, who investigate 
how experiences from a Learning study can be shared and used by teachers in other contexts. 
Applying the results from a previous Learning study in new classrooms, the authors investigate 
some necessary conditions for learning about negative numbers and indicate possibilities for 
cultivating more effective professional practice in mathematics classrooms. 

Although development and change in mathematics teaching might be teacher-driven, it is 
sometimes prescribed by curriculum reforms. Klothou and Sakonidis investigate the 
implementation of a new curriculum reform among primary mathematics teachers in Greece. They 
argue that contradictions in teachers’ own discourses can be explained by recontextualization 
procedures that appear when teachers attempt to implement the reform, and inconsistencies may 
abide in the very discourses that teachers draw upon. Whereas some countries have official 
textbooks that everyone must use, French teachers are free to decide if they want to use a textbook 
and how – if they adhere to the national curriculum. In their study on how two experienced French 
teachers use and adapt the content of mathematics textbooks and teacher manuals, Priolet and 
Mounier analyze how the teachers use the same textbook when teaching the same mathematical 
content. None of them follow the recommendations from the textbook completely in their lesson, 
and the adjustments they make tend to reduce the difficulty of textbook tasks. 

These four papers provide compelling glimpses into the complex work of teaching mathematics. 
They discuss how authorities, schools and other teachers may provide resources that are intended to 
support the work of teaching, and how adapting and using such resources introduces mathematical, 
didactical and social demands on teachers’ work. Mathematical knowledge for teaching can be 
described as knowledge required to deal with such demands (Ball et al., 2008), and these four 
papers thus indirectly contribute to investigating more dynamic relationships between knowledge 
and teaching.  

(c) Instructional quality and assessment 

The five papers in this thematic group describe qualities of teaching. Three papers concern 
instrument development for assessing qualities. One such instrument is the Realization Tree 
Assessment tool (Weingarden, Heyd-Metzuyanim & Nachlieli). This tool is particularly interesting 
in the way it reduces the complexity of the lesson into a picture of the mathematical concepts 
discussed in order to describe qualities of the lessons. This picture organizes mathematical ideas 
related to what Sfard (2008) calls saming and objectification. A second instrument presented is an 
innovative tool to observe, describe and evaluate metacognitive practices in mathematics 



(Nowinska & Praetorius). Six out of the seven dimensions developed had highly reliable ratings. A 
third instrument developed by Jentsch and Schlesinger starts from three established dimensions 
(classroom management, personal learning support, cognitive activation) and aims at adding a 
subject-specific dimension. This dimension includes nine characteristics – such as teachers’ 
mathematical correctness, explanations and mathematical depth – and produces results with good 
interrater agreement and satisfying reliability measures. 

In addition, two papers study qualities of teaching using observation and interviews. Tuset 
investigates pre-service teachers trying ambitious teaching, allowing students to exercise authority 
while staying accountable to the discipline. The study finds that the pre-service teachers are able to 
create opportunities to engage in explorative discourses, but that their talk moves seem to be 
ritualized and therefore constrain students’ participation. Kaldrimidou, Sakonidis and Tzekaki 
attempt to identify crucial elements shaping classroom mathematical meaning construction. To 
achieve this, they study three highly motivated and professionally active teachers’ instructional 
practices and reflections. Findings reveal that the teachers’ choices restrict the mathematical 
meaning because they desire to provide an easy, safe and pleasant learning environment. 

These five papers illustrate two main issues for further research. The first issue regards the 
challenges of low and high inference observations. Low inference observations, like talk moves, 
explain little in themselves. On the other hand, high inference observations require extensive rater 
training that might result in simplification and even ritualization of the rating. What could we lose 
then? The second issue is that these articles illustrate the need for an instrument review. Which 
instruments are available for assessing qualities of teaching, what do they intend to measure, what 
theories do they build on, how reliable are they, and how much data and extent of rater training is 
needed to make them reliable? 

(d) In-the-moment teaching actions and decision making and reflection 

The studies in this group address mathematics instruction in a variety of ways: as teachers’ 
management of actions and moments determining students’ learning (Ferreira & da Ponte); as an 
activity shaping and being shaped by teachers’ professional enactment in intervention or reform 
settings (Stouraitis; Sterner); as a practice being intentionally problematized to support teachers to 
develop (Potari & Psycharis; NicMhuirí). A different approach is to distinguish between papers that 
look at mathematics instruction as a learning-to-teach site through scrutinizing yourself or others 
acting it (Ferreira & da Ponte; Potari & Psycharis), as a professional activity developed through 
collaborative action (Sterner; Stouraitis), or through individual reflection via literature (NicMhuirí). 

A range of theoretical or conceptual frameworks – mostly of sociocultural origin – are at work in 
the studies reported, and reflection (on teaching practice) and collaboration are at heart of these 
frameworks. In particular, NicMhuirí employs a reflective practitioner’s perspective in combination 
with a model allowing for levels of teachers’ reflection to be identified.  Reflection is also of 
concern in Potari and Psycharis’ work operationalized through the construct of ‘critical incidents’ 
within a community of inquiry framework. The theoretical underpinnings of the community of 
practice approach are adopted by Steiner, with reflection being seen this time as a professional 
learning enterprise developing collaboratively.  Drawing on a CHAT perspective, Stouraitis views 
reflection as an aspect of teachers’ decision making which interacts with teaching activity.  Finally, 



the study by Ferreira and Ponte employs features related to tasks assigned to the students and the 
communication established in the classroom to evaluate teaching actions. 

Most papers in the group report on small, qualitative studies. Empirical data include observations of 
teaching, meetings and/or interviews audio-taped and transcribed. These data are predominately 
analyzed based on categories indicated by the literature (content analysis) or by the data themselves 
(grounded theory like analysis). One study uses no data, but analyzes two empirically tested 
constructs to exemplify the tool indicated (NicMhuirí). The results of the studies highlight various 
levels of mathematics teaching interacting with teachers’ professional activity. 

Overall, the studies in the group seek to understand how mathematics classroom teaching feeds 
teachers’ professional practice, focusing on teachers inquiring into specific aspects of it. The 
relevant discussions carried out during the conference sessions raised concerns about the clarity of 
the terms and constructs used, the appropriateness and the functionality of the theoretical 
frameworks employed, and the boundaries between teaching action/practice and teacher practice.  

(e) Instructional practices 

The four papers in this thematic group approach instructional practices from different sociocultural 
perspectives. Two papers investigate teacher change during professional development programs. In 
particular, Venkat and Askew employ variation theory and example spaces to understand how 
teachers mediate primary mathematics, mainly how they generate and validate solutions as well as 
build mathematical connections. Şeker and Ader, on the other hand, focus on maintaining the 
cognitive demand of mathematical tasks, teachers’ attention to students’ mathematical ideas and 
intellectual authority in the classroom. Using the aforementioned frameworks makes it possible to 
illuminate different aspects of teacher practices that seem to improve based on research 
recommendations. Future research concerning both papers may entail a close look into the nature of 
professional development that influences instructional practices. 

The paper by Baldry focuses on the development and viability of an analytical framework aiming to 
understand a ‘typical’ mathematical classroom in the United Kingdom. The analytical framework 
Orchestration of Mathematics portrays the quality of mathematics orchestration combining several 
theoretical constructs including cognitive demand of mathematical tasks, sociomathematical norms, 
hypothetical learning trajectories and professional noticing. The framework thus seems closely 
related to the scheme of analysis adopted by Şeker and Ader. A common theme of the two studies is 
teachers’ difficulty in noticing and building on student thinking as well as maintaining cognitive 
demand of the tasks.  

The importance of discourse in understanding instructional practices is evident across all papers. 
Drageset and Allern use drama as an innovative tool, allowing students to gain mathematical 
authority and engage in productive discourse patterns in making sense of mathematics. Instructional 
practices shaped and were shaped by student participation and responses. Future consideration for 
this work is to explore how teachers might implement such drama-based interaction patterns in their 
classrooms with the help of teacher educators.  

A general trend identified in this group is using interviews together with observational data to 
understand teacher instructional practices, including teacher decisions and professional noticing 
abilities, closely connected with student participation and sociocultural norms. It would be 



productive to define boundaries of instructional practices and how to incorporate pre- and post-
observation interviews with teachers in analysing relevant data. 

Trends and developments 
The studies in TWG19 address a wide range of features and factors that regulate the quality and 
development of classroom mathematics teaching as well as its relation to teachers’ professional 
growth. A systematic attempt to understand, assess and trace contributions to teacher and classroom 
practices can be identified across the papers. Issues pursued along each of these three directions are 
discussed below. The section concludes with some critical considerations related to the studies 
hosted by TWG19. 

In trying to understand teachers and classroom practices, some of the studies look at mathematics 
teaching in challenging circumstances (e.g., Kaldrimidou et al.; Kleve & Ånestad; Priolet & 
Mounier). Their results suggest that adapting teaching to effectively respond to such occasions is a 
difficult endeavor often leading to poor and even contradictory teaching practices. Teaching is also 
seen in relation to teachers’ professional knowledge and practices/perspectives, with the relevant 
studies indicating a complex but dynamic and fertile relationship (e.g., Mosvold & Hoover; 
Grundén; Stouraitis). Finally, some studies consider the influence of contextual factors upon 
teaching practices (e.g., Baldry; Venkat & Askew). The findings reveal teachers’ difficulties in 
administering the mediational role of these factors in order to develop effective teaching practices.  

The qualities of teachers and classroom practices are assessed by focusing quantitatively or 
qualitatively on subject-specific rather than generic features. Studies adopting quantitative 
instruments highlight the value of such approaches when able to assess high inference valuations 
with the necessary inter-rater agreement (e.g., Jentsch & Schlesinger; Nowinska & Praetorius). The 
qualitative instruments, like interviews and observations (e.g., Weingarden, Heyd-Metzuyanim & 
Nachlieli; Tuset), found to face the same challenges of assessing high inference valuations. To do 
this with trustworthiness, the qualitative research typically focuses on depth of scrutiny rather than 
inter-rater agreement. 

Certain ways of contributing to teachers and classroom practices are identified in the papers, mainly 
in some form of collaboration, reflection or intervention. In particular, opportunities to collaborate 
with other teachers to explore various aspects of teaching mathematics seem to offer possibilities 
for teachers to develop their professional practice (Sterner; Runesson Kempe et al.; Odindo). 
Teachers’ reflection on classroom practice is a central constituent of this collaboration facilitated by 
inquiry tools. When exercised on varied levels and at specific aspects of classroom practice, 
affordances and constraints of this practice become evident (NicMhuirí; Psycharis & Potari). The 
latter appears to be also the outcome of intervention studies supporting teachers to transfer more 
learning responsibilities to students (Drageset & Allern; Şeker & Ader; Villalonga & Andrews). 

The research activity on teachers and classroom practices included in TWG19 reflects some 
interesting steps forward, but it also reveals at least five sets of issues in need of critical 
consideration. Firstly, issues related to the methods adopted, for instance, the issue of generalizing 
across contexts, the role of using multiple methods, and the (dis-)advantages of different teacher-
researcher relationships. Secondly, concerns about the theoretical frameworks employed, for 
example, selection criteria, levels of generality targeted, issues of compatibility, questions (not) 



addressed, ‘own’ frameworks. Thirdly, there is a need to carefully consider concepts and terms 
used. For instance, terms like ‘practice’, ‘context’ and even ‘teaching’ need clarification, whereas 
constructs like ‘stability of knowledge’ require further consideration. Fourthly, it is important to 
adopt clearly defined criteria for assessing the quality of teaching with reference to the learning of 
mathematics achieved as well as the wider educational goals targeted. Finally, it is necessary to 
consider quality criteria for research adopted, contribution to theory or practice, coherence, and 
sufficiency of evidence to warrant an empirical claim. 

Concluding remarks 
The work reported in TWG19 is part of the research on mathematics teachers and classroom 
practices developed in recent years employing a predominately sociocultural perspective. Within 
this perspective, teaching is seen as a social practice in which teachers are practitioners (Jaworski, 
2006). Classroom practices are viewed as regular activities and norms continually developed by 
teachers’ involvement in multiple simultaneous activities, “taking into consideration working 
contexts, meanings and intentions (…) the social structure of the context and its many layers – 
classroom, school, community, professional structure and educational and social system” (Ponte & 
Chapman, 2006, p. 483). These activities mutually structure and frame each other to constitute the 
practice of the classroom (Skott, 2013). 

There is a range of issues addressed by the studies reported that concern teachers’ contribution to 
classroom practice in various contexts, mostly related to critical aspects of instruction-in-action and 
teachers either inquiring into their own teaching or working towards developing it. Collectively 
these contributions appear to suggest that it is valuable to shift the emphasis in this line of research 
from teachers to teaching. Several theoretical and analytical frameworks are used often in 
combination (rather than in coordination) providing multiple lenses through which certain 
constructs (rather than structures) are examined within particular contexts. Along the same line, 
different methodological approaches are pursued, mainly qualitative, seeking to capture the 
complexity and richness of the practices unfolding within mathematics classroom life shaping 
students’ learning of mathematics and teachers’ learning to teach mathematics alike.  The findings 
of the studies offer some notable insights into this shaping, highlighting the importance of focusing 
on the micro-level of classroom practice, on the resources teachers draw on as they engage in it, and 
their (intentional or unintentional) professional activity. 

The plurality of theoretical perspectives, constructs and analytical tools employed in the studies of 
teacher and classroom practice reported in TWG19 underline the dynamics of the research activity 
aiming at ‘unpacking’ teaching practice. It might be the time for the research community working in 
this area to consider what is already known, what is to be further examined and to develop on the 
basis of this evaluation a research agenda to fill the gaps. How different tools may be used 
considering different theoretical perspectives, decisions of whether to use an existing tool or to 
develop a new one and how to report the added value of using different tools require special 
attention in moving forward. To this end, the emphasis should be on teaching rather than on 
teachers, as suggested by the work presented and discussed in the context of the conference 
sessions. 
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This paper explores the complexity of interpreting teachers’ practice in relation to mathematical 
meaning making in ‘typical’ classrooms in England. An observation framework has been developed 
to interpret classroom activities that draws on a range of theoretical perspectives, including 
variation theory (Marton & Pang, 2006) and notions of classroom norms (Cobb, Gresalfi, & 
Hodge, 2009). This paper focusses on the analysis of two lessons in order to discuss the potential of 
this framework to foreground the mathematics made available to students and the pedagogical 
moves made by the teacher to bring this about. In England, class composition for secondary 
mathematics is usually decided by measures of prior attainment, with students of similar ‘ability’ 
grouped together. A wider study is exploring shifts in teachers’ pedagogical approaches when they 
teach classes with different attainment profiles. Consideration here is given to whether observation 
of a few lessons using this framework can identify stable mathematical characteristics, so that in 
future the framework would allow comparisons between classes to be made. 

Keywords: Observation, teaching methods, sociomathematical norms, variation theory. 

Introduction  
In England, ongoing attention is paid by politicians and educators to the mathematical attainment of 
students, and this includes analysing the progress of different groups (Easby, 2014). At secondary 
level, class composition in mathematics is often determined by measures of prior attainment, with 
students grouped with others of similar ‘ability’ and is referred to as setting (Ireson, Hallam, & 
Hurley, 2005). Whilst findings from research into the impact of setting do vary, the predominant 
view is that setting does not improve overall attainment and may indeed act as a suppressant (e.g. 
Hattie, 2002). Moreover, setting does increase the spread of attainment, resulting in students placed 
in lower attaining sets being disproportionally affected. Issues of equity are raised further as 
students from lower socioeconomic groups are over-represented in low sets, even when prior 
attainment is taken into account (Muijs & Dunne, 2010). In spite of these concerns, setting in 
secondary mathematics classrooms appears to be firmly entrenched, with many teachers perceiving 
setting as the only practical way to teach a range of ‘abilities’ (Wiliam & Bartholomew, 2004).   

There is a tendency for the teaching of sets with different attainment profiles to have distinctive 
pedagogical characteristics; for example, contextualised language is more common in low attaining 
sets, shifting to more formalized mathematical language in higher attaining sets (Dunne et al., 
2011). The aim of a wider ongoing study is to explore how individual teachers shift their pedagogy 
when they teach classes with different attainment profiles. It is anticipated that this will offer 
insights into how they tailor practice for different sets and the impact this has on the mathematics 
made available to students. In that larger study, a conceptual framework has been developed to 
interpret teachers’ actions in relation to their orchestration of mathematics (figure 1); in this study 
the framework is employed to capture practice that the teacher considers typical for them with a 
particular class (set).  



Theoretical framework 
Classrooms are widely acknowledged as dynamic environments, where the complexities cannot be 
captured in a simple model (e.g. Potari & Jaworski, 2002). Goodchild and Sriraman (2012) argue 
that the didactic triangle, where vertices represent teachers, students and mathematical content, 
“serves as a starting point to theorise the dynamics of teaching–learning” (p. 581). For researchers, 
this raises a question as to how that practice could be understood without taking into account the 
actions of individual students. This study utilises the notion of classroom norms as a mechanism for 
taking into account student activity whilst maintaining a focus on the teacher.     

Underpinning much of the recent research relating to teachers’ practice appears to be the notion that 
good practice is related to an inquiry orientation (Boesen et al., 2014; Schoenfeld, 2013). Termed 
the ‘reform agenda’ in the US, an inquiry orientation is associated with the development of 
conceptual understanding through the use of rich mathematical tasks, discussions and problem 
solving approaches (Stein, Engle, Smith, & Hughes, 2008). This is often contrasted with a 
‘traditional’ approach, characterised as students working on individual tasks that focus on the 
efficient application of algorithms, and delivered through transmission style teaching. Many of the 
existing analytical frameworks are linked to inquiry-oriented goals for the professional development 
of teachers (e.g. Boesen et al., 2014; Schoenfeld, 2013). Others focus on particular aspects of 
classroom practice that are considered important, such as the design of rich tasks and the 
management of discussion (M. Simon et al., 2010; Stein et al., 2008). However, with evidence that 
traditional approaches to teaching are still common in England (S. Watson & Evans, 2012), the 
applicability of affordances of inquiry-oriented frameworks to the analysis of ‘typical’ lessons has 
to be questioned. For example, inquiry-orientated contexts place more value on discussion, 
explanation and justification, with the potential to make students’ meaning making more visible, 
than do more traditional approaches. 

The Orchestration of Mathematics Framework (OMF) was developed as a tool to build a picture of 
teachers’ classroom practice (figure 1). Whilst there is insufficient space here for a detailed 
discussion, an iterative process of development was undertaken, where concepts with traction in 
interpreting classrooms were considered from the teachers’ perspective, and their relationship to 
each other. For example, Stein, Grover, and Henningsen (1996) tracked the cognitive demand of 
tasks as lessons unfold; a notion that has subsequently been drawn on by many researchers (e.g. 
Schoenfeld, 2013). Here, the focus was on linking the teachers’ activities with other theoretical 
perspectives, such as relating problems with multiple solution strategies with variation theory 
(Marton & Pang, 2006) or the press for explanations with patterns of discourse (Imm & Stylianou, 
2012). In addition to demonstrating that a wide range of classroom features can have a critical effect 
on the learning of mathematics, research has indicated that it is not the presence or absence or 
particular features per se that influences the mathematics experienced by students, but rather the 
nuances of implementation and interdependency (Hiebert et al., 2003). The OMF has been designed 
to offer a range of lenses that can be brought into play as classroom activity unfolds. As part of this 
development process, the OMF was used to analyse three publically available video lessons from 
the TIMSS studies. Whilst not reported on here, the OMF orientated the data analysis and distinct 
lesson profiles were identified. 



 
Figure 1: Orchestration of Mathematics Framework 

The central dimensions relate to in-class activity, and in particular the teacher’s orchestration of 
mathematics: that is, the mathematics made available in the shared space of the classroom and the 
actions taken by the teacher to bring this about. Two significant elements of teachers’ practice are 
the selection of tasks and the management of classroom discourse (e.g. Ainley, Pratt, & Hansen, 
2006; Stein et al., 2008). Within each dimension, there is a range of significant elements, such as 
the role of multiple representations and management of student responses. Variation theory draws 
on the idea that learning requires variation set against a backdrop of invariance (Marton & Pang, 
2006); A. Watson and Mason (2006), amongst others, have drawn on this theory to explicate how 
the sequencing of questions or activities can make visible critical features of a concept and hence 
support generalisation. Moreover, variation theory also offers a mechanism as to how other 
previously identified beneficial features could support learning. For example, multiple 
representations and multiple solution strategies could be seen as holding the concept constant whilst 
varying representations and processes. 

The notion of cognitive demand offers a way to categorize the “the level and type of thinking that a 
task has the potential to elicit” (Boston & Smith, 2009, p. 122).  Stein et al. (1996) introduced a 
rubric where ‘memorization’ and ‘procedures without connections to concepts’ are classified as low 
demand, whereas ‘procedures with connections to concepts’ and ‘doing mathematics’ are classified 
as high demand. As such, this can be viewed as potential of the teacher’s orchestration of 
mathematics to influence student learning. Cobb, Stephan, McClain, and Gravemeijer (2001) offer 
an interpretative framework that coordinates social and psychological perspectives, where the social 
aspect is framed in terms of norms. All lessons and all interactions are unique, but norms offer a 
way to interpret interactions as typical or atypical, which offers the possibility of generalising 
beyond particular incidents. In particular, their notions of sociomathematical norms and 
mathematical practices can identify what is considered legitimised mathematical activity in that 
particular context.  

The lesson image, activity and interpretation cycle draws on Simon’s (1995) work on hypothetical 
learning trajectories, but extends the focus to include performance and engagement goals, as 
evidence indicates that not all teachers focus on learning (Amador & Lamberg, 2013). This captures 
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the iterative planning, activity and interpretation that starts before the lesson and continues as the 
lesson unfolds. Teachers’ interpretations of mathematical activity are predicated on what they 
notice; the conceptualisation of professional noticing by Jacobs, Lamb, and Philipp (2010) is one 
construct drawn on here. Taken together, the dimensions offer a way to build a picture of the 
classroom based on the features as they occur and interact in the course of a teacher’s normal 
practice.  

Methodology  
This paper reports on a section of a pilot study, undertaken is part of a larger ongoing qualitative 
case study, following the interpretative tradition. The research question explored in this paper is 
how viable the OMF is as an analytical tool for charting a teacher’s pedagogical approaches and the 
mathematics made available to students.  

For a pilot study, two secondary mathematics teachers known to the author have been recruited. 
Decisions regarding selection of classes and the timing of observations resides with the teachers, in 
order to minimize the imposition on them and their schools. So far, data have been gathered from 
one teacher and two lessons with a year 8 class (12 to 13 years old), taught ten days apart. The 
author acted as a non-participant observer, with the OMF used as an observation pro forma. The 
lessons were recorded by two static video cameras and lesson artifacts, such as students’ work and 
teaching resources, were collected. Pre- and post- lesson semi-structured interviews were conducted 
with the teacher, focusing on how and why the lesson was planned in the manner chosen, and on 
moments the teacher thought important for learning, including whether these were as anticipated or 
unexpected.   

The audio data from lessons and interviews was transcribed. Lesson activities were coded as being 
mathematically relevant, organisational or not mathematically relevant. The mathematically 
relevant sections of the videos were then reviewed; interactions were mapped to the OMF and 
cross-referenced with the observation notes. The interviews were analysed for evidence of the 
teacher’s interpretation of classroom activities and their lesson image. The analyses of the two 
lessons were compared; consistencies and contradictions in the dimensions of the OMF were 
sought, to see whether there was evidence that observation of a few lessons could build a 
sufficiently representative picture of a class to allow comparison with others (Staub, 2007). All the 
analysis in this pilot study has been conducted by the author; it is anticipated that another researcher 
will review the dimensional analysis before the next stage of the wider study.  

Findings and discussion 
In this section, two linked extracts from the first lesson will be used to illustrate how the dimensions 
of the OMF were populated (figure 3). Then the comparison of the two lessons will be discussed. 

Lesson 1 

The students individually attempted to calculate the areas of six different shapes. The numerical 
answers were shown, in a mixed order, alongside the questions at the start. After nine minutes 
solutions were discussed as a whole class. 



 
Figure 2: Questions projected onto classroom whiteboard 

78 Teacher:  OK number one, what did you do and what answer did you get? 
79  Azariah: I got five times two.. ten meters.. centimeters meters squared 
80   Teacher:  Ten centimeters squared, perfect, units are really important ok. Finley 

second one then. 
81 Finley:  I did four add eight, twelve divided by two, six.. times five makes thirty 

centimeters squared.  
⁞ [the last question] 
113 Teacher:  Sixteen centimeters squared, what did you do to get it? 
114 Sam: It was just the last… 
115 Teacher: Just the last answer, did anyone manage to do it with the maths? Raj 
116 Raj: Three times.. three times four so it’s the bottom rectangle 
117 Teacher: Yep  
118 Raj: and that’s 12 meters squared, but then you triangle the top bit, which is three 

times four meters and divide by two 
119 Teacher: So what Raj did, and I’m guessing what most people did who managed to 

get that was to draw a little line there to do our 3 times 4 which is 12 meters 
squared and work out the triangle on top which was 4 meters squared ok 
good. 

Analysis of Lesson 1  

Line 78 is an example of the teacher indicating that a procedural explanation was expected as part 
of a response. When answering subsequent questions, most students provided a procedural 
explanation without prompting but other types of explanations were not offered, indicating an 
established sociomathematical norm. Line 78 was also the start of an IRE sequence (teacher 
initiation, student response, teacher evaluation), which was the predominant form of teacher-student 
interaction in the whole class context. In lines 80 and 113, the teacher repeated correct answers, and 
in line 119 reworded a more complex student explanation, claiming understanding of student 
reasoning. In terms of social norms, this contributed to accountability residing with the teacher. 

Interpretation of 
activity: errors, 
explanations not 
explored  

Tasks: Examples; Explanations: Multiple solution strategies 
possible but no acknowledgement. All questions standard format. 

Classroom Norms:  
Social Norms: Agency and 
accountability: resides 
largely with the teacher. 
SM norms: procedural 
explanation counts as 
explanation. Mathematical 
practices: area equates to 
multiplication; units vital 

Sequencing: Unsystematic variation and links were not explored. 
Organisation: Individual working  

Cognitive 
Demand: 
Potential- high; 
As enacted- low 

Discourse: Teacher led; Teacher requested (procedural) 
explanation (line 78), followed up when not provided (line 113) 
IRE with teacher evaluation (lines 78-80, 80-81, 113-119) 
Teacher re-voiced contributions; repeating correct answer (lines 
80, 113), rewording more complex explanations (119) 

Figure 3: Extract from lesson 1 OMF summary 



Integrated OMF for Lesson 1 and 2 

When the two lessons were compared the overall profiles were very similar, and the differences in 
use of context and mathematical practices could be explained by the different lesson topics. More 
important is the fact that contradictions between the two lesson analyses were not apparent. From 
these profiles a summary OMF was formed (figure 4) specific to this class. The central core, 
consisting of tasks, sequencing, organisation and discourse, located specific instances of the 
teacher’s activities, with their impact interpreted in the wider framework. For example, questions 
were posed that could have been solved in multiple ways or with the integration of multiple 
representations. However, the IRE pattern of interaction, focusing on a single procedural 
calculation, was mirrored by the students in their work and led to the categorization of low 
cognitive demand.   

Links between dimensions did emerge. For example, there were two occasions where pseudo-
contexts were used: that is real-world objects such as cars or apples were introduced, but in 
contrived and unrealistic ways. Students made errors in the whole class discussion that were not 
explored; the teacher focused on explaining the abstracted mathematical procedure whilst the 
students involved focused on interpreting the context. Follow-up questions were asked by the 
teacher, but when students’ responses did not conform to the abstracted mathematical solution the 
teacher moved on by offering a direct demonstration of the ‘correct’ procedural answer. In the post 
lesson interview, the teacher expressed surprise that errors were made on those questions and was 
unclear as to why this had occurred. The activities related to the use of pseudo-context can be traced 
through the dimensions, contributing to the conclusion that the teacher did not explore student 
thinking and that mathematical competence equates to efficient production of standard solutions.   

OMF Lesson Image 
Interpretation of 
classroom activity:  
Professional noticing -
no evidence of 
exploration of student 
thinking when it was 
not directly relatable to 
a standard solution. 

Goal: Performance Plan: Exam style questions Hypotheses: Familiarisation  
Tasks: Multiple solution strategies were possible, but 
rarely explored. (4 occasions students offered 
alternative calculation-  not evaluated or compared) 
Lesson 1: No context; Lesson 2: Pseudo-context 2/6  

Classroom Norms:  
Social Norms: Agency and 
accountability: resides 
predominantly with the 
teacher.  
Sociomathematical norms: 
procedural explanation 
counts as explanation. 
Mathematical competence 
equates to obtaining correct 
answers efficiently (errors 
to be avoided).  
Mathematical practices: 
Lesson 1: Area equates to 
multiplication. Lesson 2: 
Proportional reasoning 
equates to multiplication 

Sequencing: Questions sets unsystematic variation. All 
questions dealt with in isolation; links between 
questions were not explored [Dimensions of variation 
and range of permissible change not made explicit] 

Cognitive demand: 
Potential - high 
As enacted - low 

Organisation: Individual working- tables in groups of 
four; peer to peer discussions were had.  
Discourse: Registers: teacher used colloquial language 
with no evidence of inducting students into a ‘vertical 
discourse’. Patterns: IRE dominant form of interaction. 
Correct answers acknowledged, often repeated or 
extended. Errors often ignored; when acknowledged 
focused on moving to standard solution, reverting to 
direct explanation if initial follow-up failed.  Extended 
student explanations taken over by the teacher.   

Figure 4: Summary OMF for lesson 1 and 2  



Conclusion 
When the dimensions of the OMF are considered, distinctive patterns of discourse consistent across 
both lessons were identified, and the classroom norms indicated that these were regular patterns of 
interaction. Moreover, the same restricted range of task features were utilised throughout both 
lessons and the sequencing of questions was classified as unsystematic variation. This provides 
some evidence that the framework was effective in characterising a teacher’s pedagogical 
approaches. However, whilst the teacher indicated that these lessons were ‘typical’, the timing of 
the data collection meant that they were focused on reviewing previously met material. As such, 
there may be features that are part of the teacher’s usual repertoire but are not captured here. For the 
larger study, when comparisons between classes is sought, collecting data at the same time of year 
and when the classes are being taught similar material could ameliorate some of these issues.  

All elements of the lesson that were classified as being mathematically relevant were mapped to the 
OMF. It may be tempting, therefore, to say that the model is sufficient to capture mathematically 
significant classroom events. However, the dimensions of the framework have been populated by 
features identified as significant in the literature and these have orientated the data collection and 
analysis, therefore a complete mapping could be anticipated. Instead, the question is whether the 
orientation this framework offers provides insights into the characteristics of teachers’ pedagogical 
moves more powerful than a list of features and with sufficient validity to allow comparison. The 
evidence presented here indicates that this may indeed be the case, but further research is needed.  
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This article provides insights about a project studying how process drama can be used to change 
classroom discourse in mathematics. The idea is to use process drama to help students practice with 
roles relevant for mathematics discourse, and then use these roles to help students become active 
participants of learning during regular mathematics lessons. This article reports from the first lesson 
conducted after the process drama, and finds a lesson where the students dominate talk, especially 
asking for and explaining methods and reasons, and where the teacher acts as a moderator.  

Keywords: Classroom discourse, process drama, communication.  

Introduction 
Based on our own studies (Drageset, 2014; 2015) we have observed that mathematics teaching in our 
area is typically teacher dominated with students rarely contributing to the discourse beyond 
answering questions. We wanted to find ways to activate students as participants of the mathematical 
work of the classroom. In drama methods we found tools to develop roles and then rehearse them 
during a process drama. To develop and rehearse, we designed a process drama called Out of Syria 
with the students grouped as families. The play was set in Damascus and the families had to escape 
the war. Although process drama may be used as a subject of its own, emphasizing the artistic process 
more than the learning outcome, change of attitudes and knowledge will always be important. Thus, 
applied drama often deals with topics in need of change, and the purpose of drama is to empower the 
participants (Bolton, 1998; Landy & Montgommery, 2012; O’Neill 1995).  

During the travel the families had to solve both practical and mathematical tasks. Simple scenery, 
sound effects, music, costumes and the physical actions of the participants were used to create fiction. 
Different rooms were used for home, bus, apartment in Egypt, border crossing and boat travel. 
Dramatic effects were used by lightening contrasts, sound effects and by the researchers playing 
different roles such as police, smugglers and coastal guards. An important goal for the process drama 
was to create a reference among the pupils to role aspects such as the authority, the skeptical, the 
curious, and the mediator. Each member of the families was assigned one of these roles. We wanted 
to examine if and how the reference to these roles would contribute to a change in classroom 
discourse, i.e. to create discussions, argumentation and reasoning. The elder should always ask all 
members of their meaning, and try to enlighten their reasoning for this, before deciding. The curious 
should ask why as often as possible, while the skeptic should try to oppose and suggest alternative 
solutions or decisions. Using the situation of refugees from Syria as our topic might seem insensitive. 
It was, however, conducted with care and related to learning about other areas than mathematics.  

A few weeks after the process drama, the researchers returned to the classrooms to use the roles in 
ordinary teaching. An important point is also to change the teacher role, avoiding to play the elder 
(authority) and thus open a space for the students to use. The aim with this article is to do an analysis 
of the first lesson after the process drama in order to characterize the lesson as a whole and describe 
qualities of the discourse.  



Theoretical framework 
Studies related to classroom discourse often describe different ways teachers dominate the discourse. 
Normally these fit into a pattern described as IRE (initiation-response-evaluation) where the teacher 
initiates the questions, the students respond to them, and the teacher evaluates the response (Cazden, 
1988; Mehan, 1979). IRE is often related to procedure-bound discourse, with little emphasis on 
‘students explaining their thinking, working publicly through an incorrect idea, making a conjecture, 
or coming to consensus about a mathematical idea’ (Franke, Kazemi, & Battey, 2007, p. 231). Other 
teacher-dominated patterns are described, such as uni-directional communication (Brendefur & 
Frykholm, 2000) and conventional text-book classroom culture (Wood, Williams, & McNeal, 2006). 
However, the teacher domination appears in different ways, which might be illustrated by the four 
types of communicative approaches suggested by Mortimer and Scott (2003). Three of these 
approaches can be seen as illustrations of different types of teacher dominance. In B – the non-
interactive / dialogic approach – several points of view are paid attention to but without allowing 
others to participate. This could occur when a teacher presents several points of view and discusses 
these without allowing students to participate actively. In C – the interactive/authoritative approach - 
the participants are allowed to participate but only one point of view is paid attention to by the teacher. 
In D – the non-interactive / authoritative approach - only one point of view is attended to and the 
teacher does not allow others to participate. 

The alternative to teacher domination is found in A – the interactive / dialogic approach - where 
several points of view are paid attention to and people are allowed to participate actively. Others have 
also described communicative approaches where students are actively engaged. One such type of 
approach focus on sharing ideas, such as strategy-reporting classroom culture (Wood et al., 2006, and 
reflective communication (Brendefur & Frykholm, 2000). Another type of classroom communication 
reported is where the students work alongside the teachers solving problems, such as 
inquiry/argument classroom culture (Wood et al., 2006) and instructive communication (Brendefur 
& Frykholm, 2000). 

While the above are examples of characterizing entire practices, other scholars have studied single 
utterances in more detail. In one such approach, Alrø and Skovsmose (2002) identified eight 
communicative features: getting in contact, locating, identifying, advocating, thinking aloud, 
reformulating, challenging and evaluating. While all these eight communicative features were present 
in both student-student and teacher-student interactions, others describe different types of student 
participation, such as Drageset (2015) describing five types of students interactions; initiatives, 
explanations, partial answers, teacher-led responses, and unexplained answers. Students explanations 
might be particularly interesting, consisting of explaining reason (why), explaining concept and 
explaining method (how and what).  

There also exists frameworks and concepts describing how teachers orchestrate discourses in the 
classroom. Ponte and Quaresma (2016) suggest a framework to analyze discussions that distinguish 
between management actions and actions related to mathematics. The four teacher actions related to 
mathematical aspects are inviting, informing/suggesting, guiding, and challenging. Fraivillig, 
Murphy and Fuson (1999) also focus on similar teacher actions by describing how a teacher use 
students’ ideas to lead them towards more powerful, efficient and accurate mathematical discussion 
by eliciting, supporting, and extending children’s mathematical thinking. While Fraivillig et al. 



(1999) developed the concepts from a study of a particularly skillful teacher, Drageset (2014) 
developed a framework based on a study of five rather ordinary teachers. The result was that the 
redirecting, progressing and focusing framework (Drageset, 2014) that describes actions where the 
teacher actively involves the students (such as enlighten details and justify), and also describes actions 
where the teacher is more authoritative and less interactive (such as simplifying, closed progress 
details and demonstrating) than described by Fraivillig et al. (1999). Teacher dominance is also 
described by others, such as through funneling (Wood, 1998), the Topaze effect (Brousseau & 
Balacheff, 1997) and guided algorithmic reasoning (Lithner, 2008).  

Method 
This study is part of a larger study on how the use of drama and roles can change the classroom 
discourse. The study includes classes from primary, secondary and pre-service teachers. The data in 
this article comes from a primary classroom.  

The long term goal of this project is to develop knowledge that can be used to educate teachers in 
changing classroom discourse. With the lesson reported in this article, we wanted to try out a lesson 
with the students to understand what is possible using roles exemplary. To achieve this, the lesson 
was led by one of the researchers. This means that we are exploring the potential to change students’ 
participation using roles, analyzing qualities of students’ participation. We will also look at the 
teacher’s (researcher’s) actions in order to understand the reason for any changes in student 
participation. To see how students normally participated, we filmed a few lessons before the process 
drama. 

The selected classroom was chosen of convenience and consisted of 17 students from a typical upper 
primary school in Norway aged 11-12. None had been refugees or had any first-hand knowledge of 
Syria or refugees. Their teacher has a typical Norwegian four-year teacher education with some 
specialization in mathematics. 

The lesson was filmed and transcribed. The data was then analyzed using conversation analysis 
(Linell, 1998), describing qualities of single utterances from student and teachers, grouping them 
together to establish categories. 

Findings 
The lessons before the process drama showed a traditional IRE-classroom. The students answered 
the questions they were asked, often answering tasks and sometimes explaining concepts and 
methods. The teacher dominated the talk. 

The lesson in focus here is the first lesson after the process drama. The teacher of this lesson, which 
was one of the researchers, started by discussing the roles learned during the process drama. The 
students suggested important features from each role, especially the elder, the skeptic and the curious. 
They then agreed to use these roles actively during the coming lesson. Sometimes during the lesson, 
the teacher reminded the students of their roles, or challenged some of them to use one specific. The 
following excerpts are carefully chosen to illustrate the typical discourse of the lesson. 

The students were given two tasks about decimals and told that they should use two different methods 
to solve them. Prior to this, the students had worked with informal methods to operate on decimals. 
The tasks used names from the process drama, Omar and Samira, and told them that Omar had 3,2 



liters of water while Samira had only 2,6 liters during a travel in the desert, and asked how much 
Omar had to give to Samira to get level. The other task was similar, but with Omar and Samira having 
0,7 and 5,3 liters, respectively. Early in the lesson, one student volunteered to tell how he solved the 
first task of sharing water (figure 1): 

Student:  Here I only thought, first I made a number line, and then I thought… what was it? 
Two comma … six? (draws a number line with 2,6 to the left and 3,2 to the right)… 
And then I took as many markers as it was… between the two (points out 2,6 and 
3,2, and draws a marker for every tenth, see figure 1)… three comma zero, three 
comma one, and then three comma two (points)… and then… and then I just jumps 
like this, this, this, there (draws three jumps from each side towards the middle, 
marks the middle with a vertical line). And then I see how long it was from the 
middle to there (points out 3,2), it was three… or it was three to the middle. And 
then I thought that it just were zero comma three. 

 
Figure 1: Solving the first task – first strategy 

When explaining an alternative method for solving the same task as above, a student said this: 

Student:  2,6 and 3,2 (writes them on the blackboard, look at figure 2) then I just jumped… 
then it became 3,0 there (writes it below 3,0) and 2,8 there (writes it below 2,6, and 
draws and arrow from 3,2 to 2,6 with 0,2 above the arrow). And after that I just 
jumped one there (draws a line between 2,8 and 3,0). And then it became 2,9 and 
2,9 (writes 2,9 below both 2,8 and 3,0, and writes 0,1 above the line between 2,8 
and 3,0). And then I just added these two (0,2 and 0,1) and then I got 0,3 (writes 
=0,3 to the right). 

 
Figure 2: Solving the first task – second strategy 



These two explanations are similar as they seek to explain every step from task to answer, telling 
others how the answer was found. Such explanations naturally occur following a request to tell what 
had been done or how a solution were found, and were the most common type of explanations during 
the lesson. 

However, this was not the only type of explanation observed during the lesson. An interesting 
exchange of meaning came when a student disagreed to the first solution (figure 1): 

Student A:  Yes, but I found another answer 

Student B:  What did you get? 

Student A:  0,6 

Student C:  Me too, but then I found out that I had got wrong 

Student D:  0,3 

Student B:  Why did you get 0,6? 

Student A:  Because I counted on both sides 

Student E:  Me too 

Student B:  Yes, but in the middle. Thus when you jump with both of them then you should not 
count it and, because, the question was thus, the question was not how much was 
between them, it asked how much it was, how many liters Omar had to give Samira 
then. You should not count how far, it was only like, when they met. Where they 
met you should stop counting, you should not continue counting… and down. That 
was only therefore. 

There are several things worth noticing in this discourse. First of all, a student challenges another. 
When the two opposing answers are presented, student A is asked why she got 0,6. The answer is 
short, but explains the reason for the answer clearly as the student points at the drawing on the 
blackboard. We can also see two instances of support for the answer 0,6, even though one had 
changed meaning. In the end student B explains the reason why he means 0,3 is correct and 0,6 is 
incorrect. It is a long explanation, and the student struggles to find the words, but ends up convincing 
the other students that 0,3 is correct. And during all this, the teacher is not participating.  

Explaining reason is different from explaining method (Figure 1 and 2) as explaining reason seeks to 
argue for and justify the solution, explaining why instead of how or what. Explaining reason occurred 
frequently during the lesson. Sometimes the reason was explained quite clearly, other times more 
struggling (like the long explanation of 0,3 being the correct answer), and some times the explanation 
was insufficient. Explaining reasons naturally came as a result of someone asking why a solution is 
correct, or as above as an argument when challenged with an alternative solution.  

The examples above illustrate the discourse of the lesson, where the students frequently ask questions 
to each other (why, how, what) and frequently explains method and reason. Also, student challenges 
and clarifications are observed. 

The teacher did participate during the lesson in different ways, mainly by asking questions such as 
these five examples from different parts of the lesson: 



1) On the first task, is there anyone that wants to tell the method used on that one? 

2) Can you show us on the blackboard? 

3) Were there anyone else that got three comma zero? 

4) Okay. Are there anyone that has done it in another way? 

5) Yes. And what was the answer then? 

The first two is about enlightening details, either by asking a student to tell the method or by using 
the blackboard so that it is easier to follow the line of thought. The third and fourth are examples of 
how the teacher asked for alternative strategies, and the fifth is an example of how the teacher 
sometimes requested clarifications. Evaluations or support from the teacher were observed, but rarely. 
Funneling and guided algorithmic reasoning were simply not observed at all.  

Conclusion 
This first lesson after the process drama contained considerably more student than teacher talk, as 
exemplified by the excerpts. The most frequent types of student interactions were questions (why, 
what, how) and explanations of method and reason. The questions can be related to the roles of skeptic 
and curious, and the result of these were explanations and arguments. These questions and 
explanations played out as a discourse where the teacher acted as a moderator. The teacher did not 
take the typical role of the elder (authority) but instead allowed the students to take this role. This 
type of discourse has similarities with both interactive/dialogic communication (Mortimer & Scott, 
2003), strategy-reporting classroom culture (Wood et al., 2006) and reflective communication 
(Brendefur & Frykholm, 2000) as the focus is on sharing different strategies. But the lesson goes 
beyond these where the students’ request explanations and the discourse goes on with explanations, 
questions and clarifications without teacher participation. In these cases, the lesson might be defined 
as instructive communication (Brendefur & Frykholm, 2000), where the teacher requests details, asks 
for alternative strategies, and requests clarifications. However, it is not an inquiry/argument 
classroom (Wood et al., 2006) as the teacher is not really working together with the students to solve 
problems. 

Reduction of complexity, such as funneling, guided algorithmic reasoning and the Topaze effect, 
which are the most frequently used teacher actions in other classrooms at upper primary level in the 
same area (Drageset, 2015) were not observed at all. It is also evident that the lesson does not follow 
an IRE-pattern, as students both initiate (ask questions) and evaluate (agrees, requests explanations, 
and challenges). 

A majority of the student interactions, especially their ability to ask, explain and challenge, is similar 
to the roles practiced upon during the process drama, especially the curios through the students’ use 
of questions (why, how, what), but also the elder through the willingness to listen to alternative 
strategies and assess which is the best, and occasionally the skeptic through questions and 
challenging.  

The role of the teacher was withdrawn and might seem of little importance. But this change does not 
happen by itself, the teacher is the key to the change. First by leaving the typical ‘elder’ role and 
inviting students to fill this role by asking them to decide right and wrong and assess each others’ 



suggestions. Secondly, by acting as a moderator to encourage the use of other roles such as being 
curios and skeptic. 

Further study of the process drama itself, and the lessons filmed before the process drama, is needed 
to understand how much the students’ involvement changed and if it is possible to explain any 
changes by our use of process drama. In general, there is a need for research related to the use of roles 
to establish different types of discourse, and also how teachers can learn, rehearse and use roles to 
develop their practice. 
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In different moments of teaching, such as in launching, exploring and discussing a task, teachers 
carry out different actions, which have a critical influence on the classroom dynamics. Our aim is to 
identify and understand the actions that Berta, a prospective teacher, undertakes in instructional 
practice to promote students’ conceptual learning of rational numbers. For this paper, data were 
collected and analyzed from classes observed and videotaped. To promote and organize an 
exploratory environment, Berta launched the task, strived to promote interactions, organized 
students’ solutions, and attempted to promote a discussion environment with inviting, supporting and 
challenging actions in order to lead students to learn rational number concept.  

Keywords: Teachers actions, moments of practice, prospective teachers, rational numbers. 

Introduction 
Rational numbers are a topic that raises many difficulties for students. Teaching rational numbers 
leading to conceptual learning is a challenging task for teachers. This topic, very important in the 
elementary mathematics curricula, requires the exploration of different representations to support 
students’ learning. In fact, the complexity of these numbers is related to the different meanings (such 
as part-whole, quotient, measure, and operator) and representations (such as decimals, fractions, 
percent, active and pictorial representation) that they may assume (NCTM, 2007). To foster students’ 
understanding of mathematics concepts teachers are challenged to promote an exploratory learning 
environment (Ponte, 2005). Research has given attention to prospective teachers’ knowledge about 
how and why to teach rational numbers in different ways. For example, a study by Isiksal and 
Cakiroglu (2011) indicates that prospective teachers have different perceptions of children’s mistakes 
and different suggestions of strategies that may be followed including using multiple representations, 
using problem solving strategies, making clear explanations of questions, and focusing on the 
meaning of concepts. However, it is important to understand the practice that prospective teachers, 
with these teaching views, accomplish and what kind of action takes place in the classroom. There 
are few studies focusing on the teaching practice of prospective teachers, paying attention to their 
actions in different moments when they explore different tasks with their students and to the 
communication that entails. So, in this paper we aim to identify the actions that a prospective 
elementary school teacher (Berta) accomplishes in different moments of instructional practice, as she 
strives to promote students’ conceptual learning of rational numbers. 

Prospective teachers instructional practice 
Teachers’ practice could be analyzed with different approaches (cognitive or sociocultural). Ponte, 
Quaresma and Branco (2012) reconciling the two approaches attend to curricular and social context, 
teacher knowledge, actions and teachers reflection.  In this regard they propose to analyze teachers’ 
practice with reference to two main aspects: the tasks proposed to students and the communication 



established in the classroom. In respect to tasks, teachers may choose to just offer simple exercises 
or also propose challenging exploratory tasks, problems and investigations in which the students need 
to design and carry out solving strategies based on their previous knowledge (Ponte, 2005). 
Communication may be oral or written, and it includes both linguistic and mathematical 
representations. One important aspect of communication is questioning, involving confirmation, 
focus, and inquiry questions (Ponte et al., 2012). Communication also includes those representations 
that are used to aid in solving a task, such as building or illustrating objects, concepts, and 
mathematical situations (NCTM, 2007). Another important aspect of communication is explanations. 
Instructional explanations may have different purposes and characteristics and may be carried out at 
different times during a lesson (Charalambous, Hill & Ball, 2011).  

Shaped by communication we have the teachers’ actions that influence the classroom dynamics. In 
different moments of work the actions address the development of mathematical concepts and 
processes (Ponte, Mata-Pereira & Quaresma, 2013) and management of the learning environment 
(NCTM, 2007). In an exploratory environment the work with a task may develop in three fundamental 
moments: Launching, exploration and discussion (Stein, Engle, Smith & Hughes, 2008). In launching 
the teacher organizes the students and the materials (NCTM, 2007) and proposes the task informing, 
inviting and guiding (eliciting) the students to solve it (Lobato, Clarke, & Ellis, 2005). The students 
have to understand the task, identify conditions and data. To promote the quality of the discussion of 
the task and knowledge that may be built, the teacher must discuss key aspects of context and verify 
if the students recognized them. Further, the teacher must discuss and relate mathematical ideas with 
key contextual characteristics and build a common language clarifying the unknown or confusing 
vocabulary for students. Note that teachers should take care of maintaining the challenge of the task 
(Jackson, Garrisson, Wilson, Gibbons & Shahan, 2013). When students begin their work, in pairs or 
groups, it is important that the teacher guides and challenges them to build together their solutions, 
promoting productive interactions, and register solutions in an organized way (NCTM, 2007). During 
this time the teacher monitors students’ work, questions them and clarifies doubts related with content 
or the task context informing. Again, the teacher supports students, questioning or even explaining, 
but must not decrease the level of demand of the task and give the opportunity to different solutions 
to emerge by challenging students. During this moment the teacher selects solutions and structures 
the sequence of the discussion with a focus on the purposes of the task (Stein et al., 2008). The third 
moment is the discussion of the task where the teacher orchestrates students’ ideas, organizes and 
supports oral and written communication, promotes interaction between students, connects ideas and 
guides students towards a powerful mathematical solution (Stein et al., 2008). Addressing the 
development of mathematical concepts and processes Ponte, Mata-Pereira and Quaresma (2013) 
consider four main types of actions: inviting, to begin the discussion; supporting/guiding, leading the 
students through different kinds of questions; informing/suggesting, giving information or validating 
students’ ideas; and challenging, encouraging students in interpreting situations, finding new 
representations, making generalizations and justifications, making connections, and evaluating their 
work. At the end of the discussion, the teacher must promote reflection on the work accomplished, 
the new concepts and procedures that emerged, and institutionalize the expected learning. The teacher 
may also review other concepts and connect with other situations reinforcing the main ideas (Stein et 
al., 2008). 



Research methodology 
This paper emerged from a larger study of an exploratory nature and takes a qualitative and 
interpretative approach, following a case study design (Stake). We analyze the supervised practice of 
three different prospective elementary school teachers to characterize it and to understand the 
challenges and options that they face in different moments of instructional practice, as they strive to 
promote students’ conceptual learning of rational numbers. Data were collected from semi-structured 
interviews and video-stimulated recall interviews after class. Four lessons were observed, videotaped 
and fully transcribed. We also collected documents produced (lesson plans and written reflections). 
For this paper we analyze one prospective teachers and her instructional practice in one of her lessons. 
Data were analyzed based on categories that emerged from the above framework, namely teachers 
action in launching, exploring the task and in discussion of the task combining the actions invite, 
inform, guide and challenge. Bertas’ case, a prospective elementary school teacher, could represent 
the teachers that suggest an exploratory approach to develop conceptual knowledge of their students. 
So, we aim to identify the actions that she accomplishes in different moments of instructional practice, 
as she strives to promote students’ conceptual learning. In the Teacher College last semester, Berta 
considered important that students understand the concepts and develop mathematical 
communication through an exploratory approach, valuing contextualized situations and open tasks. 
In the mathematics education course she analyzed the video of a class and its teacher’s plans and 
reflections. When she was about to teach the notion of percentage selected the task of the video to 
explore with her students. We should note that her practicum takes place in a 6th grade class with 20 
students who don’t have experience in discussing open tasks. Comparing the knowledge and skills of 
her students with the students of the video, she defined her teaching purpose and decided to promote 
her students’ conceptual learning of percentage, the development of mathematical communication, 
and problem solving skills.  

Actions of a prospective teacher in different moments of teaching practice 
Launching the task 

 Berta introduced the task “Petrolex” distributing the worksheet to each student and asking one 
student to read it (figure 1). In order to promote “a short discussion with students about the thematic 
of fuels price” (WR), she highlighted key aspects of the context of the task, ensures that the students 
recognize them, and reinforces the main question: 

Figure 1: Berta Percentage Task 

Let’s see. The gasoline has a price… Next you will discuss that but… The gasoline has a price, 
right? You will increase the price in 10%. But the drivers don’t like the new price and protest… 
Then the director decreased again the price in 10%. What does this mean… Diana [as others] is 
telling us that gasoline returned to the same price … And they say no… Who thinks that the price 
returned to the same value? 



Berta invites, informs and guides the students in understanding the task and feel challenged. In 
response to some students said that the price went back to the original price and others disagreed. The 
discussion began and Berta provided information about the organization of the work and stressed the 
importance of making written records of the solving processes to support the discussion. The 
prospective teacher invited the students to solve the task, organized students’ time and reinforced the 
importance of recording their different ideas about the challenge proposed. Berta ended the initial 
discussion and emphasized that it has to be made in pairs: 

So what will you do? We will not say more and join your partner and try to understand what would 
be the price of gasoline be… Will it return or not to the initial price? We have five minutes and I 
will circulate between the tables to try to understand… Attention, what you have written. Say yes, 
say no, do not erase anything! Leave everything as it is! Then we will see what you thought, what 
do you see and what is the final decision. 

Exploring the task 

The students began to work in the task and Berta circulated around the pairs, observing solutions and 
supporting struggling students. One student requested her help and she highlighted the main question 
posing different questions: 

Student 1:  This is a tricky question! 

Berta:  Why? I do not say anything... I’m only asking if it is the same value of the 
beginning? There is no trick! 

Student 2:  It returns to the initial price! 

Berta:  So we can see it... Can you try a way to view it? 

Student 2:  Calculating! 

Berta:  You can do it! 

Student 2:  Can I make up a price? 

Berta:  You can make up a price! But look carefully what the price is... 

Student 1:  60 euros. 

Berta:  You did not have to say an actual price but do you think that this price is so...?  

In this dialogue Berta posed an inquiry question reinforcing the main question. The students’ idea 
was not right and the prospective teacher guided students’ work by suggest/informing them to try 
different values and verify the conjecture. The students suggested a price, she confirmed the idea and 
reinforced and focused students on the nature of the price. Before Berta letting the students work on 
their own, she tried to promote students’ interactions and warned the class about the importance of 
the written record of the solution: 

Okay... So you are working in pairs and therefore you can talk about that and make up a price . . . 
[To the class] Attention of what you write down... Do not erase so we can see how you thought! 

Berta wanted the students to discuss their options and insisted that they had to work in pairs, 
promoting interactions. Anticipating and preparing the moment of whole class discussion, she 



emphasized the importance of recording all the ideas. As she asked not to erase any solutions we can 
assume that she wanted the wrong solutions so that the errors and different ideas could be discussed. 
Berta observed the students’ work and supported and guided, in a provoking way, other students. 
However the class ended and the discussion happened in the next day. 

Discussing the task 

Berta began the class by organizing the students in the same pairs and distributing back the solutions 
that she had already analyzed at home. One pair had a good solution but it was not well organized. 
The prospective teacher numbered the different steps and checked with the students her proposed 
organization. She informed the pair of the importance of organizing written communication to clarify 
their ideas to others and skipped the opportunity to discuss it with all students. After this, she began 
the discussion of the task.  

To promote a discussion environment and to invite students to the work, Berta recalled the first idea 
of many students. She asked a student to present his first idea and then the second solution he built 
when he realized the error. We notice the sequence of solutions presented: 

Most of you [initially] considered that the price of gasoline would return to the initial value. After 
the increase and after the decrease! So your colleague will start by explaining the first part. Why 
did you think that the price returns to the same? . . . Do not copy anything, first let’s see... 

After the students registered their solution in the white board, one student explained their idea (figure 
2): 

 
Figure 2: Tomas first solution 

I did... a friend and I... I lent pens [to a friend] and I went back and ask him for the pens. [It is the 
same situation] and so the price is back to the same!!  

Berta guided the presentation and asked the students if they tested their idea with a value. She 
challenged the students by asking “Have you verified if it gives you the same value!?” establishing 
connection with the second solution of the same pair. The student recorded the second solution with 
10 euros as a starting value and explained his ideas with the support of Berta: 

 
Figure 3: Tomás’ second solution 

Tomás:  The gasoline costs 10 euros and 10% of 10 euros is 1€. 



Berta:  . . . Why did you do 10% of 10? 

Tomás:  To know how much is the value we have to add up to 10 €. 

Berta:  Exactly! And then? 

Tomás:  Then I added 1 euro to 10 and gave 11 euros. And then people protested... 

Berta:  . . . How much was the increased value of fuel? . . . 

Tomás:  It increased 1 euro.  

After Berta made a supporting question the student replied: 

Tomás. Then it decreased by 10% and 10% of 11 is 1.10 euros. 

Berta:  And here Tomás did very well... Because Tomás calculated 10% of 11 euros and did 
not calculate (as some students did) 10% of 10 €? . . . Because we had to see 10% of 
what we had again! Right? So the amount of the discount is 1.10 €. OK? So the fuel is 
9.90 €. If you were a driver, would you prefer this to happen or not? 

The students presented their work and to support their presentation Berta posed an inquiry question, 
challenging Tomás to explain why he and his partner did multiply 10% of 11 euros. After that she 
focused the students to the specific procedure. At the end she recalled Tomás’ explanation and 
reinforced the students’ focus on the main question. Others pairs of students presented their work 
with a more realistic value. To help students’ presentations, Berta organized their computations and 
clarified issues related to mathematical language. At the end of the presentation, she recalled the task 
and the two solutions and focused students’ attention on the reference unit. For that, she built a 
representation in hard paper and related it to the students’ solutions. However she struggled with the 
students’ difficulties in “seeing” the difference between before and after the rise of gasoline. Berta 
first explained the conceptual idea of the difference between 10% of the first unit (brown) before of 
the increased price and the 10% of the second unit (pink) after the decrease of the price: 

 
Figure 4: Final synthesis scheme  

The 10% will now relate to another unit, not the same as before? Now we have a different unit . . . 
And this 10% is bigger than that one . . . We have a new price with plus 10%. You are thinking 
well! I stay with this unit but now I have to withdraw the 10%. But the 10% are not the same! . . . 
Because the value of the unit is different.  

Given the difficulty of some students in understanding the explanation, Berta assumed that maybe 

other percentages would allow the students “to see better” and presented a new representation with 

20% making more evident the difference between the increase and the decrease in the final price. In 

the synthesis she said: 



Berta:  If you noticed the starting price was up here (bigger heavy paper). But the final 
price is already here (less heavy paper). What does it mean? The final price will 
always be lower than the initial price, right? . . . We had seen it here for € 1.5 that 
gave us € 1.48, right? 

Student1:  And this part here, brown, is the 0,15€. 

Berta:  Yes! This part here, brown, is the 0,15€…  

Student1:  And this one is 0,02€… 

Berta:  And this piece is the 0,02€! Very well! 

For the synthesis, to guide students on building the percentage concept, Berta prepared a hard paper 
in order to represent the problem situation. She struggled with the representation prepared and 
students had difficulties in realizing the difference between the rectangles. Some students understood 
the explanation but others did not. The prospective teacher was referring to the problem posed and 
connected her representation with the procedural solution of the students. We notice that she was 
returning to essential aspects like reasonability of the price value and the influence of the unit of 
reference on percentage. 

Conclusion 
Bertas’ lesson was based on launching, exploring and discussing one task. She organized students 
and materials, encouraged and valued students’ ideas and discussion among pairs. She combined 
invited, informed and guided actions reinforcing the main question and focusing students; attention 
on the fuel value and the impact of the increase and decrease of fuel by 10%. During the exploration, 
she suggests students to try real values of the fuel, supported, guided and challenged students’ ideas 
and finally promoted solution recording. Berta also highlighted the importance of the discussion 
among students but, in this lesson, we couldn’t see students posing questions to each other or actions 
consistent with the idea of developing mathematical argumentation. So, during students’ autonomous 
work, Berta mainly challenged students. Berta organized and selected several solutions sequencing 
them for the discussion. We cannot say that Berta accomplished a dialogic discourse and students 
really discussed the task but as it is her first teaching practice, her effort can be valued with respect 
to sequencing students’ presentations to enable connections among solutions (incorrect, correct and 
mathematically powerful). During the task exploration and discussion she posed put different 
questions with different focuses: from more open and challenging to more supportive and focused. In 
the final synthesis, although the main ideas were not recorded on the board, she focused the students’ 
attention on the solutions of the task, establishing connections and explaining the main idea but not 
discussing the percentage concept. So, at different moments of the instructional practice, Berta carried 
out different management of the learning actions and of the learning environment actions. Berta’s 
actions in launching and exploration moments created opportunities to learn when she supported 
students in solving the task and didn’t decrease the task demand. As a result different solutions 
emerged to be presented and analyzed in whole-class discussions (Jackson et al., 2013). In different 
moments of practice we can identify different actions combined. Bertas’ aim was to challenge 
students to build their knowledge together. However maintaining the mathematical demand during 
questioning and promoting the task discussion could be a complex practice for prospective teachers 
as we can see with Berta’s case. 
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Understanding the complexity of teaching also means understanding issues outside classrooms, 
including planning in mathematics. Although planning is part of a mathematics teacher’s everyday 
life, there is no shared understanding of it, and little is known about how teachers’ planning is related 
to other practices. In response, to explore what planning means to mathematics teachers and 
planning’s relations to other practices, interviews were conducted with teachers and their contents 
analyzed in several steps to generate a story of each teacher’s experiences with planning. For one 
teacher, Fia, planning meant decisions and considerations about mathematical content and teaching 
situations, as well as navigating the decisions and opinions of other actors. Fia’s planning is related 
to practices of management, mathematics teaching, and mathematics teachers, all of which 
influenced her planning and how her students encountered mathematics in the classroom.  

Keywords: Planning, teaching, meaning, practice, interview. 

Introduction 
Teaching in mathematics is complex and cannot be isolated from students’ learning or context. To 
acknowledge that complexity, “deeper explanations of teacher’s decisions and actions” (Potari, 
Figueiras, Mosvold, Sakonidis, & Skott, 2015, p. 2972) are necessary. The decisions that mathematics 
teachers make and the considerations they take into account before entering teaching situations 
influence what happens in the classroom and thereby students’ opportunities for learning. To explore 
those considerations and decisions, the planning in mathematics teaching is vital in order to 
understand the complexity of teaching and to improve students’ possibilities to learn. However, 
research has demonstrated a lack of consensus about the concept of planning in mathematics. Former 
studies focus mainly on the planning itself and not how planning in mathematics is a part of a complex 
whole and related to other practices. The lack of shared understanding, as well as of studies addressing 
the complexity of teaching and planning, are thus inevitable stumbling blocks when studying planning 
in mathematics. Still, knowledge about what teachers actually do when they plan and their constructed 
meaning about planning might be important information that contributes to an understanding of 
teachers’ work. However, examining only individual aspects of teachers’ work is not enough to 
overcome gaps in research. Teaching is complex not only because it consists of many parts, but also 
because those parts are framed by “contextual, epistemological, and social issues” (Potari et al., 2015, 
p. 2972). To elucidate those issues, it is helpful to conceive planning in mathematics as a practice in 
which individual teachers act in a specific time and place, and in which their habitual ways of acting 
are related to other practices within “a network of practices” (Chouliaraki & Fairclough, 1999, p. 23). 
By acknowledging planning in mathematics as a practice, the aim of this study was to explore that 
practice as a part of a network of practices. To that end, it was necessary to know how teachers 
construct meaning while planning and reflecting upon their planning in mathematics, to what 
practices they relate planning and reflection, and how they express them in stories about their 
planning. An interview study with six teachers was designed to answer those questions. This paper 
recounts the story of one teacher, Fia, that includes several of the aspects and relations described by 
the other teachers interviewed.    



Background 
Planning in mathematics teaching 

Although planning done by mathematics teachers bears consequences for students’ learning, studies 
in the topic remain scarce. Research about planning in mathematics that does exist address three chief 
aspects: design research including learning and lesson studies, teachers’ mathematical knowledge in 
relation to their planning, and models and templates for planning. Few studies, none of them 
conducted in Sweden, have focused on what teachers do in their everyday lives as teachers. National 
documents based on the Swedish curriculum advocate that planning should be done in a systematic 
way (Skolverket, 2011) similar to that in models emphasized in research (e.g. Gomez, 2002; 
Superfine, 2008). However, conversations with Swedish teachers and student teachers have indicated 
that planning means deciding what to do with a focus on activities, not goals or mathematical content. 
Such a focus on activities also appears in international research on the topic (Akyuz, Dixon, & 
Stephan, 2013; National Research Council, 2001). In sum, when people talk about planning in 
mathematics teaching, they demonstrate no shared understanding of what it means.  

Practice 

One way of describing the complexity of teaching is to use the term practice, which captures both 
individual people’s actions and more habitual, common ways of acting within a practice (Chouliaraki 
et al., 1999). Accordingly, conceiving planning in mathematics as a practice can afford a way to 
conceive teachers’ actions both as individual actions and actions shared by other mathematics 
teachers, as well as a way to conceive the relationship between those actions and abstract structures, 
that is how social structures govern people’s possibilities to act (Lund & Sundberg, 2004). Since each 
practice is determined from others within a network of practices and since power relations always are 
present (Chouliaraki et al., 1999), knowing more about teachers’ planning practice becomes a way of 
knowing more about how the process of planning is related to other practices and how power relations 
are working within the network of practices. In that sense, using practice as a concept to explore 
planning in mathematics is a way of considering “contextual, epistemological, and social issues that 
frame mathematics teaching” (Potari et al., 2015, p. 2972).  

Meaning  

In this study, meaning referred to “a (collectivity of) subjects’ way of relating to – making sense of, 
interpreting, valuing, thinking, and feeling about – a specific issue” (Alvesson & Karreman, 2000, p. 
1147). How teachers relate to planning, makes sense of planning, interprets planning, values planning, 
and thinks and feels about planning were thus of interest in interviews and their analysis. The meaning 
that teachers expressed was both transient – that is, constructed and emergent in interactions in 
interview situations – and durable – that is, connected to cultural and individual ideas. By conceiving 
meaning as partly durable, it was possible to explain how previous experiences and more habitual 
ways of acting formed part of the meaning that teachers expressed in interviews.  

The study  
An important starting point when designing the study was an interest in considerations that teachers’ 
have and the decisions that they make that precede and influence what happens in the mathematics 
classroom, here called planning in mathematics teaching. With the notion that planning is both a 



focused, time-bound activity and what emerges from reflections and thoughts that can occur at any 
time, as well as given the aim to explore a concept about which there is no shared understanding, it 
was necessary to approach the phenomenon as unprejudiced as possible. Since all teachers have heard 
about and applied the concept of planning it was important to listen to the voices of teachers, hence 
the decision to use interviews as a method. In the larger study, from which Fia’s story was taken, 
teachers’ reflections on planning were explored. Each of six participants was asked to keep a 
notebook for a period of two weeks before the interview in which they were asked to record actions, 
reflections, and thoughts that for them were related to planning in mathematics. In the interviews, 
teachers referred to their notebooks and chose topics to talk about. The interviewer’s role was to listen 
affirmatively by uttering encouragement and nodding, asking for clarification when something was 
unclear, and asking follow-up questions. By not using predetermined questions, teachers were 
afforded freedom in the discussion about planning, which made it possible to see beyond pre-
understandings and the normative speech of planning that dominates mathematics education research. 
The use of notebooks provided a possibility for each teacher to return to the notebook on several 
occasions, and the interview situation where the notebook was used as stimuli, was a way to 
experience meaning as durable. In the interview situation, transient meaning was constructed and 
emerged in interactions both with the interviewer and with the notebook.  

Analysis 

Conducting interviews with notebooks as stimuli was a way of foregrounding teachers’ experiences 
and meaning. To continue in that spirit, analysis needed to be based on the material, not predetermined 
categories. Along with reviewing the stories of each teacher separately, aspects hidden in stories as a 
whole were also sought. Those somewhat contradictory motivations required staying close to the 
material and keeping a distance from it. Consequently, analysis proceeded in several steps, the first 
of which involved reading each utterance per se, and noting what discursive action was performed by 
making the utterance. During that initial coding memos were written to record spontaneous reflections 
and ideas, as inspired by Charmaz (2014). In another version of the transcripts, meaning units (that 
is, units considered relevant to considerations and decisions that preceded and influenced what 
happens in the mathematics classroom) were marked. Each unit was paired with the activity belonging 
to the unit in the first transcript, and by interpreting the meaning unit and the activity together an 
aspect of planning, considering, or decision-making emerged (Table 1). 

  



Meaning unit (from step 2) Activity (from step 1) Aspect 

We have a template that we should 
stick to. 

Expresses 
requirements from 
school administration 

Formal 
requirements 

…that talented students and parents 
would say that it [special 
educational approach] was wrong… 
or the parents of those students 

Expresses unspoken 
expectations from 
parents and students 

 

Discourse of 
mathematics 
education 

Why have I not talked about… 
talked with colleagues about this 
movie before? 

Reflects on telling 
each other  

Colleagues 

Table 1: Examples from analysis step 1 

To see aspects hidden in the stories as a group, distance from the material was necessary. Inspired by 
Szklarski (2015), meaning units were therefore transformed from the first- to the third-person 
perspective (Table 2).  

 

Meaning unit Transformed meaning unit 

When will I be able to plan with my 
colleagues? The work turns into working 
alone although I don’t want it to. It is a 
lot… We make these big, long-term 
plans, but we never have time to see each 
other once we’ve started [implementing 
the plans]. 

When will she be able to plan with her 
colleagues? The work turns into working 
alone although she doesn´t wants it to. It 
is a lot… They make these big, long-term 
plans, but they never have time to see 
each other once they’ve started. 

Do I dare consider it [special education 
approach] from the beginning? Do I have 
the energy? Do I have the time? 

Does she dare consider it from the 
beginning? Does she have the energy? 
Does she have the time? 

Table 2: Examples from analysis step 3 

The transformed meaning units were organized so that units dealing with the same aspect were 
grouped and read as a whole. As a result, meaning was identified and could be expressed as a product 
of synthesis (Table 3).   

 

 

  



 

Sorted and transformed meaning units 
(per aspect) 

Synthesis of transformed meaning 
units 

Content In her planning Fia sees that there are 
several parts to decide upon: what 
mathematical area the planning 
should cover, how to connect that to 
the everyday lives of students, and 
how to work with and make 
assessment in relation to students. 
Good activities can be reused with 
different foci. Fia thinks about how 
she will be able to apply an overall 
special education approach to her 
long-term plans. 

 

Area [mathematical] 

Planning in detail and thinking… how 

Relation to everyday life: How to get it 
[mathematics] related to the students. 

At examination, it [thoughts about students] 
comes  

How does Fia apply a special educational 
approach in her long-term plans? 

They watched a movie again. Fia has done 
that several times… The story of 1[name of 
the movie], but that one focuses on different 
things. Finding… find activities that you can 
say, that you can get the most out of… and 
maybe dare to weed out those that really do 
not give anything. 

Table 3: Examples from analysis step 4 

The synthesis of the transformed meaning units were organized and assembled into stories, one of 
each teacher. This paper presents the story of Fia, since it emphasizes several aspects visible in the 
other stories. 

Fia’s story 
Fia is a mathematics-, science-, and technology teacher in compulsory school grades 7–9. She used 
the notebook for reflections on her planning, teaching, and decisions. In the interview, she referred to 
her notebook and chose topics to discuss. At several times, she also reflected upon her reflections and 
reached new insights – for example, when she referred to “pedagogical plans” in her notebook and 
discussed how constrained she feels when she has to do her planning with a template.  

Fia: I have had exactly that [referring to the template] content before, but it has not been 
so formal… That formality… everything has to look the same. It makes me 
constrained, or I don’t feel free to think, or… 1,2,3,4: that must come first, then 
that, then that… But actually… It is also up to me! I can start to think about 
paragraph 4 if it’s about how we should work. 

In her story Fia referred to the template several times. She discussed how her school management has 
decided that a specific template has to be used when planning, largely to be able to collect the plans 
and thereby “see what is happening”. Time is another constraining factor for Fia, regarding both 



individual and collaborative planning. Colleagues are resources in Fia’s planning, and she would like 
more cooperation with them, also in her short-term planning. She also highly values spontaneous 
exchanges of ideas and experiences.  

Fia’s work with planning varies throughout the year. At the beginning of the school year she generally 
has more energy, but in the final weeks, particularly for the for the ninth graders, Fia tends to perform 
what she calls “spontaneous planning” – that is, decides immediately before lessons what she will do. 
Fia argues that “spontaneous planning” can be good; the creativity that she sacrifices with templates 
can bloom in “spontaneous planning”, and this also affords greater opportunities for student 
participation.  

Having two groups of the same grade level at different times of the day has made Fia aware of how 
much the schedule influence her planning. She has also experienced how other activities planned for 
the students (including field days, theater visits, project periods) steal time from her mathematics 
teaching and thereby affect her planning. If Fia were allowed to decide upon the schedule, then she 
would plan for more teaching situations with one or two students. One year she had opportunities for 
such occasions in her schedule and felt that they helped the students very much.  

The availability of materials is another factor that influences her planning. Fia discussed an occasion 
when she was sitting with a small group of students in a room beside the main classroom while the 
rest of the class was supposed to work in pairs with problem solving and show their solutions on 
small white boards. However, since there were enough white boards for all students, each student 
took one and worked individually instead. For Fia, that occasion exemplified how a teaching situation 
is a meeting between planning and reality and how the outcome can differ from what was intended.  

When planning, Fia makes several decisions, including what mathematical content to cover, how to 
relate that content to students’ everyday lives, and how to work with the content. Referring to a film 
that she has shown several times, she expressed how good activities can be used several times with 
different focuses. Besides decisions directly related to the concrete teaching situation, Fia has 
considered how to adopt an overall special education perspective in her long-term planning, which 
she thinks can benefit all students’ learning. Planning can help to “play it cool” and break norms 
about mathematics teaching. Fia gave examples when she has planned for working with a couple of 
students at a time although she had a lesson for the whole class, or when she has used the same film 
on several occasions for the same students. For Fia, planning is always about prioritizing and is related 
to feelings. She expressed how care for the students and their learning is critical when making 
decisions and how her own fears and energy level influence how the planning is done. Fia is 
constantly reflecting on previous experiences and how those experiences can be applied in future 
plans. She believes that even more reflection for example, after spontaneously planned lessons can 
be a good way to take advantage of good experiences instead of letting them go to waste.  

Fia describes a practice in which the way of talking about planning in mathematics is frustrating. 
Some ways of planning are more valuable than others, and Fia almost excuses herself for sometimes 
doing what she calls spontaneous planning. Knowing that other actors might have comments 
influence her way of thinking, and, according to Fia, changes in teaching can lead to questioning from 
for example parents and students. In her notebook, she had written about how she wanted to include 
a special education approach in her long-term planning. She had also written: “Do I dare? Do I have 



the energy?” Fia said that those considerations represented fears that not all students will be 
challenged and that she will have to argue for her choices. Fia thinks that she has the authority to 
make decisions about the teaching, but that exercising that authority takes energy.  

Analysis and discussion 
Reading Fia’s story in the light of meaning defined as “a (collectivity of) subjects’ way of relating to 
– making sense of, interpreting, valuing, thinking, and feeling about – a specific issue” (Alvesson et 
al., 2000, p. 1147) makes it possible to conceive how she constructs meaning and makes sense of 
planning in mathematics by choosing topics to discuss, by interpreting the practice of planning, and 
describing what she is doing and what is important for her. She discussed how choosing mathematical 
content and ways to present and work with that content always are part of her planning, as well as 
how good activities can be re-used with a different focus. Also related to the practice of planning is 
how she uses, and wants to use, reflections to benefit from past experiences, and how planning can 
help her break norms about mathematics teaching.  

Besides describing the practice of planning itself, Fia constructed meaning by, for example, 
discussing how decisions by school management regarding schedule, availability of materials, and 
templates influence her planning. From her story it is clear that she perceives models often 
emphasized as a support for planning (Goméz, 2002; Superfine, 2008) as constraints. This is possible 
to interpret as she is referring to a practice of management.  

Visible in Fia’s story are also norms about how mathematics teaching “should be done.” Those norms 
influence her considerations and decisions and emerged in her story as an invisible idea of what 
counts as teaching in mathematics, but also as concrete examples related to opinions of students and 
parents. Interestingly, Fia has ideas that she thinks would benefit students’ learning, but she 
contemplates to abandon them because she worries about parents’ and students’ reactions. When 
referring to thoughts of mathematics teaching, Fia relates the practice of planning to a practice of 
mathematics teaching.  

Closely connected to practice of mathematics teaching are the colleagues that Fia referred to several 
times. She talked about a desire to make more collaborative planning, and how colleagues can be 
resources also in spontaneous exchange of ideas and experiences. Those parts of the story can be 
interpreted as her referring to a practice of mathematics teachers, in which she sees herself as a part.  
In reality, the practice of management and the decisions made there to some extent determines how 
she can participate in the practice of mathematics teachers. The degree to which co-planning is valued 
in the practice of management clearly affects Fia’s schedule and how much time she has with her 
colleagues.  

Fia’s story makes it clear that her actions and reflections within the practice of planning relate to other 
practices in different ways. Some of those relations are constraining and hinders Fia from planning 
the way that she wants, whereas others contribute positively to her planning in mathematics. Since 
those other practices influence her planning they also implicitly influence her students’ possibilities 
to learn. Although the teacher is ultimately responsible for the teaching, results show that there are 
other aspects that influence the planning and, in turn, what happens in the classroom. That dynamic 
needs to be taken into account when discussing mathematics teaching and  forming development 
initiatives. Viewing teachers and situations in the classroom as isolated entities poses the undesired 



consequence that other important aspects that also influence students’ possibilities to learn 
mathematics are neglected.  
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Instructional research has recently become more important within the framework of teaching 
effectiveness research. Various instruments have been developed within this research discipline in 
order to gain a better insight of what is really happening in the classroom. Most of these 
instruments mainly focus on generic aspects of instructional quality. In this paper we first describe 
a subject-specific dimension of instructional quality. Second, we show how these subject-specific 
aspects could be measured empirically with a standardized observational instrument. The results 
point out both good interrater agreement and satisfying reliability measures. The presented 
observational instrument has been developed within the study TEDS-instruct in which relations to 
teachers’ competencies and students’ achievement are analyzed.  

Keywords: Mathematics instruction, instructional quality, classroom observation techniques, 
instructional improvement. 

Introduction 
In German instructional research, subject-specific aspects of instructional quality have been 
investigated rarely until now. Three generic dimensions have been introduced which are classroom 
management, personal learning support and cognitive activation (e.g. Lipowsky et al, 2009). 
Although these basic dimensions were developed for mathematics instruction in the first place, they 
are now deemed relevant for every subject at school (Baumert et al., 2010; Helmke, 2012). Other 
important aspects of mathematics instruction were apparently disregarded then (e.g. representations, 
examples, modelling, proof). Blum and others (2006) therefore ask for a high mathematical quality 
of the lesson beyond the three basic dimensions. 

At the same time, several instruments for measuring subject-specific aspects of instructional quality 
have been developed within the American debate (e.g. Learning Mathematics for Teaching Project, 
2011). However, some of these instruments do not contain generic aspects even though the 
prognostic validity of the three basic dimensions of instructional quality has been shown empirically 
more than once (see Baumert et al., 2010; Kunter et al., 2013; Lipowsky et al., 2009). In conclusion: 
to our knowledge there is no standardized instrument in existence that is based on a sound 
theoretical framework (e.g. the three basic dimensions) covering also subject-specific aspects 
regardless of the mathematical content discussed in class. Starting from these three basic 
dimensions, we would like to point out subject-specific characteristics of instructional quality that 
are deemed relevant in the literature and show how these characteristics can be measured with a 
standardized instrument. The purpose of this paper then is to describe the development of an 
observational protocol that is used to assess instructional quality in secondary mathematics classes 
and to present first empirical results.    

Theoretical framework 
In recent years educational research has shown a great scientific interest in teacher knowledge and 
instruction (see Hattie, 2012). At the same time, the relation of teacher competencies and students’ 



achievement has been analyzed (Baumert et al., 2010; Hill, Rowan & Ball, 2005; Scheerens, 2004). 
The so-called process-mediation-product-paradigm is regarded as a theoretical framework in which 
these research questions are grounded. This framework describes a relation between students’ 
learning and instruction which has to be offered by teachers and used by students (Brophy, 2000; 
Brophy, 2006; Helmke, 2012; Oser, Dick & Patry, 1992).  

Three basic dimensions of instructional quality 

As mentioned before, three generic dimensions of teaching quality have been developed in recent 
instructional research which are classroom management, personal learning support and cognitive 
activation. These dimensions were shown to have a positive impact on both students’ learning and 
their motivation in class (Baumert et al., 2010; Lipowsky et al., 2009).  

Classroom management focuses on quality-oriented learning time provided for students and on how 
effectively the teacher deals with disciplinary conflicts (Brophy, 2000). Effective classroom 
management is also characterized by a lesson that is organized well and has clear routines 
(Lipowsky et al., 2009). The second dimension, personal learning support, includes the individual 
support provided by the teacher, the relationship between students and teacher as well as 
constructive feedback (e.g. Rakoczy, 2008). Finally, cognitive activation refers to how problem-
solving tasks are used to activate learning processes (Baumert et al., 2010; Brophy, 2000). This 
dimension includes the activation of previous knowledge and whether challenging tasks and 
questions are presented that foster students in high-level thinking activities (Lipowsky et al., 2009; 
Praetorius et al., 2014).  

Although the three basic dimensions focus on generic aspects of instructional quality, the question 
remains whether they could be operationalized in subject-specific way. This holds specifically for 
cognitive activation (Drollinger-Vetter, 2011; Schlesinger & Jentsch, 2016). Moreover, it is not 
clear which subject-specific aspects are missing in this framework and how its dimensionality 
changes when generic and subject-specific aspects are measured simultaneously (Drollinger-Vetter, 
2011). Due to these concerns, most instruments that have been developed for the analysis of 
instruction are only suitable for a very small number of situations (e.g. regarding the mathematical 
content, see Steinweg, 2011; Schoenfeld, 2013).  

Measuring instructional quality 

We will now focus on the question how instructional quality can be measured both reliably and 
validly. Praetorius and colleagues (2012) see classroom observations as a straight-forward way to do 
so, especially compared to the analyses of material or minutes conducted during the lesson. Helmke 
(2012) even claims that one can only speak of instructional research in a narrower sense when 
classroom observations are performed. The reliability of classroom observations is always an issue 
since observer ratings are often heavily biased and the stability of the measurement is sometimes 
questioned (for an overview see Praetorius, 2014). Most authors suggest analyzing variance 
components beyond measures of interrater agreement to understand better which sources of error 
have added to the variance of the observed score (e.g. Praetorius et al., 2012; Praetorius et al., 
2014).  

Observational instruments may contain both low and high inference items (Praetorius, 2014). 
Codings with low inference are operationalized in a way that is strictly observable. High inference 



items, in comparison, need the observer to interpret what he or she sees which makes the 
observation much more complex (Hugener, 2006). However, at the same time one gains a higher 
validity because instructional research has shown that low inference items explain only little 
variance when students’ achievements are measured as outcome variables (e.g. Baumert et al., 
2010). This is because the surface structure of instruction (e.g. which method is used by the teacher) 
and its quality may sometimes vary independently from each other (Kunter & Voss, 2013).  

Developing an instrument for measuring instructional quality 
The observational instrument that is presented in this paper was developed within the study of 
TEDS-Instruct which is a Follow-Up Study of TEDS-M (Teacher Education and Development 
Study in Mathematics). The main goal is to empirically investigate teachers’ competencies in 
mathematics education at the secondary level and their influence on students achievement mediated 
by instructional quality. As a matter of fact, students’ achievements will be collected to describe the 
prognostic validity of both teachers’ competency tests and the observational protocol that is 
presented here. 

Subject-specific aspects of instructional quality 

For developing a subject-specific dimension of instructional quality we first analyzed which subject-
specific aspects of instruction are assumed to have an impact on students’ learning which has to be 
examined empirically. The main goal for developing a fourth dimension with subject-specific 
aspects was hence to extend the existing generic theoretical framework of instructional quality. 
Such an extension with subject-specific aspects is not established until now (e.g. Steinweg, 2011). 
During the development of the fourth dimension it became apparent that it is necessary to discuss 
the subject-specifity of some aspects that are included within the former three-dimensional generic 
framework. This discussion leads to the assumption that the three basic dimensions of instructional 
quality are not completely generic. However, in the fourth dimension there were included only such 
subject-specific aspects that were not already used to operationalize the other three dimensions. 

For conceptualizing this dimension, a systematic literature survey within the databases of Web of 
Science, ERA and ERIC was conducted (see Schlesinger & Jentsch, 2016 for more detail). At the 
same time, the national debate on mathematics education and the German common core standards 
was reviewed. Based on the described approach, the following aspects were operationalized for the 
observational instrument: 

 the teacher’s mathematical correctness 
 the use of representations 
 mathematical competencies (modelling, problem-solving, the use of mathematical 

language, argumentation and proof, training mathematical tools and operations) 
 a constructive approach to students’ mathematical errors  
 the quality of exercises and tasks 
 sense-making 
 teachers‘ mathematical explanations 
 appropriate examples 
 mathematical depth (e.g. generalizations) 



Method 

Based on the three basic dimensions of instructional quality and the subject-specific aspects that 
were condensed into a fourth dimension, we developed an observational instrument that can be used 
for in vivo ratings without needing videos of the lesson and that can be utilised independently from 
both the specific mathematical content and the academic year. Instructional quality was rated by 
assessing the items on a four-point scale (1=“not at all true“; 4=“completely true“). The 
instrument consists of four dimensions which are classroom management (five items), personal 
learning support (seven items), cognitive activation (five items) and mathematics educational 
quality of instruction (nine items). The data for TEDS-Instruct was collected in Hamburg from a 
sample of 38 teachers at the secondary level. The teachers participated on a voluntary basis. 
Therefore it can be assumed that they were greatly motivated to have their lessons observed. Each 
teacher was observed for two lessons (90 min each). Within one lesson, the instructional quality was 
assessed four times (every 22.5 min). 

Example items Indicators 

Mathematical depth 
 The teacher provides generalizations 
 The teacher provides mathematical connections 
 The teacher deepens and structures mathematical knowledge 

Representations  The teacher provides various representations for mathematical objects 
 The teacher illustrates the linking between different representations 

Table 1: Two example items for the subject-specific dimension 
  

Altogether, there were six observers involved in the classroom study, all of which held at least a 
university degree from a mathematics teacher program. The observers were trained for the 
classroom observations in advance which took around 20 hours. The training had three main goals: 
1) a joint understanding of the theoretical underpinnings of each rating dimension, 2) familiarizing 
with the observational protocol, 3) ensuring a satisfactory amount of interrater reliability. By doing 
so, all items and indicators were discussed thoroughly with the help of a rating manual. The goal of 
a joint theoretical understanding also involved the object of measurement, i.e. instructional quality. 
Based on the process-mediation-product-paradigm, instruction is regarded as a learning opportunity 
that is individually adapted to students’ skills and dispositions. Even though the focus of the 
observations lies mainly on the teachers’ behaviour, the latter is dependent of the students’ 
behaviour and student-teacher-interactions. Students’ reactions to the learning opportunities are 
crucial to understand and assess the quality of instruction and are hence part of the observation, too. 
Nonetheless, due to pragmatic reasons no student self-reports or cognitive tests have been collected.  

Before stepping into real classrooms, the observers trained their skills on videotaped lessons until 
they reached a certain amount of interrater agreement. Finally, a pilot study was conducted with 13 
teachers in three German federal states. After each observation, the ratings were discussed 
intensively between the two raters. For the data collection the lessons were observed directly 
without using videotapes, i.e. the raters assessed all items within the lesson in vivo. Two raters were 
chosen randomly and rated the lesson independently from each other. For this reason it was possible 
to avoid systematical agreement between certain raters. In addition to these ratings, there were also 
produced minutes for every lesson. These minutes included teaching methods, teacher-student-



interactions, students’ behaviour and reactions, the mathematical content and provided materials 
and tasks from the lessons for a detailed description of the learning opportunities.  

Results 
As a first step we calculated descriptive statistics for the data that was collected by external 
observers. The following table contains the results of all items from the three basic dimensions and 
the newly developed subject-specific dimension. For ensuring interrater reliability Spearmans ρ was 
calculated. This is a common measure since in educational research one is more often interested in 
relative than in absolute decisions (Praetorius et al., 2012; see also Shavelson & Webb, 1991). In the 
present study we reached satisfying results of .75 ≤ ρinter < .97 which can be interpreted as high or 
very high correlations between both observer ratings. In order to calculate the descriptive statistics 
the data was aggregated to a single datum per person (N = 38). By doing so, we first took the 
average rating of both observers and then calculated the mean of all eight measurement points per 
teacher.  

Items M SD rit 

Classroom management (α = .83) 

Effective use of lesson time 3.58 .33 .59 

Clear rules and routines 2.97 .19 .66 

Preventing disruptions 3.39 .45 .83 

Advance organization 2.89 .49 .55 

Working atmosphere 3.23 .51 .77 

Personal learning support (α = .714) 

Students’ individual support 2.05 .45 .37 

Approach to heterogeneity/differentiation 1.26 .38 .64 

Self-regulated learning 1.48 .35 .58 

Teacher’s feedback 3.07 .37 .49 

Teacher approval 3.10 .38 .49 

Students’ feedback 1.05 .11 .22 

Fostering cooperative learning 1.75 .46 .27 

Cognitive activation (α = .821) 

Challenging tasks and questions 2.54 .47 .79 

Supporting metacognition 1.25 .29 .42 

Activating prior knowledge and co-construction 2.66 .37 .76 

Quality of teaching methods 2.81 .41 .66 

Securing knowledge 2.43 .48 .50 

Mathematics educational characteristics (α = .820) 

Constructive approach to students’ errors 2.79 .56 .69 

Teacher’s mathematical correctness 3.64 .37 .54 

Representations 2.29 .65 .39 

Exercises and tasks 2.37 .52 .63 

Examples 2.99 .42 .54 



Mathematical competencies 1.62 .15 .44 

Sense-making 2.09 .49 .32 

Teacher’s explanations 2.93 .54 .62 

Mathematical depth 2.34 .40 .69 

Table 2: Descriptive statistics for all items 
When looking at the measures in table 2, we see that correctness has reached the highest values in 
the subject-specific dimension. Even though this could be seen as a ceiling effect, the statistical 
discrimination is quite high. The same holds for the items in the first dimension. Nonetheless, these 
ceiling effects are not surprising as the sample consisted of professional teachers only (Baumert et 
al., 2010; Blömeke et al., 2010). On the other hand, the average individual support that was 
observed in the lessons is quite low which is also supported by the low measures of the items “Self-
regulated learning” and “Differentiation”. Finally, the standard deviation of most items is high 
enough to conclude that a decent amount of variance was measured.  

Altogether we can conclude that an acceptable internal consistency could be reached for all four 
dimensions. When rit = .25 is regarded as a threshold for acceptable measures of statistical 
discrimination, the item “Student’s feedback” did not reach acceptable values and was thus 
excluded from further analyses which is also due to a floor effect. All other items show at least 
mediocre correlations to the corresponding scale which supports the claim of three generic 
dimensions. This is, however, supposed to be confirmed by factor analyses. Recent both exploratory 
and also confirmatory approaches once again support the hypothesis of three generic dimensions but 
suggest dividing the subject-specific dimension into two sub-dimensions which will be discussed in 
more detail in the presentation (Blömeke et al., submitted). 

To sum up, this present study has mainly an explorative character concerning the mentioned 
subject-specific aspects. However, from a more content-related standpoint one can conclude that 
fostering specific mathematical competencies like modelling or proof has often been disregarded 
during lessons. Precise analyses of the used material might then be fruitful to understand better what 
has happened in the classroom.  

Discussion and outlook 
The presented instrument for measuring instructional quality shall finally be discussed concerning 
advantages and disadvantages compared to other instruments in the field. Since this instrument has 
been developed in order to be used in classrooms without analyzing video there is a chance that it 
could possibly be used in a broader way than instruments from video studies. Second, measuring 
instructional quality more than once in a given lesson may describe the learning process in more 
detail and can lead to more reliable data because certain aspects of instructional quality may change 
a lot during the lesson. The ratings then tend to be biased heavily since the observer has to give a 
single rating for the whole lesson (Praetorius et al., 2012). Third, the instrument is suitable for most 
mathematics classes, academic years and mathematical contents. Finally, in this instrument generic 
and subject-specific aspects are combined which, in addition, can then be analyzed on their relation. 

The question remains whether the present instruments’ prognostic validity can be shown by 
analyzing the relation of instructional quality and students’ achievements. It should be tested 
whether instructional quality can be seen as a mediator variable between teachers’ competencies and 



students’ learning, too. This might especially be interesting for mathematics educational scholars 
since the impact of generic aspects of instructional quality has already been shown in some studies 
(Baumert et al., 2010; Helmke, 2012; Lipowsky et al., 2009). The important mathematical or 
mathematics educational aspects of instructional quality and their impact on both learning and other 
outcome variables as motivation or metacognition have still to be found. Here, our study could help 
to gain a little more insight. 
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Research on classroom teaching practices is mainly focused on teachers’ knowledge, beliefs and 
practices paying limited attention to a crucial aspect of the instructional activity, that is, on the 
mathematical meaning constructed in the classroom. The present study examines three highly 
motivated and professionally active primary teachers’ instructional practices and their reflections on 
them in an attempt to identify critical elements shaping classroom mathematical meaning 
construction.  The results show that all three teachers, intentionally or not, make instructional 
choices, which tend to restrict the mathematical meaning under negotiation. These choices could be 
attributed to their desire to provide children with an ‘easy’, ‘safe’ and ‘pleasant’ learning 
environment. 

Keywords: Teacher practices, teachers’ reflections, epistemological features 

 

Introduction 
Significant research has been carried out on classroom teaching practices. An important part of this 
research examines teachers’ mathematical knowledge, beliefs and practices employing different 
theoretical as well as empirical lenses and aiming to understand its impact upon students’ learning. 
Although the importance of the mathematical meaning constructed in the classroom is widely 
recognized and implicitly implicated in all the different approaches, relatively little attention has been 
paid to a detailed analysis of this construction.  

In previous studies, we attempted to systematically examine this important aspect of mathematics 
teaching and learning, analyzing teaching episodes of different teachers, mathematical topics or age 
students. Lately teachers’ reflections on their teaching decisions and practices drew our attention, 
because of the interest in understanding the value teachers attribute to the nature of the mathematics 
knowledge shaped in the classroom (Linares and Krainer, 2006). Thus, in this study, after analyzing 
three primary teachers’ classroom practices with respect to the mathematical meaning constructed, 
we focus on their reflections on this construction. Our aim is to examine each teacher’s decisions and 
practices related to the mathematical meaning construction process.  

Classroom mathematical meaning construction 
We first attempt to define “classroom mathematical meaning construction” and then present 
framework related to the epistemological features of this meaning used to analyze teaching practices. 



Mathematics is a very special discipline and the nature of the mathematical knowledge and the way 
it operates are among the main objectives of the subject matter curriculum worldwide. The 
mathematical way of developing (ideal, theoretical) objects and processes reveals ideas’ attributes 
and relations as well as definitions and theorems to identify objects, to produce new, to relate them 
and to justify properties and relations. One of the most significant aspects of mathematics education 
is the understanding of this mathematical way of operating to which students gradually become 
acquainted by the way teachers manage mathematics within the classroom. Thus, the mathematical 
meaning construction concerns the significance that teachers’ classroom management attaches to 
different mathematical contents and procedures. How does this construction appear to be omitted 
from different studies? 

The considerable body of research focusing on the so called ‘mathematical quality’ of teaching 
employs terms such as ‘connection to worthwhile mathematical ideas’, ‘richness of the mathematics’, 
‘accuracy’ and so on (Ball, et al., 2008) to describe various dimensions of the mathematical meaning 
shaped in the classroom. Kilday and Kinzie (2009) report on different dimensions related to the 
‘quality of mathematics instruction’ for classroom observation verifying the absence of clear 
designation for these terms. They report on various tools used to examine this quality summarized 
along the following dimensions:  teaching aspects (roles, strategies, classroom setups, tasks, time, 
etc.), not necessary related to mathematical content; teachers’ knowledge (e.g., mathematical 
content); teachers’ and students’ functioning (for example, interactions, behavior, engagement, 
expectations, etc.) and learning aspects (such as cognitive demands). Only one rather unclear term 
can be identified among the above referring to the mathematical meaning constructed in the classroom 
that could be seen as relevant, ‘clarity and correctness’, without though any specific relation to the 
mathematical content. 

Within our perspective (Kaldrimidou et al, 2008; 2013), the term ‘mathematical meaning 
construction’ is oriented to the epistemological features of mathematics. These features concern 
‘definitions’ to identify and differentiate the theoretical mathematical objects, ‘attributes and 
relations’ to study them and special ‘processes’ for the management of these objects and relationships. 
Students are expected to gradually approach these ideas, objects and properties through the meaning 
assigned to them by the teacher’s classroom management. This aspect of the classroom ‘mathematical 
meaning construction’ is only partly approached by the research, which examines the mathematical 
quality of teaching.  

Theoretical Perspectives 

Most of the studies examining the mathematical knowledge at play in the classroom focus indirectly 
on this knowledge, often adopting a teachers’ knowledge perspective. This section discusses some of 
these studies with respect to the way these examine the shaped mathematical meaning.  

Ball et al (2008) studied teachers’ mathematical knowledge for teaching (ΜΚΤ) arguing that this 
special knowledge, in addition to other, like the knowledge of content and students, content and 
teaching, content and curriculum and so on determine the quality of teaching and thus the learning 
outcome. They propose a framework for examining this quality including features like richness and 
rigor of the lesson, presence of mathematical explanation and justification, mathematical 
representation, etc. Their approach allows the study of certain features of the mathematical 



knowledge present in teaching practices but not the exact mathematical meaning shaped in the 
classroom.  
Turner & Rowland (2010) focus on teaching practices and examine teachers’ mathematics knowledge 
based on their instruction. Four categories of situations revealing teachers’ mathematics knowledge 
are identified: ‘foundation’ referring to the knowledge, beliefs and understanding acquired during 
teachers’ education, ‘transformation’ and ‘connection’ explaining the ways teachers present the 
relevant mathematical topic and ‘contingency’ related to the ways teachers react to ‘unanticipated 
events’. Their framework named Knowledge Quartet (KQ) mostly relates the mathematical 
knowledge in teaching to teachers’ mathematical expertise or to principles of classroom management 
in different types of situations. Thus, it is less connected to the mathematical meaning shaped in the 
classroom as a result of teachers’ management of this meaning. 
Some studies attempted to examine teachers' knowledge based on teaching practices, errors and 
teachers’ reflection on these, the use of representations and examples (Lin & Rowland, 2016) without 
deepening, however, into the impact of this knowledge in the classroom management of the 
mathematical meaning. Also others examined teachers’ knowledge from a cognitive point of view, 
without concentrating on specific contexts and the nature of mathematics (Davis & Simmt, 2006). 

From a decision making perspective, Schoenfled (2013) proposed a framework for classroom 
observations related to effective instruction analyzed along three basic dimensions: access, 
accountability and productive dispositions. Here the focus is on mathematics and opportunities for 
their learning, thus on mathematical meaning construction: “Students are given a chance to learn 
mathematics… This requires making mathematics learning practices explicit and accessible … 
Mathematical exploration and discussion should be accurate. Reasoning and justification should be 
tied to mathematics” (p. 611).  Terms like ‘mathematical reasoning’, ‘mathematical accuracy’, 
‘richness and integrity’ are used to describe the mathematical character of the knowledge built. 
However, although the framework is thoroughly and accurately presented, it leaves unclear the 
meaning of each term and its connection to the epistemology of mathematics. 

Mathematical meaning and the understanding of the nature of the mathematics constructed in the 
classroom have been also seen as an important aspect of classroom management encountered as a 
complex multi- dimensional phenomenon and studied in varied ways. Relevant research indicates 
that teachers make decisions based on multiple perspectives, often less mathematical and mostly 
pedagogical or didactical (Bednarz & Proulx, 2009). 

For a number of years, our studies have been looking at teachers’ classroom management, teaching 
practices in various mathematical contexts and students’ learning in relation to the epistemological 
status of the knowledge under construction in the classroom. The results indicate that “in most cases 
the activity developed in the classroom had none of the epistemological features characterizing 
mathematics, thus affecting students’ mathematical understanding” (Kaldrimidou, Sakonidis & 
Tzekaki, 2013, p. 306).  Below, an episode from our data is analyzed within different perspectives to 
exemplify the aspects of the mathematical meaning under consideration. In this episode, a primary 
teacher offers an introduction to fractions and deals with definitions: 

T(eacher). … Tell me, what is the difference between fractions and natural numbers? … How do 
they differ? … Are they the same numbers? 



S(tudent).  The fractional numbers ... can b… That is, we have a cake and we cut it in six pieces 
and take one. This is 1/6. The natural numbers are 1, 2, 3, … up to infinity! 

T.  Good! … 

The student presents fractions using a specific example making reference to descriptive 
characteristics and then simply names natural numbers; the teacher accepts his answer (although a 
description rather than a definition is provided) and even praises him. What is the meaning of 
definitions constructed by the students? Is at all connected to the mathematical meaning of definition? 
The teacher’s urge to offer a familiar context to the students destroys the accuracy of the definition, 
and, thus students’ understanding of it. 

What could we detect examining this episode through the mathematical quality lenses? Error, 
richness, rigor, or presence of mathematical explanation (Ball, et al., 2008)? There is no error, while 
the student’s explanation (accepted) has no rigor or any other mathematical quality. Similarly, using 
Schoenfeld’s framework we could identify less opportunities for mathematics learning.  However, 
both analyses cannot explain the meaning constructed by the students. In an analogous manner, the 
KQ lenses would examine the connection between the initial question, the specific response, the 
descriptive explanation and the teacher’s decision to accept it, but wouldn’t explain the meaning 
constructed by the students. Examining the episode from the teacher’s knowledge perspective (Davis 
& Simmt, 2006), her management provides no hints about this knowledge, because her decisions are 
consciously aiming to create a familiar environment for the students. 

The above suggest that studies examining teachers’ classroom management of the epistemological 
features of mathematics as well as the ways in which they understand and interpret this management 
play a central role in the improvement of mathematics teaching and learning. In the present study we 
look at teachers’ reflections, interpretations and justifications related to the teaching decisions shaping 
the mathematical meaning constructed in the classroom. 

Methodology 
The data presented here come from a large project following the development of a new mathematics 
curriculum promoting mathematical literacy through active learning in social contexts. Here the focus 
is on three primary teachers, members of a small group chosen on the basis of their substantial 
teaching experience and promising professional development record, implementing units of the new 
syllabus over a school year. There were all females with more that fifteen years of experience each, 
teaching in an experimental primary school in the northern part of the country. Over the year, they 
discussed, designed, implemented and evaluated a series of lessons in collaboration and under the 
supervision and support of an advisor/consultant. The lessons, the meetings as well a number of 
interviews were taped and transcribed providing the data for the study. For the purposes of this report, 
three transcribed lessons and a follow up semi-structured interview on certain aspects of the teaching 
session for each teacher are considered.   

The research problem pursued was to explore different meanings constructed in these teachers’ 
classrooms related to mathematical objects, their definitions, attributes and relations to other 
mathematical objects based on their teaching actions/ management as well as reflections on them. 



A combination of content analysis and grounded theory techniques were used to analyze the 
transcribed lessons and the discourse developed in the interview. In particular, we first identified 
critical episodes in the teachers’ practices related to the above mentioned features and then analyzed 
their reflections on these, seeking to identify teachers’ acknowledgement of the mathematical nature 
of this knowledge. 

Results - Analysis 
In this section, the results for each teacher participant according to the aforementioned scheme of 
analysis are presented.  Due to the limited space, for each teacher, a critical episode is first provided 
and commented and then her reflection on it is discussed. 

(1) Teacher A (5th graders): The episode below concerns the notion of percentage. Classroom activity 
concentrates on the completion of a 2x2 table, its rows representing games and its columns the number 
of students out of 100 voting favorably for each game, in three forms (fraction, decimal or 
percentage), partly completed. Teaching management focuses on the calculation procedure needed to 
move from one number representation to the other, especially on division, paying no attention to the 
equivalence of these representations. 

T(eacher):  Because, 100 divided by 4 makes 25!! Hence, we have 25 out of 100! … Do you 
agree?... She had the fraction ¼ and wanted to turn it to decimal… Because here 
we have 100 students.  

T:  Danae said before that the decimal fraction is what? 
Danae:  A fraction with denominator 10, 100, 1000 …! 
T:  And since I want 100 as denominator, what am I going to do? 
Thanassis:  I will multiply it by … 
S(tudent):  By hundred!! 
T (to Thanassis): By what? (She writes on the board simultaneously)  
Thanassis: … (noise increasing in the room) … By 25! I will do the same with the numerator 
T:  (She writes on the board) That is, 25/100! ... 
T:  How did you come up with this 0,25? Thano? 
Thanos:  We got 0,25 from the fraction 25/100 
T:  It was very easy for you to do the decimal number from the decimal fraction … 
Adriana:  We will perform the division of 1 by 4 and we will find 0,25! 
Teacher:  Why shall I divide 1 by 4?  
S:  Because, if I divide the numerator by the denominator, I make decimal! 
T:   Because it is very easy to make decimal fractions, but it suits me to get numerator 

with denominator, to divide them, because I am very good at division! … The 
percentage! ... Have we met the percentage only in graphs so far, eh? We haven’t 
really worked with percentages … What does 25% mean? This is the new idea that 
came up there!  

Teacher A claims that the mathematical focus of her session is on % and then on pupils becoming 
able to see the three different number representations (fraction, decimal, percentage).  However, the 
way in which she manages group work and outcomes (dominance of question - answer practice and 
vague transitions between representations) destroys the mathematical equivalence between 
representations envisaged by the task. Nevertheless, in her reflection on this she appears unaware that 
this equivalence should be at the heart of her teaching. At the end of the interview, explaining why 



children tended to ‘calculate the decimal to be able to deal with the number’s, she even argues that 
this might be her fault as she also does this in everyday life. 

(2) Teacher B (2nd graders): The episode comes from an introductory session on fractions. The task 
here focuses on fair/even sharing of certain objects and materials depicted on paper, including a loaf 
of bread, a lolly-pop, some candies and a pizza. Children adopted strategies of folding and measuring, 
with the latter being mostly praised by the teacher. 

Fotini:  I took the ruler and I measured it! I found its half! 
T:  That is, how much is the biscuit … Take first the biscuit … Let your co-students 

see… The way the biscuit is, what did you measure? (She shows) … Aaaa! You 
measured this side from above!  And how much did you find that the biscuit is? 

Fotini:  Twelve centimeters! 
T:  Oh, you found that the biscuit is 12 centimeters! 
Fotini:  I cut it into six! … 
T:  Ah! Go and bring your notebook and show us how you shared your loaf! … Because 

I haven’t seen many to share this way! … Look, please how did George share his 
loaf!!  Do you agree? 

S:  Yes! 
T:  Did he share into two equal pieces? 
Students:  Yes! 
Joanna:  Yes!  And then I cut it in the middle! 
T:  How did you cut it in the middle?  What did you think? … 
Joanna: …  I cut it! … 

Teacher B explained in her interview that she wanted pupils to ‘explore and discover’ for themselves 
how this even sharing is carried out, almost forgetting that this was all about fractions.  Although we 
tried to draw her attention to the interesting strategies pupils came up with while trying to share, she 
insisted in the interview on the importance of children getting familiar with the ‘sharing procedure’ 
which they had recently discussed in the class. She was stuck with material and kinesthetic activities 
promoting no connections and generalizations related to the idea of fractions, because “they were 
familiar, manageable by the children” and therefore appropriate. This interpretation is apparently 
context-specific, that is, concerns this particular occasion of the teacher’s management. Nonetheless, 
it is difficult to deny that this occasion can frame students’ conceptions specifically and possibly 
inappropriately with respect to the mathematical meaning under construction. Even if this is seen as 
an 'effective' introduction to the concept of fractions, it is possible to keep both the teacher and the 
students stuck to this action driven approach in the future, which allows for a  partial 
conceptualization of the concept at hand. 

 (3) Teacher C (5th graders): The episode selected comes from a teaching session on comparing 
fractions.  The teacher is closing the lesson by attempting to help students generalize and draw a 
conclusion. However, both she and the students remain faithful to referring to pizzas and to the 
quantity “we eat”.  

T:  But there must be something in order to be able to compare! What have you 
noticed? How did I place the fractions in order to be able to compare?  What is 
common in each case? 

S:  Either the denominators or the numerators are the same!  



T.  When the numerators are the same, which fraction is larger?  
Spyros:  When the numerators are the same, you eat more when there are fewer pieces! 
T:   Listen … When the denominators are the same, when do you eat more?  
S:  When the denominator is smaller! 
T:  Smaller!! Whereas, when the denominators are the same, when do you eat more? 
S:  You look whether the numerator is bigger!  

The episode above is typical of what we would call a classroom ‘destruction of the mathematical 
meaning’ case. While working on ordering fractions, teacher C (a Mathematics degree holder, 
actively involved with research) keeps holding on to pieces and pizzas. Reflecting on this in her 
interview, she appears aware of the epistemological issues related to the knowledge managed in the 
classroom, but she is prepared to “sacrifice them", to deal loosely with these, because of her priority 
to motivate students, to allow them accessing the mathematical idea to “any cost really" even though 
distorted (Kaldrimidou, Sakonidis & Tzekaki, 2013, p. 309). 

Discussion and concluding remarks 
We presented the cases of three professionally active and highly motivated teachers with different, 
however, mathematics education background and varied awareness related to the nature of the 
mathematical meaning emerging in the classroom during instruction. The first of these teachers seems 
to be unaware of this aspect, while the second attempts to allow for mathematical elements to emerge, 
but through teaching practices of practical and partial character. Teacher C knows the importance of 
the mathematical content but prioritizes accessibility and manageability. In other words, all three 
teachers, intentionally or not, make choices concerning tasks, elements to highlight and approaches 
to manage which tend to reduce the mathematical meaning under teaching negotiation. These choices 
could be attributed to their desire to provide children with an ‘easy’, ‘safe’ and ‘pleasant’ learning 
environment. Their reflections on their teaching practices indicate that these decisions are strongly 
influenced by their own experience, regardless of their training and involvement with the pilot project 
and in accordance with Ponte & Champan’s (2006) position that “teachers eventually develop their 
own PCK … shaped by their own experiences” (p.469). 

In concluding, we would highlight two issues. First, that an analysis revealing classroom construction 
of the mathematical meaning requires, in addition to the study of teachers’ knowledge, of the 
mathematical content elaborated and of the tasks employed (Ball, et al., 2008) as well as of the 
management of students’ actions and thinking (Turner & Rowland, 2010; Davis & Smitt, 2003), a 
detailed analysis of the epistemological features of the content under construction (Kaldrimidou 
Sakonidis & Tzekaki, 2013). Teachers need to be aware of the importance of such an analysis of the 
mathematical meaning construction because they tend to either ignore or underestimate it.  It is 
imperative to become aware that their management of the mathematical objects within the classroom 
connects or dissociates students from what should be at the heart of their instruction, that is, learning 
epistemologically legitimate mathematics. 
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In a year 4 classroom, we studied students’ presentations of their solutions of problem-solving 
tasks. Sitting in pairs (learning-partners), they solved the tasks before presenting their solutions 
orally in class. Based on transcripts from video recordings of the lesson, students’ written notes and 
post interview with the teacher, the role of sociomathematical norms related to students’ use of 
informal mental strategies and standard algorithm for subtraction is discussed. For students 
flexibly to carry out arithmetic operations, we suggest to develop switching between informal 
mental strategies and standard algorithm as a sociomathematical norm. In that respect, attention is 
put on mathematical knowledge for teaching (MKfT) and emphasis on place value system is 
suggested as amalgam between different strategies.  

Keywords: Subtraction, place value system, learning-partners, mathematical knowledge for 
teaching,  

«Ah, mental (informal) algorithms are all very well, but they must learn the standard methods 
sooner or later» Or must they? Plunkett (1979, p 4). 

Background and introduction 
This paper is based on a study which purpose was to identify situations in a classroom where 
development of existing sociomathematical norms or establishing new norms may create potential 
for students’ learning. A video research study was carried out in a year 4 classroom (9-10 years). 
An earlier publication reported situations in the classroom related to argumentations, and 
development of existing sociomathematical norms and establishing new norms were suggested in 
order to increase the potential for students’ learning. (Kleve & Ånestad, 2016).  

Based on students’ (learning partners’) written and oral presentations of a problem-solving task, 
where a three digits subtraction had to be carried out, sociomathematical norms (Yackel & Cobb, 
1996) are identified and we discuss development of sociomathematical norms in light of 
mathematical knowledge for teaching (Ball, Thames, & Phelps, 2008; Rowland, Huckstep, & 
Thwaites, 2005). Our research question is: What role does mathematical knowledge for teaching 
play in order to develop sociomathematical norms, which can bridge the gap between informal 
mental strategies and standard algorithm for subtraction so the children can flexibly switch between 
different strategies? 

Raveh, Koichu, Peled and Zaslavsky (2016) presented an integrative framework of knowledge for 
teaching the standard algorithm of four arithmetic operations. Studying connections between the 
four basic algorithms for arithmetic operations, they encouraged teaching the standard algorithm 
with emphasis on conceptual understanding, putting weight on connections between the four 
algorithms. In our study, the focus is on the relation between informal mental strategies and the 
standard algorithm for subtraction.  



Torbyns and Verschaffel (2016) analyzed students’ use of mental strategies and standard algorithm 
on subtraction. They found that when having been introduced for the standard algorithm:  

Children presumably became gradually more efficient in this algorithm, while their mastery of 
mental computation in general, and compensation in particular, may have stagnated or even 
declined (p. 112, italics in original). 

Even when numbers involved were suitable for and “strongly invited to mental computation 
strategies”, (ibid.) they found that students, when first having been introduced to the standard 
algorithm for subtraction, used this instead of mental strategies.  

Torbyns and Verschaffel (2016) suggested that when the standard algorithm was introduced, the 
students would think that this newly introduced method was “the superior way to subtract larger 
number” (p.112).   Referring to Yackel and Cobb (1996) they linked this to socio-cultural classroom 
norms in the classroom. Furthermore they referred to international efforts to reform elementary 
mathematics education which emphasizes children’s abilities to flexibly apply informal mental 
strategies before they are introduced to the standard algorithm, and the claim that children then will 
continue to efficiently apply informal strategies. Torbyns and Verschaffel therefore encouraged 
research in more reform-oriented classrooms, comparing children from these with children taught in 
traditional oriented classrooms.  

The classroom, in which our study took place, was reform oriented. There was a strong focus on 
children’s use of own informal strategies and an extensive use of learning partners. The focus in this 
paper is on sociomathematical norms related to their use of informal mental strategies and/or use of 
standard algorithm for subtraction. Related to sociomathematical norms we also discuss what role 
mathematical knowledge for teaching play in the development of children’s flexibility in using 
different mental strategies and the standard algorithm.    

Theoretical perspectives 
“Sociomathematical norms are normative aspects of mathematical discussions that are specific to 
students’ mathematical activity” (Yackel & Cobb, 1996, p. 458). Yackel and Cobb focused on 
sociomathematical norms when studying “how students develop specific mathematical beliefs and 
values and consequently become intellectually autonomous in mathematics [ ] how they come to 
develop mathematical dispositions” (p. 458). They distinguished sociomathematical norms from 
general classroom social norms in that they are specific to the mathematical activity carried out in a 
classroom. In our study, we focus on an episode where use of informal mental strategies and/or 
standard algorithm for subtraction as mathematical activity is discussed.  

Sociomathematical norms can be what counts as an efficient mathematical solution, different 
mathematical solution and a sophisticated mathematical solution (Cobb, Stephan, McClain, & 
Gravemeijer, 2001). Cobb et al. emphasized that both social norms and sociomathematical norms 
are dealing with what is «Taken as shared» in the classroom.  

Classroom norms are developed in collaboration between the teacher and students or between 
students. However, the teacher is the key person when norms are changing or new norms are 
established (McClain & Cobb, 2001). In our study, we consider that the teacher has great influence 
on sociomathematical norms, whether the norms are already established, in the process to  be 



weakened or under development in the classroom. We therefore want to link development of 
sociomathematical norms to mathematical knowledge for teaching.  

Ball, Thames and Phelps (2008) developed a framework for mathematical knowledge for teaching, 
MKfT. They distinguished between Common content knowledge, which is mathematical knowledge 
possessed not necessarily for teaching, and Specialized content knowledge for teaching, which is 
about the teacher’s way of ‘unpacking’ mathematics, neither necessary nor desirable for others to 
do. They also included a third category, Horizon content knowledge, which is about making 
connections between different areas and topics. “Horizon knowledge is an awareness of how 
mathematical topics are related over the span of mathematics included in the curriculum [ ]. It also 
includes the vision useful in seeing connections to much later mathematics”. (Ball et al. 2008, p. 
403).  

In order to investigate how aspects of the teacher’s mathematical knowledge surfaced in the lesson 
observed, the Knowledge Quartet (KQ) developed by Rowland, Huckstep and Thwaites (2005) has 
been a valuable tool. The KQ has four dimensions: Foundation, Transformation, Connection, and 
Contingency. Foundation is informing the other three dimensions, and Connection is the dimension, 
which we see as linked to “Horizon content knowledge”.   

Plunkett (1979) discussed pros and cons with regard to use of informal mental strategies and 
standard algorithm in school, and questioned whether standard algorithms necessarily have to be 
taught and learned. He claimed that unlike standard algorithms, which only deal with separated 
digits, informal mental strategies are holistic in that they work with complete numbers and thus 
requires understanding. Liping Ma (2010) emphasized regrouping rather than technical use of 
standard algorithm. When regrouping, the subtraction algorithm will be understood on a holistic 
number level, rather than as separate digits.  False mathematical statements as “we can’t subtract a 
bigger number from a smaller” will be avoided. Such false statements are related to teachers’ 
horizon content knowledge (Ball et al., 2008).  

Anghileri, J., Beishuizen, M., & Putten, K. v. (2002) compared the Dutch approach to written 
division calculations in school, which extensively built on children’s own informal strategies, to the 
English approach which was schematic and focused on separate digits. Based on the results from 
their study Anghileri et al. (2002) warned against replacing informal strategies with standard 
algorithms. Rather one should give support to structuring informal approaches in a written record. 

Referring to Plunkett (1979) and that calculations are carried out in real life, Anghileri (2006) 
emphasized children’s mental strategies as a starting point for developing more formal methods.  

Based on the above, one can suggest that when introducing a standard algorithm, teachers should 
focus on regrouping numbers and take children’s informal mental strategies as a starting point. This 
puts demands on the teacher’s mathematical knowledge for teaching, which again will constrain the 
sociomathematical norms in the classroom. 

Referring to among others Ball et al. (2008), Raveh et al. (2016) proposed a framework consisting 
of four components: Procedural Knowledge (PK), Knowledge of Underlying Concepts (KC), 
Knowledge of Similarity between the algorithms (KS) and Knowledge of Representations (KR). In 
our analysis, we will use components from this framework, mainly PK and KC, and some of KR. 
PK is about carrying out the steps correctly in the (subtraction) algorithm, while KC refers to 



knowledge about mathematical concepts underlying different algorithms as place-value and number 
regrouping. Rather than analyzing different representations of the subtraction algorithm as KR 
refers to in Raveh et al’s framework, we emphasize the relationship between informal mental 
strategies, and the standard algorithm for subtraction.  

In our study, we will not argue for not introducing the standard algorithm. However, we consider 
bridging between informal mental strategies and standard algorithm as valuable features of 
mathematics, which may influence students’ mathematical beliefs. Development of flexibility and 
children’s ability to switch between informal strategies and standard algorithm are linked to 
sociomathematical norms and to the aspects pf teachers’ mathematical knowledge for teaching.  

Methods 
We observed two mathematics lessons in a 4th grade (mixed ability, 9-10 years old) classroom. 
Prior to the classroom observations, we had come to know the teacher. Her educational background 
was a pre-school teacher. She described her teaching as being reform oriented and that her students 
performed well on “transition tests”. She had established an extensive use of learning partners in her 
classroom. She put her students together in pairs at random, same partner in all subjects, and 
changing partners every week. According to the teacher, the students never complained or protested 
against whom they received as their partners. This was established as a social norm in the class. 
With regard to Eli’s view on mathematics teaching and learning, she emphasized the process rather 
than the product, saying: “For me it is not so important if the answer is correct. I am more interested 
in the strategy they use, that they have understood the principle behind solving such tasks”. She also 
told us that she encouraged students to develop their own strategies in solving arithmetic problems 
and to discuss their strategies with their learning partner. Against this background, we wanted to 
study sociomathematical norms in Eli’s class.  

During our first visit in the class, we observed and wrote field notes. The second time we video 
recorded a 90 mins mathematics lesson. We used two cameras. The students were sitting in pairs 
and should solve different tasks, which were written on the board. After having solved the tasks, 
and written down their solutions, they presented their solutions orally. Towards the end of the 
lesson, they had some (‘warm ups’) whole class activities where they “worked with concepts” 
(teacher’s expression). One of the activities was linked to the place value system.  

Our analysis here is based on transcriptions of video recordings of their oral presentations and on 
their written work, which we collected. We also studied the video recordings together with the 
teacher several weeks afterwards. We interviewed the teacher and asked her to comment the 
different pairs’ written sketches and oral presentations. 

The task, on which we base our analysis, was written on the board: 

Tobias has two 200 NOK notes and six 10 NOK coins. He spends half on a gift, 142 NOK on a 
book and then he buys “pig ears” to Doffen. One ear costs 11 NOK. How many ears can he buy? 

Analysis 
The subtraction 230-142 had to be carried out to solve the task. Eleven out of twelve pairs of 
students had used the standard algorithm, however with different degree of detail in their oral 
presentations. The standard algorithm had become the  “taken as shared” method (Cobb et al., 



2001). First, we discuss four pairs’ written calculations (sketches) together with their oral 
presentations, illuminated with the teacher’ comments to the presentations, then we go further into 
the teacher’s comments from the interview. The teacher did not comment on any of the 
presentations in the lesson.   

 
Figure 1: Four pairs’ written calculations 

The pairs’ oral presentations: 

Pair 5: 230, it was easier to do 230 minus 130 equals 100 and then we did minus 12 
because 130 plus 12 is 142, and that made 88 

Pair 9: 230 – 142 is zero minus two, doesn’t work. We have to exchange from the three, 
and ten minus two is eight and then we have two left there. So then we take, 
however four minus two doesn’t work either, so then we will have to exchange 
from the two. Ten minus four is six plus two is eight and then we have only one 
left, which makes one minus one is zero. So then it is 88”.  

Pair 8: We did 230 minus 142 using the standard algorithm. We got 88 

Pair 7: 230 minus 142 is 88 

Studying Pair 5’s calculation, both their written work and oral presentation, we see that they did not 
use a standard algorithm for subtraction. The students regrouped the subtrahend 142 into 130 and 
12. This way of calculating is flexible and requires understanding and a holistic way of thinking. 
They treated the complete numbers rather than separated digits (Plunkett, 1979).  

The interview with the teacher Eli, with regard to Pair 5, revealed that she did not see the way of 
solving and presenting this as a potential for further development. The teacher expressed her 
acknowledgement of different ways of doing subtractions, but that this was a cumbersome and 
much lengthier way.  She considered one of the students in the pair as a “funny one”, and that “you 
need to be much sharpened to follow his thoughts. However, I keep telling him that he ought to start 
using another strategy in order to make things go faster. So after a while you’ will have to do that”. 
This is in line with Plunkett’s (1979) characterization of informal mental strategies: “often difficult 
to catch hold of “(p. 3). This comment revealed that the teacher did not see the potential in her 
students’ mental calculations for further development. She now looked upon the standard algorithm 
as the most efficient and sophisticated way of carrying out subtraction, and using the standard 
algorithm was in the process of being established as a new sociomathematical norm.   



As we can see from figure 1, the three other pairs used the standard algorithm for subtraction. All 
correctly written out, displaying decomposition (exchange or borrowing). This can also be 
interpreted as regrouping of the minuend based on the place value system. However, the students 
did not express any regrouping. Studying their oral presentations reveals that the students were on 
different levels in using the algorithm. “Standard algorithms are not easily internalized. They do not 
correspond to ways in which people tend to think about numbers” (Plunkett, 1979, p. 3, italics in 
original). The pairs only referred to digits between 0 and 10. We suggest that this is why Pair 9 
presented a detailed explanation of the algorithm as such. Their claims: “zero minus two, doesn’t 
work” and “four minus two doesn’t work reveal either”, reveal a misconception or a “false 
mathematical statement” (Ma, 2010, p. 3). These students have not been presented for negative 
numbers yet, and false mathematical statements like these may lead to later misconceptions about 
negative numbers. The students in this class (except Pair 5) used the term “exchange” when 
regrouping the minuend 230 into 220 + 10, and when they later regrouped 220 into 120+100. 

A question here is whether the students know what they are doing. According to Plunkett, use of 
standard algorithms encourage suspended understanding.  Pair 9’s explanation reflects procedural 
knowledge in carrying out an algorithm rather than conceptual understanding. Ma (2010) 
encourages regrouping rather than exchanging or borrowing (decomposing) when introducing the 
standard algorithm. Because then they will be working on a holistic number level rather than with 
separate digits.  

With regard to Pair 8, they only said they had used the standard algorithm, whereas Pair 7 only 
presented the answer. They can be considered as having internalized the algorithm, and as Plunkett 
(1979) puts it: “While the calculation is being carried out, one does not think much about why one 
does it in that way” (p. 3).  

In the interview with the teacher, Eli said that when starting a new arithmetic operation, she 
encouraged everyone to do it his or her own way, and that she used to present all students’ different 
informal strategies on the board. She expressed a great concern about these differences when a new 
arithmetic operation was being introduced. Thus, we consider that use of mental strategies for 
subtraction was earlier established as a sociomathematical norm. However, after having introduced 
the standard algorithm, this sociomathematical norm was in the process of disappearing, or at least 
fading, and a new sociomathematical norm was about to be developed. About the introduction of 
the standard algorithm, Eli said, “We practiced memory numbers and exchange in detail”. 
Consequently, we consider such detailed explanation as a new sociomathematical norm. This 
sociomathematical norm is also in the process of disappearing. Everybody was now expected to use 
the algorithm without further explanations or comments. As we see from our data, some students 
used the standard algorithm naturally without further explanation, while others still explained the 
procedure in detail. Only one pair (5) explained the subtraction as use of mental strategies without 
mentioning the standard algorithm. Hence, eleven out of twelve pairs looked upon the newly learnt 
algorithm “as a superior way” (Torbeyns & Verschaffel, 2016, p. 112). 

Discussion 
Our findings suggest that although Pair 5’s way of doing subtraction was not acknowledged (“he 
ought to start using another strategy in order to make things go faster”), the students displayed both 



number sense and a well-developed subtraction concept. Of those who had used the standard 
algorithm, some explained the procedure in detail, Pair 9, while others just referred to the algorithm. 
Although they might have had conceptual understanding, they did not display it. Their focus was on 
the skill carrying out the subtraction procedure. According to Eli, the students who used the 
standard algorithm had developed a more mature number sense than those still using mental 
strategies. Although being influenced by reform-oriented working methods, Eli expressed the 
necessity of learning the standard algorithm, both as a tool, an assurance to always have a method to 
use, and as an efficient way of doing subtraction. She looked upon standard algorithms as a 
supplement to informal mental strategies. However, she was not aware what research has shown; 
when first have been introduced to the standard algorithm for subtraction and exposed to instruction 
emphasizing mastery of the standard algorithm, children will gradually become more efficient in 
using the standard algorithm, while their use of informal and mental strategies will fade (Torbeyns 
& Verschaffel, 2016). The challenge is to bridge or close this gap. A goal must be to develop 
sociomathematical norms where students are able to switch between different strategies dependent 
on the nature of the numbers involved. This puts demands on the teacher’s MKfT, and especially 
the Horizon knowledge. 

There was no indication in what the teacher said in the interview that the informal mental strategies 
the children earlier had used had been taken as a starting point when introducing the standard 
algorithm. The teacher’s mathematical knowledge for teaching seemed too fragile to give her 
courage to rely on students’ mental strategies, and thus to bridge the gap. The mathematics 
presented for her students seemed to be fragmented. During the place value activity towards the end 
of the lesson students should answer questions as “what value does 1 have in 5129?” If this had 
been linked to the standard algorithm for subtraction, regrouping, based on place value system, 
could serve as an amalgam between informal strategies and the formal algorithm. This refers to 
Raveh et al.’s (2016) KR, which we see as knowledge about connections between informal 
strategies and mental strategies. Attention could here be brought to the foundation and connection 
aspects  of the teacher’s knowledge (Rowland et al., 2005). Knowledge of the mathematical 
concepts underlying the algorithm, KC (Raveh et al., 2016) did not surface in what she said. 
However, she demonstrated procedural knowledge (PK) related to correct computations and the 
steps in the algorithm.  

Our findings suggest that the teacher did not see the potential in taking earlier established 
sociomathematical norms about students’ use of mental strategies as a starting point. We claim that 
linking informal mental strategies to the place value system in introducing the standard algorithm 
for subtraction would enhance students’ ability to switch between informal strategies and the 
standard algorithm, dependent on the numbers involved. Regrouping based on the place value 
system could then serve as an amalgam between informal mental strategies and the standard 
algorithm.  

Based on our data, we cannot say anything about the sociomathematical norms related to other areas 
of the mathematics in this classroom. However, the students had not yet been introduced to the 
standard algorithm for division. We saw that in carrying out the necessary division operation to 
solve the task (how many ears can he buy?) 88:11, the students used either repeated subtraction or 
repeated addition as (informal) mental strategies.  



Encouraging teachers to rely on and see the potential in earlier established sociomathematical 
norms where students use informal mental strategies, are important issues for further research. In 
that respect, attention must be directed towards to teachers’ mathematical knowledge for teaching, 
with special focus on Horizon knowledge and the connection dimension of the teacher’s 
mathematical knowledge (Ball et al., 2008; Ma, 2010; Raveh et al., 2016; Rowland et al., 2005).  
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The recontextualizationstaking place during the implementation of a new curriculum are identified 
through different discourses teachers draw on in order to attribute meaning to the ideas promoted by 
the new curriculum. The paper studies the ways in which thirteen Greek primary school teachers who 
participated in aone-year pilot implementation of a new mathematics curriculum recontextualized its 
innovations through the discourses they drew on. The analysis of the data revealed contradictions 
within the teachers’ discourse that can be attributed to the recontextualization procedures activated 
during the implementation of the new curriculum and indicate inconsistencies within or/and between 
the various discourses available to them. 

Keywords: Curriculum, mathematical processes, reform, recontextualization, teachers. 

Introduction 
A number of studies examining mathematics curriculum reforms reveal the complex nature of the 
change in theteaching practices and the agentsoperating at the institutional level (State) as well as at 
the individual level (teachers), constituting obstacles to the implementation of the innovations 
promoted. The results of these studiesindicate distortion of the innovations promoted, mainly because 
of the dominance of traditional teaching approaches and only partial adoption of innovative features, 
usually of those that can be painlessly integrated into existing teaching practices. While teachers’ 
beliefs can be consideredcritical for the implementation of a mathematics curriculum, there are 
difficulties in using beliefs to interpret effectively the outcomes of the implementation. According to 
Lerman (2002), research should keep distances from such “personalized” views on the relations 
between beliefs and practices, so that the “conflicting” ways in which promoted reforms are reflected 
in the practices of teachers can be understood and interpreted as social phenomena (e.g. Morgan, 
Tsatsaroni&Lerman, 2002). Research to this direction, althoughstill very limited, is of particular 
importance for making sense of the problems arising while implementing a mathematics curriculum 
that goes beyond the concept of belief. We argue in this paper that Bernstein’s concepts of 
recontextualization and recontextualization fields have much to offer in understanding how 
intervention programs employing socio-cultural approaches succeed or fail because of teachers’ ways 
of interacting dynamically with curriculum reforms (e.g. Jaworski, 2007). 

Implementing a new mathematics curriculum: recontextualization in practice 
Each new curriculum is unavoidably being ‘altered’ during its implementation by the action of 
institutional factors as well as of the teachers themselves. This situation does not differ from that of 
the distortion of academic mathematics during their transformation to school mathematics and of the 
academic knowledge related to mathematics education when ‘translating’ it the knowledge needed to 



support mathematics teaching in practice (Morgan, 2010). More specifically, the actions of those 
involved with school mathematics aim to develop students’ relevant knowledge rather thantoextend 
mathematical knowledge itself. Moving from academic mathematics (production field) to school 
mathematics (reproduction field) presupposes a reframing process of the discourse established both 
in the first and in other areas (e.g., in relation to learning theories) [the term ‘discourse’ refers to a 
social construction that establishes a person’s social hierarchy (Koulaidis&Tsatsaroni, 2010)]. This 
is similar to the transition from mathematics education research and theory production field 
(academic) to the reproduction field (school). Teachers are generally not engaged in producing new 
knowledge about teaching and learning, but are expected to acquire knowledge and skills that enable 
them to teach effectively. The development of curricula, the production of teaching materials that 
support a curriculum and the professional development activities play an important role to this. The 
field of reproduction here is embedded in many fields of teachers’ professional life, creating a more 
complex environment for developing discourses related to their practices. 

The adoption of a sociological agenda for examining the process of implementing a new curriculum, 
which prioritizes the notion of ‘recontextualizing knowledge’, could provide an operational 
framework for understanding and interpreting problems arising because of the complexity of the task. 
Such a framework is being proposed by Bernstein (2000), who focuses on a pedagogical mechanism 
that structures and organizes the educational contents and their distribution based on the dominant 
process of recontextualizing. That is, the transfer of knowledge through selection procedures from 
the fields where it is produced (e.g., universities) to areas of formal or informal training (e.g., 
classroom). Bernstein (2000) distinguished the Official Recontextualizing Field (ORF), established 
and dominated by the State for the construction and supervision of the State pedagogical discourse, 
and the (official) Pedagogic Recontextualizing Field (PRF), in the formulation and management of 
which agents such as teachers’ trainers, more or less independent of the State, are involved. The 
relationship between the two fields and the curriculum reform processes depends on the degree of the 
PRF autonomy, the extent to which the discourses produced by these fields differ and the source of 
reproduction of the revised curriculum (Morgan, 2010). Teachers act as agents in the PRF, 
reproducing the official pedagogical discourse established in the ORF. However, their practices 
cannot be completely regulated externally. What is being reproduced at school and in classroom 
depends on the principles of recontextualization that arise from “the specific context of a particular 
school and the effectiveness of the external control in the reproduction of the official pedagogical 
discourse” (Bernstein, 2000). That is, from the operation of the complementary resources that are 
being produced locally (Local PRF, in distinction to Official PRF). This suggests that, despite the 
independence between them, the recontextualization fields influence each other, with the agents 
playing an important role in more than one fields (e.g., researchers who teach in universities, in 
professional development programs, in the formation of a new curriculum etc). This complex 
relationship creates differences between pedagogical discourses established in different fields of 
recontextualization and, consequently, between the practices adopted on the basis of these discourses. 
The interaction between the fields of recontextualization on the one hand and the interpretations of 
the discourse developed in these fields on the other generates the resources used by teachers to 
legalize their practices in classroom.  

In the Greek educational system the State has almost absolute control over the curriculum, its 
implementation at school level, the production of educational materials and teachers’ professional 



development. There isnot, therefore, a truly independent PRF. However, there are differences 
between individual fields of recontextualization and the discourses these produce, providing diverse 
resources of curriculum interpretations for teachers in the field of reproduction. Teachers draw on 
discourses arising from teaching and learning processes experienced during their own mathematics 
education and within the context of their professional activity. The absence of a discernible 
pedagogical recontextualization field, independent of the Greek State’s control, influencing 
mathematics classroom teaching practices and the meaning attached to them by teachers as well as 
the occasion of a new mathematics curriculum being implemented in the country, offered a situation 
seen as worth studying. 

A new mathematics curriculum in Greek schools 
Studying the curriculum reform of Mathematics undertaken in Greece, various levels of the 
development and the structure of the administrative control exercised by the State can be identified. 
It appears that different agents occupy different positions within this structure and are involved in 
recontextualizing the curriculum, having different interests and different relationships with schools 
and teachers. The Greek recontextualization field can be considered to consist of three official sub-
fields: (a) the Official Recontextualization Field (ORF) - the curriculum itself and its authorities are 
set up at a national level by the Ministry of Education, (b) the Official Pedagogical 
Recontextualization Field (OPRF), where the production of all educational materials like textbooks 
is directly controlled by the Ministry of Education, (c) the Local Pedagogical Recontextualization 
(LPRF) field related to the implementation at the school level, where schools and teachers interpret 
the new curriculum through training and additional resources produced locally. Although both the 
OPRF and the LPRF have a degree of autonomy, this is quite limited. The discourses produced by 
the agents in these two fields (e.g., in the form of mathematics textbooks, public examinations or 
teachers’ training programs) should be approved by the Ministry of Education. Unlike the educational 
systems in most Western countries, there is no Recontextualization Pedagogical Field independent 
from the Greek State to influence the adoption of instructional practices. However, even when the 
State does not encourage the development of independent discourses relating to the curriculum, the 
different individual fields that make up the field of recontextualization and the generated discourses 
act as sources on which teachers can draw to ‘interpret’ the curriculum in the field of reproduction. 
In addition, teachers can draw on previous discourses related to mathematics, for instance produced 
locally, at school and in the wider community.  

As it has been already mentioned, the Greek educational system is highly complex, its administration 
is being exercised centrally and the hierarchical structure of its organization and management are 
characterized by high concentration of powers at the top. Every educational activity, be it the 
identification of educational objectives, the implementation of the curriculum, the educational 
materials used to support teaching and learning or the evaluation of teachers’ work, is centrally 
controlled. The heavily complex and centralized nature of the Greek educational system creates 
differences between the pedagogical discourses produced at different levels of the recontextualization 
fields. In turn, differences between the pedagogical texts, between the practices adopted by these 
different pedagogical discourses and between the ways in which teachers might legitimize their 
practices are evident. Morgan (2011) states that the interaction between recontextualization fields and 
the interpretations resulting from the production of different discourses create space for teachers to 



place themselves in the position of a ‘good teacher’, legitimizing a number of different classroom 
practices.  

The above situation is quite different from that met in well knowneducational systems like the British, 
where the curriculum is strongly controlled by the State and is being regulated by tests and 
inspections. There is an organized pedagogical recontextualization field that holds a high degree of 
autonomy and is being developed mainly at universities and educational communities. The 
Pedagogical Recontextualization Field produces alternative discourses related to the curriculum by 
setting up different sets of recontextualization authorities and plays an important role in reframing 
the discourse of the curriculum produced in the Official RecontextualizationField (Morgan & Hu, 
2011). Despite the fact that the two fields are independent in structure, they affect one another (for 
example, mathematics education academics participate in working groups for the design of the 
mathematics curriculum or in national exams committees using State-defined standards). Given the 
tight control exercised by the Greek State on the whole educational process, no independent 
Pedagogical Field can be ever expected. 

The study 
The context of this study is provided by a recent reform effort in the Greek compulsory education 
system concerned with the development of new curricula, completed in 2011, piloted for two years 
and presently utilized primarily in experimental schools. A central innovative element with respect 
to mathematics education has to do with students’ active involvement with activities that enhance 
processes such as a) mathematical reasoning and argumentation, b) creating bonds between concepts, 
c) communicating through the use of different tools and d) promoting metacognitive awareness 
(Institute of Educational Policy, 2014). Utilizing Bernstein’s theoretical framework, the study focuses 
on the impact of this reform on teachers’recontextualization practices. In specific, the aim of the study 
is to examine the ways in which primary teachers participating in a one-year pilot implementation of 
the new curriculum recontextualized its innovations, especially the mathematical processes promoted, 
based on their pedagogical discourse.  

The sample consisted of 13 primary teachers who worked in three schools in the north-western part 
of the country. Most of the teachers had considerable teaching experience (10–25 years) and were 
involved in professional development activities, such as participating in in-service training programs 
and research projects. During the study, five teachers were teaching to upper, four to middle and four 
to lower primary school classes. The teachers were all involved in the implementation process of the 
new mathematics curriculum because their schools were selected by the State as pilot units. The 
extent of their involvement was determined by their sense of ‘duty’ tomeet the requirements set by 
the new curriculum but also by their interest to participate in activities promoting their students’ 
learning and their professional development. 

The study included two phases. In the first, a non-participant observation of teachers’ reformed 
mathematics teaching took place. The teachers were observed for two teaching sessions and were 
then interviewed mainly in relation to the ways they exploited the mathematical processes promoted 
by the new curriculum in designing and implementing their instruction. The second phase included a 
semi-structured interview with each of the teachers aiming to study the pedagogical discourse 
developed and through that the recontextualized process that possibly took place in relation to the 



mathematical processes promoted by the new curriculum. Each teacher was interviewed for four 
hours in four meetings.  

To describe the procedures of recontextualization of the mathematical processes taking place, 
techniques of Grounded Theory and Content Analysis were utilized. In particular, articulations 
associated with each of the recontextualization fields were identified, coded, grouped and merged, 
providing meaning to its content and structure. Specifically, the analysis of the data from the semi-
structured interviews was carried out at two levels.  First the researchers held multiple and careful 
readings of the interview transcripts, identifying phrases for each mathematical process within each 
recontextualization field. The recorded phrases in each recontextualization field were then coded and 
those indicating a ‘special’ aspect of the corresponding field were identified and marked with a new 
code. When a phrase that reflected a field reappeared, it was also noted. So, gradually, the phrases 
that were part of each first level domain were organized into second level categories, based on the 
‘special’ theme. In the following, some results from the second phase of the study are presented and 
discussed. 

Results and discussion 
In the following, the participant teachers’ conceptualizations of each of the four mathematical 
processes promoted by the new curriculum as emerging through their discourse are briefly presented 
and discussed. 

(a) Mathematical reasoning and argumentation: Teachers interpreted mathematical reasoning and 
argumentation in a way that is consistent with the official discourse, as aiming to promote classroom 
interaction. This interpretation is related to the professional official discourse and is supported by 
tasks demanding cooperation and communication included in the mathematics textbooks produced 
and distributed by the State. Consistency in the recontextualization between the Official Pedagogical 
Recontextualization Field and the Local Recontextualization Field with respect to this process is 
identified (e.g., difficult to apply in practice).  

But there is a problem ... it is the textbooks we use, they do not help us at all. We must follow 
the material and we do not anticipate. Of course, I give more exercises; beyond the textbook 
... the textbook does not cover us. And moreover, you know something? We have the pressure 
from parents who want more exercises. They are pushing us and they do not understand what 
we do (teacher with 11 years teaching experience, moderate professional activity, teaching to 
a lower primary class). 

Time often forces me not to be able to give the time needed so that the student loses the 
opportunity to communicate, but communication is essential (teacher with 19 years of 
teaching experience, moderate professional development activity, teaching to a middle 
primary class). 

The ‘objections’ raised drew mainly on a local discourse concerning classes, especially size of 
classes, the time pressure and parents’ demands. Teachers also drew on elements from the 
conventional discourse facing mathematics as a ‘discipline’ which is not always available for 
discussion because of its ‘absolute nature’. 



(b) Creating bonds between concepts: Teachers appeared to be aligned with the official discourse 
with respect to this process, giving however little value to it. They only deviated from it when 
referring to opportunities of exploiting this process in classroom. To this direction they made 
reference to a pedagogical recontextualization often governed by informal, local factors (e.g., the 
importance of knowing ‘good’ mathematics, of repetition, of continuous emphasis on conceptual 
understanding) and not by official “routes” (e.g., attending courses on issues of teaching 
mathematics). 

I’m not sure about what you mean ... relate to other mathematical concepts, that is what? Now 
we do fractions, what should I do, then? It sounds important …. Solving exercises, repetition, 
this must be done, otherwise mathematics would be forgotten (teacher of 21 years of teaching 
experience, moderate professional development activity, teaching to a lower primary class) 

(c) Communication through the use of different tools: Teachers’ discourse concerning mathematics 
classroom communication utilized different tools mainly related to the importance of tasks requiring 
the use of manipulatives, through which students are able to use their hands to ‘do things’ (for 
example, to cut a piece of paper, to take cubes from a bag etc).  

We are working with manipulatives in the class every day. But if you do maths in an 
experimental way, when will you understand that maths is not a game? We need to be accurate 
(teacher of 11 years of teaching experience, moderate professional development activity, 
teaching to a lower primary class) 

The same idea seems to prevail when reference is made to the use of technology and digital materials. 
No distinction was made between the presence and functionality of colors, virtual objects, sounds and 
other digital ‘goodies’ that do not have themselves any mathematical meaning but exist to invigorate 
the general ‘elegance’ of software (Institute of Educational Policy, 2014). As argued in the “Teacher’s 
Guide” (2014), in cases where digital technology ‘provides’ a patchwork of mathematical and non-
mathematical representations, the importance of mathematical representation deteriorates. 

I personally deal successfully with technology because I like it. It facilitates our work when 
we are going to teach difficult mathematical concepts. It is impressive with all these shapes, 
colors, the environment, but also it is functional, a tool to work (teacher of 21 years of teaching 
experience, moderate professional development activity, teaching to an upper primary class) 

Teachers’ discourse drew also on their own mathematical education and the experience gained from 
the previous curriculum.  

We are the generation of the book, but we can do things with the computers. It would be nice 
for us to be familiar with it, but so far it was not provided, nor from the previous curriculum 
(teacher of 17 years of teaching experience, moderate professional development activity, 
teaching to an upper primary class) 

This mix of ‘conformity’ to the official discourse with opposition to it was expressed implicitly by 
teachers who were resisting to the official discourses (but one teacher), although they seemed to be 
in favor of it.  

(d) Metacognitive awareness: Teachers argued for this process and ‘wished’ they could foster more 
of its components into their teaching. On the whole, they aligned with the relevant official discourse. 



However, they deviated from it when referring to the conditions set for the use of this process in class, 
moving to a pedagogical recontextualization determined predominately by informal, local factors 
(e.g., the effectiveness of mathematics learning and the coverage of the appropriate content) and less 
by official agents. 

For me it is important for students to really have the desire to explore and then teachers will 
guide them effectively…However, for students who are less ‘comfortable’ with this, it is a 
great challenge, but I’m disappointed...If these conditions are met, then it is a good idea, but 
I can say that especially for my class, to be honest, it is difficult (teacher with 16 years of 
teaching experience, university degree, moderate professional development activity, teaching 
to a lower primary class). 

Concluding remarks 
Teachers drew mainly on the resources provided by the official discourses when arguing about the 
four mathematical processes promoted by the new curriculum and tended to align to these discourses.  
However, they deviated from them when interpreting these processes in relation to their own classes. 
The official discourses shape the range of the new curriculum interpretations in relation to teaching 
and learning, while the conventional and local discourses fuel teachers’ pedagogical discourse with 
further resources for understanding the new mathematics curriculum having an impact on the options 
available to teachers and adopted by them in the classroom practice. This finding raises the question 
why some discourses are more powerful than others regarding the influence they have on teachers. 
The strength of the local school discourse of other teachers, parents and pupils can also be related to 
the regulatory effect exerted by the school administration, which requires certain standards in student 
performance. As the official discourses, such as the discourse promoted by a curriculum, do not 
‘recognize’ the difficulties in implementing key curriculum principles or the recontextualizations 
activated during classroom implementation in different students or groups of students, teachers need 
a ‘way of facing’ the difficulties experienced in their classroom, seemingly provided by the resources 
of the local discourse.  

In the Greek educational reality is evident the parallel operation of recontextualization fields, often 
mutually incompatible, which influence contradictory ways in which teachers select and transform 
the official discourse. Teachers utilize the discourses produced in these fields and place themselves 
in relation to them, being affected by their official or non-official nature, thus creating the potential 
for resistance and for the use of alternative discourses. The study of the implementation of a new 
mathematics curriculum will benefit from the analysis of the structures that rule the recontextualized 
fields and their discourses as this will help us understand the ways in which the choices and the 
transformations taking place within these discourses shape teachers’ professional practices in 
educational contexts similar to but also beyond the ones studied here. 
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This paper reports on a review of 12 empirical studies framed to address the problem of whether and 
in what ways mathematical knowledge for teaching influences teaching practice. From a larger 
review of literature on mathematical knowledge for teaching, this qualitative synthesis examines the 
theoretical foundations, methods applied and claims made. Most of the studies reviewed are small-
scale qualitative studies. There is variability in the language to describe teaching and in how focused 
the studies are on teaching. We suggest that the tendency has been to focus on the question of the 
knowledge that teachers need, but that it would be more useful to focus on the mathematical 
entailments of doing teaching, which will require more detailed and shared conceptualizations of the 
mathematical work of teaching.  

Keywords: Mathematical knowledge for teaching, teaching practice, literature review. 

Introduction 
In a review of literature on mathematical knowledge for teaching from 2006 to 2013, with colleagues 
we identify a number of studies that argue that mathematical knowledge for teaching influences 
teaching practice (Hoover, Mosvold, Ball, & Lai, 2016). The connection between mathematical 
knowledge for teaching and the quality of instruction is, however, complex. Hill, Umland, Litke, and 
Kapitula (2012) report evidence that weak mathematical knowledge for teaching predicts low 
instructional quality, and strong mathematical knowledge for teaching predicts high instructional 
quality, yet they also report that there is much more variation in teaching quality as well as in student 
achievement with teachers who perform in the midrange on measures of mathematical knowledge for 
teaching. Likewise, Hill et al. (2008) suggest that professional development, supplemental curriculum 
materials and teacher beliefs are all factors of potential influence, but these factors may cut both ways 
depending on the teachers’ mathematical knowledge for teaching. In addition, efforts to clarify the 
conceptualization of mathematical knowledge for teaching continue to be concerned with the 
dynamic nature of mathematical knowledge for teaching, the usefulness of knowledge, and whether, 
when, and how it plays in teaching (Ball, 2016; Kersting, Givvin, Thompson, Santagata, & Stigler, 
2012). From these different lines of work, it seems clear that decisions about teacher education or 
policy cannot be made simply by establishing that mathematical knowledge for teaching correlates 
with teaching practice. Although these correlational studies are arguably important, in this review we 
draw attention to the need to refine our understanding of how mathematical knowledge for teaching 
influences teaching practice.  

The literature review 
The present paper draws on results from a larger literature review of empirical research on 
mathematical knowledge that is specific to teaching (Hoover, Mosvold, Ball, & Lai, 2016). That 



review included a total of 190 articles that were coded for the following categories: 1) genre of study, 
2) research problem used to motivate the study, 3) variables used, 4) whether or not and how causality 
was addressed, 5) findings. A research problem is an issue, topic, or question that motivates a study, 
indicating why the results would be of interest and how an investigation is linked to the literature. In 
most instances, the research problem was the same as what was specifically investigated, but at times 
there were tensions between the research problem and the research questions or the specific focus of 
the analysis. Distinguishing between research problems and the genre of the study helped us 
understand what a paper argues and how. In coding the research problem, we paid specific attention 
to the introduction and conclusion as opposed to the statement of the research questions or the 
specifics of the research design. In general, differences between the research problem and the research 
genre or design reflected inevitable tensions in the interrelated components of empirical research 
publications and provided useful insight into the approaches used in the study and the arguments 
made in the article. When considering the research problems that motivated the studies in our larger 
review, 12 studies focused on the ways in which teachers’ knowledge contributes to practice. In this 
paper, we analyze these 12 studies with a particular focus on the theoretical frameworks of the studies, 
the methods applied and the claims made.  

Studies of the influence of mathematical knowledge for teaching on teaching 
The 12 studies framed to address the problem of whether and in what ways mathematical knowledge 
for teaching influences teaching practice have different characteristics. Seven studies investigate 
effects of mathematical knowledge for teaching on teaching practice (absent a specific intervention), 
one is an intervention study and four studies investigate mathematical knowledge for teaching as a 
construct in relation to teaching. Only one of the studies is quantitative, whereas most studies are 
small-scale qualitative studies. The participant teachers in the studies teach mathematics in primary, 
middle, and secondary schools, as well as at the university level — most of them are practicing or 
experienced teachers (see table 1).  

Study Sample 
size Type Causal 

design 
Experience 
and level of 

teachers 
Region Teaching studied 

Bansilal (2012) Small 
(n=1) 

Effect Qualitative Practicing 
secondary 

Africa Identifying key ideas, organizing 
explanations, listening to students 

Cengiz et al. 
(2011) 

Small 
(n=6) 

Effect  Qualitative Experienced 
primary 

North 
America 

Extending student thinking 

Charalambous 
(2010) 

Small 
(n=2) 

Effect  Qualitative Practicing 
primary 

North 
America 

Using representations, giving 
explanations, Interpreting and 
responding to student thinking 

Choppin 
(2011) 

Small 
(n=1) 

Nature None Experienced 
middle school 

North 
America 

Engaging students with 
challenging tasks 

Izsák et al. 
(2008) 

Small 
(n=1) 

Effect Qualitative Practicing 
middle school 

North 
America 

Using number lines for fraction 
addition 

Johnson & 
Larsen (2012) 

Small 
(n=1) 

Effect Qualitative Practicing 
tertiary 

North 
America 

Listening to student thinking 



Nardi et al. 
(2012) 

Medium 
(n=11) 

Nature None Practicing 
secondary 

Europe Identifying task objectives, 
interpreting and responding to 
student thinking 

Rowland 
(2008) 

Medium 
(n=24) 

Nature Qualitative Future 
primary 

Europe Selecting and using examples 

Speer & 
Wagner (2009) 

Small 
(n=1) 

Nature Qualitative Practicing 
tertiary 

North 
America 

Social and analytic scaffolding 

Steele & 
Rogers (2012) 

Small 
(n=2) 

Effect Qualitative Practicing 
secondary 

North 
America 

Integrating different ideas of proof 
and positioning students as 
observers, creators, and explainers 

Sullivan et al. 
(2009) 

Large 
(n=97) 

Intervention Statistical  Practicing all 
levels 

Oceania Converting tasks to lessons 

Tanase (2011) Small 
(n=4) 

Effect Qualitative Practicing 
primary 

Europe Connecting place value to other 
mathematical concepts, setting 
objectives, challenging students  

Table 1: Studies investigating influences of mathematical knowledge for teaching on teaching 

Next, we describe these studies with a focus on what they investigate, their methods, how teaching is 
conceptualized, and what we can learn from them. Cengiz, Kline and Grant (2011) focus on how 
teachers’ MKT supports their teaching. They develop an extending-student-thinking framework 
based on analysis of instructional actions within episodes. In their investigation of six experienced 
elementary teachers, they draw upon Ball et al.’s (2008) conceptualization of mathematical 
knowledge for teaching. It is assumed that the participating teachers, due to their experience, have 
well-developed MKT. From analysis of video-recorded classroom observations and teacher 
interviews, these researchers provide detailed accounts of teaching and “demonstrate that MKT 
matters in the way teachers pursue student thinking” (Cengiz et al., 2011, p. 372). Their analysis of 
data from one of the participating teachers “provide evidence that a lack of certain aspects of 
knowledge can negatively impact a teacher’s pursuit of student thinking” (p. 372). Similarly, Izsák, 
Tillema and Tunç-Pekkan (2008) provide fine-grained details in their analysis of the cognitive 
structures used by a teacher and her students when using number lines as a representation for fraction 
addition. Audio- and video-recorded interactions of a practicing middle-school teacher and her 
students formed a starting point for interviews with three pairs of students. Excerpts from lesson and 
student interviews were then used in a video-elicited interview with the teacher. They argue that 
subtle variations in the teacher’s approach to partitioning unit intervals matter for the students’ 
opportunities to learn. 

Several studies are situated in the teaching of particular mathematical content. Steele and Rogers 
(2012) investigate the relationship between mathematical knowledge for teaching proof and teaching 
practice by combining clinical assessments with classroom observations of two secondary teachers 
— a novice and an expert teacher. Data collection included lesson observations, pre- and post-lesson 
interviews, written assessments and semi-structured interviews after the observation. The authors 
argue that the more experienced and MKT-knowledgeable teacher not only enacts a stronger and 
more nuanced lesson on mathematical proof, but her students end up having more mathematical 
authority. They argue that their use of MKT as a frame for examining practice provides an innovative 



method for investigating both MKT and features of instruction, such as student positioning as a key, 
mediating factor between MKT and opportunities to learn. 

A study by Tanase (2011) investigates the connection between four Romanian first grade teachers’ 
mathematical knowledge for teaching place value and their classroom practice. The participants are 
selected from a well performing and an average performing school in Romania. One experienced and 
one less experienced teacher from each school is selected for participation, and data collection 
includes teacher interviews, classroom observations and student assessments. Although all four 
teachers display good understanding of place value, Tanase suggests that teachers’ knowledge goes 
beyond their own mathematical understanding. Differences are observed in teachers’ ability to make 
connections between place value concepts and other mathematical concepts, how they set different 
objectives for students as well as the extent to which they challenge students in their mathematical 
work. Tanase also observes that although teachers have strong mathematical knowledge for teaching, 
and this knowledge impacts the quality of their instruction, their students may still not perform well. 
She suggests that student achievement is also influenced by external factors inside and outside of 
school.  

Among these initial investigations of the specific influence of mathematical knowledge for teaching 
on teaching, most studies focus on teachers in primary, middle or secondary school. Two studies 
focus on mathematics teaching at university level. Speer and Wagner (2009) examine one 
undergraduate instructor’s use of constructs of social and analytic scaffolding as a frame, the authors 
argue that aspects of pedagogical content knowledge are important for helping students find 
productive ways of solving particular problems and for understanding which student contributions, 
whether correct or incorrect, are important to emphasize in a discussion. They trace ways in which 
teachers’ particular knowledge of students’ understanding aids them in assuring that the lesson 
reaches intended mathematical goals and in understanding the role of particular mathematical ideas 
in students’ development.  

Another example is Johnson and Larsen’s (2012) study of how a university teacher’s mathematical 
knowledge influences her ability to listen when teaching abstract algebra. Their investigation focuses 
on how this particular aspect of mathematical knowledge for teaching supports mathematics teachers’ 
listening when implementing a reform curriculum. Their theoretical framework distinguishes among 
three types of teacher listening: hermeneutic, interpretative and evaluative. Drawing on Speer and 
Wagner’s (2009) argument that teacher listening requires particular types of mathematical knowledge 
for teaching, Johnson and Larsen examine the role of knowledge of content and of students in hearing 
tertiary students as they engage in reinventing the group concept in abstract algebra. Based on 
analyses of three teachers’ classroom interactions when implementing a particular reform curriculum, 
Johnson and Larsen report on a teacher whose classroom interactions contained several episodes 
where the students were confused and the teacher was unable to make sense of their struggles. They 
observe that this teacher’s ability to listen to her students draws on her knowledge of content and 
students. Johnson and Larsen posit that teachers need not only knowledge of students’ 
misconceptions, but also knowledge of when and why students are likely to be confused and display 
misconceptions and of the consequences of such misconceptions when students engage in new 
activities.  



The focus on teacher listening is also prevalent in Bansilal’s (2012) investigation of how a South-
African mathematics teacher’s poor mathematical knowledge influences her classroom interactions. 
In this case study, the focus is on the process-object understanding of ratio. Based on narrative 
analysis of field notes and transcripts from five lesson observations with interviews, Bansilal 
organizes her claims around three emerging themes. First, she argues that the teacher displays limited 
understanding of ratio in her teaching. Second, she argues that the teacher fails to identify key ideas 
and organize her explanations in a way that enables the students to notice the big ideas involved in 
the mathematical task. Third, Bansilal points to the stressful environment that the teacher experiences 
in this classroom and suggests that this environment is caused by her lack of knowledge of the 
students as well as her preference for evaluative rather than interpretative listening.  

In his study of mathematics teacher knowledge and its impact on how teachers engage students with 
challenging tasks, Choppin (2011) explores pedagogical content knowledge as situated in an 
instructional sequence. From his study, he aims at exploring teachers’ “local theory of instruction”. 
Choppin investigates an experienced middle-school mathematics teacher while she is teaching a 
particular curriculum unit over two years. In order to investigate the teacher’s knowledge, interview 
data are analyzed with a focus on her articulation of “(1) how student thinking develops over time, 
(2) the process by which that thinking develops, and (3) the resources that facilitate the development 
of student thinking” (p. 12). Based on his analysis of data, Choppin claims that the teacher develops 
her local theory of instruction from teaching. The teacher’s knowledge appears to influence her 
teaching in several ways, for instance in her adaptation of tasks.  

Engaging students with challenging tasks is an important component of the work of teaching 
mathematics, and so is the selection and use of appropriate examples. Rowland (2008) focuses on 
mathematics teachers’ purposes for using examples in elementary mathematics teaching. Video 
recordings from 24 lessons taught by 12 pre-service elementary teachers are analyzed from a 
grounded approach, and codes are developed that focus on aspects of their teaching practice. The 
resulting 18 codes — one of the most common codes is “choice of examples” — are then placed in 
four overarching categories that constitute Rowland’s conceptualization of mathematical knowledge 
in teaching, commonly referred to as the knowledge quartet.  

Although eight of the studies reviewed investigate effects of mathematical knowledge for teaching 
on mathematics teachers’ classroom practice, only one applies standardized measures of mathematics 
teacher knowledge. In his exploratory study, Charalambous (2010) investigates the connection 
between two primary teachers’ mathematical knowledge for teaching and their use of mathematical 
tasks. The two primary mathematics teachers had different levels of mathematical knowledge for 
teaching — as measured by MKT measures — and notable differences were found in how they 
planned, presented and implemented mathematical tasks. Charalambous applies Stein and colleagues’ 
mathematical tasks framework to examine the cognitive level of enacted tasks, and he formulates 
three tentative hypotheses about mechanisms of how mathematical knowledge for teaching impacts 
teachers’ selection and use of mathematical tasks. First, he hypothesizes that strong mathematical 
knowledge for teaching may contribute to a use of representations that supports students in solving 
problems, whereas weaker mathematical knowledge for teaching may limit instruction to memorizing 
rules. Second, he proposes that mathematical knowledge for teaching appears to support teachers’ 
ability to provide explanations that give meaning to mathematical procedures. Third, he proposes that 



teachers’ mathematical knowledge for teaching may be related to their ability to follow students’ 
thinking and responsively support development of understanding. 

The study of Nardi, Biza and Zachariades (2012) differs from many of the other studies on how 
teachers’ knowledge influences their teaching practice in that they do not study observed teaching. 
Instead, these researchers analyze teachers’ argumentation about hypothetical classroom scenarios in 
task-based interviews. From their analysis of eleven teachers, they suggest that the teachers’ warrants 
for the claims made about these classroom scenarios are not always mathematical. Their argument, 
which has potentially interesting methodological implications, is that analysis of the argumentation 
provided by teachers in such task-based interviews may provide insight into how the teachers’ 
knowledge and beliefs influence their classroom interactions.   

Sullivan, Clarke and Clarke (2009) also investigate the influence of teacher knowledge on the 
planning phase of teaching. In particular, they investigate the assumption that teachers are able to 
convert tasks to lessons easily. From their analysis of 107 primary and secondary teachers’ responses 
to questionnaire items — and interpreting the responses by using the subcategories of MKT — they 
observe that many teachers find it difficult to translate tasks to lessons. For instance, many teachers 
find it difficult to convert the task of determining which of 2

3
 and 201

301
 is larger into a worthwhile 

learning experience for students. 

Discussion 
With regard to research design and choice of methods, we observe that most of the studies are small-
scale qualitative studies that explore the connections between mathematics teacher knowledge and 
teaching practice in different ways. Although many studies draw on a similar conceptualization of 
mathematical knowledge for teaching, only one study applies one of the existing standardized 
measures of such knowledge (Charalambous, 2010). Several studies present innovative methods to 
investigate contributions of teachers’ mathematical knowledge to teaching practice, such as video-
elicited interviews and hypothetical classroom scenarios in interview prompts. As we have argued 
elsewhere (Hoover et al., 2016), given that research is this arena is in early development and to date 
we lack clear, replicable methods, scholars’ efforts to innovate seem well placed. Ideas proposed in 
these dozen papers contribute to that development.  

Each of the 12 studies reported is concerned with uncovering what, how, and why mathematical 
knowledge for teaching matters for teaching, yet the overall picture is unclear. One issue may be that 
an effort to show that mathematical knowledge for teaching matters (a focus on impact) may lead to 
holding knowledge and teaching at arms length in ways that obscure the dynamic nature of the role 
of that knowledge in teaching. For instance, several papers argued that teachers’ lack of knowledge 
constrained what they were able to see, hear, and do, without taking the additional step of elaborating 
what knowledge arises in the work, when, where, and how. We suggest that the field would profit 
from studies that examine the interplay between knowledge and teaching practice and that impact 
studies are better conducted at a larger scale once clear conceptual and measurement tools are in 
place. Another issue may be that the conceptualization of and focus on teaching in these studies is 
underdeveloped. Some of the studies examine what might be better described as features of 
instruction than as teaching practice. For instance, Steele and Rogers (2012) examine the degree to 
which different ideas of proof are integrated into instruction and how students are positioned in 



relation to mathematical explanation. We agree that these are important, but would like to understand 
more fully what it is that teachers need to do to integrate ideas and position students and what the 
mathematical entailments are for doing so. Some of the studies address constrained, specific tasks of 
teaching (cf. Hoover, Mosvold, & Fauskanger, 2014), such as selecting and using examples, while 
others are broad and general, such as engaging students with challenging tasks. What is meant by 
“teaching” and its role in these studies vary.  

Progress on the problem of whether and in what ways mathematical knowledge for teaching 
influences teaching practice will require building more shared language for talking about teaching, 
starting with more explicit attention to how it is conceptualized and continuing through the 
development of more widely shared conceptualizations of the work of teaching. It will require more 
focused examination of what it takes to do teaching, conceptualized as meaningful work, supportive 
of learning and doing the work in professional community. As we have argued elsewhere (Hoover et 
al., 2016), this may need to go hand in hand with developing the theoretical foundations of research 
on teaching. Teaching is a professional practice engaged in human improvement work. While there 
are other important aims of education, teaching is centrally about supporting the learning of subject 
matter. Understanding the theoretical implications of these observations and acting on them may 
strengthen research and practice.  
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Considering research frameworks as a tool for reflection on practices: 
Grain-size and levels of change  
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Reflection is widely recognized as essential to teachers’ learning but questions remain about what 
exactly teachers should reflect on and how effective reflection might be facilitated. This paper 
considers how research frameworks might be used as a tool to facilitate reflection on mathematics 
classroom practices. It will be argued that frameworks which facilitate planning and analysis of 
classroom practices at different levels of specificity may also target reflection at different levels. This 
will be illustrated with reference to frameworks which relate to talk in the mathematics classroom. It 
will also be argued that for research frameworks to be effective in facilitating reflection on 
mathematics classroom practices, they must target different levels of reflection.  

Keywords: Reflection, research framework, classroom practice(s), grain size. 

Introduction  
A growing body of literature recognizes the importance and complexity of the practices involved in 
effective mathematics teaching (e.g., Ball et al., 2009; Potari et al., 2015). Classroom practices have 
been described as “the repeated actions in which students and teachers engage as they learn” (Boaler, 
2002, p. 114). Dooley, Dunphy and Shiel (2014) identify five overarching practices as essential in 
promoting mathematical thinking and understanding. These meta-practices are the development of a 
productive disposition; emphasis on mathematical modelling; the use of cognitively challenging 
tasks, formative assessment, and the promotion of mathematical talk. In each of these areas, research 
frameworks exist which may hold potential for teacher development. By ‘research framework’, I 
mean either a theoretical framework or methodological tool which ‘frames’ or structures a coherent 
set of understandings about a particular theme. For example, consider how the Math Talk Learning 
Community (MTLC) framework (Hufferd-Ackles, Fuson & Sherin, 2004) might offer a coherent set 
of understandings about the nature of talk in classrooms or how the Mathematical Tasks Framework 
(Stein, Grover, & Henningsen, 1996) offers a similar set of understandings for the use of cognitively 
demanding tasks. Such frameworks illustrate teacher actions that contribute to desirable meta-
practices for mathematics teaching and learning.   

The growing emphasis on mathematics classroom practices is occurring at a time when reflection has 
been widely established as a guiding principle within teacher education (Hatton & Smith, 1995; 
Zeichner, 2008). Mathematics education research frameworks have been used to facilitate teachers’ 
reflection (e.g., Stein & Smith, 1998). However, there is little literature to offer guidance on how 
frameworks might be used as a tool for reflection on mathematics classroom practices, or to guide 
researchers investigating this area. This paper offers a consideration of this theme. First, I will outline 
some key issues from the literature on reflection and will discuss the theoretical perspective from 
which teachers’ use of research frameworks is understood. Then I will outline Korthagen’s (2004) 
model of levels of reflection and change. Finally, I will argue that grain-size, or level of specificity, 
is of key importance when research frameworks are used to facilitate teachers’ reflection on practices. 
I will illustrate this with reference to two frameworks relevant to the practices involved the promotion 



of mathematical talk. I will argue that for frameworks to be effective in facilitating reflection on 
classroom practices, they must target different levels of reflection.  

Reflection and research frameworks 
It is generally accepted that experience alone may not result in learning and reflection is considered 
to be integral to learning from practice (Loughran, 2002; Schön, 1983; Zeichner, 2008). The 
widespread adoption of reflection in teacher education programs has resulted in conflicting 
conceptualizations and many efforts to develop reflective practitioners are often underpinned by 
different ideological stances (Hatton & Smith, 1995; Zeichner, 2008). Despite the multiplicity of 
interpretations, there is some agreement that reflection should involve finding solutions to real 
problems of practice (Hatton & Smith, 1995) with some authors suggesting  that the initial stimulus 
should be a problem arising from practice (e.g., Jaworski, 1998). Loughran (2002) maintains that 
learning arises from framing and reframing the initial problem. Research frameworks may be helpful 
in the reframing process and towards the goal of problematizing teaching, a key component of 
reflective practice (Jaworski, 1998). This problematizing of teaching may arise from considering a 
situation from another point of view (Loughran, 2002). Research frameworks can facilitate 
consideration of alternate or multiple viewpoints. For example, the MTLC framework (Hufferd-
Ackles et al., 2004) addresses both the student and teacher experience.   

The reflective practice literature includes much attention to the process of reflection. Eraut (1995) 
critiques and extends Schön’s (1983, 1987) stages of reflection-in-action and reflection-on-action to 
also include reflection-for-action. The extent to which research frameworks might inform teachers’ 
reflections-in-action is limited due to the many pressures of real-time teaching but frameworks can 
be used to support reflection at both the planning and post-teaching phase either as a tool for formal 
analysis, or as a means of troubling accepted understandings of practice. The literature also highlights 
links between reflective practice and action research. Jaworski (1998) describes a mathematics 
teacher research project where the theory of the teachers’ research activity aligned with a view of 
action research being connected to critical reflective practice. Critical reflective practice has also been 
conceptualized in different ways (Hatton & Smith, 1995). Larrivee (2000) maintains that critical 
reflection is an essential part of becoming a reflective practitioner and defines it as encompassing 
critical inquiry and self-reflection. Critical inquiry is described as “the conscious consideration of the 
ethical implications and consequences of teaching practice” (p. 293).  

Theoretical perspective 

Zeichner (2008) suggests that often the obligatory content of reflection is around how well practice 
conforms to what is expected. This issue might arise when using research frameworks for the 
purposes of teacher reflection. If a research framework is considered to be an example of what has 
been sanctioned as ‘acceptable,’ then teachers’ interactions with frameworks might actually serve to 
undermine their agency. This is not the stance that I adopt. Instead, I understand reflective practice 
as “the making explicit of teaching approaches and processes so that they can become the objects of 
critical scrutiny” (Jaworski, 1998, p. 7). I view the teacher as knower and agent for educational and 
social change (Cochran-Smith & Lytle, 2009). The research framework is understood as a tool for 
teacher inquiry and reflection rather than a prescription for action. Inquiry is taken to be “a critical 
habit of mind that informs professional work in all its aspects” where the data arising from practice 



is continually interrogated (Cochran-Smith, Lytle 2009, p.121). It is from this perspective that a 
teacher’s use of research frameworks is understood.   

Levels of reflection  
Models of reflection often emphasize process or chronological phases, e.g., Gibbs (1988). In contrast, 
Korthagen’s (2004) model (Figure 1) emphasizes the teacher as person. Korthagen describes the 
levels as “different perspectives from which we can look at how teachers function” (p. 80). This 
model should be of interest to researchers seeking to investigate the nature of teacher reflection and 
teacher-educators seeking to support the same process. For teacher-researchers, it may offer an 
overview of the landscape of reflection and serve to frame and contextualize the inquiry process. The 
umbrella-nature of the model is powerful because the individual levels commonly exist as distinct 
research domains within mathematics education. This scope is challenging to address and only key 
issues and contradictions are highlighted here. Korthagen explicates his model largely with reference 
to the literature of psychology. Some concepts may not align with sociocultural approaches present 
in much current mathematics education literature.  

 

Figure 1: Korthagen’s (2004) model of levels of change  

Korthagen maintains that the inner levels influence the outer levels just as the outer levels can 
influence the inner levels, e.g., behavior can be influenced by external environmental factors as well 
as personal competencies, beliefs, identity and mission. A teacher’s competencies will determine the 
behavior he/she is able to show but Korthagen suggests that competencies contain also the potential 
for behavior though this may not be enacted. He maintains that competencies are determined by 
beliefs. The mathematics education literature has also explored links and discontinuities between 
teacher beliefs, competencies and classroom practices (e.g., Stipek et al., 2001). Korthagen suggests 
that compete alignment between the levels may take a lifetime to achieve and is unlikely to occur 
without careful reflection on practice and self. Recently, the mathematics education literature has 
questioned the value of research on beliefs without due attention to teachers’ participation in social 
practices (Skott, 2013). Though Korthagen’s model does not address this directly, he does situate 
teachers’ beliefs within a complex framework, with the levels of environment and mission in 
particular premised on the individual’s engagement in a social world.  



Recent research emphasizes the importance of understanding mathematics teacher competencies as 
personally, situationally and socially determined (Blӧmeke, 2016). Where ‘situational’ might be 
connected with the environment, ‘personal’ and ‘social’ suggest links with the identity and mission 
levels respectively. The identity level is concerned with the personal singularity of the individual, and 
the mission level (or spirituality level in earlier versions of the model) is intended to acknowledge the 
individual’s participation in both local and global communities. Korthagen (2004) describes mission 
as being “about becoming aware of the meaning of one’s own existence within a larger whole, and 
the role we see for ourselves in relation to our fellow man” (p. 85). Reflection at this level necessarily 
encompasses consideration of the short and long term influence of teaching on students and the larger 
goals of mathematics education or education more generally. This level must be considered to be 
important in relation to critical reflection (Larrivee, 2001). Some commonalities also exist with 
critical mathematics education or values education (e.g., Bishop, 2008).  

While noting the importance of identity, Korthagen admits to a certain ‘vagueness’ around the 
definition of professional identity as the concept has been informed by many different research 
traditions. The concept has also been understood in different ways in the mathematics education 
literature though Boaler (2002) and others contend that the identities students develop are strongly 
related to the classroom practices they have opportunities to participate in. In relation to teacher 
identity, it is likely that a more complete understanding of teachers’ engagement with research 
frameworks might arise from a perspective which foregrounds the social and situated nature of 
identity, and acknowledges that teachers engaged in such work may be working at, or across, the 
boundaries of various communities of practice (Lave & Wenger, 1991).   

Korthagen positions his model as particularly useful to the teacher-educator. He suggests that a 
teacher’s behavior may imply reflection is needed on a particular level and the teacher-educator can 
orchestrate his/her interactions with the teacher accordingly. It is likely that relevant research 
frameworks could be introduced to focus a teacher’s reflection on a particular level. It has long been 
accepted that research frameworks may provide an impetus to question taken-for-granted 
assumptions and a language to describe, analyze, and interpret practice (e.g., Erikson, 1986). The 
novel element here is that the grain size, or level of specificity of a research framework, becomes 
important as this may determine which of Korthagen’s levels the framework will relate to. Existing 
mathematics education research frameworks range from broad general theories about (mathematics) 
learning to very finely grained, highly structured frameworks concerned with the teaching and 
learning of particular mathematical content. Korthagen’s model provides a structure for considering 
how such differing frameworks might be used to facilitate effective reflection.  

The model is particularly useful in the specific case where research frameworks are being used to 
facilitate reflection on and development of mathematics classroom practices. Despite classroom 
practices being enacted at the outer level of behavior, they are connected to both inner and outer 
levels and arise from a complicated interaction between mission, identity, beliefs, competencies and 
environment. Larrivee contends that a “deliberative code of conduct” (2000, p. 293), or conscious 
adoption of particular practices, results from the infusion of personal beliefs and values into a 
professional identity. If research frameworks, or teachers’ interactions with research frameworks, 
confine reflection to the outer levels of Korthagen’s model, there is a danger that rationalization of 
practice (Loughran, 2002) may occur rather than inquiry and development. While an appropriate 



research framework may provoke reflection across and between levels, frameworks which focus 
attention only on the outer levels are likely to have limited effectiveness. Teachers should have 
opportunities to question the relationship between inner and outer levels and reflect on how their 
practices align (or not) with inner levels such as beliefs, identity and mission.   

A researcher interested in investigating teacher reflection who adopts the perspective outlined by 
Korthagen is likely to be interested in the relationships between the different levels of reflection and 
change. For example, if reflection appears to be occurring as a result of a perplexing situation arising 
from practice, then the researcher may be interested in attempting to track this to a particular level or 
a possible conflict between levels (e.g., a teacher is perplexed because she is struggling to implement 
in practice (behavior) what she believes (beliefs) to be true about ‘good’ mathematics teaching or in 
line with her mission. Similarly, a researcher investigating the extent to which research frameworks 
facilitate reflection may be interested in considering the extent to which a teacher’s interaction with 
the framework(s) aligns with the various levels of Korthagen’s model. 

An illustration  

Two research frameworks that might be used to develop the practices involved in the promotion of 
math talk are discussed below. This topic has been chosen as classroom interaction emerged as a 
strong theme in TWG19 at CERME9 (Potari et al., 2015). The MTLC framework arises from research 
which tracked a classroom community transitioning from a traditional model to one in which students 
helped each other learn by engaging in meaningful talk about mathematics (Hufferd-Ackles et al., 
2004). The framework describes four levels of mathematical talk and the overall community 
trajectory is described as growing “to support students acting in central or leading roles and shifts 
from a focus on answers to a focus on mathematical thinking” (p. 88). Associated with the levels are 
developmental trajectories for teacher and student actions across the areas of questioning, explaining 
mathematical thinking, source of mathematical ideas, and responsibility for learning. Table 1 shows 
teacher actions at the highest level of the framework.   

The MTLC framework may facilitate reflection at all levels but it raises particular challenges at the 
levels of beliefs, identity and mission because it presents an alternative to traditional teaching. It may 
challenge the idea of teacher as sole-mathematical authority and it disrupts traditional 
conceptualizations of teacher and student roles by emphasizing student agency. In doing so, it may 
provoke reflection on personal beliefs about mathematics and the teaching of mathematics. It may 
also foreground issues of teacher identity and mission. I used this framework in previous research and 
while I never formally stated my ‘mission’, it did help me clarify what I wished to achieve as a teacher 
of mathematics: students who could think mathematically, and who valued their own thinking and 
their responsibilities within the classroom community. The framework details teacher actions and 
gives some direction as to how this mission might be achieved. However, used on its own, it is 
unlikely to provide sufficient support for developing the complex network of teacher competencies 
and behavior necessary for the promotion of productive math talk.  

  



 

Table 1: Teacher Actions at level 3 of the MTLC framework (Hufferd-Ackles et al., 2004, p. 88 -90) 

Table 2:  Boaler and Brodie’s (2004) Teacher Question Categories 

The second framework I will discuss is Boaler and Brodie’s (2004) teacher question categories (Table 
2). This framework arises from analyses of practice and was developed to allow researchers 
investigate multiple lessons at a relatively fine grain-size. The framework directs attention to the level 
of behavior, specifically the questioning practices of the teacher, with scope for consideration of the 
learning opportunities that arise for the student. It may allow for consideration of the emphasis on 
relational (type 3 questions) and instrumental understanding (type 1 questions) or the opportunities 
created for student discussion (type 5 questions). This framework might be used as a tool for 
reflection, either to support planning of effective questions or to support analysis or reflection on 
practice. However, it is unlikely that this framework alone will hold meaning for the teacher unless 
its use is mediated by consideration of the ‘bigger picture’. Teacher questions can only be considered 
effective or ineffective with reference to the overall goal for learning. This refers both to the specific 
mathematical goals for a lesson or unit of work, as well as goals that might be considered part of 
mission, such as the development of student agency and mathematical authority.  

Description of Teacher Actions 

Questioning: Teacher expects students to ask one another questions about their work. The 
teacher’s questions may still guide the discourse. 

Explaining Mathematical Thinking: Teacher follows along closely to student descriptions of their 
thinking, encouraging students to make their answers more complete. Teacher stimulates students 
to think more clearly about strategies. 

Source of Mathematical Ideas: Teacher lets students explain and “own” new strategies. (Teacher 
is still engaged and deciding what is important to continue exploring.) Teacher uses student ideas 
as the basis for lessons or mini-extensions 

Responsibility for Learning: Teacher expects students to be responsible for co-evaluation of 
everyone’s thinking. She supports students as they help one another sort out misconceptions. She 
helps and/or follows up when needed 

Teacher Question Categories 

1. Gathering information, 
leading students through a 
method 

4. Probing, getting students to 
explain their thinking  

7. Extending thinking: 

2. Inserting terminology 5. Generating  discussion  8. Orientating and focusing: 

3. Exploring mathematical 
meanings and/or relationships 

6. Linking and applying  9. Establishing context: 

 



The frameworks described above are of different levels of specificity. The MTLC framework 
attempts to describe teacher and student interactions at a broad level while Boaler and Brodie’s 
framework facilitates fine-grained analysis of teacher questions. For this reason, they offer different 
affordances and constraints when considered in relation to Korthagen’s levels of reflection. It is 
argued, that for the purposes of facilitating teacher reflection, the use of either of the frameworks 
alone has limitations. Potential for reflection is maximized when such frameworks are combined. It 
is in the interplay between reflection at the inner levels and reflection at the outer levels that more 
profound development may occur.    

Conclusion 
Many national curricula have begun to emphasize the practices, as well as the content, of mathematics 
education (e.g., Dooley et al., 2014). In this context, it is worth considering to what extent research 
frameworks might be used to support and develop teachers’ reflection on practices. I have argued that 
any such work must strive to take into account the level(s) of reflection that a research framework 
might target. I also contend that the perspective outlined is of relevance to both teacher-educators and 
researchers. Further consideration of the methodological implications of a researcher adopting such 
a stance on teacher reflection is necessary. Theoretical and empirical work is also needed on teachers’ 
use of broad and finely grained research frameworks. Such work should seek to identify the 
characteristics of research frameworks, and teachers’ interactions with frameworks, that enable their 
use as tools for effective reflection.  
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Metacognition plays an essential role in learning mathematics. However, due to the lack of 
observational systems for evaluation of metacognition in mathematics instruction, rarely anything 
is known about how metacognition is practised and fostered when teaching and learning 
mathematics in class. This paper presents an observational system (a rating system) developed to 
reliably assess metacognitive activities in mathematics instruction. It also explains the methodology 
used to evaluate the reliability of ratings achieved with this tool and to investigate the stability of 
metacognitive-discursive practices between lessons of an individual teacher/class. Despite the high 
inference of conclusions needed to assess metacognitive-discursive instructional quality in seven 
dimensions, highly reliable ratings have been achieved for six dimensions. The paper discusses 
reasons for and consequences of the high reliability. 

Keywords: Metacognition, discourse, rating system, generalizability study, decision study. 

The role of metacognition in teaching and learning mathematics 
Metacognition has been ascribed an essential role in regulating students’ cognitive processes in 
problem solving as well as in learning mathematics in general, in particular when constructing, 
organising, systematising, and connecting (pieces of) knowledge (cf. Schraw & Moshman, 1995; 
Wilson & Clark, 2004). However, hardly anything is known about how metacognition is practised 
and fostered in mathematics instruction. Assuming that enhancing learners’ metacognition is 
essential for promoting learning, research on metacognition in this area definitely merits future 
research (cf. Mevarech & Kramarski, 2014; Depaepe et al., 2010). For this kind of research a tool is 
needed that allows to reliably assess metacognitive practices when teaching and learning 
mathematics in a class. This paper reports on a research project that aimed at developing such a tool, 
named the rating system for analysing and assessing the metacognitive-discursive instructional 
quality (Nowińska, 2016). This tool can be used to first describe metacognition during class 
discussion, and to second evaluate how metacognitive activities are used to foster understanding in 
mathematics, in particular by elaborating students’ ways of thinking and reasoning, and by 
discussing them in a coherent and comprehensible way. One important research question underlying 
our work on developing and evaluating this tool was how stable metacognitive-discursive 
instructional quality is across lessons of an individual teacher in one class. In addition to advancing 
our knowledge about the occurrence of metacognitive-discursive instructional quality, investigating 
its stability allows identifying the number of lessons per teacher/class which would be needed to 
reliably measure metacognitive-discursive instructional quality.  

Metacognition is often understood as knowledge about cognition and regulation of cognition 
(Flavell, 1976; Schraw & Moshmann, 1998). The groundwork for investigating metacognition in the 
domain of teaching and learning mathematics in a class has been done by Cohors-Fresenborg and 



Kaune (2007) as they developed a category system for an interpretative, transcript-based analysis of 
metacognitive and discursive activities (CMDA)1. This category system decomposes metacognition 
in planning, monitoring and reflection. Examples are planning the structure of a proof or definition; 
monitoring the correctness of an argumentation; and reflecting on misconceptions or on difficulties 
experienced in interpreting a definition or in solving an equation. According to studies suggesting 
that the effects of metacognition on students’ understanding when learning in class seem to depend 
on the quality of the class discussion (cf. Mevarech & Kramarski, 2014; Depaepe et al., 2010), it 
was necessary to combine the analysis of metacognition with a deep analysis of precision, coherence 
and accuracy of teacher’s and students’ contributions. For this purpose, CMDA also includes the 
categories discursivity and negative discursivity. Discursivity means activities enhancing precision, 
accuracy and coherence in a class discussion, e.g. by making connections between different 
answers, or between external concept representations and students’ conceptions. Negative 
discursivity means activities with a negative influence on precision, accuracy and coherence. The 
results of many years research conducted on metacognitive and discursive activities led the authors 
of CMDA to the conviction that discursive ways of practicing metacognition are crucial for 
supporting students’ understanding when learning mathematics in class. The term “discursive” does 
not simply mean “in a discourse” but is meant as a characteristic of discussions elaborating, 
explaining and linking students’ ways of thinking in a coherent and comprehensible way.   

The category system CMDA allows a detailed interpretation and categorization of local, single 
metacognitive and discursive activities, but it does not provide any additional tool for the global, 
comprehensive assessment of their instruction-related quality, thus of the extent to which they 
facilitate understanding of the mathematical subject discussed in class. The new rating system 
discussed in this paper is a result of extending2 the category system CMDA to a video-based 
observational system aimed to analyse and measure ‘metacognitive-discursive instructional quality’ 
in a comprehensive way. For this aim, several dimensions of the metacognitive-discursive 
instructional quality as well as evaluation criteria to rate them have been developed (for details see 
Nowińska, 2016). To allow its application, the rating system needed to be valid and reliable despite 
the complexity and high inferences required for rating metacognitive-discursive instructional 
quality.  

In the following, we first explain the design of the rating system. Second, we describe the 
methodology used to evaluate its reliability (G study), present the achieved results, and discuss their 
consequences for generalizable evaluation of metacognitive-discursive instructional quality. Finally, 
we discuss consequences of our study for further research aimed to deepen our understanding of 
metacognitive-discursive instructional quality and to improve teaching and learning practices in 
class. 

                                                 
1 The complete German version of CMDA is presented in Cohors-Fresenborg, Kaune, & Zülsdorf-Kersting (2014). 

2 www.mathematik.uni-osnabrueck.de/fileadmin/didaktik/Projekte_KM/Kategoriensystem_EN.pdf 



The design of the rating system 
Our conceptualization of metacognitive-discursive instructional quality and its decomposition in 
seven dimensions is based on research literature concerning relations between metacognition and 
learning gains (e.g. Mevarech & Kramarski, 2014; Depaepe et al., 2010), and on the preliminary 
research work related to the category system CMDA (e.g., Cohors-Fresenborg et al., 2010; 
Gretzmann, 2011). Furthermore, we analysed more than 20 videotaped lessons to deepen our 
understanding of these dimensions. Each dimension is described by means of a guiding question 
(GQ) focusing raters’ attention on aspects to be analysed and evaluated, as well as of several 
answering categories. For each GQ, the answering categories describe particular aspects of 
classroom discussions that differ in quality. The categories are ordered so that they reflect increasing 
quality of the classroom discussion with regard to the relevant aspects, and constitute a rating scale. 
In the following, the seven guiding questions are described briefly (for the detailed version see 
Nowińska, 2016). 

GQ 1 puts the focus on using metacognitive activities for an elaborate discussion of mathematical 
content and on supporting learners’ autonomy in practicing such activities. To answer this GQ, the 
rater has to distinguish, among others, between metacognitive activities limited to monitoring 
results of calculations, on the one hand, and extended to reflection on mathematical ways of 
reasoning, methods, definitions, and conceptions related to them, on the other hand. Due to the 
essential role of argumentation in learning and understanding mathematics, GQ 2 focuses on 
justifications combined with metacognitive activities, and on supporting learners’ autonomy in 
providing and analysing justifications. To answer this GQ, the rater has to distinguish between 
fragmentary justifications, on the one hand, and efforts made in class to orchestrate single 
justifications in order to produce precise comprehensive argumentations, on the other hand. GQ 3 
aims at assessing to which extent the interplay of metacognitive and discursive activities foster 
students’ understanding of subject-specific issues discussed in the particular lesson. The answering 
categories for this GQ distinguish among others between situations without any productive use of 
metacognitive and discursive activities, and situations in which (at least in the case of one single 
learner) metacognitive and discursive activities foster and express learners’ understanding of the 
subject-specific issues discussed in the class. GQ 4 analyses the use of discursive activities in 
producing precise and coherent discussion. Such discussion is an essential precondition for an 
effective use of metacognition in class in order to foster learners’ understanding. GQ 5, on the 
contrary, evaluates to what extent negative discursivity (e.g., not taking notice of inadequate 
mathematical vocabulary or of fragmentary answers as well as of answers not related to the 
discussed question) leads to ignoring students’ cognitive and metacognitive processes, and hinders 
the reciprocal understanding in class as well as the understanding of subject-specific issues. GQ 6 
evaluates to what extent metacognitive and discursive activities are used to build coherent and 
stringently guided discourse units (i.e., debates). The answering categories for this GQ distinguish 
between classroom situations without any debates, and situations with at least one remarkable 
debate led by the teacher or by students. GQ 7 aims at assessing to which extent metacognitive and 
discursive activities are related to challenging and complex subject-specific issues (e.g., related to 
meta-mathematics), used to elaborate such issues, and to foster learners’ understanding of them. 



To ensure reliable ratings despite the high level of inference needed to answer the guiding questions, 
the rating procedure was designed as a two-step procedure. In the first step of the rating process, the 
rater categorises each of the teacher and student contributions. Hereby, the rater uses the category 
system adopted from Cohors-Fresenborg and Kaune, and works with special software which at the 
end of the categorisation generates a graphic representation (i.e. category line; for more details see 
Nowińska, 2016). The category line includes all codes for metacognitive and (negative) discursive 
activities set by the rater, and distinguishes between codes for teacher and student activities. It 
serves as a basis for interpreting relations between teacher’s and students’ metacognitive and 
discursive behaviour, and for assessing students’ autonomy in practicing these activities. Thus, the 
purpose of the first step is to get insight into the kind and quality of each single metacognitive and 
(negative) discursive activity, and to prevent the rater from rushed and inadequate ratings. In the 
second step, the rater uses the category line and the video transcript to evaluate the lessons by means 
of the seven rating scales elaborated on above.  

In order to be able to carry out these tasks, three raters (students at the end of their master study 
course in mathematics education) participated in an intensive rater training (6 months, 180 h in 
sum). They were qualified to understand the purpose of the rating system, the foci of the seven 
rating scales, and the use the rating system. During the rater training (and also after it) the raters 
were obligated to justify their decisions regarding their interpretation of each single metacognitive 
and (negative) discursive activity as well as their final evaluation of the instructional quality. This 
allowed the trainer to discuss the answers given by the raters in detail, to discuss reasons for 
differences between the raters, and to provide each rater with detailed feedback. The videos and 
transcripts used during the training were separate from the ones used in the current study.  

Methodology 
In the current study, sequences from 24 videotaped mathematics lessons (6 teachers/classes with 4 
lessons per teacher/class) were analysed. For each teacher, four lessons were videotaped within two 
weeks, and should represent “normal” lessons in these classes. From each lesson, a 10-minute video 
sequence showing a discussion in the class was chosen. This was done by two independent experts 
who first analysed each lesson, and suggested the sequence in which the main topic of the lesson 
was discussed, and in which the students actively participated in the discussion. Finally, the experts 
agreed on one sequence. In many cases, however, only one 10-minute discussion could be indicated, 
whereas in the remaining time the students worked individually or in pairs. Each video sequence 
was evaluated by three independent raters, who had taken part in the rater training.  

Generalizability theory was used (Shavelson & Webb, 1991; for an application to the instructional 
context, see Praetorius et al., 2012) for assessing the generalizability (which can be interpreted 
similarly to reliability in classical test theory) of the rating instrument. The reported relative G 
coefficient can be interpreted analogously to a reliability coefficient in the classical test theory. 
Thus, a coefficient ≥ 0.7 is needed for a satisfactory reliability. In addition to providing these G 
coefficients, generalizability studies (G studies) allow decomposing the variance in rating scores 
into different components (e.g., teachers, lessons, and raters), their interactions, and measurement 
error. Therefore, G study results provide more detailed and precise information regarding reliability 
than reliability coefficients used in classical test theory. Furthermore, decision studies (D studies) 



can be conducted to estimate the reliability under multiple hypothetical measurement conditions, 
thus also allowing to analyse numbers of lessons per teacher/class higher than the number actually 
evaluated by the raters in our study. In the present study, it was investigated how many lessons per 
teacher/class would be necessary for a reliable assessment of the aspects of the metacognitive-
discursive quality determined be the seven dimensions. 

Results 
The results of the G studies indicated satisfactory reliability of ratings concerning six out of the 
seven dimensions of the metacognitive-discursive instructional quality (guiding questions 1 to 6), 
for which the relative G coefficient varied between 0,78 and 0,98 (see Table 1). The ratings 
concerning dimension 7 were not reliable, with a relative G coefficient of 0,38.  

Table 1: Relative G-coefficients and variance decomposition (in %) for the seven dimensions 

Based on the rating data, the variance in the ratings was decomposed in variance components 
attributable to the teacher/class (t), lessons nested in teachers (l:t), raters (r), the interaction between 
teachers and raters (r×t), and the unexplained variance, i.e. residual (r×(l:t),e). Table 1 shows the 
percentage of variance explained by the different variance components.  

For dimensions 1 to 6, the amount of variance attributable to rater bias was very small (between 1% 
and 3% of the entire variance); this indicates that the raters do rarely differ in their ratings. 
However, further rater training would be needed to eliminate the very high amount of the variance 
(55%) attributable to rater bias for dimension 7 in order to get reliable ratings  

The ratio of t to l:t, which describes the stability of the given dimension across lessons of an 
individual teacher/class, indicates partly very high stability (see e.g., GQ 1) and partly very low 
stability (see e.g., GQ 7). 

To determine how many lessons per teacher/class are necessary to measure metacognitive-
discursive instructional quality in a stable and reliable way, D analyses were conducted with the 
hypothetical number of lessons per teacher/class varying between 1 and 10. The number of raters 
was fixed to the actual number in the study (i.e., three). Figure 1 illustrates the results of the D study 
for each of the seven dimensions. 

  GQ 1 GQ  2 GQ  3 GQ 4 GQ  5 GQ  6 GQ 7 

Lesson-unspecific (stable) component t 89 45 60 52 71 50 6 

Lesson-specific component     l:t 0 46 21 39 22 30 14 

Rater bias components r 0 1 0 0 0 0 5 

 r*t 3 0 0 2 1 3 51 

Residual r*(l:t); e 8 9 19 8 7 16 25 

Relative G-coefficient  0,98  0,78  0,90  0,83  0,92  0,83  0,38 



 

Figure 1: Relative G coefficients for D studies with 1-10 lessons per teacher/class for GQ 1–7 

To obtain relative G coefficients greater than 0.7, one lesson is needed for the dimensions related to 
GQ 1 as well as GQ 5. Two lessons are needed for the dimensions related to GQ 3, GQ 4, and 
GQ 6, and three lessons for the dimension related to GQ 2. Thus, three lessons are sufficient to 
achieve a G coefficient of 0,7 for GQ 1 to GQ 6.), whereas 5 lessons per teacher/class would be 
needed for the reliability greater than 0.8. Due to the high amount of the variance attributable to 
rater bias for GQ 7, no satisfactory reliability concerning this dimension could be reached, even with 
10 lessons per teacher/class without further rater training. 

Discussion  
The aim of our research project was to develop a reliable rating system for assessing metacognitive-
discursive instructional quality. For this purpose, seven dimensions of metacognitive-discursive 
quality had been developed. Despite the high amount of inferences needed to rate these dimensions, 
highly reliable ratings were achieved for six of them. This rather unusual result (for an overview on 
the amount of rater effects found in prior studies, see Praetorius et al., 2012) can likely be explained, 
among others, with the intensive rater training, and with the two-steps procedure of the rating 
process. Both aspects prevented the raters from a superficial analysis, and instead forced well-
reasoned scoring.  

No satisfactory reliability could be achieved for the seventh dimension. The reliability analyses 
showed that this is due to high rater bias. Obviously, the meaning of “complex subject-specific” 
issues, which is at the core of the seventh dimension, has not been interpreted in the same way by all 
raters. Thus, additional rater training or other raters with a more substantial background in 
mathematics education would be needed to get reliable ratings for this dimension. Such efforts seem 
highly desirable as the seventh dimension plays an important role in a long-term evaluation of the 
metacognitive-discursive quality in a class. In general, complex subject-specific issues are discussed 
in mathematical instruction rarely. Discussing such issues indicates teacher’s efforts to deepen and 
systematise students’ cognition related to (meta-)mathematical questions, methods or ways of 
reasoning, and therefore it is a significant characteristic of instructional quality.  



The seven dimensions of the metacognitive-discursive instructional quality vary in their stability 
between lessons in a particular class. The lowest variability could be determined for the dimension 
concerning the extent to which metacognition is practised in a class, in interactions between the 
teacher and the students (GQ 1), and the highest for this concerning metacognitive activities 
combined with justifications (GQ 2). The quite stable first dimension is based on GQ 1 which also 
takes some observable aspects of patterns in interactions between metacognitive and discursive 
teacher and students activities, whereas GQ 2 focuses more on metacognitive activities in relation to 
the content discussed in class and to students’ reasoning concerning this content. The results 
indicate that the quite stable observational patterns in practicing metacognition do not necessarily 
imply the stability of metacognitive efforts to elaborate the mathematical issues discussed in class 
and to foster students’ understanding. A deep analysis of videos is needed to explain this 
observation. Our preliminary analysis shows that in some classes, providing justification seems to 
be well established as a social norm. This means that the learners and the teacher are used to justify 
their answers, i.e. to practice monitoring or reflection. However, by doing so, not always the 
necessary attempts are made in the class to reflect on these justifications, to control and correct 
them, and to orchestrate single and fragmentary justifications in order to produce a coherent global 
explanation related to mathematical issues discussed in the class. This can be observed in particular 
when new concepts, definitions or strategies are introduced. Despite the high number of single 
justifications combined with metacognition, the lack of a well-orchestrated mathematical 
justification related to the new issues may hinder understanding. Consequently, this leads to a low 
score for the second dimension of the metacognitive-discursive instructional quality (GQ 2). The 
score can be higher when the tasks discussed in the class do not require a global well-orchestrated 
mathematical justification, and the lack of it cannot be evaluated negatively, with very low scoring. 
Thus, the variability of the second dimension seems to be related to the complexity of the 
mathematical content. This observation seems plausible but it must be investigated more deeply. 
Considering only the number of justifications combined with metacognitive activities would most 
likely enhance the reliability of the ratings in the second dimension but it would distort the validity 
of the instructional quality.  

Our D studies are of crucial importance for further research on metacognition in mathematics 
instruction. Due to the variability of metacognitive-discursive practices between lessons in a 
particular class, at least three lessons per teacher/class and three qualified raters would be needed for 
reliable (generalizable) evaluation of the metacognitive-discursive quality with regard to six 
dimensions of this construct. Thus, given these relative small numbers, the rating system can be 
considered as a practicable research tool although intensive rater training is needed.  

Given this result, a pivotal next step for research on metacognitive-discursive instructional quality is 
to investigate the effects of each of the six dimensions on students’ mathematics achievement. In 
doing so, the empirical relevance of metacognitive-discursive instructional quality can be 
investigated, and implications for supporting metacognition to foster mathematical understanding 
can be suggested. Thus, continuing this research is highly desirable. It would shift the focus from 
measurement and evaluation to development and improvement. This would require the work with 
teachers, and not only research on teachers’ instructional practices. Thereby, the rating system 
presented in this paper can be used as an analytical tool in teacher trainings for guiding teachers’ 
reflection on their own practices and on learners’ metacognitive and discursive behaviour. 
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Performance in mathematics national examinations in Kenya has been weak and raises questions 
about the pedagogical approaches adopted by teachers. The purpose of this paper is to report on 
teachers’ experiences of the application of a problem-solving teaching strategy in a Learning Study 
design to teach factorization of quadratic expressions. The study follows a qualitative and 
interpretive research approach with data collected through questionnaires, classroom observations, 
video replays and reflection sessions after lessons. The findings reveal teachers’ appreciation of the 
application of problem-solving teaching in a Learning Study design, saying it helped them to 
observe the difficulties students experience in learning algebra and the shortcomings in their lesson 
preparation. In addition, they noted the importance of reflection in that it helped them improve the 
second lesson. 

Keywords: Learning Study, variation theory, problem-solving, teamwork.     

Introduction 
Teaching is an activity that involves engagement of the teacher, the student and the content (Loef 
Franke, et al., 2007; Stigler, & Hiebert, 1999). In mathematics teaching, this engagement needs to 
be effective to create a productive learning environment for both teachers and students (Loef 
Franke, et al., 2007). However, Stigler and Hiebert (1999) note that levels of engagement among the 
three is not uniform due to different classroom cultures and teaching strategies in different 
countries. They observed, for example, that in some US classrooms, teaching strategies are so 
procedural and teacher-directed that students are passive recipients of knowledge, and that there is 
little interaction between student and content.  

Stigler and Hiebert’s (1999) finding concerning US mathematics classrooms seems to be relevant in 
other classroom cultures in countries such as Kenya (CEMASTEA, 2010). Based on past 
performances, the Government of Kenya initiated an in-service education programme for high 
school teachers of mathematics and science in 1998. Among the strategies employed was Lesson 
Study approach, which implicitly applies constructivist theory (Elliot, 2014). However, a survey 
conducted to check the extent of the implementation of the programme, reported that about 65% of 
the teachers were not implementing the programme and were applying the teacher-directed method 
of teaching (CEMASTEA, 2010). Teachers cited lack of clear guidelines and workload among 
reasons. Students continued to post weak results in mathematics in 2012 and 2013 from the Kenya 
national examinations (KNEC, 2014). This study adopts a Learning Study (LS) design which 
explicitly applies Variation Theory to support classroom learning. Little is known about LS in 
Africa, and the outcome of this present study may support the further development of LS in Kenya 
in particular.  

The purpose of this study is to solicit teachers’ views and experiences of the application of a 
problem-solving teaching strategy in a LS design to teach factorization and solution of quadratic 



equations, one of the topics poorly performed by students (KNEC, 2014). My intention is to 
eventually extend the approach to other mathematics topics. The research question of the present 
study is “What are the teachers able to learn about the students learning of factorization of quadratic 
expressions in a Learning Study design?”  

Variation theory 
Variation Theory is a theory of learning which asserts that to learn something entails experiencing it 
in a variety of ways. The theory proposes that learning is always directed towards an object, which 
could be a skill or a concept referred to as the object of learning in the ‘what’ and ‘how’ aspects of 
learning (Marton & Booth, 1997). The ‘what’ aspect is the content to be learnt while the ‘how’ 
aspect is concerned with the process of learning that enhances a student’s ability to apply the 
learned concept in a new environment (Elliot, 2014; Lo, 2012). The theory postulates that learning 
takes place when students focus on a critical feature of the object of learning. For example, suppose 
the solution of simultaneous linear equations by elimination were the object of learning: a critical 
feature to be discerned can be the collating of the equations so that one variable has the same 
numerical coefficient in both equations. To achieve this, Lo (2012) and Marton (2015) propose that 
teachers need to create learning opportunities by explicitly or implicitly offering patterns of 
variation in which some parts remain invariant as others vary. Four patterns of variation are 
identified, namely: contrast, separation, generalization and fusion. For example, to discern the 
concept of quadrilateral, a type of quadrilateral would be kept invariant and contrasted with other 
polygons such as triangles and pentagons. To discern a particular type of quadrilateral, for instance 
a kite, it is kept invariant as other types such as rectangle, trapezium are varied. The kite is 
separated from the whole and focused on. To generalize that the total sum of interior angles of a 
quadrilateral is 360°, each type of a quadrilateral is varied with its sum of interior angles calculated. 
To compare properties of different types of quadrilaterals, such as a kite and a rhombus, the two and 
their properties are brought into focus simultaneously, the fusion pattern of variation.  

Learning Study  
Learning Study (LS) provides a framework for supporting learning in the classroom by applying 
aspects of Variation Theory, in which all the three categories of persons participating in the lesson 
(the teachers, the students and the researchers) could learn in the process (Marton, 2015; Pang, 
2008). LS adopts a Lesson Study organizational structure in which a group of teachers prepare a 
lesson together, then one teaches the lesson while others observe as they collect research data and 
thereafter converge for a reflection session (Pang, 2008). LS focuses on the object of learning 
which points to the beginning of the learning process with learning ‘what’ and learning ‘how’ 
aspects (Lo, 2012). In this study, the topic of quadratic expressions and equations is the ‘what’ 
aspect while the ‘how’ aspect is addressed by small group discussion approach to learning. For ease 
of monitoring the learning process, the object of learning is categorized into: (a) lived object of 
learning 1, (b) lived object of learning 2, (c) intended object of learning and (d) enacted object of 
learning. Part (a) is concerned with prior experiences and awareness that students have about the 
concept and is monitored through a student’s diagnostic pre-test or interview whose outcome is 
considered in lesson preparation. Part (b) is the acquired experiences after the teaching of the lesson 
and is monitored through a student’s post-test or interview. Part (c) is the planned lesson and part 



(d) is the taught lesson (Pang, 2008). Parts (c) and (d) are monitored through a post-test or interview 
and reflection session.  

Methodology 
The study on which this paper is drawn follows a qualitative and interpretive research approach in a 
LS design conducted in two classes in Kenya. Three teachers planned the lesson together as 
explained earlier. Prior to the first lesson, a diagnostic pre-test was given to the students in both 
classes; a post-test identical to the pre-test was given to each class at the end of each lesson. The 
teachers will be addressed by pseudonyms as Dominic – head of mathematics, Peter – teacher of the 
first lesson and John – teacher of the second lesson. The two classes were for third year high school 
students (age 16-18 years) comprising 68 students altogether.  

Data were collected through classroom lesson observation, pre-post questionnaires, video 
recordings of the lessons and transcribed reflection sessions. Teaching was approached through a 
small group discussion by the students. The object of learning was factorization of a quadratic 
expression with a unit coefficient of x2 (i.e. x2 + bx + c). The critical feature was the identification 
of factors of the constant term of a quadratic expression that sum to the coefficient of x, often 
expressed in textbooks as “sum and product”.  

The items in the questionnaire, whose outcomes were considered in the preparation of the lesson, 
included: (1) Why is 652  xx called a quadratic expression? (2) What do we consider in 
attempting to factorize a quadratic expression such as the one given above? (3) How many factors 
do we expect from a factorized quadratic expression? Frequent student responses included: (1) the 
given expression is called a quadratic expression because it has unknowns, (2) we consider like 
terms, (3) two factors (considered the correct answer). The questionnaire responses were scored 1 
for a correct answer and 0 otherwise. 

   

 

 

 

  

Figure 1: Paper cuttings for a hands-on activity aiming at the factorization of 652  xx  

Based on the students’ responses, the teachers prepared for the intended object of learning in a 40-
minutes lesson, incorporating a hands-on activity intended to raise students’ curiosity, and to 
motivate them to discuss in small groups as the approach was new to them. The first task on the 
activity was to form a rectangle using the pieces of paper shown in Figure 1, and to find the product 
of the sides of the rectangle formed. This was intended to lead to the factorization of 652  xx . 
The second task was to explain the relationship between the numerical terms from their expression 
of the area, (x + 2) (x + 3); and the coefficient of x and the constant term in the quadratic expression. 
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First lesson 

The first lesson was taught by Peter in his class of 40 students. Prior to this lesson, students had 
been taught the expansion of quadratic factors of the form (p + q) (p + r). Peter introduced the 
lesson by asking the students to identify the coefficients of x2 and x in the expression x2 + 4x + 3. 
Whereas all the students could correctly identify the coefficient of x as 4, most of them were unable 
to correctly identify the coefficient of x2. Students gave responses that included: x × x, x and 2 - 
presumably from the exponent 2. The teacher asked them to discuss in pairs and seek a correct 
solution. After a while, a student correctly identified the coefficient as 1, but could not explain her 
answer. The teacher explained why it is 1.  

Peter then asked the students to factorize the expression 652  xx . After about five minutes, he 
asked the students to form eight groups of five members each and he distributed the pieces of paper 
in Figure 1 to each group. He explained the first task of the activity and allowed 15 minutes for the 
task. After 15 minutes, only two groups had formed the rectangle. Peter allowed a further 10 
minutes for discussion before calling upon groups to present their work. The teacher grouped the 
students’ work in categories as shown in Table 1.  

Category No. of Group(s) Rectangle Area 
One  4 Correct rectangle  Correct working 
Two 1 Correct rectangle  Wrong working  

Three 2 Correct rectangle No area worked out 
Four 1 No rectangle formed No area worked out 

Table 1: The categories of groups and how they carried out the task   

One group from category one and the category two group were asked to present their work shown 
in Figure 2 and Figure 3 respectively.  

  

  
 

 

 

 

 

Figure 2: Correct working                                            Figure 3: Incorrect working 

The Figure 2 representative explained thus, 

Student 1:  Length, L = 1+1+1+x = (3+x) and width, W = 1+1+x = (2+x). Area, A = L×W = 
(3+x) (2+x)  

The Figure 3 representative explained, 



Student 2:  The width has two pieces of x each giving an area of x × x = x2. The length has a 
piece of x at the bottom and the upper part has two pieces of x plus the big piece 
whose length is x giving a total of 4x2. Total area, A = x2 + 4x2. 

Due to pressure of time, Peter summarized the lesson by explaining task two procedurally, thus, to 
factorize a quadratic expression such as 652  xx , identify the factors of the constant term, 6, that 
sum to 5, the coefficient of x. Thereafter he told the students to factorize x2 + 3x + 2 as homework, 
before administering the post-test. The results of the pre-test and the post-test are shown in Table 2. 

Items Percentages of correct responses 
Diagnostic pre-test Post-test 

Question 1 3 30 
Question 2 3 10 

Question 3 70 43 

Table 2: The percentage correct responses of the pre-test and post-test from the first lesson 

First lesson’s reflection session 

Peter felt that his introduction took more time than he had expected: as he remarked, 

Peter: I would have taught how to get the coefficient first before I look at this lesson.  

Other highlights during the reflection include: 

Dominic: The students had some fear I do not know what they were fearing [...] 

John: I think we should have done some peer teaching. We forgot how the students 
would present their work and this became unexpected challenge. 

Researcher:  Peter gave students a long time for discussion because he wanted everybody to 
obtain the correct answer not knowing that the strength of learning at times is in 
the few mistakes made by students. 

Based on the reflections, the post-test results and the fact that the lesson was not implemented as 
planned, the teachers modified the lesson, which was retaught in John’s class (second lesson). 

Second lesson 
John introduced his lesson by asking students to expand the expression, (x + 2) (x + 1), which they 
did to obtain x2 + 3x + 2. He then asked them to identify the coefficients of x2 and x from x2 + 3x + 
2. The majority answered the question correctly. John then asked the students to factorize the 
expression 652  xx . After about five minutes, he asked the students to form seven groups of four 
members each. The class had 28 students present. He distributed the pieces of paper shown in 
Figure 1 to each group and stated the tasks for the activity as: (1) Form a rectangle with all the 
pieces of paper given and work out the area of the rectangle formed. (2) Find the relationships 
between the constant terms of the factors of your worked-out area and i) the coefficient of x in the 
expression 652  xx , ii) the constant term in the same expression 652  xx . This was part of 
modification made on the lesson. After 15 minutes, he stopped the group work and asked some 
groups to discuss their work with the whole class. Table 3 shows how groups carried out the tasks, 
with same categories as in Table 1.  



Category No. of Group(s) Rectangle Area 
One  3 Correct rectangle  Correct working 
Two 1 Correct rectangle  Wrong working  

Three 3 Correct rectangle No area worked out 

Table 3: The categories of groups from the second lesson and how they carried out the task 

One group from category one and the category two group were asked to present their work. The 
representative of the category one group explained the working thus, 

Student 1:  Width = 1 + 1 + 1 + x = 3 + x, Length =1 + 1 + x = 2 + x  

 Area, A = L × W = (2 + x) (3 + x) = x2 + 5x + 6 

The representative of category two explained her work referring to a figure similar to Figure 3.  

Student 2:  The two strips above are multiplied to obtain x2 and the four pieces on one side 
(pointing at the width with 1 unit by x units strip and the three 1 unit by 1 unit) are 
counted and multiplied by x to obtain 4x. Area, A = x2 + 4x. 

After the presentation, John discussed task two with the whole class. With the help of the students 
and referring to student 1’s expression, John simultaneously presented the factors of 6, {(1 × 6), (2 
× 3), (-1 × -6), (-2 × -3)} and the addends of 5, {(0 + 5), (1 + 4), (2 + 3) and so on}. He introduced 
the second activity that asked the students to factorize, x2 + 3x + 2. The students correctly factorized 
the expression. The teacher summarized the lesson and administered post-test questionnaire. Both 
pre-post results are shown in Table 4. 

Items Percentages of correct responses 
Diagnostic pre-test Post-test 

Question 1 26 86 
Question 2 0 71 

Question 3 48 86 

Table 4: The percentage correct responses of the pre-test and post-test from the second lesson 

The teachers prepared the lesson to apply the generalization of patterns of variation and invariance. 
This was realized fully in the second lesson.  

Varied Invariant Discernment 
x2 + 5x + 6 Working out the 

area of rectangles 
formed. 

Factorization of a quadratic expression with a unit 
coefficient of x2 depends on the factors of the constant 
term that sum to the coefficient of x 

x2 + 3x + 2 

Table 5: Generalization pattern of variation and invariance applied in the enacted object of learning 

The two different expressions were varied to help the students to generalize the process of 
factorizing a quadratic expression with a unit coefficient of x2 such as x2 + bx + c. The students 
applied the cuttings to form the rectangles whose areas represented the factorizations of the given 
quadratic expressions, that is, x2 + 5x + 6 and x2 + 3x + 2.  



Discussion and conclusion 
The activities proved challenging as students took time to discuss and explore ways of factorizing 
the expression x2 + 5x +6 (Lester et al., 1994). At the end of the discussion, eight groups out of 15 
did not factorize the expression, and one group even failed to form the rectangle, as shown in Table 
1 and Table 3. Peter even allowed more discussion time but still some groups could not form the 
rectangles. Peter therefore, did not apply fully the patterns of variation and invariance. Marton’s 
(2015) cautioned teachers to take control of students’ own work during learning to implement the 
planned patterns of variation. The effect was reflected in post-test results of Table 2. A comparison 
of pre-post results (lived objects of learning 1 and 2) of the two lessons, Tables 2 and 4, show that 
at the pre-test, Peter’s class had higher scores in questions 2 and 3 but at the post-test, John’s class, 
where the pattern of variation was fully applied, had a notable improvement in all the questions than 
Peter’s class. Question 2 that addressed the critical feature had a slight improvement of 7% in 
Peter’s class compared with 71% in John’s class.  

The content of the lessons addressed the “what” aspect of the object of learning. Eight groups had 
difficulty expressing the sides of their rectangles in algebraic form, thus failing to factorize the 
expression x2 + 5x + 6 as shown in Tables 1 and 3. The expected algebraic expressions for the sides 
of the rectangle fall within the topic of formation of algebraic expressions taught in the first year of 
high school according to the Kenyan mathematics syllabus for high schools. Also, in the 
introduction of the first lesson, the students could not identify the invisible 1 as the coefficient of x2 
from the expression x2 + 4x + 3, which suggested that students either did not understand 
multiplicative identity property of real numbers or they did not know the term coefficient. These 
cases show that students could not recall what they had been taught earlier. These were learning 
moments for teachers to realize that the problems that students experience in quadratic expressions 
and equations originate from the introductory contents of the algebra.  

The planning gaps identified during the lessons contributed to the time management issues 
especially, the first lesson where students did not work on the second activity as was planned; and 
they also had a short time to discuss the second task of the first activity. The effect was reflected in 
the post-test outcome from the first lesson’s class as shown in Table 2. From these observations 
teachers learned that LS design is helpful in focusing the teachers in every aspect of the lesson that 
improves students learning. They also learned that a good implementation of a lesson by applying 
patterns of variation can improve students’ learning as suggested in the second lesson’s post-test 
result Table 4. The teachers appreciated the implementation of the second lesson where students 
were able to generalize the conditions for factorization of a quadratic expression with a unit 
coefficient of x2.  

Peter:  Yeah the lesson was good. I am sure now they are aware that they can use that 
formula without the cuttings and factorize any quadratic expression. 

Dominic:  The fact that the two activities were discussed helped the students to see the 
relationship and I am sure they can now factorize the quadratic expression without 
any problem.  

The teachers also learned the need for explicit preparation of all activities and for good time 
management, as they stated during the reflection session after the first lesson and confirmed the 



same after the second lesson through the post-test result. This supports Hiebert, Morris and Glass’s 
(2003) suggestion that lessons should be treated as experiments with explicit preparation of all 
activities. The teachers learned that the LS design through its post-test aspect helps monitor 
students’ learning progress, which enables a teacher to address students’ errors/misconceptions in 
the immediate subsequent lessons.    
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This article focuses on the relations between the activity of the teachers and the contents of textbooks 
and the teacher’s manuals. Through the observation of lessons, we analyse and discuss how the 
teachers follow the recommendations written by the authors of teacher’s manuals. We describe the 
adjustments made by these teachers, comparing them to the recommendations written by the authors 
of teacher’s manuals. The observations lead us to point out some didactic obstacles and to mention 
the major role of an epistemological and didactic teacher training. 
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Introduction 
The present study constitutes a part of a larger research project investigating the place of mathematical 
textbooks in the French publishing market and the role teachers assign them in the daily practice 
(Mounier & Priolet, 2015). In France, teachers may decide for themselves and in each of their classes 
whether they want to resort to textbooks or not, and which resources they wish to use, on the condition 
of respecting the national curricula. The resources and their uses have been already the object of 
plentiful scientific literature (Pepin, Gueudet, & Trouche, 2013; Fan, Zhu, & Miao, 2013; Matić & 
Gracin, 2015; Lenoir et al., 2001). This paper examines how two teachers interact with mathematics 
textbooks in teaching the same topic; it focuses on the use of number lines. The choice of this theme 
seems to us relevant, with regard to the works of Hamdan and Gunderson (2017, p. 587) that show 
how “the number line plays a causal role in children’s fraction magnitude understanding, and is more 
beneficial than the widely used area model”.  

Theoretical framework and research question  
The teaching activity  

The teacher has “to prepare the course”, “to handle the class” and “to teach the class” (Amigues, 
2003, p. 11). His activity results from a compromise between his objectives, his own purposes, his 
constraints, and the resources of his work environment (Goigoux, 2007, p. 47). So, it exceeds the 
context of the classroom. Then, the teaching activity has to be considered outside and inside the 
classroom, but, in this article, we mainly reserve the expression “teaching activity” for the activity of 
teaching in the presence of pupils. 

Resources, textbook and teacher’s manual 

Within the framework of his teaching activity, the teacher interacts with a set of resources. To define 
the concept of resource, Adler (2010, p. 25) refers to two meanings of a word: a “reserve” from which 
the teacher can draw, and the action “to be nourishing again”. We define the resource as “product of 
the human activity, developed to join a finalized activity” (Rabardel, 1995, quoted in Gueudet & 
Trouche, 2010, p. 58). As produced by an author, the textbook and the teacher’s manual are resources 
for the teacher. The resource “Textbook” is intended for the pupils in the class and it is in connection 
with the curricula. The “teacher’s manual” is the documentation annexed to the textbook, intended 



for the teacher and who allows “to understand better the transactions of the teachers with the curricular 
resources in mathematics” (Remillard, 2010, p. 201).  

Teacher-resources relation 

The teachers are differently positioned with regard to the use of the resources according to “modes 
of commitment” (Remillard, 2010, p. 214) being able to be shaped by particular expectations, 
convictions, habits or past experiences. This positioning may have an important effect when the use 
of the resource leads to the adoption of a didactic device structuring the session. The didactic devices 
in a primary class come down to three devices (Rey, 2001, pp. 31–35). In the first one named 
“explanation-application”, some part of knowledge, for example the definition of a mathematical 
object, is presented to the pupil. Practical exercises follow the presentation of this knowledge. In the 
second named “observation-explanation-application”, in the first instance the pupil is asked to 
observe an object, for example a geometrical figure then to generalise from this observation. Practical 
exercises are then proposed. In the third named “problem-explanation-application”, in the first 
instance the pupil starts with the active manipulation of material or conceptual resources is brought 
in to the apply to problem-solving. This phase is followed by the shaping of the knowledge and then 
by the series of exercises. Some teachers sometimes make some adjustments. If the teacher’s degree 
of expertise and the level of training are not sufficient, these adjustments can lead to “problems of 
coherence between objects of teachings, processes and activities” (Arditi, 2011, p. 361). Besides, 
from a generative document, expert teachers can proceed to relevant adjustments whereas, for lack of 
self-important training, the novice teachers are sometimes going to bring modifications going against 
the intentions of the authors of textbooks, the specialists of didactics (Margolinas & Wozniak, 2009; 
Priolet, 2014).  

Research questions 
Considering the above research, we question the relations between the activity of the teachers and the 
contents of mathematics textbooks and of teacher’s manual. Do teacher-users of a medium operate 
different types of adjustments during the activity of teaching in the presence of their pupils, and do 
they follow the model led by the teacher’s manual?  

Methodology  
In order to answer our research questions, we provide a qualitative approach based on observation of 
practices used by teachers or semi-structured interviews with them. 

Participants 

This case-study involves two female teachers, Teacher B and Teacher A. Both of them teach at the 
4th level of elementary school (9–10 year-old pupils), in two schools located in two small towns in 
the centre of France. Teacher B has been teaching for 15 years and Teacher A for 10 years. None of 
them has studied higher education in mathematics. They both teach all school subjects. 

Both teachers belong to a sample of 10 teachers of the 4th level of elementary school who declared 
using mathematics textbooks and being volunteers to participate in our research. We had chosen this 
level regarding the introduction of fractions and decimal numbers. The ten teachers had agreed to be 
observed, by one of the two researchers, in their class, during a lesson of mathematics concerning the 
numbers, then to be interviewed during a semi-directive interview. For this case-study, we chose 



Teacher B and Teacher A among these 10 teachers for two reasons. Firstly, Teacher B and Teacher 
A have the same textbook1 in their class. Secondly, when we observed them teaching in their 
classroom, both presented a lesson on the theme of fractions and decimal numbers. 

Method 
In the classroom of Teacher B, the observation lasted 57 minutes and the interview 36 minutes. In the 
classroom of Teacher A, the observation lasted 33 minutes and the interview 44 minutes. We did not 
film the learning sessions, but some photographs have been taken, related to the use of the textbook 
or other artefacts. An observation table has been assigned in two parts : 

 The observation of the classroom with identification of the different moments of the learning 
session (total duration, duration of each phase), duration of the phases of use of the texbook 
by the pupils, identify the moments while the teacher uses her teacher’s textbook. 

 The database about pupil and teacher documentation.  
Following this observation of sessions, a second data collection was made through semi-structured 
interviews. An interview guide was set up on these subjects: preparation of the observed session, 
place taken by the manual during the session, manual’s choice, general use of the teaching and pupil’s 
guide and during the session, and finally, teacher training. The interviews often relied on the 
photographs that we had taken during the session concerning the use of the manual by the teacher or 
by the pupils. They can be linked in a methodological way with the self-confrontation method 
(Theureau, 2010). 
For the “fractions and decimal numbers” topic, the classroom manual has eight sessions numbered 
from five to twelve in its summary. The selected lessons for the analysis are lessons 8 (Teacher B) 
and 9 (Teacher A), because both of these lessons refer to the use of number line.  

Both interviews were transcribed. All the data collected through observation and interviews have 
been analysed (Bardin, 2007) in order to extract those concerning the presence and frequency of use 
of the textbook and the resources used by the teacher for the conception of his teaching. The times of 
effective use of the textbook by the pupil have been converted in percentages of the total duration of 
the lesson.  

Results  
For each teaching activity, we present below a lesson in which we can spot the relation that each 
teacher has with the textbook and with the teacher’s manual in her teaching activity. 

Teacher B 
Teacher B herself chose the textbook given to each of the pupils of her classroom. She reports using 
it frequently in class, mainly for the exercises. The Teacher’s manual is present in the classroom. 
Teacher B reports that she doesn’t use it because she has been disappointed by its general contents. 
She organizes the distribution of the lessons of the year herself.  

                                                 
1 Whereas in our study (Mounier & Priolet, 2015), there are at least 23 different textbooks in France for this level of 
teaching.  



Today, she proposes the following situation: she shows on the board a big number line she has 
prepared herself (Figure 1). 

 
Figure 1: number line showed on the board (Teacher B) 

In the first part of the lesson, she explains to the pupils how she made this number line: “the unit is 
here (u), so here between 0 and 1 there are 10 parts”. She tells them that point A is equivalent to four-
tenths of one. Then she asks pupils to write on their board the fractional numbers to which the points 
placed on the number line are associated. In the second part of the lesson, pupils open their textbook 
to do the 4th exercise (Figure 2). 
 

 
Figure 2: Exercise number 4, page 43 of the pupil’s textbook 

For this lesson related to session 8 of the manual (À portée de maths CM1) page 42–43 and named 
“decimal fractions”, the teacher’s manual first planned a research path with an individual preparatory 
report (Figure 3) to the activity “Let’s look together” in the pupil’s manual (Figure 3). 

  
Figure 3: teacher’s manual page 37 

Teacher A  
In Teacher A’s classroom, each pupil has got a textbook. This textbook has been chosen by one of 
the colleagues predecessors of Teacher A in that school. She declares to have adopted this textbook 
which was already present in the class before she came. Teacher’s manual is present in the classroom. 
Teacher A reports: “Mathematics is absolutely not my field. I refer a lot to the teacher’s manual but 



after this I try to appropriate it”. She says that she follows the annual distribution of the lessons in the 
manual. She also uses the manual’s exercises. 
For this lesson related to session 9 of the manual (À portée de maths CM1) page 44–45 named 
“Decimal fractions”, the teacher’s manual first planned a research path with the number line drawn 
at the board (Figure 4) to prepare the activity “Let’s look together” in the pupil’s manual (Figure 4). 

 
Figure 4: Teacher’s manual p. 39 (Beginning of the research path) 

Teacher A reports referring to the teacher’s manual to build the “Let’s look together”. While the 
teacher’s manual suggests as support for each exercise a number line increased without digital marks, 
this teacher writes a number line increased in tenth marks-units from 0 to 3, on the blackboard.  

 
Figure 5: Photography of the board during the lesson (Teacher A) 

Then she asks the pupils to indicate which fraction corresponds to such a graduation (yellow arrow). 

On the board, she writes two answers  and  (Figure 5) proposed by two pupils. She asks them to 
explain their process. Then Teacher A asks all the pupils to open their textbook to individual work 
on exercise number 2. In this second part of the lesson, and especially with this exercise number 2, 
the pupils have to use a number line (Figure 6). 

 
Figure 6: Exercise n°2 page 44 of the pupil’s textbook 

 
During the interviews, Teacher A and Teacher B report that they want to do the best to help their 
pupils to understand the fractions and the decimal numbers. So, Teacher A decided to write a number 
line increased in tenth marks-units on the blackboard instead of the number line increased without 



digital marks which was suggested by the teacher’s manual. Teacher B decided to explain to her 
children what each graduation means on the number line.   

Analysis and discussion 
We use Rey’s model (2001) to analyse the didactic set up plan in each of these two classes. We 
compare it with the model underpinned by the instructions provided by the teacher’s manual’s 
research path. 
Although the authors declare in the preface (page 3, pupil’s textbook) that the “teacher is a 
professional that chooses and assumes his pedagogy” and in the preamble (page 3, teacher’s guide) 
that “the guide is conceived in order to give the teacher the freedom of his own ways”, the instructions 
which are supplied in the scenario of the teacher’s manual about the research path of both consider 
lessons, seem to lead an approach of the “observation, explanation, application” type. 
Our observations show that Teacher B operates the didactic device “explanation-application”, 
whereas Teacher A tends to use the “observation-explanation-application” device. Teacher A 
modifies the starting situation support by converting the teacher’s manual (number line increased 
without digital marks on a number line increased in tenth marks-units from 0 to 3). 
This modification of the support does not favour the devolution (Brousseau, 1998) of this problem to 
the pupils. It has transformed, by reducing it, the difficulty of the task planned by the authors’ 
textbook: to question on the density of decimal numbers which constitutes an epistemological 
obstacle to the pupils’ understanding.  
Although the authors of the textbook declared that teachers keep their pedagogic freedom, in both of 
the observed situations, both teachers do not commit the pupils in an approach of type “problem-
explanation-application”.  

Conclusion 
In order to analyse the relations between the teaching activity and the contents of mathematics 
textbooks and of teacher’s manual, we have referred to the didactic model of Rey (2001). Our purpose 
was to detect the adjustments operated by two 4th level of elementary school teachers who use the 
same mathematics textbook. We observe that both do not follow all the recommendations of the 
authors of the teacher’s manual. For example, the teachers redefine the task planned by the authors 
of the textbook, then changing the planned didactic device, from a model of “observation-
explanation-application” led by the teacher’s manual, into a model of “explanation-application” (Rey, 
2001). This change may reduce, in a way, the pupils of the understanding of the density of the order 
of decimal numbers. Thus, our analysis reveals a problem of coherence, already pointed by Arditi 
(2011) between the adjustments operated by the teacher-user and the authors-designers of the 
textbook. This echoes the question of the validation of the collected knowledge (Bruillard, 2010), in 
particular in the context of the development of the recourse to the digital resources.  

In conclusion, we notice that the logic of the teacher and the logic of the textbook cannot be the same. 
We observe that this gap can interfere with the aimed knowledge, from which we conclude in the 
necessity for the teacher to exercise an epistemological and didactic vigilance on pupils’ 
understanding. It seems to us essential, following the example of Charles-Pézard (2010), to include 
this issue in the training of the teachers.  
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This study builds on the idea of using “critical incidents” as a tool for inquiry and reflection in the 
context of mathematics teacher education. The analysis was based on 22 prospective teachers’ 
portfolios reporting and interpreting selected critical incidents on the basis of their observations of 
mathematics teaching conducted by other teachers and by themselves in the context of their field 
experiences. The critical incidents addressed a multiplicity of issues related to mathematics 
teaching and learning. Prospective teachers’ noticing developed in terms of what and how they 
notice indicating a more relational way of conceptualizing mathematics teaching and learning. 
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Introduction  
In this paper, we study prospective teachers’ (PTs’) noticing of mathematics teaching in their initial 
field experiences through their engagement in identifying and interpreting critical incidents taken 
from everyday classroom situations in the context of a teacher education course. Critical incidents 
are everyday classroom events which have significance for the teachers, make them question their 
practice and seem to provide an entry for their better understanding of teaching-learning situations 
(Hole & McEntee, 1999). To observe and question mathematics teaching is a rather demanding task 
for both practicing and prospective teachers. A number of research studies have indicated that PTs 
face difficulties in identifying salient aspects of classroom instruction. For instance, they tend to 
describe the lesson as a chronological order of disconnected events (Sherin & van Es, 2005), they 
keep their attention primarily on the teachers rather than on the learning students (e.g., Van Es & 
Sherin, 2002) and they have difficulties in developing interpretative analysis of classroom 
instruction (Jacobs, Lamb, & Philipp, 2010).  

Research suggests the need for the development of structures that foster teachers’ systematic 
reflection on teaching practice and help to make the act of noticing critical aspects of classroom 
interactions more concrete (Mason, 2002). Examples of such supportive structures are: the use of 
theoretical tools to code teaching (Mitchell & Marin, 2015); the decomposition of video lessons in 
small parts (McDuffie et al., 2014); the identification of critical incidents from classroom teaching 
(Goodell, 2006). These structures have been exploited in situations where prospective mathematics 
teachers analyze teaching of others mainly through video noticing (e.g., Sherin & van Es, 2005) 
while few studies refer to PTs’ reflection on their own teaching (e.g., Goodell, 2006). However, 
there is an open discussion on if and how reflecting on other teachers’ practice transfers for 
reflecting on PTs’ own practice (Stockero, 2008). Many research studies prioritize helping PTs to 
focus on students’ mathematical thinking (e.g., Jacobs et al., 2010) while few studies aim to 
facilitate PTs’ attention to other important features of mathematics teaching and their interrelation 
to students’ learning (McDuffie et al., 2014). Linking students’ learning opportunities to teacher’s 



discourse moves is a rather demanding task and it poses a research challenge in the area of 
prospective mathematics teachers’ noticing. 

In our study, we attempt to explore how critical incidents can be used as a structure to support PTs 
in reflecting on mathematics teaching recognizing interrelationships between teaching and learning. 
Our research questions are: (a) What is the nature of critical incidents that PTs identify while 
reflecting on mathematics teaching conducted by other teachers and by themselves? (b) How does 
PTs’ noticing develop when identifying and interpreting critical incidents related to students’ 
mathematical activity? 

Theoretical framework  
Under a community of inquiry perspective, Jaworski (2006) introduced the concept of critical 
alignment, in which participants align with the practice of mathematics teaching while critically 
questioning aspects of it.  Critical alignment is promoted through the tool of inquiry. Inquiry is a 
process of encouraging critical reflection and promoting critical alignment (Jaworski, 2006). In this 
perspective, reflection is considered as a tool that allows participants to be engaged in a continual 
reconstitution of the practice of teaching. The reflective process involves “firstly, a recognition of 
questions to address, identifying some perplexity, making some aspects of teaching problematic; 
and, secondly, through some processes of enquiry, to seek solutions, or resolutions to, or new ways 
of understanding, the problems identified” (Jaworski, 1998, p. 7). This perspective is close to our 
view of a critical incident as a continuum involving identification, interpretation and potential 
action where critical questioning is a constituent element of it.  

Researchers have been concerned about the introduction of sufficient structures for making the act 
of inquiry into teaching practice more concrete. An example of a structured framework for reflection 
on classroom episodes, are critical incidents. In mathematics education, the idea of critical 
events/moments in mathematics teaching has been used as an analytical tool in studying 
mathematics teaching and learning. Skott (2001) used the term “critical incidents of practice” to 
describe moments of a teacher’s decision-making in which multiple and possibly conflicting 
motives of his activity evolved that challenged the teacher’s own school mathematics images and 
provided learning opportunities for students. As a developmental tool, critical incidents have been 
used by Goodell (2006) in pre-service mathematics teacher education. She analyzed PTs’ reports of 
critical incidents and she found that the issues raised concerned: teaching and classroom 
management; student factors; issues concerning relationships with colleagues, parents and students; 
and school organizational issues. She also identified that PTs fruitfully addressed important aspects 
of teaching for understanding such as the necessary conditions, factors facilitating teaching for 
understanding and barriers to teaching for understanding.  

Noticing has been introduced to mathematics teacher education to study shifts in the structure of 
teachers’ attention and, through this, to address different levels of awareness both in mathematics 
and in mathematics teaching (Mason, 2002). According to van Es and Sherin (2002), noticing is a 
more complicated action than just observing teaching. Rather, it requires teachers to notice what is 
significant in a classroom interaction, to interpret this noteworthy incident on the basis of their 
knowledge and experiences, and to link these with broader principles of teaching and learning. Van 
es (2011) proposed a framework for learning to notice students’ thinking constituted of four levels 



of noticing according to “what teachers notice” and “how teachers notice.” As regards to what the 
teachers attend to, the four levels include: making general observations about the whole class 
environment (Level 1 – Baseline Noticing); focusing on teacher pedagogy and begin to attend to 
students’ thinking (Level 2 – Mixed Noticing); attending to particular students’ mathematical 
thinking (Level 3 – Focused Noticing); and interrelating particular students’ mathematical thinking 
and teachers’ teaching strategies (Level 4 – Extended Noticing). When it comes to how the teachers 
notice and provide interpretations, the four levels include: providing general impressions and 
descriptive comments (Level 1 – Baseline Noticing); providing primarily evaluative with some 
interpretative comments and beginning to refer to specific events and interactions as evidence 
(Level 2– Mixed Noticing); providing interpretative comments, referring to specific events and 
interactions as evidence and elaborating on events and interactions (Level 3 – Focused Noticing); 
and making connections between events and principles of teaching and learning and suggesting 
alternative pedagogical actions (Level 4 – Extended Noticing). This framework provides a base for 
teacher reflection as well as a tool to describe the development of teachers’ noticing. The above 
studies indicate that noticing critical aspects of mathematics teaching of others and prospective 
mathematics teachers’ own teaching seems to constitute a basis for professional learning.  

Methodology  
The research took place in the context of a 14-week mathematics education undergraduate course 
(taught in one semester by the second author) included in a university program of a mathematics 
department leading to a first degree in mathematics. Enrolling in the course in which the study took 
place, PTs had already successfully passed at least four courses on pedagogy and mathematics 
education. The aim of the course was to engage PTs in critical consideration of aspects of 
mathematics teaching as they emerge from the complexity of teaching practice in schools. Every 
second week for the entire semester PTs were asked to participate in a number of field activities 
(over six field activities-weeks) while each week following the activities in schools included a 
three-hour meeting at the university. PTs’ field activities consisted of observing other teachers’ 
mathematics teaching for six hours in total (first three field activities-weeks), designing and 
teaching a lesson in one group of students outside the classroom for one teaching hour (fourth field 
activities-week), and designing and teaching lessons in the whole classroom for two teaching hours 
(fifth and sixth field activities-weeks). The 22 PTs (9 males, 13 females), who served as participants 
in this study, were divided into pairs and carried out collaboratively the field activities under the 
supervision of eight postgraduate students of mathematics education who acted as mentors. 

Inquiry into mathematics teaching was a rather new practice for PTs and was supported through the 
discussions in the university meetings and the field activities. Critical alignment with the practice of 
the mathematics teaching in which they were engaged through observing and teaching, was 
expected to be developed through the process of inquiry and questioning aspects of practice. Critical 
incidents were expected to facilitate this process. PTs’ field activities were based on the cycle 
observing-reflecting-designing-implementing-reflecting. For instance, PTs were asked to: identify 
the specific content of a lesson in the curriculum and to trace it throughout the different grades; look 
for possible research evidence related to potential students’ difficulties; keep systematic notes from 
and/or record the lessons; reflecting on their classroom experiences; and analyzing lessons. In this 
context, PTs were asked to select critical incidents and provide a reflective account on the basis of 



justifying their selection, interpreting them and proposing potential teaching actions. Instructional 
practice in the university sessions aimed to support PTs’ reflection on their recent field experiences 
and to link emergent issues with existing mathematics education research in order to develop deeper 
levels of awareness. PTs were introduced to the idea of critical incidents through (a) a brief 
presentation of Goodell’s (2006) study (including the meaning of critical incidents, the classification 
of them and examples from PTs’ written reports), and (b) analysis of transcripts of lessons to 
identify critical incidents and discuss/justify in the class their criticality. The teacher educator 
facilitated the discussion, but also challenged the PTs to justify their selection of the critical events, 
to provide evidence of their claims, to make interpretations, and describe their potential teaching 
decisions. The PTs themselves presented the analysis of the critical incidents and their reflections in 
the university meetings. Overall, PTs’ field activities and the discussions in the university meetings 
revolved around the idea of critical incidents and thus they were compatible with our research focus. 

The data for this study consisted of: (a) PTs’ personal portfolios including their written accounts of 
critical incidents, and material related to the design, implementation, and presentation of the field 
activities in the classroom (e.g., worksheets, lesson plans, presentation files); (b) video recordings of 
all meetings at the university (8 in total) and (c) researchers’ field notes. In this paper we analyse the 
data from the PTs’ portfolios. The analysis was carried out in three levels. In the first level, we 
adopted a grounded theory perspective (Charmaz, 2006) and indentified thematic areas indicating 
what the PTs noticed (first research question). In the second level, we analysed the critical incidents, 
their interpretation and the potential actions that PTs reported in their portfolios for each week’s 
assignment in terms of the levels of van Es’ (2011) framework. Finally, we traced PTs noticing over 
time looking for shifts in what they noticed in students’ activity and how they interpreted it. 

Results  
The nature of critical incidents from PTs’ portfolios 

In Table 1, we present a categorization of the critical incidents that the PTs identified in their reports 
in two cases; one is while reflecting on the observations of other teachers’ teaching and the second 
while reflecting on their own teaching. The total number of critical incidents in the first case was 72, 
while in the second 54. In both cases, the incidents reported most often were related to students’ 
activity (35 out of 72 - 49% in the first case, and 21 out of 54 - 39% in the second) and in particular, 
to their conceptual difficulties. Another category of incidents focused on teaching - especially on the 
interaction between teacher and students (e.g., how the teacher responded to students’ questions and 
answers). Thirty-three out of seventy-two (46%) incidents in the first case fell in this category and 
eighteen out of 54 (33%) in the second case. A third category appeared mainly when PTs reflected 
on their own teaching, concerned students’ learning in relation to teaching (5% in the observations 
and 22% in the personal teaching). A fourth category that emerged only in the second case included 
three incidents focusing on epistemological issues.  

Below, we present some illustrative examples of the above categories and we elaborate on the issues 
emerging from the analysis of the critical incidents in relation to our research goals. Focusing on 
students’ activity, the PTs recognized misconceptions and difficulties in using mathematical 
language, performing procedures, connecting representations, and developing problem solving 
strategies. For example, the confusion between perimeter and area was noticed by one prospective 



teacher, Marina, while observing a lesson in an eighth grade class: “The teacher asked the students 
to draw a triangle and then to name the sum of the sides. One student answered ‘area’ and another 
one ‘perimeter.’ The first one seemed to confuse area and perimeter”. As regards to the unexpected 
students’ responses, one prospective teacher, Leonidas, reported students’ innovative approaches in 
finding triangular numbers in the Pascal triangle: “One student discovered a personal algorithm to 
calculate triangular numbers only by observing the arrangement of numbers in the Pascal triangle”. 

Incidents from classroom observation (72) Incidents from personal teaching (54) 

Students’ activity 35 (49%) Students’ activity 21 (39%)  
Difficulties 29  Difficulties 18 
Unexpected responses 5  Unexpected responses 3 
Motivation 1 Motivation 0 
Lesson planning and teaching  33 (46%) Lesson planning and teaching  18 (33%)  
Teacher-students interaction 19  Teacher-students interaction  10 
Classroom norms  5  Classroom norms 3 
Quality of tasks and mathematical 
content 

8 Quality of tasks and 
mathematical content 

2 

Teaching versus planning 0 Teaching versus planning 2 
Dynamic character of teaching 1 Dynamic character of teaching 1 
Linking teaching and students’ 
learning 

4 (5%) Linking teaching and students’ 
learning 

12 (22%)  

Relating interaction and learning  0 Relating interaction and learning 8 
Relating task and learning  3 Relating task and learning 3 
Relating norms and learning 1 Relating norms and learning 1 
Epistemological issues 0 (0%) Epistemological issues 3 (6%) 

Table 1: Categorization of the PTs’ critical incidents 
Concerning teaching and in particular teacher-student interaction, the PTs commented on positive 
and negative ways that the teacher or PT reacted to students’ contributions. A positive example was 
when Vassilis noticed that the classroom teacher acknowledged different solution strategies and 
discussed those in the classroom. Stella referred to a negative example from her own teaching: “One 
student proposed to find the requested area through transformations, which is a good approach. 
However, I directed her to follow the approach described in the textbook”. Stella also noticed the 
classroom norms and their effect on the mathematical communication: “Although the students 
provided repeatedly wrong answers, the teacher did not evaluate them and encourage further 
discussion”. The quality of the tasks in relation to the mathematical content was related to the 
teacher’s choices of the content, its integration in the designed tasks, and its transformation in the 
classroom teaching. Anthi reported: “I was impressed by the way that the teacher introduced 
students to the idea of limit in the context of geometry. … This experience can help students to get 
an intuitive sense of the idea of limit”. By being involved in designing and teaching, PTs started to 
consider the complexity of teaching. In particular, they started to recognize the gap between 
planning and teaching and the dynamic character of teaching as it is indicated in the following 
example from Sofia’s reflection:  “Although I had designed a realistic problem with the aim of 
engaging students in making sense by themselves of the notion of circle, during the implementation, 
I ignored the design. Actually, I took a directive stance to secure that the task would lead the 
students to the expected conclusions”.  



Moreover, the PTs started to relate different aspects of teaching such as classroom norms, classroom 
interaction, and nature of tasks to students’ learning. For example, Alexandros, recognized the 
mediation of digital tools in supporting students’ understanding while reporting on his classroom 
observations: “I noticed a student who had difficulty realizing that the ratios in Thales’ theorem 
remain constant independently of the position of the non parallel lines. She understood this property 
through dragging these lines in Sketchpad”. Another example is about the relation between the 
presentation of a task and students’ engagement. In an application of the Thales theorem, Leonidas 
noticed that the complexity of a geometrical figure in the task he designed posed barriers to 
students’ participation: “Students’ participation dropped vertically when they were asked to discern 
ratios of segments in the shape. So, the weak students could not consider at all even simple 
questions such as ‘Show me a line that intersects the parallels’”.  

Finally, in the category “epistemological issues” we include critical incidents that refer to the nature 
of mathematical content from an epistemological point of view. For example, Anna noticed in her 
teaching that some students did not verify the validity of their findings, a process that she considers 
important in mathematics: “I chose to discuss this incident because verification constitutes an 
important process in mathematics. However, students often are not engaged in this”.  

The growth of prospective teachers’ noticing 

Here, we use the van Es’ (2011) framework to trace PTs’ development of what and how they notice 
when observing teaching and reflecting on their own teaching. The analysis of the portfolios 
indicated that most PTs progressed to higher levels of the van Es’ developmental trajectory where 
relations between teaching and learning were noticed and connections between events and principles 
of teaching and learning were made. Below, we illustrate this shift through a representative case of a 
PT (Katia).  

Katia provided a written account of the critical incidents she selected as part of the course 
assignments involving observations and designing and teaching. During the observations, Katia 
offered general descriptions of the whole class environment and incidents related to students’ 
difficulties. She shifted from a baseline noticing in her first two observations (level 1) to mixed 
noticing (level 2) in the third one both in what and how she notices. For example, in her written 
account based on the second observation she gave as a critical incident the students’ lack of 
motivation to participate in the lesson due to the fact that some of them would not have been 
examined in mathematics in the university entry examinations. As regards how she notices the 
above critical incident, she provided descriptive and evaluative comments considering teaching 
independent of students’ behavior. In reflecting on her potential teaching actions, she mentioned 
that she would insist on inviting students to pay attention. In her account based on the third 
observation, Katia focused on students’ difficulty to transform the formula of the area of a 
trapezium E = (B+b)×h/2 to an equivalent expression in terms of another variable (e.g., the height 
h). This time she provided evidence of this difficulty by specifying students’ errors in algebraic 
manipulations. She also noticed that the teacher used numerical examples with the same structure to 
address these difficulties. Commenting on this critical incident, she wrote: “Although students do 
well with numbers and equations with one variable, they get confused when more variables are 
involved and they panic”. It appears that Katia begins to notice students’ thinking and refer to 
teacher-students interactions in the teacher’s attempt to address students’ difficulty. While she was 



challenged by the teacher educator to look for further evidence to support and interpret her 
observation (by discussing with the classroom teacher and one student who demonstrated this 
difficulty after the lesson, and by reading a relevant research paper), she still confirms students’ 
difficulty without offering an explanation. 

Katia’s noticing was further developed while reflecting on incidents selected from her own teaching.  
She started to attend to subtle aspects of tasks and the way they influence students’ activity, to 
develop interpretations based on her classroom experiences and research readings and to deviate 
from her planning at contingency moments. Our analysis provides evidence that while reflecting on 
her own teaching she was able to consider teaching and learning in a relational way and to provide 
justified arguments and alternative pedagogical solutions reaching focused noticing (level 3) and 
extended noticing (level 4). The following example illustrates this finding. Katia designed a lesson 
for the teaching of area measurement in grade 7 by taking into account research findings on 
students’ strategies on area measurement. Her main goal was to engage students in calculating the 
area of irregular figures by developing as a main strategy the dissection of the shape in other shapes 
whose area could be calculated by the known formulas. The students were really engaged in the 
process and developed different strategies. Katia reported as a critical event the fact the use of the 
word “irregular” in the given worksheet raised a lot of questions in the classroom: “I did not expect 
that the word “irregular” would create questions and negotiations. However, I exploited to see how 
students think about these figures”. In her analysis of the phenomenon, Katia refers to specific 
student’s ideas about the meaning of the word “irregular” and how this influenced students’ work.  

Discussion  
The critical incidents that PTs identified in their portfolios addressed a multiplicity of issues related 
to mathematics teaching and learning focusing mainly on students’ activity and on student-teacher 
interaction. A similar picture was also formed in the study of Goodell (2006) where students’ 
conceptual understanding and classroom interaction were the most dominant categories of the 
selected critical incidents. As regards the context in which the selected incidents emerged, there 
were not distinct differences in the nature of critical incidents that the PTs selected through their 
observations of other teachers’ teaching and of their own. At the level of classroom management, 
the PTs found it more difficult to focus on the teacher-student interaction in their own teaching than 
in other teachers’ teaching. Nevertheless, when PTs reflected on their own teaching, they started to 
see more clearly the impact of teaching on students’ learning. One possible explanation could be 
that PTs’ engagement in analyzing other teachers’ teaching provided them a reflective stance 
towards their own teaching. A similar finding has been reported by Stockero (2008) who identified 
that PTs’ experiences in analyzing video lessons of other teachers can enhance deeper levels of 
reflection on their own teaching. Tracing PTs’ critical incidents, their interpretations and suggested 
teaching actions indicated shifts in their ways of noticing. Most PTs reached levels 3 and/or 4 of the 
Van Es’ framework (2011) in terms of what and how they notice realizing interrelationships 
between teaching and learning. This finding adds to existing research on developing structures in 
teacher education facilitating PTs’ noticing and enriches discussions that have taken place in 
previous CERME conferences (e.g., Potari et al., 2011). Integrating selection and reflection on 
critical incidents in teacher education provides a structured way that helps PTs to become aware of 
significant classroom interactions and to develop a critical way of addressing them. 
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In this paper, we present how experiences gained from a theory informed Lesson study in regard to 
a specific learning goal can be shared and used by other teachers in new contexts. A group of teachers 
worked together in a cyclic, iterative process of planning, evaluating and revising teaching. The aim 
was to provide possibilities for grade 2 and 3 students to become familiar with negative numbers. 
The teacher group draw the conclusion that the pupils needed to be able to differentiate some aspects 
of negative numbers. The conjecture was put to the test in a follow-up study with five new teachers 
and eight classes. One lesson was taught based on the empirical finding in the Lesson study. When 
learning gains from pre- to post-test in these classes were compared to those in the Lesson study, 
similarities were found.  

Keywords: Lesson study, sharing instructional products, negative numbers, variation theory. 

Introduction 
Morris and Hiebert (2011) have presented Lesson study as a model for transforming teachers’ craft 
knowledge into professional knowledge i.e. making it public, sharable, storable and verified as well 
as improved and should be organized around public changeable knowledge products. Their arguments 
are based on the necessity to reduce differences in classroom instruction (Morris & Hiebert, 2011, p. 
5). The aim of this paper is to illustrate and discuss what an instructional product, generated on the 
basis of a pedagogical theory and empirically grounded, could look like and whether making use of 
such a product can be productive to enhance student learning. We report on how a theory-framed 
version of lesson study – Learning study – can produce ‘instructional products’ useful outside the 
specific context. Insights gained from one Learning study (LrS) about how to enhance the learning 
of negative numbers were communicated and used by new teachers in new contexts.  

Lesson Study not just professional development  
Stigler and Hiebert (1999) pointed out the effectiveness of Japanese Lesson study (LS) model for 
improving teaching and learning of mathematics. There are extensive reports on the effectiveness of 
Lesson study for teachers’ improvement of teaching skills, how they learn to reflect, on changes in 
motivation and capacity to improve instruction and the development of content and pedagogical 
content knowledge (e.g. Lewis, Perry & Hurd, 2009). Furthermore, it is often pointed out that Lesson 
Study can promote the establishment of learning communities and teacher collaboration, a culture of 
mutual accountability, shared goals for instruction and a common language for analyzing instruction 
(e.g. Chichibu & Kihara 2013; Hunter & Back, 2011; Toshiya & Toshiyuki, 2013). To us, with these 
purposes, Lesson study will be restricted to a model for professional development only, not as a 
system that can generate new and relevant knowledge recognized as a legitimate knowledge source 
for professionals. 

Hiebert and Morris (2011) take Lesson study further when they promote it as a system for “the 
creation of shared instructional products that guide classroom teaching” (p. 5). ‘Instructional 



products’ should be designed with a specific learning goal in focus and detailed enough to guide 
classroom instruction. An instructional product is the current answer to common and shared problems 
on teaching and learning. It is tentative, changeable and thereby open to improvement. Therefore, 
such ‘local theories’ embedded in the instructional product must be communicated, shared and 
improved by other teachers in other contexts. In this way, they could be tested and verified under new 
and local conditions. 

Learning Study 
Learning study is a theory-informed version of Lesson study (Marton & Pang, 2003). It shares 
features with Lesson study, such as the collaboration among teachers and the iterative design of 
planning, implementing, observing and revising of the lesson, but it is framed by a theory of learning 
—variation theory (Marton, 2015). Just as with Lesson study, there are reports on the positive effects 
of Learning study on teachers’ professional development (e.g. Lo, Chik & Pang, 2006). Learning 
study is also a model for constructing knowledge concerning the objects of learning as well as the 
teaching-learning relationship. It takes the professional task as the point of departure and generates 
public and sharable knowledge for the improvement of teaching and learning, exactly in line with 
what Hiebert and Morris (2011) advocate.  

The knowledge produced in Learning study is an instructional product, not in terms of a lesson plan 
or specific teaching methods, but in terms of what is found to be necessary to learn in order to develop 
a specific understanding, skill or attitude. It is not about learning in a general sense, but in relation to 
specific learning goals (cf. Hiebert & Morris, 2011). In Learning study, variation theory serves as a 
tool for teachers to identify the necessary conditions of learning the object of learning. Learning, from 
this theoretical perspective, is seen as a change in one’s way of experiencing something. How we 
experience something has to do with what aspects we notice and become aware of. For every object 
of learning there are certain critical aspects necessary to discern.  

‘Critical aspects’ are dimensions of variation in the object of learning that the learner has not yet 
learned to discern and attend to. It has been suggested, however, that the critical aspects must be 
identified for every group of learners (Pang & Ki, 2016). Variation theory takes a relational 
perspective on learning, meaning that the critical aspects are not merely a feature of the content (a 
concept for instance), but a feature of the experienced object of learning. They cannot be derived at 
“from disciplinary knowledge alone or as taken-for-granted truths” (p. 333) Learners bring various 
experiences to the classroom and experience phenomena in different ways. Therefore, to identify the 
critical aspects, learners’ ways of experiencing must be taken into account. In Learning study, this is 
done by carefully diagnosing—via interviews and/or written tests—before and after the lesson. So, 
‘critical aspects’ should be defined in relation to the phenomenon in question as experienced by 
learners rather than in relation to what is deemed critical in the curriculum or subject discipline (Pang 
& Ki, 2016, p. 328) 

Marton (2015) asserts that one cannot become aware of new concepts or aspects without becoming 
aware of differences (i.e. variation). Variation theory is used when the teachers explore students’ prior 
understanding and to what extent the object of learning has been achieved by the learners after 
instruction. The exploration of teaching and learning in the Learning study entails identifying what 
aspects of the object of learning that are critical for learning and how to make it possible for the 



learners to experience them. When planning the lesson, variation is used for creating problems, 
example spaces and choosing representations for example. 

Teaching and learning negative numbers—some recommendations 
Gaining understanding of the nature of negative numbers has been problematic for early 
mathematicians to comprehend (Bishop et al., 2014), as well as for teachers to teach and learners to 
learn (e.g. Ball, 1993). The difficulties have to do with the meaning of the numerical system and the 
magnitude and direction of the number, the meaning of arithmetic operations, and the meaning of the 
minus sign (Altiparmak, & Özdoğan, 2010). For Swedish students the meaning of the minus sign is 
probably particularly difficult, since in Swedish a number like –2 (in English: negative two) is 
pronounced as ‘minus två’ (minus two) and written –2. Thus, there is no linguistic and symbolic 
difference between the minus as a sign for the operation and as a sign for the number.  

It has been recommended that teaching of negative numbers should take the point of departure in real 
life problems or situations known from the children’s experience and transformed into mathematical 
models. For instance, using ‘a house’ with floors above and below the ground floor, or a bird 
flying/diving above/below sea level, has been suggested (Ball, 1993). Usually in the Swedish 
mathematics curriculum negative numbers are contextualized within discussions about temperature 
below and above zero and with the help of the thermometer. However, there might be a risk with this. 
The number system and the ordering of integers might not be visible when negative numbers are 
talked about as ‘minus-degrees’ (in Swedish: ‘minus-grader’). Every child probably knows that it is 
colder when the temperature is –10 degrees C compared to a temperature of 3 degrees C. This may 
be confusing when they have to learn that –10 is a smaller number than 3. This was also found initially 
in the Learning study reported here. So, the teachers decided to use the number line only and talk 
about the numbers within a mathematical context instead of referring to temperature or depths. 

A Learning Study on expanding students’ number range from N->Z 
In the Learning study (LrS) one of the authors of this paper worked in collaboration with two primary 
school teachers and 64 students in four different classes in grade 2 and 3 (8–9 years old) in Sweden. 
The teachers wanted to extend the students’ experience of numbers to include the negative numbers 
also. In doing so, they explored what the students must learn—thus finding the critical aspects—in 
order to be familiar with integers and how to teach this in a way that would enhance the students’ 
learning.  

The LrS encompassed four cycles, that is, four lessons were taught with four different classes. A 
diagnostic pre- and post-test was given to the students. Results from this, together with a close 
analysis of the recordings of the lesson, gave insights into what is critical for learning and how the 
content must be handled to promote learning. Thus, when the learners failed to learn that which was 
targeted, they had to go deeply into the lesson and inquire how the content was handled and whether 
it was made possible to learn that which was intended. This analysis became the basis for the planning 
of the following lesson in the cycle, which was taught by a new teacher, and to new students, and 
again the recorded lesson and the diagnostic post-test are analyzed. The iteration proceeded until all 
classes were taught. Hypotheses about the critical aspects were tested in class. So, the critical aspects 
emerged as a result of trying them out in class and carefully analyzing students’ learning outcomes 
and what was made possible to learn in the lesson. When it was found that the learning outcomes 



were not as expected, the teachers had to consider the possibilities for learning during the lesson and, 
by being guided by variation theory, discuss learning in terms of discernment. As the process 
continued the critical aspects became more specified; from something to be discerned, to something 
that should be differentiated, namely: 

 To differentiate the value of two negative numbers 
 To differentiate the function of the minuend versus the function of the subtrahend in a 

subtraction 
 To differentiate the minus sign for negative numbers versus the minus sign for subtraction 

To get the students to discern the critical aspects, carefully constructed examples, based on the idea 
of variation/in-variance were used. So, for instance, the examples  and  (‘3’ varies; 
minuend/subtrahend) were contrasted as operations on the number line. The choice and character of 
the example space (Watson & Mason, 2006) was changed and developed during the process. It was 
not until lesson 4 that examples like  and  were implemented in the lesson, for 
example. Since the results on the post-test after lesson/class 4 were significantly better compared to 
the previous lessons, it was concluded that the examples chosen and how they were sequenced seemed 
to be important for the possibility to discern the critical aspects. 

Putting the conjecture to the test: The follow up study 
Lövström (2015) concludes that when the critical aspect was phrased in terms of differentiation, that 
is what things could be compared, it indicated not just what dimension that must be opened up, but 
also what values in that dimension that were critical and needed to be contrasted (two or more 
negative numbers). Thus, critical aspects in terms of differentiation highlight a specific subject matter 
and students’ experience of the content, and furthermore, provide directions for handling the content. 

To put the conjectures of the critical aspects identified in the LrS to the test, a follow-up study (FS) 
with eight classes of new learners (N=116) and five (partly) new teachers were conducted. All the 
teachers had more than 15 years of teaching experience. All but one were primary school teachers 
that were not specialized in mathematics. Three of the teachers taught two classes each. One of them 
had participated in the LrS and is one of the authors of this paper. All except one were, to a varying 
extent, familiar with variation theory. The teachers were selected on the basis of previous interest in 
Learning study and variation theory and asked to teach one lesson (three of the teachers in two 
different classes) about negative numbers. One of the classes was grade 7, a group of learners with 
difficulties in mathematics; all the other were grade 2 and 3. Swedish was the first language for the 
majority of the students, but several other languages were represented in all classes. The guardians 
had given their written consents to student participation. The students were given a test (with a few 
exceptions identical to the test in LrS) before and after the lesson. 

The FS was planned in a 3-hour meeting with the teachers and two of the authors of this paper. Results 
from the pre-tests in the eight classes were presented and discussed and it was found that the ‘new’ 
group of students had similar problems to the students in LrS. So, the critical aspects identified in LrS 
were assumed to be valid for the new group of students also. The results from LrS were presented to 
the teachers and the identified critical aspects were described and discussed. A video-recording of 
lesson 4 was observed by the group. Some sections were repeatedly paid attention to. It was specially 
observed and discussed in detail how the number line was used in the lesson. The aim was to conduct 



the eight lessons as similarly as possible in terms of how the critical aspects were handled. Similar, it 
was important that all the examples presented and discussed in lesson 4, were present in all the 
‘following up-lessons’ just as the usage of the number line. Except for these requirements, the 
teachers were free to arrange the lesson in their own fashion—to choose group- or individual work, 
for example.  

The FS did not have the same iterative design as the LrS. It was conducted in parallel during the same 
week. The lesson was conducted mainly in whole class, intersected with individual and/or group-
work. The interaction was more of a discussion between the teachers and the students with probing 
questions around the examples presented on the board. The examples used opened up dimensions of 
variation and were designed to make the critical aspects possible to discern. The teacher drew the 
learners’ attention to differences in the midst of similarities and the students were required to justify 
their answers, sometimes after discussion in peers/groups. The lessons lasted about 60 minutes. In 
our experience, in Swedish schools it is uncommon that such a long period of time is allocated to 
whole class teaching of mathematics among younger students. Still, the students seemed to remain 
concentrated and focused.  

The data consists of video-recordings of eight lessons, and results on four tasks (1, 3, 4 and 9) in the 
pre- and post-tests. Here, only results from pre- and post-test are drawn on. In task 1 (a–e), students 
should identify the biggest of five numbers. In a) all were positive numbers, b)-c) negative and 
positive numbers and zero, and e) negative numbers only. The object of learning was not preliminary 
to operate with negative numbers, but in order to test if the students were able to experience that there 
are numbers , operations with negative difference were chosen. So, task 3 (8 items) involved 
subtractions with positive or negative difference. The subtrahend and the minuend were positive 
numbers except in g) where the subtrahend was negative. Similarly, task 4 was a subtraction with 
negative difference. Here the students should also give a justification of their answer. Task 9 was 
about the difference of the meaning of the minus sign. The test comprised another four tasks not 
accounted for here.  

Some preliminary results based on a measurement of correct answers on the pre- and post-test are 
presented here. Results on the pre-test were compared to the post-test on each task and on a group 
level. A comparison between the LrS-group and the FS-group was also made. Preliminary results are 
presented in this paper.  

Results 
Preliminary results from the analysis of two tasks for all the groups are presented in Table 1 and 2. 

 

Item  a  b c d e 

Pre-test 113(97) 84(72) 104(90) 65(56) 34(29) 

Post-test 112(96) 102(87) 112(97) 97(84) 85(73) 

N=116 

Table 1: Numbers (percentage) of students who answered correctly on task 1, ordering of numbers 

In task 1 there were learning gains in terms of numbers and percentage of students who displayed the 
targeted experience of integers on all except one item. As can be seen from Table 1, the frequency of 



correct answers was higher on all items on the post-test, expect for a) (which had a high rate from the 
beginning). The highest increase is on d): from 56% to 84% and e): from 29% to 73% who answered 
correctly. Item d (negative numbers and zero) and particularly e) (negative numbers only) were 
initially more difficult than the others (lower scores on the pre-test compared to the others). Although 
significant progress was made, item d) and e) have lower scores on post-test compared to a-c. There 
were still students (15–26 %) who did not manage to find the biggest number among negative 
numbers or negative numbers and zero after the lesson. 

The analysis of task 3 and 4 (Subtraction pos./neg. difference) suggests improvement on all items 
except a) c) e) and f). These subtractions (positive difference) are well known to the students, but 
their encounter with subtractions with negative numbers might have confused some students.  

 

 Item a b* c d* e f g* h* 4 

Pre-
test 

113(97) 15(13) 105(90) 19(16) 115(99) 113(97) 11(9) 17(15) 17(15) 

Post-
test 

96(83) 57(49) 90(78) 62(53) 112(96) 110(95) 51(44) 52(45) 61(52) 

N=116 *negative difference 

Table 2: Numbers (percentage) of students who answered correctly in task 3 and 4 

The frequency of correct answers on the subtractions with negative difference is particularly 
interesting. Item b), d), g) and h) show a similar result. About half of the students could solve these 
correctly after being taught just one lesson. Before they were taught, the average frequency of correct 
answers on these items on the pre-test was slightly more than 10 % (13.6). So, there was a significant 
improvement on the post-test. 

Item g)  is perhaps the most interesting. This item had the lowest frequency of correct 
answers before the lesson. Only 9% managed this on the pre-test. 44% answered correctly on the 
post-test. To be able to solve , one must differentiate the minus sign as an operation sign 
and the sign for negative numbers. Task 9 was designed to test whether the learners could understand 
the two meanings of the minus sign. On the pre-test, 8 students (7%) could tell the difference between 
the minus sign in the operations  and  respectively. After the lesson, 42% 
answered correctly. 

Conclusions and discussion 
What has been reported here is not a description of the ‘best’ lesson design or an answer about to how 
to teach negative numbers. It is a theoretically and empirically grounded description of some 
necessary conditions for learning about negative numbers among young students, generated by a 
group of professionals. Our interpretation of the analysis so far is that, the simultaneous 
differentiation of the value of two negative numbers, the differentiation of the function of the minuend 
and subtrahend, together with differentiating the meaning of the minus sign, seem to be necessary 
conditions for learning about the nature of negative numbers. Although learning was improved, still 
there was a fairly large group of students who seemed not to have learned that which was targeted. 
So, the ‘instructional product’ is open for development and improvement. 



As was described above, finding the critical aspects is a transactional process comprising the learners, 
their learning (what they learn), what is targeted, or, using Dewey and Bentley’s (1949) description: 
a transaction of the known, the knowing and the known. This was demonstrated in the reported LrS; 
what was found to be critical emerged as the teachers got deeper understanding of how the learners 
responded to instruction, what was made possible (and not possible) to learn in the lesson in relation 
to the targeted ‘known’. The object of learning, in terms of what is critical for learning, is constituted 
in a transactional and continuing process in LrS. The instructional products produced in LrS are 
hypotheses of what is needed to learn, that can and must be tested and developed to deepen the 
understanding of teaching and learning. The object of learning and its critical aspects are dynamic 
and emergent, and this study supports this proposal. In this study, there are most likely things that 
have been taken for granted or even neglected that might be critical.  

Hiebert and Morris (2011) call for a need to accumulate evidence about what works and what does 
not across different classroom settings (p. 5). Our analysis suggests that the results for the FS-group 
on the post-tests reflect the results for the LrS-group after the lesson. Our study supports finding from 
Kullberg’s study (2012); when critical aspects generated in LrS become visible as dimensions of 
variation in new settings, similar learning outcomes are gained. This further suggests and points to 
possibilities that the development of effective ways of teaching could be shared among professionals. 
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The aim of this study is to investigate changes regarding a first-grade teacher’s quality of 
implementation of mathematical tasks within the scope of a professional development (PD) program. 
The quality of implementation of mathematical tasks was analyzed through the instructional quality 
framework developed by Stein and Kaufman (2010) including maintaining cognitive demand, 
attending to students’ thinking and the intellectual authority in mathematical reasoning. This is a 
qualitative case study focusing on the teaching of a first-grade teacher with 40-year experience. 13 
lessons were video-recorded and weekly meetings were audio-recorded. All data were transcribed 
for content analysis. The results indicated that there was a slightly positive change in quality of 
implementation of tasks throughout the PD program.  

Keywords: Mathematical tasks, cognitive demand (CD) of a task, intellectual authority, student 
thinking, quality of implementation. 

Introduction 
Mathematical tasks are the units of instruction that create an environment for students to work 
mathematically. To explore mathematics instruction and potential changes in it, an investigation of 
teachers’ selection and implementation of mathematical tasks is necessary (Hsu, 2013). Stein et. al. 
(2000) characterized use of a mathematical task through four successive phases in Mathematical Task 
Framework (MTF); (1) task as appears in curricular materials, (2) task as set up in the classroom, (3) 
task as enacted in the classroom and (4) student learning. Teachers select or develop, present and 
implement mathematical tasks in their instructional processes.  

Stein and Kaufman (2010) defined the high-quality mathematics lessons through the maintenance of 
high level cognitive demands (CDs), attending to student thinking and vesting intellectual authority 
in mathematical reasoning. The first is to maintain a high level CD through the steps of MTF. Doyle 
(1988) described cognitive demand of a task as the cognitive processes necessary for successful 
completion of the task. If mathematical tasks require high CD level, these tasks need to foster 
students’ high level cognitive processes such as reasoning about the mathematics concepts involved, 
problem solving, making justifications, making sense of representations etc. Maintaining high CD of 
a task would require sustaining a focus on such processes through the steps of MTF. 

Based on Doyle’s (1988) work, Stein et al. (2000) divided mathematical tasks into two categories as 
high level CD and low level CD. Each category consists of two subcategories. Memorization tasks 
and procedures without connection to mathematical concepts tasks (P without C) belong to low level 
CD. The procedures with connection to mathematical concepts tasks (P with C) and doing 
mathematics tasks are high level CD (see Stein et. al., 2000 for a detailed explanation of these 
categories in Task Analysis Guide). Literature indicates that students show their best performance on 
reasoning and problem solving when tasks are maintained in high level CD (Stein et. al., 2000). 



However, in most practices high level CD cannot be maintained and there is a decline in CD during 
set up and implementation of tasks (Tekkumru-Kisa & Stein, 2015). 

Attending to students’ thinking is about paying attention to what students tell regarding mathematics 
(Stein & Kaufman, 2010). The goal is to gather students' strategies, representations, understandings 
or thinking, and to use them in classroom discussion in order to support conceptual understanding. 
Vesting intellectual authority in mathematical reasoning emphasizes that the authority in the 
classroom needs to be in mathematics itself, especially in mathematical reasoning. Therefore, teachers 
are not acting as the judge to tell whether student responses are right or wrong (Stein & Kaufman, 
2010).  

Approaches to mathematics teaching have been going through changes in many countries in the last 
two decades. The emphases on problem-solving and reasoning for conceptual understanding, i.e. 
reflections of high levels of CD, are prominent in many countries’ recently revised mathematics 
curricula and curricular materials. At times of change, teachers are the agents who enact curricular 
and pedagogical changes by arranging the learning environments according to the needs of students. 
However, teachers have difficulties while adapting new approaches in implementing new curriculum 
(Davis, 2003). Even though teachers are expected to implement tasks focusing on conceptual 
understanding, studies demonstrate that they continue to teach mathematics in a traditional way; 
focusing on practicing procedural skills (Hsu, 2013; Stein et. al.,2000). In Turkey, where there are 
similar changes in the curriculum, mathematical tasks in textbooks are aiming to reflect this focus 
(Ubuz et. al., 2010). Thus, teachers’ implementation of mathematical tasks requires a close attention 
in this context.  

In various international studies, the whole process in MTF has been investigated considering the 
change in curricular approach (e.g. Charamlambous, 2010; Stein & Kaufman, 2010). The studies 
mostly focus on how CD of a task is maintained through the phases of MTF (e.g. Charalambous, 
2010). In the context of Turkey, studies related to investigating teachers’ implementation of 
mathematical tasks are scarce (e.g. Ubuz & Sarpkaya, 2014). More specifically, according to our 
knowledge there has not been any study conducted considering all three components of instructional 
quality.  

Due to demands of a new curriculum from teachers, we conducted a professional development (PD) 
program in a private primary school in Turkey. We aimed to investigate how the quality of teachers' 
implementation of mathematical tasks progressed through the PD program. The current paper reports 
a part of this project. The aim of this article is to examine the case of a first-grade classroom teacher’s 
quality of implementation of mathematical tasks throughout a year. The research question is: 

How does a first-grade teacher's quality of implementation of mathematical tasks change 
during a professional development program? 

Method 
A qualitative case study approach was adopted, aiming for in-depth analysis of a particular complex 
situation in a realistic context. Neşe (pseudonym) was a first-grade teacher at a small private primary 
school in İstanbul and was one of the participants who joined the PD program. We chose the case of 
Neşe to further analyze in this study because of her experience in teaching and her initial resistance 
to changes regarding the quality of implementation of mathematical tasks.  



The participant 

Neşe had approximately 40 years of experience in teaching as a classroom teacher and had deeply 
rooted classroom practices. In her classroom, there were 16 students whose SES backgrounds varied 
from middle to high. At the beginning of the study, Neşe reported that she already taught in a way to 
foster high level cognitive processing. When she acknowledged that she could not follow the kind of 
teaching suggested by the quality of implementation of tasks framework, she highlighted that her first 
graders required detailed teacher directions of what needed to be done, tasks focusing on singular 
skills or knowledge at a time. She wanted to spoon-feed them since she believed the students needed 
experiencing success in tasks. She explicitly referred to her experience as a reason for her resistance 
to making changes in her practice. Neşe was a typical case of experienced teachers with deep-rooted 
beliefs and skeptical to new approaches (Ghaith & Yaghi, 1997). 

Data collection 

In the PD program, we adopted Borko’s (2004) phase 1 teacher professional development research 
approach through the collaboration of teacher and researchers in one school. We, as two mathematics 
education researchers, aimed to create a community of learners where researchers and teachers 
discussed their ideas together. Classroom observations were done approximately twice in every month. 
While observing the classrooms, we were nonparticipant observers who took field-notes and video-
recorded the lesson. The video recordings were used for two purposes; (1) collecting research data and 
(2) supporting teacher reflection. We had weekly meetings with teachers to discuss their implementation 
of mathematical tasks based on the videos. The teachers watched their videos before the meetings and 
reflected on them. There were 23 meetings lasted for 40 minutes and were audio-recorded. Furthermore, 
mathematics lesson plans for the coming week were also discussed. We gave suggestions for lesson 
planning and teaching but made sure teachers made the final decisions. Besides, in order to explore 
MTF's first step, before observation, we wanted teachers to send us their plans for the lessons to be 
observed. 13 lesson observations were conducted in Neşe’s classroom. 44 mathematical tasks were 
implemented in these lessons. However, not all tasks were present in the lesson plans Neşe provided. 

Data analysis 

For the quality of implementation of mathematical tasks, all videos were transcribed and coded using 
the Classroom Observation Coding Instrument (Stein & Kaufman, 2010). Based on the instrument, 
we coded intellectual authority in mathematical reasoning ranging from 0 to 2 and attending to 
students thinking ranging from 0 to 3. While coding, the enactment episodes of instructional tasks 
were used as the unit of analysis. For the maintenance of CD, we used the paths provided by 
Charalambous (2010) (see Figure 1). For interrater reliability, two mathematics education researchers 
coded 4 of the 13 lessons including 11 of the 44 tasks independently. Cohen’s kappa was calculated 
to check agreement between raters for coding CD of tasks, CD of task set-up, CD of task enactment, 
student thinking and intellectual authority. Cohen’s kappa values were κ =.784, κ=.694, κ =.792, κ 
=1.00, and κ =. 792 respectively, which shows a high level of agreement between raters. Beyond the 
provision of descriptive statistics, we will present key episodes from her teaching practice and 
comments in the meetings to document teacher resistance to change and teacher change in terms of 
her quality of implementation of tasks.  



 
Figure 1: Paths for the maintenance of CD (Charalambous, 2010, p.258) 

Results 
Neşe used 44 tasks in total throughout 13 lessons. Sixteen of 44 tasks were not laid out explicitly in 
the lesson plans Neşe provided. Table 1 summarizes CDs of the tasks with respect to semesters. The 
table shows that about 61% of the tasks in the second semester were set up as cognitively demanding 
compared with only about 43% of the tasks in the first semester. In the first semester, about 57% of 
the tasks Neşe presented required low cognitive processes (i.e. recalling information, applying 
algorithms). Table 1 also indicates similar trends in enactment phase; Neşe implemented about 61% 
of the tasks at a high level in the semester 2 while she enacted about 33% of the tasks at this level in 
the semester 1. When the maintenance of CD was analyzed, it was observed that Neşe mainly 
maintained CD at its intended level for all phases for both semesters. While Neşe maintained about 
59% of first semester’s tasks at a low-level (Path B), she maintained 73% of second semester’s tasks 
at a high level (Path A). For only two tasks throughout the whole year, she did not maintain 
cognitively challenging tasks; the decline occurred during enactment phase (Path C). Analyses 
showed that Neşe’s choice of tasks determined the level of CD to be maintained.  

 Semester 1 Semester 2 
CD levels of 
tasks 

Planning Set-up Enactment Planning Set-up Enactment 
f % f % f % f % f % f % 

Memorization 3 14.3 3 14.3 3 14.3 0 0 0 0 0 0 
P without C 

7 33.3 9 42.9 11 52.4 3 13 9 
39.
1 

9 
39.
1 

P with C 
6 28.6 7 33.3 7 33.3 6 26.1 11 

47.
8 

11 
47.
8 

Doing math 1 4.8 2 9.5 0 0 2 8.7 3 13 3 13 
Not present 4 19 0 0 0 0 12 52.2 0 0 0 0 

Table 1: Descriptive analysis of CD levels of tasks 

Table 2 shows the limited work Neşe did to uncover student thinking in the first semester (i.e. she 
mostly asked for short or one-word answers). She did not connect students’ responses in the 
discussion. However, there were slight differences in her use of tasks where she used students’ 
answers to direct and connect the discussion on 8.7% of the tasks in semester 2. She demanded 
explanations from the students, called on certain students for directing the discussion to specific 
outcomes and connected the discussion for a fruitful experience for students as a classroom 
community.  



 Semester 1 Semester 2 
Categories for attending to student thinking f % f % 
(0) no attention to student thinking 6 28.6 6 26.1 
(1) limited attention - some student explanation 11 52.4 10 43.5 
(2) purposeful selection of responses, attention, but no connected 
discussion 

4 19.0 5 21.7 

(3) purposeful selection, attention and connected discussion 0 0 2 8.7 
Table 2: Descriptive analysis of attending to student thinking 

Table 3 shows that the nature of Neşe’s practices on judging the correctness of students’ work was 
slightly different in the second semester. She was in charge of deciding what was correct or not for 
most of the tasks in semester 1. Although she wanted students to prove or check the correctness via 
mathematical tools, she was the one confirming students’ answers at the end. In semester 2, she 
continued with similar teaching practices; but she also experienced teaching episodes where 
mathematics was the tool students used to decide on the correctness.  

 Semester 1 Semester 2 

Categories for intellectual authority f % f % 
(0) judgments of correctness derived from teacher or text  11 52.4 7 30.4 
(1) judgments of correctness sometimes derived from teacher or text, 
but also some appeals to mathematical reasoning  10 47.6 14 60.9 

(2) judgments of correctness derived from mathematical reasoning  0 0 2 8.7 
Table 3: Descriptive analysis of intellectual authority in mathematical reasoning  

Illustrative episodes from Neşe’s lessons  

In this part, we will present two episodes from Neşe’s quality of implementation of tasks. The first 
episode illustrates Neşe’s common use of non-challenging, low level CD tasks throughout all phases 
of MTF. There were elements representing her resistance to changing her practice. The second 
episode presents how Neşe maintained a cognitively demanding task through letting her students 
struggle and encouraging their ideas to come out, practice emerging more prominently in the second 
semester. Neşe’s comments from meetings about the tasks in the episodes gave insights about the 
nature of change in her practice.  

Making 10. This episode is from a lesson on pairs of numbers that make 10, covered at the beginning 
of the PD program. In the plan of the lesson, Neşe stated the lesson goal as discovering the pairs of 
numbers that make 10. The task in the episode included nine possible pairs that would make 10. The 
students needed to find one of the pairs to make 10. The task and the coding decisions for this episode 
are presented in Table 4. While implementing the tasks, Neşe directed students to count the flowers 
as seen in the sample item. In doing so, she made available the unknown to the students. Neşe 
eliminated opportunities for students to explore the pairs that make 10 by focusing on the counting 
procedure and finding the answer. This led students not to use high cognitive processes, or think about 
the operation they were engaged in; counting the flowers was enough for the completion of the task. 
Neşe had similar trends in her implementations of the first semester’s tasks. 

  



The Task Coding Decisions 

How many more needed to make 10? 

Sample item: 2 +  = 10  

Sample episode:  
Neşe: Elif, there are 2 flowers. Which 
number should I add to make 10? I can 
count these flowers to find out. Let’s 
count. 
Student:One, two, three, four, five, six, 
seven, eight. Eight. 
Neşe: Well done, this is it! 

The task was coded as procedures without connections 
for task selection, set-up, and enactment. Neşe expected 
students to count the flowers to decide what would be the 
unknown of the pair that makes 10. Since the focus was 
on counting the flowers, students enacted the task by not 
relating with pairs of 10, but counting the flowers and 
writing the unknown number. During instruction, she did 
not attend student thinking; she asked for completion of 
the task. The judgments regarding correctness were 
derived from the teacher; she checked students’ work 
constantly.  

Table 4: Making 10 task and coding decisions of the making 10 task 

In the follow-up meeting of the lesson, Neşe did not prefer to comment on the episode before we 
made any comments. We pointed out the discrepancies between the CD of Neşe’s expectations from 
the students as reflected in her activity and the goal she noted down for this task. We discussed the 
importance of giving opportunities for higher-level thinking and mechanisms for shifting teaching 
towards this aim. After such comments from the researchers, Neşe wanted us to lower our 
expectations from her and emphasized her teaching habits by saying: 

Neşe: If I bring open-ended tasks to the classroom, the students could not complete the 
task. I need to use such repetitive activities for students to learn. I have been using 
teacher-centered approach for years. Do not expect me to improve my teaching. At 
most, two years later I will be retired from teaching. Do not try hard for me. 
Contribute to younger teachers (personal communication, November 26, 2014)  

Yet we emphasized that we believed that there would be changes if she wished to work together. This 
extract shows that Neşe held on to her experiences in teaching and her expectations about student 
learning. Neşe was reluctant to change because she wanted to retire from teaching in two years. This 
reaction is an evidence of her resistance to change her implementation of tasks.  

Subtraction Problem. This episode is from a lesson on problem solving using subtraction, covered 
towards the end of the PD program. The task and coding decisions are presented in Table 5. During 
the episode, Neşe expected students to analyze the problem and to explain their thinking by modeling 
the problem and writing mathematical sentences. Therefore, she maintained the complexity of the 
task by pressing for meaningful explanations so that the students realized the unnecessary information 
by asking, “Why do you think it is unnecessary information?”, “Can you explain in more detail?”, 
“Why don’t I use money?” “Why is the result 11, not 14 or not 27?” In the post-lesson meeting, Neşe 
examined her lesson in detail before the researchers made any comments. She referred to the 
maintenance of CD in her comments. She had certain concerns about the set-up phase of the task after 
watching her practice.  

The Task Coding Decisions 

Examine the following problem situation 
by modeling it. Write mathematical 

 Contextualized task was coded as procedures with 
connections for all phases of MTF. Applying general 
subtraction procedures were necessary with the need of 



sentences and solve it. Explain your 
reasoning.  

**There are 6 roses in our vase. Dad 
brought 8 tulips too. Mom told that dad 
spent 10 ₺ for the tulips. Next day, mom 
realized 3 flowers faded. How many 
flowers are left in the vase? 

conceptual connections to complete the task. Neşe 
expected students to connect multiple representations by 
asking for a model and mathematical sentences. She 
attended to student thinking by demanding justifications 
from students. She mostly directed students to the models 
for checking the correctness of their answers. 

Table 5: Subtraction problem task and its coding decisions 

In the meeting following classroom observation, Neşe stated that the task was too abstract and hard 
for the students. Then she pointed to getting students to struggle in order to construct meaning through 
abstraction as a necessary practice for learning:  

Neşe: It would not be easy for students, but it is good to present the task abstractly. It is 
challenging for them and for me too. I think I maintained the high level CD. I did 
not just expect them to apply the subtraction procedure. I wanted them to question 
the problem situation, and the unnecessary information within the problem. I 
wanted them to explain their thinking by using manipulatives. It took a long time, 
but it was necessary for students to experience high level cognitive processes. 
(personal communication, May 6, 2015).  

This episode and Neşe’s interpretations showed the importance she gave to supporting students’ 
reasoning in her teaching practice. The focus on explanations and justifications helped the teacher 
implement the task with high quality. The post-lesson interview provided evidence for teacher’s 
change in her emerging practice and comments during the PD program.  

Discussion and conclusion 
This study aimed to investigate the changes in a first-grade teacher’s quality of implementation of 
mathematical tasks during a PD program. Neşe, our case, was one of the experienced teachers having 
difficulties with adapting educational innovations into their practices as illustrated in the literature 
(Ghaith & Yaghi, 1997). The PD program aimed to meet the needs of new approaches to mathematics 
education. The results indicated a slight positive difference in Neşe’s practices between first semester 
and second semester based on maintenance of high levels of CD, attending to student thinking and 
intellectual authority. The teaching episodes showed that the PD program contributed to the teacher’s 
approach towards implementing high quality of tasks that focus on problem-solving, reasoning and 
conceptual understanding (Stein & Kaufman, 2010). Neşe was resistant to change at the beginning of 
the PD program; her selection and implementation of tasks were low level CD in general (e.g. the 
making 10 task). However, high expectations from the researchers and the post-lesson interviews 
persistently focusing on the quality of implementation of tasks contributed to emerging changes in 
Neşe’s teaching practice as well as the nature of her comments (e.g. the subtraction problem task). 
This study contributes to the existing body of literature on change of teachers’ practices about the 
implementation of mathematical tasks within the context of a PD program. This study might inform 
future studies to explore facilitators’ actions that lead to change in teacher practice. Further research 
might explore how change occurs in an experienced teacher practice to work with other experienced 
teachers. Especially in Turkey, there are a limited number of studies related to the classroom practices 



of primary school teachers in a climate of change in curricular approaches (e.g. Ubuz & Sarpkaya, 
2014). Results of this study provide information about mechanisms of change in context and 
contribute to the development of larger scale PD programs.  

Additional information 
Work in this paper was supported by a grant from Boğaziçi University Scientific Research Projects 
(BAP) Fund, with project code 15D01P1 and project number 9420. 
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This paper stems from research on mathematics teachers’ participation in a particular collaborative 
learning process that addresses the issue of mathematical communication and mathematical 
reasoning in relation to the teaching of algebra. Although results from the developmental research 
revealed changes in the working group’s meaning making about mathematical communication and 
reasoning, whether these changes are long-term and influence the teachers’ mathematics teaching 
over time remains unclear. The aim of this paper is to discuss possible theoretical frameworks and 
ways of understanding mathematics teachers’ long-term learning about mathematical 
communication and reasoning by describing what they can learn in an organized community of 
practice (Wenger 1998) when working with key mathematical issues. I will use the data and results 
from the developmental research to design another study on long-term learning. 

Keywords: Collaborative learning, long-term learning, mathematical communication, mathematical 
reasoning, mathematics teaching.  

Introduction 
Changing mathematics teaching is a complex process that requires the improved alignment of theory 
and practice (Sowder 2007). To that end research has failed to focus on answering questions about 
how mathematics teaching can change as a result of collaborative teacher learning projects (Sowder 
2007). In this paper, I present an earlier study (Sterner 2015) as a background for a discussion of 
potential ways of conducting further research on understanding what a developmental research 
project can achieve in three years after its completion. The previous study addressed a school 
developmental project in mathematics in a middle sized community in Sweden. Figure 1 illustrates 
the background of the study and a possible direction for further research. 

 

Figure 1: The study’s chronological development.   

The first section of this paper focusses on the learning process and results of a working group (i.e. the 
reflection group) that formed part of the developmental research study (Fig. 1). The second section 
comprises questions about possible ways to conduct further research three years after the study’s 
completion. The bulk of research in the field of teacher learning and development has indicated the 
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failure of teachers to learn how to promote and support teaching and student learning (e.g. Borko 
2004; Opfer & Pedder 2011; Sowder 2007). New issues emerged during and after the previous study, 
including ones addressing what happened in mathematics teaching after the completion of 
collaboration in the reflection group and how research on mathematics teaching can integrate the 
significance of context. Among other questions, whether we can listen to teachers’ voices (Potari, 
Figeiras, Mosvold, Sakonidis & Skott 2015, p. 2972 - 2973), and what comes to mind when teachers 
listen to their own narratives three years after the completion of work in a reflection group are of 
particular importance (Fig. 1). 

Background   
As Figure 1 illustrates, results from a pilot study (November 2012 – February 2013) revealed 
teachers’ difficulties with describing the concepts of mathematical communication and reasoning, as 
well as with applying those concepts in their teaching. Based on the results, the main study (Sterner 
2015) was designed as a collaborative development initiative in a working group called reflection 
group. The author and five mathematics teachers in grades 1-6 collaborated on the key issue of 
mathematical communication and reasoning in relation to their teaching of algebra. Since the 
reflection group met monthly for a year the study can be characterised as developmental research, 
which Jaworski and Goodchild (2006) have defined as:  

Research which both studies the developmental process and, simultaneously, promotes 
development through engagement and questioning (p. 353). 

The developmental work in this study addressed change achieved in an ongoing investigative process 
which occurred in parallel with the active creation of the participants’ meaning making related to the 
key issue. However, as Goodchild (2008) pointed out, transformations through such dialectic cyclical 
processes of research and development are complex. In a literature review, Sowder (2007, p. 158) 
outlined 10 important issues facing mathematics teachers’ development. Three of those issues were 
of specific importance to the study at hand and constituted the underlying questions addressed in the 
developmental research study:  

1. How do teachers learn from their professional communities about teaching mathematics?  

2. What can teachers learn from investigating their own teaching of mathematics?  

3. What can be learned from research on teacher change?  

In this paper, I discuss theoretical frameworks for understanding mathematics teachers’ sustainable 
and long-term learning by describing what teachers can learn in an organised community of practice 
(Wenger 1998) addressing a key mathematical issue. The teachers in the reflection group wanted to 
develop their understanding of communication in mathematics teaching in order to stimulate 
mathematical reasoning in their own teaching of algebra. 

Methodology  
The study derived from a developmental project that adopted the perspective of collaborative learning 
among mathematics teachers and a researcher when designing tasks and environments to investigate 



students’ learning of mathematical reasoning related to algebra. A socio-cultural approach was 
adopted and the focus of the study was the learning process of the reflection group.  

The theoretical perspective employed was that of communities of practice (Wenger 1998), in which 
learning is an aspect of participation in a social practice, whose participants engage in the negotiation 
of meaning (Wenger 1998). The theory of communities of practice (Wenger 1998) focusses on 
meaning making, participants’ learning, and their reification of the key issue in a social context. 
Negotiating meaning is a central and dynamic process when teachers participate and reify. In that 
sense the reflection group’s joint enterprise (Wenger 1998) was its members to understand more about 
communication and reasoning in their own mathematics teaching.  

The process in the reflection group concentrated on two interacting parts: participation and reification 
(Wenger 1998). Framing the case as a community of practice shed light on the teachers’ negotiation 
of meaning. At the same time the negotiation of their experience with teaching and learning related 
the key issue of mathematical communication and reasoning to their teaching of algebra.  

The developmental research cycle method (Goodchild 2008) and the theory of communities of 
practice (Wenger 1998) together shaped the methodology of the study (Fig. 2). Developmental 
research and choice of methodology were intended to provide duality between a developmental and 
a research process over time and to enable a participant’s perspective. Figure 2 illustrates my 
interpretation of Goodchild’s (2008, p. 8) schematic figure of the developmental research cycle.  

 

Figure 2: Interpretation of the developmental research cycle (Goodchild 2008, p. 208) 

This study draws upon the idea that mathematics teachers’ professional development should be based 
on their own classroom practice and students’ learning (e.g., Broodie 2014; Goodchild 2014; 
Goodchild, Fuglestad & Jaworski 2013; Kazemi & Franke 2004; Matos, Powell & Sztajn 2009). The 
reflection group constituted a learning community that reflected on their teaching practices as well as 
on their students’ mathematical communication and reasoning related to algebra. Working 
collaboratively, the mathematics teachers developed a shared repertoire (Wenger 1998) of the key 
issue, mathematical communication and reasoning in relation to their teaching of algebra. 
Developmental research represents a methodology based on interacting cycles of research and 
development (Goodchild 2008). As illustrated in Figure 2, the developmental research cycle 
constitutes the largest ellipse that spans the entire study since a cyclical process clearly exists between 
development and research. The ellipse on the left, representing the developmental cycle (A-E), 



illustrates the work performed in and organisation of the reflection group (Sterner 2015). The 
developmental process appears as a cycle between a practical experiment and a thought experiment 
(Fig. 2). Every meeting of the reflection group were started at phase C (i.e. common reflections, 
challenges and questions and activities completed by the students when working on mathematical 
reasoning in algebra). This meetings were recorded. The ellipse on the furthest left, representing 
mathematics teaching (Fig. 2), illustrates the teachers’ own practice in which they attempt to align 
and adjust common mathematical tasks and make individual reflections. Figure 3 illustrates 
systematic reflections in the process and the three levels of reflection in the reflection group. 
 

 
Figure 3: Systematic reflections among participants in the reflection group 

The discussions in the reflection group provided empirical data that nurtured the research cycle. In 
Figure 2 the research process appears as a cyclical process between global and local theories. My 
interpretation of global theories (Goodchild 2008) is comparable to a theory-guided design research 
approach (Gravemeijer 1994; Gravemeijer & Cobb 2013) that in turn produces new theories 
(Gravemeijer 1994; Goodchild 2008). The research process guides the developmental cycle by means 
of local theories, which nurture the research cycle in the form of thought experiments and new 
questions. Reflecting together in the reflection group (phase C, Fig. 2) and the challenges of group 
members’ own teaching resulted in problematizing questions.  

Analysis and results 
The analysis of the reflection group’s discussions involved three steps. The first two continued 
throughout the developmental research process and constituted tools used for reflection in the 
reflection group (Fig. 3). The third step of analysis occurred following the completion of work in the 
reflection group. All three analyses were based on Wenger’s (1998) concepts of participants’ meaning 
making, reification and shared repertoire related to the key issue. The first two analyses and the 
preliminary results motivated the reflection group to negotiate their meanings of the key issue and 
wielded questions about what the group needs to discuss in terms of mathematical communication 
and reasoning. The reflection group returned to the preliminary results of analyses in order to identify 
further opportunities for development (Goodchild et al. 2013). As a participant researcher, I provided 
reflection to the group members with “findings of the research” and problematizing questions based 
on their own thoughts and questions. 

During the ongoing data analysis from the reflection group discussions, new questions emerged when 
participants problematized daily mathematics teaching practices and became aware of new questions 
and challenges in their practice. The key principle in that process was reflection on three levels, as 
illustrated in Figure 3, since an essential component of developmental research is participants’ 
interpretation (Kvale & Brinkman 2009). Wenger’s (1998) modes of belonging (i.e engagement, 
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alignment and imagination) served as the participants’ means for aligning and changing the 
discussions and activities of the reflection group. Those alignments and changes derived from 
participants’ negotiation of meaning and reification of the key issue. The following dialogue from the 
initial analysis reveals that participants’ shared repertoire concerns their frustration with failing to 
understand the meaning of reasoning in mathematics teaching.  

Majken: There is, generally speaking, no resistance among the students to conducting 
mathematical reasoning, but when we tell them to do so, they have no idea what it means. 

Irma: We need to provide them with tools that enable them to practise mathematical 
reasoning. 

Majken: But how can we do it, when we don’t know the meaning of mathematical 
reasoning ourselves? 

The dialogue led to consider textual content of mathematics as a science and in teaching from 
Lampert’ (1990; 2001) and the National Council of Teachers of Mathematics (2008). Lampert (1990; 
2001) described the science of mathematics as the formulation of assumptions followed by 
investigations to verify or refute them. When it comes to learning from a participant perspective, 
Lampert (2001) has outlined how she stimulated students’ mathematical reasoning by encouraging 
them to make a mathematical assumption (conjecture) about, for example, a strategy or a solution. 
She also stressed the importance of advancing a plausible mathematical justification for the 
assumption that can be explored and verified. This dynamics exemplifies how reflection group 
members returned to the analysis and its results.  

The textual content of strategies for mathematical reasoning in teaching suggested by from Lampert 
(1990; 2001) and the National Council of Teachers of Mathematics (2008) can be global theories 
transformed into local ones (Fig. 2). During discussions and activities participants aligned and 
developed local theories into a practical experiment (Fig. 2), which they sought to align for 
implementation in their own mathematics teaching. The teachers attempted to support their students 
in using the strategies for mathematical reasoning and to conceptualise mathematical reasoning as a 
cyclic process of exploration, conjecture and justification. The quote bellow is from the reflection 
group. The students have worked with equations and to concretize that 𝑥 can have different values, 
the students used boxes with different amounts of beans.  

Irma: […] the strategies for ”the reasoning cycle” (conjecture, justification and 
exploration) helped both me (in grade 4) to understand the students’ mathematical thinking. 
The students worked with the equation 3𝑥 + 3 = 2𝑥 + 5 and the students had to determine 
the value of 𝑥. I saw differences between students who made a wild guess and students 
who argued for their assumptions e.g. [… if we imagine that 𝑥 represent the boxes with 
beans. In each box there is same number of beans, we don´t know the amount yet. We need 
to balance the left and right side… if we reduce the same amount of boxes (2𝑥) from the 
both side of the equal sign, what will happen then?] 

Irma gives a student example of an initial mathematical reasoning. Later on the reflection group 
discussed situations from their own mathematical teaching in terms of how and when mathematical 
reasoning occurred and interpreted why. In the reflection group the negotiation of meaning centered 
on teachers’ awareness of stimulating students to “become involved in the reasoning cycle of” 



exploration, conjecture and justification (Lampert 2001; the National Council of Teachers of 
Mathematics 2008). The teachers reflected on and interpreted their own teaching and used a thought 
experiment as a form of individual experience and reflection (Fig. 3). Ongoing analysis revealed how 
participants’ discussions and shared repertoire about the key issue changed over time. As a participant 
researcher, my strategy was to focus on questions that arose in the reflection group and search for 
mathematical education theories that problematized the teachers’ challenges and questions 
(Goodchild 2008) in thought experiments (Fig. 2).  

Results and conclusions 
I investigated how the reflection group developed their meaning making and shared repertoire related 
to mathematical communication and reasoning, which promoted a change in the members’ ways of 
communicating about mathematics teaching in relation to students’ mathematical communication and 
mathematical reasoning. Four relevant changes in the mathematics teaching were identified in the 
reflection group’s discussions and learning. The changes ranged from understanding communication 
and reasoning to identifying, interpreting, applying and practising that reasoning. Teachers in the 
reflection group also changed their approach to discussion. In the initial stage, they achieved 
consensus, but gradually adopted a positive yet critical approach in which they problematized the 
process of learning in and from daily practice (Sterner 2015). The three levels of reflection (individual 
and shared reflections and the researcher’s reflection on the preliminary outcome in the reflection 
group) resulted in discussions that promoted new and meaningful ways to communicate 
mathematically and stimulate mathematical reasoning in algebra. This methodology could be a way 
of linking the activities of students and teachers. 

Ultimately, in response to Potari et al.’s (2015, p. 2,972) ‘How can we link students’ activity to 
teachers’ activity’, the present study demonstrates the importance of linking research and 
development in order to enable teachers to learn about their own mathematics teaching and students’ 
learning. Moreover it provides a response to Sowder’s (2007, p.158) questions; ‘How do teachers 
learn from their professional communities about teaching mathematics’ and ‘What can teachers learn 
from investigating their own teaching of mathematics’ by indicating the combined method of the 
developmental research cycle (Goodchild 2008) and the theory of communities of practice (Wenger 
1998), along with reflection on three levels (Fig. 3) allowed using the results and questions that 
emerged in the reflection group.  

Implications and further research  

The main study, between March 2013 and January 2014 (Fig. 1) focused on a group’s learning 
process, the group’s meaning making of the key issue. The third question from Sowder (2007) ‘What 
can be learned from research on teacher change’ found a partial answer. Results of the study 
demonstrate what can happen in the change process when a reflection group begins to work actively. 
On that note, other questions are whether mathematics teachers’ activities and shifts in collaborative 
learning change their mathematics teaching and whether teachers’ meaning making and their shared 
repertoire about communication and reasoning in mathematics teaching influence their teaching and 
persisted three years later. Since I am curious about teachers’ learning from a long-term, sustainable 



perspective, one question I will continue to carry with me comes from the last meeting in the reflection 
group, when one of the teachers, Clara said: 

Clara: I’m worried about myself. It’s very easy to sit back and fall into old habits when 
we no longer meet for reflection. What will my teaching be like now? 

As Clara suggests, a question not answered in this study is whether teachers’ activities and the shift 
in their approach in the discussion can change their mathematical teaching shortly after and also three 
years later.  

Possible new routes and issues three years after the completion of the reflection group 

The research in the reflection group involved the group’s process of learning about the key issue of 
communication and reasoning. The teachers’ meaning making and shared repertoire (Wenger 1998) 
about that issue shifted from understanding to identifying, interpreting, applying and practising 
mathematical reasoning. The present study does not provide answers about what happened in the light 
of the grey ellipse representing mathematics teaching in Figure 2 or what happened to the teachers’ 
thoughts and their mathematical teaching three years later. What questions will arise when the five 
teachers listen to the interviews they gave in 2014, after the completion of work in the reflection 
group and what thoughts will they have on hearing their own narratives? Will it be possible to use the 
same theory of communities of practice (Wenger 1998) to analyse the teachers’ individual reflections 
when they listen to their own voices from those interviews? Further research is necessary to 
understand sustainable, long-term learning in this case whether the mathematics teachers’ activities 
and shifts in their collaborative learning actually changed their mathematics teaching over time. What 
roles, if any, do teachers’ discussions changed meaning making and changed shared repertoire about 
mathematical communication and reasoning play in their teaching in a long-term sustainable 
perspective? 
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In this paper I study teachers' decisions as a response to emerged contradictions in the context of 
enacting a new set of curriculum materials. The way these decisions are framed and the potentials 
they have to transform the teaching activity are analysed. Our data come from discussions in 
teachers' group meetings through one year. I use activity theory to capture social and systemic 
aspects of decision making and to interpret teachers' decisions. Future-oriented envisioning of the 
deliberate outcomes of teaching and action-based decisions about the actions to be undertaken are 
two different aspects of decision making. Both are traced in the data of this study as two necessary 
aspects for decisions that create possibilities to broaden the horizon of teaching activity.  

Keywords: Activity theory, contradiction, decision making, teachers. 

Last decades, in the context of curriculum reform efforts, teachers are seen as active agents and 
designers, whose instructional actions are influenced by curricular materials, but also shape the 
enacted curriculum alongside their students (Remillard, 2005). Considering teacher at the centre of 
the curriculum enactment, highlights the importance of teacher's decision making. Thus, a number 
of studies focus more or less explicitly on teachers' decisions. For example, Lloyd (2008) follows a 
teacher for two years and finds that his perception of students' expectations and his own discomfort 
associated with using the new curriculum were key factors in his decisions. A large number of 
studies are focused on in-the-moment decisions made by teachers. ZDM special issue 48(1–2) on 
teachers’ perception, interpretation, and decision making, is indicative. Schoenfeld (2011) uses the 
notions of resources, goals and orientations to "offer a theoretical account of the decisions that 
teachers make amid the extraordinary complexity of classroom interactions" (p. 3). 

The studies examining in-the-moment teacher decisions, focus on the classroom context and 
emphasize the individual dimension of deciding. Nevertheless, the broader social, temporal and 
cultural dimensions of decisions a teacher makes in his planning or in the classroom are not 
addressed. In this study I seek a better understanding of how decision making process develops and 
how is shaping the teaching activity, drawing on cultural historical activity theory. The study is 
conducted in two secondary schools in Greece at the time of the introduction of a newly prescribed 
mathematics curriculum. In Stouraitis, Potari, & Skott (2015) and Stouraitis (2016), we have 
analysed the contradictions emerged in this context and how teachers’ decision-making is framed 
and develops considering social and systemic dimensions. In this paper I study how and why 
teachers’ decisions, may or may not have a transforming effect on teaching activity. The decisions 
in focus are discussed in group meetings and refer to planed actions undertaken in the classroom. I 
examine three teachers’ decisions, the different ways these decisions shape the teaching activity and 
I interpret these differences. Although sociocultural perspectives have been used in research about 
teachers' decisions in mathematics education (see for example, Skott, 2013), activity theory has not 
been used so far. Thus, although empirically based, the paper is methodologically oriented, giving 
an account about the affordances of using activity theory in studying teachers’ decisions. 



Theoretical considerations 
Cultural historical activity theory (AT) offers a lens that tries to capture the complexity of teaching, 
by integrating dialectically the individual and the social/collective. The activity is driven by a 
motive and directed towards an object (Leont'ev, 1978). In our case, teachers (the subject) are 
involved in teaching activity with the motives of students' learning of mathematics and the 
fulfilment of other professional obligations. The unit of analysis is the activity system (Engeström, 
2001a) incorporating social factors (rules, communities, division of labour) that frame the relations 
between the subject and the object with the mediation of tools 
(Figure 1). In our case, a tool with considerable influence in 
the teaching activity is the new curriculum.  

Activity is carried out through actions which are "relatively 
discrete segments of behaviour oriented toward a goal" 
(Engeström, 2001b). I conceptualise teaching action as 
discrete instructional acts or clusters of acts that constitute the 
teaching activity, e.g. the selection or creation of a task, the 
enacting of a lesson plan, etc. 

Every activity system is characterised by contradictions which are the driving forces for the 
development of every dynamic system (Ilyenkov, 2009). They may create learning opportunities for 
the subject and may broaden the activity, for example leading to reconsideration of the actions and 
goals (Engeström, 2001a; Potari, 2013). In our study, the introduction and enactment of the new 
curriculum produced or revealed contradictions in teaching that emerged in group discussions 
(Stouraitis, Potari, & Skott, 2015). 

Dealing with contradictions involves decisions about the goals and the actions to be undertaken. Of 
particular importance are decisions related to the "discrete individual violations and innovations" 
(Cole & Engeström, 1993), that is the search for novel solutions as the first, individual response to 
the emerged contradictions. Thus, although teachers' decisions are part of the teaching activity, they 
may have a transformational effect on this activity. Engeström (2001b) identifies four dimensions of 
decision making: social, temporal, moral and systemic. The systemic dimension is particularly 
concerned with the way “this [decision] shape the future of our activity?” (Engeström, 2001b, p. 
281). This dimension is connected to expansive learning, the activity theoretical notion in which the 
learners are creating new ways to carry out the activity, reconceptualising its object.  

Engeström, Engeström, & Kerosuo (2003) make a distinction between action-based decisions about 
the actions to be undertaken, and future-oriented envisioning, which is the imagination of the 
deliberate situation of the object as outcome of the activity. Drawing from their interventional study 
in health sector, they argue that intertwining these two aspects is necessary in any attempt to 
transform the activity stating that “history is made in future oriented situated actions” (p. 287). 

Methodology 
A new set of reform-oriented curricular materials was introduced and piloted in a small number of 
schools in Greece in 2011-12 and 2012-13. The new materials emphasize students' mathematical 
reasoning and argumentation, connections within and outside mathematics, communication through 

 
Figure 1: The activity system 

(adapted from Engeström, 2001a) 



the use of tools, and students’ metacognitive awareness. It also attributes a central role to the teacher 
in designing instruction. In 2012-13 I collaborated with teachers in three of the lower secondary 
schools that piloted the new materials. The collaboration took place in group meetings at the 
respective schools, where the teachers discussed about their lesson planning and reflected on their 
experiences from teaching some modules of the designed curriculum. I participated in these 
meetings, providing explanations about the rationale of the materials, as I was a member of the team 
that developed the curriculum. I was also discussing their reflections provoking their explanations 
about the rationale of their choices. In this paper, I refer to two reflection groups, one of five 
teachers working in school A and one of two teachers working in school B. 

School A is an experimental school with an innovative spirit. Our focus here is on the teaching 
decisions of two teachers, Marina and Linda. They both have more than 25 years of teaching 
experience and additional qualifications beyond their teacher certification, as Marina has a masters’ 
degree in mathematics and Linda has one in mathematics education. They both have experiences 
with innovative teaching approaches and both have strong views about their instructional choices 
and a critical stance on teaching innovations and materials introduced by various agents. 

School B is a normal school with a culture open to innovations. Peter, the teacher in focus, is 
teaching in public schools about 15 years. Before this, he was teaching in private education 
preparing students for examinations. Peter is assistant principal of the school, he attends master 
studies in education and he is educator preparing teachers to use digital tools in teaching 
mathematics. He is open to the new curriculum, but he bases his teaching on the old textbooks. In 
the year of the study Peter is questioning the teaching practices he was involved for many years. 

The data material consists of transcriptions of audiotaped group discussions and interviews 
conducted with each teacher in the beginning of the study and six months after the end of the group 
meetings. The transcriptions were analysed with methods inspired by grounded theory (Charmaz, 
2006). The initial open coding resulted in the identification of the discussion themes for each 
meeting and the corresponding contradictions that emerged in the context of enacting the 
curriculum. Seeking an understanding of these emerging contradictions I used AT which provided 
me a lens to study them and a language to discuss about their dialectical nature, integrating social, 
cultural and historical aspects. Analysing the ways teachers decide to deal with contradictions, I 
traced shifts in teachers' discourse across different meetings and interviews and I used AT and the 
relevant literature to interpret these decisions and the factors influencing them.  In this paper I focus 
on the part of my analysis concerning the relations between the action based decision making and 
the future oriented envisioning, and the potential of transforming the teaching activity. 

Results 
Below I present two examples selected as illustrative cases for the relations of action based 
decisions and future oriented envisioning. In the first one, Marina and Linda make contrasting 
decisions, both addressing their perspectives about their students’ learning. In the second one, Peter 
makes action based decisions without a clear articulation of his envisioning about his students’ 
learning.  



First example: teaching congruence involving geometrical transformations  

Geometrical transformations are introduced as a distinct topic in the new curriculum with the 
rationale of supporting students’ development of spatial sense and of using transformations when 
tackling issues of congruence and similarity. The use of transformations as a proving tool is an 
alternative to the Euclidean perspective in school geometry: the intuitive use of the moving figure is 
seen as incompatible with the rigorous deductive rationale of Euclidean geometry. This 
contradiction between the two proving tools is a manifestation of the dialectical opposition between 
intuition and logic. In Stouraitis (2016) I discuss in details the two contrasting ways Marina and 
Linda deal with this contradiction in the discussions in school A. Below, I briefly describe their 
decisions to highlight the different future-oriented envisioning they hold for the object of activity.  

In the fourth meeting (A4), Marina discusses her thoughts to use geometrical transformations in 
teaching triangle congruence in grade 9. She considers using tasks with geometrical transformations 
in parallel to or in combination with criteria of triangle congruence. She describes her goal saying "I 
want them [the students] to understand that when we compare angles or segments, we have two 
tools. One is transformations and the other is the criteria of triangle congruence". On the other hand, 
although Linda appreciates Marina’s approach as a "nice idea", she prefers not to intertwine the two 
topics. She refers to “the purpose [students] to learn how to write [a justification], to observe the 
shape, to distinguish the given data from the required claims, to make conclusions, and to prove", 
implying that these goals can be achieved through teaching congruence with a Euclidean 
perspective, without involving transformations. Although Marina's response is that the same goals 
are relevant in every geometrical topic, Linda states that in teaching congruence she wants to focus 
on Euclidean geometry and not transformations. 

In next meetings (A5, A6) Marina describes how her students work with both geometrical 
transformations and congruence of triangles, discussing also emerging epistemological issues. She 
explains her decision as creating an "opportunity to change the framework [of proving] in grade 9" 
and to "get away from Euclidean geometry". Linda contributes to the discussion with her opinion 
and ideas, but she does not change her decisions. In other meetings, Marina mentions a seminar on 
transformations she attended three years ago in the university and her experimental teaching of 
transformations in a school she was previously working.  

Analyzing Marina’s and Linda’s decisions across Engeström’s (2001b) four dimensions, I conclude 
(Stouraitis, 2016) that, although Linda and Marina share similar experiences and perspectives and 
participate in the same school community and in the same reflection group, there are significant 
differences between the goals they set, the decisions they make and, consequently, the actions they 
undertake. Marina appears more fluent with the mathematics of geometrical transformations to use 
them as a proving tool alternative to Euclidean geometry, and this may possibly and in part be 
explained by her involvement in past activities like the seminar on transformations and her 
experimental teachings. Linda has not such experiences. Moreover, her goals are based on the 
affordances of the Euclidean perspective.  

Focusing on the possibilities their decisions have to shape the future of teaching activity, I look at 
the way the teachers envision the future of their students learning. All the aforementioned extracts 
of Marina’s discourse reveal a future-oriented envisioning of the object of the activity she is 



engaged in: she imagines her students working fluently with both approaches and consciously about 
the differences between them and she notes their development in this direction. In the interview 
conducted in the next year, Marina says that she uses the same approach, with more elaborated tasks 
for her students. Like Marina’s envisioning, Linda is showing her motive in the relevant extract: she 
imagines her students in the future to work having developed understandings and proving abilities 
based on Euclidean perspective in school geometry. 

Second example: the use of modelling in teaching algebra 

The new curriculum materials recommend mathematical modelling as an important aspect in 
students meaning making in algebra. Generating algebraic expressions and equations to represent 
realistic situations and problems is introduced in grades 7th, 8th and 9th. In group discussions about 
teaching polynomials in grade 9, a common contradiction was about introducing polynomials and 
operations in a formal, abstract way or involving realistic situations and modelling procedures. This 
contradiction is a manifestation of the dialectical opposition between the abstract and the concrete. 
Below I describe Peter’s dealing with this contradiction as appeared in group discussions of school 
B with Manolis (Peter’s colleague) and the researcher. 

In the 3rd meeting (B3) Peter describes his introductory lesson of monomials using only definitions, 
examples and counterexamples. He says “we begin with the algebraic expression, they [the 
students] read the definition, and I give them examples to discuss … then to monomials [with the 
same way]”. After researcher’s and Manolis’ questioning about the “why” of teaching polynomials, 
Peter refers to a similar student's question. He is reflecting that “he begins with the definitions”, but 
"we must pay more attention … to the practical use of monomials”. Again in the discussion with 
Manolis and the researcher about modelling, Peter starts thinking the potentials of it. After some 
turns, he says that he likes the word "modelling" because “it shows exactly what we are doing: we 
transform real situations to mathematics, verbal expressions to mathematical ones”. With modelling 
“you give [the students] a motive, a goal. Ok, you must first pose the problem to create questions” 

Although Peter finds modelling a useful idea, he is involved in a discourse emphasizing the role of 
mathematics and his own teaching but not the deliberate students’ development. For example, he 
describes what “he did” and what he “usually does”, and that modelling is what “we do in 
mathematics”. In this discourse, no explicit or implicit longitudinal objective appears related to the 
way his students should deal with modelling. This can be interpreted as absence of any clear 
articulation of his future-oriented envisioning that could lead his decisions. 

In another meeting (B7), Peter refers to classroom discussions about functions where students and 
teacher modelled realistic situations and phenomena (mostly from physics) leading to linear and 
quadratic functions. He says that his goal is “[the students] to understand that a function shows a 
relation between two interdependent things. And that everything is a potential function”. These 
formulations reveal Peter’s future-oriented envisioning about students understanding of functions 
and connecting them to realistic situations and also physics. But again, there is not any similar 
envisioning about students’ work on modelling per se. The modelling processes Peter involved in 
classroom discussions were limited at the level of actions subordinated to his teaching of functions. 

In the interview conducted in the next year, the researcher asked Peter if he uses modelling in 
teaching polynomials this year. Peter responded that although he thinks it is useful and keeps it in 



mind, he “hasn’t the time to do all this”. This response shows that there is not any movement in the 
way Peter carries out the teaching activity about modelling.  

Peter's adoption of the idea of modeling in teaching polynomials and functions can be interpreted as 
adoption of elements introduced by the new curriculum, based on Peter's reflection about teaching 
and on the group discussions with Manolis and the researcher. But this adoption did not gave rise to 
actions involving students in modeling procedures, especially in teaching polynomials. Peter's 
previous involvement in practices, like preparing students for examinations in the private education, 
seem to have strong influence on his decisions. Moreover, his decision about modelling had not any 
systemic influence on the teaching activity, since it was not connected with future oriented actions. 

Discussion and conclusion 
The introduction of the new curriculum created or revealed contradictions that provide opportunities 
for teachers to engage differently in mathematics teaching and learning. The analysis exemplifies 
these opportunities and the teachers' decisions to make or not shifts in their teaching. 

In both provided examples, all three teachers seem to be aware of a contradiction of the introduction 
of the new curriculum. Marina and Linda appear to be more consciously aware of its 
epistemological and dialectical nature. Peter also shows an understanding of some aspects of the 
relevant contradiction. Teachers’ awareness of the contradiction is the necessary but insufficient 
driving force for the development of the teaching activity. From this point, teachers’ decisions can 
lead to one or the other direction. 

On the contrary of "traditional views [that] locate decision making in the heads of individuals at a 
given point of time in a particular place" (Engeström, 2001b, p. 282), searching, under an activity 
theoretical view, what makes teachers to set goals and what creates the horizon for possible actions, 
contributes to our understanding of teachers' decisions. Although activity is collective and the object 
is socially formulated, different teachers can have "different positions and histories and thus 
different angles or perspectives on their shared general object" (Engeström, 2001b, p. 286). In the 
first example provided in this paper, Marina and Linda make different decisions about the same 
contradiction. The difference may in part be explained by their different histories, including 
Marina's attending of the seminar and her experimental teachings. In the second example, Peter’s 
decision seems to be influenced by his previous activities in the private education sector.  

In the two provided examples three possibilities appear for teachers’ decisions and the way these 
decisions may or may not influence the future of the activity. Marina’s decision to combine 
geometrical transformations with Euclidean geometry is an attempt to overcome the contradiction 
synthesizing dialectically the opposing poles. On the other hand, Linda decides to keep the two 
opposing poles separated, pursuing the affordances of Euclidean geometry. Somehow in the middle, 
Peter decides to deal with the contradictions using aspects of modelling in teaching functions, but 
not to use modelling as meaning-making introductory activity in polynomials. 

Marina’s decision has the potential to transform the teaching activity, broadening the horizon of the 
possible modes this activity is carried out. The dialectical overcoming of the contradiction is a 
discrete individual innovation, although its evolvement is not already known. Linda’s approach does 
not transform the activity, but clarifies and strengthens some objectives of teaching Euclidean 



geometry. Linda’s decision reinforces aspects of the existing way activity is carried out, showing 
that every learning is not necessarily expansive (Engeström, Engeström, & Kerosuo, 2003). Peter’s 
decisions have not any shifting effect to the way the activity is carried out, neither reinforce any 
existing practice. Somehow this decision seems to have not the power to affect the activity.  

What is the difference between Marina’s and Linda’s decisions on the one hand, and Peter’s 
decision on the other, that provide the different power on them? The difference could not be the 
attempt to overcome or not the contradiction, since Marina’s and Linda’s decisions differ at this 
point although both are strong enough to have an effect on the teaching activity. The difference is 
grounded on the connections made between action-based decisions and future-oriented envisioning 
of the object. Marina and Linda underpin their decisions about the actions they undertake with a 
strong future-oriented projection of their students' understanding. This adds fluency in deciding 
among the possible actions realizing the relevant goals. At the same time it generates decisions with 
the potential to be stabilized, even if initially the stabilization refers only to individual modes of 
carrying out the activity. On the other hand, Peter’s decisions seem to be restricted to action level, 
without a grounding on future envisioning of the object, namely the deliberate modelling processes 
his students should be able to involve as outcome of the sequential actions undertaken. The absence 
of future-orientation restricts the horizon of possible actions and reduces the potentiality of 
stabilizing them. Our conclusions appear in line with Engeström, Engeström, & Kerosuo (2003) 
who, researching developmental work in the health sector, write that “professionals make history in 
future-oriented discursive actions” (p. 286) and “to overcome the gap between action and 
imagination in history-making, it may be necessary to bring them closer to one another” (p. 305). 

Summing up, one can argue that for decisions to affect the activity the following elements seem to 
be necessary: the emergence of a contradiction and some degree of awareness about it, a willingness 
to deal with it and a future-oriented envisioning about the outcomes of the activity. If there is to 
have a transformation of the activity, the decision must aim to a dialectical overcoming of the 
contradiction by searching new solutions. Although schematic and perhaps simplistic, this sequence 
may represent some crucial aspects of decision making, especially the relations between action-
based decisions and the future of the activity.   

Our developmental intervention was not designed on an AT basis. However, based on AT, our 
analysis traces aspects of the path leading from the contradiction to the transformation of the 
teaching activity. In this analysis, AT seems to offer two particularly important aspects. Firstly, the 
four dimensions capture social and historical aspects of teachers' decisions, which is critical in our 
interpretations. Secondly, the distinction between action-based decisions and future oriented 
envisioning, provides a lens to interpret the possible power of teachers' decisions. The not-
predetermined nature of the intervention might be seen to provide the analysis with a potential to 
interpret more naturally some snapshots of the trajectory of transforming the teaching activity. More 
research could be useful for a more holistic, but also detailed view of this trajectory. 
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This paper investigates how Sfard’s (2008) commognitive framework might inform the investigation 
of pre-service teachers’ (PSTs’) teaching in the context of achieving a goal of ambitious 
mathematics (AM) teaching. In particular, I will show how the commognitive framework can be 
used to foreground the mathematical talk when analyzing qualities in PSTs’ attempts in forms of 
opportunities and needs created and exploited. I use the commognitive framework and especially 
the distinction between rituals and explorations to conceptualize qualities of PSTs’ attempts at AM 
teaching on two levels. The first level points to PSTs’ use of teaching tools provided in a teacher 
education program in Norway to support AM teaching. The second level points to characteristics of 
the mathematical discourses manifested in the attempts of PSTs to utilize these tools. On both levels 
I investigate students’ opportunities for explorations.  

Keywords: Teacher education, mathematics teaching, commognitive framework, geometry. 

Preparing for ambitious mathematics teaching 
Over 25 years ago, Lampert (1990) described a possible approach to bring the practice of knowing 
mathematics in school classes closer to what it means to know mathematics within the discipline. 
Her vision is in contrast to what is viewed in most classrooms, where doing mathematics means 
following the rules laid down by the teacher; knowing mathematics means remembering and 
applying the correct rule when the teacher asks a question; and mathematical truth is determined 
when the answer is ratified by the teacher (Lampert, 1990, p. 32). Sfard (2017, p. 125) calls this 
memorized-symbolic-manipulation type of activity ritualized participation in a mathematical 
discourse. Such participation is connected to ritualized instruction and it is characterized as 
performance for the sake of connecting with or pleasing others (Heyd-Metzuyanim & Graven, 
2016).  

The term ambitious is used by Lampert, Beasley, Ghousseini, Kazemi, and Franke (2010, p. 129) to 
distinguish this kind of classroom discourse from a classroom discourse that is more aligned with 
Lampert’s vison. They define the work teachers need to do to manage the complicated interactions 
between the teacher, the students, and the mathematics in classroom environments as ambitious 
mathematics teaching (AM teaching). The most important and challenging work of AM teaching is 
allowing students to exercise authority for mathematical ideas while staying accountable to the 
discipline (Lampert et al., 2010). Students are expected to participate in a discourse in which they 
strive to learn more about the mathematics involved. Such activities are called by Sfard (2008) 
explorative participation in mathematical discourse, in contrast to ritual participation. Explorative 
participation is connected to explorative instruction and is characterized as performance for its own 
sake (Heyd-Metzuyanim, Smith, Bill, & Resnick, 2016).  

In a practice-based teacher education program in Norway, pre-service teachers (PSTs) were 
provided among others the following teaching tools to support their attempts in AM teaching: A set 



of talk moves to increase the mathematical talk in the classroom (Chapin, O’Conner, & Anderson, 
2009), and some screen manipulable shape-making quadrilaterals constructed in GeoGebra with the 
potential to develop more sophisticated geometrical discourses (e.g., Sinclair & Moss, 2012).The 
figures (e.g., squares, rectangles, rhombi, and parallelograms) are constructed to hold certain 
properties of the diagonals (see Figure 1).  

 
Figure 1: Four of the seven shape-making quadrilaterals 

It is within the context of this teacher education program that I study the mathematical talk, the 
extent to which it becomes explicit for the students through the PST’s use of the provided teaching 
tools, and how this affects student’s opportunities to participate in the discussion. I explore Sfard’s 
commognitive framework regarding these relations because of the comprehensive set of conceptual 
tools it provides for capturing both mathematical discourses and social participation patterns (e.g., 
Heyd-Metzuyanim & Graven, 2016; Sfard, 2017). This paper is a contribution to the general need to 
develop analytical approaches for conceptualizing and analyzing interactional and content-related 
aspects of classroom discourse (Sfard, 2008). 

In the following, I will first briefly outline key concepts from the commognitive framework and 
report how they are used to conceptualize qualities of PST’s attempts at AM teaching in discursive 
terms. Finally, I will show how the analytical framework is used to foreground the mathematical 
talk when analyzing qualities in one PST’s attempt in the form of opportunities and needs created 
and exploited. The PST is named Andy and he is in his second semester studying mathematics in a 
Norwegian teacher education program for lower secondary school. He leads a classroom discussion 
about quadrilaterals in ninth grade (14–15 years). This is his first attempt to lead a classroom 
discussion in the context of achieving a goal of AM teaching. 

Analytical framework 
Sfard’s (2008) commognitive framework is rooted in the claim that thinking is a form of 
communication and that mathematics is defined as a discourse where mathematical objects are 
abstract discursive objects. Discourse is a special type of communication, set apart by its objects 
(word use), all kinds of mediators created and acted on for the sake of communication (visual 
mediators), a set of meta-level rules followed by the participants (routines), and the outcomes of 
their processes (endorsed narratives) produced within the community of the discourse (Sfard, 2008, 
p. 93). Sfard does not explicitly define teaching. However, she talks about ways teachers can 
provide opportunities for different kind of mathematics learning and participation through their 
communicational activities (Sfard, 2017, p.44). In AM teaching the communicational activities aim 
to bring students’ mathematical discourses closer to disciplinary mathematical discourses in such a 
way that they are able to participate in an explorative way. 

Sfard (2017, p. 45) describes distinctions between ritual and explorative mathematical discourses 
when she talks about the historically established mathematical discourses we aim at in schools. I use 
the work of Wang (2016) and Sinclair & Moss (2012) in redefining and refining van Hiele’s levels 



of geometric thinking into discursive terms to make distinctions between ritualized and explorative 
geometrical discourses. In ritualized discourses (levels 1 and 2) a “square” is often used as a proper 
name on a concrete thing or a family name of disjoint discursive objects. Thus, in ritualized 
discourses it is difficult to call a shape by a different name, because names represent different 
families. In contrast, mathematical definitions guide the use of the name “square” in object-driven 
explorative discourses (levels 3 and 4). A shape can be called by several names if it has the 
necessary and sufficient properties described in several definitions. A characteristic in explorative 
discourses is therefore the possibility of hierarchic classification by definition. The identification 
routines are also different in the two discourses. In explorative discourses, one strives to use 
definitions as criteria to identify geometric figures instead of direct visual recognition or just 
checking some partial properties. In ritualized discourses, there is often no need for substantiation 
routines, because claims seem to be self-evident. If they are not, one tends to use the concreteness of 
the figures to endorse the narrative, for example, by using measuring and dragging routines to check 
and verify the sides and angles in a figure constructed in GeoGebra. In contrast, explorative 
discourses emphasize deductive reasoning to substantiate the endorsement of a narrative by using 
previously endorsed narratives. The more ritualized checking routines are still used, but mainly to 
modify the justifications. Engagement in explorative geometrical discourses can therefore be related 
to qualities in AM teaching. 
Supporting transitions from ritualized to explorative geometrical discourses is central in AM 
teaching. It involves what Sfard (2008) calls meta-level development, so called because the meta-
level rules change. The inevitable point of departure for meta-level development is imitation of the 
moves of an expert discursant (Sfard, 2017). If everything goes well, the participation will gradually 
become explorative. However, this transition is demanding for the students and for the teacher. 
According to Sfard (2017, p. 44), there are two ways in which the teacher can support such 
transitions. The first way is to take leadership in the new discourse in appropriate learning-teaching 
situations and model how words are used and what routines count as acceptable within the new 
discourse. For example, the teacher may demonstrate the use of definitions as a way to enhance 
direct visual recognition in appropriate situations (Sfard, 2008, p. 254). In order to succeed, the 
students need to show confidence in the expert, be willing to take the role of the learner, and make 
changes that bring them closer to explorative geometrical discourses. The second way is to 
explicitly encourage the desired discourse by using appropriate teaching moves. In order to succeed, 
the teacher needs to elicit contributions from the students to identify and analyze their geometrical 
discourses up against ritualized and explorative discourses. Then, the teacher must respond in such a 
way that students become aware of possible differences in the use of words and routines. In 
addition, the teacher may expose them to situations in which their discourses would prove 
insufficient and support them in the process of understanding the advantages of the new way of 
doing or saying things instead of the method with which they have been so familiar. For example, 
students may drag the shape-making figures, creating opportunities to widen the range of shapes 
students are ready to call the same (Sinclair & Moss, 2012).  

The provided teaching tools have the potential to take into account the complexity of the goals in 
AM teaching and support such transitions (Lampert et al., 2010; Sinclair & Moss, 2012). However, 
the choice of appropriate teaching tools involves more than just the use of a tool. It involves making 
judgments about when and where it is appropriate to use the tool. The PST’s use of the provided 



teaching tools could therefore be characterized as ritualized or explorative (Heyd-Metzuyanim et al., 
2016). A ritual performer would be concerned about how to proceed when a specific tool has been 
chosen (Nachlieli & Katz, submitted). The use is often rigidly defined and dependent on others 
decisions in order to achieve social goals. For example, talk moves may be used to reward ritual 
participation as appropriate behavior, or they may be used to follow a prescribed list of possible 
properties of diagonals regardless of students’ responses. In contrast, an explorative performer is 
concerned about choosing the appropriate tool in order to achieve her intended goal (Nachlieli & 
Katz, submitted). For example, she may use the shape-making figures to create situations for 
potential explorations or use talk moves to explicitly support transitions from ritualized to 
explorative geometrical discourse. PST’s explorative use of these teaching tools can therefore be 
related to qualities regarding AM teaching.  

It is important to stress that the distinction between ritual and exploration is not a categorization of 
students’ participation or PST’s use of teaching tools as such. It is meant to serve as a way to better 
understand qualities in PSTs’ attempts at AM teaching in learning-teaching situations. In this paper, 
I explore how the use of this distinction points to the different qualities of PST’s attempts at AM 
teaching; the characteristics of ritualized and explorative geometrical discourses; students’ 
opportunities for ritualized and explorative participation in these geometrical discourses; and PST’s 
ritualized and explorative use of the provided teaching tools to create and exploit these 
opportunities.  

An investigation of Andy’s attempt 
In this paper, I use the transcription of a video recording of Andy leading a ninth-grade classroom 
discussion about quadrilaterals. I use it to show how the analytical framework informs the 
investigation of qualities in PSTs’ attempts at AM teaching. I also present findings from a three-
tiered analysis design. 

Tier 1: The transcription was first organized into mathematical episodes in which Andy and 
students discuss an endorsable mathematical narrative as a claim about one of the shape-making 
figures or a relation between them. Each episode encompasses the whole discussion around one 
claim, including the routines of construction and substantiation. I chose Andy’s attempt out of four 
PSTs’ discussions because of the nature of the claims in the ten identified mathematical episodes. In 
episodes 1, 2, 3, 7, and 9, the talk is mainly about identifying and describing potential properties of 
the shape-making figures. However, in episodes 4 and 8, Andy challenges students to explain how 
necessary conditions are linked to the naming process (e.g., “Is this (perpendicular diagonals) one 
thing that needs to hold for it to be a square?” [48]). In episode 5 a student identifies figure B in 
Figure 1 as a rectangle and Andy prompts the student for further explanations (“Why is it a 
rectangle?” [75]). Andy also challenges students in episodes 6 and 10 to extend their thinking about 
the possibility of a figure having several names (e.g., “But, here (figure A in Figure 1) are two and 
two sides equal as well (5s). Is it a rectangle too?” [85]).  

These examples show that Andy’s use of the provided talk moves (see Table 1) managed to create 
several opportunities for explorative participation in a geometrical discourse. The examples also 
revealed teaching-learning situations where Andy was given opportunities to support transitions 
from ritualized to explorative geometrical discourses. Understanding whether these opportunities 



were exploited requires further investigation. The mathematical episodes were therefore examined 
qualitatively using the analytical framework on two levels described in tiers 2 and 3 and inspired by 
the work of Heyd-Metzuyanim et al. (2016). 

Tier 2: The first level points to Andy’s use of teaching tools and the opportunities created and 
exploited for students’ participation. I separated Andy’s and students’ talk and coded their talk 
moves on a turn-by-turn basis. I used a modified coding scheme based on the set of teacher’s talk 
moves provided by Chapin et al. (2009) and created codes for students’ talk (see Table 1).  

Andy’s 
talk moves 

Say more Revoice Repeat Press for 
reasoning 

Challenge Agree/ 
Disagree 

Add more 

14 2 7 1 6 1 6 

Students’ 
talk 

Narrative Justify Explain Judge Repeat Clarify Question 

6 6 4 18 5 3 3 

Table 1: The amount of talk moves used by Andy and students' talk 

Table 1 presents an overview of the amount of talk moves used by Andy and students’ 
contributions. The findings show that Andy makes use of the recommended talk moves to promote 
student engagement in the leading geometrical discourse and in relation to each other’s 
contributions. The table also shows that students contributed to the geometrical discourse by 
constructing geometrical endorsable narratives (e.g., “It is a rectangle” [74]). They tried to verify 
narratives (e.g., “Because two of the sides are longer than the other two” [76]) and they contributed 
further explanations (e.g., “Yes, but all sides are equal there…In a rectangle there are only two and 
two equal sides” [88]). It is difficult to determine whether students’ intentions were to produce new 
mathematical narratives for their own sake or to please Andy. However, they show examples of 
explorative use of talk moves. However, the amount of talk moves did not provide answers 
concerning whether and how Andy’s use of talk moves supported students in the meta-level 
development towards explorative geometrical discourses.  

Tier 3: The second level of analysis therefore points to opportunities and needs created and 
exploited for students to engage in explorative geometrical discourses. I screened the episodes for 
signs of ritualized and explorative geometrical discourses in the forms of word use and routines. 
The aim was to identify appropriate learning-teaching situations for meta-level development. I then 
investigated Andy’s use of teaching tools in these situations in order to study how their use 
supported students in their transitions.  

Due to limited space, I present an analysis of one episode regarding a more detailed investigation of 
the geometrical discourse and PST’s use of talk-moves. In episode 1, Andy starts to drag figure A in 
Figure 1 and asks if anyone has something to say about the shape-making figure on the smartboard. 

1 Andy: We start with figure A (2s). Does anyone want to say something about figure 
A? (4s) Yes? (Andy points at a student who has her hand up.) 

2 Student: The sides are always of equal length 
3 Andy:  The sides are always longer (.) of equal length? 
4 Student: Mmm. 



5 Andy: Yes (2s), can you explain why they are of equal length?  
6 Student: Because it is a square. 
7 Andy:  Yes? 
8 Student: And if you change the size, the sides will change. They are still of equal 

length. 
9 Andy:  Yes (2s), it is said it is a square. All sides are of equal length; therefore, it is 

a square. All sides are equal because (Andy is waving his arm at the figure 
on the smartboard) (4s) Does anybody disagree? Does anybody have 
anything else? (4s) Let’s look at the diagonals (Andy points at figure 1 on 
the smartboard), the ones which intersect. We have four criteria here (he 
removes the figures and puts a scheme up on the smartboard). Now you 
have the figures on your computers, OK? What do you think? (5s) Can 
anyone repeat what has been said? (4s) (Andy points at some students in the 
back.) You in the back. 

10 Student:  Oh OK, yes, it is a square= 
11 Andy:  =Square, yes= 
12 Student:  =and all sides are equal 
13 Andy:  Yes? What do you want to say? (Andy points at a student) 

Andy invites the students to participate in the discussion with an open question [1]. One student 
contributes with an identifying narrative about the length of the sides [2]. The student has therefore 
created an opportunity to discuss variant and invariant properties in figure A. Andy exploits the 
opportunity and prompts for an endorsement by asking why (“say more”) [5]. Instead of relying on 
immediate visual recognition, the student provides the justification “because it is a square” [6]. The 
use of “it” refers to the concreteness of the figure on the smartboard. The identifying narrative “it is 
a square” [6] has not been previously endorsed by the use of definitions. It is established by the 
student as something that is already known. The student provides a correct deductive inference: If 
figure A is a square, then the sides are of equal length. Andy signals that he wants her to “say more” 
by asking “yes?” [7]. The student supports her justification by explaining a more ritualized checking 
routine [8]. The student draws on ritualized routines but her contributions also show explorative 
characteristics in the ritualized discourse.  

This is a teaching-learning situation in which Andy has the opportunity to either demonstrate how 
definitions are used in explorative discourses or choose appropriate teaching tools to create a 
situation in which the suggested routines prove to be insufficient. Instead, Andy confirms the 
narrative “it is a square” [9]. He then restates the construction of the narrative suggested by the 
student but changes the premise and conclusion [9]. His deductive inference is: If all sides in figure 
A are of equal length, then figure A is a square. This endorsement would not have been accepted in 
explorative discourses because equal sides are not sufficient properties to define a square. Andy 
starts to explain why the lengths of the sides are equal, but he stops talking and waves his arms 
without touching the smartboard [9]. In this situation Andy shifts from being an explorative user of 
talk moves to a ritual user. Instead of trying to solve the problem or cope with the difficulties within 
the geometrical discourse, he chooses talk moves that help him to redirect the discussion in order to 
go on. In this situation, Andy uses “disagree” (“Does anybody disagree?”) and “add more” (“Does 
anybody have anything else?”). The students do not respond. He then redirects the talk towards the 



properties of the diagonals. He then uses “repeat” (“Can anyone repeat what has been said?”) to 
activate the students. The student repeats what is said without adding anything new [10], [12]. Andy 
invites another student to participate (“add on”) and the talk shifts to the properties of the diagonals. 
Thus, the opportunities that were given for students shifted from explorative to ritual participation 
in the geometrical discourse. 

This analysis shows how Andy struggles to respond appropriately when he has created opportunities 
for students to participate exploratively in the geometrical discourse. The analysis of the other 
episodes revealed similar patterns. Andy manages to make use of the shape-making figures and talk 
moves to create opportunities and needs for explorative participation, which are important qualities 
in AM teaching. However, he struggles to stay accountable to the discipline and take leadership in 
the explorative geometrical discourse when needed. Instead of exploiting the teaching-learning 
situations to engage students in explorative geometrical discourses, he tends to use the provided talk 
moves such as “repeat,” “agree/disagree,” and “add more” as shortcuts to overcome the difficulties 
and keep the discussion going. In these situations, Andy’s use of talk moves shifts from explorative 
to ritualized, which affects the students’ opportunities to participate in the geometrical discourse. 
Even more importantly, students were not offered the necessary opportunities to engage ritually or 
in an explorative way in the explorative geometrical discourse in order to modify their thinking and 
bring them closer to accepted ideas of the discipline. Without knowing it, they were stuck in a 
ritualized geometrical discourse (Sfard, 2017). 

Some concluding remarks 
AM teaching is characterized by its deliberately responsive and disciplinary-connected instruction 
which complicates interactional and content-related aspects of classroom discourse (Lampert et al. 
2010). The purpose of this paper was to show how the commognitive framework and particularly 
the distinction between rituals and explorations foreground the mathematical talk when 
investigating qualities of PST’s attempts at AM teaching. Analyzing the mathematical episodes and 
the amount of talk moves helped to uncover qualities regarding students’ opportunities for 
explorative participation in the PSTs’ teaching attempts. Students’ talk provided some evidence of 
students’ uptake of these opportunities. However, it was the more detailed analysis of the 
geometrical discourses in the episodes that revealed if and how the PST’s use of talk moves 
provided opportunities for participation in explorative discourses.  

The analysis of Andy’s attempt in AM teaching uncovers just some of the complexity that a PST 
must attend to in the challenging moment-by-moment interactions with students and mathematical 
discourses. It also shows the critical need for teacher education programs to provide PSTs with 
opportunities to learn and reflect upon their use of potentially powerful teaching tools in such 
learning-teaching situations. Sfard (2008, p. 223) argues that if one only focuses on how a teaching 
tool should be performed and neglects the question of when and where this performance is 
appropriate, it is most likely to result in ritualized rather than explorative participation.  
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Our focus in this paper is on locating ways of working with teachers’ use of conventional example 
spaces to include a focus on structure, abstraction and generality in primary mathematics teaching 
in South Africa. We share the ways in which we have worked with trajectories of working with 
example spaces in two strands within our framework for analyzing teaching in terms of teachers: 
‘mediating primary mathematics’. We discuss the ways in which this work with example spaces differs 
from previous writing where emphasis is placed on moving beyond conventional example spaces 
towards the realms of boundary examples. The ways in which attention to structure and generality 
might be retained in the context of conventional example spaces are discussed, with focus too on why 
this might be useful to do in a developing country context marked by very low mathematical 
performance.  

Keywords: Example spaces, primary mathematics teaching, South Africa, mathematical discourse in 
instruction, generalization. 

Introduction 
The background for this paper rests upon two bodies of writing that are interpreted as pushing in 
somewhat opposite directions in relation to the kinds of examples that are in focus. The first evidence 
base is located in mathematics education writing on ‘example spaces’ (Watson & Mason, 2005). 
These authors, over nearly two decades now, have produced an extended evidence base arguing for 
learning to be seen in terms of extensions in the example space that students are able to work with 
and construct. On the pedagogic side, they have focused on both teacher-set example spaces (Watson 
& Mason, 2006a) and student-constructed example spaces based on prompting for ‘another example’ 
of something or ‘a different kind of example’ of something (Watson & Mason, 2005). In both teacher-
set and student-constructed cases, the focus on example spaces is driven towards attention to the 
abstractions and generalizations inherent in the idea of ‘examplehood’ – the attributes that make an 
example an ‘example of’ some class or category. Goldenberg & Mason (2008) describe such 
attributes as critical ‘dimensions of possible variation’, and the extent to which variation in the 
dimensions of these attributes can allow students to see the boundaries or extents of application of 
properties or structure defines the ‘range of permissible variation’ in their terms. As Watson and 
Mason (2005) put it: 



‘[Example] spaces can be explored by finding out what can vary and how far it can vary, 
identifying new variables, working from first principles, building objects from definitions, and 
using alternative modes of representation to see what is possible in one and relating it to another 
and in other ways.’ (p.52) 

Within their work, critiques of pedagogy are directed towards what they see as the overemphasis on 
‘conventional’ or ‘central’ examples that commonly contribute to unhelpful abstractions on the part 
of students – for example, that triangles are three-sided shapes with acute angles that have the base 
edge parallel to the bottom of the page, or multiplication only with positive integers. Instead, they 
call for a pedagogy in which there is encouragement for the construction of examples that extend 
students’ existing ‘boundaries’ through attending to dimensions of possible variation and range of 
permissible change, and focusing discussion on the ‘tipping points’ at which ‘examplehood’ appears 
to end. Illustrating this approach are tasks relating to questions such as ‘Can we multiply by a number 
and end up with an answer smaller than the one we started with?’ And ‘What kinds of numbers 
produce this result?’ Pedagogy in mathematics, in this formulation, is consistently directed towards 
tasks functioning in ways that expand the boundaries of the example spaces associated with particular 
ideas: 

‘one of the important roles for tasks inviting learners to construct examples is to broaden their 
range of permissible change in the images they associate with concepts’ (Watson & Mason, 2005, 
p.56) 

In this pedagogy, the emphasis is on the boundaries of example spaces related to the concept in focus 
– on what Askew & Wiliam (1995) describe as ‘only-just examples’ on the example side and ‘very 
nearly examples’ on the non-example side. 

Sitting with somewhat different emphases to this attention on example spaces is a second body of 
work, located in developing country contexts, but with parallels in contexts of disadvantage in 
developed country contexts as well, that is focused on learner performance. In this narrative, there is 
extensive evidence of a lack even of limited forays towards success in the restricted purview of the 
conventional or central example spaces associated with key concepts. Pritchett & Beatty (2012), 
working in the policy terrain and overviewing mathematics (and reading) performance data across 
India, Pakistan, Uganda and Kenya, identify what they describe as almost ‘flat learning profiles’ when 
looking at mathematical performance in items across grades. For example, in a study carried out in 
one state in India, Pritchett & Beatty note that while just over half of Grade 2 children were able to 
correctly answer 697+505 presented as a vertical addition, less than 10% of Grade 5 children were 
able to correctly fill in the missing number in this horizontal equivalence sentence: 200 + 85 + 400 = 
600 + __. Further, it was noted that performance on ‘mechanical’ procedures was generally higher 
than performance on even-low level conceptually oriented items, with one of the overviewed studies 
showing that less than 30% of a Grade 4 learner sample were able correctly answer the question: 3 x 
__ = 3+ 3+ 3+ 3. 

What interests us here is that the examples identified in this latter body of work fall well within the 
realms of ‘conventional’ example spaces, with the ‘multiplication as repeated addition’ example 
above also possible to interpret as a ‘reference’ example (examples that ‘somehow contain 
information about a whole class of objects’, Watson & Mason, 2005, p.84). 



While Watson & Mason’s pedagogic approach emphasizes the need to need to focus on expanding 
students’ example spaces, which are viewed as personal, and locally situated, these authors’ 
exemplifications of ways of working with sets of examples point to a relatively fast skip beyond the 
conventional and central example spaces towards the boundary examples. 

But why is this difference of emphasis of interest to us? We answer this question in the next section. 

Background 
Our work over the last five years in South Africa has focused on primary mathematics knowledge 
and teaching development, set in the context of the Wits Maths Connect-Primary (WMC-P) research 
and development project, located in Johannesburg, and working in partnership with ten government 
primary schools. The South African primary teaching context is marked by an emphasis on oral, 
chorused responses to closed questions, weaknesses and gaps in the teacher knowledge base, and 
concerns related to coverage, connections & coherence, and pacing within primary mathematics 
teaching (Hoadley, 2012). The national context is one that is marked by low performance in 
mathematics at all phases, reflecting many of the concerns about limited progress and significant 
learning deficits raised by Pritchett & Beatty (2012). A key problem that has been widely written 
about in primary mathematics is the ongoing use of highly inefficient counting based methods for 
solving number problems well into the middle years (Fleisch, 2009). 

In this context, we have worked on a combination of interventions aimed at supporting development 
in terms of both ‘primary mathematics knowledge for teaching’ and of primary mathematics teaching 
itself. Quasi-longitudinal data on learner performance in the early primary ‘Foundation’ years (Grades 
1 -3) has pointed towards some improvements in early number learning, with broad evidence of 
moves from highly rudimentary ‘count all’ strategies used for early additive relations problems to the 
more efficient ‘count on’/‘count down’ strategies underpinned by some initial reifications of number 
(Sfard, 2008). With interventions in place focused on working with teachers to develop number sense, 
our attention has started to turn towards working to understand whether, and, if so, how, changes in 
learning might be linked to changes at the level of teaching. We have found the work on example 
spaces, and seeing expansions in teachers’ ways of working with example spaces useful for thinking 
about the changes in teaching that we have observed. But these explorations have focused firmly on 
the middle ground of conventional example spaces, rather than on the boundaries. In this sense, they 
are more aligned with supporting mathematical learning in the middle ground rather than at the 
boundaries of particular topic spaces, with the examples selected grounded in expanding the 
boundaries of personal and situated example spaces, rather than mathematical boundaries of concepts 
in any more disembodied, objective sense. Our considerations of changes in teaching have led to the 
development of a framework for exploring differences, focused on primary teachers ‘mediating 
primary mathematics1’ (MPM). Empirically, our attention within this framework centres on teachers’ 
mediation of mathematics as enacted in the context of their selected example spaces across episodes 
in lessons through their use of artifacts, their inscriptions and their talk, with focus on the following 
strands: 

1 Mediating with artifacts 

2 Mediating with inscriptions 



3 Mediating with talk & gesture in a) methods for generating/validating solutions; b) building 
mathematical connections; and c) building learning connections: explanations and evaluations 
of errors/ for efficiency/ with rationales for choices 

The concepts and theories underlying the aspects in the MPM framework have been detailed in other 
writing (Venkat & Askew, under review). Expansions in teachers’ personal, situated example spaces, 
as seen in observed lessons, feature within two key strands of our overall framework – 3a and 3b – 
and our attention in this paper is on detailing the ways in which expansions in example space are 
considered in relation to the two bodies of literature discussed at the start of this paper, with the 
illustration and discussion in this paper focused on our ways of thinking about expansions within 
these strands. We remain interested in the notions of abstraction and generalization that Mason (1989) 
has written about over an extended period of time, and have looked at ways of retaining a focus on 
these elements drawing from a base in highly conventional example spaces. Our illustrations of levels 
of mediation for structure and generality in these two strands draw from excerpts of teaching and 
teacher explanations seen across our work supporting teaching development in Foundation Phase 
classrooms, and also, in this paper (and for the purposes of exemplification of the levels), from teacher 
responses to tasks in our primary mathematics for teaching courses. 

Analytical discussion 
Strand 3a: Method for generating/ validating solution 

We have formulated expansions in teaching related to this strand as follows: 

 

Method for 
generating/ 
validating 
solutions 

 

0 

No method or 
problematic 
generation/ 
validation 

(Mixing of 
knowns and 
unknowns) 

1 

Singular 
method/validation 

(provides a method that 
generates the immediate 
answer and can produce 

answers in the 
immediate example 

space) 

2 

Localized 
method/validation  
(provides a method 
that can generate 

answers beyond the 
particular example 

space) 

 

3 

Generalized 
method/validation  

(provides a strategy/method 
that can be generalized to 
both other example spaces 

AND without restriction to a 
particular artefact/inscription) 

 

Our earlier work pointed to problems with the coherence of teachers’ ways of generating solutions to 
the problems that they set in the context of their teaching or that were set to them in our mathematics 
knowledge for teaching courses. At the lower extreme, lack of coherence manifested itself in a range 
of ways. We saw the mixing of knowns and unknowns in teachers’ solution processes, with unknowns 
sometimes drawn into the problem-solving process prior to their actual generation, and questioning 
sometimes treating ‘knowns’ as if they were unknowns. For example, we saw episodes where, in 
adding 10 to a number on a 100 chart, the teacher counted on from, e.g. 17, saying 18, 19, 20, etc, 
and stopping at 27, without any overt demonstration of keeping track of how many she had counted 
on. Knowledge of the answer – the unknown value – was assumed in this kind of working. There was 
also evidence of teacher talk that connected poorly with the artifacts and inscriptions in use during 



the focal episode, disrupting possibilities for generating or validating a solution to the tasks in the 
example space being worked with.  

In the middle ground of this strand, we focused on the extent of applicability of the methods that 
teachers communicated for solving problems in, and related to, the example space being worked with. 
An excerpt of teachers’ responses to a task we used in our teacher development work helps us to 
illustrate some of the range in this strand. The question in focus was:  

Is –8 < –5? What diagrams and explanations might you use to help to explain your answer?’ 

Almost all teachers from a group of 50 we were working with responded to this by drawing a number 
line and marking –8 and –5 in the correct positions on their number lines. The explanations linked to 
this inscription varied between two key justifications. Some stated that –8 was less than –5 because 
it was further away from 0, with many teachers marking 0 and annotating the two respective distances 
for the immediate example on their number lines. In some instances, this ‘particular’ statement was 
accompanied by more general statements like: ‘Numbers further from 0 are smaller’. 

Other teachers had annotated their number lines with the words: ‘Further to the left, numbers are 
smaller. Further to the right, numbers are bigger.’ The first formulation remains applicable if both (or 
all) of the numbers being compared are of the same sign, i.e. both negative or both positive, but is not 
necessarily true if the numbers under consideration have different signs. The latter statement, in 
contrast, is more generally true across the real number example space and the number line convention. 
We code the latter formulation as a Level 3 offering, but we still have questions about whether the 
first formulation should be coded as a Level 1 or Level 2 offering, and whether this should be 
interpreted in relation to the example space that is being worked with in the empirical terrain. If the 
example space only contains pairs of negative numbers, we could argue that while the method offered 
is ‘localized’ (in the sense that the method can also be applied to pairs of positive numbers as well), 
there are limitations in the example space that can be critiqued. The broader point remains valuable 
though: that it appears useful to think about teachers’ offers of methods for solving or validating 
problems in relation to their extent of applicability to example spaces related to the concept in focus. 
Further, this appears important in a context of broad evidence of a lack of move beyond unit counting 
strategies – which we have usually coded at Level 1 due to their inefficiency for use as the number 
range being worked with increases.  

In a sense, what we are focusing on in this strand relates to the range of permissible variation in the 
example space that can be managed within the constraints of the solution procedure that has been 
taught. This range is considered pragmatically rather than strictly mathematically: for example, at one 
level, even large additive relationship calculations can be carried out using the unit counting strategies 
that we have noted as prevalent. In practice though, such methods are both inefficient and error-prone, 
and therefore represent solution choices with pragmatic limitations as the number range increases. In 
larger number ranges, ‘structured’ representations of number – i.e. representations of number 
underpinned by properties and relations, offer much greater purchase for both range of applicability, 
and for flexible efficiency. While not the focus of this paper, we code ‘structured’ representations 
(representations underpinned by structural properties of number) more highly in the artifact and 
inscription strands than ‘unstructured’ representations of number. In the 3a strand, a focus on solution 



procedures employing numerical structure provides an important feature within the possibility for 
attention to procedures with more extensive scope of applicability. 

Strand 3b: Building mathematical connections 

Expansions in relation to building mathematical connections have been conceptualized as follows: 

 

Building 
mathematical 
connections 

 

 

0 

Disconnected and/or 
incoherent treatment 

of examples 

OR 

Oral recitation with 
no additional teacher 

talk 

1 

Every example 
treated from 

scratch 

2 

Connects between 
examples or 

artefacts/ 
inscriptions or 

episodes 

3 

Makes vertical and 
horizontal (or multiple) 

connections between 
examples/ 

artefacts/inscriptions / 
episodes 

 

This strand was built into the framework on the basis of common evidence of disconnections. These 
disconnections sometimes occurred, as noted in the previous strand, within teachers’ handling of 
examples, leading to incoherent explanations. Further, in our observations, and noted as prevalent in 
the broader South African landscape, is evidence of extensive chorused oral recitation, for example 
of skip counting in multiple sequences, with no input from the teacher. Both of these phenomena 
were coded at the lowest level of the building mathematical connections strand.  

Example spaces figure within this strand in terms of the nature and extent of the connections between 
the examples seen. Watson & Mason (2006b) have described these kinds of connections in terms of 
vertical connections between elements of examples – which they describe as ‘going with the grain’ 
and horizontal connections within examples (e.g. equivalence structures within relationships) – 
described as ‘across the grain’ connections. Linked focus on several examples allows for attention to 
invariances amongst the variation between examples, with these invariances forming the grounds for 
abstraction and generalization. Keeping vertical and horizontal, and more generally, multiple 
connections between examples in focus, allowed us similarly to pay attention to shifts in the 
possibilities for building awareness of generality in pedagogic mediation.  

Our way of attending to example spaces in this strand contrasts with our focus in the previous strand 
where the emphasis was on the extent of ‘reach’ into other examples and example spaces of the 
methods for solving problems that are communicated within the focal example space. At Level 1 of 
this scale, we placed episodes where examples within the focal example space were dealt with as 
individual and separate instances. Venkat & Naidoo (2012) describe an episode involving finding 
pairs of numbers adding to 16, where each offered pair is verified as correct by concrete unit counting, 
with very limited reference to any of the partitions that were established previously in the episode as 
correct. In this ‘extreme localization’ there is no opening for a focus on ‘examplehood’ as thinking 
about instances as ‘examples of’ some property necessarily requires some invoking of either other 
examples from which abstractions can occur, or juxtaposing the instance with the property or 
generalization or definition of which it is an instance. In our observations and analyses, we noted that 



this invoking could occur through teachers making connections between examples in the example 
space as noted here, but could also occur more multi-directionally through connections made between 
artifacts, inscriptions and episodes as well. Importantly for us, this way of considering the possibilities 
for generality can, once again, be worked with in the context of conventional example spaces. Askew 
(2015) has analysed one teacher’s ways of working with multi-directional connections in lesson 
episodes focused on early place value, noting her working with the example space as a connected set 
of instances with fluid vertical and horizontal links, as well as links to place value artifacts involving 
ten strips and unit squares, and the inclusion of symbolic inscriptions. While the teacher’s working 
with the examples was entirely coherent, the conventional nature of the example space contrasts, for 
example, with Watson & Mason’s (2006a) ‘stretching’ of what looks, initially, like a conventional 
example spaces (related to co-ordinate plotting to fractional values) in the context of a single exercise, 
as a key aspect of hypothesizing a generality related to a given constraint. 

Discussion 
Working in this way with the concept of example spaces has allowed us to develop attention to 
structure and generality in somewhat different ways to those presented in Watson & Mason’s writing. 
Specifically, the base for generalizations is located in conventional example spaces, with limited – if 
any – move towards boundary examples. We would acknowledge that concepts are less fully rounded 
out in this way of working. But we would also argue that these more mundane expansions are 
important to thinking about developing primary mathematics teaching in contexts of the flat learning 
profiles described in Pritchett & Beatty’s overview. At the lower extremes of both of the strands we 
have delineated in this paper, there is attention to students being able to reproduce coherent 
procedures that have been presented or offered and accepted in class. This kind of move already 
represents some potential for forward moves in relation to students’ existing problem-solving 
repertoires. Further moves upward in the strands discussed start bringing other example spaces into 
the realms of possibility for learners. Our early analyses show moves towards coherence and 
connection in teachers’ work with example spaces, coupled with greater inclusion of structured 
artifacts and inscriptions. The concurrence of these fledgling moves towards coherence and generality 
in pedagogy with improvements in students’ performance on conventional and central example 
spaces suggests that our ways of working with example spaces may be useful to carry further into our 
research and development activity. 
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It is known not only that young students have difficulty solving mathematical problems but also that 
appropriate scaffolding can support them in the process. In this paper we describe the development 
and pilot implementation of a device for self-scaffolding grade 6 Catalan students’ mathematical 
problem solving. Called an orientation basis (OB), the OB, which addresses cognitive, 
metacognitive and affective aspects of problem solving, drew on research describing the actions of 
an expert problem solver. The evidence indicated that the OB, while in need of refinement, had a 
positive impact on the problem solving behaviours of many participant students. 

Keywords: Mathematical problem solving, scaffolding, orientation basis, Catalonia. 

Introduction 
Mathematical problem solving is difficult, both for students (Mason, Stacey & Burton, 1982; Pólya, 
1945) and teachers trying to create appropriately conducive classroom environments (De Corte & 
Verschaffel, 2004; Schoenfeld, 2013). When children solve problems without being conscious of 
the relationship between their actions and their solutions their ability to transfer their solution 
processes to new situations will be limited (Coltman, Petyaeva & Anghileri, 2002). However, 
appropriate adult intervention can help children become aware of these processes (Coltman et al., 
2002). Such interventions, known as scaffolding, build on what learners already know in order to 
close the gap between current learner competence and task objective (Bruner, 1985; Greenfield, 
1984; Wood, Bruner & Ross, 1976). Moreover, given time, scaffolding can be provided by peers 
and, ultimately, students themselves (Holton & Clarke, 2006). In this paper we describe the 
development and use of a device, which we have called an orientation base (OB), for use in Catalan 
sixth grade classrooms. The OB’s role is to support the transition from where teachers scaffold 
learner’s problem solving to where students scaffold their own. 

Problem solving  
As a human activity, problem solving can be understood as an example of goal-directed behavior 
(Schoenfeld, 2007). It is a dynamic, but not necessarily linear, activity requiring the organization 
and activation of multiple skills and strategies (Mason et al., 1982; Pólya, 1945). At the heart of 
problem solving lies an appropriate mathematical knowledge, an awareness and experience of 
solution strategies, self-regulatory or metacognitive competence and a belief not only that the 
problem is worth solving but also that the solver can solve the problem (De Corte, Verschaffel & 
Op’t Eynde, 2000; Schoenfeld, 2007, 2013).  

A key aspect of the above, at least from the perspective of providing scaffolding for the learner, is 
the encouragement of students’ metacognitive competence. For example, expert solvers spend more 
time understanding and analyzing the problem and solution process than calculating, and they 
continuously reflect on the state of the problem solving process (De Corte et al, 2000), behaviours 
that are typically absent with weak problem solvers (De Corte et al., 2004). Such students need 



scaffolded support with respect to interpreting a task, identifying its sub-objectives and planning a 
strategy (De Corte et al., 2000; Mason et al., 1982). They need to learn how to reflect on their 
existing knowledge and thought processes; that is they need to learn how to evaluate and regulate 
their own thinking (Sanmartí, 2007). This regulative competence is not acquired automatically but 
emerges over time (De Corte et al., 2004). Thus, with support in understanding how things work, 
students can become more efficient and self-regulated problem solvers (Schoenfeld, 2013). 

Scaffolding 
Scaffolding in an educational context 

Drawing on Bruner’s (1975) initial observations with respect to the ways that parents scaffold their 
infants’ learning, Wood, Bruner and Ross (1976) argued that knowledgeable adults can scaffold 
students’ problem solving activity. Here, the adult seeks to reconcile implicit theories of the task 
components, the necessary steps to solution, and the child's capabilities (Stone, 1998). In this way, 
acknowledging a socially imitative process, six ways of assistance were differentiated; recruiting the 
child’s interest, reducing the degrees of freedom, maintaining goal direction, highlighting critical 
task features, controlling frustration and modelling preferred solutions paths (Wood et al., 1976). 
Recent work has continued this theme, examining how teachers can best provide (temporary) 
support that enables learners to complete tasks they would otherwise not have been able to complete 
independently (Smit, van Eerde & Bakker, 2013; van de Pol, Volman & Beishuizen, 2010). In this 
process, whereby the learner becomes incrementally independently functional (Smit et al., 2013), 
both teacher and learner actively share and build common understanding (Stone, 1998; van de Pol et 
al., 2010). 

Scaffolding strategies 

Scaffolding is not a ‘technique’ that can be applied in every situation in the same way (van de Pol et 
al., 2010). As in the construction industry, where each scaffold is unique to a specific building, 
learning scaffolding can be provided at different ages and in a variety of ways, addressing learners’ 
knowledge gaps as part of an ongoing progress (Wood et al., 1976). Significantly, effective 
scaffolding is thought to comprise three components, involving the six processes of feeding back, 
giving hints, instructing, explaining, modelling and questioning (van de Pol et al., 2010), which are 

 Contingency: Support should be adapted to the student’s current level of performance.  
 Fading: Support is gradually withdrawn over time. 
 Transfer of responsibility: Task completion is gradually transferred to the learner. 

Moreover, effective scaffolding not only promotes learners’ cognitive and metacognitive activities 
but also positive affect. Finally, acknowledging different agents in the process, whether they are 
informed adults, a group of learners or the individual student, scaffolding is progressively relocated 
to the learner, whereby the external dialogue of scaffolding becomes the inner dialogue of 
metacognition (Holton & Clarke, 2006).  

Orientation basis for problem solving 
One means of encouraging self-scaffolding of students’ problem solving-related self-monitoring 
skills is to use an orientation basis (OB) (Sanmartí, 2007). Here we understand a problem solving-



related OB to be a necessary sequence of actions based on the problem solving behaviour of experts. 
An orientation basis leads the learner to a solution in ways that structure an emergent independence 
and problem solving autonomy. An OB is not a ‘one size fits all’ tool but tailored according to 
learners’ requirements and achievements. At every age and according to the learner’s needs, an OB 
can be presented through different statements. 

Dimensions Actions Track 

I understand the 
problem 

A1. I have read the question twice, at least.   
A2. I understand what the question wants.   
A3. I have identified and understood the data.   

I devise a plan 
A4. I have played with the data from the question.   
A5. I have prepared a strategy.   
A6. I have checked that my strategy fits the data.   

I apply my plan 
A7. I have implemented my strategy.   
A8. I have recorded all my actions in ways that I understand.   
A9. I have recorded all my actions in ways others can understand.   

I review my 
task 

A10. When I get stuck I go back to the beginning.   
A11. When I have finished I have checked my answer(s).   
A12. I have checked for other answers or better solutions.    

Table 2: The orientation basis (OB)  

In this paper we discuss the development and implementation of an OB for grade 6 Catalan pupils. 
At this age, pupils are typically expected to have acquired a minimum background in problem 
solving. However, experience has shown that they lack regulative and problem solving competence, 
especially in understanding and analyzing the problem, and planning and implementing a solution 
process. Therefore, drawing on Pólya’s (1945) problem solving principles, the OB depicted in Table 
2 was developed. Each of Pólya’s four dimensions comprised three particular actions, which can be 
tracked in the right hand column. The inclusion of each action was a consequence of earlier 
observations of the problem solving behaviours of grade 6 Catalan pupils and the problem solving 
strategies found in the literature (e.g. De Corte et al., 2004; Mason et al., 1982). The OB shown in 
Table 2, translated from the original Catalan, was designed to be a contingent, hint-giving, feedback 
tool focused on facilitating both fading and transfer of responsibility (van de Pol et al., 2010). As 
indicated above, the aim of this paper is to present an initial evaluation of the efficacy of the OB 
shown in Table 2 for scaffolding grade 6 students’ mathematical problem solving.  

The study 
The participants were students in a 6th-grade class of a Barcelona primary school. Their teacher was 
an experienced generalist primary school teacher. Such teachers, who receive relatively little subject 
knowledge instruction during their pre-service education, typically acquire their mathematical 
knowledge in practice, a situation much criticised (Egido, 2011; MECD, 2012). Data were collected 
during a regular, 50 minute, lesson at the end of the second quarter of the academic year 2015-2016. 
They derived from 22 students’ initial use of the OB as they tried to solve the mathematical problem 
posed in Figure 1, which was originally posed in Catalan.  



 
Figure 1: The Problem translated from Catalan 

Before solving the problem, the teacher explained the purpose of the OB carefully and together with 
the class discussed and clarified the meaning and purpose of each element. This ensured, as far as is 
practicable, that students understood its vocabulary and overall purpose. Students were each given a 
copy of the OB’s rubric, which included a grid in which they recorded their engagement with the 
OB as well as a paper copy of the problem on which their solution was to be written. Students were 
instructed to solve the problem, using the OB to guide their activity, and then record the OB actions 
they addressed. They were also told that their teacher would not intervene in the problem solving 
process but check, as they worked, that they completed their OB tracking. 

Results 
Table 3 shows the data from all 22 students’ use of the OB as they worked on the problem. It can be 
seen that only one student, Student 21, failed to engage with the OB, while all others used it in 
varying degrees. Nine students obtained correct solutions for both parts of the problem, a further 
five managed just one part and eight failed to complete either, including the one who failed to 
complete any OB actions. Four students indicated some difficulty with respect to understanding 
some OB actions. In this respect, all four found A3, ‘I have identified and understood the data’, 
difficult to understand. The only other action that caused uncertainty was A6, ‘I have checked that 
my strategy fits the data’. Thus, in the light of an OB being necessarily adaptive (Sanmarti, 2007), 
these issues would be addressed in the next iteration of its development. Importantly, even when 
faced with uncertainty, each of these students was able to continue the problem solving process to at 
least the next step. Student 12, the only student who found two statements difficult, completed 11 of 
the OB’s stages but failed to complete either part of the problem. Importantly, from the perspective 
of the OB’s development, Student 9 completed all the OB’s actions but failed to solve either part of 
the problem, pointing, perhaps, to the need of cognitive interviews to determine in depth the nature 
of the difficulties encountered in completing the task. 



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
A1 X X X X X X X X X X X X X X X X X X X X X
A2 X X X X X X X X X X X X X X X X X X X
A3 X X X * X X X * X X X * X * X X X X X
A4 X X X X X X X X X* X X X X X X X X
A5 X X X X X X X X X X X X X X X X X
A6 X X X X X X X X * X X X X X
A7 X X X X X X X X X X X X X
A8 X X X X X X X X X X X X X X
A9 X X X X X X X X X X
A10 X X X X X X X X X X X X
A11 X X X X X X X X X X X X
A12 X X X X X X X X X X X X X

Total 5 7 12 11 9 12 5 4 12 10 12 11 3 12 4 12 12 3 1 12 0 12
Correct 0 2 2 1 1 2 0 1 0 0 2 0 0 2 1 2 2 1 0 2 0 2

Student

 
Table 3: OB-related data for each student. An asterisk shows a difficult but completed OB action 

Was the OB effective and did students take it seriously? 

As is typical of classroom interventions, eliciting evidence of their efficacy and their being taken 
seriously is not straightforward. With respect to its efficacy, it is interesting to compare the number 
of completed OB actions with the number of completed problems, as shown in Table 4. A Fisher 
exact probability, p = 0.008, indicated not only that the figures of Table 4 were unlikely to have 
been due to chance but, importantly, that students who failed to complete the OB tended not to 
complete the tasks. Indeed, Table 4 shows that a necessary but not sufficient condition for the 
completion of both tasks was that students completed seven or more OB actions. 

0 1 2
0-6 5 3 0
7-12 3 2 9

Completed OB activities

Number of correct solutions

 
Table 4: Number of completed OB actions and number of successfully completed problems 

When viewed as four dimensions rather than as individual actions the data offer further interesting 
insights. For example, while probably not surprising, the data of Table 3 show that as they move 
down the OB, the number of students completing each dimension gets smaller. With respect to the 
first dimension, ‘I understand the problem’, 21 students began its three actions, of which 19 (90.5%) 
completed all three. With respect to the second dimension, 17 began with the first action, of whom 
12 (70.6%) completed all three. The third dimension, ‘I apply my action plan’, was begun by 13 
students (one more than completed the second dimension), of whom 9 (69%) completed the 
dimension. Finally, of the 12 students who began the final dimension, ‘I review my task’, 11 
completed (91.7%) it. These figures tell two stories. The first is that students who begin working on 
a dimension can typically be expected to complete it. The second is that once they reach the final 
dimension students seem almost guaranteed to complete it. In other words, an in-depth examination 
of the four dimensions can also inform future developments of the OB; the first and last dimensions 
seem less problematic with high completion rates in comparison with the middle two. 



Looking at the data qualitatively, it can be seen that students’ solution attempts tended to show that 
they took the OB seriously. Students were able to connect OB actions to their own activity, and did 
not confirm those actions until after they had been completed. 

 
Figure 2: A solution of the problem and related OB tracking 

For example, Figure 2 shows a student solution and his OB tracking. The picture confirms that he 
had read the problem and understood what the first question required. For example, his arithmetical 
operations and note, ‘on each side there are 6 squares’, indicate not only that he had identified and 
understood the required data but that he had also played with the data which let him to prepare a 
strategy for the first part of the problem. In short, the solution the student presented corresponded 
with the OB actions he claimed to have completed.  

 
Figure 3: Solution of the pupil who failed to complete explicitly any OB action 

Even when students failed to complete any OB action, there was evidence of its having influenced 
their solution attempts. For example, Figure 3 shows how the single pupil who failed to complete 
any OB action attempted to address the OB’s first action. 

Student response to the OB 

Several students attempted to communicate with the OB, particularly when uncertain as to its 
intentions. Figure 4 shows, in the underlining of the word quefer, uncertainty as to its meaning and, 
essentially, an invitation for someone to explain. In similar vein, students annotated their OB in 
ways indicative of doubt or just a desire to comment on their response, both cognitively and 
affectively. Figure 5 shows comments inserted alongside the ticks indicating the student’s 
completion of the various actions. The top two comments are the same and translate as, ‘yes, but it 
takes me a great effort’. The lower comment, while similar in its intention, translates as, ‘regular, 
because it takes me a great effort’. 

 
Figure 4: A student’s doubts with respect to the meaning of the fourth action 



 
Figure 5: Two annotated record sheets 

Discussion 
In this paper we have outlined the development and trial of an orientation basis, designed to support 
6th grade-students’ problem solving-related self-scaffolding. Derived from the literature the four 
dimensions, and their respective actions, provided evidence suggesting that the OB has a role to 
play. The four dimensions and the means of their operationalisation make real for students the 
actions that guide problem solving (Holton & Clarke, 2006). The evidence supports earlier findings 
that appropriate scaffolding may have a beneficial impact on cognition, metacognition and affect 
(van de Pol et al., 2010). However, with respect to the extent to which the OB for problem solving 
is contingent, exploits fading and encourages transfer of responsibility (van de Pol et al., 2010) is 
variable. With respect to contingency, our view is that students were able to connect OB actions to 
their own activity and those who were affected by typically persisted until at least the next step. 
Also, students took the OB seriously, indicating initial support for both fading and transfer of 
responsibility, although a longitudinal study would allow these to be better examined. The 
dimensional structure and the ways in which students use the actions embedded within it point 
towards a productive cycle of refinement. Despite its linearity, based on the behaviours of an expert 
problem solver, students’ engagement with the final dimension confirmed not only the cyclic nature 
of problem solving but also the role of the OB in supporting students’ awareness of it. Finally, the 
OB comprised short statements written in the first person. Our view is that it helps learners’ not 
only understand what problem solving expects of them but also anticipate possible actions. 

Finally, this paper has reported on the first iteration of an emergent study. Since the completion of 
this first task students have solved two further problems using the OB. Their teacher has 
commented, anecdotally, that students are becoming more familiar with and confident in their use of 
the OB. Therefore, a longitudinal analysis of students’ OB-related problem solving would seem an 
appropriate next step. As found with previous studies, the impact of scaffolding is difficult to 
evaluate (van de Pol et al., 2010) and this will remain a key objective of future work.  
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We present a new tool – Realization Tree Assessment (RTA) for assessing the mathematical quality 
of lessons and the ways in which the whole classroom discussion expose students to mathematical 
concepts. The tool, built upon the commognitive framework, depicts the different realizations of a 
mathematical object treated in a lesson, and then uses different shades to signify who articulated 
the realization – the teacher or the students. We exemplify the tool on two lessons implementing an 
identical Hexagon pattern generalization task. The RTA visualizes the manner in which one lesson 
gave students sufficient opportunities to “same” different algebraic expressions, while the other 
lesson did not. We show how this visual presentation of the mathematical ideas complements 
existing assessment tools, particularly, the Instructional Quality Assessment and Accountable Talk. 
We conclude by discussing the potential of the tool as an aid for lesson planning.  

Keywords: Teaching practices, Realization tree, commognition, cognitive demand, lesson 
assessment tools. 

Introduction 
Recent years have seen increasing efforts to train teachers to teach exploratively – provide students 
with opportunities to engage with cognitively demanding tasks, problem solve, and participate in 
rich mathematical discussions (Schoenfeld, 2014). Within such efforts an important role lies in the 
tools that are used to examine lessons enacted by the trained teachers (Boston & Smith, 2009; 
Schoenfeld, 2015). Scoring and evaluation tools (such as the Instructional Quality Assessment tool 
or TRU math) can be used both for evaluating lessons and thereby examining the effectiveness of 
the training program, as well as tools for teachers’ professional development. A common difficulty 
with these tools, however, lies in operationalizing their criteria for evaluating the quality of 
mathematical ideas dealt with in the lesson. In this paper, we propose an analytical tool – the 
Realization Tree Assessment tool which is based on the “commognitive” framework (Nachlieli & 
Tabach, 2012; Sfard, 2008). This tool enables drawing a succinct yet sufficiently meaningful picture 
of the mathematical concepts surfaced in a specific lesson in such a way that lessons can be both 
compared with each other as well as planned ahead more accurately. 

Theoretical background 
Tools for the examination and evaluation of classroom instruction can be categorized into three 
types: scoring tools such as Instructional Quality Assessment, or IQA (Boston, 2012b) and the 
Teaching for Robust Understanding of Mathematics summary, or TRU math (Schoenfeld, 2014); 
“coding and counting” tools, such as Accountable Talk (O’Connor, Michaels, & Chapin, 2015); and 
qualitative analytical tools (e.g. commognition, Sfard (2008)). Scoring and coding measures have 
the benefit that they are quantifiable. They thus enable both the comparison of teachers with each 



other, as well as comparison of within-teacher change from lesson to lesson, for example, as a result 
of professional development. Scoring tools, however, have a drawback. They are heavily based on 
extensive training of scorers for the development of inter-rater reliability. This, because of their 
high-inference nature. Coding and counting tools, which are based on coding talk moves, 
necessitate lower inferences and are therefore easier for achieving reliability. However, these tools 
are mostly good for capturing non-mathematical aspects of the discourse. 

The difficulty in assessing the surfacing of “important mathematical concepts” (Boston, 2012a) or 
“important content and practices” (Schoenfeld, 2015) in a lesson is not surprising, given that the 
definition of “mathematical concepts” has been under much dispute for decades (Sfard, 2008). To 
our aid, we draw on commognition (ibid), which we have extensively used in the past as a 
qualitative tool for describing learning-teaching processes. In the present work, we simplify this 
tool, to attune it with the demands of coding and scoring schemes that seek to evaluate lessons in a 
relatively short period of time, for the goal of comparing large sets of lessons.  

Realization trees 

Mathematical learning, says Sfard (2008), is a process whereby students gradually become able to 
communicate about mathematical objects. These objects are produced by discourse (or 
communication), and are made up of different “realizations” (ibid, p. 165). The term realization is 
used by Sfard instead of the more common term “representation”, to emphasize the fact that nothing 
is, in fact, “there” to be represented. All mathematical objects are products of human discourse and 
come to life by being different realizations being “samed” and alienated from human agency so that 
they are talked about as existing of themselves. For example, the signifier ½, the process of dividing 
a pizza into two pieces, and the process of shading 3 circles out of 6, are all samed into the object 
“one half”. Children often learn each of these realizations separately and only later come to relate to 
them all to one object. This is the heart of a process Sfard calls “objectification”. Objectification, or 
talking about mathematical signifiers as “standing for” mathematical objects that “exist” in the 
world, is a major and necessary accomplishment for advancing in the mathematical discourse. Sfard 
used the term “realization tree” to illustrate the fact that realizations are usually hierarchical. A half 
is made of different realizations (1/2, 0.5, 50%, 3/6 etc.) but the whole numbers making up these 
realizations also have endless realizations (3 apples, 3 fingers, etc.).  Nachlieli & Tabach (2012) 
used realization trees to visually explain the complexity of the object function and to relate to the 
historical development of this object, as well as to make explicit students' development of the 
discourse of function. Before moving to explain our use of realization trees as tools for assessing 
the conceptual quality of a lesson, let us briefly describe the two other tools that have been serving 
us for quantifying and comparing mathematics lessons. 

IQA 

The IQA (Instructional Quality Assessment tool) has been designed by Boston and Smith (2009; 
Boston, 2012a) to evaluate the cognitive demand of mathematical lessons. This, based on the “task 
framework” put forward by Stein and her colleagues (1996), which differentiates between the 
cognitive demand of a task, the way it is presented to the classroom, and the way students 
eventually engage in it. Every rubric in the IQA is scored on a scale from 0 to 4. For reasons of 
space, we will concentrate here only on two rubrics: AR-2 (implementation) and AR-X 



(mathematical residue). Regarding the implementation rubric, 1 means students engage only in rote 
memorization and producing facts, 2 means they engage in the application of procedures explicitly 
taught, 3 means cognitive demand is not lowered but mathematical reasoning is not sufficiently 
explicated, and 4 means full engagement in a cognitively demanding mathematical task. 
'Mathematical concepts' or ‘ideas' are mentioned almost in every rubric in the IQA. For example, in 
the rubric that refers to the mathematical residue, the highest score should be given when: "The 
discussion following students' work on the task surfaces the important mathematical ideas, 
concepts, or connections embedded in the task" (Boston, 2012b, p. 20). However, IQA does not 
provide any clear guidance on this matter, besides giving a few examples of high and low level 
lessons.  

Accountable Talk 

Accountable Talk coding (Resnick, Michales, & O’connor, 2010) is a tool originating in socio-
linguistic analysis of classroom talk (O’Connor & Michaels, 1993). It provides teachers with a set 
of specific talk moves they can make during whole classroom discussions, to hold students 
accountable to the community, to knowledge and to reasoning. Our version of Accountable Talk 
coding (Heyd-Metzuyanim, Smith, Bill, & Resnick, 2016) includes eight codes for teacher moves 
(e.g. press for reasoning, revoice, restate, agree/disagree) and four codes for students' moves (e.g. 
student-agree, student-justification). These moves track the amount in which teachers attempt to 
make students' thinking public, help students to reason mathematically, and hold them responsible 
for attending to the reasoning of others. Though the manual does contain examples of mathematical 
statements, Accountable Talk’s basic framework does not deal specifically with content. It has no 
clear indicator of what consists as more important or “conceptual” reasoning, and what does not.  

The study  
In what follows, we first describe the setting of the study on which we developed the Realization 
Tree Assessment tool (RTA). We then describe the results of analysis using the IQA and AT, 
showing what could be achieved by them and what was missing or difficult to agree upon. We 
follow this by describing the RTA results for the data, showing where they agree, complement and 
elaborate on the findings obtained by the IQA and AT.  

Setting 

The study reported here was performed in the context of a project for training Israeli teachers to 
implement explorative instructional practices in middle school mathematics classrooms, using 
methods inspired by Smith & Stein’s (2011) “Five Practices for Orchestrating Productive 
Mathematics Discussions”. In this report, we focus on two teachers: Dani and Sivan. Dani was 
teaching a 7th grade classroom in a school serving a community of middle-high socio-economic 
background. Sivan was teaching an 8th grade classroom in a school serving a community mostly 
from a low-middle socio-economic background. Both teachers participated in training sessions 
where the instructor planned together with each of them separately a lesson according to the “5 
Practices”. In both cases, the lesson centered around an identical task: the Hexagon Task. The main 
session in the task was to write description that could be used to compute the perimeter of any train 
in the pattern of hexagons (See Figure 1):  



The reason this task was used, was that it has proved in a previous study (Heyd-Metzuyanim et al., 
2016) to be very productive for teachers who are beginning to implement the “5 Practices”. We 
observed, video recorded, and transcribed both lessons. In addition, Dani and Sivan were both 
interviewed before and after the lessons, and their lesson planning sessions were recorded. In what 
follows, we present the IQA and AT measures of the two lessons, as well as what was still missing 
from them for a full understanding of the task implementation.  

Findings 
Accountable Talk in the two lessons. Both Dani and Sivan’s lessons were conducted over a 
double period (90 Minutes) and both included work in groups (or pairs) where the teacher was 
walking between the groups, followed by a whole classroom discussion. The two whole classroom 
discussions took similar time (in Dani’s classroom 28 minutes and in Sivan’s lesson 26 minutes).  

Overall, there were many more AT moves in Dani’s lesson (98) than Sivan’s (46). In particular, 
Dani’s lesson had much more student talk moves coded as AT moves, either as student 
agree/disagree (N_Dani=22, N_Sivan=0), or as student justifications (N_Dani=20, N_Sivan=11). 
Dani was also higher than Sivan in pressing for students’ reasoning (N_Dani=23, N_Sivan = 14). 
The overall picture drawn from the AT measure is, thus, that Dani’s lesson had more accountability 
to reasoning and to the community than Sivan’s lesson. Using the AT measure alone, however, does 
not enable learning about what mathematical concepts were dealt with, and which mathematical 
ideas surfaced through the discussion.  

IQA scoring of two lessons. According to the IQA, Dani's lesson got higher scores then Sivan’s 
lesson on all the rubrics, except the potential of the task, which was given in both cases by the 
teachers’ trainer. In the Implementation rubric, we scored Dani’s lesson as a 4, since multiple 
solutions were found and presented by the students; the teacher did not lead the students towards 
any particular solution; solutions were linked to each other both by the teacher and by the students; 
and there was no proceduralization of the task. In contrast, Sivan’s implementation scored a 2. 
Though students generalized the Hexagon pattern into a  expression, this was not done through the 
visual Hexagon’s representation, only through the table; connections were not made with other 
algebraic expressions; in particular, students seemed to be well rehearsed in producing a table, 
algebraic expression from it and a graph of that expression, thus the task was proceduralized.  

In the mathematical residue rubric, the results of the scoring were similar. Dani’s lesson received a 
4 since: the mathematical idea of equivalence of algebraic expressions was driven through the 
different algebraic solutions student presented. Evidence for students’ understanding could be seen 
in one of the girls' exclamation “so they’re all the same!” In contrast, Sivan’s lesson scored a “2” on 
the mathematical residue rubric, since although the discussion dealt with some mathematical ideas, 
it did not touch upon the main idea behind the Hexagon task. The teacher did not focus on the 
different algebraic expressions but rather on the different representations of a linear function (graph, 

Figure 1: The Hexagons Pattern 



table and algebraic expression). However, as will be shown later, even this idea was not treated 
fully and appropriately.  

Of all the Academic Rigor rubrics, we found the “Mathematical Residue1” most difficult to 
operationalize. It appeared Dani and Sivan had different ideas regarding the mathematical goals of 
their lessons and this had consequence for the way they led the lesson. While Dani seemed to be 
well aligned with the goal of showing the equivalence of algebraic expressions, Sivan seemed as 
though she was mostly aiming at ideas related to linear functions (which are, indeed, part of the 8th 
grade curriculum). We therefore searched for a tool that would aid in explicating the mathematical 
ideas explored in the two lessons. For this end, we developed the RTA. 

Realization Tree Assessment tool 

The first step in RTA is examining the task and explicating the mathematical object(s) that can be 
surfaced through engagement with the task. This includes the different realizations that are 
reasonable to expect from students at a certain grade level. In our case, we built our realization tree 
based on a lesson plan provided by the Institute for Learning 
(http://ifl.pitt.edu/index.php/educator_resources), where the different solutions, expected from 
middle schoolers for this task were drawn out. This produced a “blank” tree, with nodes as seen in 
Figures 2 and 3. We then proceeded to shade the tree nodes with four different colors, as follows: 
Shade no 4: the student's explanation was complete and accurate; Shade no. 3: the student’s 
explanation was not complete and accurate but the teacher helped explicating the idea; Shade no. 2: 
the student did not articulate the realization, but the teacher did; Shade no. 1: The realization was 
partially mentioned, but neither the student nor the teacher explained it fully. 

 

 

 

 

 

 

                                                 
1 The Mathematical Residue rubric appears in our manual as “under development”. 

Figure 2: The RTA of Dani's lesson Figure 3: The RTA of Sivan's lesson 



Finally, if the realization was not mentioned at all, but was hypothesized to be relevant to the lesson 
and the grade level according to the lesson plan, it was shaded white (no. 0).  

As can be seen in Figures 2 and 3, the main branch of our realization tree (“algebraic expression”), 
branches out on the multiple realizations of the algebraic expression . This, in accordance with the 
potential of the task to explore the different ways in which the visual representation of the hexagon 
sides can be generalized into a pattern and expressed algebraically.  

Figure 2 describes the RTA for Dani’s lesson. It shows that three realizations were explained fully 
and completely by students, three were explained by students, but the teacher filled in some gaps in 
these explanations, and one realization was explained only by the teacher. This full treatment of the 
“algebraic expressions” branch led students to endorsement of the narrative that “they all (all the 
algebraic expressions describing the pattern) equal to ”, thus to the saming of different realizations, 
which was the goal of the lesson, as expressed both by Dani and by the teacher trainer.  

In contrast, the RTA for Sivan’s lesson (see Figure 3) is much lighter and sparser. It shows that only 
three realizations were treated in the lesson, and none of them was fully explained by the students. 
Moreover, the main branch of the tree – the “algebraic expressions” branch, is particularly empty. 
Only the  realization was treated, and even that one was not explained accurately by the teacher or 
the students. The relative “emptiness” of Sivan’s RTA corresponds well with the relatively low IQA 
and AT scores her lesson received. Still, it puzzled us, since Sivan was prepared in the PD very 
specifically for a lesson that was envisioned as similar to that of Dani. “What went wrong?”, we 
asked ourselves. In order to answer that, we went back to the planning session, as well as to the 
post-lesson interview with Sivan, conducted right after the lesson. We found that, despite the PD 
instructor’s conviction that she and Sivan were “on the same page”, Sivan, in fact, had different 
goals for the lesson. She was focused on connecting the lesson to the previously learned unit on 
linear functions, where she had taught students to connect the concept of “slope” with the term 
“ ” in  , as well as connect it with the visual slope of a linear graph: 

“I wanted the students to see that every time it rises by four so that they will connect it with the 
slope that we have done with functions… I deliberately divided the board into three sections, to 
show the different stages in reaching the function itself - the graph that combines all the various 
representations of the function". (Sivan, Post-lesson interview)  

It appears, then, that Sivan had a different mathematical object in mind (though probably only 
tacitly) when she planned the lesson – the “linear function” object2. Within the linear function 
object, the “slope” attribute of that object was her focus of attention. This could have been an 
appropriate goal for the lesson, had it been explicated and thought through. In particular, the 
following realization tree (see Figure 4) could have been appropriate for discussing slope and linear 
functions.  

                                                 
2 Though she named it inaccurately simply a “function”, we understood from the context and from the curriculum she 
was referring to linear functions. 



 

 
 
 
 

 
 
 
 
 

 

Figure 4: Alternative Realization Tree for discussing slopes and rate of change 

However, the Hexagon task, especially as written for this lesson, was probably not the optimal task 
for talking about “slope”. This, since it depicts a situation where the function is discreet and cannot 
be described using a linear line. In practice, Sivan neglected very early the connection to the 
Hexagons drawing. Thus even the “rate of change” (which could have been visualized as the 
addition of four sides with the addition of each hexagon) was not connected to the “slope” on the 
graph.  

Discussion 
Our goal in the present report was to present a new analytical tool for the evaluation of 
mathematical lessons – the RTA. Though this tool does not give a numerical value such as scoring 
and “coding and counting” tools do, it still enables relatively easy qualitative comparisons between 
lessons. We have used this tool to enable comparison between two more lessons that were 
performed on the Hexagon task, and the results give a quick overview of the mathematical 
opportunities to learn in each lesson. The RTA can also serve as an aid for determining the quality 
of mathematical content (or “mathematical residue”) that is sought after in coarser grained 
assessment tools such as the IQA. In addition, the RTA can give us information about the potential 
of the task to engage students in explorative mathematical learning and about the relation between 
this potential and the actual implementation of the task in the classroom.   

In the two cases reported here, the application of the RTA was done post-hoc, after the lessons were 
planned, implemented and recorded. However, we believe there is much potential for using this tool 
as an aid for planning lessons and training teachers for explorative mathematics instruction. Such a 
tool is particularly needed in light of previous findings which point to the difficulty of teachers to 
explicate to themselves the mathematical goals of the lesson (Heyd-Metzuyanim, Smith, Bill, & 
Resnick, submitted). We also believe that drawing realization trees with teachers will help them 
plan tasks and whole classroom discussions that provide sufficient opportunities for explorative 
participation. Often, when teachers talk about explorative instruction, their focus lies on the social 
or socio-mathematical norms of the classroom, such as students talking and listening to each other 



(Heyd-Metzuyanim, Munter, & Greeno, submitted). We believe no less emphasis should be put on 
the nature of mathematical objects that students get exposed to, and on the paths for objectification 
that are opened through sufficiently rich mathematical discussions.  
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This poster explores the complex process of integration of 21st Century (21C) teaching and learning 
practices into mathematics classrooms, reporting on mathematics teachers’ perceptions of the 
predictors for, and barriers to, their integration in European post-primary schools. Data are drawn 
from teachers’ responses to a questionnaire for an Erasmus+ project that addresses readiness for 
the integration of 21C practices. Responses from 52 Irish, Swedish, Estonian and German 
practitioners listing mathematics as one of their teaching subjects are considered. For quantitative 
data, descriptive and inferential statistics were used; a directed content analysis approach was taken 
for qualitative data. Findings indicate that system restrictions and resources are major barriers, and 
that classroom management and teacher beliefs impact on confidence with and frequency of use of 
21C practices. We propose that this work form the basis of a broader study. 

Keywords: Teaching practices, 21st century learning, mathematics education. 

The perceived importance of a ‘21st Century’ (21C) approach to teaching and learning is well 
documented (Dede, 2010; Voogt & Roblin, 2012). In terms of mathematics pedagogy however, while 
there is considerable research into the use of technologies for teaching and learning (e.g., TWG15 
and TWG16), the broader field of 21C practices in the classroom is less considered. This research 
explores responses to a survey instrument developed for an Erasmus+ project, Teaching for 
Tomorrow (TfT). TfT is a partnership between institutions in four countries (Ireland, Sweden, Estonia 
and Germany) that are working to develop a model of 21C teaching and learning across subject areas. 
The poster reports on the responses of 52 teachers who name mathematics as one of their teaching 
subjects. The aim is to identify what they see as the predictors for and barriers to usage of 21C 
practices in the classroom, with a view to larger-scale research. 

The theoretical framework underpinning the model for 21C practices being developed by TfT draws 
on the work of Ravitz, Hixson, English, and Mergendoller (2012), which emphasises a project-based, 
collaborative, and student-led pedagogic approach. “Readiness for integration” is taken as involving 
confidence in using and encouraging, and frequency of using, the 21C practices of: Critical thinking, 
Collaboration, Communication, Creativity & Innovation, Use of Technology, Self-direction, Global 
and Local Connections. 

The questionnaire used to gather data was developed by the Irish partners, with items drawn from the 
validated instruments of Euler and Maaß (2011), Ravitz et al. (2012), and the OECD (2010). It 
involved 4 main sections: (1) Background information; (2) Teachers’ beliefs about the nature of 
teaching and learning (direct transmission versus constructivist); (3) Orientation towards, usage of, 
and barriers to 21C teaching and learning; and (4) Confidence with and frequency of integration of 
21st skills in practice. Apart from section 1 and an open-ended item in the Barriers section, all items 
used 5-point Likert-type scoring system. 



Multiple regressions were performed to identify whether the categories of beliefs, opinions and usage, 
and barriers had a significant bearing on teachers’ confidence with, and frequency of, integration of 
21CL practices in the mathematics classroom. Also, t-tests and one-way ANOVAs were used to 
compare the mean ratings across the four participating countries. Directed content analysis was 
undertaken for the qualitative data. 
Results indicate that teachers’ mean orientation towards 21C practices is quite high, with respondents 
tending to agree that 21C teaching and learning has a positive impact on student motivation. However 
mean levels of confidence are less positive, and mean frequency of usage is rather low, pointing to a 
lack of readiness for integration. Respondents’ mean scores for self-reported direct transmission 
beliefs are lower than those for constructivist beliefs, the latter being predictors of confidence in 21C 
practices. 
In the qualitative analysis, students’ and teachers’ direct transmission beliefs are reported by 
respondents as barriers to the integration of 21C practices, with “teacher inertia and general 
reluctance to move from traditional methods” emerging as a common issue. Barriers at the system 
level, particularly those associated with time, and curriculum and assessment, also appear important. 
In addition, both quantitative and qualitative analysis reflects that classroom management issues act 
as barriers to teachers’ implementation of 21C practices: “Students are not used to 21CL, because 
most of the time they do not have to do it, so at first it takes a lot of time.” 
In order to encourage teachers to integrate 21C practices in the mathematics classroom, it is essential 
to address some of the barriers identified. The features of the TfT model, outlined above, are intended 
to provide guidance for teachers and students, a structured approach to the development of 21C 
activities, and relevant assessment practices. 

It should be noted that although the samples from each country are small and not representative, and 
that there were variations in the criteria for participant selection, the results across counties show 
surprising commonality. Thus, we propose to conduct a larger study, involving representative groups, 
uniformly selected in each country, to see if such trends arise outside the confines of TfT. 
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Rationale 
The variety of papers presented in TWG 20 at CERME 2017 connected to the growing field of 
teacher education. There were total of 27 papers and 4 posters that had been presented. The number 
and heterogeneity of the research foci, contexts, methodological and theoretical approaches, 
provided opportunity for in-depth discussions and reflections around the presented papers. Although 
the core topic proposals were expected to embrace three intertwined domains, the focus of the 
presented papers at TWG20 was mainly on teachers' knowledge, while the topic of teachers’ beliefs 
and teachers’ identity would appear implicitly or in the background of some of the research.  

Main topics  
The priority given to teachers’ knowledge can be seen throughout the unbalanced number of 
proposals which included the 27 papers presented (30 were submitted). For the development of the 
work three thematic strands have been considered: (i) knowledge in mathematics education (3 
papers); (ii) lesson study context and beliefs (5 papers) and (iii) teachers’ knowledge” (19 papers). It 
is interesting to note that the differences between (i) and (iii) concerns the aims of the research 
(even if not perceived explicitly), and not necessarily the theoretical perspectives considered.  

(i) Knowledge in mathematics education. This thematic strand included three papers, focusing on 
aspects different from the specificities of teachers’ knowledge, even when the context was teachers’ 
education. Although the theoretical dimensions of the presented researches addressed teachers’ 
knowledge conceptualizations the research focused on the knowledge of prospective teachers’ that 
is revealed at the very beginning of teachers’ training. 

(ii) Lesson study. The second thematic strand included five papers and one poster, dealing with 
mathematics teachers’ professional development (PD), in the context of the development of Lesson 
Studies (LS), and (prospective) teachers’ learning with regards their own teaching practice and 
students learning, as well as on how teachers perceive themselves as participants in such LS context. 
Although there is evidence that PD contexts can lead to improvements in teaching practices and 
students’ learning, less is known about what and how teachers learn from PD and about its further 
impact on students’ learning outcomes (Borko, 2004), and also some other intertwined variables. 



Common to the presented research were the perspective of considering teachers as learners, where 
the research is looking at the relationships between these two elements. In this thematic strand, two 
particular issues arise; how can theories/approaches/perspectives on teachers’ knowledge be used to 
analyse the impact of teachers’ participation and involvement in LS for teaching practices and 
professional development; concerning questions around the incorporation of theory in a 
methodological approach for LS in order to analyse the different phases and cycles. 

Further, the research developed in the context of the implementation of a LS (or a research on the 
LS process), needs to take into account the particularities and specificities of the cultural contexts in 
which it is implemented – in order to acknowledge, the differences of those cultural contexts and 
the one where it is originated. In, and for doing so, one needs to take into account different aspects, 
such as the type, nature and impact of the affordances and constraints that takes into consideration; 
the influence of the researchers’ background in the implementation, development and design of the 
research in the LS context; to what extent, in the context of a mathematics education research, the 
mathematics features of teaching is effectively the focus of attention.  

(ii) Teachers’ knowledge. Similar to previous CERME’s, the explicit focus on teachers’ 
knowledge has been given a major importance in the context of most of the presented proposals. 
The papers were grounded on teachers’ knowledge conceptualizations that have already been 
discussed extensively in previous CERME conferences (Mathematical Knowledge for Teaching 
(Ball, Thames & Phelps, 2008); Mathematics Teachers’ Specialized Knowledge (Carrillo, Climent, 
Contreras & Munoz-Catalan, 2013); Knowledge Quartet (Rowland, Huckstep & Thwaites, 2005); 
Ontosemiotic Approach (Godino, Batanero & Font, 2007)). We observe that, within a period of four 
years (from CERME 8 to CERME 10) a certain shift related to the focus of attention occurred, 
namely a shift from discussing the need for different conceptualizations towards an effort to 
deepening on the nature of teachers’ knowledge when assuming a certain conceptualization. 

In CERME9, Ribeiro, Aslan-Tutak, Charalambous and Meinke (2015) suggested that the use and 
development of diverse conceptualizations could be perceived as both a richness of the research 
field and as a constraint. The richness concerns possibilities for gaining a better insight into factors 
that influence the development of teacher knowledge. However, there are challenges of finding a 
common ground for discussing the core aspects of the research field. At the current conference, the 
issue of a diverse conceptualization was addressed in discussions on how to investigate mathematics 
teachers’ knowledge when assuming it to be in interplay with students’ learning. In other words, the 
need to pay “close” attention to how we, as researchers, take into consideration the aspects of 
mathematics teaching and learning, being connected to teachers’ intertwined knowledge as well as 
to the role and impact of teachers’ knowledge in practice concerning the use of resources (where the 
focus was the teachers’ knowledge involved in/for preparing and using such resources – in a broader 
sense – in practice and not the resources itself). 

The research, and the associated discussions and reflections in the group, also bought forward one 
of the recurrent items in the group discussions: the need for the research on teacher education to 
move from a prevalent focus on what teachers do not have (the deficit perspective – in term of 
knowledge) to a focus on what teachers actually know, how they know it, and possible different 
hows that can contribute to the development of teacher’s knowledge, specifically related with 
teacher’s work of teaching. Along the discussions, and aligned with some of the presented papers, a 



possible direction for future research emerged on area of teachers’ knowledge sustaining teachers’ 
noticing and “earing” ability. For example, future research focusing on how mathematic teachers’ 
pay attention to and make sense of what happens in the complexity of instructional situations (see 
e.g. Sherin, Jacobs & Philipp, 2011). Also on what aspects of one’s knowledge do teachers’ ground 
their decision making – in order to develop mathematically demanding practices, aiming at 
developing critical mathematical thinking for deeper mathematical understanding. One other 
possible focus concerns on how and why (the impact) the teachers’ and researchers’ knowledge 
influence their foci of attention and awareness.  

Emerged themes and future perspectives  
We have considered three thematic strands for an operational reason, but one need to have in mind 
the intertwined nature of such strands. Thus, in our case, the connecting element was teachers’ 
knowledge. Some of the discussions were grounded in ideas already discussed in previous 
CERME’s, aiming at deepening the understanding on those aspects/dimensions while other 
discussions seek for an alternative and complementary path for getting such a broader 
understanding. A particular sensitive aspect was the need for a deeper understanding on the 
relationships between teachers’ knowledge and practice, and for gaining such a deeper 
understanding some new approaches to research on teachers’ knowledge were discussed, in 
particular studies that investigate how teachers use their knowledge to give meaning to others’ 
solutions or to anticipate students’ answers. Moreover, the role of task design in and for assessing, 
accessing and developing teachers’ knowledge and improving practices was emphasized in the 
discussions. We have grouped the main research trends emerged in three groups:  

- Deepening research into teachers’ knowledge, beliefs, identity, and noticing 

 Taking into account that in some contexts mathematics teachers knowledge specificities are 
perceived mainly in the domain of PCK, how is the "weight” of PCK perceived in the field of 
research in mathematics education and how it intertwines with the specificities of the teachers’ 
content knowledge, beliefs and identity? 

 How to take into account teachers’ noticing? 

- Research on interactions with fields of practice 

 How can the focus of research be intertwined with practice and education in a more explicit 
manner, perceiving practice in a broader sense?  

 How can we investigate whether and how teachers’ knowledge affects students’ learning and 
transitions throughout student’s education? How to design and develop research aimed at 
approaching “simultaneously” teachers’ knowledge and students learning? 

 How to move from frameworks for analyzing, describing, understanding and/or evaluating 
teachers’ knowledge, to the use of frameworks by teachers (for analyzing teaching practice)?   

 How the teachers’ knowledge conceptualizations take into account the notion of assessment, and 
how does knowledge on assessment contribute to students’ learning in mathematics? 

 What are the roles and knowledge (e.g., features, nature, content) of mathematic educators in 
teacher education (e.g. facilitator in LS; teacher trainer)?  



- Research on methodological (and theoretical) challenges: 

 How can we deal with (and what are the implications for) similarities and differences of aims and 
challenges in mathematics teacher education in different cultural contexts? 

 How to clarify the findings we have, when using a particular theoretical lens for analyzing 
teachers’ answers, comments and/or practices?  

 How to develop research that emphasize teachers’ potentials instead of teachers’ deficiencies, 
and how to design approaches for grounding teachers’ knowledge development in such potential? 

 As many of the researchers developing research on teachers’ knowledge – in multiple contexts, 
including lesson study – are educators, how do we deal with such fact (a recurrent issue); what 
significant does researcher’s role as an educator play on the research itself and what is the actual 
impact of research in improving teachers’ education (in what terms is the research one does 
implying on the ways teachers’ education occur)? 

References 

Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it 
special? Journal of Teacher Education, 59(5), 389-407. 

Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational 
Researcher, 33(8), 3-15. 

Carrillo, J., Climent, N., Contreras, L.C. & Muñoz-Catalán, M.C. (2013). Determining specialized 
knowledge for mathematics teaching. In B. Ubuz, C. Haser & M. A. Mariotti (Eds.), Proceedings 
of CERME8, (pp.2985– 2994). Antalya, Turkey: Middle East Technical University.  

Godino, J.D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in 
mathematics education. ZDM, 39(1-2), 127-135. 

Ribeiro, M., Aslan-Tutak, F., Charalambos, C., & Meinke, J. (2015). Introduction to the papers of 
TWG20: Mathematics teacher knowledge, beliefs and identity: Some reflections on the current 
state of the art. In K. Krainer & N. Vondrova (Eds.), Proceedings of CERME9 (pp. 3177-3183). 
Czech Republic: ERME.  

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject 
knowledge: The knowledge quartet and the case of Naomi. Journal for Mathematics Teacher 
Education, 8(3), 255-281.  

Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (2011). Mathematics teacher noticing: Seeing 
through teachers’ eyes. New York: Routledge. 



The reasons underlying mathematics teachers' decisions about the 

teaching objectives of a mathematical task 

Miriam Amit1 and Hodaya (Liora) Hoch2 
1Ben-Gurion University, Israel; amit@bgu.ac.il 

2 Orot Israel College, Ben-Gurion University, Israel; liora_h@macam.ac.il 
 
Responsibility for evaluation is assigned to teachers so that they can critique their own work and 
follow each of their students' progress. To succeed, teachers must build an appropriate means of 
assessment by themselves. This study examines the ability of pre-service and novice mathematics 
teachers in secondary schools to do so, using a questionnaire that requires them to make a connection 
between teaching objectives and mathematical tasks. The results show difficulties in matching 
teaching objectives to a given task and vice versa, with no significant differences between the pre-
service and novice mathematics teachers. Interviews show how their beliefs, and their lack of 
mathematical and pedagogical knowledge, influence the teaching objective and assessment task they 
choose.   
Keywords: Pedagogical mathematical knowledge, assessment, mathematical knowledge, pre-service 
mathematics teachers, novice mathematics teachers. 

Introduction  
The aim of evaluation is to provide teachers with reliable information so they can make decisions 
regarding their teaching methods as well as track their students' learning (NCTM, 2000). To achieve 
that aim, teachers must design and construct assessment tools on a routine basis (Magnusson, Krajcik, 
& Borko, 2002). This means that teachers should have the capacity to find or develop assessment 
tasks that align with their teaching objective, and that have the potential to accurately reflect their 
students' knowledge and understanding (Siegel & Wissehr, 2011). They should also have the reverse 
capacity: they must know how to find the teaching objective behind a given mathematical task. The 
two capacities integrate pedagogical knowledge with mathematical (content) knowledge, which has 
been defined as a part of pedagogical mathematical knowledge in assessment which teachers should 
have (Tamir, 1988). This study attempts to examine the pedagogical mathematical knowledge in 
assessment of pre-service and novice mathematics teachers by checking their ability to draw a 
connection between teaching objectives and mathematical tasks.      

The theoretical framework   

Teaching as a profession is characterized by the existence of a unique knowledge base for those 
involved in it. Shulman (1986) defined categories of knowledge that teachers need in order to be 
professionals. Among these, he listed content knowledge (in this case, of mathematics), pedagogical 
knowledge, and pedagogical-content knowledge. Toward the end of the last century, the assessment 
of students’ achievement was placed in the teachers' hands, with the hope they would have the 
knowledge to develop a reliable and valid assessment methods aligned with the teaching objectives 
(NCTM, 2000). Thus, the topic of assessment became part of the knowledge base teachers have to 
have. Tamir (1988), followed by Magnusson, Krajcik, & Borko (2002), expanded the definitions of 



pedagogical knowledge and pedagogical-content knowledge for the topic of assessment. Pedagogical 
knowledge in assessment means knowledge of general rules related to assessment that can be applied 
to every subject-matter, such as familiarity with the various means of assessment. Pedagogical-
mathematical knowledge in assessment refers to the knowledge teachers need in order to implement 
the general assessment rules in mathematics, and also to the ability to build a means of assessment 
that aligns with their teaching objectives.  
Connecting teaching objectives and mathematical tasks is the foundation upon which pedagogical-
mathematical knowledge in assessment is based, and particularly all means of assessment, formal as 
well as informal. This capacity should be acquired by every teacher from the time he/she starts to 
work. To the best of our knowledge, research that examines teachers' ability to connect between tasks 
and objectives has yet to be done in any field. This study is the first attempt to explore this ability in 
general, and particularly in mathematics, among novice and pre-service mathematics teachers. This 
paper is aimed to check this ability in an innovative way.  

Methodology  
The data analyzed below derives from a research program about assessment that examines the 
pedagogical knowledge and pedagogical mathematical knowledge in assessment of pre-service and 
novice mathematics teachers for primary and secondary schools (Hoch & Amit, 2013; Hoch & Amit, 
2011). 

The research questions  

The aim of this paper is to examine the ability of pre-service and novice mathematics teachers to find 
the most suitable teaching objectives to associate with a given mathematical task. The research 
questions are: 
a. Given a mathematical task, to what extent do the participants know how to match it to a suitable 
teaching objective which can be checked by that mathematical task? 
b. What are the sources of mismatching in selecting the appropriate teaching objective?    

The population  

The study focused on sixty-six participants: thirty-two pre-service teachers, who were taught in five 
teacher training colleges, and thirty-four novice teachers, who had also been trained in one of those 
colleges.           

The pre-service teachers were near the conclusion of their studies, and about to become secondary 
school mathematics teachers (grades 7-10). The novice teachers were already teaching mathematics 
in secondary schools (grades 7-10), and had up to three years of teaching experience (Vonk, 1993).  

All the participants had taken a one-semester course in student achievement assessment during their 
studies at the teacher training colleges. None of the novice teachers took any additional course besides 
the one in which they had trained. 

The research approach 

This study used the Mixed Method approach. First, quantitative data was gathered; then, on the basis 
of the gathered data, qualitative data was collected (see below).  

  



The instruments 

The research was conducted by means of a questionnaire, followed by interviews. 

The questionnaire: 

This study is innovative in that it examines assessment pedagogical-content knowledge in 
mathematics by checking teachers' ability to draw connections between teaching objectives and 
mathematical tasks. Specific questionnaires were created for this purpose. In this paper we shall focus 
on one of these, which checks the participants' ability to match a suitable teaching objective to a given 
mathematical task. Every question starts with a mathematical task followed by three teaching 
objectives that can assessed by that task. The participants were asked to rate those teaching objectives 
according to their suitability to the given mathematical task on the scale of 3 (= the most suitable) to 
1(= the least suitable) (see Figure 1 below).   

The questions focus on three central subjects in the curriculum of grades 7-10: algebraic expressions, 
equations and functions. All the mathematical tasks appear in the most widely used textbooks and in 
national tests. The teaching objectives were taken from the mathematics curriculum and from these 
textbooks, in order to simulate live classroom situations.   

The questionnaire was given to a panel of judges which included seven experts in mathematics 
assessment. All have a PhD. in mathematics education, except for one who has an M.A. in 
mathematics education. All are familiar with the topic of assessment, and some of them even teach 
this topic in teacher training colleges. The panel of judges was asked to rate the teaching objectives 
in each question according to their suitability to the given mathematical task (just as the respondents 
would be, on a scale of 1-3). To ensure reliability (see Burstein et al., 1995/1996) each one of the 
judges was given the questionnaire discretely and did the assignment independently, without knowing 
who the other judges were.   

After all the judges had completed the questionnaire, their ratings for each question were checked. 
Only questions that were given the same rating by at least five judges were left in the final version of 
the questionnaire. For the remaining questions, all the judges agreed which was the most appropriate 
teaching objective, but did not agree about the order of the other tasks. 

The interviews: 

Interviews were conducted with eight participants (four pre-service teachers and four novice teachers) 
a maximum of two days after they completed the questionnaire. The interviews were done in order to 
gain a deeper understanding of the participants' way of thinking and to find explanations to and 
elaborations for the results obtained from the questionnaire (see Burstein et al., 1995/1996; Ercikan 
& Roth, 2006; Luft & Roehrig, 2007). The interviewees were therefore chosen according to the 
degree of incompatibility between their own rating and the experts' rating, and subject to their 
willingness to be interviewed. The interviews were semi-structured so that for each item in the 
questionnaire the interviewees were asked: "Can you explain your considerations for the rating you 
gave?" Each interview was recorded rather than hand written so as to avoid interruptions and delays 
during the interviewing process.  Later the interview was transcribed.  

 
  



Data analysis 

Quantitative analysis: For each question, each participant’s rating was compared to that of the experts 
and received a mark indicating the degree to which it matched the experts' rating. The mark was on a 
scale from 4 to 0 following the rules: 4 points - the participant’s rating is equal to the experts' rating; 
3 points - the participant found the most suitable teaching objective but confused the order of the two 
other objectives; 2 points - the participant marked the most suitable teaching objective as the second 
and the second suitable teaching objective as the most suitable one; 1 point - the participant marked 
the most suitable teaching objective as the second and confused the order of the other two; 0 points – 
any other option. As a result of this process each question got a score, thus enabling the use of 
common statistic tests. 

Interview analysis: The material obtained from the interviews was coded and analyzed using content 
analysis (Bauer & Gaskell, 2010), with the explanation for each question used as an analysis unit. At 
the initial stage of the analysis, the participant's rating was compared to that of the experts for each 
question and the explanation for the rating was checked. In cases where the rating did not match that 
of the experts, or the interviewee's explanation for the rating (even when it was in alignment with the 
experts' rating) did not correspond to the experts' reasons, the causes that led to those mistakes were 
identified. Finally, all the causes which were found to have a common source were grouped together, 
thus creating several categories. Since similar research has not previously been undertaken, there 
were not yet any known categories.    

Findings and interpretations 
General results for the questionnaire  

On average, the participants obtained 2.5 points (out of 4) in this questionnaire. This means that they 
managed to answer correctly an average of 6 questions out of 9. No significant differences were found 
between pre-service and novice teachers. 

"Substitute Set" Question (see Figure 1 below). 

In this question the participants obtained 2.51 points (out of 4). No significant differences were found 
between the two groups. Less than 50% of the participants correctly chose the most appropriate 
teaching objective.   

For this question the causes that led to a mistaken rating were divided into four categories. 

Difficulties in content knowledge 

Interviewer:  Which algebraic expressions are suitable? 

Sara: b, c, d  

Interviewer:   b, c, d, all right 

Sara: And e  

Interviewer:   And e 

Sara: Even though in e you can substitute (-5) 

Interviewer:   So what is the right answer? 



Sara: I really do not know ….. 

The right answer is b and d, but many students of all ages have problems with the algebraic expression 
given in c. They need more than a few minutes to understand that c is a wrong answer. The one which 
is written in e caused problems for some interviewees, and one interviewee gave it as a correct answer 
without realizing that there was a problem. The fact that (-5) cannot be substituted, while 5 can, 
caused problems. This algebraic expression shows that the ability to find the substitute set is not 
sufficient for providing the right solution. Those interviewees who had difficulty with mathematical 
knowledge chose the second objective as the most suitable one or rated the teaching objectives in the 
same order as the experts. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: "Substitute Set" Question (with the experts' rating) 
 

Difficulties in pedagogical knowledge 

The results showed that the participants did not clearly and unequivocally understand how a teaching 
objective should be determined. As a result, they made their choices based on several different 
criteria. Some of the interviewees chose the suitable teaching objective according to the order of the 
syllabus. In this case, for instance, finding a substitute set to an algebraic expression topic is learnt 
after the students know how to substitute numbers and practice doing so. According to Orna, "Here 
the student does not try to substitute numbers because this stage is already known, it is something 
obvious". Thus the teaching objective that would be suitable in this case is the second one, with the 
additional reasoning "that is the way I would do it" (Orna). Osama’s rationale, on the other hand, led 
her to choose the first teaching objective, saying "Here the student first has to substitute in order to 
know if the denominator is equal to zero… [Therefore] I think this task checks very well if the student 
knows how to substitute". Others, like Yelena, based their determination of the most suitable teaching 
objective on a strict adherence to the exact phrasing of the assessment task. She declared that "the 
student does not have to know the idea behind the term ‘a substitute set’ because no one asks for this". 

In a test that was given to 7th grade students the following question was asked: 

Find the algebraic expressions where the set {x| x     5} is the substitute set.  

(There is more than one correct option.) 

a. (x-5)(x+5)        b.  
)5)(5(

4
 xx

   c.  
25
5

2 



x
x

      d.  
252 x

x   e.  
5

7
x

 

Degree to which the 
objective fits the task  

The teaching objective: 

To check if the student 

1 Knows how to substitute numbers in an algebraic 
expression 

2 Knows how to find  a substitute set to an algebraic 
expression 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



She thinks that a teaching objective should be determined according to what is specifically asked for 
in the written question.  

Difficulties in pedagogical content knowledge 

Some of the interviewees did not take into consideration the difficulties students have when the 
substitute set of the algebraic expression is not the same as the given one. "Even those who do not 
understand the learnt material can substitute numbers and succeed in solving the question and the 
teacher will think he/she understands" (Osama). "In 'e' the student finds that the substitute set is all 
numbers except 5, so he will not mark this ['e'] because [it is given that] the substitute set should be 
different from 5 and also from (-5)" (Sharon). Knowing how to find the substitute set or knowing 
how to substitute numbers does not ensure that the student will come to the right conclusion because 
an additional step is requires, namely comparing the result obtained from the finding of the substitute 
set with the given substitute set and coming to a conclusion. 

Beliefs/conceptions   

The interviewees raised concerns about whether a task like this could in fact accurately reflect their 
students’ understanding at all, or whether it just reflected their ability to follow instructions. Their 
responses addressed questions like: What is the nature of the rules that are provided by teachers or 
books? Do these rules replace the need for understanding the subject matter? Can students follow the 
rules and succeed in solving tasks without understanding? Anat, for example, pointed out that “If the 
teacher wrote down the rules on how to find a substitute set…all kinds of rules, the students may not 
understand what a substitute set means, but they will be able to solve exercises without such 
understanding.” Anat expresses the belief that knowing the rules and using them correctly can cover 
up a lack of understanding, and that therefore this task cannot check the understanding of a substitute 
set.       

Discussion and conclusions 

This study attempts to give a preliminary idea of the mathematics teachers’ pedagogical-content 
knowledge of assessment. It examined two groups: pre-service teachers in secondary schools just 
prior to their entering the educational system, and novice teachers in secondary schools. The example 
presented here shows the participants’ difficulties finding the teaching objective behind the given 
mathematical task, dividing them into four categories: a. difficulties in mathematical knowledge, b. 
difficulties in pedagogical knowledge, c. difficulties in pedagogical mathematics knowledge and d. 
beliefs/conceptions teachers hold. The first three categories have already been discussed extensively 
by many researchers as an acknowledged part of the knowledge base all teachers must have (e.g. 
Shulman, 1986; Turner-Bisset, 1999). As this example shows, an incomplete knowledge base also 
influences the quality of the assessment teachers carry out. The application of beliefs in the teaching 
process has been well documented in the literature (Eren, 2010; James & Pedder, 2006; Turner-Bisset, 
1999) and arose in the context of assessment as well. In this case, it was the teachers’ belief that 
providing students with rules could cover their lack of understanding. This issue has been dealt with 
by many researchers for many years (e.g. Skemp, 1976). The belief that teaching students to follow 
a set of rules can be a substitute for teaching them the underlying ideas for those rules may be the 
result of what has, until recently, been the prevalent Israeli method of learning mathematics – a 



method that demanded low levels of thinking from the students. Various researchers (e.g. James & 
Pedder, 2006) have recommended encouraging the pre-service teachers to express their beliefs by 
opening them up for discussion them. Hearing and addressing these beliefs that can influence future 
behavior, can lead the holder to undergo a process of professional development.   

Finally, this study showed that the abilities of the novice teachers are no better than those of pre-
service teachers. Both groups demonstrated the same problems, suggesting that experience in practice 
does not rectify problems that originate in training. This forces the assessment course's lecturers to 
focus on how to connect between teaching objectives and mathematical tasks. Moreover, every 
teacher educator should encourage preservice teachers to express their presumptions or beliefs, since 
discussing them can eliminate wrong beliefs and lead to a professional development (James & Pedder, 
2006). 

The study’s limitations 
Although the number of participating in this research is small, and despite the fact that this research 
was restricted only to novice teachers, it is nevertheless important, since there is no study to date that 
examines the ability of teachers to identify a suitable teaching objective for a given mathematical 
task. Understanding the sources of the mismatching in selecting the appropriate teaching objective 
can help teacher educators focus their efforts on these problems, thus improving the training 
program’s changes of preventing them. 

The study looked at the participants' ability to connect between teaching objectives and mathematical 
tasks in three themes, limiting each theme to very few questions. These alone could not encompass 
all the aspects to be addressed in each theme. Further studies of this ability (and its opposite) should 
be done, preferably with every study conducting an in-depth examination (including interviews) of 
only one teaching theme.   
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Differences in the forms of content teachers are seen to offer over 
time: Identifying opportunities for teacher growth 

Nick Andrews 

University of Oxford, Department of Education, UK; nicholas.andrews@education.ox.ac.uk 

In this paper, I report on a study into differences in how teachers make content available to learners 
over a series of lessons on a topic of their choice. The study highlights significant differences in the 
forms of content made available between lesson series, with the taught topic being a critical factor. 
It also highlights significant differences between the forms of content made available during 
classwork and seatwork, but these differences are independent of both topic and teacher. The 
implications of these findings are discussed, including their potential along with the analytic research 
tool for prompting teacher knowledge growth.  

Keywords: Teacher knowledge, instructional design, teacher education. 

Introduction 
Findings of research into classroom practice have clear impact when they draw attention to features 
of a classroom situation that teachers might not otherwise attend. This impact can be particularly 
powerful if it affords deep psychological investment: if findings are presented in such a way as to 
promote an awareness of choice, if a reason to choose to act differently can be harnessed and if 
alternative actions can be imagined (Mason, 2002). In this paper I focus on an exploratory study of 
four cases of classroom practice over a series of lessons, and in particular differences in the 
manifestations of mathematical concepts offered by the teacher over time (a phrase I will define in 
due course) revealed through quantitative content analysis of teacher talk and classroom tasks. I draw 
on and adapt ideas from international comparative studies in order to inform the research design of 
this local study. I express the findings of my analysis as rhetorical questions about teacher knowledge 
that shapes decision making around the sequencing of content over time (a contributory code of the 
connection element of the Knowledge Quartet (Rowland, Huckstep & Thwaites, 2005)).  

Background to the study 
Differences in how content is made available to learners 

The notion of differences in teaching methods is well established through comparative research (e.g. 
Stigler & Hiebert, 1999). Such studies have tended to use the lesson as the unit of analysis, yet Clarke, 
Emanuelsson, Jablonka & Mok (2006) propose a series of lessons on a topic as more appropriate for 
the purposes of comparison. The nature of teaching can change over the course of a lesson series, 
with the decisions that teachers make in planning and teaching individual lessons shaping the way 
they act over time but also being shaped by the classroom situation of which the teacher is part. 
Furthermore, teachers make decisions at the lesson series level when preparing to teach a topic and 
so analysis at this grain size affords focusing attention on such decisions as well as alternative choices 
that might be available. What is not known is whether particular forms of content are emphasised, 
and whether this emphasis might differ between series of lessons taught in different contexts. 



Differences between lesson time given over to the teacher speaking with the whole class and to 
students engaged in seatwork have been researched (e.g. Stigler & Hiebert, 1999). Serrano (2012) 
underlines the emphasis placed on application/practice during seatwork in classrooms in USA and 
German, contrasting this with greater opportunities for exploration offered in Japanese classrooms. 
Hino’s (2006) within-country comparisons offer an account for this, highlighting how seatwork 
activity frequently precedes explicit presentation of the main content in lessons in Japan rather than 
following it. From these studies, some variation in the forms of mathematics being offered during 
seatwork in different contexts might be anticipated, but are these differences as significant as those 
between the forms of content emphasised when the teacher speaks with the whole class and those 
emphasised during seatwork? 

Case study design 

I purposefully designed the current study so that it involved four cases of teachers teaching a series 
of lessons on a topic of their choice, which allowed me to explore the role of the teacher and the topic. 
In Clarke et al.’s (2006) study the length of a lesson series was set by the researchers as ten lessons 
(or equivalent), but in the current study the length was determined by how long the teacher intended 
to work on the topic and was between three and five one-hour lessons. This ensured that the stretch 
of lessons included a start, middle and end, and I report elsewhere on the notable lesson-to-lesson 
differences that were revealed in each case (Andrews, 2016). Figure 1 shows the convenient selection 
of three experienced mathematics teachers (Ashley, Bernie and Courtney) from two local secondary 
schools (King’s Meadow School and Bishop Langton School) that generated the four case studies for 
my investigation.  

 

Figure 1: Tree diagram representation of the multiple case study design 

Figure 1 also shows that classes were from school years 9 to 11 in England (learners aged between 
13 and 16). Classes were set by prior attainment in both schools, with the average teacher-predicted 
attainment of learners in each class by the age of 16 being in line with the national average for 
mathematics. The broad topics that were the focus of each lesson series are also given in Figure 1. 
Thus cases involving Ashley and Bernie had the school context in common, the two cases involving 
Bernie had the teacher in common and the two cases involving linear equations had the age and 
predicted attainment of students and the topic in common. For convenience, I generally refer to cases 
through teacher and topic, but it is important to have in mind the significance of all four dimensions 
(teacher, class, school and topic) and not let this notation obscure the contribution of school and class 
to the classroom environment. 



Conceptualising forms of content offered by teachers 

In this section I clarify what I mean above by ‘forms of content offered’. Firstly, I view the teacher’s 
role within the classroom situation as making content available to learners, where by content I mean 
the material dealt with in teaching rather than its form; it is the content that brings teachers and 
learners together. In the context of mathematics teaching, content is made up of the mathematical 
phenomena that constitute a topic. But it is precisely the ‘form’ of content that I observe the teacher 
offering learners – rather than the content itself – that is of interest to me. The emphasis on “I observe” 
here is deliberate, since this is a researcher’s stance. In the current study I am not seeking what the 
teacher perceives as the form of content they are offering, for which I might use the term instantiation 
of a mathematical concept. Rather it is my own perception of what is being offered from the position 
of observer, for which I use the term manifestation of a mathematical concept. This also explains why 
more familiar terms used to describe learner activity such as ‘prepare, ‘apply’ and ‘explore’ (Serrano, 
2012) and Clarke et al.’s (2006) codes are inappropriate from a methodological perspective, since 
attending to what the teacher says and makes available as tasks allows for neither assertions regarding 
teacher intentions nor learner activity. 

The notion of manifestation requires further exemplification. When observing a teacher working with 
a class on linear equations, I might see the teacher offering diagrams of bars as in Figure 2, 
mathematical symbols such as “5x + 3 = 24 - 2x”, or word problems such as “My father is currently 
three times my age. In five years’ time the sum of our ages will be 50. How old am I now?” 

 

Figure 2: A problem featuring bars 

I see each as a manifestation of a linear equation, but each is a different manifestation. I classify the 
manifestation in Figure 2 as visual, the mathematical symbols as technical and the worded problem 
as functional (in the sense that a solution is likely to be arrived at through modelling the problem 
mathematically). There are parallels here with the three strands of Structure of a Topic: awareness, 
techniques and emotion (Mason & Johnston-Wilder, 2004). These three components of manifestation 
may be combined, for example if the teacher was observed offering the worded problem above and 
heard saying “Solve this by forming and solving an equation,” this would be both a functional and a 
technical manifestation of a linear equation. In other cases, the spoken instruction may not be so 
explicit but nevertheless clearly implied in the context of the lesson. Either way, I would classify 
what is offered as functional-technical. Similarly manifestations might be classified as visual-
functional or visual-technical, or indeed visual-functional-technical. 

Although this classification of manifestations has been established here through focusing on linear 
equations, it is transferable to the other topics under consideration in this study. For example, when 
teaching geometric constructions, the teacher may seek to evoke an image of a perpendicular bisector 
of two fixed points as the locus of points equidistant from the fixed points (visual) or ask learners to 
construct a perpendicular bisector using a straight edge and compasses (technical). Or when teaching 



division in a given ratio, the teacher may offer a pile of coins for learners to experience sharing in a 
given ratio visually (visual) or pose a worded problem (functional) such as: “On starting up a 
company, Sasha invests £25000 and Tina £40000. At the end of the first year they make a profit of 
£19500 that they agree to share based on their original investment. How much does Sasha receive?” 

To add texture to these descriptions and to consider implications for learners, I cautiously associate 
visual, technical and functional manifestations with opportunities to focus learners’ attention on 
image having (Pirie & Kieren, 1989), procedural fluency (Kilpatrick, Swafford & Findell, 2001) and 
confident manipulation (Mason, 1980) respectively. I associate visual-functional, visual-technical 
and functional-technical manifestations with opportunities to shift the focus of learners’ attention; 
these are likely to be formative, and afford learners new ways in which to encounter a mathematical 
phenomenon working from what is already familiar.  

Focus of the investigation 

The multiple case studies provide broad instantiations of teachers teaching over time, so afford 
localised responses to my research questions: 

When comparing series of lessons, what differences are discernible in the forms of content that the 
teacher is observed offering (manifestations) over time? 

Within and across series of lessons, what differences are discernible in the forms of content that 
the teacher is observed offering (manifestations) when speaking with the whole class (classwork) 
and through tasks (seatwork)? 

In posing these questions, my intention is to explore features of classroom situations that may go 
beyond those which teachers routinely attend. But if they are features to which teachers could attend, 
then this opens up opportunities to act differently. 

Method of analysis 
The transcript of the teacher’s voice, field notes, screen-shots of information displayed on boards, 
hand-outs, worksheets and text books were all used in order to infer how the teacher made content 
available to learners. In the process of coding, I considered the mathematics-related utterances made 
by the teacher when speaking with the whole class during classwork or with individuals during 
seatwork, which together I refer to as teacher-talk. I also considered whether learners were working 
on a particular task, which might have been made available for example through a worksheet or 
spoken instructions from the teacher. I refer to such tasks as given-tasks. 

Each lesson was parsed into half-minute intervals, which were then coded for manifestation taking 
account of the teacher-talk and given-task present during the interval. Selecting half-minute intervals 
as the smallest unit of analysis afforded reliable and manageable coding while still allowing sufficient 
sensitivity to discern small differences in how content was made available. Each interval was coded 
with a Barycentric co-ordinate (x, y, z), where x, y and z represent the relative emphasis between 
visual, functional and technical manifestations respectively observed during the thirty seconds with 
x + y + z = 1 (c.f. Swan, 2006). For example, an interval featuring only technical manifestation was 
coded (0, 0, 1) and an interval featuring visual-functional manifestation was coded (½, ½, 0). Coding 
was based on presence of a manifestation in the half-minute interval rather than the proportion of 
time, and given-task and teacher-talk were weighted equally. Further, if in a particular half-minute 



interval of seatwork the given-task was classified as visual-functional but the teacher made an brief 
articulation that was classified as technical, the overall interval would be coded (¼, ¼, ½), being the 
mean point of (½, ½, 0) and (0, 0, 1). More details of the coding rules and approach to analysis, 
including the strengths and limitations of this approach, are provided in Andrews (2016). 

The series centre for manifestation for each case was calculated through finding the mean point over 
the whole lesson series. Further analysis allowed for the calculation of series centres for each case for 
classwork and for seatwork. Differences between lessons were explored by treating the x, y and z 
values as separate variables. Each variable is ordinal-valued, and as such only non-parametric 
approaches to statistical analysis are appropriate. The Wilcoxon rank-sum test (Wilcoxon, 1945) was 
selected for this purpose. It was found that this test was sufficiently sensitive in order to detect even 
small difference between cases, and so I use the term materially different to describe the situation 
where the effect size (r, calculated from the Wilcoxon test statistic) of case comparison on one of the 
variables satisfies r > 0.3. 

The use of Barycentric co-ordinates as a method of coding half-minute intervals afforded representing 
series centres as points within an equilateral triangle. This may evoke a sense of the series centre 
representing a point of  ‘electromagnetic attraction’ to three differently charged ‘poles’ – visual, 
functional, technical – positioned at the vertices of the triangle. With this imagery in mind, I refer to 
the triangle as the tri-polar space for manifestation.  

Results 
Comparing series centres for manifestation 

The series centres for manifestation highlighted differences in how content was manifested across 
each of the four lesson series. Figure 4 presents the four series centres in the tri-polar space for 
manifestation, indicating clear differences between some of the cases. 

 

Figure 4: The four series centres plotted in the tri-polar space for manifestation 

The three components of manifestation were most evenly stressed in Ashley’s series on geometric 
construction. Functional and particularly technical components were stressed in Bernie’s series on 
sharing in a given ratio, while visual and particularly technical components were stressed in the two 
series on solving linear equations (Bernie and Courtney). Table 1 quantifies the between-case 
differences seen in Figure 4 by presenting the effect sizes on the three components of manifestation 
when comparing lesson series. 

  



 Effect size on component of manifestation 

Case comparison 
(Topic; half-minute intervals) 

Visual Functional Technical 

Ashley (Constructions; n = 488) to 
Bernie (Ratio; n = 383) -0.45 0.03 0.38 

Ashley (Constructions; n = 488) to 
Bernie (Equations; n = 289) 

-0.10 -0.57 0.57 

Ashley (Constructions; n = 488) to 
Courtney (Equations; n = 416) 

-0.11 -0.46 0.50 

Bernie (Ratio; n = 383) to 
Bernie (Equations; n = 289) 0.42 -0.65 0.30 

Bernie (Ratio; n = 383) to Courtney 
(Equations; n = 416) 0.41 -0.51 0.17 

Bernie (Equations; n = 289) to 
Courtney (Equations; n = 416) 

-0.01 0.20 -0.14 

N.B. Material differences are highlighted in bold. 

Table 1: Quantification of between-case differences in the components of manifestation 

The series of lessons taught by Ashley on constructions and Bernie on ratio were marked out as 
materially different to the two series on equations, and different to each other. However, the analysis 
did not highlight significant differences between the two series on equations. This led me to infer that 
within this study the topic had an impact on the forms of content the teacher offered. 

Comparing classwork and seatwork 

Combining the four cases, there were differences in the forms of content the teachers were observed 
offering during classwork and seatwork (see Figure 5). On average, the visual component was 
stressed more during classwork whereas the functional component was stressed more during 
seatwork, which aligns with Serrano’s (2012) findings about American and German classrooms.  

 

Figure 5: The across-case centres for classwork and seatwork plotted in the tri-polar space 

Focusing now on each case, the difference in emphasis of the visual component between classwork 
and seatwork was statistically significant, although the difference was only material in Courtney’s 
lesson series on equations (see Table 2). Greater emphasis on the visual component during classwork 
was observed regardless of the particular teacher, topic or class. 



 Effect size on component of manifestation 

Case 
(Classwork intervals, seatwork intervals) 

Visual Functional Technical 

Ashley (Constructions; c = 77, s = 411) -0.21 0.26 -0.02 

Bernie (Ratio; c = 82, s = 301) -0.17 0.38 -0.24 

Bernie (Equations; c = 81, s = 208)  -0.18 -0.06 0.19 

Courtney (Equations; c = 146, s = 270) -0.34 0.21 0.17 

N.B. Material differences are highlighted in bold. 

Table 2: Comparison of classwork to seatwork across the four cases based on the relative stressing of 
the three components of the manifestation 

Only in Bernie’s series on equations was there no statistically significant difference in the functional 
component between classwork and seatwork. Yet the only difference in the functional component 
between classwork and seatwork to be material was in Bernie’s series on ratio (see Table 2), 
suggesting that the teacher was not a critical factor here but that the class may be. 

Discussion 
This investigation has highlighted differences in the teaching of topics over a series of lessons. 
Material differences were discernible in the forms of content that the teachers were observed offering 
over time. In the current study, the topic was a critical factor and this contrasts with Clarke et al.’s 
(2006) study since although their analysis was of a series of lessons on a topic, the topic itself was 
not foregrounded in their findings. My findings raise the question of why the forms of content Bernie 
offered in a lesson series were so different when teaching ratio compared to equations. In particular, 
the findings lead me to ask whether opportunities associated with functional manifestations of 
equations were considered or not and, if they were, why these manifestation choices were not enacted.  

Differences in the forms of mathematical content offered during classwork and seatwork gets to the 
heart of the purpose of these two types of engagement from a didactic perspective. From other 
perspectives, classwork may have a specific purpose such as offering learners extrinsic motivation to 
engage in mathematical activity. Yet this study prompts the question: what forms of content is it 
necessary for the teacher to make available through classwork rather than seatwork, if any? The small 
sample in this study raised the conjecture that making available visual manifestation might be better 
served by classwork rather than seatwork, and that the class – rather than the topic – being taught 
would shape the extent of this. 

In the introduction, I spoke of how the impact of findings “might be particularly powerful if there is 
an awareness of choice, if a reason to choose to act differently can be harnessed and if alternative 
actions can be imagined.” The above prompts along with the tri-polar space for manifestation offer 
opportunity for such activity, for the interior triangular space suggests the possibility of choice and 
invites actions associated with particular positions within it to be imagined. This activity in turn 
invites new research opportunities to explore teachers’ knowledge, attitudes and beliefs.  
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Prospective teachers plan a short mathematical discussion on comparing fractions by writing 
lesson plays. We analyse how their mathematical knowledge for teaching surfaces in their written 
scripts, using three dimensions of the Knowledge Quartet: foundation, transformation and 
connection. Our findings give insight into the prospective teachers’ knowledge of fractions and 
comparison strategies, their perspectives on mathematics and mathematics teaching, and insight 
into how they transform their knowledge to make it accessible to middle school students. 

Keywords: Mathematics knowledge for teaching, representations of teaching, classroom discussion, 
lesson planning, rational number sense. 

Introduction 
Several recent studies call for a practice-based approach to research on teacher education (e.g. Ball 
& Cohen, 1999; Grossman & McDonald, 2008). An integral part of teachers’ work is planning for 
teaching. Recently, several researchers have advocated writing lesson plays as a means of learning 
how to plan for instruction (see Zazkis, Liljedahl, & Sinclair, 2009). Lesson plays are imagined 
mathematical discussions written verbatim. Zazkis et al. (2009) argue that lesson plays can give a 
“window” for researchers to investigate mathematical knowledge for teaching. We have collected 
and analysed prospective teachers’ (PTs’) planning documents for a practice assignment in their 
school placement. The assignment was to write a lesson play on fractions. Several studies show that 
many PTs struggle to understand fractions (Newton, 2008; Ma, 1999). Siegler et al. (2010) 
recommend, “[p]rofessional development programs should place a high priority on improving 
teachers’ understanding of fractions and of how to teach them”. With this in mind, our research 
focuses on the following question: How does PTs’ mathematical knowledge for teaching surface in 
their lesson plays on fraction comparison? 

Lesson plays 
This study reports our efforts to develop practice assignments in our teacher education courses with 
respect to the notion of high-leverage practices. Ball, Sleep, Boerst, and Bass (2009) define “high-
leverage practices” to be those that, when done well, are likely to lead to improved student learning. 
High-leverage practices are practices which novice teachers need to learn to do, and from which 
they will learn more about teaching (Lampert, 2009). Further, a high-leverage practice is such that 
novices can begin to master it (Grossman, Hammerness, & McDonald, 2009). Lampert, Beasley, 
Ghousseini, Kazemi, and Franke (2010) give several instructional activities that could be part of 
high-leverage practices in mathematics, which can be realised in a relatively short time, typically 
10-15 minutes, through classroom discussions. The PTs used coursework literature to analyse and 
discuss a series of videos and transcripts of classroom discussions concerning computational 
strategies. We asked the PTs to plan a similar short mathematical discussion with a group of middle 



school students, age 9 to 13. This was part of a practice assignment, intended to be implemented 
during their school placement towards the end of the term. The PTs were asked to plan for the 
mathematical discussion by writing a lesson play. 

Lesson plays, introduced by Zazkis et al. (2009), are proposed as a way to plan teaching by writing a 
script for (part of) a lesson. An envisaged interaction between a teacher and a group of students is 
given verbatim, as an alternative for the traditional lesson plan. Zazkis et al. (2009) argue that lesson 
plays can give an opportunity for in-depth discussions of crucial aspects of mathematics teaching 
before the lesson, while such discussions can only take place after the lesson if the lesson is planned 
using a traditional lesson plan. As such, lesson plays are not affected by John’s (2006) claim that 
traditional lesson plans do not give insight into “the substance of the particular activity” (p. 487). 

Zazkis et al. (2009) typically give their PTs a prompt representing a mathematical error or 
misinterpretation, and ask the PTs to write the script of a discussion, which resolves the prompt.  
We asked our PTs to plan all aspects of the discussion, including formulating a mathematical aim 
for the discussion and a task, or a sequence of tasks, to achieve this aim. Our requirements for the 
discussion were that the mathematical topic was fractions, and that the aim should be to discuss 
some calculation or reasoning strategy on fractions. Furthermore, the script should include 
argumentation and some type of generalisation of concepts and/or strategies. Generalisation, 
argumentation and reasoning was a major focus in the coursework. The duration of the discussion 
should be 10-15 minutes.  

Mathematical knowledge for teaching 
We are interested in how PTs’ mathematical knowledge for teaching surfaces in their lesson plays, 
and we use the Knowledge Quartet (KQ) (Rowland, Huckstep,  & Thwaites, 2005) as a framework 
for our analysis. The KQ consists of four dimensions, three of them resting on the first, named 
Foundation. Foundation concerns the teacher’s or PT’s knowledge of mathematics and mathematics 
teaching as acquired in their education. It underpins a teacher’s ability to make rational, reasoned 
choices and decisions about instruction based on knowledge of mathematics and mathematics 
pedagogy. The second dimension of the KQ, Transformation, is about how the teacher transforms 
her own subject matter knowledge of mathematics into forms which enable others to learn it. Such 
transformation is informed by the teacher’s choice of examples and representations and how these 
support learning of the intended mathematical topic. Connection is about the choices a teacher 
makes in order to ensure the consistency of planning and teaching a topic or concept through a 
lesson or lessons. As such it concerns anticipation of what students will find problematic, and 
decisions about sequencing. Crucial is the teacher’s understanding of connections between 
mathematical concepts and between concepts and procedures as well as anticipation of complexity 
when planning and teaching a topic. Contingency concerns a teacher’s responses to events that were 
not anticipated or planned for. Since we are considering planning for teaching this dimension will 
not be relevant to our analysis. 

As the lesson plays analysed concern comparing fractions, it is useful to clarify the implications this 
has for the foundation dimension of the KQ. When describing number sense, researchers state that it 
manifests in flexible mental computation, understanding number magnitude, making judgements 
about calculations, using benchmarks, and having an inclination to use and develop understanding 



of numbers and operations (McIntosh, Reys, & Reys, 1992; Sowder, 1992). Researchers have 
identified several strategies for comparing fractions based on number sense (see Yang, 2007). The 
parts strategy can be used when comparing fractions with the same numerator or denominator. The 
benchmark strategy refers to comparing two fractions to some well-known third fraction, typically  

or . When using residual thinking one builds up the fractions to 1. There are also “standard” ways 

of comparing fractions, which do not overtly depend on number sense, such as finding a common 
denominator or converting to decimals. Since the task for the PTs was to write a lesson play about 
reasoning with fractions, we expected the planned discussions to contain more than performing an 
algorithm. Using visual models of fractions can be a legitimate strategy, but researchers also warn 
about the limitations of relying on a visual strategy alone (Petit, Laird, Mardsen, & Ebby, 2015; 
Lamon, 2012). Thus, we expected strategies beyond visual strategies in the planned discussions.  

Method 
The participants in the study were PTs following a 4-year teacher education programme, for age 6-
13, at a university in Norway. The data were collected from their responses to a coursework 
assignment given during their first mathematics education module, in their first year of study. Of the 
178 PTs in this cohort, 32 had chosen tasks on comparing fractions for their written classroom 
discussion. These 32 scripts are the data analysed in this paper, in particular they were chosen for 
analysis because fraction comparison has good potential for reasoning based on number sense 
(Yang, 2007).  The excerpts presented in this paper are chosen to exemplify general trends 
identified in the 32 lesson plays.  

All four authors conducted the analysis. Together, we first analysed in detail two lesson plays, using 
the descriptions of the dimensions from the KQ in our analysis of the two scripts. We then 
individually analysed the rest of the lesson plays looking for occurrences of similar and contrasting 
forms of mathematical teacher knowledge related to the KQ. After this independent analysis, we 
compared similarities and differences in our analyses, and agreed on an interpretation of different 
aspects of the lesson plays, using notions included in the KQ framework. 

Analysis 
Of the 32 scripts, 6 used no strategies based on number sense, instead relying on visual “parts of 
shapes” strategies, or on algorithms such as finding a common denominator or converting to 
decimal numbers. In the remaining 26 scripts, the PTs used a number sense-based strategy at least 
once. 9 PTs used benchmarking, 13 used parts and 17 used residual thinking. In the following, we 
analyse some examples from the scripts in light of the mathematical content. 

Anne was one of the PTs who based most of the imagined discussion on number sense-based 
strategies. Her stated goal of the discussion is to build understanding of the strategies of 
benchmarking and residual thinking. She gives two tasks designed to encourage the students to 



utilise these strategies, and we quote here1 two excerpts from the imagined discussion between 
Anne’s teacher and her students while discussing the sorting of  and  by magnitude:  

Ola: Yes, at least you see that is the same as the half of something, that was where I 

started. 

Teacher:  OK, so you believe that it is one half. But how can that help us? 

Ola: Well, since it is one half, we also see that  is less than one half. 

Teacher:  Per, can you try to elaborate Ola’s thinking? 

Per:   is sort of lacking 3 parts to become one half. Because 5 parts is half of 10 parts. 

So then  is less than  

Teacher:  Right, do the rest of you agree? Yes. OK, what do we do next? 

We see that Anne, in Ola’s words, uses one half as a benchmark when comparing   and . We note 

that Ola’s explanation is incomplete; it does not state why  is less than one half. The PT seems to 

be aware of this, as she asks Per to elaborate Ola’s thinking, from whom she receives the completed 
reasoning. In the next sample from Anne’s script, a residual argument is pursued:  

Teacher:  All right, so now we know that  is the smallest, and then comes , but which is 

the biggest of  and ? 

Per:  Since  is smaller than  then  is the most 

Mia:  But why is that when  is a lot bigger than ? 

Teacher:  Good question Mia, does anyone want to explain? 

Ola: When we looked at  and  we were looking at how much was missing to fill one 

whole. The one that miss the biggest part is then missing the most, and therefore 
that fraction is the smallest. Because  is only missing a small  to become one 

whole. 

Mia:  Oh yes, now I understand, because we are looking at what is missing. 

Anne does not acknowledge any students’ claim without a justification. Through the whole of 
Anne’s script, the teacher is encouraging the students to utilise their number sense when reasoning 
about the tasks. Similar approaches are also apparent in the rest of the 26 scripts, but not always as 
comprehensive as in Anne’s case. One typical feature is that even though a mathematically correct 
conclusion is reached, there is no valid argument given by the students, and the PTs tend to accept 
this without comment. This is evident in Alice’s script, when the students are comparing  and . 

                                                 
1 The original scripts were written in Norwegian, with translation to English by the authors of this paper. In the 
translation we have retained linguistic inaccuracies and imprecise use of terms, as in the original Norwegian. 



Fredrik:  Yes, me and my group decided that  is the biggest. I think that 3 is closer to 4, 

than 4 is to 8. 

Teacher:  That was good thinking. [Proceeds with a different task] 

Our analysis shows a general tendency in the scripts that strategies based on number sense have 
some kind of justification, while strategies based on algorithms and rules are more likely accepted 
without justification. The above excerpt from Alice’s script is one of few exceptions, where she 
gives a correct conclusion with an attempted justification that is not valid as an argument. Judging 
by the teacher’s response, it seems that Alice regards Fredrik’s argument as valid.  

The following excerpt from Christine’s script shows another problem. 

Sindre:   must be the biggest, because that fraction is only missing 3 parts to become one 

whole, while  is missing 5 parts to become one whole. 

Teacher:  Yes, that’s right Sindre. Did the rest of you understand what Sindre was thinking? 
Nina, can you explain what Sindre meant? 

Nina:  Yes, you can also say that  misses one half to be whole, while  lacks more than 

half to be whole, since it is lacking 5, and half of  is . 

Teacher:  That was a good explanation, Nina. Did the rest of you also understand what Nina 
meant? (The class agrees.)  

In this excerpt, we notice that Sindre’s argument is wrong even though the conclusion is correct. 
Christine (in the role of the teacher in the discussion) does not comment upon this, instead simply 
accepting Sindre’s argument. Interestingly, Nina subsequently gives a valid residual argument, but 
Christine does not draw attention to the difference in the two arguments in her script. Our analysis 
shows that similar arguments that “work” on the fractions in question, but where a counterexample 
would prove the argument not generally valid, are typical for many of the lesson plays. 

Another aspect of our findings was the PTs’ choice of tasks used in the discussions. Returning to 
Anne’s script, she uses only two tasks. They both underpin the strategy in focus, and have a natural 
progression in complexity: The fractions involved seem to be carefully chosen to make her target 
strategy suitable, and residual thinking is further highlighted by Anne asking the question “Which of 
the fractions are missing the most to become one whole?” at the start of the discussion. In contrast 
to this, Molly’s choice of tasks and the sequencing chosen, seems less appropriate: Compare  and 

;   and ;   and ;   and ; and  and . Molly does not state explicitly a mathematical goal for the 

planned discussion, and her imagined discussion covers several ideas in a brief way. Moreover, the 
progression of difficulty in the sequence of tasks does not seem to be well thought through: in the 
lesson script on the first tasks, Molly’s fictive students use benchmarking with one half, indicating 
that one half is a well-known concept for them. To then proceed with the final three tasks focusing 
on equivalent fractions to , seems exaggerated.  

Discussion 
We now relate the findings presented in the analysis to the dimensions of the Knowledge Quartet.  



Foundation 

For the foundation dimension, the most visible aspects are the PTs’ mathematical knowledge of 
fractions and comparison strategies, as well as their beliefs about mathematics itself, and about 
mathematics teaching. In general, the PTs try to use strategies relying on number sense to compare 
fractions. This could indicate that the PTs value developing understanding rather than focusing on 
an algorithmic approach. The strategies attempted in the scripts are not always followed through in a 
mathematically valid argument, and some of the PTs fail to recognise the difference between valid 
and invalid arguments. Christine’s script is an example of this. 

Another finding is that very few scripts contain any attempt at discussing the generality of the 
strategies used. This indicates that the PTs’ beliefs about mathematics might not include this as an 
important aspect of doing mathematics. Instead, the PTs seem to be satisfied as soon as the problem 
at hand is solved, as in Christine’s script when neither Sindre’s or Nina’s arguments are investigated 
further from a general point of view. Recall that the task given to the PTs particularly required them 
to emphasise the development of their students’ understanding and reasoning.  

Transformation 

The PTs’ scripts afford good insight into their choice of examples to elicit an idea. With very few 
exceptions, the tasks chosen by the PTs are suitable comparison tasks where it is clear that there is 
at least one number sense-based strategy that could be applied. 

We proceed to consider the PTs’ use of questions. In the context of PTs writing an imagined 
discussion, we regard this as a form of teacher demonstration, and thus consider it a part of 
transformation. We find in most scripts a use of certain techniques and types of questions known 
from their coursework literature on orchestrating mathematical discussions. For example, in Anne’s 
script, the teacher’s questions structure what her students have discovered and then seek to develop 
their ideas further. When Anne’s teacher asks Per to elaborate Ola’s thinking, she succeeds in 
bringing to light an argument. In other scripts, the PTs seem to emphasise the use of discussion 
techniques in itself to such an extent that it suppresses the attention on connecting the mathematical 
ideas. This can be seen e.g. in the excerpt from Christine’s script above, where the teacher asks a 
student to repeat another student’s reasoning without connecting the different explanations. 
Sometimes the PTs fail to notice when a clarifying question is needed. This can be seen in Alice’s 
script above, where Fredrik’s attempted justification is an invalid argument in general, and yet the 
teacher accepts it and proceeds without further enquiry. 

Connection 

The sequencing of tasks, how one task should connect to the previous task, and the anticipation of 
what students will find problematic, is part of the connection dimension. We find that in most 
scripts, the sequencing of tasks is appropriate. However, we find examples of situations where the 
PTs do not seem to anticipate the complexity of the sequence of tasks. An example is Molly’s script 
as discussed above. Other scripts seem to have too many tasks, given the time allotted. In these 
scripts the discussion moves forward smoothly with students giving the desired response quickly 
and effortlessly. This may indicate that these PTs do not anticipate complexity in the discussion and 
that the conceptual challenge for the students is underestimated. Thus, these discussions take more 
the form of numerous repetitions of the same procedure, which relates to the foundation dimension 



of the KQ and perspectives on how mathematics is learned: These PTs seem to emphasize 
procedural repetition as an important aspect of learning mathematics, perhaps on behalf of 
unpacking the mathematics of the procedures. However, some scripts include deliberate mistakes 
and misconceptions made by the students, which are then discussed. We see this as an anticipation 
of complexity. 

Conclusions 
Following the discussion above, we claim that lesson plays encourage the PTs to use and develop 
several aspects of their mathematical knowledge for teaching. For the foundation dimension, we 
claim that the insight we get from the scripts, is more than what we would get from simply 
assigning the PTs fraction comparison problems for them to solve. We note that several PTs write 
discussions including both valid and invalid arguments and both are accepted without further 
probing. For instance, Christine knows what a valid argument for comparing fractions looks like, 
but at the same time she accepts an invalid one.  Such inconsistency in the PTs’ thinking might 
become more visible when they plan teaching by imagining a detailed mathematical discussion.  

We also claim that our findings show the importance of emphasis in mathematics teacher education 
on generalisation and argumentation, and how classroom discussions concerning generalisations 
could play out. Our PTs were asked to have those aspects in mind when writing their lesson plays, 
and yet it is rarely found in the scripts. How to develop the PTs’ ability to emphasise this aspect 
more needs to be studied further. Managing classroom discussions is a complicated task for novice 
teachers. However, due to its high leverage on students’ development of mathematical 
understanding it is a critical factor in mathematics teaching, and thus in teacher education.  
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The purpose of the current study is to provide findings of a follow-up study on a content course 
developed to improve specialized content knowledge of high school teachers. Elif was chosen to be 
interviewed among the participants of the content course according to certain criteria of sampling. 
Elif graduated within a year of taking the course and have been teaching in high school since. The 
individual semi-structured interview on her perceptions of how the content course influenced her 
teaching was conducted. The interview was transcribed and coded. Two themes emerged about the 
influence of the content course; using same examples or proofs, readiness to implement tasks for 
teaching. The findings show the participant’s self-report of how she transformed her SCK experiences 
from university to her instruction. Furthermore, her answers revealed the relationship between SCK 
and PCK, how this unique knowledge of mathematics (SCK) forming basis for PCK.          

Keywords: Specialized content knowledge, mathematical knowledge for teaching, novice teachers, 
content course, secondary mathematics teaching. 

Introduction 
Teacher knowledge has been in central position for teacher quality. Not only Shulman’s (1986)  work 
and emphasis on pedagogical content knowledge (PCK) but also further studies (e.g. Ball and her 
colleagues) on understanding nature of knowledge needed for effective mathematics teaching have 
been shedding light on role of teacher knowledge. In addition to studies to develop different models 
on teacher knowledge, there are many researches on understanding or improving teacher knowledge. 
However, most of those studies investigate either preservice teacher education (content or pedagogy 
courses) or in-service teachers (professional development). In this study the authors will share 
findings from a case study of a novice secondary school mathematics teacher’s perception on 
influence of taking a content course focusing on Specialized Content Knowledge (Aslan-Tutak and 
Ertas, 2013) on her teaching. Authors will shortly review literature on mathematics teacher 
knowledge that guides this research.    

 Mathematical Knowledge for Teaching   

 The theoretical framework of this study is mathematical knowledge for teaching (MKT) model 
developed by Ball et al. (2008). According to MKT model, there are six sub-domains of teachers’ 
knowledge for mathematics teaching. Three sub-domains of subject matter knowledge are Common 
Content Knowledge, Specialized Content Knowledge, Horizon Content Knowledge, and sub-
domains of pedagogical content knowledge are Knowledge of Content and Students, Knowledge of 
Content and Teaching Curriculum Knowledge. Since this model is very well known, in literature 
review part of this paper, authors will focus on only Specialized Content Knowledge (SCK). Further 
information about these domains can be read from Ball et al. (2008).   



SCK is a type of subject matter knowledge; it is defined as mathematics knowledge which is unique 
to teaching. Indeed, it is about knowledge about mathematics, not teaching, but for teaching. Ball and 
her colleagues stated the role of SCK as follows:  

What caught us by surprise, however, was how much special mathematical knowledge was 
required, even in many everyday tasks of teaching— assigning student work, listening to student 
talk, grading or commenting on student work. Despite the fact that these tasks are done with and 
for students, close analysis revealed how intensively mathematical the tasks were. (Ball et al., 
2008, p.398) 

Due to nature of SCK it may be omitted in university mathematics courses and also in pedagogy 
courses (Ball, et al., 2008). Especially in secondary school teacher education, mathematics courses 
are advanced and require teachers to study mathematics from a different perspective than teaching. 
Since MKT model was developed based on a study of elementary school teachers, it was necessary 
to revise definition of SCK for high school preservice teachers. In an attempt to improve high school 
preservice mathematics teachers the first author developed a mathematics content course. The course 
content was developed by addressing not only MKT but also Advanced Mathematical Knowledge 
model of Zaskis and Leikin (2010), Advanced Mathematics for Secondary School Mathematics 
Teachers by Usiskin and his colleagues (2003), and SCK task development perspective of Suzuka 
and her colleagues (2009). Usiskin and his colleagues emphasized three types of mathematics 
experiences for secondary school mathematics teachers; concept analysis, problem analysis and 
mathematical connections. Lastly, the content course practices were developed to allow preservice 
teachers to unpack their already existing knowledge and to develop a flexible understanding of 
concepts (Suzuka et al., 2009).  How these models and perspectives were merged together to form a 
content course can be read in detail in author’s previous paper for CERME 8 (Aslan-Tutak & Ertas, 
2013).  

Since our research is a follow up study, it is needed to mention about aforesaid content course’s 
ingredients. The mathematical tasks which were used during the course can be categorized under four 
approaches; unpacking concept definitions, applications and modeling, procedures and 
generalizations, and historical perspective of concepts (Aslan-Tutak & Ertas, 2013).  

Unpacking concept definitions practice was identified by participants as eye-opening experience.  
One example is the activity focusing on geometric definition of imaginary number “i”.  Almost all of 
the students stated that they had seen geometric representation of “i” for the first time and they were 
really surprised. The instruction which focused on geometric representation of “i” was discussed in 
Aslan-Tutak and Ertas (2013) as;     

In order to explore number “i”, instruction started with discussion on the roots of an equation 
as its constant terms changes (Usiskin, et al., 2003). Then graphs of the equations were plotted 
on Cartesian plane (geometric representation of the equations) and their roots showed on a 
number line (geometric representation of real numbers). The number line was sufficient for the 
roots of first two equations but participants realized that they could not show the roots of third 
equation on number line. Then, the definition of the imaginary number i was discussed by 
rotation of 90o perspective (Lakoff & Núñez, 2000; Trudgian, 2009; and Usiskin et al., 2003) 
which provides a geometrical understanding of the imaginary number.  



Second categorization of the course was applications and modeling. In the content course, there were 
some modeling problems for the topic of functions and also alternative definition of function. An 
example of modeling activity was about oil spill and its cleaning procedures. At the beginning of the 
problem there were some discussion about oil spill incidents in Gulf of Mexico and France and its 
effect on environment. After discussion part, the students were taken the problem as: If there was 
8000 gallon oil due to a spill, and the crew can clean only 80% of oil for a week. So how much oil 
would remain after a week? And how long will it take to clean until there is 10 gallon of oil is left? 
Erbas et al. (2014) discussed two approaches in use of modeling: as a means of teaching mathematics 
and modeling as an aim of teaching mathematics. In this current study, the authors used modeling in 
content course as a means of teaching mathematics. This practice was aimed to introduce preservice 
teachers to use mathematical modeling in instruction while examining definition of functions. In 
addition to modeling, history of mathematics was used for examining functions. For example, history 
of logarithm and Napier’s problem were studied. The historical approach was not limited to functions 
but almost all the topics, such as history of irrational numbers.  

Participants of the content course stated that, the proof of equality 0,9999…=1 was also one of the 
surprising tasks of the course. Seven different approaches to show it were posed to preservice teachers 
and then the relationship between the aforesaid proof and converting infinitely repeating decimals to 
fraction without any formula were established. This mathematical task was used with preservice 
teachers in different settings. Conner (2013) used this task to promote argumentation with preservice 
teachers. She stated that “Engaging prospective secondary teachers in mathematical argumentation is 
important so that they can learn to engage their own students in creating and critiquing arguments.” 
(p. 172).      

The second author of this current paper was a student at the time of the study. He graduated from the 
program and has been teaching for three years. The purpose of the content course was to improve 
participants’ SCK which can be used during teaching. Therefore, the authors examined perceptions 
of participants, actively teaching in high schools, about how their learning from the undergraduate 
course transferred into their teaching.  

Methods  

The two-year long study, SCK development of high school teachers, was conducted at a mid-size, 
western public university in Turkey. The content course was offered in 2011 fall semester and 2012 
fall semester. Based on students scores on national central university entrance exam, this high school 
mathematics teaching program had the highest rank among all of the mathematics education programs 
in Turkey. Students of this program had to take advanced level mathematics courses such as calculus, 
linear algebra, and complex analysis. Seventy percent of the courses are mathematics courses. Pre-
service teachers also took general pedagogy courses, mathematics teaching courses and school 
practicum courses. At the time of this SCK project, there was no content course in mathematics 
teacher education program. The content course that developed based on this project was therefore 
elective for students. There were 31 students who enrolled to this course in 2012 fall semester.  

The sample of the current study was determined based on three criteria; graduation from the program 
and starting teaching in spring 2013, teaching in high school, and living in Istanbul. Some of the 
students did not pursue career in teaching but other professions such as economics. Also, not all 



students graduated in 2013. This condition was necessary in order to allow minimum time between 
taking the course and starting teaching. The second condition of teaching in high school was used 
because the topics of the content course were high school topics. The topics of this course are not 
covered in middle school. In order to investigate how novice teachers’ transfer their SCK learning 
into their practices, it was important to choose participants according to grade levels they teach. The 
last condition of living in Istanbul was for convenience, in order to be able to conduct interview easily. 
There are some novice teachers who fulfill the first two conditions but they were living in other cities. 
Considering all of these conditions, there are only two novice teachers. Since one of them is the 
second author of this paper, the only other novice teacher (Elif, pseudonym name) was the sample 
for this study.  

Indeed, all these conditions are also helping researchers to establish trustworthiness of the study. The 
conditions allow clear examination of transferability of the study. The findings of the study can be 
transferred into settings where preservice teachers study mathematics content for SCK in context of 
teaching and start teaching afterwards. Furthermore, in order to improve trustworthiness of the study 
researchers did member-checking with the participant. In addition to asking Elif to confirm 
interviewer’s interpretations during the interview, later researchers also contacted her to discuss about 
findings of this case study. The member-checking also aided for the conformability of the study. For 
conformability, after the completion of analysis done by the first author, the second author went 
through the analysis. After this two-stage of analysis, Elif’s member-checking was helpful to finalize 
findings. Elif approved most of the findings and she improved what we called “completeness”. This 
phenomenon of “completeness” is discussed in findings section.   

Yin (2013) explained the rationale of using case study research methodology as explaining “how” or 
“why” questions in-dept. The purpose of this study is to investigate how a novice high school 
mathematics teacher uses her SCK experiences in the content course. How does this course influence 
her teaching practices? Since teaching is a complex practice, it was necessary to examine this research 
question through case study methodology. The authors conducted a semi-structured interview with 
the participant, Elif. The interview questions were in two parts (i) background questions (e.g. years 
of teaching), (ii) her experiences in the course as a student and how these experiences influence her 
teaching.  

Elif’s interview was first transcribed and the open-coded. After open-coding, Elif’s answers on how 
the SCK tasks in the course influenced her teaching practice were emerged into two themes; (i) using 
same example, proof in the classroom, (ii) readiness for implementing tasks of teaching 
(understanding student misconceptions, answering student questions, material development).    

Findings  

The first part of the interview was to understand Elif’s teaching experiences and the environment that 
she has been working in. The school environment and possible mentor-mentee relationship is 
important in novice teachers development of practice. Elif took the content course in fall 2012 and 
graduated from university on June 2013. Right after her graduation, she started to work at a private 
high school, Baris Schools. Baris Schools is a school of a foundation which has more than 100 years 
background in education. Baris Schools have three K-12 campuses in Istanbul. In other words, Elif 
started to work at a well established school, a good opportunity for a novice teacher. After her first 



year, she transferred to another campus and has been teaching for two years at that campus. So, she 
has been teaching high school (9-12 grades) for three years. In the interview, she stated that her school 
is a good place to learn about teaching. Considering how she transferred what she learned in content 
course in her teaching, she stated that mathematical exploration in the course provided her 
“completeness” for the topics/concepts that were covered in the course.  

Elif: You can guide, direct the students to understand concept because you know that 
concept. 

Interviewer:  How do you direct them?  

Elif:  You construct the concept together, like i square to be -1, by asking questions, when 
you are complete for content. 

Especially as a novice teacher, she valued this feeling of completeness both when preparing 
instructional material and during the instruction.  

Elif: When teaching, for the concept, you can be prepared. Your explanations are 
complete, select materials and put them in order.  

According to Elif, completeness is a broad term which includes readiness to unexpected questions, 
constructing relationships between mathematical concepts and having deep understanding of the 
concepts. Her answers on how she transferred what she learned in the course to her teaching practice 
will be discussed in detail according to two themes that were emerged from data.  

Using same examples or proofs 

She stated that she kept all of the course materials, book, notebook, activities and presentations. She 
said, for some topics, she specifically used same examples. Her answers on what she kept same for 
her teaching reveal that she used alternative definitions (number i, mathematical functions), proofs 
(irrationality of √2, quadratic formula), and examples given for concepts (examples for exponential 
functions).  For example, she had been teaching complex numbers for two years, she stated that she 
always introduced number i by the same geometric definition from the content course. But she made 
a differentiation about using materials from the course. Elif stated that while she was teaching 
geometric definition of number i for whole class instruction, she used many proofs only when certain 
group of students asked for further mathematical knowledge. She said that she decided to use a 
definition/proof/example based on students’ mathematics level. In the following quote from the 
interview, she described how she used “deriving the quadratic formula” that she learned in the content 
course.  

Elif:  When I explain it (quadratic formula) to students, even the order of doing it was 
stuck in my mind because we teach it this way, we give formula at the end. Before 
that to make square formula…It make sense, you get quadratic formula from 
making square formula. Discussing 𝑏2 − 4𝑎𝑐 from the beginning, why there are 
two roots, or one root…Yes, it’s a terrible formula but we derive it together, of 
course with the ones who are good at math  



Readiness to implement tasks of teaching 

Content course, in other words SCK tasks that were done in the content course, aided Elif’s teaching 
during the instruction when answering student answers. In the individual interview, Elif discussed 
about using  her mathematical experiences from the content course. Many of Elif’s answers to 
interview questions were emerged to form the theme, readiness for teaching. However, her answers 
were similar to mathematical tasks for teaching addressed in MKT model (Ball et al., 2008). So, in 
order to put emphasize on Elif’s differentiation of demands of teaching, we merged her answers 
together and named them readiness for implementing tasks for teaching. As it was stated before in 
her feeling of completeness, she emphasized knowing what to prioritize in teaching a concept. She 
explained knowing and realizing the big idea in concepts several times. For example, while she was 
getting ready for teaching a concept, she knew what to emphasize in instruction even before thinking 
about how to teach it. 

Elif:  In complex numbers, maybe students didn’t get why square of i is -1, but I checked 
my notes (from content course ) in order to get 180 degree rotation thing in my mind 
so I can teach it. This was for me actually.     

The second code is building awareness, and directing her to find other resources. Elif didn’t have to 
use same examples from course in her instruction. Mathematical tasks provided some awareness to 
her and she did further research about certain concepts. She stated that based on mathematical tasks 
in the course, she searched and found other tasks/examples from Khan Academy or YouTube. The 
third code is directing students to understand concepts. Elif emphasized the role of mathematics that 
she learned in course to help her ask mathematical questions to guide student thinking. In a sense, 
this is related to first code, identifying and knowing big idea of a concept. Further to that identifying 
big ideas,  in this code, she is using that knowledge for directing student thinking.  

Elif:  In the class, maybe I didn’t use exactly same example but when there is a student 
question, if it is related to mathematical concept, I can just direct student to reach 
the concept. Because I learned that content.  

The fourth code under readiness to implement tasks of teaching is answering student questions and 
addressing their misconceptions. This code is related to previous one but Elif made explicit 
differentiation between directing students and answering students’ questions.   

Elif:  When someone asks, or what does quadratic formula mean, why do we need it. I 
know these. When there is a question like these I can answer them easily.   

Here, Elif focuses on her state of being confident in her mathematics knowledge when answering 
student questions. The last code, fifth one is related to her implementation of curriculum. As a novice 
teacher Elif stated using textbooks and course materials from other experienced teachers. However, 
she realized differences between her and experienced teachers in terms of implementing curriculum. 
In her first year, the national curriculum was revised extensively. One of the changes was how 
functions were introduced in 9th grade. In previous curriculum, first mathematical relations were 
introduced and then set theory approach of functions was given. In revised curriculum, functions 
should be taught through mathematical modeling without an introduction with mathematical 
relations.  The covariation definition gains importance in this new curriculum. Elif realized that 
knowing alternative definitions of function (including covariation) helped her to easily adapt her 



instruction to new curriculum. The SCK experiences of the content course provided basis for her use 
of the new curriculum. Furthermore, she was able to implement certain features of the curriculum 
while experienced teachers omitted.  

Elif:  Maybe, they don’t think it (proof of √2 irrationality) is important. Because other 
teachers also analyzed the new book, but I said we need to do this. They didn’t want 
to spent time on it. This actually give information about what do we need to give 
importance conceptually.  

Discussion  
The purpose of this study was to investigate perception of novice teachers on how they transfer what 
they had learned in the content course into their practices. Elif, a former student of this course and 
with 3 years of teaching experince, was volunteer to participate this follow up study. She stated that 
the course and mathematical explorations (SCK tasks) clearly helped her in teaching. The most 
expected influence would be using mathematics examples, tasks from the course. Usiskin and his 
colleagues (2003) discussed that “Often the more mathematics courses a teacher takes, the wider the 
gap between the mathematics the teacher studies and the mathematics the teacher teaches” (p. 86). 
So, based on findings from Elif’s case study, it should be explored further if a content course with 
SCK tasks provides mathematical explorations that preservice teachers will be teaching in their 
profession. Furthermore, these SCK tasks also allowed Elif to unpack her knowledge of mathematics 
(Suzuka et al., 2009) so she could identify mathematical big ideas and prioritize important concepts.     

It is important to note Elif’s feeling of readiness in her first three years of teaching. There are various 
demanding tasks of mathematics teaching such as selecting appropriate mathematical task, using 
proper representations, answering student questions, and leading student discussions. Elif mentioned 
five different tasks (themes emerged from data analysis) of teaching that influenced by her 
experiences in the content course. Her discussion of these tasks may be used to depict how SCK is 
taking role in classroom instruction. It can be used to discuss the link between SCK and PCK. For 
example, when Elif discussed role of knowing mathematics in directing students to understand 
concepts, she was actually talking about PCK. She explained and clearly discusses the role of 
specialized knowledge of a teacher. Without this type of mathematics knowledge, she will be lacking 
directing students. Similarly, in using curriculum materials, she uses her SCK knowledge.  

There are some limitations of this study such as sampling only novice teachers in Istanbul, and also 
relying on participant’s self report on how she transferred what she learned in the content course. 
Even though, interview questions were specifically asking about the content course, there is still a 
limitation of influence of all other teacher education courses/practices on Elif’s transfer from 
university to her teaching. Furthermore, Elif also has been teaching at a prestigious high school which 
provides various resources for a novice teacher to improve herself. In order to investigate further how 
preservice mathematics teachers transfer what they have learned into their teaching, researchers are 
planning to extend the study to include other participants who possess different characteristics.   
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This study presents the analysis of primary school teacher’s practices in mathematics for a lesson 
that has taken place after a professional development training called lesson study (LS) in Lausanne, 
Switzerland. Practices are analysed in a double didactical and ergonomical approach. The 
methodology used is a case study of the particular teacher’s practices. Results about the teacher’s 
practices after the LS process are discussed. 
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LS is a field of research and professional development developed principally in Asia, in US and in 
Northern Europe (Lewis & Hurd, 2011; Yoshida & Jackson, 2011). LS is a collective and reflexive 
process that involves a group of teachers and facilitators meeting to improve instruction.  

This study concerns practices of a teacher who participated to a LS process and this study falls 
within the “double approach” (Robert & Rogalski, 2002, 2005). 

Theoretical framework: The “double approach” 
Teachers’ practices are analysed using the following theoretical framework: the “double approach”  
based on a French didactical approach (Robert & Rogalski, 2002, 2005) and an ergonomical 
approach based on activity theory (Leontiev, 1975; Leplat, 1997). 

This “double approach” distinguishes the task, the "goal to be attained under certain circumstances" 
and the activity, what the teacher engages in during the completion of the task (Rogalski, 2013, p. 
4). The prescribed work fits the prescribed task (in our context: what the teacher must do according 
to Teacher’s Handbook and the official program) and the real work fits the conducted task (in our 
context: what the teacher does in reality during the lesson). To appropriate the prescribed task, the 
teacher should modify it. Thus, a gap exists between the prescribed task and the conducted task: the 
reasons can be a lack of the necessary competencies or an inappropriate representation of the task 
for example (Ibid.). Leplat (1997) adds two levels of tasks: the represented task (in our context: 
how the teacher represents the prescribed task and what he thinks we attend of him) and the 
redefined task (in our context: the teacher redefines his task according to the prescribed task and his 
own professional goals). These levels of tasks are neither hierarchical nor time: the teacher can 
represent the prescribed task and can redefine a new task before and during the lesson in taking into 
account different sources (students’ activity, his own activity, institutional constraints). 

The teacher combines professional acts and knowledge (mathematical, didactical, pedagogical) in 
his representation of the prescribed task and in his redefinition of the represented task. This study 
focused on these professional acts and knowledge at stake in these representation and redefinition. 
Thus, the teacher’s activity is analysed as a process of modifications between the prescribed and 
conducted tasks (Leplat, 1997; Mangiante, 2007). 



Research question 

This case study aims to provide elements to respond to the following question: what are the sources 
of the process of modifications between the prescribed and conducted tasks?  

Methodology and data 

This qualitative study used a case study to analyse teacher’s practices. A LS process (see Figure 1) 
can be decomposed four steps (Lewis & Hurd, 2011, p. 2): the group studies a mathematical subject, 
standards and sets instructional goals (step 1), the group prepares a research lesson based on their 
study of the topic and standards (step 2), the group selects one teacher to conduct the research lesson 
while others observe and collet student data (step 3), and finally, the group analyses and reflects on 
the research lesson (step 4), with the option of teaching it again (Batteau, 2016). 

 

Figure 1: A LS cycle (Lewis & Hurd, 2011) 

In the Swiss context, some researchers chose to implement this form of LS process without modify 
the structure in four steps because this model fits a French didactical point of view (Clivaz, 2015): 
the Theory of Didactical Situations (Brousseau, 1997; Warfield, 2014). In the TDS, the 
methodological research tool consists of an a priori analysis of the possible teaching of a 
mathematical subject: the steps 1 and 2 fit a deepen a priori analysis with a study of the 
mathematical subject, the didactical variables, the student’s strategies, and difficulties. A second 
methodological research tool (in the TDS) consists of an a posteriori analysis, who takes place 
during the step 4, which compares what would be anticipated and what is happened. Thus, a LS 
process in mathematics began in Lausanne in September 2013 and occurred over two years with two 



collective sessions occurring per month (Clivaz, 2016). The group consisted of eight primary school 
teachers ranging in experience, voluntary, and generalist1 teachers, and two facilitators2. 

This study focused on Océanes’ practices for one lesson observed after the end of this LS process. 
For this teacher, data were collective sessions during the LS process (cycles c and d about problem 
solving), one lesson after the LS process (about problem solving), informal meetings after this 
lesson, all written documents produced during the lesson, and student work. Video data (lesson and 
collective sessions) were transcribed. This teacher has seventeen years of experience and students 
eight to ten years old. 

To operationalise the theoretical tools presented for this study, the prescribed task fit the aim of the 
problem chosen by Océane, the Teacher’s handbook, and the planning material for this problem. 
The prescribed task is analysed a priori, which means the mathematical knowledge at stake in the 
problem, the possible resolutions, and the didactical variables were analysed. We analysed the 
modifications between the prescribed and conducted tasks. To explain these modifications, we 
analyse the representation of the prescribed task and the redefinition of the represented task with 
using the informal meetings and collective sessions. 

This paper presents first the mathematical subject worked during the LS cycles c and d before this 
lesson.    

Analysis 
Cycles c and d of the LS process 

During the cycles c and d, the group worked on problem solving and how to help students represent 
a problem. The group relied on an article (Julo, 2002)3 in which the main idea was explained during 
a collective session. 

Facilitator: (quoting Julo) “this help doesn’t give clues about the answer, doesn’t guide to a 
strategy and doesn’t suggest a modelling”. But it’s difficult to achieve, it’s written 
just after that.  It is an ideal […] but if we don’t follow this ideal, it means that we 
do precisely a part of what students have difficulty to do.  

The research lesson of the cycle d was based on this problem: examine the matchstick pattern 
represented below. How many matchsticks are needed to align 99 squares?  

                                                 
1 In the French speaking part of Switzerland, primary school teachers teach several school disciplines (mathematics, 
French, sciences...). 

2 In this particular LS process, the two facilitators were researchers in Mathematics Education and in teaching and 
learning (Clerc-Georgy & Clivaz, 2016). They had the role of trainers and « knowledgeable others » (Lewis & Hurd, 
2011, p. 30;33). 

3 During the first collective session of LS process, teachers said to facilitators which subject they wanted to work 
according to their teaching difficulties and/or students’ difficulties. The subjects were numeration (cycle a), isometries 
(cycle b), and problem solving (especially how to help students represent and model a problem, cycles c and d). Then, 
the facilitators proposed reading this paper to teachers, in order to find elements of answer to this issue.  



 

Figure 3: Problem “99 squares” (Teacher's handbook of 6H, Danalet, Dumas, Studer, & Villars-
Kneubü ler, 1999, p. 187) 

The mathematical function at stake was u(n)=3n+1, where n is a whole number. The group worked 
on this problem focussing on how to help students represent and model this problem. 

Context of the lesson observed after the LS process 

For this lesson, Océane chose to manage problem solving and she explained it during a collective 
session at the end of the LS process. 

Océane:  There is a lot of problem which I think oh I don’t dare to try [...] 

Océane:  I think, this year with my students, I take the textbook and I do a lot of things I 
never did before.  

Anaïs:  Oh, you dared. 

 Océane:  Yeah, I did.  

The prescribed task: some elements of analysis 

For this lesson after LS, Océane chose the problem “Fold”: Fold a strip of paper in half, here are 
two parts. Fold a strip of paper in half, then a second time, here are four parts and so on. How many 
parts are there with a folded strip of paper ten times?  

 

Figure 4: Problem “Fold” from (teacher's handbook, Danalet et al., 1998, p. 96) 

The aim of this problem is to develop reasoning capacities and research strategies (Ibid.). In this 
problem, students should go from handling to representation in order to predict the result of acts 
(Ibid.). To determine the number of parts when the strip of paper is folded 10 times, we should 



calculate 2x...x2 with ten factors 2 (or 2 power of ten). Thus, to find the number of parts with a strip 
of paper folded n times, it’s not necessary to know the answer when the strip of paper is folded (n-1) 
times. 

The problem solving “Fold” is similar to “99 squares” in that sense these two problems rely on 
functions (power function or affine function). The kind of functions and the context of these 
problems are different but the idea of function is the same and the idea that it’s possible to 
determine the number of matchsticks whatever the number of squares or the number of parts 
whatever the number of times we fold the strip of paper. 

Modifications between the prescribed and conducted tasks 

Some significant elements of modifications between the prescribed and conducted tasks are 
summarized about the mathematics at stake in the problem. Océane took over the modelling of the 
problem: she realized a two-column table, then students had to complete it by calculating doubles. 
Thus, she modified the aim of the problem. During informal meetings, she said that she chose this 
problem to introduce the multiplication. The issue of the problem is not the same for her (involving 
the multiplication) and for the designer of the problem (modelling a problem). During the lesson, 
she took over the modelling of this problem instead of students. Furthermore, she reduced the 
problem to calculations of doubles of numbers as in this characteristic extract of the lesson. 

Teacher: doubles. Here, we double. We double every time. The double of two, four. The double 
of four, eight. The double of eight, sixteen. The double of sixteen, thirty-two. The 
double of thirty-two, sixty-four. The double of sixty-four? All right? So Nadège, 
the double of sixty-four is? It folds in seven times. […] It’s as if we calculate 
sixty-four more sixty-four. Is it? (Nadège looks all the folds in her strip of paper). 

Nadège: one hundred twenty-six. One hundred twenty-eight. 

Teacher: great. […] Next, Luc? 

Luc: two hundred fifty-six. 

Teacher: very well. Yes? If we fold it nine times, it should be? 

Romuald: five hundred six. 

When Océane prepared her lesson, she did not identify the mathematical knowledge at stake in the 
problem (power of two). She validated students’ strategies only with calculations (see extract), and 
she did not link strategies together. In this extract, she said “the double of sixty-four is? It folds in 
seven times”. However, she did not explain why it’s necessary to multiply by two when the strip of 
paper is folded half. Her strategy of doubling could not allow to respond directly to the problem. 
With her strategy of doubling, in order to find the number of parts with a strip of paper folded ten 
times, it’s necessary to know the answer when the strip of paper is folded nine times and eight 
times, …, until two times (see Figure 5). With the “expert” strategy, to find the number of parts 
when the strip of paper is folded n times, the students should calculate the product 2x2x….x2 with n 
factors 2. 

Using a similar problem solving activity than for the research lesson of the cycle d, Océane could 
not identify the mathematical function at stake. 



Another modification of the prescribed task was to propose to students to calculate the number of 
parts when the strip of paper is folded 11, 12, 13, and 14 times (see Figure 5). This modification 
was coherent with the teacher’s strategy because it was not possible to propose to calculate the 
number of parts when the strip of paper is fold 100 times for example without the “expert” strategy. 

FOLD PARTS

1 2

2 COUNT UP 
TO 4

3 8

4 16

5 32

6 64

7 128

8 256

2+2

4+4
=8
8+8
=16

16
+16
32+32

64+64

9 512

10 1024

11 2048

12 4096

13 8092

14 16384
 

Figure 5: Reconstitution of the blackboard 

In the blackboard, Océane wrote only additions to fill in the table, but nor multiplication neither 
“double of a number”. To fill in the second line of the table, she wrote two strategies without 
linking: count up to 4 and 2+2.  

This modification illustrated the focus of the lesson on calculation of double (with additions) and 
nor on modelling the problem, neither on the explanation of strategies and the links between the 
different strategies. 

Representation of the prescribed task 

Océane represented the prescribed task in according to her mathematical analyses. Before teaching, 
she prepared her lesson and realised mathematical analysis. The issue of the problem (modelling) 
took over by the teacher. In her analysis, the mathematical knowledge at stake in the problem are 
multiplication and doubling of a number. In the teacher’s handbook, the aim is to represent, to 
model a problem, to develop reasoning capacities and research strategies. Her analysis was in 
contradiction with the teacher’s handbook. Thus, she took freedom in relation to institutional 
constraints of the Teacher’s textbook. 

Redefinition of the represented task 

Océane anticipated the two-column table to fill in, so she anticipated to take over the representation 
of the problem and his modelling before this lesson. During this lesson, she taught vocabulary, 
“double of”, and she focused only on calculations. In her redefinition of the task, she modified the 
problem in a problem of calculation when the strip of paper is folded 2 until 14 times. 

In her redefinition of the task, she modified the problem according to her mathematical analysis and 
her representation of the task. 

Process of modification between the prescribed and conducted tasks 

The process of modification between the prescribed and conducted tasks had its origins in her 
representation of the prescribed task for this lesson. Océane took into account the students’ activity 
for the first time she taught this problem (last year). Then, she adapted her teaching when she taught 
this problem for the second time (for this lesson after LS): she took over the modelling and imposed 



a two-column table to fill in. She did not take into account students’ activity during this lesson but 
by anticipation. 

Conclusion 
This case study proposed an analysis of particular teacher’s practices during a lesson after a LS 
process. After the LS process, this teacher has self-confidence over teaching problem solving. In 
teaching problem solving, it should be able to identify mathematics at stake in the problem. 
Mathematics at stake should be given by the mathematical textbooks, but it was not the case. In the 
French part of Switzerland, official textbooks lack mathematical analysis for the teacher to use 
while planning lessons. For this lesson, the representation of the prescribed task relied on the 
Océane’s mathematical analysis which were not sufficient. Thus, her representation and her 
redefinition of the prescribed task did not allow to reach the mathematical learning intended by this 
problem. To conclude, the sources of the process of modifications for this lesson were her 
representation of the prescribed task and her mathematical analysis. This case study highlighted a 
gap between the prescribed and conducted tasks due to the teacher’s representation and 
mathematical analysis. 

References 

Batteau, V. (2016). Professional development of primary teachers during a lesson study in 
mathematics. In K. Krainer & N. Vondrova Proceedings of the Ninth Congress of the European 
Mathematical Society for Research in Mathematics Education (pp.2945-2946). Prague, Czech 
Republic: Charles University in Prague, Faculty of Education and ERME.  

Brousseau, G. (1997). Theory of didactical situations in mathematics (N. Balacheff, M. Cooper, R. 
Sutherland, & V. Warfield, Trans.). Dordrecht: Kluwer. 

Clerc-Georgy, A., & Clivaz, S. (2016). Evolution des rôles entre chercheurs et enseignants dans un 
processus lesson study: quel partage des savoirs? In F. Ligozat, M. Charmillot, & A. Muller 
(Eds.), Le partage des savoirs dans les processus de recherche en éducation (pp. 189-208). Série 
Raisons Educatives, n°20. Bruxelles: De Boeck. 

Clivaz, S. (2015). French Didactique des Mathématiques and Lesson Study: a profitable dialogue? 
International Journal for Lesson and Learning Studies, 4(3), 245-260. doi:10.1108/IJLLS-12-
2014-0046 

Clivaz, S. (2016). Lesson Study: from professional development to research in mathematics 
education. Quadrante, XXV(1), 97-111.  

Danalet, C., Dumas, J. P., Studer, C., & Villars-Kneubühle , F. (1998). COROME Mathématiques. 
Livre du maître 3P. 

Danalet, C., Dumas, J. P., Studer, C., & Villars-Kneubühle , F. (1999). COROME Mathématiques. 
Fichier de l'élève 4P. 

Julo, J. (2002). Des apprentissages spécifiques pour la résolution de problèmes? Grand N, 69, 31-
54.  

Leontiev, A. N. (1975). Activité, conscience, personnalité. Moscou: Edition du progrès. 



Leplat, J. (1997). Regards sur l’activité en situation de travail. Paris. 

Lewis, C. & Hurd, J. (2011). Lesson study, Step by step, How teacher learning communities 
improve instruction. Portsmouth, Etats-Unis. 

Robert, A. (2001). Les recherches sur les pratiques des enseignants et les contraintes de l'exercice du 
métier d'enseignant. Recherches en Didactique des Mathématiques, 21(1-2), 57-80.  

Robert, A., & Hache, C. (2013). Why and How to Understand What Is at Stake in a Mathematics 
Class. In F. Vandebrouck (Ed.), Mathematics Classrooms. Students' Activities and Teachers' 
Practices (pp. 23-74). AW Rotterdam, Neherlands: SensePublishers. 

Robert, A., & Rogalski, J. (2002). Le système complexe et cohérent des pratiques des enseignants 
de mathématiques : une double approche. Revue canadienne de l’enseignement des sciences, des 
mathématiques et des technologies, 2(4), 505–528.  

Robert, A., & Rogalski, J. (2005). A cross-analysis of the mathematics teacher’s activity. An 
example in a french 10th-grade class. Educational Studies in Mathematics, 59, 269-298. 
doi:10.1007/s10649-005-5890-6 

Rogalski, J. (2003). Y a-t-il un pilote dans la classe? Une analyse de l'activité de l'enseignant 
comme gestion d'un environnement dynamique ouvert. Recherche en didactique des 
mathématiques, 23(3), 343-388.  

Rogalski, J. (2013). Theory of Activity and Developmental Frameworks for an Analysis of 
Teachers' Pracitces and Students' Learning. In F. Vandebrouck (Ed.), Mathematics Classrooms. 
Students' Activities and Teachers' Practices (pp. 3-22). AW Rotterdam, Neherlands: 
SensePublishers. 

Warfield, V. M. (2014). Invitation to Didactique (Vol. 30): Springer New York. 

Yoshida, M., & Jackson, W. C. (2011). Response to Part V: Ideas for Developing Mathematical 
Pedagogical Content Knowledge Through Lesson Study. In L. C. Hart, A. S. Alston, & A. 
Murata (Eds.), Lesson Study Research and Practice in Mathematics Education (pp. 279-288): 
Springer Netherlands. 



Developing student teachers’ professional knowledge of low 
attainments’ support by “learning-teaching-laboratories”  

Ralf Benölken 

University of Münster, Germany; rben@wwu.de  

This paper presents a study that is part of a project named MaKosi (“Mathematische Kompetenzen 
sichern”). It aims at the conception and evaluation of a program in which primary student teachers 
and children who are low attaining in arithmetic work together. The organization refers to a 
specific form of project seminars called “learning-teaching-laboratories”. The study investigates 
how knowledge of identifying and supporting low attaining children develops by participating in 
such a program. Qualitative data were generated by learning maps in a pre-post-design and 
analyzed by a reconstructive pedagogic-iconological image interpretation. The results indicate a 
sustainable positive development of student teachers’ knowledge. 

Keywords: Professional development, learning-teaching-laboratories, low attaining students. 

Introduction 
Concepts of teachers’ professionalization are an important focus of current research in mathematics 
education (e.g., DZLM, 2015). Regarding a specific professional knowledge of teachers, the 
development of pedagogical content knowledge (PCK) including, in particular, the development of 
abilities to analyze children’s thinking and learning is reputed to be one of the main goals (Sowder, 
2007). Moreover, beyond cognitive aspects, some recent approaches on teachers’ knowledge 
consider affective components like beliefs (Kuntze, 2012). Questions that arise from this are, e.g., 
how student teachers’ education on analyzing children’s learning trajectories can be realized, and as 
a result how cognitive and co-cognitive components of student teachers’ knowledge develop. In this 
paper, the attention will be given to the aspects mentioned above by a synthesis of different 
approaches within a qualitative study: With regard to analyses of children’s thinking and learning, 
the development of primary student teachers’ knowledge about the identification and support of low 
attainments (ISLA) is focused on, since analyzing mistakes is assumed to be a valuable resource in 
this context (e.g., Ribeiro, Mellone, & Jakobsen, 2013). As to a suitable organization of a 
professional development program, the approach of “learning-teaching-laboratories” (LTL) is 
applied, which reflects an important part of current discussions on student teachers’ education in 
Germany (Roth, Lengnink, & Brüning, 2016). Summarized, LTL provide project seminars 
intertwining student teachers’ theoretical and practical education by working with children, i.e., via 
learning by teaching. The following questions will be investigated: How can a development of 
student teachers’ knowledge about analyses of children’s thinking and learning in mathematics be 
organized by a connection of ISLA- and LTL-concepts? How does their knowledge by taking part in 
an ISLA-LTL develop? First, brief overviews of the theoretical frameworks will be given. On these 
bases, a LTL-concept will be outlined. Finally, the study’s design and results will be subsumed and 
discussed.  

  



Theoretical frameworks – brief overviews 
As to teachers’ professional knowledge, the classical concept distinguishes between subject matter 
knowledge, PCK and curricular knowledge. Summarized, PCK refers to knowledge of possibilities 
regarding teaching subject matters (Shulman, 1986). Independent of certain approaches, there seems 
to be a consensus on the fact that PCK bridges subject matter knowledge and teaching, and it 
designates a specific-distinctive manner of teachers’ professional knowledge (Brown & Borko, 
1992). According to Ball, Thames and Phelps (2008), PCK covers knowledge of content and 
students, knowledge of content and teaching, and knowledge of curriculum. In particular, the first 
mentioned aspects provide facets that are connected to analyzing children’s thinking and learning as 
well as to providing an adequate support (Sztajn, Confrey, Wilson, & Edgington, 2012). Because 
drawing an exact distinction between cognitive aspects regarded by knowledge and affective aspects 
like beliefs is felt to be difficult, some current research combines both aspects to describe teachers’ 
professional knowledge; inter alia, pedagogical content beliefs (PCB) are described as an equivalent 
to PCK: Convictions about handling specific instructional situations (Kuntze, 2012) like ISLA. 
Recent competence frameworks of professional development programs are in line with such 
approaches. Beyond mathematics-related beliefs, self-oriented ones are considered including 
components like self-efficacy (e.g., DZLM, 2015), which produces a more holistic view. The 
study’s framework refers to Kuntze (2012). Thus, a combination of cognitive (PCK) and affective 
aspects (PCB) is assumed. Additionally, self-oriented beliefs are considered in the context of PCB, 
since in this way a holistic base to describe changes of knowledge by taking part in a LTL is given. 

Research on individual problems in learning mathematics covers a large range: Beyond approaches 
that describe such problems as a social construct, or approaches focusing on learning difficulties or 
disabilities in a narrower sense (for a survey: Scherer, Beswick, DeBlois, Healy, & Moser Opitz, 
2016), different approaches focus on previously low achievements (e.g., Watson & De Geest, 2012). 
The perspective mentioned last mostly concentrates on arithmetic and in this context on typical 
phenomena such as rigidified counting (and a unilateral ordinal understanding of numbers) and an 
insufficient understanding of mathematical operations or the place value system (for surveys: 
Benölken, 2016; Denvir & Brown 1986). Mostly, a group of children is addressed which can be 
supported within a school’s infrastructure, i.e., which does not show learning difficulties in the 
outlined narrower sense. As to identification or support, recent research independent of certain 
approaches demands a holistic view considering both cognitive and co-cognitive parameters (e.g., 
Nolte, 2009). Against the background of student teachers’ education, the theoretical framework of 
both the LTL and, thus, the study corresponds to different aspects of the above outlined approaches: 
As to problems in learning mathematics, low attainments in arithmetic are focused on considering 
both typical phenomena and a holistic view in the identification and support procedures.  

As to the development of PCK, practical situations that demand, e.g., scaffolding skills are assumed 
to be adequate opportunities of extending knowledge (Prediger, 2010). Existing findings indicate 
that one-to-one-interactions of a student teacher and a child might be a promising organizational 
form (e.g., Kilic, 2015). Against this background, “learning-teaching-laboratories” aim at a mutual 
growth and practical application of knowledge by a specific form of academic studies combining 
three dimensions: First, the support of children regarding a certain topic; then, the education of 
student teachers in this context, e.g., as to diagnostics and support; third, research aims like theory 



building in the content focused on (Roth, Lengnink, & Brüning, 2016). Recent research mainly 
concentrates on a clarification of LTL-types and on an interdisciplinary consensus about defining 
the term of LTL. An example is given by the following definition: 

LTL define a specific form of organization as to student teachers’ academic studies combining 
children’s learning with student teachers’ professional development in a holistic way. In contrast 
to, e.g., standard lectures, seminars or practice lessons, LTL offer student teachers opportunities 
to develop, to enhance and to apply iteratively various skills of diagnostics, support and, thus, 
both teachers’ professional acting and knowledge with regard to specific focuses in authentic, but 
complexity-reduced learning situations. (Brüning, 2016, p. 1274; translated by the author) 

Hence, LTL include aspects and influences that are considered as most important by approaches on 
teachers’ professional growth like the individuality of their learning in mutual reflection and 
enactment processes (e.g., Clarke & Hollingsworth, 2002). Even if LTL are conducted at more and 
more German universities in different “STEM”-disciplines, ongoing studies still focus on their 
evaluation. First impressions indicate that LTL are highly valued by student teachers and they are 
suited to ensure a sustainable growth of their knowledge about the respective topic (e.g., Brüning, 
2016). The study’s framework refers to Brüning’s definition. Its cornerstones are transferred to the 
context of ISLA. The demanded complexity-reduction is realized by one-to-one-interactions.  

Survey of a LTL-concept in the context of ISLA 
The presented study is part of the long-term project “MaKosi” that focuses on the conception and 
evaluation of a professional development program connecting ISLA- and LTL-approaches (for 
details: Benölken, 2016). Summarized, the aims are the support of children low attaining in 
arithmetic and the development of student teachers’ knowledge of ISLA. The student teachers’ 
education is organized as a combination of a theoretical course and a project seminar with children. 
The theoretical course covers information about approaches in the field of problems in learning 
mathematics as well as concepts of diagnostics and support. While the theoretical course is a regular 
seminar at university, the project seminar takes place at a primary school once a week about 15 
times per semester. Against the outlined framework of ISLA, diagnostics triangulate different tools: 
In a first step, teachers are given information about the framework and they elect children providing 
a justification in written form. Then, parents have to fill in a declaration of consent. In a second 
step, children, student teachers and scientists come together to get to know each other in a playful 
first session. In a third step, process-diagnostics follow considering both cognitive and co-cognitive 
parameters; mostly, non-standardized tools such as observations on children’s task solving using 
rating sheets or guided interviews with children, teachers or parents are applied. Every project 
seminar session is divided into three parts: First, a preparing workshop where student teachers and 
scientists come together for 15 minutes in order to highlight specific aspects of observation or other 
determining factors; second, a 90-minute-children-session; finally, a reflecting 75-minute-
workshop, in which each child’s problems and possibilities as to an appropriate support are 
discussed. Within this schedule, the children’s session is divided into three stages: In the beginning, 
a playful problem task is offered avoiding arithmetic contents to provide an adequate imagination of 
mathematics or to support both a positive self-perception of mathematical abilities and joy of 
problem solving (for example, the problem of “a ferryman, a wolf, a sheep and a head of cabbage”). 



At this stage, children can organize themselves considering ideas of a natural differentiation. 
Subsequently, one student teacher and one child turn into one-to-one-interactions of diagnostics and 
support in established teams for 60 minutes. Thus, the student teachers can develop, e.g., 
scaffolding abilities in a complexity-reduced situation. Tasks and activities applied in this context 
are taken from well-proven examples of literature (for examples see: Benölken, 2016), which the 
student teachers got to know in the theoretical course. They develop suggestions on both their 
compilation and detailed planning which are discussed during the reflecting workshop with all 
participating student teachers and the supervising scientists in order to ensure sustainable conducts. 
Each session closes with a game to support the children’s joy of participating in the LTL.  

The study 
The study focuses on the question how student teachers’ knowledge of ISLA develops by taking 
part in an ISLA-LTL. The participants were 25 primary student teachers; 11 (10 females, 1 male) 
took part in the winter semester 2015/2016, and 14 (only females) in the summer semester 2016. 
Mostly, they were in their third year of undergraduate studies. The study’s character is explorative, 
i.e., generalizations were not intended, but existential propositions (Lamnek, 2010) about possible 
developments of knowledge by participating in the LTL. Thus, a qualitative design was advisable. 
As to the method, qualitative data were generated according to Rott (2017) by applying learning 
maps in a pre-post-comparison which were anonymized by codes to ensure unbiased interpretations. 
In the head, the student teachers were given the impulse to craft their way between their current 
status and their future work at schools: “Dealing with low attainments will be a challenge as to your 
work as a teacher, especially due to the knowledge of identification and support: What does this 
mean to you personally? Which way have you covered or which way will you have to cover in the 
future? Please lay out your way.” (translated from German) All participants designed the maps for 
the first time, and they had to do it before taking part in the LTL at the beginning of a semester, and, 
again, at its end. As to the analysis, the pre- and post-maps were compared by a reconstructive 
pedagogic-iconological image interpretation, which becomes more and more accepted in different 
scientific disciplines. Its characteristic steps were observed: (1) Discussion of previous history and 
selection of key images, (2) image description and analysis (with regard to the factual, expressive 
and form-related sense), (3) context analysis, and (4) comparative analysis (Schulze, 2013). Data 
were interpreted within two meetings at the end of the summer semester 2016: The 14 participants 
analyzed in groups of two or three at least one, but for the most part two pairs of maps. Afterwards, 
the results were presented, and major observations were discussed in a plenary session. 

Results 
As to key images, their description and analysis, three types were identified: (1) An interrupted 
path, (2) a continuous path, and (3) a system of paths. The first type was found only within the pre-, 
the third one only within the post-, but the second type within both the pre- and post-drawings. 
Subsequently, we focus on the reconstructions of the examples shown by the Figures 1 and 2, which 
were conducted in the group meetings mentioned above and which reflect typical main features.     

 

 



 

 

 

 

Figure 1: First example of a pre- (left) and post-map (right) 

 

 

 

 

 

Figure 2: Second example of a pre- (left) and post-map (right) 

As to the factual sense of the first example’s pre-map (Figure 1, left), a lack of details is obvious, 
which might reflect that the creator is unfamiliar with the context. The expressive sense is 
characterized by monotony as to, e.g., colors, which might indicate the creator’s uncertainty. 
Regarding the sense of form, the interrupted way seems to reflect that the creator cannot (yet) 
imagine how to achieve the purpose. As to the factual sense, the post-map (Figure 1, right) contains 
more details: Different remarks are phrased; thus, the creator seems to connect many thoughts to the 
path. Merged stars seem to reflect interdependent experiences that influenced the creator positively, 
but a question mark seems to indicate obscurity about future requirements. The expressive sense is 
characterized by a use of different colors highlighting the significance of the experiences’ 
connection, for instance. As to the sense of form, the continuous path obviously reflects that the 
creator now perceives a way to achieve the purpose, even if it is flanked by the question mark. The 
path precedes the current status; thus, the creator seems to have developed a more holistic view on 
the way he or she passed. As to the factual sense of the second example’s pre-map (Figure 2, left), a 
main feature is a wide range of remarks, which seems to reflect that the creator already connects 
several aspects to the path. An important detail is the remarks’ phrasing in the form of questions in 
most of the cases; thus, the creator rather seems to ascribe uncertainty or just a small level of 
recognition to him- or herself. Moreover, clouds seem to emphasize particular past and future 
experiences. The expressive sense is rather monotonous, e.g., as to the coloring, which might 
indicate that the creator refers to a matter-of-fact way. Regarding the sense of form, the continuous 
path is drawn as a stairway; thus, the creator obviously distinguishes different steps of his or her 
knowledge’s complexity. Arrows emphasize secondary objects, which might reflect that the creator 
at least considers different complex patterns. As to the factual sense of the post-map (Figure 2, 
right), a wide range of remarks still can be observed, but now they are put forward in the form of 
declarative sentences. Signposts seem to describe possible intentions and their connections. Clouds 



and boxes seem to highlight important (mostly past) theoretical and (especially future) practical 
experiences. A computer seems to indicate an intertwining of the regarded focus with other 
domains. Finally, sections which the creator already had passed are characterized by continuous, but 
future sections by dotted lines. The expressive sense is characterized by different colors which 
underline the significance of main experiences; overall, a great confidence seems to be reflected. 
Aspects related to the sense of form confirm this impression: In contrast to the circle drawn in the 
first section of the map, the path continues afterwards directly, but winding to school, flanked by 
some concrete imaginations. The final part of the path system is drawn slightly broader compared to 
previous sections which might reflect that the creator will feel well prepared to enter school. In the 
creator’s view, practical work seems to bridge impressions of running in a circle within theoretical 
studies, which are not connected directly to work at school, and achieving the objective, which is 
supposed to be a complex, but positive and manageable challenge.  

As to a context analysis of the first example, the interrupted way of the pre-map (Figure 1, left) 
seems to reflect that knowledge on ISLA is assessed to be nonexistent or at least superficial by the 
creator (PCK), and he or she cannot imagine how to cope with ISLA at school (PCB). Comparing 
the post-map (Figure 1, right) indicates that the creator now reflects to have knowledge on ISLA 
(PCK), and that he or she perceives ways of handling ISLA at school (PCB). This impression is 
confirmed by concrete aspects and intentions given by the detailed remarks (e.g., top right, “self-
responsibility”, “perspective of hope to face the topic in the future”), which were missing in the pre-
map, and by elements like stars or colors, which underline the significance of taking part in the LTL 
as to developing knowledge of ISLA and, thus, of bridging theoretical knowledge and practical 
work. Regarding the second example, the continuous path shown by the pre-map (Figure 2, left) 
indicates that the creator already knows about some aspects of ISLA, even if this knowledge seems 
to be rather superficial (PCK) and he or she seems to be rather uncertain (PCB). Comparing this 
with the post-map (Figure 2, right) suggests that the complexity of the system of paths reflects an 
increase of knowledge (PCK), and the creator can well imagine to cope with ISLA at school (PCB). 
Questions posed in the pre-map (e.g., on the first step, “What has to be done?”) turned to concrete 
intentions and planning steps (e.g., top left, an intention as to the practical semester of academic 
studies “Enriching scientific knowledge by specific focuses of observation.”); particular attention is 
given to emphasize the significance of practical experiences, like taking part in the LTL, as to 
developing knowledge of ISLA and as to intertwining theoretical knowledge and practice. 

Based on these examples, a comparative analysis of all pre- and post-maps suggests that both the 
student teachers’ ways and their location on the ways changed. Their PCK of ISLA developed to 
more profound patterns, and their PCB to more confident characteristics. Put more precisely, the 
comparisons indicate mainly the following typical changes: As to cognitive aspects, before taking 
part in the LTL the student teachers’ knowledge about ISLA seemed to be rather fragmentary and 
superficial for the most part. Moreover, most of them seemed to equate problems in learning 
mathematics unilaterally with learning difficulties in a narrower sense. In contrast, after 
participating in the LTL, the student teachers developed a complex knowledge of the entire field: 
They distinguished different approaches and considered phenomenology-related issues. Regarding 
affective aspects, before taking part in the LTL, the student teachers rather seemed to express 
uncertainty as to dealing with ISLA, which seems to reflect disadvantageous characteristics of self-
efficacy. In contrast, after participating in the LTL, the maps indicate more proactive views: The 



student teachers declared more complex perceptions of problems in learning mathematics, in 
particular as to a child’s individuality, and they proposed precise plans to develop their knowledge. 
Moreover, they seemed to connect ISLA closer to teachers’ responsibilities, and emphasized the 
significance of practice as to the development of aspects such as self-efficacy. Finally, as indicated 
by the discussed examples, there seem to be different types: A first one representing an “optimistic 
novice” (Figure 1), and a second one representing an “expectant expert” (Figure 2). 

Discussion 
The results indicate that participating in an ISLA-LTL and, therefore, an intertwining of theory and 
practice contributes sustainably to a positive development of both student teacher’s knowledge 
about ISLA and their abilities to analyze children’s thinking and learning in mathematics. This 
observation is in line with reports emphasizing the benefits of practical work with children as to the 
development of knowledge, and one main reason for this might be seen in the student teachers’ 
constructivist learning (Sowder, 2007). Thus, beyond the context of ISLA, the results suggest the 
hypothesis that LTL provide an appropriate professional development program for student teachers 
to develop their abilities in analyses of children’s thinking and learning. Of course, the study’s 
character is explorative, and it has obvious limitations; for instance, the reconstructions as to 
interpreting the use of colors (or, e.g., their absence) were conducted within a group, but it remains 
uncertain, if a consensus view is the right one (Lamnek, 2010). Subsequent research might focus on 
a deeper clarification as to evaluations of ISLA-LTL, and as to the benefits of LTL in general; in 
particular, different LTL-focuses like support of mathematics interest should be taken into account.  
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The aim of this paper is to present what are the criteria used by a teacher when performing the 
didactic analysis in its final master thesis. For that matter a case study was performed, whose 
object of study is the master thesis conducted by a Math teacher in service. The analysis was based 
on didactical suitability criteria proposed by the Onto-Semiotic Approach (OSA) to mathematical 
knowledge and instruction (Godino, Batanero & Font, 2007). As a result of the analysis it was 
possible to notice that the teacher, in addition to using all didactical suitability criteria proposed by 
the OSA implicitly, highlights the importance of finding a balance among the suitability criteria to 
achieve the learning of the didactic proposal carried out by him. 

Keywords: Didactic assessment, suitability criteria, masters thesis.  

Introduction 
The tendency to achieve an international convergence in the planning of College programs and, 
particularly, those related to the Professional Master education centered on the education of 
teachers, has fostered a series of reforms in different countries, so that there is a model organized by 
a sort of refinement and evolution around professional skills. In the Brazilian context, in an attempt 
to train Mathematics teachers who were currently working in the area, the Professional Master 
Program in Mathematics in the National Network (PROFMAT) was launched in 2010 by 
recommendation of the Conselho Técnico-Científico da Educação Superior da Capes. The program 
is an on-site and long-distance program, offered throughout the Brazilian territory, coordinated by 
the Sociedade Brasileira de Matemática (SBM), which has a main objective to support 
Mathematics teachers who work in the primary education level, especially in public schools. It is 
important to highlight that, although PROFMAT's main objective is to foster teaching of 
mathematics at all levels (Brasil, 2013) it is configured as a program composed almost entirely of 
mathematical disciplines. In addition, at the end of the course, the students must present a final 
work (ETM) consisting of design a sequence of tasks, not assigning the mandatory implementation. 
The work presented in this document is part of a larger research (Breda & Lima, 2016; Breda, Font 
& Lima, 2016; Breda, Pino-Fan & Font, 2016; Breda, Pino-Fan & Font, in press), in which, through 
the analysis of 29 Master’s Thesis Works (EMTs) of PROFMAT (Breda, 2016) and was concluded 
that the teachers who implemented the design of their sequence of tasks performed a much more 
refined and balanced didactic analysis compared to the teachers who did not implement the 
proposal. In addition, it was evidenced that when the teachers’ opinions were clearly evaluative, 
they were organized implicitly using some characteristics of the components of the didactical 
suitability criteria proposed by the Onto-Semiotic Approach (OSA) to mathematical knowledge and 
instruction (Godino, Batanero & Font, 2007). 



So, the objective of this paper is to present a case study that analyses what are the criteria used by a 
teacher in his reflection process (explained in his EMT of PROFMAT), who will be addressed as 
Mr. Lopes, in order to improve the design and implementation of new contents related to the 
Riemman integral in Elementary School.  

Theoretical framework 
In the field of Mathematics Education there is no consensus on the notion of “quality” and, in 
particular, there is no consensus on the “methods for assessing and improving the teaching and 
learning of mathematics”. There are basically two ways to address this problem, from a positivist 
perspective or from a consensual perspective (Font & Godino, 2011). From the first, the scientific 
research in the area of Mathematics Education tell us what are the causes to be modified to achieve 
the effects as objectives to be achieved, or at least tell us what are the conditions and restrictions 
that must be taken into account to achieve them. From the consensual perspective, that tells us how 
to guide the improvement process of mathematics instruction, which must come from the 
argumentative discourse of the scientific community, when it is aimed at achieving a consensus on 
“what can be considered as the best”.  

The notion of didactical suitability criteria proposed by the Onto-Semiotic Approach (OSA) to 
mathematical knowledge and instruction (OSA, from now onwards) (Godino, Batanero & Font, 
2007) is positioned in the consensual perspective. Such notion is a partial answer to the following 
problematic: What criteria should be used to design a sequence of tasks to assess and develop 
mathematical competence of students and what changes should be made in its redesign to improve 
the development of this competition? Suitability criteria can first serve to guide the teaching and 
learning of mathematics and, second, to assess their implementation. Suitability criteria are rules of 
useful correction in two stages of the processes of mathematical study. A priori, the suitability 
criteria are the principles that guide “how things should be done”. In hindsight, the criteria used to 
assess the study process effectively implemented. According to these authors, the didactical 
suitability criteria are: 1) Epistemic suitability, to evaluate if the Mathematics being taught are 
“good Mathematics”; 2) Cognitive suitability, to evaluate, prior to the beginning of the instruction 
process, if what is intended to be taught is at a reasonable distance from what the students already 
know, and after the process, if the knowledge acquired is any close to what was intended to teach; 
3) Interactional suitability, to evaluate if the interactions contribute to clear doubts and difficulties 
students encounter; 4) Mediational suitability, to evaluate the adaptation of material and time-
related resources used in the process of instruction; 5) Emotional suitability, to evaluate the 
implications (interests, motivations,…) of students during the process of instruction; 6) Ecological 
suitability, to evaluate the adaptation of the instruction process to the educational project of the 
school, the curricular guidelines, the social and professional environmental conditions (Font, Planas 
& Godino, 2010, p. 101). 

Methodological aspects 
We chose to conduct a case study (Ponte, 1994) where the didactic analysis performed by a 
mathematics teacher in service, as part of his master degree, is investigated. To analyse our case, we 
used the indicators of didactical suitability proposed by the OSA (Godino, Batanero & Font, 2007; 
Godino, 2011; Breda, Font & Lima, 2015), as theoretical model to analyse the reflections 



performed by the teachers regarding ways to improve their teaching practices, related to the 
implementation of the didactical activities proposed as part of their EMT. 

Research context 

According to the guiding document of the PROFMAT, the EMT should, preferably, consist of a 
project with direct application to the mathematics classroom in Basic Education, thus contributing 
to the enrichment of the teaching of said discipline.  

In this work we proceed on the assumption that the End of Master’s Thesis (EMT) is a task that 
involves, implicitly, a didactical analysis exercise, since in their EMTs teachers must explain a 
didactical proposal and justify why it represents an improvement in teaching. In this sense, the 
reason for choosing the case of Professor Lopes is that, in addition to having applied the sequence 
of tasks with the students, he presents in his reflection aspects that "did not work" or that should be 
improved in future implementations. 

Professor Lopes’ didactical proposal 
Professor Lopes’ EMT (2014), entitled “A review of the introduction of Riemann’s sums into High 
School Education”, presents the design and the implementation of a didactic proposal for a group of 
third-year high school students (students aged 16 to 17) in order to intuitively introduce the integral 
calculus through the study of the areas of 2D geometric forms. Lopes (2014) explains that it is 
possible to introduce methods and notions of the integral calculus in High School Education 
intuitively, starting with area-calculation problems for curvilinear shapes. That is, the aim is to 
broaden the calculation of areas habitually studied in Elementary Education through the study of 
area-calculation of curvilinear shapes, using both Archimedes’ and Riemann’s methods.  

 To be specific, Lopes’ EMT (2014) is organized into four chapters; in the first, the professor 
presents, using literature reviews, the argument: “Should integral calculus be used in Elementary 
School?” On the basis of this question, the professor seeks to justify- through the study of literature- 
the use of two methods: Archimedes’ method (used to calculate the area of a circle) and Riemann’s 
method (used to calculate the area of three curvilinear shapes: circles, eclipses and polynomial 
shapes with an x axis). In the second chapter, Lopes (2014) explains the didactic unit which was 
implemented with a group of third-year students from a state secondary/high school in Brazil. The 
group was formed of 41 students but at the beginning of the year, only 36 students attended the 
classes and participated willingly in the project. In this second chapter, the professor also explains 
in detail the initial self-evaluation he performed with the students and, in particular, he explains the 
method for evaluation previous knowledge on certain geometry topics, on mathematical software 
knowledge and also on the expectations of the project.     

In the third chapter, professor Lopes describe the implementation he carried out. This section is a 
sequential report in which the author explains what happened during the implementation of the 
didactic sequence, placing emphasis on the set tasks, what the students learnt and the interactions 
made during the implementation. We are looking at a review written from the perspective of the 
professor but, in his very review, the professor ensures he presents evidence of the statements he 
makes. In the fourth and last chapter, the professor presents his reflections and conclusions on the 
implementation he carried out. In this way, it can be said that Lopes’ proposal (2014) covers the 
four phases of didactic design (preliminary study, design, implementation and evaluation), which 



other models of mathematics teachers’ knowledge also cover, in order to answer the most 
fundamental question: “What knowledge should a mathematics teacher have to be able to 
appropriately manage their students’ learning?” (Pino-Fan, Assis & Castro, 2015). 

Professor Lopes’ analysis on his own implementation project 
When teachers have to reflect on a didactic proposal that implies a change to or an innovation in 
their own practices, they implicitly employ some of the didactical suitability criteria. Lopes’ EMT 
(2014) has also allowed us to deduce the use of some of these criterions in the justification and 
reflection on the suggested proposal. In the following subsections, we show the extent to which the 
author considered- implicitly and explicitly- the suitability criteria put forward by OSA in attempt 
to defend his didactic proposal as improvement for mathematics teaching. 

Epistemical suitability 

Lopes (2014) justifies the ‘innovative and creative’ nature of his proposal by pointing out that it 
encourages students to perform relevant mathematical processes, in particular that of mathematical 
modelling. In his own words, he explains: “In this way, the application process, divided in three 
stages, aims to build knowledge through the use of mathematical models. Starting with the first 
construction, on the basis that the topic is studied in depth and new elements arise, other models 
are built based on the previous ones […]”. (Lopes, 2014, p. 22) 

The professor also considered that his innovative proposal allows students to perform other relevant 
mathematical processes such as connections, meaningful constructions, problem-solving, etc. “In 
this sense, the aim is to (…) awaken the student’s creativity and enthusiasm to learn geometry, to 
create geometrical models with the students, making connections with reality, and to provide 
situational problems with a geometric focus…” (Lopes, 2014, p. 21). 

It is evident in his review that some of the processes mentioned were in fact developed during the 
implementation of his proposal. In his thesis, the professor generally presents explicit reflections on 
the fact that his didactic proposal for teaching area-calculation is more representative (since it 
thoroughly explores the area-calculation of curvilinear figures) than the proposals that are 
commonly implemented at high school level. 

Cognitive suitability 

In Lopes’ work (2014) there are comments, reflections, etc., that allow concluding that the author 
takes into account, in an implicit way most of the times, the indicator of cognitive suitability. 

Background knowledge. The teacher carries out an initial evaluation in order to find out if the 
students had the necessary background knowledge for the study of the intended content. 
Furthermore, he makes sure that the students have such background knowledge, and specifically, he 
dedicates part of the time intended for the implementation, to revise the calculation of the area of 
triangles and quadrilaterals, and the study of trigonometric ratios. On the other hand, the learning 
objectives were attained by the students, “and there is confirmation that the Archimedes and 
Riemann methods are in the students’ zone of proximal development” (Lopes, 2014, p. 19). 

Curricular adaptation to individual differences. With the narration of the teacher it is not possible 
to conclude if he considers at some point complementary or reinforcement activities. However, 
when he assesses the learning related to the Riemann method, he concludes that many students will 



not achieve such learning and adds: “…it would be necessary to have a more extensive study 
period, to be able to ask the students (…) to interpret results more thoroughly, considering that each 
student is unique and as such, needs a shorter or longer time to learn” (Lopes, 2014, p. 92). 

Regarding the learning intended, the teacher states in a very clear way that he has to carry out 
evaluations to verify that his innovative proposal helps the students to achieve the learning 
objectives. Therefore, apart from the initial evaluation, the teacher carries out three formative 
evaluations that show the acquisition of the competences/learning implemented. With these 
evaluations, the teacher concludes that the learning related to the calculation of areas of 
quadrilaterals and triangles, and the Archimedes method was acquired, but the same cannot be said 
about the learning of the Riemann method, which he justifies with lack of time. 

High cognitive demand. The author considers that his proposal requires a high cognitive demand 
from the students, since it activates relevant cognitive processes. 

Interactional suitability 

Teacher-Student interaction. The teacher describes a “teacher-large group interaction”, through a 
dynamic of questions asked by the teacher and answers given by the students, which, according to 
him “facilitates comprehension among students” (Lopes, 2014, p. 32). He also presents some 
examples of how this type of interaction helps to clarify doubts that the students might have. 

Interaction among students. In his narrative, the teacher also mentions that the students worked in 
small groups and although he did not comment if such dynamic has solved the student’s semiotics 
conflicts, he concludes that this organization allowed some students that hardly participated in the 
classroom to express themselves in a larger group. 

Autonomy. It is possible to conclude that there were moments in which the autonomy of students 
was encouraged. On the one hand, “the students had to do homework” (Lopes, 2014, p. 67); on the 
other hand, there were some moments in which it was possible to observe that the responsibility to 
study (exploration, formulation and validation) was assumed by the students. 

Formative evaluation. As mentioned in the cognitive suitability section, the teacher carried out a 
formative evaluation that allowed a systematic observation of the cognitive process of the students.  

Mediational suitability 

It was possible to observe the use of material resources such as calculators and computers. The 
teacher explains that he used the GeoGebra software and the calculator during the teaching process. 
Regarding GeoGebra, he presents some implicit evaluative comments about the advantages of 
including this software of dynamic geometry in the teaching process. 

Number of students, Schedule and classroom conditions. Regarding this aspect, the teacher makes 
several comments. In a relevant way, he explains that the number of students and the conditions of 
the classroom (both the physical space as well as the computer laboratory) somehow determined the 
use of GeoGebra. Thus, the software was mainly used by the teacher to illustrate and show 
mathematical practices (e.g., the calculation of the areas of quadrilaterals and triangles). 

Regarding the time – of group teaching and learning –, the teacher makes comments and 
assessments about three indicators of this component: the adaptation of intended meanings in the 



available time, the time spent in the most important and relevant contents, and the time spent in the 
contents that were more difficult for the students. In connection to the first indicator, the teacher 
states very clearly that he could not adapt the intended meanings in the time that was available. 
Particularly, he states that he did not have enough time to finish explaining all he had planned 
regarding the Riemann method. For the second indicator, the teacher states that it took him a lot of 
time to ensure the required background knowledge, and that, on the other hand, he did not have 
time to solve the initial problem that was contextualized in order to later introduce the Archimedes 
and Riemann methods. Finally, regarding the third indicator, it is possible to infer from the 
teacher’s comments that it was impossible to carry out the whole study due to lack of time (e.g., 
there was not enough time to explain the Riemann method in depth). 

Emotional suitability 

In connection to this suitability indicator, no comments regarding the interests and needs of the 
students were found in Lopes’ EMT (2014). No comments about the attitudes of the students were 
found neither. Regarding emotions, the teacher states that the implementation he carried out 
promotes the students’ self-esteem.  

Ecological suitability 

According to the criteria and objectives that the teachers had to consider for the elaboration of their 
projects, professor Lopes adds that his proposal is a didactical innovation that adapts to the 
Elementary school curriculum and, according to his students, contributes to social and professional 
integration (social and labour utility) and that presents an intra-mathematical connection to higher 
level Mathematics (intra and interdisciplinary connections). 

Final reflections 
The analysis of the EMT of Professor Lopes shows how the indicators of didactical suitability 
proposed by OSA are -implicitly- present in his reflection processes on their own practice. An 
important aspect to highlight is that this EMT clearly demonstrates the issue of finding a balance 
between each of the suitability criteria. On one hand, the author plans an innovation with high 
epistemic suitability and he demonstrates in his review that he also made a substantial effort to 
achieve high cognitive suitability. On the other hand, however, he also demonstrates that he was 
obliged to neglect part of the content he had planned; in particular he could not solve the initial 
problem which was the very motive of his didactic proposal and the learning was not complete (in 
particular, the Riemann method) due to the fact that the suitability of means was not adequate; to be 
precise, there was not enough time.  

We could say that, in terms of the suitability criteria, Lopes concludes that if in future 
implementations, cognitive and epistemic suitability are not to be neglected, and then it would be 
necessary to allow more time. One aspect, which is difficult to explain, is the reason why the 
criteria of didactic suitability function as implicit patterns in the Lopes’ discourse, when he has to 
evaluate instruction processes without specific training on the use of this analysis tool. One possible 
explanation is that the training that he has received in the PROFMAT allows him to do, implicitly, 
this type of analysis. However, Caldatto’s research (2015) and Caldatto Pavanello and Fiorentini 
(2016), leads us to believe that the characteristics of the PROFMAT do not encourage this kind of 



reflection. Now, other answer to this very question is related to the origins of this construct. In the 
OSA, the didactic suitability criteria, its components and characteristics were constructed on the 
basis that they should be constructs which rely on a certain amount of consensus within the 
Mathematics Education community, albeit the local one. Therefore, one of the plausible 
explanations that the suitability criteria can be considered as teachers’ reflections patterns is related 
to the extensive consensus that they themselves generate amongst persons involved in Mathematics 
Education. Therefore, another possible explanation, for Lopes case, could be based on his previous 
training and his experience, which would lead him to participate in this consensus. 

The analysis of the EMT of Professor Lopes shows that, when the teachers’ opinions were clearly 
evaluative, they were organized implicitly using some characteristics of the components of the 
didactical suitability criteria proposed by the OSA. This result has been evidenced in other 
investigations (Breda, 2016; Seckel, 2016; Breda, Pino-Fan, Font, in press) in which it is also 
suggested that the suitability indicators can be taught as powerful methodological tools to organize 
the teacher reflection –as it has already been done in different processes of teacher training in Spain, 
Ecuador, Chile and Argentina (Giménez, et al., 2012; Valls & Vanegas, 2015; Posadas, 2015; 
Pochulu, Font & Rodriguez, 2016; Seckel, 2016) –, that aim at the fostering of the “meta” 
dimension of didactical-mathematical knowledge (DMK) of Mathematics teachers (Pino-Fan, Assis 
& Castro, 2015; Pino-Fan, Godino & Font, 2016). 
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Taking a case study into the specialised knowledge of linear functions demonstrated by a secondary 
teacher, we aim to demonstrate, and to raise discussion about, a set of methodological tools for 
organising and representing mathematics teachers’ knowledge. The results are art of an ongoing 
study which employs the model of professional knowledge known as Mathematics Teacher’s 
Specialised Knowledge. We also believe that the use of these tools help to demonstrate the 
effectiveness of the division of this knowledge into subdomains, and affirms the relevance of the 
descriptors defining their boundaries. 

Keywords: Secondary, mathematics teacher’s specialised knowledge, functions. 

Introduction 
Since the CERME 8 conference in Turkey, the University of Huelva research group has presented a 
series of papers demonstrating an analytical model that is being developed to aid the study of 
mathematics teachers’ specialised knowledge (e.g. Montes, Aguilar, Carrillo & Muñoz-Catalán, 
2013; Vasco, Climent, Escudero-Ávila & Flores-Medrano, 2015; Flores, Escudero & Carrillo, 2013), 
we outlined the model currently under development, known as Mathematics Teacher’s Specialised 
Knowledge (MTSK). In this model, each subdomain is described in terms of mathematical concerns, 
an aspect which represents a significant move away from other models (Carrillo, Climent, Contreras 
& Muñoz-Catalán, 2013). 

Continuing the group’s work on this model, this paper illustrates the application of various 
methodological tools to studying and understanding mathematics teachers’ knowledge, as brought 
into play in the classroom. At the same time, we consider developments in the theoretical foundations 
of the model, and present adjustments that have been made in the light of empirical studies and fruitful 
discussion in various academic platforms. We illustrate the use of these tools by means of an 
analytical study of the knowledge employed by a secondary school mathematics teacher in the process 
of planning classroom activities. 

Mathematics Teacher’s Specialised Knowledge (MTSK) 
The distinguishing feature of the MTSK model is that it incorporates elements of knowledge which, 
considered as a unit, are uniquely relevant to mathematics teachers. It contemplates two chief 
knowledge domains – Pedagogical Content Knowledge and Mathematical Knowledge, each divided 
into three subdomains. 

For its part, Pedagogical Content Knowledge is composed of Knowledge of Features of Learning 
Mathematics (KFLM - the teacher’s knowledge of the processes involved in the students’ assimilation 
of mathematical content), Knowledge of Mathematics Teaching (KMT - the teacher’s stock of 



resources and strategies for teaching such as examples, tasks, analogies and so on), and Knowledge 
of Mathematics Learning Standards (KMLS - the teacher’s knowledge of the performance targets set 
for different educational stages). Meanwhile, Mathematical Knowledge comprises Knowledge of 
Topics (KoT - knowledge of the mathematical content pertaining to any particular course, along with 
the associated foundations, properties, definitions, phenomenological associations and so on), 
Knowledge of the Structure of Mathematics (KSM - the teacher’s knowledge of mathematical 
connections between concepts), and Knowledge of Practices in Mathematics (KPM - knowledge of 
the syntax of mathematics and the procedural logic at the heart of the discipline) (Escudero-Ávila, 
Carrillo, Flores-Medrano, Climent, Contreras & Montes, 2015). 

In addition to the division into subdomains, the MTSK model also places emphasis on beliefs about 
mathematics and about mathematics teaching and learning, as the relationship between beliefs and 
knowledge is a significant consideration, influencing, for example, how a teacher might deploy his 
or her knowledge. This provides a base to interpret knowledge evidences that we found and gives us 
sensitivity to interpret some elements that allow to contextualize David’s teaching decisions and the 
exchange of opinions with his colleagues. 

Methodological tools for studying and understanding the specialised knowledge 
of mathematics teachers 
In this section we present an example of an analysis using MTSK, which we hope will demonstrate 
a deeper understanding of the nature of each of the subdomains involved and illustrate some 
interesting methodological tools. 

We analyse the case of David (fictitious name), a secondary school mathematics teacher working in 
Colombia, who, at the time of the data collection, was studying an online Master’s degree. His first 
degree was in Chemical Engineering, and he had been involved in education for over 25 years as a 
teacher of Mathematics, Physics and Chemistry. He had also participated in several teacher training 
courses and similar programmes. The bulk of his experience was in upper secondary (14-18 year-
olds), but for the previous eight years he had worked in lower secondary (12-14 year olds), teaching 
Mathematics. 

Our analysis focuses on David's participations in forums and his written productions as part of the 
Master’s course. David plans a lesson for teaching linear and quadratic functions. The task required 
the teacher to devise an exercise for use with the class, and then to discuss aspects of it with the group 
tutor and the other course participants in various sessions of an online forum, with the aim of 
evaluating the task and making any modifications deemed necessary as a result. 

David came up with two exercises, one dealing with linear functions, the other with quadratic, both 
aimed at pupils in eighth grade. In this paper, we focus on the specialised knowledge we were able to 
identify relating to the exercise concerning linear functions. It should be noted here that although 
David was given several opportunities to incorporate modifications to his planned activity, he 
ultimately decided to stick with the same plan through to the end of the course. 

The Master’s programme which forms the background to our analysis encouraged teachers to explore 
aspects of their day-to-day classroom practice. This required them to articulate their pedagogical and 
mathematical knowledge in order to explain to the other teachers and the tutor the decisions that had 
led to their particular activities. 



Our system for classifying and organising the knowledge displayed by David was based on units of 
analysis drawn from his written discourse in forums and tasks over the duration of the course. These 
were assigned to a particular category within the subdomains making up MTSK. In order to establish 
these categories and refine the analysis, we used Grbich’s top-down and bottom-up methodology 
(Grbich, 2013). This approach enables researchers to move from theory to data (top-down) by 
opening provisional categories suggested by the literature review, and from data to theory (bottom-
up) by eliminating, merging and opening new categories consistent with the results obtained from 
empirical study.  

With respect to the potential of this methodological approach, we propose the following example. In 
Escudero (2015), it is mentioned that the KFLM and KMT subdomains contain a category that reflects 
the knowledge that teachers have about learning and teaching mathematics, respectively. With this 
information we analyze the data collected from David to find elements related to teaching/learning 
theories. When David mentions Socio-Epistemological Theory, it is clear that he has knowledge 
about the theories we are looking for (top-down). On the other hand, when David refers to 
Socioepistemology, we could notice some differences with the “formal” constructs, therefore we 
think of the possibility to explore knowledge of formal theories and personal knowledge base in 
formal theories whose nature corresponds with the knowledge of teaching/learning theories (bottom-
up). 

As a result of this procedure, we developed a range of categories for each of the subdomains, enabling 
specific aspects of each one to be considered, and giving a fuller description of the MTSK model. 
These categories are illustrated alongside the model in Figure 1. 

 
Figure 1: Mathematics Teacher’s Specialised Knowledge 

Once units of David’s knowledge had been identified from his contributions during the course, we 
wanted to be able to describe and understand the specialized knowledge deployed in each instance. 
To do so required a tool that would allow us to determine the type of knowledge, the connections 
between different subdomains, and the nature of this knowledge in terms of the different categories 
within each subdomain. At the same time, we wanted to keep in sight the holistic character of this 



kind of knowledge, and to maintain an awareness that the placing of boundaries around discrete areas 
of knowledge is a (necessarily) artificial procedure serving analytical purposes. To this end, we 
devised a coding system using shapes and colours, whereby subdomains were represented by colours 
and categories by shape. In addition, associations between different types of knowledge were 
schematized by a series of arrows joining the two elements. The result can be seen in Figure 2 below. 

David’s specialised knowledge of Mathematics   
The task which we will analyse below concerns filling a tank, in the shape of a rectangular prism, 
with water. 

David: There is a rectangular tank with a volume as shown in the figure, which is to be 
filled with water at the rate of 1 cm3 per second. 

 
Draw a table in which the variables are height and time.  

If the inflow varies, what happens to the graph, if it increases and if it decreases?  

What type of function do you get if you model the two situations?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: A representation of David’s specialised knowledge regarding the concept of functions 



An interpretation of Figure 2 is presented below. The aim is to reach an understanding of David’s 
specialised knowledge, as identified in his contributions during the course, and of the connections 
between the different subdomains and categories which can be detected. 

David goes on to specify the objectives of the task, underlining the importance of designing 
appropriate activities for the topic of functions, and gives a list of the resources to be used with 
suggestions for conducting the activity. These include a series of exercises aimed at guiding the 
students towards analysing the problem, establishing the relationship between the variables and 
modelling the process in order to arrive at a function modelling the behavior. In the final section, he 
makes various observations about the use of the teaching resources. 

Although David does not write explicitly about his knowledge of the properties of linear functions 
(yellow ovals), the design of the exercise and his comments about it provide indications of the 
elements he considers fundamental to them, such as the parameters and concept of dependent and 
independent variables, and noting that directly proportional magnitudes are also linear functions. 

Nor does David explicitly solve the activity, although he does talk about different ways the problem 
can be solved. One method he mentions is that of primary difference for calculating the parameters 
of the functions modelling the phenomenon in question. This indicates knowledge of mathematical 
procedures associated with the mathematical content (yellow rectangle), which represents 
evidence that he knows a specific mathematical process associated with the concept of linear 
functions. 

David:  […] using differences to find out the parameters of the functions; the primary 
difference for the linear, and the secondary difference for the quadratic; that is for 
when I need to find out the parameters using the given data. 

The students are encouraged by the task to employ different semiotic registers of representation 
(Duval, 1995) for the function, that is, the pictorial, numerical, graphical and algebraic. This provides 
us with evidence that David has knowledge of different registers of representation (yellow rectangles 
with rounded corners) associated with the concept of functions. 

Regarding knowledge of the mathematical characteristics specific to teaching resources (green 
rectangles) used by David in his design, and which are located in KMT, we identified that he knows 
a specific mathematical task for dealing with the concept of linear functions, such as filling a 
receptacle at a constant rate, and also a specific technique for teaching the concept – the transition 
between registers of representation. Questioned about the exercise, David demonstrates a connection 
between understanding registers in terms of mathematics and understanding them in terms of 
teaching, when he considers the transfer from one register to another as a teaching strategy, thus 
making a connection between KoT and KMT: 

David: Generally, we, teachers, prefer to work in the algebraic register; but to a large 
extent we can also recognise the different variations a function can undergo using 
tables and graphs, by giving the dependent variable different values to the ones 
originally set. 

 […] By moving from one register to the other [from the algebraic to the graphic], I 
hope that, by making graphs, [the students] establish the relations between the 



dependent and independent variables, and can see how this resource, that is the use 
of graphs, could be put to use in modelling. 

A connection to KFLM is also made that contemplates potential errors, obstacles and difficulties to 
learning, as well as, conversely, areas that might offer an advantage when David considers potential 
difficulties in learning the concept of function (mauve rectangles):  

David: [I acknowledge] a high degree of complexity in learning the concept of function, 
because of the variety of its representations in different contexts, and its algorithmic 
nature. 

Awareness of these potential difficulties in representing functions is inherent to the concept of 
function itself. 

Elsewhere, another connection between KoT and KFLM can be seen when David shows that he is 
aware of how modelling real world phenomena can be a motivating factor in work on functions as 
the students can establish the relationship between dependent and independent variables through 
making graphs, thus providing a meaning linked to a tangible context for the linear and quadratic 
functions. It is precisely this kind of knowledge – understanding how drawing up graphs can help 
students learn about functions – which we consider knowledge of the students’ interests and 
expectations regarding the teacher’s approach to the concept in question (mauve rectangle with 
rounded corners). 

As might be expected, David’s KoT is the foundation on which the task is constructed, providing him 
with the background knowledge for sequencing activities and setting his goals. One important aspect 
is his knowledge of phenomena which can be modelled by linear functions, such as the rate at which 
a rectangular-shaped vessel fills with a constant inflow, which we have denominated knowledge of 
the phenomenology associated with the concept (yellow labels), on the basis that understanding 
the mathematical features of the phenomenon and the effect of its variation on the different modes of 
representation, enables David to make connections between the variables involved, and to model the 
phenomenon via the transition from one register to another, using modelling as a teaching strategy 
for generating “new” meanings of the concept of functions. 

David: [I recognise] the importance of learning this concept [function], and its significance 
as a tool for modelling different phenomena in mathematics, physics, chemistry and 
economics amongst others. 

As can be seen in Figure 2, modelling plays an important role in the task design. Deconstructing 
David’s understanding of modelling, we can see that he imbues it with different meanings, and we 
can duly recognise the different ways that David understands and recognizes modelling. Hence, on 
the one hand, we can locate David’s knowledge of modelling as a teaching strategy (green 
rectangles) within KMT. On the other, within KPM, we can identify David’s knowledge of modelling 
as a mathematical practice or process (blue labels), directly associated with the concept of functions 
which enables real world phenomena to be interpreted. Finally, within KFLM, David identifies the 
concept as a means of getting students to interact with mathematical content for educational 
purposes (mauve oval). 



At the same time, KFLM includes knowledge about theories of mathematics learning, whether 
formal or personal (mauve label). In David’s case, he was able to draw on various theoretical 
constructs at the design stage of his materials so as to supply a solid foundation for his work. Some 
of these constructs derive from Sociopistemological theory (Cantoral & Farfán, 2003). In the excerpt 
below, David makes reference to some socioepistemological constructs (marked in bold): 

David: One of our aims is to achieve the concept of function resignification using the 
modelling practice. 

Asked about the origin of terminology, David replied: 

David: Socioepistemology allows me not only to view mathematics education as a practice 
in which we convey knowledge, express postulates, solve problems and do 
demonstrations, but also to see beyond the concepts to what lies behind them, to 
transform them and to transpose them to other contexts and so get closer to real life 
[…] From the perspective of linguistics, we can note significant learning and 
resignification. Both attempt to modify the meanings of a concept, but Significant 
Learning is the process followed to achieve learning of value, and where our 
behaviour changes, while resignification is the means by which I achieve this 
learning. 

Given the lack of rigorous definition of the constructs (it could even be said that some are not totally 
accurate, in that modelling and making graphs are not actually defined as social practices) we can say 
that David has a certain personal knowledge of this theory, which allows him to take a position in 
terms of how the concept of function is to be learnt (re-signified). That is to say, drawing on his 
knowledge of formal theory, David has developed a personal theory of the relevance of learning about 
functions based on the “practice of modelling”. His personal theory extends to regarding education 
as a tool for creating specific meanings about functions by enabling connections to real world 
situations to be made. 

Regarding KPM, as can be seen in Figure 2, David’s knowledge of the processes of validation, 
reasoning, and checking via software (blue rectangles with rounded corners) is directly connected 
to teaching technique chosen for his lesson plan. It also links to his knowledge of technology 
specifically designed for teaching Mathematics (green ovals), namely GeoGebra and Cabri. 

David: The use of the software is to show the students that their work is not only checked 
by their classmates, but also by a tool which in addition to helping them show their 
results, is like an external agency which can tell them whether what they have done 
is right or not. 

Final reflections 
We can conclude that David’s knowledge of various teaching resources, such as software and 
teaching strategies, and the use to which he puts this knowledge could be connected to his 
understanding of the ways of proceeding and producing in Mathematics, possibly as a result of the 
tendency of KPM to organize mathematical work, as discussed above. 

The main connections that this analysis has brought to light are those between KoT, KMT and KFLM. 
As underlined above, these connections illustrate the interdependence between the different 



categories within the subdomains, and highlight the holistic and indivisible nature of teachers’ 
knowledge of the teaching and learning process. What a teacher knows about interacting with content, 
or about learning theories and possible difficulties that might arise in a specific topic, has a significant 
influence on how the teacher plans the lesson. However, it is important to distinguish between the 
influence that this knowledge brings to bear on the planning process and the teacher’s knowledge of 
planning itself a teaching resource. 

We hope that this study serves to open a debate within the group about the relevance, potential and 
shortcomings of using categories to analyse Mathematics teachers specialized knowledge, and 
likewise the use of colour-coding and shapes as a means of aiding the assimilation of the information 
and facilitating the analysis of the connections between subdomains and categories. 
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This paper addresses the knowledge about the function concept and the knowledge on how to teach 
this concept using an analogy. The analysis of an episode of one lesson in which the analogy between 
a washing machine and the concept of a function is shown allows identifying specialised knowledge 
about the function concept and teaching strategies. The study findings reveal links between 
knowledge of the topic and knowledge of mathematics teaching, permitting identification of 
potentialities and limitations of the analogy used. 

Keywords: Function concept, mathematics teachers' specialised knowledge, analogies.  

Introduction  
Function is one of the most important concepts in mathematics, fundamental for development of 
mathematical analysis and mathematics in general (Ponte, 1992). This concept is not only present in 
many areas of mathematics, but is prevalent in the school curriculum and is, of course, studied as a 
part of the mathematics teacher training programs. Given its importance and great complexity 
(Dubinsky & Harel, 1992), it is essential that the mathematics teacher's knowledge considers both the 
discipline-specific knowledge of the function concept, as well as knowledge about how it is taught 
and learned. 

Teachers' knowledge has been widely studied from different perspectives, using a wide range of 
theoretical models (e.g., Shulman, 1986; Ball, Thames, & Phelps, 2008; Carrillo et al., 2014). The 
Mathematics Teacher's Specialised Knowledge (MTSK) model is presented both as a 
conceptualisation for mathematics teachers' knowledge and as an analytical tool for acquiring this 
knowledge (Flores, Escudero, & Aguilar, 2013). Studying the subdomains and categories proposed 
by the MTSK model, and their relationships, allows us to advance the understanding and analysis of 
teachers’ knowledge (Sosa, Flores-Medrano, & Carrillo, 2015). Part of this knowledge is related to 
the depth of the teacher’s understanding of a concept (in this case the function) as a mathematical 
concept and as an object of teaching. Several studies conducted to date focused on the understanding 
of the function concept on students, pre-service teachers, and practicing teachers (e.g., Even, 1990; 
Breidenbach, Dubinsky, Hawks, & Nichols, 1992). Other studies highlight the importance of fully 
understanding the concept (e.g., Sierpinska, 1992), identification of its representations (e.g., Even, 
1990), as well as difficulties in learning (e.g., Dubinsky & Harel, 1992) and relating their different 
representations (e.g. Ponte, 1992; Figueiredo, Contreras, & Blanco, 2015). The focus of the present 
investigation is on the relationship between teachers’ knowledge about the function concept and the 
knowledge about its teaching from the perspective of the MTSK, particularly when a teacher uses an 
analogy to make the function concept understandable. In this study we ask what knowledge about 



functions and their teaching can be inferred from the use of an analogy? How are these knowledge 
types related? 

Analogies 
According to Treagust, Duit, Joslin, and Lindauer (1992), analogy is achieved through a comparison 
of structures in two distinct domains, one of which is familiar (source or analogue), while the other 
is unfamiliar (target).  

An analogy refers to comparisons of structures between domains. An analogy is a relation between 
parts of the structures of two conceptual domains and may be viewed as a comparison statement 
on the grounds that these structures bear some resemblance to one another. (Treagust et al., 1992, 
p. 413) 

The use of analogies in teaching, particularly as a didactic strategy in the teaching-learning process, 
has been extensively studied (e.g., Duit, 1991; Treagust et al., 1992). For example, Curtis and 
Reigeluth (1984) analysed instructional text and provided a classification of the ways in which the 
relationship between the source and the target domain is established. According to the authors, the 
relationship can be (1) structural, referring to physical similarity or similar construction; (2) 
functional, referring to the way of functioning of both structures; and (3) structural-functional, 
formed by combining the previous two. They add that analogies occur in two forms: verbal and 
pictorial-verbal, whereby the former is achieved solely via the use of words, while in the latter words 
are complemented by an image.  

Teachers tend to produce analogies automatically when answering questions or explaining the 
concepts they are teaching (Ünver, 2009). According to Figueiredo et al. (2015), function as a 
machine is an example of such analogies and this comparison will show only some aspect of the 
concept. Function can be descripting operationally as a computational process or structurally as a set 
of ordered pairs (Sfard, 1991). To present the function trough this analogy conducts to understand the 
concept as an input-output process in an operational way.   

Mathematics Teacher's Specialised Knowledge  
The MTSK model (Figure 1), in the spirit of contributions by Shulman (1986) and Ball et al. (2008), 
proposes, within the teacher's knowledge, a discipline-specific component (MK, mathematical 
knowledge) and a didactic component (PCK, pedagogical content knowledge). A further component 
related to beliefs about mathematics and about teaching and learning it is introduced in the middle of 
the model.  

According to Carrillo et al. (2014), MK corresponds to knowledge specific to the discipline being 
taught, and comprises of three subdomains: Knowledge of Topics (KoT), Knowledge of the Structure 
of Mathematics (KSM), and Knowledge of the Practice of Mathematics (KPM). KoT considers the 
phenomenology, definitions, properties, procedures, and foundations of the topic, as well as the ways 
of recording and representing it. On the other hand, KSM pertains to the conceptual connections 
among mathematical concepts, relating a concept to prior contents (simplification), later contents 
(adding complexity), or to contents with a common property (transverse connections), and the 
auxiliary connections among objects. Finally, KPM is related to knowledge about the characteristics 



of mathematical work, namely how to proceed and create knowledge in mathematics, practices linked 
to mathematics in general, and practices linked to a specific topic. 

 

 
Figure 1: Sub-domains of the MTSK model (Carrillo et al., 2014) 

PCK corresponds to didactic knowledge specific to teaching work in the process of teaching and 
learning mathematics. Once again, it comprises of three subdomains, namely Knowledge of Features 
of Learning Mathematics (KFLM), Knowledge of Mathematics Teaching (KMT) and Knowledge of 
Mathematics Learning Standards (KMLS). KFLM considers teachers' knowledge of their students’ 
learning styles, strengths and difficulties associated with learning, way of interacting with 
mathematical content, students' conceptions of mathematics, and personal or institutional theories of 
mathematics learning. KMT is knowledge about mathematical content conditioned by its teaching, 
including knowledge about personal or institutional teaching theories, physical and virtual resources, 
and strategies, activities, examples, and help. Finally, KMLS pertains to knowledge about required 
mathematical concepts to be taught, knowledge about the level of conceptual and procedural 
development expected, and the sequencing of the various topics.  

The aforementioned division into subdomains allows us to deepen our understanding of the elements 
of knowledge that are utilised in an integrated and interconnected manner. The MTSK model is a 
suitable analytical tool for meeting the objective of the present study because, in addition to 
highlighting mathematics, its categories, and subdomains, it allows focusing on teachers’ knowledge 
about the function concept and its teaching (for example, the definition, its properties, representation, 
and the strategies used when teaching). 

Methods 
This research is grounded in an interpretative paradigm and is based on the instrumental case study 
design (Stake, 2007). The aim is to investigate from the perspective of MTSK the knowledge 
manifested by a high-school teacher when teaching the concept of function. The teacher that is in the 
focus of the study, henceforth referred to as Arturo, has ten years of teaching experience, teaching 
classes from fifth to twelfth grade. He is also a university teacher in first-year classes for engineering 
students and for pre-service teachers. He has also worked as a teacher in continuing education courses 
for primary-school teachers and has taken courses connected to university teaching, curricular updates 
in geometry, and curricular reform. At the time of this study, Arturo was teaching ninth-grade classes, 



where he had planned to introduce the function concept. According to the information provided by 
Arturo, his group of students is familiar with the use of algebraic language, equation solving 
techniques, and Cartesian plane, among others. 

To collect the data, classes in which Arturo planned to introduce the function concept were observed 
and video-recorded. The videos were transcribed and the transcripts served as the principal source of 
information. The resulting data was subjected to content analysis (Bardin, 1996), whereby class 
episodes were determined according to the tacit or explicit goals of the teacher. The units of analysis 
correspond to the teacher’s interventions and responses provided by his students. In addition, only 
those that present evidence of teacher's specialised knowledge have been considered (Flores et al., 
2013). In the first class, Arturo introduces the concept of function and its definition, and provides 
some examples of functions. An episode was selected from this class, in which the teacher uses an 
analogy to promote students’ understanding of the definition of function. The episode was analysed 
in relation to the KoT and KMT sub-categories of the MTSK. 

Results and discussion  
Arturo defined function as a correspondence between elements of two sets in which each element of 
the input set corresponds to a single element in the output set. Knowledge of this definition is part of 
his KoT. To make this definition understandable, Arturo introduces a washing machine as an analogy 
for a function, alluding to a family context for his students. To know this context is not part of the 
MTSK, but it allows us to reflect on the scope and applicability of the analogy according to the type 
of students to whom they are presented. In the following extract, Arturo presents the analogy between 
function and washing machine:  

Arturo:         Before giving you more names, the function works like a kind of machine. An 
example could be a washing machine. A washing machine carries out a function. 
What is its function? 

Student:          Washing! 

Arturo:          What do you do? You take an article of clothing. It's dirty. You put it in the washing 
machine. How does it come out? 

Student:          Clean. 

Arturo:      Did the washing machine fulfil its function? Yes. The dirty article of clothing would 
be a member of the input set, and the clean article of clothing would be a member 
of the output set. This is what the function does. Here [he points to a diagram] we 
would have the dirty article of clothing. The function does what it does, depending 
on the machine, and arrives at the other side. In the case of a washing machine, it 
arrives clean.  

Knowledge of analogies, as elements that enhance the teaching of a concept, is part of the teacher's 
specialised knowledge (Carrillo et al., 2014). The use of analogy shows teacher's knowledge about 
when to give any specific help to his students (KMT). The use of analogy favours the understanding 
and visualisation of abstract objects in students, besides being a motivation for a new theme. This 
analogy presents the function as a process and allows the students to better understand this concept 
(Sfard, 1991; Figueiredo et al., 2015). Moreover, different components can be identified, namely 



domain, co-domain, pre-image, and image explaining the connection between the source and the 
target domain.  

a) 1     b)  

Figure 2a: Presentation of the analogy. 2b: Relationship between the source and the target domain. 

The analogy is presented in two formats: in the intervention described (verbal) and when the teacher 
draws a washing machine on the whiteboard (pictorial). This illustration (Figure 2a) shows the 
function as an input-output process, in which the object that enters is modified (in this case, a dirty 
article of clothing comes out clean). In this example, the objects are the same at entry and exit (T-
shirts in both cases). Other analogies for this concept can relate objects of different nature. For 
example, function can be represented as a coffee dispensing machine into which money is entered in 
order to obtain a cup of coffee, highlighting the arbitrariness of related sets (Even, 1990). In this 
sense, the analogy of the washing machine impedes the association of arbitrary sets, which may result 
in students gaining a partial understanding of the concept. Likewise, the washing machine does not 
show other conceptions for the function as, for example, the co-variation of magnitudes. Similarly, it 
does not facilitate representation of more complex functions or the complexity of the concept itself 
(function algebra, composition).  

Arturo takes advantage of this relation between input and output to clarify the definition of the 
concepts of image and pre-image, which are parts of his KoT. Similarly, evidence of his knowledge 
about the domain and co-domain of the function appears in the analogy as "dirty clothes" and "clean 
clothes." This knowledge and the exposed relations between the source and target domains account 
for the use of analogy as a strategy for teaching the function, evidencing a relationship between its 
KoT and its KMT. Figure 2a shows Arturo's knowledge of the notation f(x) = y (knowledge about 
representations as a part of his KoT) that allows him to show the relationship between two domains 
of the analogy (as knowledge of strategies - KMT) and to introduce new ways to represent the 
function. 

In the following excerpt, Arturo explains the relationship between the linked domains, source and 
target, using the analogy, in which we interpret the structural and functional character of the analogy 
presented (Curtis & Reigeluth, 1984). 

Arturo: In our context, our function was the washing machine, washing. Set A would be 
dirty clothes and Set B clean clothes. If this is our washing machine, and it carries 
out its function; dirty clothes go in, and how do they come out? 

                                                 
1 f: washing machine   A: dirty clothes    B: clean clothes 



Student:  Clean! 

Arturo:  The same as what we did here. The function was applied to this kind of T-shirt that 
I drew that was dirty. What will it equal? 

Student:  Clean, clean clothes. 

Arturo:  The same T-shirt, but clean. These two elements also have names. This element 
here is called the "image" of what I sent in. [...] And these elements here are called 
"pre image." What is the clean T-shirt?  

Student:  Image. 

Arturo:  The image of what? 

Student:  Of the dirty T-shirt. 

The structural characteristic is shown in establishing the correspondences of the Set A with the dirty 
clothes, the Set B with the clean clothes, and the washing machine with the arithmetic process carried 
out by the function. That is, the structure of the laundry process is analogous to the evaluation process 
in the function. When Arturo presents the analogy "function as a washing machine," he also refers to 
its functional character, as he establishes a comparison between the operation of the machine and the 
function. After this intervention, Arturo represented verbally and as an algebraic expression 
(representations in his KoT) an example of function (Figure 2b), thus deepening the analogy between 
machine and function. 

Arturo:  With numbers, the function isn't going to do the washing. It's going to add two to 
whatever comes in [he writes "f(x) = x+2"]. Whatever comes into the function, to 
the machine, I add two to it. If this is my machine that adds two to whatever comes 
in, if a one enters, how does it come out?  [Student: Three.] 

It should be noted that, when Arturo teaches "with numbers," he aims to work in the target domain of 
functions. Consequently, the situation created becomes an example (knowledge of examples - KMT) 
that will allow him to present the functional characteristic of the analogy and propose a two-way 
process for understanding the relationship between a function and a washing machine (Figure 2b). 

The relationship between an algebraic expression (function) and a washing machine presents 
functions as an input-output process, meaning of the concept that we consider part of his KoT. In the 
same way, the articulation and selection of representations for the function (the analogy, f(x) = y, 
algebraic expression and natural language) accounts for Arturo's KoT, relating to his KMT.   

In this last intervention, by associating a function with a machine, Arturo highlights the process role 
of a function (part of his KoT). We do not have evidence of Arturo highlighting the object role of a 
function supported by the analogy studied here, although the structural character of the analogy may 
be the first approach to this conception. 

Conclusion 
According to the results yielded by the analyses presented above, the relations between the teacher’s 
KoT and KMT are demonstrated in the articulation between knowledge of representations of the 
function and the choice and use of these representations as examples and analogies for teaching the 



concept. In addition, the choice of analogies and examples given by Arturo reflect his KMT, which 
is nurtured and influenced by his KoT. The analogy shows the function as a correspondence in 
coherence with the definition given, while also permitting articulation of different representations: 
sagittal and algebraic diagram (Figure 2b). They also allow the teacher to produce other 
representations as a Cartesian graph or a table of values, thereby expanding the concept image for the 
students. Likewise, the analogy allows the students to appreciate the univalence character of the 
function (Even, 1990) and to extend the range of situations in which the concept of function is present 
(phenomenology - KoT). 

The analogy utilised in this case is suitable for teaching and learning given that it is connected to the 
students' prior everyday experience. Moreover, its functional and structural character allows them to 
understand the concept from different perspectives and using different representations. Establishing 
a bidirectional relationship between the function and the washing machine can allow students to 
utilise the concept of a function they have learned to identify the concept in other areas of mathematics 
and other areas of knowledge. It should be noted that, in spite of the benefits presented by this 
analogy, students may have a partial notion of function if the conception of function as a machine is 
maintained. Thus, it is essential that other aspects of the concept be highlighted, such as the 
arbitrariness of the sets involved (Even, 1990). It is also important to relate it to other representations 
(Figueiredo et al., 2015). Lack of articulation between representations can cause a limitation in the 
development of the conception of function from the structural perspective (Sfard, 1991; Breidenbach 
et al., 1992). On the other hand, this presentation of the concept may constitute an obstacle to learning, 
for example, the algebra of functions or its composition (How do I sum two machines?). Likewise, 
students’ direct experience with the laundry process can be detrimental in understanding the function: 
"the function did not fulfil its function." However, it is not the purpose of the study to evaluate the 
methodological proposal or Arturo's knowledge, but rather to approach it with the intention of 
improving our understanding of such knowledge, that of subdomain relationships in particular. In that 
sense, the analysis using the MTSK model is useful for advancing this understanding. 
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This paper reports a qualitative study of the post-lesson reflections of two pre-service teachers in 
Norway. During their third school placement, Nora and Mia volunteered to use the Knowledge 
Quartet to analyse and reflect on their own mathematics teaching. Comparing the nature of their 
reflections at the start and at the end of the placement, we find that Nora and Mia exhibit some 
development, focusing more on mathematical content at the end of the study than in the beginning.  
Factors that can influence their reflections are discussed: their own experience of mathematics and 
their beliefs about mathematics seemed to play an important role in how they interpreted and made 
use of the framework. 

Keywords: Mathematics teacher education, teacher background, elementary school mathematics, 
teacher practicum placement, Knowledge Quartet. 

Introduction  
The apparent disconnect between teacher education and the practice of teaching is of great concern 
to teacher educators (e.g., Solomon, Eriksen, Smestad, Rodal, & Bjerke, 2015). Systematic 
reflection on teaching might reduce this fragmentation, providing an educational experience based 
on genuine classroom experiences. However, teacher educators face the challenge of encouraging 
pre-service teachers to engage with classroom data in a meaningful way. In mathematics, in 
particular, research efforts have been made to find ways of focusing attention on mathematics as 
opposed to general pedagogy, with the ultimate goal of helping mathematics teachers (both pre- and 
in-service) to develop their teaching. The Knowledge Quartet (KQ) is an example of a research-
based theory that resulted from this research effort (Rowland, Huckstep, & Thwaites, 2005). 
Through two case studies (Flesvig, 2016), this paper explains and exemplifies the situated challenge 
of using the KQ to reflect on mathematics teaching.  

The research questions are: “To what extent does using the KQ as an analytical tool influence what 
pre-service teachers' (PSTs') attend to in the analysis of their own mathematics teaching? How do 
PSTs describe their experiences of using the KQ for lesson analysis?” 

Literature review 
Teacher education programmes prioritize increasingly the ‘core practices’ of teaching. The debate as 
to what these might be and what it means to focus on these in teacher education is ongoing 
(McDonald, Kazemi, & Kavanagh, 2013). We support the view that analyzing teaching is one such 
core practice: 



[it] involves learning to decompose instructional practice, to attend to particular events and 
interactions that are considered consequential for student learning, and to interpret the meaning 
behind those events to make informed teaching decisions. (Sun & van Es, 2015, p. 201) 

The underlying assumptions are that engaging in analysis of teaching, and focusing on the details of 
the mathematical aspects involved and on students’ mathematical thinking, will result in 
development of mathematical knowledge for teaching, as well as in more responsive teaching. 
There is evidence that the first assumption holds true both for PSTs (Turner, 2012) and for in-
service teachers (Llinares & Krainer, 2006). While the second assumption is yet not well 
documented, Sun & van Es (2015) confirm it in their study of secondary PSTs exposed to a course 
with a focus on analysis of video recordings of the participants’ own mathematics teaching.  

Providing PSTs with opportunities to analyse teaching is not enough. PSTs need tools to direct their 
attention to salient aspects of teaching episodes. While focusing their reflections on the taught 
content (mathematics) is not a given either for in-service teachers or for PSTs, research provides 
examples to show that this is a trainable skill (Turner, 2012; Star & Strickland, 2008; Sun & van Es, 
2015). Examples of ‘tools’ that support the process include frameworks for analysis of teaching 
(Rowland et al., 2005, Star & Strickland, 2008), routines for discussion of videos (Sun & van Es, 
2015), and experienced mentor support to direct post-lesson review to focus on mathematics 
(Nilssen, 2010). 

In theory, school ‘practicum’ placements should provide PSTs with excellent opportunities to reflect 
on the details of teaching, under the supervision of experienced teacher mentors. However, research 
has shown that there are significant differences in the experience of school placement of individual 
PSTs and that school placement is mostly about managing and doing the teaching, less about 
learning systematically from it (Solomon et al., 2015). This makes it all the more interesting for 
teacher educators to explore ways of supporting, with minimal involvement, PSTs’ structured 
reflections on mathematics teaching in their school placements. 

Theoretical underpinnings of the study 
The nature of reflections on mathematics lessons  

While we argued for the value (and difficulty) of attending to mathematics content in PSTs' lesson 
analysis, we recognise other salient aspects are likely to feature. To capture these aspects in PSTs 
reflections, we turn to the five-category framework of Star & Strickland (2008): classroom 
environment (class size and level, room layout, equipment, etc.), classroom management (classroom 
events and procedures), tasks (worksheets, presentations, homework, etc.), mathematical content 
(the topic, representations, examples, problems) and communication (questions asked, suggestion 
offered). The framework has been used as an instructional tool in two separate studies based on 
analysing video, leading to improved skills in observing classroom environment and 
communications (Star & Stickland, 2008; Star, Lynch & Perova, 2011). However, attention to the 
categories ‘tasks’ and ‘mathematical content’ seems harder to promote, and did not improve in the 
second study. For this reason, we chose another instructional tool for our study.   



The Knowledge Quartet 

The Knowledge Quartet (KQ) is a framework that classified the situations in which mathematics 
teachers’ knowledge comes into play, in four broad categories: foundation, transformation, 
connection and contingency. The framework is empirically grounded in classroom observations, and 
the four categories encompass in total 20 different codes (Rowland, 2014). For example, foundation 
includes codes such as overt display of subject knowledge, adherence to textbook, concentration on 
procedures. Transformation encompasses ways of making the mathematics accessible to learners, 
such as choice of examples and choice of representation. Connection includes, for instance, both 
connections between concepts and sequencing within a lesson. Contingency is the dimension 
capturing unexpected events in the lesson, for instance in responding to students’ ideas.  

The KQ is used to analyse mathematics teaching with a focus on teacher knowledge, and is an 
appropriate tool to analyse and develop mathematics teaching when used in cooperation by PSTs, 
teacher mentors and teacher educators (Rowland, Huckstep & Thwaites, 2005). It has been 
successfully used as “an analytical framework to identifying mathematical content knowledge 
revealed through observations of practice” in a study with in-service teachers (Turner, 2012, p. 256). 
The participants, who collaborated closely with the researcher and were given considerable support 
in using the framework, saw the KQ as a tool to support them in reflecting more critically on their 
own teaching (Turner, 2012). This focus on the mathematics stands in contrast with the general 
pedagogical and organisational features of the lesson typically addressed in post-lesson review 
sessions between teacher mentors and PSTs (Solomon et al., 2015). The KQ is a means “to support 
focused reflection on the mathematical content of teaching” (Turner, 2012, p.253). 

Methodology and methods 
This paper reports on case studies of two PSTs’ reflections on their mathematics teaching in school 
practicum placement. At the time of the study, the participants, called here Mia and Nora, were in 
their second year of a four-year Norwegian teacher education programme for grades 5-10 (age 10-
15), specialising in mathematics. They were in the third school placement of their programme, and 
were based in the same grade 5 class.  

Prior to the school placement, Mia and Nora attended a training session with the first author. This 
included a presentation of the KQ, and a joint analysis of a video from a Norwegian classroom. 
Nora and Mia were invited to use the KQ to analyse each mathematics lesson in their school 
placement. Since Mia and Nora were aware of the design of the study when they volunteered to 
participate, we expect that they attempted to use the framework as faithfully as possible. 

Data collection included observations of two mathematics lessons for each participant, the first and 
the last of those taught in that third school placement (two weeks apart), followed immediately by 
audio-recorded semi-structured interviews. In the observed lesson, Mia and Nora taught statistics, 
and in the second they taught decimal numbers. This paper considers data from the interviews, since 
it is the PST’s reflections on teaching, rather than the teaching itself, that will be analysed. 
However, the lessons were videotaped for stimulated recall during the interviews, and to allow 
recall of episodes discussed in the interviews. 



The interview guides for the two interviews had a common core, and some additional questions that 
differed (regarding participants’ background in the first interview, and regarding their experiences 
of using the KQ in the last interview). The core was structured around the dimensions of the KQ 
(“Last time we talked you mentioned being concerned with how tasks are sequenced. What about 
this lesson?”), but also included more open questions about the lesson observed (“Tell me about an 
episode you remember from this lesson. Why did this episode catch your attention?”). The 
interviews were transcribed and analysed in the original language (Norwegian), by the first author. 
The excerpts included in this paper were translated into English by the authors.  

Given the design of the interview guide, with some open questions and some directly connecting to 
the KQ, this framework is not sufficient as the analytical tool. In this paper, our analysis draws on 
the framework of Star & Strickland (2008). This framework gives insight into the nature of the 
participants’ reflections on their mathematics teaching, and their development during the school 
placement during which the study took place.  

Participants 
At the time of the study Mia and Nora were in their third school placement (lasting 13 days), both 
based in the same class (grade 5, age 10) under the supervision of the same teacher mentor. Both 
Mia and Nora had some experience working as (unqualified) substitute teachers. 

While confident in her mathematics knowledge, Mia wanted more in terms of mathematics 
pedagogy and this was her motivation for participating in this study. She had enrolled in her current 
grades 5-10 teacher education programme after dropping out from a programme for mathematics 
teachers for grades 8-13 (age 13-18) in disappointment with the courses: “It was all about 
computations… there was nothing about putting it [the maths] across”.  

Nora found mathematics “fun, at least in grades 1-7”, but to gain admission to the teacher education 
programme, she had to retake the final mathematics exam (grade 12). In teacher education, Nora 
experienced a “steep transition from upper secondary, quite a few notches over that”. In the first 
interview she described mathematics as her favourite subject to teach, but was dissatisfied with the 
course: “A lot of what we learn is not what we will teach, and there is no use for it in our 
professional lives, while at the same time I miss something on how to teach the very basic stuff”. 

Findings 
We consider Mia and Nora’s reflections on their teaching of the two lessons, and their thoughts on 
The Knowledge Quartet. Some data from the videos is included by way of context for the 
interviews. 

Interview 1 - Mia’s reflection on her teaching 

In the post-lesson interview following Mia’s first lesson, some questions were directed towards 
specific dimensions of The Knowledge Quartet, such as transformation. Mia was asked how she 
selected tasks for her class. She mentioned that she does look at the textbook first, but she 
supplements the materials with additional problems that she finds online and selects carefully: 

I make sure they target the age group, fifth grade. That one [task on the handout] was actually a 
challenge for fourth grade, I found it online [...]. But it was about inserting, rather than drawing 



the chart, and there are no such tasks in the textbook. I always look for tasks that fit the topic and 
the age group and that complement the textbook, otherwise there is no point in it. 

Interview 2 - Mia’s reflection on her teaching and on using The Knowledge Quartet 

The last lesson, like the first, had a traditional structure, with Mia showing some examples, then the 
students worked individually until the lesson ended, without any summary or discussion. Mia was 
invited to mention something she noticed during the lesson: 

I remember best and I was most surprised by how well the students remember from [...] the first 
lesson about decimal numbers. In that lesson I felt they got something out of it, but not 
everything, because it was hard. But now I suddenly felt that there were very many who were 
eager and who knew something about it [decimal numbers]. 

The interview included questions on the dimensions of The Knowledge Quartet, related to specific 
situations from the lesson observed. In terms of transformation, Mia commented on the role of the 
textbook and the choice of tasks and examples:  

I only use it [the textbook] to see what it says, given that the students will solve problems from 
there, so my teaching shouldn’t deviate too much from it. But I don’t really use it when I teach as 
such, then I use examples and tasks I prepared myself, that are suitable for the children. And 
these are […] examples I choose carefully so that I know them well if I get questions. 

At the end of the interview, Mia was asked about her thoughts on the KQ:  

I had one lesson that I was really unhappy with, while my mentor thought it hadn’t been so bad. 
But I was really irritated […] so I used it [the KQ], because I was really angry. I went carefully 
through all the codes and categories. I’m thinking this should be done when the lesson goes well, 
too, because it really helped me when it went poorly [...] I discovered that - here is something 
positive, and here as well. It wasn’t all negative, although it felt that way to begin with. 

Interview 1 - Nora’s reflection on her teaching  

Nora’s first lesson was in statistics. The lesson had a traditional structure, starting with recalling and 
writing down definitions, solving a few problems on the interactive board, and then individual 
work. 

Asked about the transformation dimension, about her choice of tasks and their sequencing, Nora 
explained: 

I asked first for the definition of the mode and the median, since they’d learned that earlier. [I 
asked them] to check if they remembered what they’d been told earlier. [...] They have a 
rulebook where it’s good to write down things like this, so we started there, because I thought at 
least they have it there. 

The interviewer asked her to explain her choice of tasks, why she considered them good, and why 
they were selected for the session on the interactive board: 

Because there was a bit of variation. But after a while … Well, there were [in the online resource 
of the textbook] ten levels [of difficulty]. That’s a bit much, so I stopped a bit earlier. [...] It 
would have been too much of the same, but six-seven is okay, a chance to drill.  



Interview 2 - Nora’s reflection on her teaching and on using the Knowledge Quartet 

Nora continued the lesson on decimal numbers from where Mia left off, continuing with individual 
work and then the whole class worked on exercises on the interactive board. 

In the interview, she was invited to mention something she remembered from the lesson: 

The students worked individually for a long time, so I had to find some additional tasks [from the 
textbook] since they solved them much faster than I thought. So I just let them know [...] that 
they can carry on to the next page. 

Invited to use the KQ to analyse the lesson itself, Nora recalls a contingent moment: 

One girl asked […] if the distance between 0.7 and 1.1 on the number line is 4. Then I answered 
that she has to think of the whole number line: here’s 0 and here’s 1, there is a whole between 
them. Do you think there are four between [0.7 and 1.1]? No, so then it’s 0.4.   

In this final interview, Nora was asked about her experience using KQ so far and if she thinks she 
might continue using it. She admitted that it can be helpful in reassessing a situation (“might not 
think of it without all these points”) that might otherwise be overlooked (“so much happens during a 
lesson”) and this will help to revise the teacher’s approach next time. However, the traditional post-
lesson review session appeals to her: 

I think it’s helpful to talk about what happened in the lesson anyway, and we [Nora, Mia and the 
mentor] talked a lot. Then you get some insight in what is good and what could have been 
different, and so on. 

In her experience, the KQ has “an awful lot of codes and dimensions” and using it resulted in: 

... talking more about the lessons. And more about the examples. And sequencing, maybe.  But 
not much otherwise. 

Discussion 
Mia 

With reference to Star, Lynch & Perova’s (2011) framework, the categories tasks and classroom 
management are especially prominent in Mia’s first analysis/interview, both in response to the open 
questions, and when directed to use the KQ. A turn towards mathematical content occurs with more 
targeted questions about specific dimensions of the KQ, as in the case of transformation. By 
contrast, in her second analysis/interview Mia observed and reflected with mathematical content in 
mind, barely touching upon classroom management. Answering open questions, she refers to tasks 
and communication, without using any of the terms from the KQ. However, this changes when she 
goes deeper into her lesson using the KQ framework, with Mia using the terminology of the KQ, 
with attention to mathematical content, as well as tasks and classroom management in general. 
Questions on the dimensions of the KQ, such as the transformation dimension, direct Mia’s focus to 
the fine grain of mathematical content. 

Mia is convinced that the KQ supports a focus on the details of mathematics lesson. She pinpoints a 
specific situation in which breaking down the events of a lesson with the KQ helped her see 



strengths, not only weaknesses in her teaching, thus regaining her confidence as a mathematics 
teacher, at a time when her mentor's more general feedback was not helping her.   

Nora 

Throughout her first teaching analysis/interview, Nora's reflections focused most on tasks, 
classroom management and to some extent communication, only superficially touching on the 
mathematical content. Even when the questions directed her to the KQ, she never actively used the 
terminology of the framework. In the second analysis/interview, Nora focused mostly on 
mathematical content. Although initially focusing on tasks, there was a clear change in emphasis 
towards mathematical content when she is asked to use the KQ framework, and even more so when 
the questions are specific to the KQ dimensions.  

There is a tension in Nora's statements about using the KQ for teaching analysis. While she 
recognizes that the KQ creates an opportunity for development by making visible the specifics of a 
mathematics lesson, Nora prefers the unstructured form of traditional review sessions, explaining 
this in terms of the burden of the number of codes. 

Concluding comment 
Comparing the first and the last interview, we see that both Mia and Nora's reflections exhibited an 
increasing focus on mathematics. A number of factors could play a part in this, including the use of 
the KQ for analysis of the lessons, the experience of the school placement, and the mentor's 
guidance in the post-lesson reviews. The data indicate that the KQ does mediate this change, since 
even in the last interview we see that the more the questions are anchored in the KQ, the more 
marked the focus on mathematics was.  

Both Mia and Nora described the KQ as a means to explore the details of a mathematics lesson, and 
an opportunity to improve their teaching. However, we see differences in the degree to which they 
embrace the use of the KQ, with Nora leaving the door open to use it for troubleshooting, and Mia 
positive to continuing using it both when lessons go well and when they do not. We recognize that 
there are differences in the mathematical knowledge and mathematics teaching confidence of the 
two PSTs, and this might play a part in these differences. For instance, analysing in such detail a 
lesson that ‘went well’ (as is often said in unfocused post-lesson reviews) is likely to reveal details 
that were problematic, an insight causing some emotional discomfort. In that case, Nora might have 
benefitted from receiving more support when using the KQ, to help her cope. Or, perhaps Nora 
interprets the KQ as an algorithm that requires her to go through the all 20 codes for every lesson, 
and finds the time commitment too much, in which case she would benefit from more in-depth 
training in using the KQ in a more holistic and efficient way, perhaps limiting the framework to 
low-inference codes (e.g. ‘choice of examples’) to begin with. 

In conclusion, the study indicates that, even with minimal support, the KQ can contribute in some 
cases to focus pre-service teachers' post-lesson reflections on mathematics. Individual differences 
between the voluntary participants' willingness to continue using KQ after the end of the study 
suggest that teacher educators need to be mindful of factors that could deter PSTs from using the 
framework.     
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Professional association activity is commonly regarded as a professional ‘good’, yet there remains 
little systematic evidence of its impact. This paper reports on a small study that asked English 
teachers of mathematics participating in such activity what contribution they believe it makes to the 
development of their knowledge, skills and affect, and how that then impacts on their students. 
Participants claimed a range of significant and pervasive benefits, many of which are distinctive to 
this form of professional development. These include a renewed commitment to their role as teachers 
of mathematics, refreshment and inspiration, and a deep and lasting impact on both their own 
learning and that of their students. 
Keywords: Professional association, professional development, mathematics, affect. 

Background 
Within mathematics education in the UK, there are four national ‘classroom-facing’ PAs, funded 
entirely from membership and each attracting up to several thousand members: The Mathematical 
Association (MA), the Association of Teachers of Mathematics (ATM), the National Association for 
Numeracy and Mathematics in Colleges (NANAMIC), and NAMA, the National Association for 
Mathematics Advisers. All have a core purpose of supporting the teaching and learning of pre-
university mathematics through working with teachers and others.  

Their annual conferences, residential for most, offer sessions that might focus on mathematics 
pedagogic knowledge or skills, learner enrichment or teachers’ own mathematics enhancement and/or 
enjoyment, or mathematics curriculum, leadership or assessment issues. There is time for networking 
and also for social activities. Conferences are usually held in teachers’ holidays and teachers who 
attend often fund themselves, so they clearly value what such activity offers. Between them the PAs 
also offer a range of day conferences, bespoke courses, professional periodicals, local groups, policy 
debate, and a variety of social media opportunities, so building professional communities of up to 
national scale. Additionally, the larger ones operate working days and weekends when resources are 
developed for publication, and Hodgen (2003) suggests this in itself can develop teacher reflection, 
knowledge and hence practice. Teachers can therefore personalize the extent and type of their 
involvement and the professional development (PD) targeted.  

I adopt Cobb and Bowers’ (1999) conceptualization of teacher PD as any planned experience intended 
to develop teachers’ professional functioning (for the ultimate benefit of their students’ learning) – 
and that process as both enculturation and construction. We know something of what makes PD 
effective, for example that it has a content focus, is coherent with teacher’s prior learning and needs, 
active, sustained, features collective participation (e.g. Desimone, 2009). Golding (2017) suggests 
that for sustained development it should develop positive work-related identity and affect, as in 
Hodgen (2003) and Hannula (2011) respectively, including self-efficacy, resilience, enthusiasm and 
feeling valued. The importance of effective PD, job satisfaction and recognition to teacher retention 



is also well evidenced (Lynch et al, 2016): critical when, as in England, there is a shortage of effective 
teachers of mathematics at all levels (Ofsted, 2012). 

There are, though, some sizeable gaps in the PD literature, e.g. there is limited evidence of the impact 
on students’ learning (Joubert and Sutherland, 2008), and the affordances of online activity continue 
to change. Further, I can find no systematic study of the contribution professional association (PA) 
activity can make to teachers’ development, though Chetwin (2010) suggests there are likely to be 
gains from networking, growth of knowledge and/or skills, and taking responsibility for one’s 
development. This small study therefore investigated the contribution of PA activity as perceived by 
participant English teachers of mathematics (n=185). It asked  

 How is PA activity aligned with what is known about effective PD?  
 What contribution can PA activity make to teachers’ professional development, and to the 

development of their students?  
 Is any of that distinctive?  

The study 
I conducted semi-structured individual interviews with a purposive sample of four anonymized 
participants from each of the four 2016 PA annual conferences (Table 1), drawing on a variety of 
phase/experience/PA background from those currently, or recently, active in the profession. 
Questions (Figure 1) offered opportunity for development of a grounded account (Charmaz, 2006).  

All 2016 conference participants were invited to complete a (usually online) questionnaire designed 
in part to validate interview responses with a wider sample. The interview questions were 
complemented by Likert-style questions (Table 2) designed to elicit the value attributed to aspects of 
conference activity known to be particular to this form of PD. Additionally, I scrutinised documents 
and publications available on PA websites or at conferences. Data consisted of questionnaire 
responses (n=185), transcriptions of recorded interviews (n=16), and my notes from documents 
scrutinized. There is no claim to generalisation from this highly selective sample, though the study 
shows clearly the breadth and depth of perceived impact on some teachers.  

Grounded analysis of all qualitative data was by open, axial and selective coding (Charmaz, 2006). 
Documentary evidence was used to validate participant claims, and interviewees validated all  written 
interpretations of their talk; additionally, a colleague acted as a ‘critical friend’ - particularly 
important given I have a history of involvement in PA activity myself.  

Throughout, though, the study is framed by its reliance on teacher accounts. The status of such claims 
has been contested: do teacher narratives represent warranted true belief, and if not, to what extent 
can they be represented as ‘truth’? This issue is addressed in the literature, though Desimone (2009) 
argues concerns can be over-stated in relation to accounts of PD; I adopt here Doyle’s  (1997) position 
applied to teacher development, that the study aims to develop understanding of a highly 
contextualised and personal phenomenon, through access to participants’ stories of intentions, 
motives, purposes and perceptions of effectiveness, rather than a universally knowable phenomenon 
susceptible to legislation through policy. 



Table 1: Interviewees 

Source Pseudonym and teaching context PA activity(years) 

ATM Alice (11-18, special education), Lara (11-18), Terry (11-18), Billy 
(11-18, Higher Education, Adviser) 

6/8/ 2/’many’ 

MA  Jackie (5-11, 11-18, Higher Education), Janet (5-11, Adviser), Kim 
(11-18), Rachel (5-11) 

41/35/3/10 

NAMA  Charles (11-18, Higher Education), Gail (5-11, Higher Education), 
Graham (11-18, Adviser), Kathy (11-18) 

16/20/16/’many’ 

NANAMIC  Sally (11-18, 16+), David (11-18, adults), Angela (16+), Susan (11-18, 
16+) 

‘Many’/0/’12/10 

 

Figure 1: Interview structure 

 

Findings 
Coding exposed themes around identity and values, specific gains for teachers and/or students, 
strengths and limitations of professional association activity, including some apparently distinctive 
benefits, and threats or disincentives to that. I consider each of those in turn. Whilst it was not possible 
to enact either questionnaires or interviews in precisely comparable ways across the four associations, 
I argue that differences did not fundamentally influence the nature of responses.  

Identity and values 

Interviewees were keen to talk about impact on their professional identity or values, often in terms of 
affirmation, empowerment and meeting with like-minded people who support and challenge them 
professionally. For 11 of 16 this was their first focus in response, often centred around face to face 
participation – a sense of community, sometimes built up over years, and talk about refreshment and 
renewal, often contrasting that with the draining nature of teaching. Claims were often extravagant: 
“It’s been a life-changer, it builds me up as a maths teacher so I can do a better job in the classroom” 
(Kim), and for four teachers this was specifically linked with retention:  

PA activity helps me analyse and then be proactive about developing what I value. Hugely 
empowering, and … that keeps me in the profession despite the grinding demands. (Lara) 

1. Tell me about your professional background… and your history of involvement in (the PA). 
2. What aspects of the conference are you finding/did you find particularly helpful (why)? 
3. What are the limitations of a conference like this in terms of your PD – what aspects of your PD are 

better provided elsewhere? (prompt: institution or local opportunities, online affordances) 
4. And how do all these different opportunities impact on your students? (prompt: and their learning? 

How do you know? Any conference-specific impact, or not? if not mentioned) 
5. So if someone asked you how you stay up to date, maintain your skills, and develop further as a 

teacher, what would you say?... and has that changed over your career? 
6. Any other comments you’d like to make about your PD and its relation to PA activity? Thanks. 

 



Here is about personal PD, affirmation, values – challenge too, but support for…your long-term 
growth and enablement, that enables you to go back refreshed and keeps you committed to what 
can be a …very draining profession – I just couldn’t stay in my job long-term without that injection 
of positivity and recharging. (Billy) 

For interviewees with a background in Further or Adult Education, this identity work was talked 
about in even more fundamental terms:  

In FE, very often you don’t even see other teachers of maths... So NANAMIC gives you that 
identity – there are other people out there struggling with you, valuing some of the same things as 
you do – otherwise you’re just functioning in isolation, far too often. (Sally)  

Specific gains for teachers and/or students 

Interviewees commonly (10 of 16) talked about the high quality of PA publications, sessions and 
resources in terms of direct benefit to themselves and to their students:  

Support – inspiration - resources: I return brimming over with ideas and enthusiasm, with 
knowledge about innovations across the country, catholic ideas and approaches that have worked 
in different circumstances. The resources are creative and engaging, they really probe deep 
understanding and the students love them. (Terry) 

Often the benefit was claimed to spread beyond the interviewee concerned:  

I’ve worked with teachers using these materials and boy are they effective. If they can make the 
right selection and the right tweaks, and we work on that, then they see real and immediate impact 
on learning. (Graham) 

Many respondents (25 open questionnaire responses and 7 interviewees) greatly valued informal 
networking opportunities, claiming explicit benefits also to their colleagues and students – both 
immediate and also for sustained learning and positive disposition towards mathematics: 

The specific numeracy ideas, I took them straight back to my classroom and my students are 
already showing the benefits, in a couple of weeks – to confidence as well as skill. There are also 
‘seed’ ideas, things that ...will come to fruition over a longer timescale. (Susan) 

For some (seven interviewees and over 25 open questionnaire responses), the opportunity to be better 
informed about, and contribute to, national policy debate is valued; for others (in 6 interviews and 
some 15 questionnaires), the chance to engage with cutting-edge research relevant to their practice 
and reflect on its application is important. Teachers who engage in local branch meetings claim 
similar, but less extravagant, benefits. Questionnaire open responses were generally consistent with 
these interview response strands.  

Strengths and limitations of PA activity 

As well as the specific benefits to professional skills and knowledge, and to professional affect and 
identity, teachers identified the eclectic nature of professional association activity, and the fact that 
they can easily personalise it to their own professional needs, as underpinning its effectiveness. Many 
described it as ‘uniformly high quality – the best professional development I get’ or similar. It was 
often reported as having long-term benefits for both teachers and their students, sometimes in contrast 
to other courses which “focus on short-term skill or particular knowledge.” (Janet). 



Five interviewees talked about the benefits of being physically removed from their work environment 
and the luxury of sustained unhindered time committed to their professional growth. Several teachers 
described the desirability of also participating in institution-based development alongside colleagues, 
with access to familiar resources, and with whom they could contextualise new ideas. In three 
interviews they extolled the particular advantages of engaging in branch or conference activity with 
at least one colleague. On the other hand, teachers said they found distance learning can be effective 
and efficient for pure dissemination of information. Four  identified PA activity as often limited by a 
‘light touch’ for more substantial knowledge or skill development, particularly where there was a 
need for substantial subject or subject pedagogical knowledge, perhaps better provided in a series of 
inputs interspersed by classroom embedding. This was true in particular for two of the one-day 
NANAMIC conference participants. One commented: 

And of course then you go back into college and there’s no-one to share it with…so unless you’re 
really committed, those interesting ideas and good intentions might well get lost. (Angela) 

However, all of those interviewed and virtually all of those completing questionnaires identified face 
to face PA activity as a central and rich component of their effective impact on students. These 
comments were echoed in questionnaire responses, though typically in less depth. Questionnaire 
responses added no significantly different responses.  

Likert scale items in questionnaires largely concentrated on features of conferences. Table 2 shows 
mean response, on a scale of 1 (of little importance to me) to 5 (very important to me), together with 
standard deviations s. As quantitative data it is of limited robustness but gives some indication of the 
ranking of different aspects, similar but not identical for the different conferences. For the range of 
participants, working with others from a variety of roles and experiences is highly valued, as are 
opportunities to engage with new ideas or mathematics. These teachers also value opportunities to 
construct a programme that meets their individual needs. 

 
Table 2: How important are the following aspects of the conference to you?  

Association (responses from active teachers or 
those actively working with teachers) 

NANAMIC     
(n=10) 

NAMA 
(n=29) 

MA   
(n=56) 

ATM 
(n=90) 

Overall (185) 
 

Meeting people in comparable roles 4.2 3.7 4.3 4.2 4.2 (s=0.7) 

Face to face rather than at a distance 4.4 4.5 4.3 4.3 4.4 (s=0.7) 

Meeting people from other phases in education 
or with different roles or from different areas of 
the country 

4.2 3.9 4.7 4.7 4.6 (s=0.6) 

A mix of beginners and experienced colleagues 4.4 4.0 4.5 4.6 4.5 (s=0.7) 

Sessions that are grounded in the classroom 4.1 3.4 4.4 4.2 4.1 (s=0.5) 

Social activities - 2.3 3.3 3.9 3.5 (s=1.1) 

Immersion – it’s residential - 2.3 4.5 4.3 4.0 (s=0.7) 



Opportunity to do mathematics or  engage with 
new ideas, irrespective of whether I’ll use them 
directly in the classroom 

4.3 4.5 4.5 4.6 4.5 (s=0.8) 

Being able to choose sessions which fit my 
needs/preferences 4.6 3.7 4.6 4.7 4.5 (s=0.8) 

 

Threats or disincentives to such activity 

There are, though, some clear threats to participation, of which funding was mentioned by nearly all 
interviewees. Although “cheaper for several days of exceptionally high quality development than 
many mediocre commercial courses” (Rachel), teachers routinely talked of schools and colleges 
prioritising performance-framed one-off courses for funding, and leadership teams not valuing the 
“deeper, wider learning that is supported by face to face PA opportunities” (Janet). Others said that 
colleagues “thought they were mad to spend holiday time at a …conference when there are so many 
pressures during term time you just want to curl up and die when you get to a holiday” (Kathy). Four 
interviewees claimed their schools/colleges would not pay for conference attendance because a better-
informed teacher was more likely to move. Funding was a particular issue for those working in FE, 
with a majority of those respondents reporting little or no employer support for subject-specific 
development, so no choice but to fund such development themselves.  

Four interviewees suggested that Primary or FE teachers without a strong mathematical background 
or a specific mathematics responsibility were unlikely to prioritise, or be confident to participate in, 
subject specific and self-funded professional development. They suggested incentives for Primary 
teachers to ‘bring a local friend’ might increase both confidence and impact, and identified day 
conferences as a good first step “where it’s often desperately needed” (Janet). 

Discussion  
It is important to note that there is no claim to generalisability here: these are teachers in an English 
education culture who choose to attend these conferences in their own time, and often self-funded. 
They are therefore highly committed to their own development as teachers, but also claim that they 
gain motivation and energy for their work from PA activity, often in contrast to other opportunities 
available to their context. It is striking that almost all interviewees privilege talk about values, 
affirmation of professional identity, and improved self-efficacy in their accounts, together with deep, 
wide and reflective mathematical (subject and subject pedagogical) learning for the long-term 
effective exercise of their professional role. They commonly contrast that with much external PD and 
often generic local provision. With both preservice and inservice education in England increasingly 
adopting generic rather than subject-specific approaches, Joubert and Sutherland (2008) show such 
subject-specific opportunities are central to the development of a deeply effective teaching profession. 

The benefits described align well with Desimone’s (2009) and Golding’s (2017) criteria for effective 
PD: showing a clear content focus, active and coherent with teacher’s prior learning  needs, featuring 
collective participation, and contributing very positively to teachers’ affective and identity needs. PA 
activity can be sustained (sometimes over years) in the sense of offering longitudinal stimulus 
interspersed with everyday teaching, but not usually in the sense of a critical mass of hours focused 
on particular knowledge or skills, for which other avenues would appear to be more effective. The 



benefits claimed for teachers, and for their students, are significant, deep, wide-reaching and long-
lasting, including a renewed commitment to retention in the profession. There is no a priori reason 
why such benefits should not be experienced by far greater numbers, and it is important that perceived 
threats to participation are addressed. These are not just about funding, but, as in Lynch et al (2016), 
about the value teachers perceive management to give to PA activity and to teachers’ PD beyond the 
short term specific needs of their school/college.  

All teachers in this study were teachers of mathematics, but in the English context there are 
comparable professional associations in other curriculum areas, and an obvious question is whether 
the benefits cited here, particularly in relation to subject-related identity, apply also to them.  

Benefits distinctive to professional association activity 

Some distinctive benefits of PA activity appear to emerge. First, there is the opportunity to mould a 
PD programme to one’s own professional needs, whether in terms of reading, resources or face to 
face development. Many teachers also referred explicitly to working with mathematics – for its own 
sake as well as for possible classroom benefits. In England, in contrast to many other jurisdictions, 
this is unusual after initial qualification, yet this aspect of PA activity was commonly highly valued. 

There appears to be a great deal of professional affirmation, networking and identity work taking 
place. Some teachers particularly value the access to recent research offered by the PAs, and/or the 
informed policy work facilitated by PAs and based on professional discussion, and I would argue it 
is healthy for policy systems to be informed by such knowledge and discussion. Finally, through the 
PAs it is relatively easy for teachers to be able to offer something back to the PD of others, whether 
through writing about their professional work, giving a session at a conference, disseminating, 
receiving critique and discussing in a varied but informed peer group, producing resources or 
developing courses, or engaging in writing work that responds to deep desires to improve 
mathematics learning. This is itself is recognized to be developmental:  

Writing for journals has been very developmental, and the support you get for doing that. Very 
high quality writing sessions: a richness of ideas from people whose ideas have since shaped my 
practice, that I admire and aspire to. (Charles) 

There are, though, other providers of different subsets of the cited activities, and it is an open question 
how the affordances and constraints of such provisions compare with those of PA activity.  

Conclusions 
These English mathematics teachers claim a wide range of benefits from PA activity (especially face 
to face events), some of which are perceived as either exclusive to such activity or most effectively 
provided by it. They say it gives them deep and wide professional learning which impacts on their 
students both through specific pedagogical tools and approaches, and through teacher refreshment 
and re-commitment. They claim an affirmation of their professional identity through sharing goals 
and values with others, and increased self-efficacy through peer validation and personalisation of 
development. Teachers value the subject-specific nature of PA activity, that in the English context 
contrasts with much school-based, typically generic, development. They appreciate the range of ideas 
and ways of thinking that far exceed what is available within one school/college or group of 
institutions. For many, these claimed benefits have been developed and sustained over years.  



The study offers evidence to management and policy makers about the value these teachers of 
mathematics place on subject-specific development that affirms their professional identity and their 
values, recharges and  renews their commitment and enthusiasm, and engages them actively in deep 
and reflective subject and subject pedagogic learning. With current performance pressures and limited 
budgets, it is not surprising English schools and colleges often privilege perceived immediate 
curriculum needs, but the cost of PA activity outside teaching time is small when compared with the 
costs to students of a stale and drained teacher – or no teacher at all. There is a need to identify 
politically-acceptable ways to invest in teachers’ longer term subject-specific development, so that 
more teachers are encouraged to participate in such activity. 
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In this study, 26 learning diaries by prospective mathematics teachers were analysed in order to 
describe the characteristics of mathematical and pedagogical knowledge discussed therein and to 
evaluate the potential and limitations of the learning diary in mathematics teacher education. 
Conceptualisations of teacher knowledge are typically discussed in terms of subject matter 
knowledge, pedagogical knowledge and pedagogical content knowledge. A central goal of 
mathematics teacher education is to strengthen all of these areas of competency. The results of this 
study indicate that, although the learning diary is a potential learning tool, prospective mathematics 
teachers tend to emphasise pedagogical content knowledge, placing less stress on subject matter 
knowledge. Consequently, more structured learning diary tasks could be used to support all the 
components of mathematical knowledge for teaching. 

Keywords: Teacher knowledge, mathematics teacher education, learning diaries, subject matter 
knowledge, pedagogical content knowledge. 

Introduction 
Finnish mathematics teacher education consists of three somewhat distinct parts: subject matter 
studies, educational studies and practical teacher training at schools. Subject matter studies at 
mathematics departments form a major part of the mathematics teacher studies. Finnish mathematics 
teachers, however, report that university-level subject studies in mathematics lack a clear connection 
to the mathematics taught at school (Koponen, Asikainen, Viholainen, & Hirvonen, 2016). The 
transition to university-level mathematics requires a major change in mathematical thinking (e.g., 
Tall, 1992). At university, mathematics courses typically emphasise formal reasoning, meaning 
reasoning based on axioms, definitions and proven theorems (Viholainen, 2008). Informal reasoning 
is based on visual or physical interpretations of mathematical concepts (Viholainen, 2008). Some 
empirical studies (e.g., Chin, 2013; Viholainen, 2008) have shown that prospective teachers may have 
difficulties connecting formal and informal reasoning.  

On the other hand, prospective mathematics teachers may emphasise the importance of a teacher’s 
personal characteristics and pedagogical knowledge, while diminishing the importance of subject 
matter knowledge (e.g., Hoffkamp & Warmuth, 2015). Subject matter knowledge nevertheless plays 
a significant role in a teacher’s professional knowledge. Firstly, subject matter knowledge is typically 
seen as theoretically necessary for developing pedagogical content knowledge (Baumert et al., 2010). 
The quality of prospective teachers’ subject matter knowledge also affects their pedagogical choices 
when participating in practical training (Even, Tirosh, & Markovits, 1996). In addition, subject matter 
knowledge along with pedagogical content knowledge can be seen as a foundation for effective 
teaching, as a teacher’s professional knowledge affects student achievement (e.g., Baumert et al., 
2010). 

This study is a part of a design-based research and development project that has been carried out at 
the University of Helsinki. The aim of the research is to develop instructional practices in order for 



prospective teachers to both strengthen their subject matter knowledge and build up their pedagogical 
content knowledge. The research also aims to give insight into prospective mathematics teachers’ 
conceptions of the relationship between school and university mathematics. 

In this study, the specific focus is on learning diaries written by prospective mathematics during a 
six-week seminar. The seminar focused on finding connections between the mathematics studied both 
at university and at school and on discussions of mathematical content from the teacher’s point of 
view. That is, the aim of the seminar was for prospective teachers to, first, strengthen their (structural) 
knowledge of mathematical topics (such as derivative) and, second, enhance their pedagogical 
content knowledge with relation to these topics. The aim of this study was to examine the potential 
and limitations of learning diaries as a learning tool in this context and to conceptualise the kinds of 
knowledge these prospective mathematics teachers discussed in their diaries. 

Theoretical background 
Theories used in design-based research can be divided into grand theories, orienting frameworks, 
frameworks for action and domain-specific instructional theories (DiSessa & Cobb, 2004). In this 
study, the idea of constructive alignment (Biggs & Tang, 2011), which provided the instructional 
design of the research setting, is used as a framework for action. The data analysis for this study is 
based on domain-specific conceptualisation of teacher knowledge (Ball, Thames, & Phelps, 2008). 
In the next two subsections, these frameworks will be discussed in more detail. 

Teacher Knowledge 

The distinctions between content knowledge (or subject matter knowledge), pedagogical knowledge 
and pedagogical content knowledge (Shulman, 1987) are an established starting point for 
conceptualisations of teacher knowledge (Scheiner, 2015). Especially the distinction between subject 
matter knowledge and pedagogical content knowledge has gained significant attention and generated 
a great amount of research and further development of the conceptualisations of teacher knowledge. 
According to the Mathematical Knowledge for Teaching (MKT) model (Ball et al., 2008), a teacher’s 
content knowledge consists of common content knowledge (CCK), specialised content knowledge 
(SCK) and horizon content knowledge (HCK). In the MKT model, pedagogical content knowledge, 
in contrast, is divided into knowledge of content and students (KCS), knowledge of content and 
teaching (KCT) and knowledge of content and curriculum. 

The components of MKT model have been shown as important for effective teaching (Jakobsen, 
Thames, & Ribeiro, 2013). Hence, the model is valuable for this study, which aims to offer insight 
into prospective mathematics teachers’ discussions of their learning diaries and to use this information 
for further development of instructional practices in teacher education. 

Constructive alignment and learning diaries 

Present research and development of instructional practices in higher education is typically based on 
the constructivist view of learning and concepts, such as learner approaches to learning, self-
regulation and reflection. Constructive alignment is based on the constructivist view of learning and 
suggests that the intended learning outcomes, implementation of teaching and assessment should be 
carefully aligned and support active learning. Biggs and Tang (2011) suggest that by using more 



active ways of learning (such as problem-based learning) even ‘less academic’ students can achieve 
more advanced levels of learning, such as applying and theorising. 

In this study, the seminar was designed in the spirit of constructive alignment (e.g., the students 
worked in groups and specified their own study/discussion topics). The learning diary task was one 
of the ways to promote active learning and reflection among students. Typically, learning diaries are 
seen as texts that include both the central arguments of a course or a seminar and the writer’s own 
interpretation of and reflection on these themes. That is, learning diaries are not supposed to promote 
knowledge telling writing (Bereiter & Scardamalia, 1987), which is understood as writing based on 
memorised facts. Instead, learning diaries promote knowledge transforming writing (Bereiter & 
Scardamalia, 1987), which is based on problem analysis and reflection. 

Research questions 
In Finnish higher education, learning diaries have been used successfully in subjects such as research 
methodology (Kyttälä, 2012). Journaling has also been found to be useful in studying university-level 
mathematics (Meel, 1999). There is, however, a lack of research evaluating the use of learning diaries 
in mathematics teacher education from the point of view of the teacher’s knowledge. Additionally, 
more insight into prospective mathematics teachers’ mathematical and pedagogical thinking is 
needed for further development of instructional practices in mathematics teacher education. Thus, the 
following research questions were formed. 

1. Can learning diaries be used to promote knowledge transforming writing in mathematics 
teacher education? 

2. What kinds of professional knowledge do the prospective mathematics teachers discuss in 
their learning diaries? 

The first research question was posed in order to evaluate whether learning diaries have potential as 
a reflective learning method in mathematics teacher education. The second research question was 
posed in order to characterise the prospective mathematics teachers’ discussions on teacher 
knowledge. The question of whether some/certain aspects of teacher knowledge would be emphasised 
in the diaries was also considered, as prior research has shown that prospective teachers may 
emphasise pedagogical knowledge and diminish the importance of subject matter knowledge (e.g., 
Hoffkamp & Warmuth, 2015). 

Method 
The data was collected during a seminar held in autumn 2014. The students (prospective mathematics 
teachers) attending the seminar formed small groups of 4–5 members. All groups prepared an 
introduction to a topic (such as dot product), so that both mathematical and pedagogical ideas were 
covered. These introductions led to group discussion and, as homework, the students reflected on 
their ideas by writing a learning diary. In their diaries, the students were asked to discuss 1) What was 
discussed and how do the topics of discussion relate to other contexts?; 2) What did I learn and what 
was its meaning for me?; 3) Was something missing or unclear? 

Participants were mainly mathematics students at the end of their studies. Three students were 
studying another subject (such as physics) with minor studies in mathematics. Also, six students were 
second- or third-year students and, thus, not yet at the end of their five-year studies. The participants 



were studying in a subject teacher programme that qualifies them to work as a teacher in the last years 
of comprehensive school (with students aged 13 to 16 years) and upper secondary school (with 
students aged 16 to 19 years). 

Student learning diaries (N=26) were analysed using content analysis (Elo & Kyngäs, 2008). The 
units of observation were first placed in categories from the MKT model using deductive content 
analysis. Subcategories were then formed using inductive content analysis. In addition, the individual 
diary entries were classified either as knowledge telling writing or knowledge transforming writing 
in order to classify the entire diary either as knowledge telling or knowledge transforming.  

The author of the present article created the coding. As it was not possible to use two independent 
coders, during the process, the author reread the diaries and the coding to ensure that his thinking 
remained constant during the coding process. The components of the MKT model may be difficult to 
distinguish from one another and this boundary problem has been highlighted in the research 
literature. This poses a challenge for coding, as two researchers may create different categorisations. 
The most problematic category seems to be HCK. In this study, HCK was understood, as defined by 
Jacobsen et al. (2013), as ‘an orientation to and familiarity with the discipline (or disciplines) that 
contribute to the teaching of the school subject at hand, providing teachers with a sense for how the 
content being taught is situated in and connected to the broader disciplinary territory’.  

The coding of knowledge telling writing and knowledge transforming writing was based on a prior 
study by Kyttälä (2012). When coding each diary entry as either knowledge telling or knowledge 
transforming, the former was used if the entry included only repetition of the information discussed 
in the seminar and the latter code was used if the entry included personal reflection. Knowledge telling 
writing included excerpts such as ‘This week we discussed linear algebra. Firstly, we discussed 
vectors in R2’, whereas knowledge transforming writing included personal reflection such as ‘I soon 
realised that I didn’t remember much about dot product. I remembered that it had something to do 
with lengths and the perpendicularity of vectors.’ 

If at least half of the entries were labelled as knowledge transforming the entire diary was labelled 
accordingly. This methodology was chosen to ease the comparison of the results of this study to prior 
studies in the Finnish higher education context.  

Results  
The results of the study are presented in three parts. First, writing strategies (knowledge telling vs. 
knowledge transforming) are discussed. Then, in the following two subsections, the subject matter 
knowledge and pedagogical content knowledge observed in the diaries are discussed. 

Knowledge telling writing vs. knowledge transforming writing 

23 of the 26 diaries featured knowledge transforming writing. This seems to indicate that learning 
diaries can be used to promote reflective learning in mathematics teacher education as they have in 
other educational contexts, as Kyttälä (2012) has suggested. However, while most of the diaries were 
categorised as knowledge transforming, the content discussed in the diaries varied significantly. In 
some of the diaries, both mathematical and pedagogical topics/issues were discussed 
comprehensively, whereas in others, the mathematical content was discussed only cursorily and the 



pedagogical issues were discussed in depth. The coding of subject matter knowledge and pedagogical 
content knowledge aimed to highlight this variation in greater detail. 

Subject matter knowledge 

The distinguished subcategories of subject matter knowledge are presented in Table 1. The frequency 
of each category is indicated in brackets. In the main categories, percentages are also given. 
Discussing representations of mathematical content was labelled as SCK, as according to Ball et al. 
(2008), knowledge of ’how to choose, make, and use mathematical representations’ belongs to SCK. 
The category ‘nature of mathematics’ included utterances such as ‘In mathematics you don’t prove 
absolute truths. Instead, the proofs are based on chains where assumptions lead to something.’ These 
can be also seen in connection to HCK, but as these comments were general, they were coded as 
CCK. Additionally, some discussion of the curriculum, such as ’Does knowing probability require 
knowing set theory? I suppose so. It would be good if there would be more of that in secondary 
school’, were categorised as SCK instead of KCC. These comments also seemed connected to HCK, 
but were more focused on rethinking school mathematics and were consequently categorised as SCK. 

Common content knowledge 
(66; 25 %) 

Specialised content knowledge 
(158; 59 %) 

Horizon content knowledge 
(46; 17 %) 

 Giving a list of concepts (20) 
 Giving a definition (11) 
 Giving a theorem (9) 
 Explaining a property of a 

mathematical entity (8) 
 Giving a solution strategy (8) 
 Giving alternative definitions 

(7) 
 Discussing the nature of 

mathematical knowledge (6) 
 Giving a mathematical 

example (2) 

 Discussing representations of 
mathematical content given in 
textbooks (72) 

 Discussing alternative 
representations of mathematical 
content (65) 

 Discussing relationship 
between mathematical 
knowledge and curriculum (11) 

 Going through some history of 
mathematics (6) 

 Giving and discussing 
matriculation examination tasks 
(5) 

 Reflecting on a mathematical 
example (2) 

 Modifying an example (1) 

 Discussing the hierarchical 
relationship of 
mathematical concepts 
(28)  

 Giving an application of a 
mathematical entity or 
method (18) 

Table 1: Subcategories of subject matter knowledge distinguished in the diaries 

Common content knowledge was mainly discussed in terms of giving a list of concepts (related to the 
subject), giving a definition of a concept (such as limit) or giving a theorem (such as ‘If function f is 
derivative, then function f is continuous’). This discussion was typically limited to telling the facts 
and no explanations or proofs were given. The specialised content knowledge typically focused on 
discussing the representations of mathematical content. Only one student adapted an example so that 
different versions of a problem were considered. The least discussed aspect of subject matter 
knowledge was horizon content knowledge; only 46 units of observation included discussion of the 



hierarchical relationship of mathematical concepts or an application of a mathematical entity or 
method. Overall, discussion of subject matter knowledge was somewhat focused on SCK. More 
specifically, discussing the different representations of mathematical content was common in many 
diaries. 

Pedagogical content knowledge 

The distinguished subcategories of pedagogical content knowledge are given in Table 2.  

Table 2: Subcategories of pedagogical content knowledge distinguished in the diaries 

In many diaries, the secondary school and university curricula were compared. Students discussed, 
for instance, the content of secondary school calculus courses and university analysis courses. The 
knowledge of content and students sections mainly focused on difficulties or misconceptions that 
school students may have. For example, affect and learning (e.g., emotions) were little discussed and 
the cognitive studies in mathematics education were mainly used as references. The knowledge of 
content and teaching focused on discussing different means of approaching mathematical content in 
teaching and different teaching methods. For example, no imaginary learning situations were 
introduced and only one student pondered the answering of school students’ questions. 

Overall, PCK was discussed more than subject matter knowledge. However, the PCK typically 
discussed in the diaries can be described as content-driven, as it was mainly placed in subcategories 
such as ‘Ways to approach the mathematical content in teaching’ or ‘Difficult content for students’. 

Discussion and conclusion 
It is worth noticing that the results of this study cannot be generalised to whole student populations 
or other contexts. This study contributes only case-specific information, which can, however, be used 
in further development of the specific learning environment. In addition, the reliability of this study 
could be enhanced by using two independent researchers in the data analysis phase. Nevertheless, 
this study found that in this specific context, many prospective mathematics teachers adopted a 
knowledge transforming writing strategy in their learning diaries. The knowledge discussed in the 
diaries was somewhat focused on SCK and PCK. More specifically, the most discussed topics were 
representations of mathematical content, curricula, student knowledge and teaching methods. 

Knowledge of content and 
curriculum (106; 27 %) 

Knowledge of content and 
students (133; 34 %) 

Knowledge of content and 
teaching (148; 38 %) 

 Upper secondary school 
curriculum (57) 

 University curriculum (51) 
 Comprehensive school 

curriculum (17) 
 University of applied 

sciences curriculum (6) 
 Vocational school 

curriculum (2) 

 Difficult content for 
students (45) 

 Student competence (28) 
 Student knowledge (23) 
 Learning process (18) 
 Misconceptions (10) 
 Affect (7) 
 Solving strategies (3) 

 Ways to approach mathematical 
content in teaching (87) 

 Teaching methods (54) 
 Encouraging students (5) 
 Differentiation (2) 
 Answering student questions 

(1) 
 Correcting misconceptions (1) 
 Mathematical language and 

notation (1) 



Some of the learning diaries discussed both subject matter knowledge and pedagogical content 
knowledge. Some of the diaries, however, were more focused on pedagogical content knowledge. 
This seems to indicate that some of the prospective teachers emphasised pedagogical topics, while 
other prospective teachers discussed teacher knowledge more comprehensively. Further research 
would be needed to discuss this variation in detail and, especially, to compare students who are at 
different stages of their studies. In addition, it is notable that horizon content knowledge was rarely 
discussed in the diaries. This was somewhat surprising as the aim of the seminar was to connect the 
content of university-level mathematics and school mathematics. If HCK is understood as Jakobsen 
et al. (2013) have presented it, connecting mathematics as a discipline to school mathematics means 
discussing horizon content knowledge. In addition, some aspects of SMK and PCK (such as 
modifying tasks) also received little attention. This implies that learning diaries may lead to 
reflections that are not fully aligned with the intended learning outcomes. Further research is needed 
to determine whether more structured learning diary tasks would help students to better discuss 
desired sides of mathematical knowledge for teaching. 
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The role of definitions on classification of solids including 
(non)prototype examples: The case of cylinder and prism  

Mine Işıksal-Bostan1 and Seçil Yemen-Karpuzcu2 
1Middle East Technical University1, Turkey; misiksal@metu.edu.tr 

2Middle East Technical University2, Turkey; ysecil@metu.edu.tr 

The purpose of this study is to investigate prospective middle school mathematics teachers’ (PMTs) 
formal definitions regarding cylinder and prism and the role of these definitions on their 
classifications of solids involving (non)prototype examples. Data were collected through 
questionnaire and interview protocol from three PMTs who were 3rd year students in one of the 
teacher education programs in Turkey. Data analysis revealed that PMTs mostly used inappropriate 
terminology in defining cylinder and prism. Despite their inappropriate definitions, one PMT could 
classify cylinders and non-cylinders among the groups of solids correctly. PMTs who could not 
classify cylinders correctly made incorrect inclusions regarding the cylinders and prisms. 

Keywords: Definitions, solids, prospective mathematics teachers, middle school mathematics 
teachers. 

Introduction 
Definitions constitute the indispensable part of mathematical instruction. National Council of 
Teachers of Mathematics [NCTM] (2000) emphasized the importance of students’ understanding of 
the role of mathematical definitions and students’ use of definitions in mathematical practices. 
Researchers argue that definitions should have some critical attributes. According to Van Dormolen 
and Zaslavsky (2003), a good mathematical definition should have following necessary 
characteristics: criterion of hierarchy, criterion of existence, criterion of equivalence, and criterion of 
acclimatization. In addition to the necessary characteristics, criterion of minimality, criterion of 
elegance, and criterion for degenerations are classified as the preferred features for the good 
mathematical definitions (Van Dormolen & Zaslavsky, 2003). Additionally, Leikin and Winicki-
Landman (2000) stated that definitions should have necessary and sufficient conditions for the given 
concept and they should have conditions that are characterized as minimal.  

Beginning at early school years, students are encountered with geometric shapes and solid figures. 
Students’ concept images that flourish during that years may support the concept definitions that will 
be introduced in later years. However, as Vinner (2011) argues, concept definitions and concept 
images are not always parallel and mismatch may arise between them. Keeping this in mind, 
educators should stimulate the development of concept images as early as possible that support the 
concept definitions (Tsamir, Tirosh, Levenson, Barkai, & Tabach, 2015). In other words, appropriate 
guidance should be supplied before those intuitions are rooted and difficult to alter (Tsamir et al., 
2015). Hence, it is a well-known fact that teachers play important roles during the development of 
those concept structures.  Shulman (1986) stated:  

Teachers must not only be capable of defining for students the accepted truths in a domain. They 
must also be able to explain why a particular proposition is deemed warranted, why it is worth 



knowing, and how it relates to other propositions, both within the discipline and without, both in 
theory and in practice. (p. 9) 

To state differently, subject matter knowledge (SMK) was related to the structure of mathematics 
involving definitions, axioms, proofs, theorems and relationships among them (Shulman, 1986). 
Thus, teachers’ knowledge on definitions, classified as one of the components of SMK (Ball, Thames, 
& Phelps, 2008) plays an important role during the development of students’ conceptions of 
definitions. In addition, teachers’ knowledge of mathematical definitions has an influence on didactic 
approaches in mathematics classes (Leikin & Zazkis, 2010; Zazkis & Leikin, 2008). In other words, 
teachers’ understanding of the definition of concepts in addition to their concept images impact the 
teachers’ way of representing the concept to the students, explanations given during the instructions, 
way of orchestrating the classroom discussion and their fluency and flexibility in teaching topics 
(Leikin & Zazkis, 2010). Thus, teachers’ knowledge on definitions and to what extent they use these 
definitions in classifying solid figures deserves further attention for giving evidence for teachers’ 
practices regarding the examples used in mathematics classrooms. 

Moreover, an assertion was made that most of the time students do not know the definitions of 
mathematical terms that they need to use, and thus, they tend to memorize the given definitions 
without understanding (Edwards & Ward, 2008). Indeed, since stating the correct concept definition 
is not an indication for the understanding of the concept, critical understanding of definition is needed 
to apply the definition successfully. With this idea in mind, in this study as a continuation of our early 
work, we investigate PMTs’ knowledge of definitions regarding the cylinder and prism and how their 
definitions influence their choice of classifications of solids involving prototype and non-prototype 
examples. Thus, the aim of this study was to answer the following research question: 

How do PMTs define cylinder and prism, and how do their definitions influence their classifications 
of solids involving (non)prototype examples? 

Framework of the study 
In this research study, we used Leikin and Zazkis’s framework developed for the analysis of teacher-
generated examples of mathematical concepts (Leikin & Zazkis, 2010). According to the framework 
teacher-generated examples of definitions of the concepts were analyzed according to four 
components: 1) Accessibility, 2) Correctness, 3) Richness, and 4) Generality/Concreteness. 
Accessibility refers to the generation of examples with or without a prompt, whether they are 
generated easily or with difficulty. By means of generality, Leikin and Zaskis emphasize the use of 
specific properties pertaining the given concept apart from the general descriptions that belongs to 
the other class of concepts. In addition, correctness refers to the appropriateness of the logical 
statement generated for the mathematical concepts. While analyzing correctness of the examples, 
they make a distinction between appropriate and inappropriate examples. In other words, they classify 
examples of definitions as appropriately rigorous if the answers consist of necessary and sufficient 
conditions for defining the given concept and minimal use of correct mathematical terminology and 
symbols. On the other hand, the answers are classified as appropriate but not rigorous when there are 
some deficiencies in the definitions or imprecise language was used. When the given examples has 
deficiency in either satisfying necessary or sufficient conditions, they are categorized under the 
heading of inappropriate examples. For instance, while defining cylinder as a solid, one of the 



necessary condition for the cylindrical surface is that it is generated by a straight line (generatix) 
which moves so as constantly to pass through a given curve (directix) remaining parallel to its original 
position (Beman & Smith, 1900). In addition, to have sufficient conditions, the curve should be a 
closed shape which designates the bases of the cylinder that are two parallel transverse sections 
(Beman & Smith, 1900). Therefore, cylinder is a portion of an enclosed space between two parallel 
bases created by a cylindrical surface. On the other hand, the definition of cylinder will be 
inappropriate unless the surface is composed of parallel lines. In addition, having a closed surface is 
a general description that belongs to other 3D solids and base should be a circle is not a necessary 
condition for a cylinder.  

In the framework, richness refers to the number of different examples for a concept that are generated 
correctly by the participants. In the present study, we focus on cylinder and prism which are 
geometrical concepts and their examples have figural aspects. Thus, for analyzing richness of the 
examples, we considered Fujita and Jones’s (2007) perspective on prototype examples since 
prototype images of geometrical objects and definitions of these geometrical concepts are related. 
Prototype example(s) of a concept are the examples that come first in persons’ mind, and they also 
exist in the participants’ concept images. To understand a geometrical object, the associated figure of 
this certain object would be active in mind. Thus, when a participant has only prototype examples of 
an object, she can give specific examples of an object with limited images (Fujita & Jones, 2007). On 
the other hand, when one has non-prototype examples of an object, she can generate different 
examples for an object. Therefore, in this research we accepted non-prototype examples as indicator 
of richness for the given definition. Considering the context of Turkish middle school mathematics 
curriculum (MoNE, 2013), hexagonal prism and rectangular prism are considered as prototypes of 
prism and circular cylinder is considered as prototype of cylinder. On the other hand, cylinder with 
non-circular base could be a non-prototype example. However, non-prototype examples are not given 
a place for exemplifying or defining the solids in Turkish curricula.   

Method 
In this study multiple case study approach (Yin, 2003) was used in  which data were collected from 
three volunteer PMTs enrolled in a teacher education program in a public university in Ankara, 
Turkey. The rationales for selecting these PMTs are as follows: They took the methods of teaching 
mathematics-2 course, and they were already completed all the geometry courses offered in the 
program. Thus, they were supposed to give rich data about the definition of geometric shapes.  

The data were collected by using a questionnaire and an interview protocol. Therefore, examples of 
the objects could be analyzed both in oral and written settings. The questionnaire involved items that 
asked participants to define cylinder and prism in their own words and to show the relationship 
between cylinder and prism, if any. After the implementation of questionnaire, semi-structured 
interviews were conducted with the participants using think-aloud method in order to get more 
information regarding the richness, correctness and generality of the participants’ definitions. The 
semi-structured interview protocol involves questions on definitions of solids and classification of 
groups of solids as given in Table 1. More specifically, during the interviews participants were given 
back their questionnaires and they were asked to elaborate on their answers (E.g. Here is your 
definition for the cylinder. Do you want to change any wordings of your definition? Or will you keep 
the definition same?). Then, they were asked to name the classification of objects given in Table 1 



and to express their reasoning behind this classification. In the Table 1, solids taken from Van de 
Walle, Karen, and Bay-Williams (2013) are numbered in each group. Group A and Group B involve 
cylinders with both prototype and non-prototype examples. Further, Group C and Group D involve 
prisms with prototype and non-prototype examples. Lastly, Group E involves general 3-D objects 
which are neither cylinders nor prisms.  

Cylinders Prisms Not cylinders  

Group A Group C Group E 

 
Group B Group D 

Table 1: Groups of solids used in the interview protocol (Van de Walle et al., 2013, p. 413) 

The data obtained from questionnaire and interviews were analyzed using Leikin and Zazkis’s (2010) 
framework and Fujita and Jones’s (2007) definition of non-prototype examples. More specifically, to 
analyze generated definitions regarding the cylinder and prism, correctness, richness and generality 
dimensions of the Leikin and Zazkis’s framework were used. While coding the data in terms of 
correctness criterion, we focus on whether participants’ definitions of cylinder and prism satisfy the 
necessary and sufficient conditions and involve proper terminology. In the analysis of the generality 
of the definitions, if a participant’s exemplification of definition corresponded only to cylinder/prism 
(e.g. circular cylinder, rectangular prism), it was named as specific. If the definition corresponded to 
any 3-D solid without critical attributes of cylinder/prism, it was named as general. In addition, in 
order to evaluate the richness of examples, Fujita and Jones’s (2007) definition of non-prototype 
examples was used. In other words, richness of the examples are determined according to the non-
prototype examples expressed/drawn by participants. Researchers analyzed the data until reaching a 
consensus on the categories of the definitions. Considering that definitions are conventional and 
contextual, the analysis of the present study was made based on Beman and Smith’s (1900) definitions 
of cylinder and prism. 

Findings 
Analysis of PMTs’ definitions and their classifications for the cylinder and prism are presented in 
Table 2. Participants’ definitions of cylinder and prism were analyzed according to the correctness, 
richness and generality criteria. The analysis of PMTs’ knowledge of definitions revealed that their 
definitions were categorized as inappropriate, which satisfy necessary but not sufficient conditions or 
neither necessary nor sufficient conditions. The dimension of richness included both prototype and 
non-prototype examples. Analysis regarding generality showed that participants’ definitions included 
specific, partially specific, and general statements. Lastly, the classification of solids are given in 
Table 2.  The symbols ‘+’ and ‘-’ showed that a PMT identified the classification of a group as 
cylinders, prisms or not cylinders correctly and incorrectly, respectively. 
  



 Correctness Richness Generality Classification 

 Cyl Pr Cyl Pr Cyl Pr Cyl  Pr None  

P1 Inapp. Not N 
not S cond. 

Inapp. Not N  
not S cond. 

Non-pro Proto. General Specific + + Non-
cyl 

P2 Inapp. With N 
but not S cond. 

Inapp. With N 
but not S cond. 

Non-pro. Proto. General Partially 
Specific 

- + Non-
pr 

P3 Inapp. Not N 
not S cond. 

Inapp. Not N 
not S cond. 

Non-pro. Proto. General Partially 
Specific 

- + Non-
pr 

Note: Cyl: Cylinder, Pr: Prism. P1: Participant 1, P2: Participant 2, P3: Participant 3, N: Necessary, S: Sufficient. Symbol 
+: participant correctly identified solids. Symbol-: participant do not correctly identified solids 

Table 2: Correctness, richness, and generality in participants’ definitions and their classification 

Data analysis showed that P1 defined cylinder as “a 3D shape formed by union of two parallel 
surfaces with another surface that cover these two surfaces’ surroundings” and then she expressed 
that “the surfaces do not have to be a polygon and one under the other”. In her statements, the 
definition would be correct if “parallel surfaces” are taken to mean “parallel transverse sections 
enclosed by closed curves” and “another surface” is taken to mean “surface composed of parallel line 
segments”. In addition, her use of “surfaces” terminology is not appropriate and lead 
misinterpretation. This is why her definition was categorized under the example of inappropriate 
definition with neither necessary nor sufficient conditions. In addition, P1’s definition not only 
include improper terminology but also satisfies general conditions that belong to general 3D objects 
whose surface is not restricted with a cylindrical surface (e.g. vase). However, analysis of data showed 
that her drawing of cylinder included a non-prototype example, a cylinder with non-circular closed 
curve bases. While classifying the group of objects in Table 1, P1 correctly identified the examples 
of cylinders (group A and group B) which contain both prototype and non-prototype examples. While 
identifying them, she referred to the attributes that she mentioned while defining cylinder. In addition, 
she correctly identified Group E as examples of non-cylinders referencing inappropriate examples. 
For instance, by showing the object #6 she stated that “there is a space here [she showed the surface 
of the object #6] thus this group cannot be categorized as cylinder”. However, she did not address 
this critical attribute in her definition of cylinder.  

As for the prism, P1 defined it as “a 3D figure formed by combination of two polygon surfaces in 
two different planes with a surface that covers surroundings of that polygons”. In her definition she 
did not mention critical attributes like bases and faces. This definition was also considered under the 
category of neither necessary not sufficient conditions. While classifying, she correctly identified the 
groups of prisms through referring visual characteristics and making inclusion as “they are prisms, a 
special case of cylinders since their bases are polygons”. 

P2 defined cylinder as “it is a 3D figure whose top and bottom bases are parallel and congruent closed 
curves” and then she expressed that “cylinder is formed by combining two identical, parallel and 
closed curves from corresponding points”. In her statements, although she mentioned about some 
necessary conditions for the cylinder, they were not sufficient. For instance, she did not mention any 
information about cylindrical surface. Thus, those characteristics which are general and not specific 
to the cylinder can be valid for other 3D objects. In addition, the curve that bounds the base should 



be planar. Therefore, definition was categorized under the examples of inappropriate definition with 
necessary but not sufficient conditions. Similar to P1, her drawing of cylinder consisted of non-
prototype example which is a cylinder with non-circular bases. However, while classifying, she 
incorrectly identified the groups of cylinders. She identified objects (2, 3, 4, and 5) in group A as 
prisms based on their attributes. She also incorrectly identified #1 as pyramid. She stated that “Bases 
are congruent polygons and parallel. If I take the bases of #5 as polygon, I can say that it is also a 
prism”. This incorrect identification was also related to her conception of “cylinder is [a special case 
of] prism”. Besides, she identified group E as non-prisms, based on the assertion that they lack the 
critical attribute of prism as “their bases are not congruent”, but did not refer to the cylinders.  

P2 defined prism as “a 3D object that has top and bottom bases which are congruent and parallel and 
whose surface area is polygon”. In her definition, while she mentioned some necessary characteristics 
of bases, she missed that the bases are polygons and overgeneralized faces to polygons rather than 
parallelograms. Therefore, the definition was categorized under the example of inappropriate 
definition with necessary but not sufficient conditions. While classifying, she referred to the critical 
attribute “prisms have top and bottom bases that are congruent and parallel polygons” and correctly 
identified prisms. Although she confused for a moment about whether object #4 in group D is a prism 
or not, she identified it as a prism by referring the concavity as “I can consider both concave and 
convex polygons. Can I think them as polygonal region? Ok, then, I considered polygon bases as both 
convex and concave and decide that they are prisms”. 

P3 defined cylinder as “It has non-polygon bases. It consists of two parallel bases which can be regular 
or not and combined to each other with infinite parallel lines”. In her statements, she did not mention 
any information about the congruency of bases. Thus, those properties could be attributed to general 
properties of 3D solids that are not specific to cylinder.  She unconventionally used the term “lines” 
rather than “line segments”. In addition, she stated that the bases should be non-polygon. Therefore, 
her statements were examples of inappropriate definition with neither necessary nor sufficient 
conditions. In addition, she drew a non-prototype example of a cylinder with non-circular bases. 
While classifying the groups, she incorrectly identified solids in Group A and Group B as prisms. In 
this process, she considered cylinders as a special case of prisms and identified the objects according 
to their attributes. In other words, for Group A objects, she stated that “these bases are parallel and 
congruent. There are parallel lines between them. Thus, these shapes can be classified as prism” and 
for Group B objects she stated that “these (#1 and #3) are regular cylinders. Can we say whether #2 
is non-regular cylinder? But we could not name them as cylinder unless bases are circles. But, we can 
admitted them as prisms”. In addition, she classified objects in group B as both prism and cylinder 
since cylinder was included in prisms in her images. Moreover, she identified objects in group E as 
“non-classified solids and non-prisms”. While explaining her answer, she referred to the critical 
attribute of prism that “bases should be congruent” and classified them as non-prisms.  

P3 defined prism as “a shape formed by infinite parallel lines that pass through two parallel and 
congruent polygonal bases”. Similar with P3’s cylinder definition “lines” is not appropriate 
terminology and the definition is insufficient since critical characteristics of bases and faces are not 
stressed. Therefore, this example was considered under the category of inappropriate definition with 
neither necessary nor sufficient conditions. In addition, as an example of prism she drew a prototype 



example that is a right hexagonal prism. While classifying, she identified prisms correctly by just 
referring to visual form as “they are all prisms” and not mentioning any critical attributes.  

Discussion and conclusion 
In this study, we first examined PMTs’ knowledge of definitions of cylinder and prism through 
questionnaire and interview data. Then, we analyzed their classification of cylinders and prisms while 
identifying the 3D objects and how their identification of classes of objects was influenced by their 
informal definitions. The definition analysis showed that PMTs have difficulty in defining cylinder 
(Ertekin, Yazıcı, & Delice, 2014; Tsamir et al., 2015) and prism (Gökbulut & Ubuz, 2013) where 
they mostly used inappropriate terminology that refers to more general attributes of solids rather than 
attributes specific to cylinder and prism. More specifically, we deduced that PMTs have inadequacy 
in defining the (sur)faces of the cylinder and prism. This might be the result of their construction of 
concept definition that depends on the bases rather than cylindrical or prismatic surfaces.  

The other finding was that even a PMT did not make a correct definition of cylinder, she identified 
group of cylinders and non-cylinders correctly. In other words, while PMT did not express some 
critical attributes that are specific for cylinders in her definition, she correctly identified the group of 
non-cylinders based on her correct inclusion of cylinder and prism. However, two participants 
identified cylinder as inclusion of prisms and thus classified non-cylinders (group E) as non-prisms. 
In other words, participants’ misconception of “cylinder is a special case of prism” arouse from the 
prototype image of circular cylinder let them classify the solids incorrectly.  Thus, PMTs’ prototype 
images of cylinders might be an obstacle that influence their inclusion relations of cylinder and prism. 
On the other hand,  PMTs could identified the group of  prisms correctly by referring to the critical 
attribute of polygon bases in their definitions and making visual judgements. Thus, PMTs easily 
identified prisms compare to the cylinder. However, we could deduce that PMTs’ preferences toward 
pedagogical considerations over a rigor definition inhibit their formal definitions and correct 
classifications of solid figures.  

Based on the findings, some implications could be suggested to the teacher educators. The content of 
courses like methods of mathematics teaching and school practice offered in teacher education 
programs should be enriched with activities that demands identifying, explaining, defining, and 
classifying mathematical concepts from both pedagogical and mathematical perspective. By this way, 
PMTs could have the opportunity to analyze the critical attributes and non-prototype examples of the 
given concepts and establish the relationships among the concepts through examining general and 
specific characteristics. In addition, as mentioned above definitions are conventional. Thus, 
depending on the theoretical perspective 3D solids could be defined differently in different nations. 
Thus, further research studies could be conducted to compare and contrast definitions and their 
instructional practices in different nations.  
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In this study, we examined whether the Malawian Initial Primary Teacher Education Programme 
develops teachers’ mathematical knowledge for teaching [MKT]. We administered measures adapted 
from the Learning Mathematics for Teaching project to more than 1,700 pre-service teachers from 
eight colleges to measure their knowledge for teaching. Paired samples t-test using 725 pre-service 
teachers whose pre-test (M = .049, SD = .960) and post-test (M = .084, SD = 1.043) scores we have 
paired, showed no significant gains in knowledge overall (t(724) = -.808, p=.419), and in seven 
colleges individually. However, mathematical knowledge for teaching for pre-service teachers from 
college C2 had increased significantly (t(165) = -2.062, p = .041). While the results showed a 
significant correlation between pre-test and post-test (r = 0.544, p < 0.001), we fail to conclude based 
on the results that the initial teacher education improves mathematical knowledge for teaching. 

Keywords: Primary teacher education, mathematical knowledge for teaching, number concepts. 

Introduction 
Primary school education sector in Malawi experienced a critical shortage of teachers due to increased 
enrolments following the introduction of free primary education in 1994 (Ministry of Education 
Science and Technology [MoEST], 2011). The increased enrolments in primary schools resulted into 
an exceptional demand for teachers. The government of Malawi responded by recruiting unqualified 
teachers and recalling retired qualified teachers as a temporary measure. In order to expedite training 
of the unqualified teachers, the MoEST developed a new teacher education programme called the 
Malawi Integrated In-service Teacher Education Programme [MIITEP] which begun in 1996/7 and 
remained until 2005/6 when it got replaced by the current Initial Primary Teacher Education [IPTE] 
programme. Unlike MIITEP, IPTE is a two year pre-service certificate teacher education programme 
designed to respond to reforms in primary school curriculum (MIE, 2008). During the first year, pre-
service teachers are full time learning in teacher colleges with minimal supervised peer and micro-
teaching. In the second year, the pre-service teachers are attached to primary schools for teaching 
practice with assistance of experienced mentors. To enrol into the programme, prospective students 
must possess a Malawi School Certificate of Education (MSCE) with a credit pass in English and a 
pass in Mathematics and one other science subject. 

Despite the reforms that have occurred in teacher education since 1997 and curriculum shift to align 
it with the primary curriculum, pupils’ performance and achievement in primary mathematics remain 
poor. For instance, Malawian pupils have fared poorly on surveys by the Southern and Eastern 
African Consortium for Monitoring Educational Quality (SACMEQ). In SACMEQ II, Malawi was 
ranked 13th in mathematics out of 14 Southern African countries (SACMEQ, 2010). The trend in 
pupils’ achievements did not change when SACMEQ III was implemented, with Malawian pupils 



being ranked 14th out of 15 participating African countries (SACMEQ, 2010). Efforts to explain the 
underperformance of Malawian pupils in regional surveys have ruled out use of English and increased 
enrolments as factors responsible for the trend because these factors were not unique to Malawi 
(World Bank, 2010). Following analysis of the SACMEQ results, the MoEST observed that most 
teachers did not have sufficient training and/or experience (MoEST, 2011). The analysis therefore 
recommended strengthening of pre-service and in-service teacher education. 

In order to strengthen the current teacher education programme, we need to understand how it 
operates and identify weaknesses. Therefore, the current study as part of a larger study contributes to 
efforts to improve the IPTE programme by assessing the extent to which it develops pre-service 
teachers’ mathematical knowledge for teaching. We therefore attempted to address the following null 
hypothesis: There is no significant change in pre-service teachers’ mathematical knowledge for 
teaching after undergoing initial primary teacher education in Malawi. 

Related literature 
Issues surrounding teacher preparation are of growing concern in Malawi. In its evaluation report of 
the IPTE programme, MIE (2008) highlights the importance of basic mathematics and numeracy for 
teaching of primary mathematics. Through this evaluation and further analyses, MIE identified the 
following issues relating to IPTE and mathematics teacher education: (1) lack of motivation among 
trainees to learn mathematics and to become mathematics teachers, (2) mistakes and wrong 
information in the teaching and learning materials, (3) mismatch between syllabus and content in 
handbooks, (4) conflict between curriculum and assessment reforms, and foundation studies, and (5) 
missing illustrations for number operations in student handbooks. The MIE report concludes that 
these “…will eventually make the student teachers fail to understand what they are supposed to do 
and even fail to do the activities they are being asked to perform” (p. 54). We consequently observe 
that, if the goals of the reforms in teacher education are to be met, we must approach the assessment 
of the current (mathematics) teacher education in a multifaceted and holistic manner. This study is 
therefore part of that holistic approach. 

Although several factors affect a teacher’s effectiveness, Hill, Rowan and Ball (2005) argue that 
teacher’s knowledge is one of the biggest influences on teaching and students’ attainment. As a matter 
of fact, they have put forward evidence that show that teachers with sufficient knowledge produce 
significantly positive changes in their students’ learning and attainment after controlling other 
variables that are believed to influence student achievement. Furthermore, Ball, Thames and Phelps 
(2008) state that there is nothing more foundational to teacher competency than knowledge of their 
subject matter. Their assertion concurs with Ma (1999) who contends that a deep understanding of 
fundamental mathematics affords a crucial base for effective and successful mathematics teaching. 
We agree with Ball et al. (2008) that the quality of mathematics teaching depends, largely, on teachers' 
mathematical knowledge. Research in teacher education has considerably changed the way in which 
mathematical knowledge for teaching development is understood. Traditionally, it can be thought that 
knowledge for teaching develops during and after formal teacher education. However, Grossman 
(1990) and Hill, Rowan and Ball (2005) suggest that knowledge for teaching develops from pre-
teacher education experiences, teacher education experiences and teaching experiences. Hence our 
interest in pre-service teachers’ mathematical knowledge for teaching before and after their initial 
teacher education.  



Vigorous enthusiasm in knowledge for teaching research followed Shulman’s (1986) work to 
identify, classify and define elements of knowledge for teaching. In mathematics education, the 
Learning Mathematics for Teaching [LMT] Project at the University of Michigan has made 
substantial contribution towards identifying and defining the type of knowledge necessary for 
teaching mathematics. This knowledge is today referred to as MKT (e.g. Ball, 2003; Ball et al., 2005; 
Ball et al., 2008; Hill et al., 2005). The LMT Project has shown that general mathematics ability does 
not entirely adjudge the knowledge and skills for effective teaching of mathematics. Ball and 
colleagues have also defined a special type of knowledge needed by mathematics teachers that is 
specific, distinct from pedagogy and knowledge of students, and not needed in other professional 
settings (Ball, et al., 2008; Hill et al., 2005). This is because the tasks of teaching mathematics require 
knowledge beyond ability to confidently perform algorithms (Ball, 2003; Ball et al., 2005). They 
argue that teaching mathematics demands of teachers to be able to, apart from thinking pedagogically, 
fragment mathematical reasoning which is not needed by other professions that use mathematics (Ball 
et al., 2008). This mathematical knowledge and skill unique to teaching is, in their view, specialized 
content knowledge (SCK). Conversely, common content knowledge (CCK) is the knowledge which 
enables an individual to succeed mathematically in terms of “being able to do particular calculations, 
knowing the definition of a concept, or making a simple representation” (Thames & Ball, 2010, p. 
223) and is the knowledge also needed in other professions. 

It is our considered view therefore that for the IPTE programme to prepare pre-service teachers for 
quality mathematic teaching, the programme must offer the teachers opportunities to develop their 
mathematical knowledge for teaching, among other things, because “improving the mathematics 
learning of every child depends on making central the learning opportunities of our teachers,” (Ball, 
2003, p. 9). The programme must embrace deliberate implementation approaches that develop SCK, 
in addition to CCK, of pre-service teachers within the teacher education cycle. 

Design and methodology 
The study examined whether pre-service teachers’ knowledge for teaching number concepts and 
operations improved after completing two terms (about 6 months) of their initial teacher education in 
a pre-test–post-test design. Mathematical knowledge for teaching was examined using measures that 
were adapted from the LMT measures. The measures were piloted using a different group of pre-
service teachers a year prior to the current study (Kasoka, Kazima, & Jakobsen, 2016). 

Sample 

Pre-service primary teachers were sampled from all the eight public teacher education colleges in 
Malawi. Only one of the colleges is a single-sex institution. The recruitment and posting of the student 
teachers to the colleges is centrally done by the MoEST. For the purpose of this study, we identify 
the colleges as C1 to C8. The pre-service teachers enrolled into the IPTE programme in September 
2015 and had covered number concepts and operations in term one that runs from September to 
December of an academic year. The pre-service teachers had learnt how to teach number concepts 
and operations by the end of term one. Table 1 shows the composition of the sample. 

  



Age/Gender Teacher college Total 

 C1 C2 C3 C4 C5 C6 C7 C8  

<21 years 49 65 36 26 28 42 18 20 284 

21 – 25 75 81 53 16 34 52 20 16 347 

26 – 30 13 12 15 3 6 11 2 3 65 

>30 years 9 8 0 0 3 3 4 2 29 

Female 84 94 22 45 25 57 17 19 363 

Male 62 72 82 0 46 51 27 22 362 

Table 1: Pre-service teachers numbers by college 

The instrument 

For this study, we used adapted MKT measures for number concepts and operations from the LMT 
measures (see Kasoka et al., 2016). We used the previously validated measures to design an 
instrument comprising of two forms, namely Form A and Form B. The forms that we designed were 
intended to specifically measure the pre-service teachers’ CCK and SCK of number concepts and 
operations. The final version of the instrument we administered had 67 items distributed between 
Form A and Form B. Form A had 38 items while Form B had 35 items. The two forms had six 
anchoring items. 

Data collection and scoring 

The first set of data was collected from the pre-service teachers in the third week (September 28 – 
October 2, 2015) of term one. The forms were re-administered during the second week (May 16 – 20, 
2016) of the third term. Although number concepts and operations are covered in the first two terms, 
we deliberately collected post-test data at the beginning of term three so as to avoid the pre-test 
directly affected the post-test. We also noted that there are instances where first term material spills 
to term two due to some unforeseen circumstances in the colleges. To minimize the test-retest effect 
further, we swap the forms among the colleges such that the pre-service teachers that took Form A 
on pre-test, took Form B on post-test and vice versa. 

The administration of the forms took place on different days of the same weeks as it was not possible 
for us to cover all the eight colleges on a single day. Each of the two forms was administered in four 
colleges. Permission to administer the forms was sort from college management prior to travelling to 
each college. The pre-service teachers completed the forms during class times without any personal 
incentives. However, they were briefed about the study and its objectives hence they participated 
willingly. The participants were allowed to work on the forms for a maximum period of 90 minutes. 
We had more than 1,700 preservice teachers at each administration. However due to other logistical 
hiccups, we have only been able to pair pre and post-test scores for 725 pre-service teachers. Hence 
the sample size, n = 725. It must be noted that some participants who took the pre-test dropped out of 
college before the post-test and some participants who took the post-test reported to college late. 
These missed the pre-test. Table 1 shows the number of pre-service teachers whose scores we have 
paired so far.  



The two tests were scored simultaneously using an item response theory (IRT) software, BILOG-
MG. IRT was chosen because of its robustness in analysis of item level data to measure inter-
individual variation. For Hambleton and Swaminathan (1985), rich item level information extracted 
through IRT offers many advantages over classical test theory (CTT). Each of the pre-service teachers 
got a pair of IRT scores placing them along a standardized ability scale with mean of 0 and standard 
deviation of 1. The IRT scores were then entered into IBM-SPSS for further analysis. 

Statistical analysis 

Pre-test scores were used to calculate Cronbach’s alphas to test internal reliability of the test. Form 
A appeared to have a good internal consistence, 𝛼 =  0.733 (Pallant, 2007). All the 38 items seemed 
worthy retaining since the greatest increase in alpha was only .002 after deleting either item FA8 or 
FA13. Form B had a lower reliability, 𝛼 = 0.656 and none of the item deletion increased the alpha 
value significant. To examine the change in mathematical knowledge for teaching between pre-test 
and post-test, a dependent samples t-test was used to compare means of the tests for all the colleges, 
and within each college. We also compared knowledge growth among the pre-service teacher in the 
eight colleges using one way analysis of variance (ANOVA). To achieve this, a new score we called 
knowledge growth was obtained for each participating teacher by calculating the differences between 
post-test and pre-test scores. ANOVA of the new scores was then carried out. Levene’s test confirmed 
the assumption of homogenous variances, F(7, 717) = 2.273, p = .049. 

 

 Teacher college 

 C1 C2 C3 C4 C5 C6 C7 C8 

T -.085 -2.062 .951 1.586 -.453 -.873 -1.705 1.590 

p-value .932 .041 .343 .120 .652 .385 .950 .120 

Df 145 165 219 44 70 107 43 40 

Table 2: Summary of t-test results 

Results and discussion 
A dependent samples t-test was carried out to test the hypothesis that the pre-IPTE mean (M = .048, 
SD = .833) and post-IPTE mean (M = .960, SD = 1.044) of mathematical knowledge for teaching are 
the same.  Before conducting the test, the assumption of normality for the distribution was ascertain 
using Q-Q plots. We also observed that there was a significant correlation between pre and post-test 
scores (r = .544, p < .001). This suggests that a pre-service teacher with a high mathematical 
knowledge for teaching at pre-IPTE was more likely to have a high mathematical knowledge for 
teaching at post-IPTE. The two assumptions support our use of dependent samples t-test. Dependent 
samples t-test returned t(724) = – .808, p = .419 showing that the test was not significant. We therefore 
failed to reject the null hypothesis and concluded that the teachers’ knowledge means before and after 
teacher education were not significantly different. We also carried dependent samples t-tests to test 
the null hypothesis using knowledge scores for each college. The results are summarized in Table 2. 



Teachers’ understanding of number concepts and operations is critical to quality teaching of primary 
mathematics (Hill et al., 2005; Ma, 1999). The poor achievement in primary mathematics and 
misconceptions are attributed to misunderstanding surrounding number concepts and operations, 
including counting, ordering, order of operations, associativity, commutativity, and fractions (e.g. 
Brombacher, 2011). It is critical that pre-service teachers understand and competently use basic 
number concepts and operations properties for them to effectively teach mathematics (MIE, 2008). 
The items used in this study were purposively selected to address specific aspects of number concepts 
and operations that can be considered prerequisite for the learning of school mathematics beyond 
literacy level. The items examined pre-service teachers’ knowledge of whole number operations, 
subtraction of integers, representation and operations of fractions, decimal representations, prime 
numbers, and the order of operations. The results of data analysis show that pre-service teachers’ 
knowledge for teaching these essential aspects of mathematics did not improve as a consequence of 
the participants undergoing teacher education. Similar results are observed from analysis of data from 
seven individual colleges. These results are surprising and not encouraging since the IPTE 
programme was developed on the premise of setting the foundations for formal schooling. However, 
at college level, we observe that mathematical knowledge for teaching number concepts and 
operations significantly improved among pre-service teachers from college C2. 

We noted that the IPTE programme has some effect on pre-service teachers’ mathematical knowledge 
for teaching. However, the effect varied among the colleges. ANOVA test was conducted to 
understand how the IPTE programme affected mathematical knowledge for teaching growth of pre-
service teachers across the colleges. The ANOVA analysis yielded insignificant results (F(7) = 1.808, 
p = .085). This result shows that the means of knowledge growth were not statistically different 
among the eight colleges. 

Implications 
The IPTE programme should include aspects related to mathematical knowledge for teaching. These 
may include use of non-traditional lesson design, improved quality of activities, and classroom 
engagements of pre-service teachers during their college based education. This study suggests that 
mathematics teacher educators in teacher education colleges in Malawi ought to understand what 
mathematical knowledge for teaching is, why it is important, and how they can enhance its 
development among pre-service teachers. These results encourage teacher educators to network 
among themselves to learn from each other. The study found that one college had improved MKT. 
The other colleges can therefore learn from this college. 

The significant growth of MKT for college C2 supports the notion that MKT can be developed and 
enhanced during pre-service teacher education. Mathematics educators in education colleges are 
encouraged to blend content, pedagogy and practice to develop pre-service teachers CCK and SCK 
simultaneously. However, the determination of what exactly went on at college C2 to improve MKT 
is beyond the scope of the current study but a possible direction for future research. 

The result also point to pre-service teachers’ very poor understanding of basic mathematics and hence 
their mathematics background. This may have explained the low levels of mathematical knowledge 
students had on pre-test and the inability for the knowledge to grow in six months. IPTE’s minimum 



entry requirements for mathematics teachers may need to be revised. Currently, all pre-services 
primary teachers study mathematics in college and are expected to teach mathematics on completion. 

More research is required to identify, understand, and replicate variables affecting growth of 
mathematical knowledge for teaching in the Malawi context. Although this study is unique in that it 
implemented MKT measures on multiple colleges and compared knowledge growth, it was limited 
to MKT growth. There is need to clearly understand how this knowledge is developed and can be 
enhanced in Malawi. As we continue to make further attempts of pairing pre-test and post-test scores 
so as to increase our sample and understand how the current results would be affected, the study has 
been able show that growth in MKT is possible within the settings of the IPTE. 

Conclusion 
As more and more research reports highlight poor achievement in primary mathematics in Malawi 
(Brombacher, 2011; SACMEQ, 2010; World Bank, 2010), it is necessary to assess how teachers are 
prepared under the IPTE programme to teach mathematics. Research suggests that for student 
teachers to succeed in their profession, they must have sufficient mathematical knowledge for 
teaching mathematics. Research has also illustrated that student learning and achievement can be 
affected by teachers’ knowledge for teaching and that this knowledge can be assessed (Hill et al., 
2005). According to the framework suggested by the LMT Project, mathematical knowledge for 
teaching consists of mathematical content knowledge specific to the needs of task of teaching (SCK) 
over and above what is considered common for other professionals (CCK) (Ball et al., 2008; Thames 
& Ball, 2010). Therefore, our teacher education programme can meaningfully prepare teachers by 
ensuring that the pre-service teachers are provided with opportunities to develop both CCK and SCK. 
We can therefore argue that by assessing student teachers’ knowledge for teaching mathematics, we 
can identify possible gaps that need to be addressed as a contribution towards the provision of quality 
mathematics teacher education in Malawi. 

The current study found that pre-service primary school teachers’ MKT did not improve after 
undergoing IPTE programme. We expected that students’ MKT to positively change post-IPTE. 
However, mathematical knowledge for teaching for students from one college, C2, improved 
significantly relatively to its pre-test average but not to other colleges. 

While the study findings are discouraging, they suggest the need for a review of the IPTE curriculum 
and its implementation so that it improves pre-service teachers’ Mathematical knowledge for teaching 
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This study investigated a preservice secondary school teacher’s pedagogical content knowledge 
(PCK) for teaching algebra. Data were generated using video-recorded interviews and analysed 
using thematic analysis. Findings indicate that content knowledge was influential in the preservice 
teacher’s PCK. Secondly, the preservice teacher, who was one of the best students in his class, 
displayed some knowledge of analysing students’ errors and anticipating their possible 
misconceptions. He appeared to be familiar with some methods of handling students’ errors and 
misconceptions. However, it appears that he was not prepared to apply such methods in his 
teaching of algebra. 

Keywords: Pedagogical content knowledge, preservice teacher, secondary school, algebra. 

Introduction 
A body of research indicates that teacher knowledge influences the quality of their teaching and 
student learning (Hoover, Mosvold, Ball, & Lai, 2016). Although there appears to be general 
consensus that mathematics teachers need to know the content in ways that surpass the knowledge 
of educated people outside the teaching profession (Ball, Thames & Phelps, 2008), more research is 
needed in order to investigate the types of knowledge needed for teaching particular mathematical 
topics at particular levels (Hoover et al., 2016). From her review of literature on teaching and 
learning of algebra, Kieran (2007) suggests that researchers have barely begun to investigate the 
knowledge needed for teaching algebra. Some studies have contributed to this area of research. For 
instance, Bair and Rich (2011) investigated the development of specialised content knowledge for 
teaching algebra among primary teachers. In the present study, we contribute to the field by 
investigating pedagogical content knowledge (PCK) for teaching algebra in secondary school. 

Our study was carried out in Malawi – a country in southern Africa that experiences severe 
challenges in the education system. Secondary school students’ performance in national 
examinations continues to be poor with only around 50 percent of students passing end-of-cycle 
examinations (Ministry of Education Science and technology, 2008), and students’ performance in 
algebra is poor (Malawi National Examinations Board, 2008-2013). While explanations have been 
proposed concerning system failure, (Ministry of Education Science and Technology, 2008), we 
suggest that further investigations of teacher knowledge as a potentially relevant factor of influence 
is necessary. As such, the aim of this study was to investigate a Malawian preservice secondary 
school teacher’s PCK for teaching algebra. Possible implications are discussed. 

Theoretical framework 
Two constructs guide the theoretical framework for this study: mathematical knowledge for 
teaching (Ball et al., 2008) and algebraic thinking (Kriegler, 2007). Ball et al. (2008) distinguish 
between three sub–categories of subject-matter knowledge and thus extend Shulman’s (1986) 
original category. Common content knowledge refers to a kind of mathematical knowledge and skill 



that is used in settings other than teaching (Ball et al., 2008). Specialised content knowledge, on the 
other hand, refers to mathematical knowledge and skill that is unique to teaching. In addition, they 
present horizon content knowledge as a third category of subject-matter knowledge. For sake of 
simplicity, we focus broadly on content knowledge in this study. Ball et al. (2008) also distinguish 
between three sub-categories of PCK. Knowledge of content and students (KCS) is knowledge that 
combines knowing about students and knowing about mathematics. Knowledge of content and 
teaching (KCT) combines knowledge about teaching and knowledge about mathematics. Finally, 
Ball et al. (2008) present knowledge of content and curriculum as a third sub-category of PCK. In 
the present study, we focus on content knowledge and two sub-categories of PCK: KCS and KCT.  

The second construct of the theoretical framework draws upon Kriegler’s (2007) work on 
mathematical thinking tools of the algebraic thinking framework. Kriegler asserts that mathematical 
thinking tools are analytical habits of mind. They are organised around three topics: problem 
solving skills, representation skills, and quantitative reasoning skills. Teachers should be able to 
solve algebra problems using multiple approaches and problem solving strategies. They should be 
able to translate among representations and solve problems inductively and deductively.  

Method 
The study reported here is part of a larger qualitative study that investigates four preservice 
secondary school teachers’ mathematical knowledge for teaching (see Mamba, 2016a; Mamba, 
2016b). In previous publications, the first author reported on results from a task based interview that 
she conducted with one preservice secondary school mathematics teacher and video lesson 
observation for one lesson. In the current paper, we explore PCK for teaching algebra, considering 
the case of Dinga (pseudonym). Dinga was a diploma in education student in a three-year 
programme at a college of education in Malawi. When data for this study were generated, he was in 
the final year of study. Being a high-achieving student in mathematics in his class, he was 
considered an “information-rich” case for in-depth study (Yin, 2014). Video-recorded semi-
structured interview was used to generate the data, allowing for multiple, in-depth rounds of 
analysis of the data (Girden & Kabacoff, 2011). Interview tasks reported here were adapted from a 
Malawi secondary school mathematics textbook (Gunsaru & Macrae, 2001) and were piloted before 
the main study.  

The first author conducted the interview and transcribed the video recordings. These transcripts 
were analysed using a combination of inductive and deductive thematic analysis (Yin, 2014). 
Analysis of the interview transcripts involved identification of the PCK that Dinga displayed as he 
answered the interview questions. The themes that guided analysis were developed a priori from 
the theoretical framework. Themes for content knowledge were problem solving skills, 
representation skills, quantitative reasoning skills and justifying. Themes for KCS included 
predicting students’ errors and misconceptions, understanding reasons for errors and 
misconceptions, and asking questions to reveal or understand students’ reasoning and 
misconceptions. KCT was coded into methods of handling students’ misconceptions and knowledge 
of instructional tasks to be used to enhance conceptual understanding and choosing instructional 
strategies. Some themes that were not in the theoretical framework were developed a posteriori 
from the data. The themes were further grouped into three categories: CK, KCS and KCT. To 
achieve credibility of the results, another researcher analysed the data. In all cases we got at least 



90% agreement, with no discussion between the researchers. Furthermore, the findings were read 
and critiqued by other researchers. 

Results and discussion 
In the following, we present illustrative examples of results from the analysis of data from the 
video-recorded interview.  

Content knowledge 

During the interview, Dinga was asked to solve the following equation: x2 = 2x + 8. He solved the 
equation using two approaches: factorisation method and the quadratic formula. When asked about 
other methods apart from the two he used, Dinga explained that he had forgotten the other method. 
His explanation showed that he had knowledge of completing the square, but he had forgotten how 
to use this method for solving quadratic equations. Dinga’s solution processes revealed that he had 
procedural knowledge, since he did not display knowledge of the conceptual foundations of 
quadratic equations. For instance, when he solved the equation x2 = 2x + 8 by factor method and 
quadratic formula, his difficulties of explaining the procedures indicated that he knew the “what” of 
the procedure but not the “why”. For mathematics teachers, knowing both the “what” and the 
“why” of a procedure is important (Shulman, 1986). Dinga’s knowledge of content therefore 
seemed limited in depth and breadth. Inability to solve the equation, using the other approaches, like 
completing the square and graphing, also indicated limitations in problem solving skills and 
representation skills. When solving the equation using the two methods he remembered, however, 
Dinga used rules of logic to come up with next steps in the procedures he used – thus indicating 
skills in deductive and quantitative reasoning.  

When answering questions in Task 2 (Figure 1), he did not attempt to interpret the graph first, 
although the interviewer asked him to do so. This also indicates limitations in content knowledge 
and algebraic thinking skills. 

Knowledge of content and students  

Dinga displayed knowledge of predicting methods that students may find easy or difficult, 
predicting students’ errors and misconceptions, understanding reasons for misconceptions, and 
asking questions to reveal or understand students’ reasoning and misconceptions. For instance, the 
interviewer asked Dinga to assume that he gave this equation x2 = 2x + 8 to his algebra students to 
solve. When asked to explain what methods he thought his students would use, Dinga explained 
that his students would use factorisation because, to him, factorisation method is easy and the other 
methods are difficult. Our interpretation of Dinga’s response is that he based his prediction of what 
students would find difficult on his own experienced difficulties.  

The second task in the interview involved interpretation of a conversion graph between °C and °F 
(see figure 1 below). 



 
Figure 1: Conversion task 

During the discussion extracted in the below excerpt from the transcripts, Dinga was first asked to 
read, solve and understand task 2. Then, the interviewer asked him to explain the errors and 
misconceptions that students might display as they attempt to answer this question.  

Dinga:  (...) They may misread the scale, or they may not understand the scale and they 
may come up with different values.  

FM:  Ummmm! Hummm!  

Dinga:         Some students don’t know what horizontal axis is and what vertical axis is. So in 
this kind of problem, they can easily do the reverse. 

FM:  What misconceptions might lead to the errors you presented in this item? 

Dinga:  Sometimes, they put forward the belief that mathematics is difficult. So they may 
think that they may not manage.  

FM:  What else apart from the belief that mathematics is difficult? 

Dinga:  Teachers also contribute. If a teacher does not understand a topic, he/she does not 
teach it. He/she teaches a topic that is easy.  

By explaining that students will misread scale and come up with different values from the expected 
values due to misunderstanding of scale, and that students may misallocate a point on the coordinate 
system, Dinga displayed ability to predict errors students may exhibit as they interpret that graph. 
However, when Dinga said, “if students do not understand scale, they would find some difficulties 
about how to come up with a conversion graph”, he changed the purpose of the task from 
interpreting the graph to drawing the graph. Secondly, although Dinga suggested that graph 
interpretation is easier for Malawian students than drawing the graph, he did not interpret the graph 
himself, hence what he said contradicted with what he did during the interview. By explaining that 
graph interpretation is easier than drawing graphs, Dinga displayed limited knowledge of levels of 



graph interpretation. According to Cursio (1987), graph interpretation is a cognitive task involving 
three levels of understanding, namely reading the data, reading between the data and reading 
beyond the data. Dinga’s understanding of these levels may influence students’ development of 
graph interpretation abilities. Thus, Dinga displayed limited ability to predict students’ difficulties 
about interpreting a linear graph – possibly because he struggled to interpret the graph himself. 
Failure to interpret the graph was also an indication of limitation in representation skills. He was 
unable to interpret information within a representation. We noted that while algebra students often 
create graphs from equations, they rarely practice creating equations from graphs and interpreting 
the graphs – hence Dinga’s difficulty. 

When asked to explain the misconceptions that may lead to the errors mentioned, Dinga pointed out 
beliefs and teachers. By explaining that teachers also contribute to errors and misconceptions, 
Dinga proposes that some misconceptions originate from experiences in school – students’ 
interaction with teachers being one of the experiences. However, his responses indicate that he did 
not know which causes the other. He identified the errors but was not in a position to understand the 
misconceptions that could be possible causes of such errors. Instead, Dinga explained the causes of 
misconceptions. This confusion might have resulted from lack of understanding of errors, 
misconceptions and their causes. Understanding of each is important for the teacher, because, as 
with the weeds, the roots must be tackled if the weeds are to disappear. Similarly, teachers must 
deal with the causes of errors and misconceptions to help students overcome them. 

To understand or reveal students’ reasoning and misconceptions, Dinga explained that he would ask 
the students about the meaning and interpretation of scale, and he would identify the 
misconceptions from their responses. He also explained that he would ask the students to tell him 
what the horizontal and the vertical axes represent, because some students do not know what 
horizontal and vertical axes represent. By explaining that students confuse between horizontal and 
vertical axes, Dinga displayed understanding of students’ confusion between independent and 
dependent variables. Asking him to give examples of probing questions that he said he would ask, 
we expected that he would mention questions like “explain your answer”, “why do you think so?”, 
“How did you get that?” Dinga did not suggest such questions. We interpret this as an indication of 
limited knowledge of what questions to ask in order to identify misconceptions.  

Knowledge of content and teaching  

The KCT that Dinga displayed included predicting strategies for teaching how to solve the 
quadratic equation x2 = 2x + 8, and strategies for handling students’ errors and misconceptions. 
When asked how he would teach solving quadratic equations using the equation x2 = 2x + 8, Dinga 
explained that he would give them steps to follow for them to come up with the roots of the 
equation. The procedural knowledge he displayed when solving the equation might have influenced 
this response. Dinga also explained that he would ask volunteers to solve the equation on the 
chalkboard in any way they want in order to understand the way students understood the problem. 
In this case, Dinga decided to use a hybrid of teacher centred and student centred teaching methods. 
Although, this might be an improved version of teacher centred strategies, Dinga revealed 
knowledge of teaching the “what” but not “why”. Thus, Dinga displayed lack of an important 
aspect of subject matter knowledge: “knowing why”. Even and Tirosh (1995) argue that “knowing 
that” is not enough, and they suggest that “knowing why” enables the teacher to make better 



pedagogical decisions. It could thus be expected that Dinga lacks the knowledge necessary for 
teaching equations effectively to his students. In the closing statements of the interview, Dinga 
explained his limitations with lack of teaching experience. 

In order to handle students’ errors and misconceptions, teachers need to use appropriate strategies to 
create moments of cognitive conflict and help students resolve the conflict (Sayce, 2009). Dinga 
pointed out that he would use discussion and group work. The transcript below illustrates this. 

FM:              What instructional strategies would you use to address the misconceptions you have 
mentioned? 

Dinga:         I will use discussion, grouping, … (silence). 

FM:             How could these methods work in addressing these misconceptions? 

Dinga:         If I put my students in groups of 5 or 10, those who understood may assist others.  

FM:             Um! Humm! 

Dinga:          I will also give a summary of the topic so that students can easily correct  their 
mistakes. 

FM:              How else can you address the misconceptions? 

Dinga:      Maybe giving my students a lot of exercises to do on the topic which they have 
problems so that the students understand the concept. 

The results in the transcript above concur with Sayce (2009) who asserts that, to induce cognitive 
conflict, teachers should encourage collaborative working, especially in mixed ability groups. 
However, Dinga did not reflect on any features of group work that may facilitate this. He also did 
not reflect on the possibility that cognitive conflicts might be introduced by peers, but he seemed to 
suggest that the less able students could be passive recipients of the other students’ explanations. 
We also argue that since errors and misconceptions are deeply rooted erroneous conceptions, 
summarising content covered in a lesson or giving students more exercises might neither be the root 
to cognitive conflict nor the way out of the conflict. The possible cause for Dinga’s limitations in 
methods of handling students’ errors and misconceptions might be that he did not solve the 
mathematical task (task 2) – possibly because he seemed not to know what it takes to interpret 
graphs (Cursio, 1987). A teacher needs to be able to solve the mathematical task before presenting it 
for the students in the classroom. Solving the task enables the teacher to anticipate students’ 
solution methods, errors, misconceptions and questions to ask the students.  

Conclusion 
In this study, we investigated the PCK for teaching algebra displayed by one preservice secondary 
school teacher – Dinga. The findings reveal that content knowledge was the overriding determinant 
of Dinga’s KCS and KCT. For instance, Dinga explained that he would teach solving the equation 
x2 = 2x + 8 by giving the students a procedure to follow to solve the equation, probably because he 
lacked the “why” of the procedure and he solved the equation likewise. He also had some 
difficulties predicting students’ errors and misconceptions because he was unable to interpret the 
graph. These findings support the fact that PCK involves knowledge and skills that are highly 
interrelated to each other (Even & Tirosh, 1995). Thus, teachers should possess in-depth content 



knowledge, have a rich repertoire of teaching strategies to promote students’ understanding of a 
particular topic and to understand and handle students’ errors and misconceptions (Kilic, 2011). The 
findings also support the fact that preservice teachers possess limited PCK (Kilic, 2011). Although 
Dinga appeared to be familiar with some methods that can be used to handle students’ errors and 
misconceptions, he seemed to lack conceptual approaches to students’ errors and misconceptions 
because of his limitations in content knowledge and the “why” of his ideas.  

It is also worth noting that Dinga’s responses to the interview questions might be influenced by 
several factors. Firstly, it might be that Dinga might be able to solve equations but might not be able 
to explain his ideas. The fact that the interview tasks were adapted from a textbook might also limit 
Dinga’s explanations and responses during the interview if the textbook was not familiar to him. 
But I gave the preservice teachers the textbooks a week before the commencement of the data 
collection for them to study in preparation for the tests and interviews. Furthermore, Dinga’s 
responses might be influenced by the secondary school mathematics curriculum he went through as 
a mathematics student. The mathematics curriculum did not give students opportunities to explain 
their reasoning during mathematical problem solving. The way mathematical problem solving is 
handled in preservice teacher education in Malawi might also influence the results from the 
interview with Dinga. For instance, there is less practical work on mathematical problem solving in 
teacher education, yet the preservice teachers are expected to teach their students how to use the 
approach during teaching practice. 

The results from this study cannot be generalized to all preservice teachers at Dinga’s institution. 
Further research with a larger sample needs to be carried out to find out whether results from this 
case study are generalisable at a large scale. In addition, the measurement of Dinga’s PCK was 
somewhat constrained due to the limitation of not having access to classroom students. In his 
responses, Dinga had to ‘work’ within a hypothetical situation. While his limitations in PCK were 
more evident during the task-based interview, it is possible that additional evidence of PCK could 
be obtained through a variety of problems and video lesson observations. These results, however, 
help us to learn that developing PCK and problem-solving skills among preservice secondary 
teachers by “providing teachers with opportunities to learn mathematics that is intertwined with 
teaching” (Hoover et al., 2016, p. 12) is crucial for mathematics teaching and learning. 
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Analysis of mathematics standardized tests:  
Examples of tasks for teachers 
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This paper discusses examples of tasks for teachers proposed during some laboratory activities 
developed in two Italian teacher education courses for middle school mathematics teachers. 
Following a common script, the teachers carried out and shared an a priori analysis of some items 
selected from the Italian National Standardized Assessment. The tasks fostered the reflection on 
epistemological, cognitive and educational aspects: the teachers reflected on the mathematical 
contents involved, the link with the National Guidelines, and the possible students’ answers. The 
specific tasks and the laboratory approach make these activities well suited for showing and 
improving some aspects of teacher knowledge and skills. 

Keywords: Teachers’ knowledge and skills, teacher education, tasks for teachers, laboratory 
activities. 

Introduction 
For some years now, the research on Teacher Education has been concerned with tasks for teachers. 
Drawing from specific research about the knowledge used by teachers in their work (Shulman, 
1986; Ball, Thames, & Phelps., 2008) and about the features that make a task well suited for 
developing that knowledge (Suzuka et al, 2009), this study presents examples of meta-didactical 
praxeologies (Aldon et al., 2013), which show the ability of the teachers to intertwine the different 
knowledge that can characterize them as mathematics teachers. The paper discusses a laboratory 
activity carried out during two teacher education programs for middle school teachers, in which we 
can identify tasks that aim at bringing out teachers’ knowledge and skills and at improving their 
ability to dynamically relate these knowledge. Teachers carried out a priori analysis of items on 
number line, selected from Italian mathematics standardized tests. These items are assessment tasks 
but they were chosen and analyzed individually as mathematical problems that could be also 
become part of learning activities. The fact that they were selected from national tests gave also the 
opportunity to take into account the statistical results on the national sample. Teachers reflected on 
the mathematical contents, aims, and students’ possible solution strategies, errors and 
misconceptions. In order to do that, they used different mathematical content knowledge. These 
activities, by means of shared analyses and collective discussions, put into light some professional 
skills of the teachers: in particular those related to the use of their Subject Matter Knowledge and 
the Pedagogical Content Knowledge (Shulman, 1986; Ball et al., 2008) and to the management of 
the links between these knowledge. 

After a brief presentation of the background and the theoretical framework, the paper discusses 
examples of activities, tasks, and teachers’ reflections developed in two teacher education 
programs, which involved in-service and pre-service middle school teachers. 



Background and theoretical framework  
Making the cultural background explicit is fundamental to understand the goals of a teacher 
education course (Bartolini Bussi & Martignone, 2013). Therefore, it is important to present briefly 
the background of the activities analyzed in this paper. In fact, the choices made in the design of the 
activities are due to factors that are also linked to the Italian context: e.g. the choice of analyzing 
items taken from the Italian National Standardized tests (http://www.invalsi.it/invalsi/index.php). 
The teachers are interested in the discussion about these items, because all their students faced or 
will face these tests. For each item the teachers could refer to the quantitative results coming from 
the surveys on the national sample (these results are annually reported and they are public as well as 
the test items). Another factor that justifies the choice of analyzing these items is that the teacher 
educator was involved in a research on Italian national standardized mathematics tests (Branchetti 
et al., 2015; Lemmo, Branchetti, Ferretti, Maffia, & Martignone, in press) and she wanted to discuss 
the results of this study with the teachers. The teachers and the teacher educator shared specific 
meta-didactical praxeologies (Aldon et al., 2013) about the analysis of standardized test items. The 
term “meta-didactical” denotes that the praxeologies shared during the courses deal with the actions 
and the reflections of teachers about the educational activities. The reflective actions can be fostered 
by a particular praxis that includes different kinds of tasks (in this case the task for teachers about 
the a priori analysis) as well as techniques available to face them (e.g. the development and sharing 
of a common script that takes into account institutional aspects, the mathematical contents involved, 
the link with the National Guidelines, and the possible students’ answers and mistakes). The meta-
didactical praxeologies change over time because of the dialectical interactions between the 
researchers and the teachers communities (Martignone, 2015). This work would lay the foundations 
of the growth of a community of inquiry (Jaworski, 2003) in which the teachers and the teacher 
educator can share and develop their knowledge. There are aspects of teacher knowledge that many 
researchers agree on as been characteristic of  the teacher knowledge, such as the Pedagogical 
Content Knowledge: “the particular form of content knowledge that embodies the aspects of content 
most germane to its teachability” (Shulman, 1986, p. 9). There is a wide literature that started from 
the Shulman idea about the knowledge for teaching. In particular, the studies on the Mathematical 
Knowledge for Teaching (MKT - Ball et al., 2008) propose a refinement of Shulman’s classification 
of Content Knowledge. Ball and colleagues try to define a so called Specialized Content 
Knowledge: “the mathematical knowledge and skills unique to teaching” (Ball et al, 2008, p. 400). 
As the authors write (Ball et al, 2008, p. 403), often it is difficult to discriminate Specialized 
Content Knowledge (SCK) from the Common Content Knowledge (CCK) and from the Pedagogical 
Content Knowledge (PCK), but there are examples in which we can see their different aspects. 

 “[…] for example, consider what is involved in selecting a numerical example to investigate 
students’ understanding of decimal numbers. The shifts that occur across the four domains, for 
example, ordering a list of decimals (CCK), generating a list to be ordered that would reveal key 
mathematical issues (SCK), recognizing which decimals would cause students the most 
difficulty (KCS1), and deciding what to do about their difficulties (KCT2), are important yet 
subtle” (Ball et al., 2008; p.404) 
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By means of specific tasks and methodology, some aspects of teachers knowledge and skills can 
emerge during teacher education programs. Therefore, the tasks for teachers are an important part of 
teacher learning: they can include “the mathematical prompts, many of which may be classroom 
tasks, that are used as part of teaching learning” (Watson & Sullivan, 2008; p.109). With regard to 
the tasks used to develop the MKT, Suzuka and colleagues (Suzuka et al, 2009) make a list of 
features that make a task well suited for developing MKT: 

 “Creates opportunities to unpack, make explicit, and develop a flexible understanding of 
mathematical ideas that are central to the school curriculum 

 Provokes a stumble due to a superficial “understanding” of an idea 
 Opens opportunities to build connections among mathematical ideas 
 Lends itself to alternative/multiple representations and solution methods 
 Provides opportunities to engage in mathematical practices central to teaching (e.g., 

explaining, representing, using mathematical language, analyzing equivalences, proving, 
analyzing proofs, posing questions)” (Suzuka et al., 2009; pp.12−13) 

These features are linked to the analysis of some examples of tasks (Suzuka et al, 2009). There are 
shareable critics (Flores, Escudero, & Carrillo, 2013) about the fact that the tasks described can also 
be faced by individuals who know the topic and, therefore, these knowledge and skills are not 
identifiable as specialist of the teachers: according to Flores and colleagues there is not sufficient 
evidence to guarantee that the knowledge, labelled SCK, is exclusive to mathematics teachers. Even 
if I agree with the critics on these tasks, the list of features about the MKT tasks presented by 
Suzuka and colleagues seems to well identify some aspects of tasks that characterize the work of a 
teacher.  

This paper will present some examples of tasks for teachers that can be suited for showing and 
improving the mathematical knowledge for teaching.  The methodology is also important in raising 
the teachers knowledge: in the activities that will be presented, the teachers are involved in 
laboratory sessions in which they work in small groups, discuss and share their reflections and 
analysis. 

The teacher education program  
This paragraph discusses some examples of educational activities carried out in the “Didactics of 
Mathematics” courses for middle school teachers involved in two Italian post-degree programs for 
the achievement of the teaching credential: the Active Internship (in Italian “Tirocinio Formativo 
Attivo” -TFA) and the Special Teaching Certificate Course (in Italian “Percorso Abilitante 
Speciale” -PAS). These programs follow the indications of the Ministry of Education and they are 
established by universities. The first one is attended by pre-service teachers and the second one by 
in-service teachers. The author of this paper is the teacher educator/didactician. During the teacher 
education programs, the teacher educator had the opportunity to work with teachers and to discuss 
with them some theoretical tools to analyze tasks from the Italian National Mathematics 
Standardized Tests. These tests are administered at the end of the school year in grades 2-5-8-10 
(grade 6 was involved from 2010 to 2013). Only for grade 8 (the end of middle school in Italy), the 
                                                                                                                                                                  
2 Knowledge of Content and Teaching. 



test is part of the national final examination, so it contributes to the final assessment of the students. 
The items aim at assessing students knowledge and skills identified in the Italian National 
Guidelines. 

The teacher education courses analyzed involved 72 in-service teachers and 25 pre-service teachers. 
The activities followed a laboratory approach in a Vygotskian perspective (Bartolini Bussi & 
Mariotti, 2008): the teachers learn by doing, seeing, imitating, and communicating with each other 
within the course community. In these courses, the teachers and the teacher educator shared, 
discussed and reflected on their a priori analysis of mathematics problems, focusing on the 
institutional, epistemological, cognitive and didactical aspects. 

The laboratory activity consists of five phases. In this paper we discuss the first three phases that 
deal with the a priori analysis of the items and that are the same for pre-service and in-service 
teachers. The last two phases involved only the in-service teachers, because these activities consist 
in the implementation and analysis of classroom activities carried out with their own students.  

At the beginning of the activity, the teacher educator shows an a priori analysis of some Italian 
National Standardized Test items according to a common script (Martignone, 2016). It starts with 
the analysis of what is necessary for the students to know and how to do it. Therefore, the focus is 
on the epistemological and institutional aspects. The question is: what is significant from the point 
of view of the teaching and learning of mathematics? This starting point is necessary, but it is not an 
innovative task in a teacher education program. It is an activity that all teachers commonly develop. 
The next step consists in foreseeing the students’ possible solution strategies and mistakes. This 
type of fine grain analysis is common in the educational studies in mathematics, while the teachers 
more often discuss the student performance after an activity. Afterwards, the teacher educator 
presents the national sample results about these items, adding also some examples of students’ 
answers collected in the study carried out by her research group (Branchetti et al., 2015). By means 
of the analysis of these data, during the subsequent collective discussion, the hypothesis shared in 
the a priori analysis are confirmed or rejected. In this first part, the meta-didactical praxeologies, 
related to the analysis of standardized test items, begin to be shared. 

The activities of the teacher education course  
In the second phase of the course, the teachers, divided into small groups, carry out on their own an 
a priori analysis of other items selected from the Italian National Assessment. During these 
laboratory sessions, teachers compare and discuss their works and the teacher educator provides 
other information about possible students behavior, by also quoting some educational research 
results collected in the literature.  

The tasks for teachers 

This is the task proposed to the teachers: “Carry out an a priori analysis of the item, following the 
common guidelines shared: (i) the mathematical contents, the necessary skills to face the item, and 
the links with the Italian National Guidelines; (ii) the possible students solution strategies; (iii) the 
possible mistakes and difficulties; (iv) the strengths of the task; (v) the critical aspects of the task; 
and (vi) some proposals for changes”.  



Figure 1 shows an example of an item analyzed. This item was administered to grade 6 students in 
2011, but there were many similar items also in grade 8 tests. 

Place the following numbers on the line: 

 

Figure 1: Item D8 administered in grade 6 (2011) 

The in-service teachers have much more experience in predicting students’ possible behaviors, but 
also pre-service teachers manage to foresee the most common mistakes. The written analyses (word 
documents or Power Point presentations) were shared on the Course Moodle platform.  

Some excerpts from the teachers’ works 

This paragraph presents some excerpts (author's translations) from the a priori analysis carried out 
by teachers on item D8 presented above. The first excerpt shows an example of how the teachers 
wonder about what the item actually assesses.   

“The item assesses simultaneously two different skills: to know how to transform numbers from 
one representation to another, and to place them on the number line. Because a student may be 
able to carry out only one of these two actions, he/she gives a wrong answer. Therefore, it is not 
possible to understand (from the final result) in which part of the process the student made the 
mistake”. 

The following are examples of students possible difficulties foreseen by the teachers. 

“If students consider only the numerators of the fractions (3 and 5), the way in which the 
numbers appear in the stem might suggests that they are already written in order” 

“The students do not manage the symbol of fraction: they consider only the value of the 
numerator (or denominator); they put the fraction close to the value of numerator (or of the 
denominator)” 

“The student pinpoints 5/10 counting five hash marks for two possible reasons: he/she makes the 
straight line longer to obtain ten hash marks and then he/she considers five of these; or he/she 
considers only the value of the numerator and counts five hash marks”. 

The teachers have to read the colleagues’ works in order to be ready for the next collective 
discussion, that is orchestrated by the teacher educator. 

Collective discussion  

All the hypotheses about the possible students behavior are collectively discussed. The student 
behaviors in these types of items are amply documented in the literature. The teacher educator 
refers to the studies summarized in the Encyclopedia of Mathematics Education (2014) and to the 
theoretical framework of the study on the Italian National Mathematical Standardized Tests carried 
out by her research group (Lemmo et al., in press). All the research papers quoted (or translations of 



parts of them) are shared on the platform of the course. Because the items analyzed are taken from 
Italian national standardized tests, also the quantitative results could be taken into account. The 
national sample results concerning item D8, administered in 2011 in grade 6, are: 85% of the 
students gave the wrong answers, 11% the correct one and the remaining 4% either did not answer 
nor the answers made no sense. The questions faced by the teachers are: which could be the reason 
for this low percentage of right answers? When all the numbers are well positioned, the item is 
considered correct; il instead the students make mistakes, then  how can the teachers identify the 
students’ difficulties? As a matter of fact, based on  the statistical data, we cannot know which 
mistakes the students made, but only the percentage of wrong answers. For this reason, during the 
discussion the teacher educator shows some examples of students’ answers collected and analyzed 
in her research project: she wants to intertwine quantitative and qualitative analyses. As we can see 
in the following examples (Figures 2-3-4), we find the difficulties and the mistakes foreseen by the 
teachers (showed in the previous paragraph). The teacher educator supports the teachers’ 
interpretations, by quoting some results from educational studies in Mathematics concerning the 
placing of rational numbers on the number line (Lemmo et al., in press). In fact, many mistakes can 
be generated by the interlacement of misconceptions about rational numbers and number line 
management: e.g. some students write the numbers in each hash mark without considering the unit 
of measure and place the fractions considering only the numerator (Figure 2). In this specific case 
we are not able to know if the students only copy the numbers as they are presented in the stem. 

 
Figure 2  

Other students show difficulties in placing fractions on the number line: they consider 3/2 
equivalent to 3+½, or to 3.2. The same mistake could justify 5/10 put over the end of the line 
(Figures 3-4). 

  

Figure 3 Figure 4 

At last, the teachers design new items in order to investigate specific questions raised from the 
collective discussion. They ask themselves: what would happen if we change/add some numbers? 
Which ones? Why? What would happen if we change the unit of length or the numbers already 
written on the number line? Some examples of the proposals for modifications are: to change the 
order of the numbers in the stem (e.g. to alternate fractions and decimals numbers and do not write 
2.5 after 2); to make the number line longer to see where, the students who make a mistake, would 
place 5/10; to add more numbers (e.g. ½) , etc. 



Conclusions 
This paper discusses some tasks for teachers carried out during laboratory activities for middle 
school teachers. The teachers and the teacher educator share praxeologies concerning the analysis of 
some items selected from the Italian National Assessment. During the laboratory activities, the 
teachers analyze and discuss the mathematical contents involved, the link with the National 
Guidelines, the possible students answers and mistakes, and propose changes in the tasks. The 
quantitative data of the national sample are taken into account and the teacher educator also 
provides results from different educational studies collected in the literature. The shared 
praxeologies (Aldon et al., 2013) are made by the intersection of the didactician’s knowledge of 
theory, research and systems and the teachers’ knowledge about subject matter, students and school: 
elements of mathematics, didactics and pedagogy are intertwined. The meta-didactical praxeologies 
(Aldon et al., 2013) presented highlight how some aspects of the MKT can emerge in the analysis 
of mathematical problems carried out by teachers. The actions that characterized the teachers’ 
activity and their knowledge and skills are: to imagine many possible different solution strategies; 
to interpret different representations and students’ solutions; and to analyze the mistakes thinking 
about the possible causes. The paper shows how these knowledge and skills can emerge and be 
improved during a teacher education program by means of specific tasks (e.g. a priori analysis of 
math problems) and methodologies (e.g. laboratory activities that involved teachers and 
researchers). The tasks presented aim at developing an interlacement among the teachers’ Subject 
Matter Knowledge and Pedagogical Content Knowledge (Shulman, 1986; Ball et al., 2008): i.e. 
they highlight the different aspects related to the knowledge of the subject matter to be taught, to the 
curriculum, and to the possible behavior of students and their difficulties related to specific 
mathematical content. The ability of the teachers to dynamically relate and  intertwine the different 
content knowledge (among that there are fuzzy boundaries) characterizes their professional skills 
and therefore it can be identified as typical of the work of teachers. A further development of this 
research will be the analysis of the actual teachers' actions in the following design and 
implementation of educational activities (phases 4 - 5 of the teacher education program). 

References 

Aldon, G., Arzarello, F., Cusi, A., Garuti, R., Martignone, F., Robutti, O., Sabena, C. & Soury-
Lavergne, S. (2013). The meta-didactical transposition: a model for analysing teachers education 
programs. In Lindmeier, A. M. & Heinze, A. (Eds.), Proc. 37th Conf. of the Int. Group for the 
Psychology of Mathematics Education (Vol. 1, pp. 97−124). Kiel, Germany: PME. 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it 
special? Journal of Teacher Education, 59(5), 389−407. 

Bartolini Bussi, M.G., & Mariotti, M.A. (2008). Semiotic mediation in the mathematics classroom: 
artifacts and signs after a Vygotskian perspective. In L. English (Ed.), Handbook of international 
research in mathematics education (2nd edition) (pp. 746−783). New York: Routledge. 

Bartolini Bussi, M.G. & Martignone, F. (2013). Cultural issues in the communication of research on 
mathematics education. For the Learning of Mathematics, 33(1), 2−8. 

Branchetti, L., Ferretti, F, Lemmo, L., Maffia, A., Martignone, F., Matteucci, M., & Mignani, F. 
(2015). A longitudinal analysis of the Italian national standardized mathematics tests. In K. 



Krainer & N. Vondrova Proceedings of the Ninth Congress of the European Mathematical 
Society for Research in Mathematics Education (pp. 1695−1701). Prag, Czech Republik. 

Flores, E., Escudero, D., & Carrillo, J. (2013). A theoretical review of Specialized Content 
Knowledge. In B. Ubuz, C. Haser & M.A. Mariotti (Eds.), Proceedings of the Eigth Congress of 
the European Mathematical Society for Research in Mathematics Education (pp. 3055−3064). 
Ankara, Turkey: Middle East Technical University and ERME. 

Jaworski, B. (2003). Research practice into/influencing mathematics teaching and learning 
development: towards a theoretical framework based on co-learning partnerships. Educational 
Studies in Mathematics, 54, 249−282. 

Lemmo, A. Branchetti, L. Ferretti, F. Maffia, A. & Martignone, F. (in press). Students’ difficulties 
dealing with number line: a qualitative analysis of a question from national standardized 
assessment. Proc. CIEAEM67. Aosta. 

Lerman, S. (Ed.) (2014). Encyclopedia of Mathematics Education. Dordrecht, Heidelberg, New 
York, London: Springer. 

Martignone, F. (2015). A development over time of the researcher’s’ meta-didactical praxeologies. 
In K. Krainer & N. Vondrova Proceedings of the Ninth Congress of the European Mathematical 
Society for Research in Mathematics Education (pp. 2867−2873). Prague, Czech Republic: 
Charles University in Prague, Faculty of Education and ERME. 

Martignone, F. (2016). Un’attività di formazione per insegnanti di scuola secondaria di primo 
grado: analisi di prove Invalsi di matematica. Form@re-Open Journal per la Formazione in 
Rete. 16(1), 70−86 http://dx.doi.org/10.13128/formare-17923 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational 
Researcher, 15(2), 4−14. 

Suzuka, K., Sleep, L., Ball, D.L., Bass, H., Lewis, J.M., & Thames, M.H. (2009). Designing and 
Using Tasks to Teach Mathematical Knowledge for Teaching. In D. S. Mewborn & H. S. Lee 
(Eds.), AMTE Monograph Series, 6. Scholarly Practices and Inquiry in the Preparation of 
Mathematics Teachers, (pp.7−24). San Diego, California: Association of Mathematics Teacher 
Educators. 

Watson, A. & Sullivan, P. (2008), Teachers Learning about Tasks and Lessons. In Sullivan P. & 
Wood, T. (Eds.), The International Handbook of Mathematics Teacher Education (Vol. 2, pp. 
109−134). Purdue University, West Lafayette, USA: SensePublishers. 



An exploration of challenges of engaging students in generative 
interaction with diagrams during geometric proving 
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This paper reports from a single qualitative case study which investigated challenges that might 
arise in a geometric proof lesson involving generative interaction with diagrams. Data consists of 
video recordings from a 120 minute lesson, taught with a focus on geometric proof in a Malawian 
grade 11 secondary school classroom. A post-lesson interview was also conducted with the teacher 
soon after the lesson. The findings indicate that the teacher faced challenge of lack of time, hence 
he did not complete some planned activities. The students faced the challenge of lack of 
understanding of the problem. As a result, they were unable to devise a correct plan during their 
initial involvement in the generative activity. The findings suggest that both the teacher’s and 
students’ challenges would have been avoided if problem solving was conducted appropriately.  

Keywords: Geometric proving, generative interaction with diagrams, empirical activity, geometric 
diagrams, problem solving. 

Introduction 
Malawi National Examinations Board (MANEB) chief examiners’ reports show that students fail to 
construct geometric proofs because they do not interact with diagrams successfully (MANEB, 
2013). The report attributes students’ failure to construct geometric proofs to lack of teacher 
knowledge for engaging students in successful proving activities. The reason suggested by MANEB 
supports the argument that teachers are responsible for engaging students in activities that involve 
interaction with diagrams during proof construction (Herbst, 2004). In geometry, to prove means to 
construct a sequence of argumentation from X (hypothesis) to Y (conclusion) with supportive 
reasons (Cheng & Lin, 2009). Herbst (2002) describes the work of geometric proving as a didactical 
contract between a teacher and his/her students. In this contract, the teacher’s responsibility is to 
provide the problem statement and a diagram which contains the givens and the unknown. The 
students’ responsibility is to develop logically connected statements from diagrams by making 
appropriate geometric interpretations and relationships. Herbst (2004) proposed four distinctive 
ways of thinking about how students interact with geometric diagrams during proving. These are 
empirical, representational, descriptive, and generative modes of interaction. Empirical interaction 
supports hands on geometry in the sense that the student is free to make a variety of operations on 
the diagram (measuring, looking at, and drawing in the diagram). Representational interaction 
supports abstract geometry, in the sense that the student is restricted by prescribed rules when 
making operations on the diagram. In descriptive interaction, the diagram contains features like 
marks and labels. Students use the features to complete a proof. Herbst (2004) argues that the 
availability of features in a descriptive diagram reduces students’ responsibility for producing the 
proof and portrays situations of doing proof as only learning of good logic rather than discovering of 
new mathematics.  The author therefore proposes that teachers should engage students in generative 
activities by using generative mode of interaction with diagrams during geometric proving. In this 
mode of interaction with diagrams, students are authorised to anticipate operations and results on 



the diagram. Depending on the given information and the anticipated result, students can add 
features like drawing in lines and labels into the diagram. This means that generative interaction 
with diagrams is supposed to involve exploratory teaching strategies. Despite acknowledging that it 
is not easy to involve students in generative activities, the studies by Herbst have not focused on 
clarifying the challenges that might arise during such activities. Likewise, to my knowledge, no 
study has been done in Malawi to examine challenges of involving students in different modes of 
interaction with diagrams during geometric proving. Therefore this study has both a local relevance 
to teaching of geometric proving in Malawi and general relevance to the field of teaching of 
geometric proofs. The study addresses the following research question: What are the challenges of 
engaging secondary school students in generative interaction with diagrams during geometric 
proving?   

Theoretical framework 
Several investigations have been conducted with an aim of addressing challenges of teaching and 
learning geometric proof construction. Studies by Jones and his colleagues aimed at developing 
strategies for teaching proof construction with focus on helping students to understand the proof and 
appreciate its discovery function (Ding & Jones, 2009). The focus on value of geometric proofs 
arose because the authors found that there were some students who were able to construct proofs but 
could not appreciate its discovery function in mathematics (Jones et al., 2009). The authors 
therefore propose for a shift to exploratory pedagogical strategies. One of these teaching strategies is 
problem solving approach which involves four stages; understanding the problem, devising the plan, 
carrying out the plan, and looking back (Polya, 1945). For a geometric proof problem, 
understanding of the problem involves understanding of the hypothesis and the conclusion. 
Hypothesis is the given information and conclusion is the statement to be proved.  Polya (1945) 
suggests that when a proof problem is connected to a figure, the stage of understanding the problem 
must involve helping the students to draw the figure, to introduce suitable notations, and to label in 
the diagram the hypothesis and conclusion. Devising the plan involves finding the connection 
between hypothesis and conclusion, deciding on the theorem to use, and making decisions whether 
to introduce auxiliary elements into the diagram to enable proving (Polya, 1945). Carrying out the 
plan involves writing of the proving statements logically, each statement accompanied by a valid 
reason. Looking back stage includes reviewing the solution and checking if the arguments can be 
derived using a different approach. This study agrees that problem solving strategy can provide 
opportunities for students to appreciate the value of geometric proving.  In addition, this study 
argues that students’ opportunities to involve in generative interaction with diagrams can be 
enhanced through exploratory activities. This means that teachers require knowledge of problem 
solving strategy to engage students successfully in generative interaction with diagrams.  This study 
was therefore guided by Polya’s (1945) problem solving framework in analysing the data.  

Methodology 
The study was conducted using qualitative case study design because the goal was to expand 
understanding of social issues in their context (Yin, 2009). The study was conducted on one 
Malawian secondary school teacher and one lesson. The teacher, Kim (pseudonym) is regarded as 
one of the best teachers due to his long teaching experience and because his students perform well 



in mathematics during national examinations. Kim was selected for the study on assumption that 
conducting research on an experienced teacher could offer an opportunity to study the issue in 
depth. The lesson episode analysed for this study is part of the video data that was collected for a 
larger project which aims at studying knowledge for teaching geometric proofs. The lesson episode 
was considered for analysis because it involved moments of generative mode of interaction with 
diagrams as well as problem solving teaching strategy. Post-lesson interview was conducted and 
audio recorded in the teacher’s office soon after recording the lesson. The teacher was mainly asked 
to explain his views about the lesson in terms of what went well and what did not go well during the 
lesson. Although the data for the study is from one lesson, it is considered to be sufficient for 
illustrative purposes because it was generated from a real-life context (Yin, 2009). The empirical 
material, both from the video recording of the lesson and the audio recording of post-lesson 
interview were transcribed and further analysed separately by using thematic analysis. The aim of 
thematic analysis was to capture and interpret sense and substantive meanings in the data (Ritchie, 
Spencer & O’Connor, 2004). Polya’s (1945) stages of problem solving were used as a priori themes 
for analysing the data. The transcribed data was read several times to understand it and to identify 
moments that were related to a particular stage of problem solving. The findings from the two types 
of data are discussed under each theme for purposes of comparison. Due to space limitations, this 
paper has mainly discussed findings related to the first two stages of problem solving; 
understanding the problem and devising the plan.  

Findings and discussions 
Kim started the lesson by writing a geometric statement and making a drawing of a diagram on the 
chalkboard. He told his students that the aim of the lesson was to prove that an angle subtended by 
an arc at the centre is equal to two times an angle subtended by the same arc at the circumference. 
After explaining the lesson aim, Kim asked his students to go into their usual small groups to draw a 
similar diagram and discuss how to prove the theorem. There were six groups in the class and each 
group contained five to eight students. Table 1 shows the diagram that was drawn and the statement 
that written by Kim on the chalkboard. 

 

 

Given:  a circle with centre O, with arc AB subtending angle AOB 
at the centre and angle AMB at the circumference. Prove that the 
angle at the centre is twice the angle at the circumference. 

Table 1: Diagram and statement given to students for proof construction 

It can be argued that the problem statement in table 1 is ambiguous because the teacher has not 
specified the two angles whose relationship is to be proved. There is one angle at the circumference 
referred by the statement, but there are two angles at the centre (reflex AOB and obtuse AOB). 
Furthermore, the diagram in table 1 did not contain any features to indicate the required angles. This 
means that during group discussion, students were challenged to decide whether to relate the angle 



at the circumference to the reflex angle or the obtuse angle at the centre. As such, the diagram 
required generative mode of interaction. Hence the discussion activity involves problem solving.  

After about 10 minutes, Kim moved around to check what students were discussing and doing in the 
groups. The following lesson segment 1 presents a dialogue between Kim and students in group 6.  

Kim:  Okay so what are you going to do, have you discussed? 

Student 1:  Yes, we will join MO and prove that these two triangles (pointing at triangle 
AMO and BMO are congruent). Then relate the corresponding angles. 

Kim:  Can you show me how you will relate the angles. 

Student 1:  First, AO = BO (radii), OM is common, and AM= BM (third side) AOM is 
congruent to BOM. Then angle MAO = MBO, the two angle here are also equal 
(pointing at the reflex angle at AOB) and the two angles here are equal (pointing 
at M). (The student is silent). 

Kim:  Go ahead. 

Student 2:  Then we add angles here (pointing at the reflex angle at AOB) and angles here 
(pointing at M) uhhh…. (silence 4 seconds). 

Kim:  Yes go ahead what about the other group members, how do you proceed from here 
to the theorem? (silence for 4seconds) how do you relate the two angles? (silence 
6 seconds), how do you arrive at the question that you have been asked using that 
theorem? (silence 4 seconds). Do you know the angle at the centre referred in the 
theorem? 

Student 3:  Yes this one (pointing at the reflex angle at AOB). 

Student 4:  No this one (pointing at the obtuse angle at AOB). 

Kim:  Can you try to measure the angles and see if it is the upper or lower angle which is 
twice the angle at M? After that think of another way, this one might not work.  

Then Kim went to check students in other groups and asked questions. When he noticed that most 
of the groups were not focusing on a correct angle at the centre, Kim interrupted the generative 
activity and asked all groups to measure the three angles and relate their values to find out the 
correct angles. The activity took about 15 minutes, students measured the angles and made 
comparisons. The following lesson segment (segment 2) is a continuation of a conversation between 
Kim and group 6.  

Student 3:  This angle (pointing at angle AMB) was  while this one (pointing at obtuse 
angle AOB) was . So this (pointing at obtuse angle AOB) is twice this 
(pointing at angle AMB). 

Kim:  Okay so how are you going to prove the theorem? 

Student 5:  We tried similarity but we found that it was going to be difficult as well because it 
was not saying anything about this angle (pointing at obtuse angle at O) it was 
only saying about this one (pointing at the reflex angle at O). So since this angle is 
outside these two triangles, we agreed to use the property of exterior angle of 



triangle. So we extended MO to N to create exterior angles here (pointing at 
obtuse angle at the centre).  

Understanding the problem 
Lesson segment 1 shows that the students agreed to add a feature (auxiliary line) into the diagram by 
joining MO to form two triangles (AOM and BOM). The students also agreed to construct the proof 
for the theorem by firstly constructing an in-between proof of congruency of triangles AOM and 
BOM. This means that in lesson segment 1, the students were devising a plan for the proof. 
Depending on geometry background at their level, there are two possible approaches that the 
students could use in developing their plan. The first approach involves joining of MO, then 
forming two equations using properties of isosceles triangles, sum of interior angles of a triangle 
and sum of angles at a point, and finally making substitutions to reach the conclusion. The second 
approach involves joining MO and extending it to some point within the circle to form exterior 
angles of triangles AOM and BOM, and then use properties of isosceles triangles and exterior angle 
of a triangle to form two equations, and finally make substitutions. This shows that congruency 
theorem is not appropriate for both approaches. As such, the students’ decision to join MO and then 
use congruency theorem as an in-between proof was not correct. It can be argued that the students’ 
decision was based on lack of understanding of the problem. This argument is based on several 
observations. Firstly, in segment1the students were unable to explain how they would use the 
congruency theorem to connect to the conclusion. But segment 2 indicates that after realising that 
the angle at the centre is the obtuse angle, the students changed their plan, and they were able to 
justify their decision to use property of exterior angle of a triangle. Secondly, the argument is based 
on students’ disagreements regarding angle at the centre in segment 1. Some students pointed at the 
reflex angle while others pointed at the obtuse angle when Kim asked them to identify the angle at 
the centre referred by the theorem. This means that the students were not sure of the correct angle at 
the centre. The disagreement among the students regarding the angle at the centre provided an 
opportunity for Kim to shift students’ focus from the stage of devising the plan to the stage of 
understanding the problem. The findings from the lesson segments are supported by the following 
extract in which Kim expresses the challenges that students faced when constructing the proof: 

It was very difficult for the students to come up with relevant constructions when proving. 
Because I think the main trick in the proof was to know what type of construction and in-
between theorem to use for the proof. But after doing the measurements, the students were 
able to make correct construction and to know the theorem to use. Their reasoning and their 
work showed that they now understood the statement they were asked to prove. 

The extract shows that Kim realised the difference in the students’ ability to come up with a correct 
plan before and after the empirical activity. Kim mentions two challenges that the students faced 
before the empirical activity. The first challenge involved failure to decide on features to be added 
to the diagram. The second challenge involved failure to use the diagram to generate a correct in-
between theorem and proof. Both challenges involved generative interaction with diagrams as they 
required students to make explorations with the diagram (Herbst, 2004). The extract also indicates 
that the students were able to devise a correct plan upon understanding the problem. Cheng & Lin 
(2009) call the proving of an in-between theorem as construction of intermediary condition (IC). 



These authors argue that students can only construct correct ICs if they understand the hypothesis 
and the conclusion. Polya (1945) advises that solving of any mathematical problem should not be 
started unless the problem is well understood. Probably, the challenge of understanding the problem 
could have been avoided if Kim carried out the phases of problem solving before going to the class 
(Polya, 945). Through this preparation activity, Kim could have anticipated that students were more 
likely to regard the reflex angle as angle at the centre due to its location. Thus the reflex angle is 
close to and in the same quadrilateral (AMBO) with the angle at the circumference. In so doing, 
Kim could avoid the mistake by helping the students to understand the theorem (which also implies 
to understand the problem) before asking them to discuss how to develop its proof.  

Devising the plan 
Both lesson segments show that students devised the plan for the proof in their groups through 
exploration. Lesson segment 1 shows that the first attempt to devise the plan was not successful due 
to lack of understanding of the problem. Lesson segment 2, shows that after the empirical activity, 
students came up with a proper construction and correct IC for linking angle at the centre and angle 
at the circumference. The students’ suggestions to introduce a line into the diagram confirm that 
they were involved in generative interaction with the diagram. Lesson segment 2 also shows that the 
students were able to evaluate their ideas by considering the questions asked by Kim in lesson 
segment 1. The questions are, “how do you relate the two angles? How do you arrive at the question 
that you have been asked using that theorem?” The questions helped the students to focus on 
identifying a construction and theorem that could help them to connect the given information to the 
conclusion. This is observed in utterance by student 5 who explained that they tried to use similarity 
theorem but they realised that it was not appropriate because it could not help them to link angle at 
the circumference and the obtuse angle at the centre. The technique of asking questions that probe 
students’ thinking is regarded as one of the strategies for helping students to devise a plan (Polya, 
1945). The findings from analysis of students’ explanations in lesson segment 2 show that the 
empirical activity which focused on understanding angle at the centre helped the students to devise a 
correct plan for the proof. This observation is also confirmed in Kim’s explanation regarding what 
went well during the lesson. Kim explained that the lesson was generally successful because the 
students were able to construct the proof independently. Kim explained that his lesson objective was 
to help the students to understand the theorem and construct its proof on their own. He explained as 
follows: 

If you just start proving without engaging students in an activity like measuring or 
discussions on how to prove, they just memorise the proof. So to avoid memorisation, I 
involved the students in discussions. When I found that they were referring to a wrong angle 
at the centre, I did not tell them the angle, I wanted them to find out on their own by 
measuring the angles.  

The extract shows that during the first activity Kim regarded the students’ inability to construct a 
correct proof as an opportunity for them to understand the theorem which is also the statement 
problem in this case. Kim’s idea of giving students opportunity to do explorations on the problem to 
be proved is supported by Ding & Jones (2009). But Kim was not supposed to wait until students 
got stuck in order to suggest the empirical activity. According to Polya (1945) the teacher is 



supposed to prevent students from answering a question that is not clear to them, and from working 
for an end that they do not desire. The author argues that students might be frustrated if they either 
get stuck or come up with undesirable solution to a problem. As such, teachers are supposed to 
avoid making students’ frustrated by ensuring that they understand the problem before beginning to 
devise its plan. This suggests that Kim was supposed to first of all engage the students in an 
exploration activity that could help them to understand the problem before involving them in 
activity of discussing how to prove the theorem.  By doing so, Kim could have avoided the 
challenge of lack of time that he pointed out when explaining what did not go well during the 
lesson. Kim explained that he had planned to discuss three examples of how to apply the theorem in 
solving different geometric problems, but he only managed to discuss one example because some 
time was spent on the unplanned activity of measuring angles. Apart from examples, Kim also 
explained that he had planned to give the students an exercise which he wanted to start marking 
during the lesson, but he turned it into homework due to lack of time. Kim seemed to have planned 
many activities for the lesson which involved problem solving. But Polya (1945) explains that 
problem solving might be time consuming because students explore different ways when devising a 
plan for finding solution of the problem. This means that a teacher is supposed to plan few activities 
for a problem solving lesson to ensure that students have ample time for explorations. The planning 
of many activities and the sequence of activities during the lesson indicates that although Kim used 
problem solving strategy, he was not aware of some of its skills. This agrees with Herbst’s (2004) 
caution that engaging students in generative mode of interaction with diagrams is challenging. 

Conclusion 
This study has found that both the teacher and students faced some challenges during the lesson of 
geometric proving which involved generative interaction with diagrams. The teacher faced the 
challenge of lack of time hence he did not complete some of the planned activities. The students 
faced a challenge of lack of understanding of the problem during their first attempt to devise a plan 
for the proof. Due to this challenge, the students came up with wrong construction and IC for the 
proof. As a result the students were unable to complete the plan for the proof during their first 
attempt to devise the plan. However the findings show that the students were able to devise correct 
plan for the proof after doing an empirical activity which focused on understanding the problem.  
The study implies that the challenges faced by both the teacher and the students could have been 
avoided if proper problem solving skills were followed. Thus the first activity could have focused 
on understanding the problem and the second activity could have focused on devising the plan for 
the proof. The findings suggest that successful involvement of students in generative interaction 
with diagrams require knowledge of several problem solving skills including proper planning and 
sequencing of activities. Lastly, the findings show that empirical interaction with diagrams 
enhanced students understanding of the problem. Further study is needed to explore whether 
successful involvement of students in generative interaction with diagrams require a combination 
with other modes of interaction with diagrams. 
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The purpose of this study was to investigate middle school mathematics teachers’ knowledge for 
teaching algebra. The participants of the study were 48 mathematics teachers from various middle 
schools. A questionnaire was conducted in order to collect data about the teachers’ knowledge 
related to teaching of algebra. The results showed that the participating teachers were competent in 
making transitions among different algebraic representations. However, they had difficulties in 
explaining the conceptual bases of some of the algebraic concepts and procedures. In addition, 
results indicated that some of the teachers had difficulties and misconceptions similar to those of 
students as depicted in the scenarios provided in the questionnaire. 

Keywords: Pedagogical content knowledge, algebra, middle school mathematics teachers. 

Introduction 
Teachers’ knowledge is considered as one of the most important predictor of student achievement 
(Hill, Rowan, & Ball, 2005). In recent years, therefore, researchers have focused on the professional 
knowledge of teachers (Ball, Thames, & Phelps, 2008; Grossman, 1990; Shulman, 1986, 1987). As 
Knowles, Plake, Robinson, and Mitschell (2001) stated, what teachers should know and be able to do 
are issues which continuously change and develop as values of the society come up with the changes. 
Therefore, teachers need different types of knowledge in order to fulfill those expectations. Subject 
matter knowledge (SMK), pedagogical knowledge, and pedagogical content knowledge (PCK) are 
among the major components of teacher knowledge referred frequently in the literature (Ball et al., 
2008; Cochran, DeRuiter, & King, 1993; Magnusson, Krajcik, & Borko, 1999; Shulman, 1987). 
Among these, having a strong subject matter knowledge is often considered the central component of 
teacher competency (Krauss et al., 2008). However, merely having strong mathematics knowledge 
does not guarantee effective teaching (Ball et al., 2008; Kind 2009). 

Effective teaching requires making the content accessible to students, interpreting the questions and 
productions of students, and being able to explain or represent ideas and procedures in multiple ways 
(Hill, Sleep, Jewis, & Ball, 2007). In this context, teacher competency is the cognitive ability in order 
to develop solutions for problems concerning teaching profession and applying these solutions in 
various situations successfully (Weinert, 2001). Providing meaningful and effective activities for 
students’ learning is considered essential for teacher competency (Knowles et al., 2001). Therefore, 
pedagogical content knowledge, defined as “the most useful ways of representing and formulating 
the subject that makes it comprehensible to others” (Shulman, 1986, p. 9), is seen as a core component 
of teacher competency and an indispensable part of teacher knowledge base. A study conducted by 
Kind (2009) in which several PCK models were investigated revealed that representations and 
instructional strategies and students’ subject specific learning difficulties were considered as two core 
dimensions of PCK in most of the studies (e.g., Grossman, 1990; Magnusson, Krajcik & Borko, 1999; 



Shulman, 1987). Therefore, among others, the components that are knowledge of students’ learning 
of mathematics and knowledge of teaching mathematics were chosen as the focus in this study.  

In the literature, there have been several studies on the pedagogical content knowledge of 
mathematics teachers concerning knowledge of algebra and teaching of algebraic concepts (e.g., see 
Doerr, 2004; Güler, 2014; McCrory, Floden, Ferrini-Mundy, Rackase, & Senk, 2012). As the 
Mathematics Study Panel (2003) indicates, proficiency in algebra is important for students’ 
mathematical thinking and understanding. Moreover, teaching of algebra in middle school is 
particularly crucial since the algebra learnt there constitutes a basis for the high school and university 
level mathematics (Mathematics Study Panel, 2003). Thus, teachers’ knowledge of algebra and 
teaching of algebra in middle schools are worth studying as teachers’ professional knowledge is one 
of the most important predictors of student achievement (Hill, Rowan, & Ball, 2005). Thus, the 
assessment of teacher knowledge is an important step to understand the competency of teachers or 
the quality of teacher education programs. Although there are several studies based on the algebra 
knowledge of students, there is limited research on algebra instruction (Güler, 2014; Kieran, 2007; 
Ladele, Ormond, & Hackling, 2014). Therefore, which knowledge component is required by the 
teachers and how this knowledge could be developed need to be investigated in order to improve 
algebra instruction (Kieran, 2007). For this reason, there is a need for theory building on what teachers 
need to know related to teaching of algebra and how this knowledge could be developed by teachers. 
In this study, SMK and PCK were considered as separate dimensions of teacher knowledge and PCK 
of middle school mathematics teachers was investigated for teaching algebra. As for the main 
theoretical framework, we used “algebraic knowledge for teaching” which was adapted by Güler 
(2014) from Ferrini-Mundy, Floden, McCrory, Burrill, and Sandow (2005). The framework is a three-
dimensional model consisting of three main components: algebra content, algebra knowledge for 
teaching, and domains of mathematical knowledge. Algebra content consists of two main categories: 
algebraic expressions, equalities, and inequalities and linear and non-linear functions and their 
properties. Algebra knowledge for teaching includes advanced algebra, knowledge about learning of 
students, and knowledge about representations of the content. Domains of mathematical knowledge 
include basic concepts and procedures, representations, applications, and reasoning and proof. In this 
study, algebraic knowledge for teaching dimension of the model was focused on. The only difference 
between the adapted framework (Güler, 2014) and the original one (Ferrini-Mundy et al., 2005) was 
in algebraic knowledge for teaching dimension which includes school algebra, advanced algebra, and 
teaching knowledge components. The knowledge about learning of students, and knowledge about 
representation of the content segments of this dimension were investigated within the study in relation 
with algebra content and mathematical knowledge context dimensions.  

The purpose of this study was to investigate the knowledge of middle school mathematics teachers 
in relation with teaching of algebra. In this scope, two components of pedagogical content knowledge 
of middle school mathematics teachers were investigated; knowledge of learning of students and 
knowledge of teaching mathematics. Moreover, the difficulties and strengths of middle school 
mathematics teachers were investigated in relation with the knowledge of teaching algebraic 
concepts. Therefore, the research questions that guided this study were:  

 What are the difficulties and challenges that middle school mathematics teachers face in 
teaching of algebraic expressions, equations, inequalities, and linear and non-linear functions? 



 What pedagogical content knowledge do middle school mathematics teachers have about 
algebraic expressions, equations, inequalities, and linear and non-linear functions? 

Methodology 
Participants of the study were 48 middle school mathematics teachers from different public and 
private schools in Turkey who voluntarily participated in the study. Their teaching experiences (in 
years) ranged from 1 year to 26 years ( X = 8, SD = 5.3). In Turkey, middle school mathematics 
teachers are responsible for teaching mathematics in grades 5, 6, 7, and 8. All of the participants in 
this study had at least a bachelor’s degree in elementary mathematics education. Based on the current 
mathematics curriculum in Turkey (MoNE, 2013), formal teaching of algebra starts in 6th grade with 
the introduction of algebraic expressions and the concept of variable. Then, the concepts of equality, 
equation and linear equation are introduced in 7th grade. In 8th grade, algebraic expressions and 
identities, linear equations, equation systems, and inequalities are further dealt. 

Developed by Güler (2014) and used with his permission, the instrument used in this study was a 20-
item questionnaire comprising of multiple-choice and open-ended items intended to assess teachers’ 
knowledge for teaching algebra at the middle school level. For the instrument, the scores were 
averaged across 20 items to control the reliability of the instrument ( X = 17.8, SD = 5.9). Also, 
Cronbach’s alpha was estimated as 0.81 for person reliability and 0.94 for item reliability. Moreover, 
in order to ensure validity of the instrument, item analyses were carried out and expert opinion was 
taken in order to show that the content of the instrument coincides with the conceptual framework. In 
the questionnaire, the participants were confronted with situations or scenarios related to the work or 
practice of teaching middle school level algebraic concepts (see Figure 1 for an example). The algebra 
content tested in the instrument was in line with the mathematics curriculum for the middle school 
level (grades 5 to 8) in Turkey (MoNE, 2013). The instrument consists of two components in relation 
with PCK: knowledge of students’ learning and knowledge about representation of the content. 
Moreover, the content of the instrument is constructed under two domains: mathematical knowledge 
content and algebra content. Mathematics content includes basic concepts and procedures, 
representations, applications, and reasoning and proof. Algebra content includes algebraic 
expressions, equality, and inequality, linear and non-linear functions and their properties.    

The use of a questionnaire with a survey type design was preferred in order to collect data from a 
large sample of teachers. There was no time limitation for completing the questionnaire. Descriptive 
analyses and item based in-depth analyses were carried out in order to have a general overview on 
algebra related PCK of teachers. Based on the rubric prepared by Güler (2014), analyses were 
conducted for each item separately. The frequencies and percentages of correct, particularly correct, 
or incorrect answers were calculated in order to investigate the performances of all teachers for each 
item. To illustrate, the answers to the 10th item (see Figure 1) were categorized as correct if the 
teachers explained why the inequality sign changed direction by using algebraic expressions or trying 
out particular values to make generalization, partially correct if the teacher explained it by using 
particular values of x, and incorrect if the answer was wrong, invalid, or missing. 



 

Figure 1: The Item 10 in the questionnaire 

In general, answers were coded as correct when the teacher provided correct answers/results to the 
questions by using algebraic expressions or trying out particular values in order to make 
generalization in explaining an algebraic topic conceptually, and explained why the answer of the 
student was wrong in the scenario by providing underlying reasons. The answers coded as partially 
correct included those in which the teachers gave inadequate explanations and used particular values 
to show the validity of an algebraic procedure. The answers coded as incorrect were the wrong, 
invalid, or missing ones. To ensure the reliability of coding, two independent scorers coded all of the 
open-ended items in the questionnaire for half of the participants (i.e., 24 teachers). The interrater 
agreement across both scorers was high (percent agreement = 92.80%). 

Findings 
As the findings suggested, most of the teachers in this study were able to make the transition among 
the rhetoric, symbolic, and geometric representations of the algebraic expressions. Below we present 
the findings in relation to the dimensions of knowledge for teaching algebra framework (Güler, 2014), 
namely algebra content, algebra knowledge for teaching, and domains of mathematical knowledge. 
In some items, most of the teachers gave correct responses in the questionnaire. The Item 18 ("The 
difference between an equation and (algebraic) identity") was one of the items that most of the 
teachers answered correctly (see Table 1). The item 18 was related to three dimensions of the algebra 
knowledge for teaching model, namely algebra content, algebra knowledge for teaching, and domains 
of mathematical knowledge. 

 Correct  Partially correct  Incorrect  

 f % f % f % 

Item 6 3 6.3 17 35.4 28 58.3 

Item 10 0 0.0 27 56.3 21 43.8 

Item 18 33 68.8 12 25.0 3 6.3 

Table 1: Results of the analyses of three items in the questionnaire 

The answer of a participant (P18) for the Item 18 item was categorized as correct since it presented 
the difference of the two concepts effectively.  

P18: Equation is an algebraic expression which holds for particular real number(s) while (algebraic) 
identity is an algebraic expression which holds for all real numbers.  

The answer of another participant (P31) for the Item 18 was categorized as partially correct since the 
teacher considered all equations as if they were just first degree equations. 

P31: Equations hold for just one value (i.e., If 3x + 5 = 8, then x = 1). However, identity holds for 
all values of the unknown.  



Moreover, some of the items got partially correct or incorrect answers by most of the teachers. To 
illustrate, the results for Item 6 (see Figure 2), which was related to the algebra content and knowledge 
for teaching algebra dimensions and basic concepts and procedures segment of the model, are 
presented in Table 1. On the other hand, the results revealed that the teachers were incompetent in 
some of the areas such as finding and correctly expressing the solution set of equations and 
identification and correction of students’ incorrect ideas and misconceptions.  

 

Figure 2: The Item 6 in the questionnaire 

The answer provided by one of the participants (P34) was categorized as correct since the teacher 
stated that the solution set could not be real numbers and gave a suggestion on how to show it to the 
students.  

P34: The solution set cannot be real numbers since the equations do not hold for each (x, y) when x 
and y are real numbers. Therefore, this could be shown to students by substituting some x and y 
values which are real numbers but do not satisfy the equations. 

The answer of another participant (P32) was categorized as partially correct as it stated that the 
equation could not be solved. 

P32: The solution is false. The solution set of the equation system should be in the form of (a, b). 
It cannot be real numbers. Those are not two different equations. The first equation is double of 
the second equation. The two are the same equations. That is, it cannot be solved. 

Some of the answers for the Item 6 were categorized as incorrect if the teachers stated that the solution 
was correct without any explanation or if they gave invalid/missing explanations. The Item 10 where 
the teachers were asked "Why the direction of the inequality sign is changed when both sides of the 
inequality −x < 7 are divided by a negative number?" (see Figure 1) was also answered incorrectly 
by most of the teachers in this study (see Table 1). This item was related to the algebraic expressions, 
equations, and inequalities, basic concepts and procedures, knowledge about learning of students 
segments of the model. None of the teachers used algebraic expressions for the solution. Rather, the 
teachers mostly used particular values for x in order to show the change of the direction of sign when 
both sides were divided by a negative number. The answer of one of the participant (P35) is 
categorized as particularly correct since the teacher used particular values for the solution without 
making generalization.   

P35: I would give particular values. For example, if we multiply or divide both sides of 2 < 5 with 
−1, the inequality will be −2 > −5. By considering the values of the numbers, we can see that the 
inequality sign should be changed when both sides are multiplied or divided by −1.  



Also, the answer of one of the participants (P44) is categorized as incorrect since the teacher stated 
that it was just a rule to be memorized. In addition, the invalid/missing answers were also categorized 
as incorrect. 

P44: I would say that it was a rule to be memorized. Thus, the inequality sign changes when both 
sides are divided by a negative number. Then, I would give examples with particular values. 

 Discussion and conclusion 
Results revealed that middle school mathematics teachers presented strength and weaknesses in terms 
of knowledge for teaching algebra. Most of the teachers in this study show indications of ability and 
knowledge to make transition among different representations of algebraic expressions. Moreover, 
most of them were successful at items which required knowledge about particular algebraic concepts 
such as the difference between an equation and (algebraic) identity or the properties of nonlinear 
functions. Although some studies concluded that the concept of equation and the concept of identity 
were frequently confused by pre-service middle school mathematics teachers (Altun, 2006; Güler, 
2014), nearly all of the teachers in this study were able to differentiate between these concepts. It 
might be safe to say that, in general, teachers in this study performed well in items related to algebra 
content dimension and basic procedures and representations segment of the domains of mathematical 
knowledge dimension of the model (Güler, 2014). 

Analyses of the answers illustrated that some of the teachers had errors and misconceptions similar 
to those of students, as also observed by Güler (2014). Moreover, most of the teachers presented not 
only signs of misconceptions beyond the ones given in the scenarios but also difficulties in explaining 
students’ reasoning and proposing an appropriate teaching method in order to guide them in the right 
direction. One of the basic reasons for teachers’ inadequacy to propose an appropriate teaching 
method might be the lack of knowledge of algebraic concepts. Since the teachers could not provide a 
valid explanation for students’ thinking and reasoning in most cases, they could not provide a 
suggestion for the teaching of related algebraic concepts (Güler, 2014). In some of the items, teachers 
were required to give conceptual explanations for the algebraic situations. For example, regarding 
“How would you explain to your students why 20 is equal to 1?”), only about half of the teachers 
were able to provide conceptually sound explanations why 20 is equal to 1. However, other teachers 
could not give a conceptual answer for that question or stated that “20 is equal to 1” is just a rule. This 
indicates that such lack of knowledge lead teachers to teach algebra as a collection of rules to be 
memorized. Another situation supporting this was Item 10 which required explaining why the 
direction of the inequality sign changes when both sides of the equation were divided by a negative 
number. There were nearly no conceptually based explanations provided by the teachers for it. Some 
of the teachers explained that they were just rules to be memorized like any other mathematical rules, 
like the multiplication of two negative numbers’ being equal to a positive number. Conversely, some 
teachers explained it by showing that it holds for many different values. However, none of them 
provided an explanation by using and considering algebra as a tool for generalization (Bednarz, 
Kieran, & Lee, 1996). Thus, it might be concluded that the teachers in this study had lack of strong 
knowledge based on representation of the content segment of knowledge for teaching algebra 
dimension in general. Also, teachers had deficiencies related to the mathematical knowledge 
dimension of the model. 



Results obtained in this study supports that middle school mathematics teachers might be incompetent 
about the conceptual bases of some algebraic concepts and in identifying and explaining students’ 
errors and misconceptions in order to provide appropriate representations (Ball, 1990; Güler, 2014; 
Tirosh, 2000). Since teacher knowledge is considered as the first step to provide an effective teaching, 
it should be investigated and developed. As Cochran, DeRuiter, and King (1993) stated, teacher 
knowledge has a dynamic form and it develops continuously. Therefore, the results of the current 
study should simply be taken as a call for teacher educators to strengthen and develop teachers’ 
conceptual knowledge of algebra and its teaching. In this context, for example, a balance should be 
sought between requiring several advanced mathematics/algebra courses and methods of teaching 
mathematics/algebra courses in mathematics teacher education programs in order to equip them with 
the knowledge and pedagogy needed to teach algebra effectively. Furthermore, courses and 
professional development efforts for learning to teach mathematics/algebra should focus on concepts 
and big ideas with an emphasis on why to use a particular procedure or why a certain idea/procedure 
works in some particular contexts. 

On the other hand, as assessing in-service teachers’ knowledge for teaching (algebra) would require 
a more carefully constructed instrument and research design, the questionnaire used in this study itself 
and limiting the research design to survey type might be considered as methodological limitations of 
this study. Even though the purpose was to collect data from as many teachers as possible, further 
studies should at least consider collecting data through interviews (with selected participants at least) 
and require more elaboration on the answers given in the questionnaire and conducting classroom 
observations when possible. Furthermore, as much as it is challenging, more studies should focus on 
developing instruments for assessing teachers’ knowledge for teaching algebra. 
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Similar to counties such as the U.K. and the U.S.A, the Irish education system is divided into four key 
stages; pre-school education, primary level education, second level education and tertiary education. 
Transition between each of these phases has its own set of challenges but many believe the most 
challenging of all is the transition from primary to second level education.  This quantitative, national 
study investigates the transition from primary to second level mathematics education from the 
perspective of teachers. It investigates sixth class teachers’ knowledge of the mathematics curriculum 
and teaching strategies employed at second level and first year mathematics teachers’ knowledge of 
the mathematics curriculum and teaching strategies favored in primary school. The results of the 
study highlight low levels of knowledge in these domains amongst both sixth class and first year 
mathematics teachers. The ramifications of this gap in teacher knowledge are also discussed in detail. 

Keywords: Primary school mathematics education, second-level mathematics education, transition, 
teacher knowledge, continuity. 

Background to the study 
As is the case in Australia, the United States and the United Kingdom, Ireland’s education system is 
divided into four phases; pre-school education, primary level education, second level education and 
tertiary education. The transition from primary mathematics education to second level mathematics 
education is one of the greatest challenges that young people experience during their school years. 
According to Bicknell, Burgess and Hunter (2009) the challenge presented by this transition is 
multifaceted and involves challenges from social, academic and systematic perspectives. As such, 
this is a pertinent research area and one which has been looked at in depth in recent years. 

The overarching finding to emerge from the research carried out to date was that the transition from 
primary to second level mathematics education resulted in a decline in students’ attitudes, academic 
performance and confidence (Attard, 2010; Economic and Social Research Institute [ESRI], 2007). 
Furthermore, Bicknell et al. (2009) found that the gap between high achieving and low achieving 
students widened significantly during this transition period. Due to the serious nature of these 
consequences, researchers, such as Green (1997) and Attard (2010), have sought to investigate what 
constitutes effective transition and what are the main factors that contribute to an educationally poor 
transition for students.  

In her study on students’ experiences of the transition from primary to second level mathematics 
education in Australia, Attard (2010) listed curriculum, pedagogy, assessment strategies, social 
interactions and students’ relationships with others, as key factors that dictate the success of 
transition. Likewise, Barber (1999) describes the transition as a set of five hurdles all of which must 



be overcome at once. The hurdles to be overcome to ensure a smooth transition, as listed in this study, 
are bureaucratic, social and emotional, curriculum, pedagogy, and management of learning. In 
addition to this, Evangelou et al. (2008, p. 2) stated that a successful transition for children entailed: 

…developing new friendships and improving their self-esteem and confidence; having settled 
so well in school life that they caused no concerns to their parents; showing an increasing 
interest in school and school work; getting used to their new routines and school organisation 
with great ease [and] experiencing curriculum continuity.  

All research conducted into what constitutes effective transition make some reference to curriculum 
and pedagogical continuity. Likewise, research conducted in the area of problematic transitions all 
point to a lack of continuity in this regard. For example, Elkins (1989), Green (1997) and Tilleczek 
(2007) all found that the attainment and motivational losses that students often experience when 
moving from primary to second level mathematics education can, in no small way, be attributed to a 
lack of continuity in terms of both curriculum and pedagogical approaches. 

However, in order to ensure continuity between both curriculum and pedagogical approaches it is 
critical that teachers who are teaching students that are about to enter or have just completed the 
transition process have an in-depth Mathematical Knowledge for Teaching (MKT). Such knowledge 
encompasses knowledge of the mathematical content previously studied and that which they will 
study in subsequent years (Ball, Thames & Phelps, 2008). Ernest (1989) reiterates that a teacher’s 
MKT is not limited to knowledge of curriculum, but also knowledge of students, in order to enable 
them to teach mathematics effectively. The authors further ascertain that teachers, especially those 
involved in the transition process, must have a comprehensive MKT comprising of the curricula, 
students and teaching methodologies utilised before and after the transition process. Teachers who 
do not possess such knowledge have yet to develop the full range of knowledge domains proposed 
by both Ball, Thames & Phelps (2008) and Ernest (1989) and as such, their knowledge could be 
considered inadequate for teaching. It is this belief, in conjunction with existing research, which led 
the authors to investigate the following research questions. 

1. How familiar are sixth class primary school teachers with the second level mathematics 
syllabus and the teaching methodologies being promoted at second level and vice versa? 

2. What are the consequences of these levels of MKT in terms of (a) the fluidity of the 
transition between primary and secondary mathematics education and (b) the teaching 
approach adopted by second level teachers when teaching mathematics to first year students? 

Methodology 
The research design for this quantitative study involved the distribution of questionnaires to a 
representative sample of two groups of stakeholders involved in the transition process; namely sixth 
class teachers in primary schools and first year mathematics teachers in second level schools1. For 
the purpose of the study two advisory groups, one involving primary teachers and another involving 
second level mathematics teachers, were established. Their role was to help with the development 

                                                 
1 In Ireland 6th class is the final year of primary education which 1st year is the name given to the first year of second level 
education. 



and piloting of the questionnaires and to help the authors in relation to sampling issues. To allow for 
comparison of responses from primary and second level teachers the questionnaires were of a similar 
nature and both were based on the framework for transition developed by the authors from the work 
of Anderson, Jacobs, Schramm and Splittgerber (2000) and the models of knowledge proposed for 
primary teachers by Ball, Thames & Phelps (2008) and for second level teachers by Ernest (1989). 
This theoretical framework is outlined in Figure 1. 

 
Figure 1: Theoretical framework 

This study was unique in that it looked solely at the issue from the perspective of teachers. As such, 
only some dimensions of this model were relevant to this study namely the discontinuity pillar, the 
support pillar and the teacher knowledge pillar. This particular paper has an even narrower focus and 
looks solely at the pillar of teacher knowledge.  

The sampling frame for this study was a list of all 3,300 primary schools and 723 second level schools 
in Ireland (DES website February 2016). The targeted sample was 700 sixth class teachers and 400 
first year mathematics teachers. By consulting the primary school advisory groups, the authors 
established that on average, there is one sixth class teacher in each primary school in Ireland. As a 
result, a simple random sample of 700 primary schools was selected. Overall, the sample included 
21.2% of all primary schools. Having consulted with the second level advisory group it was 
established that on average, there are two mathematics teachers teaching first year mathematics in 
each school in Ireland. Hence using this estimate, a stratified random sample of 200 second level 
schools around Ireland was selected. This sampling technique ensured that an accurate representation 
of each type of school (secondary, vocational, community and comprehensive) in Ireland was 
included in the sample. Overall, the sample included 27.7% of all second level schools in Ireland.   

The questionnaires were distributed to the 700 primary schools and 200 second level schools in April 
2015. The primary school questionnaires were sent to the principal of each school and they were 



asked to distribute these questionnaires to the sixth class teacher. The pack sent to each of the 700 
principals included an information sheet for the principal, a teacher information sheet along with the 
questionnaire and a stamped address enveloped for the questionnaire to be returned in. The second 
level questionnaires were sent to the Head of Mathematics in each of the 200 second level schools 
and they were asked to distribute the questionnaires to the first year mathematics teachers in their 
school. The pack sent to each department head included an information sheet for their perusal, an 
information sheet for first year mathematics teachers along with two questionnaires and two stamped 
address envelopes in which the questionnaires could be returned. At both primary and second level, 
each stamped addressed envelope included was given a number corresponding to the school selected 
so the researchers could identify the schools that had not returned the completed questionnaires. Two 
weeks after sending the questionnaires, follow-up telephone calls to each of these schools were 
undertaken with the aim to increase the response rate.  

Upon receipt of the completed questionnaires the quantitative data was inputted and saved into the 
computer programme SPSS. Descriptive analysis examined primary teachers’ knowledge of the 
mathematics curriculum and teaching strategies employed in secondary school and second level 
mathematics teachers’ knowledge of the mathematics curriculum and teaching strategies employed 
at primary level. Descriptive analysis also allowed the authors to determine how these levels of 
knowledge affected the approach adopted by second level teachers when teaching first year students 
and also to determine if the transition from primary to secondary was educationally successful from 
the teachers’ perspective. The authors will now present the results of this analysis in an attempt to 
address the aforementioned research questions.  

Findings  
Based on the population size it was determined that, to allow for a 5% margin of error, the study 
would require 263 responses from sixth class teachers and 133 responses from first year mathematics 
teachers. The actual response rate was 296 primary school teachers (approx. 42%) and 171 second 
level teachers (approx. 43%). The primary teachers who responded were distributed across 271 
schools (38.7% of schools surveyed) while the second level teachers who responded were distributed 
across 101 schools (50.5% of schools surveyed).  

The first research question sought to ascertain sixth class teachers’ knowledge of the first year 
mathematics curricula and the teaching strategies employed by first year mathematics teachers as well 
as first year teachers’ knowledge of the sixth class curriculum and the teaching strategies adopted by 
sixth class teachers. The findings related to this research question are presented in Figure 2 and Figure 
3. 



 

       (a)       (b) 

Figure 2: Primary teachers’ responses when asked (a) How familiar are you with the first year mathematics 
syllabus? and (b) How familiar are you with the recommended teaching methods for first year mathematics? 

 
        (a)       (b) 

Figure 3: Second Level teachers’ responses when asked (a) How familiar are you with the sixth class mathematics 
syllabus? and (b) How familiar are you with the recommended teaching methods for sixth class mathematics? 

These findings demonstrate that teachers, at both levels, have a deficient understanding of the syllabus 
and teaching strategies that their students were/will be exposed to in their previous/next year of 
schooling. Over half of sixth class teachers (56%) reported that the first year mathematics syllabus 
was either highly unfamiliar or slightly unfamiliar to them. The corresponding figure for second level 
teachers was 49%. The responses in relation to knowledge of teaching strategies were even more 
pronounced. Almost three-quarters of sixth class teachers (73%) stated that they were highly 
unfamiliar or slightly unfamiliar with the teaching approaches used in mathematics classrooms at 
second level. Likewise, 77% of first year mathematics teachers stated that they were highly unfamiliar 
or slightly unfamiliar with the pedagogical approaches employed by sixth class teachers. 
Furthermore, only 13% of sixth class teachers claimed to be in any way familiar with the teaching 
approaches used by first year mathematics teachers while the corresponding figure for the first year 
teachers who responded was 15%.      

The second research question was two-folded and sought to analyse the knock on effect of the gaps 
in teacher knowledge discussed previously. In order to address this research question both groups of 
teachers were first asked to rate their agreement with the statement “There is a fluid transition 
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between primary and secondary mathematics”. The second level teachers were then further probed 
on these knock on effects when they were asked to describe the approach they adopt when teaching 
first year mathematics students upon their entry to second level. For this, they were asked to pick 
from a pre-determined list of four options, which included “Other”. The responses received are 
provided in Figure 4 and Figure 5.  

 
Figure 4: Teachers’ responses when asked their level of agreement with the statement “There is a fluid 

transition between the primary and secondary school mathematics curricula.” 

 
Figure 5: Second level teachers’ responses when asked which of the 4 strategies outlined best describe 

their approach to teaching first year mathematics  

Figure 4 shows that a large proportion of both groups of teachers believe that the transition from 
primary school mathematics to second level mathematics is not smooth. For example, 44.6% of sixth 
class teachers believe this to be the case compared with 44.4% of first year mathematics teachers. 
Only one teacher in both groups strongly agreed that there was a fluid transition between primary 
school mathematics and second level mathematics with a further 34 in each group agreeing with the 
sentiment. The lack of fluidity or continuity is elaborated upon further when secondary teachers were 
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asked to describe the approach that they adopt when teaching first year mathematics students. Of the 
168 teachers who responded to this question 67.9% stated that they “See it as an opportunity for a 
fresh start and initially assume as little as possible about student knowledge or ability”. Despite 
mechanisms, such as the Education Passport2 being introduced in recent years, this study shows that 
teachers, most probably due to their own lack of knowledge of the primary school curriculum, 
continue to adopt a “fresh start” approach. This will undoubtedly lead to a disjointed and fractured 
transition from primary to secondary mathematics education.  

Discussion and conclusion 
“If a teacher is largely ignorant or uninformed he can do much harm” (Conant, 1963: 93) 

This research study has demonstrated that sixth class teachers have gaps in their knowledge in relation 
to the syllabus and pedagogical approaches being adopted at second level while the same can also be 
said about second level mathematics teachers in relation to the primary school mathematics syllabus 
and favoured pedagogical approaches. Teachers in both of these sectors do not have the full repertoire 
of knowledge prescribed by Ball, Thames & Phelps (2008) and Ernest (1989). As Conant (1963) 
points out, such gaps can be detrimental to students’ progress and prove a hindrance in their academic 
progression. This gap in teacher knowledge can prevent teachers from adequately preparing students 
for the transition process or providing them with a sense of continuity when they make the transition. 
For example, in a study carried out by Bicknell et al. (2009) teachers expressed concerns that gaps in 
their own knowledge meant that they were not equipped to prepare students for the mathematics they 
would face at second level. Likewise, students in a study carried out by Green (1997) reported that 
the lack of continuity between primary and second level mathematics education, which stemmed from 
the lack of understanding of the mathematics syllabi and teaching strategies being employed in the 
years either side of the transition on the part of teachers, meant that they did not face new challenges 
on entry to second level and as a result their motivation and attitudes declined. Hence, internationally 
it has been shown that these gaps in teacher knowledge can play a role in the declining attainment 
levels and attitudes of students during the transition. As a result, it is critical that steps are taken to 
improve teachers’ knowledge in this regard in order to improve students’ experience of transition. 

In addition to the ramifications already discussed in international literature, this study found that the 
knowledge levels reported by teachers had other consequences, namely the lack of fluidity in 
transition and the approach adopted by teachers when students enter first year. The lack of fluidity in 
transition reported by teachers in this study is unsurprising, as without an in-depth understanding of 
the previous or subsequent syllabi and teaching approaches it is difficult for teachers to ensure 
curriculum or pedagogical continuity. Such continuity is critical in order to allow for a educationally 
successful or fluid transition from primary to second level mathematics education (Evangelou et al., 
2008). Teachers who do not possess the knowledge domains outlined in the work of Ball, Thames & 
Phelps (2008) and Ernest (1989) struggle to provide curriculum and pedagogical continuity and are 

                                                 
2 The Education Passport was an initiative introduced in 2014. It requires primary schools to pass documentation onto 
second level schools which details a rounded picture of the child’s progress and achievement at primary school as well 
as signalling to second level schools what support a child may need. The overall purpose of the Education Passport is to 
help the child progress and experience continuity as they move from primary education to second level education.  



forced to adopt a “fresh approach” with their first year students. This is the only option available to 
teachers who are not informed about the syllabus and/or pedagogical practices that students were 
exposed to in their previous year of schooling. It is not surprising that this deficiency in the area of 
MKT among teachers has resulted in pedagogical approaches that are not well received by students, 
and thus lead to boredom, lack of motivation and a consequential decline in students’ attainment 
levels (Bicknell et al, 2009). Due to such concerns, the authors believe it is of paramount importance 
that teachers are given the opportunity to develop knowledge of the sixth class and first year 
mathematics syllabi; of students in both these years; and of the teaching strategies in place across 
both levels. Only when such opportunities are available will teachers be in a position to develop the 
range of knowledge domains required for teaching and the hurdle of discontinuity will be overcome. 
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This paper discusses a primary prospective teacher analysis of practice from a video episode she 
selected from her own practice – aimed at exploring the use of non-standard length measurement 
units. The analysis focuses on the revealed knowledge (MKT) while in practice, on the reflection when 
justifying the choice of the episode, and on her analysis of such episode. The results reveal aspects 
of PT knowledge associated with anticipating students’ difficulties, but also her difficulties in 
interpreting and give meaning to student use of non-standard measurement units in a non-standard 
way. From the analysis, the need for an improvement in the use of video-based tasks in teachers’ 
education is discussed, as well as the importance and impact of analyzing and discussing the analysis 
made by PT in and for educators’ professional development. 
Keywords: Mathematic teachers’ knowledge, measurement, video analysis.   
Introduction 
Mathematics teachers’ knowledge and professional development has acquired an important relevance 
for research, enhancing its complexity. Particularly, the research focusing on mathematics 
prospective teachers’ (PTs) education brings to the fore the role and importance of the relationships 
between teachers’ mathematical knowledge and their knowledge of the content and students (e.g., 
Ball, Thames, & Phelps, 2008). Following such focuses, new trends (conceptualization and 
implementation of interventions) for accessing, understanding, and developing teachers’ and PTs 
knowledge are being developed (e.g., Ribeiro, Mellone, & Jakobsen, 2013; Santagata & Bray, 2015; 
Sherin, Linsenmeier, & van Es, 2009). 

More recently, analyzing video episodes has been both a focus of attention and a source for teacher 
education (e.g., Llinares & Valls, 2010; Sherin & van Es, 2002). In that sense, the reflection and 
discussion upon one’s own practice through video analysis is perceived as a powerful path for the 
development of a teacher’s knowledge and awareness—focusing essentially on the mathematically 
critical features, both for teachers and students (e.g., mathematical content, competencies, 
interactions). One such critical aspect for students concerns measurement (e.g., Sarama, Clements, 
Barrett, Van Dine, & McDonel, 2011), particularly with regard to length. Considering the core role 
of teacher knowledge in student learning a focus on such knowledge is essential to better understand 
students’ difficulties. 

This paper aims at contributing to a broader and deeper understanding of the hows and whys 
sustaining the intertwining of teachers’ knowledge (in the sense of Mathematical Knowledge for 
Teaching—MKT; Ball et al., 2008) and professional competency of noticing (in Mason’s 2002 
sense). Therefore, the research question in this study is what kind of knowledge is mobilized by the 
teacher when analyzing students’ interactions with the mathematical content in a videotaped episode 



of measurement. For doing so, a video clip of a primary PT practice on length measurement is 
discussed, as well as her analysis of such video. The results reveal powerful trends concerning both 
the video analysis process as well as PT knowledge concerning length measurement. 

Theoretical framework 

As in other mathematical topics (e.g., adding or dividing fractions), the understanding of the 
mathematical whys of the measurement process is not straightforward, the understanding of such 
process being much more complex than the process itself. Piaget (1972) mentions that acquiring the 
notion of magnitude requires going through different stages, from the use of words to express the 
magnitude (correctly) until one has the knowledge about the measurement of such magnitude. Going 
through such stages is not a straightforward path, and developing a broader and deeper understanding 
of the concept image and definition involved (in the sense of Tall, 1988) is a core aspect of such 
development. 

Two aspects in measuring a length are crucial: the dimension and the distance. The dimension is 
connected with the use of physical resources, and the distance concerns the space between two 
points/objects. Although both notions are perceived in an intertwined and inseparable way, due to its 
nature, one can’t approach them in a single identical manner with students (Clements & Stephan, 
2004). Such a measuring process requires the choice of the unit to use and perceive the quantity of 
units (or unit parts) are needed (how many) to go from one point to the other. Ultimately, one would 
need to combine both processes in order to get a more approximated value for the considered 
magnitude. In that sense, measuring is linked with two core ideas: the inverse relationship between 
the size of the unit used/number of units needed and the need for using the same unit in the same 
process of measuring (e.g., Clements & Stephan, 2004), applying it using a certain algorithm. 
Measuring the length thus requires knowing the standard measure(s) used, as well as the differences 
from using different measurement units (e.g., hands, foot, fingers) and the possibility of using these 
non-standard measurement units in a non-standard way. 

Teachers’ MKT on measurement is essential for developing students’ knowledge and awareness of 
the topic. Among the MKT subdomains, and due to the aim and context of the work reported here, 
we consider for discussion the Common and Specialized Content Knowledge (CCK and SCK) and 
the Knowledge of Content and Students (KCS) subdomains. For doing so, examples linked with 
length measurement are used. The Common Content Knowledge (CCK) is associated with the 
mathematical knowledge required by teachers, including being able to use the instruments to correctly 
perform a certain measurement, knowing that no empty space must be left, as well as that there 
shouldn’t also exist any overlays (instrumental knowledge). In doing so, knowing what instruments 
to use (in the sense of standard instruments/measurement) for measuring different entities and the 
differences between the entities they measure is involved. It corresponds to knowledge of how to 
perform, assuming a user’s perspective (knowing how to measure). Complementary to this CCK, 
following the MKT conceptualization, teachers are required to be in possession of mathematical 
knowledge specifically linked with the tasks of teaching (Ball et al., 2008). Such Specialized Content 
Knowledge (SCK) includes knowing the mathematical whys justifying the different measuring 
processes (considering all the stages mentioned by Piaget, 1972). In addition to requiring knowledge 
of the different ways of measuring different entities, from one side, teachers’ knowledge should also 
include knowing the whys of using such different forms of measuring (and the associated units). 



Complementarily, it should include knowing possible different units for measuring the same entity 
and the ways of doing so (e.g., length), as well as the whys associated with the use of (non)standard 
units. In that sense, such knowledge does not include only knowing the whys associated with the 
procedures, but also includes the concepts (both image and definition in Tall’s 1988 sense) and the 
whys associated with such concepts (e.g., the inverse relationship between the size of the unit and the 
number of iterations needed). Thus, it corresponds to a core aspect of the knowledge that allows 
teachers to give meaning and interpret students’ solutions and comments (part of the interpretative 
knowledge, e.g., Ribeiro et al., 2013) while in practice. 

Both CCK and SCK (and HCK, although it is not discussed here) give support for teachers’ 
developing their practice—conceptualizing and implementing the tasks, hearing students’ comments, 
and interpreting them in order to decide the path to follow at each moment. Those decisions are also 
informed by the knowledge teachers have of their students’ difficulties or what they consider easier.  

Intertwining knowledge of the content and knowledge of the students’ learning processes concerns 
the KCS. It includes knowing that one of students’ difficulties concern the measuring process (e.g., 
the need for using units with different natures), which is related to the complexity of understanding 
the measuring process (e.g., Clement & Stephan, 2004). In such subdomain of knowledge, one can 
also include the knowledge allowing teachers to anticipate students difficulties in differentiating the 
measurement instrument (non-standard unit, e.g., the hand) and the measuring unit, or on ways of 
using non-standard measuring units (e.g., using the finger length or width). 

Recent research has shown the need for designing instruments/resources for teacher education 
allowing them (and the researcher) to characterize the knowledge in action when analyzing their own 
practice (e.g., Kersting, Givvin, Sotelo, & Stigler, 2010). One such resource is video analysis (of 
classroom episodes), which allows a focus on how and which knowledge (prospective) teachers bring 
to front when interpreting, analyzing, and reflecting upon the recorded interactions (e.g., Kersting et 
al., 2010; Van Es & Sherin 2002). When focusing on selecting and characterizing a video episode, 
Sherin et al. (2009) consider three dimensions: (i) window, (ii) depth and (iii) clarity. In the particular 
case we address here, focusing on length, windows dimension is related to evidences of students’ 
different levels of comprehension of the measurement of length; depth dimension is related to 
evidences of interactions in which students participate in the decision making process about choosing 
the measuring unit, the instruments and the measurement procedure and clarity is related to evidence 
of student’s arguments that transparently show their comprehension of measurement of length. 

Reflecting upon what seems to be happening, and discussing grounded on the analysis elaborated, is 
perceived as a pathway for developing teachers’ knowledge and professional noticing (Sherin et al. 
2009). Such professional noticing includes identifying what is important in a teaching situation, using 
what one knows about the context to reason about a situation, and making connections between 
specific events and broader principles of teaching and learning (Van Es & Sherin, 2002). Such 
noticing is thus linked with the ability for examining practice pinpointing the significant aspects in 
order to be better informed at the time of making their pedagogical decisions. 

The context of the study 

Aiming at identifying and deepening the understanding of the content of teacher knowledge and how 
it intertwines with teacher actions and beliefs several case studies have been developed – in different 



contexts and involving different school levels, mathematical topics, and competencies, contributing 
also to conceptualizing tasks of different natures focusing on developing teachers’ knowledge (e.g., 
Ribeiro et al., 2013). 

Method 

We first present the participant of this study, and afterward, the specific context and analysis stages 
and process. Here we focus on the knowledge and awareness about the topic of length measurement 
of a primary PT (Carla), who was part of a bigger research project in which her professional 
development through video analysis and reflection was the aim. Carla was in the last year of the 
teachers’ training program at University Autònoma of Barcelona, and she was teaching the field 
practice to grade 2. Previously, she had some training concerning classroom analysis, identifying and 
interpreting relevant events in a video from a novice teacher. As part of the field practice, PTs have 
to record the 10 classes they teach (one hour each) and choose one episode to analyze and reflect 
upon – which has to be transcribed. The selection of the episode needs to be justified, mentioning the 
whys associated with its mathematical richness and referring explicitly to the mathematical goal 
pursued. For selecting and analyzing such an episode, Sherin et al.’s (2009) criteria (windows, depth 
and clarity) should be used (which have been previously explored with the PTs). Therefore, the 
analysis should focus on the mathematical content approached, student-teacher interaction, and 
students’ understanding. 

For selecting the episodes, PTs’ were advised to look for situations they perceived as involving a 
“high level” of students mathematical knowledge and discussions/argumentations. Carla’s choice was 
an episode aimed at introducing “the measurement of the length and width of objects using non-
standard units” (e.g., the length of the classroom using the foot; the length of a glue package using 
the finger). An example of the proposed tasks is: using an unconventional length measure (finger), 
determine the length of the glue package. Although Carla chose a 15 minutes long video associated 
with the goal “review the content,” she only considered it important to analyze and reflect upon the 
last six minutes – sustaining such choice on her perceived richness, in terms of Sherin et al.’s criteria 
(2009). In the video, one can perceive how the students assign the corresponding number (amount of 
units) to the length or width of the objects as a result of comparing such amount with the unitary 
measurement they consider as a reference. In the discussion, the inverse relationship between the 
length to be measured and the unit used is also explored. Complementary to the video and Carla’s 
analysis, Carla (as all the other PT) were also asked to justify (in a written form) their actions in the 
video they selected.  

The analyses were made in different stages and each of them followed the same structure. First, each 
researcher focused on the divergent aspects, then there was a joint discussion focusing on them. Such 
joint discussions contributed to a refinement of the analysis and increased the researchers’ own 
mathematical awareness and “interpretative knowledge.” Here we expand the notion attributed to this 
expression by Ribeiro et al. (2013) by including the researcher’s ability to read, hear, and understand 
the interactions and knowledge in action. The first stage focused on analyzing Carla’s revealed 
knowledge in the part of the video she considered important to analyze and reflect upon—the last six 
minutes. In the second stage, the focus of attention was Carla’s analysis of her own practice using the 
same criteria PTs use for doing the analysis (Sherin et al.’s 2009 criteria). The third stage focused on 
the mathematical aspects associated with what happened in the first part of the video—which Carla 



chose not to include in her analysis—and the possible whys concerning her knowledge and awareness 
leading to such choice.  

Analysis and discussion 

When analyzing Carla’s practice (the 15’ video) with a focus on the CCK, SCK, and KCS, different 
aspects of her revealed knowledge are identified that sustain her awareness and professional 
competency of noticing. She reveals knowing the importance of measuring with different non-
standard units (CCK), leading to the inverse relationship between the number of units and the size of 
such units (CCK): 

Carla: I gave an example, showing to the students that is not the same measuring with bigger o 
smaller hands, so I put my hand in the sheet they had to measure and asked a student to 
put his hand next to mine, to compare the different measures of both hands, telling them: 
“Do you see that his hand is smaller? Then my measure will be smaller than his”. 

Also, the students’ difficulties in measuring without leaving empty spaces between units is anticipated 
(KCS) when interacting with students: 

Carla: Of course, another thing is how we put our hands. If some of you put them like this (partially 
opened) and some of you put them as Isaac did (completely opened), Isaac will get less . . 
. . But it doesn’t mean that it is wrong; it simply indicates that we have different hands and 
we have measured differently. 

However, we can see a potential conflict identifying the unit of measurement, arising at least four 
different possible unit combinations: kin’s and teacher’s hand, both in a close or open position. In 
spite of Carla’s ability to identify the previous situation as an interesting topic to be discussed in the 
class (noticing), it is noteworthy that there is a lack of awareness of the necessity of exhaustiveness 
when re-covering the measurable object (Clements & Stephan, 2004). 

While teaching, Carla indistinctly uses dimension and distance—the two aspects of length (Dickson, 
Brown, & Gibson, 1991)—revealing aspects of the content of teachers’ knowledge that need to be a 
specific focus of attention in training. Such knowledge would sustain the conceptualization and 
implementation of tasks aimed explicitly at exploring both concepts and their complexity. Not 
overcoming such difficulties, and thereby enriching teachers’ SCK on measurement, would 
contribute to a low level of professional competence of noticing, particularly concerning the students’ 
difficulties in distinguishing perimeter and area (and volume)—KCS. 

Focusing on her analysis of the students’ reasoning (only the last six minutes of the video), the fact 
that she can differentiate various aspects of understanding from different students reveals Carla’s 
(advanced) level of professional competency of noticing according to Sherin et al.’s (2009) criteria. 
Such can be linked with her KCS as well as her interpretative knowledge (Ribeiro et al., 2013). In 
that sense, she takes into consideration (CCK and SCK) the dimension, the absence of empty spaces 
between the use of the measurement units, the use of anthropomorphic units, and the inverse 
relationship between the size of the unit and the number of iterations – on the written justification 
Carla wrote: Hugo and Daniel notice that the different results of the measurement depends on the 
size of the hands; Miguel, on the other hand, concludes that the result depends on the ways the hands 
are placed). 



When justifying the choice of the episode to analyze, Carla’s reflection reveals an awareness of the 
relationship between the SCK on the content, her decisions, and her ability to anticipate the students’ 
difficulties and understanding of the topic (KCS).  

Carla: I chose this particular part of the class because it reveals the moment when the pupils 
become aware that when measuring with non-standard instruments and units, they get 
different results…Through the students’ reflection and reasoning, they get that the size of 
the hands matter when measuring the length (thus getting different results) and that not 
only the size of the hand matters, but also the ways one uses it. I also have to note that after 
the mentioned reasoning emerged from students, I registered the different values on the 
blackboard, and I could then use it to explain to the whole class. During this period, I also 
use different teaching strategies, including the registration on the board (with the number 
and the unit used), giving time for students to present their results, and promoting reflection 
concerning the measurement technique used, supported by visual examples, as they could 
have difficulties in the content concerning both the measuring process and finding the 
relationship between length and units used. 

However, in the remainder time of the episode Carla didn’t chose to analyze (the first nine minutes), 
something curious and mathematically important happened. Analyzing it can shed some light on 
teacher decisions and associated specialized knowledge as well as concerning the need for a change 
in Sherin et al.’s (2009) criteria for selecting and analyzing he video episodes.  

During the first part of the episode, one student (Miguel) provides a completely different answer to 
the posed questions (e.g., length of the class in steps, when the rest of the class provided answers 
around 30, his answer was 14). Carla interpreted it as a misunderstanding of the measurement process, 
showing him in each case “how to do it correctly.” But the consistency of Miguel’s answers reveals 
a high level of understanding (concept image and definition, Tall, 1988) of measurement (Clements 
& Stephan, 2004), using non-standard units. When Carla discussed the question “How many fingers 
are needed to measure the glue package?” Miguel again disagrees with the other students and with 
Carla’s validation of a length of eight fingers. With the glue package on the top of the table, on the 
vertical, the following dialogue occurs: 

Teacher: No? How many fingers did you get? 

Miguel (putting the finger vertically along the glue package): One! 

Teacher: One? Like this? (The teacher repeats the measurement process using the indicator 
finger horizontally) 

Miguel: No, two… 

Teacher: Two? With two you can cover all the distance? 

Miguel: No…ah…four… 

Teacher: Don’t know what you are measuring… 

Miguel: Ah, four, four… 

Teacher: No! It can’t be…you should get eight, you are doing it wrong. 



Although the goal of the class was “to use non-standard length measures,” such measures have been 
used and explored by Carla only in a standard way (the one with which she was used to – taking into 
consideration the cultural aspects). Such exclusive use, linked with the content of SCK, makes it 
difficult to anticipate and understand (KCS) Miguel’s answers––use of non-standard measurement 
units in a non-standard way. The fact that when reflecting upon her practice and analyzing the video 
she did not point to this aspect as problematic sustains the need for a change in the way the video 
analysis task has been conceptualized. And, in an intertwined way, makes us wonder about Sherin et 
al.’s (2009) criteria for professional competency, as when focusing only on her own analysis (of the 
last six minutes), Carla could have been considered to have an advanced level of such competence; 
when looking at the part of the video she did not analyze, a different conclusion could be drawn. In 
that sense, there is also evidence of the interdependent nature of such competence and teachers’ 
knowledge. 

Carla seems to not be aware of the inexplicit use of a one-dimensional measurement unit on a three-
dimensional object, leading thus to some contingency moments. To overcome such moments, she 
opted (grounded in her own revealed knowledge of measurement) to tell the student “how to do it”. 
Although aspects of professional awareness and competencies of noticing are present both in her 
practice and in her analysis of the video, her knowledge shaped such aspect, leading to a partial view 
of the students’ understanding of the measurement length and units. This supports the need for a 
complementary discussion and reflection upon the video analyses PTs make in order to focus also on 
the mathematically critical aspects they are not aware of, and which are a barrier to completely 
achieving the advanced level of professional competency of noticing expected when using Sherin et 
al.’s (2009) criteria. 

 
Final comments 
From the work focusing on the video analysis, three aspects can be enhanced: teachers’ knowledge 
and professional noticing abilities; reflection and awareness capabilities; video-based task design and 
its potentialities. Although of different natures, these aspects have in common the educator’s 
responsibility in changing the training process. Through this case study, one can better understand 
aspects of the content of the different subdomains of MKT, both revealed in practice as well as 
expressed when reflecting upon such practice when analyzing the video. Other aspects concern the 
impact of the interactions and the prevalence of non-standard length measurements in standard ways, 
and that revisiting the practice didn’t become a prompt for awareness and noticing development, 
obviously linked with previous experiences and MKT. This calls our attention to the need for an 
exterior element to pinpoint these critical features, leading them to become a starting point for 
developing such knowledge and awareness.   

Although the video analysis performed by Carla with the provided instrument did not accomplish 
completely the defined aim, our analysis of her practice and of her own analysis of the video was a 
prompt for inquiring our own practice as educators in terms of interpretative knowledge (Ribeiro et 
al., 2013) and of awareness of the educators professional noticing abilities. One future research path 
concerns thus the develop of a complementary instrument for video analysis that would allow trainees 



to dig deeper into their awareness of the mathematical whys sustaining what happens and to focus 
also on the educators specialized knowledge, awareness and noticing abilities. 

Acknowledgements: This research has been carried out as part of research projects EDU2015-65378-
P, EDU2014-54526-R and EDU2013-44047P, funded by the Spanish Ministry of Economy and 
Competitiveness and the SGR-2014-GIPEAM. It has also been partially supported by the Portuguese 
Foundation for Science and Technology (FCT), project code (UID/SOC/04020/2013). 

References 

Ball, D., Thames, M., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? 
Journal of Teacher Education, 59(5), 389–407. 

Clements, D.H. & Stephan, M. (2004). Measurement in pre-K to grade 2 mathematics. In D.H. Clements, 
J. Sarama, & A-M Di Biase (Eds.), Engaging Young Children in Mathematics: Standards for Early 
Childhood Mathematics Education, (pp. 299–317), Mahwah, NJ: LEA. 

Dickson, L., Brown, M., & Gibson, O. (1991). El aprendizaje de las matemáticas. Barcelona: MEC-
Labor.  

Kersting, N., Givvin, K., Sotelo, F., & Stigler, J. (2010). Teachers’ Analyses of Classroom Video Predict 
Student Learning of Mathematics: Further Explorations of a Novel Measure of Teacher Knowledge. 
Journal of Teacher Education, 61(1–2), 172–181. 

Llinares, S. & Valls, J. (2010). Prospective primary mathematics teachers’ learning from on-line 
discussions in a virtual video-based environment. Journal of Mathematics Teacher Education, 13(2), 
177–196. 

Mason, J. (2002). Researching your own practice. The discipline of noticing. London: Routledge-Falmer. 

Piaget, J. (1972) [1924]. Judgment and reasoning in the child. MD: Littlefield, Adams. 

Ribeiro, C.M., Mellone, M., & Jakobsen, A. (2013). Prospective teachers’ knowledge in/for giving sense 
to students’ productions. In A.M. Lindmeier & A. Heinze (Eds.). Proceedings of PME 37, Vol. 4, (pp. 
89–96). Kiel, Germany: PME. 

Santagata, R., & Bray, W. (2015). Professional development processes that promote teacher change: the 
case of a video-based program focused on leveraging students’ mathematical errors. Professional 
Development in Education, 1–22. 

Sarama, J., Clements, D.H., Barrett, J., Van Dine, D.W., & McDonel, J.S. (2011). Evaluating of a learning 
trajectory for length in the early years. ZDM, 43(5), 617–620. 

Sherin, M.G., Linsenmeier, K.A., & van Es, E.A. (2009). Selecting Video Clips to Promote Mathematics 
Teachers’ Discussion of Student Thinking. Journal of Teacher Education, 60, 213–230. 

Tall, D. (1988). Concept image and concept definition. In J. de Lange & M. Doorman (Eds.), Senior 
secondary mathematics education (pp. 37–41). Utrecht: OW & OC. 

Van Es, E.A., & Sherin, M.G. (2002). Learning to notice: scaffolding new teachers’ interpretations of 
classroom interactions. Journal of Technology and Teacher Education, 10(4), 571-596. 



Investigating Lesson Study as a practice-based approach to study the 
development of mathematics teachers’ professional practice 
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The study, whose methodological approach is the focus of attention in this paper, is a qualitative, 
single longitudinal case study. The object of study is Lesson Study (LS), and the unit of analysis is 
two LS cycles. What teachers learn about teaching practice and student learning in mathematics from 
participating in the two cycles is investigated. LS and teaching practice are in the study regarded as 
object-oriented activities. It is claimed that indications of what the teachers learn during LS processes 
can be uncovered by the use of discourse analysis because learning is considered as a change in 
discourse.  

Keywords: Lesson Study, mathematics teachers, professional development, teaching practice. 

Introduction 
Recent studies have focused on the potential of practice-based approaches for developing 
mathematics teachers’ knowledge and practice. In this paper, we investigate a methodological 
approach to study how Lesson Study (hereafter LS) as a particular practice-based approach to 
professional development can contribute to teachers’ development (Thames & Van Zoest, 2013). In 
Japan, LS has been used for professional development of teachers for more than a century (Ronda, 
2013). Since Stigler and Hiebert (1999) wrote “The Teaching Gap”, researchers from other countries 
have become interested in LS as a structured approach to teachers’ professional development (e.g., 
Fernandez, 2002). In Norway, the Ministry of Education and Research calls for more school-
development projects, and LS is mentioned specifically in a recent strategy document (KD, 2014).  

Cohen, Raudenbush and Ball (2003) suggest that teaching can be regarded as instructional 
interactions among teachers and students around a certain content. Increased student learning thereby 
requires a change in these instructional interactions. Thames and Van Zoest (2013) call for research 
to focus more directly on these instructional dynamics. We suggest that LS provides a great venue 
for studying the development of teachers’ interactions about teaching practice and student learning.  

We focus on issues related to research design and methods in a project where LS is used to study 
indications of what the teachers learn during LS processes. To frame this discussion, the paper 
presents an ongoing research project in a Norwegian lower secondary school, where teachers learn 
and develop their professional practice from participating in two LS cycles. The aim is to highlight 
and discuss some methodological issues that occur when coordinating two sociocultural theories in a 
study of teachers’ learning about their own practice and student learning. Although this is a theoretical 
rather than an empirical paper – some would suggest that it sits at the border in between – we provide 
a brief empirical example from the study to illuminate our approach.    

Context of the study 
A group of mathematics teachers is observed in two LS cycles with an overall focus on what the 
teachers learn about their own teaching practice and student learning from participating in these two 
cycles. A sociocultural stance is used to investigate teachers’ learning and to understand the 



participants’ perspectives and interactions in the LS group. Knowledge is regarded as shared and 
collective rather than individual and develops through social negotiation (Radford, 2008). The role 
of verbal interaction in the learning process is essential, because new knowledge is considered to 
develop through talk in social interaction (Dudley, 2013). The theoretical and analytical frameworks 
used in this study coordinate two sociocultural theories: activity theory (Leontiev, 1978) and the 
commognitive theory (Sfard, 2008). Research on human development and learning thus becomes the 
study of development of discourse.  

Tabach and Nachlieli (2016) propose a combination of activity theory with communicational theories 
to study mathematics teaching, and our coordinated theoretical framework adheres to this proposal. 
Activity theory is used as a grand theory, and LS and teaching practice are seen as activities in the 
way Leontiev (1978) thought of activity. To Leontiev, all human activities are oriented towards an 
object with a certain motive. The activities consist of three components at dynamic levels: object-
motive, actions-goals and operations. In coordination with this theoretical perspective, and to identify 
what the teachers have learned on a discourse level, the commognitive theory (Sfard, 2008) is used 
as a local theory. This theory defines learning in terms of discourse, and it presents certain 
characteristics of a mathematical discourse: word use, visual mediators, routines and endorsed 
narratives. In this study, the development of teachers’ mathematical discourse about teaching practice 
and student learning in the goal-oriented actions and operations in the LS activity is studied. 

The main data sources for the ongoing research project are video-recorded observations from two LS 
cycles and focus group interviews (FGI). One LS cycle lasts about three months. The two cycles took 
place in spring (first cycle) and autumn (second cycle) 2016. The school implemented LS as their 
school-development project in January 2016, and this was the teachers’ first experience with LS. The 
LS group consists of four mathematics teachers, one participant from the school administration (the 
group leader) and one external expert (the first author of this paper). All the teachers’ meetings are 
video- and audio-recorded. In addition, all documents produced by the teachers during the whole 
process, and some of the students’ written works, are collected. Since conversation and 
communication are crucial in the study, FGIs before and after each LS cycle are conducted. The 
purpose of a FGI is to get a variety of perspectives on a given subject (Kvale, 2007). In the first FGI, 
a discussion about the current teachers’ teaching practice, including making plans, teaching, 
evaluation and the teachers’ thoughts about student learning is facilitated. In the second FGI, it is 
important to let the participants reflect on what they have learned about their own teaching practice 
and student learning. In the third FGI, the focus is on the LS process and what can be done differently 
in the next cycle. In the last FGI, the most crucial topic relates to teaching practice and student 
learning, and contains the same focus as the second FGI. 

A coordinated theoretical framework to investigate teacher development  
Describing the landscape of using more than one theory, Birkner-Ahsbahs and Prediger (2014) refer 
to networking strategies or connecting strategies. They distinguish these strategies by the degree of 
integration, from ignoring other theories on the one hand, to global unification on the other. Figure 
1 gives an overview of the approaches in between. Networking strategies are useful to analyse the 
same empirical phenomena using different approaches (Birkner-Ahsbahs & Prediger, 2014). 



 
Figure 1. Networking strategies (Bikner-Ahsbahs & Prediger, 2014, p. 119). 

The strategies of coordinating and combining are mostly used for a networked understanding of an 
empirical phenomenon or a piece of data (Bikner-Ahsbahs & Prediger, 2014, pp. 119–120). The 
difference between coordinating and combining theories depends on how elements from the two 
theories are well fitting or not. While coordinating can only be possible if the theories have compatible 
cores, theories with conflicting basic assumptions can be combined. In this study, activity theory and 
the commognitive theory are coordinated, because they have similar ontological and epistemological 
perspectives. LS and teaching practice are seen as object-oriented activities. Tables 1 and 2 give an 
overview of these activities. LS and teaching practice as object-oriented activities have a common 
motive: to promote student learning. They have however, different objects and goal-oriented actions. 
Another main difference is the teaching in LS (the research lesson). Because of the participating 
observers and the teachers’ research question(s) – they are researching their own teaching practice – 
the teaching is planned in order to promote teachers’ learning and development as well as students’ 
learning. The focus on instructional interactions between teacher and students around content (cf. 
Cohen et al., 2003; Thames & Van Zoest, 2013) is naturally embedded in LS. In order to study your 
own teaching practice to increase student learning, teachers are conducting goal-oriented actions. 
These actions represent each step of the LS cycle; formulate goals and plan the lesson, teach the 
lesson, observe students and reflect on/evaluate the research lesson. Each action has its own goal – 
prepare teaching, facilitate students’ learning, gather data to answer research questions and learn from 
the lesson. To constitute the goal-oriented actions, there are different operations, listed in Table 1.  

To describe the meaning of teachers’ professional teaching practice, we draw upon the work of Ball 
and Forzani (2009). They consider mathematics teaching as professional work and this work of 
teaching mathematics does not come natural. It has to be learned through deliberate training. Teaching 
practice is all about designing activities that increase student learning, but the work of teaching 
mathematics can also be decomposed into several core components. For instance, a teacher must 
present mathematical ideas, respond to students’ mathematical questions, find examples that illustrate 
certain mathematical points and so on – all examples of what Ball and colleagues refer to as “the 
mathematical tasks of teaching” (Ball & Forzani, 2009; Ball, Thames, & Phelps, 2008). This is 
another aspect of what they mean by referring to teaching as professional practice. In order to carry 
out the tasks of teaching mathematics, a specific knowledge is required that is connected with the 
work of teaching. This constitutes a particular knowledge base that is shared within the teaching 
profession.  
  



 

Activity  Lesson Study 
Objects/ 
motive 

Investigate own teaching (object) to improve students’ learning (motive) 

Actions  Plan the lesson  Teach the lesson  Observe the lesson  Evaluate the lesson  

Goals 
  

Prepare teaching  Facilitate 
students’ 
learning   

Gather  data to 
answer research 

questions  

Improve the lesson  

Operations  
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Table 1: LS and Activity Theory (translated from Mosvold & Bjuland, 2016, p. 188) 

Considering teaching or “the work of teaching” as an object-oriented activity, the object/motive is 
teaching in a way that leads to student learning. The goal-oriented actions are the tasks of teaching, 
and the operations are when the teachers actually conduct the tasks of teaching (see Table 2). These 
operations require mathematical knowledge for teaching (Ball et al., 2008). Developing teaching 
practice also includes developing teachers’ knowledge for teaching (Lerman, 2013). In this study, 
Ball et al.’s (2008) knowledge component: “Knowledge of content and students” is used when 
studying what teachers learn about student learning. 

Activity  The work of teaching mathematics 

Objects/motive Help students learn 

Actions  Mathematical tasks of teaching 

Goals  Student learning of specific mathematical content   

Operations  Conduct the mathematical tasks of teaching, depending on teachers’ knowledge for teaching 

Table 2. Teaching practice and Activity Theory 

The following example illustrates how the local theory is applied in coordination with the grand 
theory. In the activity of LS, one of the goal-oriented actions is evaluation. Within this action, an 



operation is to “discuss observations” (see Table 1). In the discussions of observations from the 
second research lesson, the teachers discuss how the students had worked on a task of finding the 
shape of a sandpit that can fit 500 litres of sand. They recall how one boy responded when challenged 
by the teacher to try another figure than a rectangle – like a triangle. The boy responded, “Yes, then 
we just double, because that is half, then…” Another teacher comments that the boy found another 
solution. Although the example is limited, it displays some characteristics of a mathematical 
discourse. In this action of discussing their observations, the teachers use mathematical words like 
shape, rectangle and triangle. Their restatement of a student’s response illustrates a mathematical 
routine that appears to involve the area of a triangle. When analysing the teachers’ discourse in the 
actions of LS over time, the local theory may help us identify changes in discourse – which is how 
Sfard (2008) defines learning – on an object level or meta level. Introduction of new words are 
examples of object level learning, whereas changes in the metarules of the discourse constitute 
learning or development on meta level.  

Considering the role of the researcher  
In the described study – like in numerous similar LS research projects – the researcher acts as 
participant observer. Being a participant observer in research – as the first author of this paper – might 
lead to both advantages and challenges. Connelly and Clandinin (1990) underline one advantage 
when they focus on the relationship between the researcher and the participants in the context of 
research in education. They stress the importance of all parties’ equality, which gives rise to better 
collaboration. The first author is a participant observer in the way Bryman (2012) defines as being an 
“overt full member” (p. 441). This means that the researcher is completely involved in the group’s 
work. Bryman distinguishes between “covert full member” and “overt full member”. The differences 
being if the members of the group are aware of the researcher’s status as a researcher or not. In the 
present study, the participants are aware of the first author’s role as a researcher. Bryman (2012) 
claims that there are some challenges associated with the “overt full member” role. As an active 
participant, you may forget your role as a researcher. He refers to this as “going native” (Bryman, 
2012, p. 445). To avoid this, it is important to be aware of the different roles you have as a 
participating observer. In the group meetings, the researcher switches between a conversation role 
and a member role. In the research lesson, the researcher does not teach the lesson, but participates 
in activities as an observer. Wadel (1991) refers to this role as the role of the apprentice. In addition, 
another essential aspect of the researcher role in this study is “the knowledgeable other” in the LS 
group, the role of observer-spectator (Wadel, 1991). The most important part of this role is to guide 
the group through the LS cycle and help the teachers to keep focus on their own research. Previous 
research has shown that without an external expert, teachers easily forget the research question (e.g., 
Takahashi, 2013) and collaborate without actually doing LS.  

Staying long in the field increases the stability of observations and dependability in a qualitative 
project (Cohen, Manion, & Morrison, 2007). In this project, data collection spans over a calendar 
year. The time span is particularly important when the researcher acts as participant observer in a LS 
group, in order to reduce potential reactivity effects (Cohen et al., 2007). Another element that 
supports the dependability in the study is the teachers’ reflections on the outcomes of their own 
learning. This is useful for the analysis, because we can then compare findings (related to observed 
change in discourse) with the teachers’ own reflections. The participants’ opportunity to agree with 



the descriptions and interpretations the researcher makes during the LS cycles underpin the 
confirmability in this research. Since one researcher is participating in all the conversations when the 
teachers talk about their own reflections on a meta-level, this researcher’s voice – repeating their 
different opinions – enables the participants to confirm or disconfirm. This can only happen because 
one researcher is a participant observer. 

In the final step of a LS cycle, the teachers have to think through what they have learned during the 
whole process. Based on interpretations of the data material, the researcher attempts to make thick 
description of teachers’ learning through LS. In the process of creating such thick descriptions, we 
follow Stake (2010) who emphasizes the connection to theory in addition to providing rich 
descriptions and interpretations of data – thus supporting the transferability of the research.  

Concluding discussion  
In this paper, we have referred to a study of teacher learning in LS as a starting point for discussing 
some theoretical and methodological issues that can be involved when studying what teachers learn 
about teaching practice and student learning. In their call for more practice-based approaches to study 
the development of mathematics teachers’ knowledge and professional practice, Thames and Van 
Zoest (2013) argued that such efforts required “work on conceptualizing practice, formulating 
questions about practice, and developing methods for studying it” (pp. 592–593). We suggest that LS 
provides a useful venue for such studies, but we agree with these researchers that further work – 
conceptual and methodological – is necessary. A possible approach is to use our proposed 
coordination (Bikner-Ahsbahs & Prediger, 2014) of activity theory and the commognitive theory to 
study mathematics teachers’ learning in the context of LS. This might be useful in multiple ways. In 
the following, we highlight two potential benefits of such a coordinated theoretical framework.  

First, the application of Leontiev’s (1978) activity theory provides a useful framing for a 
reconceptualization of the work of teaching mathematics. Ball and Forzani (2009) propose that the 
work of teaching mathematics is constituted by the recurrent tasks of teaching that teachers encounter 
when carrying out this work. Their conceptualization fits within the idea of teaching as professional 
practice. In the TeachingWorks (2015) project, they develop these ideas further and identify a number 
of core practices that are particularly important in the work of teaching. A challenge with these and 
other efforts to conceptualize the work of teaching is that the components of practice – for instance 
the mathematical tasks of teaching – sometimes appear to be on different levels, and the issue of 
purpose often appears absent. Using Leontiev’s (1978) idea of distinguishing between object-oriented 
activity, goal-oriented actions and operations in a reconceptualization of the work of teaching 
mathematics, may solve both of these potential challenges while at the same time preserving the 
obvious strengths of previous conceptualizations. Such a theory-based reconceptualization enables 
new questions to be posed and may support the development of a theory of mathematics teaching that 
communicates with existing theories of learning and development.  

Second, the application of Sfard’s (2008) commognitive theory enables the development of more 
operational definitions of teaching and teacher learning about teaching practice and student learning. 
When applying a definition of teaching that coordinates perspectives from activity theory with Sfard’s 
theory, the issues of motives and purpose are embedded. The proposed definition of Tabach and 
Nachlieli (2016, p. 303) is a good candidate: “teaching can be defined as the communicational activity 



the motive of which is to bring the learner’s discourse closer to a canonical discourse.” This definition 
draws upon Sfard’s (2008) definition of learning as an observable change in discourse, and the 
application of such a theory makes teaching and learning more easily observable.  

In interpretative research, the goal is to understand and interpret the meanings of human behaviour 
such as teachers’ talk, and it is important for the researcher to understand motives, meanings, reasons 
and other subjective experiences rather than to predict causes and effects (Hudson & Ozanne, 1988). 
This paper highlights and discusses some methodological issues that may arise when investigating 
development of mathematical knowledge for teaching in LS from a participationist (rather than 
acquisitionist) perspective (Sfard, 2008), focusing on teachers’ participation in object-oriented LS 
activities and analysing their learning in terms of discourse as two different grain sizes. The two levels 
occur because the theories look at learning differently; activity theory is focusing on acting humans, 
whereas discourse theory is focusing on humans who communicate. Both perspectives are arguably 
embedded when mathematics teachers’ professional practice is developed through LS, and an 
application of such a coordinated theoretical perspective might represent another step towards the 
efforts to understand what teachers learn about teaching practice and student learning (cf. Thames & 
Van Zoest, 2013).  
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We understand Fundamental Mathematical Knowledge (FMK) as the initial mathematical 
background we expect students to have at the start of their education to become Primary School 
teachers. In this paper, we focus on the answers given by 241 first-year student teachers to two non-
routine questions that were part of an entrance examination. Non-routine questions are those for 
which students do not have a straightforward algorithm available to reach the answer and/or the 
result obtained by using it needs to be interpreted within the problem’s context. The results show 
that non-routine questions are a powerful tool to assess the solidity and stability of their initial 
mathematical knowledge but also a powerful tool to find out whether the students have 
appropriated the essential ways of thinking and working in mathematics. Our findings also suggest 
that the mathematical knowledge of first-year student teachers is far from the desired FMK. 

Keywords: Fundamental Mathematical Knowledge, non-routine questions, teacher education. 

Introduction 
Within the framework of a program that aims to improve initial teacher training in Catalonia – 
Programa per a la Millora de la Formació Inicial de Mestres, MIF– an entrance assessment has 
been created. Its purpose is to regulate the access to primary teaching degrees and will be applied for 
the first time in June 2017. The assessment includes a mathematics test intended to ensure the 
mathematical knowledge of future students of teaching degrees. In this context, in an attempt to find 
evidence of the distance between the student candidates’ initial mathematical knowledge and the 
desirable mathematical knowledge, our study focuses on characterizing the knowledge 
demonstrated by a group of 241 students in their first year of training as primary teachers. In this 
paper we focus on the analysis of their responses to 2 non-routine questions. 

Fundamental Mathematical Knowledge (FMK)  
In Castro, Mengual, Prat, Albarracín and Gorgorió (2014) we introduced Fundamental 
Mathematical Knowledge (FMK) as the disciplinary mathematical knowledge that students need to 
benefit from courses in mathematics and mathematics teaching during their education to become 
teachers, considering the requirements of the professional practice and the competences to be 
developed by children in primary education. FMK is the disciplinary knowledge on which to build 
throughout teacher training to attain the mathematical and pedagogical content knowledge required 

                                                 
1 The study presented here has been developed within the the research project Caracterización del conocimiento 
disciplinar en matemáticas para el Grado en Educación primaria: matemáticas para maestros, supported by the 
Dirección General de Investigación in the framework of I+D, RETOS, (ref. EDU2013-4683-R). 

2 Lluís Albarracín is a Serra Húnter Fellow at the Universitat Autònoma de Barcelona. 



for professional practice. As teacher educators, we regard FMK as the mathematical knowledge 
starting point for our courses, which should be based on a thorough knowledge of elementary 
mathematics, being the foundation that would support a structurally robust training.  

As we have defined FMK, it is not explicitly part of the different models that characterize teacher 
knowledge. However, it relates to them. Ma (1999) develops Shulmans’ proposal (1986) and brings 
up the notion of profound understanding of emergent mathematics. Our idea of FMK is related to 
Ma’s proposal, but focuses on the initial knowledge required for teacher training, as opposed to this 
author who is interested in the educated teacher. Ball, Thames and Phelps (2008) propose a 
characterization of mathematical knowledge for teaching from what teachers do when they teach 
mathematics and from the knowledge and skills they need to achieve for students to learn.  

Considering that we are focusing on young adults that want to become teachers, FMK is close to 
their notion of Common Content Knowledge (CCK), understood as the subject-specific knowledge 
needed to recognize and solve mathematical problems that any educated adult should have. 
However, since FMK is defined in terms of requirements to enter a teaching degree, FMK would be 
mathematical knowledge essentially linked to the school-subject “mathematics”. FMK would be the 
knowledge upon which our students would construct their Specialized Content Knowledge (SCK) 
and Horizon Content Knowledge (HCK) during their education to become teachers. Rowland 
(2008), based on observation in the classroom to characterize situations in which the teachers’ 
mathematical content knowledge is visible, proposes the reference framework called Knowledge 
Quartet Framework. The Knowledge Quartet has 4 dimensions: foundation, transformation, 
connection and contingency. Again, the idea of FMK can be related to the Foundation dimension, 
even though the latter refers to expert knowledge  

There is extensive research aimed at developing theoretical models of different types of knowledge 
required to teach mathematics. However, much less attention has been paid to research focused on 
establishing what students’ mathematical knowledge is (or should be) when entering teacher 
training programs (Linsell and Anakin, 2012). According to Linsell and Anakin (2013), the theory 
developed so far around knowledge for mathematics teaching shows limitations when analysing 
students’ knowledge on entrance to the faculties, since it is based on what teachers do in practice.  

FMK focuses on the knowledge of core concepts and on the ability to solve exercises, problems and 
situations applied to different fields – numbering and arithmetic, relations and change, space and 
shape, measurement, statistics, and randomness – together with the ability to assess the adequacy 
and reasonableness of the response in each case. We understand mathematical competence as the 
ability to use mathematical knowledge encompassing both mathematical and non-mathematical 
situations. Mathematical competence is based on factual knowledge and concrete skills to carry out 
mathematical activities and it includes the ability to ask and answer questions in and with 
mathematics, and the ability to deal with mathematical language and tools (Niss and Højgaard, 
2011). 

Mathematical competence goes beyond knowledge of procedures and it manifests itself in the use of 
conceptual knowledge in different situations. It requires the knowledge of rules, definitions and 
connections and domain structure, and knowing why certain procedures work for certain problems, 
what the purpose of each step of a procedure is, and making the connections between these steps 



and their conceptual foundations. Non-routine questions cannot be approached in an automated way 
and solving them requires a deep understanding of the concepts and procedures involved in them.  
This is why we want to know whether or not non-routine questions are a suitable tool to evaluate the 
initial mathematical knowledge of student candidates in relation to FMK in terms of competences.   

Method 
In the process of construction and refinement of the mathematics test of the entrance assessment, we 
examined different groups of students who had just started their training as teachers but had not yet 
had any courses related to mathematics or didactics of mathematics. The main data used in this 
study comes from the test answers of the 241 first-year students of the Primary Education Degree at 
the Universitat Autònoma de Barcelona during the school year 2015-16. For this cohort of students, 
the test was not yet a requirement for admission. The test students had to pass had 4 different 
versions around the same mathematical ideas, and was made up of 25 questions. Students were 
given 90 minutes to complete the test not being allowed to use any type of calculator. They were 
randomly handed out one of the four versions, and we afterwards verified that the four groups of 
students were statistically equivalent in terms of their entrance characteristics.  

The questions in the test were related to the core content of the curriculum for compulsory 
education. At least half of them were non-routine questions in the sense that there was no 
straightforward algorithm available to the student to reach the answer. In the cases in which such an 
algorithm was available, the result obtained by using it had to be interpreted within the problem’s 
context. When there was a simple approach to solve a question, its application would however be a 
cumbersome and time-consuming task. Therefore, given the limited time, these questions called for 
the development of efficient approaches to solve them.  

Results 
Ruler question 

Questions 1 and 2, given in Figure 1, were question 15 in versions 1 and 4, and versions 2 and 3 of 
the test respectively. In the students’ test, the centimetre in the images corresponded to exactly one 
centimetre. 

This question involves the measurement of a length with a tool, which is part of the content of 
compulsory education and is similar to questions that can be found in tools aimed to test primary 
children’s mathematics. It’s a non-routine question, since it cannot be answered by a direct reading 
of the image because the segment to be measured does not start at point 0 and the subdivisions of 
the ruler do not correspond to decimal units. The question requires knowledge of the number line 
and representing fractions on it. 

Version 1 Version 2 

Figure 1: Question 15 of versions 1 and 2 



The students’ answers are summarized in Table 1. Since all the students answered this question, 
both in version 1 and 2, we interpret that they believed to know the correct answer. For the question 
in version 2, where the fraction involved is 1/2, 78.22% of the students gave a correct answer, while 
in version 1, which additionally requires a measurement using the ¾ fraction, the percentage of 
success is 38.46%.  

Version Correct Answers Errors Blank Total 

1 45 (38.46%) 72 0 117 

2 97 (78.22%) 27 0 124 

Total 142 (58.92%) 99 0 241 

Table 1: Answers to the Ruler question 

We generally observe a tendency to induct, i.e. the students answer the question from what they 
would do to approach a similar routine question. The correct answer is 4.75 cm, and little more than 
a third of the students answered correctly, and the answer 4.3 arises from considering that each 
subdivision of the unit corresponds to 0.1 cm and calculating the total length counting subdivisions. 
This answer contains an additional error, since units are ignored when expressing the measurement. 

Similarly, the answers 4.7 cm, 5.3 cm and 5.7 cm stem from automatically considering that each 
subdivision equals 0.1 cm. The three answers consider a reading of the graphical information 
contained in whole units. Thus, 4.7 = 5 – 3 x 0.1. In the 5.3 answer, there is an additional error since 
subtraction would be required 5.3 = 5 + 3 x 0.1. The 5.7 answer implies an incorrect reading of the 
graphical information when supposing that the segment contains 6 whole units 5.7 = 6 – 3 x 0.1. 

The error of 19 cm also answers to an automated process, since it stems from considering each 
subdivision as 0.1 cm. The incorrect answer 9.5 cm arises from considering that every two divisions 
equals 1 cm and then acting routinely. In addition, those who make this mistake do not stop to think 
whether the segment may be longer than the ruler being used to measure. We also noted another 
type of errors resulting of applying a routine process. Here the students gave the result of the 
measurement by rounding amounts, such as in 4.8 cm or 5.8 cm, from rounding 4.75 and 5.75, 
respectively. In version 2, the correct answer is 5.5 and the errors detected similarly stem from 
applying automated processes – such as acting inductively or rounding – without questioning the 
meaning of the procedure they are using or the answer obtained. 

Cubes question 

Question number 16 – shown in Figure 2 – was slightly different in the four versions of the test, but 
was always related to the concept of volume. It approached the idea of measuring the volume of a 
solid directly by counting units, again a concept present in compulsory education. However, all 
these were non-routine questions in the sense that they differed from typical textbook exercises that 
require the calculation of a volume by applying a formula. This question additionally required the 
interpretation of figural information, even though the figures were rather simple. 



If the edge of each cube measures 4 cm, what 
is the volume of this object? 

 

If the edge of each cube measures 4 cm, what is 
the volume of this object knowing that we can 
see all the cubes that integrate the object? 

 

 

Version 1 Version 2 

If the edge of each cube measures 4 cm and the 
volume of the object is 512 cm3, how many 
hidden cubes are there? 

The volume of the object is 384 cm3. All the 
cubes that integrate it are identical. What is the 
length of the edge of the cubes? 

  
Version 3 Version 4 

Figure 2: Versions 1, 2, 3 and 4 of the Cubes question 

In versions 1 and 2, the question required interpreting figural information, mastering the notion of 
unit of measurement, being able to calculate the volume of a cube with a 4 cm edge and, 
particularly, having a way to quickly figure out how much 4 x 4 x 4 is. In both cases, students 
should be able to express their answers using the appropriate units. Version 2 was more complex 
than version 1, since it explicitly brought up the idea of hidden cubes. The questions in versions 3 
and 4 also required interpreting figural information in a representation that also included the idea of 
hidden cubes, but this time providing the volume of the global object.  

The question in version 3 required determining the number of hidden cubes, therefore calculating 
the volume of a cube with an edge of 4 cm, using the multiplication algorithm or having a way to 
quickly calculate 4 x 4 x 4. Then it required being able to find how many times 512 cm3 could 
contain 64 cm3, by either using the traditional division algorithm or any other efficient procedure. 
The question in version 4 was more complex, since once the number of small cubes was 
determined, the students had to find the volume of each of them, and after that finding the length of 
the edge. With a given length, finding the volume is certainly a routine question; however, the 
opposite is clearly non-routine.  

Table 2 shows the number of correct, erroneous and blank answers for each version of question 16. 
In contrast to what happened with the Ruler question, in all versions of question 16 there was a 



significant percentage of blank answers, which indicates how the students perceived the difficulty of 
the different versions.  

Version Correct Erroneous Blank Total students 

1 23.21% 46,43% 30,36% 56 

2 20.69% 43,10% 36,21% 58 

3 9.09% 59,09% 31,81% 66 

4 8.20%) 39,34% 52,46% 61 

    241 

Table 2: Answers to the Cubes question 

If we pay attention to the percentage of corrects answers, we see that the success in versions 1 and 2 
is similar and much higher than that of versions 3 and 4, which also have a similar success rate. We 
interpret this difference as due to the fact that questions in versions 3 and 4 are much further away 
from textbook questions than the questions in versions 1 and 2, and all of them are far from how 
they have dealt with volume in their previous schooling.  

In version 1, the correct answer is 1792 cm3, since there are 28 cubes with a volume of 64 cm3 each. 
Among the 56 students, only 13 reached the correct answer and 18 gave no answer at all. Among 
those that gave a wrong answer, the most common errors lie in not knowing how to find the volume 
of the small cube or in mixing the idea of volume with that of surface area. Another common error 
lies in not identifying the right number of cubes in the figure: only 8 of the wrong answers are 
attained using the correct number of cubes, the others that make sense deal with the question 
considering there are 20 cubes. 

In version 2, the correct answer is 384 cm3, since there are 6 cubes with a volume of 64 cm3 each. 
Among the 58 students dealing with these questions, only 12 reached the correct answer and 21 
gave no answer at all. The percentage of blank answers being higher than in version 1 would 
confirm the idea that students considered this task to be more difficult than task 1, most likely 
because it brings up the idea of hidden cubes. Calculations are simpler than in version 1, since the 
number of cubes is a one digit number. However, students also have problems in knowing how to 
find the volume of the small cube or mix the idea of volume with surface area.  

In version 3, the correct answer is 2 hidden cubes, since the object is made up of 8 cubes and 6 of 
them are visible. The total number of cubes in the object can be found by dividing 512 by 64, since 
the volume of each cube is 64 cm3. Among the 66 students, only 6 students reached the correct 
answer and 21 gave no answer at all. The percentage of blank answers being close to the one in 
versions 1 and 2 would suggest that students do not consider this question to be more difficult than 
the others. As in version 2, calculations are simple, since the number of cubes is a one digit number. 
One common error is to not answer to the number of hidden cubes, but to answer the number of 
cubes that make up the object. Among the incorrect answers, 7 of them clearly show that the 
students knew they had to divide the volume of the object by the volume of the small cube, but 
again encountered problems in relating the length of the side of the cube to the volume of the cube, 
and directly used the side length or the surface area of one the sides of the cube. It is interesting to 



note that, among the wrong answers, there is at least one that suggests that the student attempted to 
directly read the figural information given. 

To solve the question in version 4 the student had to divide the volume of the object, 384 cm3, by 6 
which is the number of the cubes, obtaining 64 cm3. Version 4 was given to 61 students, 5 of them 
solved it properly, 24 obtained wrong answers and 32 gave no answers, a much higher percentage 
than in version 3. Among the 24 wrong answers, we found three where the student divided 384 by 6 
but went no further, giving as a result 64 cm3, 64 cm or 64. Among the wrong answers, we also find 
those of 11 students that divided the volume by 3 to calculate the length of the side and, in some 
cases, there are added errors like using the wrong units or rounding off the result.  

We wish to note that, in all versions, miscalculations were often present. Once again, as in the Ruler 
question, what is most striking about the students’ answers is that, too often, it seems that they did 
not try to make sense of what they were doing. We might think that the students would be content 
with providing a numerical answer without paying attention to the meaning of either the question or 
the answer they are giving. 

Discussion and conclusions 
In this paper, we have analysed how a group of 241 first year student teachers deal with two non-
routine questions in the context of a test intended, in a near future, to select those students that will 
be allowed to access a degree in Primary Education. Our results show that the percentage of correct 
answers relates to how far apart the questions posed are from the type of questions the students may 
have encountered in their previous schooling. The difficulties encountered by the students show that 
their initial mathematical knowledge is not solid enough to be considered a sufficient basis on 
which to build up their mathematical content knowledge and didactical knowledge. The results also 
show a significant offset between the initial mathematical knowledge of the student tested and the 
FMK understood as the desirable starting-point knowledge even though they may consider they 
have the knowledge required to address these questions, given that the number of blank questions is 
generally small. Moreover, we have little evidence that they master mathematical modes of thought 
or that they have problem tackling competence. Even to find a reasonable answer – one that makes 
sense – does not seem to be part of their way of doing mathematics. 

Non-routine questions in the examination were designed to assess the students’ understanding of 
basic algorithms and core concepts and their ability to move from specific to general thinking. 
Therefore, even if the questions essentially dealt with ideas taught in compulsory education, they 
challenged the student to reason and to use mathematical structures, and required that the student 
thoroughly understood the knowledge, skills and problem approaches he was using.  

Non-routine questions seem to be a powerful tool not only to test basic concepts, but also to check 
the existence of the relationships among them, and to verify whether the students grasp the essence 
of doing mathematics and the thought processes involved. It is in this way that we consider that 
non-routine questions were useful to assess the students’ initial mathematical knowledge. Our 
results also seem to suggest that when non-routine questions are simple, as in the Ruler question, 
students tend to solve them by using a procedure that would solve a similar standard question, 
without critically analysing what they are doing or how they are doing it. In the same way, when the 
question is non-routine due to its complexity, the evidences we obtained show gaps in their 



knowledge of concepts and relationships between concepts. However, these are hypotheses that 
would need further research to be tested. 
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This study aimed to examine prospective teachers’ anticipations of students’ thinking on the 
measure of the arc and measure of the central angle, circumference, and area of the circle and to 
explore the changes in their anticipations as they conduct three lesson study. For this purpose, case 
study method was used. Three prospective middle school mathematics teachers participated in the 
study and completed three lesson study. The data were analyzed in terms of three components: the 
prospective teachers’ anticipations of (1) how students’ would think; (2) what difficulties they 
would have; and (3) what powerful ideas they would have. The results showed that lesson study 
cycles with real classroom experience provided opportunities for the prospective teachers to 
develop anticipations of students’ thinking.  
 
Keywords: Lesson Study, prospective teacher knowledge, anticipating student thinking, middle 
school mathematics. 
 
Introduction 
Recently, teachers’ knowledge of mathematics has become an object of concern. Ball and 
colleagues have expanded teacher knowledge proposed by Shulman (1986) by defining “the 
mathematical knowledge for teaching” (Ball, Thames, & Phelps, 2008). Pedagogical content 
knowledge (PCK) is part of the mathematical knowledge for teaching, and it focuses not only on 
content knowledge and pedagogical knowledge, but also on integration and transformation of 
content and pedagogy (Ball et al., 2008). According to Ball and others (2008), the components of 
PCK are knowledge of content and teaching (KCT), knowledge of content and students (KCS), and 
knowledge of content and curriculum (KCC). This study focuses on knowledge of content and 
students (KCS). Hill and others (2008) defined “KCS as content knowledge intertwined with 
knowledge of how students think about, know, or learn this particular content” (p. 375). Ni 
Shuilleabhain (2015) added that KCS includes students’ understanding of content, student 
developmental sequences, typical student errors, anticipation of what students are likely to think or 
find confusing and common student computational strategies. Teachers should consider students’ 
needs and interests when they plan for lessons. They must anticipate students’ typical thoughts, 
ideas, and difficulties when selecting teaching materials and making decisions about the 
implementation of the lessons. Teachers must also attend to and interpret students’ emerging and 
incomplete ideas during the instruction. Each of these tasks requires knowledge and skills 
developed through the interaction between mathematical understanding and knowledge of student 
thinking (Ball et al., 2008). Prospective teachers who can recognize and appreciate students’ 
thinking and cognitive development could design and implement learning activities to meet 
students’ needs and interest (Ball et Al., 2008; Llinares, Fernandez, & Sanchez-Matamoros, 2016). 



However, their experiences and knowledge of students’ thinking are very limited (Peterson & 
Leatham, 2009). Hence, teacher education programs should be designed to help prospective teachers 
improve students’ mathematical knowledge and skills related to KCS by anticipating student 
thinking, among other abilities. 

Lesson study is one of the models that helps teacher candidates develop their knowledge related to 
student thinking. It is a professional development program in which teachers collaboratively work 
on teaching. In this program, teachers first determine learning goals of the lesson and plan the 
lesson. Subsequently, one of the teachers in the group teaches a lesson and other group members 
observe the teaching process. Finally, they evaluate and revise the lesson plan so that it can be 
implemented second time (Lewis, Perry, & Hurd, 2009; Murata, Boffering, Pothen, Taylor, & 
Wischnia, 2012). In planning a lesson, the teachers are usually guided to focus on expected learning 
activities, expected student reactions or answers, teacher’s responses to student reactions, and 
possible evaluation activities. This professional development model may provide prospective 
teachers with opportunities to plan, implement, criticize, and reflect on lessons collaboratively 
(Carrier, 2011). 

Although research studies emphasize the importance of teachers’ knowledge of student thinking, we 
know little about the development of prospective teachers’ knowledge and skills in anticipating 
student thinking (Webb, 2006). Lesson study practices are found helpful in developing teachers’ 
competence to anticipate students’ mathematical thinking (Lewis et al., 2009; Tepylo & Moss, 
2011). In this regard, the present study aimed to investigate prospective teachers’ knowledge of 
student thinking of the concept of circle as a two-dimensional figure (disk) and as a one dimensional 
curve and to explore any changes in their anticipations as they work on three lesson study cycle. 

Conceptual framework 
The theoretical basis of the lesson study model acknowledges that cognition is social and that 
learning takes place in enriched learning environments in a cooperative way (Fernandez, 2005). In 
this regard, lesson study is a professional development program that encompasses constructive 
learning and creates learning opportunities (Lieberman, 2009). As lesson study is based on planning 
before the practice, observations during the practice, and cooperation and reflection throughout the 
practice, it contributes to making ‘learning’ a cultural activity, which ultimately makes this model 
more significant (Dudley, 2013). According to Davies and Dunnill (2008), this model differs from 
other cooperative models in that the cooperation adopted in lesson study continues before, during, 
and after the practice. All these characteristics of lesson study model give teachers different 
perspectives and show them how an effective mathematics education should be offered (Erarslan, 
2008). Researchers emphasize that integrating lesson study model into teacher education programs 
can help prospective teachers develop knowledge and competence by learning from practice 
(Rasmussen 2016; Sims & Walsh 2009). Lesson study enables prospective teachers to work on 
lesson plans collaboratively and to conduct careful observations of learning and teaching activities. 
The model also allows prospective teachers to discuss and reflect on their own practice (Fernandez 
2010). It mainly helps prospective teachers gain curriculum knowledge and pedagogical content 
knowledge, including knowledge of common student mistakes. Observing lessons gives prospective 
teachers the opportunity to notice things about the classroom environment, and most importantly, to 
see the situation from the perspective of students (Lewis, 2002). Thus, they can become familiar 



with what students actually know, how they think, and what they can do as well as with areas in 
which they may have difficulty (National Research Council, 2001, Takahashi, 2005).  

Methodology 

This study focuses on investigating the prospective teachers’ anticipations of students’ thinking of 
the measure of the arc and angle and circumference and area of the circle. Furthermore, it explores 
how such anticipations change during the lesson study. For this purpose, case study design was 
adopted. This design provides an in-depth analysis of single or multiple cases by means of various 
data collection tools (Creswell, Hanson, Clark, & Morales, 2007). 

Participants and context 

The participants of this study were three prospective middle school mathematics teachers enrolled in 
a state university in Ankara. They were in their last year of the program and were willing and 
motivated to participate in the study. They were 22 years old, and their GPAs were between 3.29-
3.47 out of 4.00. The teacher education program generally focuses on content knowledge (i.e., 
mathematics) in the first and second years. On the other hand, during the third and fourth years, 
most of the courses are related to mathematics education. Prospective teachers who graduate from 
the program can work as mathematics teachers in middle schools (grades 5 to 8). 

Data collection 

Within the scope of the three-week study, the prospective teachers worked as a group and planned, 
implemented, and revised three lessons (each of which lasted about 80-120 mins) for each learning 
objective on the topic of circle that is a part of the 7th grade math curriculum (MoNE, 2013). The 
prospective teachers used a lesson plan template to design the lessons. It consisted of four columns 
listing the (1) learning activities and key questions (and time allocation), (2) expected student 
reactions or responses, (3) teachers’ responses to student reactions, and (4) goals and method(s) of 
evaluation (see column 2 of Table I).  

Steps of the lesson: 
learning activities and 
key questions (and 
time allocation) 

Student activities/ 
expected student 
reactions or responses 

Teacher’s response to 
student reactions / 
Things to remember 

Goals and Method(s) 
of evaluation 

  

 

  

Table 1: Lesson plan template 

Afterwards, one of the group members implemented each lesson plan in real classrooms. The 
implementation process was video recorded. Regarding the last stage, the first author and mentor 
teacher evaluated and provided feedback to group members. Subsequently, the group revised the 
lesson plan (see Figure 1). Moreover, prospective teachers were expected to write a diary about this 
process. 



 
 

Figure 1: Lesson study cycles 

The same cycle was repeated for each lesson plan. Prospective teacher 1 (T1) focused on the 
following learning objective: “Identifying central angles, their intercepted arcs, and the relationship 
between the measure of  the  arc  and  measure  of  the  angle.”  T2  focused on “Calculating the 
circumference of a circle and a segment of a circle.” T3 focused on “Calculating the area of a circle 
and a segment of a circle” (MoNE, 2013). The initial and revised lesson plans designed by the 
prospective teachers, the video recordings of the lesson study meetings, the video recordings of the 
lessons conducted, debriefing meetings after each lesson, and the observation notes and diaries 
taken by the prospective teachers, researchers, and training teacher during the implementation of the 
lesson provided the data for this study.  

Data analysis 

The data were coded based on the themes from the relevant literature (Ball, et. al., 2008; Fernandez 
& Chokshi, 2002; Hill, et. al, 2008; Schoenfeld, 1994) as well as from the participants’ responses. 
For this purpose, researchers examined the prospective teachers’ articulations and behaviors during 
study lessons and searched for the incidents showing their anticipations of (a) student thinking, (b) 
difficulties that students would have, and (c) students’ powerful ideas. Anticipations of how 
students would think involve predicting how students think in general, what deductions they can 
make, and what types of connections they can make. Anticipations of students’ difficulties involve 
predicting the challenges, mistakes, and misconceptions of students regarding the concept of circle. 
Lastly, anticipations of the powerful ideas that students might have involve expecting the key ideas 
about the relevant concepts. The data were examined based on this analytical framework for each 
lesson study cycle, and the findings were compared across three lesson study to examine any 
changes observed throughout the study. 

Findings 
This section presents the prospective teachers’ anticipations of (1) how students would think, (2) the 
difficulties that students would have, and (3) the powerful ideas that students would have, as 
teachers design and implement three study lessons on the concepts of the measure of the arc, 
measure of the angle, and circumference and area of the circle. In Table 2, frequencies represent 
prospective teachers’ anticipations related to each component of student thinking observed for each 
study lesson. 
Table 2 shows that the prospective teachers pointed out that 26 different thoughts could be 
considered as typical for students (i.e., component 1) in the study lesson. For instance, they expected 



that students could explain central angles as the midpoint angle of the circle, or they anticipated that 
students would know how to draw a circle using different tools, such as a coin or a compass. 
 
 Types of plan How students’ would 

think typically 
What difficulties they 
would have 

What powerful ideas 
they would have  

First 
Cycle 

Lesson plan 10 2 3 
Revised lesson 
plan 

10 (0 new 
anticipation) 

3 (2+ 1 new 
anticipation) 

3 (3+ 0 new 
anticipation) 

Second 
Cycle 

Lesson plan 8 - 5 
Revised lesson 
plan 

9(8+ 1 new 
anticipation) 

1 (0+ 1 new 
anticipation) 

6 (5+ 1 new 
anticipation) 

Third 
Cycle 

Lesson plan 7 5 6 
Revised lesson 
plan 

7 (7+0 new 
anticipation) 

5 (5+ 0 new 
anticipation) 

8 (6 + 2 new 
anticipation) 

Table 2: Frequency of prospective teachers’ thoughts related to the components of anticipating 
student thinking 

Among these 26 different anticipations, only one new anticipation was included in the revised plan 
after its implementation in a real classroom. More specifically, in the second study lesson, they 
thought that the students would quickly give the correct answer when they were asked to spot the 
circumference of the circle. However, since the students pointed the region inside the circle as the 
circumference of the circle, the prospective teachers included such typical student thinking in the 
revised lesson plan and made some revisions, as illustrated in the following dialogue: 

T2: Some students conceived the circumference of the circle as inside of the circle. We had never 
considered this. 

T1: Yes, I didn’t know what to say when they gave this answer. 

T3: So, we need to include some questions in the lesson plan. For example, shall we say ‘What 
do you think of when we say ‘circumference of the school ground?’ Then we can tell them to 
walk around the school ground. 

T2: Let’s decide a starting point and tell them to start walking from there and walk around the 
school ground until they reach the same point. 

T1: Yes, then students would realize that circumference is not actually the same as inside [of the 
circle]. Then we can ask them to think about the circumference of a circle. 

 
According to Table 2, the prospective teachers reported 9 different student thoughts could be 
considered difficult (i.e., component 2) in the study lesson. For example, they thought that students 
might confuse the concepts of circle and sphere. They also anticipated that students might consider 
meter as a unit of arc. Among these 9 different anticipations, two were included in the revised plans 
after its implementation in real classroom. In the first cycle, during the implementation of the 
lesson, the prospective teachers realized that students would confuse the central angle with inscribed 
angle. Thus, in the revised lesson, they decided to remind the students about the difference between 
these two types of angles. The following dialogue shows how they considered this idea as they were 
revising the lesson plan: 



 
T1: Did you see that students confused central angle with inscribed angle? 

T2: Yes, it seems that they didn’t know the difference. We never thought about it. So, what shall 
we do? Let’s draw a figure and ask them if it’s a central angle. If they say ‘yes’, we’ll use a 
material that shows an angle as a combination of two rays (half lines). Here, we can make a 
straight angle and ask the students what type of an angle it is. 

T1: Then, students would say it’s a straight angle based on what they learnt it in the previous 
lesson. Let’s make it a 360-degree angle and draw a circle taking the origin of the angle as the 
center and ask what type of an angle it is. 

T2: The students would say “It’s a central angle because the origin is at the center of the circle.” 

T3: Yes, then we can show the example with an inscribed angle and ask if it is a central angle. I 
think students will say it’s not because the origin does not cross the center. 

T1: This way, they can differentiate between a central angle and an inscribed angle. 

 
As seen in Table 2, the prospective teachers pointed out 17 different student thoughts could be 
considered as powerful ideas (i.e., component 3) in the study lessons. For instance, they expected 
that students could explain differences between circle and disk, and they anticipated that students 
would know what pi is. Among these 17 different anticipations, three new anticipations were 
included in the revised plans after their implementations in real classroom. In the third cycle, the 
prospective teachers asked students to find the area of a circle by using the area of a parallelogram. 
However, following the lesson, they realized that the instructions in the activity sheet were not clear 
enough to guide the students. This experience led them to contemplate about their expectations 
concerning students’ powerful ideas (i.e., making connections between the area of a circle and of a 
parallelogram) based on which they made some changes to the instructions. The following dialogue 
illustrates how their expectations changed: 

T1: The activity sheet was not very clear, so students did not understand the relationship between 
the area of a disk and the area of a parallelogram. We wanted to make it easier using what they 
learnt in quadrilaterals, but it didn’t work. What shall we do? 

T3: I think we should say that circle doesn’t look like a quadrilateral. Then they can notice it. 
Later, we can ask what part of a disk and the height of a parallelogram look similar. They 
might say ‘the radius of disk’. But, what’s important here is whether they can tell, which part 
of a disk has a relationship with the base length of a parallelogram. 

T2: Yes, so let’s include this in the lesson plan. 

To sum up, the data analysis showed that the prospective teachers identified various anticipations 
related to the three aspects of student thinking. They thought about how students develop ideas 
related to the fundamental elements of a circle as well as the circumference and area of a circle. 
They also recognized the importance of designing the lesson in the light of powerful ideas. In 
addition, they successfully anticipated different student difficulties and mistakes. The study lesson 
also help the prospective teachers produce new anticipations of student thinking after implementing 
and reflecting on the lessons. The prospective teachers might not have thought about these issues if 
they had not had a chance to implement and revise study lessons. 



Conclusion and results 
The findings showed that prospective teachers’ anticipations of student thinking for each study 
lesson varied. The study lesson provided the prospective teachers an opportunity to consider student 
thinking as an essential part of the planning. They were expected to work collaboratively and think 
deeply about students’ thinking (typical student responses, misconception, powerful ideas, prior 
knowledge, and understandings, etc.) as they plan their lessons. The lesson plan template guided 
prospective teachers to document their ideas about student thinking, making them explicit and the 
object of discussion. In this way, study lessons created a context for discussion about student 
thinking.   

Furthermore, the lesson study allowed them to develop knowledge and skills related to student 
thinking through powerful experiences in real classrooms. Such opportunities allowed them to get to 
know students well and analyze the learning process from students’ perspective. Some previous 
studies reported similar results (e.g., Ni Shuilleabhain, 2015; Webb, 2006). In this regard, lesson 
study could be used as a model in undergraduate programs to help the prospective teachers develop 
knowledge and skills related to student learning. 

Even though prospective teachers’ anticipations of student thinking were observed for each study 
lesson, a clear development through the three cycle was not observed. In this study, each cycle 
focused on learning objectives involving different concepts and skills (e.g., identifying central 
angles and calculating circumference and area of a circle). Such differences might have influenced 
prospective teachers’ anticipations. Another reason for not being able to detect a clear development 
through three cycles might be related to the analytical framework used in the study. To reveal 
different aspects of development of teachers’ anticipations, a more structured and detailed analytical 
framework could be used.   
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Some preliminary words 
The Saturday Group [Grupo de Sábado] (GdS), which emerged in 1999, is a collaborative group 
that brings together teachers from schools and academics (prospective teachers, master and PhD 
students, teacher educators) interested in researching the teaching of mathematics in a collaborative 
environment. Although gatherings are held on the university landscape, there are no formal 
academic regulations controlling participation. Recently the participants have focused their interest 
in improving their practices by deepening their mathematical and pedagogical knowledge. In that 
context, in order to frame the work to be developed, a Lesson Study (LS) has been devised, 
involving teachers from primary, lower and upper secondary, prospective teachers and researchers. 
For the implementation of LS, a structure with three subgroups has been established (one for each 
school level – primary, lower secondary and upper secondary). Complementary to the subgroups 
meetings (discussion and reflection upon tasks conceptualization and implementation), there will be 
meetings involving all the GdS elements. In those large group meetings (following the work already 
being done) the work goes around discussing and reflecting upon the situations emerged from 
teachers’ practice the participants consider problematic. In particular, such discussions are aimed at 
contributing for developing teachers’ knowledge, professional competency of noticing (in Mason’s 
2002 sense) and professional awareness.  For the development of this project we consider what we 
call a hybrid methodology, where goals of two different natures are pursued. On the one hand, there 
is an interest in studying the development of a Lesson Study as teacher education strategy in the 
Brazilian context. On the other hand, the research goal concerns the teachers’ professional 
development process, considering such development addressed through the lens of the Mathematics 
Teachers’ Specialized Knowledge – MTSK (Carrillo et al., 2013) conceptualization, intertwined 
with what we term of interpretative knowledge (Jakobsen, Ribeiro, & Mellone, 2014). When 
discussing teachers’ knowledge, besides the analysis of teachers’ classroom practices and 
interviews, also a focus on the dynamics emerged in the subgroups and on the GdS will be analysed, 
as well as teachers’ narratives grounded on their own experience (Connelly & Clandinin, 1988).  

Lesson Study as a teacher education strategy 

Considering the GdS context and the goals of the project in which this hybrid Lesson Study will be 
developed, six steps are considered. We have to recall that these steps have been emerged from the 
work with participants – by the nature of the GdS (a collaborative working group). The environment 
in which these steps are going to be developed are perceived as the context in which data for the 
research dimension will be gathered.  

1) Teachers identify a critical aspect from their own mathematical practice which they aim to 
discuss, reflect upon and improve. Such critical feature will be firstly discussed in each of the 



subgroups, taking into consideration the specificities of the contexts, and afterwards socialized and 
discussed in the large group (GdS) with all the participants; 

2) After the identification of the critical features, all the subgroup elements will discuss their 
own previous experiences, also grounded on some readings on documents (e.g., papers, books) 
where such problematic (or similar) is discussed. Such discussion aims at allowing deepening the 
participants MTSK, understanding and awareness on the problem at hand; 

3) Grounded on the discussions and reflections focusing on the problematic, teachers will 
conceptualize a task or sequence of tasks aimed at contributing for minimize the identified 
problem. Such tasks will be firstly prepared and discussed in each of the subgroups; 

4) The following considered stage concerns the implementation of each task prepared on the 
subgroups in the GdS, in order to deepen the levels of discussion both on the nature of the tasks, 
its mathematical goals and ways of implementation. We have to recall that in such discussion are 
involved teachers from different school levels which is perceived as an opportunity to intertwine 
different aspects of the MTSK and teachers’ awareness; 

5) The next stage concerns the participants analysis of the implementation (all the participants 
will analyse the task, the implementation process and the teachers knowledge involved and 
required). Such analysis will occur firstly on the subgroups and afterwards some episodes will be 
discussed in the GdS; 

6) The last stage (of each cycle), concerns the writing and discussion of narratives focusing on 
the lived experiences.  

The development of LS as a research project 

Understanding LS as a proficient way to engage mathematics teachers in a professional 
development landscape, we focus on discussing the MTSK mobilized, involved and recognized by 
teachers when preparing, implementing and discussing mathematical tasks. In an intertwined 
manner the dimensions of the interpretative knowledge will be focus of attention at all the 
previously considered moments. Data collection will be taken from the video recordings of the 
subgroups meetings and the GdS meetings; classroom practices; interviews to teachers; interviews 
to students after the implementation of the tasks and teachers narratives. With the analysis we intend 
to contribute for a broader understanding of teachers’ professional development and on the MTSK 
and interpretative knowledge developmental processes.  
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For many years, there has been an interest in the role of the teacher in mathematics education 
research. During this time, efforts have been made to conceptualize the professional knowledge 
required to be a mathematics teacher. However, yet no consensus has been reached on how to 
describe the knowledge and ability, which is special to mathematics teachers. One framework, 
“Mathematical Knowledge for Teaching” (MKT) (Ball, Thames & Phelps, 2008), developed in 
Michigan includes subject matter knowledge, pedagogical content knowledge and tasks of teaching, 
and is widely used, in praxis and theory. The Danish competency-based framework “Competencies 
and Mathematical Learning” (KOM) (Niss & Jensen, 2011), which is described in terms of 
possessing eight fields of mathematical competency and six competencies related to the teaching of 
mathematics, is less used. The frameworks have not yet been used together. This is what we propose 
to do using the framework for networking of theories as formulated by Bikner-Ahsbahs and 
Prediger (2010), which describes strategies for connecting theoretical frameworks. 

Figure 1: The MKT and KOM frameworks 

Method 
Based on a case study of the development of mathematics teacher knowledge among students in the 
Danish preservice mathematics teacher education program (Sloth & Højsted, 2016), which aims to 
qualify prospective teachers for work in primary and lower secondary schools, we investigate how 
and to what extent MKT and KOM can capture what the preservice teachers learn. Finally, referring 
to the model for networking of theories proposed by Bikner-Ahsbahs & Prediger (2010) we 
compare the two frameworks. 



Results 
We find that MKT and KOM can be used to describe most of our findings regarding the 
development of mathematical teacher knowledge in our case study, but the manner they describe 
them is different and do not always overlap. For example, when preservice teachers learn about 
different subtraction algorithms, which pupils might employ, we find the MKT framework can give 
a nuanced description of the unique mathematical knowledge and skills involved in teaching 
through its description of “Specialized content knowledge”. The KOM framework does not address 
the issues of teaching at this level of detail, but one could say that the teaching of subtraction 
algorithms requires different mathematical competencies, like representation competency and 
symbol and formalism competency as well as teaching competency. Another example is when 
preservice teachers learn how to perform mathematical modelling and how to analyze the 
mathematical models of others. We find that KOM can capture this with modelling competency, 
whereas MKT lacks a way to describe mathematical processes like modelling, problem solving and 
reasoning skills. Meanwhile the details of the didactical aspects of the development of modelling 
competency are not elaborated in KOM. For example, typical difficulties pupils encounter when 
working with modelling are not described. This could call for the development of what corresponds 
to knowledge of content and students and specialized content knowledge, but with regards to 
competencies. 

Conclusion 
We conclude that MKT and KOM give different perspectives on mathematics teacher knowledge, 
that there are overlaps and differences when applied to practical situations, but also that the 
frameworks themselves may benefit from the perspective of each other. Using both frameworks on 
our case, we find that they can complement each other and describe a greater range of mathematics 
teacher knowledge. Furthermore, we suggest that using or combining concepts from both 
frameworks can result in a new understanding of the knowledge and ability needed by mathematics 
teachers. 
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Introduction and purpose of the study 

Teaching is a complex phenomenon that encompasses ever-changing situations, where teachers are 
challenged to positively deal with unanticipated circumstances such as teachable moments. This 

poster draws from an ongoing doctoral research study, a hermeneutic phenomenological study, 

which seeks to identify and explore teachable moments corresponding to intermediate mathematics 

teachers’ lived experiences. The research is guided by the following questions: What does it mean 

to teach intermediate mathematics? What does it mean to recognize and utilize teachable moments 

at an intermediate mathematics level? At this stage in the research, the term teachable moment is 

generally defined as an opportunity that arises when connections have been made to advance 

learning by a learner and/or an educator. More specifically, the term moment is distinctly defined as 

an expected or unexpected occurrence that allows learners and/or educators to deepen their 

understanding. The poster focuses on the background and context of the study, by highlighting the 
rationale, framework and methodology of the study. 

Background and context 

Teachers often question the underlying purpose of teaching and its subjective meaning across three 

general categories: teaching subject content; teaching based on certain pedagogical tools; or 

teaching the child. Researchers in mathematics education have asked: What does it means to teach 

mathematics? How can one become an effective mathematics teacher? On one hand, researchers 

tend to focus on teachers’ content knowledge and/or pedagogical knowledge, or an integration of 

the two. However, having in-depth context knowledge in mathematics does not necessarily equate 

to teaching it effectively (Muri, 2008). Also other researchers question how the two categories of 

knowledge—mathematics (subject matter) and teaching (pedagogy)—can be integrated. On the 

other hand, mathematics researchers such as Doxiadis (2003) suggest that teaching mathematics 

effectively means humanizing mathematics for learners, and that “education is—should be, at its 

best—a process involving the complete human being” (p. 2). In this sense, humanizing mathematics 

means teaching it in a way that involves students as participants in mathematics, which is beyond 

mere content delivery or teaching certain skill sets. This poster draws from a study that aligns with 

this second view.  

Theoretical framework 
The epistemology of phenomenology centers on didactic meaning as opposed to arguing or 
developing abstract theory. In their discussion of the theoretical and conceptual framework for a 
phenomenological study, Savin-Baden and Howell Major (2012) stated that “the essence experience 



is so central and is to be uncovered before it is categorized, researchers do not tend to use a 
theoretical or conceptual framework… [because] doing so could impose presuppositions on the 
meaning of the experiences” (p.  221). The objective of this study is not to make broad 
generalizations about experiences of all mathematics teachers, but instead to examine individual 
teachers’ personal experiences associated with a very specific phenomenon of teachable moments. 

Methodology 
In order to understand what teachable moments means to mathematics teachers, and how teachers 
use them in their day-to-day, moment-to-moment teaching, it is necessary to first gain insight into 
teachers’ lived experiences by exploring their reasoning, beliefs, and intentions for teachable 
moments. As a consequence, to this underpinning, the study employs e a hermeneutic 
phenomenological research design founded on an epistemology of interpretivism. The study uses 
qualitative methods to collect data. These include semi-structured interviews, field notes and 
researcher journal. Participants comprise a purposeful sample of intermediate teachers with 
experience of teaching mathematics in Ontario, who have had lived experiences related to the 
phenomenon of teachable moments.  

Conclusion 
The “teachable moment” is viewed as a somewhat intangible pedagogical prize; a teacher might 
know what it feels like, yet may not identify its characteristics. Educators such as math teachers 
seek moments of openness and creativity with their students so they can personally experience “the 
psychic rewards” of teaching (Lortie, 1975). Too often, such moments happen suddenly and slip 
away just as quickly, leading some teachers to conclude that such occurrences are a matter of 
chance. This study therefore seeks to shed some light on the characteristics of teachable moments in 
mathematics education to deepen teachers’ understanding and use of such teachable moments in 
their respective practices. 
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Introduction 
Given the prominence that the general education research ascribes to the impact of assessment on 
teaching and learning it is surprising that there had been so far no TWG dedicated to assessment of 
mathematics at CERME. TWG21, which met for the first time at CERME10 in Dublin, aimed to fill 
this gap. Given that this was a new group we decided to focus on assessment of mathematics 
considered broadly in order to gauge where the interest of the mathematics education community lies 
in this field, which encompasses very many different aspects. Although traditionally assessment has 
been discussed across many TWGs at CERME, TWG21 aimed to bring researchers together who 
have an interest in this topic and can, for the lack of a common forum, at times feel isolated. To reflect 
the landscape in the general literature we called for papers investigating the nature of assessment and 
its effects on student learning making use of a wide range of methodologies, from large quantitative 
and mixed methods study to small investigative qualitative studies. We were delighted to have 24 
papers and one poster discussed at the conference. In what follows, we have grouped the papers in 
thematic clusters to reflect the variety of submissions regarding both focus and methodology. We 
conclude with some reflections on the working of the group and some suggestions for the directions 
this group can take in future CERME conferences. 

Thematic clusters  
We identified six overarching themes that could serve as an organizing tool for the papers submitted 
to TWG21. Below, we describe each of these themes in turn. 

Different approaches to assessment: Papers in this theme considered the affordances, drawbacks 
and validity of innovative assessment, both for students and for teachers. Davies proposes 
comparative judgment at university level as a new way of assessing students. In his paper, he 
investigates issues connected to the validity of this method for assessing conceptual understanding in 
mathematics. Lemmo and Mariotti investigate the issues connected with transitions of tasks from a 
paper and pencil form to an electronic form. They challenge the view that students employ similar 
solving strategies in both environments and find that indeed students solve the task differently in the 
two modalities. Teledhal investigates the validity of narrative accounts as an assessment tool for 
problem solving and concludes that those accounts do not offer enough details of the problem-solving 
process to be a valid tool for assessment. Dahl describes the perceptions of a group of science students 
(engineers, mathematicians, and other sciences) for group oral assessment. She finds that students 



across disciplines agreed that a group exam gives less differentiation of grades compared to an 
individual exam. Finally, Reit discusses whether the validity of teachers’ intuitive assessment 
practices is supported by empirical findings and shows that a sequential consideration of thought 
structures in a solution approach leads to reasonable results and may justify its application in school 
due to its straightforward implementation, especially when assessing modelling tasks. 

In service and pre-service teachers’ views: A second important theme that emerged from the 
submissions to TWG21 was related to teachers’ views, beliefs, and use of assessment methods, both 
during their training and in their professional practice. Hofmann and Roth report on a study aimed at 
fostering preservice teachers’ diagnostic skills with a focus on students’ abilities, problems and 
misconceptions with graphs of functions. They explore the affordances of two tools for promoting 
diagnostic skills: video analysis and task analysis. Pratt and Alderton analyse English mathematics 
teachers’ assessment approaches in the context of the current changes in assessment policy in the UK. 
To this end they use a Foucauldian analysis of teachers’ discourse to sketch the power structures 
involved. They find that the official removal of the levels only superficially affected teachers’ 
practices and teachers still relate these to the ‘old’ language of attainment levels. Kaplan and Haser 
investigate 27 preservice middle school mathematics teachers’ purposes in planning the assessment 
and their views and suggestions about the assessment part of a lesson plan. Findings of the study 
indicate that purposes underlined by preservice teachers in preparing the assessment part of the lesson 
are similar across the sample and they all related to the teacher actions. 

Professional development: Papers in this cluster addressed the role of professional development in 
fostering teachers’ (both in service and pre-service) competences in assessing student understanding. 
Grapin and Sayac investigate the use of external (e.g. researcher-created) assessment tasks by primary 
school mathematics teachers and teachers’ practice by using and an activity theory perspective. They 
find that teachers design tests with low levels of complexity and did not invest much in assessment 
as a professional activity. Pilet and Horoks present analytical tools to characterize assessment 
activities as part of teachers’ practice in algebra. The authors exemplify why high school teachers 
came to consider assessment as a potential lever to enhance both the students’ learning in mathematics 
and the teachers’ development. Initial results indicate that the teachers developed better indicators to 
select the students’ productions that they will use for the discussion after a task, but that they use they 
make of these products hasn’t improved. In her theoretical paper, Andersson argues that the addition 
of the dimension Teacher Instruction (ATI) as a key strategy to the five key strategies proposed in 
Wiliam and Thompson’s (2007) framework of formative assessment could facilitate the analysis of 
teachers’ use of formative assessment activities and improve the guidance and support of teachers’ 
implementation of high quality formative assessment practice. Finally, in this group Santos and 
Domingos investigate portfolio assessment in geometry for pre-service teachers through the lenses of 
activity theory and procepts. They find students engage in qualitative different pathways when 
solving these problems. 

Formative assessment/feedback: We received many papers discussing formative feedback and the 
submissions in this group spanned from primary to upper secondary school with focuses both on 
teachers’ use of formative assessment and students’ engagement with such assessment. Chanudet 
investigates the assessment of problem solving by using a grid of criteria. The paper focuses on the 
use that teachers make of such tool to facilitate formative assessment and offers the example of the 



practice of one teacher where she analyses instances of formative feedback occurring in this 
classroom. Zhao, Van den Heuvel-Panhuizen, and Veldhuis investigated the effects on student 
achievement of supporting Chinese primary mathematics teachers’ use of classroom assessment 
techniques. In this experimental study, the intervention consisted of teachers participating in 
workshops on the use of these techniques and using them in their classrooms. Results indicate that 
the students of teachers that gained more insight about their students from using the techniques, 
improved their mathematics achievement scores more than other students. Gurhy focuses on Irish 
students’ perspectives on the use of assessment for learning in primary school. Findings indicated 
that students were positive about the feedback in, and practices of, assessment for learning, became 
more confident and expressed a feeling of enjoyment related to this. Two related papers reported 
findings from FaSMEd, a European project on the use of technology for formative assessment. In the 
first paper, Cusi, Morselli and Sabena analyse a teacher’s strategies to provide feedback during class 
discussion. They identify five strategies: revoicing, rephrasing, rephrasing with scaffolding, 
relaunching, and contrasting. In the second paper, the authors describe how materials were designed 
to facilitate technology-enhanced formative assessment practices. They then show how the design 
framework can be used to analyse the implementation of technology-enhanced materials. They argue 
that materials designed in this way, combined with the functionality of technology, enhance a 
teacher’s capacity to activate Wiliam & Thompson (2007) formative assessment strategies. 

Task design: Three papers were dedicated to this theme. O’Brien and Ní Ríordáin describe the 
development, design, and theoretical underpinning of a diagnostic test for algebra. The test is aimed 
at lower secondary students in Ireland and is intended to help teachers identify the causes of students’ 
errors. The authors discuss their reasons for adopting this approach. Beck investigates students’ 
written solutions from CAS-allowed exams. Based on the analysis of students’ solutions a descriptive 
model for assessing these solutions is set up. The paper also discusses how formative assessment 
could help students develop their competencies in communicating mathematics. Moomaw 
investigates the validation of a constructivist game- and story-based measure (Teddy Bear Picnic) for 
pre-school mathematics. In this measure, pre-school pupils are assessed while playing several 
interactive games. Psychometric tests show that the test appears to be a valid and reliable measure of 
pupils’ level of mathematical development. 

Large-scale/standardized tests: Finally, we received several papers addressing issues related to the 
use and design of large nationwide standardized tests. Garuti, Lasorsa, and Pozio describe the 
development of items for national assessment in Italy. They show how both quantitative and 
qualitative analysis can be used to improve the psychometric properties of items, whilst also 
improving their validity in terms of appropriate and relevant mathematical content. Ferretti and 
Gambini investigate the persistence of certain misconceptions in the transition between school and 
university. They focus on properties of powers and analyse two Italian nationwide databases to find 
that indeed certain misconceptions persist across this transition. Drük -Noe and Küh  analyse 
characteristics of statewide exams in eight countries through task analysis and find that that the 
cognitive demands of most competences needed to solve these tasks are rather low with the only the 
competence ‘working technically’ being often assessed. Cunningham, Shiel, and Close investigate 
the relation between the current Junior Certificate mathematics examination in Ireland for Grade 9 to 
the PISA and TIMSS frameworks. Their findings show that the Junior Certificate examination is 
moving closer in the direction of the PISA approach, but this is also motivated by the comprehensive 



reform in mathematics in this country. Finally, Olande investigates how Grade 9 students solve an 
item involving the interpretation of graphs. Using student responses to an item from the national test 
in Sweden, his analysis shows that only a very small proportion of students use graphical reasoning 
in their solutions.  

Conclusions 
In the process of preparing for this new group at CERME10 we were impressed not only by the 
variety of work we received but also by the methodological variety of the papers that spread from 
small qualitative case studies to large statistical surveys. The theoretical frameworks employed were 
also varied, from Activity Theory to Foucauldian analysis. We believe this variety to be sign of a 
growing interest in mathematics education for assessment; not only in the sense of validation of large 
scale tests, but also in terms of the effect that assessment has on teachers’ actions in the classroom 
and as such on student learning. This variety, however, can also be sign of a field which has yet to 
find its unifying themes: the presence of a forum for discussion like TWG21 can therefore help define 
these emerging unifying themes. Validity of assessment for example – although ubiquitous in many 
papers – was hardly explicitly addressed. Indeed, in the final session of our group which was 
dedicated to reflecting on the group experience with an eye to future meetings, we observed some 
issues which at times have hindered communication. One of those was the lack of uniformity in 
definitions of recurring terms or sometimes the lack of clear definitions at all. It was felt that 
agreement on definitions of basic terms is important for communication and collaboration, and the 
lack of this clarity of definitions can be again a manifestation of a developing and growing field. We 
also noticed the absence of papers discussing the impact of assessment methods on student learning, 
a theme which is very much present in the assessment literature. The final reflection of the group 
concerned the presence of mathematics in the research presented. The group felt that in a topic such 
as assessment it may be easy to lose the focus on the mathematics assessed and instead discuss generic 
assessment research. While assessment research in general education is obviously very important to 
the work of this group, all participants felt that the focus should be on the mathematics assessed, and 
that indeed it may be a difficult balancing act not to replicate research and constructs that are already 
used in the general assessment literature and keep the focus on the fact that we aim to use these 
findings and constructs to investigate the assessment of mathematics. Although this balancing act 
might make for a difficult enterprise, we are confident that in the coming CERMEs we will be able 
to continue discussing general assessment issues such as validity, but always with a clear focus on 
the mathematics to be assessed and its didactics. 
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This theoretical paper is based on an empirical study where the framework of formative assessment 
by Wiliam and Thompson was used to analyze teachers’ use of formative assessment in their 
mathematics classroom practice. The paper argues for treating a component named Adjusted 
Teacher Instruction (ATI) as a key strategy in complement to the five key strategies in the original 
framework. ATI is a significant component in formative assessment, but also particularly challenging 
for teachers to implement in their classroom practice. Treating ATI as a key strategy could facilitate 
the analysis of teachers’ use of formative assessment activities and enhance the understandings about 
what kind of ATIs are most useful for whom under what conditions. Extended understandings about 
effective formative assessment activities are important in decisions about what formative assessment 
to include in teacher education and in-service training for teachers. 
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Introduction 
The encouraging potential noticed in formative assessment has motivated scholars to further engage 
in both empirical studies and theoretical work in the research area of formative assessment. The 
theoretical understandings of formative assessment have evolved during a long time, often affected 
by empirical studies in which researchers has been responsive to teacher practice. This paper focuses 
on a component of formative assessment that is regarded particularly significant, but also difficult in 
carrying out formative assessment. In this paper this component is called Adjusted Teacher 
Instruction (ATI) and it is argued for treating ATI as a key strategy in parallel to teacher feedback. 

Black and Wiliam (1998) in their research review demonstrated that large student achievement gains 
are possible when formative assessment is employed in classroom practice. This review received 
widespread attention and caused a discussion about the need for and role of an extended assessment 
culture and practice. Since then, implementation of formative assessment has been on school policy 
agendas in many countries (Tierney, 2006), but this implementation has often proven to be 
challenging (Birenbaum et al., 2015). Several attempts have been unsuccessful in accomplishing a 
substantially developed formative assessment practice (James & McCormick, 2009; Schneider & 
Randel, 2010) and misunderstandings and distortions of essential features of formative assessment 
are detected in policy and practice (Swaffield, 2011). Some factors facilitating and hindering the 
implementation regarding the teacher, student, assessment and context are identified (Heitink, Van 
der Kleij, Veldkamp, Schildkamp & Kippers, 2016), but still a strong research base supporting how 
to effectively help regular teachers to implement a high quality formative assessment practice is 
lacking (Schneider & Randel, 2010; Wiliam, 2010). Such a research base needs to include both how 
to design effective professional development programs for teachers and what kind of formative 
assessment to include in such programs.  

This paper is related to the latter issue. The discussion in the paper is theoretical, but originates from 
an intervention study in which a group of mathematics teachers learned about formative assessment 



(see Andersson, 2015). In this study, formative assessment was conceptualized as one big idea and 
five key strategies (see Wiliam & Thompson, 2008) in a framework that was used in the professional 
development program and for structuring the data collection and data analysis.  

Background 
Black and Wiliam defined formative assessment as “encompassing all those activities undertaken by 
teachers, and/or by their students, which provide information to be used as feedback to modify the 
teaching and learning activities in which they are engaged” (Black & Wiliam, 1998, pp. 7–8); a 
definition that provide several possible focus in carrying out formative assessment. Consequently, 
Black and Wiliam’s review included studies investigating different strategies for carrying out 
formative assessment, using the term formative assessment in different meanings or using alternative 
terms such as feedback, self-regulated learning or peer-assisted learning. As Bennett (2011) points 
out, without a consensus about the term formative assessment, the effects will be unclear. A common 
and clear terminology and definition of formative assessment is also desired to eliminate 
misunderstandings and distortions in policy and practice.  

To maximize instructional benefits, we need to know more about what constitutes effective formative 
assessment (Wiliam & Thomphson, 2008; Wiliam, 2007). To gain valuable insights about best 
practices it is important to be clear about the way formative assessment is conceptualized in for 
example studies of implementations of formative assessment that are empirically linked to student 
achievement. The formative assessment practice needs to be carefully analyzed and described to 
provide information about specifics of such practices as well as how these specific characteristics 
may have functioned as part of an enhanced learning process.  

Black and Wiliam’s review included studies showing the potential instructional benefits of different 
strategies for carrying out formative assessment. It can be expected that a classroom practice that 
integrate such key strategies to a unity would open up extended opportunities for learning and thus 
offer higher potential for improving student achievement. The empirical study motivating this paper 
is one of few studies investigating the impact of such an integrated practice on students’ achievement. 
Following sections of the text outline Wiliam and colleagues’ conceptualization of such a practice, 
followed by a description of the operationalization of that framework.  

One big idea and five key strategies 
A more recent definition of formative assessment by Black and Wiliam is more detailed: 

Practice in a classroom is formative to the extent that evidence about student achievement is 
elicited, interpreted, and used by teachers, learners, or their peers, to make decisions about next 
steps in instruction that are likely to be better, or be better founded, than the decisions they would 
have taken in the absence of evidence that was elicited. (Black & Wiliam, 2009, p. 9) 

This definition clearly demands every formative strategy to fulfill the big idea of using evidence of 
student learning to adjust instruction to better meet students’ learning needs. The conceptualization 
of formative assessment as one big idea and five key strategies (Wiliam & Thompson, 2008; Black 
& Wiliam, 2009) is visualized in Figure 1. The matrix visualizes how three processes (horizontally) 
and three agents in the classroom (vertically) construct five key strategies (KS) in formative 
assessment. The three processes constitute the defining characteristics of formative assessment 



inherent in the definition above and are central for the big idea of using evidence of student learning 
in decisions about how to proceed in the instruction. The three agents who are responsible for the 
learning in the classroom are defined as the teacher, the learner and the peers. 

 Where the learner is going Where the learner is right 
now 

How to get there 

Teacher KS 1 Clarifying learning 
intentions and criteria 

for success 

KS 2 Engineering 
effective classroom 

discussions and other 
learning tasks that 
elicit evidence of 

student understanding 

KS 3 Providing feedback 
that moves learners 

forward 

Peer Understanding and 
sharing learning 

intentions and criteria 
for success 

KS 4 Activating students as instructional resources for 
one another 

Learner Understanding learning 
intentions and criteria 

for success 

KS 5 Activating students as the owners of their own 
learning 

Figure 1: The relationship between key strategies (KS), instructional processes and agents in the 
classroom (After a figure in Black & Wiliam, 2009, p. 8) 

The different key strategies in formative assessment are connected and sometimes dependent on each 
other’s existence and performance. For example, clear learning intentions guide the teacher to chose 
questions/tasks that elicit relevant information about students’ learning and help the teacher to provide 
goal directed feedback. In addition, learning intentions clear to the students enhance their 
opportunities to be engaged and involved in the learning process (their own or their peers’).  

Using the big idea and five key strategies to analyze classroom practice 
The author of this paper participated in a research group responsible for a study about professional 
development in formative assessment for a group of randomly selected mathematics teachers. The 
framework above was used in the professional development program, in the data collection and in 
analysis of formative assessment used in the teachers’ mathematics classroom practices. 

Two rounds of data collection and analysis were made, before and one year after the professional 
development program. Both times, observations were completed in each teacher’s mathematics 
classroom practice and all teachers were interviewed. The big idea and the five key strategies 
structured observation schemes and interview guides, with a focus on what formative assessment 
activities the teachers used in their mathematics classroom practice.  

Each formative assessment activity was supposed to be classified in relation to one of the five key 
strategies or the big idea. From a teacher perspective the big idea pertains to Key strategies 1–3. 
Accordingly, activities aimed at clarifying where the learner is going could be classified as belonging 
to KS 1 and activities aimed at eliciting where the learner is right know as belonging to KS 2. Teacher 



feedback aiming at moving student learning forward was classified as belonging to KS 3. This process 
led to one remaining group of teacher activities concerning teachers’ use of information about 
learning needs (the big idea) that did not fit to any of the other key strategies. Therefore, to clarify 
our data and for consistency reasons, we decided to include the new category Adjusted Teacher 
Instruction (ATI) as a new ‘strategy’ in parallel to feedback. Both strategies (ATI and feedback) aim 
at taking learning forward. Consequently, no activities were classified as belonging to the big idea. 
The formative activities classified as ATI were the activities aiming at taking learning forward that 
did not concern teachers’ oral or written feedback. 

Before the professional development program (PDP) the most common ATI activity was to use results 
from a diagnosis in the textbook to choose a group of tasks (regular or advanced) for each student’s 
individual work with the chapter in the textbook. Other ATI activities used by a smaller group of 
teachers were, for example: individualized tasks for a student; adapted materials for example work 
sheets, homework or tactile materials; extra or modified lecture for the class, a group of students or 
for individual students; and adaption of time set aside for a chapter in the textbook. After the PDP 
individual teachers extended their repertoire of ATI activities (from the same type of activities as 
identified before the PDP), for example lectures for group of students became more common. The 
teachers’ use of ATI activities was also affected by new activities connected to Key strategy 2. Many 
teachers had started to make use of students’ misunderstandings, which were often identified by using 
mini-whiteboards as an all-response system. In general, the teachers received information about 
student learning more often and in various ways and could consequently make adjustments of 
instruction more often and with more precision.  

In our analysis of formative assessment activities in teacher’s mathematics classroom we decided that 
teacher activities connected to the use of evidence of learning needs could either be classified as a 
feedback activity or as an Adjusted Teacher Instruction activity. Thus, feedback and Adjusted 
Teacher Instruction would have a shared position within the third teaching and learning process (How 
to get there) for the teacher’s actions (see Figure 1). This proposed shared position will be discussed 
below. 

Discussion 
In this paper, Adjusted Teacher Instruction (ATI) is suggested as a component of particular 
significance in formative assessment to be treated as a key strategy, a proposal that could improve 
the use of the formative assessment framework by Wiliam and Thompson (2008) in research, policy 
and practice. The advantage is twofold: (1) the ATI component will get a more prominent place and 
(2) the framework will be more coherent. These advantages, but also some concerns, will be discussed 
below. 

One advantage of treating ATI as a key strategy would be that teacher activities within this strategy 
could be defined and further studied in the same way as for activities belonging to other strategies. 
The few studies using frameworks unifying several formative assessment strategies in analysis of 
teacher classroom practices do not always provide specifics about teachers’ adjustment of instruction 
(e.g. Wylie & Lyon, 2015; Randel et al., 2011). Such specifics are desirable because the instructional 
decisions and actions taken to better meet student needs are crucial for students’ continued learning 
opportunities (Wiliam, 2007) and because using evidence of learning to inform next instructional 



steps has been experienced as a challenging aspect of formative assessment (Cowie & Bell, 1999; 
Heritage, Kim, Vendlinski, & Herman, 2009; Oláh, Lawrence, & Riggan, 2010).  

Research addressing this crucial and difficult component in formative assessment is desirable to 
enhance the understandings about what ATIs are effective under different circumstances, but this area 
of research needs improvement in terms of becoming more prominent, the definition of the area and 
the number of empirical studies conducted (Bellert, 2015). Research about feedback has resulted in 
guiding models for what type feedback is more or less effective, for different students and under 
different conditions (e.g. Hattie & Timperley, 2007; Shute, 2008). Similar knowledge about ATI is 
important because a main aspect of formative assessment is that planning of instruction is decision 
driven. To secure that the information from the assessment will be useful, a feasible way is to plan 
instruction backwards with a clear decision in mind and searching for relevant evidence to make 
decisions in a smarter way (Wiliam, 2007). Skilled teachers can design teachable moments into their 
lesson because they have already thought of alternative instructional decisions before the information 
was collected (ibid., p. 1089).  

If we know more about what instructional adjustments are likely to be most effective in different 
situations this would be helpful guidance for policy and practice, for example in teacher education 
and in-service training for teachers. The knowledge base can be extended from conducting studies 
that empirically link different types of ATI to student achievement and by careful analysis, 
descriptions and conclusions about ATI characteristics and their function as part of an enhanced 
learning process. One example of a study contributing to this knowledgebase is a study by Ruiz-
Primo, Kroog and Sands (2015). This study of science and mathematics teachers was restricted to 
informal formative assessment, in which the interaction between teacher and students is central. 
Studied within this interaction, the characteristics of the teacher’s response were classified according 
to type of oral feedback or type of instructional move. Additionally, the type of teachers’ actions 
observed in more and less expert teachers was studied. The results were separated for individual 
student work and whole class work. Using a two step cluster analysis, there were five variables 
included for teachers’ instructional moves: (1) re-teaching (e.g., going over content again in the same 
or similar way as before); (2) solving problems with students (e.g., asking students for their input 
along the way while solving a problem); (3) solving problems without students (e.g., solving or 
modeling the solution to a problem without student input); (4) re-clarifying the task (e.g., reminding 
students of what they need to do); and (5) providing the correct answer (e.g., giving the answer 
without explanation) (Ruiz-Primo et al., 2015, p.17). This study does not only tell us that instructional 
adjustment where implemented, but also specifies these adjustments and compare the use of them in 
two kinds of work conditions and by two groups of teachers. 

Another advantage of treating ATI as a key strategy in parallel with feedback is that the framework 
would be more coherent. In fact, also Wiliam includes instructional adjustment as a second aspect of 
feedback in the meaning that feedback is provided to the teacher so he or she can modify the 
instruction to be more effective (Wiliam, 2010, p. 33). However, the feedback to the teacher is 
comparable to elicited evidence of student learning in Key strategy 2, and this might generate 
confusion. The suggested shared position for feedback and Adjusted Teacher Instruction might clarify 
the framework to avoid misunderstandings and distortions in policy and practice and thus provide a 
better guidance. Such guidance might have affected the design of the professional development 



program in the study behind this paper (see Andersson, 2015). In the program ATI was not treated as 
a key strategy and did not get the same focus and time set aside as the other key strategies did. This 
might have affected the limited extension of types of ATIs at group level in the results. 

A concern about treating ATI as a key strategy regards the need and meaning of the big idea. 
Elaborating the big idea from a teacher perspective, Key strategy 1 is not indispensable for teachers’ 
eliciting and using information of students’ learning needs, only critical for ending up with evidence 
useful for formative assessment. Wiliam distinguishes between diagnostic assessment and assessment 
that is instructionally tractable, where the latter form not only indicates what needs attention but also 
what needs to be done to address the issue (Wiliam, 2007, p. 1063). Wiliam points to the need of the 
teacher to have a range of instructional alternatives beyond just repetition:  

For formative assessment to be instructionally tractable, the teacher must be clear about the range 
of alternative instructional moves that are possible, should then decide what kinds of evidence 
would be useful in choosing among the relevant alternatives, and only then elicit the evidence 
needed to make that decision. (Wiliam, 2010, p. 33)  

While Key strategy 1 is ultimate, Key strategy 2 is a prerequisite for the implementation of the big 
idea. Key strategy 3 concerns the very foundation of the big idea about formative assessment. The 
big idea is important in the evaluation of the function of the implementation because it reflects the 
whole assessment cycle, which Wiliam suggests should be performed backwards (see above). 

Another concern regards the distinction between feedback and Adjusted Teacher Instruction. The 
distinction we made (see Andersson, 2015) do not match the distinction made by Ruiz-Primo et al. 
(2015), probably caused by the different conceptualization of formative assessment. Even when using 
the same conceptualization of formative assessment, some activities will be a definite feedback or 
ATI activity, but other activities will have a more uncertain belonging. In our case, when teachers 
used the “thumb of role” giving feedback as two stars and a wish (showing the student two excellent 
aspect of their work and an idea for improvement), this is categorized as feedback. When a teacher 
decides on finishing work on algebra a week earlier than planned, this is ATI. A more uncertain 
activity would be when the teacher together with the student decides what tasks are most appropriate 
for the student to work with. We would classify this as an ATI activity, from the rationale of not being 
restricted to oral or written feedback from the teacher. 

Conclusion 
The advantage of treating ATI as a key strategy put forward in this paper is ultimately about 
improving the guidance and support of teachers’ implementation of high quality formative assessment 
practice. ATI is experienced as difficult to implement by teachers. At the same time, the ATI 
component does not always receive much focus in analysis of teacher classroom practices. A more 
specified analysis and communication of research results about ATI could provide teachers with 
better guidance. In addition, a more coherent framework could be easier for teachers to understand. 
The big idea is an important guiding idea and the key strategies concretize this idea. The quality of 
any formative assessment activity is dependent on the extent the activity meet the aim of the key 
strategy as well as the big idea. 

This paper argues for more studies conceptualizing formative assessment as a unity of different 
strategies of which ATI is one. Ultimately such studies examine the effect of implementation of 



formative assessment on both teacher classroom practice and student achievement. The formative 
assessment practice needs to be carefully analyzed and described to provide information about 
specific characteristics and their function as part of an enhanced learning process. Such research 
might end up in models similar to those of feedback (Hattie & Timperley, 2007; Shute, 2008), 
showing more and less effective ATI, for different students and under different conditions. 

References 
Andersson, C. (2015). Professional development in formative assessment: Effects on teacher 

classroom practice and student achievement. Doctoral thesis, Department of Science and 
Mathematics Education, Umeå University, Umeå, Sweden.  

Bellert, A. (2015). Effective re-teaching. Australian Journal of Learning Difficulties, 20(2), 163–183. 
doi: 10.1080/19404158.2015.1089917 

Bennett, R. E. (2011). Formative Assessment: A Critical Review. Assessment in Education: 
Principles, Policy & Practice, 18(1), 5–25. doi: 10.1080/0969594X.2010.513678 

Birenbaum, M. et. al. (2015). International trends in the implementation of assessment for learning: 
Implications for policy and practice. Policy Futures in Education 13(1) 117–140. 
doi:10.1177/1478210314566733  

Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: 
Principles, Policy & Practice, 5(1), 7–74. doi:10.1080/0969595980050102  

Black, P., & Wiliam, D. (2009). Developing the Theory of Formative Assessment. Educational 
Assessment, Evaluation and Accountability, 21(1), 5–31. doi:10.1007/s11092-008-9068-5 

Cowie, B. & Bell, B. (1999). A Model of Formative Assessment in Science Education, Assessment 
in Education: Principles, Policy & Practice, 6(1), 101–116. doi: 10.1080/09695949993026  

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 
81–112. doi:10.3102/003465430298487 

Heitink, M. C,, Van der Kleij, F. M, Veldkamp, B. P., Schildkamp, K. & Kippers, W. B. (2016). A 
systematic review of prerequisites for implementing assessment for learning in classroom practice. 
Educational Research Review 17, 50–62. 

Heritage, M., Kim, J., Vendlinski, T., & Herman, J. (2009). From Evidence to Action: A Seamless 
Process in Formative Assessment? Educational Measurement: Issues and Practice, 28(3), 24–31. 
doi:10.1111/j.1745–3992.2009.00151.x 

James, M., & McCormick, R. (2009). Teachers Learning How to Learn. Teaching and Teacher 
Education, 25(7), 973–982. doi:10.1016/j.tate.2009.02.023 
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This article focuses on students’ written solutions from CAS-allowed exams. Based on the analysis of 
students’ solutions a descriptive model is set up. It can be used for assessing students’ solution as 
well as creating exemplary documentations. The purpose of these documentations is to help teachers 
reflect about their practise of writing down solutions and the norms they set by this for exams. This 
paper also shows how formative assessment could be a means to help students develop their 
competencies in communicating mathematics. 

Keywords: Upper secondary education, exams, written solutions, Computer Algebra Systems, 
formative assessment. 

Introduction: Challenges in exams with computer algebra systems 
Digital technologies like graphical calculators and computer-algebra-systems (CAS) influence 
various aspects of mathematics education in general and the classroom-practise in particular (cf. 
Barzel ea. 2005). Most prominently, the way tasks can be solved changes drastically: where once it 
was necessary to differentiate a function with pen and paper, now every student can use a CAS and 
by pressing a short series of buttons the result appears on the screen. The new possibilities fuelled the 
hope that “[t]he new tool provided the chance to concentrate more on central competencies in 
mathematics education, concept formation, problem solving and modelling competencies, and to 
outsource algorithmic operations to the machine” (Drijvers & Weigand, 2010). While the shortcutting 
of the work of calculating with pen and paper enables classes to have more time for the central 
competencies, it also forces teachers and students to think about how to document the process of 
“working” on a task. This article focuses on the aspect of how communication in a CAS-environment 
could be shaped. 

In this context, the study aims at identifying problems, difficulties and possibilities concerning 
students’ solutions, categorize elements in those according to their function within the solving process 
and suggest a possible standard for written solutions with CAS. Against this background, the 
suggestions can also be interpreted as assessment criteria and, thus, a given students’ solution can be 
assessed. Furthermore, it is a goal to provide a theoretical model that describes the development of 
students’ documenting competency. The following research questions are 

1. How do students write down their solutions in final exams? Which different forms of 
documentations do they use? What kinds of problems or difficulties (if any) are connected 
with these forms? 

2. How can students’ written solutions be described by means of a category system? 

3. How could a developmental model look like that 

a. describes how students’ competencies in documenting the solving process with CAS 
can be developed? 

b. offers learning strategies and exemplary solutions for shape this development?  

c. encompasses criteria for assessment in final exams? 



The major motivation for this study is to create a sound set of suggestions for teachers, for application 
in the classroom and for preparing students for the final exams. Formative assessment plays a crucial 
role in developing an adequate documentation competence. This article gives an answer to the second 
question and presents an outline of ideas to research question (3). 

Theoretical framework 
The theoretical framework to tackle the questions above encompasses two important fields: written 
documentations as communicative texts, and formative assessment, which will be the basis for 
creating didactical material for teachers. 

In exams the purpose of documentations is to enable others to understand how the solution has been 
gained and to evaluate to which degree the solution is correct or incorrect (cf. Ball & Stacey 2003). 
Thus, the communication of mathematical knowledge is the primary aspect. In terms of the 
communication model by Jakobson (1960) the communication situation can be described as follows: 
the learner is the ADDRESSER, the teacher is the ADDRESSEE and the written-down solution is the 
CONTACT (or channel) for the MESSAGE (1960, p. 353). The CODE in this communication 
situation can be considered as coming from three different areas: (1) the natural language, (2) the 
mathematical language, encompassing the symbolic language as well as the mathematical register 
(cf. Pimm 1987), and (3) the computer world with CAS-commands and also its own register (cf. Siller 
& Greefrath, 2010). 

In exams the written documentation is – according to the communication model above – the only 
channel by which the message is sent from the addresser to the addressee. Naturally, in such a 
situation it is neither possible nor allowed for the corrector to inquire in case he or she does not 
understand a part of the solution. Busse speaks of all written communication as “reduced 
communication situation[s]” (2015, p 320, translation by the author), arguing that only the text itself 
and the recipient of the text are present in the situation. As a result, the understanding of texts can be 
reduced to the allocation of the recipient’s knowledge to elements of the text. 

The second part of the theoretical background is about formative assessment and how it might be 
used to develop the documentation competence of students over a longer period. “Assessment for 
learning”, as formative assessment is sometimes called, can be outlined as “the process of seeking 
and interpreting evidence for use by learners and their teachers to decide where the learners are in 
their learning, where they need to go and how best to get there” ( ARG 2002, p. 2). Black & Wiliam 
(2009) describe how five key strategies constitute formative assessment: 

1. Clarifying and sharing learning intentions and criteria for success;  

2. Engineering effective classroom discussions and other learning tasks that elicit evidence of student 
understanding; 

3. Providing feedback that moves learners forward; 

4. Activating students as instructional resources for one another; and 

5. Activating students as the owners of their own learning (Black & Wiliam 2009). 

 

The crucial and most difficult point here is to have criteria for good written solutions. As Weigand 



points out “there are no algorithmic rules or norms how to document a solution on paper” (Weigand 
2013, p. 2772). He reports from a long-term project in Bavaria (a part of Germany) that students have 
“difficulties in using SC [scientific calculator] and (problem-)adequate representations especially, as 
well as the documentation of the solution with paper and pencil” (Weigand 2013, p. 2763). Therefore, 
teachers need to focus on the development of the competence to document adequately over a longer 
time. Students have to reflect about documentations and grow into the communication practices of 
the mathematics community. In Germany, the most important framework of mathematical 
competencies is the one by the KMK (cf. KMK 2012). The KMK distinguishes three requirement-
levels to describe the requirements that can be addressed in tasks in relation to six central 
mathematical competencies and five central mathematical guiding ideas. This framework is not made 
for the development of the competence to document (which I see as only a part of the competence of 
communicating mathematically) but for describing and testing the competencies. Thus, a model was 
created that focuses more on the development and tries to reflect the difficulties of handling the CAS, 
too. The competence model by Dreyfus & Dreyfus (1991) is insofar an important reference work that 
it describes how the development of competencies from a novice stage to an expert stage happens in 
five steps. According to Dreyfus & Dreyfus, novices act according to rules very explicitly while 
experts have internalized the rules so much that the behaviour has become part of them. The model 
for the development of the documentation competence distinguishes only three stages. For teachers 
it is thus easier to think of the stages as of the three consecutive years (10th to 12th grade) when CAS-
classes can be allowed permanently in special classes. The model tries to reflect some difficulties 
teachers reported in CAS-classes (cf. Beck 2015, Weigand 2013) by shifting the focus of each of the 
three stages:  

 
Figure 1 – Development model 

1. Novice: Focus on technology-use: Learning to deal with already known and new 
mathematical content with the new tool, in order to get accustomed to it. 

2. Experienced: Focus on communication: Reflecting about the use of the tool and the 
communication of mathematical content. 

3. Expert: Focus on modelling and problem-solving: Applying the mathematics to modelling 
problems with the help of the CAS.  

Although high-school CAS-classes only use one device (like the TI-nspire or the CASIO Class Pad 
II) it is not the aim to restrict the mathematical competence to just this one device. Therefore, also the 
competence to document should not be chained to the tool that is used but be applicable to all kinds 
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of tasks and problems. To achieve such a flexible competence teachers could use formative 
assessment as shown below. 

It is the teacher’s task to initiate a discussion about how the digital tool changes the nature of the 
solving process and, as a consequence, the written solution (strategy 2, see above). This is also a 
reflection of the benefits of a CAS. As already mentioned, it is not necessary anymore to write down 
every step in the solving process in order to perform it. A lot of algorithmic procedures can be 
outsourced to the CAS. This reflection might help students to progress further on their way from 
novices to experts.  

Furthermore, as Black & Wiliam state “peer- and self-assessment are activities that might be used to 
pursue the fourth and fifth [key strategy] respectively” (p. 8). As a useful activity students (and 
teachers as well) could check and discuss whether their own documentation and the documentation 
of classmates meet the criteria. Students can discuss problems regarding the understandability of 
solutions amongst themselves and with their teacher. From a theoretical perspective, it seems to be 
most promising to apply these activities with experienced students (Fig. 1), after the students are used 
to work with the CAS but before complex (modelling-)problems are treated. Yet, this assumption has 
not been tested empirically. Regarding the documentation of solutions one aim is a high level of 
language use (most prominently: mathematical terminology). This is part of the competences 
communicating mathematically and mathematical reasoning (cf. KMK-Bildungsstandards, K6 and 
K1; Blum 2010). 

Methodology 
As a first step, a descriptive model has been developed from students’ authentic solutions from high-
stake final exams. These exams are the last time in the students’ life and therefore these reflect (to a 
certain degree) the knowledge and the practise of the students. From a linguistic perspective, it is one 
aim to identify which elements students use in their documentations and which function is connected 
with each form. This is a typical pragmatic approach (cf. Meibauer 2008). The underlying question 
of this form-function-analysis can be formulated as follows: With which forms of representation do 
students document each step of the solving process? From a mathematical perspective, it is the aim 
to identify difficulties and problems in the students’ solution. One problem is that traditional 
mathematical notation is mixed with computer language with the result that the created expressions 
do not fit the requirements of “the community of mathematicians”. 

Bavarian teachers of CAS-classes have been asked to send in nine written solutions each from the 
final exams. The students have three groups of tasks to solve (calculus, geometry, data & statistics) 
and have 180 minutes time. Three solutions came from students who have been average, three from 
students who have been above average, and three from students who have been below average in the 
preceding semester. Similar data has been collected every year (starting with 2014) for further 
evaluation and research. Four to five teachers answer this request every year. 

The first research question is how students document their solving process in exams. So far, in Bavaria 
(Germany) only little official advice about documentations of solving processes is given. Normally, 
the Institute for School Quality and Educational Research (ISB) provides such material and official 
notes in addition to the curriculum. In order to develop such advice, it is a very valuable first step for 
researchers to analyse authentic documentations and to develop a descriptive model with which 



problems and difficulties can be identified and categorized. 

The representational dimension describes with which forms of representation students document. 
There might be expressions, which use some kind of formulaic symbols (traditional mathematical, 
computer-syntax, mixed-forms), verbalisations (both natural language and the special mathematical 
vernacular) and graphic representations. In the latter category, mixed forms (such as graphs, tables, 
sketches, etc.) are also counted. 
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Figure 2 – Category system for description of students’ solutions 

The second, activity dimension describes which purpose an element has, that is what actually is 
documented with it and which step, or activity, in the solving process it is related to. Central categories 
are: 

● CAS-related notes make the use of CAS explicit, either by stating the CAS command (input), by 
writing down the output (e.g. “false”, which is odd in a German text), or by unspecifically writing 
– in short form – that the CAS was used (e.g. “CAS: …”). 

● According to Wagner and Wörn (2011) explanations comprise three different facets: concepts 
and ideas (what-explanation), algorithms and procedures (how-explanation), argumentations and 
logical connections (why-explanation). They often focus on: 

o mathematizations, which show that information given in the task-description is translated 
into mathematical notation or terminology;  

o interpretations, which are translations of computer-output and the construction of 
meaning in relation to the task. 

The terms mathematizations and interpretations are related to the respective activities in the 
extended modelling cycle by Siller & Greefrath (2010). 

● Furthermore, there are elements which refer to the underlying mathematical idea, e.g. in order to 
find the maximum of a function f it is necessary to solve the equation f'(x)=0. From this element, 
the mathematical idea can be reconstructed.  



● Every mathematical activity leads to some result. This might be the answer to a posed question 
or a step that takes one closer to the final result.    

● Structuring elements are used to structure the text on the surface (the layout) and the way the 
information is presented. They can also be used to set up links between pieces of information such 
as single steps in the solving process and the chronological order in which they were performed. 

 

Results 
The first result is that the category system above (Fig. 2) is suitable to describe students solutions. It 
can be observed that in regard to the documentation of CAS-commands the style was very 
homogenous throughout each class. In one of the classes, CAS-commands have been documented. In 
the second class, the CAS-use was indicated by writing “CAS” either over an equation or at the 
beginning of a line. In the third and fourth class there were no CAS-commands at all. This 
phenomenon can be explained by the normative standards that the respective teacher had set in the 
preceding year. Secondly, students who had a correct solution always showed the necessary 
mathematical ideas. Fig. 3 shows two different ways how mathematical ideas can be presented: either 
in verbalized form (line 1) or encapsulated in a formulaic expression (line 3).  

A further result of the analysis of the students’ documents is that written solutions without verbalised 
explanations were often harder to understand and that the solving process could not be reconstructed 
that easily. 

Authentic and examplary solutions 

As shown above, elements of written solutions can have different functions. Among them 
explanations can contribute a lot to make students’ documents easily understandable. According to 
Jörissen and Schmidt-Thieme explanations can be characterised as “primarily verbal statements” with 
the goal that the reader can understand connections (2015, p. 401, translation by the author). 

 

Furthermore, additional explanations extend the transmitted information with the possible 
consequence of redundancy. However, misunderstandings can possibly be prevented. As already 
mentioned Wagner & Wörn distinguish three different types of explanations: explain-what, explain-
how and explain-why (2011). These sub-categories can be found – rudimentarily – in the students’ 

 
 

Figure 3 – Student’s solution: original and 
translation 



solutions, too. It is most important to notice here that students often explained verbally although it 
was not explicitly asked to do so in the formulation of the task. 

The task of the example (Fig. 3) is to check whether there is a point at which the exit of a highway – 
modelled by a polynomic function s – runs parallel to another road – the route B299. 

In the example (Fig. 3) we see that the student explains the mathematical idea of his solution verbally 
at the beginning. It is a rudimentary how-explanation. The verbal inaccuracy at this point is not that 
important because the information given in the text is supported by the mathematical formulaic 
expression, which is the equation. The output (“{}”) follows a CAS-use which is documented 
unspecifically (see abve). The student confuses proper mathematical syntax with device-specific 
CAS-output and mixes both into an incorrect expression. As a concluding answer to the task a verbal 
interpretation of this output is written down. 

The categories from Fig. 1 can be used to describe and explain students’ solutions. But they can also 
be used to help teachers to reflect written solutions and their own practise of writing mathematical 
texts. Furthmore, on the basis of the categories exemplary solutions can be created, as shown below 
(Fig. 4). 

Category  Exemplary solution 

Explanation  The roads run parallel to each other when 
there is a point at which 𝑠 has the same 
gradient as 𝑠(𝑠) = −0.5𝑠.  

Mathematical idea  𝑠′(𝑠) = −0.5 

Result  This equation has no solution, therefore, 

Expanation  the roads do not run parallel to each other. 

Figure 4 – Exemplary solution for teachers 

It cannot be expected of students’ solution to show such a degree of verbalisation. It is not the purpose 
of exemplary solutions to set minimal standards for students but to show teachers how solutions can 
be documented. The categories help to structure the text and to make the function of single elements 
more apparent. 

 
Discussion of results and conclusion 
Teachers may apply the categories in two ways: firstly, the categories can provide guidelines for 
documentations in a constructive way. For example, every documentation should make clear what 
the mathematical idea was that lead to the solution. Furthermore, students and teacher could agree in 
classroom discussions that verbalized explanations help to make clear the connections of different 
(symbolic) elements and, thus, allow the reader(s) to follow the solving process more easily. The 
notation of CAS-commands (if and how) could also be agreed upon in the class or amongst teacher 
even on a school level. Secondly, they then might be used for assessing students’ solutions for 
formative purposes as well as summative purposes. The categories might help teachers and researches 
alike to see documentations more clearly as a set of elements with different functions that make up 
the whole text. The exemplary solutions illustrate different possibilities of documentations. They can 



be used for reflection in pre-service professional development courses as well as in in-service 
professional development courses.  

In conclusion, it is important that students develop the competence to assess by themselves if a 
solution is acceptable and to create good solutions on their own (formative assessment key strategies 
4 and 5). The main determining factors are the purpose of the documentation and the intended 
addressee, both of which may make an additional verbal explanation necessary. To provide support 
for this development is a major challenge for modern mathematics education. The combination of 
“learning to document” with some elements of formative assessment is a promising way to meet this 
challenge. 
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In Geneva canton (Switzerland), a special course has been designed to deal with problem solving. 
Within one 45-minute period per week, teachers have to improve students’ problem solving 
competencies and to assess them frequently. In order to assess students’ problem solving 
competencies, most teachers use grids of criteria with a summative purpose. The global objective of 
our research is to find out if and how using such a tool can also foster formative assessment processes. 
In this paper, we present an exploratory study focused on teachers’ formative assessment practices. 
In order to do so, we study the practices of a teacher giving this IBME-centered course and show 
how she uses formative assessment in her teaching practices. 

Keywords: Formative assessment, summative assessment, problem solving, IBME, teachers’ 
practices. 

A course dealing with problem solving 
In French-speaking Switzerland, the shared curriculum for compulsory education insists on the 
importance of problem solving in mathematics education in order to make students familiar with 
inquiry based mathematics education (IBME). The aim is to promote students’ scientific processes 
of thought. But as Dorier and Maass say “inquiry based mathematics education remains quite 
marginal in day-to-day mathematics teaching” (2014, p. 303). That is why in Geneva canton, a special 
course called mathematics development has been created to focus on and develop students’ problem 
solving competencies. Students aged 13-14 years old (grade 8) with a scientific profile are involved. 
Within one 45-minute period per week, teachers have to improve the students’ problem solving 
competencies and at the same time, assess them frequently. 

This course is subject to many constraints and raises two fundamental questions in mathematics 
education: how to foster and how to assess students’ problem solving competencies? Thus it is 
necessary to identify what problem-solving competencies are and consequently what students are 
expected to learn and to know. 

IBME and problem-solving competencies 
In the French mathematics teaching tradition, problem solving has been seen for many years as a 
means to develop specific mathematical content and knowledge (Brousseau, 1998). For the past 
couple of years, however, many countries, and especially European countries, have been emphasizing 
problem solving in mathematics and inquiry-based mathematics and science education (IBMSE) as a 
learning goal for its sake. The European Rocard’s report (Rocard et al., 2007) promotes a wider 
implementation of IBMSE in classrooms as a tool to make sciences and mathematics more attractive 
to students. Nevertheless, this increasing interest in IBMSE has not been followed by a concise and 
commonly shared definition (Dorier & Garcia, 2013). If we are to summarize, it 



refers to a student-centered paradigm of teaching mathematics and science, in which students are 
invited to work in ways similar to how mathematicians and scientists work. This means they have 
to observe phenomena, ask questions, look for mathematical and scientific ways of how to answer 
these questions (like carrying out experiments, systematically controlling variables, drawing  
diagrams, calculating, looking for patterns and relationships, making conjectures and 
generalizations), interpret and evaluate their solutions and communicate and discuss their solutions 
effectively. (Dorier & Maass, 2014, p. 300) 

Intended learning outcomes of IBME 

The goal of IBME is to make students work in a way similar to the one of mathematicians and to 
make students familiar with a scientific approach to solve problems. For Hersant (2012), a scientific 
approach cannot be considered as a relevant learning goal, especially because it is unclear, non-unique 
and too ambitious. Thus the intended learning outcomes of IBME are not so easy to interpret and 
implementing IBME in classrooms remains a crucial issue. If we look at institutional instructions of 
the mathematics development class, teachers are invited to propose open-ended problems (Arsac, 
Germain, & Mante, 1991) to students, which is, in France and in French speaking Switzerland, a 
traditional way of introducing students to IBME. An open-ended problem is a problem which has a 
short text, has no obvious solution and method, deals with students’ familiar conceptual domain and 
enables students to make the problem their own. Facing such a problem, students should learn 
different strategies. It aims more generally at both establishing scientific debate rules and developing 
a scientific approach following the pattern of try - conjecture - test and prove. But according to 
Hersant (2010), what gives this approach a scientific dimension is not only the existence of trials, 
conjecture and proof but the articulation among these. She also emphasizes that there is no unique 
scientific approach. The first goal is not so clear, neither is the second. Debate rules can indeed refer 
to logical rules (several examples don’t prove a proposition, a counter example is sufficient to 
disprove a conjecture, etc.) or to social rules (listen to the others, etc.). Consequently, curriculum and 
instructions about open-ended problems do not seem to be sufficient to help teachers to define what 
is institutionally expected about students’ problem solving competencies.  

Identifying what we want students to learn and to know about problem solving is still a problematic 
issue. The identification of the intended learning outcomes from IBME is by no means obvious even 
for teachers, and the danger is that students might not be aware of what they are supposed to learn 
and to know. That is why IBME learning goals should be at the midst of specific discussions with 
students in class. Even though such discussions should also be encouraged when acquiring a more 
classical mathematical knowledge, it is all the more important in the case of IBME. 

Problem solving narration activity 

To assess students’ problem solving competencies, teachers have to be able to access what students 
did in order to solve the problem and especially what solving strategies they used. That is why the 
problem solving narration activity (Bonafé et al., 2002) has been institutionally chosen as a means to 
assess students. It can be defined as a new contract between students and teachers in which students 
have to explain the best they can, how they solved, or tried to solve, the problem (including mistakes, 
wrong ways, dead-ends, help they received…) and teachers have to assess students on these and only 
these points and especially not take into account the fact whether students found the right answer or 



not. With this activity, the fact that students have to explain all the strategies they tried and all the 
ideas they had to someone else, presupposes that they are capable to do so firstly to themselves. They 
have to reconstruct their reflection and make a synthesis of which strategies were effective, which 
one were wrong ways or led to dead-ends, etc. In that sense, it can emphasize students’ reflection 
about what solving problems in mathematics means, about their own problem solving competencies 
and it can encourage the development of para and proto-mathematical knowledge. Problem solving 
narration activity as a scheme used principally for summative assessment can also foster students’ 
problem solving competencies and assume a formative function. This last observation leads us to 
consider the assessment of problem solving competencies, not only with summative purpose, but also 
with a formative purpose. 

Assessing students’ problem-solving competencies 
According to Allal (2008) assessment is summative as soon as a synthesis of the competencies and 
knowledge learnt by the student at the end of his curriculum is established. Thanks to the distinction 
made by Scriven (1967) and then by Bloom (1968) between summative and formative assessment, 
Black and Wiliam give the following definition: 

Practice in a classroom is formative to the extent that evidence about student achievement is 
elicited, interpreted, and used by teachers, learners, or their peers, to make decisions about the next 
steps in instruction that are likely to be better, or better founded, than the decisions they would 
have taken in the absence of the evidence that was elicited (Black & Wiliam, 2009, p. 9).  

The notion of feedback is a key component of formative assessment. Formative assessment contains 
“all those activities undertaken by teachers, and/or by their students, which provide information to be 
used as feedback to modify the teaching and learning activities” (Black & William, 1998, pp. 7-8). 
Another key component of formative assessment is that students understand the target of their work 
and that they grasp what is expected (Harlen, 2013). But it means that “students need to have some 
understanding of the criteria to apply in assessing their work” (Harlen, 2013, p. 17). Once again, the 
necessity of specific discussions with students about assessment criteria and about what they are 
expected to learn is emphasized.  

To classify classroom formative assessment, Shavelson et al. (2008) are using a continuum, that 
ranges from formal embedded assessment to informal, on the fly formative assessment. It means that 
formative assessment does not take a unique form but that it can be planned or not, it can refer to 
formal tools to collection of data or not, etc. Adopting this point of view, formative assessment can 
be considered as a practice integrated within the learning process (Lepareur, 2016). Referring to 
formative assessment about IBME is all the more relevant that 

the practice of formative assessment, through teachers and students collecting data about learning 
as it takes place and feeding back information to regulate the teaching and learning process, is 
clearly aligned with the goals and practice of inquiry-based learning. (Harlen, 2013, p. 20) 

These definitions of summative and formative assessment enhance that identifying assessment 
according to when it occurs (after a phase of teaching vs within a teaching activity for instance) or 
how it occurs (paper-pencil test vs worksheet for instance) seems less relevant than distinguishing 
assessment according to its function. But it does not mean that these two principal functions of 
assessment (summative and formative) cannot coexist. Thus some researchers (Allal, 2011; Harlen, 



2012; Shavelson et al., 2008) argue that they can coexist in what Earl (2003) calls assessment for 
learning. The same assessment activity can serve to summative and formative purpose. It means that 
data collected by the teacher can be used to give students a mark but also to improve learning and 
teaching. On the other hand, for Shavelson et al. “formative assessment could serve summative needs” 
(2008, p. 298). In our research, we deal with teachers’ practices in the mathematics development class. 
Our objective is to find out if and how using an assessment tool as a grid of criteria, firstly with 
summative purpose, can also foster formative assessment processes. In this paper, we focus only on 
teacher’s formative assessment practices. For that, we study the practices of a teacher giving this 
IBME-centered course. 

Teachers’ formative assessment practices 
 Context of the research 

The teacher whose practice we are going to analyze, was a member of a one year commission, created 
in September 2015, and gathering another teacher and ourselves. The purpose of this commission was 
to give teachers of mathematics development classes a common tool to assess students’ problem 
solving competencies with both summative and formative purpose, and consequently to ensure 
common expectations about IBME (from teachers, and more globally from schools). To do so, we 
have been working for one year to elaborate a grid of criteria aiming to assess students’ problem 
solving narration activity. This development of the tool was mainly based on teachers’ expertise. 
Indeed, teachers have implemented the grid in their class, and according to their experiences, we 
adjusted, removed and added some criteria. Nevertheless, we dealt with an existing tool elaborated 
by the Geneva team in the wake of the PRIMAS1 project and were careful to take into account some 
research results (as those of Hersant (2010)). The grid in its final version summarizes criteria related 
to five dimensions of such an activity: presentation, narration, research, technique and modelling. 
These dimensions induce ways to look at the students’ production according to expected qualities. 
For instance, the modelling dimension is characterized by two criteria: “Appropriation of the 
problem: rephrase the problem in French and/or express it with drawings, diagrams, tables” and “Use 
of pertinent mathematical tools and theories, strategies”.  

So, this teacher whose practice we are going to analyze has been reflecting on the intended learning 
outcomes of this IBME-centered course and on the summative assessment of problem solving 
competencies, for one year, thanks to the meetings with the other members of the commission. She 
used the grid elaborated by the commission, in her class, principally with a summative purpose. 
However, thanks to our hypothesis that summative and formative assessment can co-exist, we would 
like to see if she also referred to formative assessment, thanks to specific discussions with students 
about criteria, and feedback related to their production. That is why we analyzed her formative 
assessment practices. 

                                                 
1 Available at http://www.primas-project.eu/fr/index.do 



Theoretical framework  

To characterize teachers‘ formative assessment practices, we referred to criteria elaborated by 
Lepareur (2016). She defined five strategies2 : eliciting goals and criteria (S1); managing discussions 
and activities which can produce some evidence of effective learning (S2); giving feedback to 
students which make them progress (S3); helping students to be responsible for their learning (S4); 
helping students to be a resource for their peers (S5). Even though her research dealt with science and 
mathematics teachers’ formative assessment practice, in our case, we only study mathematics 
teachers’ practices. In that sense, we made some adaptations about key words and sub-strategies she 
defined. The table 1 is the grid we used to characterize the mathematics teacher’s formative 
assessment practices. The T is used for the teacher, S for the students. 

Methodology  

We video recorded two consecutive periods of mathematics development given by this teacher, 
member of the commission, at the end of the school year. The nine students of the class were working 
in four groups (3 groups of 2 students, 1 group of 3). They were working on two problems related to 
the introduction of algebra. At the end of the second period, students had to give a narration about the 
problem they were working on to the teacher. Consequently half of the second period was devoted to 
the narration and students were invited to use office software to write their research down. To interpret 
data and make it relevant with our theoretical framework, we transcribed all interactions occurred in 
class for both lessons (about 67 minutes) and classified interactions according to strategies and sub-
strategies defined in the table 1. 

                                                 
2 Translated from Lepareur (2016).  

Strategy Key words Code Description 

S1 
Goals S11 T explains the goals of the activity. 

Criteria S12 
T explains the intended learning outcomes, what will be 
assessed. 

S2 

Progress in activity S21 T collects information about students’ progress in the activity. 
Strategies S22 T collects information about strategies used by S. 

Understanding S23 T questionnes S about their understanding of the goals. 
Knowledge S24 T takes information about previous S’ knowledge. 

Self assessment S25 
T helps S to situate themselves in relation to assessment and 
success criteria. 

S3 

Feedback (what 
students have to do) 

S31 
T gives an information to make explicit what S have to do 
left. 

Feedback (how 
students can do it) 

S32 
T provides explicit  information about how S have to do it, to 
move on. 

S4 Responsabilisation S4 
T emphasizes S’ ideas, gives them independancy to access  
resources. 

S5 
Interactions (group) S51 

T encourages S to discuss with others members of their group. 
Peers are seen as a resource. 

Interactions (class) S52 T integrates S’ propositions and encourages others to react on. 



Table 1: Grid of analysis of formative assessment practices, adapted from Lepareur (2016) 

For instance, during the following interaction between the teacher and a student, we can see that the 
teacher tries to make the student explains his strategy.  

Teacher: Yes but how did you find this? 
Student: I made a lot of stuff. 
Teacher: But try… what did you do? It’s interesting to know how you were thinking. 
Student: I made all of this but like everything in reverse. 
Teacher: Yes so the first step. What did you do at the first step? 
Student: 24 minus 7. 
Teacher: Yes, you went backwards in your calculations. Yes. It’s a good idea. Doing 

backward calculation is in fact a lead. 

In that case, we identify a formative assessment practice, according to the strategy S2 “managing 
discussions and activity which can produce some evidence of effective learning“ and more specially 
the strategy S22 “collecting information about strategies used by students”. 

Results and analysis

Figure 1: Strategies of formative assessment 

We found out 44 episodes when formative 
assessment strategies occurred thus we can say 
that this mathematics teacher refers frequently to 
formative assessment in her practice. We 
identified 4 times the strategy S1; 25 times 
strategy S2; 10 times strategy S3; 3 times 
strategy S4 and 2 times strategy S5. The figure 1 
illustrates the percentage of apparition of each 
strategy. To summarize, we can notice that the 
teacher refers to every strategy (S1, S2, S3, S4 
and S5).  

On top of that, she uses principally the strategy S2: “managing discussions and activities which can 
produce some evidence of effective learning”. It represents more than half of the strategies of 
formative assessment used by this teacher. The strategy S3 which refers to “give feedback to students 
which makes them progress” is also used frequently, about one time out of four. 

But if we look deeper, we can see that each sub-strategy is not used with the same frequency (figure 
2).We can see that for the strategy S1 related to the goals and criteria, the teacher only explains the 
goals of the activity (S11) but not the criteria of assessment or the intended learning outcomes (S12). 
This lesson occurred at the end of the year so we can make the hypothesis that by then students knew 
well what they were expected to do. 



The most represented sub-strategy related to 
“discussions and activities which can produce 
some evidence of effective learning which is 
used frequently” (S2) is “collecting information 
about strategies used by students” (S22). It 
appears 19 times. It is also the strategy that 
occurs the most, all categories taken into 
account. The only other significant strategy 
dealing with S2 used by the teacher is “taking 
information about students’ progress in the 
activity” (S21). So the teacher focuses on where 
students are in the activity and what they have 
done to get there. 

Then, for strategy S3 about feedback, the two ways; “provides information to make it explicit what 
is left for the students to be done” (S31) or “how they have to move on” (S32) are represented, but 
the second one more than the first one. The idea is that this teacher helps students both knowing what 
they have to do but even more how they can continue. For the last strategy (S5) dealing with 
interactions, the teacher focuses on discussions within the groups. The absence of strategy S52 about 
“the integration of students” can easily be explained by the fact that during these two lessons, students 
only worked in group, without any collective classroom discussion. 

Conclusion 
We can say that this mathematics teacher refers frequently to formative assessment in her practices 
(44 times during a 67 minute-lesson). She uses a very large set of formative assessment tactics; 
eliciting goals and criteria; managing discussions and activities which can produce some evidence of 
effective learning; giving feedback to students which make them progressing; helping students to be 
responsible for their learning; helping students to be a resource for their peers. But she uses principally 
formative assessment to manage discussions and activities which can produce some evidence of 
effective learning, and especially, she collects information about strategies students use. The feedback 
she provided to students is mainly about how they can continue, how they can do what they have to 
do to solve the problem. The only strategy which does not appear is this related to explanation of 
criteria and expected learning outcomes. We can make the hypotesis that it has been at the core of a 
discussion in the first part of the schoolyear. In that sense, it should be interesting to focus on what 
happens at the beginning of the schoolyear and to study how teachers explain and negociate the 
intended learning outcomes with students. 

To conclude this paper, we can say that this exploratory study shows that formative assessment seems 
to be relevant for this teacher in order to foster her teaching practices in the case of an IBME-centered 
course. It is, nevertheless, necessary to enlarge the study, in order to compare and expend or not the 
results, and to have more information about how teachers refer to formative assessment. On top of 
that, we can imagine that working with teachers about these strategies could foster their formative 
assessment practices.  

  

Figure 2: Strategies of formative 
assessment according to key words 
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It has been argued that the PISA assessment has had a disproportionate impact on Project Maths, 
the new mathematics curriculum recently implemented in post-primary schools in Ireland, which 
seeks to emphasise deep conceptual understanding and problem solving in real-life contexts.  This 
paper describes an analysis of the content, cognitive processes and contexts underpinning Junior 
Certificate mathematics examination questions set for students in Grade 9 in 2003 and 2015, using 
the frameworks underpinning the PISA and TIMSS studies. Despite a significantly increased reading 
load for students, the Junior Certificate mathematics examination continues to emphasise lower-
order processes, at the expense of higher-level thinking, as defined by PISA and TIMSS, while there 
has been a small increase in the proportion of items presented in practical contexts. The need to 
examine the effects of Project Maths in classroom settings is highlighted.  

Keywords: Mathematics, assessment, Project Maths, Junior Certificate.  

Introduction 
Since 2010, all students entering post-primary school (Grade 7) in Ireland have studied under Project 
Maths, an innovative mathematics curriculum introduced in an effort to increase the relevance of 
mathematics for students, and to improve teaching and learning. Since 2015, all aspects of Project 
Maths have been assessed in the Junior Certificate (JC) mathematics examination, a state examination 
taken by almost all students at the end of Grade 9 (Third Year). The purpose of this paper is to examine 
changes in how and what mathematics is assessed in the JC, and how these changes relate to the 
frameworks and approaches to assessment of mathematics underpinning the OECD Programme for 
International Student Assessment (PISA) (OECD, 2016), and the Trends in International 
Mathematics and Science Study (TIMSS) (Grønmo, Lindquist, Arora, & Mullis, 2013).   

Ireland has participated in PISA since its inception in 2000. Although Ireland has been consistently 
among the highest-performing countries on reading literacy in PISA, performance on mathematical 
literacy has generally been at the OECD average, and, on one occasion (2009), significantly below it. 
Although average performance on mathematics in Ireland was above the OECD average for the first 
time in 2012, this reflected a decline in the OECD average rather than an increase in the performance 
of students in Ireland, compared with, for example, 2003 and 2006.1 Students in Grade 8 in Ireland 

                                                 
1 It should be noted that over three-quarters of students in PISA 2012 in Ireland had not studied under Project Maths, with 
students in Grades 9 and 10 studying the preceding curriculum, except those in a small number of Project Maths pilot 
schools.  



 
 

 

did not participate in TIMSS between 2003 and 2011, but did take part in the most recent cycle, in 
2015.  

Concerns about standards in mathematics have increased in recent years and outcomes in PISA are 
just one factor contributing to this. There have also been concerns about declining performance 
among entrants to university mathematics courses (Gill, O’Donoghue, Faulkner & Hannigan, 2010).  

In 2005, the National Council for Curriculum and Assessment began a process leading to the 
implementation of a revised mathematics curriculum for post-primary schools. This involved the 
commissioning of a research paper looking at international trends in mathematics education (see 
Conway & Sloane, 2006), and a consultation process involving interested parties (NCCA, 2005). 
Following two years of development work, the Project Maths curriculum was introduced into 24 pilot 
schools in 2008, and implementation began in all post-primary schools in 2010, with a phased 
introduction that was completed by 2015. The aims of Project Maths at Junior Cycle level (Grades 7-
9) include developing mathematical knowledge, skills and understanding needed for continuing 
education, for life and for work; fostering a positive attitude to mathematics; and developing the skills 
of dealing with mathematical concepts in context and in applications, and in problem solving (DES, 
2013). There are five inter-related strands in the curriculum: Statistics and Probability; Geometry and 
Trigonometry; Number; Algebra; and Functions. Learning outcomes are identified for students 
intending to take the JC mathematics examination at Higher and Ordinary levels, with no separate 
course for Foundation level.  

Project Maths has received a mixed reception. The Irish Mathematics Teachers Association (IMTA) 
(2012) noted that insufficient detail was provided on aspects of course content, giving rise to 
uncertainty as to whether certain topics were included or not. Drawing on a survey of teachers in 
Project Maths pilot and non-pilot schools conducted as part of PISA 2012 in Ireland, Cosgrove et al. 
(2012) reported more frequent use of ICT in pilot schools, and more positive changes in learning and 
assessment, though teachers in pilot schools were less confident in their teaching. Concerns about 
readability were raised in the same study, with teachers in pilot schools arguing that the problems 
presented to students in classroom and assessment contexts contained more text and greater linguistic 
complexity than was the case prior to Project Maths, when teaching and learning mathematics were 
more formal and less contextualised. Similar concerns have been raised about the effects of 
readability on performance in the PISA mathematics assessment as a result of the complexity of 
contexts that are presented to students (Eivers, 2010). 

A small number of studies have looked at the initial effects of Project Maths on students’ 
performance. A study by the National Foundation for Educational Research in the UK (Jeffes et al., 
2013) found no achievement differences between students in schools implementing Project Maths for 
longer or shorter time periods, or between those that had implemented more, compared with fewer, 
content areas. Although students in pilot schools in the PISA 2012 sample in Ireland achieved higher 
mean scores on each PISA mathematics content area, and on overall performance, differences were 
not statistically significant (Merriman, Shiel, Cosgrove & Perkins, 2014). Worryingly, students in 
pilot schools had significantly higher levels of anxiety about mathematics than their counterparts in 
non-pilot schools.  



 
 

 

The lack of evidence for a significant change in mathematics performance since the implementation 
of Project Maths, as well as claims that PISA has had a disproportionate impact on the Project Maths 
curriculum (e.g., Kirwan, 2015; Grannell, Barry, Cronin, Holland & Hurley, 2011) points to the need 
for a critical look at changes to the JC mathematics examination. This paper looks at whether the 
contexts, content and processes underpinning the examination differed in 2003 and 2015 (when 
analysed through the lens of PISA and TIMSS) and whether examination papers have become more 
or less readable between the same two time points. The research questions addressed are as follows: 

(i) What changes in mathematical content, cognitive processes, and item contexts can be 
identified from a comparison of the pre-Project Maths 2003 Junior Certificate examination 
with the post-Project Maths 2015 examination with reference to the TIMSS and PISA 
mathematical frameworks and tests? 

(ii) What changes in readability can be identified from a comparison of the pre-Project Maths 
2003 Junior Certificate examination with the post-Project Maths 2015 examination? 

Methodology 
Examination paper analysis – Context, content and process  

This study focuses on the JC state examination papers in 2003 and 2015 as examples of papers before 
and after the introduction of the revised curriculum. The 2003 papers were chosen because a similar 
classification exercise was previously carried out on these papers by Close and Oldham (2005). The 
2015 papers were chosen as a comparison as they were the first to include all Project Maths content 
areas for all JC students.  

Junior Certificate mathematics is examined at three levels: Higher Level (HL), Ordinary Level (OL) 
and Foundation Level (FL). There are two papers each for HL and OL and one for FL. Consequently, 
the study included ten papers in total (five for each year). The aim was to classify the questions in 
each examination paper in terms of the main components of the TIMSS 2015 Grade 8 mathematics 
framework (Grønmo et al., 2013) and the PISA 2003 and 2015 frameworks (OECD, 2003; 2016). 
The relevant characteristics of these frameworks are outlined below. The PISA framework was 
chosen as it reflects recent trends internationally towards realistic mathematics and problem-based 
learning in rich contexts. The TIMSS framework was also used in this study as it reflects a more 
traditional, curriculum-based approach, with a focus on the mathematical concepts, skills and 
applications seen as necessary for further study of mathematics and for life. Using both frameworks 
allowed the analysis to capture more fully any changes in the JC examination between the selected 
time points. 

TIMSS mathematics has four content domains: Number, Algebra, Geometry and Data and Chance. 
There are three cognitive domains: Knowing, Applying and Reasoning. The PISA mathematics 
framework has three dimensions: Context, Content and Competency2. PISA classifies each 
mathematics item in terms of its context – Personal, Occupational, Societal or Scientific. The PISA 

                                                 
2 For the purposes of this study, the 2015 framework was used to classify items by Content and Context. However, the 
2003 Competency Clusters were used as they are more suited to the JC examinations and are more consistent with the 
TIMSS Cognitive Domains. In addition, the 2003 Competencies were used in Close and Oldham (2005). 



 
 

 

content categories are Change and Relationships, Space and Shape, Quantity, and Uncertainty and 
Data. The PISA 2003 framework also classifies items by groups of cognitive processes or 
‘Competency Clusters’. The three clusters are Reproduction, Connections, and Reflection.   

The Reproduction cluster in PISA can be summarised as the ‘reproduction of practised knowledge’ 
(OECD, 2003), which covers the category of Knowing in TIMSS but also some of Applying. The 
Reflection cluster involves ‘advanced’ reasoning, abstraction and generalisation in novel contexts, 
which often requires a higher cognitive demand than some Reasoning items in TIMSS. 

Within each JC paper, each part of a question (a i), ii), etc.) was treated as a separate item. Each item 
was classified by two of the authors (RC and SC) according to the dimensions outlined above. 
Classifications were carried out independently and all disagreements were recorded and discussed 
until a consensus was reached. Very few disagreements arose in relation to the content or context of 
the items. By comparison, more disagreements occurred where judgements were made about the 
processes involved in answering the items i.e. in identifying TIMSS Cognitive Domains and PISA 
Competency Clusters. This is not surprising, as determining the primary process required to answer 
a test item is, by nature, a more subjective exercise. Initial agreement rates for cognitive processes 
per examination ranged from 74 percent (TIMSS classifications for FL 2015) to 97 percent (PISA 
classifications for FL 2003). Most examinations had an agreement level above 80 per cent.  

Reading load and readability analysis  

An analysis of the reading load and readability of JC mathematics examination papers administered 
in 2003 and 2015 was also conducted. Reading load here refers only to the number of words to be 
read, while measures of readability aim to assess the overall difficulty of the text.  Data were 
generated for word count, number of sentences, average number of words per sentence, and average 
number of complex words (words with three or more syllables). An overall measure of readability 
for each paper was obtained by taking the average results (in Grade level units) of eight readability 
measures including the Flesch-Kincaid Grade Level. Prior to applying these formulae, title 
information, general instructions and item numbers were removed. In addition, diagrams were deleted 
(though labels and numbers were retained), and functions were replaced with a placeholder, as 
readability formulae are not designed to assess the complexity of these elements.  

Results 
Classification of items by content, cognitive process and context3 

The data in Table 1 show that, between 2003 and 2015, there was an increase in the number of JC 
examination items in Data and Chance (+10 percentage points), as defined by TIMSS, with a 
corresponding increase in Uncertainty and Data (+9 percentage points), as defined by PISA. The 
change in these content domains can be ascribed to the increased emphasis on Statistics and 
Probability in the revised curriculum. These increases were more or less counter-balanced by 
decreases in Number (-5 percentage points) and Geometry (-4 percentage points) on the TIMSS 
content dimension and in Quantity (-8 percentage points) in PISA.  
  
                                                 
3 For brevity, the results of the item categorisation are collapsed across HL, OL and FL for each year. 



 
 

 

TIMSS 
Content 
Domain 

TIMSS  
% Items 
 

JC 2003 
% Items 
N = 187 

JC 2015 
% Items 
N = 208 

PISA 
Content 
Domain 

PISA  
% Items 
 

JC 2003 
% Items 
N = 187 

JC 2015 
% Items  
N = 208 

Number 30 (30)4 21 16 Quantity 25 27 19 

Algebra 30 (25) 24 27 Change & 
Relations 25 31 34 

Geometry 20 (30) 30 26 Space & 
Shape 25 25 24 

Data & 
Chance 20 (15) 11 21 Uncertainty 25 11 20 

Not covered5  13 10 Not 
covered  6 3 

Table 1: Percentages of items in each TIMSS and PISA content domain, and percentages of total JC 
2003 and 2015 items, by TIMSS and PISA content domains    

Table 2 presents the results for the cognitive process dimensions. Relatively few of the JC 
examination items for either 2003 or 2015 fell into the TIMSS Reasoning category, although there 
was an increase between 2003 and 2015 (+6 percentage points). Only two items in 2015 (1%) were 
categorised as PISA Reflection, with none in 2003. However, the proportion of Connections items 
was higher in 2015 than in 2003 (+8 percentage points), with a corresponding decrease in 
Reproduction items. Despite this, most of the JC items for both years were classified as TIMSS 
Knowing and Applying and PISA Reproduction.  

TIMSS 
Cognitive 
Domain  

TIMSS  
% Items 
 

JC 2003 
% Items 
N = 187 

JC 2015 
% Items 
N = 208 

PISA 
Cognitive 
Domain 

PISA  
% Items 
 

JC 2003 
% Items 
N = 187 

JC 2015 
% Items  
N = 208 

Knowing 35 35 45 Reproduction 25 88 79 

Applying 40 57 42 Connections 50 12 20 

Reasoning 25 7 13 Reflection 25 0 1 

Table 2: Percentages of items in each TIMSS and PISA cognitive (process) domain, and percentages of 
total JC 2003 and 2015 items, by TIMSS and PISA cognitive domains    

Part of the intention of Project Maths reform was to place more emphasis on using mathematics to 
solve problems set in practical realistic contexts. Table 3 shows the results of classifying the items in 
the 2003 and 2015 JC exams into items with some sort of practical context and items which are purely 
mathematical or intra-mathematical. The results show that around half of the items in the 2015 
examination papers had a practical context reflecting a small change since 2003 (up from 40%). These 
figures are similar to the TIMSS percentages for mathematical and practical contexts, whereas all 
PISA items are placed in a practical context. It is important to note that the practical contexts of 
                                                 
4 TIMSS 2003 Content Domain weightings in parentheses. 

5 Some JC topics are not included in the TIMSS and/or PISA frameworks e.g. sets, trigonometry and proofs of geometric 
theorems. 



 
 

 

TIMSS items and JC 2003 and 2015 exam items are generally minimal compared with the more 
substantial and often realistic contexts of PISA items. 

 
Context 
Category 

TIMSS 
approx.% Items 

PISA 
% Items 

JC 2003 
% Items, N = 187 

JC 2015 
% Items, N = 208 

Mathematical 50 0 60  49  

Practical 50 100 40  51  

Table 3: Comparison of TIMSS and PISA test items and JC exam item percentages by context category 

Reading Load and Readability6  

Table 4 shows that, at JC HL, the number of words students were expected to read on Paper 1 
increased from 765 in 2003 to 1335 in 2015 (a 75% increase). At OL, the word count increased from 
662 to 1240 (an 87% increase), and at FL, the increase was from 530 to 1027 words (a 94% increase). 
However, the average difficulty of the text that students were expected to read remained about the 
same at HL (Grade 4) and OL (Grade 2). There was an increase at FL (from Grade 0 to Grade 2). The 
average number of words per sentence remained more or less the same (and even decreased by 3 on 
HL Paper 1 in 2015), while the proportions of complex words also remained about the same.   

Examination Paper No. of 
Item 
Parts 

No. of 
words 

No. of 
sent-
ences 

Avg.  no. 
words 
per 
sentence     

No. of 
complex 
words 
(Percent) 

Flesch-
Kincaid 
grade 
level  

Average 
read-
ability 
grade 

2003 HL Paper 1 32 765 58 13 61 (8) 5.0 4 

2015 HL Paper 1 45 1335 135 10 123 (9) 4.1 4 

2003 OL Paper 1 40 662 76 8 35 (5) 2.6 2 

2015 OL Paper 1 41 1240 181 7 64 (5) 2.2 2 

2003 FL 32 530 73 7 23 (4) 1.6 0 

2015 FL  43 1027 140 7 57 (6) 2.3 2 

Table 4: Readability measures for JC examination papers in 2003 and 2015 

Conclusion 
The impetus for the Project Maths curricular reform arose, in part, from Ireland’s performance in 
PISA mathematics (NCCA, 2012). However, the current analysis does not indicate that the 
assessment of JC mathematics has been unduly influenced by the PISA approach. The distribution of 
items by content area on the JC examination in 2015 was similar to its predecessor in 2003, when 
viewed through the lens of TIMSS and PISA, though more Data and Chance items were included in 

                                                 
6 Again, for brevity, results for this section are reported for Paper 1 only for HL and OL. There is only one paper for FL 
for each year. 



 
 

 

2015. This is in line with the increased emphasis on Statistics and Probability in the new JC 
curriculum. While there were proportionally more Reasoning items (as defined by TIMSS) in the JC 
examination in 2015 than 2013, there were no Reflection items (as defined by PISA) in 2003 and 
only 2 in 2015. However, there was an increase in the proportion of PISA Connections items in the 
JC examination, and a reduction in the proportion of Reproduction items. One objective of Project 
Maths is to place more emphasis on higher-order cognitive processes, such as problem solving and 
reasoning in the mathematics curriculum and examinations. The analysis above suggests some 
movement in this direction in JC state examinations, but not to the extent that might be expected from 
such a comprehensive reform. The analysis also indicates that the 2015 JC examination is more 
similar to TIMSS than to PISA in terms of content and processes. This is reinforced by the finding 
that the proportions of items described as being presented in practical (rather than purely 
mathematical) contexts were similar in the JC 2003 and 2015 exams, despite large increases in the 
amount of text that students had to read. Remarkably, however, the readability (overall difficulty) of 
the text in the JC examinations was broadly similar in 2003 and 2015.  A study by King and Burge 
(2015) found that readability levels for clusters of PISA 2012 items ranged from US grade levels 7.5 
to 10.9 (UK reading ages 12.3 to 15.5 years). Hence, the linguistic complexity of PISA items is greater 
than that required for JC mathematics. The analysis here focuses only on state examinations of JC 
mathematics, and not on the implementation of Project Maths in the classroom. Given that Project 
Maths has now been fully rolled out, it would seem timely for an exploration of the extent to which 
teaching and learning has changed.  
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In this paper we present the design of specific digital resources and related methodology, conceived 
with the aim of exploiting connected classroom technology to carry out formative assessment 
processes in the mathematics classroom. The digital resources have been created and experimented 
within the European Project FaSMEd. By using a multi-dimensional theoretical frame developed 
within FaSMEd, we offer elements of validation for the design, focusing in particular on the 
activation of formative assessment strategies through the use of “helping worksheets”. The 
elements of validation will be illustrated through an example from a case study. 

Keywords: Formative assessment, technology, digital resources, task design. 

Introduction 
This contribution stems from the European Project FaSMEd (“Improving progress for lower 
achievers through Formative Assessment in Science and Mathematics Education”), aimed at 
investigating the role of technologically enhanced formative assessment (FA) methods in raising 
students’ attainment levels.  

Within FaSMEd, FA is conceived as a method of teaching where evidence from learning is used to 
adapt both teaching and learning. Wiliam and Thompson (2007, in Black & Wiliam, 2009) focus on 
three central processes in learning and teaching, which represent the aims related to the collection, 
interpretation and exploitation of these learning evidence: (a) Establishing where learners are in 
their learning; (b) Establishing where learners are going; (c) Establishing how to get there.  

In the model developed by Wiliam and Thompson these three central processes are connected to the 
three main agents that intervene (the teacher, the student, the peers) and to the FA key-strategies 
that could be activated: (A) Clarifying and sharing learning intentions and criteria for success; (B) 
Engineering effective classroom discussions and other learning tasks that elicit evidence of student 
understanding; (C) Providing feedback that moves learners forward; (D) Activating students as 
instructional resources for one another; (E) Activating students as the owners of their own learning. 

A theoretical model to analyse the use of technology in FA practices has been elaborated within 
FaSMEd (Aldon et al., in print, and Cusi, Morselli & Sabena, 2016). The model extends Wiliam 
and Thompson’s model, taking into account three main dimensions: (1) the five FA key-strategies 
described by Wiliam and Thompson (ibid.); (2) the three main agents that intervene; (3) the 
functionalities of technology. The third dimension - the functionalities of technology – was added 
within FaSMEd to focus on the ways in which technology can support the three agents in 
developing the FA strategies: (a) Sending and sharing, that is the ways in which technology 



supports the communication among the agents of FA processes; (b) Processing and analysing, that 
is the ways in which technology supports the processing and the analysis of the data collected during 
the lessons; (c) Providing an interactive environment, that is when technology enables to create 
environments in which students can interact to work individually/in group on a task or to explore 
mathematical/scientific contents. 

We argue that the FaSMEd three-dimensional framework may represent a useful tool for:  
 designing digital materials for technology-enhanced FA practices and the corresponding 

methodology, and 
 analysing how these materials are implemented in the classroom.  

In this paper we will refer to the study carried out in Italy, where we added the fundamental 
assumption that, in order to raise students’ achievement, FA has to focus not only on cognitive, but 
also on metacognitive factors (Schoenfeld, 1992). For this reason, our design is aimed at i) fostering 
students’ ongoing reflections on the teaching-learning processes, and ii) focusing on making 
thinking visible (Collins, Brown & Newmann, 1989) through students’ sharing of their reasoning 
with the teacher and the classmates, by means of argumentative processes.  

In the following we present the design of digital materials and of the methodology for their 
implementation in the classroom. We will then focus on the specific case of “helping worksheets” 
and analyse its implementation in a case study. The analysis will be based on the FaSMEd three-
dimensional framework. The analysis of FA strategy C (Providing feedback that moves learners 
forward) will be deepened with reference to the four major levels of feedback introduced by Hattie 
and Temperley (2007): (1) feedback about the task; (2) feedback about the processing of the task; 
(3) feedback about self-regulation; (4) feedback about the self as a person. 

Design of the digital materials and of the methodology for their implementation 
The research developed within FaSMEd has been built on the model of design-based research 
(Cobb et al, 2003), so it is based on successive cycles of design, observation, analysis and redesign 
of classroom sequences. The design experiments we carried out in Italy were characterised by three 
subsequent cycles of design. The first two cycles were carried out in March-May 2015 and in 
September-December 2015. The third cycle started in May 2016 and has not been completed yet. 
The results we present in this paper refer to the first two cycles of the design. 

In tune with the theoretical assumptions presented in the previous paragraph, we chose to use a 
technology that supports the students in sharing, discussing and comparing both their written 
productions and the strategies developed to carry out the different tasks. Specifically, we explored 
the use of a connected classroom technology (CCT), which creates a network between the students’ 
tablets and the teachers’ laptop, allowing the students to share their productions, and the teacher to 
easily collect the students’ opinions and reflections: IDM-TClass. 

The design experiments involved 25 classes (from grade 4 to grade 7) from three different clusters 
of schools located in the North-West of Italy. Each school was provided with tablets for the students 
and computers for the teachers, linked to IWB or data projector. In order to foster collaboration and 
sharing of ideas, students were asked to work in pairs or in small groups on the same tablet. 



During the first two cycles of design, we carried out about 450 hours of lessons. The researcher was 
in the class as both an observer and a participant (to support the teacher in the use of the technology 
and in the implementation of the digital resources). In some cases, also Master students were present 
as observers. The corpus of data is constituted by video-recordings of the lessons, written 
transcripts, field notes taken by the observers, teachers’ interviews after sequences of lessons, 
students’ written questionnaires and groups of students’ interviews during a Q-sorting activity 
(questionnaires and Q-sorting data were collected at the end of the design experiments). 

The use of IDM-TClass was integrated within a set of activities on relations and functions, and their 
different representations (symbolic representations, tables, graphs). These activities, in line with the 
aims of the FaSMEd Project, where adapted starting from existing research-informed materials. 

For each activity, we have prepared a sequence of different worksheets, to be sent to the students’ 
tablets or to be displayed on the IWB (or through the data projector). The worksheets were designed 
according to four main categories: (1) worksheets introducing a problem and asking one or more 
questions (problem worksheets); (2) helping worksheets, aimed at supporting students, who meet 
difficulties with the problem worksheets, through specific suggestions (e.g. guiding questions); (3) 
worksheets prompting a poll between proposed options (poll worksheets); (4) worksheets prompting 
a focused discussion (discussion worksheets). 

Usually the activity starts with a problem worksheet, sent from the teacher’s laptop to the students’ 
tablets. Students work in pairs or small groups of three. After facing the task and answering the 
questions, the pairs/groups send back to the teacher their written productions. The teacher can 
decide to send helping worksheets to some groups, or the groups can ask for them.  

After all groups have sent back their answers, the teacher sets up a classroom discussion in which 
the students’ written productions are shown and feedbacks are given by the teacher and by 
classmates. The discussion is engineered starting from the teacher’s selection of some of the 
received written answers, to be shown on the IWB, and aims at highlighting: (a) typical mistakes; 
(b) effective ways of processing the tasks; (c) the comparison between the different ways of 
justifying. During the part of the discussion focused on these aspects, therefore, the criteria for 
success could be clarified through the analysis and comparison of the different written productions. 

The teacher can also display the discussion worksheets or poll worksheets, if she realises that some 
specific aspects were neglected, to support the class discussion during different parts of the lessons. 
It is also possible to create polls on the spot to check students’ understanding, or their awareness 
about what has been developed during the activity, or their attitudes toward the activity. 

In the next paragraph we illustrate the design of the helping worksheets and the corresponding 
implementation, and present the analysis of an example from a case study. The example has been 
chosen because it is a paradigmatic one, which enables to highlight how the implementation of 
helping worksheets, through the support of CCT, fosters the activation of FA strategies and the 
dynamics between them. 



The design and implementation of the helping worksheets: Analysis of an 
episode 
Helping worksheets are conceived to support students in facing the tasks posed through the problem 
worksheets and are sent to selected students during the problem-solving phase, when: (a) they ask to 
receive a help; (b) the teacher realises that they are stuck; (b) the answers they send to the teacher 
highlight mistakes or difficulties. Moreover, helping worksheets may be sent to all groups, after they 
sent their answers to the teacher, as a checking tool for their work. 

Usually we design sets of differentiated worksheets, according to the possible difficulties students 
could meet when facing a problem worksheet. Since our activities are adaptations of existing 
research-informed materials, the hypothesis about students’ difficulties and the corresponding 
feedback that could be provided are drawn also from these materials. 

We focus on helping worksheet 1A (see figure 1), which is matched to problem worksheet 1 within 
an articulated activity on time-distance graphs. The activity, which is our adaptation of some 
materials from the Mathematics Assessment Program, developed at the University of Nottingham 
(http://map.mathshell.org/materials/lessons.php), starts with the interpretation of a given time-
distance graph and develops through the matching between graphs and stories and the construction 
of graphs associated to specific stories. We adapted the tasks in order to propose them to students 
from grade 5 to 7. To ground the time-distance graph on a meaningful activity, we designed an 
introductory activity on the use of a motion sensor (a device connected to a graphic calculator, 
showing, in real time, the Cartesian representation of a produced motion). 

Worksheet 1 introduces a task on the interpretation of a time-distance graph representing the 
journey of a student, Tommaso, from home to the bus-stop. The worksheets’ sequence connected to 
this task was conceived to gradually lead students in the interpretation of the graph, focusing their 
attention on the meaning of ascending, descending and horizontal traits of the graphs. Students are 
also asked to focus on the reasons supporting the correct interpretation of a time-distance graph, 
with the aim of making them, on one side, reflect on their thinking processes and share these 
processes with their classmates and, on the other side, consolidate their competencies in justifying 
and analysing their answers. The question on worksheet 1 (within the white box, see fig.1) requires 
students to interpret the meaning of a descending line within the graph. Students have to highlight 
that in the period of time from 50s to 70s the distance from home decreases, so Tommaso is going 
back for a while. Helping worksheet 1A (fig. 1) first of all makes students focus on the word 
“straight” to help them to abandon the idea that the graph could represent the drawing of the road. 
Moreover, it aims at fostering a correct interpretation of the descending line in the graph, making 
students look at two specific points within the graphs, that is (50, 100) and (70,40), to highlight that 
the distance from home is decreasing.  

Sending a helping worksheet to a specific group of students is a way to activate FA strategy C, 
because students are provided with feedback about the task (if they receive this kind of worksheets, 
they realise that their answers should be completed and/or corrected) and feedback about the 
processing of the task (the suggestions and the guiding questions on the helping worksheets are 
aimed at supporting the students in facing the problem). Moreover, giving feedback represents a 
way of making students activate themselves as owners of their learning (FA strategy E). 
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Journey to the Bus Stop 

Every morning Tom walks along a straight road from his home to a bus stop, a distance of 160 meters. 
The graph shows his journey on one particular day. 

 

1. Describe what may have happened. 
You should include details like how fast he walked. 

 

 

 

 

 

 

 
 

2. Are all sections of the graph realistic? Fully explain your answer. 
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(1) $What$happens$in$the$period$of$time$between$

50s$and$70s?$How$do$you$know$it?$$
!

Remember	 that	 Tommaso	 is	 walking	 on	 a	
straight	road.		
What	 is	 his	 distance	 from	 home	 after	 50s?	
What	is	his	distance	from	home	after	70s?”		

Help	to	answer	to	question	1:	

 
Fig. 1: The helping worksheet 

During our design experiments, some students (in particular, low-achieving students) face 
difficulties also in interpreting the purpose of the provided helping worksheets, as supports to face 
the tasks. This is a manifestation of their lack of metacognitive control. For this reason, after the 
first cycle of design experiments, we introduced the displaying and collective meta-level analysis of 
helping worksheets as a fundamental characteristic of the methodology for their implementation.  

As an example of this specific implementation of helping worksheets, we present and analyse an 
excerpt from a discussion on helping worksheet 1A, which was carried out in a 5th grade class. The 
discussion was aimed at making students aware of the goal of the helping worksheet and at pointing 
out specific mathematical aspects related to the task, namely to make them: (1) look at points within 
time-distance graphs as bearers of two linked information (the distance from home and the time 
spent); (2) interpret the variation of the distance in terms of moving away/approaching home; (3) 
avoid the typical mistake of interpreting the graph as a drawing. We remind that the researcher takes 
part in the discussion as both an observer and a participant. 

220 Researcher: The first ones who are going to speak are those who did not receive this 
helping worksheet. Let’s read the help that is given and try to say why, in your 
opinion, it is an help…what it helps you to do… The main question to be 
answered is still this one (she indicates question 1, presented in Worksheet 1). 
The help says (reading) “Remember that Tommaso is walking on a straight 
road. What is his distance from home after 50s? What is his distance from 
home after 70s?” 

221 Teacher: Why do the suggestions focus on this? 
222 Researcher: What do these questions help to do? 
Several students raise their hands. 
223 Carlo: Because they help you to understand the distance in the period between 50s and 70s. 

Because, at 70s, he is nearer… 



224 Researcher: So you are saying that it enables to look at the distance, aren’t you? 
This discussion was planned with the objective, on one side, of eliciting evidence of students’ 
understanding at a metacognitive level (strategy B), and, on the other side, of activating some 
students as resources for their classmates (strategy D). In fact, the researcher (lines 220, 222) and 
the teacher (line 221) are fostering a meta-reflection, involving the students that did not receive the 
help in clarifying the reasons why the questions posed on helping worksheet 1A could provide help 
in answering questions 1. Their aim is, therefore, to activate FA strategy C at the peer’s level. 
Specifically, Carlo’s intervention (line 223) represents a feedback about self-regulation because he 
highlights that the questions in worksheet 1A enable to focus on the change in Tommaso’s distance 
from home, during that period of time. Through this comparison with their classmates, students can 
therefore become aware of the kind of support that helping worksheets could give and can also 
develop new tools to face similar activities in an effective way.  

Then, the teacher focuses students’ attention on a part of the helping worksheet that was not 
mentioned by Carlo: 

225 Teacher: And why does it [the help] suggest that Tommaso is moving on a straight road? 
226 Carlo: Because it wants to make us reason on the fact that he is going back. 
227 Researcher: What mistake couldn’t be done if I remember that the road is straight? … 

(Silence) If I don’t know that the road is straight, what could I think? 
Anna mimes a curvy road with her hands. 
228 Arturo: I could think that the sensor initially indicates a direction, then he goes on the 

right… (Arturo is referring to the introductory activity with the motion sensor) 
229 Teacher: So a change in the direction. 
230 Researcher: That we are zigzagging, in a strange way. 
231 Teacher: It is the reason why it remembers us that the road is straight. You recalled, with 

your memory, what we experimented last time. If we hadn’t worked with the 
sensor, you, maybe, would have proposed different answers. 

Again the teacher and the researcher focus students’ attention on the suggestions contained in 
helping worksheet 1A to make them become aware of its role in supporting the resolution of the 
task (strategy C). The teacher (line 225) focuses on the first suggestion given in worksheet 1A 
(Remember that Tommaso is walking on a straight road) and the researcher (lines 227) aims at 
making students reflect on the possible misinterpretations that this suggestion wants to prevent. 
Students are, in this way, provided with both feedback about the processing of the task and feedback 
about self-regulation, because they can become aware of the possible mistakes that could be done in 
the interpretation of this kind of graphs, learning how to monitor their work. Also the teacher (line 
231) provides a feedback about self-regulation because she is making the students notice how the 
previous experience has influenced their answer to the current question. Carlo (line 226) and Arturo 
(line 228) are activated as instructional resources for their classmates (strategy D). 

Discussion 
In this paper we referred to the theoretical lenses provided by the FaSMEd framework to present 
and discuss the design of digital resources and the corresponding method of implementation, with a 
special focus on the helping worksheets. The analysis we developed, on one side, shows that the 



FaSMEd three-dimensional framework represents a useful tool for both designing digital materials 
for technology-enhanced FA practices and the corresponding methodology, and analysing how these 
materials are implemented in the classroom. On the other side, this analysis provides a validation of 
the design and implementation because the FaSMEd framework offers some important criteria 
according to which the digital worksheets and the methodology for their implementation can be 
evaluated as effective tools to foster FA processes: (1) the activation of different FA strategies; (2) 
the involvement of all the agents; (3) the evolution of the FA strategies (in particular toward strategy 
E, which should constitute a constant objective of the activities); (4) the different levels of feedback 
provided; (5) the support provided to the three fundamental FA processes.  

At the same time, the analysis of the design and implementation of the helping worksheets in the 
chosen episode enabled us to highlight a pattern that characterises the evolution of FA strategies 
when helping worksheets are implemented. In fact, the use of the helping worksheet, combined with 
the sending and displaying functionality of technology, turned into the activation of several FA 
processes, with the involvement of all the agents. During the group-work phase, by sending the 
helping worksheet to the students, the teacher is activating FA strategy C with the aim of activating 
also strategy E. After the group-work phase, a meta-level discussion devoted to the sharing and 
analysis of helping worksheet is planned by the teacher (strategy B). As a result of the design based 
process, two different ways of fostering students’ meta-level reflections have been identified: 
initially, the students who did not receive the worksheets are asked to reflect on the possible role 
played by the provided help (becoming instructional resources for their classmates, strategy D); 
then, the students who did receive the help (mostly low achieving students) are asked to discuss on 
the ways in which they used it, making their reasoning explicit and being activated as the owners of 
their own learning (strategy E). During the discussion, all the students receive feedback from the 
teacher and their classmates (strategy C) and are provided with the opportunity to clarify the 
learning intentions associated to the worksheet (strategy A).  

We think that this pattern, since it is recurring throughout our corpus of data, represents an 
important validation of the design of helping worksheets, because it highlights the effectiveness of 
these resources and their implementation in fostering the development of FA strategies and the 
fruitful involvement of all the agents. 

Other elements of validation can be highlighted if we interpret the results of the activities carried 
out through the helping worksheets in terms of the three fundamental FA processes that are 
supported: (a) the students are supported in establishing where they are in their learning when they 
use the help as a feedback to assess their own answer; (b) the teacher is supported in helping 
students clarify where they are asked to go when, during the class discussion, the characteristics of 
given answers are analysed and discussed; and (c) the teacher and the students are supported in 
establishing what needs to be done to get there when, during the class discussion, the helping 
worksheets are analysed to highlight in what ways they could help and what kind of suggestions 
they give. 

We are now developing a similar analysis to highlight, referring to these criteria, how the other 
categories of worksheets are used to foster the activation of FA strategies through the support 
provided by technology. This will enable us to identify the connections and mutual support between 



the different worksheets and the methodologies through which they are implemented during the 
lessons. 
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This contribution is framed in a European project on the use of technology to foster formative 
assessment strategies (FaSMEd project) and addresses the crucial issue of feedback therein. The 
theoretical framework refers to formative assessment, with specific focus on different levels of 
feedback. By analyzing data from teaching experiments in grades 5 and 7, we identify strategies 
employed by the teacher to provide feedback during class discussion and investigate the effect of 
such strategies on the enactment of formative assessment. 
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Introduction and theoretical background 
Formative assessment and feedback 

This contribution is framed within the European Project FaSMEd (“Improving progress for lower 
achievers through Formative Assessment in Science and Mathematics Education”), aimed at 
investigating the use of technology to promote formative assessment (FA) practices in the 
mathematics and science classroom. FA is conceived as a method of teaching where 

“[...] evidence about student achievement is elicited, interpreted, and used by teachers, learners, 
or their peers, to make decisions about the next steps in instruction that are likely to be better, or 
better founded, than the decisions they would have taken in the absence of the evidence that was 
elicited” (Black & Wiliam, 2009, p. 7). 

Wiliam and Thompson (2007) describe five key FA strategies: (A) Clarifying and sharing learning 
intentions and criteria for success; (B) Engineering effective classroom discussions and other 
learning tasks that elicit evidence of student understanding; (C) Providing feedback that moves 
learners forward; (D) Activating students as instructional resources for one another; (E) Activating 
students as the owners of their own learning.  

Feedback is a crucial issue in FA. Hattie and Temperley (2007) define feedback as “information 
provided by an agent (e.g., teacher, peer, book, parent, self, experience) regarding aspects of one’s 
performance or understanding” (p.81) and identify four major levels of feedback: (1) feedback 
about the task (concerning how well a task is being accomplished or performed); (2) feedback about 
the processing of the task (concerning the processes underlying tasks or relating and extending 
tasks); (3) feedback about self-regulation (concerning the way students monitor, direct, and regulate 
actions toward the learning goal); (4) feedback about the self as a person (consisting in positive 
(and sometimes negative) evaluations and affect about the student). Hattie and Temperley also point 



 

 

out that feedback is a consequence of specific actions and that can also be sought by students, peers, 
and so on, and detected by a learner without it being intentionally sought.” (p.82). 

Enhancing formative assessment: technology and tasks 

Specific theoretical and methodological assumptions of the Italian team (the three authors) within 
FaSMEd concern the importance of fostering students’ development of ongoing reflections on the 
teaching-learning processes, and helping students to make their thinking visible (Collins, Brown and 
Newmann, 1989), sharing their ideas with the teacher and the classmates. These basic assumptions 
entail specific choices concerning the technology and the tasks. 

Concerning technology, each class is equipped with a Connected Classroom Technology (CCT) 
through which the students’ tablets and the teacher’s laptop are connected. In order to foster 
collaboration and sharing of ideas, students are asked to work in pairs or in small groups on the 
same tablet. By means of the CCT equipment, students are able to receive worksheets from the 
teacher, send back their written answers, and answer to instant polls proposed by the teacher; the 
teacher can easily collect the students’ opinions and reflections during or at the end of an activity, as 
well as the written answers, and receive the statistics concerning the answers to the polls. The 
teacher’s computer is connected to an Interactive White Board (IWB) or a projector, so that it is 
possible to select and display written productions and the results of polls.  

Concerning the tasks, students are asked to work on sequences of activities with a strong 
argumentative component: they are required to provide their answer and explain it in a written text. 
In this way, they are encouraged to make their thinking visible and to provide the teacher and the 
peers with a written text that will be shared and analysed during mathematical discussions (Bartolini 
Bussi, 1998). The mathematical content at issue is relationships and functions, and their different 
representations (symbolic, tabular, graphic). Activities are adapted from the ArAl project (Cusi, 
Malara & Navarra 2011) and The Mathematics Assessment Program (http://map.mathshell.org).  

Summing up, the typical lesson starts with a peer activity on one worksheet. After having collected 
all the students’ written answers, the teacher promotes a class discussion, starting from the analysis 
of some written answers (selected and displayed on the IWB). The discussion concerns the task 
level (correct answers and typical mistakes), the task processing level (effective ways of 
approaching the task) and the communicative level (effective ways of communicating the answer 
and the explanation). Comparison between different solutions is especially promoted. For further 
details on the organization of the lessons, see (Cusi, Morselli and Sabena, 2016).  

Previous results and the current research questions 
In former studies (Cusi, Morselli and Sabena, 2016) we analysed classroom discussions performed 
within the FaSMEd teaching experiments, and highlighted that CCT may support the activation of 
FA strategies by the teacher, by the peers (peer assessment), and by the student himself (self-
assessment). In this contribution we focus on strategy C (providing feedback that moves learners 
forward) and we investigate: what are teacher’s strategies that may foster FA strategy C; which 
level of feedback is provided; what are the effects of this strategy (in terms of activation of other 
strategies such as D and E). 



 

 

The context 
In Italy the FaSMEd project involved 20 teachers, from three different clusters of schools located in 
the North-West of Italy (from grade 4 to grade 7). During all the teaching experiments, one of the 
authors was present in the classes with the teachers, acting as a participant observer. The analysis is 
based on video-recordings of the classroom discussions, with the help of written transcripts and 
field notes by the participant observer (one of the authors). 

Analysis 
By analysing several episodes from the teaching experiments, we came to a first characterization of 
teacher’s feedback strategies, that is the ways in which she gives feedback to students. In the 
subsequent part, we provide a short example for each kind of feedback strategy, highlighting the 
level of feedback provided. Moreover, we will discuss the effects of each feedback strategy in terms 
of activation of FA strategies. All the examples come from the third lesson on time-distance graphs, 
performed in grade 7. The lesson sequence on time-distance graphs (about 20 hours, 8 worksheets) 
was adapted from the Mathematics Assessment Program (http://map.mathshell.org) and was 
introduced by an experience with a motion sensor, which provided instantaneous graphical 
representation of a linear motion performed by the students. This lesson was chosen because it 
contains all the typical teacher’s feedback strategies that recurred in different classes and grades in 
our teaching experiments. Here we refer to worksheet 6, where a graph and three possible stories are 
presented:  Scheda	6	

 
	
RISPOSTA:	

 

Story A: Tommaso took his dog for a walk to the 
park. He set off slowly and then increased his 
pace. At the park Tommaso turned around and 
walked slowly back home. 

Story B: Tom rode his bike east from his home 
up a steep hill. After a while the slope eased off. 
At the top he raced down the other side. 

Story C: Tommaso went for a jog. At the end of 
his road he bumped into a friend and his pace 
slowed. When Tommaso left his friend he walked 
quickly back home. 

The students are asked to answer to the following question: “What is the story that this graph 
represents? Justify you answer.” Students work in pairs and send their written answers to the 
teacher’s computer, as soon as they feel ready. The teacher, together with the participant observer, 
reads the answers as they arrive at her laptop and selects some of them for the discussion. The first 
selected answer is the one by the group of Mil and Pon: 

“For us the answer is B for two reasons: 

1. You cannot do 1600 meters by foot in half an hour 



 

 

2. The graph represents precisely the information given by the story. Then Tommaso climbs 
the hills, the first trait is the climb, the second is still a climb but less steep. When he 
comes to the top, then Tommaso climbs down and goes back home”.  

We may observe that Mil and Pon highlight two reasons for the choice of story B: the first one is 
based on everyday life experience (they draw from the graph the information that 800+800 meters 
are walked, and they point out that it is not possible to walk for 1600 meters in half an hour; since it 
is actually possible to walk 1600 meters in half an hour, this argument is wrong), the second one is 
based on a wrong interpretation of the graph: they interpret the graph as a picture of the hill, that 
Tommaso first climbs up and then descends down. For the teacher, the discussion of students’ 
production is the occasion for giving feedback on two levels: about the task (clarifying that the 
graph represents the relation between distance from home and time, and is not a picture of the hill, 
so it does not share with it any resemblance, in principle) and about the way of processing the task 
(pointing out that the justification must be based on a careful analysis of the information provided 
by the text and the graph). To this aim, the teacher promotes a discussion (strategy B). Mario is 
asked to read the production of Mil and Pon, then the discussion starts.  

Transcript Analysis 

217. Teacher: Then, answer B for two 
reasons. Ok, Lollo? 

The teacher encourages the students to activate 
themselves as resources for Mil and Pon (strategy D). 

218. Lollo: We did, because… we did 
the experience with the motion 
sensor… that if the line was more 
oblique the… the line, if it was 
more oblique, it meant that he 
(Tommaso) went faster, it did not 
mean that the road was steeper, 
because if the road is steeper you 
go slower… 

Lollo gives a feedback about the task (strategy C), 
suggesting that the different inclination of the 
segments should be interpreted in terms of different 
speed. To warrant his statement, he refers to the 
experience with the sensors. He activates himself as 
resource for Mil and Pon (strategy D). He also adds 
that, when the road is steeper, usually one goes slower, 
and not faster, referring to everyday experience.  

219. Teacher: Rob?  

220. Rob: This is a graph, it is not the 
drawing of the hill. 

Rob makes explicit that the graph does not represent 
the drawing of the hill, giving a feedback about the 
task to Mil and Pon. He activates himself as 
instructional resource for his classmates (strategy D), 
providing feedback about the task (strategy C). 

221. Teacher: It is not the drawing of 
the hill, it is the graph that 
represents what? 

The teacher encourages Rob to make explicit his 
comment to Mil and Pon’s answer. This intervention 
is a relaunching: she poses another question, linked to 
Rob’s intervention, with the aim of deepening the 
analysis. Relaunching Rob’s intervention the teacher 
implicitly gives a feedback (strategy C) to Rob 
himself, suggesting that his intervention is worthwhile. 



 

 

222. Rob: The… the journey of one 
boy, and anyway they told that it 
is not possible to do 1600 meters 
in half an hour, we already said it 
last time [he refers to the lesson 
with motion sensors], it is a 
graph, it doesn’t have to be really 
real… really near to reality. 

Rob gives a feedback (strategy C) about the processing 
of the task, pointing out that the justification must not 
rely on empirical arguments but on the interpretation 
of the task. The teacher’s relaunching is efficient in 
turning Rob’s former intervention, which provided a 
feedback about the task, into a meaningful feedback 
about the processing of the task. 

223. Observer: Do you understand what 
he is saying? 

 

224. Mario: For me you can do it easily, 
you can even do 2 or 3 
kilometers… 

Mario challenges Mil and Pon’s justification A, on the 
basis of empirical experience. Mario is giving a 
feedback on the task (strategy C): the first answer 
relies on a wrong argument. 

225. Rob: For me yes…  

226. Teacher: Then, the fact of 1600 
meters in half an hour, your 
classmate says that actually you 
can do it in half an hour, then that 
is not a good motivation. 
Somebody else was talking about 
the second motivation, motivation 
B, the fact that the graph explains 
us that Tommaso climbs the hill 
and so on. Lollo said: “No, 
because when we did the 
experience with the sensor we 
went on a oblique line, but the 
path we were doing was not on a 
hill, it was not steep”.  

The teacher synthetizes the interventions of Lollo, 
Mario and Rob, stressing that the justification 1 is not 
correct. Then she shifts the focus on justification 2, 
focusing on the correct interpretation of oblique lines 
within a time-distance graph. In this way, she activates 
strategy C, giving Mil and Pon a feedback about the 
task (it is a mistake to interpret the task as the picture 
of a hill) and the processing of the task (focusing on 
the ways in which the time-distance graphs should be 
interpreted). Here we may see instances of both 
rephrasing (the teacher reformulates some arguments 
so as to make them more intelligible to the mates) and 
revoicing (the teacher revoices some of the students’ 
interventions, so as to draw the attention on specific 
effective parts of the given arguments). 

227. Ur: Teacher, but I agree with what 
Lollo said. I thought that if it is 
steep you walk slowly, while 
after, when it becomes less steep, 
Tommaso goes faster.  

Ur intervenes, referring to Lollo’s first intervention 
(218). Ur activates herself as owner of her own 
learning (strategy E). This intervention confirms that 
Lollo became a resource for his mates. 

228. Teacher: But the fact that… you 
say: “the fact that the road is more 
or less steep can give us 
information on the reasons why 
he goes faster or slower”… 

The teacher gives a quick feedback to Ur, 
reformulating her sentence, so that other students can 
intervene. This is again an example of rephrasing. 

229. Mark: Teacher, moreover we told 
that with the sensor if we went 
faster… the segment went more 

Mark intervenes making reference to the experience 
with sensors (thus linking the inclination to the speed) 



 

 

vertically, but here … they say 
that he is climbing and he goes 
too much… he goes fast, and then 
when it [the segment] becomes 
less steep he goes less fast. I don’t 
know, in the descent he goes 
really faster than on the other two 
traits, but if they say that he 
climbs up in the first trait, he goes 
fast, and then when it starts being 
plane he goes less fast. 

 
[…] 

and pointing out that something doesn’t work in what 
Mil and Pon wrote: in their interpretation of the graph 
as a picture the first trait is the steeper part of the hill, 
but in the interpretation of the graph in terms of speed 
(as in the previous experience with the motion 
sensors) the segment is steeper when the speed 
increases. Mark expresses his own doubts about the 
two contrasting interpretations: in reference to 
everyday experience, it is not so common to walk 
faster in the steeper trait of a hill. Mark’s intervention 
is an instance of strategy E, but his intervention could 
also act as feedback for Mil and Pon (strategies C, D).  

234. Teacher: But I… this answer really 
tells that the first segment, the 
first two parts of segment that go 
up describe the hill, the steep 
climb, the less steep climb, the 
top and after the descent… 

The teacher goes back to Mil and Pon’s written 
answer, so as to foster the comparison between their 
answer and the intervention of Mark. By contrasting 
in this way the two answers, the teacher is implicitly 
giving a feedback to Mil and Pon (strategy C) and 
turning Mark as instructional resource for them 
(strategy D). 

235. Student: That is wrong. This intervention confirms that the contrasting was 
efficient in fostering the comparison between the 
different positions of Mark and Mil and Pon.  

236. Teacher: Then the idea that the 
segments, as Rob said… “the 
graph is different from the 
drawing of a hill”, or Lollo said 
“when we did it with the sensors 
we saw this kind of segments but 
we were not climbing, it meant 
that we changed the speed”… 
Let’s remember always that the y 
axis describes what? The distance 
from home in meters. 

The teacher intervenes with a rephrasing: she teacher 
reformulates and synthetizes the interventions of the 
students, so as to give a feedback to Mil and Pon. The 
activated strategy is C (providing feedback). In this 
way she is efficient in turning the feedback about the 
task into a feedback about the processing of the task 
(she draws the attention on the meaning of the two 
axes). We call this kind of intervention a rephrasing 
with scaffolding, since the teacher, besides 
rephrasing, adds some elements to guide the work on 
the graph.  

Results and discussion 
Within the FaSMEd project, we performed several teaching experiments in grades 5 to 7, setting up 
task sequences and proposing them in a CCT environment. As a first result (Cusi, Morselli and 
Sabena, 2016), we showed how technology may support the activation of several FA strategies. In 
the current paper we focused on FA strategy C (providing feedback) and explored the ways in which 
the teachers may intentionally provide feedback during class discussions, the kind of feedback that 
is provided and the possible links with FA strategies.  



 

 

The analysis of several class discussions performed during the teaching experiments led us to 
identify typical strategies employed by the teacher to provide feedback. Such strategies are 
exemplified in this paper through the analysis of a class discussion in grade 7. Here we summarize 
the strategies and discuss further developments of our study. The first strategy is revoicing, that 
occurs when the teacher mirrors one student’s intervention so as to draw the attention on it. Often, 
during the revoicing, the teacher, stresses with voice intonation some crucial words of the sentence 
she is mirroring. Rephrasing takes place when the teacher reformulates the intervention of one 
student, with the double aim of drawing the attention of the class and making the intervention more 
intelligible to everybody.  Rephrasing is applied when the teacher feels that the intervention could 
be useful but needs to be communicated in a better way so as to become a resource for the others. 
We also found special instances of rephrasing, when the teacher, besides rephrasing, adds some 
elements to guide the students’ work. Drawing from Wood, Bruner & Ross (1976) the term 
“scaffolding”, we call this special strategy a rephrasing with scaffolding. The revoicing and 
rephrasing strategies are used to activate strategy D, since they turn one student (the author of the 
intervention) into a resource for the class. Moreover, we observed that often revoicing and 
rephrasing (and rephrasing with scaffolding) are efficient in promoting the evolution of the kind of 
feedback, for instance (as in the reported example) from a feedback on the task to a feedback on the 
processing of the task. Relaunching occurs when the teacher reacts to a student’s intervention, 
which (s)he considers interesting for the class, not giving a direct feedback, but posing a connected 
question. In this way, by relaunching the teacher provides an implicit feedback (strategy C) on the 
student’s intervention, suggesting that the issue is interesting and worth to be deepened or, 
conversely, has some problematic points and should be reworked on. Contrasting takes place when 
the teacher draws the attention on two or more interventions, representing two different positions, so 
as to promote a comparison. By contrasting, FA strategy D and E are activated (the authors of the 
two positions may be resource for the class as well as responsible of their own learning).  

The aforementioned strategies, besides being efficient ways to boost the discussion, are powerful 
formative assessment tools, since they foster the activation of formative assessment strategies. 
When addressing one student’s statement, the teacher gives an implicit feedback on it (strategy C), 
suggesting the intervention deserves further attention. Moreover, in this way strategies D and E are 
activated and the feedback may evolve from feedback on the task to feedback on the processing of 
the task. We deem that this kind of classification may shed light into the crucial role of the teacher 
in enhancing FA within class discussions. All the documented strategies seem to be intentionally 
applied by the teacher. Anyway, the given feedback is implicit, since the teacher does not address 
directly the correctness of the student’s intervention. As a consequence, the feedback is not always 
sought by the students. We are aware of the fact that we were able to single out and discuss only 
some effects of a given feedback, namely when a student explicitly refers to a previous intervention 
or changes his mind immediately after an intervention by a peer or by the teacher. Other effects of a 
given feedback are less visible during a class discussion: in order to study them, it will be necessary 
to analyse further activities of the students or collect a-posteriori interviews.  

For the moment we focused on class discussions around the analysis and comparison of students’ 
written productions. In the future we plan to go on with our analysis, focusing on other crucial 



 

 

moments of the teaching experiments, such as the discussion after a poll, or the discussion on 
specific helping worksheets. As a further development, we plan to compare the strategies we 
outlined with Bartolini Bussi (1998)’s classification of teacher’s interventions during a 
mathematical discussion. Moreover, we aim at complementing the present study, concerning the 
way feedback is given (feedback strategies), with a study on the content of feedback. To this aim, 
we plan to deepen the categorization of levels of feedback provided by Hattie & Temperley (2007), 
so as to take into account the specific features of the proposed mathematical tasks.  
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Mathematics students’ attitudes to group-based project exams 
compared to students in science and engineering  
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At Aalborg University, science, engineering, and mathematics students spent half the time each 
semester working in groups on projects within a problem based learning (PBL) curriculum. They 
are assessed through group exams. A survey showed that overall, the students are positive towards 
the group exam but there are significant differences between engineering, science, and mathematics 
students. Within this collectivistic student culture, some engineering students are very positive 
towards group exams, while mathematics, science, and other engineering students are less positive. 
In terms of the opportunity to obtain a fair grade in a group exam, the mathematics students are 
moderate positive, with different engineering students being more or less positive. All students 
agree that a group exam gives less differentiation of grades compared to an individual exam. 

Keywords: attitudes; project exam; group exam 

Introduction 
At Aalborg University (AAU) in Denmark, science, engineering, and mathematics students work 
half the time each semester in groups of four to eight students on a project in a problem based 
learning (PBL) curriculum. PBL is student-centred and self-directed learning in teams with problem 
analysis and problem solving (Barge, 2010). The project is documented as a joint written report with 
an oral group exam lasting around four hours. This exam has traditionally consisted of two phases: 
First the group presents the project, then the external examiner and the supervisor examine the 
group. Each student is awarded a grade that may not be the same as the others. From 2006–2012 the 
Danish government banned group exams, but during this time AAU students still worked in PBL 
groups but the exam became an individual oral exam of around half an hour per student. This 
situation led to research on assessment methods in PBL, and Kolmos and Holgaard (2007) 
concluded that the students, the academic staff, and the external examiners preferred the group 
exam. One argument was that the students were not able to interact with each other during an 
individual exam, hence it was not possible to test PBL process competencies such as collaboration 
and teamwork. Since Danish law states that a grade solely depends on the student’s performance at 
the exam (they cannot earn partial credits during the semester), this created a misalignment between 
PBL teaching and the assessment methods. In 2013 the group exam was reintroduced in Denmark 
and at AAU. The Faculty of Engineering and Science (FES) now added an individual phase into the 
previous group exam, where each student is questioned without interference from the group. Dahl 
and Kolmos (2015) found that the students overall were in favour of the reintroduction of the group-
based project exam, but that students from two different engineering programmes were not equally 
positive, partly owing to their previous experience with the individual project exam and partly 
owing to professional cultures of individualism or collaboration influencing their attitudes. Maull 
and Berry (2000) and Bingolbali et al. (2007) showed that mathematics and engineering students are 
different in terms of their learning of mathematics, so one might ask whether a similar division 



 

 

between engineering and mathematics students is seen in relation to which type of exam is 
perceived appropriate. This paper therefore compares students from eight programmes in science, 
engineering, and mathematics in relation to how they perceive the new group exam, the new 
individual phase as well as the opportunity to obtain a fair grade. 

Theoretical background 
Alignment and exams 

Biggs and Tang (2011) argue that in order for students to learn the intended learning outcomes 
(ILOs), teaching should be constructively aligned with the ILOs and the exam. This theory fits other 
studies stating that an upcoming exam is a key factor for students’ motivation and learning (Boud & 
Falchikov, 2006); i.e. the ‘backwash effect’ of exams. Hence, one can argue that in a PBL 
curriculum, the exam method should be aligned with the team-based and collaborative teaching 
method and the ILOs on PBL process competencies. Romberg (1995) argues that a group exam is 
able to test “reflection on one’s own thinking, reasoning and reflection, communication, production, 
cooperation, arguing, negotiating” (p. 165). One can thus argue that a group exam assesses PBL 
competencies of communication and cooperation. However, each programme also prepares the 
students for a professional life after the university so the problems that the students address vary and 
AAU’s PBL model is developed “on the basis of both professional and educational argumentation” 
(Kolmos et al., 2004, p. 9). One might anticipate that professional culture influences the students’ 
views of the group exam, particularly master students. 

Cultural differences in engineering, science, and mathematics 

Murzi et al. (2015) studied how students perceived their discipline culture using Hofstede’s 
dimensions. One dimension measures individualism versus collectivism. Overall, students had a 
high individualistic score. Mathematics, computer engineering, and electronic engineering students 
were among the less individualist students. This fits the study by Burton (2004) where a majority of 
professional mathematicians worked co-operatively. Murzi et al. (2015) further argued that they had 
expected industrial design students to be more collectivistic as they rely on collective work in team 
projects but the results were opposite. Architect students’ scores fell between mathematics and 
industrial design. Dahl and Kolmos (2015) also found significant differences between the 
engineering programmes Architecture and Design (AD) and Software Engineering (SE) at AAU. SE 
students were significantly more positive toward the group exam than those of AD. AD combines 
architecture with civil engineering and students here expect a more individual-oriented programme 
whereas SE is a system-oriented approach and a collaborative profession. 

Research questions 
How do the students from the eight programmes view the group-based project exam compared to 
the individual project exam and the individual phase of the new group exam? How do they 
experience the grading? What does this tell us about mathematics assessment in PBL? 



 

 

Methodology 
The questionnaire was piloted after the January 2013 exams and the revised questionnaire consisted 
of 20 questions of which most had several sub-questions. After the June 2013 exams, all 4,588 FES 
students received a link to this questionnaire and 1,136 responded. The response rate was relatively 
low (25%), which unfortunately is not uncommon for online surveys, but the level is still reasonable 
(Nulty, 2008). The response rate for each study programme cannot be determined separately but the 
number of student responses were as follows: Computer Science (CS: 40), Energy (EnE: 50), 
Mechanics and Production (MP: 39), Physics and Nano science (PN: 27), Architecture and Design 
(AD: 79), Mathematics (M: 28), Software (SE: 51), and Electronic (ElE: 48). In this paper, all 
questions are translated from Danish by the author. The programmes compared all had a relative 
large number of students who responded. The engineering programmes are civil engineering. 

Results 
Views of individual versus group-based project exam 

Of all FES students, 34% preferred the individual exam and 57% the group exam, but students in 
different programmes were not equally positive towards the group exam (see Figure 1). 

 
Figure 1: “I would prefer an individual project exam” 

EnE students were the least positive towards the group exam while SE students were the most 
positive. Table 1 shows the programmes that were significantly different. 

 EnE AD PN M 

CS .047 .037   

ElE .043    

SE .002 .004 .041 .031 

Table 1: Significant differences in answers to the question if they preferred the individual exam 



 

 

SE and EnE are at opposite ends of the group-individual preference and they are each significantly 
different from many programmes. SE, CS and ElE are the most collective while EnE, AD, PN, M 
are the more individualistic, although M appears to be more moderately individual. MP are not 
significantly different from any. Master students are significantly more positive towards the 
individual exam than bachelor students (p = .001). Almost half the master students preferred the 
individual exam while only a third of the bachelor students did. Comparing bachelor and master 
students in each programme, there is only a significant difference for ElE (p = .002).  

The survey asked a related question: “The time spent on the individual part is better spent on a 
longer joint part?” Of all FES students, 34% agreed, 50% disagreed, and 15% did not know. The 
students do not differ except MP, which is significantly different from AD (p = .005) and M (p = 
.030) (see Figure 2). Overall the students are positive towards the individual phase, particularly M. 
There is not significant difference (p = .114) between bachelor and master students for all FES. 
When comparing students in each programme, MP bachelor and master students are significantly 
different (p = .024) but here the master students are the more positive toward the group exam.  

 
Figure 2: “The time spent on the individual part is better spent on a longer joint part” 

How did the students experience the opportunity to obtain a fair grade? 

A question asked if the students were satisfied with their own grade. Overall, 83% agreed and there 
was not a significant difference between the eight programmes. Another question asked whether 
they found that all their group members had received a fair grade. Here only 66% agreed. In all 
groups, a majority of students had agreed but EnE (61%) and AD (59%) agreed significantly less 
than SE (76%) and PN (85%). EnE was different from SE (p = .046) and PN (p = .037) while AD 
was (p = .019) different from SE and PN. When comparing each programme, most had given 
significantly different answers to the two questions except ElE (p = .064), PN (p = .324), and SE (p 
= .760).  



 

 

The survey also asked the students who had tried the individual exam whether the new group exam 
gave a better or a worse opportunity to obtain a fair grade. The views differ greatly (see Figure 3). 

 
Figure 3: “Does the group exam provide a better or worse opportunity to obtain a fair grade…?” 

When comparing the programmes, one sees that only M is not significantly different from any of the 
others while students from several of the engineering programmes answer significantly differently 
from each other (see Table 2). M therefore appears to be quite moderate in their views of whether or 
not the group exam gives a better or worse opportunity to obtain a fair grade. CS, ElE, SE, MP and 
to some extent PN are more positive towards the group exam as giving them a fair grade, while AD 
and EnE in general state that it provides them a worse opportunity to obtain a fair grade, compared 
with the individual exam. The students answering this question were all from the second year or 
older, as these were the only ones who had experienced both types of exams.  

 CS ElE SE MP PN 

EnE .001 .004 < .001 < .001 .015 

AD .030 .039 < .001 .005  

Table 2: Significant differences in answers to the question if the group exam provided a better or 
worse opportunity to obtain a fair grade 

The survey also asked the students whether there was a larger differentiation of grades in the group 
exam compared to the individual exam. The Danish grade scale has five passing grades (2, 4, 7, 10, 
12) and two failing grades (-3, 0). This question relates to an internal discussion at both AAU and in 
Denmark debating if the group exam uses less of the grade scale as it is harder to give a precise 
individual grade and weaker students can hide and good students are not rewarded. Only a minority 
of the students confirmed that the group exam resulted in more differentiated grades. The lowest 
was ElE, where 7% said that the group exam resulted in more differentiated grades to some or to a 
higher extent, while the highest was M with 29%. This difference was not significant (p = .069). 

 



 

 

 
Conclusions 
Individual versus group exam and the individual part of a group exam 

The students were in general very positive towards the group exam but there are significant 
differences. Murzi et al. (2015) found that mathematics, computer engineering, and electronic 
engineering were among the least individualistic within a very individualistic student culture. One 
might argue that in general the AAU students are used to working in PBL and thus have a more 
collectivistic culture since, overall, the majority of students were in favour of the group exam when 
asked to compare it to an individual exam. This study of AAU students shows that in agreement 
with Murzi et al. (2015), CS and ElE were among the most collectivistic students as they were 
among the most positive towards the group exams. However, this is stated within the frames of a 
collectivistic AAU culture. Murzi et al. (2015) found mathematics students to also be among the 
least individualist, however at AAU, M appeared to be among the more individualistic students, 
even though AD and EnE appeared to be even more individualistic. Architect students in Murzi et 
al. (2015) were not among the individualist groups. In relation to their attitudes to the time spent on 
the individual part of the group exam, M were the most positive toward the individual part. M was 
again close to AD but quite different from MP. PN students were closer to the M students.  

Master students were generally more positive toward an individual exam than bachelor students, 
especially ElE. However MP master students appeared very positive toward having a longer joint 
part in the new group exam. One might argue that this is related to the fact that the master students 
have been used to the individual exam prior to 2013, or perhaps to how they perceive their future 
professional life (wrongly or rightly) might have an impact. 

Fairness of grades 

The students were overall satisfied with their own grade but relatively less satisfied with the grades 
given to their peers. Given the relatively low response rate, it could make sense that students answer 
this question significantly differently. The question in the questionnaire did not explicitly ask if their 
peers were over/under-graded, but it appears that seeing how their peers behave at the exam, 
perhaps with reference to their work during the semester and then experiencing what grade they 
received, often left the other students feeling some degree of unfairness. More research is needed 
here in order to determine why. The students also differed when they compared the group and the 
individual exam in relation to the opportunity to receive a fair grade. Here, M was more or less in 
the middle, not being significantly different from any of the other programmes. In general one sees 
that the same programmes as above show ‘collectivist’ preferences (CS, ElE, SE, MP) and 
‘individualistic’ preferences (AD, EnE), which to some extent validate the results shown above and 
show that the students are consistent in their answers. However, one also needs to discuss to what 
extent their experience of receiving a fair grade is correct. Do students always know which grade 
they deserve? Furthermore, the perception – rightly or wrongly – of not being awarded a fair grade, 
might negatively influence their view of the exam. Students are occupied by fairness in grading and 
their perception of justice is significantly affected by the assessment method (Burger, 2016).  



 

 

Students appear to obtain more similar grades when they are assessed as a group than if they are 
assessed individually. The question is then – which is the right grade? One might argue that in a 
group exam of up to eight students, it might be difficult to make a distinction between each group 
member, which to some extent might explain the different opinions about own grade and the grade 
of the group members, and the same question can only be asked once. On the other hand, one might 
also argue that since a group exam to some extent is able to test PBL process competencies, which 
an individual exam cannot, the grades given in a group exam are the more accurate.   

Summing up and impact for mathematics assessment 

It appears that mathematics students are not distinct from engineering or science students on the 
issue of preference for individual or group exams. The eight groups were mixed; ergo mathematics 
students were more similar to some engineering students but different from others. This is different 
from what is known from how the learning of mathematics takes place when comparing 
mathematics and engineering students. For instance Bingolbali et al. (2007) found that engineering 
students see mathematics as a tool and therefore wish to see the application side. In science, 
engineering, and mathematics PBL projects, mathematics is applied to solve problems, but in a 
mathematics project, the body of mathematical theorems used to solve a problem usually takes up a 
considerable part of the project work and the report. Thus, the role of mathematics is different in the 
PBL projects in each programme. Assuming that the group exam is the best fit to PBL, it is 
unexpected that the students are not more in agreement with each other about the group exam. An 
obvious answer is that the group exam does not fit each programme equally well. The more 
moderate views of the mathematics students could indicate that it is a reasonably good fit when 
there is an individual phase as this is a way to serve both the individual and collaborative aspects of 
mathematics. 

The question of individualistic or collective attitudes may also depend on the overall student 
culture. Murzi et al. (2015) found that mathematics students were among the least individualistic 
within an individualistic culture, while this study found the mathematics students to be among the 
most individualist students within a collectivist culture. With caution, one might argue that the most 
individual student cultures were AD and EnE, with M and PN also being individualistic but not as 
much. The most collectivist student cultures were SE and CS, with ElE and MP also being 
collectivistic but not as much.  

However, the above conclusions should be treated with caution as the students base their attitudes 
about the group exam on the ‘learnt’ curriculum (Bauersfeld, 1979), which is not necessarily the 
same as the intended curriculum. The group exams were intended to be the same throughout the 
FES and prior to the reimplementation, workshops had prepared the supervisors for this type of 
exam. It is, however, unlikely that all group exams were identical as students, supervisors, and 
external examiners were different. One should therefore hesitate to draw too strong conclusions, 
particularly also taking into account the relatively small response rate. The results are indications of 
how students in different programmes at a Danish PBL university perceive a group exam and 
therefore which attitudes curriculum planners might expect from students if other universities wish 
to implement a type of project work or group exams. Curriculum planners need to consider what is 
the general ‘culture’ of collaboration both at the university and in the future profession, they need to 



 

 

consider how the exam has a backwash effect on how the students work, and that bachelor and 
master students might not perceive such an exam in the same way. The group exam might also be a 
better fit for some groups than others, but in terms of mathematics, it neither appears to be an 
obvious fit, since mathematics students might lean more towards the individualistic culture, nor 
does it appear to be a bad choice since the students in general are positive. This might reflect the 
mathematics culture as being both individual and collectivistic. In terms of grading, curriculum 
planners need to consider that group exams might result in a smaller distribution of grades.  
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A case for a new approach to establishing the validity of comparative 
judgement as an assessment tool for mathematics 
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Traditional, criterion-based assessments have recently been criticised for rewarding the procedural 
over the conceptual, limiting exam writers’ ability to focus on authentic mathematics and 
necessitating complex mark schemes that are difficult and time consuming to implement (Jones, Swan 
& Pollitt, 2015; Bisson, Gilmore, Inglis & Jones, 2016). This paper discusses an assessment 
innovation, comparative judgement, that avoids the above criticisms by using the innate human 
capacity for comparative, over criterion-based, judgement. After a review of the reliability and 
validity literature in this area, a theoretical examination of validity research on comparative 
judgement results in the proposition that a new approach is necessary. The final section of the paper 
suggests that investigation of predictive validity, as defined by Trochim (2006), may address the 
concerns raised regarding previous research on the validity of comparative judgement.  
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If presented with two large bags of gold and invited to keep one, most people would have a strong 
preference. While unlikely to know the exact quantity in either bag, it is usually not difficult to 
identify which is heavier by comparison. Comparative judgement is an assessment tool that exploits 
this innate capacity for comparison (Thurstone, 1927, "The Law of Comparative Judgment") rather 
than isolated evaluation against specified criteria. This well-established principle of psychology 
forms the basis for an innovative assessment that offers an alternative to the criterion-based status 
quo. This paper is a theoretical discussion of investigations into the reliability and validity of this 
approach to mathematics assessment. This is followed by a detailed theoretical examination of 
validity, resulting in the suggestion that further work and a new approach is necessary to establish 
validity in a more substantive manner. While making few definitive claims regarding the nature of 
the new approach, a case study in assessing conceptual understanding is used to illustrate the potential 
of two approaches based on what Trochim (2006) refers to as predictive validity.   

What is comparative judgement? 
Comparative judgement relies on expert judges making a series of comparisons between two 
responses to a given question. Without any specific criteria, judges are simply asked to ‘choose the 
better response’. Using an automated system to generate pairs of students’ responses for comparison, 
comparative judgement generates a ranked order from ‘best’ to ‘worst’. This ranked order, produced 
after each response has been compared to others several times, is based on the Terry Bradley model 
(Pollitt, 2012) that generates a standardised parameter estimate (z-score) representative of the relative 
quality of each response. In the absence of specific marking criteria, the rankings produced are 
“instead grounded in the collective expertise of the judges” (Bisson et al., 2016, p. 143), avoiding the 
necessity to explicitly define the target of the assessment.  



A summary of the literature on Comparative Judgement 
Before examining the literature on reliability and validity, this section begins with a discussion of two 
key benefits claimed in the comparative judgement literature.  

Benefits, motivations and intentions 

Comparative judgement facilitates the targeting of specific aspects of mathematics without having to 
embed a precise definition into a marking schedule (Pollitt, 2012). For example, Bisson et al. (2016) 
used comparative judgement to investigate conceptual understanding in undergraduate mathematics. 
This “important but nebulous construct” (Bisson et al. 2016, p. 143) has been the topic of much 
debate. Bisson et al. (2016) claim experts are capable of recognising examples of conceptual 
understanding, but find it difficult to generate comprehensive, reliable scoring rubrics. As suggested 
by Bisson et al. (2016), by grounding the definition of an area of assessment solely in the collective 
understanding of judges, this problem is at least partially avoided. Assessment of conceptual 
understanding will be returned to in a later section of this work.  

Jones, Swan and Pollitt (2015) also argue for the need to “free assessment designers from restricting 
tasks to those that may be easily scored by conventional means” (Jones et al. p. 170). They claim this 
would allow for the introduction of components that more adequately reflect the assessments 
purported purpose. A study involving four experienced GCSE (General Certificate of Secondary 
Education for England, Wales and Northern Ireland) exam writers producing an exam explicitly for 
comparative judgement marking found that exam writers experienced greater freedom to write more 
open-ended questions providing students with the freedom to experience more genuine problem 
solving situations (Jones & Inglis, 2015). Moreover, this freedom was successfully used, as evidenced 
by the survey responses of 23 teachers who evaluated the suitability of this exam script. Examinations 
of this type have been long sought-after but have seldom materialised due to the need for a 
demonstrably reliable and valid tool for assessment (Jones & Inglis, 2015). 

These benefits, particularly that of eliminating assessment criteria, raise questions of reliability and 
validity. An assessment based on such apparently subjective foundations might initially attract 
substantial skepticism. These questions are the focus of the following two sections. 

Reliability  

In the context of comparative judgement, reliability has universally been used to refer to the notion 
of repeatability across different judges and judging communities. This is often referred to as inter-
rater reliability.  

There is a growing collection of case studies demonstrating high inter-rater reliability in the use of 
comparative judgement. Bisson et al. (2016) demonstrated high inter-rater reliability in the contexts 
of conceptual understanding of entry-level undergraduate statistics (p-values), undergraduate pure 
mathematics (derivatives) and elementary school-level algebra (using letters in mathematics). Using 
a split-half technique in each of the three studies, judges were divided into two groups of equal size. 
As a result of the computerised method by which judges make comparisons, this split-half comparison 
was repeated 20 times in each study without requiring any additional comparisons from the judges. 
Pearson’s correlation coefficients were computed for each iteration of each study, the results of which 
are summarised in Table 1.  



 

 Participants Range in r 
over 20 trials 

Mean r Median r Standard 
Deviation 

P-values 10 judges, 

20 students  

.664 - .855 .749 .762 .06 

Derivatives 30 judges, 

42 students 

.826 - .907 .869 .872 .02 

School Algebra 10 judges,  

46 students 

.678 - .837 .745 .742 .04 

Table 1: Summary of comparative judgement reliability results from Bisson et al. (2016). 

Jones, Swan and Pollitt (2015) produced results consistent with the above in a problem solving 
context. When applied to both traditional GCSE examination scripts and purpose-written open-ended 
examination scripts, comparative judgement performed well when implemented by a diverse group 
of 23 judges, consisting of ten GCSE examiners, one non-GCSE examiner, seven mathematics 
education lecturers, two researchers, one research student and two advisors. When separated into two 
groups (of 12 and 13), the Rasch sample separation reliabilities, often considered similar to 
Cronbach’s  (e.g. Wright & Masters, 1982) were .80 and .93, indicating acceptably high internal 
inter-rater reliability for each group. Jones et al. (2015) also report a Pearson product-moment 
correlation coefficient of .87, providing further evidence for the inter-rater reliability of comparative 
judgement when assessing problem solving.  

In every reviewed study on the reliability of comparative judgement to-date, the results have 
positively indicated that comparative judgement performed reliably across judging communities.  

Validity 

Consistent with the majority of studies in the comparative judgement literature this paper adopts the 
broad definition that a valid assessment measures that which it purports to measure (Koretz, 2008). 
Most investigations of the validity of comparative judgement have focused on what Trochim (2006) 
refer to as convergent validity, based on comparison with traditional measures of mathematical 
achievement.  Bisson et al. (2016) has taken a different approach, by investigating content validity, 
based on comparisons with other psychometrically validated instruments.  

A measure is said to have convergent validity if it produces results similar to others that should 
theoretically be similar (Trochim, 2006). On investigating assessment of problem solving, McMahon 
and Jones (2015) reported “comparative judgement outcomes correlated as expected both with test 
marks and with existing student achievement data, supporting the [convergent] validity of the 
[comparative judgement] approach” (p. 368). Jones and Inglis (2015) reported a correlation of .86 
between students’ GCSE marks and their parameter estimated z-score based on a comparative 
judgement assessment, providing further evidence in this direction.  

Finally, Bisson et al. (2016) investigated both convergent validity and content validity across all three 
studies on which they report; see Table 2. The former was evaluated with methods similar to those 



above, analysing correlations between traditional student achievement data and comparative 
judgement results. Content validity, a comparison of the measure against the relevant content domain 
(Trochim, 2006), was based on correlation analysis between comparative judgement results and other 
psychometrically validated measures of conceptual understanding; see column two of Table 2. It 
should be noted that the choice of topics (p-values, derivatives and algebra) in Bisson et al. (2016) 
were “driven by the existence of validated instruments to measure conceptual understanding of those 
topics” (p. 144). As is discussed later, the absence of such instruments for most topics in mathematics 
appears to serve as a significant barrier for this line of research. For the list of topics available Bisson 
et al. (2016) conclude that comparative judgement is a valid measure of conceptual understanding.   

 Traditional measure Instruments 

P-values .555 .457 

Derivatives .365 .093 

School algebra .349 .428 

Table 2: Summary of comparative judgement validity results from Bisson et al. (2016). The 
‘traditional measure’ line refers to the correlation between achievement data and comparative 
judgement z-scores. The ‘instruments’ column refers to the correlation between comparative 

judgement z-scores and scores on an existing psychometrically validated measure (RPASS-7, CCI and 
‘Concepts in Algebra’, respectively).  

Jones and Inglis (2015) also investigated content validity of exam scripts. They asked experienced 
experts to analyse the content of the exam scripts produced when writers were freed from the 
constraints of traditional assessment criteria. Their qualitative analysis resulted in the assertion, 
consistent with their hypothesis, that these exam scripts placed more emphasis on conceptual thinking 
than their GCSE counterparts. It should be noted that this aspect of the study was focused on the exam 
scripts themselves, not on students’ responses. 

The evidence in this section suggests that comparative judgement is likely to perform at least as well 
as established tools for mathematics assessment in many or even most contexts. Moreover, Bisson et 
al. (2016) provide evidence of content validity in three specific mathematical domains. As discussed 
in the final section, the scope for expansion of the argument for content validity is limited, given the 
absence of other psychometrically validated measures. The following section focuses on the necessity 
for a complementary approach to establishing the validity of comparative judgement. 

The necessity for a different approach to validity 
This section has two aims. First, this section establishes the necessity for an approach other than the 
convergent validity-based studies discussed above. Second, this section discusses the limitations of 
the content validity approach proposed by Jones et al. (2015) as a suitable answer to the shortcomings 
of convergent validity discussed above.   

Assessing the validity of comparative judgement only by comparison with traditional assessment 
appears to significantly limit the argument for comparative judgement. While arguments regarding 



efficiency (Bisson et al. 2016) and the freedom to write examinations with a different mathematical 
focus (McMahon & Jones, 2015) still stand, proponents of comparative judgement claim it to have 
the potential to assess something fundamentally different from that assessed by traditional 
approaches. Bisson et al. (2016), for example, argue that comparative judgement can be used to assess 
‘conceptual understanding’, an aspect of mathematics known to be difficult to assess using traditional 
assessment. However, in establishing the validity of comparative judgement in this area, they refer to 
comparisons with traditional assessment data. This approach to validity appears problematic from the 
outset as it limits a successful measure of validity to something not worse than traditional assessment; 
an approach claimed to be ineffective in assessing their domain of interest. Jones et al. (2015) note 
similar reservations pointing out that traditional student achievement data, often compared with 
comparative judgement, can be criticised for its overly-procedural focus. Jones et al. (2015) go on to 
assert the need for a different approach, pointing to comparisons with ‘other psychometrically 
validated measures’ as a satisfactory solution.  

A further analysis of the limitations of convergent validity 

A key aspect of the argument for comparative judgement is that it facilitates reliable assessment of 
areas previously difficult to assess. Thus it seems logical to believe that comparative judgement, when 
explicitly focused on assessing those areas (e.g. conceptual understanding) should reward different 
abilities/strengths than those rewarded by traditional assessment.  

Taking this reasoning to its logical conclusion results in the assumption that some students should 
perform better under comparative judgement than under traditional assessment. Thus it seems at best 
limited to evaluate a new assessment tool by its ability to reproduce the results of traditional 
assessment. Consider a hypothetical student with a particular aptitude for memorising procedures but 
difficulty with the conceptual understanding underlying and drawing together important ideas. Based 
on previous critiques of traditional criterion-based approaches, one might assume this student would 
perform well on such an assessment. However, one might hope that this student would score poorly 
on comparative judgement assessment given the claims of Bisson et al. (2016). Hence, arguing for 
the validity of comparative judgement by pointing to its comparability with traditional assessment 
seems inherently limited.   

Establishing convergent validity has made a significant progress toward gaining legitimacy and the 
credibility to justify further, more detailed work. However, it seems that a complementary direction 
is necessary in establishing other aspects of validity, thereby further developing the argument for the 
adoption of comparative judgement. 

The limitations of content validity  

As noted by Jones et al. (2015), making comparisons with alternative psychometrically-validated 
instruments appears to be an obvious and fruitful way forward in establishing the validity of 
comparative judgement. However, the absence of such instruments in most domains serves as a 
substantial barrier to progress. Returning to conceptual understanding, the absence of such 
instruments in this realm is well-documented and is a significant reason Bisson et al. limited their 
study to just three content domains.  

It is theoretically possible to develop more such instruments. However, the number of instruments 
will always be far fewer than the number of mathematical domains in need of assessment. At present, 



the content validity approach relies on inherently inductive reasoning. Evidence supporting 
comparative judgement in a small number of domains has little relevance for the new and previously 
untested.  If comparative judgement is to be established as a viable assessment tool for a greater range 
of domains, I further claim that yet another approach is necessary. 

The final section below seeks to identify a way forward that is cognizant of the issues raised above.  

Predictive validity through the case of conceptual understanding 
Having argued the necessity for something new, this final section offers a plausible approach 
attempting to avoid at least some of the above criticisms. This new approach, predictive validity, is 
illustrated here by further considering the case of conceptual understanding. It should be noted that 
this is just one such possible solution that, like previous sections, is intended to raise more questions 
than it answers. It too is not without its flaws. 

As defined by Trochim (2006), predictive validity refers to a measure’s ability to predict something 
it should theoretically be able to predict. If one is to accept conceptual understanding as fundamental 
to mathematical development (NCTM, 2000; Ofsted, 2008; Rittle-Johnson, Siegler, & Alibali, 2001), 
a valid measure of conceptual understanding should serve as a predictor of other mathematical 
success. In the absence of suitable comparative measures for evaluating content or convergent 
validity, predictive validity appears a logical alternative. This section addresses two possible such 
approaches that may aid in establishing the validity of comparative judgement. 

First, comparative judgement could be evaluated as a predictor of performance on traditional 
assessment. Allowing for the passage of time, moving away from an immediate comparison with 
traditional assessment (see convergent validity) creates the opportunity for a student’s general 
mathematical maturity and understanding to progress. This argument hinges on the assumption that 
conceptual understanding is so fundamental to mathematical development that it should act as a future 
predictor of mathematical performance in general, even on assessment for which conceptual 
understanding is not an explicit focus. If one is to accept this assumption regarding conceptual 
understanding then those that perform well on a comparative judgement assessment of conceptual 
understanding at time 1, should perform well on any assessment at time 2. 

This approach may be criticised by those who argue that if an attempt to avoid immediate comparison 
with traditional assessment results in a delayed comparison with the same traditional assessment, then 
nothing has been gained by analysing predictive over convergent validity.  

Another approach to predictive validity is to seek other measures of mathematics success not 
beholden to traditional, criterion-based assessment. Such measures of mathematical success may 
appear hard to come by. However, metrics such as success at postgraduate level, or success on 
relevant career pathways may provide an interesting solution. While arguably somewhat crude, these 
measures may provide useful sources of comparison. Using such measures, one could compare 
comparative judgement z-scores from prior years with success on these future measures to evaluate 
the predictive validity of comparative judgement here. For example, in an attempt to evaluate validity 
in the tertiary context, it would be possible to consider success in tertiary mathematics. By using 
comparative judgement to assess a series of tertiary exam scripts, it may be possible to evaluate 
predictive validity by comparison with future success in postgraduate studies or related mathematical 



careers. A significant correlation between comparative judgement rankings and future success would 
stand as strong evidence for the predictive validity of comparative judgement.  

This second approach to predictive validity benefits from avoiding any comparison with traditional 
assessment. However, unsurprisingly raises many questions of its own, particularly regarding the 
quality and availability of data related to such future measures of success. Moreover, predictive 
validity still does not grapple with the ways that scores and interpretation of scores are used. Kane 
(2013) offers yet another approach, drawing on the general principles of construct validity (i.e., how 
well an assessment reflects the true theoretical measurement of a concept) to grapple with the 
assumptions underpinning the interpretation and use (IUA) of assessment scores, rather than the 
scores themselves.  The implications of this ‘argument-based approach’ approach to validation of 
comparative judgment are unclear, but his detailed discussion of IUAs draws attention beyond the 
process of assessment in of itself to the use and interpretation of the assessment findings in the real 
world.  For example, the evaluation of comparative judgment results could usefully require an 
evaluation of the consequences of the assessments’ use, and negative consequences in some could 
render the use of the results unacceptable in some circumstances.   

I do not claim to have covered the full range of criticisms that may be levied at the new approaches. 
Nor do I claim predictive validity is the only response to the limitations of existing research discussed 
earlier.  The intention of this section is to initiate a discussion regarding a new approach to validation 
of comparative judgement that might facilitate an extension of the argument for comparative 
judgement beyond the mathematical domains for which we have other tests.  

Conclusions 
This paper has been a discussion of an exciting and relatively new approach to assessment. In 
particular, the focus has been on the necessity for a new approach to evaluating the validity of 
comparative judgement. It should be noted this work does not advocate for the abandonment of one 
approach in favour of another. Rather, it advocates for a wider range of complementary approaches 
that together will form a comprehensive body of research. 

This paper has argued that by moving beyond convergent validity, researchers will have the ability 
to investigate the validity of comparative judgement in a manner less limited by comparisons with 
the status quo. Moreover, it has been argued that the recent content validity solution, suggested by 
Jones et al. (2015) is insufficient in scope and is inevitably limited by the non-existence of 
psychometrically validated measures for the vast majority of mathematical content.  

Finally, this paper proposed two new approaches, based on predictive validity, that avoid some of the 
discussed limitations. A research programme including investigation of predictive validity and the 
interpretation and use of assessments has the potential to extend the discussion about comparative 
judgement, and ensure that further uptake of this exciting new development in mathematics 
assessment is evidence-based and beneficial to the students for whom it is designed. 

References 

Bisson, M. J., Gilmore, C., Inglis, M., & Jones, I. (2016). Measuring Conceptual Understanding Using 
Comparative Judgement. International Journal of Research in Undergraduate Mathematics 
Education, 2, 141–164. http://doi.org/10.1007/s40753-016-0024-3 



Jones, I., & Inglis, M. (2015). The problem of assessing problem solving: can comparative judgement 
help? Educational Studies in Mathematics, 89, 337–355. http://doi.org/10.1007/s10649-015-9607-
1 

Jones, I., Swan, M., & Pollitt, A. (2015). Assessing Mathematical Problem Solving Using 
Comparative Judgement. International Journal of Science and Mathematics Education, 13,  151-
177. http://doi.org/10.1007/s10763-013-9497-6 

Kane, M. (2013). Validating the Interpretations and Uses of Test Scores. Journal of Educational 
Measurement, 50, 1-73. doi:10.1111/jedm.12000 

Koretz, D. (2008). Measuring up: What educational testing really tells us. Cambridge, MA.: Harvard 
University Press. 

McMahon, S., & Jones, I. (2015). A comparative judgement approach to teacher assessment. 
Assessment in Education: Principles, Policy & Practice, 22, 368–389. 
http://doi.org/10.1080/0969594X.2014.978839 

NCTM. (2000). Principles and standards for school mathematics. Reston: National Council of 
Teachers of Mathematics. 

Ofsted. (2008). Mathematics: Understanding the score. London: Office for Standards in Education. 

Pollitt, A. (2012). Comparative judgement for assessment. International Journal of Technology and 
Design Education, 22, 157–170. http://doi.org/10.1007/s10798-011-9189-x 

Rittle-Johnson, B., Siegler, R., & Alibali, W. A. (2001). Developing conceptual understanding and 
procedural skill in mathematics: an iterative process. Journal of Educational Psychology, 93, 346–
362. 

Thurstone, L. (1927). A law of Comparative Judgement. Psychology Review, 34, 273–286. 

Trochim, W. (2006). Research Methods: The Essential Knowledge Base (2nd Edition). Retrieved 
from http://www.socialresearchmethods.net/kb/index.php 

 Wright, B. & Masters, G. (1982). Rating scale analysis: Rasch measurement. Chicago, IL: MESA. 



Cognitive demand of mathematics tasks set in European statewide exit 
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Statewide exit exams play an important role in education as they tend to define what is considered 
important in a subject. This paper examines characteristics of Mathematics tasks set in such exams 
in eight European countries at the end of lower secondary education. The main result of this 
descriptive study is that the cognitive demand of most competences needed to solve these tasks is 
rather low. The only exception is ‘working technically’. So far, these results can neither be 
explained with the public impact these exams have nor with relevant exam regulations.  
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Introduction 
Key competences and statewide exit exams 

A changing need for competences in a knowledge-based society has caused literally all European 
countries to agree to equip all learners in compulsory schooling with certain ‘key competences’ 
“which represent a combination of knowledge, skills and attitudes that are considered necessary for 
personal fulfilment and development; active citizenship; social inclusion; and employment” 
(Eurydice 2012, p. 7). ‘Mathematical competence and basic competences in science and technology’ 
is one of the eight key competences defined. As these are promoted either by a national strategy or 
by applying large-scales initiatives instead (Eurydice, 2012), competences are relevant in different 
forms of assessment, too.  

Central written exams at the end of a particular educational stage are one form of assessment in the 
majority of European countries. In secondary education such exams are frequently taken at the end 
of upper secondary education (ISCED level 3) and in some countries additionally at the end of 
lower secondary education (ISCED level 2), which marks the end of compulsory schooling. 
Subjects tested are usually at least Mathematics and the language of instruction.  

Exit exams are mostly compulsory either for all students, regardless of the type of school attended, 
or just for those in public-sector schools (Eurydice, 2009). Even if these exams are “optional, as in 
the case of the ‘national qualifications examination’ in the United Kingdom (Scotland), or the Dutch 
CITO test, nearly all pupils take them in practice” (Eurydice, 2009, p. 23) which hints at the 
relevance of these exams. However, despite having the same name and sharing the purpose of 
summarizing the achievement of individual students at the end of an educational stage, statewide 
exit exams of any two countries differ in several respects such as the time awarded or the 
institutions which set them (cf. Klein, Kühn, van Ackeren & Block, 2009) or the ways the results 
are used or published (cf. Eurydice, 2009). 



Research on statewide exit exams 

International research on statewide exit exams reveals various perspectives. Considering governance 
and accountability Klein & van Ackeren (2011) identify considerable national differences, e.g. as 
regards the role of the governing bodies, the degree of standardization of these exams, the use of the 
results or varying intentions ranging from control to support of schools. Other research focuses on 
setting standards and promoting innovation by means of such exams (e.g. Bishop, 1998) but also 
draws attention to contrary positions. Wößmann (2008) even gives evidence that such exams 
enhance students’ achievement. Further research addresses the impact of such exams on the 
selection of tasks for teaching (e.g. Cheng & Curtis, 2012; Neill, 2003). In this context a backwash-
effect of exams on teaching and learning is also frequently discussed (e.g. Biggs & Tang, 2011; 
Boud & Falchikov, 2006). Especially such summative forms of assessment have this effect and 
exert a considerable influence on both teachers and students because exit exams set standards as to 
what is to be achieved or considered important. As a consequence, exams ought to be carefully 
designed, even more so if governing bodies use them as a strategic instrument to influence teaching. 
However, there is only scant research on characteristics of tasks set in exit exams, and some of these 
studies are somewhat dated (see overview by Krüger (2015) for various subjects).  

With respect to tasks particularly set at the end of lower secondary education in Europe, this lack of 
research might be due to the fact that only few countries like Northern Ireland and Scotland have a 
longstanding tradition of such exams, whereas most other countries only introduced them in the last 
one or two decades (Eurydice, 2009). However, given the broadly conceded relevance of tasks in 
Mathematics (e.g. Arbaugh & Brown, 2005; Neubrand, Jordan, Krauss, Blum & Löwen, 2013), it is 
astounding that only very few studies examine tasks set in exit exams in this subject. One study by 
Kühn and Drüke-Noe (2013) identifies a low level of cognitive demand of the tasks set in the 
15 German states (Länder), and it reveals that applying routines and using facts (working 
technically) is a dominant competence when solving the tasks, whereas more complex competences, 
such as problem solving or argumentation, are far less needed. Another study by Vos (2013) 
focusses on specific modeling aspects of tasks set in the Netherlands and reveals that concerns about 
test reliability seem to limit the range of modeling aspects tested. 

Methodology 
Based on the discussion in the section above, the following four research questions are addressed: 
Which mathematical competences are needed to solve the tasks set in statewide exit exams and 
which level of cognitive demand is realized? Are the competences of similar importance? Which 
national exam characteristics can be identified which might be related to their public impact in each 
country? Can national exam characteristics be explained on basis of national exam regulations?  

To address these questions a classification scheme by Kühn (2011) is used, which was developed in 
a German comparative study on mathematics tasks. The scheme’s subject specific categories, which 
are based on educational standards in mathematics, are used to identify and understand the structure 
as well as content- and process-related characteristics of tasks (cf. Kühn & Drüke-Noe, 2013). In the 
scheme the various categories and their subcategories are described in detail and illustrated by 
examples. Some of these categories are: mathematical content (subcategories: arithmetic, algebra, 
geometry, stochastics), types of mathematical activities and mathematical competences. In the 



course of developing this classification scheme, country-specific requirements for the design of 
exam tasks (e.g. Specifications in England, Notes des Service in France, or Examen Programma and 
Constructie opdracht in the Netherlands) have been examined if they were publicly available. Thus, 
the classification scheme includes general (instead of country-specific) categories for task analysis 
so that it can be used for a transnational comparison of task characteristics. 

Based on this classification scheme, various task characteristics, such as competences necessary to 
solve a task and the level of cognitive demand of each competence, can clearly be identified. Each 
task is assigned to one or more of six mathematical competences (argumentation, problem solving, 
modeling, use of representations, working technically, communication), and for each competence 
one of four levels of cognitive demand is marked by a score (0: not needed, 1: low level, 
2: intermediate level, 3: high level). 

Analyses of the impact of these exams rely on documents published by the Eurydice network.  

The sample comprises 655 tasks set in eight European countries (Ireland (IE), France (FR), Italy 
(IT), the Netherlands (NL), Norway (NO), Portugal (PT), England (UK-ENG) and Scotland (UK-
SCT)). In both years 2008 and 2011, only these countries set written statewide exit exams in 
Mathematics at the end of lower secondary education (ISCED level 2), i.e. when students are aged 
16. All tasks were translated into German and then categorized by a student who was excellent in 
mathematics and its didactics. The student was trained in several steps: tasks were classified and 
reasons for classifications had to be articulated. By means of this communicative validation 
agreement was gradually achieved. Additionally, the student could query classifications at any time.  

Results 
Quantitative findings 

The descriptive results presented here are aggregated for both years 2008 and 2011. For each of the 
eight countries the findings provide insight into mathematical competences needed to solve the 
exam tasks. Table 1 informs on the number of tasks (N) set in each country and it provides 
information on the level of cognitive demand realized by giving mean scores (M) and standard 
deviations (SD) for each of the six competences.  

  

argumentation problem solving modeling use of 
representations 

working 
technically communication 

Country N M SD M SD M SD M SD M SD M SD 

IE 96 .01 .102 .28 .452 .46 .501 .15 .355 1.41 .535 .02 .144 

FR 60 .40 .807 .77 .647 .67 .629 .63 .712 1.13 .724 .28 .585 

IT 63 .17 .423 .37 .485 .79 .652 .67 .762 .90 .560 .37 .517 

NL 50 .32 .713 .72 .497 .78 .648 1.22 .932 1.32 .768 .74 .527 

NO 124 .10 .400 .40 .582 .52 .618 .54 .562 .94 .621 .29 .522 

PT 39 .26 .637 .54 .643 .51 .506 .82 .885 1.18 .756 .77 .742 

UK-ENG 152 .26 .581 .37 .512 .50 .575 .67 .726 1.16 .656 .45 .639 

UK-SCT 71 .08 .327 1.00 .378 .65 .657 .56 .626 1.39 .547 .59 .523 

Table 1: Mean scores of cognitive demand of the six competences  

Table 2 reveals if exam results are used to award certificates and if and how exam results are 
published. These categories are used to judge the exams’ impact (cf. Eurydice 2009, 2012). 



Country IE FR IT NL NO PT UK-
ENG 

UK-
SCT 

Award of certificates  x  x   x  x 

No impact on students’ progression  x  x x  x  

Publication of results organized or required 
of schools, by central/local government     x   x x 

Publication of results at the discretion of 
schools    x      

No publication of results x x   x x   

Table 2: Ways in which results of statewide exit exams are used and published 

With respect to the first two research questions, the results in table 1 indicate an overall very low 
level of cognitive demand of all six competences for all countries. Since a maximum score of 3 can 
be reached, which stands for a high level of cognitive demand of a competence, the means realized 
indicate that most competences are only rarely needed to solve the tasks. This means that if a 
specific competence is needed at all its cognitive demand is mostly low. As mean scores of about 
1.00 or more are almost exclusively limited to ‘working technically’, it can be concluded that this 
competence considerably determines the overall cognitive demand of the tasks set. This shows the 
relative importance of this competence, as more complex ones, such as argumentation, problem 
solving or modeling, are only rarely needed in any of these countries. This fact, however, is not fully 
in accordance with national exam regulations, such as those of France, England and the 
Netherlands, which explicitly require that these competences are tested, too. All in all, these results 
hint at the relative importance of applying routines and using facts to solve the tasks set. 

Finally, based on the results given in both tables, for none of these countries a systematic relation 
can be identified between the overall mean levels of cognitive demand realized and the impact of 
the exams. For example in Scotland the impact can be considered high (certificates awarded, results 
published) and the mean levels of cognitive demand of all competences are relatively high, too. On 
the contrary, in France the impact can be considered low (no impact on students’ progression, no 
results published) and the mean levels of cognitive demand are fairly high, too.  

Examples of tasks 

The following two examples of tasks and their analyses are to illustrate the quantitative findings 
given in table 1. The first example serves to illustrate the relative importance of working 
technically. In many tasks this is either the only competence needed or it is the only one which is 
cognitively more demanding. The task shown in figure 1 is typical in the sense that it only requires 
to work technically. To factorize the given sum of products, several steps need to be carried out 
(working technically, intermediate level). In all countries, however, most tasks which require this 
competence are of an even lower cognitive demand. 

 

Figure 1: Working technically at an intermediate level (source: Ireland, 2011)   

 

 

Factorise: x² + 7x + 12     



 

 

 

 

 

 

  

 

 

Figure 2: Relatively high cognitive demand of a task (source: the Netherlands, 2011) 

The second example given in figure 2 shows one of the few tasks in the entire sample which are not 
only relatively long and complex but also require a number of rather complex competences.  

To understand both diagrams (figures A and B) the introductory text needs to be read first 
(communication, intermediate level). Then a given model needs to be applied to the context 
(modeling, low level). The comparison of both complex diagrams (use of representations, high 
level) is supported by problem solving strategies (intermediate level). The final decision on the 
appropriate diagram requires an argumentation that needs to be written down (communication and 
argumentation, both intermediate level). In contrast to the majority of tasks in the sample this one 
does not require to work technically. 

Influence of national exam regulations on task characteristics 

To explain the different levels of cognitive demand of tasks set in different countries (cf. table 1) 
national exam regulations are considered, too. As not all regulations are publicly accessible, the 
following analyses are only based on the ones applicable in England, in France and in the 
Netherlands. The document analyses are to show if and in which way individual competences are 
mentioned. Furthermore, the analyses are to reveal if the relevance of any of the competences is 
stressed in relation to other ones.    

The analyses of these documents firstly reveal that exam regulations in these three countries demand 
explicitly that competences such as argumentation, modeling and communication are tested. While 
in France and in England these competences are merely mentioned, in the Netherlands the cognitive 
demand of individual competences is described in some more detail. For example with respect to 
argumentation and communication regulations in the Netherlands explicitly ask for “reasoning 
strategies” and “communication by means of adequate mathematical language” (cf. CEVO, 2009). 
In addition, the requirements concerning modeling are even more specific as the entire modeling 
cycle including its individual steps is mentioned.  

Sounds are vibrations in the air. A sound spreads through the air. We then speak about sound waves. 
Sound can be visualized using a device that turns sound vibration into an electric vibration. Below you see what this 
device shows for two different sounds. Both figures show a number of vibrations within a certain period of time 
(for example, 1 millisecond). 

 

The number of vibrations per second is called the sound frequency. 
 Which figure shows a higher frequency? Explain how you get to your answer. 



Contrary to expectation, though, the way competences are specified does not directly correspond 
with realized mean levels of cognitive demand. One example is the level of cognitive demand of 
modeling in France (brief specifications) which is similar to the one in the Netherlands (more 
detailed specifications). A second example is the considerably different mean levels of cognitive 
demand of argumentation in France and in England despite the fact that both countries have rather 
brief and similar specifications of competences.  

The document analyses secondly reveal that none of the exam regulations studied state in any way 
how intensively individual competences are to be considered in the exams. There is also no 
statement as to the relative importance of working technically. Thus, on the basis of the exam 
regulations it is not possible either to explain the relatively high mean levels of cognitive demand of 
this competence in all countries. 

All in all, the findings show that exam regulations do not correspond systematically with task 
characteristics. Furthermore, the more detailed analysis of only three countries shows that further 
research is necessary to explain how exam regulations are put into practice. Considering theories of 
educational governance, it must be assumed that such regulations do exert an influence on the 
selection or the development of exam tasks but so far it is not entirely clear in which way this 
impact works in practice. As a consequence and with special regard to competences, more needs to 
be found out on the application of exam regulations by those who either select and develop exam 
tasks or design entire exam papers by assembling tasks. For these reasons it is necessary to find out 
which other elements directly influence characteristics of exam tasks in different countries. 

Conclusion and implications 
Although all eight countries examined supposedly promote key competences including 
mathematical ones, the task characteristics raise the question how thoroughly these competences 
have been implemented, since cognitive demand is primarily determined by working with routines. 
As exam tasks influence the selection of tasks for teaching and as the task characteristics identified 
in this descriptive study can neither yet be explained by the use of the exams’ results nor be 
explained by exam regulations, further research is necessary that addresses both the influence of 
national curricula and that of existing exam design regulations as well as their application. Beyond 
this, further research should also address reforms actually taken to promote competences in these 
European countries to explain the results.  

More detailed research of the tasks set in two different years is of interest, too. This also has to do 
with the influence such tasks have on teaching (cf. Black & Wiliam, 1998). More detailed research 
of this kind could possibly better help to understand the so far unsystematic relation of the exams’ 
impact (see table 2) and the characteristics of the tasks set. 

The results presented in this study also raise further interest in more recent developments on exam 
design regulations and the ways in which they influence actual exams. Especially with respect to 
exams taken at the end of lower secondary education not much is known about this relation yet. 
Research on further development in the direction of a broader and more explicit notion of 
competences which includes explicit research on the cognitive demand of individual competences in 
these exams is desirable, too. 



From a process-oriented perspective, a number of interesting research questions arise that focus on 
factors which influence the development of tasks set in central exams. There are two important 
factors of interest: One of them is longstanding traditions of tasks in these countries which might 
help to understand the task characteristics presented in this study. A second factor is the 
professional knowledge of those people who design the exam tasks. As the findings presented 
cannot fully be explained by exam regulations, attention is shifted towards the role of those people 
who develop tasks set in the statewide exit exams. It is well worth finding out if these people are 
aware of the different competences and – even more and on a more detailed level – of the various 
facets which these competences have. Modeling can be taken as an example here, as this 
competence comprises more than just mathematising (cf. exam regulations in the Netherlands). 
Furthermore, it is of interest to see if people who design the tasks are aware of different levels of 
cognitive approach of individual competences.  

Finally, more recent theories on educational governance as well as findings from research on 
implementation support the assumption that the design of exam tasks is not exclusively influenced 
by relevant exam regulations. There is evidence for a considerable and multi-factorial influence of 
any people who are involved in the design of exams. More traditional attempts of research, which 
explain directions of influence, are based on a model of governance which is hierarchically 
structured and works in a linear way. More recent approaches, however, that try to explain these 
directions of influence, even identify a systematic discrepancy between formal exam regulations set 
by both political and administrative bodies and the way they are applied in practice. There is 
evidence that this seems to be caused by a necessary re-contextualization and transformation of 
existing regulations by the individuals involved (cf. Altrichter & Maag Merki, 2010). Research both 
on innovation and implementation shows similar findings and reveals that administrative 
regulations and their implementation in practice can even differ widely (cf. Gräsel & Parchmann, 
2004). To sum up, far more research is necessary to understand how exam design regulations are put 
into practice and how task characteristics can be explained. 
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A longitudinal analysis of the recurring mistakes at different school levels in national standardized 
assessment tests is presented. The analysis of the outcomes highlights some difficulties common 
across different school grades. Subsequently, we extend our research to university students: we 
investigate the results of tasks solved by students at the end of high school and at the beginning of 
university in an e-learning environment called AlmaMathematica. We examine whether there are 
commonalities between errors that lead to wrong answers at school level and university level. 
Results show that university students share the same difficulties of high school students when faced 
with similar tasks.  

Keywords: Mathematics test, summative evaluation, semiotics. 

Introduction  
Our research is carried out selecting a set of tasks sharing common features among the national 
standardized assessment tests INVALSI (National Assessment Institute for the School System) and 
the results of the AlmaMathematica tests administered to students at the end of high secondary 
school and at the beginning of university. As we can see in the next section, the INVALSI gives 
back the results at national level to each item of each test. Thus, we have, each year, results for 
grade 2 and 5 (in Italy, second and fifth years of Primary School), grade 8 (third year of low 
secondary school) and grade 10 (second year of high secondary school). Most of the research based 
on these data concerns vertical and common features arising at different test level outcomes 
(Branchetti et al, 2015).  In this research perspective, we investigate common difficulties that 
emerged from the vertical analysis of INVALSI secondary schools test results. In the second phase 
of the project we further develop the research expanding to university level students. In order to do 
this, we analyzed the results of mathematics tests in the AlmaMathematica project, an e-learning 
environment in which many students of the fifth (and last) year of high secondary school and 
university freshmen perform mathematics tasks.  Hence, we asked the following research question: 
Is it possible to identify some common student behavior when facing mathematics tests from 
secondary school to university? For this we analyse two tasks of INVALSI mathematics tests of 
grade 8 and grade 10 giving an example of analysis of linked tasks in which different approaches are 
implemented. The comparison between the two tasks allows us to interpret some difficulties 
encountered by the students.  The analysis of a related task in AlmaMathematica suggests some 
possible ways to interpret students’ behaviors at university level. All three tasks have the same 
structure and the same mathematical content, but the likely difficulty is represented by the switch 
from a representation register to another one. The same skills are required for all three tasks and the 
purpose of our research is to investigate if there are common aspects in the task solutions. 



National Evaluation Service and AlmaMathematica Project  

INVALSI is the Italian national institute for the educational assessment of instruction and every 
year, through National Evaluation Service (SNV), it carries out periodic and systematic national 
assessment to check student knowledge and skills in Mathematics and Italian language. Every year, 
INVALSI performs assessment tests in a census to school grades 2 and 5 (Primary School), 8 (low 
secondary school), and 10 (high secondary school) and it returns the results of the sample for each 
item of all tests administered. As part of our research we consider in detail the results of two tasks in 
mathematics standardized tests carried out by grade 8 students in a.y. 2010/11 and by grade 10 
students in a.y. 2011/12. To conduct this research, it has been crucial the use of a research tool of 
INVALSI tests, the GestInv Database that we will describe in detail later. To investigate difficulties 
at university level, we examine the results of the performance of students using AlmaMathematica. 
AlmaMathematica (almamathematica.unibo.it) is a project of the University of Bologna designed 
specifically to create links between Secondary School and University. It is aimed at students who 
wish to enroll in undergraduate courses at the University of Bologna and it provides basic courses in 
mathematics, statistics and probability. The environment that has been created refers to the tasks of 
the Entrance Tests to a restricted number of Curriculum courses (TOLC), and to the evaluation of 
basic knowledge tests. Access to the statistical data allows us to investigate the percentage of 
correct answers for each question.   

Theoretical lenses  
Our main hypothesis is that a longitudinal analysis involving a large number of students can give 
relevant information about difficulties existing at secondary school level and can allow us to infer 
whether these difficulties remain at the beginning of university and in what fashion. Our research 
stems from evidence arising from the analysis of Large Scale Assessment (LSA) tests. We do not 
consider LSA merely as a way to provide a ranking or scores for benchmarks or as a search for 
correlations between variables of context, but we assume that its results can provide information on 
the teaching/learning process. In accordance with many researches (i.e. Looney, 2006) we consider 
the analysis of the results of standardized assessment through the lens of formative assessment. The 
information given back by LSA contains not only global scores (measured by statistical models), but 
it also highlights the specific phenomenon observed individually. Among the results of standardized 
assessments many significant macro-phenomena are visible that can be explored and interpreted 
through some of the lenses of mathematics education as the most frequent difficulties described in 
literature are also reflected in the students’ responses. We conjecture that this kind of longitudinal 
analysis carried out through the comparison between the data sets from different years and levels 
could be useful to better interpret the difficulties that arise in secondary school and remain until 
university. For this reason, we need some criteria to link tasks from different grades: we have 
chosen the tasks that had the lowest correct response rate in the standardized tests and for which the 
topic is present both at secondary school and university. In particular, our research focuses on 
powers and manipulation of exponents and the difficulties with these topics have been widely 
reported in the literature (Pitta-Pantazi et al., 2007, Cangelosi et al., 2013). Indeed some studies 
have already reported common difficulties with management of exponentials between university 
students and high school students (Cangelosi et al., 2013). This led us to think that some 
misconceptions regarding exponential expressions are persistent over time. The students’ mental 



constructions and the way in which they develop a meaningful understanding of exponentials has 
been the subject of other studies (i.e. Pitta-Pattanzi et al., 2007). In this is a vertical analysis made 
among secondary school students the authors found that, independently from the age of the students, 
there is an issue in the treatment of the exponentials that led them to provide wrong arguments in 
comparing powers with the same base or with the same exponents. Starting from these evidence, we 
conducted our research concerning expressions with exponentials, in particular the manipulation of 
different representations of exponentials. We are interested in understanding if the phenomenon 
showed from the quantitative analysis also implies that the difficulties encountered by students at 
different school levels are the same. To investigate this phenomenon, we need a further qualitative 
analysis, which is on-going, and its results will not be included in this paper. As we can see below, 
we detect that the main common difficulties are related to the semiotic representations management 
and, in order to interpret it, we use the semiotic approach proposed by Duval (1993, 2006). 
According to Duval, for each object there is more than one possible semiotic representation and one 
of the highest processes of mathematics is precisely the management of different representations of 
the same object. Our analysis will show that recurrent errors made by students, in all investigated 
levels, can be reduced to the difficulties concerning the management of different semiotic 
representation of the same object and the transformation of representations within different 
registers. We can then identify the main difficulties in the conversion (Duval, 1993). Duval (2006) 
suggests that the switch from natural language (verbal register) to algebra (symbolic register) 
requires a high level of complexity. Furthermore, according to Duval, it is possible to classify the 
different representations of a mathematical object in different registers, which are a set of signs and 
rules that can be manipulated. Such registers may themselves be classified as discursive (natural 
language written or spoken, mathematical symbols) or non-discursive (diagrams and figures). Still, 
it is possible to distinguish within each category those that are multifunctional registers, i.e. suitable 
to explain processes that cannot be put in algorithmic form, from those mono-functional, i.e. 
especially dedicated to algorithmic processes. In the first category there is natural language, in the 
second arithmetic and algebraic symbols. In the mono-functional register treatments can take the 
form of an algorithm, while in multi-functional ones, this is not possible. This fact will be crucial in 
the analysis of the behaviour of the students in our research.  

Methodology and data analysis   
Our research is a mixed method sequential research (Johnson & Onwuegbuzie, 2004), with design 
QUAN → QUAL → QUAN. The first quantitative phase consists in an analysis of statistical results 
of the standardized items. Then, among the selected standardized items, we search for the ones with 
a topic common between secondary school and university levels. Subsequently, we look for the ones 
that highlight the same educational phenomena. Finally, we search on AlmaMathematica for the 
ones with the same features. We conduct a research looking at tasks at low secondary school level, 
high secondary school level and the initial stage of university undergraduate level. We needed a 
common topic to start with and we chose powers. In Italy, this is a topic used in the final national 
examination at the end of low secondary school, which is then elaborated in the second year of high 
secondary school and it is considered an “entry requirement” (and therefore investigated) for all 
university courses that require mathematics knowledge and skills.  To search for tasks concerning 
powers among all the ones of the standardized assessment INVALSI test from 2008, which has had 
a low rate of correct answers, the INVALSI Database Gestinv is used. This database is an online 



tool of research (www.gestinv.it) that contains more than 1,400 items administered in the Italian 
national standardized tests and it is used in professional development programs implemented by 
schools and in research in mathematics education. Inside the database, there is a PDF of all tests 
administered in Italy from 2008, in which each item of these tests is accompanied by detailed 
results, statistical classifications, and data split into different categories. In respect of each item 
there is the image of the question, the goal of the content, the process, the reference to the National 
Guidelines for Curricula, some keywords characterizing the content, the text of the question, the 
correct answer or the image of the correct answer, the percentage of national response, the 
characteristic curves, and the item information. The Gestinv database can be used in many ways: 
when entering the section of Mathematics it is possible to search by National Guidelines for 
Curricula, Keywords, Full Text, and to do a Guided Search: a cross-search - with connectors and/or 
- of all parameters in respect of each item and all its features, such as the percentage of national 
response. Through the tool Guided Search we searched for all of the secondary school tasks of 
INVALSI Tests of Mathematics, referring to the keyword “powers” which had percentages of 
correct national responses below 50%. The research displayed about ten tasks with these features, 
and we looked for those whose analyses represent the same didactic phenomenon. As we see in the 
next section, we studied two tasks that had “common errors” displayed at national level: one by low 
secondary student (13 years old) and one by high secondary school students (15 years old).   

Once such tasks are identified, we check if the analysis of the tasks about powers in 
AlmaMathematica Project shows the same type of errors. Students who performed exercises and 
problems in this e-learning environment are 18-20 years old; this allows us to investigate whether 
the same phenomenon persists with students of different age and how it occurs in various levels.  

The analysis of tasks 
The following task was administered in a census at grade 8 Italian students in a.y. 2010/11.  

 

Figure 1: Question D11, Grade 08, INVALSI Test, a.y. 2010/11 

Figure 2 shows the national percentage of correct, mistaken, missed, and invalid answers and the 
percentage of choice for each option. 



 

Figure 2: Data of Question D10, Grade 08, INVALSI Test a.y. 2010/11 

The question was administered in a.y. 2010/11 to a population of approximately 600,000 grade 8 
students, the sample (from which the statistical data are calculated) was composed by about 27,000 
students. To give the correct answer a correct management from natural language to algebra is 
necessary. As we notice, the percentage of correct answers is low (the correct answer is option D, 
and it has been chosen by 26.2% of students). Option A and B have been chosen almost by the same 
percentage of students. Students that answered A worked incorrectly on the exponents (they 
probably halved the exponents or subtracted ten from the exponents). Students who choose option B 
had divided the base by ten. A similar situation appears also in the following question, administered 
at grade 10 students in the INVALSI N of the a.y. 2011/12. 

 

Figure 3: Question D10, Grade 10, INVALSI Test, a.y. 2011/12 

 

Figure 4: Data of Question D10, Grade 10, INVALSI Test, a.y. 2011/12 

As shown in Figure 4 the correct answer was chosen only by 12.1% of students. This question was 
administered in a census to 530,000 grade 10 students, and about 42,000 students composed the 
sample. The most common option is B: students who have chosen this option have halved the 



exponents. This situation has some features in common with the previous one: the task structure is 
the same and the construction of the distractor is similar. In the 8th grade task, the numbers involved 
are integers and in the 10th grade task are fractions, but the solution of both tasks require the 
manipulation of powers, and the conversion from different registers.  Another similar situation 
occurred in the analysis of the results of the exercise referring to powers in the AlmaMathematica 
Project. Entering the e-learning environment AlmaMathematica there are 5 sections and one of them 
is about algebra. Inside this section there are 7 subsections including “Powers and Roots”. Students 
enter the online environment and perform the exercises; each student can perform the exercises 
more than once. When a student makes a mistake, it is only reported that the given answer is 
incorrect but the display does not show the right one. The percentages of answers, shown in Table 1, 
are related to the first attempts given by students. When we extrapolated the data, there were 1625 
registered and 773 students attempted the exercise. By analysing the data we can see that one of the 
tasks has some characteristics in common with the previous ones; the task is the following one 
(Figure 5). 

 

Figure 5: Question Q.3, Section “Powers and Roots”, AlmaMathematica Project 

Answer A Answer B Answer C Answer D 

13.7% 25.9% 12.3 % 48.1% 

Table 1: Data of Question Q.3, Section “Powers and Roots”, AlmaMathematica Project 

Also in this case we notice that the structure of the task has several elements in common with the 
previous two. Indeed, the situation is similar to the situations that occurred in the INVALSI tests: 
the solution of the task requires interpreting a verbal delivery and employing working with powers. 
Also the distractors are similar to the distractors in the INVALSI task grade 10th. Specifically, the 
number presented in option C, in which the exponent is divided by a third, is obtained by an 
incorrect manipulation of the exponent exactly as the number present in option B in the previous 
task. As we can see in Table 1, the percentage of correct answer is slightly higher and almost half of 
the students chose option D, just like the majority of students of grade 10 chose option B. The 
exercises in AlmaMathematica were performed by students at the end of the secondary school and at 
the beginning of university but almost all users are university students. Thus, we can observe that 
among all analysed levels (from low secondary school to university) the conversion from natural 
language to symbolic representation about power manipulation is an issue. Specifically, observing 
the results obtained in high secondary school and university tests, we show that the students who 



made the same mistake: they manipulated in the wrong way the exponent of the powers leading 
back to the exponent the “verbal indication” provided in the stimulus. Indeed, in both tasks they 
chose the option in which there is an incorrect manipulation of the exponent.  

Conclusions and further directions 
Our main hypothesis is that a longitudinal analysis, performed with many students, can give relevant 
information on the directions to link (and, then interpret) longitudinal shared difficulties from low 
and high secondary school to university. We study students’ behaviour when solving mathematics 
exercises in which the management of representation of powers in different registers is required. As 
shown by Cangelosi et al. (2013) certain errors when working with exponential expressions persist 
as the students progress through their mathematical studies. Many students memorize algebraic 
rules with little or no conceptual understanding of their meaning because the rules of algebra and its 
terminology seem distant from their way of thinking. It follows that these students have trouble 
keeping track and applying the rules appropriately (Kieran, 2007). The description of the difficulties 
of students in algebra, particularly in the interpretation of mathematical symbols, was also addressed 
by Carraher and Schliemann (2007). Kieran (2007) noted furthermore that a main issue is the ways 
in which students work with variables and algebraic expressions, discussing in depth the 
development of algebraic thinking in middle and high school. In our case the problem is the 
management of verbal representation of power and algebraic representation. The processes put in 
place to manage these different representations are well framed in Duval (2006). In all tasks 
analysed, a switch from natural language (verbal register) to the algebra (symbolic register) is 
necessary to give the correct answer, and this presents a high level of complexity (Duval, 2006). 
Indeed, we studied the difficulties of students in conversion from two different registers, from 
natural language to symbolic representation. Particularly, we analysed the difficulties to convert 
from one multi-functional register to one mono-functional register, and despite this represents a 
difficulty, it is impossible to avoid this situation in the teaching/learning processes. Results show 
that students make common errors in managing different representations of an object. For a better 
interpretation of the phenomena that we observed, we shall need a further qualitative analysis and 
for this reason we are conducting some interviews with school and university students. Research in 
mathematics education regarding the transition from secondary to tertiary education highlights that 
students’ difficulties are related to a multiplicity of factors – cognitive and meta-cognitive – and it is 
still more problematic when accessing university education (Gueudet, 2008). These difficulties 
highlight that one of the causes is the gap in the prerequisite knowledge, specifically in the 
manipulation of different objects representations. In conclusion, information acquired by LSA and 
by the e-learning environment has brought to light some recurrent mistakes. The analysis of this 
data allows us to interpret a didactic phenomenon, and it is also in this perspective that we consider 
standardized assessment as a tool for formative assessment.  
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In this paper we describe how mathematical items are constructed for the Italian National  
Education Assessment System (SNV). After a brief description of the structure of the Italian SNV, 
we describe – through an example – how mathematical items are analyzed and finalized before 
being submitted to Italian students of different school grades. Each item is analyzed from two 
different perspectives: first the mathematical content and its relevance in the teaching and learning 
of mathematics is considered and then the statistical analysis of the field trial results are examined. 
The challenge we face is to maintain an appropriate balance between these two different aspects. 

Keywords: Assessment, mathematics tests. 

 
Introduction 
Italian National Assessment System (SNV1) started its work in 2008 through annual surveys 
conducted by the National Institute for the Evaluation of the Education System (INVALSI) at 
different school levels. The INVALSI develops standardized national tests to assess students’ 
reading comprehension, grammatical knowledge and mathematical competence, and administers 
them to the whole population of primary school students (Grades 2 and 5), middle school students 
(Grades 6 and 8), and high school students (Grade 10), see Figure 1. From 2008, the SNV test on 
reading and mathematical competence is part of the 8th Grade national final examination. Therefore 
it contributes to the final evaluation of the students (Garuti & Martignone, 2016). 
 

 
Figure 1: The design of INVALSI surveys from 2008 to present 

SNV surveys aim at taking a snapshot of schooling as a whole: in other words, it is an evaluation of 
the effectiveness of education provided by Italian schools. The results of a national sample are 

                                                 
1 https://invalsi-areaprove.cineca.it/. 



annually reported2 stratified by regions and disaggregated by gender, citizenship and regularity of 
schooling. These results are public, as well as the tests and the scoring guides. However, the results 
of each school are sent confidentially to the principal.  

The mathematics items are connected to the National Guidelines for the Curriculum and to some 
teaching practices that have consolidated over the years. Another important reference is the UMI-
CIIM curriculum "Mathematics for the citizen” (Anichini et al., 2004), which is based on results of 
mathematics education research and has deeply influenced the last formulation of the national 
curriculum. The SNV Framework defines what type of mathematics is assessed by the SNV tests 
and how it is evaluated. It identifies two dimensions along which the questions are built: the 
mathematical content, divided into four major areas (Numbers, Space and Figures, Relationships 
and Functions, Data and Forecasts); and the mathematical processes involved in solving the 
questions (Knowing, Problem solving, Arguing and proving). These dimensions are closely and 
explicitly related to the National Guidelines. The framework adopted by SNV assessment includes 
aspects of mathematical modelling as in PISA survey (Niss, 2015), and aspects of mathematics as a 
body of knowledge logically consistent and systematically structured, characterized by a strong 
cultural unity (Arzarello et al., 2015). 

The SNV tests differ from PISA or TIMSS surveys not only for its frequency (annual vs. triennial), 
for the type of tested population (census vs. sample), and for the target population (grade-based vs. 
age-based students for PISA), but mainly for its goals: as a matter of fact the SNV tests results aim 
at providing to the Ministry a national benchmark for the assessment of the Italian students at 
different grades taking into account the national curriculum. In addition, each school and each class 
receives its own results according to the dimensions described above, compared with the national 
results and the results of 200 schools or classes with the same socio-economic background. Results 
are returned to the schools according to the two dimensions of the framework: content and 
mathematical processes as well as for each item (including the response rates for each option in the 
case of multiple-choice item). 

The goals of the study 

 The aim of the present study is to illustrate the two approaches used to select mathematics items: 
mathematical content and its relevance in the teaching and learning of mathematics and the 
statistical analysis of the field trial results. 

The construction and analysis of mathematics items 
The preparation of the SNV items takes place in two steps. A first set of items is prepared by in-
service teachers of all levels, subsequently, the SNV National Working Group builds the test by 
selecting items so that the test is balanced both from the point of view of contents and processes. 

Since 2013, the item development has been carried out during a summer school held in July, 
involving about 200 in-service teachers. All item developers are teachers who teach at the school 
level for which they prepare the items. All items are classified according to the SNV framework 

                                                 
2 https://invalsi-areaprove.cineca.it/index.php?form=precedenti_risultati.  



(mathematical content, question intent, mathematical process involved and specific links with the 
National Guidelines).  

Towards the end of the year in which the summer school is held, the items are revised and 
assembled in booklets. Five different working groups (group-level), one for each grade involved, 
prepare the field trial. The group's work consists of the analysis of the items and the selection of 
those deemed most suitable to be included in the booklets. Each group-level constructs at least two 
booklets, making sure that they are balanced from the point of view of both content and processes. 
Once the items have been tested in the field trial, the results are analyzed by the SNV National 
Working Group in order to prepare the final booklet for the main study. This National Working 
Group is formed by the coordinators of the level-groups, generally experienced teachers, 
researchers in mathematics education and statisticians. The revision of the booklet is supported by 
psychometric analysis, conducted according to CTT model (classical test theory) and the IRT model 
(item response theory – 1p Model) (Rasch, 1960, Hambleton, 1991).  

If one item does not fit the parameters, we try to figure out what doesn’t work. Sometimes the 
problem can be that the text is not entirely clear from a linguistic point of view, that some 
distractors are too attractive or not attractive enough, or the percentage of correct answers is too 
low, especially when the question requires an open constructed response. In this case, if the item is 
interesting from an educational point of view and it tests important skills, it is modified according to 
the analysis done and included in the next field trail.  In some cases it is difficult to change the item 
while maintaining its significance from a mathematical point of view, so if the psychometric 
properties of the item are too weak we prefer to exclude the item from the final booklet. 

Our research questions are: 

a. In which way item analysis, that is the statistical analysis of the psychometric properties of 
an item within a test, may support the progressive refinement of the item formulation?  

b. How to balance the tension between producing a test with good psychometric properties and 
guaranteeing at the same time that it has appropriate or relevant mathematical content? 

Qualitative and quantitative analysis: one example 

The example below shows the analysis performed on each mathematical item. Each item is 
analyzed from two different perspectives: the mathematical content and its relevance in the teaching 
and learning of mathematics and the statistical analysis of field trial results. In fact, an item may be 
robust in terms of statistical analysis, but not significant from the point of view of mathematical 
competence to be measured and vice versa an item could be very interesting from the aspect of 
mathematics education, but not suited to a standardized test. The challenge that we face is how to 
ensure the right balance between these two aspects.  

From the mathematical educational point of view, the item that we propose as an example in Figure 
1, belongs to Space and Figures content. It doesn’t require the calculation of the volume of a solid, 
which is a typical and traditional request at this educational level (8th grade), but the understanding 
of the relationship between a given quantity (1 litre) and the shape and dimensions of a container. 
The four figures have different sizes and shapes. Each response option is accompanied by a 
plausible justification. 



 

Figure 1: Original item (before the field trial) 

The item was administered to a random sample of 389 students, representative at the national level 
(see Table 1). The high number of respondents ensures the robustness of the results of the test. 
Analyses are conducted by considering the overall functioning of the item as well as the functioning 
of each option (4). 
item:37 (A25-M8SF601)                                                            
Cases for this item     389   Item-Rest Cor.  0.11   Weighted MNSQ   1.09  
Item Delta(s):         1.30  
------------------------------------------------------------------------------  
 Label    Score     Count   % of tot  Pt Bis     t  (p)   PV1Avg:1 PV1 SD:1    
------------------------------------------------------------------------------ 
   A       1.00       38       9.77    0.11     2.08(.038) -0.94     1.11      
   B       0.00       44      11.31   -0.07    -1.46(.145) -1.39     0.81      
   C       0.00      136      34.96    0.14     2.77(.006) -1.13     0.78      
   D       0.00      144      37.02   -0.11    -2.27(.024) -1.40     0.86      
   7       0.00        1       0.26   -0.06    -1.14(.254) -1.92     0.00      
   9       0.00       26       6.68   -0.06    -1.27(.206) -1.43     1.13    

Table 1: The original item: Results from field trial 

The item has some problems from the point of view of both the overall functioning and the 
functioning of individual distractors. A, B, C, D labels represent the different options, the code 7 
represents invalid answers and the code 9 represents missing answers. Taking into account the 
correlation coefficient (in table 1, Item-Rest COR.= 0.11), we notice that the value is positive, but 
below what we consider the reference value (0.20). This means that the item, as was proposed in the 
field trial phase, is not able to discriminate students with different skill levels. The correct option 
(A) is chosen by a small number of respondents, (9.77%). The question, therefore, seems to have a 
high level of difficulty but, at the same time, it is not so discriminant. In fact, if we consider the 
correlation coefficient for the correct answer (A) the correlation is low (Pt Bis 0.11). The three 
distractors have problems too: the weakest is the third (C): besides being very attractive (34.96%) it 



has a positive biserial-correlation index, even slightly higher than the correct option (Pt Bis = 0.14). 
This means that the students who choose this option have a higher level of ability, as measured by 
the whole test, than the students having selected the correct answer. This is confirmed by the IRT 
analysis shown on the plot of characteristic curves by category (see Figure 3). 

 

Figure 3: Characteristic curves by category 

The item difficulty, estimated by Rasch scale, is 1.30 (Figure 3, Delta(s): 1.30). The IRT model 
confirms the difficulty of the item. The chart shows on the x-axis the estimated ability of 
respondents (in logit units) and on the y-axis the probability of answering correctly to the item. 
Therefore each curve represents the evolution of a response option, in terms of skill of students and 
chance to choose a certain option. The curves relative to observed data are then compared with 
theoretical trends that question should have, depending on the Rasch model (continue blue curve). 
This comparison reveals that observed behaviour of correct option (in legend, Item 37:1) is not 
fitting with the theoretical model. From the plot, we can see that the probability to choose the 
correct answer does not increase with the increase of the skill level. The distractors trends have 
some problems as well. In particular, the distractor C (Figure 3, Item 37:3) has a probability to be 
chosen which is higher than that to choose the correct answer, even for the highest level of ability.  

The field trial item analysis results help us to make hypothesis about which mathematical aspects of 
this item don’t work. The two more often selected options (C and D) contain both terms that 
probably confuse students (volume and height), and elements linked to students’ cognitive 
difficulties related to the concept of volume, as shown by the relevant research (Vergnaud, 1983). 

In option C, the word “volume” probably attracts high level students as they know that the item is 
about the volume. Probably they think that the lower the volume, the greater the height, because 
they do not grasp the right relationship between the measures of the base area and the supplied 
quantity (1 litre). Option D is attractive probably because the question is about the “maximum 
height” and this option is the only one in which the term “height” is mentioned.  This item is 
interesting from the point of view of mathematical skills and it is closely related to the Mathematics 



National Guidelines, but it does not seem to be clear for students. Probably its question intent is not 
well focused either. In fact, given the formulation of the item, we cannot understand the reason why 
students are unable to answer correctly: does it depend on the fact that students are not able to 
identify the right container or on the fact that they are not able to identify the right justification? 

The question has therefore been modified for the Main Study test (2015) in order to remove its 
problematic elements (Figure 4). 

 

Figure 4: Modified item (after field trial) 

In the new version of the item “the maximum height” is no more mentioned, because the question is 
about “the highest level”. Moreover, all figures have the same height (20 cm), in order to help 
students to focus their attention on the shape of the containers and on the dimensions of the base.  
Finally, the justification has been removed from the response options. The item question intent was 
partly modified, but it is more focused.  
The fact that the figures have all the same height allows students to focus more on the size of the 
base of the containers rather than on the meaning of volume or on the relationship between volume 
(1 L) and the shape of the containers. 
From the point of view of mathematics education the first version of the question was probably 
more interesting because it was more stimulating (the containers have different sizes and each 
option has different justifications).  This type of question would be very suitable for a class 
discussion.  For example, as part of work with the class, it would be interesting to isolate the crucial 
variable through a discussion in order to highlight the different ideas of the concept of volume. 
However, in a standardized national test, where the item is administered to all the Italian 8th grade 
students, it should be able to discriminate between skill levels, without losing in mathematical 
relevance. 

Figure 5 show the characteristic curves of the modified item administered to the national sample 
(about 28500 students, with the presence in the classrooms of external observers). 



 

 

Figure 5: Characteristic curves by category 

The item is still rather difficult (Item Delta = 1.66, and the percentage of correct answers 19.58%), 
but its discrimination has improved (Item-Rest Cor. = 0.25) as well as the index of FIT (Weighted 
MNSQ = 1.03). Only the option B seems to have some problems: its correlation coefficient, in fact, 
have a positive value (Table 2, Pt Bis= 0) even if this correlation is not significant (in table, sig. p = 
0,952). The real change is observed on the curves of each response option (Figure 5). In the 
previous version of the item, the trend of the curves highlighted a number of issues about the 
different response options. Now we can see that the correct option (Label A; Item 18:1) follows the 
theoretical model (continuous blue curve) and the curves of the incorrect options drop with 
increasing student skills. Option B still remains problematic: you can notice from its curve on the 
graph that this option (in legend, Item 18: 2) has lower probability to be chosen, in comparison with 
the other distractors, by students of any skill level. Analysing the item from the mathematical 
content point of view you can see that option B involves an estimate of the base area which is 
slightly more complex (15x15) than the other options. On the other hand, the other two options C e 
D, (Figure 5, 18:3 e 18:4) work well: in fact they have higher probability to be chosen by students 
with low abilities and this probability decreases according to the increase of skill. As intended, the 
item so modified results to be better focused on a specific question intent. 

Discussion 
In this paper, we have described how we construct mathematics items for the Italian Assessment 
System and which aspects are taken into account in the selection of items for the main study. The 
debate between statisticians and researchers in mathematics education (as well as experienced 
teachers) of the National Working Group for the construction of the mathematics national test is 
always very lively. The challenge is to be able to maintain the right balance between these aspects, 
with the awareness that through a standardized test many mathematical skills cannot be measured. 
The choice is never between pretty or ugly questions, but between suitable or unsuitable questions 
in a standardized test aimed at all the students of the country. In this example we showed how 
statistical analysis has allowed us to improve the item from the linguistic point of view and better 
focus on the purpose of the item. In this way the mathematical aim of the item is saved while its 



psychometric properties are improved. Over the past few years, in a few cases we have submitted 
items that were very interesting from a mathematical point of view, but unsuitable for a test of this 
kind as they didn’t provide information about students’ ability. However some of these questions 
would be more appropriate to be discussed in a classroom setting, proceeding by trial and error until 
arriving at a shared solution, rather than being included in a standardised test. 

The challenge that we try to face is to be able to build interesting questions on math skills that are 
important to the teaching and learning of mathematics, but that provide a solid measure of students’ 
mathematics skill levels, with the aim of providing useful information for teachers to enrich their 
work in the classroom. 
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A recent research (Sayac, 2016) has shown that assessments proposed by primary school teachers 
are mainly summative and not used to increase student knowledge. To further this work, we have 
decided to study teachers’ assessment practices in mathematics, but also to improve them in the 
context of a collaborative environment. In such a project, as researchers and teacher educators, we 
share the same goal with the teachers involved: developing assessment for learning and helping 
students to learn better in mathematics. For studying this environment and for analysing the 
professional development of any actor, we use the Activity Theory framework (Engeström, 2001) 
but also the notions of “evaluative episode” and “professional judgement in assessment”, 
developed by Sayac (in progress) for defining the didactic paradigm of assessment. In our paper, 
we present our methodology and focus on one aspect of this research: the use of external 
assessments as tools for improving assessment practices.  

Keywords: Assessment practices, external and internal assessment, validity in assessment. 

In France, recent modifications in curricula and institutional directions encourage teachers to assess 
competencies (and not only knowledge), but also to develop, in their classes, “assessment for 
learning”: teachers should consider that assessment is a part of the didactic process and use 
assessment information for adjusting their teaching strategies. A recent study by Sayac (2016) with 
some primary school teachers, has showed that assessments in mathematics are mainly summative 
and that teachers use the results principally for the end of term report. Moreover, assessment tasks 
are not complex and previously studied before taking the test.  

Furthermore, few assessment tools are made available to primary teachers. Until 2012, national 
diagnostic assessments were organized at the beginning of Grades 3 and 6 and teachers could use 
them for a diagnostic purpose, but these tests do not exist anymore. In the same time, the number of 
large scale assessments in primary school has increased in France, but items are not free and only 
results are published (Brun & Pastor, 2009, Dalibard & Pastor, 2014; Lescure & Pastor, 2008,). So, 
teachers cannot use items or results directly for their classes and educators can only exploit general 
results for providing an overview of trends in students’ mathematical knowledge or difficulties. 

Since 2016, a bank of exercises (with scoring procedure, explanation of the difficulties and 
propositions of teaching strategies) has been created for helping teachers to assess students at the 
beginning of Grade 3. It is a commendable initiative, but it raises a lot of questions about these 
exercises and their use: even if each task is relevant with regard to its assessment aim, teacher must 
select many of them to elaborate a complete test. How is this selection done and which 
competencies are finally assessed?  Is scoring guide used or not by teachers? How? Etc. 



Like other external assessment tools, this could improve teaching and assessment practices, but 
merely delivering assessment tasks seems not to be sufficient: for designing tests and using results 
for a better regulation in classes, we think that, in addition to assessment tools, teachers must have 
knowledge about mathematical notions, teaching them.  

Finally, these observations about the bank of exercises have led us to conduct a study to analyze and 
improve teachers’ assessment practice; we suppose that training teachers in assessment will also 
impact their teaching as a whole. We have chosen to conduct our research in a specific 
mathematical domain (whole numbers) at the beginning of the elementary school (Grade 1 to 3), in 
a collaborative environment. After specifying our research and training aims, we explain our 
theorical frameworks and methodology for studying this environment and the professional 
development of any actor and conclude with perspectives. 

Research aims and context 
This research aims to continuing to explore the assessment practices primary school teachers in 
mathematics but also to improve them as part of a collaborative research-training. It is undertake in 
a special network “AeDeP” at FIE (standing for Associated educational Design-experiment Places 
at French Institute for Education); this type of project is initially based on an educational question 
shared by different actors (teachers, researchers, school directors, local authorities) and is built for 
sharing experiences and designing common tools. Our two key issues are:  

1. How do primary school teachers assess their students?  We focus on test content (which type of 
tasks do they propose? What techniques are necessary to solve them? Etc.), but also on how 
teachers design their assessments (what kind of resources they use? What do they do with the 
results? Etc.) 

2. How can such a collaborative research-training improve teachers’ assessment practice, and more 
generally mathematics teaching?  

We present in this paper one part of our three-year project, called “EvalNumC2” and we focus on 
the development of assessment practices in mathematics at primary school. For this part of the 
project, regular meetings are planned (one per month) with all the actors (ten primary school 
teachers and us, two educators/researchers) and with different aims depending on the timing of the 
research. At the beginning, researchers will only collect the tests produced by teachers (without 
training) and information about teachers’ practice; after, external assessments and didactic tools 
designed by researchers will be introduced. 

Theoretical framework 
Activity theory for studying professional development in a collaborative environment 

We consider that the Activity Theory expanded by Engeström (2001) is a good framework to study 
this kind of collaborative project of research and training through the objects and the tools used by 
the subjects, i.e. the teachers involved and us, as mathematics teacher educators/researchers (MTE-
Rs). In this framework, the activity of teachers in which we are interested is their assessment 
practice and the activity of MTE-Rs is to explore and develop these assessment practices within the 
collaborative environment. We look at the activity of the different subjects in order to produce 



results concerning professional development of each one, promoted through this collaborative 
device (Jaworski, 2006). 

Among the tools used in the AeDeP, we have chosen to focus on two specific ones: a list of 
criterions for studying the validity of test items and tests designed by researchers. In the following 
we explain why.  

Didactic paradigm of assessment 

To study the assessment practices of teachers, we adopt the didactic paradigm of assessment 
developed by Sayac (in progress). In this framework, teachers’ assessment practices are studied 
through the evaluative episodes they propose during the learning process, but also from the 
evaluative logic of teachers that becomes apparent in the design of the episodes (resources, method, 
nature of the tests provided), through their professional judgment in assessment and their grading 
practices. 

A number of researchers draw on the notion of professional judgment when considering learning 
assessment by teachers (Klenowski & Gunn, 2010; Laveault, 2008; Wyatt-Smith, Morgan & 
Watson, 2002). For them, professional judgment includes both cognitive process and social practice 
(Mottier Lopez & Allal, 2008), which is not same as a “mechanical gesture of measurement” 
(Wyatt-Smith et al., 2010), but must be considered as a “flexible dynamic process comprised of 
middle and final judgments” (Tourmen, 2009). The professional judgment of teachers could be 
viewed as an act of discernment and as the ability to build intelligibility of the phenomenon of 
assessment, while taking into account the epistemic, technical, social, ethical and paradigmatic 
dimensions of classroom assessment practices (Tessaro, 2013). In the didactic paradigm of 
assessment, the professional judgment is considered as a kind of “didactic vigilance” (Pézard, 2010) 
specifically applied to the assessment activity of teachers. This allows them to on the one hand give 
a valid verdict (Chevallard, 1989) about students’ mathematical knowledge, individually and 
collectively, from data collected during the different evaluative episodes. On the other hand this 
allows them to mutually articulate the different moments of the learning process (especially to 
connect evaluative episodes to the other moments of the learning process), based on data collected 
during the different evaluative episodes. This professional judgment in assessment is related to 
teachers’ mathematical and didactical knowledge and assessment skills. It also depends on 
individual factors as beliefs on learning and assessment as well as professional and personal 
experiences on assessment (Brady & Bowd, 2006; Di Martino & Zan, 2011; Jong & Hodges, 2015).  
 
Validity of tests  

Researchers and teachers, and more generally, all assessment designers, have a same preoccupation 
about the test: they want to be sure that their tests assess what they should assess and only that. In 
previous work, we have described a methodology and listed didactic criterions for analysing the 
validity of an external assessment in mathematics (Grapin, 2015; 2016). We transfer and adapt these 
principles with two different aims: as researchers, for analyzing the content of internal tests 
designed by teachers (classroom assessment), and, as educators, for helping teachers to construct 
their own assessments.  



For studying the validity of a test of a mathematical domain, we consider two levels: locally 
(exercise by exercise) and globally (the test as a whole). From a didactical point of view, the a 
priori analysis of each item is crucial because it gives indicators to guarantee that a task is relevant 
for achieving its assessment aim. For each item, we realize such an analysis specifying the tool or 
object aspect, the registers implicated with their possible congruence (Duval, 2006), the types of 
tasks involved in the resolution, the different techniques (adequate and inadequate through 
curricula) for solving the problem, the arithmetic problem classes (Vergnaud, 1996), the complexity 
levels (Sayac & Grapin, 2015). We also take into account the techniques involved in the resolution; 
if an item can be solved with a technique or a strategy different from the ones expected relatively to 
his assessment’ aims, we consider the item as inconsistent.  

For studying and ranking items according to their complexity, we have developed a tool (Sayac & 
Grapin, 2015) which takes into account three factors. In the first one, the wording and the task 
context are considered (what is difficult to understand the question?), in the second one, the 
mathematical knowledge involved in the solving process is studied, and finally in the third one, 
concerns the level of competency (is the task usual or not, does the student have to take initiative?). 
For each of these factors, we attribute a degree of complexity between 1 (simple) and 3 (complex). 
We also observed that discussions between teachers arise during the use of this tool because they do 
not have the same ideas about the complexity, depending on their teaching or their representations 
of mathematical notions (Sayac & Grapin 2013). So, this tool seems particularly appropriate to use 
with the teachers in our project. 

On a global level, we study whether the items are representative for the curriculum: have all types of 
tasks been represented? What are the complexity levels (defined a priori) of the items? Are they 
different or similar? Which registers of representation are involved? When a same type of task is 
represented by different items, are the effective techniques similar? Etc. 

Methodological elements and preliminary results 
The Engeström triangle (Engeström, 2001) allows identifying, for each subject, objects that will 
evolve during the collaborative project of the research and training, through the mediation proposed 
via the tools, the rules and the division of labor and the communities.  

For the teachers involved in the project, the main object is to assess their students. It comes to study 
specifically, from the collaborative environment, tests designed by researcher as one of the tools 
used. We will study how these tests could: 

1- Enhance assessment tasks proposed by the teachers in terms of diversity, complexity and 
coverage of the mathematical domain. 

2- Develop teacher’s professional judgment through the study of students’ answers to these tests and 
the confrontation between all the teachers during the meetings.  

3- Work on the coding of students’ answers and therefore, on grading.  

Studying or using external tests could foster the teachers’ professional development, because they 
will be validly designed from the epistemological and didactical point of view (Grapin & Grugeon, 



2015). The evidence of validity will allow us to show how these tests could be relevant for the three 
points above. 

We consider as Johnson, Severance, Penuel and Leary (2016) that: 

Professional development organized around the analysis of mathematical tasks has potential to 
prepare teachers for standards implementation by helping them develop common understandings 
of standards and how to help students meet ambitious new learning goals. (p. 173) 

Therefore, we believe that the contribution of assessment tasks from external tests, in a 
collaborative context, could develop teachers’ skills on assessment tasks design and contribute to 
enhance their professional judgment in evaluation (Gueudet, Pépin & Trouche, 2013).  

Methodology 

At the start of the school year, we collected tests designed by teachers involved in our project in 
order to analyze the assessment tasks with the tool developed in previous research (Sayac & Grapin 
2015). We will also collect new tests designed by the teachers at the end of the school year, after the 
collaborative group work in the meetings. Each assessment will be analyzed in terms of its validity 
with the criterions listed above; we will principally observe the change in content between the 
beginning and the end of the project (variety of type of tasks, complexity of tasks and the coding of 
students’ answers). 

Each teacher will also fill in a questionnaire about his or her assessment practices (How does he or 
she design tests? Which resources does he or she use? What are the periods of assessment in his/her 
classes? How does he or she use the results?). The results of these questionnaires will be used to 
compare teachers but also as an element for analysing the evolution of their practice.  

Lastly, for relying assessment and teaching in classes, each teacher involved in the project will have 
to keep a “daily book” (journal) in which he or she explains briefly the aim and the content of each 
mathematical course (in the numerical domain). He or she will also have to identify, according to 
his/her own representations, the evaluative episodes and describe these more specifically. We will 
analyze the content of the tasks proposed in tests and during teaching to study their correlations and 
their evolution during the project. As observed by Grugeon and Bedja (2016), we suppose that 
training teachers in assessment will also improve teaching: teachers should propose a wider variety 
of types of tasks, but they also should be able to have a better interpretation of students’ errors and 
propose adapted instruction to upgrade students’ level of understanding. 

Preliminary results 
At the time of writing, we cannot present full results because this project started in September 2016 
and we are in the process of collecting first data; we show however two example of tasks, extracted 
from the same test, one of the teachers in our study used in Grade 3. 

In a first task (Figure 1), the five questions are similar and aim to assess the decomposition of 
written numbers in canonical expressions. In all examples, the underlying structure is regular. We 
observe that such a task is not complex (we quote level 1 on each factor of complexity) and assesses 
five times the same knowledge: only the positional aspect of numeration (and not the decimal 
aspect).  



 

Figure 1: First exercise and students’ answer extracted from a classroom assessment designed by a 
Grade 3 teacher.  

The second exercise of the test (Figure 2) looks like the first one and assesses the same type of 
knowledge.  

 

Figure 2: Second exercise and students’ answer extracted from a classroom assessment designed by a 
Grade 3 teachers.  

Throughout the full test, there isn’t any exercise for assessing the decimal aspect of numeration. We 
conclude that such a test is not valid and in the project we are going to elaborate other questions 
with the teachers to fill this lack. 

We have not yet achieved the analysis of all classroom assessments designed by teachers involved 
in the project, but it seems that, as we can observe in the two previous examples, tasks are 
repetitive, having low complexity and for the numeration, assess principally positional aspect of the 
numeration. Such observations led us to propose external assessments with other types of tasks: 
exercises designed to assess numerical aspect of the numeration but also complex situations 
intended to develop students’ abilities.  

Conclusion and perspectives 
We have focused in the paper on the original and theorical notion of “didactic paradigm” designed 
recently by Sayac (in progress). What we can tell currently, from the first data collected (tests, 
questionnaires, interviews) is that the teachers, participating in our research, design tests with low 
levels of complexity and have invested very little in assessment as a professional gesture. They 
assess their students as they can, with very subjective practices. So, it seems that our research, with 
its training dimension, will make possible a real professional development concerning the 
assessment tasks proposed in mathematics by these teachers and their professional judgment in 
assessment.  



So, besides studying and providing primary school assessment practice in mathematics and 
designing assessment tools, our research aims also to develop these theorical elements. At the end 
of the project, it will be possible to show the impact on the teachers’ practice and interests, and the 
limitations of this methodology, according to our theorical framework. It would then be possible to 
extend such studies in other mathematical domains (as geometry) or in other levels, for example at 
secondary school. 
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Previous research suggests that assessment for learning (AfL), when used effectively, can greatly 
enhance student learning and achievement. However, students’ views regarding AfL are often 
overlooked. This paper reports on one part of a broader study that investigated the interplay between 
lesson study, continuing professional development in AfL and mathematics teaching and learning. 
The paper explores the views of students in one Irish Primary School regarding their use of AfL 
practices during mathematics lessons over the course of one academic year. Evidence suggests the 
use of AfL strategies and techniques enhanced children’s mathematical confidence, and improved 
their engagement with, and attitudes to, mathematics. By the end of the intervention, children readily 
used the language of AfL, engaged in AfL practices and played a more active role in their own 
learning and assessment, identifying the use of self-and peer-assessment as a highlight. 

Keywords: Assessment for learning, mathematics, student voice, student engagement. 

 

Background and focus of the project 
Assessment, as argued by Gardner (2012), is a “hot topic” across the entire education spectrum and 
rarely out of the limelight (p.103). In particular, assessment for learning, with its emphasis on learning 
as opposed to measurement has in recent years, according to Chappuis (2014), “garnered the lion’s 
share of assessment attention and established a pretty good name for itself” (p.21). This paper is about 
assessment for learning (AfL) in mathematics which is conceptualised using the following second 
generation definition generated by the Third International Conference on Assessment for Learning 
in New Zealand in 2009 which states: 

Assessment for Learning is part of everyday practice by students, teachers and peers that 
seeks, reflects upon and responds to information from dialogue, demonstration and 
observation in ways that enhance ongoing learning. (Klenowski, p.264) 

This definition clearly captures the key tenets of AfL, foregrounds classroom practices, highlights the 
notion of AfL as a bridge between teaching and learning (Wiliam, 2011), and views teachers and 
students as the primary agents of educational change (Lysaght & O’Leary, 2013). Research evidence 
suggests that focusing on the use of day-to-day AfL is one of the most powerful ways of improving 
learning in mathematics classrooms and can result in significant learning gains (Wiliam, 2007). 
Additionally, various studies have also linked AfL to increased student motivation and self-esteem 
(e.g., Clarke, 2008), enhanced self-regulated learning and metacognitive abilities (e.g., Andrade, 
2013), and better student-teacher relationships (e.g., Clarke, 2014). In the Irish context, government 
policy emphasises the centrality of AfL in teaching and learning although few teachers have received 
assessment-related continuing professional development (CPD). The Department of Education and 
Skills (DES, 2011a) has highlighted that AfL is not used sufficiently widely in Irish schools and 



concerns have also been raised about teacher assessment literacy. Regarding mathematics, data from 
the 2009 National Assessments of Mathematics and English Reading (DES, 2010b), school 
inspections (DES, 2010a) and international reports (PISA, 2009) have suggested Irish students are 
underperforming. Indeed, Hislop (2013), chief inspector with the DES, argues that it was Ireland’s 
poor performance in PISA 2009 that precipitated publication by the Irish government of a strategy 
aimed at improving standards of literacy and numeracy in Ireland: Literacy and Numeracy for 
Learning and Life; The National Strategy to Improve Literacy and Numeracy for Children and Young 
People 2011-2020 (DES, 2011a). This strategy is one of the most significant documents pertaining 
to education in the Irish context in recent years, and it is especially pertinent to this research since it 
has particular implications for numeracy, assessment and CPD. The Literacy and Numeracy Strategy 
increased the amount of time allocated to literacy and numeracy at all class levels, and set out 
ambitious improvement targets in English and mathematics as measured on standardised tests to be 
achieved by 2020. Compulsory standardised testing in English and mathematics changed from two 
to three points in the primary cycle (second, fourth and sixth classes), with mandatory annual 
reporting of aggregated results to the DES to facilitate collation of a national picture of achievement. 
Additionally, schools must use these results as part of “robust self-evaluation” (p.40) and to prepare 
three-year improvement plans for the promotion and improvement of numeracy and literacy. Results 
also have to be given to Boards of Management and parents. Nevertheless, while various scholars 
(e.g., Leahy & Wiliam, 2012) agree that AfL, when used effectively, is a warranted strategy that can 
improve student learning and achievement, and Irish government policy emphasises the importance 
of using AfL in teaching and learning, apart from some small-scale studies (e.g., Lysaght, 2009), 
research into AfL in the Irish context remains sparse, particularly in the area of mathematics. 
Furthermore, there has been little or no research investigating what is going on in the hearts and minds 
of learners while engaging in AfL practices. This study seeks to address this gap in the field by 
specifically investigating the following research question presented as a hypothesis: 

 The use of AfL strategies and techniques, and the adoption of AfL principles, would 
 enhance children’s mathematical confidence, and improve their engagement with, and 
 attitudes to, mathematics.   

Methodology 
This is a practitioner action research mixed methods explorative case study, which operated within 
the pragmatic paradigm. Over the course of one academic year, it investigated the impact of AfL 
practices on the teaching and learning of mathematics at fourth-class level in one primary school in 
the Republic of Ireland. Specifically, it explored how the use of AfL principles, strategies and 
techniques affected students’ attainment on standardised mathematics tests and their dispositions 
towards mathematics. Additionally, the research investigated the potential of lesson study (LS) as a 
vehicle of collaborative professional learning in AfL and considered the impact engaging in LS had 
on teachers’ skills, knowledge, and use of AfL, and their beliefs towards AfL as a form of assessment. 
A key part of this study was the use of peer-to-peer learning as a vehicle of continuing professional 
development (CPD). Meeting after school on twenty-three occasions over the course of the 
intervention the teachers learned about AfL strategies and techniques on a phased basis before 
implementing them in their mathematics lessons prior to the next meeting. The AfL strategies used 
were as follows: learning intentions and success criteria; questioning and classroom discussion; 



feedback; self- and peer-assessment. Additionally the teachers learned about and implemented more 
than twenty AfL techniques, for example, rubrics, think-pair-share, two stars and a wish, fist-to-five, 
learning logs, ABCD cards and comment-only marking (For further details see Wiliam, 2011). 

Site selection and research participants 

This research project took place exclusively in the school where I teach, Scoil na nAingeal 
(pseudonym), from September 2012 to June 2013. It is a vertical, urban, girls-only Primary School 
in the Republic of Ireland with an enrolment of 438 students and an all-female staff. The profile 
participants included all students enrolled in fourth class for the academic year 2012-2013, 51 girls, 
the average age of whom was ten years in September 2012. Classes were pre-formed, intact groups 
and so, according to Creswell (2009), random sampling was not considered appropriate. Three 
teachers participated in the project, the two fourth-class teachers and one member of the Special 
Educational Needs (SEN) team.  

Data collection and analysis 

Both quantitative and qualitative data were collected to decide whether to accept or reject the above 
research hypothesis. This aided triangulation, enhanced the study’s findings and enabled better 
understanding of the research problem. The quantitative data were collected using one scale of an 
instrument developed by the researcher called the Attitude to Mathematics Questionnaire (ATMQ). 
This scale was labeled the ATMQ-TIMSS since it used statements 8a-8h of the Trends in International 
Mathematics and Science Study (TIMSS) 2007 Grade Four Student questionnaire verbatim. These 
statements examined “students’ general attitudes towards mathematics” and “their self-confidence in 
learning mathematics” (Mullis, Martin & Foy, 2008, p.173). Leaving the TIMSS questionnaire 
unchanged facilitated comparative analysis with national and international data, and ensured the 
reliability of this scale (median reliability coefficients across all TIMSS countries at fourth grade was 
0.83, Mullis et al., 2008, p.401). Fifty children completed the ATMQ-TIMSS pre- and post-
intervention. Scoring was done using a four-point Likert scale, with response options ranging from 
‘Agree a lot’ to ‘Disagree a lot’. Raw data from the ATMQ-TIMSS were coded or categorised, 
recorded and prepared in Microsoft Excel and then imported into the software package, SPSS 21, 
where dependent (paired) samples t-tests were conducted in order to compare the scores of the same 
participants at Time 1 and Time 2, to ascertain whether or not the intervention had an impact (Pallant, 
2013). 

The qualitative data comprised transcripts and video from focus groups (FG) interviews, teachers’ 
learning logs (TLL), students’ learning logs (LL), and the researcher’s journal. In addition to aiding 
triangulation, these data supplemented the quantitative data by facilitating a more in-depth analysis 
of students’ views about using AfL strategies and techniques in their learning of mathematics. Braun 
and Clarke’s (2006) six-step approach to thematic analysis was used to guide analysis of each data 
item individually and subsequently the complete qualitative data set. 

Results and discussion 
Quantitative data 

Results from analysis of the ATMQ-TIMSS indicated that there was a statistically significant 
difference between pre-test (M = 2.03, SD = 0.73) and post-test scores (M = 1.56, SD = 0.42; t (49)= 



5.09, p < .001), i.e. post-test scores indicated more positive attitudes towards mathematics (mean 
values in post-test scores were closer to 1 = Agree a lot). The magnitude of the difference between 
the pre- and post-test means can be interpreted as being large (eta squared = .35). Table 1 presents 
combined ‘agree’ percentages for pre- and post-results for each statement in the ATMQ-TIMSS 
scale.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: ATMQ-TIMSS Scale 

A more detailed exploration of the eight statements from the scale revealed that following the 
intervention the combined ‘agree’ percentages scores for the five positively-worded statements (a, b, 
d, f, h) had increased by between 12 and 20 percentage points while the percentage of students 
agreeing with the three negatively-worded statements (c, e, g) had decreased by between 14 and 20 
percentage points. This suggests that children believed the intervention had positively impacted their 
general attitudes towards mathematics and their self-confidence in learning mathematics. 
Specifically, regarding the three statements which measured students’ general affect towards 
mathematics (d, g, h), results indicated that following the intervention almost 100% of the participants 
agreed a little or a lot with these three statements (Table 1).  

  Statement Subscale n 
Combined 
% Agreeing 
PRE-TEST 

Combined 
% Agreeing 
POST-TEST 

a I usually do well in Maths SCM 50 76 96 

b I would like to do more Maths in school * 50 60 70 

c 
Maths is harder for me than for most other 

students in my class 
SCM 50 28 14 

d I enjoy learning Maths PATM 50 80 98 

e I am not good at Maths SCM 50 26 6 

f I learn things quickly in Maths SCM 50 58 70 

g Maths is boring PATM 50 26 6 

h I like Maths PATM 50 80 100 

Note. % Agreeing = Agree a lot +Agree a little 

Italicised text highlights statements that were recoded. 

For discussion purposes, percentage scores for the three PATM (Positive attitude towards mathematics) 
statements and the four SCM (Self-confidence in learning mathematics) statements were amalgamated to 
provide a composite percentage score for these scales which could then be compared with TIMSS data. 

*Regarding statement b, Clerkin (personal communciation, April 15, 2015) suggests it was probably  originally 
intended to be part of the PATM scale but following factor analysis was found not to represent positive affect 
in the same way as the other scale items and so was excluded. 

 



Qualitative data 

Five main themes were identified following the qualitative analysis but due to space limitation these 
are discussed only briefly here.  

Enjoying the AfL journey 

When describing their experience of using AfL practices in mathematics, the children regularly used 
words such as ‘fun’ and ‘enjoyment’. Their enthusiasm regarding using AfL can be succinctly 
summarised by Maria’s comment: “I love doing AfL and I would like to continue doing it” (LL, 
13/02/2013).  

Growing positivity and self-confidence in mathematics 

It is clear from the data that at the end of the study students reported a growing positivity towards and 
increased self-confidence in mathematics that they attributed to their use of AfL. Some believed that 
using AfL practices made mathematics easier and increased their liking of mathematics: “It makes 
maths so much more fun, ‘cause like in third class I used to hate maths and then like now that there’s 
all these different strategies, it just makes maths so much easier” (Sophie, LL, n.d.).  

A changed classroom dynamic 

Scholars suggest (e.g., Hayward, 2012), engaging in AfL practices in the spirit in which it is meant 
impacts learning and teaching and acts as a leverage for change in classroom practices, and roles and 
relations. Children in this study, while recognising the teacher as overall guide and arbiter in the 
classroom, also identified teachers as learners. Additionally, they were beginning to monitor their 
own learning and to evaluate their progress. For example, Chloe commented, “I think it’s helped me, 
that it’s not letting the teacher correct all your work, that you, you kind of have to check it, and you 
have to, because there’s some silly mistakes that you could make” (FG1). Others displayed an 
increased confidence in their ability to assess, both themselves and others: “I think that when you 
correct it yourself, or for your friend, you know what you're correcting, you know why you're 
correcting, what you did wrong, so you know what you're doing”  (Emma, FG1). This suggests that 
through the process of engaging in AfL strategies and techniques over the course of one academic 
year, these students were becoming more independent learners, accepting the responsibility this 
brought, and were moving towards self-regulated learning. 

Peer- and self-assessment: - a highlight for children 

Using peer- and self-assessment was undoubtedly a highlight for children participating in this study 
as this comment illustrates: “I love self-assessment and peer-assessment” (Hollie, LL, n.d.). The 
following comment from Ruby demonstrates that by the end of the intervention the children had 
developed a good understanding and appreciation of peer- and self-assessment: 

I thought the self-assessment was excellent because we were judging ourselves and could 
learn from our mistakes. Peer-assessment was brilliant for your partner or pair could judge 
your work and spot mistakes that you might not have spotted yourself. (Ruby, LL, 12/06/2014) 

The children believed that self- and peer-assessment not only enhanced their learning but that it was 
also fun. Similar to research by Topping (2010), trusting your peers was mentioned by a number of 
participants as integral to good peer-assessment practice. For example, Hollie remarked: “I think peer-



assessment is the best because you get to like trust your friends more, so they’ll be more honest with 
you in the future” (FG1).  

Unexpected insights 

The qualitative data also revealed some unexpected insights about students’ perspectives regarding 
AfL. The children revealed they used the learning intentions and success criteria from their 
mathematics lessons to help them when doing their mathematics homework. Additionally, they 
described how they appropriated the AfL strategies and techniques to help them learn in other subject 
areas. Many children reported they liked using rubrics since they scaffolded the assessment process. 
Maria wrote: “My favourite thing about the AfL was using the rubric” (LL, 12/06/2013) and later 
explained why: 

I like using the rubric because when we were first going to do peer-assessment I was like ‘oh 
God, what will I say was wrong?’ and ‘I don’t know what to do here’, but then you showed 
us the rubric, and I was like ‘oh, it’s ok’, ... with the rubric, it tells you what you’re supposed 
to assess, (FG2) 

Conclusions 
While acknowledging the limitations of this study, such as the fact that it takes place in a single school 
and employs a case study strategy with convenience rather than non-probability sampling, it 
nevertheless contributes new insights regarding AfL and mathematics, especially from students’ 
perspectives. It demonstrates that children in primary school are capable of engaging in AfL practices, 
including peer- and self-assessment, and want to do so. Findings suggest that using AfL practices 
enhanced children’s mathematical confidence, and improved their engagement with, and attitudes to, 
mathematics.   

This study is important since, to date, little empirical research has been done into the effects of AfL 
practices on students’ mathematics learning in the Irish context at primary level. Additionally, this 
study can supplement research done by academics regarding AfL since it provides a practitioner 
researcher’s perspective of the field, thus “inside-outside” (Cochran-Smith & Lytle, 1993). 
Notwithstanding, perhaps the most significant contribution made by this research is that it provides a 
unique opportunity to listen to, and contemplate, the voice of young learners as they discuss their 
experiences of using AfL practices in their mathematics learning. 
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Diagnostic competences are essential for teacher actions; however pre-service teachers often do 
not have the opportunity to train these skills at university. Thus, there is a need to find out the best 
way to promote diagnostic competences in teacher training. During the last decades, several 
projects introduced videos as a tool for the training of diagnostic skills, but there is no evidence 
that pre-service teachers really acquire diagnostic skills better by analysing videos than by 
analysing tasks. The present study contributes to this growing area of research by exploring which 
one of these two methods promotes diagnostic skills better. Video analysis and task analysis are 
compared as training methods in an intervention study with a pretest-posttest design. Fostering 
preservice teachers’ diagnostic skills with focus on students’ abilities, problems and misconceptions 
with graphs of functions, is the specific objective of our study. 

Keywords: Pre-service teacher training, diagnostic competence, formative assessment, graphs of 
functions, video vignettes. 

Theoretical background 
Good lessons require a lot of competencies on the teacher’s side. Diagnostic skills, in particular, are 
an important part of teachers’ professional knowledge and competence (e.g. Baumert & Kunter, 
2006). Weinert (2000) regards diagnostic competence as one out of four basic and essential 
competences of teachers. Having good diagnostic skills enables a teacher to differentiate and 
individualise amongst learners – an ability that becomes increasingly important in today´s 
classrooms, “[…] because lessons can no longer be planned completely in advance, and teachers 
have to make many decisions in the midst of instruction about how to proceed” (van Es & Sherin, 
2002, p. 574). Good lessons require teacher actions that are adapted to the students’ needs and 
abilities and, therefore, are based on diagnostic information (Klug et al., 2013; Schrader & Helmke, 
2001). For the adaptation of teacher actions to pupils’ needs during a lesson, relevant information 
needs to be obtained during the students’ whole learning process. Getting an insight into the 
students´ abilities only through the results of a final exam, is often too late to work on the students’ 
problems and misconceptions. For this reason, our focus lies on diagnostics which take place in the 
learning process of the students where the teacher is still able to guide and influence the learners and 
their learning process. In the following, an overview of different aspects concerning diagnostics and 
assessment will be given.  

Diagnostic competence 

The term “diagnostic competence” is often used in the literature, but there is no agreement on a 
definition of this expression. A wide-spread definition would be that diagnostic competence 
involves all the abilities of an evaluator enabling him to correctly asses other people (Schrader, 
2010). Artelt and Gräsel (2009) understand diagnostic competence as the teachers’ competence to 



evaluate the characteristic traits of their students in an adequate way and to suitably assess the 
demands of learning and of the tasks. Except of these two, various other definitions are used. 
Diagnostic competence is often described as “accuracy” in teachers’ judgements – mostly in 
correlation with standardized tests – and therefore concerns the students’ achievement in tests (Klug 
et al., 2013). Other definitions refer to the learning process of the students itself. In this regard 
Weinert (2000) defines diagnostic competences as:  

[…] an amount of abilities to continuously asses during lesson the state of knowledge, the 
learning progresses and the performance issues of the individual students as well as the 
difficulties of different learning-tasks, so that the teaching actions can be based on diagnostic 
insights. (Weinert, 2000, p.16, own translation) 

All of these definitions have in common that diagnostic skills are presented as the tool allowing the 
teachers to gain information about the learners. This information can be used for different 
pedagogical decisions like grading and lesson planning (makroadaptations), but also for short-
termed interventions during lessons (mikroadaptations) (Schrader, 2013). As our study does not 
focus on achievements in tests but on the learning process of the students, we refer to the definition 
of Weinert. Moreover, there are different facets of diagnostic competences (e.g. Praetorius, 
Lipowsky, & Karst, 2012), so that we prefer to use the term diagnostic skills, as we focus on 
specific parts of it: the analysis of tasks and the analysis of video sequences – both with regard to 
abilities, problems and misconceptions of students working on tasks with the content functional 
relationships. 

Formative assessment vs. summative assessment 

The terms formative and summative assessment are quite similar to the foregoing described 
diagnostic competence. Again, there is no common and widely accepted definition although they are 
widespread in the international literature (Black & Wiliam, 1998). While summative assessment 
corresponds to the evaluation of students’ academic achievements, formative assessment can be 
equated to diagnoses during learning processes. According to Bell and Cowie (2001b, p. 538), such 
diagnoses during learning processes “could include continuous summative assessment”, which is 
why the authors “explored formative assessment as classroom assessment to improve learning (and 
teaching) during the learning”. Bell and Cowie (ibid.) distinguish between planned formative 
assessment and interactive formative assessment. The former describes an assessment activity 
which is planned in advance, the latter includes assessments that arise out of learning activities 
during the lesson (Bell & Cowie, 2001a). The purpose of interactive formative assessment is to help 
the students by accompanying the learning process (Bell & Cowie, 2001a). According to Bell and 
Cowie (2001a, p. 86) this process involves three parts: noticing, recognizing and responding. 
Noticing in this context means to gather information about the patterns of thought and actions of the 
students. This information is gathered while the pupils are working or talking. Thus, this 
interpretation differs from the term “noticing” described by van Es and Sherin (2002). In contrast to 
the meaning of “noticing” characterized by van Es and Sherin, which already includes the 
identification of important aspects of a teaching scenario, Bell and Cowie (2001a) regard the 
recognition of relevant interactions and moments as a second step. “Recognising may be 
differentiated from noticing in that it is possible to observe and note what a student does without 
appreciating its significance” (Bell & Cowie, 2001a, p. 88). Consideration of “responding” as one of 



the stages of interactive formative assessment shows, that the noticing or assessment should not 
stand alone – the following action of the teacher is indispensable.  

In this sense, formative assessment involves diagnostic as well as didactical competencies - action 
competence, respectively. Diagnosis/ noticing and the action which follows up the diagnosis are 
both parts of formative assessment. To sum up, the subject of our study is diagnostic competence 
according to Weinert (2000) and the following teacher action. Thus, the regarded skills manifest 
themselves in the three stages of interactive formative assessment: noticing, recognizing, and 
responding (Bell and Cowie, 2001a). 

Graphs of functions 

The focus of the diagnosis in our project is on the students’ learning processes while working with 
graphs of functions. The interpretation and construction of graphs of functions are essential skills - 
not only in mathematics education. The ability to use different (external) representations is an 
important issue here. It is one of the six mathematical competences mentioned in the German 
educational standards for mathematics and also influences two of the remaining standards (KMK, 
2004). Moreover, the use of graphs of functions is essential for the topic “functional relationships”, 
being one of five central topics of mathematics education (KMK, 2004). In addition to that, the 
abundance of graphs of functions in our everyday life (e.g. functional relationships or graphical 
representations of data) makes them indispensable in teaching and learning. Nevertheless, previous 
research has shown that dealing with graphs of functions can be difficult and easily leads to 
misconceptions. In the literature one can find a lot of those mistakes and misconceptions (e.g. 
Nitsch, 2015; Leinhardt et al., 1990; Clement, 1985; Bell & Janvier, 1981), like the graph-as-picture 
misconception, the slope-height confusion or the interval-point confusion. Moreover, what the 
students think a function is or how a graph of a function should look like (concept image) does not 
always correspond to the definition of a function, the students have in mind (concept definition) 
(Tall & Vinner, 1981).  

However, not all of these mistakes and misconceptions are visible on the surface but they need to be 
uncovered in time. Otherwise, there is the danger of a consolidation of wrong thinking making it 
very hard to work against them (Nitsch, 2015). In this case, wrong conceptions might still be present 
when students leave school or even when they enrol at university. Teachers need to be able to 
diagnose students´ misconceptions and difficulties in time in order to foster their correct use of 
graphs of functions.  

Giving effective feedback is a crucial aspect of teacher-learner interactions (Hattie, 20120), but 
often there is a lack of time for reflection and decisions on necessary actions to be taken (Black & 
William, 2009). The perception and processing of crucial situations often takes place intuitively – 
“on the fly” – when the teacher is monitoring the classroom and listening to student conversations 
while students are working with their partners or in groups. This is a highly demanding situation for 
teachers (William & Thompson, 2007). Consequently, in the beginning of teaching, teachers can 
experience an overloading by the wealth of information. Thus, the skills to notice, recognize and 
respond should already be fostered during preservice teacher training. A common way to train 
diagnostic skills is the analysis of tasks as it can easily be embedded in university teacher training. 
Thereby the university students reflect the skills which are needed to solve a task as well as 



problems which can occur with the task. This method focuses on skills which are primarily 
necessary in lesson planning. No influence of task analysis on teachers´ diagnostic skills could be 
found yet. It could be assumed, that a good analysis of tasks helps a person to notice things – which 
are expected through the analysis – in reality. Nonetheless the analysis of gestures is not part of this 
method and can still be a difficulty for beginning teachers. Furthermore, noticing in a situation is 
more complex and can be cognitive overwhelming. Therefore, another approach to train such 
diagnostic skills is the use of videos as part of the training of diagnostic competences, as videos are 
very close to reality (compare Janík et al., 2009).  

Up to now, several studies have shown that pre-service teachers often do not have the opportunity to 
train their diagnostic skills so that these competences are only poorly developed (Ostermann et al., 
2015; Praetorius, Lipowsky, & Karst, 2012). For this reason, we want to foster these skills already 
during the university teacher training. 

Research Question 
The goal of our research is to enhance pre-service teachers´ diagnostic skills through experimental 
settings at university. As mentioned before, there are different aspects of diagnostic skills, all 
important for professional teaching. On the one hand, a teacher should be able to identify possible 
difficulties of a task and be aware of the skills needed for solving the task. On the other hand, the 
teacher needs to be able to identify the concrete difficulties and misconceptions an individual 
student has and to react appropriately. The analysing of tasks is one common way to train diagnostic 
skills of pre-service teachers. During the last decades videos were introduced as training tool for 
diagnostic skills as well. Looking at the two approaches to the training of diagnostic skills, several 
questions arise that need to be answered:  

1. How does the training of task analysis influence the skills for analysing learning situations?  

2. How does the training of analysing videos influence task-analytical skills? 

Furthermore, as the diagnoses should be the basis for teacher action, the impact of both trainings 
with regard to this issue is another interesting part of the investigation: 

3. Which intervention results in a noticeable improvement of the actions following the 
diagnoses? 

Method 
In order to verify the effects of the different trainings on the preservice teachers’ diagnostic skills we 
will conduct an intervention study using a pre-posttest design. Thus, it will be a setting with two 
experimental groups: Experimental group one (EG1) will practice diagnostic skills by analysing 
videos, experimental group two (EG2) by analysing the tasks the students work on (Figure 1). The 
preliminary study will be conducted in winter term 2016/2017. The participating pre-service 
mathematic teachers (approximately 60 persons) are currently attending the same lecture in 
mathematics education (didactic of algebra) and will be randomly distributed into the two 
experimental groups. The participants of both groups receive the same content input during the 
lecture. The information given in the lecture will be on functional relationships and particularly 
focus on the representation graph of functions. Furthermore, the skills which the learners shall 



acquire as well as possible student mistakes and misconceptions which can occur during learning, 
are of special interest. 

In the intervention the participants of EG1 are asked to analyse video-vignettes. The participants of 
EG2 have to analyse tasks which contain the construction or the interpretation of graphs of 
functions. The focus of both analyses lies on diagnosis of errors regarding problems and 
misconceptions as well as the skills the students already have or need. The video-sequences used for 
the intervention can be watched multiple times, stopped at any point and the participant can jump to 
any point in the video that is of interest to him. This circumstance is meant to help the pre-service 
teachers as well as possible while they are analysing the learning process of the pupils. The tasks 
which are given to the participants of EG2 are the same tasks used for the video vignettes. 
Therefore, differences between experimental groups are limited to the characteristics of the learning 
resources. The analysis – both of the videos-vignettes and the tasks – happens at each individuals’ 
home, not during the university lecture. In contrast to the test situations, there will be no time 
constraint during the intervention in order to foster the development of diagnostic skills.  

During the pretest, additional data will be collected: teaching experience, attended university 
lectures in education (other subjects included), differentiating between those already attended, and 
those happening in the meantime of the intervention. Knowing these influences gives us the 
opportunity to consider them as covariates for the computation and the results. 

The pre- and posttest will be conducted to measure the diagnostic skills of the pre-service teachers 
at the beginning and the end to be able to see the changes of these skills between before and after 
the intervention. The tests inquires diagnostic skills which are important for the preparation of 
lessons as well as those needed to be able to notice situations relevant for successful learning in 
class. Furthermore reactions based on the participants’ diagnoses will be part of the inquiry. The test 
for diagnostic competencies asks participants to first analyse tasks. Then, a three-minute video will 
be presented, showing pupils working on the tasks previously analysed. The video can only be 
watched once and doesn’t provide the possibility to pause. This way, we are trying to create a test-
situation which is as close to reality as possible. The test includes both open and closed questions 
asking the participant to communicate what they have noticed and to reason about their findings.  

By testing both types of analysis, we want to investigate whether different diagnostic skills have 
influences on each other. Moreover we expect the test to resolve, whether one method is superior to 
the other one. This would be the case if for one training method superior gains in both types of 
diagnostic skills could be observed.  

Both settings of the intervention and the tests for diagnostic competence are embedded in the 
learning environment ViviAn (see Figure 2) developed by Bartel and Roth (2015). This learning 
environment provides a combination of video vignettes and further material and thereby further 
approximates the information available in real-life teaching situations. Hence, the user gets 
information about the students (type of school, grade, sex), the content and the learning goals of the 
entire lesson, and the materials the students use such as the given task and the materials (for 
example a big sheet of paper with a graph of a function on it). The students’ protocols (products) are 
only available to the participants of EG1 who are analysing videos. As the participants of EG2 
analyse the task in more general they shall not be influenced by the solution of the pupils.  



 

Figure 2: The learning environment ViviAn (Bartel & Roth, 2015) 

The data will be analysed with mixed methods. The approach of qualitative content analysis 
(Mayring, 2008) will be applied to create a coding guideline. Thereby the answers of the 
participants will be compared to experts’ diagnoses. As experts serve mathematics teachers and 
academic staff working in the field of didactics of mathematics. These experts’ diagnoses will be 
used as a criterion norm for the measurement of diagnostic skills by using the resulting criteria to 
rate the participants’ answers. To resolve group differences descriptive statistics as well as 
inferential statistics with variance analysis will be considered.  

Expected results 
The preliminary study was conducted in winter term 2016/2017. It will reveal potential problems 
concerning our approach, the used material and tasks. Based on these findings we will be able to 
improve our approach and the used material. Moreover, the preliminary study contributes to the 
investigation of differences between the diagnoses of tasks and videos. Prospectively, with the 
results of the main study, we will then be able to point out, whether trainee teachers better acquire 
diagnostic skills by analysing videos than by analysing tasks. Furthermore it will provide insight 
into whether different aspects of diagnostic skills have an influence on each other. 
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The study attempted to investigate senior preservice middle school mathematics teachers’ purposes 
in preparing the assessment, and their views and suggestions about the assessment part of a lesson 
plan through employing basic qualitative method. First, the “Incomplete and Improper Lesson Plan 
Task” prepared by the researchers was administered to the participants (N=27). Then, one-to-one 
interviews were conducted (N=11). Findings of the study indicated that preservice teachers 
underlined similar purposes in preparing the assessment part of the lesson plan, all of which related 
to the teacher actions. They mainly emphasized the kind of feedback gathered by the teachers rather 
than the students. They also considered the assessment part in the task weak since there were 
insufficient number and diversity of the questions.  

Keywords: Formative assessment, feedback, preservice mathematics teachers. 

Introduction 
Formative assessment or assessment for learning is utilized deliberately for learning (Laud & Patel, 
2013). It includes all activities that provide feedback for adjusting teaching activities and instruction 
(Black & Wiliam, 1998). Any assessment is formative if it is utilized to collect evidence about 
students’ learning progress and current level of understanding the concept (Heritage, 2007), and to 
make instructional adjustments in line with their needs (Wiliam, 2007).  

Feedback plays a crucial role in formative assessment (Sadler, 1989). Ramaprasad (1983, p.4) defined 
feedback as “the information about the gap between the actual level and the reference level of a 
system parameter which is used to alter the gap in some way.” Feedback cannot be differentiated 
from the instruction and it is formative when the information provided is utilized to enhance learners’ 
performance (Wiliam, 2007). Information gathered from feedback can be used by both teacher and 
students (Sadler, 1989). Teachers use it to specify students’ needs and give decisions about the 
adjustments for further instructions (Wiliam, 2007). Students use it to realize their strengths and 
weaknesses (Moss & Brookhart, 2009) and to learn how to modify and improve their performances 
to reach the reference level. Therefore, it affects students’ learning positively. 

Wiliam and Thompson (2008) focused on three instructional processes; where students are in their 
learning, where they are going, and how to get there which are emphasized in Ramaprasad’s (1983) 
definition of feedback and they suggested a formative assessment framework shown in Table 1. 
According to the framework, formative assessment is composed of five key strategies and one big 
idea that the outcome of students’ learning processes can be utilized to make necessary changes in 
the instruction with respect to students’ needs (Wiliam & Thompson, 2008). 

 
  



 

 Where the Learner Is 
Going 

Where the Learner Is Right 
Now 

How to Get There 

Teacher (1) Clarifying and sharing 
learning intentions and 
criteria for success  

(2) Engineering effective 
classroom discussions and 
tasks that elicit evidence of 
learning 

(3) Providing 
feedback that moves 
learners forward 

Peer Understanding and sharing 
learning intentions and 
criteria for success 

(4) Activating students as instructional resources for 
one another 

Learner Understanding learning 
intentions and criteria for 
success 

(5) Activating students as the owners of their own 
learning 

Table 1: Framework relating strategies of formative assessment to instructional processes (Wiliam & 
Thompson, 2008, p.63) 

The five strategies can be explained in the following way: Teachers are responsible for “engineering” 
effective learning environment since their role is only to scaffold learning. They provide this 
environment by generating productive discussion setting, asking deep questions and monitoring the 
learning process (O'Connor, 2002). Learners’ active participation is associated with challenging tasks 
and providing feedback for these tasks which assist students’ learning (Black & Wiliam, 1998). Since 
students need to understand the learning intentions and standards for which they will be assessed, 
clarifying and sharing learning intentions and success criteria with the students is also very important 
(Wiliam, 2007). Additionally, activating learners as instructional resources for one another and for 
themselves is essential for any assessment approach. In this way, learners can improve the ability to 
judge and decide about what to do next (Berry, 2005).  

Formative assessment is a significant process that can be followed in order to have information about 
students’ progress. Hence, each step of the assessment needs to be decided and planned continuously 
(Heritage, 2007). Since, as future teachers, preservice teachers need to be qualified in planning and 
implementing formative assessment practices, teacher education programs play a crucial role in raising 
the awareness of preservice teachers about the significance of formative assessment and in teaching them 
how to plan and use it in their classes effectively. 

The current study aimed to investigate preservice mathematics teachers’ (PST) purposes in preparing 
the assessment part, and their views and suggestions about the assessment part of the lesson plan. 
Aforementioned framework guided the researchers in the process of both preparation of the task used 
for as the data collection instrument and analysis the participants’ responses. 

Methodology 
In this study, basic qualitative research method was employed in order to reveal PSTs’ views about 
planning the assessment part of the given lesson plan. 

Context and participants 

The study was conducted in a four-year middle grades mathematics teacher education program 
(MTE). The program offers mainly mathematics and introductory education courses in the first two 
years and mathematics teaching courses in third and fourth years. A total of 27 senior PSTs who were 



enrolled in MTE program participated in the study. They were selected among PSTs who completed 
the Methods of Mathematics Teaching and Measurement and Assessment courses, and who were 
taking the Practice Teaching course. The first data collection instrument, Incomplete and Improper 
Lesson Plan Task (LPT) was implemented to 27 PSTs. Then, 11 PSTs were selected for the interviews 
with respect to their diverse answers to the questions in the given task. 

Instruments and data collection 

Data were collected by LPT and a semi-structured interview protocol. LPT consisted of incomplete 
and improper lesson plan with three 6th grade objectives on equivalent fractions and a case where 
PSTs assumed to be in-service mathematics teachers implementing this lesson plan. A basic lesson 
plan template which addressed the lesson in beginning, middle, end, and assessment parts was used 
because participants were familiar with the template in the MTE program courses. The plan was 
incomplete because there were not any expression implying any formative assessment strategy. PSTs 
were expected to realize the nonexistence of these strategies and integrate one or more strategies in 
the given lesson plan. The plan was improper also because the first objective was unmeasurable and 
unobservable, there were inconsistencies between objectives and questions in the assessment part, 
there was no rubric for fair scoring, and questions had a weak structure in the assessment part. Certain 
multiple choice questions were selected because PSTs were expected to realize that feedback gathered 
through these questions about students’ learning was limited. PSTs were anticipated to notice and 
eliminate these reasons of improperness of the lesson plan. Figure 1 presents the lesson objectives 
and 4 yes-no questions in the assessment part of the lesson plan.  

Objectives:  

● Students should be able to develop a conceptual understanding of equivalent fractions.  
● Students should be able to explore the same quantity can have different fractional names.  
● Students should be able to look for patterns in equivalent fraction.  

Assessment: 

For each equivalence please write T in the given blank if it is correct; write F if it is false. 

A)    (__)      B)   (__)      C)   (__)      D)     (__)                                

Figure 1: Objectives and assessment part of the incomplete and improper lesson plan 

LPT asked PSTs to write the strengths and weaknesses of the assessment part, and give suggestions 
about how to improve it with regard to weaknesses they found. During the interview, PSTs 
commented on how they would have designed the beginning, middle, end, and assessment parts if 
they had prepared the given lesson plan. They responded the questions by assuming to be in a 
hypothetical classroom environment; they did not implement the lesson plan in their teaching. The 
current research report, a part of a broader study which addressed all indicated features, focused only 
on PSTs’ views about the assessment part of the given lesson plan. 

LPT was implemented in a course where PSTs attended after necessary permissions were granted. 
PSTs were asked if they would like to volunteer to participate in the study and those who volunteered 
completed the task in about 50 minutes. After one-month of data analysis period, 11 PSTs were 



selected to be interviewed in one-on-one setting. They all participated in the interviews voluntarily. 
Interviews took 30-80 minutes and were audio-recorded with the permission of the participants. 
PSTs’ answers to the task were reminded with the purpose of eliciting whether they wrote the 
responses for formative assessment purpose or not when they did not advert to the same issues during 
the interview. Data were analysed through content analysis. PSTs’ expressions which imply the action 
of gathering evidence about students’ current knowledge and their own competence in teaching were 
grouped under the “providing feedback that moves learners forward” subdomain of the formative 
assessment framework (Wiliam & Thompson, 2008). PSTs’ purposes in preparing this part were 
examined under the categories of “feedback for teacher” and “feedback for students” (Sadler, 1989). 
One researcher, other than the authors, examined the data and they agreed that the categorization was 
conceivable regarding to the data. Preservice teachers’ intended further actions, views and 
suggestions about the assessment part were also reported. 

Findings 
Feedback for teacher and students 
Findings of the interviews indicated that all interview participants agreed that the assessment part 
provided feedback for the teacher. PSTs mainly stated that they would perform this part to gather 
feedback about students’ level of knowledge and their own competence in teaching. PST4 
emphasized both aspects as in the following conversation:  

Researcher (R):    What is your purpose in preparing the assessment part of the lesson plan?  

PST4:             In order to learn about whether I could teach the concept or not. Did I have students 
achieve the objectives? There can be some points that the students did not get. I 
prepare [the assessment part] in order to determine these points [as well]. 

PST13 also underlined the necessity of providing feedback about students’ learning as follows:  

I think the [assessment] part is necessary in order to provide feedback about what the students have 
learnt or have not learnt… I think using exit card is very beneficial in order to understand whether 
the students have learnt the concept or not.  

Only one participant mentioned that this part also provided feedback to the students about their 
learning:   

PST23:        Definitely I will not grade students’ work. Here, grading is so ridiculous. I check 
whether they understood the concept or not. I think it should provide me feedback.  

R:                   Why do you not grade their works?  

PST23:        We implement it in last five minutes [of the lesson]. The students have learnt the 
concept in that lesson. Their knowledge is so fresh. I think there is no need to grade 
the exit card if the students have a perception that the assessment part serves for 
testing themselves. The teacher will use it to learn about what the students 
understand (and) also the students will realize whether they understand the concept 
or not through the assessment part. 

Remaining ten interview participants also preferred not to grade students’ responses to the questions 
in the assessment part since they thought that this part would be used to check students’ current level 



of understanding of the concept or to have them comprehend the concept better.  

All interview participants expressed that feedback they obtained by means of the assessment part 
would affect their further instructional plans. They indicated that they would make some instructional 
changes according to the feedback about students’ needs. They mostly preferred changing the next 
class’s activities or teach the lesson again. However, some of the participants claimed that they 
probably would not have time to repeat the lesson since they need to keep the pace of the national 
curriculum: 

I would decide what to do according to the answers of the majority of the class. If the students 
made major errors, I would think that I was responsible for their mistakes. Maybe, I would repeat 
the lesson or I would probably teach another lesson in which I could emphasize the points that the 
students misunderstood. However, I do not know whether I have time to do it when I would be a 
teacher because there is a curriculum [need to follow]. These plans are only utopia. (PST15) 

PSTs’ views and suggestions about the assessment part of the lesson plan 
In both task implementation and the interview, PSTs expressed similar ideas with different 
frequencies. In the LPT implementation, more than half of the PSTs commented on the strength of 
the assessment part and mainly emphasized the consistency of the questions in the assessment part 
with the lesson content (n=5). PST12 expressed that “it is a good activity [since] the students can 
implement what they have learnt into the assessment part.” Two PSTs claimed that the assessment 
part was strong since “it is efficient in assessing whether the students understand the second 
objective” (PST8) and “the indicated questions can measure easily whether the students understand 
the relationship between two equivalent fractions.” (PST15). PST11 and PST27 reflected on different 
features of the questions. They indicated that this part was useful since there were questions related 
to both enlargement and simplification of the fractions. On the other hand, there was not any 
coherence within other PSTs’ expressions. For instance, PST9 stated that she liked the questions in 
the assessment part because “they have uncontroversial and single answer” whereas according to 
PST23, “the questions do not have specific answer and they prompt students to think.”  

Only four interview participants mentioned the strength of the assessment part by commenting on 
only the specific options. Two participants stated that they would keep the option c since it could 
assist to detect some misconceptions or errors. PST17 expressed that she liked the questions in the 
assessment part since they included numbers such as 37 and 46 which were not much used.  

Regarding to the weaknesses of assessment part, in both LPT implementation and interviews, PSTs 
addressed the questions in the assessment part as insufficient in number and diversity. In LPT 
implementation, 6 among 27 PSTs commented on and suggested ways to improve such weaknesses: 

There is only one type of question. There should be (questions) which are supported by the shapes. 
Not only true-false questions, but also some interpretation questions and the questions that the 
students can write equivalence of the indicated fractions should be added. (PST21) 

According to five participants, assessment part was weak since it included questions that students had 
fifty per cent chance to answer them correctly. They recommended to add different types of questions 
to reduce students’ guessing. For instance, PST19 suggested to “add some open ended questions in 
order to see how much the students understand the concept in an easy and reliable way.” Adding 
verbal and daily life questions, and questions with shapes was also recommended.  



During the interview, PSTs mostly underlined similar weaknesses of the assessment part and 
proposed suggestions to deal with them as they did in the task implementation: 

I think, whether the students understand the concept or not is not assessed exactly here because 
there is fifty per cent chance. If I write all of them true, I will answer one or two of them correctly. 
(PST18) 

To overcome this weakness, PST18 also recommended to add different type of question as: 

If I were… I would give them and want them write an equivalent fraction to this one rather than 
asking true-false [questions]. Even, I can ask the same questions with the one that I asked in the 
beginning part of the lesson. I change its numbers. “If such a number of pieces of cake were eaten, 
how many pieces were eaten?” and “Is there another fraction which represents the (same) 
amount?” 

On the other hand, none of the participants mentioned the inclusion of the rubric for fair scoring 
which was one of the reasons for the improperness of the given lesson plan. 

Discussion and conclusion 
Findings of the study showed that all PSTs planned to prepare assessment part of the lesson plan in 
order to gain feedback about students’ current knowledge level and their own competence in teaching, 
all of which related to teacher actions. Only one interview participant stated that assessment part 
would also provide feedback to the students about their own learning. PSTs mainly emphasized the 
kind of feedback gathered by the teachers although they were expected to comment on that students 
can also obtain feedback about their own learning and needs through the assessment. This tendency 
towards teacher-centred assessment was the action which provided feedback only to the teacher in 
order to determine the problematic areas that required more emphasis and practice (Antoniou & 
James, 2014). It might be due to PSTs’ views that the students may not benefit from the assessment 
part to determine their needs and take necessary actions to meet these needs. 

PSTs were against grading the assessment part of the lesson plan since their purpose in the preparation 
of the assessment part was only to check students’ learning or to have them understand the concept 
well. This finding was congruent with the idea that the main purpose of utilizing formative assessment 
was to facilitate and improve students’ learning instead of simply assigning a grade (Marshall & 
Drummond, 2006). When it is considered that the formative assessment serves its purpose when the 
teacher avoids grading students’ performance (Elawar & Corno, 1985), it might be deduced that the 
PSTs planned to use this part for formative purpose.  

PSTs indicated that feedback gathered from the assessment part assisted them to adjust their further 
instructional plans according to students’ needs. This finding might indicate that PSTs used the 
assessment part of the given lesson plan formatively because they would make some changes in the 
next class’s instruction and planned further instructional steps (O'Connor, 2002). PSTs generally 
preferred to repeat the previous lesson or teach another lesson by changing the existing activity in 
case the students had difficulty in learning the content. However, some PSTs indicated that they 
probably would not have such time since they needed to keep track of the national curriculum. Similar 
types of adjustments and lack of time issues were also reported previously (Antoniou & James, 2014). 
Although all PSTs talked about teachers’ further actions, they did not mention students’ possible 
further actions to enhance their own learning. The reason might be PSTs’ disposition towards teacher-



centred assessment. They might not consider students’ further actions because they disregarded the 
fact that the students could also obtain feedback through assessment part to monitor their progress 
and enhance their learning.  

In both task implementation and interview, majority of the PTSs were able to detect the improperness 
of the assessment part resulted from the structure of the questions. They emphasized that they could 
not know whether students had learned the concept or not through these questions since students had 
fifty per cent chance to answer them correctly. PSTs generally recommended adding open-ended 
questions to eliminate this weakness. Being able to detect improperness might be due to their 
awareness of the requirement of the alignment between objectives and the questions in the assessment 
part. They might have suggested adding different questions to eliminate the inconsistency between 
the objectives and questions. PSTs also suggested increasing the number of the questions in the 
assessment part. The reason for this might be attributed to the demand of introducing students with 
wide range of questions to prepare them for high-stake national examinations, as reported for 
beginning Turkish middle grades mathematics teachers (Haser, 2006). 

Due to the fact that the measurement and assessment course stresses mainly the assessment tools 
rather than focusing on the whole picture of the lesson plan with regard to the utilization of the 
formative assessment strategies, PSTs might have had difficulty in examining and integrating the 
intended formative assessment strategies in the lesson plan. Therefore, courses on assessment can be 
offered with the methods of mathematics teaching courses or lesson contents of these courses can be 
associated with each other so that PSTs can integrate what they have learnt about assessment into the 
lesson plans they prepared in the methods courses. Hence, they can have a chance to look at the whole 
picture of the lesson plans in terms of employing the formative assessment practices. 
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Comparative studies on pen-and-paper and computer-based test principally focus on statistical 
analysis of students’ performances. In educational assessment, comparing students’ performance (in 
terms of right or wrong results) does not imply a comparison between the solving processes followed 
by students. In this paper we present an example of task analysis that allows to highlight how 
students’ solving processes could change in switching from paper to computer format and how these 
changes could be affected by the use of one environment rather than another. The aim of our study 
lies in identifying possible consequences that specific changes in task formulation have, in terms of 
students’ solution processes.  

Keywords: Computer based assessment, comparative study, task analysis.  

Introduction 
Computer-based assessment is an actual issue. The increasing use of tests administered in the digital 
environment allows research in mathematics education to develop new fields of study. On the one 
hand research in computer based tests concerns the validity of these tests, on the other it focuses on 
their comparability with existing paper tests. In these two perspectives, large-scale surveys were 
conducted; they involve students from different educational levels, from primary to secondary 
instruction (Drasgow, 2015; Way, Davis, & Fitzpatrick, 2005).  

Computer-based tests mainly involve institutions in large scale assessment (OECD-PISA, OECD-
PIAAC, NAEP, …); one of the major interests of these institutions is to anchor every new test with 
ones from the previous years rather the diachronic study of students’ performances in the different 
surveys. For this reason, some studies focus on the test-mode effect comparing performances of 
students taking on computer and paper-based tests.  

Literature on these topics shows very mixed results; there is empirical evidence that paper-based and 
computer-based tests will not return the same results. On the one hand, some studies show 
equivalence in students’ performances; on the other hand, different researches highlight a significant 
discrepancy on scores. For example, Kim and Huynh (2007), as many other researchers (e.g. Kapoor 
& Welch, 2011; Lottridge et al., 2008), show that there is no statistical evidence suggesting that the 
administration modality changes the coherence and consistency of computer-based tests. On the 
contrary Clariana and Wallace (2002) point out to empirical evidence suggesting that students 
involved in paper-based and digital-based tests will not obtain the same results. At a more general 
level, in a meta-analysis of computer versus paper-based cognitive ability tests, Mead and Drasgow 
(1993) found that on average, paper-based test scores were very slightly higher than computer-based 
test scores.  

The main characteristic of all these studies, which involve comparative analysis of outcomes using 
quantitative and statistical methods, is that they show the comparability between tests administered 



on paper and pencil and in a computer environment. Such comparison is developed contrasting 
students’ performances and it is grounded in the implicit assumption that students who achieve the 
same performance implement the same solution processes. Threlfall et al. (2007) propose a more 
accurate analysis; they focus on students’ solution processes and explore the effect on students’ 
attitudes when they are involved in paper and pencil tests migrated into a digital environment. As 
shown by Threlfall et al., in some cases changing to a different environment seems to make little 
differences in the solution process. However, for some particular tasks the computer environment 
deeply affects how students approach the tasks. An important issue arises: task comparability cannot 
be measured only in terms of students’ outcomes but it is also established by the comparison between 
the solving strategies that they use.  

These diversified results suggest that task comparability needs a deeper analysis. In particular, the 
comparison between students implies the problem of how and when two tasks could be considered 
equivalent. Ripley (2009) proposes a possible solution to this question. He distinguishes two main 
approaches to the use of digital devices in order to enhance assessment: migratory and transformative 
approach. He defines the migratory approach to be the use of technological support as a tool of 
administration; it consists in a transition in digital format of tasks conceived for paper format. The 
transformative approach involves the transformation of original paper tests integrating new 
technological devices which support interactive tools (graphs, applets, …) that enhance new 
affordances. There are no specific studies comparing these two approaches; a possible reasonable 
hypothesis is that migratory could be a suitable approach to construct what in the literature is called 
an equivalent task. By definition, the migratory approach has the aim to maintain most of the task 
features unvaried in the translation process but this transition to a new environment cannot be 
completely unbiased. The migration from an environment to another one is not neutral because it 
depends on intrinsic properties of the environments. The adoption of migratory approaches is 
undervalued; the assumption that the translation process causes few changes on the task formulation 
and that these changes do not cause significant alterations on the solution processes is not to be 
neglected.  

The purpose of this study is to examine whether the migratory approach may have effects on students’ 
solving processes. In this perspective, the issue of test validity arises; in other words, does the use of 
a migratory approach maintain the validity of the original test? Below, we present part of a wider 
study that has the aim to analyse possible changes in students’ solution procedures related to the 
migration from a pen and paper to a digital environment. In Ripley’s words, we consider tasks that 
could be defined migratory or other authors could call equivalent tasks. In particular, we present one 
example of  analysis that compares a task in his migration from paper to computer, highlighting the 
impact that the changes could have on students’ solutions. 

Word problem in a migration process 
In many tests, especially in large scale assessment, knowledge and skills are assessed through units 
consisting of a stimulus (e.g. text, table, chart, figures, etc.) followed by a certain number of tasks 
associated with this common stimulus. These particular features connect these kinds of tasks with 
word problems. In a wide perspective, the term mathematical word problem refers to any 
mathematical task where significant background information is presented through a verbal text rather 



than in mathematical notation. As word problems often involve a narrative of some sort, they are 
occasionally also referred to as story problems (Verschaffel , Greer, & De Corte, 2000).  

Mathematical word problems have an important role in teaching; for many decades researchers in 
mathematics education have focused on the possible difficulties that students encounter when they 
solve them. Verschaffel et al. (2000) highlight the fact that many of the difficulties met by students 
lie in the preliminary phase of understanding the problem situation. Interpreting students’ attitudes in 
solving word problems is complex because it involves multiple interacting factors, both cognitive and 
metacognitive: stereotypes of standard problems, implicit and explicit rules that regulate 
mathematical activity, students’ beliefs, etc. (Verschaffel , Greer, & De Corte, 2000).  

Considering word problem texts (in particular, its formulation features) introduces the important issue 
of representation. Goldin and Kaput (1996) describe two distinct meanings of the term 
representation. On the one hand, the external representations refer to “physically embodied, 
observable configurations such as words, graphs, pictures, equations, or computer microworlds” 
(ibid., 400); on the other hand, the internal representations concern “possible mental configurations 
of individuals, such as learners or problem solvers” (ibid., 399). In the case of word problems, the 
solver interacts with the external representation presented and produces a personal internal 
representation linked with the one that she already has. Obviously, being internal, such configurations 
are not directly observable but they could be inferred through the solution process that the solver 
employs. For this reason it is possible to confirm that a change in the external representation could 
influence the construction of the internal representation and so the adoption of the solving process. 
Therefore, it is possible to suppose that the formulation of mathematical word problem influences 
both cognitive and metacognitive factors that are involved in word problem solution. Goldin (1982) 
highlights that small differences in some features of word problems can deeply affect the process of 
solution. In particular, Mayer (1982) and later De Corte & Verschaffel (1985) observe that the 
difficulties noticed within problem solving activities may come from an inadequate interpretation of 
the text.  

Thus, in the perspective of comparison, it is necessary to analyse the differences between tasks to 
determine the possible differences that occur in students’ solution processes. Identifying possible 
changes in a mathematical word problem requires to consider many text features. For this reason, the 
task is simplified by dividing the word problem into simpler elements. Gerofsky (1996) describes 
word problems in terms of three main components: the set-up component which establishes the 
characters and location of the story; the information component which encompasses the information 
needed to solve the problem; and finally, the question component which expresses the request and 
focuses on goal and aim. 

Our purpose is to analyse tasks through specific variables that might influence the behaviour of 
students in the solving process. Obviously, checking these differences is a general issue that could be 
presented whether or not there is a migration process in a new environment; possible changes could 
happen even just in the paper environment.  

Analyses of a migrated word problem  
We present the analysis of one of the items presented in the Draft 2015 PISA Mathematics framework 
(OECD, 2013). Figures 1 and 2 show the two versions of the famous task: "Walking”, administered 



in PISA 2003 survey. The text of the item has not changed; therefore, narrative or linguistic 
differences are not recognized in the set-up component. 

  
Figure 1: "Walking" paper version, administered in PISA 2003 survey 

 
Figure 2: "Walking" computer version, shown in PISA 2015 Framework Draft 

First of all, there is a difference in the editing of the text. In the paper version the task is presented in 
a compact way: set-up and information components are given in the same text and the question is 
presented under this text. In the digital format, the task is divided into two main sections. On the right 
there are the set-up and information components: they consist of an image and a description of the 
situation, both in words and algebraic formulas. On the left there is the question. The difference in 
editing seems to complicate the task; in the digital format, the text is presented in two separate 
columns. Therefore, the change of the question position could create variances in solution processes: 
the solver has to coordinate the interpretations of the different parts in which the text is divided. In 
other cases this change could affect the solver’s comprehension. For instance, Thevenot et al. (2007) 
show that putting the question before a word problem (rather than classically presenting it at the end) 
conditions problem solution in young students and in particular it facilitates students in engaging a 
correct solution process. In Fig 2, the question is presented in the bottom-left of the screen; in this 
case the solver probably reads the question before reading the set-up and information components. 



According to Thevenot et al, this fact suggests that in the digital format the interpretation of set-up 
and information components could be affected by the previous reading of the question.  

Concerning the component question, there is another notable difference. In the digital format (Fig. 
2), the first part of the question text shows the instructions for answering to the task ("Type ... below") 
and how to coordinate the information presented in the context ("Refer to … pacelenght"). This aspect 
enriches the question and the length of the text that students have to comprehend and interpret (in the 
paper version there is not any kind of instruction).  

The test item format is changed; a text box in the digital version replaces the free space presented in 
the paper. The test item format has a strong impact on students’ solution process. Kazemi (2001) 
investigates children’s mathematical performance on test items focussing on the typology of the 
questions. In his study, Kazemi uses multiple-choice questions and juxtaposes them to other open-
ended problems. He highlights that the typology of questions affects students’ thinking in designing 
and interpreting problems. This impact is emphasized when there is a change of environment and so 
a change of tools available to the solver. Concerning computer and paper and pencil based tests, 
Russell and Haney (1997) describe a comparative study in terms of students’ performances. They 
show that there are differences in performance related to the type of test item formats; substantial 
changes are not found in the case of tasks with multiple choice questions but there are relevant 
differences in the case of open response items. Moreover, assuming that the student is familiar with 
the writing tools available (for example the keyboard) it is reasonable to suppose that this change 
would not result in significant differences in the solution process. However, in using the free space 
in paper format, the solver has a different freedom of expression with respect to the case of the text 
box: in paper and pencil, the solver can produce sketches, calculate and write text both in natural and 
in symbolic language. These actions are not allowed in a simple text box in which one can only enter 
the characters on the keyboard or otherwise perform the actions allowed by the available writing tool, 
depending on the software used. 

Finally, in both tasks the same picture is presented; nevertheless, it is possible to notice that in the 
digital version the picture is presented on the screen with all the strengths and limitations of the 
software that supports it. For example, it might be difficult (or impossible) to analyse the image 
through common and simple manipulation action such as turning the paper, complete the picture by 
drawing lines, highlight points, etc.; these actions are possible only in paper and pencil environment. 

Conclusion 
In the previous example, the migration process could at first appear accurate but a deep analysis 
shows the opposite. At a first glance, the highlighted little differences might appear superfluous; 
however they are crucial to analyse and interpret students’ behaviour in the solving process. The 
literature described in the first part of the paper indicates that each difference observed in the example 
may affect the solver. For instance, the change in the task editing could simplify the text 
comprehension if it is presented in a linear way; on the contrary, the reading could be difficult if the 
verbal description is fragmented in several parts. Furthermore, the position of the question may 
encourage the solver to develop a correct solution process or it could complicate the set-up 
comprehension because the solver has to coordinate its interpretation with the information presented 
in the text components. These little differences hide important consequences for assessment, 
especially if the purpose of the migration process is to ensure continuity between the paper and the 



computer administration. The comparison studies presented in the literature assume that the tasks 
administered in the two environments are equivalent. However, our analysis shows that this starting 
assumption should be changed. The equivalence between performances (in terms of right or wrong 
results) does not imply an equivalence between the processes adopted by the students. Therefore, the 
analysis of the results collected in the two environments probably is not equivalent in terms of 
educational assessment. The answers produced by students in the digital environment seem hardly 
comparable with what they do on paper. Thus, there is a substantial difference in terms of the 
assessment; it cannot be ignored especially by national or international large scale assessment.  

In addition, the change in type of test item format is crucial because it strictly depends on the intrinsic 
feature of the environment and on the familiarity that the solver has with the tool available. We recall 
also that there are cases where it is impossible to translate a task from paper to digital format through 
the migratory approach; for example, the tasks that require the use of physical tools and measuring 
instruments as ruler, compass, or other. A special case is the one of items that have the goal of 
assessing students’ drawing abilities. In this case, the item may request to draw a figure starting from 
a given one, or from given measurement, or from written verbal instructions. In these cases, it is 
possible to introduce an ad hoc software or applet that simulates the use of drawing tools. Moreover, 
the issue of students’ familiarity with these software or applets arises (Bennett, Persky, Weiss, & 
Jenkins, 2010). In the case of lack of familiarity with the use of the instrument, the digital device 
could be largely useless; students that use digital tools may be disadvantaged comparing them to 
students that use paper and pencil and physical tools. This example highlights a very serious and 
complex issue. Further research is needed to define criteria of control that allow to check and to 
compare all the little differences that occur in the migration process.  

In our wider study we define a specific instrument to monitor such differences. In particular, we 
identify specific variables that might influence the students’ behaviour in solving a certain task. We 
organize such variables into a table that we call comparison tool. Such tool is constituted by a system 
of indices related to the structure of word problems described before. In particular, we identify five 
different indices that represent possible changes that may occur in the migration process:  

 Story refers to the narrative dimension (Zan, 2011) of the task (for example: characters, 
background, narration, etc); 

 Linguistic form that indicates also the number and the length of sentences (for example: 
syntactic, organization of the sentence, lexical, etc); 

 Type of item formats concerns the types of possible responses (for example: the question 
has constructed-response, selected-response, etc); 

 Format and editing refers to layout features and position of the different components (for 
example: paragraphs, font, underlines, spaces, etc); 

 Data representation is related to semiotic register used for representing information (Duval, 
1993) (for example: verbal register, iconic register, math register, etc). 

Each index is related with studies concerning word problem formulation and its impact on students’ 
solution process. For example, many authors show that the narrative dimension attached to 
mathematical tasks is relevant to students in terms of the their availability to solve the task (Sowder, 
1989). Other studies draw attention to the importance of language in student performance on 



assessments (Abedi, Lord, & Plummer, 1995). Moreover, many authors pay attention to the role of 
representation in the teaching and learning process (Duval, 1993).  

Considering the example above, the comparison tool highlights differences related to three of the five 
indices. In particular, tasks are different in terms of linguistic form, type of item format and format 
and editing. In fact, in the digital version there are more sentences than in the paper task. Furthermore, 
even if both questions are open-ended, in the computer task there is the restriction caused by the text 
box where type. Finally, there is a strong difference in editing: in the two task versions, the 
components are presented in different parts of the page/screen. The comparison tool highlights a 
certain number of differences; such differences could confirm our hypothesis in terms of possible 
differences in students’ behaviour.  
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This research evaluated an interactive story- and game-based measure of the level of mathematical 
development in preschool children. Nine measurable learning trajectories identified by previous 
researchers—quantification, counting, set comparison, numerals, number line, positional terms, 
shapes, addition/subtraction, and patterning—were assessed through a series of games played by 
assessor and child to re-enact the story of teddy bears on a picnic. This format was selected 
because it engages young children, connects to constructivist curriculum and materials, and 
extends previous research by the author. Confirmatory factor analysis indicated that the nine 
developmental trajectories were strong and significant contributors to the latent construct of level 
of mathematical development. Results from test-retest and criterion comparisons indicated that the 
assessment tool was a valid and reliable measure of mathematical development for this sample. 

Keywords: Curriculum based assessment, number concepts, preschool tests, child development, 
developmentally appropriate practices. 

Purpose 
The purpose of this research was to create and validate the Teddy Bear Preschool Mathematics 
Assessment (TBPMA), a play-based, constructivist measure, as a novel alternative to traditional 
quantitative assessments. The story- and game-based framework, in which the assessor participates 
with the child, was selected because it engages young children, connects to constructivist 
curriculum and materials frequently used in preschool classrooms (Moomaw & Hieronymus, 2011), 
and provides both formative and summative assessments. The hypothesis was that nine measurable 
variables based on seminal research—(1) quantification level, (2) counting, (3) set comparison, (4) 
numeral recognition and understanding, (5) movement along a number line, (6) emergent 
addition/subtraction, (7) understanding positional terms, (8) shape recognition, and (9) patterning—
would make a significant contribution to the latent construct of mathematical development. 

Theoretical framework 
Assessment of preschool children has grown rapidly during the 21st century (Wortham, 2012). 
Assessment is used to monitor children’s development, make educational decisions, and evaluate 
programs. However, valid and reliable assessment of young children is often difficult. If children are 
not interested in the assessment, they quickly lose attention and refuse to participate. Also, many 
standardized assessments do not provide information that directly relates to the curriculum. This is 
frustrating for teachers, who need formative assessments in order to guide their planning and 
interactions with children. Therefore, assessments that are aligned to curriculum and can inform 
planning and instructional decisions (Stecker, Fuchs, & Fuchs, 2005) are of particular interest. 

Assessment of early math development is important; research has shown that children develop 
substantial math knowledge prior to first grade (Clements & Sarama, 2007). Early number sense 



development is a strong predictor of later mathematics achievement (Duncan et al., 2007); however, 
a substantial achievement gap exists between low- and middle-income children that persists as they 
advance in school (Jordan, Kaplan, Olah, & Lucuniak, 2006).  

The theoretical framework of this research is constructivist; children are active creators of 
knowledge rather than passive recipients (Piaget, 1952). An instructional corollary is that students 
require a context that allows them to formulate or discover important relationships (Geary, 2003). 
For young children, play is an important mode for learning that is considered essential for cognitive 
development (Frost, Wortham, & Reifel, 2008). 

Learning trajectories in early mathematical development 

Formation of content knowledge follows a developmental progression that reflects progressively 
higher levels of thinking (Piaget, 1952). Understanding of developmental progressions in the 
mathematical thinking of young children is essential for effective teaching because it guides 
teachers in the selection of appropriate curriculum and in effective modeling and dialogue with 
children. These documented developmental progressions are now referred to as learning trajectories, 
which serve as a bridge between theory and practice (Sarama & Clements, 2007). 

The learning trajectory for quantification (Kamii, 1982; Piaget, 1952) shows a progression in young 
children from visual perception to more logical forms of reasoning when determining quantity and 
comparing sets of objects. The earliest level is referred to as global, in which children make a visual 
or tactile approximation of quantity, perhaps by taking a small or large handful of objects to 
represent a given amount. At the one-to-one correspondence level, children realize they can 
accurately represent a given quantity by taking one object for each item in the original group and 
aligning them. This important development indicates that children are now able to focus on the units 
in a set rather than just the global parameters. Eventually, children realize that they can count to 
determine the number of objects in a group or to create an equivalent set. Rather than simply 
counting because an adult tells them to, children at this level select a counting strategy because they 
understand that the last number they count represents the total. 

Counting is an important mathematical tool for children. In their seminal research, Gelman and 
Gallistel (1978) developed five principles that children must understand in order to successfully use 
counting to quantify. Of these principles, the first three are designated as “how to count” and are 
likely to be developed by children in the 3- to 5-year age range. The stable order principle indicates 
that children understand that they must say the counting words in the correct order. Application of 
the one-to-one principle shows that children know they should count each object one and only one 
time. In practice, many (if not most) young children tend to recount objects or count some more than 
once, particularly as the number of objects increases. The cardinality principle means that children 
understand that when they count objects, the last number word they use refers to the total amount, 
not just one item. These principles do not necessarily develop in a prescribed order, and accuracy is 
variable throughout the early years. It is the ability to apply the principles with growing accuracy 
when counting increasingly large sets that constitutes a learning trajectory. 

Both researchers and educators have documented that children can name numerals before they can 
use them to represent a specific quantity. In particular, Kato, Kamii, Ozaki, and Nagahiro (2002) 



have shown a disconnect between children’s ability to name numerals and their ability to use them 
to represent quantities. 

Research by Ramani and Siegler (2008) suggests that linear number board games enhance young 
children’s understanding of number. However, research by Moomaw (2015) indicates that there is a 
developmental trajectory in which children are first able to represent quantities on a grid, or bingo-
type board, followed by moving a specific amount along a straight path, or incipient number line. 
Representing quantities by moving along a longer, curved path is more advanced. 

Spatial reasoning is an important component of geometry. Bowerman (1996) has demonstrated that 
the order in which children learn spatial terms is consistent across languages, thus forming a 
learning trajectory. Terms that relate to an object that is in direct contact with another (“in,” “on,” 
and “under”) are the first to develop, along with the movement terms “up” and “down.” Words of 
proximity, such as “beside” and “next to,” develop next. These are followed by terms related to 
position but not necessarily close proximity (“in front of,” “in back of,” or “behind”). Directional 
words, such as “right” and “left,” are often not learned until first or second grade. 

Seminal work by van Hiele (1999) suggests a progression, or learning trajectory, of four levels of 
geometric understanding, of which the first two relate directly to young children. At the first level, 
visual, children judge a figure according to its appearance. They often have a prototype in mind, so 
they may identify only equilateral triangles as “triangles.” At the second level, descriptive or 
analytic, children begin to use language to describe properties of shapes. For example, they may 
indicate that a figure is a triangle because it has three sides.  

Research has established a trajectory for early addition (Baroody & Tiilikainen, 2003). Children 
start by counting individual sets of objects. Next, they realize that they can count the objects in both 
sets all together. Eventually, children begin to count forward from the cardinal value of one of the 
sets; they also begin to remember particular combinations, such as doubles. 

Patterning is considered a foundational component of early mathematical thinking by the National 
Council of Teachers of Mathematics (USA). However, there is insufficient research in this area to 
establish a developmental learning trajectory. 

Development of the Teddy Bear Preschool Mathematics Assessment 

Conception of the TBPMA evolved from the author’s 25 years of experience teaching preschool and 
kindergarten children. During this time, considerable contributions to the understanding of how 
children develop mathematical reasoning were made by theorists and researchers. That information 
was shared with interested teachers by Professor Anne Dorsey, then Director of the Arlitt Child 
Development Center at the University of Cincinnati. With her input, teachers began to redesign their 
preschool math curriculum to focus, in part, on teacher-created math games. Children’s responses to 
these games were carefully observed, and changes to the curriculum were made accordingly. 
Eventually, this game- and play-based curriculum, which extended to all areas of the classroom, was 
published in a series of books for teachers (Moomaw & Hieronymus, 2011).  

For her doctoral research, the author developed and validated an assessment of number sense in 
preschool children that was essentially a quantification game played between assessor and child. It 



showed that this interactive form of assessment could be reliably quantified. The TBPMA extends 
that research to more completely measure number and operations as well as geometry. 

Methods 
The TBPMA consists of a series of games that allow children to re-enact the story of teddy bears on 
a picnic. The game board depicts a park, including picnic blanket, wading pool, path, small climber, 
and merry-go-round (Figure 1). Assessor and child take turns drawing cards arranged in a prescribed 
order. Teddy bear counters are used throughout the game. Although the assessor participates in the 
game, assessor role and comments are clearly scripted to ensure procedural reliability. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Game Board for the Teddy Bear Preschool Math Assessment 

The scales quantification, counting, and set comparison are measured as assessor and child draw 
cards with 1–8 dots to determine how many bears to place on their picnic blankets. One point is 
awarded for a global strategy, 2 points for one-to-one correspondence, 3 points for counting, and 4 
points for counting with accuracy. Following each turn, the assessor asks how many teddy bears are 
on the child’s blanket and scores 1 point for application of each counting principle (stable order, 
one-to-one correspondence, and cardinality). Next, the assessor asks who has more bears, which 
elicits set comparison and is scored similarly to quantification. Set sizes increase over subsequent 
turns. 

Recognition and understanding of numerals is assessed when the bears go swimming. Children are 
scored on whether they recognize numerals 1–8 and can put the corresponding number of bears in 
the pool. Movement along a number line is measured when children draw cards with dots and 
attempt to move a corresponding number of spaces along a path. Understanding of spatial terms is 
assessed as children draw cards that tell them where to place their teddy bear in relation to the 
climber, as in “Your bear wants to play under the climber.” For assessment of shapes, the bears play 
on a merry-go-round, which has prototypical and non-prototypical shapes for seats. Scoring is based 
on shape recognition and the explanation the child gives for determining shape. 

 



The addition/subtraction trajectory is assessed as children draw two cards with dots to determine 
how many bears to move to the picnic table. They then draw a card that indicates how many bears 
leave and asks how many are left. Finally, the assessor arranges the bears in an AB and an ABC 
color pattern for a dance and asks the child to complete the pattern. 

Data sources 
A total of 146 children, ages 3 to 5 years, enrolled in childcare centers in a Midwestern USA city, 
were assessed. Of the sample, 60 (41.1%) were poverty level (determined by voucher participation); 
37 (25.3%) were African American or mixed race; 73 (50%) were female; 65 (44.5%) were 3 years 
old; 63 (43.2%) were age 4; and 18 (12.3%) were age 5. For test-retest comparison, 50 (34.2%) 
received a second assessment; 38 (26.0%) were administered a criterion measure.  Assessors were 
required to demonstrate reliability by independently scoring assessments conducted by the lead 
researcher and achieving an inter-scorer reliability of 90% over three successive tests. 

Results 
The maximum possible total score on the TBPMA is 118. Among the 146 initial tests, scores ranged 
from 5 to 112 (M=62.44, SD=28.01). Assumption checks indicated the total scores were normally 
distributed. The correlation between child’s age in months and total score was r=.572 (p=.000). 

There were two specific questions for the analysis: 
1. What is the contribution of each sub-construct to the general construct? 
2. What is the technical adequacy of the TBPMA? 

Regarding question 1, confirmatory factor analysis (AMOS 22) was used to evaluate the 
hypothesized model for the TBPMA. Results indicated good model fit: χ2(23,N=146)=25.297, 
p=.335; NFI=.974; CFI=.998; and RMSEA=.026. All standardized path coefficients were highly 
significant (p<.001), with robust standardized regression weights ranging from .57 to .90 (Figure 2), 
indicating all scales were strong contributors to the latent variable mathematical development. 

For question 2, technical adequacy was assessed through Cronbach’s alpha, test-retest reliability, 
and criterion validity. Cronbach’s alpha was .922, indicating high internal consistency.  

Test-retest reliability was assessed with paired t-tests on mean differences for the nine scales and 
total score (Table 1). Differences significant at the .05 level occurred with the addition/subtraction 
scale, in which the mean retest score was one point higher on the 16 point scale, and with the total 
TBPMA score, about 2.5 points higher on the 118 point scale. Given that the average time between 
the initial test and the retest was 24 days, these small increases do not appear to affect the reliability 
of the TBPMA. Reliability is further confirmed by the highly significant correlations between the 
initial and retest scores. For all scales and the total score, all correlations were strong, above .50. 

 



 
Figure 2: Standardized Path Coefficients for the Confirmatory Factor Analysis 

for the Teddy Bear Preschool Math Assessment 

 

 

Scale 

Max 
score 
poss-
ible 

Initial Test Retest 
Difference in 

means 

T test on 
difference in 

means 
Pearson 

correlations 
Mean SD Mean SD Mean SD t Sig. r Sig. 

Quantification 20 14.58 4.77 15.04 4.49 0.46 2.42 1.34 .186 .864 .000 
Counting/Cardinality 20 12.52 4.84 13.32 4.47 0.80 3.30 1.72 .092 .752 .000 
Comparison of Sets 16 7.32 4.30 7.48 4.02 0.16 2.97 0.38 .705 .747 .000 

Numerals 9 5.92 3.43 5.90 3.39 -0.02 1.17 -0.12 .904 .941 .000 
Number Line 12 7.22 4.86 7.38 5.06 0.16 2.61 0.43 .666 .863 .000 

Spatial 6 5.02 0.96 5.18 1.17 0.16 1.02 1.11 .272 .560 .000 
Shapes 12 5.96 2.76 5.52 2.87 -0.44 2.44 -1.27 .209 .623 .000 

Addition/Subtraction 16 4.72 4.29 5.76 4.78 1.04 3.55 2.07 .043 .698 .000 
Patterning 7 2.58 2.98 2.72 2.98 0.14 2.08 0.48 .636 .756 .000 

Total 118 65.84 27.30 68.30 27.67 2.46 6.80 2.56 .014 .969 .000 

Note: This table uses data from the 50 subjects who were assessed twice. 

Table 1: Test/Retest Reliability: Means, Test of Differences between Means, 
and Correlations between Means of Initial Test and Retest 



TEMA-3 (Ginsburg & Baroody, 2003), a recognized measure of early mathematical ability, was 
used to assess criterion validity. The correlation between the total TBPMA score and the TEMA-3 
raw scores was high (r=.867, p=.000), demonstrating criterion validity. 

These results indicate that the TBPMA was a valid and reliable measure of mathematical 
development for this sample. 

Significance 
Preschool educators and funding sources recognize the need for accountability and for monitoring 
children’s development. Conversely, they understand that testing is often stressful for children, 
unreliable, and unrelated to the curriculum. The TBPMA offers a validated approach to quantifiable 
assessment that is compatible with young children’s social and emotional development; all children 
assessed to date have enjoyed the experience. 

The TBPMA is a novel alternative to traditional quantitative assessments. It can provide both 
formative data for teachers and summative data for program evaluation. Because it assesses multiple 
domains of mathematics, it can indicate areas of strength within a curriculum and areas that may 
require more attention. Based on acknowledged developmental trajectories, it informs teachers of 
the child’s current level of thinking so that they can target their interactions to move the child 
forward. This is the essence of constructivist teaching.  

It is natural for educators to focus on material from class or program assessments (i.e., teach to the 
test). The TBPMA reverses this process. It evaluates the types of experiences and interactions that 
are highly recommended for preschool classrooms and the areas of mathematics designated as focal 
points (NCTM, 2006).  
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This research aims to investigate the algebraic under performance of second year post-primary students in 
Ireland (approximate age 14 years). To this end a diagnostic test for algebra has been developed to profile 
and identify students who are struggling with algebra. This paper examines the development of the test, which 
involved the identification of key mathematical content areas that are critical for success in algebra. Both 
prerequisite, and algebra content areas are key to a students’ success in algebra and how each of these areas 
contribute to a students’ progress with algebra is discussed in this theoretical paper. Test items have been 
selected and adapted from the literature which are aligned with both the key content areas and the Irish 
mathematics syllabus at junior cycle, the initial three years of post-primary education in Ireland.   

Keywords: Algebra, diagnostic test, secondary education. 

Introduction 
This paper reports on the development of a diagnostic test for algebra, designed specifically for 
second year post-primary students in Ireland. It is noted in the literature that few adequate assessments 
are available to provide formative information on a students’ progress with algebra, but they are 
essential to allow timely and informed instructional decisions for teachers (Ketterlin-Geller, Gifford, 
& Perry, 2015). A key outcome of this research will be a validated diagnostic test specifically 
designed to identify students’ conceptual errors when working with algebra and aligned with the Irish 
post-primary mathematics syllabus. The test can be used by teachers in a normal class period (35-40 
minutes as relevant to the Irish context) to help inform their instruction of algebra. This paper focuses 
on identifying key content areas which are required for success in algebra and accordingly developing 
a bank of questions to support the development of a diagnostic test. 

Background and rationale 
The mathematical deficiencies of students entering third level education in Ireland and internationally 
is widely reported and commonly referred to as the “Maths Problem” (Treacy & Faulkner, 2015). 
Over a decade ago it had become apparent that there were issues with the mathematics curriculum at 
post-primary level in Ireland resulting in radical reform of the syllabi, introduced as “Project Maths” 
(Treacy & Faulkner, 2015). The vast majority of students study mathematics throughout their time in 
post-primary education and the syllabus is delivered in five interwoven strands; 1. Probability and 
Statistics, 2. Trigonometry and Geometry, 3. Number, 4. Algebra and 5. Functions. Mathematics is 
offered at higher, ordinary and foundation levels throughout. Despite the changes made to the Irish 
syllabus and teaching methods, it is clear that problems with algebra persist. This is evidenced in the 
latest chief examiners report which states students need to “gain comfort and accuracy in the basic 
skills of computation, algebraic manipulation and calculus” (Department of Education  and Skills, 
2015 p. 29). Algebra serves as a gateway to higher mathematics and deficiencies in basic algebra 
result in overall mathematical deficiencies in students (Lawson, 1997). However, issues with the 



teaching and learning of algebra remain internationally, and research into progress measuring 
instruments to inform the area continue (Ketterlin-Geller et al., 2015). Given the poor performance 
of Irish students in algebra a diagnostic test has been developed to give insight into how second year 
students perform in this area. It is noted that many tests exist to measure performance in algebra and 
these provide useful information about the content areas in which students need further assistance. 
However, few of these tests provide information about why students are struggling (Russell, 
O’Dwyer, & Miranda, 2009). This test may help inform part of why students are struggling by looking 
at the conceptual errors students make in other content areas. These content areas, which include 
fractions, equality and patterns for example, have been identified in the literature as essential for the 
understanding of algebra (Bush & Karp, 2013; Warren & Cooper, 2008). 

Theoretical frame 
The theoretical framework guiding this research is that the conceptual errors students make in 
working with algebra perpetuate the difficulties they encounter, subsequently interfering with their 
understanding of various algebraic concepts (Russell et al., 2009). The test is designed to identify the 
conceptual errors students make when working with a particular concept. The test results could inform 
the teacher who can then guide instruction aimed at alleviating these conceptual errors (ibid.:2009). 
It is possible that many teachers do not realise the essential connections that algebra has to numerous 
other mathematical content areas, and that how conceptual errors in one or more of these areas can 
hinder a students’ progress, which will be discussed in more detail below (Bush & Karp, 2013). This 
test, in conjunction with an appropriate framework to interpret students’ answers, could help inform 
instruction. The teaching and learning of algebra in Ireland aligns closely with Kieran’s (2004) model, 
which outlines three activities that learners of school algebra must participate in: 1. Generational 
activities, 2. Transformational activities and 3. Global/Meta Level activities. It is noted that two 
aspects of algebra underlie all others, namely generality and abstraction (Department of Education 
and Skills, 2016 p. 26). These aspects have led to the definition of three types of algebraic activities 
that mathematics students in Ireland must engage in - representational, transformational and activities 
involving generalising and justifying. The test items have been designed to support the 
implementation of the new syllabus and in line with the approach to algebra being used in Ireland. 

One potential criticism of the approach used in developing this test instrument is that it is a test of 
mathematics globally, given the broad range of content areas included. However, difficulties with 
algebra lie with both algebra itself and also with other areas of mathematics that students will have 
encountered, which are seen as prerequisites for the learning and understanding of algebra (Bush & 
Karp, 2013). Problems and conceptual errors in any one of the content areas can lead to problems in 
another area thus hindering a student’s progress in algebra as a whole. Although these prerequisite 
areas support other areas of mathematics learning such as number and numerical operations, they are 
identified in the literature as core areas for the learning and understanding of algebra (Bush & Karp, 
2013). The following section outlines the content areas identified throughout the literature as pertinent 
to success in algebra, on which test items have been based. 

Prerequisite and algebra content areas 
As stated the focus of this paper is the key content areas required for success in algebra. These content 
areas are outlined in Table 1 (Bush & Karp, 2013; Warren & Cooper, 2008).   



Content Areas Junior Cycle Syllabus 

Ratios and 

proportional 

relationships 

3.1 Number Systems: - consolidate their understanding of the relationship 
between ratio and proportion.  

4.4 Examining algebraic relationships: – proportional relationships 

Fractions 3.1 Number Systems: - Investigate models to think about operation on fractions. 
- Use the equivalence of fractions, decimals and percentages to compare 
proportions. 

Decimals and 

Percentages 

3.1 Number Systems: - Calculate percentages - Use the equivalence of fractions, 
decimals and percentages to compare proportions. 

Integers 3.1 Number Systems: - Investigate models, such as the number line, to illustrate 
the operations on integers 

Exponents 3.2 Indices 

Order of 

operations 

3.1 Number Systems: - Appreciate the order of operations, including use of 
brackets 

Properties of 

numbers 

3.1 Number Systems: - Investigate the properties of arithmetic and the 
relationships between them. 

Compare and 

order numbers 

3.1 Number Systems: - Use the number line to order natural numbers, integers 
and rational numbers. - Use the equivalence of fractions, decimals and 
percentages to compare proportions. 

Equality 3.1 Number Systems: - Consolidate the idea that equality is a relationship in 
which two mathematical expressions hold the same value. 

Variables 4.6 Expressions: - Using letters to represent quantities that are variable. 

Algebraic 

expressions 

4.6 Expressions: - Arithmetic operations on expressions. - Transformational 
activities 

Algebraic 

equations 

4.7 Equations and inequalities: - Selecting and using suitable strategies for finding 
solutions to equations and inequalities.  

Functions 4.2 Representing situations with table diagrams and graphs: - use tables, 
diagrams and graphs as a tool for analysing relations – present and interpret 
solutions, explaining and justifying methods, inferences and reasoning. 

Patterns  4.1 Generating arithmetic expressions from repeating patterns: - use tables and 
diagrams to represent a repeating-pattern situation – generalise and explain 
patterns and relationships in words and numbers – write arithmetic expressions 
for particular terms in a sequence.  

Table 1: Content Areas for Diagnostic Test and alignment with the Junior Cycle syllabus 

Related content domains from the Irish syllabus were used as a framework to align the prerequisite 
and algebra content areas identified in the literature. The Number Strand (3) of the syllabus builds on 
primary school learning and facilitates the transition from arithmetic to Algebra (Strand 4). The 
Common Introductory Course (CIC) is the minimum course to be covered by all students at the 
beginning of the junior cycle, elements from the CIC are in italics within Table 1.  The numbering 



within Table 1 refers to the strand numbers, for instance 3.2 refers to section 2 of strand 3. The 
diagnostic test has been developed for use with students in second year and therefore it was important 
to align the test items specifically with the content of the CIC. Once the CIC is complete teachers use 
their own discretion to introduce their topics (Department of Education and Skills, 2016). There is no 
prescribed structure for following the syllabus however, it is desirable that students will have 
completed their basic algebra skills including equation solving by the end of first year (Project Maths, 
n.d.-a). 

Prerequisite content areas 

Difficulties with algebra lie with both algebra itself and also with other areas of mathematics that 
students will have encountered, which are seen as prerequisites for the learning and understanding of 
algebra. Proportional reasoning is a key aspect of numeracy and it leads to relational thinking which 
is important in the development of algebraic skills, it is highly conceptual and a skill that develops 
gradually. Equally, fractions are an integral part of algebra and can be found as coefficients, constants 
and solutions to equations, the slope of a line, and, in general, proportions are written in fraction form 
in algebra  (Bush & Karp, 2013). Knowledge of decimals, their value and placement on a number 
line,  computation with decimals, and the ability to convert between decimals, fractions and 
percentages is also important for success in algebra (Bush & Karp, 2013). Studies have been 
conducted to identify what element of decimal and fraction understanding best indicate a students’ 
performance in algebra. It has been found that the relational understanding of the bipartite format of 
a fraction and unidimensional magnitude, measured with the placement of decimals on a number line 
are the best predictors (DeWolf, Bassok, & Holyoak, 2015).  

In learning about fractions, decimals and percentages, with the use of number lines and graphs, 
students at junior cycle are expected be able to compare and order numbers. This provides students 
with the skills and knowledge to apply the rules correctly when working with variables. It also enables 
a student to assess if a solution to an equation or inequality is reasonable. However, if students do not 
understand a fraction, decimal or percent, they are unable to extend their understanding to which is 
greater than or less than or equivalent (Bush & Karp, 2013). 

Furthermore, a solid understanding and procedural fluency with integers is required for success in 
algebra. Misconceptions about negative integers can impede progression, where, for example, a 
student may fail to accept a negative number as a solution to an equation. Research has suggested that 
the number line and graphs of functions can be used to help correct students’ misunderstandings and 
conceptual errors with integers (Bush & Karp, 2013). Equally, an understanding of exponents is 
required for both the transformational skills, in dealing with expressions, and the generational and 
global/meta level skills, where knowledge of the shape of functions are required (Bush & Karp, 2013). 
Moreover, to succeed in the transformational rules of algebra it is essential to understand the order of 
operations. Some students believe that order of operations do not matter, that the same answer will 
result regardless. Others believe that the context of the problem determines the order of operations 
and in the absence of context operations should be performed from left to right. Research suggests 
that students should learn the hierarchy of operations more naturally by attending to more complicated 
operations first (Bush & Karp, 2013).  



Finding equivalent expressions is frequently required in algebra, and this manipulation requires an 
underlying sense of the properties of numbers. Allowing students to investigate the properties of 
numbers will assist in learning, retaining knowledge and developing relational understanding, which 
in turn will create a strong foundation for algebra (Bush & Karp, 2013). Numerous studies have 
focused on development of the concept of the equal sign in the early stages of learning algebra (Bush 
& Karp, 2013). Students often misinterpret the meaning of the sign viewing it as an operational sign. 
Those who interpret the equal sign correctly and see it as a relational symbol have more flexibility 
when working with equations.  

Algebra content areas 

Kieran (1992) asserts that many misconceptions and common errors in algebra are generally rooted 
in the meaning of symbol or the letters used in algebra. Much research has been conducted into 
students’ difficulties in working with algebraic variables and the misconceptions student’s hold. 
These misconceptions include viewing variables as labels, the belief that the value of a variable has 
something to do with its position in the alphabet, and the belief that a variable is just a missing value 
rather than something which has varying values.  These difficulties are then compounded when a 
student attempts to create and manipulate an algebraic expression (Bush & Karp, 2013). 

The underlying misconceptions and difficulties students hold in relation to variables, expressions and 
indeed all the prerequisite content areas can then lead to difficulties in solving algebraic equations. 
The ability to solve equations is reliant on both procedural and conceptual understanding. Conceptual 
understanding is strongly related to student’s equation solving performance, as without it students 
learn by rote a series of transformational rules for dealing with equations. A solid understanding of 
how to use variables to write algebraic expressions, form subsequent equations and solve when 
necessary is the essence of success in algebra at junior cycle level (Bush & Karp, 2013). 

A function is defined as a correspondence between two sets (Kieran, 1992), and there are two general 
approaches to teaching and learning functional relationships mentioned in the literature; a 
correspondence approach and a covariation approach (Ayalon, Watson, & Lerman, 2015). The 
correspondence approach deals with an input-output model, whereby an output value y is calculated 
for a given input value x, often listed in a table of values or as couples. This approach allows for 
determining the rule which generates the y-value from the x-value and is in line with the approach to 
teaching functions in Ireland. The concept of a function is not simple when you consider that at least 
three representations are used to convey the notion of a function; a table, a graph and an equation. 
True procedural fluency and competency in working with functions is obtained when one can move 
between the different representations of a function with ease and this aligns with the multi-
representations approach advocated in the Irish syllabus (Bush & Karp, 2013; Project Maths, n.d.-a) 

Finally, algebra can be seen as the language used to describe patterns and relationships for the ultimate 
goal of problem solving and as a systematic way of expressing generality (Project Maths, n.d.-a). 
Students at junior cycle learn to identify the relationship which lies between the pattern and its 
position is a functional relationship meaning an expression or formula must be created using 
variables. In doing this a context for the use of variables is set for Irish students, assisting their 
understanding of a variable as a varying quantity rather than a specific unknown, laying down the 



foundation for understanding expressions and solving equations in what is known overall as a 
functions based approach to algebra (Project Maths, n.d.-a). 

The diagnostic test 
Test items were taken from previous relevant studies pertinent to measuring ability in the core content 
areas required for algebra outlined in Table 1. The diagnostic test currently contains twenty one 
questions summarized in Table 2 where the source of each test question is detailed. 

Content Areas Test Question Number and Source 

Ratio and proportion 1. Number Line/Decimal Magnitude from DeWolf et al. (2015) 
7. Proportional reasoning from Hilton, Hilton, Dole, and Goos (2013) 

Fractions 2. 4. 5. Fraction Knowledge from DeWolf et al. (2015) 
3. Fraction Knowledge  multiplication (Bush & Karp, 2013) 

Decimals and 
Percentages 

1. Number Line/Decimal Magnitude from DeWolf et al. (2015) 
11. Comparing and Ordering Numbers, Project Maths (n.d.-b) 

Integers 15. Integers and equations adapted from  Vlassis (2008) 
Exponents 6. and 8. adapted from discussion in Mok (2010)  
Order of operations 9. Order of operations adapted from Linchevski and Livneh (1999)  
Properties of numbers 10. Distributive  property, adapted from discussion in Mok (2010)  
Comparing and 
ordering numbers 

11. Comparing and Ordering Numbers, Project Maths (n.d.-b) 

Equality 12. 13. adapted from Stephens, Knuth, Blanton, Isler, Gardiner, and 
Marum (2013)  

Variables 14. Variable as label adapted from Küchemann (1981)  
Algebraic expressions 16. adapted from Hodgen, Kuchemann, Brown, and Coe (2009) 

17. Simplifying expressions based on errors discussed in Kieran (1992)  
Algebraic equations 20. adapted from Clement, Lochhead, and Monk (1981)  

18. 19. Next step of solution  adapted from Chung and Delacruz (2014) 
21.3 Forming equations adapted from Ayalon et al. (2015)  

Patterns 21 Interpreting from a geometric pattern from Ayalon et al. (2015) 

Table 2: Summary of content and source of items on the diagnostic test 

An example of a test item, which assesses relational fraction knowledge, together with understanding 
of a variable and algebraic expression is taken and adapted from (DeWolf et al., 2015) as follows; 

n is a whole number greater than 0. If 𝑛 continues to get bigger in value, please circle one of the 
following options A, B or C in the answer box for what happens to 1

𝑛
.  

Hint: Think about the following sequence of numbers 1
10
,
1

20
,
1

30
,… 

Figure 1: Question 5 on the diagnostic test based on relational fraction knowledge 



Students have space for workings and are then asked to circle the correct answer from the following 
options; A. 1

𝑛
 gets very close to 1, B. 1

𝑛
 gets very close to 0, or C.  1

𝑛
 increases in value too. Adaptations 

from the original question include changing the word “integer” to “a whole number” and offering the 
“Hint”, to ensure the question is more in line with the age profile of those being tested as informed 
by the pilot of this test and feedback from teachers. The above question was included as relational 
understanding of a fraction was an element identified in the DeWolf et al. (2015) study to predict 
performance in algebra. All test items have been developed with such a theoretical underpinning that 
is using multiple choice responses based on possible conceptual errors. In addition language was 
adjusted where necessary to make the test items more accessible for fourteen year old students. 

Conclusion 
There are fresh concerns in relation to student attainment in mathematics in Ireland, specifically 
algebra and for progression to third level education (Treacy & Faulkner, 2015). There is a clear need 
to intervene early in the effort to address the issues students are facing with learning and 
understanding algebra. The overall aim in using this test is to identify conceptual errors that students 
make in both algebra and the prerequisite content areas required for success in algebra, therefore 
assisting to identify possible root causes of the students’ errors, and as a result, through appropriate 
intervention improve students’ knowledge of algebra and therefore general mathematical ability. 
Ultimately, this will be a tool for teachers to use in the classroom allowing them to make informed 
decisions and to plan appropriate interventions (Russell et al., 2009).  
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The present study explores a task containing graphical artefacts from the Swedish national test 
(Nationella provet – NP) for a sub-sample of grade 9 students’ solutions.  The sub-sample comprising 
of 115 students’ solutions to the task is closely analysed, using an analytical construct founded on 
“identification” as well as the “critical-analytical” approach to problem solving. Based on this 
construct it is observed that a sizable number of students’ solutions follow a visual strategy with 
strong reliance on everyday forms of expression. Given the nature and purpose of NP we posit that 
students use the methods and tools that reflect general school practice. The analysis used in this study 
is perceived as problematising the assessment of competency from high stake tests, and the 
educational setting in general.   

Keywords: Assessment, examinations, graphical artefacts, misleading diagram, competencies. 

Introduction 
National tests generally play a vital role in the evaluation of educational systems, informing 
educational reforms and policy implementations as well as serving as a local comparative instrument 
(Eurydice, 2009; cf Skolverket, 2016). This implies that results from national tests can be used to 
explore the effects of curriculum documents on teaching and learning. Some researchers, (e.g. Boesen 
2006) have suggested that centrally administered tests can influence instructional practices, for 
instance by guiding the time set aside to teaching specific topic strands in the mathematics classroom. 
Given the orientation towards competencies in the mathematics classroom, it is also envisaged that 
the Swedish national test (Nationella provet – NP) might be a suitable indicator of teaching and 
learning of mathematics competencies.   Thus, national tests can be perceived as having the potential 
to provide insight on students’ fluency with mathematical concepts, as well as mathematics 
competencies (NCTM 2000; Niss & Højgaard, 2011; Skolverket, 2011; see also Sáenz, 2008).  

The goals of the study 

The aim of the present study is to gain insight into the strategies and approaches that some students 
at the end of the compulsory school in Sweden employ, as they interact with a mathematics task 
containing graphical artefacts. This study is based on written solutions from NP. The purpose is to 
explore the strategies and tools used to solve this task, as well as to determine the potential provided 
by a model focusing on mathematical tools and forms of expression as a means of exploring students’ 
mathematics competency. 

Background and theoretical construct 
Several methods have been used to analyse students’ responses to test items (e.g. Åberg-Bengtsson, 
2005; Goodchild & Grevholm, 2007). In some of these studies the focus has been on general 
performance with microanalysis done at topics strand levels. While there are models proposed for 
examining the response to tasks (e.g. Gal, 2002, 1998; Ben-Zvi & Arcavi, 2001; Watson & 
Callingham, 2003), these seem to suggest general skills needed to solve the task with a bias towards 
statistical literacy. Friel, Curcio and Bright (2001) developed a three-tier model entirely devoted to 



graphical artefacts: without loss of generality this can be collapsed into two tiers (cf. Gal, 1998; 
Bertin, 1983; Olande, 2013). While there are models for analysing students’ test results, there is a 
dearth of studies exploring the use of subject specific tools and forms of expression in students’ 
solutions. 

In the present study an analytical construct (see Olande, 2013), focusing on the application of 
mathematics tools and forms of expression while solving test items, is employed. In this construct 
response to test items is perceived as being oriented towards identification and critical-analytical 
approaches. Items eliciting the identification approach are largely “self-evident” and as such, 
problem solvers might not need to unpack their mathematical skills entirely in order to solve the 
problem. On the other hand, items seen as demanding a critical-analytical approach require focused 
engagement from the problem solver. For example, this could be in the form of a critical analysis of 
underlying factors in the task, evaluation and selection of appropriate tools for interacting with the 
task, as well as reporting the solution with relevant subject specific forms of expression.  

The construct guiding the present study borrows from a socio-semiotic paradigm where the emphasis 
is on artefacts as a means of coming to know. Radford (2008) posits that the investigation of students’ 
interaction and use of semiotic means of objectification is a methodological way of accounting for 
learning (see also Radford, 2003; Vygotsky, 1978). It is recognised that a sign or symbol does not 
exist in isolation but is always bound with intentions, motives and the objects of action (Roth, 2008; 
Olande, 2014). Thus, in a critical-analytical approach, “being critical” encompasses more than 
visually interrogating a graphical artefact, but also includes the means and the tools used in the sense 
making process. The assumption about what can be perceived as a non-hierarchical path to cognition 
is significant for the analytical framework: i.e. it is access to tools and forms of expression that is 
perceived as largely determining a problem-solving trajectory. 

The research questions 

Thus, the concern of the study is to outline and analyse tools and forms of expressions used by 
students as they interact with a task from NP. This task was picked from section C of the national 
test, a section that requires students to justify in one way or another how they arrive at their solutions. 
The task (figure 1) was selected for further analysis given that it provided a combination of visual-
identification as well as critical-analytical components. This way of assessing the task is different 
from the marking process employed by graders while awarding credit to students’ solutions. The 
marking scheme used by graders did not indicate assessment of diverse solutions provided by students 
but largely gave written statements as guidelines. Thus item a) scored full credit when the solution 
contained the expression TRUE with corresponding justification such as making a comparison based 
on the sizes of the shaded areas. For item b) partial credit was awarded where the solution contained 
the expression FALSE with corresponding justification indicating an understanding that the pie charts 
express different quantities e.g. “Australia has more medals than Spain”. Full credit was awarded 
where the solution, in addition to the general statement FALSE, explicitly made comparisons based 
on mathematical forms of expression e.g. computation with fractions. A reliability check conducted 
by an independent entity (Skolinspektionen, 2010) from a representative sample of Swedish students 
for section C of the test, indicated that for items scoring grade G - (for the purpose of this study partial 
credit) in 51% of the cases the graders gave higher grades than the assessors. In 27% of the cases 
there was correspondence in the credit award. For items scoring VG - “full credit” in 37% of the cases 



the graders’ credit award was higher than that of the assessors, with 41% indicating correspondence 
in the credit award.  

From a competency perspective (Skolverket, 2011), this task might be considered to focus on 
developing competencies in the following: using and analysing mathematical concepts, use of 
appropriate mathematical methods to solve problems, and the use the of mathematical forms of 
expression to discuss, reason and give account of questions, calculations and conclusions. However, 
given that the task explicitly called for a justification of the student’s given solution, it was generally 
perceived as eliciting a critical-analytical approach. The success rate for item 9a was 78% for both 
girls and boys, while the success rate for item 9b was 47% and 55% for girls and boys respectively. 

Figure 1: Task No. 9 from NP Sweden 

   
 

The research questions are outlined as: 

1. What range of tools and forms of expression are made manifest as students interact with the 
task containing graphical artefacts? 

2. How does tool selection and use impact on the characteristics of the task solution provided? 

 
Task analysis 
Students’ solutions to task No. 9 were closely analysed with respect to: a) forms of expression (see 
Table 1 for typical examples of student responses) mathematical, everyday, graphical or one-word 
and b) tool use/sign of tool accessibility – mathematical operators and symbols. With regard to tool 
use seven approaches to task solving were identified, namely: i) visual comparison of graphical 
artefact, ii) critical - questioning the production of the graph iii) fraction iv) proportion v) percent vi) 
division vii) multiplication and vii) other solutions.  
  



Mathematical Everyday Graphical One-Word 

 

Britain ≈ 5/12 ≈ 0,40 40% 

gold (18,8 medals) 

Australia ≈ 35/120 ≈ 0,30 

30% gold (13,8 medals) 

Answer: true 

 

True: Britain obtained 

most gold in its 

diagram and Australia 

more silver.  

Yes! Britain’s bit is larger 

Yes Spain’s bit is larger 

 

False 

Table 1: Forms of expression identified from test task 
 

Based on aspects of identification and critical-analytical approaches (Olande, 2013) and aspects of 
Sfard’s (2008; cf. Schleppegrell, 2007) categories of mathematical discourse, the author developed a 
coding scheme and analysed the students’ solutions. The focus was on the forms of expression and 
mathematical tools – concepts used in working out a solution, rather than the correctness of students’ 
solutions. The correctness or otherwise of the item solution was pegged on the test score awarded by 
test graders within the framework of the test situation. Significantly, within this coding scheme the 
perception of the forms of expression was as follows: 1) everyday – the use of causal expressions 
wherein aspects of the obviousness of solution are embedded. In Table 1, while the type of language 
used in the solution is everyday, it is apparent that there are quantities being compared: “Britain 
obtained most gold” and “Australia more silver” 2) mathematical – the use of mathematical concepts 
and methods in the solution 3) graphical – the use of illustrations in an attempt to amplify the visual 
aspects of the task. In the illustration given in Table 1 above while the solution for item b) did not 
receive credit award from the graders, the solution appears to be appealing to the visual faculties in a 
comparison exercise. Zooming in on gold or silver, the student seem to be posing the question can’t 
you see they are different? 

Results and analysis 

The success rate for task No. 9 seems to indicate that students did not have as much difficulty with 
aspects of item 9a as compared to item 9b. This can be explained in part by the nature and the array 
of tools needed for effective interaction with the different items. Thus, the different forms of 
expression of the items were analysed. 

 Everyday Mathematics One-word Graphical 

Form of expression 0.72 0.15 0.11 0.02 

Correct responses 0.89 0.95 0.32 1.00 

Incorrect responses 0.11 0.00 0.60 0.00 

No response 0.00 0.05 0.08 0.00 

Table 2: Forms of expression identified from item 9a 



For this item, a majority (72%) of the students’ solutions used everyday forms of expression, of these 
89% provided successful solutions. While only 15% of the students used mathematical forms of 
expression, the success rate was relatively high at 95%. Students providing a one-word response to 
the task gave the majority of unsuccessful solutions. For this item it was observed that more than 50% 
of the students used visual comparison and/or the comparison of totals. 

The general pattern for forms of expression for item 9b was no different for item 9a (see Table 2). 

 Everyday Mathematics One-word Graphical 

Form of expression 0.50 0.32 0.13 0.04 

Full credit 0.29 0.91 0.00 0.25 

Partial credit 0.43 0.04 0.13 0.00 

Incorrect responses 0.27 0.02 0.79 0.75 

No response 0.00 0.05 0.08 0.00 

Table 3: Forms of expression identified from item 9b 

It is noteworthy that students providing one-word answers and those using graphical strategies 
recorded rather higher rates of incorrect responses. Evidently, students’ results indicate that the use 
of forms of expressions reflects one way or another on the success rate of their solutions. 
Consequently, it is of particular interest to explore the subject specific tools and forms of expression 
used in solving the task, and how these might have impacted on the quality of the response provided. 
This analysis is conducted for item 9b (see figure 2) 

Figure 2: Frequency of tool use and credit award 

 
From figure 2 it is shown that most of the solutions awarded full credit included the application of 
mathematical symbols and calculation. For these solutions the predominant tools of 
manipulation/calculation were fraction, division and percent. The solutions providing incorrect 
responses seem to be largely based on visual strategies.  



From the results it is apparent that students using mathematical tools and forms of expression had a 
relatively higher success rate. The predominant tools used in solving the task were fraction, division 
and percentage. The frequency with which fraction and division are used is not entirely unexpected 
since these tools are closely related; the same applies to some extent to percent. It could be suggested 
that the task in some way elicits the use of fraction: It is not uncommon for mathematics teachers to 
use pie charts in the teaching of, or in the introduction of, the topic strand of fraction. From this 
approach there is a natural connection to percentage; a circle divided into two gives two halves – this 
is often perceived as 50-50 (%). The results also indicate that some of the students using these tools 
(fraction, percentage) experienced some difficulty in application.  It is worth noting that the students 
using multiplication obtained full credit. These students seem to employ a tool that might not be 
considered “self-evident” for the task. This necessitated using the tool in a creative manner, thus 
indicating a higher level of confidence and “procifiency” in using the tool. 

For the students scoring full credit for the items, it is observed that most of them are proficient in the 
use of item specific tools namely, fraction, division and multiplication. From the students’ solutions 
it seems that only a small number indicate some aspect of interrogating the purpose of the graphics. 
Indeed there seems to be a general scarcity of solutions communicated using subject specific forms 
of expression, that is, mathematical language.  

Discussion 
The present study sought to apply a construct focusing tools and forms expression in solving 
mathematics tasks containing graphical artefacts. The purpose was to outline the usage of tools and 
forms of expression, and the quality of the solution thereof. A deeper analysis of task No. 9 provided 
more insight into strategies and tools used in interacting with graphical artefacts. It is observed that 
it is in part the grasp of the tool in use that determines the quality of the solution given. Based on the 
level of confidence in tool use, it is possible for the test taker to interrogate the task from different 
perspectives. Based on what can be considered as overlapping tool use (see figure 2), the results are 
perceived as suggesting that “reading” a graphical artefact can be a complex undertaking that might 
involve reading the graph – reading within the graph – reading beyond the graph (cf Friel et. al., 
2001). In the case of this task, there is indeed a different array of tools available to the students as 
they solve the task. However, it is communication using subject specific forms of expression that 
appears to be wanting – this might be an indicator that as much as the tools are available and “visible” 
to some of the students, the competency to apply and organize the same to produce a sound solution 
is a major challenge. This was observed in the case of students indicating knowledge of appropriate 
tools needed to solve the task, but apparently lacking the necessary skills to effectively apply the same 
in a problem-solving situation. Thus the observation made in the present study underscores the 
importance of having a solid foundation in the use of mathematical tools and forms of expression 
(concepts) in different settings. The importance of the use of subject specific forms of expression is 
also observed. For item b) there was higher correspondence in credit award between the graders and 
assessors as compared to item a) which did not elicit the use of the subject specific forms of 
expression as such. The analytical framework employed in the present study also helped to identify 
the strengths and weakness in students’ written solutions, thus providing valuable indicators for 
developing classroom practice. 



Given the interest in, and the focus on mathematics competencies in the Swedish mathematics 
classroom, the present study can also be perceived as drawing attention to the practice of assessment: 
if the concept of mathematical competencies implies imparting aspects of such skills as 
mathematicians use in the processes of mathematisation (cf Niss & Højgaard, 2011; Sfard, 2008), 
then assessment practice might need to be refocused to examine such use of tools and forms of 
expression that enable the learner to understand, and to participate in, activities within the 
mathematics community.  
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In this paper, we are presenting our analytical tools to characterize assessment activities as part of 
teachers’ practice, on a specific mathematical content (algebra). We are also presenting the 
principles of our collaboration with high school teachers, inside a particular workgroup (LéA), to 
explain why we came to consider assessment as a potential lever to enhance both the students’ 
learning in mathematics, and the teachers’ development. We are presenting a few results on the 
effects of this collaborative work on teachers’ practice when assessing students’ learning, and on our 
means to analyze the students’ results throughout the process. 

Keywords: Assessment, algebra, teachers’ practice, teachers’ professional development, 
collaborative work. 

In this paper we are presenting the analytical framework that we are building to characterize the 
practice of high school teachers in mathematics regarding student assessment. We study assessment 
throught one of its particular functions, promoting learning, with a didactical point of view, focussing 
on a particular content (algebra). We consider three inputs for assessment: assessment as a framework 
to characterize teachers’ practice, assessment as a tool to enhance students’ learning in mathematics, 
assessment as a lever for professional development. We will present some results on teachers’ 
professional development, from the collaborative work we lead with high school teachers on 
assessment. 

Assessment as a framework to characterize teachers’ practice 
In this first part, we are presenting the framework that we have built to analyze teachers’ assessment 
practice, leaning on previous studies about teachers’ practice, and on the teaching of algebra in 
particular. 

Defining assessment practice 

Assessment can be found in many aspects of the teachers’ activity, and it would be easy to call 
assessment any interaction between the teacher and the students. To restrain our observations, we 
draw upon De Ketele‘s definition (1989), and call assessment any gathering of information by the 
teacher on the students’ activity and knowledge, and the interpretation and use of this information.  

By activity, we mean everything the students do, say, think, (or do not do). Of course, not everything 
is accessible to neither the researcher nor the teacher, but we consider that students’ learning happens 
through their mathematical activities, at least partially (cf. Rogalski, 2013, about the use of Activity 
Theory as a framework for research in the Math Education field). These activities may consist on 
participating in a debate around a task or listening to a mathematical discourse in class. But in many 
occasion, they result from the tasks proposed by the teacher, and on the choices that the teacher makes 



to manage the solving of the task, which are elements that we consider when analyzing the teachers’ 
practice in class. 

Assessment is easier to pinpoint for the researcher, when it is formal, for example a written summative 
test at the end of a teaching sequence, or short diagnostic tests happening at the beginning of every 
session. Informal assessment, on the other hand, is more difficult to identify, but can happen in many 
occasions during the class, through the interactions between the teacher and the students, giving 
information on the students state of knowledge, to the teacher or to the students themselves. To be 
able to characterize assessment practice in any case, we have drawn a list of criteria, whether the 
assessment is formal or not, and at any point in the teaching sequence. 

Characterizing assessment practice 

One of the elements that we take into consideration to characterize assessment practice, is the distance 
between each assessment task and the similar tasks previously given by the teachers on the same 
mathematical content (Horoks, 2006). For example, when a teacher is assessing the students’ 
knowledge on a mathematical content through a final test, we can question the choices of tasks made 
by this teacher and their link with the tasks that were actually worked on before the test. A certain 
gap between the test’s and previous tasks (or between tasks from a diagnostic test and all the possible 
prerequisite tasks) can be interpreted in different manners: it could be explained by the function given 
to this test, (rewarding or challenging the students for example) or maybe by a lack of pedagogical 
content knowledge (Shulman, 1986) for the teacher. The epistemological and didactical analyses of 
the mathematical contents are crucial here to make the comparison between the two sets of tasks. In 
the case of informal assessment, each new task given by the teacher has to be considered among a set 
of previous tasks, depending on the “study moments” (Chevallard, 1999; Barbé & al., 2005), related 
to the distance from the first encounter with the mathematical notion. The distance between the tasks 
allows us to measure the complexity for the students compared to the tasks that they have already 
worked on. More globally, the whole range of tasks proposed by the teacher on a mathematical 
content, with the absence of particular tasks in the related assessments, can tell us some of the 
intentions of the teacher for assessment, in relation with teaching.  

Another element that we take into account, is the “depth” of the information: indeed, the process of 
“taking / interpreting / exploiting information on students’ activity” in mathematics, can take its roots 
in the solution that the students produce (the result of a task), the way they solve the task (procedure 
to achieve a result), or the knowledge that is put into action to complete this procedure. Linking the 
activity to the student’s knowledge requires, from the teacher, an understanding of the 
conceptualization of the mathematical contents behind the procedure, which is usually specific to the 
particular content. Regarding algebra in particular, it leads us to consider some specific elements, 
such as the form of writing for calculations or the type of reasoning. Indeed, some forms of writing 
for the calculation for example (cf. figure 1) can inform the teacher on the meaning of the equal sign 
for each student (computation, equivalence), or on the student’s structural / procedural view of 
numerical or algebraic expressions. 



 
Figure 1: Different writings for the calculation, giving information on the students’ knowledge 

The interpretation of the information can also differ, depending on the reference taken for this 
interpretation: a comparison with what is expected by the institution (curricula, external assessment), 
or what could be expected by the teacher, considering all the previous work and the teacher’s 
knowledge of the didactics of the mathematical notion at stake (errors, obstacles and breaches, steps 
in the conceptualization, etc). It can also be a comparison between the students’ different procedures 
or a comparison in time for one student, to appraise his or her progress. These comparisons can be 
made explicit or not to the students. Here again, it can be linked to the various possible functions of 
the assessment. 

Finally, the exploitation of the information differs depending on the moment when it occurs: whether 
it leads to immediate feedbacks related to students’ result, procedure or knowledge or, in a more or 
less short term, when it influences the planning for the next activities.  

Before giving an example of teachers’ formal assessment practice, we will first describe our working 
context with a group of teachers. 

Description of the collaborative work inside the Léa 

A “Lieu d’Education Associé (Léa)” is an instance created by the French Institute for Education (IFE) 
to promote research with people who play an acting part in education. For 3 years, they are associated 
with a team of researchers to investigate questions about education and to build realistic resources for 
teachers or educators. Our Léa takes place, since May 2014, in a high school (students from 11 to 15 
year old) in an Educational Priority Area, with 9 teachers (4 at the beginning) and 7 researchers, who 
meet every month to work together, to build teaching materials for algebra and to discuss assessment 
practice that could promote students’ learning. The Léa can give us access to those teachers’ 
evaluation practice in the long term. 

An example of a comparison of teachers’ formal assessment practice  

We asked Léa teachers to design a diagnostic test at the beginning of the year for their 7th-grade 
students, to assess their numerical and pre-algebraic knowledge before introducing algebra. The tasks 
of the tests that they individually proposed were not covering all the range of the required knowledge 
for the introduction of algebra (Carraher & Schliemann, 2007, Kieran, 2007). The teachers justified 
their choices by giving institutional or social reasons, rather than epistemological or didactical ones. 

 

-  (3 + 4) x 2 – 8 = 6 

-  3 + 4 = 7 x 2 = 14 – 8 = 6 

      + 4     x2      - 8 

-  3 ------> 7 ------> 14 ------> 6 

- 3 + 4 = 7 
 7 x 2 = 14 

  14 – 8 = 6 



Teachers  G M 
Variety of tasks Repetitive task Different tasks 
Complexity of test’s tasks / 
previously given in class 

Similar to the previous ones in class More complex than the previous ones 
in class 

Information (declarative) On the result On the procedure 
Feedback to the students 
(declarative) 

Marks on the paper Marks on the paper 

Function of the formal test 
(declarative) 

- To be able to give marks for the 
institution 

- To work on the basics 

- To learn by adapting to a different 
situation 

- To adapt the teaching plan ahead 

Table 1: Formal assessment (summative test) 

We also conducted interviews with these teachers to find out about their views about assessment, 
after they had proposed their first summative test of the year. They were asked questions about their 
choices of tasks and the feedbacks they gave to the students afterwards (cf. table 1 for two of the 
teachers). Their answers showed a great variety in the tasks they proposed, regarding the distance 
with previous tasks, and probably resulting from different views on the functions given to formal 
assessment, despite the fact that these teachers often worked together. What was common to all the 
teachers on the other hand, is that they did not usually give many feedbacks to their students. Indeed, 
those teachers gave a mark without informing the students with the necessary elements to understand 
their mistakes and the limitations of their reasoning. Another comparison, related to informal 
assessment, for one teacher at different moments, will be made in the last part of this paper. 

Assessment as a tool to enhance students’ learning in mathematics 
Definition of formative assessment 

For Black & Wiliam (1998), an assessment can be formative when a teacher uses the information on 
the students to help them engage in the work on a task, or to help each of them auto-evaluate their 
knowledge: 

The term ‘assessment refers to all those activities undertaken by teachers, and by their students in 
assessing themselves, which provide information to be used as feedback to modify the teaching 
and learning activities in which they are engaged. Such assessment becomes “formative 
assessment“ when the evidence is actually used to adapt the teaching work to meet the needs. (page 
2) 

In terms of gathering/interpreting/exploiting information, formal assessment can play a more or less 
formative function, depending on the chosen tasks (if the tasks are way too complex or too simple; 
the students’ productions might not reveal many useful information for the teacher). It depends also 
on the feedbacks made to the students. These facts can both be witnessed and analyzed by the 
researcher. 

But when in comes to informal formative assessment in class, even if it is possible to see a teacher 
going around in the class when the students are working on a task, we can only witness the 
information actually gathered if the teacher is using it right away to guide the students’ work. 
Deciding not to use the information right away, but reorganizing the plan of the next sessions, for the 
entire class or a particular student, could also be an exploitation of the information to promote the 
students’ learning, but the researcher would then hardly acknowledge it. In any case, the research 
time allowed to the students to work on the task will probably have an influence on their mathematical 



activity, and on the information that the teacher will be able to take on this activity, depending on the 
task. 

A key moment: sharing the students’ productions after letting them work on a task 

The moment of pooling of students’ procedures, after letting them work on a task, alone or in groups, 
seems to us like a good opportunity for informal formative assessment, where students could compare 
their solution with others’ and know if they are close to what was expected. It depends of course on 
how the teachers choose to manage this moment of the session, and on the use they will make of the 
students’ productions. This is why we will look more closely at those moments in the classrooms to 
analyze the use that the teachers make of the students’ productions: how is the students’ work taken 
into consideration? 

What kind of productions do the teachers choose to share with the entire class? Is there a variety in 
these productions, regarding the result of the task or the possible procedures? Are there errors, typical 
or not, showed to the students? These elements are indicative of the information probably gathered 
by the teacher on the students’ work while they were working, but depends also on an a priori analysis 
of the task, strongly linked to the mathematical contents to be mobilized, in order for the teacher to 
anticipate the possible outcomes. 

We also analyze the exploitation of these productions. However, the interpretation of the information 
by the teachers remains mostly invisible to the researcher, except when the teachers explicitly mention 
the reference they use to compare (with what is expected at the end of the year, with what the students 
already did before, between students…). We note if the teachers organize a comparison of the results 
or of the procedures. Do they rank them to show the relevance and limits of each solution? How is 
organized the (in)validation of the solutions? Who is (in)validating them? With which arguments? 
And which conclusion? These elements can inform us on the role given to the students in the 
validation and institutionalization process and in the assessment process in general. We will give an 
example of this type of analysis for one teacher, in the last part of this paper. 

We have hypotheses on the conditions that we consider more favorable towards student’s learning, 
for example by making use of various students’ procedures and errors and by implicating them in the 
validation, using mathematical arguments. We will confront these hypotheses with the results in 
algebra of a hundred of high school students, whose teachers’ assessment practice was analyzed in 
this study,. In order to do that, we will analyze each task given by each of the teachers participating 
in the Léa, as part of the formal assessment process in algebra during 3 years, in terms of kinds of 
tasks (Chevallard, 1999) and adaptations (cf. Robert 2003), to determine their variety and complexity. 
We will collect the students’ productions, analyze their answers and characterize them according to 
the different degrees of algebraic competencies defined by Grugeon & al. (2012) and Chenevotot-
Quentin & al. (2015) for the design of a diagnostic assessment in algebra. This analysis is now in 
progress, as we are beginning the third year of our work inside the Léa.  

Assessment as a lever for professional development 
Our tools to analyze professional development 

For our research, we already have collected a wide range of data inside our Léa, that we still have to 
fully process: to document the teachers’ assessment practice, we gathered their personal documents 



for the class and asked them to film themselves regularly in their own class; to measure the possible 
effect of this practice on the students’ learning in algebra, we collected many students’ productions; 
and at last, to try to estimate the effects of our collaborative work on the teachers’ practice, we 
recorded the discussions during our meetings, and kept the reports of these meetings, when written 
by the teachers. 

The analysis of the teachers’ assessment practice takes into account, as explained before, the list of 
tasks proposed to the students in algebra and the management of the resolution of these tasks in class 
(informal assessment) or after a test (formal assessment). Their point of view about assessment is also 
visible through the interviews we conducted at the beginning of the project, or through the discourse 
of the teachers during the meetings of the Léa. More specifically, we are interested in the ways they 
argument their choices for their class, through the type of reasons they give for their choices of tasks 
or management (institutional, social, didactical, mathematical, etc). The moments when the teachers 
disagree with the researchers, or try to convince new teachers who joined the collaborative 
workgroup, are particularly interesting for us for that matter; to gather information on a possible 
evolution on the teachers’ point of view on assessment, and more globally, on the teaching of algebra.  

Some results about the changes in the teachers practice and arguments 

To illustrate our analyses of the teachers’ practice and their development, we are giving here an 
example of two sessions, for the same teacher, filmed one year apart. We analyzed the moment of 
sharing the students’ productions, after working on similar tasks. These tasks both involve testing a 
calculation program with several numbers to notice an unchanging result or property and proving it 
with algebra. Our analyses are based on the indicators that we have already listed (the variety of the 
productions chosen to be displayed, the exploitation of students’ errors, the initiatives in the 
validation, the arguments for justification). 

Our analyses after the first year of collaboration (see table 2 “year 1”) tend to find that teachers’ 
assessment practice are very settled and stable. It seems that our didactical contributions about the 
teaching and the learning of algebra have helped teachers’ practice to evolve (Horoks & Pilet, 2015): 
indeed they have better indicators to select the students’ productions that they will use for the 
discussion after a task. But the exploitation that they make of these productions hasn’t really changed 
after the first year: when sharing them with the class, the Léa’s teachers don’t usually organize a 
comparison between the students’ productions nor give a validation based on mathematical reasons. 
We also found that these teachers usually leave no initiative for students when working on the more 
complex algebraic tasks, which leads to the impossibility to rely on their production (see table 2, 
“year 1”). 

After the second year, where we decided to share some of our tools to analyze the sessions in class 
with the teachers, we can notice some evolution in the exploitation of the information (see table 2, 
“year 2”). Even though the second part of the task is more complex, this teacher still relies on the 
students’ productions, even if they are not mathematically correct, to build, along with the students, 
the reasoning that will allow the class to invalidate the proposed solution. 

However, even if the tasks are similar between year 1 and year 2, students have a higher grade in year 
2 which may also explain the different choices made by the teacher. We should go on studying 
practice for a longer time, to identify its stability, and this is what we plan to do in the Léa project. 



  
M(year 1) M(year 2) 

Testing with 
numbers 

Duration of individual work 6.00  

this numerical 
step is not part of 
the second task 

 

Variety and comparison on results/procedures 
from the students’ productions 

3 procedures 
not compared 

Presence of errors in the displayed productions error in the 
procedure 

Student’s initiative in the validation yes 

Mathematical arguments of proof no 
Proving with 
algebra 

Duration of individual work 2.30 6.30 

Variety and comparison on results/procedures 
from the students’ productions 

this algebraic 
step is handled 
by the teacher 
without any 
support on the 
students’ 
productions 
 

4 procedures 
compared 

Presence of errors in the displayed productions yes 

Student’s initiative in the validation yes 

Mathematical arguments of proof counter-example 

Table 2: Evolution of informal assessment practice for teacher M 

Both the cognitive (contents and tasks) and mediative (organization of the sessions in class) elements 
of the teacher activity play a part in the assessment process that we are trying to analyze here. But, as 
emphasized by Robert and Rogalski (2005) there are other constraints of this professional occupation 
to be taken into account: the social (type of school), the institutional (curricula) and personal (carrier 
and education) components, playing a significant part when interpreting teachers’ practice, including 
for us their choices in terms of assessment. We analyze teacher’s practice through all these 
components, at different levels: locally in the classroom or globally within all the teaching plan, and 
we believe that it can give us access more deeply into the teachers’ consistency and explain their 
stability. Yet, after the second year, we noticed some changes in the arguments that the teachers are 
giving to justify their choices, shifting a little from social and institutional reasons to mathematical 
or didactical ones, that we would hope to link to our work together, that is still going on..  
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This paper explores primary teachers’ accounts of their responses to major changes in the 
curriculum and assessment system in England, which has recently re-designated expected standards 
of achievement and progress. Analysis is informed by Foucauldian poststructural understandings of 
power/knowledge and truth to examine how they reorganise their practices as mathematics teachers 
within a policy context which continues to compel schools to focus on performance. By means of a 
small-scale empirical study, we identify the tensions created when the ‘rules of the game’ change 
and how technological assessment tools require and enable teachers to reproduce levels and labels 
to categorise pupils. Our aim in undertaking this analysis is not to compare teachers’ assessment 
practices to an ideal, beyond policy, but to illustrate how government-driven changes to assessment 
are insufficient to change underlying discourses of performativity which ultimately shape practice.  
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Introduction 
The examination [assessment] combines the techniques of an observing hierarchy and those of a 
normalizing judgement. It is a normalizing gaze, a surveillance that makes it possible to qualify, 
to classify and to punish. It establishes over individuals a visibility through which one 
differentiates them and judges them. (Foucault, 1977, p. 184) 

The quote from Foucault begins to set out both our substantive interest and the theoretical stance, 
namely, an interest in mathematics assessment from a sociological perspective. Our focus is on 
assessment not simply as a technical activity to improve pupil outcomes, but as a mechanism 
through which teachers manage their professional selves; the way in which mathematics assessment 
is used as part of their ongoing professional identification and as the basis, and evidence, of their 
success. Our starting point is the claim that in English primary (5-11) schools, assessment, and the 
curriculum alongside which it takes place, plays a major – perhaps the major – role in influencing 
teachers’ actions. There are many reasons why this is the case but, as Pratt (2016a) argues, in 
essence they revolve around the marketized and high-stakes, accountable nature of the English 
system and the ‘performativity’ (Ball, 2003) this manifests in teachers’ work. 

The changing context of English mathematics education 
It is difficult in a short paper to describe fully the complex landscape of an education system and 
how it is changing and we refer the reader to Pratt (2016a) and Keddie (2016) for more detailed 
discussions of English primary schools. However, in summary the system is based in a neo-liberal, 
neo-conservative framework which affords an increasingly marketized, competitive and accountable 
approach to school improvement. This has led to a strong discourse of ‘progress’, since it is the 
change in pupils’ levels of attainment across each year which has been the key measure against 
which schools, and individual teachers, have been judged. In turn this leads to a strong discourse of 
control, a belief that pupils’ progress is predictable and controllable across time; and therefore of 
teachers’ responsibility for learning outcomes obtained through their teaching (Pratt, 2016b). 



However, over the last 18 months, both the curriculum for mathematics and the assessment system 
have been reformed. The new primary national curriculum (NC) (DfE, 2013) stipulated increased 
expectations in mathematics with more challenging national tests. Perhaps most importantly for 
teachers, previous NC ‘attainment levels’ have been superseded by an ‘expected standard’ set for 
2016, at a higher level than in 2015 (DfE, 2016). The rationale for this change is described in the 
final report of the government’s Commission on Assessment Without Levels (McIntosh, 2015, p. 
5), as follows: 

Despite being intended only for use in statutory national assessments, too frequently levels also 
came to be used for in-school assessment between key stages in order to monitor whether pupils 
were on track to achieve expected levels at the end of key stages. This distorted the purpose of 
in-school assessment, particularly day-to-day formative assessment. The Commission believes 
that this has had a profoundly negative impact on teaching. 

Too often levels became viewed as thresholds and teaching became focused on getting pupils 
across the next threshold … Depth and breadth of understanding were sometimes sacrificed in 
favour of pace.  

Guidance specifies that the majority of pupils should move through the programmes of study of the 
NC at broadly the same pace (DfE, 2013), crucially replacing previous advice to accelerate high 
attaining children through new content. At the classroom level, ‘progress’ through the curriculum 
has been replaced by ‘progress’ within it; and a new language of ‘mastery’ has sprung up to describe 
this, which “denotes a focus on achieving a deeper understanding of fewer topics, through problem-
solving, questioning and encouraging deep mathematical thinking” (McIntosh, 2015, p. 17). 
Progress measures of pupils and schools across key stages are also calculated differently. 
Monitoring progress by levels and sub-levels has been replaced by a value-added measure. Pupils’ 
results at the end of key stage 1 and key stage 2 (at ages 7 and 11) are compared to the achievements 
of other pupils with similar attainment nationally, and a new ‘floor’ standard requires that at least 
65% of pupils meet the expected level in mathematics (and English), or that a school achieves 
sufficient progress scores (DfE, 2016). Schools not achieving the floor standard will be scrutinised 
through additional inspection and may have their freedom curtailed. Indeed, the Commission notes 
that “with freedom, however, comes responsibility” (McIntosh, 2015, p. 10) and “recognises that the 
transition to assessment without Attainment Targets and levels will be challenging, and that schools 
will have to develop and manage their assessment systems during a period of change” (p.16). 
However, it justifies this on the basis of “a much greater focus on high quality formative assessment 
as an integral part of teaching and learning”; the raising of “standards” in line with neoliberal policy. 
As we have previously pointed out, in a performativity culture such as this one, assessment has 
become a means by which teachers gain and maintain professional capital (after Bourdieu, see Pratt, 
2016a).  

Theoretical Framework 
To understand the effect of changes to the ‘rules of the game’ of assessment, we draw on Foucault, 
particularly his notion of governmentality (Foucault, 1977) that surrounds English education (Ball, 
2013; Llewellyn, 2016); the notion that dominant discourses become normalized to such an extent 
that (teacher) subjects consent to particular action and hence come to govern themselves. (Note, 
discourse here refers to “a group of rules proper to discursive practices … [which] define the 



ordering of objects” (Foucault, 1972, p. 49) and is more than just language.) Our aim is to make 
visible the ways in which assessment discourses normalize certain practices and relations between 
teachers, school systems and pupils, rendering them common-sense, irrevocable and change-
resistant – but not to judge these against some ideal version of practice. In theorising these forms of 
governmentality in and through assessment, two related ideas are in play: power/knowledge and 
truth. Power, according to Foucault, is enacted, not held by individuals, and 

is not exercised simply as an obligation or a prohibition on those who 'do not have it'; it invests 
them, is transmitted by them and through them; it exerts pressure upon them, just as they 
themselves, in their struggle against it, resist the grip it has on them. (Foucault, 1977, p. 27) 

We emphasise that this can be a good or bad thing; power can liberate and is not oppressive per se, 
but either way, ‘power produces knowledge’ (ibid). ‘Experts’ in a field (teachers in their classroom 
settings, but also senior managers in the school as a whole, policy makers and children as ‘expert 
pupils’) produce knowledge through their language and activity which positions and exerts pressure 
in terms of the way it influences what can and cannot be said and done. In this sense, it forms a 
‘game of truth’. For Foucault, truth is not something to be found outside of relations. Rather it is 
something produced through such relations so that “each society has its regime of truth, its 'general 
politics' of truth: that is, the types of discourse which it accepts and makes function as true” 
(Foucault, 1980, p. 131). Thus, the question is not what the truth ‘is’, but how things come to be 
taken as true; how this is used in order to make manifest and exert power relations. This is  

the truth which does not belong to the order of what is, but to the order of what happens … a 
truth which is not found but aroused and hunted down: production rather than apophantic. This 
kind of truth does not call for method, but for strategy. (Foucault et al, 2008, p. 237) 

It is through this theoretical lens that we return to mathematics assessment, and the following 
questions: how do teachers respond to the changes that a new curriculum and assessment system 
impose; and in doing so, how do they re-organise the economy, and politics, of truth in assessment 
practices in order to (re)empower themselves as experts?  

Methodology 
The project involved extended semi-structured interviews with primary teachers in 9 different 
schools (12 teachers in total) in the first year after the removal of levels. Teachers and schools were 
chosen purposively to reflect a range of ages, experience, school types and locations, but in this 
paper we draw on just three of the participating teachers – Ann, Jill and Mike, all working in state 
schools – in order to keep the analysis manageable. Mike and Jill are in their late 20s and both are 
coordinators of mathematics in their schools and are both on a programme of training to develop 
leadership in ‘mastery’ of mathematics. They work in a village and an urban school respectively; Jill 
has been teaching for 8 years and Mike for 7. Ann is in her late 30s, has been teaching for 19 years 
and in her current, town, school for 5 of these. She is a class teacher, but not a specialist in 
mathematics. Data from all the interviews were analysed thematically in relation to the substantive 
and theoretical framework – teachers’ assessment practices, as we understood them in relation to 
power/knowledge and truths. Whilst we can only present a small set of data we have selected this 
carefully, ensuring that teachers’ views, though sometimes individual, are never contradictory of the 
data set as a whole. Our aim is not to claim that the specifics are generalizable to every teacher 
beyond, or even within, the data set. Rather, the analysis is of the system of governmentality and the 



dominant discourses that constitute it. We think it offers a trustworthy and useful analysis in this 
sense, meaning that it is likely to be generalizable to other teachers in terms of the way in which 
their work becomes problematized, even if not in terms of how individuals are able to respond. All 
our work conformed to the ethical procedures of the British Educational Research Association and 
were approved by our employing institutions. 

Analysis – Reproducing the truth 
The DfE’s Commission on Assessment without Levels is very clear over the point of their removal.  

Removing the ‘label’ of levels can help to improve pupils’ mind-sets about their own ability. 
Differentiating teaching according to pupils’ levels meant some pupils did not have access to 
more challenging aspects of the curriculum. (McIntosh, 2015, p. 15) 

Interestingly, this critique itself illustrates Foucault’s central point about governmentality, namely 
that it is through labelling that subjects are categorised, normalized and objectified. They ‘become’ 
their label – and act accordingly in the common-sense, normal(ized), way that this affords. Whilst 
removing the language of levels is well-intentioned in order to remove such labels, we noted above 
that teachers’ work takes place in a culture of performativity with dominant discourses of control 
and responsibility. Central to governmentality, they require teachers to ‘know’ what their pupils can 
and cannot do so that they can take responsibility for ‘filling the gaps’ in their knowledge by 
“identifying specific ‘corrective’ activities to help them do this” (ibid. p.17). These, then, become 
questions of truth, of what pupils ‘actually’ and ‘really’ know. However, as Foucault notes, a truth 
statement is “contingent on the instruments required to discover it, the categories necessary to think 
it, and an adequate language for formulating it in proposition” (Foucault et al., 2008, p. 236). The 
language of levels may have gone, but the imperatives for control remain and so a new language is 
needed for teachers with which to think and speak it. Our interviews suggest that the language of 
‘mastery’, codified through other national continuing professional development programmes, has 
offered teachers such an alternative, so that: 

For every child you can click on an objective and say whether you are working towards it, 
achieved, secure, or greater depth. (Ann) 

Basically we have developed a system throughout the year. So, we haven't bought a system in. 
We've simply developed our own system as a school where we've given the children a grade of 
either 1, 2, 3 or 4. (Mike) 

When we were talking, as a school, what we were going to put for our levels, we said "what shall 
we call them?” We've got to have things and labelling them "emerging, developing, secure, 
exceeding". (Jill) 

Ironically then, the notion of mastery which was meant to take teachers away from codifying and 
levelling has provided alternative “types of discourse which it [the system] accepts and makes 
function as true” (Foucault, 1980, p. 131). Classification continues, but with new levels. What is 
significant in terms of governmentality is that, despite the best intentions, this replacement is 
inevitable since it is founded in the performative discourse which underpins pedagogic activity. In 
English primary schools this performance is measured by ‘progress’; in the past meaning the 
movement up levels and sub-levels of attainment. Although the removal of levels has meant that 
there might be a new official understanding of it – that “progress can involve developing deeper or 



wider understanding, not just moving on to work of greater difficulty” (McIntosh, 2015, p. 12) – it 
has not removed the imperative of being able to make it demonstrable as the way in which schools 
are judged. In other words, knowing ‘where pupils are’ is still central to “the status of those who are 
charged with saying what counts as true” (Foucault, 1980, p. 131) and is not therefore optional.  

Hunting for truth with technology 

Foucault (1980, p. 131) has pointed out that the political economy of truth is characterised by, 
amongst other things, the form of scientific discourse, economic and political demands and the ways 
in which it is diffused and consumed amongst different organisations. Each school in our study has 
made use of some form of tracking system, either commercial software or a spreadsheet of some 
sort, as a technology for capturing data and in different ways teachers are looking for these 
technologies to help them seek the truth about the progress of their pupils. In each case, there are 
two technologies at work. Firstly, a tracking system recreates labels: 

you've got all the statements and you can say whether the children are working towards it, 
expected for it, or exceeding for it, or something. Then it breaks it down into them being, for 
each year group, they are beginning to access or beginning plus, working towards or working at 
plus, secure, secure plus. There are six basic, what would have been sub-levels. (Mike) 

But, he notes, “it can't generate something that tells you your child probably is secure or probably is 
working at” and “it's not comparing your children to anyone else. It's not saying anything.” Whilst 
teacher judgement is “fine and good” it does not seem to represent a sufficient truth for the 
accountability purposes to which it is to be put. Mike’s school has therefore turned to commercially 
produced online tests. These give him “beautiful data” and whilst it also serves a formative purpose 
in identifying “gaps” it “provides a comfort blanket” because “it gives you a standardised score and 
it’s based against however many thousand children from around the country”.  

Whilst Mike has turned to comparative statistics to produce knowledge of progress, Jill agrees that 
numbers and labels mean that “it somehow feels like it's clearer, but if it's not well-defined that's 
quite dangerous, really”. Rather than seeking a truth in statistics though, Jill is committed to the idea 
of illuminating pupils’ mathematical understanding and somehow mapping this onto the new labels 
so that they can say, “these children are where they should be and these children aren't … so that the 
gaps that they have got [can be] filled”. Rather than comparisons to other pupils nationally, Jill’s 
plan is to exemplify for colleagues a truth about what each label (developing, secure etc.) looks like 
in terms of the objectives from the curriculum that pupils can achieve. In this way she hopes that “it 
would be very clear where the children were and where their next steps were more clearly” and that 
“within the following year’s teaching you can see that clear progression, and then that becomes a 
way for teachers to show progress”. Jill’s belief seems to be that professional judgement, evaluating 
pupils’ understanding against exemplar materials, will, in time, allow teachers to learn what the new 
levels “feel like”. 

The rationale for the removal of levels and a focus on mastery was, in part, based on the assertion 
that “too often … teaching became focused on getting pupils across the next threshold instead of 
ensuring they were secure in the knowledge and understanding defined in the programmes of study” 
(McIntosh, 2015, p. 5). We have illustrated how levels have been recreated by teachers to serve the 
function of performativity, yet this is not to say that the idea of refocusing on pupils’ understanding 
of the curriculum was not welcomed and encouraged by this move. Mike notes that alongside the 



security of knowing how their pupils rank against others “we are thinking about 'OK they are 
working at expected levels or just below but what are their gaps and how am I going to fill their 
gaps?” Jill claims that “I think the move away from levels has been absolutely fantastic” because it 
allowed them to “take the time to sit back and actually think about the underlying maths”. Ann also 
welcomes the focus on ensuring that “gaps are filled” and considers this as central to pupils’ 
success. However, in her experience 

it was just a lot that had to be covered and part of it was because there were gaps that I needed to 
go [over]. So for example my class didn't have a very good understanding of decimals, so rather 
than teaching thousandths and all of what was in the year 5 curriculum, I've had to go right back 
to the start and doing tenths. And that is your year 3 and year 4 objectives. (Ann) 

This has led to her being reluctant to say that any child is secure and to her “feeling that almost, as a 
teacher, you've failed”, with her confidence being affected as a result. The school uses a system 
called School Pupil Tracker Online (SPTO) which, unlike the other systems, is meant to calculate 
whether pupils are emerging, developing or secure, but Ann does not trust its output. 

I just experimented with 'what if I made that [objective] mostly achieved?'. And by doing that I 
could see that it was literally one little click turns that level up. … I didn't like the fact that just 
one click sent that judgement over, particularly when it didn't look like it was right. 

She notes that even if the company that runs the software alters this in the coming year “it sounds 
like the standard is going to slightly change every single year, which just makes it completely 
confusing. How can you work towards something that you don't know what it is?” This lack of 
clarity over the truth of her pupils’ learning is leading to some tension for Ann. 

So within what I do with the children I see progress but I don't always see it in what I've got on 
paper, on SPTO. The progress isn't always reflected there … I thought I was a good maths 
teacher, maybe I'm not, because of what's coming out … In some ways I'm almost fighting 
against it and saying 'you will not do this to my confidence' [laughs], yeah. 

A new normalizing gaze 

We noted above that one intention of removing levels was to avoid labelling pupils in ways that 
prevented access to the curriculum. As the quote that begins this paper makes clear, however, from 
Foucault’s position any examination “combines the techniques of an observing hierarchy and those 
of a normalizing judgement” which “establishes over individuals a visibility through which one 
differentiates them and judges them” (Foucault, 1977, p. 184). Foucault’s use of normalizing here is 
two-fold. On the one hand it points to the standardisation and categorisation of pupils; their 
allocation into categories, in this case ‘emerging’, ‘secure’ etc. which are then used to define 
normal, and hence abnormal, and to take remedial action. Mike refers to “the ones who haven’t 
quite got there” and Jill to those who are “where they should be” and those that are not. On the other 
hand, it refers to the notion of making this categorisation ‘normal’ practice; common-sense, 
inarguable, defining what can and cannot be thought and said. Thus, although removing levels is 
meant to avoid differentiating pupils and restricting their access to the curriculum, the need to track 
progress makes such differentiation necessary. To speak of progress is to speak of changes in 
category as the only “type of discourse which [society] accepts and makes function as true” 
(Foucault, 1980, p. 131); “a truth provoked by rituals, captured by ruses, seized according to 



occasions” (Foucault et al., 2008, p. 237). Such rituals create a practical tension in the idea of 
normalisation. As Mike notes,  

It's that challenge we're set of trying to keep together and moving forward together but having 
children still working at a greater depth but closing the gap for the ones that are lower. 

For those already ‘succeeding’ as secure, mathematics involves a range of activities. Mike describes 
“10 children who we saw as working at greater depth and they worked in groups with teaching 
assistants and had some really different kind of problem solving”. However, Jill points out that the 
governmentality around floor targets means that for “the children who are almost secure but not 
quite, there is a real push to get them [over the threshold]”.  

Yes, but I think the secure one [is key] at the moment. I think at the moment with the new system 
it’s different, it’s difficult, it’s unknown. I think it's that ‘where are we for secure?’ (Jill). 

Hence, whilst the change in the curriculum structure is meant to ensure that children move together 
through the content, the manner in which assessment inevitably “establishes over individuals a 
visibility through which one differentiates them and judges them” (Foucault, 1977, p. 184) means 
that the way in which they experience the subject is far from equal. 

Discussion 
Our analysis suggests that although superficially things might look different and teachers may feel 
that their practice has changed, this appears to be largely a reconstruction of the same dominant 
discourses in new language. Whilst the specific practices of governing might have been altered, the 
fundamental forms of governmentality have not and teachers are in the process of reconstituting 
much of what they had before. We recognise that the recent changes have opened up opportunities 
for discussion, collaboration and reflection within and between schools and made teachers pause 
and take stock of assessment in ways that feel positive to them. However, they have also reproduced 
pressures and tensions which can work to deflect attention away from questioning the 
responsibilities of policy makers and the implications for the teaching and learning of mathematics 
in the new system. Whilst there is a significant impact on teachers’ day-to-day teaching and 
assessment practices, and how these are evaluated, the performative role of the teacher remains 
largely the same. There does seem to be more consideration of pupils’ development in mathematics; 
though this is produced in particular ways: an atomised curriculum and filling in gaps. There are 
signs too that far from alleviating the problem of access to the curriculum for all children, there is a 
new normalizing gaze; one that focuses teachers’ efforts on an even slimmer tranche of pupils who 
might just be normalized – literally, to the middle of the normal distribution. Similarly, only those 
who are ‘secure’ in their ‘knowledge’ of the subject get access to a rich version of mathematical 
problem solving. These points raise questions about the way in which such tightly managed forms 
of assessment affect pupils’ relationships with the subject and about the equity of pupils’ access to 
the curriculum. The nature of these authoritative discourses of progress, control and responsibility 
that make up performativity, and the version of mathematics and assessment produced within them, 
appear difficult for the teachers in our study to identify. All schooling operates within policy and its 
incumbent discourses and can never be free of it, however the value of a Foucauldian analysis is in 
making such discourses visible to those responsible for making changes to the assessment system. 
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The identification of intermediate steps in student solutions as a basis for assessment is a common 
procedure in mathematics teaching. Modelling tasks, providing more than one solution approach, 
are considered hard to assess. This is not least a reason for the unsatisfactory proportion of modelling 
in school. Assuming that task difficulty is strongly connected with assessment, the implications of a 
study about the difficulty of modelling tasks are discussed. Starting point for the discussion is the 
question whether intuitive assessment practices like the identification and scoring of intermediate 
steps, can be supported by empirical findings. The focus is on the influence of cognitive aspects 
regarding structural characteristics of solution approaches. Results indicate that a pure sequential 
consideration of thought structures in a solution approach lead to reasonable results and might justify 
its application in school due to its straightforward implementation. 

Keywords: Assessment, cognitive structure, modelling tasks, mathematics teaching. 

Introduction 
Within the mathematics community it is mostly agreed upon the positive impact of modelling tasks 
on the learning of students. Mathematical modelling is promoted and there are many votes for its 
broader implementation in school mathematics. However, several studies provide evidence that 
modelling is far away from playing an integral role in everyday school teaching, in Germany and also 
elsewhere (Blum, 2007, p. 5). Jordan et al. (2006) confirm that the proportion of modelling in daily 
school routine is low. Research focusing on the teachers’ point of view reveals several difficulties 
that teachers are confronted with. In a study of Schmidt (2010) it has been found out that 67% of the 
interviewed teachers indicate assessment as being the major challenge in the implementation of 
modelling tasks. Blum (1996) also speaks of an increased difficulty in the context of modelling tasks. 
These findings are comprehensible in view of the multiple solution approaches of modelling tasks.  

A common opinion is that modelling tasks cannot be assessed as objectively as traditional task 
formats (Spandaw & Zwaneveld, 2010). However, if we want modelling to be part of mathematics 
teaching, it must part of the grading (Hall, 1984). With the striking quotation “What you assess is 
what you get” Niss (1993) also argues in favor of a provision for modelling activities in the grading. 
The aim of the present paper is not to discuss and contrast formative and summative assessment since 
the advantages of formative assessment as assessment for learning movement could be confirmed in 
different settings (e.g. Black & William, 1998) and are not denied. However, in view of the fact that 
summative assessment aspects hinder the implementation of modelling tasks in everyday school live, 
it is necessary to provide tools or possibilities in that direction.  

Besides a number of assessment methods which aim at assessing modelling competence (e.g.  Berry 
& Le Masurier, 1984; Haines, Crouch, & Davis, 2000), there is hardly any assessment instrument 
which can be used for assessing modelling tasks in everyday school live. In this context so far only 
Maaß suggests an assessment scheme which can be adapted to different modelling tasks by a variable 



weighting of several categories (Maaß, 2007, p. 40). However, an empirical validation is lacking such 
that the assessment scheme might serve as orientation but it cannot give detailed instruction.  

On the way to an assessment scheme for a mathematics task, a common procedure of mathematics 
teachers (in the following referred to as “intuitive assessment practice”) is to identify reasonable 
intermediate steps in a solution which are worthwhile to be scored. On that basis an assessment 
scheme is set up which determines the conditions to be fulfilled for a differentiated scoring of those 
intermediate steps. Hence, there is a procedural difference between the phase of identifying scoreable 
aspects in a solution and an assessment scheme. The former is the requirement for the latter. At this 
point the present paper ties on by discussing the use of so called thought structures to identify 
reasonable intermediate steps in solution approaches of modelling tasks in connection with its 
difficulty. The question of identifying intermediate steps and the influence of their structure within a 
solution approach to its difficulty has been analysed by Reit (2016). In this study different models are 
developed and evaluated to determine the difficulty of solution approaches. Assuming that assessment 
of a mathematics task is strongly determined by its difficulty, interesting conclusions can be drawn 
concerning common assessment practice in school. Results of the study of Reit (2016) indicate that 
there is quantifiable influence of structural characteristics of a solution approach on its difficulty. 
However, it is also stated that a sequential model which is based upon a sequential arrangement of 
thought operations, similar to the intuitive assessment practice of mathematics teachers, can also be 
confirmed.  

Theoretical framework 
The core of the study of Reit (2016) is a structural analysis of students’ solution approaches of 
modelling tasks. These thought structures of solution approaches indicate the chronology of thought 
operations to be done to arrive at a solution. Assuming that parallel thought operations complicate a 
solution approach, a non-weighting difficulty model (addition model) is contrasted with four models 
varying in their weighting of parallel thought operations.  

Thought structure analysis 

Recalling structures is a wide-spread procedure in mathematics (Bourbaki, 1961, pp. 163). In this 
context Breidenbach (1963) looks at the structural-substantial complexity of a word problem to decide 
amongst others about its difficulty. He formulates that tasks with one operation deal in the simplest 
case, with one issue in which three factors play a role and every factor is uniquely determined by the 
two others (Breidenbach, 1963, p. 200). Breidenbach named such tasks Simplex. A linking of several 
Simplex is called Komplex. Further developments of Winter and Ziegler (1969) lead to the arithmetic 
tree which is still used in mathematics textbooks (Figure 1).  An obvious but so far empirically not 
validated conclusion is that a larger number of Simplex and a more complicated nesting of them, has 
an effect on the difficulty of the tasks’ solution (Graumann, 2002). 



 

Figure 1: Arithmetic tree of an exemplary task following Winter and Ziegler (1969) 

The study of Reit (2016) investigates the cognitive complexity of a solution approach on the basis of 
its structural complexity represented by its arithmetic tree-like structure. At that point the coherence 
of structural considerations and cognitive psychological theories play an important role. In a study of 
Fletcher and Bloom (1988) it is assumed that text comprehension is a kind of problem solving process, 
where the reader must find a causal chain which links start and end of a text. Furthermore they assume 
that information must be kept simultaneously in the working memory to be able to form such a causal 
chain. Results of their study show that readers must keep that information available that is the direct 
predecessor in the causal chain. It can be concluded that the task of the working memory is to keep 
information available which is necessary to link old and new information (Baumann 2000).  

By relating these findings to structural considerations of a solution approach represented as an 
arithmetic tree, statements can be made about its cognitive complexity. On the one hand the arithmetic 
tree-like structure (Figure 1) can be interpreted as causal chain since the start (given information in 
the task text) and end (solution of the task) is linked by chain links (intermediate steps in the solution 
process). On the other hand direct predecessors can be identified as relevant intermediate steps. Thus, 
it can be concluded that the previous intermediate step must be kept active in the working memory to 
master the following. The assumption that the mental processing capacity is limited (Sweller, 1988) 
leads to the statement that several information which has to be kept active at the same time, complicate 
the solution process. Thus, it can be deduced that the load of the working memory is dependent on 
the number of intermediate steps necessary to master the current intermediate step. That means that 
the load of the working memory increases with increasing number of information needed at the 
respective point in the solution process. 

Based on these considerations a study has been performed where theoretical difficulty of a solution 
approach is characterized as its cognitive complexity (Reit, 2016). Starting point is the so called 
thought structure of a solution approach which can be interpreted as kind of arithmetic tree (Figure 
1). To formulate a thought structure all student solutions of a modelling task have been clustered into 
several solution approaches according to the mathematical model or solution process used. An aim 
of the study was to investigate whether the number of sequential and parallel thought operations has 
an effect on the cognitive complexity and thus, the theoretical difficulty of a solution approach.  



Study design 
Approximately 1800 grade 9 students (15 years of age) from German grammar schools took part and 
completed a booklet consisting of three out of five modelling tasks (see modelling task “potato” in 
Figure 2) under seatwork conditions. The total processing time for a booklet lay within one teaching 
unit.  

 
Figure 2: Modelling task “potato” (Reit, 2016) 

Method 
In the following the method in the study of Reit (2016) will be briefly explained. For a detailed 
description of the methodical implementation it is referred to Reit (2016). 

All student solutions of a modelling task were analyzed and different solution approaches could be 
identified (two to four solution approaches per modelling task). These solution approaches within one 
modelling task differed in their underlying mathematical model used or, if similar to this, in their 
solution process. Every student solution was finally assigned to a solution approach (Figure 3). A 
structural analysis of these solution approaches then lead to individual thought structures indicating 
the chronology of thought operations. Based on thought structures of solution approaches different 
difficulty models have been developed to translate the respective structure into a scalar difficulty 
value. In a first step a thought structure was mapped onto a so called thought structure vector (Figure 
3). These thought structure vectors represent the tabular-compact form of a thought structure. Each 
vector component indicates the number of parallel thought operations on the respective level of the 
thought structure. 

Due to the fact that it was not clear yet if parallel thought operations lead to a higher difficulty than 
sequential thought operations, different operationalization of a thought structure vector into a scalar 
value were imaginable. Therefore different difficulty models have been set up (four accounting for 
parallelism of thought operations by weighting them and one non-weighting model (addition model)) 
which lead to solution approach specific difficulties. 

Industrial manufactured French fries are supposed to be equal in 
size and the single sticks are cut out lengthwise. Therefore not the 
whole potato can be used. The potato tubers look similar to the 
picture above, are regularly formed and approximately 10 cm in 
length. 

How many of these potato sticks can be obtained from one potato? 
Reason mathematically. 



 
Figure 3: Identification of solution approaches, setting up thought structures (together with its thought 
structure vector) and applying difficulty models which lead to theoretical difficulties 

Results 
Whether and to what extent parallel and sequential thought operations have an influence on the 
difficulty was evaluated by comparison with the corresponding empirical difficulty, as a measure of 
the average score of a solution approach. To determine the empirical difficulty all student solutions 
have been assessed by two independent raters on the basis of a predefined assessment scheme set up 
by experts. The question was whether the theoretical difficulty reflected the associated empirical 
difficulty of a solution approach. In this case structural characteristics of a solution approach can be 
taken as a basis for assessment of modelling tasks. Of special interest are the results of the non-
weighting difficulty model as analogy to mathematics teachers’ intuitive assessment practice. The 
non-weighting difficulty model (addition model) adds up all thought operations to arrive at a 
theoretical difficulty as it is done, more or less intuitively, by mathematics teachers when identifying 
scoreable intermediate steps.   

The results (Figure 4) indicate that addition and factorial model (pseudo-R²=0.83) map the coherence 
of theoretical and empirical difficulty best. The factorial model weights parallel thought operations. 
In regard of the focus of the paper the results in Figure 4 clearly show that the addition model lead to 
significantly better results than the most weighting models.  



 
Figure 4: Comparison of theoretical and empirical difficulty of solution approaches taking account for 
different difficulty models 

Discussion of results 
Particular reference is made to established but so far not researched assessment practices in 
mathematics teaching. The focus is on whether intuitive assessment practices of mathematics teachers 
can be empirically confirmed and transferred to modelling tasks. Intuitive assessment practice means 
the common procedure of mathematics teachers of scoring intermediate steps in student solutions 
without accounting for structural-cognitive particularities. These intermediate steps usually then 
serve as a basis for an assessment scheme. The portrayed procedure is commonly used when assessing 
performance tasks in mathematics (summative assessment). Modelling tasks with its multiple solution 
approaches are considered to be hard to assess. This problem not least leads to the fact that modelling 
tasks are sparsely used in mathematics class. Results of a study investigating the difficulty of 
modelling tasks support the intuitive assessment practice of mathematics teachers and thus, legitimate 
transferring this assessment practice to modelling tasks.  

In detail the results show that the addition model which treats sequential and parallel thought 
operations equally lead to reasonable results. This indicates that difficulty of a solution approach can 
be described well by the number of thought operations needed to arrive at a solution. By applying the 
addition model it is assumed that parallelism of thought operations has no influence on the complexity 
of a solution approach. This assumption is also made, more or less intuitively, in common assessment 
practice in mathematics teaching. Intermediate steps are identified and scored.  Thus, on the one hand 



the results support the everyday procedure in mathematics teaching where the difficulty of a 
mathematics task is often interpreted as the number of intermediate steps to complete a solution. On 
the other hand the results might justify a similar assessment procedure when assessing modelling 
tasks. In view of the widespread problems concerning assessing modelling tasks in everyday school 
live as part of the grading, the results clearly highlight a possible and furthermore practicable way.  

In summary it can be concluded that the so far intuitive assessment practice in school of identifying 
intermediate steps in a solution, can be supported by empirical findings. It can be a worthwhile 
procedure to identify thought structures as a basis for assessment especially when assessing modelling 
tasks. By assuming that assessment is connected with difficulty of the respective solution approach, 
parallelism of solution approaches has an influence (see the results of the factorial model) but might 
be neglected in favour of a straightforward applicability in everyday school practice. Thus the results 
of Reit (2016) can serve as a basis for the development of a manageable assessment scheme for 
modelling tasks and might promote their implementation in mathematics teaching. 

References 

Baumann, M. (2000). Die Funktion des Arbeitsgedächtnisses beim abduktiven Schließen: 
Experimente zur Verfügbarkeit der mentalen Repräsentation erklärter und nicht erklärter 
Beobachtungen. Chemnitz: Technische Universität Chemnitz. 

Berry, J. S., & Le Masurier, D. (1984). Open university students do it by themselves. In J. S. Berry, 
D. N. Burghes, I. D. Huntley, D. J. James, & A. O. Mascardini, Teaching and applying 
mathematical modelling (pp. 48-85). Chichester: Horwood. 

Black, P. J., & William, D. (1998). Assessment and classroom learning. Assessment in Education, 
5(1), 7-73. 

Blum, W. (1996). Modellierungsaufgaben im Mathematikunterricht - Herausforderung für Schüler 
und Lehrer. In A. Büchter, H. Humenberger, S. Hußmann, & S. Prediger, Trends und 
Perspektiven: Beiträge zum 7. Internationalen Symposium zur Didaktik der Mathematik. Wien: 
Hölder-Pichler-Tempsky. 

Blum, W. (2007). Mathematisches Modellieren – zu schwer für Schüler und Lehrer? Beiträge zum 
Mathematikunterricht 2007,  3-12. 

Bourbaki, N. (1961). Die Architektur der Mathematik I. Physik Journal, 17(4), 161-166. 

Breidenbach, W. (1963). Rechnen in der Volksschule: eine Methodik. Hannover: Schroedel. 

Fletcher, C. R., & Bloom, C. P. (1988). Causal reasoning in the comprehension of simple narrative 
texts. Journal of Memory and Language, 27(3), 235-244. 

Graumann, G. (2002). Mathematikunterricht in der Grundschule. Bad Heilbrunn/Orb: Klinkhardt. 

Haines, C., Crouch, R., & Davis, J. (2000). Mathematical modelling skills: a research instrument. 
Hatfield: University of Hertfordshire, Department of Mathematics Technical Report No. 55. 

Hall, G. G. (1984). The assessment of modelling projects. In J. S. Berry, D. N. Burghes, I. D. Huntley, 
D. J. James, & A. O. Moscardini, Teaching and applying mathematical modelling (pp. 143-148). 
Chichester: Horwood. 



Jordan, A., Ross, N., Krauss, S., Baumert, J. B., Neubrandt, M., Löwen, K., . . . Kunter, M. (2006). 
Klassifikationsschema für Mathematikaufgaben. Dokumentation der Aufgabenkategorisierung im 
COACTIV-Projekt. Materialien aus der Bildungsforschung Nr. 81. Berlin: Max-Planck-Institut 
für Bildungsforschung. 

Maaß, K. (2007). Mathematisches Modellieren - Aufgaben für die Sekundarstufe. Berlin: Cornelsen 
Verlag Scriptor. 

Niss, M. (1993). Assessment of mathematical applications and modelling in mathematics teaching. 
In J. de Lange, I. Huntley, C. Keitel, & M. Niss, Innovation in maths education by modelling and 
applications (pp. 41-51). Chichester: Horwood. 

Reit, X.-R. (2016). Denkstruturanalyse als Instrument zur Bestimmung der Schwierigkeit von 
Modellierunsgaufgaben. Heidelberg: Springer. 

Schmidt, B. (2010). Modellieren in der Schulpraxis: Beweggründe und Hindernisse aus Lehrersicht. 
Hildesheim, Berlin: Franzbecker. 

Spandaw, J., & Zwaneveld, B. (2010). Modelling in mathematics teachers' professional development. 
In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello, Proceedings of the Sixth Congress of 
the European Mathematical Society for Research in Mathematics Education, (pp. 2076-2085). 
Lyon, France: Institut national de recherche pédagogique and ERME. 

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 
12(2), 257-285. 

Winter, H., & Ziegler, T. (1969). Neue Mathematik: Lehrerheft. Hannover: Schroedel. 

 

 



Mathematics teachers’ assessment of accounts of problem solving 
Anna Teledahl 

Dalarna University, Falun, Sweden; ate@du.se 

In mathematics education it has been argued that traditional assessment provides insufficient 
evidence of students’ overall achievements. Assessment of problem solving has been put forward as 
a more comprehensive form of assessment. This however entails a subjectivity which raises 
concerns regarding the reliability. This study aims to investigate mathematics teachers’ assessment 
of mathematical problem solving. Nineteen teachers have been interviewed in five groups and asked 
to discuss a sample of 16 accounts of problem solving by 10-year-old students. The analysis focused 
on examining how five mathematical abilities, described in the Swedish mathematics syllabus, were 
addressed and discussed by the teachers. Preliminary findings indicate that the accounts provide 
teachers with very little evidence of students’ mathematical abilities. One of the reasons for this 
appears to be that the accounts do not offer clear descriptions of the problem-solving process. 

Keywords: Assessment, mathematical problem solving, abilities, teachers. 

Introduction 
Assessment forms a large part of teachers’ practice yet studies indicate that teachers feel 
inadequately prepared for the task of judging students’ performances, skills and understandings. 
(Cumming & Wyatt-Smith, 2009; Mertler, 2004). Research that has investigated teachers' 
assessment practices has also criticized such practices for failing to meet standards of reliability, 
objectivity and validity (Allal, 2012). Assessment is inherently a process of professional judgment 
in which the element of interpretation is salient. In mathematics education Morgan (1998) has 
shown that teachers can interpret the meaning of the same passages of texts, produced by students in 
mathematics, very differently. When teachers interpret observed test results or other types of 
information to come to a conclusion about a student’s level of knowledge or skill such a conclusion 
may be referred to as inference, and although some inferences can be made with more confidence 
than others, no conclusion about a particular student’s knowledge or skill can ever be made with 
certainty (Cizek, 2009). Assessment in school mathematics has always relied heavily on students’ 
written work (Morgan, 2001b). Written responses to mathematical tasks, such as problem solving, 
require that students explain both their thinking and the proposed solution. For such written material 
to act as valid evidence, from which judgements regarding students’ problem-solving processes and 
mathematical abilities may be inferred, it has to be clear and comprehensive. There is reason to 
believe that not all students possess the ability to produce clear and comprehensive accounts of their 
mathematical problem solving (Monaghan, Pool, Roper, & Threlfall, 2009). 

 
This study represents a microstudy on groups of teachers’ assessment of a specific set of accounts of 
solving mathematical problems. The accounts were collected from two classes of 10-year old 
students. The aim of the study is to investigate the aspects of mathematical problem solving which 
are addressed and discussed by the teachers and to relate these to the five mathematical abilities set 
by the Swedish mathematics syllabus. These abilities are related to: problem solving, mathematical 
concepts, mathematical methods, mathematical reasoning and communication.   



Students’ writing in mathematics 
It can be argued that the written mathematical work of students in school mathematics typically 
serves two very different functions. It can be seen as a part of a learning process in which writing is 
used to record and perhaps reflect on various mathematical ideas; hence, the text is written by and 
for the student herself. It can also however, be seen as a product for the purpose of assessment; 
hence, written for a teacher or examiner. Unlike the work of professional mathematicians, which is 
often thought to be the model for school mathematics, the work in school mathematics often serves 
these two functions at the same time (Morgan, 2001a). When problem solving is viewed as an 
individual cognitive activity, students use their writing to understand, explore, record, and monitor 
their own problem solving (Stylianou, 2011). Several studies indicate that writing poses problems 
for students. Evidence suggests, for example, that it is far more common for children to experience 
problems with semantic structure, vocabulary and mathematical symbolism than they do with, for 
example, standard algorithms (Ellerton & Clarkson, 1996). 

Assessing mathematical problem solving 
Assessment of students’ mathematical problem solving is complex. There are different definitions 
of what mathematical problem solving is and what constitutes a problem. A generally accepted 
definition suggests that problem solving can be seen as a response to a question for which one does 
not already know or have access to a method (Monaghan et al., 2009). This understanding is also 
used by OECD in the PISA 2012 Assessment and Analytical Framework (OECD, 2013). Problem 
solving can be seen as a goal, a process, and a skill and problem-solving activities are thought to 
engage students in a number of different processes such as reasoning, communication and 
connections (Rosli, Goldsby, & Capraro, 2013). In a situation where traditional assessment in 
mathematics is increasingly seen as providing insufficient evidence of mathematical knowledge and 
abilities beyond routine skills and algorithms there are high hopes for alternative forms of 
assessment of which problem solving is one (Jones & Inglis, 2015; Rosli et al., 2013). Despite its 
power to engage students however, problem solving has been problematic to use as a source from 
which to make inferences about students’ mathematical achievement. Reliance on the traditional 
mathematics test has often been justified on the grounds of reliability and comparability, but this has 
often been at the expense of validity (Watt, 2005). The challenges to assessment of problem solving 
are several. The first is that it requires access to evidence of the process. Most test situations do not 
include the option of observation to provide such evidence but rather require students to produce an 
extended written account which includes an explanation of both their problem-solving process and 
their proposed solution(s). This is problematic because considerable skill is required to produce 
clear and comprehensive accounts of problem-solving processes, a skill that students may or may 
not have (Monaghan et al., 2009). The second challenge is the element of interpretation and, thus, 
subjectivity. As teachers read and assess students’ texts, their professional judgment is formed by a 
set of resources which varies with their personal, social and cultural history as well as their relation 
to the particular discourse. These resources are individual, as well as collective, and they include: 
personal knowledge of mathematics and the curriculum, beliefs about the nature of mathematics and 
how these relate to assessment, expectations about how mathematical knowledge can be 
communicated, experience and expectations of students and classrooms in general, and  experience, 
impressions, and expectations of individual students (Morgan & Watson, 2002). Individual teachers 



may also have particular preferences for particular modes of communication as indicators of 
understanding. A study from Australia has also indicated that teachers themselves object to the use 
of alternative assessment methods such as problem solving on the grounds that it is perceived as too 
subjective (Watt, 2005). In Sweden there have been calls for national tests to be assessed and graded 
externally instead of by the teachers who already know the students. External grading is seen as a 
way to secure objectivity and fairness. 

Mathematical abilities 
Assessment in mathematics has many concerns, of which perhaps the most important one is: what is 
it that is being assessed? This issue has been dealt with and given many names throughout the 
history of mathematics education including numeracy, mathematical proficiency, mathemacy, 
matheracy and quantitative literacy, to name a few (Wedege, 2010). Competency frameworks in 
mathematics are constructs that build on the assumption that mathematics is a domain in which it is 
possible to provide a generic set of mathematical practices (Säfström, 2013). Given that 
mathematical activities have to be about something, arriving at a common and generic set of such 
skills and abilities proves a challenging task, as has been pointed out by many (see for example 
Jablonka, 2003; Kanes, 2002; Kilpatrick, 2001; Wedege, 1999). Some frameworks have focused on 
this ‘something’ whereas others have focused on the mental processes that are associated with 
mathematical activities in general. Influential examples of the latter include the five strands of 
mathematical proficiency introduced by the Mathematical Learning Study of the NCTM in the US 
(Kilpatrick, Swafford, & Findell, 2001) and the KOM project in Denmark (Niss, 2003; Niss & 
Højgaard Jensen, 2002). 

One of the motives behind the above referenced frameworks is the clear intention to break with a 
traditional teaching of mathematics associated with rote learning and procedures and instead 
promote a more dynamic view of what it means to do mathematics (Boesen et al., 2013). In Sweden 
the Swedish national curricula has been influenced by the ideas from these frameworks and in the 
Swedish syllabus in mathematics, introduced in 2011, five different abilities which the teaching in 
mathematics should provide the students the opportunity to develop, are described. These include 
the ability to: 

 formulate and solve problems using mathematics and also assess selected strategies and 
methods, 

 use and analyse mathematical concepts and their interrelationships, 
 choose and use appropriate mathematical methods to perform calculations and solve routine 

tasks, 
 apply and follow mathematical reasoning, and 
 use mathematical forms of expression to discuss, reason and give an account of questions, 

calculations and conclusions. (SNAE, 2011, pp. 59-60) 
 
In the syllabus the abilities, described above, are actualized in a set of knowledge requirements 
which define what constitutes an acceptable level of knowledge for the grades E, C, and A, where A 
represents the most advanced. In the results section the five knowledge requirements are shortened 
to: problem solving, mathematical concepts, mathematical methods, mathematical reasoning and 
communication. 



Data collection 
The study sets out to investigate teachers’ assessment of a specific set of accounts of mathematical 
problem solving and aims to identify the aspects of mathematical problem solving which are 
addressed and discussed by the teachers. Nineteen elementary school teachers from four schools in a 
middle-sized town in mid-Sweden were interviewed in groups. There were five groups of 3, 4 or 5 
teachers respectively. At the time of the interview all nineteen teachers were teaching mathematics. 
They were initially chosen by their principals and asked to participate based on their own interest. 
The interviews were all recorded on video and an additional audio recorder. The teachers were 
presented with 10-16 accounts of problem solving produced by students, aged 10. The problem-
solving was centered on two specific problems. They were both Diophantine equations involving 
the identification of a number of ways to distribute: a) 30 legs on 12 animals or b) 36 wheels on 11 
vehicles (see figure 1). This type of problem can be formulated in this way where there is only one 
possible combination or as an open problem to which there are many solutions. A small number of 
legs or wheels also results in a small number of combinations; the problem can therefore be adapted 
to fit different students or age groups. The students can also be asked to demonstrate that they have 
found all possible combinations and explain how they know this. The problem offers opportunities 
to adopt a more or less systematic trial-and-error strategy, but there are also other ways to solve the 
problem. Given that the problem involves concrete objects it also offers students opportunities to 
draw. All these properties contributed to the choice of the problem type.  

The teachers in the interviews were given information on the problems but very little information on 
the situation in which the texts were created. Being faced with an account of mathematical problem 
whose origin you know very little about forces a teacher to focus on the account itself and the 
interpretations derive to a larger extent from the account than it would had the teacher been asked to 
comment on their own students’ written material. The teachers were asked to discuss the different 
accounts from an assessment perspective and to provide arguments for their reasoning. The group 
interview was chosen so as to create room for discussions but also for eliciting the teachers’ idea of 
possible ‘common grounds’ in evaluating students’ accounts. The interviews, which amounted to a 
total of 4 hours 26 minutes, were transcribed. 

Analysis 
The analysis was performed in two steps. In the first step the transcribed interviews were analyzed 
with the intention of identifying instances in which the teachers discussed what the students seemed 
to be doing. This focus was inspired by the understanding that knowing mathematics is doing 
mathematics, as described above. This analysis included identifying verbs connected to instances of 
action such as understand, know, think, draw, calculate, see and show.  

The second step in the analysis was focused on relating the identified instances to the different 
abilities described in the syllabus. The five abilities problem solving, methods, concepts, reasoning, 
and communication, did not have to be mentioned specifically. A discussion regarding a method 
such as trial-and-error was considered as relating to method even if the term method was not used.  
Discussions about failed attempts or deficiencies were also considered as belonging to the category 
of the ability in question. Examples of quotes from the teachers are shown below together with the 
abilities they were thought to relate to. One quote can be related to several of the listed abilities. 



Teacher:  Here they have really tried…drawn all the tires… (problem solving, method, 
communication) 

Teacher:  He has counted the number of fours he has taken away and those are plus signs… 
it is plus 7… (problem solving, method) 

Teacher:  There is no reasoning to show that this is correct… (reasoning, communication) 

Teacher:  They cannot reason without explaining a little bit more… she has not used any 
concepts for example… (concepts, reasoning, communication) 

Teacher:  It is not enough to just write an answer…you have to be able to show in writing 
how you arrived at this… (communication) 

Teacher:  Yes but she…she does know how to solve the problem… (problem solving, 
communication) 

Teacher:  And then you try different numbers… that is how they have done it… you can see 
that they have erased… (problem solving, method, communication) 

 

Preliminary results 
The preliminary results are presented under headlines which are consistent with the five abilities 
described in the syllabus. In some cases the teachers’ discussions are covering two abilities at the 
same time and in these cases they are either presented under both headlines or presented as a 
compound ability which is treated under one headline. 

Problem solving 

Many of the teachers’ discussions are focused on the students’ choice of method or strategy for 
solving the problem and the teachers spend considerable time trying to identify the specific method 
of each student. Once this has been identified however, the discussions tend to turn to other issues. 
A problem solving strategy is seldom judged based on its appropriateness or sophistication. Other 
aspects of problem solving that are addressed by the teachers include the ability to describe a 
problem-solving approach. The ability to describe a method, strategy or problem-solving approach 
can be seen as part of a problem-solving ability and this aspect is also mentioned in the knowledge 
requirements. This aspect however is very difficult to distinguish from the ability to account for and 
communicate a method, strategy or problem-solving approach. The teachers’ discussions on 
students’ ability to communicate are treated under this headline below. The ability to reason about 
the plausibility of results of the problem solving, or to propose alternative approaches, which is 
mentioned in the knowledge requirements, is not discussed.  

Mathematical concepts 

Very few discussions deal with mathematical concepts. The four operations are mentioned but they 
are referred to as calculations which illustrate the process rather than as concepts. One student is 
identified by several teachers as having used the equals sign in a non-standard way which can be 
interpreted as relating to the concept of equality but this can also be connected to the way students 
choose to present their calculations. 



Mathematical methods 

As was presented above this is the ability which many of the teachers’ discussions are focused on. 
The method that most teachers identify is the trial-and-error method. Several teachers claim that this 
is the method that all students have used. There are several accounts which show different ways in 
which the students have carried out and represented this method but these differences are most often 
referred to as relating to the ability to communicate. There are examples of accounts where the trial-
and-error method is not used systematically and other examples where the representation indicates a 
calculation that precedes the trial-and-error since the account either contains no errors at all, or 
displays errors that have been erased but which are still traceable. This difference stirs many 
discussions among all the teacher groups. They are discussing whether they can tell if a student has 
tried different combinations and ruled some out or if the student came by the right combination by 
chance or by doing mental calculations that are not represented in writing. Sometimes they agree 
that they cannot tell and that this is due to students’ lack of ability to communicate their problem-
solving processes, other times they have different opinions regarding what can be inferred. 

Mathematical reasoning 

There is only one teacher who addresses the students’ mathematical reasoning. This teacher argues 
that any account of problem solving which describes a method or strategy constitutes evidence of 
some form of mathematical reasoning. The rest of the teachers in this group are not questioning her 
but they are not offering her support and the issue of mathematical reasoning does not come up 
again. 

Communication 

There are very few discussions that do not involve students’ ability to account for and describe their 
approaches to solving the problem. Practically every instance involves a question from the teachers 
regarding what the students have done or what they mean. Even in cases where the teachers have 
identified a successful strategy along with a correct answer to the problem they still raise questions 
regarding the clarity and coherence of the account. The discussions on presentation are focused on 
the students’ [lack of] logic, neatness, clearness, abstraction, accuracy, appropriateness, and 
comprehensiveness. When discussing students’ choice and employment of different method a 
typical comment from the teachers is “if she had only shown…”. This fictional comment 
summarizes the teachers’ frustration with what they perceive as lack of evidence on which they can 
base their judgements regarding other abilities. 

Discussion 
The preliminary results presented above can be used in response to the calls for external grading of 
national tests in mathematics in Sweden, and elsewhere, as a way to ensure objectivity and fairness. 
The results indicate that students’ lack of communicative skill makes it difficult for the teachers to 
use these written accounts to assess other mathematical abilities. The study thus confirms 
Monaghan et al’s (2009) claim that students’ ability to communicate, to describe and to account for, 
their processes or their thinking, is crucial for teachers as well as for students. In order for teachers 
to evaluate students’ abilities, they need to understand what the students have done and why. In 
order for students to write in a way that reflects their mathematical knowledge they need to know 



how to represent their problem-solving process along with explanations and arguments for their 
various choices. The fact that there are different ways to interpret what the students have written, 
further strengthens the conclusion that using this writing, to assess other mathematical abilities, may 
be problematic. The results should not be interpreted as suggesting that problem-solving should not 
be used to assess students’ mathematical abilities but rather that both teachers and students need to 
know more about different ways to clearly and comprehensively account for problem-solving 
processes. 
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In an experimental study with a pretest/posttest/delayed posttest and control-group design, we 
investigated the effects on students’ mathematics achievement of using classroom assessment 
techniques in Chines classrooms. Participants were 47 third-grade teachers and their 608 students 
in Nanjing, China. The teachers were assigned to either the experimental condition, participating in 
two two-hour workshops on classroom assessment, or the control condition, in which the teachers 
followed their regular teaching plans. The workshops focused on the use of classroom assessment 
techniques to reveal students’ understanding of multiplication and to enable teachers to adapt 
teaching to their students’ needs. Students from the teachers in the experimental condition slightly 
improved their mathematics achievement scores. However, no statistically significant difference was 
found between the two conditions. 

Keywords: Classroom assessment, student achievement, China, multiplication, teachers. 

Introduction 
The guidance teachers provide in their mathematics classes to their students can be more or less 
effective for stimulating students’ learning processes, depending on whether their instruction is 
attuned to students’ needs and possibilities for further development. Therefore, at practically every 
moment teachers need to know where the students are in their learning process (Wiliam, 2011). This 
was also recently emphasised by Schoenfeld (2014) when he wrote that “[p]owerful instruction 
‘meets students where they are’ and gives them opportunities to move forward” (p. 407). Classroom 
assessment, i.e. assessment in the hands of the teachers that is interwoven with instruction and 
integrated in daily teaching practice, can inform teachers of ‘where their students are’ and as such 
enable them to adapt their further instruction to their students’ needs. 

Since the importance of classroom assessment on raising students’ achievement was revealed by 
Black and Wiliam (1998), much attention has been paid to professional development to enhance 
teachers’ classroom assessment practice. The rationale for this is that providing professional 
development to teachers on the use of classroom assessment can lead to teachers gaining more 
information on their students’ understanding and skills. Through this information teachers can adapt 
their teaching to their students’ needs, which in turn is expected to lead to improved student 
achievement. Whether professional development indeed has impact on student achievement was 
investigated in several studies (Phelan et al, 2012; Randel, Apthorp, Beesley, Clark, & Wang, 2016; 
Thompson, Paek, Goe, & Ponte, 2004; Veldhuis & Van den Heuvel-Panhuizen, 2014, 2016). The 
results of these studies are mixed. Facilitating teachers to use classroom assessment has been shown 
to lead to considerable improvement of students’ achievement (Phelan et al, 2012, Veldhuis & Van 
den Heuvel-Panhuizen, 2014, 2016). It also happened that professional development on classroom 
assessment had only a small but consistent positive effect on student learning (Thompson et al, 2004) 



 

or failed to yield any statistically significant impact (Randel et al, 2016). These mixed, but generally 
positive, results on the effects of professional development on classroom assessment were all found 
in the western educational context. As there are important differences between mathematics education 
in Western and East Asian countries (Leung, Graf, & Lopez-Real, 2006), we aimed to find out 
whether giving support to Chinese teachers on the use of classroom assessment would have an effect 
on their students’ mathematics achievement. 

In China, recently, classroom assessment has received increasing attention from primary school 
mathematics teachers, as evidenced by an increasing number of teacher-written papers addressing 
classroom assessment (Zhao, Van den Heuvel-Panhuizen, & Veldhuis, 2017). Moreover, in Chinese 
primary mathematics education, teachers generally agree that assessment is useful for the 
improvement of teaching and learning, and they assess their students at least weekly by employing 
various methods, for example observing, questioning and assigning textbook tests (Zhao, Van den 
Heuvel-Panhuizen, & Veldhuis, 2016a). It seems that classroom assessment has been widely 
embraced and implemented in teaching practice. However, professional development focused on 
classroom assessment seems sparse (Zhao et al, 2016a), let alone investigations into its effect on 
students achievement. 

In our study, classroom assessment is conceived as the use of what we call ‘classroom assessment 
techniques’ (CATs): short teacher-initiated assessment activities that teachers can use in their daily 
practice to reveal their students’ understanding of a particular mathematical concept or skill. These 
CATs have been used in earlier research in the Netherlands (Veldhuis & Van den Heuvel-Panhuizen, 
2014, 2016). Our main research question was: What are the effects of supporting Chinese primary 
school mathematics teachers’ use of classroom assessment techniques (CATs) on students’ 
mathematics achievement? 

Method 
An experiment with pretest/posttest/delayed posttest and control-group design (see Table 1) with 47 
third-grade mathematics teachers from 18 primary schools was carried out in Nanjing, China. All 
teachers used the same textbook, namely 苏教版 textbook published by Jiangsu Phoenix Education 
Publishing House (2014). Based on the participating schools’ reputation, educational quality, and 
location, pairs of matched schools were allocated either to the control or to the experimental 
condition. Teachers in the experimental group participated in two two-hour workshops on the use of 
classroom assessment techniques, whereas the teachers in the control group followed their regular 
teaching plans. 

Condition January  March  May 

  Week 1 Week 2 Week 3  

Control Pretest   Posttest Delayed posttest 

Experimental Pretest Workshop Workshop Posttest Delayed posttest 

Table 1: Time schedule of the experiment in 2015 

In the workshops, the teachers were introduced to eight CATs. These CATs are low-tech and low-
cost, and can easily be implemented by teachers. Every technique consists of a short activity (less 



 

than 10 minutes) and helps teachers to quickly find out something about their students’ understanding 
of mathematics, provides indications for further teaching. Also, the teachers could adapt the 
techniques to their own practice; they could choose when and how to use the CATs. The focus of the 
assessment techniques was on the first chapter of the second semester of Grade 3, in which students 
learn how to solve multiplication problems of two-digit numbers mainly by written digit-based 
algorithm. In the following we illustrate three examples of these CATs. During the workshops, the 
teachers in the experimental condition were provided with a detailed teacher guide describing the 
eight CATs that all fitted to the content of their textbook. Detailed information about the purpose of 
the CATs and suggestions for how to use them was provided and discussed during these workshops. 
It was also explained that the teachers were free to decide how they would use the CATs in practice 
in the following two weeks of multiplication teaching. 

CAT 1: Family problems 

This CAT (see Figure 1) is aimed at assessing whether students recognize similarities among 
analogous problems and can use the given answer to one of these problems to solve the others. 

 
Figure 1: CAT 1: Family problems 

One strategy to solve a multiplication problem with either the multiplicand or the multiplier being a 
multiple of 10 is making use of an analogous problem of which the answer is known or which is easy 
to calculate. A requirement for students to choose and use this strategy is that they understand the 
analogous relationship, even when the numbers involved in the multiplication are bigger than two 
digits. CAT 1 is meant to elicit information of whether and to what extent students have this 
understanding. The students are provided with the answer of 97×8 and are then asked whether they 
think they are able to solve mentally a number of other, related multiplication problems that, at first 
sight, are not easy to solve by mental calculation. CAT 1 differs from the regular assessment tasks in 
the textbook in which the students have to carry out the calculation and the focus is on detecting 
whether students can do this correctly. In CAT 1 it is assessed whether the students recognize the 
analogue structure of the problems and are aware that they can use this for solving these problems. 
In CAT 1, the teacher asks for every problem whether students think they are able to solve it. All 
students have a green card (for the answer: “Yes”) and a red card (for the answer: “No”) with which 
they can show their answers (see Figure 2). By inspecting the waving green and red cards the teacher 
gets an immediate overview of the students’ responses and whether they see the analogy between the 
problems, and whether their understanding is affected by the number of zeroes in the family problems. 



 

 

Figure 2: Students showing their cards in CAT 1 for the problems 97×80 and 970×8000 

CAT 2: Breaking down a multiplication 

This CAT (see Figure 3) is aimed at assessing whether students can identify the components of a 
multiplication by filling in the blanks on a work sheet. 

 
Figure 3: CAT 2: Breaking down a multiplication 

Students may be able to find the correct answer of a problem like 24×53 by performing the standard 
multiplication algorithm perfectly; however, this does not necessarily mean that students understand 
what they are doing and that they understand the structure of multiplications with multi-digit numbers, 
which is the focus of CAT 2. This approach of requiring students to unravel multiplication problems 
differs from the regular approach to assessing students in which finding the correct answer of a 
multiplication problem receives most attention of mathematics teachers. In the case of CAT 2, the 
multiplication of 24 and 53 can be unpacked into four sub-multiplications, namely 3×4, 3×20, 50×4, 
and 50×20. The sum of the results of these sub-multiplications gives the answer of 24×53. By asking 
students to identify the components of a multiplication problem of multi-digit numbers it can be 
revealed whether they understand what is ‘behind’ the multiplication algorithm. For example, the 
student work in Figure 4 shows that Student 1 has difficulties in being fully aware of the values of 
the digits (having 5×4 and 5×20 instead of 50×4 and 50×20 in Task a, and having 2×3 instead of 20×3 
in Task b), while Student 2 could not clearly distinguish the different components of the 
multiplication 24×53 (having 4×3 instead of 20×3 in Task b, and having no answer filled in Task c). 

 

Figure 4: Work of two students in CAT 2 

CAT 3: Fruit language 

This CAT (see Figure 5) is aimed at assessing whether students can use the associative and 
distributive property of multiplication to restructure a multiplication problem. 



 

 
Figure 5: CAT 3: Fruit language 

Making use of the associative and distributive property of multiplication is the basis of solving 
multiplication problems. By using these properties students can convert a difficult multiplication 
problem into a number of easier multiplication problems. For example, 25×36 can be solved by 
calculating 20×36 and 5×36 (distributive property) or by calculating 25×4×9 (associative property). 
For solving multiplication problems in this way it is very important that students understand the 
associative and distributive property of multiplication and that they can identify the possibilities of 
restructuring a multiplication problem. CAT 3 provides an opportunity for students to show this 
understanding. In order to avoid the difficulty of formal notations, fruit is used as a substitute. 

The student work shown in Figure 6 reveals that Student 3 has arrived at a high level of the 
understanding of the associative and distributive property of multiplication and is able to notate this 
in a proper mathematical way, although not using a formal notation with number or letter symbols. 
Student 4 only ‘rewrote’ one of the multiplication problems (18×20) by drawing four bananas. 
Moreover, the worksheet of this student shows that he/she did not use the properties of multiplication 
but instead was calculating the multiplications and then tried to express the answer by using the fruit. 

Figure 6: Work of two students in CAT 3 

In order to measure students’ mathematics achievement, three tests were used, which were designed 
and arranged by the local teaching research office. These tests have the same structure in terms of the 
type of questions and total score (100 points). However, the mathematical domains that are tested are 
different. The immediate posttest was an end-of-chapter test and focused on the multiplication of two-
digit numbers. The pretest and the delayed posttest were end-term and mid-term tests, which also 



 

included problems related to measurement, fractions, and geometry. Nevertheless, multiplication is 
the main focus of all the three tests (30% of the points in the pretest and delayed posttest and 90% in 
the immediate posttest were related to multiplication tasks). 

Originally, 3040 students took the tests. Since it was found that mistakes were made when grading 
students’ examination papers, we decided to choose 608 (20%) students systematically, based on their 
student number in every class, for data checking to be included in the final analysis. 

Results 
Unexpectedly, on average, students in both conditions had decreasing mathematics achievement 
scores from pretest (Mexp = 89.2, SDexp = 8.7; Mcon = 90.8, SDcon = 7.7) to immediate posttest 
(Mexp = 88.5, SDexp = 9.3; Mcon = 89.5, SDcon = 9.0) and to delayed posttest (Mexp = 86.4, SDexp = 12.2; 
Mcon = 87.7, SDcon = 11.2). When looking at the standardized scores this image becomes a bit less 
clouded by the different tests measuring different domains at the different time points, therefore we 
report the z-scores in Table 2. The pattern remains almost the same, with relatively higher scores in 
the control condition than in the experimental condition, but, in the experimental condition, a slight 
improvement of the scores appears after the intervention. 

 Pretest score  Posttest score  Delayed posttest score 
n 

Condition M SD  M SD  M SD 

Control  0.104 0.930   0.059 0.986   0.058 0.952 278 

Experimental -0.088 1.049  -0.050 1.010  -0.049 1.038 330 

Table 2: Descriptive statistics of students’ standardized mathematics (z) scores per condition for the 
pretest, posttest, and the delayed posttest 

We performed an analysis of covariance (ANCOVA) on the immediate posttest scores to see if this 
small improvement was statistically significant. In this ANCOVA the pretest score was entered as 
covariate and condition as fixed factor. It turned out that no significant effect for condition was found 
(F(1, 605) = 0.08, p = .776, ηp

2 = 0.000). 
Discussion 
The students of the teachers that participated in the workshops on the CATs only very slightly 
improved their standardized mathematics achievement scores after the intervention. This 
improvement was not significant, neither in size, nor in the statistical sense. Contrary to these findings 
in the experimental group, the students in the control group did not improve their standardized scores 
from one test to the other. However, on average the students in the control condition outperformed 
the students in the experimental condition on all three tests. A possible reason for the minor changes 
in students’ mathematics achievement could be that there appeared to be a strong ceiling effect on the 
tests (average success scores of around 90%). Maybe students’ extant high achievement level could 
also have caused that the use of the CATs did not further optimize the teachers’ instruction. Another 
explanation for the small improvement in the experimental condition could be the short period of time 
of the intervention. In less than three weeks, the teachers in the experimental condition needed to 
understand how to use the CATs, to incorporate them into their teaching plans, and to reconcile the 
new insights into their students with their original understanding of students and teaching. For 



 

teachers to really get used to and to make the most of the implementation of the CATs, probably more 
time needs to be reserved and more guidance needs to be offered in the professional development 
workshops. 

Also the context of the experimental study may have influenced the effect of the CATs on the 
students’ mathematics achievement. First of all, as we found in an earlier study (Zhao, Van den 
Heuvel-Panhuizen, & Veldhuis, 2016b) Chinese primary school mathematics teachers have detailed 
lesson plans and tend to include CATs in their pre-arranged lessons as extra exercises rather than 
implementing them as formative assessment activities. As such, the teachers may not have used the 
information gathered with the CATs for adapting their instruction. Another issue is that the planned 
lessons have for every addressed topic a fixed time schedule for instruction and practice. By including 
the CATs less time could be spent on teaching these topics and students may have had less practice 
in solving the problems as used in the regular tests. A promising finding is that despite this smaller 
investment in the regular program the students in the experimental condition did not perform really 
worse in the regular tests than their counterparts in the control condition. In this way, our study 
provides some evidence which may encourage teachers to go beyond the straightforward testing of 
the standard operations and pay also attention to examining students’ deeper understanding of these 
operations, and use the assessment information adaptively for improving instruction and student 
learning. 
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The complexity of mathematical thought and the quality of learning: 
Portfolio assessment 
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This poster presents an instance of portfolio assessment by two students on a geometry problem in a 
pre-service teacher training course analysed through a model designed to access the mathematical 
thought and the quality of student leaning outcomes. This analytical model, supported by the SOLO 
taxonomy, uses Activity Theory as a contextual framework that integrates the different relations, 
namely advanced mathematical thinking concepts like procept and proceptual divide. Results allowed 
us to see the different pathways taken by the students to solve the same problem.  

Keywords: Assessment, geometry, portfolio, quality of learning, mathematical thought. 

Introduction 
Portfolio assessment brings an open evaluation method into the mathematical classroom and allows 
the mathematical abilities of the students to grow. In this study, students chose three of 15 problems 
and were given one month to solve them and to explain in detail their solution process. This solution 
process involves brainstorming sessions centred on the best solution, and the detailed explanation 
necessarily involved in self-regulated learning processes. This teaching method aims to extend the 
mathematical knowledge of future teachers, involving them in activities more open and less structured 
than the traditional ones. 

The data presented here were chosen because the students show a similar path (12th grade 
mathematics) and took different approaches to the same problem. Data was studied using the 
analytical model that highlights these differences and integrates the SOLO taxonomy (Biggs & Collis, 
1982) with the advanced mathematical thinking theories and concepts of Tall (1991) alongside the 
conceptualization of the proceptual divide (Gray & Tall, 1994), and activity theory (Engeström, 2001) 
as a contextual structure. The SOLO taxonomy allows us to identify five progressive levels of 
understanding from the prestructural (lowest level), through the unistructural, the multistructural, 
the relational to the extended abstract (highest level). 

The problem statement asks to find the length of 𝐵𝐶̅̅ ̅̅  (to the second decimal place) knowing that 𝐴𝐶̅̅ ̅̅ =

10𝑐𝑚 and ∡𝐵𝐴𝐶 = 300 (do not use any trigonometry) with the aid of figure 1. 

 
Figure 1: Visual representation of the problem  

Raquel, one of the participants, struggled with this problem due to the limitation stated in the problem 
(do not use trigonometry), but she sketched another triangle making an isometry using [𝐴𝐶] as a 



symmetry axis, creating with 𝐵′ an equilateral triangle 𝐴𝐵𝐵′ because if ∡𝐵𝐴𝐶 = 300 then the
resulting isometry makes ∡𝐶𝐴𝐵′ = 300 therefore ∡𝐵𝐴𝐵′ = 600 and a equiangular triangle is also an
equilateral triangle. By using the Pythagorean theorem, she calculated: 

𝐼𝑓  𝐴𝐵̅̅ ̅̅ = 𝑥, 𝐵𝐶̅̅ ̅̅ =
𝑥

2
, 𝐴𝐶̅̅ ̅̅ = 10 𝑡ℎ𝑒𝑛 𝑥2 = (

𝑥

2
)

2
+ 102 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔 𝑥2 =

𝑥2

22 + 100 ⇔ 4𝑥2 = 𝑥2 + 400 ⇔

⇔ 4𝑥2 = 𝑥2 + 400 ⇔ 3𝑥2 = 400 ⇔ 𝑥 ≅ 11,55 ⇔ 𝐴𝐶̅̅ ̅̅ =
𝑥

2
≅ 5,77 𝑐𝑚

Mariana on the other hand started calculating ∡𝐴𝐵𝐶 by subtracting the other two angles known so: 

𝐼𝑓 ∡𝐵𝐴𝐶 = 300, ∡𝐵𝐶𝐴 = 900 𝑡ℎ𝑒𝑛 1800 = 900 + 300 + ∡𝐴𝐵𝐶 𝑠𝑜 ∡𝐴𝐵𝐶 = 600

And then she made a relation between the sides of the triangle by using the ration of special 
triangles (a trigonometry concept) what gives the following outcome: 

𝐼𝑓 𝐴𝐵̅̅ ̅̅ = 2𝑎, 𝐵𝐶̅̅ ̅̅ = 𝑎, 𝐴𝐶̅̅ ̅̅ = 𝑎√3 ∧ 𝐴𝐶̅̅ ̅̅ = 10 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑎√3 = 10 ∧ 𝑎 =
10

√3
 𝑠𝑜 𝐵𝐶̅̅ ̅̅ = 𝑎 𝑠𝑜 𝐵𝐶̅̅ ̅̅ ≅ 5,77 𝑐𝑚

Final remarks 
These students are very familiar with being tested by closed book exams (and they were expecting 
that also), but portfolio assessment was a different approach and they were in an unknown territory.  

Raquel clearly surpassed the proceptual divide and her outcome was classified as an extended 
abstract. She made connections to other concepts, explained her pathway and was able to justify the 
outcome, supplying evidence to support her solution. Activity theory was used to identify the 
contradiction arising by the use of different mediating artifacts namely the use of isometries to 
produce the equilateral triangle.  

Mariana knew something about what she was doing, but by breaking the mathematical rules she did 
not surpass the proceptual divide. Her outcome was classified as multistructural. After the 
presentation of the results it is clear that her answer could be unistructural because she made simple 
connections without identifying their role. She could not describe what’s the process she had followed 
but could not justify what she did and how she obtained the outcome. The use of activity theory 
revealed two major contradictions related to the mediating artifacts and the limitations. 
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In this report the themes and points for discussion of the Thematic Working Group 22 on Curricular 
Resources and Task design are briefly explained and summarized. These related to design 
principles and task characteristics, also of digital curriculum resources, and perspectives on the 
development of digital resources were identified. At the same time the role of teachers in task 
design, whether as “designers” or “partners in task design” or as mediators of tasks designed by 
others, and of course the role of students working with the tasks/resources, were acknowledged as 
crucial issues. Concerning teachers, pre-service or in-service teacher education, and generally 
teachers’ work in collectives, were perceived as stimulating contexts for the design of and work 
with curriculum resources: how can teachers develop design capacity and knowledge when working 
with curriculum resources, and which affordances (and constraints) are provided by digital 
resources? Concerning students, discussions evolved around issues related to how digital resources 
can provide feedback for enhanced student learning.   

Keywords: Curriculum resources; task/curriculum design; design principles; teacher collective 
work; design capacity. 

Background 
The TWG 22 received 25 paper and poster submissions: 17 submissions were accepted as papers, 6 
as posters, and 2 were withdrawn (for various reasons: lack of funding; lack of time). The 
contributing authors came from 17 different countries.  

The sessions were organised into five paper sessions organised under four themes, one poster 
session, and one report & discussion session. For each session we now briefly present the authors 
and titles of the individual presentations, followed by a summary of themes discussed in the 
sessions.   

Session 1 & 2 
Theme: Issues linked to the design of tasks and resources 

• Gijsbers & Pepin: Context based tasks on differential equations to improve students' beliefs 
about the relevance of mathematics 

• Nagari Haddif: Principles of redesigning an e-task based on a paper-and-pencil task: The 
case of parametric functions 

• Borys & Choppin: Tensions between resource perspectives and trends in the design and 
dissemination of digital resources 



• Brocardo, et al.: Tasks to develop flexible multiplicative reasoning 

• Seidouvy & Eckert: Designing for Responsibility and Authority in experiment based 
instruction in mathematics 

• Cohen-Eliyahu: The role of design in conceptual change: The case of proportional reasoning 

The issues identified in these two sessions related to four main themes. First, participants discussed 
the relationships between design principles and task characteristics. This is particularly important, if 
the design is expected, for example, to afford conceptual change (see Cohen-Eliyahu), or to support 
student reasoning competency involving aspects of authority and responsibility (see Seidouvy & 
Eckert) or to enhance students’ beliefs about the relevance of mathematics (see Gijsberg & Pepin), 
or to facilitate noticing and visualization when developing flexible multiplicative reasoning skills 
(see Brocardo, et al.). It is also pertinent for tasks that were re-designed from paper and pencil to e-
tasks (see Nagari Haddif). Second, perspectives on the development of digital resources were 
identified, and tensions between conceptions of teachers’ interactions with digital resources and the 
ways other actors (e.g. policy makers, curriculum developers) frame the purpose for and 
development of digital curriculum resources (see Borys & Choppin). A third point of discussion was 
the role of teachers in task design, whether as “designers” or “partners in task design” or as 
mediators of tasks designed by others. In fact, it was concluded that often teachers were left out, or 
insufficiently considered, in relation to their role of mediating tasks. A fourth point of discussion 
was related to the role of students working with the tasks/resources, which was addressed in the 
majority of the papers presented in these two sessions.  

Session 3 (poster session) 

In this session all posters were presented in order to provide additional opportunities for 
contributors to participate in this TWG. 

- Noll, et al.: How to design educational material for inclusive classes 

- Jukic Matic: Teachers’ pedagogical design capacity and mobilisation of textbook 

- Wynne & Harbison: Task design within the Universal Design for Learning Framework to 
support inclusion in the mathematics classroom 

- Llanos & Otero: Changes in the images and arguing from mathematics textbooks for the 
secondary school in Argentina along 67 years 

- Dooley & Aysel: Using variation theory to explore the re-teaching phase of lesson study 

- Cizmesija et al.: Asymptotes and asymptotic behaviour in graphing functions and curves: an 
analysis of the Croation upper secondary education within the anthropological theory of 
didactics 

Session 4 
Theme: Issues linked to prospective teachers’ work with tasks and resources  

• Dempsey & O’Shea: Critical Evaluation and Design of Mathematics Tasks: Pre-Service 
Teachers  

• Kilic, et al.: Pre-service teachers' reflections on task design and implementation 



• Stylianides & Stylianides:  Promoting prospective elementary teachers’ knowledge about the 
role of assumptions in mathematical activity 

The issues identified in this session related to four main themes. First, although not directly 
addressed in the three papers, the issue of design capacity building was raised: what teacher design 
might mean (see also sessions 1 & 2), who is designing what (see also sessions 1 & 2), and how 
design capacity building relates to teacher education. Linked to latter, a second point was discussed: 
the relationship between teacher knowledge (see Stylianides & Stylianides) and design capacity. As 
a third point for discussion, participants reflected on the implementation process in terms of pre-
service teacher learning/knowledge development (see Kilic, et al.). Under a fourth issue it was 
discussed how teacher knowledge (in teacher education) could be enhanced through task design 
(Dempsey & O’Shea). 

Session 5 

Theme: Issues linked to design and use of resources in professional development and collective 
work  

• Eckert: Agency as a tool in design research collaborations 

• Essonnier, et al.: Factors impacting on the collaborative design of digital resources 

• Gueudet & Parra:  Teachers' collective documentation work: a case study on tolerance 
intervals 

• De Moraes Rocha & Trouche: Documentational trajectory: a tool for analysing the genesis 
of a teacher's resource system across her collective work  

The issues identified in this session related to three main themes. First, it was emphasised that 
teachers’ learning trajectories of professional learning are typically not short-term, and hence that 
there is a need to research them longitudinally (see De Moraes Rocha & Trouche). Second, the 
dynamics in collaborative task design of teachers and teachers working/designing collaboratively 
with curriculum resources, were highlighted (see Eckert; Gueudet & Parra): in terms of lesson 
preparation, design of learning trajectories, and/or teacher re-design in class. Linked to that a third 
point was raised: the cultural aspects of teachers working with curriculum resources (see Essonier et 
al.).  

Session 6 
Theme: Issues linked to teacher and student use of resources/curriculum materials at primary level 

• Daina: From textbook to classroom: a research on teachers’ use of pedagogical resources in 
the context of primary school in the French  

• Delaney: Children's performance on a mathematics task they were not taught to solve: A 
case study 

• Gaio: Programming for 3rd graders, Scratch-based or Unplugged? 

• Rezat: Students’ utilization of feedback by an interactive mathematics e-textbook for 
primary level 



The issues identified in this session related to four main themes. First, although not directly 
addressed in all papers of this session, the choice, design and use of digital as compared to non-
digital curriculum resources were discussed. This was seen as particularly relevant, as often digital 
curriculum resources are combined with traditional materials (see Gaio), such as textbooks. Second, 
participants discussed the use of mathematical tasks/curriculum resources to promote particular 
learning goals (see Diana), in particular as textbooks often do not provide information on how to 
organize the teaching of particular activities. This links to the third point, the enactment/ 
implementation of tasks depending on teacher goals (see Delaney). A fourth point related to task 
design and feedback, that is ways in which teachers or curriculum developers can provide effective 
feedback, i.e. feedback that actually influences the development of mathematical concepts (see 
Rezat). 

Session 7 
In session 7 the following themes were identified as overarching issues: 

• Task design: what does task mean; what does design mean? 

• Teacher design capacity & the role of the teacher in “design” (incl. implementation) 

• Digital resources/tasks/curriculum materials 

• Plurality of theoretical frameworks & clarity 

• Operationalization of theoretical frames  

• High inference claims & evidence  

Whilst the first three have been addressed under previous sections, the last three deserve a special 
mention. It was noted that a plurality of theoretical frames was used. This is not an issue in itself, 
but it becomes a problem, when the diversity of theoretical frameworks diverts from, and sometimes 
covers, the problem addressed, that is obscures the clarity of the research. Linked to that selected 
participants would have wanted a better, or clearer, description of how the theoretical frames were 
actually operationalized. Moreover, it was mentioned that too often the researchers made high 
inference claims based on insufficient evidence. This was seen as a shortcoming of such research. 
Overall, participants emphasized the positive and constructive atmosphere in the group, where 
criticism was welcomed as a vehicle for developing deeper insights and sharpening up of ideas.    

 



Tensions between resource perspectives and trends in the design and 
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Teachers are increasingly using digital resources to design lessons. We describe three perspectives 
for describing teachers’ interactions with digital resources, perspectives that denote different 
assumptions with respect to teacher agency and the connections between capacity development and 
resource use. This paper examines the tensions between these conceptions of teachers’ interactions 
with digital resources and the ways other actors – including policy makers, curriculum developers, 
and purveyors of online content – frame the purpose for and development of digital resources. Our 
analysis suggests that the assumed role of the teacher differs across different sets of actors and 
different visions related to the design and development of digital curriculum resources. The 
implications relate to the opportunities for teachers to transform digital resources to suit their 
purposes and to develop and grow professionally as a result.  

Keywords: Digital curriculum, teacher practices, curricular resources. 

Teaching is design work: Teachers actively interpret and mobilize resources to attain pedagogic and 
curricular goals.  Moreover, teachers increasingly use, and are expected to use, digital resources to 
design lessons. However, there are tensions between education technology discourses, curriculum 
design trends, education policies, and the work teachers do with digital resources. As a case in point, 
in Sweden a public/private partnership endeavor created a repository of resources and lessons for 
teachers that was little used because the design of the repository did not take into account how 
teachers actually take up digital resources, illustrating the lack of alignment between teachers’ 
professional practices, education policy, and the design of instructional resources (CERI, 2009). As 
Remillard (2012) notes, teachers do not simply interpret authors’ intentions as they engage with 
curriculum resources, they engage with the artifact itself (p. 114).  Given that teachers’ work with 
resources can promote teachers’ professional development and meaningful experiences for students, 
it is important to understand how tensions between teachers’ practices and the assumptions about 
teaching and teachers embedded in digital resources potentially constrain teachers’ opportunities to 
develop design capacity.   

To illustrate how digital resource design and dissemination limit teachers’ agency – and thus their 
roles as designers – we examined tensions between conceptions of teachers’ interactions with digital 
resources and the ways other actors – including policy makers, curriculum developers, and purveyors 
of online content (commercial publishers, large philanthropies) – frame the purpose for and 
development of digital resources.  These actors constitute the largest source of resources and 
information regarding digital resources and thus their influence merits attention from the research 
community. The ways digital resources are framed and promoted by policy makers and other actors 
may be at odds with the actual work teachers do and the needs of their students.   



Conceptualizations of teachers’ work with digital curriculum resources 
The meaning of the term resources depends on the perspective of the researcher and what is being 
researched (Ruthven, 2013). Researchers frame the relationship between teachers and their use of 
resources in three ways: resources function as tools that mediate the act of teaching; resources 
function as artifacts (instruments) that signify outcomes of processes; and resources function as 
objects whose creation is a key component of teachers’ professional work (Remillard, 2013). These 
are elaborated in more detail below. 

The most common framing in teachers’ design work is that resources are tools that mediate teachers’ 
work, in line with sociocultural notions of tool mediation (e.g., Wertsch, 1998). The resource’s 
function is primarily to help/aid/assist teachers in the work of teaching.  Teachers’ use of resources 
allows them to improve practices they already engaged in or, sometimes, to engage in new practices 
altogether. Often, the affordance or benefit of the resource is located within the resource and teachers 
perceive the affordance or benefit and apply it to their local context. Kasten and Sinclair (2009), for 
example, showed that teachers selected digital applets to help present topics in new ways. Also, 
Duncan (2010) demonstrated that teachers made their classroom practices more student-centered 
because the resources they were using automatically provided students feedback and gave students 
more agency over their interactions with content. These teachers crafted lessons that capitalized on 
this shift in the student-content relationship. In these two examples, the benefits or affordances were 
thought of as residing in the resource.  

Considering resources as an artifact – rather than as a tool –connotes place and time: teachers’ use of 
resources is inseparable from when they are used and teachers’ purposes for using resources. The 
theory of instrumental genesis (Rabardel, 2002) considers three factors: the impact of the design of 
tools on how they are used (instrumentation); the users and their previous experiences with using the 
tool (instrumentalization); and the purposes and goals users assign to tool use (schemes of utilization).  
Acknowledging the different factors that impact a how teachers take up tools makes the processes 
associated with using the tool rather than the tool itself the object of study. Rabardel defined an 
instrument as an artifact coupled with the schemes of utilization users assign to it. It is important to 
note that the theory of instrumental genesis is focused on the resource in use, not the resource itself.  
The use of the term instrument emphasizes a process of transformation where the focus is on how 
teachers use resources to attain goals, not some innate quality of the resources. This is especially 
important when considering teachers’ work with resources because teachers increasingly draw from 
a variety of sources when crafting instruction and use resources differently over time according to 
their context (e.g. Gueudet, Bueno-Ravel, & Poisard, 2014). 

The third conceptualization is framing resources as objects, where a key component of teaching is to 
create resources. Document genesis (Gueudet & Trouche, 2009) is a theory focused on teachers’ 
creation of resources for teaching.  Stemming from the instrumental approach, document genesis 
explains how, in the creation of resources, teachers develop schemes of utilization that are comprised 
of teachers’ knowledge and processes for using resources.  Document genesis offers a window into 
teachers’ evolution of practices with their resources. Since teachers often reuse resources from 
previous years, the documents from one year become resources for the next year and are embedded 
with teachers’ experiences and modifications (Gueudet & Trouche, 2009). Often, when resources are 
considered tools, teachers are not producers: their work is of application and applies to one instance 



of enactment without connection to future use.  However, when treated as objects of design, the focus 
is on how teachers create resources to meet their local contextual challenges and on how the teachers’ 
understanding and use of resources evolves over time.  

In a complex landscape where teachers weave together various resources in the design of lessons, 
treating resources as an object of teachers’ design work provides researchers with a theoretical 
grounding to make sense of and explain interactions in online spaces, such as resource repositories. 
The resources being downloaded and shared by teachers are not solely resources (tools) to mediate 
teaching: their creation and transmission constitute important facets of teaching. For example, 
Trglaova and Jahn (2013) examined how teachers improved resources posted to a repository based 
on the feedback they received from other teachers.  Also, this framing allows researchers to situate 
teachers in broader collectives and to determine how the impact of belonging to and participating in 
collectives has on teachers’ practices (Guedet & Trouche, 2012).   

These perspectives on resources suggest different roles for the teacher with respect to how digital 
resources get taken up. In the first, resource as tool, the resource is considered to have innate qualities 
that teachers can employ to varying degrees in their lessons but not substantially revise. The latter 
two perspectives outline a more active role for the teacher, suggesting not simply a mediating role 
between resource and student, but a transformative role for the teacher with respect to the design and 
use of the resource. More generally, thinking about teachers’ design processes positions teacher 
capacity as an important goal in the design and use of digital resources; consequently, perspectives 
on digital resources that minimize teachers’ role have potential impact in terms of agency and 
ultimately the development of teacher capacity. Below, we explore how trends in the design and 
dissemination of digital resources may be in tension with conceptualizations of active roles for 
teachers with respect to the design and use of digital curriculum resources. We consider how different 
actors influence the design and dissemination of digital curriculum resources, and that these efforts 
may neglect the role of the teacher. An aim is to show that there are potentially conflicting values 
between perspectives focused on teaching as design and perspectives that promote characteristics of 
digital resources that constrain teachers’ roles and their ability to be responsive to their local context.   

Trends in the design and dissemination of digital resources 
In this section, we articulate broad trends in the design and dissemination of digital curriculum 
materials and then connect those trends to the perspectives that emphasize the design role of teachers. 
We characterize these trends by focusing on the actors who emphasize particular perspectives – and 
exercise considerable influence – related to the design and dissemination of digital resources. We 
focus on the following three broad sets of actors because of the considerable influence they exercise 
over the design and dissemination of digital curriculum materials: designers, policy makers, and 
purveyors of online content (e.g., commercial publishers, for-profit educational websites, large 
philanthropic or corporate organizations). Included in the group of corporate entities are 
philanthropies and corporations not previously engaged in educational publishing (e.g., the Gates 
Foundation, Amazon, Mark Zuckerberg’s funding efforts), who strive to influence both content as 
well as delivery mechanisms for that content, especially in the U.S.   



These groups make a number of claims about the potential transformative features of digital 
curriculum materials. We focus on three features to highlight the roles of the sets of actors identified 
above: 

 Content can be more relevant and interactive;  
 High quality content can be inexpensive and widely accessible;  and  
 Content can be customized to meet the needs of individual students. 

We selected these features because they are the primary focus of the design, dissemination, and 
publicity efforts of the actors described above. Below, we describe how these features are emphasized 
by the various actors and how they are in tension with the perspectives on resource use, with 
implications for how teachers get positioned as active designers who can develop increasing capacity 
to design and enact curriculum materials.  

Content can be more relevant and interactive 

Advocates claim that content in digital materials has the potential to be more interactive and relevant, 
as it can be updated and revised to fit the local context. In terms of interactivity, digital texts can be 
flexible with respect to navigation (e.g., hyperlinks) and with respect to creating documents with 
resources and materials from a range of sources, including the web (Zhao et al., 2010). Other kinds 
of interactivity include the use of sliders or buttons to manipulate parameters in a model to investigate 
problems or phenomena (Dede, 2000). More powerful forms of interactivity involve the use of tools 
with flexible purposes in open working environments, such as curriculum programs developed in 
Israel and Korea (cf. Lew, 2016; Yerushalmy, 2016). In general, interactivity can be conceived in 
terms of the choices users can make to influence their engagement with the content. 

We focus on the set of actors we call designers to highlight how interactive features are incorporated 
into digital resources. We refer to designers as those who conceptualize features of digital materials 
based on research on learning and learning systems. Of the sets of actors described above, the 
curriculum resources designed and disseminated by designers are the most aligned with teaching as 
design perspective. These resources offer the greatest flexibility in terms of adaptation by teachers 
and in terms of generating interactions with students that provide opportunities to understand how 
student thinking develops. Designers emphasize learning experiences that augment or enhance what 
is possible in paper curricula. Moreover, designers emphasize the development of tool-rich 
workspaces that enhance interaction, communication, and exploration. Designers incorporate 
ubiquitous access to tools that allow for dynamically linked representations and the ability to record 
and curate work (Confrey, 2016; Lew, 2016; Yerushalmy, 2016). Confrey, Lew, and Yerushalmy 
emphasize that workspaces should provide access to a suite of tools that learners strategically select 
as they engage in complex problems. These workspaces facilitate the use and manipulation of 
multiple representations, including symbols, in ways that are intuitive and that communicate 
increasingly formal inscriptions of the mathematics. Furthermore, these workspaces should allow 
students to store and curate their work, for future reference for themselves and external audiences.  

In terms of developing teachers’ design capacity, and thus align with the artifact and documentation 
perspectives described above, designers emphasize more complicated and idiosyncratic learning 
paths for students in terms of deviating from a rigid demarcation and flow of mathematical activity 
(Confrey, 2016). Curriculum materials differ from open tools, such as Sketchpad, Cabri, or 



Mathematica, in that they are intended to provide structure by bounding and sequencing mathematical 
activity. Integrating rich problems and work spaces provides opportunities for the kind of complex 
activity that involves non-linear processes (unproductive approaches may precede more productive 
approaches), complex interactions of tools and representations, and the collective negotiation of the 
viability and validity of solution paths. Such complex activity can disrupt well-defined lesson 
structures and allocations of time (both duration and synchronicity)(c.f. Ritella & Hakkarainen’s 
[2012] discussion of chronotype), interrupting the potential flow of a lesson, with implications for 
following a prescribed scope and sequence of mathematics. Managing these non-linear activity flows 
calls for more prominent roles for teachers and entails developing new forms of capacity in terms of 
understanding curriculum progressions and coordinating (orchestrating) multiple tools and artifacts 
in the workspace.   

The work of designers focuses on the interactive and flexible features of digital resources, while other 
actors – policy makers and purveyors of online content (mostly commercial interests and 
philanthropies operating from a neoliberal perspective) – emphasize different features, explored 
below. The different features emphasized by these other actors have implications in terms of the roles 
and capacities envisioned for teachers. 

Free and open digital content 

Policy makers have pushed digital content that is freely available and open source. They argue that 
this would make high-quality content accessible to low-resource high needs districts. Internationally, 
there has been a push for Open Education Resources (OER) for nearly a decade now: “The open 
educational resource (OER) movement aims to break down such barriers [from proprietary systems] 
and to encourage and enable freely sharing content” (OECD, 2007).  Recently, the US Department 
of Education launched an initiative designed to encourage districts to adopt open resources and to 
share their efforts and experiences with others, in part to make access to high-quality instructional 
resources more equitable (USDoE, 2016). The use of open resource content, however, can be time-
consuming and the resources themselves are of uneven quality. There is little quality control with 
respect to content, and much of it requires little interactivity or minimal educative features for 
explaining the design rationale to teachers. Furthermore, these efforts assume that teachers have 
considerable capacity to evaluate, select, and sequence content chosen from a variety of sources. 
Given that much of these efforts are aimed at low-resourced districts, especially in the U.S., there is 
an assumption that teachers can use the materials without modifications, which aligns with the 
resource as tool perspective. Recently, there have been efforts to curate content in ways that provide 
quality control and articulate curriculum progressions (Confrey, 2016); however, these efforts have 
yet to be coordinated with the larger policies for open resources and their impact on teacher design 
capacity is not yet determined.  

Customizing content for individual learners 

Policy makers, commercial publishers, and large philanthropies have emphasized the promise of 
digital content to be customized to meet the needs of individual learners.  Customization has been 
discussed in a variety of ways. This can be achieved through systems that emphasize mastery learning, 
in which software dictates the sequencing of content for a learner based on the learner’s performance 
on skills-based assessments (e.g., Means, Peters, & Zheng, 2014). Or, it could involve personalizing 



the software settings so that the user has control over video and audio as well as the presentation of 
the text.  A third way is for the teacher to make content selections within a program so that different 
students would see different content. Mostly, however, the personalized systems entail diagnostic 
assessments administered through online programs that dictate the pacing and sequencing of content 
(Choppin, Carson, Borys, Cerosaletti, & Gillis, 2014). These efforts, largely funded and publicized 
by large philanthropic or corporate entities, push to embed digital content in comprehensive learning 
management systems that include data reporting and classroom management systems. They also 
emphasize adaptive programs based largely from the mastery learning perspective (e.g., courseware 
funded by the Gates Foundation). Some educational websites, either for-profit or philanthropy-
funded, create collections of lessons, sometimes developed by a small group or by larger author 
groups (e.g., Khan Academy, sofatutor.com). While these programs may eventually involve 
sophisticated adaptive systems and customized learning tools that allow learners to explore content 
in complex workspaces, the initial versions of these programs typically entail low-level content and 
reporting of percentage of correctly answered multiple-choice questions (Choppin, Carson, Borys, 
Cerosaletti, & Gillis, 2014), characteristics that constrain opportunities for learning. Furthermore, the 
programs minimize the role of the teacher, impacting development of teacher capacity.   

Implications of tensions between perspectives 
Teachers’ interactions with digital resources involves agency: in the act of designing, teachers take 
up digital curriculum resources, interpret their purposes, and transform them to respond to their 
pedagogical purposes and their evolving understanding of how those resources can be used to engage 
students. This assumes that teachers are designers, actively interacting with and transforming 
curriculum resources to engage students. The three perspectives describing teachers’ interactions with 
digital resources denote different assumptions with respect to teacher agency and the connections 
between capacity development and resource use. The assumed role of the teacher differs across the 
perspectives of the different sets of actors that relate to the design and development of digital 
curriculum resources.  

The analysis illustrates that different perspectives on the design and dissemination of digital resources 
have implications for the opportunities teachers have to understand, adapt, and transform digital 
resources and thus develop capacity as a result. The designer perspective offers the greatest possibility 
of alignment between views of teachers as designers and the affordances of digital curriculum 
materials, though much of their focus and expectations is on creating a medium for rich student 
interaction rather than informing teacher use and capacity development. Other actors – such as policy 
makers, commercial publishers, large philanthropies – have different perspectives, and motives, for 
designing and disseminating digital curriculum. The programs associated with these perspectives 
show little sensitivity to the complexities involved with how teachers take up digital curriculum 
resources, and minimize the role of teachers to transform digital resources to suit their purposes. 
Many of these programs emphasize personalized learning, which entails little interaction with 
teachers, and little flexibility on the teacher’s part to construct learning experiences for students. 
These entities exercise great influence on which programs are available, and their impact on teacher 
autonomy and teacher capacity needs to occupy the attention of researchers.  
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The project ‘Numerical thinking and flexible calculation: critical issues’ aims to study students’ 
conceptual knowledge associated with the different levels of understanding numbers and operations. 
This paper presents the conjectural theory used to design and articulate the tasks of an explorative 
instructional sequence that promotes flexibility in reasoning and calculating in grades 2 and 3 in the 
field of multiplicative thinking. We focus our analysis of task design in the development of the first 
task of the sequence, illustrating how data analysis of students’ solutions is used to reformulate the 
task. 

Keywords: Task design, multiplicative thinking, flexible reasoning. 

Conjectural theory 
Our approach aims to foster flexibility in multiplicative reasoning and calculation by systematically 
developing both factual knowledge on numbers and the ability to operate with them as mental objects. 
The schemes and situations associated with multiplicative thinking constitute the referential field of 
modeling the relationship between quantities/magnitudes with multiplication and division (e.g. Greer, 
1992, 2012; Thompson & Saldanha, 2003; Tzur et al., 2013; Vergnaud, 1983, 1988). Against this 
background, we develop a conjectural theory assuming that flexibility in the transition phase of 
addition to multiplication requires the ability of operating with products and quotients as 
mathematical objects, using different symbolisms for the same object (Gray & Tall, 1994; Tall, 2013) 
(e.g. 60 seen as 6 × 10; 12 x 5; 4 × 15; ½ × 120). We envision the development of this ability along 
the experimental sequence as follows. 

Starting point: product as representing some numbers of some amount. In Portuguese textbooks, as 
in many other countries, “times” and the notation ‘__ ×  __’ is introduced as symbolization of the 
sequence of repeated addition executed to quantify a relative big collection of identical objects in 
situations where these objects are combined in equal groups (e.g. Greer, 1992). The first cycle of 
activities introduces the expression “some numbers of some amount” (with or without remainder) as 
common way of describing the result of combining objects into equal parts, putting an amount into 
parts of a given size (partitive or ratio/measurement division) and distributing an amount of something 
among a given number of persons (e.g. Thompson & Saldanha, 2003). It is conjectured that this 
should foster the later understanding of the numerical equivalence of this three processes. The 
symbolic notation ‘__ × __ + __’ represents the underlying multiplicative structure. It ties 
conceptually and numerically the initial meaning of multiplication with the two meanings of division. 
It explains, at the same time, why both repeated subtraction and repeated addition allow to find how 
many times does an amount of things go into a given quantity - inverse relationship between 



multiplication and division (e.g. Freudenthal, 1983; Greer, 2013). Last but not the least, reasoning in 
“some numbers of some amount” allows to apprehend the inverted/reciprocal relationship between 
the involved quantities (e.g. if sharing 52 pictures between 4 children results in 13 pictures each, each 
child receives ¼ of the collection, which implies that the initial amount (52) is 4 times as large as 
each part (13) (e.g. Thompson & Saldanha, 2003). 

“Times” as multiplicative comparison. From the above understanding of the symbolic ‘__ × __’ we 
conjecture that students should extend the use of familiar products of the tables to compare quantities 
or magnitudes reasoning in terms of “so many times as much as __”. The number that in the situations 
above operates as `multiplier` gets now the sense of `factor` (e.g. Freudenthal, 1983; Greer, 1993). 
The above inverted relationship comes back: saying that Bernardo has 4 times as many volumes of 
Asterix as Fernanda, means that her number of volumes is 1/4 as large as Bernardo´s collection (and 
vice versa).  

“Times” as operation that emerges from a rectangular arrangement. Until now, multiplicative 
reasoning and calculations are limited to situations where combining, partitioning and distributing 
are modelled with sequences of multiples (times tables). The following cycle of measurement 
activities extends stepwise multiplicative reasoning by mean of the rectangular arrangement of 
objects. First the multiplication of factors emerges from pacing concrete units in the length and width 
and using familiar products to find the number of units. This way of reasoning is then adapted to (1) 
calculate the number of tales of a given arrangement and to transform it by substituting the initial 
units in bigger or smaller ones; (2) to recognize the two rectangular arrangements of the starts of the 
American flag. The operative notion of commutativity (12 × 6 = 6 × 12) and distributivity emerges 
from these activities. This increases the power of multiplicative reasoning and extends the application 
of the available factual knowledge.  

Endpoint: multiplicity goes together with divisibility and proportional relationship. The last inquiry 
is conceived to connect the conceptual, procedural and factual knowledge constructed along the 
reflection about the ways of reasoning and calculating in the above multiplicative setting. The 
challenging question is why hours do have 60 minutes. Students are engaged to “unroll” the time line 
of a clock segmented in units of 5 and 15 minutes and to symbolize the accumulation of time with 
the underlying numbers’ pattern and the corresponding product to identify how one hour is divided 
in equal parts (5, 10, 15, ...  12 × 5; 10, 20, 30  6 × 10; etc.). The inverted number relation met 
before comes back by the connection of 4 × 15 and 2 × 30 with respectively 15 minutes as “a quarter 
of an hour” and 30 minutes as “half an hour”. Finally, by identifying all the possible ways of grouping 
60 chairs in a rectangle, children discover the hide equivalents of the ‘products of the clock’. 60 then 
appears as ‘an object’ that can be composed and decomposed in “many ways” (e.g. 4 × 15 = 15 × 4 
related to 60 ÷ 4 and 60 ÷ 15).  

Key principles of designing task with focus on flexibility 
The chosen approach prompts the systematic extension of the numerical relationships, arithmetic 
operations and factual knowledge using multiplication and division to model situations. We foster 
that students come to act and reason in a “mathematical reality” (e.g. Freudenthal, 2003; Tall, 2013; 
Gravemeijer, Bruin-Muurling, Kraemer & van Stiphout, 2013), manipulating flexibly mathematical 



objects and relationships at hand through symbolic representation as professional mathematicians do 
(e.g. Gray & Tall, 1994).  
We use the framework above to develop three kinds of tasks with a specific function and to articulate 
them transversally and vertically in cycles of inquiries (Bell, 1993). Open tasks as “Prawn skewers” 
(Figure 1) prompt the exploration of a key idea (e.g. envisioning multiplicities of identical things 
thinking in some numbers of some amount) and the development of a symbolism to express it (e.g. 
__ × __) to express it (e.g. Bell, 1993; Back, 2011). Numerical tasks (without context) promote the 
organization of numbers as ties in a web of number relations (Van Hiele, 1985) which extend the 
personal factual knowledge (Threlfall, 2002) and the development of specific skills such as analyzing 
numbers multiplicatively and using the process-object symbolic to explore unfamiliar forms of 
operating with numbers as mental objects (Gray and Tall, 1994). Conventional tasks focus on 
understanding how a particular relationship (theorem-in-action) of a scheme works and can be 
adapted in a limited class of situations.  
The constructed webs of number relations connected to the schemes of reasoning and the classes of 
situations form the horizontal junctions between the tasks. The same tasks are articulated vertically, 
considering the transitions from a lower (informal) to a higher (formal) level of reasoning, 
symbolizing and computing.  
The task ‘Prawn skewers’ (Figure 1) exemplifies this approach. The task provides an opportunity to 
explore “partitioning” as a process of structuring quantities on the own level of understanding the 
relationships involved in equal group situations (see draft of conjectural theory above) and using the 
number patterns in the available tables of multiplication. We conjectured that the majority of the 
children would notice that 61 is an odd number (ending by 1), near 60 (60+1 and/or 62-1). Focusing 
by turn on number 60, they would in first instance notice it can be reached counting by two and/or 
ten which suggests partitioning the pile of prawns by way of repeated addition (2+2+2+2…; 
10+10+10+10+10+10). Students that operate on a higher level of understanding two-digit numbers 
would associate 60 with 6x10 seen as “six tens”. Then, one can explore other grouping possibilities, 
varying additively or multiplicatively the number of prawns of each stick or transforming a founded 
partition in a new one, substituting smaller composite units by bigger ones and vice versa. 

Considering the current phase of development of grade 2 students, we expect difficulties with the 
symbolization of founded structures with products (e.g. difference between “6 times 10” written as 6 
× 10 and “10 times 6” written as 10×6) and related misunderstanding in the communication about 
the transformation of one possible structure into another one (e.g. 6 times 10 into 12 times 5; 
6×10=12×5). Finally, we expect that some students could first approach the task by describing the 
process of exhausting the pile of 61 prawns with an arithmetical sequence of repeated subtraction and 
then (quickly) invert their modeling to avoid the (arising) computing difficulties. 

Methodology  
The project plan is based on a qualitative and interpretative methodology (Denzin & Lincoln, 2005) 
with a design research approach (Gravemeijer & Cobb, 2006). The preparation of teaching 
experiences is a crucial aspect of the project plan.  

To prepare teaching experiences we design and reformulate mathematical tasks using a three-step 
cyclic process: (1) design tasks, (2) analyze what children noticed in the numbers and how they use 



their knowledge about numbers and operations to solve the task presented along clinical interviews 
and (3) reformulate the previous task. 

This text refers to one teaching experiment that involved 24 grade 2 students (age 7-8) and focuses 
on the students reasoning to solve the task ‘Prawn Skewer’ (Figure 1). Students knew how to add and 
subtract numbers until 1000 and had some experience in solving word problems. They hadn’t yet 
learned the multiplication tables. Data was collected through video and audio recordings of the 
classroom work, researchers’ notes, audio recordings of the preparation and reflection meetings with 
the school teacher involved.  

The proposed task was designed and reformulated according to the data analysis of four clinical 
interviews, where students (4 students, 8-year-old) solved a first version of the task (Figure 2) 
analyzed in Brocardo, Kraemer, Mendes and Delgado (2015).  

  

Figure 1: The tasks ‘Prawn skewer’ 
(reformulated) 

Figure 2: The tasks ‘Prawn skewer’ (first version) 

Since the given alternatives in the first version (groups of 3 or groups of 5) seemed to hinder the 
envisioning of other ways of grouping, we decided to give students the freedom to experiment and 
evaluate different ways of grouping, taking into account two conditions: the given quantity of prawns 
and the freedom to invite more or less friends. We also `opened´ the illustration of the task, to 
stimulate the students’ own constructions. Finally, by giving only the number of prawns, and by 
continuing to choose the `ugly´ number 61 (in the sense of Thompson & Saldanha, 2003), we created 
a problem that these students surely never encountered before. 

Under these conditions, we expected that students would envision different possibilities of sticking a 
pile of 61 prawns, modeling from two ways of understanding “division”. This is to say, reasoning in 
terms of exhausting the pile by a sequence of repetitive subtraction (ratio/measurement division), 
and/or reasoning from the converse idea of accumulating 61 by counting on n by n (division as 
converse of multiplication) (Freudenthal, 1982). In second instance, we expected that the choice 
condition of the task should stimulate students to compare envisioned ways of grouping, considering 
the relation between the multiplier (number of sticks) and the multiplicand (number of prawns in each 
stick). Exhausting, taking away a smaller set of prawns go together with making more sticks and 
subtracting a bigger set with obtaining less sticks. And, increasing the number of sticks by 
accumulating goes together with decreasing the number of prawns in each stick, as putting a bigger 
set of prawns goes together with obtaining less sticks, while sticking less prawns provides more sticks. 
Finally, we expect a great variety of modeling, verbal explanation, and calculations, according to 



levels of memorizing the products/multiples of the tables, and understanding `multiplicity´ and 
`proportionality´ in the experienced contexts of multiplicative thinking. 

Results 
The analyses of the working sheets of the students and of some dialogues occurred in the classroom 
gave us a global idea of the patterns of reasoning that students used to solve this task. 

Globally, we identified the following patterns of reasoning: trying with 18 sticks (they counted the 
sticks represented in the illustration); drawing the prawns’ skewers one by one (with 18 sticks); 
putting 2 by 2 we will arrive to 60; putting 10 by 10 gives 60; adaptation of grouping by 10 making 
one skewer with 11 prawn (Figure 3); adaptation by “grouping by one”; putting 5 by 5 and/or 15 by 
15 gives 60 (Figure 4); intuitive notion/feeling that putting by n would give 61. 

 

 
Figure 3: Adaptation of grouping by tens, making one skewer with 11 prawns 

 
Figure 4: Putting by 15 and by 5 with verbal description of the result 

The most frequent way of modeling was trying to reach 60 arithmetically, by repeated addition. Some 
students shortcut their long addition by mean of doubling consecutively the terms (Figure 5).   

 
Figure 5: Shortcutting by successively doubling as way of controlling / justifying 

Some dialogues suggest that some pairs of students are jumping to 60 in a kind of mental sequence 
of multiples, without keeping track. Having arrived at 60, they must then count the numbers of “tens” 
to derive the multiplier from their long addition. 

Some pairs of students initially understood that they could choose the number of guests but failed to 
connect the given 61 prawns with the 18 sticks they counted in the picture. In a short dialog with the 
teacher, they envisioned ways of grouping with units, leaded by a kind of intuition (feeling) that the 
repeated addition they had in mind would give 61. Vera was thinking about 11 + 11 + 11 …, and 
moved to 5 + 5 + 5 … as response on the teacher´s question “Why 11?”. Her colleague Martin was 
expecting that putting prawns by 7 would give 61, “since 7 + 7 = 14 and 14 + 7 = 21”. 



José drew the 18 sticks and then ´sticks’ 4 prawns in each (Figure 6). He then symbolized the 
represented accumulation with the long addition 4+4+4 … and tried to determine the total number of 
prawns, by doubling 4 and 8, transforming 4+4+4+4 … (18 times four) into 8+8+8... (9 times 8) and 
16+16+16+16+8.  

Only one group used repeated subtraction (viewpoint of exhausting 61; Figure 7). They began to 
subtract 1 to obtain 60 but it seemed they changed their idea and begun to work with 61, subtracting 
5 until they have a remainder smaller than 5.  

  
Figure 6: Wrong modeling by drawing 18 

skewers with 4 prawns in each 
Figure 7: Modeling by repeated subtraction 

 
Finally, two pairs of students associated the information of the story and the illustration of the task 
with the decomposition of 61 into two parts. One pair is thinking about a combination of 18 children 
(the number of sticks of the illustration) and 40 children (a multiple of 10). The other pair proposes 
“as 41 + 20 = 61, one has 41 and the other 20” and does not adds any other justification.  

Implications for task Design 
From data analysis, we may conjecture that the formulated instruction does not scaffold the expected 
mathematization including: (1) finding and representing adequately different forms of sticking the 
prawns, (2) choosing the preferred way, and (3) justifying this choice. It seems that “Why” is 
interpreted as an instruction to demonstrate and/or control that the modeling with the sequence of 
repeated addition indeed gives 60 prawns. This interpretation explains the spontaneous short-cutting 
of long additions (Figure 5). A solution to avoid this is to structure the task in an exploring phase 
asking explicitly to look for possible ways of sticking and a reflective one including the choice and 
the justification of the referred form of sticking. 

On relating the choice of 61 as cardinal of the set, we can argument that the complexity of taking 
away, could explain the high frequency of the modeling by repeated addition and the single use of 
repeated subtraction. Since more students associate 61 with the near even number 60, and since the 
table of two and 4 are memorized, it would be meaningful to replace 61 by 62 to increase the chance 
that more students balanced between modeling by jumping back to exhaust 62 and jumping forwards 
to reach 62. We might expect that, being aware that this way of grouping would give a lot of `small´ 
sticks, more students would try to subtract a bigger quantity and finally move to jumping forwards to 
avoid annoying calculations.  



Finally, since the representation of some stick may suggest some students to fix the multiplier and 
model the process directly by drawing all the set of prawns, stick by stick, we have to change the 
illustration to avoid the observed try-and-error approaches. 

Implications for task design in the field of multiplication 

In this text, we explicit how we analyze the influence of contexts, numbers and pictures/images 
aiming to potentially facilitate noticing (Threlfall, 2002) relevant numerical relations and envisioning 
different approaches that emerge from noticing.  

Another aspect of our analysis is related with the importance to propose non-conventional equal group 
problems to develop flexible multiplicative reasoning. In all conventional equal group problems, two 
values are given. Consequently, children learn to identify the ‘kind’ of problem from the story and 
the given numbers. Then, they solve it applying the standard scheme of reasoning. Children´s 
approaches and solutions of the task ‘Prawn Skewers’ show the advantage of the missing multiplayer 
and multiplicand as stressed by Back (2011). They have to adapt their common way of thinking to 
the unusual conditions of the task (Vergnaud, 2009) noticing numerical relations and envisioning 
different approaches. Some fixed the multiplier counting the sticks of the pictures. Others inferred 
that they had to fix the number of prawns on each stick and to look how many skewers can be made. 
The vast majority envisioned the all process of sticking, using the knowledge that counting by ten 
leads to 60. A crucial advantage of these non-conventional problems is that the teacher can focus the 
reflection on the relationship between “continually putting prawns by n” and “taking again and again 
n prawns” and the use of asymmetric role of the multiplier and the multiplicand to symbolize both 
process.  
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The role of design in conceptual change: 
The case of proportional reasoning  
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Conceptual change is extremely difficult to trigger in mathematics and science education. The present 
study shows the special role of design – in the fact that design can afford behaviors that lead to 
conceptual change. We chose the domain of proportional reasoning. The design was based on 
collaborative and argumentative scripts, provision of a tool for checking hypotheses, and 
arrangement of students with different strategies. Above all we created a task, the Blocks Task, that 
invites students with different strategies different solutions, whereby creating (socio-)cognitive 
conflicts with the possibility of enhancing conceptual change. The participants were 496 ninth 
graders. A central result is that performing the task resulted in conceptual change. It was also shown 
that the provision of a tool for checking hypotheses yielded substantially larger gains. We conclude 
by providing design principles for fostering conceptual change in mathematics.  

Keywords: Conceptual change, cognitive conflict, task design, proportional reasoning, collaborative 
work. 

The present paper 
The focus of the present paper 

The present paper aims to expose whether the block task is effective in triggering conceptual change 
in proportional reasoning. While triggering conceptual change in mathematics and in science 
education is a very challenging task. We have defined conditions for task design and we showed that 
they can dramatically boost conceptual change and learning in the field of proportion reasoning: 
Collaborative scripts, the arrangement of students in small groups and the provision of a hypothesis 
testing device for feedback were central design decisions. Above all, we created a special task, the 
Blocks Task, which invites students with different strategies in proportional reasoning (that reflect 
different levels in proportional reasoning) to exhibit different solutions, by such creating socio-
cognitive conflicts  

Theoretical framework  

The process of conceptual change had been described in literature in various ways. The pioneering 
model of Posner, Strike, Hewson, and Gertzog (1982) had described the conceptual change of 
replacing the earlier premature, and somewhat naïve, conceptions (which, at times, contradicts the 
scientific explanations) with more up-to-date scientific conceptions. The trigger for this change had 
been the dissatisfactions with the earlier conceptions. Other scholars (e.g. Vosniadou, & Verschaffel, 
2004) replaced Posner et al.'s model with a model they called a synthetic model which is based on 
the combination of a scientific concept with the student naïve preliminary concept. Cognitive conflict 
had been for a long time considered as a major, necessary ingredient in the development of 
psychological theories that explain conceptual changes. The role of cognitive conflict is important in 
many mathematical fields Stylianides and Stylianides (2009) related to the potential concealed in 



cognitive conflict to support the development of the student knowledge. In the domain of proof, 
counterexamples play a great deal as a pivotal means in creating and resolving a cognitive conflict 
(Zazkis, & Chernoff, 2008, Stylianides, & Stylianides, 2009).  However, it was also found that 
introducing conflicting data was generally not sufficient for triggering conceptual change (Limón, 
2001). Collaborative and argumentative settings as well as the provision of feedback are among the 
means described in the literature which may prompt the development of conceptual change among 
students (Schwarz, 2009). The block task which was designed for the purpose of the present study 
has been a sophistication of the blocks task developed by Harel, Behr, Lesh and Post (1992). Harel 
and colleagues designed the original Blocks Task as a diagnostic tool to assess the level of 
proportional reasoning of adolescents. I modified the task as a learning task with the potential for 
triggering conceptual change (Cohen-Eliyahu, 2001). The modifications consisted of posing the task 
in a dyadic setting, providing a collaborative and argumentative script in their interactions, and 
providing a hypothesis testing device (a balance) for checking hypotheses. This mathematical task 
has the potential to create socio-cognitive conflicts based on the three aforementioned conditions. 
Schwarz and Lichevski (2007) showed that the design yielded conceptual change. In an additional 
study, Asterhan, Schwarz and Cohen-Eliyahu (2014) examined the mechanisms that govern 
conceptual change with the Blocks task. In the present paper, I examine the role of design in triggering 
conceptual change. Let us first describe succinctly the study. More information can be found in 
Asterhan, Schwarz and Cohen-Eliyahu (2014).   

Method  
Participants  

The participants were 496 Israeli ninth graders from large metropolitan areas (After studying the 
subject proportion ratio and percentages). 16 groups were formed with different conditions for each 
group: individual or pair work, with or without weighing condition (the hypothesis testing device). 
Students were paired according to their initial solution strategies, in order to create varied social 
settings based on differing initial cognitive levels. Three strategies were focused on: Students with 
additive strategies (N=196), students with proto- proportional strategies (N=194) and students with 
proportional strategies (N = 106).       

Tools  

The Blocks tasks were designed according to three aforementioned conditions in the field of 
mathematics, and its aim was to facilitate learning (i.e. conceptual change) of ratio and proportion, as 
follows: (a) The task enables collaborative or individual work. (b) There is a tool (scales) with which 
one may check (or not) whether hypotheses are correct. In other words, students receive feedback on 
their solutions by using scales (c) The task allows the activation of a variety of strategies by which 
students may be differentiated according to their levels of thinking, which may facilitate teaming 
them up according to their levels of proportional thinking. In each task students are shown 4 three 
dimensional blocks constructed from bricks (A,B,C and D). They are told the bricks in A and C is 
identical (the same weight = the same color) and the same is true for bricks in B and D. In each trial, 
students are given information about the relation between the two base block constructions A and B 
(A is heavier than B, B is heavier than A, or they are of equal weight). They are asked to determine 
the relation between the weights of the two target blocks, C and D, choosing one of the following 



four options: “C is heavier than D”, “D is heavier than C”, “They are of the same weight”, or 
“Impossible to determine”. They are required to provide a verbal explanation for their choice. 

 
Figure 1: Blocks Task 1 

In the current study seven configuration of the Blocks tasks had been designed. The design was aimed 
at leading wrong reasoning strategies to wrong answers. For example, a student using Visual 
explanations typically would claim that “it has less bricks in it". A student adopting an additive 
reasoning strategy would use an explanation such as "when B has 6 more bricks than A, A and B 
weigh the same. D has 13 bricks more than C so D weighs more than C."  A student adopting a proto- 
proportional reasoning strategy would typically draw a wrong conclusion: For example, he would say 
"B has more bricks than A but they have the same weight so each brick in A is heavier than single 
brick in B. C is 13 bricks less than D but each bricks weigh more so it's impossible to decide."  
Students adopting a proportional reasoning strategy would typically predict the right conclusion that 
C weighs more than D. They would say something like, "10 bricks in A(10a) have the same weight 
as 16 in B(16b) i.e. one single brick in A weighs 1.6 times one single brick in B a=1.6b. so 24 bricks 
in C weigh 24*a=24*1.6b  = 38.4b that is more than 37b bricks in D." We see then that the Blocks 
task was designed to lead students with inferior strategies to give wrong answers.  

Procedure  

The current study consisted in three stages: pre- test, intervention and post- test.  

Stage 1: Assessment and selection– pre-test. Five Blocks Task Test was administered in pen-and 
paper format to all students in the ninth grade classes to assess their initial level of proportional 
reasoning. In each tasks the blacks' constructions (A, B, C and D) were presented to the class and 
trained research assistants called aloud the instruction. According to their initial reasoning strategy 
students were arranged in order to create socio-cognitive conflicts. 

Stage 2: Learning stage. Students were asked to solve collaboratively two different Blocks Tasks 
according to the aforementioned condition. They were provided a collaborative and argumentative 
script: The dyads asked to solve the tasks together. they were invited to collaborate and to argue with 
each other. Additionally, students that work with hypothesis testing condition get a scale after they 
finished each task to check their answer. An experimenter helped them to put the blocks constructions 
(C and D) on the scale and told them the correct answer, and asked them to explain it. All students, 
dyads or individuals with or without hypothesis testing device, were interviewed while this stage by 
trained research assistants who, repeated the instruction again and asked the student to explain their 
answers.  

Stage 3: post – test the student answered the five Blocks Task Test again individually.       



All the participants completed the three stages in less than one month.  

Results 
Over the entire sample, it appears that in all conditions, conceptual learning was attained. T–test 
showed significant results in compering differential from pre-test to post-test to zero.  

Analyses were conducted with a mixed model (SAS PROC MIXED) with random effects of dyad 
within condition and of individual within dyad and condition. Differentials means and standard 
deviations between pretest and posttest performance per condition are reported in Table 1. 

Pairing condition 

 Single Peer Sum 
With 
Feedback 

0.22 
 
(.06) 

0.28 
 
(.03) 

0.25 
 
(.04) 

No 
Feedback 

0.17 
 
(.06) 

0.10 
 
(.03) 

0.13 
 
(.04) 

Sum  0.19 
 
(.04) 

0.19 
 
(.02) 

 

Table 1: Differentials mean (and SD) between pretest and posttest scores on the 
BlocksTask (N=488) 

There is significant different between Students who worked with feedback (single or peer) (M=.25, 
SD=.04) and students who worked without feedback (single or peer) (M=.13, SD=.04). The results 
confirmed that hypothesis-testing improved learning (F (1,422)= 5.10 p= 0.024). But in general there 
is no advantage to work with peer over individual work.   

Further analyses were made in purpose to reveal what accord in different pairing condition. Focusing 
on students who lacked full proportional reasoning, non-Proportional students (Proto – proportional 
students (ProtoS) and additive –students (AddS)). Differentials means between pretest and posttest 
and standard deviations performance for non-Proportional students are reported in Table 2.  

 Pairing condition 

  single The 
same 
strategy- 
peer 

Different 
strategy-  
peer  

Proportional 
strategy- 
peer 

Sum 

hy
po

th
es

is
-te

sti
ng

 
co

nd
iti

on
 

With Feedback 0.20 

(.08) 

0.12 

(.06) 

0.16 

(.08) 

0.58 

(.06) 

0.26 

(.03) 

No Feedback 0.22 

(.07) 

-0.02 

(.06) 

0.22 

(.08) 

0.24 

(.07) 

0.16 

(.03) 



Sum  0.22 

(.05) 

0.05 

(.04) 

0.19 

(.05) 

0.41 

(.05) 

 

Table 2. Differentials mean (and SD) between pretest and posttest scores for non-
Proportional students (N=382) 

There is significant different between non-Proportional Students who worked with feedback (single 
or peer) (M=.26, SD=.03) and students who worked without feedback (single or peer) (M=.16, 
SD=.03). The results confirmed that hypothesis-testing improved learning (F (1,239)= 4.13 p= 0.043). 
In addition, Focusing on the non-Proportional students revealed that apart from the hypothesis-testing 
condition, there is significant affect to the pairing condition ((F(3, 225)=10.98, p<.0001). and the  
Tukey-Kramer post hoc test showed that most efficient pairing was with a partner with full 
proportional reasoning. The interaction between the hypothesis-testing condition  and the pairing 
condition is significant (F(3,225)= 3.22, p=0.024). The Tukey-Kramer post hoc test showed that with 
feedback condition students who worked with student who reached proportional reasoning gained 
more than student who worked with any other pairing. But, without feedback condition the result 
wasn't significant.  

We present here the example of two students, Ido and Shira, and show how the design of the task 
helped them advancing their strategies in proportional reasoning. Ido and Shira both started, 
according to their pre-test, in a proto-proportional stage. Neither of them had a fully proportional 
answer to any of the tasks, but they were well aware of the importance of looking at each of the cubes 
separately. After the interaction, they both progressed: Shira gave one full-fledged proportional 
answer and Ido, two. Right from the start, elements of the proportional discourse were apparent in 
both Shira and Ido’s interaction.  Interestingly, the additive discourse co-existed with elements of the 
proportional discourse all through the interaction about the first task (see figure 2). Thus, for instance, 
Shira first suggested an additive argument:  

24 Shira: I think, I think this (C) is bigger than this (D) because here they tell us that this (A), 
no, sorry, because here they tell us that this (A) is smaller than this (B) although here (A) there 
are more, but only by one cube more, so if here (C) there is more in three cubes, so that says 
that this (C) is big. 

Ido, on the other hand, starts referring to multiplicative routines: 

25 Ido: Look, if you take- this (A) is 11, this (A) is bigger than this (B) by 1 and here (C) it’s 
bigger times 3 than this (A) 

26 Shira: right 

27 Ido: yeah, try multiplying both of them by 3 and you’ll see what happens because it’s thirty 
something. 10 times 3 is 30 so 10 times 3 is 30 and 11 times 3 is 33. If you multiply it by 3 it 
comes out 33.  

28 Shira: oh, so, like I got it, I got it, so here it’s one 

29-30 Ido: and thirty one, two… that means if you put this (A & B) times 3 you’d get here 33 
and 30 and if you add another one to each one of them so it will be 34 and 31. 



Figure 2 :Learning stage Blocks Task 1 

Interestingly, Ido and Shira’s solution, though not accurately proportional (Ido found a linear 
relationship between the block structures, not a proportional one), still leads the two students to a 
correct solution. In other words, it leads them to predict that C < D (by preserving the linear 
relationship), and the scales do not contradict it. Thus, there is no resistance of material agency. 
During the second phase (where 10Acubes = 12Bcubes), it is Ido’s disciplinary agency (that is, the 
previous mathematical knowledge obtained by Ido) that resists the additive discourse. The pair starts 
out by trying to implement the successful routine that they had employed in the first task: 

106 Shira: Now, OK here there are 10, can you show me the calculation again? This (A) times 
3. 

After some calculations, Ido realizes this solution brings them to a dead end: 

115 Ido: OK, look, we multiplied both of them times two, it (A) turned out 20 and this (B) 
turned out 24. Now, if we add to both of them 3, you get this (B*2) plus 3 gives 27 like this 
(D) and this (A*2) plus 3 gives 23, it didn’t get to 24.  

According to this linear relationship, Ido and Shira agree that C and D are not equal. However, they 
do not have a way of determining which block (C or D) is heavier. This, because the only way they 
know to use the linear relationship is by applying it to affirm the relationship between the C and D 
blocks stays the same as between A and B. Realizing that the former routine does not work (resistance 
from disciplinary agency), Shira goes back to the additive discourse: 

120 Shira: so look here (C & D) this is by 3 more (meaning D has 3 more than C) and here (A 
& B) it’s only by 2 more (meaning B has 2 more than A), get it? 

After quite a long discussion (24 turns), Shira convinces Ido of her additive solution. But as she writes 
up her argument on the paper, Ido continues calculating numbers. The experimenter turns Shira’s 
attention to that and Ido explains to Shira: 

147 Ido: look, this (A) is 10 and here (B) it’s 12. Just saying, I’m not saying it’s true but let’s 
suppose each mass here (A) is 3 and here (B) each cube is 2.5 cause that’s less and they are 
equal cause 3 times 10 is 30 and also 2.5 times 12 is 30 and the weight between them is equal, 
but each cube is different like they said here. If you multiply to get to 24 you’ll get 72. If you 
multiply this (a cube in D) times twenty s… twenty.. 

148 Shira: Oh, I get it like 2.5 times 27. 

149 Ido: yes if you multiply you’ll get 67½ that means that C is bigger, (the) weight is higher 
than D, see? 



We can see that Ido changed his mind before the balance scales proved Shira’s additive solution to 
be wrong. We can only hypothesize why this happened. It seems the resistance that was most 
important here was that of disciplinary agency. Both Shira and Ido could not initially find a 
multiplicative routine that would satisfy them. But once such a routine was found by Ido, they happily 
switched to it, being aware all along of the appropriateness of the multiplicative discourse for the 
problem at hand. Ido and Shira were actively engaged in convincing each other and questioning each 
other’s solutions. Especially impressive was Shira’s attempt, once she was convinced by Ido’s new 
multiplicative solution, to critically examine her previous solution: 

181 Shira: so how could it be (true) if like this (covers one cube from the D structure with her 
hand so that there is a difference of only 2 between D and C) it’s equal and like this (raises 
her hand to expose the whole structure) it (C) is bigger? 

182 Ido: because the weight of the cubes is not the same. 

Shira is not convinced. She repeats her argument that D minus 1 cube equals C, but now Ido 
challenges this assumption: “who said it’s equal?” He then goes on to explain 

188 Ido: you told me that there are two points (probably means cubes) less so you add two 
here and another one but you don’t know, the two point here (A & B) and the two points here 
(C & D) are not the same. 

189 Shira: The mass is different, I get it. 

Thus, even though Ido is the main one to pursue the proportional solution and substantiate it, Shira is 
very active in her attempts to follow his logic, and to compare it with her own previous solution. Only 
then she is convince that the additive solution is invalid. 

Conclusion 
The Blocks task resulted in substantial learning which may be termed conceptual change, since under 
all conditions the students improved their solution strategies very significantly from the pre to the 
post – test. These are impressive findings that suggest the crucial role of design in triggering 
conceptual change. The additional results consistent with the assumptions based on previous 
researches (Schwarz and Lichevski, 2007) about the conditions that promote conceptual change.  The 
very rich dialogue between Ido and Shira revealed the crucial role of task design in triggering 
conceptual change that lead to learning. In the pre-test both student initial strategy were proto-
proportional reasoning. During the Learning stage (intervention) they both made a huge advance and 
promote their strategies reasoning to proportional as been founded in the post-test. The Blocks task 
design afforded and invited, as we saw in Shira and Ido very rich dialogue, a variety of reasoning 
strategies (Additive, Proto-proportional & Proportional). Shira and Ido considered those antithetic 
strategies by justify their claims and explain to each other their opinions this socio and cognitive 
conflict lead them to collaborate and argument in dyad and that lead to the desired conceptual change. 
Also in Ido and Shira case the scale's checking hypotheses "just" confirmed their solution. After the 
first task confirmation done with the scales, for Ido it was a trigger in the second task to continue 
searching for other option even if the AddS sound acceptable (120 Shira). The deep dialogue showed 
the power of the collaborative work, investigating each other ideas (an additive and a proto- 
proportional solutions) cause emerging of a new insight (proportional –solution). The case of Shira 



and Ido exemplifies the importance of collaborative and argumentative scripts, of a tool for receiving 
feedback (the scale), of the arrangement in dyads, but foremost of the design of the task that led 
students with inferior strategies to arrive to wrong conclusions, to check them with the scale and to 
revise them accordingly. In conclusion, as the statistical result and Ido and Shira's dialogue showed, 
the task design allows the use of variety of confronting strategies that may led to socio- cognitive 
conflict between the dyads. In the statistical result we find that gap between students play a major 
role.  Non-proportional students with hypothesis-testing condition is significantly advanced 
proportional reasoning when they work with proportional students. In Ido and Shira case also it 
looked they started with the same strategies we reveled in the rich dialogue gap between their 
strategies. when Shira used automatically additive strategy Ido looked for another option that explain 
his proto-proportional strategy. The hypothesis-testing condition that confirmed his first answer 
helped him to persist in finding satisfactory solution. 

 It seems that the next step is to expand the study to examine the effectiveness of the conditions 
defined in designing mathematical tasks in other areas.  
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In French speaking Switzerland, primary school teachers use uniform textbooks edited by the 
government. These official textbooks are specific, they provide a source of activities but do not give 
information about how to organize the teaching. In this context, it is interesting to observe how 
teachers choose and organize in-class activities, the different ways they use textbooks, and the 
consequences in the classroom. Our research is a case study, which is based on interviews with 
teachers and classroom observation. The analysis we will present in this contribution were conducted 
using the model of Robert and Rogalski (2005), which allows us to describe teachers’ choices as a 
coherent system that does not depend only on learning objectives but also on characteristics of the 
profession and on certain constraints. 

Keywords: teachers’ practice, textbooks, primary school, cross-analysis. 

Introduction 
School textbook is a field of research which has been widely increasing since the last three decades 
as described by Fan, Zhu and Zhenzhen (2013) survey study for the special issue of ZDM “Textbook 
Research in Mathematics Education”. The authors conclude this survey by suggesting future 
directions in this field of research: 

it is necessary for researchers to establish a more solid fundamental conceptualization and 
theoretical underpinning of the role of textbooks and the relationship between textbooks and other 
variables not only in curriculum, teaching and learning but also in a wider educational and social 
context” (Ibid, p. 643) 

The large-scale cross national research study TIMSS allowed us to have a wider vision on the role of 
textbook in connection with social or political issues as presented by Valverde and al. (2002) who 
analyze textbooks in terms of cross-national differences in educational opportunities “the 
configuration of social, political and pedagogical conditions to provide pupils chances to acquire 
knowledge, to develop skills and to form attitudes concerning school subjects” (Ibid, p. 6).  

Our contribution goes in this direction by presenting the results based on our PhD theses (Daina 
2013), which aimed to describe and analyze:  

 the social and political context in which the uniform textbooks are designed in French 
speaking part of Switzerland, known as “Moyens d’Enseignement Romand pour les 
Mathématiques”(MERM);  

 how five teachers in Geneva use this resource for mathematics, considering their “ordinary” 
practices.  



Our research brings a different focus on the question of the connections between social and political 
issues and teachers practices by considering a qualitative methodology and a theoretical framework 
which allowed us to understand the practice we observe as a complex but coherent system that is 
dynamic and does not depend only on learning objectives but also on characteristics of the profession 
and on certain constraints we can infer from the study of the context (Robert & Rogalski, 2005). 

Research design 
Our research is a case study, which is based on interviews with teachers and classroom observation. 
The data were collected from April to June 2009 in five classrooms in Geneva in two different 
schools. In every class, we collected the following data: an interview before the teaching sequence; 
the observations in class with video recordings of the various activities of the teaching sequence on 
the theme of area measure; an interview at the end of the teaching sequence.  

To understand the political and social issues connected to our context of study, we collected selected 
documents, which showed different aspects of the official textbook design process (institutional 
requirements, project design, review report, etc.) 

Theoretical frameworks and research questions 
Our project aimed to study how teachers use the textbook and prepare their lessons which is an 
“invisible” part of the teachers’ practices. In addition, we wanted to observe ordinary practices, with 
all the complexity implied. Therefore, to build our theoretical framework and our methodology we 
lean on two theoretical approaches: Margolinas’ model (2005) and the model of Robert and Rogalski 
(cross-analysis of the teacher’s activity). We did not combine this two framework, instead we asked 
different independent questions relating to these two theoretical frameworks which we study using 
tools and methodology from the relevant framework. In this presentation, we will focus on the second 
model and the results related to it. 

The model of Robert and Rogalski: Cross-analysis of the teacher’s activity  

This model combines two different approaches. Firstly, a didactic approach: teacher’s practices are 
linked with the learning objectives. In this sense, the knowledge content of the teaching and the way 
the teacher organizes his teaching are analyzed using a didactic theoretical framework. Secondly, a 
psychological approach from cognitive ergonomics: the teacher is considered as a professional whose 
practices are subject to a professional contract, with particular goals, repertories of action, 
representations of mathematical objects and their learning, and, more generally, personal 
competencies which determine his activity.  

Robert and Rogalski (2002) determined five dimensions to analyze teacher’s activity. 

- The cognitive and mediation dimensions which concern the set of teacher’s choices about the 
content and the organization of the knowledge before (cognitive dimension) and during the 
class-time (mediation dimension).   

The combination of this two dimensions allows us to trace what “kind” of mathematics is proposed 
in the class « la fréquentation des mathématiques qui est installée, ce qui est valorisé par les scénarios 
et leur accompagnement et ce qui pourrait manquer » (Robert & Rogalski, 2002, p. 514).  



This first part relates to the description of the teacher activity, then we would like to interpret and 
highlight what determines these practices. We refer to three dimensions: 

- The social, the personal and the institutional dimensions which permit to define the constraints 
and the personal aspects of each teaching project.  

These three dimensions are studied based on interviews, deduced from the observed teaching 
sequence and also from the study of the institutional and local context.   

This bring us the following research questions: 

- What type of mathematics is promoted by various teachers, according to different scenarios and 
their execution in different contexts? Which kind of logic of action can we observe? Are these 
practices compatible with the didactic and pedagogical choices of the MERM resource designers? 

- What hypotheses can be formulated concerning the dimensions (social, personal, institutional) that 
determine the teachers’ practices of our study? How do the MERM influence the observed practices? 

Method of analysis 
The analysis was realised according to the following stages:  

- A transcription of the lessons we observed was made using Transana, a software which allowed us 
to have permanently the video and the transcription on the same screen and give the possibility to 
introduce time codes and keywords. Referring to methodology used in various research using the 
double approach framework, we divide each lesson in temporal phases, which we call an episode and 
corresponds to a content unity.  

- The scenario of the whole teaching sequence was then reconstituted and analysed to clarify on the 
one hand what kind of mathematical content is presented during the teaching (cognitive dimension) 
and, on the other hand, the dynamics in which the content appear during the classes (mediation 
dimension). The episodes we defined in the first stage of the analysis were coded according to the 
mathematical content and the teaching strategies (for more details, see Daina 2013). 

- we wrote a report based on the interviews with teachers which allowed us to define the “profile” of 
each teacher, a synthesis of all the information we collected, which give information, among other 
aspects, on social, personal, institutional dimensions.  

Selected results 
French speaking Switzerland context and pedagogical resources 

Switzerland has a highly decentralized system with no federal or national Ministry of Education. Each 
of the 26 cantons which composes the country has its own education legislation. However, four 
Regional Conferences, including French-speaking Switzerland which is represented by the CIIP 
(http://www.ciip.ch), have led to some effective coordination since the last five decades, drawing up 
common curricula, publishing material, jointly managing institutions and recognizing qualifications 
and admissions.  

In the 1970s in all French speaking Switzerland a common official set of pedagogical resources, the 
MERM, was designed by the CIIP appointed group of experts and teachers from the different cantons. 
This first edition originates from a double necessity: a will of « inter-cantonal » coordination of 



education (mathematics but more widely all the disciplines) and the introduction of a new curricula 
(CIRCE I), linked with the reform of the "modern mathematics ". In the 1990s, modern mathematics 
were abandoned and the pedagogical resources have been renewed in the 1990s according to a new 
educational paradigm based on problem solving, strongly influenced by the socio-constructivist 
approach.  

Switzerland has therefore a long tradition of diverse cantonal educational policies but also the 
willingness to coordinate the educational system in order to facilitate in particular communication 
and student mobility. The MERM are the “symbol” of this process, especially in mathematics because 
they were the first to be done. In fact, the MERM are the result of a long process of discussions and 
compromises because they have to be approved and accepted by all the cantons of the French speaking 
part of Switzerland. It is necessary to allow three or four years to realize the MERM for one degree. 
We have to take into account this complex context in our observation and analysis of this resource 
(institutional dimension). The MERM must for example be compatible with all the plans of studies. 
They cannot thus be too prescriptive and require an opening. 

Besides, the pedagogical resources are central to the reforms and innovations regarding mathematics 
education and more than just simple resources, they have the role of promoting  innovation, in 
particular thanks to the teacher's textbook which describes the didactic and educational choices. They 
have to introduce the changes and harmonize the practices. This is also a critical element we have to 
take into account in our analysis (institutional dimension). 

The MERM have been thought as a set of resources, therefore they mostly consist of a succession of 
activities for class, regrouped in 6 to 8 main themes, without hierarchy. Contrarily to textbooks in 
other countries, they do not give a day-to-day organised plan for teaching, which remains the teachers’ 
responsibility. To do this, the teacher must provide a considerable amount of preparation prior to the 
lesson and our PhD theses aimed to study the ordinary practices in connection with this resource in 
order to make visible this essential part of the work of the teacher. 

Case study: Mathilde and Sophie 

To exemplify our methodology and present some results of our research, we will now present two 
examples of our case study. We will first provide the chosen information about their “profile”, which 
gives information about the personal and social dimensions. Then we will present and compare their 
teaching sequences.  

Mathilde and Sophie were both young teachers (4 and 5 years of experience) and they worked in the 
same school. The year of our experiment, they taught the same degree (6P) and they met twice a 
month and collaborated to develop mathematics lesson plans. Looking at the exchanges between the 
teachers during this meeting, we saw that they spoke little about the teaching objectives which seemed 
to be implicitly known and shared.  

Mathilde said that the textbook was the reference and did not feel the need to talk more about the 
objectives. She specified during the interview that her colleagues “trust” her concerning the choice 
of the activity because it’s impossible, according to her, to choose the activities in the textbook 
without assistance. Sophie also speaks about "trust" during the interview what shows the importance 
of the collaboration in the preparation, by filling what is felt as a "lack" of the resource. 



However, the study of Sophie’s and Mathilde’s profiles allows us to highlight that the objectives of 
both teachers are very different. For Sophie the calculating procedures in particular the introduction 
of the techniques of calculation of areas for triangles and parallelograms represent an important aim 
in the sequence. For her part, Mathilde considers that the main objective concerns the understanding 
of the notion of area and the formula to calculate the area of a square. Even though their objectives 
are different, this point remains implicit throughout their collaboration. 

The scenarios analysis and their carrying out in class will allow to see how will evolve the educational 
projects of the two teachers whose starting point, by the way, is the same list of activities. 

Figures 1 and 2 allow to have a global vision of Mathilde’s and Sophie’s scenarios. Mathilde provides 
a teaching sequence we analysed in three parts: an introductory session, three sessions dedicated to 
the area of square and rectangle and a session of introduction of the area of other polygons. This 
corresponds to what is proposed in the textbook.       

 
Figure 1 Mathilde’s scenarios 

The analysis of the series of activities proposed in Sophie’s classroom show a split teaching sequence 
where activity from the official textbook are often mixed with improvised tasks on the blackboard.  

 
Figure 2 Sophie’s scenarios 

We represented a structure in four parts: an introductory activity, a series of activities on the area of 
square and rectangle, an introduction in the measure of areas of the other regular polygons and a 
session of revision. 

Although Sophie and Mathilde based there teaching sequence on the same common project, we see 
well how both scenarios evolved. While the starting point is almost identical, the gap is widening in 
the course of the sessions, leading to differents mathematics promoted in each class (considering the 
cognitive dimension, Daina 2013). It is nevertheless interesting to note that in the interviews, 
Mathilde and Sophie did not seem conscious of these differences. 

The analysis of the first session, while Sophie and Mathilde proposed the same activity, “Fraction of 
a field”, allowed to see more in details this difference. 



8. Fraction of a field 

Father Joseph has a square field. He splits it 
using three ropes passing through the vertices or 
the midpoints of the sides. One of his sons, 
Francis, will inherit the grey part of the field. 

What fraction of the field will he receive?  
The table below synthesizes the succession of the phases during the carrying out of the activity in 
Sophie’s and Mathilde’s class. 

Sophie Mathilde 

Phases Duration Phases Duration 

Instruction 7 minutes Instruction 3 minutes 

Pupils work on the activity 6 minutes Pupils work on the activity 10 minutes 

Pooling 3 minutes Pooling 7 minutes 

Pupils work on the activity 3 minutes Aide mémoire 19 minutes 

Pooling 8 minutes Pupils work on the activity 39 minutes 

Parallel task on white board (interruption) 5 minutes   

pooling (reprise) 8 minutes   

Aide mémoire 4 minutes   

Parallel task on the white board (interruption) 8 minutes   

Here we see very clearly that, although the same activity was proposed to the pupils, its management 
in class is totally different between the two teachers (mediation dimension). 

In the class of Mathilde the number of phases is limited. The instruction is very short. During the 
pooling, the interactions testify of a discussion between the teacher and the pupils who have an active 
participation in advancing the discussion. Corrections are made individually. 

In the class of Sophie we observe at first a longer instruction time. Sophie testifies of a will to make 
sure that the pupils understand well « what they have to do ». The progression of the project is 
managed collectively. Sophie makes regular pooling in the course of which, she directs the pupils on 
a strategy of resolution which is going to become common. However, the task is also diverted on 
secondary tasks which are in connection with knowledge bound to calculate the area of 
parallelograms or triangles which are central objectives for her. Sophie’s more personal project enters 
thus in tension with the progress of the main activity which becomes a material medium to introduce 
new knowledge in a lecture style of teaching on whiteboard. 

We can thus observe a big variability in the practices of these two teachers. What is really questioning 
is that these differences do not seem to worry them and in spite of their various ways of functioning, 
the teachers find an interest to prepare together the teaching sequences. 

The space provided in this paper only allows to give a limited insight into our research result but 
some analysis made permit to identify tensions bound to the use of MER. The first cause of tension 
results from the “shape” of this resource. Indeed, the quantity of the activity proposed is too important 
and a novice teacher can’t know them all and make a real choice. As said in the introduction, there is 
no supplied sequence and not much piece of information given about each activity. This leads the 
teachers to follow what make other colleagues, even if sometimes they did not share the same 
objective and teaching strategy. Furthermore, as we show in the first part, the specific status of this 
resource will act as a strong constraint on the teacher who will use it to be in “conformity”, even if 



they do not follow the socio-constructivist approach and will finally distract from the goal of the 
activities. 
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Children’s performance on a mathematics task they were not taught to 
solve: A case study 
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A teacher documents how a task was used to elicit children’s knowledge of multiplication as a 
precursor to learning the long multiplication algorithm. Data include samples of children’s written 
work, and transcripts of two 30-minute lessons. Children discussed solution strategies. The teacher 
used time between the two lessons to select and sequence representative strategies to share. 
Strategies used by the children were diverse showing a range of multiplication-related knowledge 
among the children ranging from knowledge of repeated addition to knowledge of place value and 
the additive decomposition of numbers to various applications of the distributive property.  

Keywords: Long multiplication, problem solving, third grade, mathematics laboratory.  

Introduction 
A common pattern of mathematics teaching is for teachers to present a problem to children, 
demonstrate how to solve it, and then set similar problems for the children to solve applying the 
demonstrated strategy (Lyons, Lynch, Close, Sheerin, & Boland, 2003; Stigler & Hiebert, 1999). 
Calls have long been made for mathematics instruction to focus on teaching thinking strategies and 
to promote goals like creativity, forming and changing hypotheses, and reflecting on one’s own 
thinking and the thinking of others (e.g. Streefland, 1992). This case study describes one teacher 
using heuristics to introduce long multiplication to children who have completed third class.  

Children in Ireland learn short multiplication in third class and long multiplication in fourth class. 
The study describes and analyses work done over two days in a mathematics laboratory school 
which took place in July 2016 in Dublin. Two research questions are addressed in this study. First, 
what knowledge did children draw on to solve a long multiplication problem they had not been 
taught to solve? Second, what knowledge does the class possess that prepares the children for future 
work on long multiplication? The data consist of children’s written work and transcripts of two 30-
minute lessons on consecutive days.  

Theoretical framework 
Three research areas frame this study. The first is progressive schematisation or progressive 
mathematisation as inspired by the work of Freudenthal and Realistic Mathematics Education. It 
describes how children solve problems using their own ideas and informal strategies (Streefland, 
1992). These ideas and methods become more sophisticated as students begin to understand and use 
formal, more efficient algorithms (Treffers, 1987).  Although others have written about invented 
algorithms (e.g. Kamii, Lewis, & Livingston, 1993), Treffers (1987) formalises the process and 
refers to vertical mathematisation (where algorithms are reorganised and refined) and to horizontal 
mathematisation (connecting the mathematics to real-life) (Selter, 1998). The second area of 
research relates to the conceptual field of multiplication: the grounding of mathematical analysis of 
situations and problems, and the development of children’s ideas over time. It includes paying 
attention to children’s past and future learning to inform present learning (Vergnaud, 1988).   



The third area of research framing this study is the teaching of multiplication (Lampert, 1986). 
Lampert identifies four categories of knowledge used when learning mathematics: intuitive, 
computational, concrete and principled. Intuitive (or naïve) knowledge refers to how people in 
particular contexts invent ways to calculate in order to do their work; it may not transfer well to 
other contexts. Computational knowledge is procedural knowledge, like standard algorithms, that 
children typically use in school. Concrete knowledge is used when objects are manipulated to find 
answers. This may include rectangular grids which are sometimes used to compute answers to 
multiplication problems. Finally, principled knowledge is knowledge children can use, without 
necessarily understanding the meaning of what they are doing. Such knowledge might involve 
children drawing on principles such as place value, the commutativity of addition or multiplication, 
or the distributive property of multiplication over addition.  

This framework will help to identify stages in the heterogeneous work of a class (Selter, 1998) of 
children as they attempt to solve problems for which they do not have a solution. It will also help to 
categorise the knowledge that children used and shared in solving the problems.    

Method 
Participants 

Twenty-four children – 17 girls and 7 boys – were in the class which lasted for two hours per day 
over five days. The children had just completed third class in ten different schools and therefore 
could be expected to be familiar with short multiplication but not to have worked on long 
multiplication. The mathematics laboratory class was taught by the author and was observed by 
twenty-five teachers who were completing a summer course in mathematics. Although several 
topics were taught in the summer school, the focus of this study is on the introduction of long 
multiplication. A word problem was chosen from Van de Walle: “The parade had 23 clowns. Each 
clown carried 18 balloons. How many balloons were there altogether?” (Van de Walle, 2001, 
p.182). Children worked on this problem collaboratively in pairs; they were encouraged to solve the 
problem and to be prepared to justify their solution. 

Data analysis 

Two data sources were used: samples of children’s written work and transcripts of dialogue from 
the lessons. Children did their written work in squared exercise books using black pen to ensure that 
they would not erase work they were unhappy with or that contained errors. This rationale was 
shared with the children. All lessons were video recorded by two cameras – one focused on the 
children and one focused on the teacher. The videos were used to prepare lesson transcripts.  

The research questions relate to the knowledge used by the children and available to the class as a 
resource for future learning. All children’s written work completed in response to the problem was 
studied and compared to ensure that samples of every approach used were represented in the four 
samples of work selected for more detailed analysis. The chosen work samples were subsequently 
analysed to identify categories of knowledge that were evident in the work. The four categories 
outlined by Lampert (1986) guided this analysis. The transcripts were analysed for evidence of 
student mathematical knowledge. Although the categories identified by Lampert informed this 



analysis, the analysis was open (Corbin & Strauss, 2008) so references to knowledge not covered by 
the four categories could be identified.   

Results 
Lesson plans 

Children were asked to work on the multiplication problem in pairs. The following day the plan was 
to continue working on the same problem. Prior to lesson 2, the author (as teacher) looked at the 
children’s work to select and sequence four approaches to share with the entire class. The strategies 
selected involved repeated addition, repeated addition with some multiplication, multiplying using 
partial products and an attempt at the standard algorithm for long multiplication. The lesson plan 
refers to a pictorial representation of the problem that would help the children get an understanding 
of the dimensions of the problem. This was introduced in response to a similar approach used for 
various scenarios by Lampert (1986). The lesson plan concluded with the intention to ask the 
children to independently solve a second long multiplication problem.  

Day 1 

The calculation was embedded in a word problem referring to a setting familiar to most children in 
the culture – many clowns each holding several balloons. Two two-digit numbers needed to be 
multiplied. The combination of relatively low two-digit numbers and the concrete image of clowns 
with balloons made it relatively easy for children to draw the scenario if they decided to do so. After 
a class discussion of the problem conditions, children worked on it in pairs for seventeen minutes. 
The teacher circulated among the children monitoring the work of pairs. Teachers participating in 
the summer course walked around the class observing the children working. Although they were 
asked not to interact with the children, on one or two occasions some did.  

After the children had worked in pairs, the teacher asked one pair of children – Sandra and Lisa – to 
tell the class how they went about solving the problem. They had added eighteen and eighteen to 
make thirty-six. Then they added another eighteen. The teacher asked the class if this strategy were 
implemented properly, would it yield the correct answer, and based on their responses reminded 
them of the need to be systematic in recording their work. 

Two more children, Chuck and Róisín, shared a different approach. They wrote down twenty-three 
eighteens and multiplied twenty-three by eight and twenty-three by one. This represented an 
understandable mistake, forgetting that the one digit in the eighteens represents ten rather than one.  

At this stage the teacher adjourned the discussion and moved to another mathematical topic. Having 
concluded that part of the work for the day, the teacher could examine and reflect on the children’s 
work in order to select and sequence material for discussion in the following day’s lesson.  

Day 2 

Overnight the teacher looked at each child’s work. No one had successfully used the long 
multiplication algorithm suggesting that, as expected, it had not been taught to the children prior to 
the summer school. Four examples were selected and sequenced in a way that was anticipated to tap 
into the children’s current understanding, to show increasing efficiency or sophistication of 
solutions – progressive mathematisation – and to prepare the children for subsequent work on long 



multiplication. Although all children had worked in pairs, work to be shared was selected according 
to the clarity of the work recorded in individual children’s copybooks.  

First was Christine who had used a straightforward repeated addition approach. She had a pictorial 
representation of the problem with twenty-three faces and eighteen balloons over seven of them (see 
Figure 1). Next was Donal who had no pictorial representation but who also used a repeated 
addition approach. He had grouped ten eights where possible to multiply them and had multiplied 
twenty-three by ten (see Figure 2). Third was Fintan who solved the problem by calculating ten 
eighteens, another ten eighteens and three eighteens and then added the three calculations (see 
Figure 3). All three students had the correct answer of 414. The fourth student, Eileen, got the 
wrong answer but the strategy used seemed closer to the standard long multiplication algorithm. She 
wrote an account of what she did and of how she was thinking rather than just recording the 
calculation. She multiplied the three from twenty-three by the eight in eighteen and got twenty-four. 
She then multiplied twenty by ten to get two hundred. She refers to multiplying two by one and it is 
unclear if that is a precursor to multiplying twenty by ten (see Figure 4). 

Despite the fact that Christine had set up the calculation to be solved using repeated addition (see 
Figure 1), she stated that to solve the problem she and her partner “drew a picture and we did loads 
of dots and we counted them all up.” When challenged by the teacher about the repeated addition 
work in her copy, Christine responded that “I had a long sum but that didn’t really work because I 
kept on losing count.” This provided an opportunity to discuss a problem that arises with repeated 
addition, and to prepare the class for seeking more efficient ways to calculate using long 
multiplication. The teacher did not ask Christine why it was easier to keep track of counting the 
balloons individually than adding 18 twenty-three times and that may have yielded information 
about a system she had developed to keep track of the balloons already counted.  

Donal had a more sophisticated way of working with repeated addition (Figure 2). Although his 
layout of the problem looks similar to Christine’s, he approached it as follows  

(8x10) + (8x10) + (8x3) + (10x23) 

In solving it this way Donal and his partner showed understanding of the distributive property of 
multiplication. They noted that the ones in the eighteens represented tens and not units. However, 
Donal’s written recording of the work and his oral explanation of it suggests that he was not yet 
familiar with multiplying numbers by ten. In contrast, his classmate David stated that “When I’m 
multiplying by tens, I just add on another zero at the end of the number.” Although the wording of 
“adding” another zero may not be helpful, he is referring to the fact that multiplying a number by 
ten shifts each digit one place to the left requiring zero as a placeholder in the units place.  

A more condensed understanding of the distributive property was apparent in Fintan’s work (Figure 
3). Unlike Donal or Christine he did not write out the calculation using repeated addition. Nor did 
he separate the tens and units in order to complete his calculation, which took the following form: 

(18x10) + (18x10) + 18 + 18 + 18 

Fintan sees his approach as being similar to Donal’s and he states that “we basically did the same as 
Donal; we used hundreds, tens, and units.” However, whereas Donal’s approach was limited by 



apparently not being able to multiply two-digit numbers by ten, Fintan was able to make the 
calculation more efficient by multiplying eighteen by ten.  

When the children were asked where the twenty-three (clowns) could be seen in Fintan’s strategy, 
two children (Katherine, Ethna) found it difficult to identify. One, Doireann, successfully 
constructed an explanation with the teacher in the following exchange.  

Doireann: So the eighteen times ten is done twice. So that would be like twenty there. And 
then… 

Teacher: So, you’re saying that this is ten clowns with eighteen balloons, and this is another 
ten clowns with eighteen balloons.  

Doireann: Yeah.  

Teacher: Is that what you’re saying? 

Doireann: Yeah.  

Teacher: Okay. And what then? 

Doireann: And then if you add that together that’s twenty… 

Teacher: Twenty clowns with eighteen balloons.  

Doireann: Yeah, and down the bottom there, it’s three eighteens. Add them onto the twenty 
and it’s twenty-three.  

When asked to choose a preferred strategy from those presented by Christine, Donal and Fintan. 
Four children preferred Fintan’s approach on the basis that it is quicker and it requires less writing. 
Two claimed to prefer the repeated addition approach because it looked less complicated.  

When children solved the first long multiplication problem, twelve of them used a variation of 
repeated addition, three used a form of the distributed property, three a variation of the conventional 
algorithm, the work of three children was unclear and one used counting. Following the discussion, 
seven children used repeated addition, four used a form of the distributive property, five used a form 
of the conventional algorithm, the work of six students was unclear and one used counting. 

Finally, Eileen was asked to share her approach. Initially she stated that she and her partner got the 
wrong answer. After reassurance from the teacher that the class could learn from the wrong answer, 
she shared her approach. She writes that “in her head” she laid out the problem as it would be laid 
out in the conventional algorithm for long multiplication. She multiplied the three units by the eight 
units and got twenty-four. Then she multiplied the two tens (of twenty-three) by the one ten (of 
eighteen). She added them together and got 224. Although the teacher sequenced Eileen’s strategy 
after Fintan, it is conceivable that her understanding is more naïve than his because she may have 
been attempting to apply the algorithm for short multiplication to long multiplication without really 
understanding the distributive property. Nevertheless, it provided an opportunity for the teacher to 
introduce an illustration of the distributive property of multiplication to all children.  

Eileen failed to multiply the eight by twenty and the ten by three. In order to help her and her 
classmates visualize this, the teacher proposed a drawing of the scenario based on Lampert (1986). 
In this drawing (see Figure 5) twenty clowns were on a bus travelling to the parade and three clowns 



had to walk because there were only twenty seats on the bus. Twenty strings with balloons on them 
could be seen emerging from the bus, each string with one group of ten and one group of eight and 
the three clowns outside the bus held similar strings of balloons.  

The class was asked how they could calculate the number of balloons held by the clowns altogether. 
The idea of the picture was to make it clear that the numbers that need to be multiplied are (20x10), 
(20x8), (3x10) and (3x8). The first two calculations correspond to the clowns sitting in the bus with 
the strings containing ten balloons and eight balloons and the second two calculations correspond to 
the clowns standing outside the bus holding strings with ten and eight balloons on them. The 
diagram helped children see that Eileen had neglected to calculate the (20x8) and the (3x10).  

Discussion and conclusion 
That multiplication was the operation needed to complete this task was uncontested by the children. 
In solving the problem, they drew on different categories of mathematical knowledge. Some relied 
on intuitive, context-specific knowledge and drew versions of the clowns in order to solve the 
problem. Computational knowledge of multiplication was widely held, as would be expected by 
children who had completed third class. Although occasional errors were made, children had access 
to multiplication table cards if they wanted them so that even a lack of computational knowledge 
would not pose a barrier to solving the problem.  

Little evidence of the children using concrete knowledge emerged in the lessons. This may have 
been because no manipulable objects were made available to them to help them find an answer. 
Some children may have used the diagrams they drew as a form of concrete knowledge to support 
their solution but that is unclear from the data sources used.  

Much evidence of principled knowledge emerged from the children. Donal and David showed 
understanding of place value, by separating the tens and the eights in eighteen (Donal) and in stating 
how numbers can be easily multiplied by ten (David). Several children had a tacit knowledge that 
numbers can be decomposed additively and of the distributive property of multiplication (e.g. 
Donal, David, Caitlin, Fintan and others). The teacher attempted to make this aspect more explicit 
by introducing the diagram with the clowns in and beside the bus. Students like Eileen have some 
understanding of the distributive property but it needs to become more explicit if she and others are 
to be ready to apply it in taking the next step to understand and use the long multiplication 
algorithm automatically. They need to grasp the principle that (a+b)*(c+d) requires multiplying a by 
both c and d and multiplying b by both c and d and not just multiplying a by c and b by d.  

At the end of the week around fourteen children were still either using repeated addition for similar 
multiplication tasks, using counting or not showing evidence of how they found their answer. Nine 
showed willingness either to apply the distributive property of multiplication or to at least attempt 
the conventional algorithm. Of those who were still applying the repeated addition algorithm, four 
had become more sophisticated in using it (moving closer to Donal’s approach than to Christine’s) 
following the class discussion documented here. This highlights the importance of children learning 
from each other through working on and explicitly discussing their completion of a task.  



 
 Figure 1. Christine’s work.  

 
Figure 2. Donal’s work.  

 
Figure 3. Fintan’s work.  

 
Figure 4. Eileen’s work.  

 

 
Figure 5. Visual representation of long multiplication problem. 

Half the children used a form of repeated addition to solve the problem. However, additive 
reasoning differs from multiplicative reasoning (Nunes & Bryant, 1996). It remains unclear from 
this study if children reverted to additive reasoning because long multiplication was unfamiliar to 
them or if they have made the leap from additive reasoning to multiplicative reasoning at all. Future 
study could involve assessing children’s grasp of multiplicative reasoning in short multiplication 
scenarios (Sherin & Fuson, 2005), exploring the use of arrays (Fosnot & Dolk, 2001) and 
introducing long multiplication tasks that would more likely elicit responses that exhibited 
multiplicative reasoning.  
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This paper reports on a research project undertaken with a group (n=19) of Irish pre-service 
student teachers (PSTs) during the third year of a four-year undergraduate education course. A 
series of workshops were carried out on the critical evaluation and design of mathematics tasks. 
The research is presented as a case study using mixed methods to gather data. Through critically 
evaluating and designing mathematics tasks PSTs developed knowledge of cognitive demand, 
pedagogical design capacity and showed evidence of developing curriculum-making competences. 
The research highlights the need for PSTs to work together on evaluating and designing tasks.   
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Introduction 
This paper reports on a research project undertaken with a group (n=19) of Irish pre-service student 
teachers (PSTs) during the third year of a four-year undergraduate education course. A series of 
workshops were carried out on the critical evaluation and design of mathematics tasks. For the 
purpose of this research a ‘mathematical task’ is a problem or set of problems that address a specific 
mathematical idea, they are situated between teaching, learning and assessment (Smith & Stein, 
1998). The types of tasks that students engage with have been shown to influence their development 
(Jonson et al., 2014), and studies have shown that students spend the majority of their time in 
mathematics classes working on tasks (Boston & Smith, 2009; Haggarty & Pepin, 2002). 
Furthermore, Smith and Stein (1998) asserted that the highest learning gains in mathematics were 
related to the how mathematics tasks were set up and implemented in teaching and highlighted the 
importance of students being engaged in high levels of cognitive thinking and reasoning (see also 
Swan, 2011; Boston, 2013). Many challenging questions arise from this assertion for pre-service 
mathematics teachers, such as, what is a good learning task? How is a good learning task set up? 
How is it implemented in a mathematics classroom? These questions are especially relevant in 
Ireland, given that a report on mathematics education found that traditional approaches to teaching 
and learning were widespread and recommended that students engage with more tasks which 
require higher order thinking skills such as problem-solving and justification (Jeffes et al., 2013). 

Research questions 

In what ways did pre-service teachers’ knowledge of the cognitive demands of mathematical 
tasks change following their participation in a module on critical evaluation and design of 
mathematical tasks?  

How did this knowledge impact on their competences in curriculum making?  

In this paper we present a review of some key research on mathematics task design. We provide an 
overview of the module implemented as part of the research project and the methodology used to 



collect data. We present the key findings from the research and discuss the salient themes emerging 
as they pertain to pre-service teacher education. Finally, we summarise our recommendations and 
conclusions.  

Literature review  
The dependence of mathematics teachers on textbooks in their teaching appears to be a phenomenon 
in many countries (Haggarty & Pepin, 2002; Jeffes et al., 2013.). Haggarty and Pepin (2002) write 
about the dominance of the textbook in the mathematics classroom and conclude that without time 
to prepare for teaching, and, we would add, the skills to enrich the curriculum materials available, 
textbooks take on a prominence in “relation to teacher thinking and planning” (p.588). This is of 
concern as a recent review of mathematics books in Ireland found that all available books fell short 
of the standard needed to support mathematics teaching at that time and furthermore they especially 
fell short on the integration of technology, approaches to teaching for understanding and problem 
solving (O’Keeffe & O’Donoghue, 2011).  

Synder, Bolin and Zumwalt (1992) describe three teacher curriculum approaches: the fidelity 
approach, where teachers are transmitters of the written curriculum without changing it; the 
adaptation approach where the teacher adapts the curriculum to suit their context; and the 
enactment approach where the teacher develops the curriculum in action depending on the student 
experience.  Shawer (2010) builds on this work and identifies curriculum-transmission strategies 
where the textbook and teacher’s guide are the source of pedagogical instructions. He describes 
curriculum-making strategies as where the teacher develops their own materials in addition to those 
available in response to a needs assessment. Curriculum-development strategies on the other hand 
include experimentation, material writing and evaluation and involve both macro and micro level 
curriculum development. Within the Irish education system opportunities for curriculum-
development strategies are limited since the curriculum is centrally devised with little space for 
school-based curriculum development, this coupled with a teaching culture that has a dependence 
on textbooks would point to a need for PSTs to engage with research on task development.  

Studies have previously looked at this issue as part of professional development courses for in-
service teachers. For example, Boston and Smith (2011) describe a task-centric approach to such 
courses where the focus is on teachers’ ability to select and implement cognitively demanding tasks. 
They found that after a series of workshops, where teachers analysed both the cognitive demand of 
tasks and the implementation of tasks, the participants increased their ability to select high-level 
tasks and this improvement was sustained over time. The workshops also influenced teachers to 
consider the impact of the tasks they selected on their students’ learning (Boston, 2013). Arbaugh 
and Brown (2005) used a similar approach and found that introducing teachers to criteria for high-
level tasks influenced their task selection, and ultimately their pedagogical content knowledge.  

A number of different frameworks have been developed to classify mathematical tasks and have 
proved useful in research, professional development and pre-service teacher education (Boston & 
Smith, 2011). In this research we used three different but complementary frameworks with the 
participants.  The first framework is that of Smith and Stein (1998) which looks at the level of 
cognitive demand (LCD) of tasks. They identify two levels of LCD: Lower-level demands (with 
task types of Memorization and Procedures without connections to meaning), and higher-level 



demands (Procedures with connections to meaning and Doing Mathematics). The distinction 
between tasks is relevant, as the level of cognitive demand in a task provides different learning 
opportunities for the learner and demands a different learning environment for the development of 
competences required by the task. Our second framework is the mathematical reasoning framework 
developed by Lithner (2008). This framework can be used to classify the opportunities for different 
types of mathematical reasoning afforded by tasks. Lithner (2008) describes two types of reasoning: 
Imitative Reasoning which consists of Memorised reasoning and Algorithmic reasoning; and 
Creative Reasoning which involves local and global Creative mathematically founded reasoning. 
Creative reasoning tasks fulfil the criteria of novelty, plausibility and mathematical foundation. 
Lithner (2008) is concerned with how tasks can be used to promote creative reasoning as opposed to 
imitative reasoning. He contends that the teacher’s task is to “arrange a suitable didactic situation in 
the form of a problem” (p.271) so that the learner can take responsibility for the problem solving 
process, and use creative reasoning.  

These two frameworks can be used to classify tasks using either the degree of cognitive effort 
required or the type of reasoning needed.  They both divide tasks into two broad categories - either 
high or low levels of cognitive demand in the case of Smith and Stein (1998) or imitative or creative 
reasoning in Lithner (2008). They have been used in professional development to alert teachers to 
the effects of different types of tasks (e.g. Arbaugh & Brown, 2005). In order to help the PSTs to 
move from classifying tasks to designing them, we introduced a third framework. Swan’s 
framework (2008) describes five task types that encourage concept development and provides very 
clear design principles to inform task development and implementation. There are many examples 
of Swan’s mathematics tasks available on-line (see, for example, Mathematics Assessment Project, 
n.d.). The five task types that he posits will encourage concept development are: classifying 
mathematical objects, interpreting multiple representations, evaluating mathematical statements, 
creating problems, and, analysing reasoning and solutions.  

Methodology 
Nineteen pre-service teachers in the second semester of year three of a four-year post-primary 
teacher education course took part in the research project. At the time of the research the PSTs were 
midway through their second school placement experience and were teaching a minimum of two 
hours per week.   All participants were taking mathematics in their degree and one other science 
subject (either biology, chemistry or physics). The research is presented as a case study using mixed 
data collection methods looking at the group of PSTs as a whole, over a sustained period of time as 
they developed competences in task design (Yin, 2009).  This allowed us to build on earlier research 
(Boston, 2013) and incorporate PSTs reflections on the design process.  Jones and Pepin (2016) 
contend that when teachers interact with mathematical tasks, they develop knowledge; this is done 
individually in preparing and planning for teaching and collectively when they are afforded 
opportunities to develop and discuss tasks with peers. In designing curriculum materials PSTs need 
both subject matter knowledge (SMK) and pedagogical content knowledge (PCK) (Ball, Thames & 
Phelps, 2008). With this in mind we designed a module for the group of PSTs based on task 
evaluation and ultimately task design. 



In order to investigate any gain in knowledge for the group over the course of the intervention, we 
administered a pre- and a post-test designed by Boston (2013). This test asked students to classify 
16 tasks as either High Level or Low Level tasks, and to give a rationale for their choice. At the end 
of the module, the pre-service teachers were asked to complete an evaluation questionnaire which 
asked them: to report on a key learning moment during the module; whether their teaching had 
changed as a result of the module and if so, in what way; what they would change about the module; 
and to indicate their level of agreement with some statements about the reading from the 
Mathematics Education literature. 13 of the 19 students submitted the evaluation questionnaire.  

The assessment for the module consisted of the assignment outlined in Figure 1. All 19 pre-service 
teachers submitted this assignment and gave their consent to use it for research purposes. The tasks 
designed by the PSTs were analysed using the LCD and Lithner Frameworks. The classification was 
conducted by two researchers who were familiar with the curriculum, assessment, and textbooks 
relevant to the classes taught by the PSTs. The researchers used their knowledge to decide if (in the 
context of the PSTs’ classes) the tasks should be classified as either high or low level tasks. We also 
looked for evidence that PSTs employed aspects of Swan’s (2008) framework in their design. A 
general inductive approach as advocated by Thomas (2006) was taken to analyse the students’ 
reflections on the differences between types of tasks. Analysis was guided by the research questions 
and a number of a priori themes (such as MKT), allowing flexibility for other themes to emerge.   

Task Development  

For a topic of your choice design (or significantly adapt) a series of tasks. One task/s should 
be suitable to be used in class while teaching, and, one for use as homework. Design an 
examination task/s for the topic. Present your rationale for each task based on your readings. 
Reflect on the differences between classroom task, homework task and examination tasks. 

Figure 1: End of module assessment  

Findings 
PSTs’ specific learning about cognitive demands 

Thirteen participants completed the Boston (2013) pre- and post-tests on levels of cognitive 
demand; a paired t-test was used to investigate whether the mean of the group had increased 
significantly over the course of the module, and found that it did (p=0.037). There was also 
evidence for PSTs developing knowledge about cognitive demand in their response to the question 
on the end of module evaluation asking what was their key learning moment.  

Realising the different reasoning and thinking about the type of question. In the textbook, where 
homework is usually given from, questions are repeated, low demand. In the maths exam 
students are faced with high level conceptual questions so there is a big gap there that needs to be 
addressed. (S14) 

Here we see that S14 is noticing the level of demand and reasoning in the artefacts available to them 
in their teaching, the textbook. This text-guided Algorithmic Reasoning (AR) is supported and 
encouraged by the rote use of the textbook for homework (Lithner, 2008). The recognition of this by 
the PSTs was notable in many comments such as: 



Having completed this module, I seriously consider what I give my students as homework. 
Beforehand I generally gave a list of questions at the end of the chapter but now, having seen the 
different levels, I generally spend more time selecting and developing questions …. (S16) 

The PSTs seem to be linking the levels of cognitive demand with the level of reasoning required, 
bringing the two theories together in their own thinking about the mathematics curriculum and 
assessment. The knowledge of the different frameworks is enabling the PSTs to move from a role of 
curriculum transmitters dependent on the text book to being curriculum makers as described by 
Shawer (2010).  

Pedagogical design capacity and moving from curriculum transmission 

The analysis of the PSTs’ end of module assignments gave further evidence of them making this 
transition. All students showed that they were able to design or modify tasks to get high level 
questions. The PSTs classification of their tasks using the LCD and reasoning frameworks 
demonstrated that they were competent in using the frameworks for classification.  

We noted the types of tasks designed by the PSTs for the three different situations of classroom 
tasks, homework tasks, and examination tasks. The types of tasks designed seemed to fall into two 
broad camps: open-ended exploratory tasks (which were mainly found in the classroom setting) and 
more traditional formats (which were mainly found in homework and examination tasks). The latter 
types of tasks mostly consisted of word problems with a real-life context; the PSTs designed a small 
number of other types of tasks for use as homework or examination questions, including tasks 
which required students to make a conjecture, provide an example, or evaluate a mathematical 
statement. In addition, one PST designed a homework task which involved a pre-class investigation. 
The majority (13 of 19) of the PSTs used card-matching designs for their classroom tasks. These 
tasks were based on Swan’s “Interpreting Multiple Representations” (Swan, 2008, p. 3) task type. 
The PSTs were introduced to this idea through the Swan (2008) article and also participated in a 
card-matching task (on the topic of fractions) during one of the module sessions.  Three of the PSTs 
used games (such as ‘Battleships’ and dice games) to devise tasks for use in the classroom, two 
PSTs used investigations as the basis of their task, and one designed a series of worksheets with 
problems of increasing difficulty. 

The PSTs showed creativity and an appreciation for tasks with high levels of cognitive demand. 
However, an analysis of their designed tasks showed that the design process was not without 
difficulty for the group. Some of the questions were not always clear due to missing or confusing 
instructions, and sometimes the context made the question ambiguous (this has also been a problem 
in state examinations in Ireland). Occasionally it seemed as if the PSTs did not have a clear 
understanding of the underlying mathematics themselves, possibly owing to their level of SMK, and 
sometimes their use of mathematical language caused difficulty (such as using the term ‘equation’ 
instead of ‘expression’ for something like 2x+1). The learning trajectories for the tasks or sets of 
tasks were not always clear - sometimes it was not clear what understanding and what concept the 
PSTs were trying to develop.  

Pre-service teachers’ pedagogical content knowledge 

The PSTs’ knowledge of levels of cognitive demands challenged their deeply held view of how best 
to teach mathematics. Previous research with a similar co-hort of PSTs found that they focused on 



content when planning for teaching and placed little emphasis on the learner or prior learning 
(Nolan, Dempsey, Lovatt & O’Shea, 2015).  Most of the respondents said the module impacted on 
how they taught mathematics with the majority citing a change in how they asked questions, placing 
more emphasis on higher level of cognitive demand in questions. Prior to this module, these PSTs 
would have completed a module which included a significant input on questioning skills for 
teaching; they seem to have needed the knowledge of cognitive demand in order to have changed 
their questioning practices. It must be noted that this was reported but may not have been the reality 
when one takes into account the examples provided by the PSTs in their end of module assessment. 
However, an increased emphasis on discussing mathematics problems appears to be evident with 
comments such as  

I try to think more about pushing my students to reason more when completing tasks. I try to ask 
questions, give tasks to my students with much less information, and I want my students to rely 
less on me giving them the answer. (S11) 

This PST also spoke about the effect of the intervention on her teaching: 

I never really thought much into the differences between the tasks that I give during class, 
homework or exams or the impact it could have on my students’ development in a subject. 
Having studied and researched the classification of math’s tasks and implementing my own 
selection/adaption of tasks into my class, I now feel that I have gained a deeper understanding 
into the effect my choice of tasks can have on the progression and learning... (S11) 

The PSTs who implemented their tasks in their teaching placements, realised the effect that the 
teacher or set-up can have on the cognitive level of the task and this led to them thinking about 
different types of tasks or redesigning their original tasks:  

The students struggled very much with it at the beginning and due to my own fault I went 
through an algorithm with them and then the task immediately became a lower demand one, just 
requiring the students to reproduce an algorithm each time. If I were to redesign the tasks, I 
would change tasks E and F [card-matching tasks] to tasks where the students have to spot a 
mistake in a question/statement and justify their reasoning and how they would alter the 
question/statement … in order to encourage them to develop critical thinking skills. (S12) 

This reflection would suggest that the PST is developing her thinking on organising pedagogical 
content, adapting materials to suit students and adopting curriculum planning and making strategies 
(Shawer, 2010).   

Discussion 
Increasing the PSTs awareness of different levels of tasks and giving them an opportunity to design 
and modify tasks would appear to have allowed them to develop skills such as the ability to classify 
tasks and design tasks at different levels. They also seem to have developed knowledge especially 
PCK which linked to their knowledge of cognitive demand has enabled them to adapt their practice 
especially around questioning. We note though that the evidence we have presented in this regard is 
based on self-reported data. The importance of applying frameworks in order to increase awareness 
of concepts such as levels of cognitive demand is significant for PST education; awareness may be a 
crucial first step in knowledge acquisition.  Similar to findings from Boston (2013) and Swan 



(2007) who worked with practicing teachers, our research appears to demonstrate the need for an 
awareness of cognitive demand in order for mathematics educators to be able to select and develop 
rich and engaging tasks.  This increase in knowledge and skills seems to be crucial in order to make 
the transition from curriculum transmitters to curriculum makers (Shawer, 2010). The space in our 
intervention for discussing textbook questions and State Examinations materials was cited as being 
the most impactful for the PSTs. They suggested that the module could be enhanced with more time 
devoted to this kind of peer interaction in task evaluation and design. This need for space for 
curriculum making and professional learning, and, the challenges therein has not been fully 
explored within PST education.  

This research has highlighted a gap in the PSTs’ education on task design in the case study 
institution, and, as such will be used to make changes to the module design and implementation. 
PSTs’ practices and beliefs around tasks for homework merits further exploration. We intend to 
carry out more analysis on our data such as on the tasks assigned by PSTs (pre- and post-
intervention) and of their reflections on tasks linking back to Lithner’s (2008) concept of 
sociocultural milieu. 
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The aim in this paper is to shed light on interactional aspects of researcher and practitioner 
collaboration in design research in mathematics education. Symbolic interactionism is used to gain 
understanding of interactional aspects as it has potential to take both individual and social aspects 
of the interaction into account. Aims and agencies are in focus of the retrospective analysis of the 
collaboration between two researchers and two practitioners as they collaborate to develop 
instructional design. The analysis show how referring to authoritative disciplines as the 
mathematics community influence agency and therefore has great potential to influence how the 
negotiation of meaning progress and participants acts. I argue that agency could be viewed as an 
indirect tool that has the potential to direct the collaboration when designing tasks based on what 
aim different actors put in the foreground.  

Keywords: Collaboration, agency, interaction, design research. 

Introduction 
Collaboration is at the core of design research in mathematics education. A key characteristic is that 
it is research conducted with researchers and practitioners in real-world settings (Plomp, 2013). This 
collaboration is often between one or more researchers and practicing teachers. It is essential that 
this team collectively has the competence to develop the design, conduct the lessons, and perform 
the retrospective analysis (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). This means that we 
have different actors in the activity, each with its interpretation of the aim and purpose, as well as of 
the actual activity and the mathematics involved. Since each actor has a specific set of competences 
and a vital role to play in the collaboration to develop the design, the question is how their 
differences influence the discussions during meetings and by extension the design? McClain (2011) 
explores this interplay of differences in the classroom interaction between students who performed 
the resulting tasks and the teacher who orchestrated the discussions. She views it as interplay 
between the students’ contribution, the task and what she calls the proactive role of the teacher. One 
key aspect of the interplay is where the authority over the topic, the agency, lies. Agency is thought 
of as a capacity to act in social interaction. McClain (2011) emphasizes that it is important for 
students’ learning that agency shifts between different actors in the activity.  

The discussion in this paper focuses on the developing phases of design research. How does this 
shifting of agency that McClain (2011) identifies in the design research classroom appear in the 
development of tasks in between lessons? The aim of this paper is to further understand how the 
aim and agency fluctuate between the participants and its influence on how the negotiation develops 
as researchers and teachers collaborate to develop instructional design. Results could be viewed as a 
contribution to the mathematics design research methodology discourse of how collaboration 
between researchers and practitioners can support the design process. 



Previous research 
Design research in mathematics education is described as a research design that is interventionist; 
iterative; process, utility and theory oriented; and has involvement of practitioners (Plomp, 2013). 
The idea is to develop tasks and activities, test them in real classrooms, evaluate the outcomes and 
then revise the design in an iterative process involving practitioners from the field. All in all, the 
research design enables the team to pursue multiple goals in the same project. The aim is to 
understand the processes involved in utilizing the developed tasks from the point of view of a 
chosen theory, design usable material for users in real life context and lastly to contribute to further 
development of theory. Plomp (2013) calls it the twofold yield of design research, producing both 
research-based intervention and knowledge about interventions in the form of theory. 

Beside the global aims of design research, an intention to develop theories and instructional designs, 
there are local aims as well. The instructional design has an aim, an intention to stimulate learning, 
in the form of a hypothesised learning process and goal for the subjects (Cobb et al., 2003). The so-
called Hypothetical learning trajectory (HLT) is defined by Simon (1995) as follows: 

The hypothetical learning trajectory is made up of three components: the learning goal that 
defines the direction, the learning activities, and the hypothetical learning process – a prediction 
of how the students’ thinking and understanding will evolve in the context of the learning 
activities. (p. 136) 

Cobb (1999) argues that the learning goal of a HLT should be from a group perspective rather than 
an individual one. Simon (1995) amongst others talk about a prediction of individual learning 
processes and thinking whereas Cobb (1999) call this line of thinking highly idealized at best. 
Instead, he proposes a focus on collective mathematical development in the classroom community. 
A HLT then consists of an “envisioned sequence of classroom mathematical practices together with 
conjectures about the means of supporting their evolution from prior practices” (p. 9).  

Global and local aims are both individual interpretations as well as objects for the research team to 
negotiate. In this paper, it is assumed that this process is a social interaction within the team. 
Interaction is described with the theoretical background of symbolic interactionism (Blumer, 1986). 
It proposes that humans act according to the meaning that objects have to them and that the meaning 
of objects arise out of social interaction. This is an interpretative process where humans constantly 
interpret others’ actions and the meanings they indicate before acting themselves (Blumer, 1986). It 
means that participants of the research team interact according to how they interpret the local aim of 
the design as well as their own global aims and interpretations of the mathematics in question. Voigt 
(1994) calls this the negotiation of meaning in the mathematics education context. It is a negotiation 
because the actors contribute to a discussion based on their interpretation of what is being discussed 
and at the same time re-evaluate their own understanding, thus creating a negotiation of what is 
viewed as the community’s meaning of the objects.  

As global and local aims and the design itself are negotiated, participants position themselves 
through their contribution to the negotiation. Burr (2003) talks of the capacity to take up positions 
for one’s own purposes and that agency lies in responsive actions in interaction. In the mathematics 
classroom context, McClain, Zhao, Visnovska, and Bowen (2011) defines agency as “authority over 
both the mathematics being taught and the sequencing and presentation of that content” (p. 63). 



Combined, they frame the agency concept for this paper. For the purpose of this paper agency is 
viewed as involving one’s intentions, sense of responsibility, as well as one’s expectations of 
recognition and reward in taking a particular action. As the participants of a research team interact 
in the development of the design, they act according to their interpretations and their positioning in 
a community, for example as a representative for the mathematical community, and act with the 
authority of that discipline. Participant act according to different agencies as fits their purposes and 
evaluate its impact on the negotiation, also known as the dance of agency (Pickering, 1995). As the 
negotiation progress, agency shift between the participants and within them. Shifting agency enables 
the participants to contribute in different ways and from multiple perspectives, for example as 
mathematicians, practitioners or researchers. The result is an effect on the design of the HLT in line 
with different actors’ fluctuating aims and their agency to contribute according to those aims. 

Method 
The data used here is generated from video recordings of a small-scale teaching experiment 
involving probability with students from year 5 and 6 in a Swedish elementary school. The aim of 
the task was for the students to become able to discuss matters of relative frequency data and the 
law of large numbers in a probability context. Relative frequency is a way of analysing data from 
repeated random events, such coin flips, where the number of observations of each outcome is 
divided by the total number of events. The law of large numbers then states that as the sample size 
increases, the likelihood of a difference between the relative frequency and the actual probability of 
the event decrease. Thus, can the relative frequency be used as a measure of probability. The 
research team consisted of the author of this paper, a senior researcher (here called Paul) and two 
teachers (here called Karen and Tilly). The whole process was initiated by the two teachers who felt 
that they needed inspiration and experience in teaching probability, which they had never done 
before. The balance of numbers provided a sense of balance between researchers and teachers, 
which later has been recognized by Stephan (2015) to be an important factor to highlight teachers’ 
unique knowledge in design research collaborations. The work was organized as such that after an 
introductory meeting, the two researchers drafted a design proposal in line with the requested topic. 
That design was further developed by a discussion within the team, which was video recorded, and 
then initiated by one of the teachers in the classroom. Minor adjustments were carried out between 
the two teachers’ lessons and major changes of the lesson sequence were carried out after both 
teachers had used each lesson plan. A total of 5 lessons were designed, although one of the teachers 
divided the last lesson into two because of time management issues.  

The activity and hypothetical learning trajectory 

The task design originated from a teaching experiment by Brousseau, Brousseau, and Warfield 
(2001), where the students were asked to investigate a chance event with an unknown sample space. 
The aim was to introduce basic principles of the Law of large numbers from probability as well as a 
frequency perspective on probability theory. We used an opaque soda bottle containing an unknown 
amount of small coloured balls (neither the students nor the teachers knew the content of the bottles) 
during the first lesson. When the bottle was turned over, the colour of one ball was revealed while 
remaining inside the bottle. Thus, creating a constant but unknown sample space. The activity was 
presented as a race in the first lesson with three contestants on a six-step track. As one of the three 



colours was observed on a bottle turn, that colour advanced one step down the track. The students 
were asked to guess which colour would first get six observations during each race. Based on the 
topics discussed by the students in the first lessons, the following three lessons made use of a 
transparent bottle with a visible sample space. Here the students were asked to discuss chance, 
random variation, sample space, sampling and the law of large numbers. The importance of the 
sample space was highlighted in the second lesson because of ideas discussed in the first lesson. 
The students got to return to the opaque bottle in the last lesson(s) and again, in an organized 
manner, investigate the unknown sample space from the first lesson with the use of the law of large 
numbers. By producing a large enough sample, they could reason about the sample space in the 
opaque bottle by translating the relative frequency of each outcome into the probability of that 
outcome. Overall, one class needed a total of five lessons and the other class six lessons, to reach an 
agreement about the unknown sample space in the opaque bottle. 

Method of analysis 

The analysis of the transcript in the forthcoming section is inspired by retrospective analysis from 
the design research methodology. It is based on open inquiry and constant comparison (Glaser & 
Strauss, 1967) where you retrospectively analyse and compare small instances of data from the 
whole set with one another to gain insights into the processes (Gravemeijer & Cobb, 2013). 
Trustworthy accounts of possible meanings can be developed by immersing oneself in the social 
setting, using participant observation, alongside systematic coding of data in retrospective analysis 
(Cobb, Stephan, McClain, & Gravemeijer, 2001). Instances of active contribution to the negotiation, 
utterances by the teachers or researchers, are coded with open codes. These instances are then 
compared to each other to find differences and similarities in their actions as they indicate the 
participant’s interpretations, aims and agency. When looking at longer sequences, patterns are 
sought after, especially how participants’ aims and agency influence the development of the 
negotiation. Short excerpts used for constant comparisons are presented in the text and expanded 
upon. Tied to those excerpts are expansions on the continuing interactions not shown in the 
transcripts due to space limitations. 

Results 
The excerpts from the transcripts presented here are all from a meeting with the two researchers and 
the two teachers between Karen’s first lesson and Tilly’s first. The purpose was to engage in a mini-
cycle to evaluate the initial design and revise it before Tilly used it in her classroom. One of the 
researchers, the author of this paper, was present during Karen’s lesson and the discussion utilized 
their experiences as a main source of data to analyse. In the first episode, the two teachers discuss 
Karen’s experience during the first lesson. She had asked the students to reflect on the notions 
statistics, chance and probability at the beginning of the lesson and then proceeded to carry out the 
design outlined here in an earlier section. Notice how the focus shifts from being about implicit 
aspects of the activity to being about students connecting knowledge.  

Karen:  What fascinated me was that their engagement induced the use of the concepts 
that we highlighted and reconnected to what we did at the beginning. Statistics, 
chance and probability, well, that Kim said “This is what I think! Statistics is what 



we’re doing, and the balls drop by chance but you may still calculate the 
probability”. He started… 

Tilly:  He added that, you didn’t guide him? 

Karen:  No, he was like “This is what I think, I figured out this with statistics”. So, it kind 
of extracted their knowledge.  

Tilly:  They latched on on the correct incident somehow. 

Karen:  Exactly, and they could use the concepts to describe it, what we had done. 

Karen acts with an interest in the activity as an eliciting factor for a student’s development of 
concepts. Tilly indicates that she is interested in how Karen carried out the activity in the classroom 
and both act as if their main aim is to further develop the task. Tilly then subtly indicates that she 
has shifted her focus towards the students’ learning process in the second utterance. She acts as if 
her interpretation of the aim has shifted towards the global aim of contributing to theory on students 
learning processes. The negotiation takes off in another direction, initially being about gaining 
understanding of the design aspect towards being about understanding aspects of learning. The 
global aim of understanding the students’ learning in respect of making connections as well as 
developing language is pursued long after this extract ends. The following episode picks up this 
chain of events further into the meeting. Karen admits that the development of the lesson had made 
her unsure of how she interpreted the three concepts statistics, chance and probability. We start off 
with her reading her own notes from what she found out from a dictionary after the lesson.  

Karen:  “Not be able to calculate in advance. Statistics, summarization of information, 
nah, Probability, the chances of getting” for example blue. 

Paul:  So what it becomes, Heads or Tails, aren’t known in advance. Is that what you 
mean? 

Tilly:  Why did you pose that question like that? What were you thinking? Since you do 
this professionally… Why did you ask that question? 

Paul:  Well, because I thought the sentence was incomplete. “we calculate in advance”, I 
just wanted to emphasise … what is it we can’t calculate in advance? 

Tilly:  Aaa, okay 

The initial statement was copied from a dictionary and Karen acts as if she trusts and places the 
authority within that community. At least in the case of chance and probability, she relies on the 
dictionary and achieves agency with the use of it. The group’s prior negotiation of meaning of 
statistics makes her less confident in the case of statistics; she indicates that she gives primacy to the 
group’s interpretation. Paul questions this authority altogether. Tilly seems to pick up on Paul’s 
questioning and probes the nature of Paul’s agency; is he acting from a mathematics education 
researcher perspective, or a mathematical community perspective or something else? Paul continues 
by acting as if there are better interpretations of these concepts by questioning the wordings. He 
later on continues to negotiate the meaning of these concepts by means of examples and more 
mathematically precise definitions and thereby achieves agency by referring to the mathematical 
community. This exchange impacts the negotiation towards being even more focused on language. 



It also becomes apparent that Paul’s agency influences how Karen and Tilly use technical terms in 
the remainder of the session. Paul’s aims and agencies remain in focus as they are given more space 
and remain unquestioned as the work progresses. The following episode is from the later parts of the 
meeting. It shows the impact of Karen’s and Tilly’s interaction in the first episode regarding the 
topic but also how Paul is left as an authority. Notice how Paul remains unopposed even though his 
claims and sentences are incomplete just as Karen’s were in the previous episode.  

Paul:  My question about statistics springs from that fact that statistics is a rather large 
subject… A large topic so to speak 

Karen:  Mm 

Paul:  And I think that the curriculum sort of… Even in our … our curriculum contains 
what this student is saying about the ratings of a TV-show. That you compare… 
often just think about observations, or we usually say frequencies, frequency 
tables and so on, so you limit the whole field of statistics to what one might call 
data collection, frequencies and such. 

Tilly:  Mm 

Paul:  What do you think, we could think about beginning to establish this type of 
concepts like… What is the frequency of blue? What is the frequency… How 
many observations of blue? How many observations of red? So, you insert this 
type of technical terms to become more precise. Specify a little bit more. That is, I 
imagine, a part of learning, that you learn to… You use a language and start to 
become a little bit more precise. 

Paul acts as if he wants to shift focus to the local aim of the activity. He offers an alternative, or 
additional, learning goal in students developing their language through the activity. He pushes his 
agenda by referring to the authoritative mathematical community and therefore achieving agency. 
Both Karen and Tilly accept Paul’s agency and leave his claims unopposed and instead adjust their 
use of language after the episode to fit Paul’s. Paul’s agency also results in a shift of focus in the 
following interaction. The continuing negotiation still involves interpretations of language but also 
aspects of the design and how language development can be anticipated and sequenced in a HLT. 

To sum up the analysis, I exemplify how rearranging the aims of the activity, placing the aim of 
understanding students’ learning in the foreground instead of the aim to develop the design, can 
have huge impacts on the course of the developmental process. Karen’s and Tilly’s interaction in the 
first extract refocused much of the remaining discussion towards negotiating the meaning of 
language use and development. An example of the dance of agency in designing educational 
activities has also been offered. Especially how some agency has higher authority and thus also 
more impact on the negotiation process. 

Discussion 
Shifts of agency emerged in the presented episodes. Karen and Tilly both seemed to mostly rely on 
personal agencies in their actions, trusting in their professional experience in teaching for learning 
and language development. Paul on the other hand was perceived to rely on agency achieved from 
highly regarded disciplines as the mathematics and mathematics education research communities 



when he contributes with examples and language. It corresponds with results from when Pickering 
(1995) studied mathematicians in their work. He saw that mathematicians often relied on their 
personal agency as they created initial ideas but “surrendered” to that of the discipline, as they 
needed to resort to following standard procedures of (for example) proofs. A similar phenomenon 
was observed in the episodes. Karen and Tilly relied on their personal agency until Paul referred to 
the mathematics community; Karen and Tilly then surrendered to the formalized language of the 
discipline to a greater extent. Further on it resulted in worksheets handed to the students using this 
formalized language and thus re-evaluating the HLT in light of formal use of concepts. I suggest 
that it emphasizes how the dance of agency (Pickering, 1995) is a principle to regard in 
collaboration between researchers and practitioners as it has the potential to be an indirect tool to 
guide the negotiation process in different directions.  

Shifts in aims emerged in the data. Karen initially acts in line with the global aim of developing 
aspects of the design but soon shifts to align with Tilly to negotiate the meaning of a   student’s 
language development. Paul later uses the mathematics community to achieve agency to shift focus 
towards developing the design once again and then sits back to evaluate its impact. Blumer (1986) 
argues that not only individual aims should be regarded but also that of the group. When multiple 
actors interact over a period of time a joint action is formed. It is a social construct that extends 
from being merely the sum of all actions, for example it also has its own aim that is negotiated by its 
participants. One might look at Karen’s, Tilly’s and Paul’s shifts in aims as attempts to negotiate 
what aim should be in focus or in the foreground while the others remain in the background. It 
becomes apparent in the topics discussed that the negotiation of aims for the joint action has impact. 
In the extended data, patterns emerge of how shifts in the joint aim redirect the following interaction 
until it was renegotiated. The result was an added activity in the HLT that was meant to challenge 
students’ ideas of chance.  Reasons for why the participants chose to contribute in this way did not 
emerge from the existing data but one could speculate whether it has something to do with the 
respective role of the actors, being from a tradition of research or education. It presents a way 
forward to further advance our insight in the collaboration between researchers and practitioners in 
design research in mathematics education.  

Implications 

As Stephan (2015) highlights the importance of working with small groups of teachers instead of 
just one in design research collaborations, the dance of agency is yet another tool to create 
purposeful design research collaborations. In the case of Paul, agency is used to steer the negotiation 
of meaning towards more mathematically aligned use of vocabulary. In another setting, it is possible 
to rely on shifting agencies to empower teachers in the collaboration by placing it in the domain of 
mathematics teachers. There is also the possibility to put focus on the research agenda when 
discussions tend to steer away. One could also consider the interpretation that it has the potential to 
shift the power relations, creating an (even bigger?) imbalance between participants, making 
participants less likely to make substantial contributions to the development of the task. The 
conclusion is that conscious achievement of agency can be used as a tool for researchers in design 
research collaborations to manoeuvre the discussion and shape the HLT to fulfil different aims. 
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In order to identify mechanisms that can support mediation, this paper analyses the decision making 
process in a collaborative design of a digital learning resource by two different Communities of 
Interest (CoI). It focuses especially on the influence of both the CoI contexts and the socio-technical 
environment. This research was carried out within the framework of the “M C Squared” European 
project aiming at studying social creativity in the resource design. Specific conceptual and technical 
tools were used in this project to ease and document social interactions in the design of innovative 
learning resources promoting Creative Mathematical Thinking in the users. We focus on two main 
forces: tools and culture, which supported the collaborative design work between two CoIs. 
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Introduction 
This paper focuses on the analysis of a collaborative design of an innovative kind of digital 
educational resources for teaching and learning mathematics by different teams of designers. This 
research took place in the frame of the European Research and Development project called “M C 
Squared (MC2)” (http://mc2-project.eu/) where innovative digital resources have been produced to 
promote creative mathematical thinking (CMT). These resources have been designed by four 
Communities of Interest (CoI) (Fisher, 2001) constituted within the project: the English, French, 
Greek and Spanish CoIs. One of the objectives of the project was studying the processes of social 
creativity occurring during the design of resources and uncovering factors fostering it. Moreover, as 
the design was carried out in four different countries, the question of the influence of the cultural and 
institutional context on the design choices, as well as on the processes of social creativity, was raised 
naturally.    

In this paper, we focus on the design process that involved a collaboration between two CoIs, the 
inter-CoI interaction being considered as a window on contextual issues impacting the design. We 
report the case of a resource called “Limits” that was initially designed by the French CoI members, 
redesigned by the Spanish CoI, and finally redesigned again in the cross-CoI collaboration between 
the two CoIs. In this framework of a collaborative design of a resource, we explore the influence of 
the context and of the conceptual and technical tools on the design process. In other words, we are 
particularly interested in how the CoI context influences the design process in a given socio-technical 
environment and which tools and mechanisms support the collaboration between different teams of 
designers in the process of task design. 



The paper starts by presenting the context within which this research was carried out and its 
theoretical and methodological background. The design of the “Limits” resource is then described 
and analysed and the findings are discussed bringing to the fore elements of answers to the research 
questions. 

Context and socio-technical environment of the CoI 
Communities of Interest (CoIs) and their context 

According to Fischer (2001), Communities of Interest “bring together stakeholders from different 
CoPs [Communities of Practice] (Wenger, 1998) to solve a particular (design) problem of common 
concern”. Four CoIs were constituted in the MC2 project gathering together, around a digital resource 
design, mathematics teachers, teacher educators, researches in mathematics education, educational 
software designers, artists, etc. 

The French and the Spanish CoI, whose experience is reported in this paper, present different 
compositions and characteristics; we consider these as contextual aspects. The French CoI consists 
of 13 members with varied professional background, including researchers, school teachers, teacher 
educators, and educational technology developers. They share a socio-constructivist approach to 
mathematics learning rooted in the French didactical tradition of teaching and learning mathematics 
(CFEM, 2016). This approach has shaped the CoI representation of creative mathematical thinking 
(CMT) that manifests itself through (implicit) task design principles, such as designing tasks aiming 
at revealing specific students’ misconceptions, using multiple representations to enhance 
conceptualisation of mathematical notions, fostering social aspects through collaboration between 
students and affective aspects through challenging problems and games, or focusing on tasks calling 
for generalisation. The Spanish CoI, composed of about 20 members, involves people from different 
communities of practice, including researchers in and out of mathematics education, secondary school 
and university teachers and publishers. Most of the resources designed by the Spanish CoI present 
many design principles that are especially important for mathematical modelling, such as proposing 
real questions to students in order to face linking mathematics with other disciplines (social sciences, 
history, etc.), articulating questions posed and mathematical tools to engage students in modelling 
processes, enhancing the exploration or the contrast and validation of mathematical tools and models. 

The socio-technical environment and collaborative design 

The design of resources took place within a specific socio-technical environment developed in the 
MC2 project, called C-Book technology (http://mc2dme.appspot.com/mcs/). It integrates two main 
tools: i) an authoring environment enabling to create digital resources, called c-books (“c” for 
creative), which consist from pages including texts, pictures, hyperlinks, dynamic interactive widgets, 
and allowing to record successive versions of the c-book units; ii) a tool, named CoICode that 
provides a workspace to organize and enhance interactions among designers. CoICode enables each 
designer to post various kinds of ideas (“contributory”, “alternative”, “objection”, “off task” and “task 
organization”), each of them having a specific icon. When a designer posts an idea, the system 
captures several details: author’s name, date, title of the idea, comments, attached resources, 
hyperlinks, etc. The CoICode system provides designers from a CoI or a CoI-pair (two collaborating 
CoIs) with a space for collaborative design. In CoICode, the discussions can be visualised in form of 
threaded forum or in a mind-map view (Fig. 1), where nodes are ideas, and branches of the tree model 



the evolutions of an idea. The reports in the form of a graph provided by the system are the main data 
gathered for the study of social creativity. A voting system has been implemented in the CoICode 
allowing designers to evaluate in terms of creativity any idea posted by someone else. Such evaluation 
follows a “middle c” perspective of creativity (Moran, 2010), that views creativity as a competency 
developed through interactions between members of a community and through their participation in 
situations where they display their intentions and negotiate new alternatives for the interpretation of 
actions in situated activity systems. 

 
Figure 1. Excerpt of a CoICode workspace in the mind-map view.  

The cross-CoI collaboration on the re-design of the “Limits” c-book was organized in the following 
five phases: (1) a part of the French CoI, acting as the primary designers, designed a first version of 
the c-book; (2) four members of the Spanish CoI (two secondary school teachers, one researcher in 
mathematics education and one researcher in Calculus) evaluated the CMT potential of the c-book; 
(3) these members of the Spanish CoI redesigned the c-book according to their own approach, which 
constituted the first phase of the redesign; (4) a second redesign phase was carried out by the CoI-
pair comprising this Spanish sub-CoI and two members of the French CoI (one researcher in 
mathematics education and one secondary school teacher); and (5) four new members (two from each 
CoI not involved in the redesign) evaluated the CMT potential of the redesigned c-book. 

Theoretical and methodological background 
Documentational and boundary crossing approaches 

Our focus on the genesis of the c-book resource leads us to adopt the Documentational Approach to 
Didactics (DA) (Gueudet&Trouche, 2009) and thus consider the design of this resource as a 
documentational genesis. The analysis of resources coming into play in this genesis and of their 
successive versions unveils designers’ mathematics knowledge, CMT representations and culture. In 
addition, considering the collaboration between two CoIs, which can be viewed as two different 
activity systems, allows inferring the influence of the contexts on the design choices.  

The Boundary Crossing approach (Akkerman& Bakker, 2011) enables enlightening the interactions 
between these contexts. It allows to highlight discontinuities, i.e. boundaries. Boundary objects (Star 
& Griesemer, 1989) and brokers support the communication and the understanding between and 
within the CoIs, allow to build new norms and a common frame of reference. Moreover, highlighting 
the mechanisms of identification (i.e., consciousness of discontinuities, awareness of multifold 
cultural background, which allows pointing out differences), coordination (i.e., creation of 
continuities between domains and bridges between cultures, which enables the construction of a 
common frame of reference), reflection (i.e., perspective making, perspective taking on the problem 



at stake, which supports divergent thinking), and transformation (i.e., confrontation, recognition of a 
shared problem space, hybridization or combining ideas, and crystallizationor keeping a perspective, 
an idea) helps us to better understand the design process. 

Grid for the evaluation of c-book features fostering CMT  

The evaluation of the potential or affordances of a c-book to foster CMT was a central task in the 
MC2 project. Facing the necessity of CMT cross-evaluation, a need emerged for agreeing on and 
sharing common criteria, tools and methodologies, which had been developed independently in the 
first cycles of c-book production. A common CMT evaluation grid, which combines design criteria 
or principles proposed by the four CoIs involved in the project, has been elaborated by the researchers. 
This grid could be adapted by each CoI or CoI-pair to better fit its context, by adding specific criteria, 
and played a crucial role in the construction of a common frame of reference for all four CoIs. 

The CMT evaluation grid is a questionnaire composed of three sections. The first and the widest 
section focuses on the evaluation up to what degree different dimensions of mathematical activity 
considered crucial for fostering CMT, such as conjecturing, questioning, evaluating, and establishing 
connections, are taken into account in the c-book design. With a total of 14 items expressing the 
indicators of different dimensions, evaluators of a c-book grade (from 1-4) their agreement on the 
items and explain their response according to the design being evaluated. For instance, the dimension 
of establishing connections is evaluated through the item: “The c-book provides users with 
opportunities to establish connections between various representations of the mathematical concepts 
at stake”, or the validation dimension through the item: “The c-book stimulates to think about, reflect, 
summarize and evaluate the mathematical work already developed”. The second section addresses 
social aspects through items like: “The c-book stimulates user's collaboration / cooperation / 
interaction with other users”. Finally, the third section focuses on affective aspects via items like: 
“The c-book actively promotes engagement by generating a perception of usefulness of mathematics, 
either in everyday life, or inside the mathematical context”. This grid, filled in for each c-book, 
provides the basis of the CMT study and development. 

CoICode analytics features 

In the MC2 project, a creative idea is defined as: (1) novel (original, unusual or new for the CoI 
members), (2) appropriate, that is it conforms to the characteristics and functions of the c-books, 
including their CMT affordances, bind to the CoI context, and (3) usable, that is available and ready 
to be used in the design of the c-book according to the designers’ (the CoI members’) estimation 
(Daskolia, 2015). CoICode voting mechanism allows any CoI member to express his/her opinion 
about the three attributes of any idea posted by any other CoI member. The expressed opinions are 
aggregated into the creative score of an idea defined as follows: “creative score of the idea i (CRi) = 
0.5 x number of ‘novel’ votes + 0.25 x number of ‘appropriate’ votes + 0.25 x number of ‘usable’ 
votes, if the number of ‘novel’ votes is at least a half of the number of CoI members involved in the 
c-book design, otherwise CRi = 0”. This definition reflects the fact that novelty is the sine qua non 
condition for an idea to be deemed creative; this is why the corresponding weight is the highest (0.5). 
On the other hand, the “middle c” perspective of creativity leads to considering an idea creative if the 
majority of the CoI members share this opinion. Thus, the interactions recorded in CoICode allow 



tracking communication among the designers during the design process and getting automatically the 
ranking of the ideas expressed according to their creativity score (Table 1). 

USER DATE ID TITLE NOVEL APPROP USABLE SC SCORE 

CM 04/02/2016 
11:03:51 45675 Variable pythagorean tree 4 4 4 4 

NE 12/02/2016 
11:01:13 45901 EpsilonChat to foster social aspects 3 3 3 3 

Table 1. Quantitative measurement to identify creative ideas. 

Data collection and observables for each phase 

The ideas and their organisation in CoICode workspaces, the creativity score of ideas obtained 
automatically from CoICode, the CMT grids filled in by the evaluators of the c-book and the 
successive versions of the c-book constitute the main data we analyse in order to highlight the impact 
of context, and cultural evolutions on the design decisions taken, as well as the role of the tools in the 
design process. 

c-book design process in the cross-CoI collaboration and its analysis  
Our analysis focuses on two out of the five phases of the redesign of the c-book “Limits” (see above), 
namely phase (3), when the Spanish CoI redesigned the c-book and the phase (4) when the CoI-pair 
worked collaboratively on agreeing upon and conceptualizing the last changes of the redesigned c-
book. We have chosen these two phases of the redesign process as they appear especially important 
with respect to our research questions. 

Adopting the c-book and de- and re-contextualizing its design: mechanisms of coordination and 
reflection 

The initial version of the c-book “Limits”, designed by the French CoI, covered the notion of infinity 
through its meaning in solving equations, constructing the Pythagorean tree, analysing geometric 
sequences, comparing growth of functions, and calculating limits of real functions. The CMT 
representation of the French CoI members shaped the design of the c-book. In particular, it led the 
designers to embed tasks that enable intra-mathematical connections, generalisation, competition and 
challenge as levers for the CMT development. Following these principles, they proposed tasks 
offering various representations of the mathematical notions at stake (limits and infinity), by using 
algebraic, calculus, and geometrical settings, with the aim to provide students with alternative ways 
to make sense of these difficult notions in calculus and to generalise some properties. Moreover, the 
educational technology developers, involved in the CoI, enabled the development of specific widgets 
with features deemed as important to foster CMT, such as relevant feedback, written collaboration 
and discussions (a chat tool), and a framework for designing playful activities affording students’ 
self-assessment. Hence, the involvement of software developers in the designers’ team impacted the 
c-book design by creating new widgets in line with the French CoI culture. They also worked in close 
collaboration with the C-book technology developers, thus playing the role of technical brokers 
within the CoI.  

As soon as the phase (3) started, the Spanish CoI began with the redesign of the c-book.The designers 
structured the workspace dedicated to the intra-CoI redesign work according to the results of their 
CMT evaluation with the grid (see section 3). For instance, they found the c-book improvable 



regarding the connections that could be established with other disciplines or with other mathematical 
topics. They appreciated some characteristics of the c-book such as connections between several 
representations (numerical, geometric, and algebraic) of limits or the potential of the new widgets to 
simulate functions, sequences, limits, etc. and their practical use in activities focusing on evaluating 
students’ work and progress. The decision to maintain these features can be interpreted as the 
agreement on the underpinning design criteria by both CoIs. They also detected several traits to 
further improve the c-book redesign, some of them being central for their own CMT representation; 
for example, they missed situations and questions that give sense and utility to the mathematical 
notions at stake (infinity, limits, etc.) – questioning or problematisation. Likewise, they missed a 
global articulation of some of the activities dealing with a more general narrative and questions to 
focus on. This led the designers to organize the CoICode workspace around the eight design criteria 
or indicators they considered as crucial to be prompted (validation, connections, articulation, 
problematisation ...) according to their CMT approach (Fig. 2, first column on the left) to orient 
further discussion. Therefore, the redesigned c-book urged students to investigate questions like the 
ones about fractal constructions and properties (guiding part 1 of the redesigned c-book), or the one 
about a cell phone password as the problem of the 9 points (guiding part 2), and to engage students 
in recognizing patterns in the process of mathematization of a problem, and in using the 
corresponding mathematical relations to check the validity of a conjecture. 

 
Figure 2. Excerpt of the workspace created for the intra-CoI redesign. 

In this episode, we can identify a mechanism of coordination initiated by the CMT evaluation which 
supported the subsequent mechanism of reflexion sustained by the structure given to the workspace. 
We note that the Spanish CoI instrumentalized CoICode, with a strong purpose of enhancing the c-
book potential to foster CMT in students in line with their culture. Hence the mechanism of reflexion 
enabled to open new perspectives, related to the Spanish context, by adding tasks on fractals, the 
problem of 9 points and the mathematization of another problem. 

The CoI-pair collaboration in the c-book redesign: mechanism of transformation 

The cross-CoI collaboration (phase 4), started with the translation of the redesigned c-book into 
English and the creation of a new workspace common to both CoIs. In order to organise and facilitate 
the communication between the two CoIs, the workspace was structured according to the four main 
sections of the c-book, and a summary of the main aims and changes introduced by the Spanish CoI 
in each section was added; the French team could thus compare the new version of the c-book with 



its original design. During the CoI collaborative work, some design principles stemming from both 
CoIs were recognized and discussed to progressively become shared by both CoIs (confrontation and 
crystallisation of principles), such as the importance of tasks calling for conjectures, simulation, 
communication of results, and validation. Other design choices issued from the Spanish CoI were 
accepted by the primary designers of the c-book, such as the extra-mathematical connections included 
in the c-book or the new way of structuring and articulating activities in terms of chains of interrelated 
questions with increasing complexity. Furthermore, the quantitative information provided by the 
CoICode data analytics, in particular in terms of creative scores of ideas (see Table 1) appeared as a 
powerful tool to identify ideas worth to be further developed in the CoI-pair collaboration. The two 
ideas that obtained the highest creativity scores came from two comments made by two members of 
the French CoI while analysing the c-book redesigned by the Spanish CoI. The first idea was related 
to the first part of the c-book devoted to the study of fractal properties and the appearance of the 
notion of limit at infinity. A French CoI member provided a link to a widget he designed with 
Cinderella dynamic geometry system to simulate fractals and predict their tendency in the infinity 
(Table 1, idea n°45675). The widget was subsequently integrated at the end of this first section with 
new questions that CoI-pair members suggested. The other idea was suggested by another French CoI 
member concerning the possibilities embedded in chat tools, developed within the French CoI, to 
foster social aspects (Table 1, idea n°45901).Chat tools were subsequently integrated in the c-book 
to enable students to communicate their results or to pose new questions. These episodes can be 
interpreted as hybridisation and elaboration of ideas. 

Besides the importance that this phase had on creating a new and common CoI-pair design context, 
our analysis shows that the CMT grid, the CoICode workspace the creative scores of ideas and the c-
book versions used as boundary objects between the two CoIs constituted key meditation supports to 
enable the designers to agree on which ideas to accept (or not) and on the ways of further elaboration 
of some of these ideas, thus sustaining the mechanisms of coordination, reflection and  
transformation. 

Discussion and conclusion 

The analysis of the c-book “Limits” collaborative design shows that different CMT representations 
that both CoIs held, influenced by each CoI own culture and traditions, enriched the cross-CoI 
collaboration, acted as a boundary object and participated in the key mechanism of coordination for 
decisions making in the intra-CoI and cross-CoI design work (Barajas, 2016). 

In the two phases of intra-CoI and cross-CoI work (phases 3 and 4), it appeared that redesigning does 
not mean a total transformation and complete re-contextualisation either of the initial unit, of the 
empirical setting envisioned or of the academic approach (Barquero, Papadopoulos, Barajas & 
Kynigos, 2016), but rather an improvement of some aspects, and it helped to establish confidence and 
trust atmosphere. On the contrary, some design principles shared by the two CoIs were reinforced, 
crystallised through the mechanism of transformation, such as connections between multiple 
representations, or making and investigating conjectures. Others, coming from only one CoI, were 
negotiated and became shared by both CoIs, such as extra-mathematical connections or interrelations 
between the c-book activities, yet others were abandoned. The CoI-pair created a new, wealthier 
design context thanks to two different cultures close enough to create some overlaps yielding a 
common frame of reference, which enabled to build understanding and fostered the mechanism of 



coordination. The understanding and respect allowed to share design decisions with the help of 
mediation tools used as boundary objects (different versions of the c-book, CMT grid, creative scores 
of ideas) and to cross some boundaries (different CMT representations, school cultures, research 
approaches, distance collaboration). The mediation tools favoured the dialogue between the CoIs and 
facilitated decisions, in conjunction with common good practices and CoI moderation strategies. The 
workspaces in CoICode used as meditational artefact were instrumentalized to support reflection, 
enabling to make points of view explicit (perspective making) and to enrich ideas (hybridisation). 
The boundary objects, the structure of the workspaces and the moderation strategy played a major 
role in the mechanism of coordination, reflection and transformation. 

This study brings to the fore two main forces that shaped decision making in the design process: tools 
and cultures (Fig. 3). 

 
Figure 3. Main forces shaping the decision making in a c-book design process. 

Both had either theoretical or conceptual dimensions, for example the CMT evaluation grid built on 
theoretical considerations about creativity, but they have socio-technical aspects as well because the 
C-Book technology, comprising authoring tools, widget factories and CoICode, is the MC2 project 
social management main tool. The cultural context of the CoI includes mathematics education 
theoretical tradition, composition of the CoI, familiarity and expertise with the variety of widgets. 
The background of the designers impacts their attitude towards these tools, their CMT 
representations, their position in the collaborative decision making and the widgets they use. Eased 
by the proximity of collaborating cultures, the interplay of culture and tools in cross-CoI collaboration 
had enriched the scope of the designed tasks. 
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In this paper we describe a comparison between two different approaches to teach some algorithmic 
and computational thinking to children, mainly in 3rd grade. Children’s learning is taken into main 
consideration and we want to analyze the difficulties students encounter using the different 
approaches. Before that, an introduction is done, describing the research framework and 
methodology, offering the background for this research and outlining the larger research project 
from which the paper is derived. We then describe the tasks used and look at some examples of the 
difficulties children face, on one side dealing with the problem of abstract thinking while 
programming, and on the other having troubles relating more practical activity with what the 
calculator does. 

Keywords: Primary education, curriculum, computer science, programming, algorithms. 

Introduction 
Computer Science and algorithms in education are gaining more and more importance as the use of 
digital technologies is nowadays part of everyone’s life. New educational trends are therefore 
emerging both from the computer science and mathematics education research community and from 
elementary and secondary school teachers (Franklin et al., 2015; Richtel, 2014). The question about 
how young children learn computer science is still a new area of research; and providing effective 
learning opportunities to K-5 students is a big challenge (Hills et al., 2015; Gelderblom & Kotze, 
2009). Some good examples have been tried in the secondary school, while we feel that not much is 
present, at least in our country, in lower school grades. Topics in computer science and discrete 
mathematics are not clearly delimited in our curriculum and teachers are usually not aware that they 
actually could. We are thinking of our work as able to enhance the study of teaching and learning 
skills of mathematical practice through discrete mathematics problems, both general skills, such as 
reasoning and modeling, and skills particular to discrete mathematics, such as algorithmic and 
recursive thinking. 

Background and context 
Preliminary survey among teachers – relation with cryptography 

We had a first survey, with results collected from about 150 teachers, mostly in service and quite 
evenly divided between primary, middle and secondary school. The survey was done with an online 
platform. The result analysis is mainly following a quantitative approach, the qualitative analysis was 
referred to the codification of some particular key words used by teachers. 

Analysing the results, teachers, especially at lower levels, admit not to have the necessary knowledge 
to teach this in school. Question was about their previous experience in learning cryptography and 
graph theory, as well as the connection of these to mathematics and computer science. Some of these 
teachers see the connection between algorithms, cryptography and mathematics in general and 
computer science as quite necessary, while some don’t have this idea clear in their mind. Also, 



teachers were asked if they had any previous experience in teaching the topic or if "they would be 
interested in teaching some algorithm, cryptography and other discrete mathematics topic to 
students”, and feeling from their answer is that this results can be taken as a first starting and 
promising point to make something of this into the national curriculum. A detailed analysis of these 
results is available in another article (Gaio & Di Paola, 2016, in press). 

National Guidelines and teaching situation 

The Italian Ministry for Education, University and Research published the current National 
Guidelines for the first cycle (kindergarten to middle school) of education (Ministero della Pubblica 
Istruzione, 2012). These guidelines are not any longer a detailed description of school curriculum to 
follow, but just want to provide concepts from which the single schools and institutes, and teachers, 
can take the basic goals and competences to reach. Some general standards are set with objectives for 
the educational achievements and learning goals. In the section talking about mathematics, there is a 
great importance given to reading and understanding texts with logical content, build lines of 
reasoning, having own ideas and defending and comparing them with others; a positive attitude 
towards mathematics, realizing how mathematical topics are useful in the real world. Algorithms and 
logical thinking as also referred to as important in the technology chapter of the guidelines, for all 
school grades. Following these guidelines, and our idea as well, “the first education cycle has a 
prominent role in the school curriculum considering the importance of this time in every student's 
life. Within this, the school attributes great relevance to the education and teaching methods that can 
fully activate energies and potentialities of every kid”. 

Research question 

Our main general research problem lies therefore in a proposal to alleviate the substantial lack of 
activities in the national school curriculum about discrete mathematics and computer algorithms, 
especially for primary and middle school. Both in the school programs and in textbooks, activities of 
this kind are missing almost entirely, despite many agree that they can be really useful to improve the 
skills mentioned above.  

The purpose of this specific paper is to deal with the introduction of programming reasoning to 
children as young as 8 or 9 years old. The question is whether it is better to approach the subject with 
an unplugged approach and only later go on with computer-based coding or if it is ok to proceed 
using Scratch-based software and tools to serve the same purpose. We do this by describing two 
different approaches which have been used in the teaching of these computer science and discrete 
mathematics topics. We will in particular analyze and focus on certain difficulties students encounter 
while using both. 

Theory and methodology 
This is an overview, referring to our whole project’s methodology and background theory. 

Background theory 

Teaching methods follow the model of Realistic Mathematics Education (Gravemeijer, 1994) and 
Guided Reinvention of mathematics (Brousseau, 1997). 

Guided Reinvention of mathematics is based on Hans Freudenthal concept of mathematics as human 
activity. Education should give students the "guided" opportunity to "re-invent" mathematics by 



doing it. This means that in mathematics education, the focal point should not be on mathematics as 
a closed system but on the activity, on the process of mathematization (Freudenthal, 1973).  

Realistic Mathematics Education (RME) is an instructional design theory which centers around the 
view of mathematics as a human activity (Freudenthal, 1991); “The idea is to allow learners to come 
to regard the knowledge that they acquire as their own private knowledge, knowledge for which they 
themselves are responsible.”(Gravemeijer, 1994). The main goal is to develop a local (i.e. domain-
specific) instructional theory (LIT) that will allow students to “[invent] the mathematics themselves” 
(Larsen, 2008). This need two steps: Step 1, in which “students are engaged in activities designed to 
invoke powerful informal understandings” (Weber & Larsen, 2008); Step 2, in which “students are 
engaged in activities designed to support reflection on these informal notions in order to promote the 
development of formal concepts”  (Weber & Larsen, 2008). 

Research methodology 

The methodology we are going to use is that of design research or design experiments (Cobb et al., 
2003; Barab & Squire, 2004; Brown, 1992). For the purpose of this thesis, the developmental 
approach is taken into consideration (Plomp & Nieveen, 2007); development studies function is to 
design and develop a, research based, intervention (Steffe, 1983) and constructing design principles 
in the process of developing it. The goal is to explore new learning and teaching environments, to 
verify their effectiveness; to develop somehow new methods, instruments and teaching actions to 
further improve in the field of problem solving and logical thinking, using somehow unusual topics 
as algorithms and cryptography are for primary school students. Doing this the goal is to contribute 
to the development of new teaching and learning theories, taking into consideration learning 
processes in the specific situation, with contents and goals clearly defined. Design research is quite 
appropriate in this situation, as we are facing a brand new experience in an environment that we need 
to analyze carefully, i.e. on a local scale, considering all the different elements in the learning 
environment. The intended design experiment will be a classroom experiment in which the researcher 
(or researchers) will cooperate with the teachers in assuming teaching responsibilities. On one hand, 
the teacher is a part of the design team and will be a key role in the development and reviewing of 
the activities, on the other, they have no previous knowledge and need a guide to experiment with 
this new experience and new content to present.  

Design, tasks, analysis and results 
As a first design step, based on theoretical framework and literature, two hypothetical learning 
trajectories were designed for the two different approaches. One approach is Scratch-based, and has 
been taken from the most popular book on curricular resources about Scratch programming in our 
country (Coding, DeAgostini publisher, Ferraresso, Colombini, Bonanome, 2014). The second 
approach was developed by our research team, taking idea and inspiration from the Computer Science 
Unplugged project (Bell, Witten, Fellows, 1998, 2015 review) and other related sources (Casey et al., 
1992), with a development, after a preliminary teaching experiment, to better adapt the activities to 
the school level and local situation and norms. The two HLTs are taking into account the theoretical 
framework presented above, both in the choice of tasks (e.g. some tasks are chosen for their RME 
approach,others for the group and cooperative work students have to do, and so on) and in the way 
of presenting them to the classroom or students. 



The tasks we are going to describe are just some of the many sequences of tasks that were proposed 
to various schools and age groups during the 2015/2016 school year in the bigger research project. In 
a design research paradigm (Plomp & Nievenn, 2007), the activities were tried out many times, 
always with an a priori analysis together with the teachers and with a retrospective look after each 
lesson.  

Schools Grades n. of Classes n. of Students Approach 

1,2,4 3 4 78 Unplugged 

1,2,4 3,4 5 80 Scratch-based 

3,5 3,4 3 54 Unplugged 

3,5 3,4 2 39 Scratch-based 

Table 1: Classes involved in different grades, with students numbers and curriculum used 

Scratch-based teaching and learning 

As mentioned above, the sequence of tasks we called “Scratch-based” is taken from this Coding book, 
which is getting popular in our country’s schools. Also we did use the M.I.T. official Scratch guide 
(Creative Computing, Brennan, Balch & Chung, 2014). It is following a similar approach to many 
school text books and even M.I.T.’s own guidelines on Scratch use and we feel it is good material for 
teachers. We did choose the tasks that are most popular among teachers already doing this kind of 
activity in their classroom, at least investigating the most popular in our area. 

We did in particular choose tasks related to sequencing, selection and iteration. The goal is to have 
students learn basic ideas behind an algorithm (seen as a sequence of instructions), but also more 
complex concepts like selection instructions (i.e. do this only if something else happens) or iteration 
procedures. A sequence of tasks on those three topics were selected together with the classroom 
teacher and then tried out with the students during mathematics and technology lessons.  

Unplugged approach, teaching and learning 

Our “unplugged” sequence of tasks occupies 3 or 4 lesson slots of 
about one and a half to two hours and follows a brief introduction 
given on how computer works and binary numbers, in form of 
games (this was given also the groups using the other approach). 
Briefly describing the tasks, task 1 was an activity on paper, about 
binary image representation. Students had to color a grid which 
was provided with 0s and 1s and produce a drawing following the 
numbers. This task goal was about following instructions and 
beginning to understand how a computer transmits information. 



Task 2 was about giving and receiving instructions. Students were divided in pairs and given a series 
of shapes and objects they could move on their table. One student (1) for each pair was to create a 
composition on his table; without looking at each other (physical barrier between the two), student 1 

had to explain to the other how to reproduce the same 
composition with the objects and shapes. Children were 
required to be as precise as possible while the game went on, 
and to try to find out compositions that were harder to form. 
Only oral communication were left them, not to make them 
“correct” the other mistakes or looking at the other 
composition. Slightly different versions of the game were tried 
out, e.g. with just one student giving instructions to all others, 
or with different kinds of objects, even with just drawing 
something instead of moving objects, and so on. 

The following tasks had the goal to make programming even more tangible for children. We wanted 
them to learn to give instruction as a calculator, through a path to walk on. One student (blinded) was 
the “robot” walking along this path on the ground and the others were the “programmers” having to 
give him instructions how to move to get to the end. We 
did this both speaking and then written. The written 
exercise does not give the possibility to correct the robot 
while you are actually giving the instructions, kind of 
how a real computer program works. Finally, with some 
of the classes we went on to construct some more 
complex sequence of instructions, posing different 
games to strengthen the concepts, but always with 
similar goals. 

Methods of video selection and analysis 

Analysis of the results is video-based, qualitative and fine-grained; both group activities and 
classroom discussion are recorded and we also have many of the transcripts, together with field notes, 
student’s sheets, and interviews as other sources of evidence. As already said, focus is put on students’ 
learning and thinking, in reaction to the different tasks proposed. 

Following Zacks & Tverski theory, data is represented by events selected from the video recordings 
available. We used an inductive approach in video selecting, beginning with viewing the corpus in its 
entirety and focus on details later on. Indexing and summaries of videos, plus a content log, help in 
this process. Going on with the analysis some events which were particularly relevant were isolated. 
Although there are some recognizable recurring situation and choice of words we coded, our focus is 
more on a “play-by-play” description of these chosen events. We are, with this approach, analyzing 
selected episodes focusing on the same happening and constantly revising our finding and new 
hypothesis, as in Cobb and Whitenack (1996) with the involvement of “constantly reconciling 
provisional analytic categories with subsequent data and newly formulated categories”. 



Different difficulties emerging 

The “events” we are focusing on does not pretend to show that one approach is better than the other, 
but which kind of, different, difficulties each of them can create in the children learning and thinking 
using the different approaches. 

In the unplugged approach, children easily figure out what they are really and practically doing, 
drawing conclusions that they usually do not get in front of the computer. See for example the 
following figures where the transition from longer instruction in the first part to shorter instruction 
(switching to an iteration notation) in the second comes automatically. Almost every student quite 
naturally finds out that it takes a long time to write again and again the same instruction and is quickly 
asking himself if he might “make it somehow shorter”. This is probably due to the fact that they were 
left free to develop their own language with arrows, and they feel they can adapt it to what is more 
appropriate and efficient for the situation. Videos showing these moments when they realize this fact 
has been isolated from the data. 

Figures 5 and 6: Showing the transition from sequential instruction to iteration  

Or, on the other hand, as an example, see the following short transcript from a video (in front of a 
Scratch set of instruction on the computer), where the students do not realize the usefulness of 
shortening a computer program to make it simple and more efficient: 

Teacher: Why aren’t you writing it in a shorter way (more compact?). You don’t need to 
write an instruction 6 times, you could write “do this … times”. 

Student: Well, but what’s the need for it? The computer is doing it anyways. 

In these examples, students doing it unplugged quickly find out they are more efficient if they switch 
to an iterative mode of giving their instructions, while students doing it on the computer do not really 
realize this. On the contrary, they should learn one more command (or Scratch block) they do not 
already know to do it, so in the beginning it does not seem so appealing. From many events observed, 
quite surprisingly, this shortening is not immediate on the computer. Following our qualitative video 
analysis, in general, it seems that both selection and iteration instructions do not come naturally in 



the Scratch environment as they do in an unplugged approach. Setting the activities and game in a 
real world scenario, especially at this young age, seems to give children a better idea of the advantages 
of iteration and the working principles of selection programming. Maybe creating some highly 
inefficient situation could force this process to happen in this case, too. 

A second aspect to consider is errors done while writing a program. Analyzing error situation we can 
observe that it is actually easier for the students to spot the errors in a Computer-based environment. 
In the unplugged approach, sometimes, error fixing does not work at all, i.e. they cannot even spot 
the error if told that there is one. Our conclusion is that, as they are controlling their own game, they, 
more or less, unconsciously, get to a right solution even with a wrong set of instructions. On the 
computer-based environment, trying the program and making it running, given that the computer 
executes exactly what it has been told, students easily spots where the mistake is.  

Another aspect we are facing at this young age is abstraction capability. As many references states 
(see Kramer, 2007), abstraction capability is the key to be a good programmer and to have future 
programming abilities. Abstraction is a very difficult process and Scratch helps a lot in this direction; 
on the other side, the unplugged approach makes activities somehow too distant from the abstraction 
of programming and makes it more difficult to children to relate what they are doing with what they 
will later do on the calculator, as some video excerpts from these moments show. Aspects of a real 
world mathematics surely can help the transition to the abstract world of programming (Futschek & 
Moschitz, 2011), but we have to be careful in the subtle connection between the two areas. 

Conclusions 
As conclusions, we could see pros and cons of both approaches, and we feel that obsessing over using 
just one is not the correct decision. Video and other data analysis show that there are aspects that 
ought to be dealt with in an unplugged way before writing them on the computer (algorithms, iteration 
processes and many others) and come really more natural to children if they use their own language, 
as can be seen in many “Aha! Moments” in the recordings. On the other side, it is really difficult for 
young children to relate the more real-world-oriented tasks to computer science, as we can see 
example when they get stuck in finding the connections. Future work will try to go into combining 
both approaches in a more comprehensive curriculum plan, creating new learning sequences that take 
both into account, which we will share with teachers and educators, in a relatively long developing 
process. Teachers willing to teach these topics are growing in number and they ought to be prepared 
for the challenge they will be facing. 
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 Principles of redesigning an e-task based on a paper-and-pencil task: 
The case of parametric functions  
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Paper tasks are often redesigned to function as digital tasks. The research and design literature 
(Pead, 2010; Burkhardt & Pead, 2003) has reported on the challenges of such a transformation. We 
report on a study exploring the design principles of an e-task, originally designed as a paper-and-
pencil task and converted into an interactive diagram. We describe a paper task in the content area 
of parametric functions, and report on results from an experiment conducted with 39 high school 
students, who dealt with an e-task based on a paper task. Analyzing the results, we demonstrate that 
in a redesigned e-task based on a paper-and-pencil task, technology should allow self-reflection, 
promote learning, and guide the students to focus on the important details without unnecessary 
distractions.  

Keywords: Design, e-task, parameter. 

Goals and theoretical framework 
In this paper1, we explore design principles of an e-task that encourages exploration, based on a 
paper-and-pencil (P&P) task, in the area of parametric functions, which is central in algebra and is 
adequate for enhancing the abstraction of concrete situations (Drijvers, 2001). Solving parametric 
equations is different and more challenging than solving numerical algebraic equations, which are 
solved for an unknown that is a number. Naturally, when designing an e-task we should not 
translate from the paper but rather use successful principles of learning within the interactive 
environment to design the tasks. Research shows that many complex issues arise when transferring 
paper-and-pencil tasks to computers. For example, if students are not familiar with the tools, the 
online environment may be a potential source of an additional "cognitive load" (Pead, 2010). 
Interactivity can spoil some tasks: for example, by allowing students to check all their answers, or 
by encouraging them to persist in trial-and-error experimentation, rather than engaging in analysis 
(Burkhardt & Pead, 2003; Nagari Haddif & Yerushalmy, 2015). Although the transition from a 
paper-and-pencil task to an e-task is not trivial, there may be an added value in the use of 
technology. For example, multiple linked representations (MLRs) both support and require tasks 
that involve decision making and other problem-solving skills, such as estimation, selecting a 
representation, and mapping the changes across representations (e.g., Yerushalmy, 2006).  

With the Cabri software, Healy (2000) introduced soft and robust construction and found that 
despite the intention to encourage students to build robust constructions, in practice, some students 
preferred to investigate a second type of Cabri-object, soft constructions, in which one of the chosen 
properties is deliberately constructed by eye in an empirical manner, under the control of the 
student. Laborde (2005) referred to soft constructions as the "private" side of the student’s work, 
which is part of the solving process and serves as a scaffold to a definite robust construction. We 
suggest using soft constructions as a way of exploring and identifying dependences between 



properties, and as a gateway to a definite robust construction from a purely visual solution. Below 
we describe a task (Figure 1) taken from Taylor (1992, p. 204), and the reasons for which we 
decided to redesign it and convert it to an e-task. In general, Taylor’s rationale for this kind of task 
is to have a marked difference between being able to see ("sense") the solution geometrically and 
the ability to solve it algebraically. Interactive MLR technology offers dynamic interactions that can 
support the generalization of a graph into a family, offering sensuous support for finding an abstract 
parametric solution. This gap between interaction and abstraction is one of the challenges of using 
interactive MLR technology. The following description of the e-task design and of the experiment 
conducted with the students who worked with this e-task, demonstrates some basic considerations 
and principles of designing an e-task based on a P&P task. 

The original P&P task and its possible correct solutions 
Research on mathematicians’ conjecturing and proving activity suggests that use of examples plays 
a critical role both in the development of conjectures and in their exploration, as well as in the 
subsequent construction of proofs of these conjectures (Lockwood, Ellis, & Lynch, 2016). 
Therefore, when dealing with the task (Figure 1), we can expect work that would look like Figure 2 
(a): the students would sketch for themselves some exemplary lines through the origin. 

At the right is the graph of the cubic equation )3)(1(  xxxy . Consider the family of 
non-vertical lines through the origin. How many intersections does each line have with the 
curve?   (I) Begin by making a conjecture based on the picture. (II) Describe the family of 
lines algebraically, and verify your conjecture.  

Figure 1: The original task as it appears in Taylor's book (Taylor, p. 204) 

In this case, it may be difficult to make a generalization and diagnose the three different numbers of 
common points: one, two, and three common points between the family of lines mxy   and the 
given function )3)(1(  xxxy . Moreover, one could start to investigate algebraically the mutual 
relationship between the two functions required in part (II) (Figure 1), and skip part (I). 

 (a) 

 

(b) 

 
Figure 2: (a) Typical free-hand sketching used to conjecture about the intersections; (b) The domains and values 

of parameter m for all cases of number of common points 

                                                                                                                                                                  



The abstraction and generalization needed to find and define algebraically the domains of the 
parameter m for each case number of common points (Figure 2 (b)) is a challenge. Generally, 
solving the case of two common points requires using two approaches, as shown in Figure 3.  
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Figure 3: The two main ways of solving the case of two common points 

In both the calculus and the algebraic approaches, there is an "easy" value of m and one that is less 
obvious. When grappling with this task, students should "see" (and be able to calculate) that there 
are two possible values for parameter m, for which both functions have two common points: 

3m or 1m . Some students (see also Ron's thinking-aloud process in Figure 6) may skip one 
approach that reveals one of the values of m and move on to the other approach to obtain another 
value. A mathematical pedagogical discussion may address the manner in which the two approaches 
meet. This rich task concerns various mathematical concepts besides parametric functions: 
intersection points, tangency to a function, and mutual relationships between functions. It 
encourages making conjectures and aims to assess skills such as exploration, algebraic 
manipulation, and generalization of particular cases and examples.  

Study 
We redesigned the task (Figure 1) and converted it to an e-task. We conducted an experiment with 
39 10th- and 11th -grade students who worked with the e-task. The students studied the standard 
curriculum with different teachers in the same school, without special emphasis on technology. Ron, 
one of the students, was thinking aloud during the solving process (Figure 6). The video recording 
of his thinking aloud enabled us to follow the process of task completion as it was taking place, 
rather than consider only its final product, and to listen to the problem-solving process.  

Design considerations and possible correct solutions: Parts A and B 
MLR experimentation first. In part A (Figure 4), the students used a dynamic applet that displays 
the function )(xf  and the parametric family mx =y on the same coordinate system.  



The following interactive diagram describes the functions 
)3)(1()(  xxxxf  and mx =y . By dragging the red point, you 

can create different examples of mutual relationship between these 
functions.  
Part A: How many common points are there for both functions? 
Submit three different screenshots, each one representing a different 
number of common points. 
Part B: For which values of m does the functions have one common 
point? Two common points? Three common points? Indicate all the 
possible values. 

 

Figure 4: The designed e-task: parts A and B 

Students became familiar with the activity and the givens, and were asked to submit three 
screenshots of three different cases of numbers of common points, in other words, three different 
"soft constructions" (e.g., Healy, 2000; Laborde, 2005), designed to support their generalization 
process and symbolic work required in part B. In the case of the parametric family in the MLR 
environment, any change in the value of m changes simultaneously the graphic representation of the 
relevant line. In designing this part, we wanted to make sure that students experimented with the 
applet, understood all the details and givens, and were exposed to many examples of the parametric 
function, so that in part B they could concentrate on the exploration activity with as little cognitive 
load as possible. An example of a correct solution is shown in Figure 5. The student submitted three 
different mutual relationships of the two functions, each with a different number of common points.  

 
Figure 5: Example of a correct solution for part A 

Minimal necessary tool set. There are deliberately very few tools available to the student: zoom in, 
zoom out, and move the coordinate system. The tools are designed to enable users to sense the task 
qualitatively, allow them to focus on the relevant parts of the graphing picture, and not to provide 
numeric information. This minimal design coveys the message that other parts of the tasks require 
numeric and symbolic calculation not provided by the interactive diagram. To summarize, the goals 
of part A are: (a) encourage student experimentation with the dynamic applet: feel/sense the givens 
and avoid cognitive load; (b) expose students to a variety of examples demonstrating the mutual 
relationship of the two functions; (c) engineer an experience-based conceptualization for solving the 
general case required in part B; and (d) assess the student's understanding of the givens and of what 
is expected of them (as well as some technical issues). Solutions for each number of common points 
appear in Figure 2 (b): one 1m ; two 3m or 1m ; three: 31  m  or 3m . 



Findings and data analysis: Parts A and B 
(1) Part A: Most students submitted correct answers for part A (Table 1). This is not surprising, 
because the purpose of this part was to encourage students to "sense" the problem and its givens. 
But 15% of students missed one case (of one or two common points). Possible reasons for this are 
that students were not experienced enough with the applet, that they did not use the tools to view all 
cases, etc. As mentioned above (Figure 3), it is easy to reach one of the two possible values of m, 
but while experimenting with the interactive diagram one may notice that there is another possible 
value of m. In Figure 6 we describe Ron's thinking aloud about a solution for part B. 

29 (74.3%) Correct answer  Correct answers 
6 (15.8%) One missing case (of one or two common points)  

Incorrect answers 3 (7.7%) Technical problem 
1 (2.6%) Not submitted 

39 (100%) Total 
Table 1: Submission characteristics of correct and incorrect answers to part A 

In the beginning, Ron solved this part algebraically and found that m=-1 is the case in which the 
functions have two common points. By zooming in and out, he found that there is another value for 
m. The interactive diagram allowed Ron to connect between the algebraic and graphic approaches 
(Figure 6, line 9). Through experimentation, he tried to find the other value of m (Figure 6, lines 4-
9). This demonstrates the power of technology as a tool that provides students means to reflect their 
solution, allowing learning to take place during a test. In practice, during the experiment some 
students noticed the missing value of m and tried to find it (not always successfully), either by 
expanding the solution using the same approach, or by changing the approach from algebraic to 
calculus or vice versa, as described in Figure 3.  

(2) Part B (Error! Reference source not found.): 18 of the solutions included one or both correct 
values for m (m=-1, m=3).  

 N=39 (100%) 
Number of common points One  Two  Three  
Correct answer 15 (38.5%) 2 (5.1%) 2 (5.1%) 
Partial answer 0 (0%) 16 (41%) 7 (17.9%) 
Incorrect answer 8 (20.5%) 6 (15.4%) 13 (33.3%) 
Not submitted 16 (41%) 15 (38.5%) 17 (43.6%) 

Table 2: Submission characteristics of correct and incorrect answers to part B 

Only two students submitted a completely correct answer; 15 students did not submit an answer. 
Others submitted other values, probably as a result of calculation errors or because they were 
guessing. Only two students submitted a correct answer for the case of three common points (the 
same students who submitted correct solutions for the case of two common points). This may imply 
that in addition to the difficulty of finding both "critical" values of the parameter m (m=-1, 3), it is 
also difficult to generalize and formulate symbolically the possible domains of parameter m for the 
cases of three common points. 



 

 Ron's thinking aloud Ron's actions on and with the screen 
1.  This is equivalent to solving this equation. Right? Right. 

Zero is always one common point... then... Then I can 
divide simply by x. Then I investigate the quadratic 
equation: 

0=m-3+4x-x
3)-1)(x-(x=m 

3)-1)(x-x(x=mx

2

 

2.  I check when it has two solutions, one solution, or zero 
solutions. These are two common points in my opinion. 

He looks at the case that is close to 
m=3. 

3.  No, these are three common points... There is a certain 
m... It has to be minus 1 

This is the value that he got through 
the algebraic calculations. 

4.  Then where did I go wrong?   Graphically, he sees that there is another 
positive m, but he got only m=-1. 

5.  I need to check this equation. Refers to 3)-1)(x-x(x=mx . 

6.  I always have one common point. Then I can simply 
divide by x. I have a neat equation. I have to see when it 
is equal to zero. We need to check when the 
discriminant is positive, negative, or zero. m must be 
different from zero to have two common points. Then m 
equals to -1. m=-1 for two solutions.  

He checks again his calculations: 

0=m-3+4x-x
3)-1)(x-(x=m 

3)-1)(x-x(x=mx

2
 

7.  I need to zoom in.  Ron uses the zoom in and out buttons to 
explore and distinguish between different 
cases. 

8.  I don't know what is my analytic mistake...   
9.  This is the tangent, the tangent.  He finds the graphic meaning of the case 

of two common points. Using calculus, 
Ron finds the other value of m. 

Figure 6: Ron's thinking aloud while working on part B 

Discussion 
Our first conjecture, that a dynamic and interactive MLR environment supports the generalization of 
a graph into a family was only partially confirmed. The results of part B reveal the complexity of the 
concepts involved in the tasks. Results may suggest the presence of a permanent tension when 
designing mathematical e-tasks. On one hand, we want to design an e-task for exploration that can 
be automatically checked. Therefore, we tend to give students the opportunity to explore without 
any hints and without leading them to the solution. On the other hand, the task may be too difficult, 
and we may have difficulty assessing the students' knowledge and mistakes. In retrospect, this 
exploration e-task was too difficult; we should have divided the e-task into more than two stages 
and ranked the sub-tasks: first concentrate on the case of two common points, and only later on 
other cases. We are currently considering a refined design of this e- task.  

Below we describe some basic design principles we gleaned from the experiment described above. 
Other design principles are described in Yerushalmy, Haddif, and Olsher (under review), Haddif 
and Yerushalmy (under review). When re-designing an e-task based on a P&P task, technology 
should provide the following: (1) Allow self-reflection: When solving a P&P task, we have few 
means to reflect on our solution, especially not instantaneously. Use of an interactive diagram in an 



MLR environment together with manual calculations helps students control their actions and reflect 
on them during assessment, and check whether they are right or wrong, without telling them directly 
what the correct solution is. (2) Promote learning: Using an interactive diagram with parametric 
functions allows seeing many instances of the same family. This is an opportunity to see the 
parameter serve as a "generator" of functions that belong to the same parametric family. 
Experiencing with the dynamic diagram also encourages students to make conjectures and conduct 
interactive exploration. As demonstrated in Ron's case, technology has the potential to create a 
cognitive conflict and thereby provide a learning opportunity (Figure 6, line 4). Ron tries and 
succeeds in solving the conflict between the manual solution and the graphic representation on the 
screen. Had he solved the original task, he may not have noticed the "conflict" between the graphic 
representation and the symbolic calculation. (3) Guide students to focus on the important details, 
without unnecessary distractions: Although it is tempting to use the varied capabilities of 
technology, these might distract the students and produce negative effects. Therefore, it is necessary 
to focus on the real needs of the students and redesign the e-task to make students concentrate on 
the important details, without unnecessary distractions. This also implies that students understand 
how to approach the question. The design must reflect in some way the purpose for which the tool 
was created (Yerushalmy, 1999), and the cognitive load must be reduced as much as possible. We 
demonstrated several ways of doing this: (a) designing the task in a way that students move in stages 
away from using sensory knowledge in soft constructions toward experimenting with the interactive 
diagram to produce robust constructions, abstraction, and generalization. (b) designing the 
environment and the required solution in a way that defers engagement in numeric and symbolic 
activity: for example, eliminating grids and the option to enter expressions conveys the message that 
conjecturing comes before computations. (c) determining the minimal necessary tool set that is 
familiar to the students and common to other e-tasks. In Yerushalmy et al. (ibid.) we described in 
detail the tool set needed for calculus e-tasks, which enables automatic checking of the students' 
submissions.  
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Motivated and talented mathematics students are not always convinced about the relevance of 
mathematics. More insight into applications of mathematics can be beneficial for students in terms 
of preparing them for their future study and career. Using design research a particular intervention 
had been developed which differentiated by student interest, in order to improve students’ beliefs 
about the relevance of mathematics. The students selected were those studying advanced 
mathematics at upper secondary school in the Netherlands. The intervention had been designed to 
teach differential equations through tasks with science-, medicine-, or economics- related contexts. 
The results show that the students appreciated the context-rich tasks, which provided them with 
insights into how mathematics can be applied in other sciences and contributed to the improvement 
of their beliefs about the relevance of mathematics.        

Keywords: Mathematics education, task design, relevance of mathematics, differential equations, 
differentiation by interest. 

Introduction 
Students’ beliefs about the relevance of mathematics has been a topic of much research over the last 
decades. However, in most studies the main reason for studying students’ views on the relevance of 
mathematics has been the assumption that a positive notion of the importance of mathematics 
contributes to a positive attitude towards learning mathematics (Schoenfeld, 1989). Hence, most 
research studies conducted in this area have aimed at understanding and improving students’ 
attitudes towards mathematics, and ultimately improving their performance in mathematics at 
school (Farooq & Shah, 2008; Mohamed & Waheed, 2011). 

However, we start from the premise that already motivated and talented students can also benefit 
from a clear view on the usefulness of mathematics for their future education and career. Dutch 
secondary school students in an advanced mathematics course (aimed at improving students’ 
algebraic skills and elaborating the connection between mathematics and other sciences) praised the 
course as being challenging and fun, but they also mentioned that it was not clear to them how the 
mathematics would be useful for their future study (Van Elst, 2013). 

In our research project a design research approach has been used to develop and intervene with tasks 
aimed at simultaneously teaching a new (for students) mathematical concept (differential equations) 
and improving students’ beliefs about the relevance of mathematics in general, and in particular 
with respect to their future study and career ambitions. The students sampled were those taking the 
advanced mathematics course (in their final year before university entry) in Dutch upper secondary 
schooling. 

The mathematical topic of the designed intervention was the theory of analyzing, solving and 
interpreting first order differential equations. Differential equations are an important subject in any 



undergraduate university curriculum in a broad range of domains, such as engineering, physics, 
biology and economics, which makes it a suitable topic for an intervention with a focus on the 
relevance of mathematics. 

To improve the odds that the real-life problems posed in the designed tasks would appeal to the 
students, the designed intervention differentiated by student interest. Students were offered the 
opportunity to choose between different real-life problems, whilst ensuring that regardless of their 
choice they learned the same mathematical concepts of differential equations. 

The research question of the study was the following: How does a learning strategy based on 
differentiation by interest for teaching ordinary differential equations (to upper secondary students 
in a “strong mathematics” course) improve the view of students on the relevance of mathematics for 
their future study and career? 

In the subsequent section, we provide an overview of the relevant literature. Next, the research 
design including the context of the study and the data collection strategies used are described. 
Finally, we provide a discussion of the results and our conclusions.   

Literature 
Students’ beliefs about the relevance of mathematics is considered as one of the factors that can play 
an important role in their attitude and motivation. Several questionnaires measuring the attitude of 
students towards (learning) mathematics use a scale for measuring students’ beliefs about the 
usefulness of mathematics: for example, the Attitude scale towards Math (Martinot, et al., 1988) 
contains a scale named Relevance of Mathematics.  

Most studies using these surveys do not emphasize the improvement of students’ beliefs about the 
relevance of mathematics, as they are aimed at students’ attitudes towards mathematics. However, a 
recent study of first year university students in engineering focused on improving perceptions of the 
relevance of mathematics in engineering. In this study Flegg (2012) has described the use of 
context-based learning by applying mathematics to real-life problems as a promising approach.  

The teaching of differential equations has undergone some major changes over the past decades in 
favor of more contextualized, problem-based education, and a less traditional, analytical approach 
(Boyce, 1994). This was in line with our planned design to incorporate real-life problems in the 
assignments. At university level several initiatives have reported good results using this new 
teaching approach (e.g. Huber, 2010) and the development of new course material using Realistic 
Mathematics Education (e.g. Rasmussen & King, 2000). In a comparison of a traditional textbook 
with a textbook that incorporated discipline-specific perspectives to teach the mathematical 
knowledge to engineering students, Czocher and Baker (2010) conclude that a contextual approach 
is also more in line with recommendations from the research literature.  



Task design is widely recognized as an important, albeit complex activity that is at the core of 
mathematics education. The term ‘task’ is used to describe a wide variety of student activities aimed 
at learning mathematics (Watson & Ohtani, 2012). In our research tasks are guided group 
assignments about a real-life problem.  

The study 
The context 

The Dutch education system consists of eight years of primary education, and 4-6 years of 
secondary education (depending on the level of education). The highest level of secondary education 
is the pre-university education called VWO (voorbereidend wetenschappelijk onderwijs) with a 
duration of six years, which provides students access to university. For every student at VWO level 
mathematics is a mandatory course. However, in the last three years students can choose between 
two different mathematics courses: “wiskunde A” (mathematics A) and “wiskunde B” (mathematics 
B), the latter being the more mathematically demanding course, which is obligatory for technical 
and engineering studies at university. 

In 2007 an advanced mathematics course called “wiskunde D” (mathematics D) was introduced to 
offer challenging and engaging mathematics, and where the relevance of mathematics and its 
connection to other sciences should become clearly visible (cTWO 2007). This course is aimed at 
students with an interest in sciences and engineering, and it includes mathematical topics, which are 
part of every first year university curriculum: e.g. complex numbers; analytic geometry; and 
differential equations. Students with ‘wiskunde B’ are offered the opportunity to take this advanced 
course in mathematics in addition to their regular course. 

It might be expected that students who take this advanced course in mathematics are convinced 
about the relevance of mathematics, which is likely to fuel their obvious motivation to learn 
mathematics by taking this advanced course. However, studies on the implementation of ‘wiskunde 
D’ tell a different story. In a study by Van Elst (2013) students praised the course as being 
challenging and fun, but they also mentioned that it was not clear to them why the mathematics in 
the course was useful for their future study and career. According to a study by Cheung (2012) 
teachers of ‘wiskunde D’ stated that the course was well suited as a preparation for a future study in 
a technical or engineering environment, but they also stated that the curriculum did not emphasize 
enough the applications of mathematics and the connections to other sciences (Cheung, 2012).   

To be able to understand the theory of ordinary differential equations, secondary school students 
require almost all basic mathematical knowledge taught in secondary education as pre-knowledge. 
Hence, this topic is scheduled near the end of the final (6th) year, to make sure all major 
mathematics/’wiskunde B’ and mathematics/’wiskunde D’ topics have been covered. It can also be 
expected that at that time the students have a good idea of their intended future study. This might 
motivate the students to choose tasks with real-life problems associated with their future study. 

The real-life problems in the study by Flegg (2012) all had an engineering context, which was in 
line with students’ study (of engineering at university). However, from our experience secondary 
school students taking the ‘wiskunde D’ course are not all interested in engineering. Students 
typically also enroll for medical or economics studies after graduating with ‘wiskunde D’. Hence, 



only focusing on real-life problems in engineering would have been a too narrow approach. To give 
students a good view of applications of mathematics to solve real-life problems, the learning 
strategy should offer differentiated instruction, based on students’ interest.  

Beside this “practical” reason to give students a choice of which problems they wanted to 
investigate, research shows that differentiated instruction based on students’ interest supports their 
autonomy and improves students’ motivation for the task at hand (Katz & Assor, 2006). 
Differentiation is commonly used to accommodate the different learning styles of the students; 
however, it can also serve to accommodate other differences between the students, such as their 
interests and plans for their future study and career (Tomlinson et al., 2003).  

Research design and data collection strategies 

For the development of the intervention, a module consisting of tasks on real-life problems, a design 
research approach was chosen. The design process comprised of three phases: a preliminary phase; a 
iterative development phase; and a final evaluation phase. The preliminary phase included a context 
analysis and a literature review. The learning goals for teaching differential equations were defined, 
based on the five strands of mathematical proficiency (Kilpatrick et al., 2001).  

In the second phase a partial prototype of the module was developed. In March 2015, a small pilot 
test was conducted, with a prototype consisting of only three tasks. In a second design cycle a 
module was developed, which comprised of 14 tasks covering five different types of differential 
equations. Validation of separate tasks was done (1) by expert appraisals from university experts in 
mathematics education, focusing mainly on relevance and consistency of the design; and (2) by 
secondary school teachers focusing on the consistency and expected practicality of the design.  

The designed intervention was carried out from January to March 2016. Three classes of ‘wiskunde 
D’ students of two different schools in the Netherlands, in total 49 students, participated. The three 
classes all had a different teacher, one being a researcher in this study. 

The data collection strategies for the intervention included  

- two student surveys (before and after the intervention) asking the students about their future 
study plans and their views on the relevance of mathematics, using the 8 question scale 
Relevance of Mathematics (Relevance scale) from The Attitude scale towards Math 
(Martinot et al., 1988); 

- a student survey after the intervention to evaluate the module and the tasks; 

- student interviews after the intervention about the module and the relevance of mathematics 
in general, and in particular for their own future study and career; 

- the video recording of a teacher meeting about their experiences during the intervention; 

- the collection of exam results after the intervention at one school. These results were 
compared to the results of the ‘wiskunde D’ students of the previous exam years, who were 
taught the same theory of differential equations but in the traditional classroom setting. 



The intervention 

The intervention module comprised of five tasks, each covering a different type of differential 
equation. Of each task up to three different versions were developed, which applied the same 
mathematical concept to entirely different contexts. Prior to the first task students were given time 
to read short descriptions of each problem and were given the opportunity to make, for each of the 
five subsequent tasks, a choice which context (real-life problem) appealed to them most. 

The different contexts for each of the tasks consisted of: a science/engineering related problem; a 
biological/medical problem; and an economical/social problem. Regardless of students’ choices of 
contexts for the five tasks, the students worked with and learned the same mathematical concepts 
during their work on these parallel tasks. The students were guided through the process of 
modelling the problem and exploring the mathematical model analytically, graphically and 
numerically. After solving the mathematical problem the students were asked to interpret the results 
within the context of the chosen assignment. Table 1 gives an overview of the 14 tasks. 
 

Task Differential 
equation 

Scientific/engineering 
problems 

Biological/medical 
problems 

Economic/social 
problems 

1  Nuclear disaster Bacterial food poisoning Forged paintings 

2  Mixing water problem Intravenous infusion Advertising effect 

3  CO poisoning Estimating time of death Price indexing 

4  Oil production The Ebola epidemic Population growth 

5  Skydive Blood alcohol content  

Table 1: Overview of the real-life problems used in the module 

Results 
40 out of the 49 participating students filled in the survey about the module. Responses to most 
questions were measured on a five-point scale, ranging from “I strongly disagree” to “I strongly 
agree”. The students were generally quite positive about the whole module. Asked to grade the 
whole intervention on a scale of 1 to 10, they rated the module 6.5 on average. Interestingly, this 
mean score differed greatly between the three groups, with one group scoring surprisingly lower 
than the other two (see Table 2). Additional comments in the survey from this group suggest that 
they lacked proper guidance of their teacher. Hence, the practicality and effectivity of the 
intervention can substantially benefit from a good description of the role of the teacher as coach, 
helping the students to advance in their assignments. In the teacher meeting the same 
recommendation was made. 

Overall, 28 out of 40 students agreed (of which 6 strongly) with the statement “The tasks gave me a 
good view on how mathematics is applied in other sciences”, and only 3 students disagreed with this 
statement. The negative statement “I think that these tasks were not very realistic” was disagreed by 
29 students (of which 12 strongly) and only two students agreed with this statement. 



Schools Group Group size #Respondents 
survey 

Rating  
(mean) 

#Respondents 
Relevance scale 

School A 

 

1 19 18 7.1 18 

2 17 14 5.5 7 

School B 3 13 8 6.9 8 

Total  49 40 6.5 33 

Table 2: Respondents and rating of the module by group 

The survey also contained open questions asking students what they liked about the module and 
what in their opinion should be improved. Positive points were working in groups (11 times) and 
the application of mathematics in other sciences (15 times) with statements like: “it was fun to 
experience that math is useful”, “clear applications of math” and “you get a better view on how 
mathematics can be applied”.  

Some negative comments were about ICT problems encountered during the intervention (e.g. “slow 
laptops”). However, the majority of the feedback was about the way the mathematical concepts of 
differential equations were introduced to them. For example, they complained that having to read 
the theory by themselves made it harder to grasp the concepts. Some also missed the “traditional” 
teacher-led instruction, where the “basic” theory is explained by the teacher before the students start 
working on the assignments.  

The student interviews were conducted by the teacher/researcher (one of the authors). In the 
interviews the students voiced the same concerns about the lack of teacher instruction and the ICT 
problems. However, they were positive about the tasks and the application of mathematics to real-
life problems, as the extract shows. 

Interviewer: Did the tasks have some added value? 

Student 1: Yes, I think so. I think it adds quite a lot. It helps… 

Interviewer: It helps? In what way? 

Student 1: To give a lot of people the idea what can be done with mathematics. That there is 
mathematics behind everything. Not a lot of students would have realized that 
before, I think. 

Comparison of the ‘wiskunde D’ exam results of the 36 students from school A with the results on a 
similar exam by the 27 ‘wiskunde D’ students of the previous year did not show a significant 
change in the grades. As can be seen in Table 3, the students of 2016 scored slightly better than their 
peers in 2015 but that was to be expected as their average grade before the exam was also better. 

The intervention was not intended to improve the exam results, and the findings showed that the 
dual focus on both the mathematical concepts of differential equations and the relevance of 
mathematics to other sciences did not affect the grades of the students in a negative way.     



 

Exam results school A Group size Average grade 
before exam 

Average 
exam score 

Students 2016 (intervention) 36 75.2 % 72.6 % 

Students 2015 (traditional course)  27 74.6 % 71.4 % 

Table 3: Exam grades of the students in 2015 and 2016  

From the Relevance of Mathematics scale, conducted before and after the intervention, we obtained 
some promising results. Only 33 out of the 49 students completed both the pre and post survey, as 
shown in the last column of table 2. 

A one-sided paired-samples t-test was conducted to compare the answers of the 33 students on 8 
items of the Relevance of Mathematics scale before and after the intervention. The result of this test 
for the whole group of 33 respondents did not show a significant improvement with a p-value of 
0.19. But the same test on the 18 results from the high response group gave a p-value of less than 
0.02 indicating a significant positive change in their response to the questions about the relevance of 
mathematics. Due to the low response rate of the two other groups we were not able to get any 
significant results from these separate groups.  

We also conducted the paired t-test on the answers of the 17 students who had the lowest scores on 
the pretest. They had scored relatively low on their beliefs about the relevance of mathematics, all 
with an average score between 2.38 and 3.63 for the 8 items on the five point Likert scale. On the 
same test after the intervention their average scores ranged between 2.63 and 4.63. 12 of these 17 
students scored higher on the test after the intervention resulting in a p-value of 0.002, which 
indicates a strong significant positive change in these students’ beliefs about the relevance of 
mathematics. This result indicates that students who do not already have strong beliefs about the 
relevance of mathematics benefit most from the context-based tasks. 

Conclusion 
The intervention had positive effects on selected student views about the relevance of mathematics 
without affecting the examination results. Providing students with purposefully designed tasks 
where mathematics is applied to real-life problems cannot only challenge their assumptions about 
the relevance of mathematics, but also improve their awareness of its usefulness. 

Teacher professional development is a topic for further study that will be the focus of a new design 
cycle of the module. Applications like a teacher meeting, where the goals of the module are 
explained and an extension of the teacher manual with guidelines how to introduce the module and 
how to coach the students during the group assignments, are expected to contribute to a better 
understanding of the role of the teacher during future interventions.    
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In this paper we use the documentational approach to investigate teachers’ collective work. We 
follow two teachers, preparing together a lesson on tolerance intervals for grade 11. We identify 
Mathematical Knowledge for Teaching (MKT) that influences the use of resources by the teachers. 
We evidence that their collective work fosters important documentation work; but we observe 
significant differences between the documents developed by the two teachers.  

Keywords: Documentation work, resources, teachers’ knowledge, tolerance intervals, variability. 

Introduction 
Teachers interact with curriculum resources in and out-of-class (TWG22 call for papers). In 
previous works we have identified the importance of these interactions in terms of teachers’ 
professional development (Gueudet, Pepin & Trouche 2012), and we have evidenced that teachers 
often work collectively with resources. In this paper we study further this collective work of 
teachers with resources and its consequences.  

The work presented here takes place within the French national project REVEA1 (Living Resources 
for Teaching and Learning). We consider the case of two mathematics teachers at upper secondary 
school in France teaching sampling variability in statistics in grade 11. We firstly expose the 
theoretical perspective we use and our methods. Then we present the data we collected, and the 
context of teaching sampling variability in France. Finally we expose our analyses of the teachers’ 
work and of its links with teachers’ knowledge in particular.  

Investigating teachers’ documentational work: Theory and method 
We use for our research the theoretical and methodological perspective of the documentational 
approach (Gueudet et al. 2012). Mathematics teachers interact in their work with a large range of 
resources (Adler 2000). Resources designed for teaching purposes like textbooks or software, 
resources coming from the students, e-mails exchanged with colleagues etc. Teachers choose 
resources, transform them, use them in class; we call this work “teachers’ documentational work”. 
In previous research, we have evidenced that this work is closely linked with teachers’ professional 
knowledge. The choice of resources by teachers, the way teachers modify and use the resources is 
driven by their professional knowledge (and this is called an instrumentalisation process, drawing 
on Rabardel’s instrumentation theory, Rabardel 1995). In a reverse way, the features of the 
resources used modify teachers’ knowledge (in an instrumentation process). In the documentational 
approach, we consider that from a set of resources teachers develop a document: transformed 
                                                 
1 https://www.anr-revea.fr/ 



resources associated with a scheme of use (Vergnaud 1998). A scheme of use comprises the aim of 
the activity, rules of action and professional knowledge. The development of a document is called a 
documentational genesis.  

Teachers’ Communities of Practice (CoP, Wenger 1998) have a shared repertoire that the 
documentational approach interprets as shared resources. In previous works (Gueudet, Pepin & 
Trouche 2016) we have investigated the documentation work of a CoP (Sésamath, an association of 
teachers in France) designing online resources and identified the development of shared documents. 
Here we study a more “ordinary” CoP, composed of two teachers working together for the 
preparation of their courses. We are interested in particular in the commonalities and differences in 
professional knowledge within the documents developed by these teachers. The research question 
we investigate can be formulated as: 

How do professional knowledge and resources interact in the collective design and implementation 
of a lesson? 

Concerning teachers’ professional knowledge involved in the schemes, we are especially interested 
in the identification of Mathematical Knowledge for Teaching (MKT, Ball, Thames & Phelps 
2008): professional knowledge linked with the mathematical content to be taught.  

The documentational approach is associated with a specific method, called “the reflexive 
investigation method”. Documentational geneses are long term processes; moreover 
documentational work can take place everywhere and at any time. Thus we follow teachers over 
long periods of time; and involve them actively in the collection of data. These data are interviews 
of the teacher; videos of the teacher’s work in class and out-of-class (videos of collective work, if 
teachers work together); resources chosen and transformed by the teacher.  

For analyzing the data, we start with the transcribed interviews of the teachers. We identify in them 
the aims of the teacher’s activity. For each aim, we search in the data for the resources used, and the 
other components of the document (rules of action and professional knowledge) . We submit these 
elements to the teacher who corrects and complements them if needed. We present in the next 
section the data collected for the case we study here.  

Data collected and context 
We follow since 2014 two mathematics teachers in an upper secondary school of a middle-sized 
town in France: Valeria and Gwen. They are both very experienced: Valeria teaches for 34 years, 
Gwen for 36 years, they both regularly follow teacher education sessions and are trainers for new 
teachers in their school. They also regularly work together, we consider them as a CoP (Wenger 
1998). In 2015-2016, they decided to take two grade 11 classes called “economics and science”, a 
specialty they taught for the first time. We followed their work for these classes, in particular for a 
chapter entitled: “sampling variability” (that they both used to teach grade 11 “science”, with a 
similar content). For this chapter, we video recorded their common preparation (one hour), their 
individual courses (four hours each), and for each of them an individual post-teaching interview. 
We collected all the resources they used and produced, and the students’ productions for the final 
assessment of the chapter. For both teachers we identify the professional knowledge/beliefs, the 



possible origin of these beliefs, the consequences in terms of the activities/resources produced and 
the resources used. 

Sampling variability is taught in France since 2010. This teaching starts in grade 10 where the idea 
of sampling variability is introduced using material like coins and dice and simulations on the 
calculator and on the spreadsheet. In the curriculum in France, the concept of tolerance interval is 
central in the teaching of sampling variability. In grade 10 the students have to learn how to identify 
the population; the sample and its size n; the probability p of a given feature in the population, and 
the frequency f of this feature in the sample. A first tolerance interval is introduced, without 
justification: [p-1/√n, p+1/√n]. If f does not belong to this interval, the students learn to reject the 
hypothesis “the sample follows the population’s law” with a 5% risk level. At grade 11 (scientific or 
economics and scientific) the binomial distribution is introduced; it provides another tolerance 
interval, which can be found using the table of the binomial distribution produced for example with 
a calculator or a spreadsheet. The chapter we followed concerns the introduction and use of this 
interval. At grade 12, the normal distribution is presented; this leads to a new interval (the 
asymptotical tolerance interval).  

Many research works have investigated teaching variability; they emphasized the specific nature of 
reasoning in probability (Steinbring 1991) and the need for particular knowledge to teach this 
subject (González 2013). Eckert and Nilsson (2013) used the notion of Mathematical Knowledge 
for Teaching Probability (MKTP) for characterizing the specific knowledge needed by the teachers 
in probability and statistics, and for sampling variability in particular. Finding situations in relevant 
contexts; emphasizing the idea of variability, using the different kinds of possible representations all 
require specific knowledge from the teacher. Our aim here is to investigate how the interactions 
with resources are shaped by, and contribute to MKTP.  

Results 
In this results section, we firstly consider the two teachers’ documentation work, during the 
common preparation session, the lessons taught by each teacher and finally during the design of a 
common assessment. Then we present our analyses of the most important aspects of this 
documentation work (in terms of MKT involved), focusing on the collective-individual articulation. 

A collective documentation work 

During the common preparation, Valeria and Gwen used several textbooks (9 different textbooks). 
They did not actually chose resources together, but drew on exercises and problems in the textbook 
to illustrate their declarations. They also talked about resources they intended to use: exercises, 
software (GeoGebra, spreadsheet) and the calculator.  

Their discussion during the common preparation started by stating a difference: Valeria intended to 
use the spreadsheet from the beginning and during the whole lesson. The students have learned, in 
the “binomial law” chapter to produce with the spreadsheet and read tables displaying the value of 
P(X=k) and P(X≤k), when X is a random variable following a binomial law of parameters N and p. 
Valeria wanted to recall this, then to introduce the binomial law tolerance interval and the method 
for finding it, using the P(X≤k) table produced with the spreadsheet. Gwen, in contrast, intended to 
use only the calculator, and no other software. After introducing the binomial law tolerance interval, 



she wanted to ask students to write and implement on their calculator a program producing the 
tolerance interval.  

In the other aspects of the common preparation, Valeria and Gwen agreed on all the points they 
discussed. They mentioned in particular the need to recall the grade 10 tolerance interval and to 
compare it with the new interval introduced.  

All these aspects discussed during the common preparation are present in the lessons actually taught 
by Valeria and Gwen. We analysed these lessons drawing on the observations and videos in class, 
the resources collected and the post-lesson interview.  

Valeria started indeed by recalling how to produce and read the binomial law table with the 
spreadsheet. She also recalled the grade 10 interval with exercises chosen in a textbook’s “revision 
section”. Then she introduced the new interval through a problem concerning overweight in USA. 
This problem came from another textbook, and she modified it in particular by suppressing the table 
giving P(X≤k), because she wanted the students to produce it themselves with their calculator. She 
presented how to find the interval from the table P(X≤k). Valeria insisted on the need to formulate 
very precisely the decision rule. At the end of the chapter, she worked with her students on the 
algorithm: the students implemented it on their calculator, but this program was actually not used as 
a tool to find the interval in exercises.  

Gwen started with a problem that she built herself, about red-haired people in Scotland (inspired by 
a textbook problem with a different context). The first part of the problem recalled the grade 10 
interval, and more generally the idea of sampling variability. The second part of the problem 
introduced the new interval. Just after this session, Gwen worked with the students on the 
production of an algorithm and its implementation on the calculator to find the binomial law 
interval. Afterwards this program was always used to find the interval. Gwen said that she found the 
binomial law interval too technical, she did not want her students to learn how to find it. She 
preferred to use it as an opportunity to work on algorithms. She distributed a sheet to the students 
presenting the interval and a diagram. Then she proposed different exercises about decisions; in 
particular one exercise with samples of different sizes.  

The final assessment of this chapter was also the final assessment of the year for the two Grade 11 
ES classes. Valeria and Gwen wrote it together; we analyse their documentation work drawing on 
the resources they used and produced; the e-mail they exchanged and their interviews. The control 
text comprised one exercise on tolerance intervals. This exercise, with an introductory text (figure 
1) and three questions, concerned the rate of twins in India; it came from a textbook. Valeria and 
Gwen modified the initial text which was, in their opinion, too long and complex.  

 “ India: Kodinji, the mysterious twins village 

In the state of Kerala (south-west India), there is an amazing village. The rate of twins is much 
higher than the national average. 440 twins live indeed in this town for 14600 inhabitants. This 
average is outstanding, since the national average is 16 twins for 1000 births”. Extract of an article 
(Courrier International, 2009) 

 Let X be the random variable counting the number of twins in a 14600 Indians sample.  

Figure 1: Introductory text of the control exercise (our translation) 



They modified the first question: in the textbook the parameters of the binomial law followed by X 
were given; they wanted the students themselves to find the parameters. They also changed the 
second question, where the students are asked to produce the tolerance interval, to display the two 
different methods expected for each class: use of a table (given in the text) for Valeria’s class, use of 
the calculator’s program in Gwen’s class. Question 3 was left unchanged.  

42 students were present at the final assessment. In the first question, 35 students justified that X 
followed a binomial law of parameters n and p; 29 students determined correctly the value of n, but 
only 15 the value of p. In the second question, 19 students determined correctly the endpoints of the 
tolerance interval. In the third question, 19 students justified correctly the rejection of the hypothesis 
(“the Kodinji village follows the national figures”). 

Valeria and Gwen documentation work and use of resources: General statements 

We can notice that like other research works using the documentational approach (Gueudet et al. 
2012) this description evidences that Valeria and Gwen are designers of their own resources. They 
use various curriculum resources, but transform most of them. Only some exercises texts are left 
unchanged, and one textbook extract presenting the binomial law interval (for Gwen). Moreover, 
textbooks (on paper, they do not use digital textbooks) are central resources, used as a reference to 
discuss the lesson plan, and to choose exercises for practicing the new methods, for the 
assessment/test, or to find an introductory problem (for Valeria). More surprisingly, they did not 
search the Internet for resources – this can be a consequence of their common preparation: Valeria 
and Gwen sometimes search the Internet for preparing their lessons, but always at home. For the 
common preparation they were at school with no Internet access. Another result already well known 
in the documentational approach is that the observation of students (their written texts, or oral 
discussions in class) constitute a very important resource for the teachers, leading to a constant 
modification of the resources produced along the documentation work. Both Valeria and Gwen 
intend to modify this lesson on tolerance intervals next year, because they consider that the students 
made too many mistakes in the final assessment/test.  

Documents developed by Valeria and Gwen 

In this section we analyse our data in terms of documents developed by Valeria and Gwen. Since 
our focus is on MKT, we do not give a complete description of each scheme of use but only 
mention the aim of the activity and the MKT involved. We have chosen three examples of 
documents, corresponding to different situations in terms of similarities or differences. 

Valeria and Gwen had a shared aim that can be described as “Recalling previous knowledge needed 
for the binomial law tolerance interval”. They both considered that this new chapter must start by 
recalling the grade 10 interval, because they knew from their observation of students during the year 
that “many students do not remember this interval” (Gwen even added that some students perhaps 
never saw it, since some colleagues keep this content for the end of the year and run out of time). 
This shared MKT lead however to two different documents for this aim, because of the teachers’ 
different resources: Valeria used a lot the classroom textbook, and thus proposed revision exercises 
coming from this textbook, while Gwen wrote her own problem text.  

Valeria and Gwen also shared a general aim that can be presented as: “Teaching how to find a 
tolerance interval with a binomial law”. During the previous years, Valeria has developed for this 



aim a document including various resources: the spreadsheet (as software or in the calculator), 
exercise texts, the illustrating diagram, and MKTP: “The students must learn to find the endpoints 
of the interval by reading the table”. This knowledge can have different sources; we claim that it 
comes in particular from institutional texts (the official curriculum) and from textbooks. For the 
same aim, Gwen has developed a different document, including: the calculator, an algorithm, the 
illustrating diagram, exercise texts as resources; and MKTP like: “The binomial law interval is too 
technical”; “there are no questions about the binomial law interval at the baccalaureate2”; and the 
MKT “it is important to work with students on algorithms”. This knowledge comes from reading 
the texts of the baccalaureate, and from a personal mathematical difficulty: Gwen declared that she 
“cannot remember [herself] how to find the endpoint of the interval”. Moreover she considered that 
this grade 11 curriculum is only a transition between the grade 10 interval and the grade 12 interval 
(with the normal distribution) while algorithms are always present in the baccalaureate texts. 
Valeria and Gwen discussed this difference during the common preparation. Valeria integrated in 
her lesson the programming of the algorithm on the calculator, but she did not want her students to 
use it, because she feared that the students do not really understand the algorithm and use their 
calculator as a “black box”. 

For the aim: “Assessing the students’ ability to determine and interpret a tolerance interval”, Valeria 
and Gwen used shared resources: they wrote the assessment text together drawing on the same 
textbook exercise. The choice of this exercise was guided by MKT firstly expressed by Gwen, and 
adopted by Valeria: “the students must learn to find information in a text”. Nevertheless, the text 
produced was also transformed to incorporate the use of two possible methods, because of their 
different MKT concerning how to find the binomial law tolerance interval.  

In Table 1 below, we synthesise these three documents, evidencing the common and different 
elements.  

                                                 
2 In France, the final secondary school assessment, at the end of Grade 12.  



 

Aim Resources used MKT/ MKTP 

Recalling 
previous 
knowledge  

Valeria: Revision exercises in the 
classroom textbook 

“Many students do not remember the 
grade 10 tolerance interval” 

Gwen: Her own problem text 

Teaching how to 
find a tolerance 
interval with the 
binomial law 

Valeria: Problem and exercises texts 
from different textbooks, the 
spreadsheet, algorithm on the 
calculator (coming from the collective 
work) 

Valeria: “The students must learn to 
find the endpoints of the interval by 
reading the table”; “they must not use 
the calculator as a black box” 

Gwen: Problem composed herself, 
exercises from different textbooks, 
algorithm on the calculator 

Gwen: “it is important to work with 
students on algorithms” “the binomial 
law interval is too technical” 

Assessing the 
students’ ability 
to find and 
interpret a 
tolerance interval 

Shared assessment text written 
together from a textbook exercise, but 
integrating two possible methods.  

“The students must be able to identify 
information in a text” (shared) 

+ MKT/MKTP described in the above 
line 

Table 1: Synthetic presentation of documents developed by Valeria and Gwen. Shared elements are in 
italics. 

Conclusion 
In this paper we investigated the research question: “How do professional knowledge and resources 
interact in the collective design and implementation of a lesson?” in the case of a lesson on 
tolerance intervals for Grade 11 students in France. In the frame of the documentational approach, 
investigating how professional knowledge and resources interact means investigating the documents 
developed by teachers. For each of the two teachers we followed, we observed that they developed 
an important design work, choosing resources, associating and modifying them. This work was 
guided by their professional knowledge, in particular MKT and MKTP. We observe that this MKT 
is mostly of the type: “Knowledge of Content and Students”; deepening the analysis in terms of 
types of MKT is an interesting perspective for further work. In a reverse way, resources influenced 
the development of MKT, and this MKT can be different for each individual teacher. For example 
the official curriculum influenced Valeria and Gwen in different ways: while Valeria aligned with 
the curriculum about tolerance intervals, Gwen attached more importance to the algorithms. She 
developed a personal interpretation of the official curriculum, not focusing on the chapter she taught 
but taking into account the whole year.  

In previous works (Gueudet et al. 2012) we evidenced that collective work is present in many 
aspects of teachers’ activity and that it is a stimulator of documentation work, especially when it 
takes place within CoPs. In (Gueudet et al. 2016) we analysed the common documentation work in 
a CoP: an association of teacher designing an e-textbook. We evidenced that they developed 



common documents, drawing on their individual documents. In the present study we investigated a 
CoP composed by two teachers preparing their courses together. We evidenced that, in spite of the 
collective work the documents developed by the two teachers for the same aim are never completely 
identical. The consequence of the collective work is that these documents sometimes share common 
elements. The main reason for the differences seems to be the long experience of both teachers: they 
already developed in previous years documents for the same aims, and thus have MKT or MKTP 
associated with these aims and also specific resources. The collective work can bring new resources 
(the algorithm on the calculator for Valeria) or new knowledge (the students must be able to find 
information in a text, for Valeria again), but the previous knowledge developed during interactions 
with resources over many years is still present and produces differences in the documents. 

These teachers will go on working together; with a longer common work, evolutions may take 
place, and we will try to analyse these evolutions. We also hypothesize that evolutions of practice 
are more likely to take place in teachers’ CoPs when the members of the CoP are involved in a 
common design activity (for example in the Sésamath case, Gueudet et al. 2016, or in the context of 
professional development, Pepin & Miyakawa 20016). We intend to investigate this hypothesis in 
further research.  
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In this paper, we will present a part of findings of a larger study in which we investigated both pre-
service teachers’ pedagogical content knowledge and middle school students’ mathematical skills. 
A total of 17 pre-service teachers worked with 7th grade students on the mathematical tasks for a 
semester. The data was collected through inventories, videos of task implementations and written 
reflections. The analysis of inventories and written reflections revealed that the pre-service teachers 
had positive beliefs about using mathematical tasks in the lessons. They were able to evaluate the 
success or failure of a task by analyzing the implementation process. They recognized the 
importance of preparing appropriate tasks for students and implemented them as intended. They 
also noted that mathematical tasks provided them an opportunity to learn about students’ 
mathematical understanding as well as to develop their scaffolding practices. 

Keywords: Pre-service, middle school, mathematical tasks, reflection, teacher knowledge. 

Introduction 
The studies on mathematical tasks provide an opportunity to discuss not only students’ 
mathematical thinking and understanding but also teachers’ knowledge and skills (Zaslavsky, 2007). 
Tasks are accepted to be one of the curricular tools that help teachers to scaffold, foster and assess 
students’ understanding when used appropriately (Stein, Grover, & Henningsen, 1996; Watson & 
Mason, 2007). Research on task design and implementation shows that “good” tasks or cognitively 
demanding tasks (Stein et al., 1996) have positive impacts on students’ thinking and understanding 
(Henningsen & Stein, 2002). Such tasks encourage students to think about what mathematical 
concepts are conveyed in the task, what they know about them, how they are related to other 
concepts and which strategies, representations or materials are helpful in terms of arriving at a 
meaningful solution or answer. On the other hand, designing, selecting and implementing 
cognitively demanding tasks are related to teachers’ pedagogical content knowledge (PCK) as well 
as to their content knowledge (Charalambous, 2010; Liljedahl, Chernoff, & Zazkis, 2007; 
Stylianides & Stylianides, 2008). Teachers’ decisions about whether a task is appropriate for their 
students in terms of its complexity or if their students possess the necessary prior knowledge or the 
task’s goal aligns with the lesson’s objectives emerge from their PCK (Hill, Ball, & Schilling, 
2008). The studies on task design and implementation showed that when pre-service teachers 
(PSTs) were given opportunities to develop and implement tasks, they were able to prepare “good” 
tasks in which they used real life context and multiple representations and they asked for 
explanation, interpretation or justification (Ozgen & Alkan, 2014). 

In this study, we aimed to investigate how PSTs’ involvement in task design and implementation 
process influenced their views about tasks and their PCK. We used tasks as a tool to build up an 
environment for PST-student and student-student interactions where the PSTs observed how 
students worked on the tasks both individually and as a group and then joined their discussions to 
elicit students’ thinking and support their understanding. Thus, the PSTs had opportunity to learn 



about students’ mathematical skills and also to gain experience about how to implement a task 
without loss of fidelity, to scaffold students’ understanding, and to manage the group work. In this 
paper, however, we will present some findings about PSTs’ reflections on this task design and 
implementation process in terms of effectiveness of the tasks and their professional gains from this 
intervention study. 

Methodology 
Research setting 

This study was conducted under university-school collaboration between the mathematics education 
department and a local middle school in Istanbul in Turkey. A total of 17 PSTs (10 of them in Fall 
2015 and 7 of them in Spring 2016) and one of the 7th grade classes (aged between 12-13) from the 
partner school volunteered to participate in this study1. We arranged the students as mixed-ability 
groups of 4 students based on the results of an achievement test. We randomly assigned the PSTs to 
these groups. The PSTs worked with students in a 40-minute lesson for each week, a total of 11 
weeks during the Fall and 12 weeks during the Spring.  

All PSTs were senior students who volunteered to take an elective course that was carried out 
specifically for this study. During the first couple of weeks of the course, we talked about the design 
and implementation of tasks, effective ways of communicating with students and assessment of 
students’ mathematical understanding through samples. Then, each week, prior to implementation, 
we discussed the tasks that they would use with the students and made revisions on the tasks when 
necessary. After each implementation in the school, we met the PSTs again and discussed how the 
implementation went. We wanted PSTs to write reflection on each implementation by analyzing the 
implementation videos of their own group and students’ worksheets. We also asked PSTs to prepare 
and implement a set of tasks for their own group at the end of the semester. 

The tasks 

We prepared the tasks in alignment with the 7th grade mathematics curriculum. In the Fall semester 
we prepared 10 tasks which were about integers, fractions, rational numbers and algebra. In the 
Spring term we prepared 11 sets of tasks which were about geometry, algebra and data and 
statistics. Each set of tasks consisted of 3 to 4 sub-tasks with some additional problems. The tasks 
were set up around a common theme which related to the use of mathematics in daily life. For 
instance, in one of the data analysis tasks, we conducted a short survey on students’ preferences in 
the class such that we gave them a list of foods where each student would choose 5 of the foods 
from the list. Then we wrote down the frequencies for each food on the board and then asked them 
to answer questions about their preferences such as finding out the most popular food, making a bar 
graph of the drinks, etc. The majority of the tasks that we used were selected from the ones that we 
implemented in the previous years. However, we revised those tasks before the implementation 
based on the needs and performances of the students in our new sample.  

                                                 
1 The school was located in a crowded neighborhood in terms of school-age children. There were 40 students in the 
class, average size according to national education statistics, but in the Spring semester 4 students dropped out. Since we 
had only 7 volunteers in the Spring semester, two researchers from the research team worked with two of the groups. 



Data collection 

The data was collected through pre and post questionnaires, videos of PSTs’ task implementations 
and group discussions, and PSTs’ written reflections and assignments. One of the questionnaires 
(Kayan, Haser, & Isiksal-Bostan, 2013) consisted of 26 5-point Likert-type items asking for PSTs’ 
beliefs about mathematics and mathematics teaching. The other questionnaire was developed by the 
research team and it consisted of open-ended questions where in the pre questionnaire the PSTs 
were asked to write about their prior teaching experiences and their expectations from the study and 
in the post questionnaire they wrote about whether their expectations were met or not and what they 
had learned from this intervention, etc. In their written reflections, we wanted PSTs to discuss about 
how the implementation went. Among the other questions, we asked them to comment on whether 
the students were able to complete the tasks, whether the tasks achieved their goals or not and why, 
and what they would do as follow up. At the end of the semester, we wanted them to discuss in 
which tasks the students experienced the most difficulty and what their suggestions would be to 
revise those tasks. Furthermore, we asked them to prepare tasks for their own groups and provide 
the rationale behind those tasks.  

Data analysis 

We have not analyzed all data yet. However, because the knowledge of students’ thinking and 
understanding, the ability of selecting or developing appropriate tasks, and using appropriate 
teaching strategies for particular groups of students are counted in teachers’ PCK (Hill et al., 2008), 
we are basically looking for any instances that could be counted as an influence of task design and 
implementation process on the PSTs’ PCK and their views about tasks. For instance, whether they 
paid attention to the students’ earlier performances while preparing their own tasks, how accurate 
assumptions they were able to make about students’ performances on the new tasks, etc. Yet, we did 
document analysis such that we analyzed the items related to task design and implementation from 
the questionnaires, written reflections and assignments. We attempted to figure out the frequencies 
of common issues that emerged from those instruments. We found out the mean scores of the items 
in the Likert-type questionnaire but we did not compare pre and post results because of low number 
of participants. We examined pre and post open-ended questionnaires, the assignments asking for 
making overall evaluation of the study and the reflection reports including PSTs’ reflections on the 
implementation of their own tasks. We developed a coding scheme for the common issues that 
emerged from the reflection reports. For instance, when discussing the reasoning behind the success 
of the tasks, if the PSTs wrote that “they liked it” or “they enjoyed it” or “they had fun with it” then 
we coded that reasoning as “enjoyable” (see Table 1). However, out of possible 194 reflection 
reports, 6 of them were missing. Therefore, we coded a total of 188 reports. We achieved 90% 
agreement in initial coding. We discussed the discrepancies by re-reading the PSTs’ reports and 
then we came with an agreement. Moreover, we all agreed on the common issues that emerged from 
the open-ended questionnaire and the assignments. 

Findings 
PSTs’ thoughts about use of tasks in mathematics 

The analysis of items in the Likert-type questionnaire showed that the PSTs agreed that teachers 
should encourage students to be active learners (The average of 3 related items; pre 38.4x ; post 



45.4x ), the tasks are important for students’ learning and understanding (The average of 2 related 
items; pre 36.4x ; post 61.4x ) and manipulatives and materials facilitate students’ 
understanding (The average of 3 related items; pre 09.4x ; post 60.4x ). Their answers in the 
open-ended questionnaires were compatible with these results. The PSTs noted that doing 
mathematics through tasks enables students to participate in the lesson ( 5f ), love mathematics 
( 4f ), discover or review mathematical concepts or facts ( 4f ), and use materials or 
manipulatives ( 4f ). 

PSTs’ reflections on the implementation of the tasks 

In the reflection reports, we asked the PSTs to comment on the following questions: 1a) Were the 
students able to complete the task? 1b) Did the task attain its goal or not? 1c) Why did the task 
attain its goal or not? 2) What more would you like to do about this implementation? 3) What is 
your suggestion for the follow up of the task? The PSTs gave various answers to these questions. 
For instance, for question 1a they noted that some of the students completed the task or just one 
student could not finish all of them, etc. Although we coded them separately, we re-coded them in 
terms of whether their answers were most likely “Yes” or “No”. Similarly, we defined 12 different 
answers for question 1c. However, we preferred to present only the most frequent ones. In Table 1, 
the frequencies of PSTs’ answers to these questions are given.  

Q1a: Were the students able to complete the task?    

 No Yes    
Fall 30 (29%) 75 (71%)    
Spring 15 (18%) 68 (82%)    
Total 45 (24%) 143 (76%)    

      Q1b: Did the task attain its goal or not? 

 No Yes No  
Comment   

Fall 38 (36%) 67 (64%)    
Spring 15 (18%) 63 (76%) 5 (6%)   
Total 53 (28%) 130 (69%) 5 (3%)   

      Q1c: Why did the task attain its goal or not? 

 
No  

Comment Enjoyable Lack of  
Knowledge 

Use of  
Materials 

Recognize  
own Mistakes 

Fall 28 (27%) 10 (10%) 32 (30%) 11 (10%) 14 (13%) 
Spring 19 (23%) 5 (6%) 19 (23%) 1 (1%) 14 (17%) 
Total 47 (25%) 15 (8%) 51 (27%) 12 (6%) 27 (14%) 

      
Q2: What more would you like to do about this implementation? 

 
No  

Comment 
Nothing  

more 
Discuss  
more 

Teach for  
Understanding  

Fall 9 (9%) 17 (16%) 37 (35%) 29 (28%)  
Spring 1 (1%) 58 (70%) 15 (18%) 6 (7%)  
Total 10 (5%) 75 (40%) 52 (28%) 35 (19%)  

      
Q3: What is your suggestion for the follow up of the task? 



 
Nothing  

more 
Review for 

Exercise 
Review for  
Learning 

Easier 
Tasks  

Fall 5 (5%) 46 (44%) 31 (30%) 6 (6%)  
Spring 16 (19%) 42 (51%) 12 (14%) 3 (4%)  
Total 21 (11%) 88 (47%) 43 (23%) 9 (5%)   

Table 1: The frequencies of pre-service teachers’ answers to the questions about task implementation 

As seen in the table, the PSTs noted that in a 40-minute lesson the students were able to complete 
the given tasks and discuss their answers (76%). However, some of the PSTs wrote that the tasks 
were difficult for their students and they only answered one of the sub-tasks. For some of the tasks, 
the PSTs noted that although the students completed the tasks, there was no time for themselves to 
discuss students’ answers as a group discussion. 

The PSTs wrote that some of the tasks did not attain their goals (28%) mainly because of lack of 
students’ prior knowledge (27%). In a few cases, they noted that the students did not understand the 
task because the text was unclear (3%). Some of the PSTs attributed the success of the tasks to use 
of materials (6%) and context of the tasks that attracted students’ attention (8%). Furthermore, some 
of the PSTs wrote that the tasks attained their goal because during the group discussion the students 
recognized their own mistakes and learned from each other (14%). However, in 25% of the reports, 
the PSTs did not write anything about the reasoning behind the success or failure of the task. 
Furthermore, we analyzed the pattern in PSTs’ perceived cause-and-effect relationship between Q1b 
and Q1c. Among the total of 141 responses to Q1c, the PSTs wrote that the tasks achieved their 
goals because students learned from each other while engaging in the task (f: 25), they used 
materials (f: 12) and they enjoyed it (f: 15). They noted that the tasks were not successful mostly 
because of students’ lack of prior knowledge (f: 38). 

As an answer to Q2, the PSTs noted that they were able to do whatever they wanted to do during the 
implementation (40%). However, some of them noted that there was not enough time to explore 
how students thought about the given tasks or they were unsure whether the students understood the 
reasoning behind the answers to the tasks or not, therefore they would like to discuss more about 
those issues (28%). In some of the cases, especially in the Fall term, because of students’ lack of 
knowledge about fractions and rational numbers, the students could not finish the given tasks. In 
such cases, the PSTs wrote that they would like to teach about those concepts before or after the 
implementation if they had enough time (19%). On a total of 6% of the reports, the PSTs did not 
write relevant answers but summarized how the implementation went. 

For the third question, 12% of the reports (not shown in the table) included irrelevant answers such 
as the PSTs suggested encouraging students to read more books to improve their reading skills or 
they criticized themselves in terms of not managing time better. In a few reports, they wrote that the 
tasks were difficult for the students; there should be easier tasks on the same content domain (5%). 
However, they mostly suggested making review exercises for students to reinforce their 
understanding of the tasks as well as the content domain (47%). When they realized that the 
students did not know much about the content, they suggested remedial lessons for them (23%). 



PSTs’ reflections on the tasks and the intervention study  

At the end of the semester, we asked the PSTs to evaluate this intervention study including the 
effectiveness of the tasks and the contributions to their own professional development. We 
specifically asked them to determine five mathematical issues in which students had experienced the 
most difficulty and two tasks that they would like to revise. We also asked them to give the 
reasoning behind the selection of those tasks and their revisions.  

According to the PSTs, among the others, the students had difficulty in the tasks which were about 
fractions and rational numbers ( 16f ), algebraic expressions ( 9f ), solving equations ( 7f ), 
area problems ( 7f ), and discovering patterns ( 5f ). They wrote that the students could not do 
these tasks completely because of their lack of prior knowledge ( 17f ), lack of attention ( 7f ), 
lack of review exercises done at home ( 5f ), lack of understanding of the tasks ( 3f ), and 
personal insecurity ( 2f ). Specifically, they noted that students had difficulty in fractions, rational 
numbers and area problems because they did not know the algorithm for four operations with 
rational numbers as well as the area formulas of quadrilaterals and circle. They wrote that students 
failed in doing operations and discovering patterns because they did not practice enough at home or 
did not pay attention to the operations and procedures. However, the tasks that they would like to 
revise were mostly about integers ( 7f ), algebraic expressions ( 4f ), fractions and rational 
numbers ( 3f ), area problems ( 3f ), and transformations ( 3f ). The PSTs wanted to make 
revisions to the tasks about integers not because of students’ lack of knowledge but because the 
context of the tasks was confusing for the students. Therefore, they noted that they would rephrase 
the text and change the order of the sub-tasks in those tasks. They decided to make the tasks about 
fractions and area problems easier because students did not possess the required knowledge to 
complete the tasks. Furthermore, in some cases the PSTs preferred to change the tasks that were 
done by the students but they were uncertain whether they understood them thoroughly or not. 

The PSTs prepared a set of tasks for their own group of students at the end of the semester. Their 
rationale for their tasks was either to focus on the issues where the students experienced the most 
difficulty ( 13f ) or to make an overall review of what was done during that semester ( 4f ). In 
parallel with their comments about the students’ mathematical difficulties, they prepared tasks about 
integers, fractions and rational numbers, area problems, algebraic expressions and solving 
equations. Some of the PSTs kept their tasks as simple as possible because of their students’ poor 
performance on earlier tasks. Furthermore, 7 of the PSTs prepared their tasks around a common 
theme as we did in this study but 10 of them prepared separate problems related to the content 
domain that they focused on. 

In the post open-ended questionnaire, the PSTs wrote that this intervention study contributed to 
their professional knowledge in several ways. Among the others, they noted that they practiced how 
to scaffold students’ understanding without directly telling them the solution or answer ( 7f ), they 
got better in anticipating students’ possible difficulties in mathematics ( 5f ), they learned to be 
patient ( 4f ), and they learned what kind of tasks attract students’ attention more ( 3f ). 



Discussion 
The findings of this study have potential to contribute to the relevant literature that teachers learn 
from their own task design and implementation practices in terms of better understanding of 
students’ mathematical thinking and how to use or tailor tasks to scaffold students’ understanding 
(Zaslavsky, 2007). Although we have not yet analyzed all data, we recognized that the PSTs were 
able to evaluate the task implementation process in terms of the facts related to the task itself, the 
organization, the students and their own professional development.  

When we asked the PSTs to write their thoughts about the success or failure of the tasks, they were 
able to make reasonable inferences from the implementation. They recognized that the tasks were 
successful because the students were actively involved in the solution and discussion process (14%, 
see Table 1, Q1c), the materials were appropriate for the tasks (6%, see Table 1, Q1c), the tasks 
were aligned with the 7th grade curriculum and they were in the role of facilitator of group 
discussion (28%, see Table 1, Q1c and results of post questionnaire). In only a few of the cases, they 
noted that the students failed to complete the task because the task was unclear for the students 
(3%). For the other cases, they did not blame the tasks but the students because they did not possess 
necessary prior knowledge that they learned in previous grade levels or in their regular mathematics 
lessons (27%, see Table 1, Q1c). The PSTs’ interpretations revealed that they began to recognize 
students’ mathematical understanding as well as the importance of preparing tasks both aligned with 
the curriculum and appropriate for a particular group of students (Hill et al., 2008). For instance, 
while preparing their tasks, they preferred not to use higher cognitive demand tasks but the easier 
ones because some of their students did not know about the procedures required to solve given 
tasks, such as the rules of four operations with rational numbers. The PSTs also commented that 
students should revise the issues discussed in their mathematics lessons in order to understand the 
mathematics conveyed in the tasks (47%, see Table 1, Q3). Moreover, as we inferred from their 
answers in the questionnaire they appreciated the facilitator role of the teacher during the task 
implementation. They stated that they suppressed their feelings of telling and teaching when 
students could not figure out the solutions. Briefly, their reflections on the tasks and the 
implementations indicated that they were aware of the task implementation process which begins 
with selection of appropriate tasks, continues with implementation of the tasks and ends with 
evaluation of students’ learning (Stein et al., 1996). Because orchestration of task implementation 
process is involved in teachers’ PCK, such awareness of the PSTs can be counted as a sign of their 
PCK (Charalambous, 2010). However, because we have not yet analyzed the implementation 
videos, we are not able to validate PSTs’ reflections on the tasks implementation process, especially 
whether they were able to implement the tasks without loss of fidelity and manage the group 
discussions appropriately. Indeed, it is hard for teachers, even more so for PSTs, to keep the 
cognitive demand of the tasks such that they might have provided hints or helped students when the 
students did not possess the required knowledge (Stylianides & Stylianides, 2008). Therefore, we 
are not able to comment on their “PCK in practice” even though we could make inferences about 
their PCK from their written reflections.  

Finally, the analysis of pre and post questionnaires revealed that the PSTs had positive beliefs about 
use of student-centered teaching strategies, mathematical tasks and manipulatives while teaching 
mathematics and such beliefs sustained and even increased throughout the study.  They recognized 



that tasks provided an opportunity for them to elicit students’ mathematical understanding and they 
could be used as a tool to foster students’ mathematical understanding. 
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Feedback is acknowledged as an important influential factor on learning and achievement. An 
affordance of digital learning tools is that they provide different kinds of feedback to students. 
Research on the effectiveness of feedback has mainly focused on different forms of feedback and its 
timing assuming that different students react homogeneously to feedback. This paper provides a 
qualitative in-depth analysis of two third grade students’ responses to feedback in an interactive e-
textbook environment. Students responses to feedback are conceptualized in terms of utilization 
schemes within an instrumental approach. Results indicate that students utilize feedback differently, 
which has consequences for the effectiveness of the feedback.  

Keywords: Feedback, e-textbook, instrumental genesis.  

Introduction 
Feedback is widely acknowledged as an important influential factor on learning and achievement 
(Hattie & Timperley, 2007). The fact that interactive digital learning tools constantly provide 
feedback to the learners’ actions with the contents is indeed one of the most emphasized advantages 
of learning with digital tools (e.g. Mason & Bruning, 2001). In fact, an outstanding defining aspect 
of interactivity is that users get immediate feedback to their actions with the tool.  

According to Hattie and Timperley (2007, p. 81) feedback is understood as “information provided by 
an agent (e.g., teacher, peer, book, parent, self, experience) regarding aspects of one’s performance 
or understanding“. The goal of feedback is to support understanding and/or performance. In line with 
this, Shute (2008, p. 154) defines formative feedback as “information communicated to the learner 
that is intended to modify his or her thinking or behavior for the purpose of improving learning“. 
According to Hattie and Timperley (2007, p. 87) effective feedback has to address three questions: 
“Where am I going? How am I going? Where to next?”.  

Research related to feedback aims at identifying features of feedback that increase its efficiency. Two 
aspects seem to be important for effective feedback: 1) the information provided by feedback and 2) 
the timing of feedback. Mory (2004, p. 753) distinguishes five categories of feedback regarding 
information complexity: “1. No feedback means the learner is presented a question and is required to 
respond, but no indication is provided as to the correctness of the learner’s response. 2. Simple 
verification feedback or knowledge of results (KR) informs the learner of a correct or incorrect 
response. 3. Correct response feedback or knowledge or correct response (KCR) informs the learner 
what the correct response should be. 4. Elaborated feedback provides an explanation for why the 
learner’s response is correct or incorrect or allows the learner to review part of the instruction. 5. Try-
again feedback informs the learner when an incorrect response and allows the learner to one or more 
additional attempts to try again.”  

Research has shown that both, the wrong form of feedback and the wrong timing might even have 
negative effects on learning and achievement (Fyfe & Rittle-Johnson, 2016a; Hattie & Timperley, 



2007). The majority of studies in this context quantitatively measures effect sizes of different forms 
or timings of feedback in order to draw conclusions regarding the effectiveness of feedback. The 
underlying assumption in these settings is that students will react consistently to the respective form 
or timing of feedback. While different conditions of providing feedback that might influence its 
effectiveness have been studied, e.g. prior knowledge (Fyfe & Rittle-Johnson, 2016b) or feedback 
specificity (c.f. Shute, 2008) students’ individual ways of responding to and making use of feedback 
have scarcely been studied in mathematics education. Bokhove (2010) presents an exception. He 
reports from a study where student inquiry about desired feedback was used in order to develop a 
feedback design of a digital tool to learn algebra. He concludes that “asking students when to use 
what feedback can improve a digital tool“ (Bokhove, 2010, p. 125). Most of the research on feedback 
is based on experimental testing (Shute, 2008, p. 156). Shute (2008, p. 156) summarizes that „the 
specific mechanisms relating feedback to learning are still mostly murky, with very few (if any) 
general conclusions“.  The aim of this paper is to contribute to the understanding of the mechanisms 
relating feedback to learning. In particular, the focus is on two research questions: 1) How do students 
individually utilize feedback in order to improve their understanding and performance?; 2) What are 
the consequences of students’ individual utilizations of feedback with regard to the efficiency of 
feedback?  

Theoretical framework and methodology 
In this paper, feedback is regarded as an artifact, which is developed in order to improve students’ 
learning and achievement. According to Rabardel (2002) an artifact is transformed into an instrument 
in use. An instrument is a psychological entity that consists of an artifact component and a scheme 
component. In using the artifact with particular intentions the subject develops and adjusts utilization 
schemes, which are shaped by both, the artifact and the subject. This process is referred to as 
“instrumental genesis” (Rabardel, 2002). According to Vergnaud (1998, p. 167) a scheme is “the 
invariant organization of behavior for a certain class of situations”. Vergnaud (1998) suggests that 
schemes are in particular characterized by two operational invariants, which refer to the knowledge 
included in schemes: theorems-in-action and concepts-in-action. The difference between both 
operational invariants is that of relevance and truth. While “concepts-in-action are relevant, or not 
relevant, or more or less relevant, to identifying and selecting information”, “theorems-in-action can 
be true or false” (Vergnaud, 1998, p. 173). 

With regard to research question 1, students’ utilization of feedback is conceptualized in terms of 
their concepts-in-action and theorems-in-action, which guide their utilization schemes of the 
feedback. The situation that the scheme refers to is defined by the type of task with respective 
feedback.  

Methods 

The study presented in this paper is part of a larger study, which aims at understanding students’ 
learning with interactive e-textbooks at primary level. Therefore, we used an interactive e-textbook 
that is available on the German market. The e-textbook “Denken und Rechnen interaktiv 3”1 was the 
only interactive textbook for primary level that was available on the German market when the study 
                                                 
1 http://www.denken-und-rechnen-interaktiv.de 



was carried out. The e-textbook was not developed for the sake of this investigation, but by one of 
the leading German publishing companies for textbooks. Consequently, the design principles for the 
feedback are not known and do not necessarily take into account the current state of research in this 
field.  

In this paper, a case study with altogether 12 cases is presented. All students were at the end of third 
grade with an age between 8 and 9 years. Each case works on a tablet in experimental conditions on 
tasks from one unit of a beta-version of the web based interactive mathematics e-textbook. During 
data collection the students encountered the interactive e-textbook for the first time. The students 
were asked to verbalize their thoughts (thinking aloud). Additionally, the interviewer asks questions 
in order to understand the students’ actions and thoughts. The interviewer also gives hints in order to 
assist students’ instrumental genesis. The work of the students was video recorded. Data was 
transcribed and analyzed in terms of concepts-in-action and theorems-in-action. As the name of these 
concepts indicates, these are mainly inferred from students’ actions. Only sometimes students 
explicate the concepts and theorems guiding their actions verbally. Concepts-in-action were inferred 
from the data by constantly asking ‘what are the concepts / relevant categories / notions guiding the 
student’s action?’. Accordingly, theorems-in-action were inferred from the data by asking ‘what 
assertions / beliefs assumed as true by the student guides the student’s action?’ 

Since utilization schemes are defined as “invariant organization of behavior” (Vergnaud, 1998) it 
might seem questionable to investigate them with children that encounter an e-textbook for the first 
time. However, utilization schemes do not develop from scratch, but can be understood as adjustments 
(accommodation) of existing schemes. In fact, this experimental setting allows for analyzing the 
instrumental genesis in terms of accommodation of existing schemes.  

Analysis 
Analysis of the artifact 

An analysis of the task and related feedback is a prerequisite in order to understand students’ 
utilization schemes of the feedback, because they are influenced by the affordances and constraints 
of the artifact in the instrumentation process (Rabardel, 2002). Task no. 2 on page no. 73 and related 
feedback is analyzed for the scope of this paper. It is depicted in figure 1. The task is to find solids in 
the picture (“Which solid shapes do you find?”2) and to enter their names into the empty fields. After 
pressing the OK-button on lower right corner of the screen the software provides knowledge of results 
(KR) feedback. Correct inputs are shown in green color with a green frame, wrong inputs stay as they 
were entered for a few seconds. Afterwards they disappear and the empty fields are shown again 
(figure 2). Correct answers stay on the screen and the student can enter new inputs into the empty 
fields. Students get the opportunity to correct their wrong inputs twice. After their third try knowledge 
of correct response (KCR) feedback is provided by showing all the correct answers in green color. 
The ones that were entered correctly by the student are framed. An answer is evaluated as correct if 

                                                 
2 This was the task in the beta-version of the interactive textbook. In the latest online-version of the textbook the task was 
changed to “Enter befittingly sphere, cube, cylinder or pyramid“. 



the student entered the correct name of the solid in the correct spelling. The feedback does not 
differentiate between incorrect spelling mistakes ore incorrect solid names. 

 
Figure 1: Task 

   
Figure 2: Task-level-feedback (KR) and screen for second try 

Analysis of students’ utilization schemes of the feedback 

In this section data of two cases will be analyzed. The analysis of both cases starts at the moment, 
when the students have filled in most of or all empty fields and press the OK-button at the lower right 
corner of the screen. After pressing the OK-button the KR-feedback appears on the screen.  

Case 1: Farrell 

On Farrell’s feedback screen four out of seven answers are depicted in green color and with a frame 
and stay on the screen while three of his answers remain as they were entered and disappear after a 
few seconds. He gets the feedback “Sorry, wrong”. 

13’03” Interviewer What happened? 
13’08” Farrell Correct answers are green and what is gone now was wrong 
13’18” Interviewer  Ok. And do you have an idea why it was wrong? 
13’22” Farrell Wrong spelling? And wrong entry. 
13’30” Interviewer Could be. … Think about it. What else could you write or how could you 

write it differently if you think it also might be because of the spelling 
13’35” Farrell Tips into an empty field and starts typing ‘Cube’ in correct spelling. 
13’54” Interviewer Uhum, now you say it’s a cube. What did you enter before? 
13’56” Farrell Square. 



13’57” Interviewer And why do you think it is the cube now? 
13’58” Farrell Because, before, the square is not an object, no symmetrical figure  
14’12” Interviewer Ah, ok, and now you believe it’s the cube. 
14’15” Farrell Yes, because the square can only be seen and not touched 
14’19” Interviewer Ah, ok. 
14’35” Farrell  Types ‘cuboid’ in one empty field in the same wrong spelling as the first time. 
14’08” Interviewer Which form could that be? 
15’12” Interviewer Can the book help you somehow? 
15’21” Farrell Presses the ‘?’-button and choses “help” (the help screen appears). He reads 

the help screen.  
15’45” Interviewer Does that help you somehow? What do you see? 
15’52” Farrell There is everything that could give me a hint. 
15’56” Interviewer Hmm, ok. … And does that help you for the task? 
16’02” Farrell  No. 
16’04” Interviewer No. Is there maybe another function that could help you? 
16’09” Farrell I will check. Presses the ‘?’-button and points on the option ‘Lexikon’. 

Lexicon. 
16’13” Interviewer Yeah, click it. 
  Farrell explores the lexicon. The interviewer asks questions, which are 

related to the use of the lexicon. He looks for ‘form’ and “solid”. 
18’43” Farrell I believe it starts with a ‘Q’. At the same time, he opens the letter ‘Q’ in the 

lexicon and looks at the entries. 
18’58” Farrell No, but I found something different. 
19’02” Interviewer Ok. What did you find? 
19’04” Farrell The cuboid (in German: Quader) Returns to the screen/tab with the task and 

tips into the field with the entry “Qader”. 
19’09” Interviewer You already wrote cuboid there. So what did you find? 
19’12” Farrell That in-between the Q and the A there is a U. 
19’18” Interviewer Ah, that means the lexicon helped you a little. 
19’28” Farrell After completing to type the word ‘cuboid’ he presses the OK-button. All his 

entries are shown in green color with a frame. He gets the feedback “No, not 
correct yet.” 

19’30” Interviewer And, what now? 
19’31” Farrell I looked if what I wrote now is already correct.  
19’38” Interviewer And, how does it look? 
19’38” Farrell Correct. 

The relevant concepts that guide Farrell’s revision of his answers are verbalized in the beginning of 
the episode: Farrell verbalizes his interpretation of the feedback at 13’08” and also explicates two 
concepts of possible mistakes at 13’22”. Accordingly, Farrell’s utilization scheme of the feedback is 
guided by two concepts-in-action: 1) Correct answers are shown in green; wrong answers are shown 
in red (not explicit, but likely) and disappear (13’08”); 2) His concept-in-action of mistakes indicates 
that two kinds of mistakes are possible: Wrong names of the solids or wrong spelling of the names 



(13’22”). The latter concept-in-action is supported by his way of proceeding with the task. On the 
one hand he thinks about different entries (13’35”) and on the other hand he is sensitive about the 
spelling (18’58”-19’12”).  

Case 2: Edda 

Edda gets the feedback “No, that it not quite correct”. On the screen, the fields around her entries 
disappear and all her entries stay on the screen. An analysis of her answers reveals that five of her 
answers (from left to right and bottom to top: 1, 3, 4, 5, 7) named the solid correctly but were spelled 
wrong with no capital first letter, while two of her answers (2, 6) also contained a wrong name of the 
solid.  

23’51” Edda It says that it is all not quite correct. Looks at the screen 
23’55” Edda All (wrong) entries disappear. All fields are displayed empty again. Ah, boy! 
24’02” Edda Looks at the screen. Hm. 
24’07” Edda But this must be a sphere.  
24’12” Interviewer Do you have an idea what may could have been wrong? … 
24’16” Edda Yes, this and this (points at the two empty fields at the right side of the picture) 
24’20” Interviewer … because everything disappeared. 
24’27” Edda Well, this can’t be a cone. … Then I simply do again … It’s a sphere, 

definitely. Types ‘sphere’ in the same (wrong) spelling as before in the empty 
field. 

25’00” Edda Hm, it’s bad, now I don’t know what was wrong and now one cannot … 
25’10” Interviewer What is it that you can’t? 
25’12” Edda … ehm, know what is wrong, I know … ehm … I have to do everything from 

scratch … (not understandable) this and this was wrong (points at the two 
empty fields at the right side of the picture) 

Edda’s feedback screen shows all her entries in the way that she typed them. She seems frustrated 
that all her entries disappear from the screen (23’55”). Her answer to the interviewer’s question at 
24’12” reveals that she does not infer from the feedback that all her answers were wrong, but has her 
own beliefs about her wrong answers (24’16”). Her belief that her two answers on the right side of 
the picture were wrong seems to be stable throughout the episode (25’12”). However, these beliefs 
are not congruent with her actual performance on the task. At 25’00” it becomes apparent that she 
does not have the concepts available to make sense of the feedback given by the tool. 

Although she does not say it explicitly, her actions seem to be guided by the concept-in-action that 
she has to enter the correct names of the solids. There is no indication of her being aware that it is not 
only the name of the solid that is relevant, but that correct spelling is also a relevant aspect of the 
name related to this task.  

Discussion 
The analysis of students’ utilization schemes of feedback shows that both students do not activate the 
same concepts-in-action when they utilize the software’s feedback (research question 1). While 
Farrell’s utilization scheme is guided by the two relevant concepts-in-action “name of the solid” and 
“spelling of the name”, Edda’s interpretation only refers to the “name of the solid”. Edda seems 
surprised and disappointed that all her entries disappear on the screen and her belief that only two of 



her entries were wrong seems to be stable. This indicates that she does not seem to have relevant 
concepts available in order to utilize the feedback.  

However, it is important to note that the different utilization schemes of Farrell and Edda appear 
under different conditions. The intended interpretation of the feedback occurs in a situation when the 
student has got correct and wrong answers. In the case of Edda, it becomes apparent that she has 
difficulties to utilize the feedback. This is supported by findings from other cases in the study that 
have got all answers wrong in their first attempt. Two hypotheses can be inferred from this 
observation (research question 2): 1) In order to make effective use of the feedback it is important 
that students have both, correct and incorrect answers. If all answers are wrong it is more difficult to 
utilize the feedback, because it is more difficult to make sense of the feedback. 2) On the other hand, 
the findings might hint at an overall connection between the mathematical ability of the students and 
their ability to utilize the feedback effectively. Students who need the feedback most in order to 
improve their mathematical performance, because they have got many answers wrong in their first 
attempt have the most difficulties to utilize the feedback for improvement.  

Conclusions 
The analysis of two cases’ utilization-schemes of feedback in an interactive mathematics e-textbook, 
which was used for the first time, is too limited in order to draw far reaching conclusions. However, 
the results show that the feedback of this task can be optimized. For some students it seems to be 
important to get more detailed feedback about the kind of mistake they made, especially if mistakes 
from different domains such as mathematics and language are relevant for the evaluation of the 
solutions. Altogether, the results support the call for adaptive feedback systems in digital learning 
systems (Vasilyeva, Puuronen, Pechenizkiy, & Räsänen, 2007). 

The fact, that the feedback of the software is not sensitive to different kinds of mistakes can in fact 
be appraised differently depending on the pedagogic perspective. From the perspective of concept 
development, it is a constraint of the feedback that it is not sensitive to the kind of mistake, because 
it does not provide detailed information related to the question “Where to next?”, i.e. detailed 
information about “what is and what is not understood” (Hattie & Timperley, 2007, p. 90). Research 
has shown that “that feedback is significantly more effective when it provides details of how to 
improve the answer rather than just indicating whether the student’s work is correct or not” (Shute, 
2008, p. 157). From the perspective of integrated mathematics and language learning it might even 
be an affordance that the name and the spelling of the name of the solid have to be correct in order to 
be evaluated as a correct answer.  

On the other hand, the reconstructed concepts-in-action and theorems-in-action that guide students’ 
utilization schemes of feedback indicate that students interpret feedback differently. Therefore, the 
efficiency of feedback is not only a question of the features of the feedback, but also a question of 
students’ utilization-schemes of feedback. Like with any other artifact, students have to 
instrumentalize and develop utilization-schemes of the feedback so that it becomes an instrument for 
improving understanding and performance.  
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Our contribution to TWG 22 is dedicated to discussing teachers’ interactions with resources for 
planning their classroom instruction, particularly in the context of collective work. Each teacher 
during his or her professional life uses and creates many resources. To analyse the history of 
teachers’ work with resources, we propose the concept of the “documentational trajectory”. This 
idea is based on and aims to contribute to the development of the documentational approach to 
didactics. We will present a case study of one middle school teacher. The data related to this teacher’s 
work allowed us to consider her documentational trajectory. We then used the teacher’s 
documentational trajectory to analyze her professional development. The teacher’s documentational 
trajectory demonstrates a strong participation in collective work, in particular a collective named 
SESAMES, has an essential role. This participation contributes to the emergence of a particular 
resource, called a metaresource, to structure her documentation work. 

Keywords: Documentational approach to didactics, documentational trajectory, metaresource, 
reflective investigation, professional development. 

Introduction 
The new possibilities arising from communication and information technologies have had a 
significant impact on discussions on mathematics education, due to their  impact on resources 
available to teachers and the way of designing them. This has led to a new conceptualization of 
teaching resources (Adler, 2000) and the consideration of teachers’ new relationships with these 
resources (Remillard, 2005). Drawing on these studies, Gueudet and Trouche (2009) have analyzed  
teachers’ professional development through the lens of resources: they introduced the 
documentational approach to didactics to analyze how teachers select, use, and produce their 
resources, along with a process called documentation work (ibid, 2009).  More recentily, Bozkurt and 
Ruthven (2015) have shown how digital resources structure classroom practices, evidencing five main 
features: working environment, resource system, activity format, curriculum script, and time 
economy. In this article, we will rely on and develop these approaches for analyzing teachers’ history 
of their resource usage. We will propose a new concept for modeling this history: the teacher’s 
documentational trajectory. We will mainly discuss here the effects of a teacher’s collective work on 
his or her documentational trajectory. In order to do this, we will organize our contribution in four 
sections. In the first, we will introduce the keys concepts that structure our analysis. In the second, 
we will present our methodological choices. Next, we will develop a case study based on a middle 
school teacher, Anna. And in the last section, we will propose some final considerations and openings 
for future research.  



Theoretical framework and research issues 
We will present and develop in this section the theoretical approaches that form the basis of our 
analysis: the documentational approach to didactics, the structuring features of teachers’ practices, 
and the notion of thought collective. Then we will present our own propositions. 

As stated by Gueudet and Trouche (2012, p. 24) “teachers interact with resources, select them and 
work on them (adapting, revising, reorganizing, etc.) within processes where design and enacting are 
intertwined”. This process is the central focus of the Documentational Approach to Didactics 
(Gueudet & Trouche, 2012) that grounds our work. In this approach, the term resource is used in a 
broad sense, as everything that  nourishes teachers’ work. To prepare their teaching, teachers work 
on resources, and the result of this process is called a document. A document is made of resources 
that have been modified and re-organized, and by the knowledge, both guiding, and produced by, 
teacher’s work. The document is therefore subjective, because it is created through a process of 
knowledge development on the part of the subject. And the new resources generated or used in this 
process take place in a very structured set of teachers’ resources, called a teacher’s resource system. 
To develop this system, some resources introduced by Prieur (2016) as metaresources play a critical 
role.They design resources that support and guide the creation of other ressources and, beside that, 
favor teacher’s reflection about their documentation work.  

Teachers’ documentation work grounds teachers’ classroom practices, structured, according to 
Bozkurt and Ruthven (2012) by five features: the working environment, where class takes place 
(infrastructure, social organization, etc.); the activity format, which comprises the body of work in 
the classroom, such as routines and models of interactions between teacher and student along teaching 
and learning; the resource system, which gathers tools and materials for class. The curriculum script 
is to be understood in the cognitive sense of structured organization of activity guiding a teacher’s 
work in the classroom: goals, actions, activities, potential difficulties of students, among others. And 
time economy, based on the comparison between the teaching time and the learning time of students. 
Bozkurt and Ruthven use this framework for analyzing teachers’ integration of new digital resources 
into classroom practices. We will extend this usage for analyzing teachers’ design and usages of 
resources. Thus, we will retain the notion of a resource system as proposed by Gueudet and Trouche 
(2012): 

“we consider here as resource system does not fully coincide with Ruthven’s definition, because 
of the broader meaning of resources we retained. The resource system comprises material 
elements, but also other elements that are more difficult to collect, like conversations between 
teachers” (p. 27). 

We consider that teachers’ interactions with colleagues are likely to foster their documentation work 
and professional development (Gueudet & Trouche, 2012). This is the reason why we give a primary 
importance to collectives. We have retained the broad definition of thought collective (Fleck, 1934, 
p. 44) that exist when “two or more people are exchanging thoughts” and generating a thought style 
“characterized by standard features in the problems of interest to a thought collective, by the judgment 
which the thought collective considers evident, and by the methods which it applies as a means of 
cognition” (ibidem, p. 99). We will differentiate the natures of collectives, according to their duration 



(stable vs. unstable), their organization (formal vs. informal) and type of participation (voluntary vs. 
obligatory).  

Finally, our proposition for modeling a teacher’s history with resources based on the notions of 
resource, collective, and event. An event is something that happens in a teacher’s professional life, 
and that he or she has remembered as important regarding her documentation work. We define the 
teacher’s documentational trajectory (Rocha, 2016) as the interplay, over time, between events and 
resources.This interplay is socially situated, because it happens in schools or collectives, or because 
the events or the resources themselves are social products. The design of a teacher’s documentational 
trajectory is then a way to analyze when, where, why, how and which resources are created. We will 
focus in this article on the documentational trajectory as a tool for analyzing the development of a 
teacher’s resource system across their collective work. We describe, in the following section, our 
methodological choices for such a design. 

Methodological design  
Our methodology is inspired by the four principles of reflective investigation proposed by Gueudet 
and Trouche (2012): “long-term follow-up”, “in- and out-of-class follow-up”, “reflective follow-up” 
and “broad collection of the material resources”. This methodology gives a major importance to 
specific drawings made by a teacher (for example the ‘schematic representation of their resource 
system’). To retain this way of reflective investigation by the teacher of her documentation work, we 
propose some evolutions: instead of the word “representation”, we propose (Rocha, 2016) the word 
“mapping”, integrating the metaphor of a progressive exploration of a new territory. And we propose 
two kinds of mapping: reflective (made by the teacher herself) vs. inferred (made by the researcher) 
mapping. We differentiate then Reflective, vs. Inferred Mapping of a teacher’s Resource System; 
Reflective vs. Inferred Mapping of a teacher’s Documentational Trajectory. For the design and 
analysis of a documentational trajectory, we also use: interviews, follow-up of lesson preparation, 
and classroom observation, and a logbook filled by teachers. 

Our current research is mainly based on case studies. To choose teachers, we searched teachers that 
had Sésamath textbooks as official textbooks in their class. Sésamath (http://www.sesamath.net/) is 
an association of mathematics teachers in France that collaboratively designs online resources 
(software, textbooks, etc.) at a very large scale, opening a window for us on advanced teachers’ 
design, use and sharing of resources. We present here the case of Anna, a middle school mathematics 
teacher, whose school had chosen a Sésamath textbook. She has a strong partnership with a colleague 
from her school, Cindy, and both of them participate in various collectives and use a lot of digital 
resources beyond the Sésamath textbook.  

Our work with Anna started in March 2015, when we followed her 6th grade class for three months. 
During this period, Anna created and shared with us a Dropbox folder, where she uploads resources 
that she used in her lesson or to prepare it. In addition, we also recorded four moments of interaction 
involving her documentation work. In the first one, she made a reflexive mapping of her 
documentational trajectory. In the second one, she reviewed her reflexive mapping (focusing on a 
particular resource and a specific year). In the third one, she prepared a lesson with Cindy about a 
new curricular subject. In the last one, she spoke about her usages of a particular digital tool, a padlet 



(https://padlet.com/) used to save and organize resources found online. Also, we had her use a 
logbook to complement our data collection when we could not follow her documentation work. 

We will explore in this paper different mappings of Anna’s documentational trajectory: inferred and 
reflexive mapping. To obtain the initial reflexive mapping, we asked her to write down above a 
timeline the main events that have influenced her use of teaching resources teaching, or the way of 
conceiving them, and to write down, below the same timeline, the resources associated with the event 
at stake. To help Anna, we gave her a sample of possible events: the arrival of a new person in her 
school; the participation in a new collective, an unexpected interaction with a student or colleague; a 
change of program; a change of teaching level or of textbook; a training course or the discovery of a 
new resource related to mathematics teaching (book, movie, website, etc.).  

Our method of analysis is in development. In this article, we transcribed our first interview with Anna 
and we did a digital transposition of her reflexive mapping. Afterwards, we identified on the map, 
among the events she exposed, those related with collective work, following our hypothesis that 
knowledge is socially situated. After that, we identified the effects of collective work on her 
documentation work through associated resources at the event. Afterwards, we inferred from Anna’s 
speech her role in collectives and the nature of each of these collectives, following the hypothesis that 
some features could inform us on the collective effect on a teacher’s documentation work. For 
example, a collective where teachers are voluntary and have a long or permanent engagement 
nourishes teachers’ work differently than an obligatory collective where they have a short time 
engagement. Then, we searched collectives that have an important status in Anna’s documentational 
work. For this purpose, we looked for the collectives that appeared more frequently and related to 
other events in the map. Afterwards, we analyzed how these collectives nourished her 
documentational work exploring associated resources, and identifying in her words features relating 
resources and collective work. We will present the main results of this analysis in the following 
section. This work is still in progress. 

Analysis  
This analysis is divided into two parts: (1) Anna’s participation in collectives along her 
documentational trajectory and the structuring role of a particular collective, SESAMES in it; and, 
(2) the structuring role of a particular resource, “Mise en train”, on Anna’s individual and collective 
documentation work.  

Anna’s documentation work in collectives along her documentational trajectory and 
relationships with SESAMES.” 

We start analyzing the first reflexive mapping drawn by Anna (Figure 1). The analysis of the events 
evidences Anna’s strong involvement in collective work (she says: “I cannot work alone”). Eight (E6, 
E7, E8, E9, E10, E12, E13 and E14) over 14 events are related to collectives. For deepening the 
analysis, we study the properties of collectives, the roles of Anna in these collectives, and the 
functions of the resources that are designed. 

The collectives have different natures: 

 some of them are transient, as a short episode of coworking with Sésamath (E4), or Assist 
Me (E12, linked to a European project), or M@gistère (E13, linked to the design of a 



teacher training path); some of them are ‘permanent’ (meaning that, once Anna enters this 
collective and stays in it), as APMEP (E10/E11, the French national mathematics teacher 
association), or LéA (E9, collective linking Anna’ middle school and the French Institute 
of Education), or SESAMES 1  (E6, a team associating researchers and teachers for 
renewing Algebra teaching );  

 some of them are obligatory (as E14, meeting with parents), some of them are voluntary 
(as E7 the close partnership with Cindy).  

In these collectives, Anna can 
have six different roles: member, 
reading and using their resources 
(E8 and E10); author, conceiving 
articles and resources for readers 
external to the group (E6, E8, 
E10, among others); teacher 
trainer, training middle school 
teachers (E6, E8, and E10); 
teacher researcher, reflecting 
about mathematics teaching (E6, 
E12 and E8); partner, exchanging 
and co-producing resources with 
colleagues (E6 and E10).  

 
Figure 1. Anna’s reflective mapping (October, 22nd 2016) of her 

documentational trajectory 

Each collective contributes in different ways to her documentation work. However, they are entangled 
in a way that it is difficult to attribute a single function to each of them. The interviews with Anna 
help us to distinguish some structuring features of Anna’s documentation work: elaborating her 
resources for teaching algebra; elaborating activities for teaching mathematical concepts and 
interpreting curriculum materials; elaborating resources for developing and evaluating students’ 
competencies; creating lessons and curricular scripts for her class; reflecting about using digital 
resources; creating new resources according to pedagogical changes in the school, supporting her 
participation in other collectives outside of school, writing papers, and teacher training.  

These functions are not supported by all collectives, but all of them are exploited in Sésames, where 
Anna and Cindy used to work together. In addition, SESAMES gives Anna new possibilities for 
participating in new collectives and establishing new partnerships. Figure 2 shows how SESAMES 
resources nourish the resources of other collectives. Develop a critical thinking on their practice. 
When she was invited to join SESAMES, Anna hesitated “that was a change, anyway. I accepted, 
finally, to join ... to join SESAMES. [...] It was a real challenge…”.  

 

                                                 
1 In spite of the likeness of the acronyms, Sésamath, a mathematics teacher association designing resources at a large 
scale, is totally different of SESAMES, a small team gathering researchers and teachers for re-thinking algebra education. 



SESAMES 2  had a big impact on 
Anna’s collective work. We can see 
(Figure 1) that she joined Assist me, 
M@gistère and Léa as a consequence 
of her engagement in SESAMES. It 
gave the opportunity for a new 
partnership with Camille. It helped her 
understand the competencies 
emphasized in the new French 
curriculum, leading tothe design of a 
teacher training path at IREM, 
resulting in a chance to join this 
institute. 

  
Figure 2. Inferred mapping about the collectives and resource 
system impact 

SESAMES has two sets of principles guiding Anna’s documentation work (cf. the SESAMES 
website,  Pégame: http://pegame.ens-lyon.fr/), mirroring the thought style of SESAMES. The first set 
is composed of three principles for teaching algebra: justifying computation throughout algebraic 
rules; proposing proof activities and exploiting formulas to introduce the concept of a function. The 
second set is composed of four principles for teaching mathematics: providing students with 
sufficiently rich and open problems; giving them a chance to explore; giving them a chance to 
speculate; giving concrete meaning to concepts taught.  

These principles gave birth to resources emblematic of SESAMES thought style, guiding then the 
whole process of collaborative resource design in this group. It’s exactly the characteristic of the 
metaresources we have already introduced in this paper. One of them is Mise en train, and we will 
analyze in the following section its impact on Anna’s documentation work. 

The structuring role of a metaresource on Anna’s individual and collective documentation  

The Mise en train (MET) corresponds to a specific activity format: it aims to organize teacher’s work 
at the beginning (around 15 minutes) of each class. The expression Mise en train has three meanings: 
the direct one is warming up (like for an athlete at the beginning of his training); the second one 
derives from a literal translation, “put on a train”, meaning ‘cutting a mathematics subject in short 
successive parts (allowing to store them in the successive wagons of a train); the third meaning derives 
from an acronym (created by Anna): Travail de Recherche ou d’Approfondissement avec prise 
d’INitiative (Research and Deepening Work with Initiative Taken). The global meaning of Mise en 
Train has to be understood as the compilation of these three interpretations. In the following, we have 
chosen to keep this acronym MET, incorporating this global meaning. This global meaning evidences 
some features of MET resources’ design. MET is exactly a metaresource, as it gives a way to produce 
new resources and stimulates teacher’s reflection on their documentation work and its effect on 
students’ activity. 

                                                 
2 Science Education: Modeling Activities, Assessment, Simulation (SESAMES, Situations d'Enseignement Scientifique : 
Activités de Modélisation, d'Evaluation, de Simulation). 



MET appears as emerging, in SESAMES, from the documentation work of Anna and her colleagues. 
Anna explains factors leading them to create this metaresource: the loss of time at the beginning of 
each class (teacher being mobilized by administrative tasks); the good experience with the short 
sections of reflecting calculations; and her exchange with English teachers dividing students’ activity 
in short articulated moments for a more dynamic activity format. 

Once created, MET deeply 
changed Anna’s documentation 
work (cf. Figure 4). It affects all 
five structuring features of 
classroom practice. The working 
environment changed, e.g. students 
entering class late did not disturb 
class activity. The activity format 
is also altered, because the class is 
divided into two moments: MET 
vs. main class. 

 

Figure 3. The impact of MET on Anna’s documentation work 

The curriculum script is modified, including new goals and activities. Anna has then three 
possibilities for developing a lesson: MET then the regular course; the regular course, then MET; or 
beginning with MET… and going on with MET, for giving more responsibility to students for the 
advancement of the knowledge in the classroom. Regarding Anna’s resource system, new resources 
are created (new curriculum script, new notebooks for students, new lesson plans with MET activities, 
slides that contains MET activities linked to a given notion, new articles (APMEP, IREM, Pégame 
website) for disseminating SESAMES resources. Last, but not least, the time economy changed, for 
example, Anna removed the initial “call to students” at the beginning of each lesson. 

MET also affects Anna’s work in other collectives: in her school, the new curricular script is shared 
by all teachers, as Cindy and Anna explain the principles of MET, and present their interest form their 
practice; outside of her school, Anna disseminates this metaresource in SESAMES training, IREM 
group, and training, APMEP group and training. Finally, this metaresource, initially constructed in 
SESAMES group to teach algebra, was extended to other mathematical topics. For us, the 
metaresource MET is a point of convergence between Anna’s need and SESAMES’ interest.  

Final considerations and perspectives  
Our original question was: What are the effects of a teacher’s collective work on their 
documentational trajectory? Our initial analysis of Anna's documentation work gives us some clues. 
Our exploration of Anna’s documentation work in collectives allows us to understand her resource 
system better. We saw a diversity of collectives that she participates or participated in, and how her 
different roles contributed to her work. Among them, SESAMES appears as an important collective, 
having a strong impact on Anna’s documentational trajectory. It contributes to developing new 
collective work, resources and thought styles. In this collective, she contributes to create a 
metaresource that structures her documentation work afterwards: this metaresource is exploited in 
various collectives and structures her way to create resources.  



We proposed the concept of documentational trajectory for modelling a teacher’s history with 
resources. In this modeling, the reflective and inferred mapping of the documentational trajectory 
allows us to evidence some critical aspects of this history. It should be noted that these maps constitute 
a picture at a given moment, and in a given context. This temporal aspect is linked to the fact that 
Anna’s documentation work is still ongoing. The context aspect is also linked to the relationships the 
researcher can build with the teacher. 

The combination of the Structuring Features of Classroom Practice and the Documentary Approach 
to Didactics helps us to analyze teachers’ documentational trajectory, demonstrating the structuring 
role of SESAMES and a metaresource associated to a thought collective. Finally, we retain from this 
analysis  that the development of the concept of documentational trajectory was relevant for analyzing 
interactions between resources, collective work and teacher’s practice. 
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Abstract: This study examines principles of task design concerning the concept of uncertainty in the 
area of statistics. A purpose is to promote and support students reasoning competency involving the 
aspects authority and responsibility.  By using inferential role semantics as a background theory, we 
examine students’ reasoning by means of how they show authority and responsibility for statements 
in the reasoning process. Statistical tasks where students generate and analyze their own data formed 
the basis for this pilot study conducted with seventh grade students in Sweden. The students were able 
to reflect on how their actions and consequences of their actions influence their reasoning with 
uncertainty. The study describes the findings, and presents principles to inform the design of 
innovative learning environments that promote authority and responsibility in reasoning in the 
domain of uncertainty.  

Keywords: Design principles, uncertainty, responsibility, authority. 

Introduction 
Designing lessons and tasks has been an important part of developing theories of instruction in 
mathematics for over a century (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) and emerging 
from this practice is the design-research methodology. Plomp (2013) speaks of a twofold yield in 
design research-projects, both producing an intervention that offers a solution to a problem in the 
practice and what he calls re-usable design principles. In the present study, we are aiming for the 
latter. Design principles are to be seen as heuristics as they do not guarantee success. The principles 
rather suggest design elements that could support the development of a prototype design of a task 
(Plomp, 2013). Design principles are guides that answer questions like “What should the lesson look 
like?” or “How should the lesson be developed?” (Van den Akker, 1999). They should connect task 
design with both a practical and theoretical understanding of the topic and inform the teaching 
practice as well as the research practice. 

This paper begins in the idea of developing tasks for experiment based instruction in mathematics 
and the special case of stochastic. Groth (2013), amongst others, argues that stochastic education 
should be researched in particular since the nature of mathematical reasoning is largely deterministic 
whereas that of stochastic is with uncertainty. Our task design principles are therefore not focused on 
the creation of new knowledge but on eliciting stochastic reasoning and developing students’ 
understanding. In the present study, we examine design principles in relation to how meaning making 
is described in the semantic theory of inferentialism (Brandom, 1994). Our guiding research question 
is: 

 What are the design principles that trigger students’ authority and responsibility in reasoning 
with stochastic uncertainty? 



Plomp (2013) stresses the importance of reviewing similar examples when articulating design 
principles for the first time. Hence, the following section will elaborate on previous examples of 
experimentation-oriented tasks for stochastic education in the research literature to create a deeper 
understanding of design principles in stochastic education. Furthermore, the theoretical background 
of inferentialism gives the tools to see authority and responsibility in student’s reasoning connected 
to the design of the task. 

Related works 
In the Dutch tradition of RME, three principles inform task design: guided reinvention, didactical 
phenomenology, and emerging modelling (Freudenthal, 1973; Gravemeijer, 1994). According to the 
principle of guided reinvention, mathematical tasks should offer students opportunities to experience 
a process similar to that linked to the invention of a specific topic. On the didactical phenomenological 
account, task designers should consider how mathematical “thought objects” will be used by the 
students to structure and organize phenomena in reality. Emerging modelling emphasizes the process 
on progressive abstraction, from a model of a situation (experimentally real for the student) to a more 
general mathematical model (Gravemeijer, 1994). Overall, in RME, mathematical tasks are often 
rooted in Freudenthal’s vision of “mathematics as a human activity”, and are designed to resemble 
realistic problems in context. Another school of thought close to RME is authentic teaching and 
learning in mathematics. The design principles of an authentic practice are used to perform certain 
actions and procedures, and knowledge as a tool to perform and achieve particular goals (Dierdorp, 
Bakker, Eijkelhof & van Maanen, 2011). The underlying conjecture in authentic mathematics is that 
students will be motivated and engaged in rich discussions if authentic practices are used as a source 
of inspiration in designing mathematical tasks. Ainley, Pratt and Hansen (2006) used purpose and 
utility as design principles in mathematical tasks. According to Ainley, Pratt and Hansen (2006), 
purpose means that a meaningful outcome of a task is crucial for student learning. Utility refers to 
acknowledging the power of mathematics ideas. Chance-maker microworld (Pratt, 2000) is an 
example of a learning environment in which purpose and utility are implemented. The chance-maker 
is a microworld program with a series of gadgets, simulations of everyday random generators such 
as spinner, coins and dice. The students are challenged to find the gadgets that according to them do 
not work (The students were told that the gadgets were programmed) and mend them. The purposeful 
activity, for the students, of mending the gadgets led to the understanding of the utility of 
representations (connection between probability and data distribution), and the importance of the law 
of large number. The students are supposed to discover the relevance of mathematical ideas through 
realistic situations created in classrooms, real life (Ainley, Pratt and Hansen, 2006) or in the 
microworld (Pratt, 2000).  

Our hypothesis is that a mathematical task that can trigger students’ authority and responsibility 
increases student awareness on the data generation process and, has the potential to develop students’ 
reasoning with uncertainty. 

Theoretical framework: The Game of Giving and Asking for Reasons – GoGAR 
The framework of our research is the game of giving and asking for reasons (GoGAR); it is a 
metaphor used by Brandom (1994, 2000) to describe the linguistic practices in inferentialism, which 



is the background theory of this study.  An inferentialist view on knowledge entails giving priority to 
inference in reasoning in account of what it is to grasp a concept:  

To grasp or understand […] a concept is to have practical mastery over the inferences it 
is involved in – to know, in the practical sense of being able to distinguish, what follows 
from the applicability of a concept, and what it follows from. (Brandom, 2000, p. 48) 

It corresponds to the practical mastery of concept and, to the increasing awareness that reasoning is 
central to statistics and statistics education (Bakker & Derry, 2011). “The game of giving and asking 
for reasons is an essentially social practice” (Brandom, 2000, p.163), and the purpose of GoGAR is 
to make explicit reasons that are implicit in our linguistic practice (Brandom, 2000; Bransen, 2002). 
According to Brandom (1994, 2000), one way of understanding how reasons are made explicit in talk 
is in terms of interaction of inferentially articulated authority and responsibility. Authority of a claim 
is a process, capturing the influence of a claim in the GoGAR. However, “Authority is not found in 
nature” (Brandom, 1994, p.51) but is gained in taking responsibility by providing evidence for one’s 
claims. Students are expected to make claims that are related in a certain way, justify and explain 
their claims. Responsibility can be defined as a quest for authority, and it also expresses the quality 
of requirement for performing and maintaining authority (Hansson, 2010). By using GoGAR we aim 
to show how, independently of the quality of the reasoning, elements of task design eliciting authority 
and responsibility influences how students reason in the domain of uncertainty.   

Method 
The present paper focuses on reaching an understanding of the data generation process connected to 
a mathematical task (Cobb et al., 2003). The data generation process involves clarifying the 
significance of the phenomenon under investigation, delineating key aspects of the phenomenon that 
should be measured, and considering how they might be measured (Cobb and McClain, 2004, p.386). 

The analytical process of this paper is that of an abductive approach (Alvesson & Sköldberg, 2009). 
The aim of this approach is to create an initial analytical lens to view the data through, and then allow 
for the emerging design principles to influence the initial theorization. The specific analytical tool is 
retrospective analysis by the use of constant comparisons (Gravemeijer & Cobb, 2013). Instances of 
data are compared to find similarities and differences related to authority and responsibility in the 
data.  

The data set used in this analysis are transcripts of video recorded lessons in a pilot study. The purpose 
of the study was to document our starting point (Cobb & Gravemeijer, 2003) prior to an initial cycle 
of a design experiment (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003). The design experiment 
utilizes the idea of engaging students in actual data generation and asking them to reason about the 
results. Our aim is that the task would trigger students to develop authority and responsibility due to 



their active involvement in the 
data generation. The empirical 
study was performed with a 
class of 20 students in grade 7 
(aged 12/13) in Sweden using 
an experiment based task 
focusing on statistics. The 
“helicopter task” (figure 1) is a 
modified version of a task that 
originates from Ainley, Pratt 
and Nardi (2001). It involves 
constructing an auto-rotating 
helicopter out of paper and 
measuring five flight times per 
rotor length. The class dealt 
with the helicopter problem in 
two lessons. In the first lesson, 
the students were involved in the data generation by e.g. testing paper-helicopters of varying rotor 
lengths (3cm to 14cm) and measuring flight times. In the second lesson, the class interpreted and 
evaluated the data in groups, guided by questions provided by the teacher. This was followed by a 
whole class discussion. The transcripts used here are meant to illustrate the ideas developed in the 
paper and are chosen because they portray typical student reasoning elicited by the task while using 
a relativly small amount of space in the paper. The reader is then invited to evaluate the plausibility 
of our interpretations and thereby assess the trustworthiness of our claims as an alternative to 
reliability and validity more suitable for this type of research (Lincoln & Guba, 1985)                          

Results 
 The transcript elaborated on below is used to 
shed light on aspects of how responsibility 
and authority, embedded in the task, elicit 
reasoning with uncertainty. It is part of a 
whole class discussion in the second lesson 
where one of the groups presents their 
findings. The questions from the helicopter 
task in focus here are: Which is the best rotor 
length? How sure are you? (…) means that 
portions are inaudible and […] means that we omitted a segment because of space limitation that we 
feel does not add to the reader’s understanding of our analysis. Table 1 contains the students’ results. 

[1] Teacher: Before we move on, may I ask how you noticed that it was a failure with the rotors 
[2] Gabriel:  Because sometimes were like three, and then some were only 1 second 
 […] 

  1st   2nd 3rd 4th 5th 6th 7th 8th 9th 10th 
6 cm 2.5 2.3 2.5 2.3 2.4 1.9 2.6 2.9 2.6 1.8 
7 cm 1.8 1.9 2.7 2.2 2.1 2.4 3.1 2.3 2.3 2.8 
8 cm 2.6 1.9 2.6 2.5 2 2 2.4 2.4 3 2.9 
9 cm 3.1 3 2.9 2.9 3 1.6 1.3 1.9 1.8 2.1 
10 cm 2.2 2.6 2.4 2.8 2.4 1.6 2.5 2.3 2.2 2.2 
11 cm 2.2 2.8 2.9 2.1 2.7 1.3 1.9 1.9 1.3 2.8 
12 cm 2.8 2.2 2.6 2.4 3.3 1.3 2.3 1.8 1.7 2 
13 cm 2.6 2.2 2.5 2.3 1.7 1.7 1.6 1.8 2.4 2 
14 cm 4 3 3 3.1 2.1 2.3 1.9 2.2 1.7 2.3 

Figure 1 Instruction for the helicopter task translated from Swedish to English 

Table 1 Measured flight time for the helicopters in seconds 



 [3] James: We aren’t so sure because the experiment is done in a small scale therefore we don’t 
have enough data on the functioning of the helicopter, which makes it hard to know 
which length is the best. 

[4] Eric: it also depends on the angle of the rotors (…), it depends on the height differences. 
[5] Eric: (…) some might be 4 seconds and others might be 1.48. 
[6] Jennie: It also depends on how you drop the rotors, wait, this? (…) You could’ve calculated 

it with the median which we should have done. 
[7] Maria: But we remembered that afterwards. 
[8] Jennie: But we did it with the mean which made it take longer time. 
[9] Teacher: why should you have measured the mean then? 
[10] Jennie: Because the differences were so big, and the times (…) 
[11] Teacher: would the results have been better if you used the median? 
[12] James: Yes 
[13] Teacher: Why do you think so? 
[14] Jennie: Because the differences were so big and the times 
[15] Teacher: okay, why did it become such big differences? Was it the failure or? 
[16] Maria: Because maybe you drop it from the exact same spot, maybe you drop it further down 

one time and another time further up. 
Responsibility in justifying uncertainty 

If we compare instances [2], [4], [6] and [16] there are similarities and differences. All four instances 
are parts of GoGAR about the level of uncertainty. There are differences as well, for instance how 
their claims are accepted in the GoGAR and how they situate the responsibility for their claims. In 
[2], Gabriel reasons that the failure of the rotors becomes apparent in his data, but the reasoning is 
underdeveloped and no one else acknowledges his authority in the following discussion. In the 
following lines, not included because of space limitation, instead focus is put on the definition of 
margin used earlier. Eric’s reasoning in [4] on the other hand situates responsibility explicitly in the 
activity of data generation. He draws on the experience of having been a part of the data generation 
and claims that both the angle of the wings and the drop height could be sources of uncertainty. Jennie 
acknowledges Eric’s authority on line [6] by referring to the action of releasing the helicopter. We 
call this Responsibility in justifying uncertainty. Both students and teacher recognize that there is a 
measure of uncertainty in the results and use various informal concepts to indicate it, for example 
“hard to know” on line [3] and “differences are so big” on line [10]. Both Eric’s and Jennie’s giving 
and asking for reasons for the level of uncertainty situate responsibility in the act of data generation. 
Maria acknowledges that Eric’s and Jennie’s claims still have authority in the GoGAR on line [16] 
by relating the mathematical discussion of mean, median and uncertainty to the act of data generation.  

Exercising authority by making claims 

From our analysis, it appears that students in this study exercise their authority through two types of 
claims: terminology related claims and context related claims. While the terminology claims are 
related to students’ previous formal knowledge, context related claims are from observations through 
perception. Terminology related claim: We noted that all the students in the group were given the 
opportunity to express themselves. As whole, the group took the chance and made a considerable 
number of claims in a limited time period. As mentioned earlier, making claims is one way of 



exercising authority. In [2], Gabriel answers to the teacher’s question in [1]. A close look at Gabriel’s 
utterance, indicates that Gabriel’s authority is grounded in comparing one second to three seconds. 
In other words, formal logic is what lies behind his authority. In [5], Eric acknowledges Gabriel’s 
claim [2] and undertakes it. We, therefore conclude that “Gabriel lends his authority to Eric”.  The 
same line of reasoning is observed in [10] and confirmed in [14]. Other students in their reasoning 
about uncertainty in GoGAR can use these claims. In [7] and [10], concepts such as mean and median 
are brought to the discussion. The students’ involvement in data generation creates conditions in 
which students can make use of their previous formal knowledge. In this case the consequence of 
their actions in generating data, and the uncertainty that follows activates the use of mean and median 
while talking about uncertainty. Context related claims: it is evident that Eric’s claim in [4], “it 
depends on high difference”, is also accepted by the class. Hence [4] is based on observations during 
the data generation. One argument that supports our interpretation is that (here and otherwise in the 
data) the whole class has reported that it was almost impossible to drop the helicopter from the same 
height. Eric’s claim is licensed by a context. The same observation is made by Jennie in [6]. Further, 
Eric points out that the angle of the rotor is reason for variation and uncertainty. This observation was 
specific to Eric’s group. However, we believe the rest of the group will use it as a premise in their 
reasoning with uncertainty if needed. The context created by the data generation enables students to 
make claims that can be used in reasoning with uncertainty.  

Discussion 
We organize the discussion around three questions connected to the design that seem to trigger 
authority and responsibility.  

Which different opportunities in the task are given by the students to accept responsibility for their 
claims? The students reason naturally with uncertainty since they have the practical experience of 
manually generating data in the task to situate their responsibility. In contrast, Pratt (1998) found that 
many students in his study based on the chance-maker microworld software had to convince 
themselves that the gadgets in the game were indeed random and that the mode of reasoning should 
be with uncertainty rather than a deterministic reasoning. As long as the students had the opportunity 
to influence, for example, the strength of a simulated dice throw, they were more prone to accept that 
it was random. One explanation could be that the students working with the chance-maker had to 
situate responsibility inside a black box, being the software, which led them to believe that the results 
were predetermined. Our analysis in [2] and [4] show how the task provides opportunity for the 
students to situate the responsibility of the failure in the measurement. The cause-effect opportunities 
created by the task initiate fruitful GoGARs in the domain of uncertainty, which also seems to fit with 
Pratt’s (1998) findings. 

Which different opportunities in the task give the students the ability to create authority for their 
claims? From Roth’s (1996) study, we know that students show difficulties in analyzing data when 
they have not been actively involved in the data generation. This view is supported by Noss, Pozzi & 
Hoyles (1999). Our analysis showed in [2] [3] and [4] that the task enabled the students to act as 
experts. The students were able to connect data analysis and inferences to data generation while 
reasoning with uncertainty. The experiment based instruction, which entails manual data generation, 
opens up for students to take control over the process. Leaving the data generation process to students, 
triggers their authority and responsibility and, students are more motivated than if they would just be 



limited to data collection and get “the right data” (Cobb & McClain, 2004). Getting students to reflect 
on how their own actions influence the results is the first step in acting with authority and 
responsibility. 

Which different opportunities in the task are given to the students to shift responsibility and authority 
between different domains? Designing tasks with manual data generation based on principles of 
authority and responsibility is not the general solution to improve statistics education. In fact, creating 
large data sets, suggested by Pratt (1998) as being a corner stone in statistics instruction, becomes 
almost impossible with this focus on manual data generation during lessons. We merely suggest that 
there are merits to these design principles in statistics education as it naturally elicits GoGARs in the 
domain of uncertainty and empowers students to take responsibility and use mathematics to back up 
their claims. In [6] and [8] our analysis in [6] and [8] show how the task provides opportunity for the 
students’ quest of authority as they shift responsibility between the empirical and theoretical domain. 
We show that designing tasks with manual data generation elicit fruitful situations for shifting 
authority and responsibility between context and concept levels. Thus the students used their previous 
concepts to act upon the context, and also looked for evidence in the context to strengthen their 
authority and responsibility. In sum, creating a learning environment where students can exercise 
authority by using their previous formal knowledge and most importantly “our imperfect perception” 
can promote a fruitful GoGAR in the area of uncertainty, and in mathematics in general. 
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Although the notion of assumptions is important in the discipline of mathematics and permeates 
(often tacitly) mathematical activity in school classrooms, instruction in the elementary school pays 
little attention to it. This situation is unlikely to change unless elementary teachers have a good 
understanding of the role of assumptions in mathematical activity and an appreciation of the 
pedagogical implications of that role. In this paper, we investigate how teacher education can 
promote this dual goal by illustrating a promising, task-based approach to supporting prospective 
elementary teachers to develop pedagogically functional mathematical knowledge about the role of 
assumptions in mathematical activity. We developed the approach in a 4-year design experiment we 
conducted in a mathematics course for prospective elementary teachers in the United States. 

Keywords: Assumptions, elementary grades, prospective teachers, task design, teacher knowledge. 

Introduction 
Assumptions denote the statements doers of mathematics use or accept (often implicitly) and on 
which their claims are based (Fawcett, 1938) and, thus, assumptions are fundamental to any 
mathematical activity at all levels. In school mathematics, however, assumptions often receive little 
explicit attention, especially at the elementary school level. The notion of assumptions has received 
also relatively little explicit attention in the mathematics education literature.  

A small number of studies addressed the role of assumptions in the particular area of proving at the 
secondary school (Fawcett, 1938; Jahnke & Wambach, 2013) and elementary school (Stylianides, 
2016) levels. However, there is a scarcity of relevant research at the teacher education level. This is 
problematic: unless teachers are supported to develop a good understanding of the role of 
assumptions in mathematical activity and an appreciation of its pedagogical implications, it is 
unlikely that teachers will offer to their students productive learning opportunities in the area of 
assumptions.  

In this paper, we investigate how teacher education can promote prospective elementary teachers’ 
knowledge about the role of assumptions in mathematical activity. We focus on the design and 
implementation of tasks that can support Mathematical Knowledge for Teaching (MKfT).  

Research background 
The notion of MKfT (Ball et al., 2008) denotes the kind of “pedagogically functional mathematical 
knowledge” (Ball & Bass, 2000, p. 95) that teachers need to have to be able to manage the 
mathematical demands of their practice. It has been noted that “there is a specificity to the 
mathematics that teachers need to know and know how to use” (Adler & Davis, 2006, p. 271) and 
that teacher education should aim to create learning opportunities for prospective teachers (PTs) that 
would enable them “not only to know, but to learn to use what they know in the varied contexts of 



[their] practice (Ball & Bass, 2000, p. 95). Thus mathematics courses for PTs cannot lose sight of 
the domain of application of the targeted knowledge (i.e., the domain of mathematics teaching).  

We consider next what might be essential elements of MKfT about the role of assumptions in 
mathematical activity. We begin by describing two elements we identified based on consideration of 
the role of assumptions in the discipline of mathematics (e.g., Fawcett, 1938; Kitcher, 1984) and 
mathematical analysis of classroom practice where the notion of assumptions received explicit 
instructional treatment (Fawcett, 1938; Jahnke & Wambach, 2013; Stylianides, 2016). 

 Element 1: Understanding that a conclusion is dependent on the assumptions on which the 
argument that led to it was based.  

 Element 2: Understanding that different legitimate assumptions can lead to different conclusions 
that, although on the surface may appear to be contradictory to each other, may nevertheless 
both be valid within the set of their underpinning assumptions. 

These interrelated elements are central to mathematical work. The different sets of axioms in 
Euclidean and non-Euclidean geometries, including associated results, offer an illustration of both 
of these elements in the discipline of mathematics or in the upper secondary school (Fawcett, 1938). 
Similar ideas are central also to the elementary school (Stylianides, 2016) and are consistent with 
recommendations in curriculum frameworks (e.g., NGA & CCSSO, 2010, p. 6). Furthermore, the 
two elements are essential for mathematical knowledge that is also pedagogically functional. For 
example, they can allow a teacher to recognize that, when two students offer inconsistent answers to 
a task, this does not necessarily mean that one of them is wrong; both students may have applied 
sound reasoning based on different assumptions about the conditions of the task. We capture this 
kind of pedagogical functionality of elements 1 and 2 under a third element of MKfT: 

 Element 3: Ability to recognize possible ways in which elements 1 and 2 might apply in 
mathematics teaching.  

Regarding how to promote PTs’ MKfT, in Stylianides and Stylianides (2014) we discussed and 
illustrated a special kind of mathematics tasks that we called pedagogy-related mathematics tasks. 
These tasks have two major features: (1) A mathematical focus, which relates to mathematical ideas 
that are important for teachers to know; and (2) A substantial pedagogical context, which is an 
integral part of the task and essential for its solution. Notwithstanding the importance of pedagogy-
related mathematics tasks, there is also a need for the use of other kinds of tasks in mathematics 
courses for teachers. In this paper, we focus on a task sequence that illustrates another approach we 
followed to promote MKfT. Unlike pedagogy-related mathematics tasks where mathematics and 
pedagogy are intertwined in the same task, this task sequence illustrates an approach to promoting 
MKfT in which (1) initial work on a non-contextualized mathematics task can create a productive 
space for pedagogical reflection and (2) follow-up instruction can foster the intertwinement between 
mathematics and pedagogy. We elaborate on the task sequence in the Method section. 

To conclude, in this paper we address the following research question: What task sequence can offer 
a productive learning environment for prospective elementary teachers to develop the three elements 
of MKfT that we described earlier about the role of assumptions in mathematical activity?  



Method 
Research context 

This research derived from the last cycle of a 4-year design experiment (e.g., Cobb et al., 2003) in a 
semester-long mathematics course (3hrs per week) for prospective elementary teachers in the United 
States. The design experiment comprised five research cycles of implementation, analysis, and 
refinement of task sequences and associated implementation plans that aimed to promote PTs’ 
MKfT. The students were undergraduates who majored in different fields and were taking the 
course as a prerequisite for admission to the master’s level elementary teacher education program. 
The task sequence we focus on was implemented toward the end of the semester and was the only 
one that explicitly targeted PTs’ MKfT about the role of assumptions in mathematical activity. We 
introduced the task sequence in cycle 4 because we felt an explicit intervention was needed to 
adequately promote PTs’ MKfT of elements 1–3. Analysis of how the task sequence played out in 
cycle 4, alongside our developing understanding of how things “worked,” led to modifications of 
the task sequence, culminating in the form described below which took place in cycle 5. 

 

Figure 1: The “Floors Problem” (derived from Ball, 1993) in part A of the task sequence 

The task sequence 

The task sequence comprised three parts. In part A we used the “Floors Problem” (Ball, 1993) in 
Figure 1. Two task features made it suitable for our goals to promote elements 1 and 2 of MKfT. 
First, the task conditions were ambiguous and thus subject to different legitimate assumptions; a 
major ambiguity concerned whether or not the person in the task had to travel directly to the second 
floor. Second, different assumptions about the task conditions could support different arguments for 
answers to the task that might appear to be contradictory but might actually be correct given their 
underpinning assumptions. In addition to promoting elements 1 and 2 of MKfT, we hypothesized 



that PTs’ mathematical experience with the task in part A could offer a productive context for 
pedagogical reflection (cf. element 3). We capitalized on this potential of the task in parts B and C. 

In part B we used two conceptual awareness pillars (or simply pillars; Stylianides & Stylianides, 
2009) to which the PTs responded individually and in writing. (There was a third pillar whose 
discussion we omit due to space limitations and a lack of direct relevance to our focus.) The pillars 
are presented in the first column of Table 1 (see next section). With them we aimed to amplify PTs’ 
mathematical learning (see pillar 1 in relation to elements 1 and 2 of MKfT) and its intertwinement 
with pedagogical reflection (see pillar 2 in relation to element 3). As per the definition of pillars 
(Stylianides & Stylianides, 2009), the non-directive prompts in them could increase PTs’ awareness 
of key realizations they might have developed (possibly in tacit form) during their work on the task. 

Finally, in part C we engaged PTs in small-group and whole-class discussion around the three 
prompts in Figure 2 that aimed to further support PTs’ reflective insights from part B and help them 
consider the applicability of those insights beyond the particular task. The prompts raised issues 
relating to elements 1–3 of MKfT. For example, in prompt 1 the first question related to elements 1 
and 2, while the second question related to element 3. Each small group was asked to collectively 
produce a written response to each prompt prior to a whole-class discussion. Due to space 
constraints we report only findings from our analysis of the small groups’ written responses. 

1. “Conclusions are ‘true’ only within the limits of the assumptions on which they are 
based.” How do you understand this statement? Do you think it is important for elementary 
school students to develop a sense of the role of assumptions in mathematics? Explain. 

2. “Teachers should always make sure that the mathematical tasks they give to their students 
have unambiguous conditions.” What do you think about this statement? Explain. 

3. There may be situations where teachers do not realize that a mathematical task they give 
to their students has ambiguous conditions. What might happen in these situations and how 
might teachers handle the situations? 

Figure 2: Discussion prompts used in part C of the task sequence 

Data and analysis  

The task sequence in research cycle 5 was implemented in two parallel (independent) classes of the 
course that were both taught by the second author. At this stage of our analysis we are using data 
from only one of the classes: videos and transcripts of the implementation of the task sequence in 
this class with 16 PTs attending on that day; these PTs’ written work including their individual 
responses to part B and their group responses to part C; and field notes from a research assistant 
documenting the work of one small group. Our data analysis was guided by elements 1–3 of MKfT 
that we aimed to promote. Specifically, we conducted qualitative content analysis of the transcripts 
and field notes in part A to examine whether and how the PTs developed understandings relating to 
elements 1 and 2, and also of PTs’ responses to parts B and C to identify themes in their responses 
and examine whether and how these themes corresponded to elements 1–3 of MKfT.  



Implementation of the task sequence and discussion 
Part A: implementation of the Floors Problem 

Stylianides showed the problem statement and the building model, and explained the notation for 
negative numbers. He also established a common notation with the class about representing trips. 
After that, he asked the PTs to work on the problem first individually and then in groups of four. He 
also said he would not answer any clarifying questions about the problem, an intentional aspect of 
our instructional design. The discussion in the small group where the research assistant was taking 
field notes is indicative of the way the PTs engaged with the problem (all names are pseudonyms):  

Amanda:  So… can you pass the second floor and then go back to it? Or do you have to stop, 
because you’ve technically gotten there? So… you just have to look at how to get 
directly there? If not, it’s going to be infinity! 

Beth:  That’s what I did…the direct. I just counted how many up and how many down… 

Monica:  But that doesn’t say that you have to come in the entrance… So you can start 
anywhere? 

At this point Stylianides passed by the small group and Monica asked him whether the trips had to 
start from the ground floor. Stylianides reminded her that he would rather not respond to clarifying 
questions and he moved on to a different group. The small group discussion continued as follows: 

Victor:  So… the solution of this problem depends on our assumption. 

Amanda:  Well, fine then. I say 15… because I’m assuming that you start on the ground 
floor and can’t pass [floor] 2 and can’t change direction more than once. 

Victor:  I say 25 because… [He was interrupted by the start of the whole-class discussion.] 

As illustrated by this exchange, the decision not to respond to clarifying questions allowed for the 
notion of assumptions to emerge naturally in the discussion: had the instructor specified an 
interpretation, the PTs would not have considered alternative interpretations. The whole class 
discussion started with the small groups explaining their answers to the problem: 25, infinity, 15, 
and 51. Sherrill explained the answer of 25 by noting how each floor could constitute a separate 
starting point for a direct trip to the second floor. Sophie then tried to explain infinity as an answer:  

Sophie: Well, we picked infinity because […] if you’re saying you can go up and down 
and up and down as many times as you wanted before you reach the second floor, 
I think that the question isn’t specific enough. Like they [Sherrill’s group] 
assumed you can only go up or down one time. […] 

Stylianides: So you say [referring to Sophie] if we don’t assume that [what Sherrill’s group 
assumed] and [we assume] you’re allowed to travel up and down as many times as 
you want, then the answer would be infinity? [To the class:] What do you think 
about that? Is one of them wrong? Are both of them right? […] 

Lindsey: I think […] they just made different rules, and like, thought processes. […] You 
could have a direct route and that’s it, no going back and forth… like, you could, 
when you were talking about going up and down and up and down and that’s not 



really a direct route… So really, you could do anything that you wanted to, but it 
just depends on what the person… what the problem is looking for, I guess. 

Sherrill: It’s up to the interpretation of the reader... Like I read it and I just assumed that it 
had to be a direct route, but it clearly doesn’t state that… […] 

Infinity as an answer was discussed again later, after the class had considered also 15 and 51 as 
possible answers. Overall, the whole-class discussion mirrored the previous small-group discussion. 
Sophie, Lindsey, and Sherrill’s comments show an increased understanding of elements 1 and 2: the 
PTs acknowledged that the task allowed for different legitimate interpretations of its conditions and 
that their conclusions depended on their assumptions (element 1), while realizing that the different 
answers they came up with were all correct based on their underpinning assumptions (element 2).  

Part B: PTs’ responses to the pillars 

Analysis of PTs’ responses to the two pillars gave rise to the themes summarized in Table 1. Each 
response could receive multiple codes. The frequencies are offered to show how prominent each 
theme was among PTs’ responses, not for generalizability. Regarding pillar 1, PTs’ responses under 
themes 1–4 related to both elements 1 and 2 of MKfT. The responses below illustrate all themes: 

Sherrill: I was surprised at the multiple assumptions made. I had not even considered the fact that 
answers other than 25 existed because of the way people interpreted the problem. I now realize 
how greatly making assumptions can alter mathematics. (themes 2, 4) 

Lorri: [A]ll of our groups had different interpretations of how many ways there were […] Some 
of the other groups’ answers […] I could understand their rationales as to why their answer was 
correct. Our answers were not wrong under this ambiguous problem. (themes 1, 3) 

Pillars Themes and frequencies (in parentheses) 

Pillar 1: Is there 
anything that 
particularly stood out to 
you from our work on 
the “Floors Problem”? 

1.  Multiple legitimate interpretations (8) 
2.  Multiple assumptions (5) 
3.  Multiple correct answers (4) 
4.  Importance of assumptions (4) 
5.  Other (2) 

Pillar 2: The “Floors 
Problem” was 
purposefully designed 
to be ambiguous. Why 
might a teacher use a 
problem like that in 
his/her classroom? 

a.  To encourage sensitivity to language (7) 
b.  To increase awareness of the role of assumptions (6) 
c.  To enhance appreciation of different possible interpretations 

of the same (ambiguous) text (6) 
d.  To enhance appreciation of the interdependency between 

different assumptions/interpretations and different answers 
and solution paths (5) 

e. To encourage discussion, explanation, or proof (5) 
f.  Other (3) 

Table 1: Summary of results from PTs’ responses to the pillars in part B of the task sequence (n=16) 



Regarding pillar 2, PTs’ responses under themes a–e showed ability to recognize how their 
mathematical insights from the problem could apply in teaching. Thus the responses offered 
evidence related to element 3 of MKfT. We offer two responses that illustrate some of the themes:     

Lorri: A teacher could use this ambiguous problem to get their students to understand that 
sometimes their answers are not wrong and that there may be other answers to a problem. 
Students will be able to explore their different ways of interpretation and must be open to others’ 
interpretations […] They will understand that there will be different […] answers that will 
depend on the information given in the problem, which may be ambiguous. (themes a, c, d) 

Helen: To learn about assumptions and understand not only the importance of specifics […] but 
also the freedom for one to think along the terms of their own assumptions. (themes a, b, c) 

Part C: responses of small groups to the discussion prompts  

Overall the PTs’ responses to part C were pedagogically sound and were informed by the powerful 
impact the Floors Problem had on their mathematical learning. Also, one can see parallels between 
PTs’ responses in part C and the part B pillars; these were supported by our instructional design.     

Prompt 1: An illustrative explanation of the first question in prompt 1 was: “You have to start with 
a base and then make assumptions from that. So your conclusion can only be based on those 
assumptions. Therefore your conclusion can be only true or false for those assumptions.” Regarding 
the second question in prompt 1, all groups noted the importance of helping students develop a 
sense of the role of assumptions in mathematics. The groups justified their response with reference 
to the following: the importance of assumptions in the discipline; knowledge of assumptions can 
help students understand that different legitimate interpretations of a problem can lead to different 
valid conclusions; and knowledge of assumptions can highlight the need for students to explain 
their thinking. These justifications relate to element 3 and are underpinned by the understanding of 
elements 1 and 2 that was evidenced in PTs’ responses to the first question in prompt 1.  

Prompt 2: All groups disagreed with the statement and highlighted, in a similar manner, that the 
phrasing of a task should align with the teacher’s goals. Here is an illustrative response: “If a teacher 
is giving a math test, or graded evaluation where they are looking for a specific answer then yes, the 
tasks should be unambiguous. However, if the teacher is trying to prove a point about assumptions 
or different approaches to the same problem, an ambiguous task may be beneficial.” 

Prompt 3: Two major points emerged from the responses to prompt 3. The first point related to 
teachers being able to recognize that some students’ approaches to a task that appear as “faulty” may 
be in fact mathematically sound based on unforeseen (to the teacher) legitimate assumptions. The 
second point related to teachers asking students to explain their thinking to see whether the students 
indeed operated on different assumptions rather than just focus on the final answer. Again, these 
justifications relate to element 3 but are also based on understanding of elements 1 and 2. 

Conclusion 
In this paper we investigated how teacher education can promote prospective elementary teachers’ 
knowledge about the role of assumptions in mathematical activity, with attention to the design and 
implementation of a task sequence that aimed to support three elements of MKfT. We illustrated a 
task-based approach to promoting MKfT whereby a mathematics task, although not embedded in a 



pedagogical context, can nevertheless create a productive space for pedagogical reflection through 
the creation of a powerful mathematical experience for PTs. Analysis of data from the fifth research 
cycle of a design experiment in a mathematics course for PTs provided evidence for the promise of 
this approach and highlighted the important role of the teacher educator in implementing deliberate 
(pre-planned) instructional moves to help amplify PTs’ mathematical learning and enhance the 
pedagogical functionality of their acquired knowledge. Future research can investigate whether and 
how the rich insights (both mathematical and pedagogical) that PTs may develop through the task 
sequence about the role of assumptions in mathematical activity can inform their practice.  
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Introduction and methodology 
Asymptotes and asymptotic behaviour play an important role in many traditional and modern 
mathematical disciplines and are supported by a rich and well-established abstract theory. Some 
basic aspects of these concepts can be utilized already in elementary mathematics as powerful tools 
in graphing and analyzing behaviour of elementary functions at infinity and near singularities and in 
graphing simple plane curves such as hyperbola. Therefore, this body of knowledge is a common 
part of upper secondary mathematics curricula worldwide. Here, we investigate its didactical 
transposition to the Croatian general upper secondary education. The survey is conducted within the 
theoretical framework of the Anthropological theory of the didactics (ATD), developed by Y. 
Chevallard (Chevallard, 1981, 2007). The main idea of the ATD is to determine a relation RI(p,O) 
between a body of knowledge O and a person that occupies a position p in an institution I. 
Accordingly, mathematical knowledge and activities are described in terms of a praxeology [T, τ, θ, 
Θ], where its practical component, praxis, is represented with a task T and a technique τ and its 
discursive or theoretical component, logos, with a theory Θ and a technology θ. Research within the 
ATD should include relevant data about the relation RI(p,O) for all institutions I involved in the 
educational process i.e. the process of didactic transposition (Bosch, Chevallard & Gascón, 2005). 
Questioning and understanding conditions and constraints on the relation RI(p,O) is necessary for 
setting up attainable, justified and significant educational interventions (Barbé, Bosch, Espinoza, & 
Gascón, 2005). Hence, as relevant for our setting, we analyzed and compared the relations RB(p,O) 
and RS(p,O), where O is a graphical representation of an elementary function and a hyperbola in a 
square coordinate system, together with corresponding techniques regarding asymptotes, while 
institutions considered are two actual Croatian mathematical gymnasium textbooks B and the cohort 
of 40 the final, fifth year mathematics education students S at the largest mathematical department 
in Croatia. 

This is a part of a more comprehensive study regarding asymptotes and asymptotic behaviour in the 
Croatian pre-university education which also included the institution of academic mathematicians. 
The methodology included a praxeological analysis of the textbooks as representatives of the 
knowledge to be taught and three questionnaires with open-ended questions for the prospective 
mathematics teachers to provide an insight in related knowledge available to students as a potential 
taught knowledge. Based on this, a reference epistemological model (REM) is proposed and then 
verified and improved with scholarly knowledge gained from semi-structured interviews with two 



academics. Here, we focus on textbook topics, tasks, techniques and discourses related to O and on 
three particular tasks from the questionnaires administered: graphing and describing a simple 
rational function and a shifted exponential function from a real world problem, given by formulas, 
and graphing a hyperbola and its asymptotes. 

Results and conclusions 
The results of the textbook analysis show that graphing a function f pointwise, that is, by plotting 
some corresponding points (x, f(x)) and connecting them by a smooth curve dominates all other 
available techniques for graphing functions given by formulae. A technique of graphing a function 
or a curve regarding its properties recognized from a corresponding algebraic expression (formula or 
equation) occurs only in relation to the tangent and cotangent function and to a hyperbola, while the 
tasks on graphing polynomials and rational functions appear only as common practical activities of 
utilizing derivatives (calculus). Finally, a technique of transforming a prototype graph of an 
elementary function to get a graph of its composition with a linear function (by translations and 
dilations) is rarely implemented. Although textbook praxeologies of graphing functions often 
elaborate function properties and flow, discursive accents are set on establishing a function’s 
domain, monotonicity and symmetry of its graph, neglecting its asymptotic behaviour. Asymptotes 
are seen relevant only for tangent and cotangent functions. Results of the questionnaire analysis 
completely reflect those of the textbooks. The students applied techniques and provided discourse to 
the same extent as it is given in the praxeological organization of the textbooks. Namely, their 
dominant techniques are drawing curves through their points and drawing graphs regarding function 
properties determined by using calculus, their chosen techniques are not the most efficient for the 
task in question, and asymptotic behaviour is available to them but not fully utilized in praxeologies 
relevant to graphing functions or curves. Considering this, it is our suggestion for the teaching 
practice and for an ongoing curricular reform in Croatia that: all relevant function properties should 
be emphasized when describing its behaviour; common properties of a function should be more 
related to its algebraic representation and utilized for its graphing; functions should be graphed by 
graph transformations, whenever fitted; and asymptotic behaviour should be more emphasized, 
adequately graphically represented and described by formal and informal mathematical discourse. 
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Japanese Lesson Study is now internationally accepted as a powerful form of professional 
development, particularly in the field of mathematics.  It involves a cycle in which teachers 
collaborate to plan, observe, analyze and refine actual classroom lessons (Lewis, Perry and Murata, 
2006).  Frequently the lesson is retaught, although rarely by the same teacher to the same students 
(Fernandez and Yoshida, 2004). Reteaching of a lesson allows teachers to see how small variations 
in, say, the presentation of a task can deepen learners’ understanding of mathematical concepts. This 
suggests that variation theory might be a useful lens for exploration of this phase of the Lesson Study 
cycle. From this theoretical perspective, learning is defined as “a change in the way something is 
seen, experienced or understood” (Runesson, 2005, p.70). Thus small changes in the design of a task 
can result in changes in what it is that students discern or notice. Watson and Mason (2006) refer to 
dimensions of possible variation (what is possible to vary) and a range of permissible change 
(perceived constraints on the extent and nature of change in any of the dimensions of variation): 
“Teachers can … aim to constrain the number and nature of the differences they present to learners 
and thus increase the likelihood that attention will be focused on mathematically crucial variables.” 
(p.102) 

In this paper we report on a research project in which one primary and three post-primary teachers 
participated in Lesson Study in order to examine transition issues in mathematics. In particular, there 
is reference to the mathematical written work of two different groups of students who engaged with 
a similar task. The teachers had identified the topic of fractions as one that poses both teaching and 
learning challenges at primary and post-primary levels. They developed a research lesson and taught 
it first to a junior post-primary class (students aged 12-13 years) and later to senior primary class 
(students aged 11-12 years). The goals for both lessons were the same and centred around students’  

1. development of confidence in comparison of fractions;  
2. utilization of their own approaches to solve the problem;  
3. discussion of their own ideas and opinions with each other; and 
4. motivation to engage in further such mathematical tasks.  

The particular task they chose (sourced from nrich.maths.org) concerns the identification of the 
greatest amount of chocolate in a room where there are three bars on one table, two on another and 
one on the last table. It is assumed that an unknown number of people will enter a room in turn and 
that each will decide which might be the best table at which to sit ‘at that moment’. Thus the first 
person should choose the table at which there are three bars. The comparison faced by the seventh 
person is mathematically more complex than that encountered by the first six people as, up to this 
point, comparison is between whole numbers and fractional amounts less than 1. For example, a 
choice that might have to be made by Person 6 is ½ or ⅔ or 1 bar of chocolate. However assuming 



that Person 6 opts for the table at which there is one bar, the choice for Person 7 is ½ or ⅔ or ¾. While 
much planning time was spent anticipating such complexities and how pupils might deal with them, 
the teachers did not foresee that poor organisation of work by students would impinge on their 
solution processes. A change introduced in the second iteration of this lesson was that students would 
be encouraged to present their solutions in tabular form, and, in fact, on inspection of their written 
artifacts, most did so. However, while the use of this table facilitated fraction comparison (Goal 1), it 
did not encourage the exploration of various approaches (Goal 2) to the same extent. It appeared that 
this small variation in the task had considerable impact on students’ focus of attention.   

Conclusions 
A broader range of permissable change  appears to have been conveyed in the post-primary than in 
the primary class due to the introduction of the tabular format in the second lesson. However, students 
perceived a narrower dimension of variation than was suggested by either teacher, evident in the 
frequency of use of decimals for recording in the post-primary class and use of fractions/tabular 
format for recording in the primary class This may have been influenced by the teacher’s 
representation of the task on the whiteboard in each lesson and might be explained by its endurance 
(and thus propensity to be noticed) over the course of each lesson. Such representations seem to have 
a considerable impact on the (enacted) object of learning and deserve focused attention in the design 
and  analysis of mathematical tasks. More generally, while other theories have explanatory power in 
the consideration of the different outcomes of two similar lessons, variation theory has a significant 
role to play.  
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This work analyses the changes in the relationship between arguing and images from the 
mathematics textbooks for the secondary school in Argentina along 67 years. The textbooks have 
been published in the period 1940 thru 2007. The analysis is done by (N=137) textbooks based on 
three meta-categories in an inductive way. A factorial analysis of multiple correspondences was 
performed to find the main similarities and differences between the textbooks and to make a cluster 
analysis and one possible classification. 

Keywords: Textbooks, mathematics education, secondary school. 

Introduction and conception of arguing 
In 1994 an educational reform was performed in Argentina. The syllabus was changed and the 
scholar textbooks were adapted to the new educational system. The main modifications were 
realized in the properties of the images more than in the content. The characteristics of the text 
books, the ideas about argumentation and the characteristics of the images in the books are 
analysed. This research adopts an idea of arguing that emphasizes the relevance of the divergences 
between different points of view and the epistemological function of arguing, proposed by Leitão 
(2007). Different from other theories as Schwarz, Hershkowitz & Prusak (2010), Driver, Newton & 
Osborne (2000); Leitão proposes that arguing has to be analysed based on three elements: 
“argument, argument against and response” in order to generate confrontation between argument 
and argument against, to achieve construction of knowledge and transformation of perspectives in 
the subject (response). These processes occur into face to face situations, or in negotiations of the 
different points of view with ourselves, in this case, when we are reading a textbook. 

Methodology, categories of analysis and some results 
A set of (N=137) mathematics textbooks is selected by means of purposive sampling techniques. 
The analysis was performed starting from a previous qualitative inductive categorization based on 
three meta-categories:  

A- Characteristics of arguing. A1- Commencement of arguing: Questions or situation, 
which will be answered later; Definition, using to introduce knowledge; and Examples to formulate 
knowledge. A2- Type of arguing: Deductive formal, used deductive mathematics argument 
(definition, theorem, hypothesis, theory, demonstration, etc.); Deductive informal, they do not reach 
the formalism of the demonstrations; and Inductive that generalize knowledge from a single case. 
A3- Degree of arguing, cognitive conflict promoted by the text is analysed in three levels: High, 
books that generate explicitly confrontations, without solution in the text; Low, textbooks generate 
explicitly a cognitive conflict, solved later; and Absent, textbooks that inform without questioning. 



B- Relationship between the images and arguing (Otero, Moreira and Greca, 2002): B1- 
Use of the image: Ornamental, images used with a decorative aim, not related to the content; and 
Argument, used as source of information, knowledge can be derivative. B2- Type of image: 
Mathematical representations, use mathematical systems of representation; and Non-mathematical 
representations, images not related with mathematical content. B3- Grammatical style of the 
images: Conceptual, represent relations and fixed characteristics between the represented elements; 
and Narrative, identify actions between objects that can represent a relation between them in the 
image. B4- Relationship with the “real world”: Naturalist, images referring to the empirical world, 
detailed and complex; and Abstract, not referring to the world that we experience. 

C- Characteristics of the textbooks: C1-Date of publishing: Period 1, 1940 thru 1973, 
Period 2 1974 thru 1994 and Period 3, after the reform, until the year 2007. C2- Educational level: 
refers to the educational level the textbooks. Level 1, students between 12 and 14 years old; Level 2, 
students between 15 to 17 years old; and Level 3, older than 18 years old. C3- Mathematical 
traditions (Klimovsky & Boido, 2005): Computational, emphasis in the resolution of problems and 
calculation with numbers; Axiomatic, present the mathematics demonstrations steps; and 
Structuralist: books that search of regularities that meet the same conditions. 

Using this categorization, a qualitative description is made, which originated a first analysis. Then, 
the categorization is transformed in a group of nominal variables and modalities using Exploratory 
Data Analysis (Lebart, Morineau, 2000). A Factorial Analysis of Multiple Correspondences allowed 
the selection of one possible classification in three classes. In addition, a test of randomness to 
analyse the reliability of the sample was performed using the statistical software SPAD. 

The analysis explains changes in the images and arguing, given by: books that propose questions, or 
only definitions and examples, by the way to conceive and validate to mathematical knowledge, and 
mainly by the changes in the images and the relation between images and knowledge. The goal of 
most books seems to be informative. This explains the absence of questioning and discussing about 
several points of view, and the low level of arguing and conflict found within them. 
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To investigate, understand and explain the relationship between teachers and curriculum resources, 
in our context a textbook, Remillard (2009) derived a model of the teacher-curriculum relationship, 
from earlier Brown’s (2009) Design for Capacity Enactment Framework. The center of the model 
represents the participatory teacher–curriculum relationship designating what the teacher and the 
curriculum bring to the teacher-curriculum interactions. In this model, teacher resources include 
concepts of pedagogical design capacity, human and social capital, and agency and status. 
Curriculum resources include several components: mathematical topics and tasks that are structured 
in deliberate ways, embedded supports for the teacher to guide pedagogical decision-making and 
presence of a pedagogical orientation or emphasis embedded in instructional strategies and lesson 
structures. In domain of teacher resources, an interesting and important characteristic is the 
pedagogical design capacity (PDC). PDC describes the capacity of teachers to perceive and 
mobilize existing resources to create productive instructional episodes (Brown 2009), which to 
some extent, depends on the used resource and on the ways of working with that resource (Gueudet, 
Pepin & Trouche, 2013).  

In this study, we wanted to examine the relationship between the mathematics teacher and the 
textbook in the classroom. Therefore, we formed the following research questions: What 
characterizes the nature of the teacher–textbook relationship and why? What is the level of the 
teacher’s pedagogical design capacity? 

Remillard (2009) suggested that individual PDC can be measured by examining dimensions of 
human and social capital, therefore in this study, two measures are used to examine the teacher’s 
level of PDC; the one proposed by Remillard (2009) and the one the one described by Leshota 
(2015). Leshota (2015) proposed that one possible way for measuring teacher's PDC is examining 
whether teachers make injections of mathematical content into the lesson, omissions of 
mathematical content from the textbook and mathematical errors. Using those criteria one could 
determine whether teacher has low or high PDC.  

We observed four lessons in Mrs. D’s classroom and conducted an interview with the teacher. In 
terms of textbook content, Mrs. D offloaded, adapted and improvised in the lessons, but not to the 
same extent in every lesson. Those types of textbook mobilization were dynamically interchanging 
within a lesson. Mrs D. made several injections of content that are not in the curricular outlines or in 
the textbook for this grade level. She had no critical omissions in the lessons.  

It seems that the teacher regards the textbook as a vital resource for the students’ learning, but not 
crucial for her teaching. The established relationship between the teacher and the textbook could be 
regarded as a two way process in which both participants communicate. The outcome of that 
process is a product that fits the students’ needs and the teacher’s goals. The teacher positioned 
herself as having instructional authority in the classroom, regardless of what her colleagues in the 
school do or think. Recognizing the textbook’s affordances and constraints allowed her to place 



herself as an authority over the textbook. Mrs D. showed a high level of PDC in her teaching. She 
omitted content from the textbook, like activities or worked examples which were not crucial for 
learning mathematics. She injected content that is not usually introduced until the following grade 
because it was applicable to the topic being taught.  

From our perspective, the term PDC seems to be more efficient when examining teaching expertise 
than Shulman's pedagogical content knowledge (PCK). In a way, PDC has more dynamic nature 
than PCK. Therefore, from the perspective of the textbook utilization, teachers’ development of 
PDC is an important and critical part of their interactions with the textbook. Our study showed that 
interplay between curricular knowledge, professional development, mathematical knowledge, 
knowledge of the textbook’s characteristics are important aspects in ability to craft pedagogical 
beneficial lessons. More studies on teachers’ PDC would be beneficial for new and inexperienced 
teachers. 
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Inclusion is based on international legitimate developments like the Salamanca statement, which 
emphasizes the right of education for all (UNESCO, 1994). Furthermore, several studies showed that 
coeducation can have a positive effect on the development of performance of pupils with and without 
special educational needs (Markussen, 2004). But to include all students regardless of their physical, 
intellectual, social or other abilities the educational framework conditions need to be adopted at first. 
One important step into this direction consists in providing all pupils access to the assignments by 
enhancing their readability.  

Theoretical background 
Readability can be enhanced by linguistic simplifications like the application of the easy-to-read 
guidelines (Netzwerk Leichte Sprache, 2006). Easy-to-read language has been established to facilitate 
understanding in everyday life for people with disabilities. It is, for example, used for the 
simplification of manifestos in order to support participation in society. So far, these guidelines are 
not verified scientifically, but show several similarities to empirically based linguistic simplification 
rules, like the Hamburger Modell (Langer, Schulz von Thun, & Tausch, 2011). The authors state, 
among others, that only one statement should be made per sentence. Another possibility to facilitate 
the comprehension of assignments is the use of symbols. A symbol can be defined as a graphical 
image conveying a single idea or concept (Detheridge & Detheridge, 2002). Little empirical data 
about the use of symbols to foster the readability of texts exists (Jones, Long & Finley, 2007; Poncelas 
& Murphy, 2007). Nevertheless, a positive influence can be assumed, e.g. because of the multimedia 
principle (Mayer, 2009). It indicates that people learn better from words and pictures than from words 
alone. An explanation is given by the cognitive theory of multimedia learning (ibid.) which assumes 
that pictorial and verbal information are processed in two different channels in our brain. When words 
and pictures are presented, both channels are used and the cognitive load on the limited capacity of 
the working memory is reduced.  

Methodology 
Does the use of easy-to-read language and/or enriching text with symbols facilitate students’ 
performance in mathematical tasks? This research question shall be answered with the following 
methodology. The tasks of this study deal with introducing fractions. These are taught in activity-
oriented manner with hands-on material. The tasks are divided into two complexes. The first complex 
aims at the conduction of more basic actions like counting. Then, the pupils receive an input about 
fractions by watching a video. The pupils use the information of the video for more complex 
mathematical considerations which are necessary in the second task complex. Thus, the pupils’ 
conceptualization of fractions is fostered, e.g. by the naming and comparison of fractions. In 
November and December 2016, a pre-study was conducted with 30 students in grade 5, 6 and 7. The 
sample consisted of pupils with learning difficulties and students without special educational needs. 
The students worked on the tasks individually and participated in a subsequent interview. Data was 



also collected by use of eye tracking and thinking aloud. A first result of the pre-study is that the 
symbols are used by the students without explanation. This result can be exemplified by the following 
excerpt of the interview and the corresponding eye-tracking data. The different colors of the heatmap 
represent different durations of the fixations: 

Student: The little pictures helped me, because I 
could see how it works. Because sometimes I 
didn’t understand the text and then I watched the 
pictures and they helped me.  

Figure 1: Primary data insights 

Deeper qualitative analyses, which focus on how the symbols are used by the students as well as on 
the linguistic comprehensibility of the tasks, will follow. For the main study a posttest-only design, 
which includes two experimental as well as one control group, is planned. While experimental group 
1 receives a linguistically and pictorially simplified version of the tasks, experimental group 2 works 
with a variation which is linguistically simplified only. The control group receives a not simplified 
version. After working with the exercises, the students’ knowledge about fractions will be measured. 
The participants’ reading ability and their IQ will be elevated beforehand. These control variables 
shall help to build comparable groups.  
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Background to the study 
It is a requirement that all schools in Ireland administer standardized attainment tests in 
mathematics when children are in 2nd Class (aged 7 – 8). On the basis of these results, children who 
are deemed to have underperformed nationally (Standard Score <90), are usually offered additional 
support by means of withdrawal from their mainstream classroom for mathematics lessons to work 
on a complementary program with the learning support teacher. Although it is argued that such 
provision is offered to less able children as they tend to simply ‘give up’ in classrooms in which 
they find the mathematical tasks too challenging, the concern is that that these children will fall 
further and further behind. It is the contention of the authors, that it is not the tasks per se that are 
too challenging for the children but rather the nature of the tasks, which all too often tend to 
emphasize traditional practices of rote procedure and drill. 

In this study, the researcher, who was working as the learning support teacher, and the class teacher 
planned together to integrate children back into their classroom by co-designing mathematically rich 
tasks. Over a four week period, three children who had formerly been withdrawn from the 
classroom were put to the fore in the planning of the tasks. Particular consideration was given to 
their learning styles. The mathematical tasks were inspired by the three key principles of the 
educational framework, Universal Design for Learning (UDL), which constitute Multiple Means of 
Representation; Multiple Means of Action and Expression; and Multiple Means of Engagement 
(Rose & Meyer, 2000).  The term ‘universal’ is particularly pertinent in the design of the tasks as 
they were developed in line with specific mathematical learning goals for ‘all’ learners from the 
beginning rather than implementing a standard ‘one size fits all’ set of tasks and differentiating the 
tasks to cater for the marginalized, less able children, at a later stage.  

Therefore, in order to create learning tasks that will engage all children by design, this research 
sought to ascertain: 

1. How can the principles of UDL be used to design mathematically rich tasks? 

2. Do UDL informed tasks engage and support children of low-ability in mathematics? 

Methodology 
This case study took place over four weeks with one class of 32 children for 45 minutes per day. 

The children were aged between eight and nine years old.   



It was a detailed body of work comprising collaborative universal lesson design on the topic of 
‘Measurement’, implementation of lessons, critical analysis of tasks and peer review. Each lesson 
was assessed using an adapted scoring rubric developed by Spooner, Baker, Harris, Ahlgrim-Delzell 
and Browder (2007). Frequencies of different events were tabulated. Formal observational 
instruments were developed to recognize and discern certain types of behaviors such as children’s 
degrees of engagement. Observations were supplemented by photographs. Teachers’ daily 
reflections were analyzed using the analytic technique of pattern matching. A matrix of categories 
was developed and evidence placed within each classification. Information was put in chronological 
order. A follow up interview was held with the host teacher at the end of the intervention.  

Results 
The 14 lessons scored 82 points out of a maximum of 84 points on the adapted scoring rubric 
(Spooner et al., 2007) implying that a very high level of the UDL approach was used in the task 
design and implementation. Diversity was the starting point in planning the tasks, with lower ability 
children being accommodated within and enriching the regular class. The development of positive 
learning profiles for the three target children, such as, ‘needs assigned role during group tasks’, or, 
‘needs to have basic equipment available such as a pencil and a ruler prior to task allocation’, 
helped to remove barriers to and enable participation in learning. UDL tasks offered the children 
various ways of acquiring information and knowledge; provided alternatives for demonstrating what 
they knew; tapped into children’s interests, gave appropriate challenges, and increased motivation. 
Multiple means of representation, action and expression, and engagement were used in task design. 
Video clips were used on five occasions, concrete materials on eight occasions, ICT (PowerPoints, 
images, interactive stylus and interactive tools) were used during eight lessons, a parallel ICT 
mathematics program was set as homework for the children on each of the 14 days and the local 
environment was used on seven occasions. ICT was also found to be a key component that engaged 
children who were previously observed to be challenged by mathematics.   

Discussion and conclusion 
This research revealed that tasks which take into consideration UDL instructional goals, 
assessments, methods and materials are usable and accessible from the outset rather than having to 
retrofit the tasks to children’s needs as an afterthought. Crucially, results from this study found that 
by intentionally creating flexible learning opportunities, less able children were engaged and 
understood difficult mathematical ideas when they were provided with UDL informed tasks. 
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In this introduction, we briefly present selected theoretical constructs relevant for the Thematic 
Working Group 23 (TWG23). We first address the topic of “implementation research” by looking 
into other research fields and domains where this topic is well-developed. Drawing on a taxonomy 
of so-called “implementation science” in health-care, we attempt to categorize the papers and 
posters of TWG23 according to their “implementation research aim” (Nilsen, 2015). Using this 
taxonomy, we elaborate on future perspectives for the TWG by relating to ongoing discussions in 
mathematics education research. 

Keywords: Research findings, research results, theory to practice, implementation research. 

A need for creating a new CERME Thematic Working Group 
With almost five decades of accumulated knowledge, research findings, theoretical frameworks and 
experiences, the field of mathematics education research now has quite a bit to offer to the ongoing 
teaching and learning of mathematics in primary, secondary and tertiary education. Regardless of 
the well-known long and winding “journey” that research results must travel before finding an 
actual foothold within practice, results from mathematics education research nowadays seem to be 
present to a much larger extent in practice than ever before – not to say that there is anything strange 
in this, but rather it is probably only natural given that the field has matured and become 
successively more and more established over the years. 

Indeed, as researchers in mathematics education, we are frequently involved in putting previous 
empirical results and findings as well as theoretical constructs based on these to good use in 
mathematics classrooms, mathematics programs, mathematics teacher education, in-service teacher 
training, etc. In several countries there are ongoing developmental projects that rely heavily on 
previously documented research results. However, as researchers we often find ourselves in a 
peculiar situation when wanting to report on these activities, since such accounts do not necessarily 
fall under the usual paradigm of “research in mathematics education” and do not in a clear-cut 
manner qualify as either “empirical” or “theoretical research”. To assist in closing this “gap” the 
purpose of creating a new thematic working group focusing on aspects and issues related to the 
implementation of research results and findings, is to provide a venue for discussing, collecting and 
advance the “implementation research” aspects of our activities. 



Implementation research and its aims 
In relation to research on actual implementations, mathematics education may profit from other 
disciplines or areas, where research on implementations is further ahead. Healthcare is one such 
area, where since 2006 an entire journal has been devoted to “implementation science” (the name of 
the journal as well). Although the journal of course publishes several empirical studies related to 
various aspects of implementations, it occasionally also offers theoretical studies focusing on 
“implementation research” itself. One such theoretical contribution is the study by Nilsen (2015), 
who proposes a taxonomy consisting of five categories of theoretical approaches in order to make 
“sense of implementation theories, models and frameworks” (p. 1). Nilsen describes implementation 
science as “the scientific study of methods to promote the systematic uptake of research findings 
and other EBPs [evidence-based practices] into routine practice to improve the quality and 
effectiveness” (p. 2). Although Nilsen focuses on the case of health care, the definition seems 
adaptable and applicable also to the field of teaching and learning of mathematics. As part of the 
background for the taxonomy, Nilsen states that “Implementation science has progressed towards 
increased use of theoretical approaches to provide better understanding and explanation of how and 
why implementation succeeds or fails” (p. 1). According to Nilsen, the theoretical approaches used 
in implementation science have three overarching aims: 

1. describing and/or guiding the process of translating research into practice (process models);  

2. understanding and/or explaining what influences implementation outcomes (determinant 
frameworks, classic theories, implementation theories); and  

3. evaluating implementation (evaluation frameworks). 

The five categories of theoretical approaches consist of those provided in parentheses following the 
aims above. For aim 1, process models serve the purpose of breaking down the translation process 
into smaller steps, stages or phases. For aim 3, evaluation frameworks serve the purpose of assisting 
in evaluating the success – or lack thereof – of a given implementation. More interestingly, perhaps, 
are the theoretical approaches associated with aim 2. Determinant frameworks specify types of 
determinants that act as barriers and enablers that influence implementation outcomes, or even 
specify relationships between types of determinants. Classic theories are defined as those 
originating from fields external to implementation science, e.g. psychology, sociology or 
organizational theory that can be applied to understand or explain aspects of implementation. 
Finally, implementation theories are defined as those which have been developed from scratch 
within the field of implementation science. 

Implementation research aims of the papers and posters in TWG23 
TWG23 received 16 papers prior to the congress. At the congress 14 papers and 1 poster were 
presented. In the light of Nilsen’s three aims of implementation research (or science), most of the 
studies presented in TWG23 at CERME 10 in Dublin concerned aim 1, addressing aspects of how 
to adapt research results and findings to practices in schools or other learning situations. A few of 
the presented studies touch upon aim 3, i.e. evaluation frameworks. Although it is seldom the main 
focus of the studies presented, aspects related to aim 2 occasionally surface. We shall return to 



potential reasons for this distribution, but first we will use Nilsen’s framework to categorize and 
briefly discuss the papers and posters in TWG23 presented at CERME 10. 

In line with Nilsen’s aim 1 to guide the process of translating research into practice, Ärlebäck 
describes and discusses the framing of, and experiences from, a project that combines research, 
practice, and teachers’ professional development based on the tenets of the “Models and Modeling 
Perspective” on teaching and learning. Besides providing a general description of the 
methodological considerations in the project design, the paper describes how the accumulated 
results and experiences in the research literature on so-called model eliciting activities are used to 
inform the design, implementation and evaluation of activities aiming at introducing functions to 
grade 8 students. The focus of the paper is on the implementation, and aims to show how the teacher 
in question realized the offered perspective and tools in practice. The work presented by Aguilar, 
Castañeda and González-Polo aligns with aim 1 as it illustrates how research results generated in 
the field of mathematics education can be implemented in the design of mathematics textbook tasks. 
In particular, it is shown how research findings related to representation registers and to the 
conceptualization of the concept of function as a process are used in the design of textbook tasks for 
upper secondary level. The poster by Chandia and Montes matches with aim 1, since they report a 
professional development strategy for teachers focused on improving students’ and teachers’ 
problem solving skills. The professional development strategy by Chandia and Montes incorporates 
research results related to the creation of professional development systems in mathematics. Bulien 
presents theoretical and methodological arguments for the design and implementation of a research 
based course for pre-service teachers aimed at clarifying and strengthen the connection between 
didactical and mathematical theories to in-school teaching activities. Drawing on a design 
experiment methodology and the theory of communities of practice, Bulien elaborates on a 
“Mathematics Didactics Planning Tool” for teaching in different classroom situations. Thus, this 
study also relates more closely to Nilsen’s aim 1. Jankvist and Niss deal with the research-based 
design and implementation aspects of a so-called “detection test” in relation to upper secondary 
school students’ difficulties with mathematical conventions, concepts and concept formation, in 
particular those related to equation solving. In a similar manner, Ahl addresses the design of a 
detection test related to students’ difficulties with proportional reasoning. Hence, both these studies 
deal with Nilsen’s first aim, that is, translating carefully selected research results from mathematics 
education into suitable test items. Based on the answers of 405 Year 1 upper secondary school 
students, Jankvist and Niss also address aspects of evaluation (aim 3). Another research report that 
corresponds to aim 1 is the one by Kjeldsen and Blomhøj. In their work, research findings on 
students’ concept formation and the digital tutorial genre are brought to use in the teaching of a first 
year calculus course. They present and discuss a theory-based design and its implementation for 
students’ productions of video tutorials aimed at supporting their understanding of the limit concept. 
It could be said that this work is also related to the aim 3 delineated by Nilsen, since the study 
examines whether the designed learning environment supports the students’ formation of key 
concepts in calculus or not. 

The paper by Valenta and Wæge touches on both aim 1 and aim 2 of Nilsen’s taxonomy. The 
paper describes a course aimed at supporting in-service teachers’ learning of ambitious mathematics 
teaching. The design of the course is based on a project called “Learning in, from, and for Teaching 
Practice Teacher Education Project” (aim 1). In addition, the particular question addressed in the 



paper is coupled to aim 2, since it focuses on the learning potential in the interactions between in-
service teachers and course instructors during the public rehearsals that are the key innovative 
feature of the designed course and manifested through cycles of enactment and investigation. The 
theoretical paper by Nilsson, Ryve and Larsson align with Nilsen’s second aim (understanding 
and/or explaining what influences implementation outcomes). They draw upon a systematic 
literature review on productive classroom practice to construct a framework for categorizing 
theories aiming at supporting teachers’ actions in mathematical classroom practices. They do so by 
relating to theories and literature on educational policy research, professional development research 
and implementation research. Related to a larger scale early intervention program, Lindenskov and 
Kirsted touch upon aspects of Nilsen’s aim 2. More precisely, they discuss teachers’ perception of 
“theory” and barriers these may lead to, when implementing research results in practice. In addition, 
they also address aspects of the translation of theoretical constructs to the teachers as well as the 
suitability of these constructs provided a given context of practice. The study reported by Tamborg, 
Allsopp, Fougt and Misfeldt clearly falls with Nilsen’s category of studies related to developing 
determinant frameworks (aim 2), since it investigates the of role the local supervisor (enabler) in the 
implementation of a mathematics teacher training program. 

Amit and Portnov-Neeman’s work can be related to the aims 1 and 3 proposed by Nilsen. They 
report on the implementation of a methodology used to teach reading and mathematics called 
“Explicit Teaching Method” focused on teaching students the “working backwards strategy” for 
solving non-routine mathematical problems; on the other hand, the effect of using the explicit 
teaching method as a means to learn the working backwards strategy is evaluated. Koichu and 
Keller position their paper as so-called design-based implementation research (DBIR) (see later). 
They present an evaluation framework (aim 3) to analyze and theorize their attempts in creating and 
sustaining online exploratory problem-solving discussion forums using the conceptual tools 
provided by Rogers’ “Theory of Diffusion of Innovation”. Ejersbo and Misfeldt report on a 
design-based research (DBR) project related to developing numeracy in grades K-3. This study too 
focuses specifically on evaluation aspects (aim 3), not least in terms of improving the design being 
implemented as well as the future of the project at the local school. Kuzle’s work somehow touches 
all three aims outlined by Nilsen. She reports on a collaborative project between educational 
researchers and practitioners with the goal of developing a problem-solving curriculum for grade 6 
students using DBR. The curriculum was developed and implemented based on problem solving 
research and theory, and through the evaluation of its implementation objective and subjective 
factors that inhibited the full-implementation of the curriculum were identified. 

Implementation of research findings in mathematics education 
As seen above, a few aspects of aim 2 were touched upon in the papers and posters of TWG23, and 
some papers also considered aim 3. Still, aim 1 appears to be the dominant one among the reported 
studies. This, however, is not so strange since actual “implementation research” within the field of 
mathematics education must be regarded as a relatively new trend. This is of course due to the field 
of mathematics education itself not being much older than fifty years, but at the same time it is 
mature enough to have produced a sound basis of research results to actually be implemented into 
the practice of teaching and learning mathematics. Engaged in such implementation-oriented 
endeavors, researchers in mathematics education work systematically at different levels to establish 



evidence-based solutions to the problems and challenges faced by practitioners and learners. 
Whether the research carried out is empirical or theoretical in nature, implementation of research 
findings and results is at the core of the research activities, either in the form of evaluating and 
furthering actual practices or materials etc., or to deepen our theoretical understanding to facilitate, 
guide and support various future implementations. Hence, and as already illustrated by the papers of 
TWG23, implementation of research findings and results in mathematics education can take many 
forms and expressions. Further examples from the literature are: in the design of experiments (e.g. 
Cobb, Confrey, diSessa, Lehrer & Schauble, 2003) and mathematical tasks (e.g. Margolinas, 2013); 
as tools for professional development of in-service and pre-service mathematics teachers (e.g. 
Tsamir, 2008; Sánchez, 2011). The research findings and results that are implemented as part of 
systematic research are typically empirical results, theoretical results in terms of frameworks of 
different kinds, or some mixture of the two. Still, such findings and results usually fall within 
Nilsen’s first and third aims, whereas results directly concerning aim 2 are scarcely touched upon. 

As seen from the presented research studies of TWG23, implementation of research findings may 
have connections with research areas already existing in the field of mathematics education. One 
such example, although not reported in TWG23 at CERME 10, is that of lesson study. In the lesson 
study approach, lessons are designed and analyzed as a means to improve mathematics teaching in 
the classroom, but also as a means for professional development of mathematics teachers. Another 
existing research area, represented in TWG23, is that of task design. Hence, from the presented 
papers, it is clear that “implementation research” encompasses different kinds and formats 
(textbooks, apps, software, etc.) of didactical designs and products, stretching from task design, over 
teaching modules, courses, to entire programs – on all educational levels. Yet an example is that of 
design-based research (DBR), where results might take the form of a teaching module that 
successively and iteratively have been envisioned, designed, applied, analyzed and redesigned. The 
result is the final design as well as measures of how successful the design has proven to be. 
However, to focus on the implementation aspect of DBR means to not only focus on the end 
product and its success in achieving what was set out to do, but also to seriously take into account 
the “design phase” of the design research cycle. That is, the phase where the researcher identifies a 
learning problem and then uses available research results to design a (preliminary) product or tool 
that can help students in overcoming this learning problem. A primary concern then becomes to 
focus precisely on the way research knowledge is applied to generate some type of educational 
product. Elements of these concerns are addressed by Fishman and colleagues (2013), who forefront 
the implementation aspects of DBR in a research approach they call design-based implementation 
research (DBIR) – a framework also used in a few of the papers presented in TWG23. In short, 
DBIR has:  

“(1) a focus on persistent problems of practice from multiple stakeholders’ perspectives; (2) a 
commitment to iterative, collaborative design; (3) a concern with developing theory and 
knowledge related to both classroom learning and implementation through systematic inquiry; 
and (4) a concern with developing capacity for sustaining change in systems.” (Fishman and 
colleagues, 2013, pp. 136-137) 

More generally, an important aspect when implementing research findings and results into practice 
is to focus on what Burton (2005) has called the methodology of the research conducted. Burton 



argues that researchers in mathematics education in general pay little or no attention to explaining 
and motivating the rationale for the actual research design they apply to be able to draw the 
conclusions they report when writing up their research. This “craft knowledge” of the researcher is 
in a way silent. In Burton’s opinion, accounts of research is full of descriptions of how results were 
obtained (i.e. what the explicit methods applied were), whereas elaborations on why choices were 
made and decisions taken in order to arrive at conclusions are rarely found. The how-question 
concerns the methods used by the researcher to undertake his or her research, while the why-
question focuses on the rationale for the research design, i.e. the methodology. That more emphasis 
should be put explicitly on the methodology has also been put forward by for example Wellington 
(2000), who describes methodology as “the activity or business of choosing, reflecting upon, 
evaluating and justifying the methods you use” (p. 22). He further argues that it is necessary to 
know the methodology of a piece of research to be able to impartially judge and assess it. TWG23 
provides a venue and forum for researchers to discuss how to best put research results to use in 
practice alongside the accompanying rationale for why. In this sense, TWG23 has as one of its 
primary foci methodologies for initiating and institutionalizing research-based implementation 
designs. Over time, the activities of such a group could also make us wiser on the actual usefulness 
of our various research results, constructs, and frameworks. 

Perspectives for the TWG at future CERMEs 
Although the main focus of TWG23 seems currently to be on Nilsen’s first aim, and to some extent 
the third aim, in time the TWG may potentially contribute much more to the second aim: in 
identifying determinants across various countries; in identifying relevant classical theories external 
to mathematics education, which may help to understand or explain implementations; and last but 
not least in developing homegrown implementation theories of mathematics education. This was 
also reflected in the evaluation of the TWG, where the question was asked: What shall be TWG23’s 
contribution of knowledge to the field of mathematics education? The participants of the TWG 
collectively phrased the following “vision” for the group: 

 “We want to explore a wide variety of ‘good examples’ of implementing research findings and 
results (back) into practice in order to improve the teaching and learning of mathematics at all 
educational levels on a research-based foundation. Over time we may begin to look into the 
aspects of research on implementations, potential requirements for these to function, etc.” 

Hence, for the future of TWG23, it may be envisioned that the TWG could come to consist of a core 
of researchers interested in these aspects (Nilsen’s second aim). But at the same time, a group like 
TWG23 is also a place for mathematics education researchers to go when wanting to report and 
discuss on any “intermediate” activities of either designing new research projects or developmental 
work, before the activities may result in more traditional research to be reported in other TWGs. In 
this sense, TWG23 also provides a forum for mathematics educators at CERME to “come and go” 
from one congress to another.  

To put it a bit boldly, it is our hope that this TWG can assist in filling the “gap” of where to report 
on implementation activities in our research community, while at the same time act as a “bridge” 
between research and practice. 

References 



Burton, L. (2005). Methodology and methods in mathematics education research: Where is the 
"why"? In S. Goodchild & L. English (Eds.), Researching mathematics classrooms: A critical 
examination of methodology (pp. 1–10). Greenwich, CO: Information Age Publishing.  

Cobb, P., Confrey, J., diSessa, A., Lehrer, R. & Schauble, L. (2003). Design experiments in 
educational research. Educational Researcher, 32(1), 9–13. doi: 10.3102/0013189X032001009 

Fishman, B. J., Penuel, W. R., Allen, A.-R., Cheng, B. H., & Sabelli, N. (2013). Design-based 
implementation research: an emerging model for transforming the relationship of research and 
practice. In B. J. Fishman & W. R. Penuel (Eds.), National Society for the Study of Education, 
Volume 112 (pp. 136–156). New York, NY: Teachers College, Columbia University. 

Margolinas, C. (Ed.) (2013). Proceedings of the ICMI Study 22. Task design in mathematics 
education (Vol. 1). Oxford, UK: International Commission on Mathematical Instruction. 

Nilsen, P. (2015). Making sense of implementation theories, models and frameworks. 
Implementation Science, 10(53), 1–13. doi: 10.1186/s13012-015-0242-0 

Sánchez, M. (2011). Concepts from mathematics education research as a trigger for mathematics 
teachers’ reflections. In M. Pytlak, T. Rowland & E. Swoboda (Eds.), Proceedings of the Seventh 
Congress of the European Society for Research in Mathematics Education (pp. 2878–2887). 
Rzeszów, Poland: University of Rzeszów. 

Tsamir, P. (2008). Using theories as tools in mathematics teacher education. In D. Tirosh & T. 
Wood (Eds.), The international handbook of mathematics teacher education Volume 2: Tools 
and processes in mathematics teacher education (pp. 211–234). Rotterdam, The Netherlands: 
Sense Publishers. 

Wellington, J. (2000). Educational research: Contemporary issues and practical approaches. 
London, UK: Continuum.  

 



Research findings associated with the concept of function and their 
implementation in the design of mathematics textbooks tasks 

Mario Sánchez Aguilar1, Apolo Castañeda2 and Rosa Isela González-Polo3 
1Instituto Politécnico Nacional, CICATA Legaria, Mexico; mosanchez@ipn.mx 

2Instituto Politécnico Nacional, CICATA Legaria, Mexico; acastane@ipn.mx 
3Instituto Cumbres Toluca, Mexico; rosaiselag@gmail.com  

The aim of this paper is to illustrate how the research results generated in the field of mathematics 
education could be implemented in the design of mathematics textbooks tasks. First we present 
research findings related to the concept of function, particularly findings related to representation 
registers and to the conceptualization of function as a process. Next we illustrate with examples 
obtained from a high school textbook, how these research findings can be implemented in the 
design of mathematical tasks. We close the manuscript with a reflection on the implications for 
research that this kind of implementation may have. 

Keywords: Textbook development, functions, task design, implementation of research findings. 

Introduction 
As noted in the call for papers for the Thematic Working Group 23, implementation research can 
encompass a wide range of different kinds of didactical designs on a broad range of formats. In this 
work we focus on the use of research findings in the design of mathematics textbooks. More 
particularly, we will address research findings related to the learning of the mathematical concept of 
function and its implementation in the design of tasks included in a mathematics textbook for upper 
secondary level. 

Textbooks play an important role in the teaching and learning of mathematics. For example, 
textbooks can affect teaching strategies by conveying pedagogical messages to mathematics teachers 
(Fan & Kaeley, 2000); also, mathematics textbooks can contribute to the creation and strengthening 
of students’ misconceptions (Kajander & Lovric, 2009), and even the content selection and 
presentation of materials in a textbook appear to influence learners’ participation and success in 
mathematics (Macintyre & Hamilton, 2010). Due to the huge influence that textbooks can exert in 
the dynamics of the mathematics classroom, over time there has been a growing interest in 
developing new and high-quality textbooks, however as pointed out by Li, Zhang & Ma (2014), 
“there are a very limited number of studies available that examine and discuss textbook design and 
the process of textbook development” (p. 306). Even more rare are the studies considering the 
implementation of research results in the design and development of mathematics textbooks, which 
it is the main focus of this manuscript.  

The aim of this paper is to illustrate how research results produced in the field of mathematics 
education can be implemented in the design and development of tasks for mathematics textbooks. 
To achieve this we identify some research findings related to the concept of function and illustrate 
how they were used in the development of tasks for a high school mathematics textbook that is 
currently in use in the Mexican education system. 



On the concept of function and research findings associated with it 
We have focused our attention on the concept of function because it is a fundamental concept in the 
mathematical knowledge and as such plays a major role in mathematics textbooks (Mesa, 2000), 
particularly in those of middle and upper level. Because of its status and importance in the corpus of 
mathematical knowledge, educational research around this concept has been developed for several 
years and its results could be useful in the process of designing textbooks. In the next section we 
mention some research findings associated with this concept that we ourselves have implemented in 
the design of mathematical tasks included in upper secondary level Mexican textbooks. 

What do we mean by «research findings»? 

The products or results generated by research in mathematics education can be varied and fluctuate 
in a range that goes from tangible products (such as textbooks, educational activities, software) to 
more abstract products (such as constructs and theories). When we use the term «research findings» 
in this work we refer to information that has been obtained or discovered through empirical research 
and that can be expressed through observations, identification of obstacles and students’ modes of 
thinking, didactical suggestions, etc.  

We argue that this type of information may be applicable in designing mathematical tasks included 
in textbooks. Next we present some examples of research findings connected to the learning of the 
concept of function, whose implementation will be illustrated below. 

What research says about the learning of the concept of function? 

Different representations of the concept should be encouraged. Some students’ difficulties 
connected with the concept of function can be attributed to the procedural emphasis with witch this 
concept is taught, and also to the lack of variety in the representation contexts in which this concept 
illustrated and manipulated. 

Research has shown that many students possess prototypical visions of the concept of function. For 
instance, they tend to assume that functions are linear or quadratic in cases where this assumption is 
unwarranted, so for example they tend to think that “u-shaped” graphs are parabolas (Schwarz & 
Hershkowitz, 1999); Carlson & Oehrtman (2005) suggest that this difficulty may be related to the 
fact that many teachers introduce the concept of function through prototypical examples, which 
often are linear or quadratic. Thus, they suggest that the concept of function instruction should 
include more opportunities to experience different types of functions emphasizing different contexts 
of representation. 

This is in line with the observations of Duval (2000). He claims that the conceptual understanding 
of a mathematical object becomes more robust when there is coordination between representation 
registers. Each register highlights certain characteristics and properties of the mathematical object, 
and the interaction between these registers allows for a broader conceptual understanding, so it is 
important to promote tasks that favor the transit between such representation registers, particularly 
the transit in directions that are not usually addressed in school, such as transit from the graphical 
register towards the algebraic one.  

A dynamic vision of function as a process should be promoted. A common practice in the teaching 
of mathematics is to represent functions as static objects, however it has been suggested that 



students must possess dynamic interpretations of this concept in order to favor a conceptualization 
of function as a process (Carlson, Oehrtman & Engelke, 2010). For instance, Figure 1 represents the 
area under a curve defined by a function f (x), and it does not promote a dynamic conceptualization 
of the area function; to achieve such dynamic conceptualization the student should imagine that 
point b moves and in doing so the shaded area S increase or decrease its size.  

 

Figure 1: «Static» representation of an area under a curve 

This type of static conceptualizations is closely related to an action view of functions (Dubinsky & 
Harel, 1992): 

An action conception of function would involve the ability to plug numbers into an algebraic 
expression and calculate. It is a static conception in that the subject will tend to think about it one 
step at a time (e.g., one evaluation of an expression). (p. 85) 

However, an action view of functions may result in an impoverished conceptualization of the 
concept; for instance, students with an action view often think of a function graph as being only a 
curve, a fixed object in the plane, they do not think the graph as defining a general rule where a set 
of input values are mapped to a set of output values (Carlson & Oehrtman, 2005). It is desirable to 
move students from an action view of functions to a process view of functions:  

A process conception of function involves a dynamic transformation of quantities according to 
some repeatable means that, given the same original quantity, will always produce the same 
transformed quantity. The subject is able to think about the transformation as a complete activity 
beginning with objects of some kind, doing something to these objects, and obtaining new 
objects as a result of what was done. (Dubinsky & Harel, 1992, p. 85) 

Is difficult to achieve this transition from static to a dynamic view of functions, however it has been 
suggested that technological tools can help in this transition. For example Borba & Confrey (1996) 
have suggested an approach to the study of functions based on visualization and the use of software; 
the approach focuses on the relationship between graphs and tabular values, and on the relationship 
between graphs and algebraic representations. For instance students could be asked to use the 
software to graph and explore how the coefficients of a quadratic function relate to translations, 
stretches and reflections of its graph. 



Examples of implementation of research findings in the design of mathematics 
textbooks tasks 
As we have claimed before, we believe that research findings as those previously presented can be 
implemented in the design of tasks for mathematics textbooks. We are aware that there may be 
different types of «implementation of research findings»; although it is not our intention to discuss 
such distinction here, we do want to clarify that in this work the «implementation of research 
findings» is interpreted as taking results or suggestions produced through research, and to use them 
as a source of inspiration for the design of mathematical tasks. To illustrate this point, next we 
present examples of tasks that were designed taking into consideration the research findings 
previously discussed. These tasks are included in the text González-Polo & Castañeda (2014), 
which was developed by the second and the third authors of this article. This is a textbook for high 
school level that is currently in use in the Mexican educational system; high school in Mexico 
traditionally consists of three years of education divided into six semesters, and this book is used in 
the fourth semester. Its print run for 2015 was 10,000 copies. The tasks proposed in the textbook are 
unpublished, but some of them have been inspired by tasks used as tools in the development of 
research in mathematics education. 

Tasks to study functions in different representation registers 

As mentioned before, research suggests that the concept of function should be studied and 
manipulated in different representation registers, but also should be promoted the transit between 
such representation registers, especially in directions that are not habitually addressed in school.  

To implement this research-based suggestion, we have designed activities that require the student to 
transit from a graphical representation register to an algebraic register, when the usual is to ask 
students to start from an algebraic expression to generate a table of values, and from this table trace 
the graph of the function. Figure 2 shows an example of this kind of task. 

 

Figure 2: Task that requires the student to transit from a graphical register to an algebraic register 

The English translation of the task instruction is as follows: «The graph in figure 1.66 belongs to a 
first degree polynomial function. Determine the new function obtained by rotating the graph 90º to 
the right leaving the coordinate (0, 0) as a fixed point». In this task the student must start working 
on a graphical register—rotating the graph 90º clockwise—and then determine the algebraic 
expression that defines the new function, which in this case would be f (x) = – x. 



Another example is shown in Figure 3. This is an activity in which the study of the concept of 
constant function in different representation registers is promoted, although contrary to usual, the 
student is required to transit from a numerical register—a table of values—to an algebraic register. 

 

Figure 3: Task that requires the student to transit from a numerical register to an algebraic register 

The English translation of the task instruction is the following: 

«A buoy in the Pacific Ocean measures salinity (the amount of NaCl, sodium chloride). The 
measures are sent every hour via satellite to a meteorological database for analysis. Table 3.4 shows 
the information obtained during an interval of 14 hours. 

a) Locate the coordinates on the plane and trace the resulting graph 

b) Write the function that best fits the data graphed 

c) Describe verbally the trend of the graph, i.e., how the data will behave in the next few hours?» 

The interpolation requested in paragraphs b) is somewhat facilitated because the function that best 
fits the data provided is a constant function, which in this case could be the function f (x) = 35. It is 
important to note that the activity is complemented by the question: «What operation should you 
apply to vertically translate the graph of the constant function?». This question attempts to engage 
the student in a dynamic conceptualization of the constant function, that is, to be able to understand 
that the graph of a constant function f (x) = k will move vertically by adding another constant c 
obtaining thus the graph of the function f (x) = k + c. 

Tasks to promote a process view of functions 

Inspired by the approach proposed by Borba & Confrey (1996) in which functions are studied with a 
strong emphasis on the visualization of their graphs, we have included tasks where students are 
asked to explore the graphical behavior of functions using software. It is assumed that these kinds of 
activities promote a dynamic conceptualization of functions where the graph is not interpreted as a 
fixed or static entity. An example of this type of task is shown in Figure 4. 



 

 

Figure 4: Task requesting the student to use graphing software to explore the effect of parameters on 
the graph of a function 

The task takes as its starting point the function f (x) = ax and the constant k. Then the student is 
asked to use software to explore the effects that different integer values of the parameter k produces 
in the graph of the following functions: 

f1 (x) = k・ax 

f2 (x) = ak・x 

f3 (x) = ak + x 

f4 (x) = ax + k 

Discussion 
In this article we have tried to illustrate how some research findings related to the learning of the 
concept of function can be implemented in the design of tasks for mathematics textbooks. If one of 
our aims as mathematics educators is to bring products that are generated in our discipline closer to 
the school society (teachers, students, administrators, parents, etc.), then the textbooks are a 
privileged outlet for this purpose since it allows to bring research findings into the heart of formal 
mathematics instruction: the mathematics classroom. 

Our enthusiasm as authors of textbooks and as researchers in mathematics education incline us to 
think that these tasks with a research-based design can be productive and beneficial for students’ 
mathematical learning, but what evidence is there to support these enthusiast assumptions? It would 
be necessary to develop studies from different perspectives that could allow us to understand how 
the textbook mathematical tasks are enacted in the classroom, and the type of conceptions and 
perspectives that they produce on students. 



Regarding the actual design of the tasks, in her reflections on textbook design, Yerushalmy (2015) 
has suggested that the tasks appearing in textbooks—or more precisely the mathematical concepts 
involved in such tasks—can be organized around objects and operations that can mathematically 
and pedagogically support a variety of progressions and sequences. For example, in the case of 
functions, it can be considered an organizational map that clarifies the type of mathematical object 
involved in the task (like linear or quadratic functions), but also the type of operations required in 
the task such as represent, modify, transform, analyze, operate or compare), where each operation 
can take place in symbolic, graphic, or numeric representations (see figure 5). 

 

Figure 5: Example of an organizational map for the tasks included in a textbook. Taken from 
Yerushalmy (2015, p. 243) 

This type of organizational maps can make the design of tasks more transparent, that is, to render 
explicit the mathematical objects involved in the tasks as well as the operations that are performed 
on them. These maps can work as a framework that helps both textbook designers and users to 
identify gaps in the presentation of concepts, and produce a sequencing of tasks that addresses the 
largest possible number of operations and contexts of representation with the intention to provide 
students with a richer picture of the mathematical objects studied.  

Finally, it is important to note that in addition to the textbook González-Polo & Castañeda (2014), 
there is a teacher’s guide explaining in more detail the theoretical background on which the design 
of the tasks is based, as well as their purpose. This kind of guide represents a fundamental support 
to achieve a classroom implementation of mathematical tasks that is faithful to the intentions of the 
task designers.  
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Designing a research-based test for eliciting students’ prior 
understanding on proportional reasoning  
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Mathematics education in the Swedish prison education program is struggling with a high rate of 
students that fail to pass the basic mathematics courses. One of the main issues seems to be the 
challenge for the teachers to elicit students’ widespread prior mathematical knowledge. The 
consequence of this is that the teachers cannot meet the students’ educational needs with meaningful 
teaching activities. Focusing on the most pervasive mathematical idea in these courses, proportional 
reasoning, a test was designed that aimed to elicit students’ mathematical reasoning. This paper 
illustrates that by making use of accumulated and selected research results and findings, we can gain 
valuable information on students’ proportional reasoning competency. This information may be used 
as an access point for individualized instruction. 
Keywords: Adults, individualized instruction, proportional reasoning, prison education. 

Introduction 

In the Swedish prison education program, only two out of ten students finish and pass their 
mathematics courses1. This is disturbing in itself, but particularly so given the resources available. 
The teachers are university trained upper secondary school mathematics teachers, and the students 
sign up voluntarily and typically are highly motivated. Moreover, all courses are individually 
designed for each student, which should ensure good teaching and learning conditions. However, a 
challenge is that the student group shows significant variation in age, ethnicity, socioeconomic 
background, school background and life experience in general. For the basic mathematics, the 
mathematics in compulsory school and the first course in upper secondary school, there exists no such 
thing as one course design that suits all students' different backgrounds. In 2015 the Swedish prison 
education program in mathematics had 728 students enrolled, spread across 47 prisons, and 80% of 
these were found in the basic mathematics courses  

A plausible reason for the low pass rate in the basic courses is that the teachers fail to make proper 
use of the individualization possibilities. A prerequisite for actual individualization is that teachers 
have the opportunity to find out students' prior mathematical understanding and adapt the teaching 
accordingly. Realizing that this opportunity hinges on the teachers’ competencies, e.g., they need to 
put their didactic and pedagogical teaching competency to play (Niss & Højgaard, 2011). But 
teachers’ possibilities to individualize instruction might also depend on various forms of support. 
Inspired by Jankvist and Niss (2015), I report on a research-based effort to develop such support: a 
test for identifying beginner students’ prior mathematical understanding. The test needs to provide 
information on students prior understanding in two ways:  vertically, in relation to progression 
throughout school years, and horizontally, throughout taught topics in compulsory school. Hence, a 
major design decision was to focus the content on proportional reasoning. As will be argued below, 
proportional reasoning permeates the basic mathematics courses in a systematic way, which means 
that probing students’ competencies in this area gives a good access point for individualized teaching. 
The foundation for the test is the accumulated and selected research results and findings related to 
proportional reasoning, since proportionality may be the most important, pervasive and powerful idea 
in elementary school mathematics (Behr, Harel, Post, & Lesh, 1992; Lamon, 2007). 

Constructing such a test involves several design decisions involving the content and form of the test, 
as well as constructing, collecting and adapting test items that realize these design decisions. The 
                                                 
1 Data from administrator Gunilla Jonsson, personal communication, July 12, 2016. 



main question elaborated on in this paper is: How can research findings inform the development of a 
test that elicits students’ prior understanding on proportional reasoning so as to provide teachers 
with an access point for designing individualized teaching?  

Theoretical underpinnings for the development of the test 
Mathematical reasoning is one of eight competencies for identifying and analyzing students’ 
mathematical understanding, described in the Danish KOM-project (Niss & Højgaard, 2011). “The 
mathematical reasoning competency consists, first, of the ability to follow and assess mathematical 
reasoning, i.e., a chain of arguments put forward – orally or in writing – in support of a claim.” 
(Jankvist & Niss, 2015,. p. 264). The kind of mathematical reasoning called proportional reasoning 
is a prerequisite for successful further studies in mathematics and science, since multiplicative 
relations underpin almost all number-related concepts studied in elementary school (Behr et al., 1992; 
Lamon, 2007). A proportion is defined as a statement of equity of two ratios a/b = c/d. Proportion can 
also be defined as a function with the isomorphic properties f(x+y) = f(x) + f(y) and f(ax) = af(x) 
(Vergnaud, 2009). A function, A(x,y), can also be linear with respect to several variables, (n-linear) 
functions. For example the area functions for a rectangle with sides x and y is bilinear (2-linear) since 
A(x,y) = xy and it is easy to check that this function is linear with respect to each of its variables 
when the other is considered constant.  

Proportionality is a key concept in mathematics and science education from elementary school to 
university (Lamon, 2007). Despite the pervasive nature of proportional reasoning throughout the 
school years it is well known that children around the world have considerable difficulty in 
developing the mathematical competency to reason about fractions, percentages, ratio, proportion, 
scaling, rates, similarity, trigonometry, and rates of change (Behr, Harel, Post, & Lesh, 1992; Lamon, 
2007). Typically, proportional reasoning problems come in the shape of a missing value problems or 
comparison problems (Lamon, 2007). In the former, a multiplicative relation is present where three 
elements are provided and the fourth is to be found. The latter asks the student to compare which ratio 
is the bigger or smaller.  

From accumulated research, some key points for the developing of proportional reasoning and the 
building of multiplicative structures can be identified (c.f. Behr, Harel, Post, & Lesh, 1992; Fernández 
et al., 2012; Lamon, 2007; Shield & Dole, 2013; Van Dooren, De Bock, Vleugels, & Verschaffel, 
2010; Vergnaud, 1983). Students need to: 

1. Be able to distinguish additive from multiplicative reasoning and recognize when a 
multiplicative relation is present;  

2. Be able to draw connections to the algebraic rules for fractions when working with part/part 
ratios, part/whole fractions and proportions, a:b = c:d;  

3. Recognize and use a range of concrete representations for proportions, e.g., tables, graphs, 
formulas and drawing pictures;  

4. Acknowledge the properties of geometrical objects in two- and three dimensions for 
calculation of scaling and similarity.  

Key point 1. Research studies and findings show that the ability to distinguish additive from 
multiplicative comparisons constitute a major stumbling block for students (Van Dooren et al., 2005). 
Students need to be able to recognize that a proportional situation exists when the comparison is 
multiplicative (Shield & Dole, 2013). In Sweden, students get acquainted with additive strategies for 
reasoning about quantities in grades 4 to 6. For example, an increase in price by 10% can be calculated 
in two steps. First, calculate how much 10% is and then add this to the original price. A transition 
from an additive to multiplicative thinking approach is introduced in grades 7 to 9. The new price can 
now be approached in one multiplicative step: the original price multiplied by the factor 1.1, to find 



the new price. Far from all students embrace this new idea of approaching percentage change. The 
additive approach works well for calculating a single increase or decrease, while they may lack 
motivation to change strategy.  
Fernández et al. (2012) found that the error of using additive strategies on proportional situations 
increased during primary school and decreased during secondary school. A desirable development in 
students’ reasoning would be that they, after being introduced to multiplicative reasoning, still hold 
on to their ability to use additive strategies when appropriate. However, research findings show that 
once students have been introduced to multiplicative strategies they tend to overuse this approach on 
everything that resembles a proportional situation (Van Dooren et al., 2005). Further, non-integer 
ratios cause more errors than integer ratios (Fernandez et al., 2012; Gläser & Riegler, 2015), while 
the non-integer situations can be considered to require a more developed understanding of rational 
numbers.  

Key point 2. Many situations require that students can relate to part/part ratios and part/whole 
fractions (Vergnaud, 1983). For example, if a company employs 11 women and 31 men, the 
part/whole fractions 11/42 and 31/42 represent the relation of women and men related to the whole. 
If asked to determine the company’s gender distribution, it is instead the part/part ratio 11:31 between 
women and men that is relevant. When a ratio connects two parts of the same whole, students may 
not adequately recognize the difference between part/part and part/whole relationships (Clark, 
Berenson, & Cavey, 2003). It is not easy for students to approach situations that require shifting from 
part/part to part/whole situations. Moreover, students need to connect mathematical ideas. Since ratios 
can be written in fraction form, they obey the same mathematical laws as fractions (Shield & Dole, 
2002).  

Key point 3. Another stumbling block for students is that they tend to apply linear proportional 
reasoning on scaling, without considering the nature of the item. Van Dooren et al. (2010) found that 
students tend to use linear proportional reasoning even when it is inappropriate e.g., in word problems 
where a real word context is required to solve the problem. For example: Farmer Gus needs 8 hours 
to fertilize a square pasture with sides of 200 meters. Approximately how much time will he need to 
fertilize a square pasture with sides of 600 meters? Recognizing this as a missing value problem i.e., 
three values given and one unknown, this problem will trigger a cross-multiplication type solution 
which gives the wrong answer of 24 hours. Since scale is one of the major themes that span 
mathematics, chemistry, physics, earth/space science and biology it is crucial for students to gain 
understanding of the concept of scale. Scale in one, two, and three dimensions is a central unifying 
concept that crosses the science domains, crucial for understanding science phenomena (Taylor & 
Jones, 2009).  

Key point 4. Proportionalities can be represented in different ways, e.g., with words, pictures, 
algebraically, with graphs or tables. Shield and Dole (2013) enhance the use of a range of 
representations to promote students’ learning. If students are given the opportunity to work with 
graphs, tables and other diagrams that illustrate the proportional situation present in the mathematical 
task, their conceptual understanding is promoted (Vergnaud, 2009). Further, their ability to see 
connections between problems that are based on the same mathematical idea is enhanced, e.g. to see 
that missing value problems on similarity, proportional functions and speed problems can be 
illustrated with different representations but approached with the same mathematical idea.  

Several concepts are in play when students reason with proportional quantities. The intertwined 
concepts required for the development of proportional reasoning makes up a conceptual field 
(Vergnaud, 2009). A conceptual field is a set of situations and concepts tied together. As the theory 
of conceptual fields show, together with other well-known theoretical frameworks for conceptual 
understanding, the meaning of a single concept does not come from one situation only (Sfard, 1991; 
Tall & Vinner, 1981; Vergnaud, 2009) but from a variety of situations demanding mathematical 
reasoning related to the concept in question. The conceptual field of intertwined concepts in play in 



proportional reasoning cover at the least “linear and n-linear functions, vector spaces, dimensional 
analysis, fraction, ratio, rate, rational number, and multiplication and division” (Vergnaud, 1983, p. 
141). It is the complexity of the concepts in play together with the pervasive nature of proportional 
reasoning from elementary school to university that makes proportional reasoning suitable for the 
design of the test. 

Design of the test on proportional reasoning 

An important design choice for the test was to use a multiple-choice design. Even though open 
response tests are a powerful method to elicit students’ understanding, the advantages of multiple-
choice tests were in this case considered to be the best option. An open response test can be a negative 
experience for students with low prior understanding, since they may be unable to supply any 
answers. Since the students often have bad experiences from school mathematics, we want to avoid 
negative experiences in the beginning of a mathematics course. A multiple-choice test, on the other 
hand, is easy to take for the students. Even when they do not have the mathematical competencies to 
reason and solve an item, they can still provide an answer by intuition or chance.  The test is designed 
to be followed up with student interviews. This is an important step since many students do not have 
Swedish as their mother tongue, which of course may cloud their interpretation of the items. Many 
of the students also have concentration difficulties, so a written test may not give a satisfactory picture 
of students’ prior understanding. 

A downside of multiple-choice is the possibility to choose the right answer by chance. For this reason, 
a two-tier design was chosen (see examples below) yielding only 0.125 probability to pick both the 
right true or false value and the right claim. A pilot version of the test, consisting of 22 items, was 
tried out in April 2016. Feedback from the participants informed me that the test was too long and 
that some of the items were difficult to interpret. After revision and further testing, the resulting test 
consists of 16 proportional reasoning items. The final version of the test takes about 20 to 40 minutes 
to complete, without any time pressure.  

The items in the test were chosen from published research papers, with the intention to draw on 
knowledge from the research field on proportional reasoning. The rationale for my choices is as 
follows: a) the items have already been proved to work well for giving information on students’ 
understanding, and b) extensive background information of the nature of the mathematical reasoning 
in play are provided as well as analyzes of students results. Referring to the key points presented in 
the theory section, the potential reasoning related to each item involves several concepts and abilities, 
yet the items can still be categorized as referring mainly to one or two of the four presented key points:  

Key point 1. Students’ ability to distinguish additive from multiplicative reasoning and recognize 
when a multiplicative relation is present, and is always required for carrying out proportional 
reasoning, however mainly tested by items 1, 5, 6, 7, 11 and 16.  

Key point 2. Students’ ability to draw connections to the algebraic rules for fractions when working 
on part/part ratios, part/whole fractions and proportions, a:b = c:d, is mainly tested by items 2, 4, 12, 
and 13. 

Key point 3. Students’ ability to recognize and use a range of concrete representations for proportions, 
e.g., tables, graphs, formulas and drawing pictures is mainly tested by items 3, 8, 9 and 15. 

Key point 4. Students’ ability to acknowledge the properties of geometrical objects in two- and three 
dimensions for calculation of scaling and similarity is mainly tested by items 8, 10, 13 and 14. 

Several errors on items referring to the same key point indicate a lack of understanding that should be 
investigated further in the following student interview. The test items are also adapted to mirror the 
progression throughout the basic course. Items 1 and 4 refer to content taught in part two of the basic 



course. Items 2, 3, 6 and 10 deal with content from part three and part four is reflected in items 7, 8, 
9 and 11-16. 

 

Key points 
 

 
Basic course 

Distinguish 
additive from 
multiplicative 
reasoning 

Draw 
connections to 
the algebraic 
rules for fractions 

Recognize and 
use a range of 
concrete 
representations 

Acknowledge the 
properties of 
geometrical 
objects 

Part 2 Item 1 Item 4   

Part 3 Item 5 
Item 6 

Item 2 Item 3 Item 10 

Part4 Item 7 
Item 11 
Item 15 
Item 16 

Item 12 
Item 13 
Item 16 

Item 8 
Item 9 
Item 15 

Item 8 
Item 13 
Item 14 

Table 1. Schema over items in relation to key points and progression in the basic courses 

The sources for the test items are: Hilton, Hilton, Dole, and Goos (2013); Fernadéz et al. (2012); Niss 
and Jankvist (2013a; 2013b); and Gläser and Riegler (2015). The items from Hilton et al. were already 
designed as two tier multiple test items. The other items were adapted from their original design to a 
multiple-choice design, using erroneous answer alternatives either reported in the original studies or 
answer alternatives recalled from my experience from teaching. 

Examples of test items 
In what follows, I will exemplify how research results on common difficulties on proportional 
reasoning are guiding the choice of the test items. To illustrate, items included to elicit students’ 
difficulties to discriminate additive from multiplicative situations and difficulties with scaling are 
displayed below. 
Consider this item, adapted from Fernadez et al. (2012): 

Loading boxes: Petra and Tina are loading boxes in a truck. They started together but Tina loads 
faster. When Petra has loaded 40 boxes, Tina has loaded 160 boxes. When Petra has loaded 80 
boxes, Tina has loaded 200 boxes. 
True or False because (choose the best reason) 

a) Tina will always be 120 boxes ahead of Petra. 
b) Petra loads faster than Tina. 
c) Tina loads 4 times faster than Petra. 
d) Tina loads with double speed. 

This is a proportional situation where Tina is loading 4 times faster than Petra, so the claim “When 
Petra has loaded 80 boxes, Tina has loaded 200 boxes.” is false. Students should consider whether 
it is appropriate to use additive reasoning, that is, if Tina has still loaded 120 boxes more than Petra. 
If the students answer a) Tina is always 120 boxes ahead of Petra; further investigation of their 
reasoning strategies is required, though the answer indicates that there may be a lack of transition 
from additive to multiplicative thinking. This suspicion is further strengthened if the student is 
successful in items requiring additive reasoning, like in the item below, from Hilton, et al. (2013): 



Running laps: Sara and Johan runs equally fast around a track. Johan starts first. When Johan has 
run 4 laps, Sara has run 2 laps. When Sara has completed 6 laps, Johan has run 12 laps. 
True or False because (choose the best reason) 

a) The further they run; the further Johan will get ahead Sara. 
b) Johan is always 2 laps ahead of Sara. 
c) Johan completes double the laps of Sara. 
d) Sara has run 3 lots of 2 laps to make a total of 6 laps, so Johan must have run 3 lots of 4 laps 

to make a total of 12 laps. 

This is an additive situation where Sara and Johan run at the same speed. Students should consider 
whether it is appropriate to use multiplicative reasoning, that is, if Johan runs 3 times faster than Sara. 
If the students answer d) Sara has run 3 lots of 2 laps to make a total of 6 laps, so Johan must have 
run 3 lots of 4 laps to make a total of 12 laps, further investigation of their reasoning strategies is 
required though the answer indicates that a difficulty to discriminate multiplicative from additive 
situations exists.  

The two examples above illustrate how research findings on proportional reasoning have been used 
in the design of the test. By including items requiring multiplicative reasoning as well as items 
requiring additive reasoning you may elicit the students' ability to discern when a multiplicative 
situation is present.  

The Dice- and the Circle item below are adapted from Niss and Jankvist (2013b), The Dice item is 
originally phrased: A cube of wood with all edges 2 cm weighs 4.8 grams. What weighs a cube of 
wood, where all edges are 4 cm? Justify your answer. [En terning af træ med alle kanter lik 2 cm 
vejer 4.8 gram. Hvad vejer en terning af træ, hvor alle kanterne er 4 cm? Begrund dit svar.] I added 
the claim: “A wooden dice where all edges are 4 cm weight 19.2 g.”, and the response alternatives.  

Dice: A wooden dice where all edges are 2 cm weighs 4.8 g. A wooden dice where all edges are 
4 cm weight 19.2 g. 
True or False because (choose the best reason) 

a) The weight increases 4 times if the edge doubles. 
b) The weight increases 6 times if the edge doubles. 
c) The weight increases 8 times if the edge doubles. 
d) The weight doubles if the edge doubles. 

Circle: Simon says that if you draw a new circle with half the diameter of another circle, the 
new circle will have half the perimeter and half the area of the other circle. 
True or False because (choose the best reason) 

e) If the diameter is halved, the perimeter and area is halved. 
f) The area will be ¼ and the perimeter ½ of the original. 
g) You cannot know without knowing the length of the diameter in the new circle. 
h) You cannot know without knowing the length of the diameter in the original circle. 

Students may fail to interpret the effects on volume from a doubling of the edges, while further 
investigation on the students’ conceptualization of geometrical objects needs to be undertaken. To 
reason about the circle item, the students need to consider the conjunction that both the perimeter and 
the area are halved. Since (area scale) = (length scale)2; a halving of diameter will result in a ¼ size 
of area while the perimeter halves. An error on these items may indicate difficulties to acknowledge 
the properties of geometrical objects in two- and three dimensions for calculation of scaling and 
similarity.  



Reflection 

There are many reasons why educational research tends to be isolated from practice. Research results 
and findings need to undergo a number of transformations from theory to practice, before they can be 
adapted to teaching practice, as illustrated in the design of the discussed in this paper. The test was 
designed with considerations to a special prison context and early results from using the test shows 
that it provides valuable support for the teacher when eliciting students’ prior understanding of 
mathematics. Although, the test focuses on the mathematical reasoning competency it also informs 
us of students’ mathematical thinking competency, problem-handling competency and modeling 
competency since these competencies are intertwined and overlapping. Together these four 
competencies create one out of two overall competences associated with mathematics: The ability to 
ask and answer questions in and with mathematics (Niss & Højgaard, 2011). The other overall 
competence: The ability to deal with mathematical language and tools, covers the intertwined 
competencies representing competency, symbol and formalism competency, communication 
competency and aids and tools competency. The scope of the test does not cover the ability to deal 
with mathematical language and tools. These competencies are left to be tackled within the course 
design, as well as the further development of the students’ ability to ask and answer questions in and 
with mathematics.  

A fundamental idea of educational research is that research findings should be put in play in teaching 
practice to help students to succeed with their studies in mathematics. I have discussed the design of 
a test for supporting teachers when pursuing the goal of finding an access point for individualized 
instruction. Through making use of accumulated and selected research results in the area of 
proportional reasoning in the design of the test, we gain a more thoughtful idea of the students’ prior 
understanding.  
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It has been shown that children who control strategies are better able to direct their own learning 
and knowledge. Seeking for an effective teaching method to achieve this goal, we experimented with 
the Explicit Teaching method vs. a traditional school one, using both to teach the Working Backwards 
Strategy. The study was conducted amongst 57 mathematically talented students participating in a 
unique mathematics program called Kidumatica. A mixed method analysis showed that Explicit 
Teaching produced better results regarding students' ability to use the strategy, though it did not 
affect the students' ability to recognize the strategy. This indicates that young students can understand 
when to use this powerful tool and, with further guidance, can also master their ability to use it. 

Keywords:  Explicit teaching, strategy, working backwards strategy 

Introduction 

Since Polya (1957), who claimed that students who control many strategies will become more 
effective and intelligent problem solvers, other researchers have advocated integrating problem 
solving strategies into school mathematics (English, 1993; Steiner, 2007), especially for talented 
students (Lee, 2014). The development and use of strategies is definitely not intuitive, and students 
need proper instruction, guidance and encouragement in order to systematically implement strategies 
in different domains - especially in problem solving (Tishmen, Perkins & Jay, 1996). Unfortunately, 
teachers face immense difficulties when it comes to teaching strategies in an effective way (Zbiek & 
Larson, 2015). This fact led us to look for an effective method to teach (talented) students some basic 
problem solving strategies. Based on interviews and talks with “professional mathematicians," we 
decided on four such strategies: Trial and Error, Proof by Contradiction, Working Backwards, and 
Recursion, which were taught to students using the “Explicit Teaching method.” In this paper we 
focus on just one example, showing how Explicit Teaching can be used to teach students the 
"Working Backwards Strategy” for solving non-routine mathematical problems.  

Explicit teaching method       

Explicit Teaching is a systematic methodology that is currently used primarily to teach reading and 
mathematics. This method is described as “highly organized and structured, teacher-directed, and 
task-oriented” (Archer & Hughes, 2011). All stages of the learning process include mediation 
between the teacher and the learner, in which the teacher transmits an external understanding of 
certain information to the learner, who then processes that pre-determined understanding (Olson, 
2003). Nevertheless, using Explicit Teaching does not predetermine or confine learners’ thinking; on 
the contrary, it can help them become more active solvers and foster independent thinking (Portnov-
Neeman & Amit, 2015). The methodology consists of a five step model (Figure 1). The steps 
described below are performed sequentially by the instructor in order to efficiently pass on specific 
information to the learner with as little ambiguity and room for error as possible (Rosenshine, 1986).  



Orientation: Each lesson begins with a clear instruction about the purpose of the lesson. Learners 
need to understand what they going to learn and how it connects to previous lessons.  

Presentation: The lesson material is divided into small units that fit the learners’ cognitive abilities. 
The teacher uses a model or schema to guide them through their problem solving process. 

Structured Practice: The instructor gives a direct and detailed explanation of the problem solving 
using the model or schema that was presented in the previous step. During this phase, it is critical that 
the instructor asks learners questions and encourages class discussion in order to check and assess 
their understanding of the material and clarify any confusion.  

Guided Practice: In this practice the instructor addresses individuals’ questions and misconceptions 
one-on-one, and tailors responses to meet the individual needs of each learner. Students can work in 
small groups in order to develop their ideas together and help each other with the new material.  

Independent Practice: In this step, learners are asked to complete an assignment on their own and 
without assistance. They are not expected to have a flawless understanding of the lesson, but they 
must understand the steps involved in the process. This step should continue until learners gain full 
independent proficiency with the materials.  

 

 

 

    

 

 

 

Figure 1: Model of Explicit Teaching 

 

‘Working Backwards’  

‘Working Backwards’ is a useful and efficient strategy for solving problems in many aspects of our 
lives, in which an achievable outcome is known, but we have not yet determined the path towards 
achieving it (Newell & Simons, 1972; Portnov-Neeman & Amit, 2015). When dealing with word 
problems, for example, the information given in the problem can appear like a complex list of facts, 
so it is sometimes helpful to begin with the last detail given (Wright, 2010). The Working Backward 
strategy is illustrated in Figure 2 and explained step by step in detail below:  

1)  Read the problem from beginning to end and identify all its components and steps.  

2)  Check the final outcome of the problem.  

3)  From the final outcome, start reversing each mathematical operation in each step until you 
reach the beginning of the problem. For example, reverse the adding operation and replace with a 
subtraction operation.   



4)  After reversing every step, resolve the initial state of the problem. 

5)  Check the answer by starting from the initial state and working through the steps to see if the 
final outcome is achieved (Amit, Heifets & Samovol, 2007). 

 

 

 

 

 

 

 

 

Figure 2: Model of the Working Backwards strategy (Amit, Heifets & Samovol, 2007) 

 

Methodology 

The study presented here examined the effect of using the Explicit Teaching method to learn a new 
strategy, specifically the Working Backwards Strategy for mathematical problem solving. The 
research questions are:  To what extent does Explicit Teaching affect: 

a) The ability to recognize when the Working Backwards Strategy is needed for problem 
solving? 

b) The ability to use and implement the Working Backwards Strategy? 

Context 

The study was conducted in the framework of "Kidumatica". Kidumatica - the math club for 
excellence and creativity - is an after school program for talented students in the 5th to 11th grades 
who are interested in mathematics, but require further tools to reach their full potential (Amit, 2009). 
Fifty-seven (N= 57) 6th grade students were divided in two groups: an Experimental Group (EG = 30 
students) and a control group (CG = 27 students). Over a period of six months, these students learned 
different mathematical strategies, including the Working Backwards Strategy. The EG learned 
through the Explicit Teaching method, while the CG was taught using the traditional school one. 
None of the students in this study had been research subjects in previous studies involving the 
Working Backward Strategy, and none had learned the strategy before. 

  



The ‘Explicit Teaching’ Group (Experimental Group) 

Students in this group studied all the strategies by means of the Explicit Teaching method. Each 
strategy, including the Working Backwards Strategy, was taught for four weeks by one of the 
researchers, according to the model illustrated in Figure 1. The teacher had an integral part in the 
lessons. She clearly and explicitly outlined what the learning goals are for the student, and offered 
clear, unambiguous explanations of the skills, information and the problem solving process. As the 
lessons progressed, the teacher’s role reduced, until students were able to solve problems 
independently. It was like riding a bicycle, were the instructor gradually releases his hold of the bike 
and the child rides off by herself. The first lesson started with an explanation of the strategy, including 
its importance as well as where and how it should be implemented. The teacher showed the students 
the model of the strategy and explained the role of each step in the solution process. The following 
lessons were dedicated to structural, guided and independent practices. During the structured practice 
the teacher gave a direct and detailed explanation of the problem solution using the Working 
Backwards model (Figure 2). The teacher encouraged discourse between the students and asked 
questions to assess their understanding and clarify any confusion. In the guided practice, students 
worked in smaller groups or by themselves on different working backwards problems. The teacher 
walked around the students and addressed individuals’ questions. When the teacher felt confident 
enough of a student’s abilities, that student was allowed to start working individually and begin the 
independent practice step. At the independent practice stage, students were asked to complete several 
assignments using the working Backwards Strategy, and to solve complex problems on their own. 

Traditional teaching control group 

The control group studied the Working Backwards Strategy for the same period of time as the EG, 
but they studied the strategy in the traditional school method. This group differed from the EG in the 
following ways: 

1. Lessons were mainly dedicated to students’ work. The teacher’s part was smaller than in the 
EG. Her role was to give short explanations about the lesson activities. She did not use the 
word “strategy” in her explanations, or explain that a special approach is needed for solving 
working backwards problems. Most of the lesson was dedicated to independent time, so that 
students would develop their own strategy toward those problems. It was important that 
students draw their own conclusions, create their own conceptual structures, and assimilate 
the information in the way that makes the most sense to them. 

2. The teacher did not show the model of the strategy and did not name the strategy explicitly. 
Instead, students could develop their own model and meaningful name based on the teacher’s 
examples and their own experience. 

3. The practice process in the CG was mainly independent, in contrast to the three levels of 
practice used in the EG. That led to less room for discussion and collaborative work between 
the students, unlike the EG, where time was allotted for these during the structured and guided 
practice. 

  



Data collection and analysis 

Data was collected via pre- and post-tests, students’ products, short interviews during and after the 
lessons, and teacher’s notes. The pre/post-tests were administrated to both groups before and after the 
learning program. Both tests included working backwards problems. This paper will discuss two 
problems from the pretest (problems 1 and 2 below), and two from the posttest (problems 3 and 4).  

1. Card Problem: “Yael, Danny and Michael played cards. At the beginning of the game each one 
had a different amount of cards. Yael gave Danny 12 cards. Danny gave Michael 10 cards and 
Michael passed Yael 4 cards. At the end each one of them had 20 cards. How many cards did Yael, 
Danny and Michael have in the beginning?” 

2. Mangoes Problem: “One night the King couldn't sleep, so he went down into the royal kitchen, 
where he found a bowl full of mangoes. Being hungry, he took 1/6 of the mangoes. Later that night, 
the Queen was hungry and couldn't sleep. She too found the mangoes and took 1/5 of what the King 
had left. Still later, the first Prince awoke, went to the kitchen, and ate 1/4 of the remaining mangoes. 
Even later, his brother, the second Prince, ate 1/3 of what was then left. Finally, the third Prince ate 
1/2 of what was left, leaving only three mangoes for the servants. How many mangoes were originally 
in the bowl?” 

3. Weight Problem: “Four students in the class weighed themselves. Cobi was 15 kilograms lighter 
than Adi. Gaby was twice as heavy as Cobi and Jenya was seven kilograms heavier than Gaby. If 
Jenya weighed 71 kilograms what was Adi’s weight?” 

4. Baseball Problem: “The Wolverines baseball team opened a new box of baseballs for today’s 
game. They sent 1/3 of their baseballs to be rubbed with special mud to take the gloss off. They gave 
15 baseballs to their star outfielder to autograph. The batboy took 20 baseballs for batting practice. 
They had only 15 baseballs left. How many baseballs were in the box at the start?” 

At the end of each test, students were asked to write what method they had used to solve the problems. 
The purpose of the pre-test was to determine the homogeneity of the two groups. The post-test 
examined the effect of the teaching methods at the end of the learning process.  A five point scale 
was used to rank students' answers (5 points = full and correct answer, 0 points = no answer). For 
example, if students identified all the steps, calculated each one by doing the opposite mathematical 
calculation and wrote the final answer correctly, they received 5 points. Figure 3, for example, shows 
a five point solution for the “Weight Problem.” The problem has three steps: (1) Jenya was seven 
kilograms heavier than Gaby; (2) Gaby was twice as heavy as Cobi; (3) Cobi was 15 kilograms lighter 
than Adi. The student calculated the weight of each person by working backward through every step 
of the problem. Figure 4 shows an example of a 2 point solution. The student started with the last 
detail given and calculated Gaby’s weight correctly. However in the next two steps he did not reverse 
the mathematical operations and got an incorrect answer. 



 

Figure 3: Example of a five point answer to the weight problem 

 

Figure 4: Example of a two point answer to the weight problem 

Findings  

Findings from the pre-test showed that in both problems, there was no significant difference between 
the groups, which indicates that both groups had the same level of homogeneity. After six months of 
learning strategies, the average scores in the post-test for both problems were higher among the EG 
than the CG.  In Table 1 we can see a significant difference in the post-test between the two groups 
in both problems. Figure 5 indicates that students’ ability to recognize the strategy improved after the 
learning process, but that both groups had similar results in the pre and post-test. 

Table 1: Results from pre- and post-test in the EG and the CG 

 

 

 

 

 

 

 

 

 



 

Figure 5: Amount of students from the EG and CG that recognized the Working Backwards 
Strategy in pre- and post-tests 

Our qualitative analysis of students' solutions revealed that the EG students reversed the mathematical 
operations much better and more easily than those in the CG, and were thus able to solve the problem 
correctly. Moreover, while the EG explicitly stated the name of the strategy they had used when 
asked, the CG students were very creative in naming the strategy, coining names such as, “going in 
through the back door”, “reverse manual” etc. Finally, the EG students used the model of Working 
Backwards Strategy in a very efficient way, sometimes adjusting the model to make it easier to use.  

Discussion  

Strategies are undoubtedly an important tool for goal-directed procedures in problem solving. 
Introducing them at a younger age can improve learners’ mathematical ability (Polya, 1957) as well 
as their understanding and thinking skills (English, 1993). To achieve this goal, it is important to use 
a specific teaching method (Tishmen, Perkins & Jay, 1996). In this study, that method is the Explicit 
Teaching method, through which we introduced the Working Backwards Strategy. The study 
examined the effect of this method on students' ability to recognize and solve working backwards 
problems. Fifty-seven sixth graders were divided into two groups, an experiment group (EG) that 
studied with the Explicit Teaching method and a control group (CG) that studied with a traditional 
school one. The strategy was unfamiliar to both groups and the findings from the pre-test showed that 
both groups had a similar starting point. At the end of the learning process, the group that studied 
explicitly showed higher results than the control group. The structured steps of the Explicit Teaching 
helped the students to have a better, clearer understanding of the strategy (Anhalt & Cortez, 2015). 
Qualitative analysis revealed that students who studied explicitly were more much resourceful in their 
solutions. They understood how the strategy works, adopted it and changed it to make it easier to 
solve. We believe that this ability developed due to the discourse and the collaborative work in the 
structured and guided practice. We saw how students’ understanding of the strategy and its use 
improved over time. They asked more questions, listened to other students’ answers and learned how 
to avoid misconceptions. In addition, the integral role of the teacher in this method helped students 
gradually to build their confidence. Thus, these students were more prepared to work on working 
backwards problems by themselves. Our previous study showed that teaching explicitly can help 
students become active learners and foster their independent thinking (Portnov-Neeman & Amit, 
2015). The current study supports this conclusion, showing that Explicit Teaching did not limit 
students' thinking by fixing it on a particular process. On the contrary, students understood the core 
principle of the Working Backwards Strategy and then applied it creatively in whatever way seemed 
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best to them. Both groups showed improvement over time in their ability to recognize when and why 
the Working Backward Strategy is needed. The percentage of students that recognized the strategy 
before and after the learning process was similar. This is very encouraging, since it may indicate that 
the teaching method does not affect students' ability to recognize strategies. We can assume that with 
additional practice, all of the students could potentially master strategies and develop their 
understanding and their strategic approach to problem solving, but this has to be tested and 
researched. In this study, we experimented in ‘laboratory conditions’ with talented students, and 
found that the method works. Further research is needed to confirm its effectiveness outside of the 
Kidumatica Mathematics Club, in the ‘real world’ of education.  

Conclusion 

Mathematical strategies are complex concepts to learn and understand, and we as educators must 
search for the most effective way teach them. In this study, we used a systematic and structured 
methodology called Explicit Teaching, and found that students who studied with this method had 
higher scores than students who studied with a traditional school method. Introducing strategies like 
these to students is important, since they can help students evolve into better thinkers and develop 
their ability to solve problems. We believe that strategies can and should be introduced from a 
younger age so they can be developed over time. We have found that younger children are capable 
of acquiring the basic tools. Given time, they will be able to develop their tool kit of strategies further, 
and eventually master them all. It is our obligation as educators to teach our students how to use 
strategies correctly, and the sooner we do so the better. 
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This paper describes and discusses the framing of, and experiences from, a project that combine 
research, practice- and teachers’ professional development based on the tenets of the Models and 
Modeling Perspective on teaching and learning (MMP). Besides providing a general description of 
the methodological considerations in the project design, the paper describes how the accumulated 
results and experiences in the research literature on so-called model eliciting activities are used to 
inform the design, implementation and evaluation of activities aiming at introducing functions to 
grade 8 students. The focus of the paper is on the implantation and aim to showcase how the 
teacher in question realized the offered perspective and tools in practice. 

Keywords: Practice development, teachers’ professional development, models and modeling 
perspective, model eliciting activities. 

Introduction 
Clarke, Keitel and Shimizu (2006) have shown that much of the teaching and learning of 
mathematics in many counties are centered around, and dominated by, a traditional use of 
textbooks. This practice seems to strengthen as the students progress though the educational system, 
as does the fact that many students lose their interest in, and motivation for, learning mathematics 
with increasing age. TIMSS 2007 for example shows that the attitudes towards mathematics in 
Sweden expressed by grade 4 students generally are much more positive compared to the attitudes 
among grade 8 students (Skolverket, 2008). This situation in combination with the declining results 
of Swedish students on the international assessments PISA and TIMSS, are reflected and frequent in 
the public debate as well as in many of the ongoing drives, projects and programmes trying to 
realize changes in schools. Learning mathematics is complex (Niss, 1999), and now more than ever 
is the role teachers play stressed for what mathematical understanding and knowledge the students 
develop in schools (Hattie, 2009; 2012).  

However, the challenges that teachers meet in their everyday mathematics teaching are numerous 
and of various kind and nature. Students’ lack of interest in combination with too monotonous (and 
"traditional") forms of teaching seems to be part of the reasons for the Swedish students’ declining 
performances as well as interest in mathematics. Often, a proposed strategy to reverse theses trends 
is to try to change the prevailing norms in the classroom (Yackel & Cobb, 1996) by increasing 
student interaction and the overall student activity. Teachers are encouraged to try to vary their 
teaching, increase students’ activity levels and strive to make students ‘talk more mathematics’. But 
how is this going to work in practice in everyday teaching? How do we get students to ‘talk more 
math’ and to be more engaged and (inter-)active in the mathematics classrooms? 

The concerns mentioned above are part of the motivation for the installment for a joint collaborative 
initiative between two municipalities and a university, from which this paper will discuss some 
aspects. The overarching question for the initiative is: How can we organize the mathematics 



teaching so that students are given the opportunity to develop their conceptual, procedural/ 
methodology and reasoning abilities in, for the students, interesting and engaging ways? 

A project combining research, practice- and teachers’ professional development 
As a response to the situation and challenges briefly outlined above, a collaboration between two 
municipalities and a university was initiated with the aim to establishing a long term and sustainable 
collaboration as well as to seek for ways to counterbalance the current trends. The initiative rest one 
three strands, namely to simultaneously (1) combine and produce research with (2) the development 
of teaching practices in schools and (3) to serve as professional development for the teachers in the 
municipalities. The project involves two researchers focusing on different grade levels: grades F to 
6 (6- to 12-year-olds) and grades 7 to 12 (13- to 18-year-olds). The two researchers have autonomy 
in how they define, plan and conduct the work within the given boundaries defined by the university 
and the municipalities. 

The project focusing on grades 7 to 12 runs a series of semi-parallel 1-year projects were the 
researcher in each project works together with 4-6 teachers from different schools and grades as 
partners (c.f. Jaworski, 1999) in, what ideally could be described as, a co-learning agreement 
(Wagner, 1997). Each project departs from the practices of the participating teachers and the 
possibilities and challenges they see in their everyday teaching. Based on the teachers’ experiences a 
discussion leads to the formulation, planning and implementation of a 1-year long project with 
specified aims and goals. The research carried out in the projects is centered around the participating 
teachers own everyday teaching, and their engagement in research and developing their own 
practices constitute the professional development for the teachers. Within the context of the 
initiative two key questions then become: How to coordinate the experiences and result from the 
individual projects? and How to communicate then? Note that these questions also are at the heart 
of mathematics education more generally (aka the accumulation of research and the dissemination 
of knowledge; a main topic for CERME 10’s TWG23). For the 1-year project discussed in this 
paper, the studied question was: How can we create and work with joint classroom activities that 
challenge all students regardless of their levels of mathematical understanding and capabilities? 

The models and modeling perspective on teaching and learning 
The models and modeling perspective on teaching and learning (Lesh & Doerr, 2003), MMP for 
short, sometimes given as an example of a so-called contextual perspective in the discussion on 
modeling (Kaiser & Sriraman, 2006), draws on and traces it’s lineages back to Vygotsky, Piaget and 
Dienes as well as influences from the American pragmatists’ tradition represented by Mead, Peirce 
and Dewey (Kaiser & Sriraman, 2006; Mousoulides, Sriraman, & Christou, 2007). The central 
notion in this perspective is that of models, which are conceptual systems used to make sense of 
situations and phenomena. Models are considered to be human constructs which are fundamentally 
social in nature and can be described as systems consisting of elements, relationships, operations, 
and rules that can be used to predict, explain or describe the behavior of some other system. In the 
MMP learning is equated with model development, in which the role of modeling activities is to 
support this development by engaging the students in purposefully developing, understanding, 
modifying, and using their models to make sense of different situations and contexts (Lesh & Doerr, 
2003).  



The adaptation of the MMP at the macro level for all grade 7-12 projects establishes a common 
perspective and vocabulary that facilitate communication within as well as between different 
projects and levels of stakeholders in the initiative. The inherent recursive complexity of the MMP 
(researchers developing models of teachers’ models for teaching and supporting students developing 
their models) connects the work and results from the different projects and levels. The inclusive and 
accessible notions models and model development (understood in a more mundane way) facilitates 
communication with teachers, high municipality officials and policymakers.  

Model eliciting activities 

Model eliciting activities (MEAs) are purposefully designed activities where students need to 
develop a model that can be used to describe, explain or predict the behavior of, for the students, 
meaningful contexts, phenomena and situations. Traditionally, much work within the MMP have 
been centered around so-called model eliciting activities (MEAs) developed by Lesh and colleagues 
(Lesh, Hoover, Hole, Kelly, & Post, 2000). Although originating in mathematics, MEAs have in the 
last 15 year been used to support and investigate the development of students’ models (conceptual 
systems) in a range of disciplines and contexts (Diefes-Dux, Hjalmarson, Zawojewski, & Bowman, 
2006; Iversen & Larson, 2006; Yildirim, Shuman, & Besterfield-Sacre, 2010; Yoon, Dreyfus, & 
Thomas, 2010).  

The research involving MEAs have resulted in six design principles for MEAs, which also to some 
extent capture the essence of the MMP: (a) the reality principle – the MEA connects to students’ 
previous experiences and is meaningful; (b) the model construction principle – the MEA induces a 
need for the students to develop a meaningful model; (c) the self-evaluation principle – the MEA 
permits the students to assess their work and models; (d) the model documentation principle – the 
situation and context in the MEA requires the students to externally express their thinking (models); 
(e) the model generalization and sharable principle – the elicited model in the MEA is sharable, 
generalizable and applicable to similar situations; and (f) the simplicity principle – the situation in, 
and formulation of, the MEA is as simple as possible (Lesh et al., 2000; Lesh & Doerr, 2003). 

Teacher working with MEAs have proven to provide rice opportunities for professional change and 
development. Schorr and Lesh (2003) found that teachers working with MEAs in their classrooms 

(a) changed their perception regarding the most important behaviors to observe when students 
engaged in problem activities; (b) changed their views on what they considered to be strengths 
and weaknesses of student responses; (c) changed their views on how to help students reflect on, 
and assess their own work; and (d) reconsidered their notions regarding the user of the 
assessment information gathers from these activities.  (Schorr & Lesh, 2003, p. 157) 

These experiences and results suggest that MEAs might provide a productive tool to address the 
question about how to create mathematics teaching that is challenging for all students. The teachers 
in the project found this a promising approach and especially expressed the following aspects of 
MEAs appealing:  MEAs build on and respect what the students bring to the classroom in terms of 
prior knowledge in a fundamental way; MEAs focus on the students’ sense making of meaningful 
situations, representations and connections between representations; working with MEAs naturally 
includes a range of classroom organizations (working one-by-one, in pair, group or different whole 
class interactions); MEAs have the students work on explicitly formulating and expressing their 



thinking using mathematics. In addition, the six design principles for MEAs come to play a few 
different roles: tools for design; tools for analyzing tasks; evaluative tools for students work in 
class; and tools for thinking about one’s own view of mathematics, teaching and learning. 

The MEA and its’ implementation 
We now end the paper by showcasing the result of one teacher’s implementation of an MEA given 
as an introduction to linear function in grade 8. 

The context and the design of the MEA Candy time! 

The teacher wanted to use an MEA to introduce linear functions in grade 8. Functions, and different 
representations of functions, are something that the students have been exposed to more or less 
consciously in different forms during the majority of their mathematical schooling. In other word, 
students already have ideas and models for what graphs and tables are and how and when to use 
them. So, rather than systematically treat these concepts in a traditional manner, the teacher wanted 
to challenge the students to use their previous experiences and to see and explore the connections 
between tables, graphs and diagrams by engaging in a more exploratory activity (aka an MEA).  

The context of the problem was chosen by the teacher to be about buying candy. In Sweden, there is 
a often practiced tradition, that the children on Saturday do their weekly candy shopping, called 
lördagsgodis – “Saturday’s Candy.” Not seldom, the candy is bought in candy stores where you pick 
’n’ mix candy after your own preferences and liking, and pay by the hectogram (100 grams) or the 
based on the actual number of pieces of candy you picked. 

In the design of the MEA the teacher stressed four of the guiding principles as especially important 
for this particular purpose: (a) the reality principle: the choice of context and situations (the candy 
store) was made in order to be familiar to the students in that it should facilitate the students in 
making connections and interpretations between different representations; (b) the model 
construction principle: the intention with the activity Candy time! is for the students to build on 
their previous experiences and knowledge in order to connect and coordinate them further; (d) the 
model documentation principle: to facilitate for the students to document their work, a in that they 
make their models visible and objects for discussion, a worksheet was developed with easy-to-read 
instructions, questions and diagram as well as generously with space for writing answers and 
comments; (e) the model generalization and sharable principle: to promote that students share ideas 
as a means for furthering their models, the MEA was designed to have the students working along 
as well as in pairs or small groups, and engaged in whole class discussions. Note that the four 
principles not are independent, and that they contribute to make the students’ previous experience 
and knowledge the basis for the activity, to make students’ ideas and thoughts (models) visibility, 
and to facilitate that the students’ models are confronted with other students’ models so that they 
through discussion can refine and develop their ways of thinking.  

Implementation 

After the teacher started the lesson and introduced the first part of the activity, the students began to 
work individually on the first part of the task about the three stores A, B and C; see Figure 1 below. 
However, it only took seconds until the students spontaneously started discussing with each other 
about which store would given them the most candy for their money, and they spontaneous formed 



pairs and small groups. The teacher observed the students’ work and listen to the students’ 
discussions while walking around in the classroom and making sure all students understood the 
task, but otherwise intentionally kept a low profile.  

Candy time! 
It’s Saturday and you’re thinking about which of the three stores A, B and C you’ll go to and spend 2,50 € 
so that you’ll get as much candy as possible. Compare all three stores and motivate your choice. 

Store A 
You’ll pay 1 € for a bag of 32 pieces of candy. 

Store B    
 

    Pieces 
candy (#) 

  Price 
  (€) 

5 1,5 

10  

15  

  

  

  

 

 Store C 
 

 

Figure 1: Part one of the activity Candy time! 

The idea was that the students’ should use an experimental approach and try different ways and 
strategies to approach the problem. If the teacher noticed that some of the student got stuck she 
approached the student with encouragements like “Try to fill out the table for Store B!”, “What 
would it look like if one plotted the table-values for Store B in the same diagram displaying Store 
C’s pricing?”, or “What would Store A ‘look like’ in the Store C diagram?” When the majority of 
the students had decided in which Store to do their shopping of Saturday’s candy, the teacher 
focused and pulled the class together by asking “What would the graphs for Store A and Store B 
look like if you plotted them in the same diagram as the graph for Store C?”. 

When all the students had decided on which store gave them the most value for their money, the 
teacher, based on her observations in the classroom, chose a few of the students to orally present 
their solution for the whole class. The selected students showed, motivated and explained what 
method they used to approach and solve the problem. In the whole class discussion that followed the 
students’ presentations, the teacher, based on continuous inputs of the students, showed what the 
graphs for the different stores would look like if they were plotted in the same diagram. 

The discussion continued in smaller groups were the students were engaged in thinking about and 
explaining: What use does one have of graphs and tables? What are the differences and similarities 
between the three stores? What factors other than the price can affect where one choose to buy 
one’s candy? Looking at the students’ answers, there is a tendency to consider graphs as suitable 
tools for comparing things (“when you want to compare something”, “you can see the differences 
in prices”) or to illustrate how something develops over time (“when you wanna show something 
along a timeline”). Tables on the other hand the students put forward as good tools for presenting 
different kinds of compiled data or results (“as for example results from sports”, “to present one’s 
findings”, “sport results, lengths, weight, sizes, ages, sexes, opinions”). 



Regarding the differences and similarities between the stores the students mostly commented on 
directly observable features like “all are selling candy”, “the price goes up with the number [of 
pieces of candy you buy]”, “all have different pricing”. The selection of available candy in the 
different stores, both with respect to and quality and quantity, as well as to the geographical location 
of the store, were factors the students identified as things influencing where one buy one’s candy. 

After the students had discussed and compared their answers for a couple of minutes, the teacher 
introduced part two of the Candy time! activity; see Figure 2 below: 

Store D 

– a new store – opens!!!! 

You have previously meet Store A, B and C, 

but now there is a new store in town, Store D. 

What is special with this new store? Will this new store 

offer any serious competition to the three already 

established stores (Stores A, B and C)? 

Can you plot a graph representing yet another store? 

Write a few sentences explain your store’s price-fixing. 
 

Figure 2: Part two of the activity Candy time! 

While working on the second question in the second part of the activity, Will this new store [the 
Store D] offer any serious competition to the three already established stores (Stores A, B and C)?, 
the students concluded “well, it depends on how much you buy!”. Many of the students argued that 
Store D not would be any competition to the other stores if you as in the first part of the activity, 
only spent 2,50€. However, if you were spending a greater amount of money, then Store D should 
be the preferable choice. (“No, this [Store D] is more expensive that the others [Stores A-C]. But 
this [Store D] becomes more affordable if you buy a larger and larger amount”). The fact that the 
graph for Store D intersect the y-axis at y=10 some of the students interpreted as “you have to pay 
1€ to enter the store, like an entrance fee” or that you pay for the box or bag you put the picked 
candy in: “Surely it’s some kind of fancy candy store where you have to pay for the boxing. That’s 
is probably one of the reasoning people will come [and shop in the store] – that it’s a fancy shop 
that is”. 

The last task in the activity set lose the students’ creativity, drawing graphs describing other 
imaginary store’s pricing (see Figure 3). Most of the students draw in multiple stores and the most 
commonly pricing was a model giving the price proportional to the number of pieces of candy 
bought, as exemplified by Store H: “Every single piece of candy costs 0,10 € each”. One of the 
students wrote “In this store the only sell giant pieces of candy” (Store E) to explain the steepness 
of her graph. Store G was described by another student as “I’ve made a cheaper store - one where 
you’ll get one piece of candy for free!”, explaining the meaning of the graph intersecting the x-axis 
at x=1. Although the diagram only display the price for between zero and 11 pieces of candy, some 
of the students physically prolonged the lines representing the cost in Stores A – D and concluded 
that if you buy a large enough amount of candy, then Store D is the most price-worthy store. The 



students also constructed stores that had price-fixing represented by a line with negative slope (“The 
price decreases, and after 11 pieces the candy becomes free”, Store I), and stores with a flat rate 
price-fixing (“Take as much candy you want for 2,80 € ”, Store F). After the lesson the teacher 
noticed and expressed her surprised over how much the students own examples of stores’ pricing 
showed and reveled about the students’ creativity and proficiency to interpret linear functions y = kx 
+ m with positive (k > 0), negative (k < 0) slope as well as zero slope (k = 0) in the given context of 
the activity. 

 

Figure 3: The students’ own stores (Stores E – I) 

The students’ worked on the second part of the activity till the lesson ended. The teacher then 
collected all the students’ written work, and followed up the activity the following lesson, after 
having read and summarized the students’ explanations, with a whole class discussion about the 
students’ conclusions, interpretations and price-fixing of their own stores. The teacher was surprised 
over the interest and engagement the students showed when working on the activity as well as over 
the wide range of solutions and explanations the students offered. The fact that the activity allowed 
for a variety of solutions resulted in almost all students wanting to share their solution and thinking 
at the whiteboard in the whole class discussion. In a few instances the students asked for how to 
name certain concepts such as origin and intersection point to be able explain their thinking more 
precise and clear to their peers. In other word, the students wanted to express themselves 
mathematically correct. 
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This paper discusses the theoretical and methodical arguments for the design and implementation of 
a research based course for pre-service teachers. The course program was carried out five times 
matching the methodology of design experiment and the theory of communities of practice. Students’ 
assignments in the course were designed to focus on planning teaching and to give the pre-service 
teachers experiences of how to use and connect didactical and mathematical theories to practical 
situations, and hence provide them with a tool for teaching in different classroom situations. 

Keywords: Pre-service teacher education, implementation, design experiment, lesson planning, 
mathematics teaching and learning. 

Introduction 
The implantation of a new teacher-training program in Norway (Kunnskapsdepartementet, 2010) 
presented an opportunity to think about new ways of teaching a pre-service teacher course in 
mathematics within the program at a Norwegian university. Previous to this reform the corresponding 
course was organized more traditionally entailing plenary lectures, workshops and various student 
assignments in which the pre-service teacher students (PST) actively had to participate. However, 
feedback from the PSTs showed that they found it difficult to see the connection between the course 
work at the university and the in-school teaching practicing activities, especially with respect to the 
implementation of didactical theories in the everyday mathematics classroom practice (Bulien, 2008; 
Solstad, 2010). Therefore, the design and implementation of a revised course focused on and included 
activities that aimed to enhance and make the connection between theories of teaching and learning 
and the actual practice of teaching clear and explicit for the students. This paper discusses the central 
idea used to realize this connection in the redesign of the course, namely, to focus on lesson planning 
by adapting and introducing the so-called Mathematics Didactic Planning tool (MDP).  

Besides presenting the MDP, the aim of this paper is to describe the research design and the theoretical 
background for the educational design experiment in which the MDP was developed, implemented 
and evaluated. 

Introducing the MDP, the setting and background 

The course that was subjected for redesign is a 30 credit compulsory course in the teaching and 
learning of mathematics given within a full time teacher education program for grades 1–7 (6–12 
years old). The students take multiple courses simultaneously and the course in teaching and learning 
mathematics spans over a period of 2 years (7,5 credits each semester). Even though the program is 
a full time program, most of the students are not at campus all the time. Rather, the students travel 
and are physically present at joint seminars at the university for three separate weeks each semester. 
In each week, the students studied mathematics for 7 hours spread out over two days. The rest of the 
semester, the PSTs and teachers communicate via different media over the Internet. 



In the first two semesters (credits 1-15) of the course in teaching and learning mathematics, the 
students focus on theories and frameworks related to the role of a mathematics teacher, teaching and 
learning mathematics, numeracy and early training of algebra (pre-algebra). This experience of 
different theoretical approaches to teaching and learning mathematics provided an advantage when 
they was introduced to the MDP in the third and fourth semester of their teacher-training program. 
During the second year of the course (credits 16-30) the PSTs worked through three MDPs, each 
organized in three different parts or phases named A1, A2 and A3, see Figure 1 (left).  

 
Figure 1: MDP model (left) and the course cycle of PST implementing MDP (right) 

Phase A1 is about analysing textbooks and making a brief plan for teaching mathematics covering a 
whole school year. In phase A2, a much more detailed plan for teaching a lesson given a particular 
content is worked out. The last phase, A3, time is spend on reflecting back on the previous phases. 
The assignment students are obliged in phases A1 and A2 are written assignments carried out as group 
work, whereas the assignment in phase A3 is individual reflecting text. 

In this second part of the compulsory course (semester three and four), the structure of the MDP was 
used as a frame to organize of both lectures and students’ assignments, and during the year the PSTs 
worked through three MDPs focusing on different mathematical topics as well as on different grades 
(1–7). The mathematical topics were geometry, measurement, statistics, probability and functions.  

The introduction to the MDP model was given in the first seminar in the third semester at campus 
where the teacher and the PSTs together planned a fictitious lesson for teaching using the MDP 
framework. The following three MDPs were mainly supervised using Google Disk (GD) and through 
Internet seminars, but also in face-to-face seminars with the teacher when the students met at campus. 
Additionally didactical and mathematical theories were provided to the students through lectures, 
both at campus and in online video lessons made and hosted by the teacher. Having the PSTs 
iteratively working through three MDPs made it possible for the PSTs to familiarize themselves with 
the framework, and hence their need for support and guidance successively declined, aiming at the 
PSTs to be more and more independent. In other words, writing the assignments (A1,A2 and A3), the 
supervision in GD was more actively during the first MDP, less in the second and only by questions 
from the PSTs in the third (Bulien, 2013). 



Methodology 
The methodology of the project to implement the revised course on teaching and learning 
mathematics based on this new tool for teaching (the MDP) was founded on experiences from 
previous teaching similar courses; research about PSTs’ education experiences (e.g. Bulien, 2008; 
Solstad, 2010); and, students’ feedback on the content in similar and previous courses. Based on 
these, special emphasis in the revised course became the application of theory in practical teaching 
situations. In short, the aim of the project was to present a more visible connection between the 
theoretical work at campus and the practice at schools. 

During the four-year teacher education program, the PSTs experience rather short periods of actually 
practicing teaching in schools, and each time they must focus on three or four different subjects which 
makes it difficult to go into depth on each subject during their practice time in the classroom (Solstad, 
2010). Solstad (2010) found that PSTs’ ability to connect theory with practice increase the longer 
they attended the education program, but the students still wanted more supervision in implementing 
theory into their teaching practice. This increasing theoretical understanding might be a result of 
engaging in multiple cycles of supervised practice at schools and evaluated written assignments at 
the university, which suggests that a similar iterative learning model would be the preferred teaching 
and learning environment for the new course. However, closer collaboration and involvement with the 
actual teaching practices done in schools by the students was not feasible. Instead, a more active 
collaboration between the PST and the teacher in the spirit of communities of practice (Wenger, 1998) 
was integrated in the design of the course. 

To guide and structure the overall re-design, implementation and evaluation of the new course, 
something that can be considered to be a classroom design experiment (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003), a design experiment (Cobb et al., 2003) methodology was adapted. 

Most classroom design experiments are conceptualized as cases of the process of supporting 
groups of students’ learning in a particular content domain. The theoretical intent, therefore, 
is to identify and account for successive patterns in student thinking by relating these patterns 
to the means by which their development was supported an organized. However, different 
classroom design experiments may set their focus on different constellations of issues (Cobb 
et al., 2003, p.11) 

The theoretical intent of implementing the MDP was to focus on the PSTs’ development in lesson 
planning using didactical theories and mathematical knowledge, which could be evaluated in the 
assignments of each MDP and the PSTs’ reflection notes. The teaching and learning process involved 
in the implementation of the course was continually evaluated through out the five years based on the 
PSTs’ work and reflection as well as the teachers reflections notes and written logs. The course was 
modified and adjustments were made both during the semester and when before starting a new course 
for a new group of PSTs. 

In the design and development of the MDP and the new course, Cobb et al. (2003) five crosscutting 
features of design experiments were used to structure and guide the work during the five-year period 
of this project. 

First, design experiment involves both the goal and the process (Cobb et al., 2003). The goal was to 
educate prospective mathematics teachers so they could give their students a grounded mathematical 



education based on mathematical knowledge and research about how to teach mathematics. The 
process, which should facilitate the goal, had two different parts. Initially the process was about 
developing a class of theories that supported the ideas of using the MDP as an artefact for the PSTs’ 
studies, and to get an overview of the implementation of the new ideas in the course. Next it was the 
process of defining the roles of the PSTs and of the teacher, in which the theory of communities of 
practice (Wenger, 1998) was introduced. 

Since the collaboration between the PSTs and the teacher was supposed to be less like the usual 
teaching situation and more like an ongoing working together process, communities of practice was 
a suitable framing since “… the property of a kind of community created over time by the sustained 
pursuit of a shared enterprise” (Wenger, 1998, p.45). Further, Wenger claims that in educational 
design “Learners must be able to invest themselves in communities of practice in the process of 
approaching a subject matter” (Wenger, 1998, p.270). In this project the subject matter was the MDP 
that could be seen as a reification of a teaching and learning situation in the sense of “… giving form 
to our experience by producing objects that congeal this experience into “thingness”” (Wenger, 1998, 
p.58). For the MDP, the process was to present a learning trajectory to the PSTs that realized the 
possibility to adapt theoretical perspectives of teaching to classroom situations. A corollary to this 
involved a change in the teacher’s role from less lecturing to more supervising, which supports 
Wenger’s idea of self-investment. 

Second, design experiment is about being innovative, and there should be a discontinuity between 
tradition and new ideas to test (Cobb et al., 2003). Expecting a more active contribution from the 
students and more supervision from the teacher changed the traditional lectures to seminars. In 
between seminars at campus, the supervision was implemented online using Google Disk (GD) and 
short video-films made by the university teacher. The focus for the supervision was to encourage the 
PSTs to evaluate didactical theories and mathematical knowledge and decide how to use them in 
teaching and learning situations. 

Third, design experiment should involve both prospective and reflective situations (Cobb et al., 2003). 
In this project, the prospective aspect was manifested in the hypothesis or conjectures developed in 
terms of lesson plans in the written assignments in phases A1 and A2 of the MDP. In Phase A3 
provided the possibility for reflection based on reflective knowledge and building on experience and 
research. Here, the MDP and the change of teaching and learning situations, build on previous 
teaching courses in mathematics and new ideas about learning, especially focused on social 
constructivism and the community of practice. 

Fourth, design experiments include an iterative design. In this project, there are two levels of iteration 
(Cobb et al., 2003). A first is that the PSTs repeat the MDP three or four times during the course 
period, whereas the other is that the course itself was repeated five times with different students. The 
PSTs repeating the task hopefully provides better learning and the teacher had the possibility to adjust 
teaching according to the students’ needs for supervision. The iteration of the course focused on the 
design of both the MDP and the teaching on a meta-level. 

Fifth, design experiment involves analysing and evaluating the course to search for potential new 
theories (Cobb et al., 2003). Each year the PSTs were asked to evaluate the course and their responses 
together with the exam results and logs written by the teachers during the year, were used to adjust 



the plan for the course for the following year. Although analyses took place during the five years, a 
retrospective analysis is yet to be fulfilled. Since then the designed course with the MDP has been 
repeated five times, and it has additionally been used in other courses, might give broader information 
about the ability of the use of MDPs. This adoption into other courses and continued use lead one to 
assume that the analyses made after each year have given positive results, but there is still need for 
more thorough analyses to quantify the effects of the implementation of the MDPs and the changes 
in teaching. A retrospective analysis of all available written material collected during the five years 
is necessary and is currently in progress. 

Theoretical discussion of the MDP 

The Danish textbook for teacher education, Delta (Skott, Jess, & Hansen, 2008), was part of the 
syllabus for the course and in this book there is a presentation of Gomez cycle of didactic analysis 
(Gomez, 2002). Based on this work of Gomez an artefact for lesson planning named The Mathematics 
Didactic planning tool (MDP) was constructed by changing the original model to fit a Norwegian 
teaching and learning context informed by the work of Ball, Thames & Phelps (2008) and Niss and 
Højgaard (2011). Hence, the content of the MDP considered both mathematical, didactical and 
methodological theories that was based on the curriculum of the course, but focusing on different 
mathematical subjects for each assignment aiming at a (fictitious) classroom situation. 

Gomez’ (2002) model for didactical analysis was inspired by the teaching trajectory of Simon (1995), 
which is a cyclic planning tool for mathematics teaching, and Shulman’s (1986) work on pedagogical 
content knowledge which later informed the development of Mathematical content Knowledge for 
Teaching (MKT) (Ball et al., 2008). MKT is divided into different theoretical issues like areas of 
knowledge of content and curriculum, content and students, content and teaching, common content 
knowledge, specialized content knowledge, and horizon content knowledge (Ball et al., 2008, p.403). 
In the various parts of the MDP (Figure 1) these areas was conceptualized in terms of the 
mathematical tasks for teaching from Ball et al. (2008, p.400), such as for instance using 
mathematical notation and language, asking productive mathematical questions, and finding an 
example to make a specific mathematical point. Another theoretical framework used were the 
didactical and pedagogical competencies with specific regards to mathematics from the KOM-project 
(Niss & Højgaard, 2011). These are the eight mathematical competencies concerning mathematics as 
a discipline (chapter 4 and 5), and the six forms of specific competencies which a mathematics teacher 
should possess (chapter 6 and 7). The areas of knowledge concerns the students’ competences of 
representing, symbol and formalism, communicating, aids and tools,  mathematical thinking, 
problem-tackling, modelling, and reasoning , and the teachers’ competences of curriculum, teaching, 
revealing learning, and assessment (Niss & Højgaard, 2011). In the following text these theoretical 
notions will briefly be discussed how to be used in the design of the different phases of the MDP; see 
Figure 1 for the presentation of the model. 

A1 introduces and presents topic, grade and focus points from the National curriculum’s perspective. 
This provides the background for the PST choosing two or three textbooks, which the PST should 
analyse according to the mathematics topic and the focus points in the national curriculum. After 
which, they should make a short plan for teaching mathematics over a school year focusing on how 
to structure and organize given topics and argue for their choices. For instance, it would be wise to 
have worked with fractions and multiplication before an introduction to probability. A1 focus mainly 



on theoretical aspects from knowledge of content and curriculum (Ball et al., 2008) and the teacher 
competency of curriculum (Niss & Højgaard, 2011). 

A2 is the main part of the MDP where the PSTs works with their understanding of both knowledge 
about mathematics and didactical theories. It is important for the student to notice that the different 
parts of the plan (again see Figure 1) are meant to be understood and worked through in a hierarchical 
way. The theoretical aspects mainly focus on the MKT (Ball et al., 2008) and the competencies of 
teaching and learning (Niss & Højgaard, 2011), but of course additional theory is added when 
relevant. 

The aim for this part is to formulate a plan for teaching the subject given, e.g. geometry, over a period 
of two to five lessons. In the first part (A2a), they present focus points and quality frameworks from 
the national curriculum to illustrate the frames and goals for the teaching and learning. Since the PSTs 
had no real class to teach, they had to make assumptions based on the information given in the national 
plans and other relevant sources such as e.g. textbooks. Analysis of mathematical content (A2b) 
illustrates “all” the mathematics that the PSTs knew about the subject given, including symbols, 
algorithms, different representations, modelling, etc. The goal of this part is to provoke the students 
to go deep into their own mathematical knowledge and analyse different aspects of mathematics 
without thinking about teaching or learning. In these analyses of mathematical content, the PSTs 
theoretical framework is knowledge about representing competency, symbol and formalism 
competency, communicating competency and aids and tools competency (Niss & Højgaard, 2011), 
which also illustrates general and special subject matter knowledge and horizon content knowledge 
(Ball et al., 2008). 

Analysis of learning process (A2c) is about the students learning process in the specific subject given, 
e.g. geometry, not about general pedagogical learning theories. This part focuses on knowledge of 
content and students (Ball et al., 2008) for instance illustrated by knowledge about misconceptions, 
what could be difficult to understand and why, or how to support the learners that needed an extra 
challenge building on the mathematical issues discussed in A2b. Some of the same issues were the 
basis for the analysis of teaching (A2d), but this time the focus is teaching and to predicate how they 
can meet different situations that probably occur in teaching the mathematics subject given were, 
such as asking productive mathematical questions (Ball et al., 2008). This part is illustrating 
knowledge of content and teaching (Ball et al., 2008), and the teacher competencies about teaching, 
revealing learning, and assessment (Niss & Højgaard, 2011). Since the A2 is hierarchical built, the 
three analyses should be written in the way they are presented, the next building on the information 
given in the previous. A final and important task in A2 is to construct an open mathematics problem 
(A2e) with different levels of cognitive demands (Stein & Hiebert, 2009) which is based on 
knowledge gained from the three analyses. All the work is summed up in a schedule for the lesson(s) 
(A2f). 

A3 is an individual written reflection assignment where the PSTs reflects on the decisions and 
analysis made in A1 and A2. Since A1 and A2 are carried out as group work, the final reflection gives 
each student the possibility to add his or her own perspectives on the process and the result of phases 
A1 and A2. The last phase, A3, has been a valuable resource for the on-going and continuing 
development and implementation of the MDP in the new course.  



Final comments 
Using different theoretical perspectives from previous research about teaching (Ball et al., 2008; Niss 
& Højgaard, 2011; Stein & Hiebert, 2009), the research design method for planning new teaching 
models (Cobb et al., 2003), and research-based models of lesson planning (Gomez, 2002), have been 
useful in in designing and developing the new course in which the MDP serves as a backbone. 

Although the PSTs’ practice in schools could not be integrated within the course, it could be argued 
that focusing on lesson planning by working with the MDP had a close connection to the practice of 
teaching mathematics, which was one intention of using lesson planning as a focal idea. Another was 
to elucidate the importance of theoretical argumentation when planning (and teaching) mathematics 
lessons and the intention of repeating the MDP several times became an important choice of 
performance since especially the complexity of A2 needed to be exercised several times. A profit of 
all the work was that all the MDPs together with the teachers’ comments were shared on a learning 
management system to be available for all the PSTs attending the course. When the PSTs finished 
the course, the students thus had a number of lesson plans ready to use (with adjustments) in their 
future career. 

The empirical material available for analysing different aspects of the project is teachers’ logs, 
planning documents, students’ reflective papers from the course, students’ papers on didactical and 
mathematical analysis, and electronic records showing supervising dialogue during the writing of 
papers. The preliminary analysis of all the empirical material available, five years of teaching 
experience, and reading some of the PSTs’ final reflection notes indicates that the majority found the 
MDP challenging but educational, and that they experienced writing MDPs’ assignments to be 
valuable. Many argued that it would be too much work for planning lessons when working as a 
teacher, but that the experience of having done so during their education will influence their work as 
teachers. 

There were a couple of practical changes made during the five years of study, such as to change the 
number of group members from groups up to 6, to working in pairs, and lowering the number of 
MDPs the students should work through from four in the first year to three the years following. Since 
the students only were on campus for a short time, much of the contact had to be via the Internet and 
became the common form of communication. Supervising the process of writing papers in this way 
had clear implications on the process. This is documented in several reflection notes where the PSTs 
explicitly wrote that they would not have gone so deep into the material if they had not been pushed 
by the supervisor. 

In summing up, it seems like the MDP can be a good mediator for MKT and competencies. Further 
and more rigorous analysis of the empirical material will be valuable in documenting the proof of this 
indicative claim, and it should additionally provide more information and suggestions on how to 
enhance the MDP and the role of the supervisor. 
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This article is a description and discussion of a design research project in which we introduced a 
research idea about the influence of language on number concepts development into praxis on a 
school in grades K-3. Danish children have difficulties remembering the Danish number names 
because the Danish language resembles a primitive number concept in mathematical thinking. In 
the project, we renamed the numbers between 11- 99 after the base-10 system. Our hypothesis was 
that this system would help Danish students to get a more secure concept about the base-10 system. 
The project lasted for three years ending in spring 2016. Our results were so convincing that the 
school decided to continue using the mathematical number names, and other schools that heard 
about the project seem to be interested in using the system as well. In other words, the project goes 
from being a top-down project to a bottom-up project.    

Keywords: Design research, base-10 system, grades K-2, top-down and bottom-up project. 

Introduction 
In this article, we describe a design research project, which took place in a public school in the 
primary grades K-3. We started with a hypothesis, and then it moved on to a design and then contact 
with a public school. We ran the project for three years and then worked with the school on its 
continuation. The main concern of our paper is that of existing and anchoring projects that have 
proven successful and engaged (part of) the organization with which we have collaborated. 

Our research idea was provoked by the fact that the Danish number names (Ejersbo & Misfeldt 
2011; 2015) have an etymology and wording that are both peculiar and impractical. For example, in 
Danish, the number 73 is treoghalvfjerds (three and half-four), the number 32 is toogtredive (two 
and thirty), and the number 16 is seksten (sixteen). These old roots are unknown to most students. 
Furthermore, the number names are abbreviated. In Danish, the number 70 or halvfjerds (half-four) 
was once named half-four-times-twenty (in Danish halvfjerdsindstyve), but the times-twenty (in 
Danish sindstyve)  has been lost in the counting numbers but retained in the ordinal numbers (for 
further explanation, see Ejersbo and Misfeldt, 2011). Another concern is the irregularity of the 
number names between 10 and 20, where 11 and 12 have unique names while 13 to 19 each end 
with a ten. Also, the two-digit numbers from 13 to 99 have an inversion property (the ones are said 
before the tens), and the tens have names inspired by a 20-base system.  

Even though Danish number names are particularly irregular, most European languages break away 
from the clear regularity of the base-10 place value system. So understanding the effects of such 
irregularities on mathematics teaching and learning is interesting. With that motivation, we 
developed a hypothesis of how speaking about numbers with specific regular words that resemble 
the base-10 system would be beneficial for learning about the numbers in an easier way. This 
hypothesis has been tested with a three-year long intervention at a school in the Copenhagen area. 



The project has ended, and the intervention was to a large extent successful. The data about student 
learning confirms that the classes where the new words for numbers system was successfully 
implemented have very strong performances in the areas related to number sense and arithmetic. 
Therefore, some of the teachers and the school organization would like to continue the work. We 
consequently discuss the question of how to exit intervention projects while anchoring relevant 
practices from the intervention into the organization.  

In the paper we explore how this initial hypothesis has been activated as a way of using language as 
a didactical tool in a design research project. We will describe the state of the art that allowed us to 
develop the project idea, and how the project proceeded. Then we will briefly state our results in 
terms of a more well developed and tested set of hypotheses. Finally, we will describe our exit 
strategy for leaving a better practice at the school and reaching out to other schools and teachers.  

Number concepts, base-10 and number names  
We know from the research literature that there are major differences in the kind of system and 
regularities a language uses to describe numbers. Most European countries have an irregular naming 
system for numbers between 11 and 20; both the German and Dutch systems feature an inversion 
property of the numbers between 13 and 99, similar to the Danish one. These inversion effects were 
studied by Moeller, Pixner, Zuber, Kaufman, and Nuerk (2011) for two-digit numbers, showing 
how inversion-related difficulties predict later arithmetic performance (for an overview, see Ejersbo 
and Misfeldt, 2011, 2015).  

Different studies (Miura & Okamoto, 1989; Miura, Okamoto, Chungsoon, Steere, & Fayol, 1993; 
Miura, Okamoto, Vlahovic-Stetic, Kim, & Han, 1999) compared Japanese, Chinese, Korean, and 
English-speaking American first graders’ (6–7 years old on average) cognitive representations and 
understanding of place value. The findings confirmed that the Asian-language speakers showed a 
preference for using base-10 representations to construct numbers, whereas English speakers 
favored using a collection of units. Note that a significant difference between American and Asian 
number names appears between the numbers 11 and 19, exactly when the base-10 system starts to 
use two digits. In Miura and Okamoto’s (1989) study, children were asked to construct the numbers 
11, 13, 28, 30, and 42 from sets of ten and unit wooden blocks. The results showed that 91% of the 
American first graders used unit blocks to represent the numbers on their first attempt. In contrast, 
about 80% of the Asian children used sets of ten blocks when representing the numbers on their 
initial attempt. These differences in cognitive representation were mainly ascribed to language 
(Miura et al., 1993).  

Learning to count and understand the base-10 system are cognitive challenges involving many small 
steps. We have chosen to focus on oral counting, the cardinal principle of combining a name with a 
cardinal value, and the combination of words for a number, its cardinal value, and the digit sign.  

Children typically learn the names of numbers as a long list of words and demonstrate knowledge of 
the stable order principle by almost always saying number words in a constant order while 
emphasizing the last number (Goswami, 2008). The names are developed as sounds connected to 
the number of objects in the sets. 



The developmental shift to understanding the number name as a cardinal value requires a qualitative 
shift in children’s representation of numbers. The cardinal principle requires comprehension of the 
logic behind counting (Goswami, 2008) and the ability to judge the size of a set. It relies on a 
representation of quantitative information in which the coding of smaller quantities is different from 
that of larger quantities (Goswami, 2008). Children’s conceptual understanding of numeration 
depends on their ability to make a connection between a number name and its cardinal value, which 
they learn to do by grouping and quantifying sets of objects (Thomas, Mulligan, & Goldin, 2002).  

Learning how to connect the number name, its cardinal value, and the digit sign is another 
challenge. As discussed, two different systems must be combined with different representations. 
Becoming an expert at combining these two systems means developing rapid access to an automatic 
use of written numbers and simultaneously being able to multitask to solve other problems in 
parallel. If the two systems are iconic and support each other, the child encounters less difficulty in 
learning this skill, as is the case for Japanese-speaking children. If the two systems are irregular and 
therefore conflict with each other, it is more problematic for the child to understand and remember 
the connection among the name, the cardinal value, and the sign. Duval (2006) described this 
situation as a conversion between registers and observed that the congruent conversions seem the 
easiest for students, meaning that the representation in the starting register is transparent to the 
target register. One obvious solution is, therefore, to use a fully regular approach to saying the 
names of the numbers, which means saying “one-ten and four” instead of fourteen and so on. It is 
possible and easy to create such a logical system for naming the numbers in Danish, and thus this 
became our main project idea. 

This reasoning helped to form the project idea of using such logical number names as a didactical 
tool.  

The design of a research idea 
Occupied by these issues of why and how different languages influence number concepts and 
perhaps even the ability to learn simple arithmetic, we designed a three-year project to take place at 
a Danish public school in the suburbs of Copenhagen.  

Using design research (Cobb & Gravemeijer, 2008), we formulated our hypotheses for empirical 
investigation. The hypotheses were grounded in our initial understanding of the difficulties that 
Danish children experience with the Danish number names. The research builds on the following 
two hypotheses: 

1. Number names function as cognitive artifacts; hence, a concordance between spoken and 
written language is sensible.  

2. Language constitutes concepts, which is why clear terminology seems effective in 
developing lucid concepts. 

Project intervention 
To address the question of the influence of number names on number concepts, we contacted a 
Danish public school that could be interested to run the project together with us. We already knew 
the school, which made the access easier. We were invited to a meeting with the leading team of the 



school, including the headmaster, together with a small group of teachers from the school. We 
presented our project, and the participants accepted it for one year as a start. An evaluation would 
decide if it should continue additionally for two more years. We decided to involve all 10 classes—
three grade 2, three grade 1, four kindergarten classes—and 9 teachers in the primary section of the 
school. The project combined the renaming of numbers with supporting the teachers in instructing 
the students. In each class, 20–35% was children who had migrated from other countries, but all the 
children spoke Danish, and all the teaching was in Danish. The entire research project was planned 
to last for three years. The data consists of students’ performance in classroom observations, a 
number understanding test, teachers’ portfolios, interviews with teachers and students, and notes 
from collaboration with teachers. At the end of the projects, we used the national test for evaluating 
the students’ competencies in Algebra and Numbers.  

The first year 

The cooperation with the teachers and the classes were only possible because of the positive attitude 
from the headmaster of the school. She left it to us, the researchers and the teachers, to run the 
project. But she and the leading team was helpful and showed interest the whole time. 

An in-service course for the involved teachers was the first thing to arrange and run. At this course 
many questions came up and were discussed. Should the teachers always rename both the names of 
the numbers? How should the fractions be named? Would the student get to know the normal 
Danish number names? We made a lot of decisions that day and agreed that the teachers should 
write a log with further questions that we as researchers should answer, either by discussion or by 
recording answers in the log.  

The participants were now ready to start the next school year with the mathematical numbers.  

Kindergarten: The Kindergarten (K) teachers were used to cooperating with each other and 
continued this work with the mathematical numbers. We observed the classrooms regularly and had 
follow-up meetings. The K teachers used both the mathematical number names and the normal 
number names when they named a number, or the students read a number. They also arranged joint 
counting for all using mathematical numbers, and they made materials for student use that helped 
the students to be aware of the base-10 position system, and the students became very familiar with 
the mathematical numbers. The parents were informed at a meeting with the kindergarten teachers 
only; all in all, they implemented the mathematical numbers very easily.  

Grade 1: The project proceeded differently in the first-grade classrooms. All these classes had new 
teachers, which is normal for students in the first grade in Denmark. We were in a real-world 
situation with all the mess that exists there. The three first-grade classes had three different teachers 
who did not work together very often, and none of them continued the work done by the K class 
teachers. So the routines disappeared. The big difference in practice between first grade and the K 
class caused some chaos during the first two months. Furthermore, some of the first-grade teachers 
left the school or their classes during that period. But new teachers came, and during November and 
December the classes also worked regularly with the mathematical numbers. We were lucky that 
one of the newcomers believed in the project idea and was very involved with it. He became a 
teacher in two of the three first-grade classes, and his presence was a great benefit for the project.  



Grade 2: We never observed any of these classes, but met with the teachers and discussed how they 
could implement the mathematical numbers in the best way. These students had already been in 
school for two years, and we decided that while we could not expect that they would naturally use 
the mathematical numbers, they should know them. 

Evaluation: In the first year we were very busy collecting data, observing the seven classes, and 
trying to find the best ways to implement the mathematical numbers. The teachers’ log idea never 
caught on, so we solved any problems during our meetings with the teachers. At the end of the year, 
we tested all the students. The outcome of the test showed us that the student used both names for 
the numbers quite naturally. There was a slight tendency that the students were more secure from 
the spoken mathematical numbers to written numbers than from the spoken normal numbers to 
written numbers. In the K classes, we noticed that the students were much more secure in correctly 
recognizing and naming numbers between 10 and 20 than was normal for these classes.  

During the year, we used the design research method as a way to evaluate the actual lesson related 
to how the whole project was running. We exchanged good ideas and noticed the progress and 
difficulties. We solved the difficulties in different ways and changed some of our means; but not our 
goal. We made a report of the first year with our results and data. It was positively received by the 
leading team, who decided to let the project continue for the next two years. 

In our plan for the second year we decided not to observe in the K classes, but only meet with the K 
teachers. We would do a brief orientation for the new mathematics teachers in the four new first 
grades, and we would follow the second grades more intensively. 

The second year  

For each year, we expanded our research with new K classes and with that also thirds grates. The K 
teachers could more or less develop and repeat with their new students what they had done first 
year. The newcomers in the K teacher group were taught by especially one of the K teachers taking 
the major responsibility for informing the new teachers. As we discussed in our meetings with the 
teachers, the work in the K classes went very smoothly. 

The four new first grades had new teachers, luckily only two teachers with two classes each. They 
did not know anything about the project before they chose to teach first-grade mathematics, but 
cooperated from the start. We met with them and introduced them to the project, and visited their 
classrooms several times during the year. 

The three second grades were the most interesting, because the students were in their second year of 
the project. Their teachers were very engaged and consistent in the use of the mathematical 
numbers. Each time we observed the classroom we talked with the students and asked how they felt 
using two different names for one number. The answers were surprising:  

Student 1:  It is fun, and we like to use the mathematical number names, because then we 
always are able to remember the names. 

Student 2:  We also know the cardinal at once.  

Student 3:  It is a help to remember the names of the normal number as well.   



We were a little overwhelmed but agreed with the students that they should explain to their parents 
why we used the mathematical number names. We decided that no one could do it better than them.  

At the end of the year, we used the same test we had used in the first year but only with the first and 
second grade.  We noticed again that the students’ understanding of numbers was very good, both 
for the use of normal number names and for the mathematical number names 

Due to the time we had to do the project, and how it developed in the school, we decided to 
minimize the observation to only the three third-grade classes, but we still met with the teachers 
from second grade. We did not observe the first grades or meet with their teachers. We continued 
with the K teachers’ meetings.  

The third year 

We mostly concentrated our research on grade three and the kindergarten classes. The use of the 
mathematical number names seemed very natural for the students together with the normal number 
names, and they were bilingual in the numbers from 10–99. In third grade, the students were so 
familiar with the base-10 value system that they could transfer the knowledge to the decimal 
numbers, which meant that they easily answered questions correctly when asked to compare 
numbers like 0.4 and 0.25. In May 2016, the three classes had the national test in mathematics for 
third grade. Compared to the average of all the third graders in Denmark, one of the third-grade 
classes—the one that was observed most frequently—had an average score in Numbers and Algebra 
that was far above average. The other third-grade classes also showed a better result in Numbers and 
Algebra than the average third-graders. 

The conclusion we draw was that the students using the new system showed a better understanding 
of the base-10 system. We saw these competencies, and met our goals, in all the classes which used 
the mathematical numbers. And because the national test investigates additional competencies in 
Numbers and Algebra, we dared to conclude that the students gained from using two names for the 
numbers.  

During the following year, the school had a new headmaster and a new leading board, but because 
of the results, she decided to continue with the mathematical number names even though the 
research project stopped.  

From Top-down to Bottom-up  
With the decision that the school wanted to continue using the mathematical number names after 
our exit, we needed to design a plan for how it could be possible. Inspired by the research (Jarvis, 
1999; Nielsen, 2001) we suggested the following plan:  

1. All the teachers at the school should know that the project stopped as a research project, but 
that the project would continue as an intervention project with the teachers as the drivers.  

2. One K teacher should be responsible for introducing the methods in the K classes for 
incoming teacher and for ideas to be exchanged among the K teachers.  



3. A mathematics teacher should be responsible for orientation of the mathematics teachers in 
first grade each year and arrange a course at the beginning of the new school year, which 
everybody could join in.  

4. There will still be access to the researchers for questions and other things; we are interested 
in the continuing process.  

This plan was first discussed with the involved teachers who agreed to the work they should do, and 
then it was presented to the headmaster. She also agreed and was willing to find time for the teacher 
support.  

We started the process with a course for mathematics teachers in the K-3 classes in August 2016. 
There were about 15 people at the course, which was organized and run by a K teacher, a 
mathematics teacher, and one of the researchers. At this course, we made a quick run through the 
ideas behind the project and how it had run in the previous three years. The teachers who had 
previously taught classes and been involved in the project exchanged ideas and views of the 
learning processes with the mathematical numbers. The K teacher told how she was at an in-service 
course for K teachers in the Copenhagen region and told about the project and how she and the math 
supervisor at the school videotaped how she used the mathematical number names in the K classes. 
The other participants at the in-service course showed a big interest in the project. A similar course 
will be held again, and the math supervisor has told us that there is already a big interest in this in-
service course. 

Discussion 
This article is less concerned with the actual results of the investigations that we conducted in the 
school and more concerned with the transition from an intervention driven by research curiosity to 
an ongoing project driven by the school itself.  

The project was large with many classes involved, and we must admit that it was a little too big for 
only two researchers on a very low budget. We shared the work, so at times only one of us made the 
observations, conducted the interviews, and participated in the meetings with the teachers. 
Everything was documented with taping, pictures, and materials that we analyzed together; we still 
have data waiting for deeper analysis.  

In spite of the low budget and the few researchers, or maybe because of these limitations, we saw 
some teachers taking over the project in an especially engaged way. One teacher, in particular, took 
a lot of responsibility and during a period when other teachers were out sick, he taught all the three 
classes in third grade. Without him, we are not sure the project would have had the success it had. It 
would neither be possible to run such a project without the support and interest we had from the 
leading team including the head master, who played an important role. 

Perspectives 
As it looks now, we hope that the use of mathematics number names will spread to other schools 
and continue to develop. Even though we officially stopped the project at a meeting with all the 



teachers at the school, we will continue with some kind of support if necessary. We will also stay in 
touch for our own sake. 
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This paper presents and discusses a specific aspect of the Danish “maths counsellor” programme 
for upper secondary school, namely that of detection tests. More precisely, the purpose and design 
of a detection test is presented, as is the prospective counsellors’ use of the test. In the description, 
emphasis is placed on the ways in which detection tests assist in informing the maths counsellors in 
their work with students experiencing learning difficulties in mathematics. 
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Introduction 
The words “test” and “testing” are omnipresent in educational research and practice in general and 
in mathematics education in particular. However, the actual notions covered by these terms are very 
diverse, as are their roles and uses. Basically, the terms mean “critical examination of a person’s or 
a thing’s qualities”. There is an abundance of different purposes, goals and objects of testing, as 
well as a multitude of different approaches to and instruments for testing. Without attempting to 
outline a comprehensive theory of test and testing, one distinction is worth introducing in the 
context of mathematics education, a distinction between direct and indirect testing. In direct testing, 
the test object directly epitomises the very purpose and goal of the testing. If your purpose is to find 
out whether a given person can actually drive a car, a direct test consists of taking the person to trial 
in real car driving. In indirect testing, the test object is devised as an indirect indicator of – a probe 
into – something that is not identical to the test object itself, because this “something” is either 
inaccessible in direct terms or too large or too complex to be fully represented by the test object. So 
the test object becomes a proxy for – a representative of – the underlying, but necessarily indirect, 
object of testing. Mathematical learning, understanding, reasoning, modelling, and problem solving 
are just a few examples of such underlying objects of testing, for which a wide variety of test objects 
are only more or less well-chosen proxies. Mathematics education research and practice make 
extensive use of indirect testing, alongside direct testing.  

The key issue concerning indirect testing is what relationships can be established between 
respondents’ responses to the test object and the real underlying object of testing. The generic 
question is: What do responses to the test object tell us about the respondent’s qualities in relation 
to the real underlying object of testing. Since, in indirect testing, these objects are not identical it 
requires a non-trivial amount of clarification of concepts, of interpretation and analysis, and 
oftentimes of independent empirical research to account for the inferences that can be justifiedly 
drawn from responses to the test object onto the underlying object of testing. The “detection tests” 
in focus in this paper are instruments for indirect testing. So, the above-mentioned generic question 
has to be specified for our context. Our research question then is: In what respects and to what 



extent does the detection test presented below allow for the detection of students with mathematics 
specific learning difficulties regarding mathematical concepts and concept formation? 

Due to space limitations we are not able to fully answer this question here and to fully corroborate 
the answer. Instead, we confine ourselves to providing some key points in an answer, that is by 
describing the context in which the detection tests are used; by providing an overall description of 
what a detection test is; and finally by means of an illustrative and authentic example. It should be 
noted that although the actual content of the detection tests is based on research findings and issues 
considered in the mathematics education literature, the notion and role of “detection test” in the 
sense presented here have been introduced by us and thus have not been described previously.  

The “maths counsellor” programme 
This section is based on (Jankvist & Niss, 2016). The maths counsellor in-service teacher 
programme at Roskilde University (Jankvist & Niss, 2015) runs part time over three semesters (in 
total 30 ECTS – European Credit Transfer and Accumulation System), during which the upper 
secondary teachers – ideally – have a reduced teaching load at their schools. Each semester has an 
overarching theme: (1) concepts and concept formation in mathematics; (2) reasoning, proofs and 
proving; (3) models and modelling. These themes were chosen both because they are significant to 
upper secondary mathematics education in Denmark, as is spelled out in the national curriculum 
documents, and because they epitomise key aspects of the eight mathematical competencies in the 
Danish KOM-project (Niss & Højgaard, 2011), which constitutes the theoretical foundation of the 
maths counsellor programme. The teachers’ work in each semester is structured in terms of three 
different phases: (1) to identify (i.e., detect and select) students with genuine learning difficulties in 
mathematics; (2) to diagnose the learning difficulties of the student(s) identified; and finally (3) 
undertaking intervention according to the diagnosis arrived at with respect to the individual student.  

At the very beginning of each semester, the teachers are equipped with a theme-specific detection 
test, consisting of questions and tasks for the students in relevant classes at their schools. As will be 
exemplified below, these tests are developed by us and are informed by research literature regarding 
the specific theme. The purpose of the test is to assist the teachers in detecting students with 
potential learning difficulties in mathematics. Usually, each teacher detects several such students, 
some of whom are selected for being offered maths counselling with the aim of rectifying or 
reducing the observed difficulties during the semester. This typically leads to the identification of 1-
4 students per class in need of, and also interested in, receiving counselling. When speaking of 
mathematics specific learning difficulties, we rely on our previous definition given in (Jankvist & 
Niss, 2015, p. 260), i.e. “those seemingly unsurmountable obstacles and impediments – stumbling 
blocks – which some students encounter in their attempt to learn the subject. These stumbling 
blocks include, but are not limited to, a wide range of misconceptions, misinterpretations, 
misguided procedures, inadequate beliefs etc. with regard to established notions of mathematics. 
We do not include general learning disabilities, cognitive or affective disorders and the like.” The 
purpose of the counselling is not to motivate unmotivated students, but to assist those who work 
hard in mathematics on a daily basis but do not succeed.  

In the diagnosing phase, the participating teachers – strongly assisted by the research literature they 
read as part of the programme (see Jankvist & Niss, 2015) – employ self-constructed tasks, 



interviews, etc., to come to grips with the nature and origin of the students’ mathematics specific 
learning difficulties. Taking the diagnosis as the point of departure and with support from the 
research literature and supervision by us, the teachers design and implement an intervention scheme 
for the students selected. The intervention scheme also includes steps which enable the counsellors 
to “measure” in what respects and to what extent the intervention has worked as anticipated for the 
selected students. For each semester, groups of 2-3 teachers write up a report. After the completion 
of the third semester, all three reports are combined into one, along with an introductory chapter. 
This final report forms the basis for a final oral exam at the university. The teachers who pass 
receive a diploma as certified maths counsellor. 

What is a detection test – and what is it not? 
A detection test, as designed for the Danish “maths counsellor” programme, is a set of maths 
questions to be answered by upper secondary student classes (grades 10-12) within a time frame of 
60-90 minutes without time pressure.  The questions are short, both in their formulation and in the 
sense that they neither require lengthy procedures or computations nor longwinded explanations. 
Moreover, the questions do not involve conceptually complex or technically involved mathematics 
beyond standard upper secondary school mathematics. However, the questions are usually not 
routine questions either. On the contrary, many of them are deliberately posed in such a way that 
they break the “didactical contract” of upper secondary mathematics and require students to think 
and act independently. Danish upper secondary school takes three years and students usually enter at 
the age of 16 after having completed ten years of mandatory comprehensive primary and lower 
secondary schooling. Upper secondary students can choose to have mathematics for one, two or 
three years; three years being the advanced level. Danish upper secondary school covers three 
streams: general, technical, and business.  

The primary purpose of a detection test is to be one among several instruments for detecting 
students possessing genuine learning difficulties in mathematics, within the relevant theme of the 
programme. So, the focus is not primarily on detecting the difficulties themselves – even though the 
tests do have something to offer to that end as well, because the questions in a detection test are 
composed such that wrong answers, individually or in combination with others, may suggest the 
potential presence of particular kinds of learning difficulties with a student giving these responses. 
As mentioned, a detection test is not meant to stand alone. When it comes to detecting students with 
learning difficulties, other sources of information, e.g. the teacher’s prior knowledge of the students 
have to be taken into account as well. More precisely, a detection test may be seen as having three 
different roles. Firstly, in cases when the test, within a certain area or theme, points out students 
who by the teacher/counsellor were already suspected to have difficulties within that area, the role 
of the detection test is to strengthen the teacher’s observations. Secondly, in cases when the test 
singles out students who were not already detected by the teacher, the test serves to amplify and 
sharpen the teacher’s attention and to supplement his or her own observations of the students. 
Thirdly, it is also a purpose of the detection test to provide an initial support in pointing out the 
specific sub-domains within the test’s theme, in which a detected student displays difficulties. Of 
course, students’ test responses may not only indicate difficulties within particular mathematical 
topics; students’ response patterns may also suggest overarching difficulties of a more principal or 



general nature. Thus, this third role of a detection test then typically is to provide inspiration for the 
following “diagnosis” (cf. later sections). 

It is important to keep in mind that a detection test is not meant to be a fair test of the students’ 
attainment levels in the subject of mathematics, neither when it comes to content knowledge, skills, 
and proficiency, nor when it comes to mathematical competence at large or to inventiveness or 
special mathematical talent. Due to the fact that detection tests are designed with a different purpose 
in mind, several important aspects of the usual handling of mathematics – e.g. familiarity with 
concepts and facts, computational skills, or proficiency in solving standard routine tasks – are not in 
focus of the tests. Similarly, the test cannot be used as a screening test in the usual sense, attempting 
to chart students’ possession of various mathematical competencies. However, employed on a larger 
population of students, e.g. a year group in a given school, the test may of course be used as a 
screening test for the potential presence of mathematics specific learning difficulties pertaining the 
theme of the test, within this population, but the test is still much more focused than a general 
screening test for attainment level or competencies.  

Even though the test contributes to singling out students with potential learning difficulties, it 
cannot determine, in itself, whether a given student actually possesses such difficulties. It is 
certainly  possible to encounter poorly performing students whose erroneous answers are not due to 
mathematics specific difficulties, but to ill-will and shoddy job, lack of accept of the didactical 
contract with or in the test (e.g. because the test is not supposed to influence teachers’ marks, or 
because the questions are of a different nature than usually encountered by the students), a bad day 
on the time of testing, or maybe to much more general learning difficulties (or disabilities) that 
manifest themselves in several subjects, not only in mathematics. To determine whether a student 
detected by the test actually possesses mathematics specific difficulties, supplementary means must 
be applied as well, not least the teacher’s knowledge of the student. 

Beside the fact that the test, for a student who has been “detected” by it, may provide important 
indications for a subsequent diagnosis of mathematics specific difficulties, the test is not a 
diagnostic test. It requires an independent diagnostic process to uncover the specific nature of 
observed learning difficulties as well as the sources actually responsible for them. Oftentimes, 
preliminary hypotheses concerning the nature of the difficulties, and what may have caused them, 
must be supplemented with – or even replaced by – other hypotheses as the diagnosis proceeds. This 
may be due to much more deeply rooted difficulties than the ones observed at first, e.g. regarding 
more fundamental mathematical conceptions and beliefs than those in focus of the detection test. 

An illustrative example of algebraic equations and equation solving 
As mentioned above, in each semester of the programme the maths counsellors are equipped with a 
detection test related to the theme of the semester. Hence, detection test 1 concerns mathematical 
concepts and concept formation (we intent to discuss detection tests 2 and 3 in subsequent 
publications). This test consists of some 57 questions (and sub-questions) on selected topics 
relevant for Danish upper secondary school. These include: concepts of number (including fractions, 
decimals, negative numbers, irrational numbers); percent; algebraic expressions and 
transformations; equations (first and second degree, with different types of numbers as coefficients 
and solutions, and with the unknown on both sides of the equal sign); simple functions and aspects 



of the coordinate system; and finally a selection of mathematical conventions such as: different 
symbolic notations for fractions; the equal sign; the inequality sign; minus and negative numbers. 
Out of the 57 questions (with sub-questions) around ten questions concern equations and equation 
solving. In the following we shall focus on examples of this. 

As suggested by various researchers (see e.g. Kieran, 2007), students’ difficulties in solving 
algebraic equations are of two rather distinct kinds. The first kind is related to transformation of 
equations – and algebraic expressions – by means of permissible operations, eventually leading to 
solutions. This not only involves knowing and understanding the scope and legality of the 
operations at issue, it is also to do with the nature and structure of the number domains implicated, 
the meaning of the equal sign, and the arithmetic operations involved, etc. The second kind of 
difficulty is to do with what an equation actually is, and what it means for an object to be a solution 
to an equation. Detection test 1 includes the following questions, among others: [17] Are there any 
values of a such that a2 = 2a? [18] Are there any values of b such that 4b = 4 + b? [20] What is the 
solution(s) to the equation: 3x – x = 2x? [25] Is x = 0 a solution to the equation: 3x – x = 2x? [35a] 
Solve the equation: 3x + 20 = x + 64. [36a] Solve the equation: –6x = 24. [37] For what x do we 
have 38x + 72 = 38x? Our purpose here is to illustrate two things: what the maths counsellor may 
learn from using the test on a larger population of students; and what the maths counsellor may 
learn about a single student from his or her answers to the test questions. 

When a maths counsellor gives the detection test to a group of students, perhaps a larger cohort of 
students – say a class or a year group – certain patterns are likely to reveal themselves. For example 
questions 17 and 18 may tell us something about the students’ algebraic understanding, e.g. the 
students’ perception of how variables may and may not be denoted (anything other than x is often 
rejected as a variable). Questions 35a and 36a address the first kind of difficulty of solving algebraic 
equations, namely the operational aspect in relation to the number domains involved. Question 35a 
is an example of what Filloy and Rojano (1989) call a “non-arithmetical equation”, referring to the 
fact that the unknown appears on both sides of the equal sign. Question 36a may give rise to 
difficulties due to the appearance of the negative coefficient and division by a negative number, but 
also the situation of having to accept a negative number as a solution. On the one hand, questions 
17, 20, and 25 may tell us about the second kind of difficulty mentioned above, i.e. knowing what a 
solution to an equation means, as well as about the consequences of the fact that an equation may 
have infinitely many solutions. On the other hand, they may also tell us something about the 
students’ conception of equality in relation to equations and equation solving. From extensive 
experience, we know that Danish students have difficulties with equations that have either no 
solutions or any number as a solution. Question 37 addresses another aspect of the second kind of 
difficulty. Despite the fact that the vast majority of students are not able to correctly answer question 
20, a large number of students will say that 0 is indeed a solution to the same equation in question 
25. More interesting, perhaps, are those students who are able to answer that all numbers satisfy the 
equation 3x – x = 2x, but still answer “no” to 0 being a solution. This may have to do with a belief 
that solutions are positive integers or be an aspect of more fundamental difficulties with 0. 

To illustrate what an overview of a large student population may reveal, we provide table 1, which 
displays a binary (“correct-incorrect”) coding of 676 Danish upper secondary students’ responses 
from 2012 and 2013 (from all three levels and streams). For the 405 1st year students participating in 



the study we may confirm that questions 20 and 37 are indeed difficult ones, since 92.8% and 
85.4%, respectively, cannot answer them correctly. 

As an illustration of two maths counsellors’ use of the test in regard to equations and equation 
solving, we present the story of student Å (Christensen, 2016). Student Å followed the mathematics 
programme at intermediate level at a general upper secondary school. The two maths counsellors 
spotted student Å at the beginning of Year 1, and then worked with her for three consecutive 
semesters, while they themselves were enrolled in the maths counsellor programme. In relation to 
the above questions on equations, student Å answered incorrectly on both questions 17 and 18 
(“no”), she left question 20 unanswered but answered question 25 incorrectly (“no”), and left 
questions 35, 36, and 37 unanswered. The two maths counsellors initially interpreted this as if she 
had difficulties with the transformation of algebraic equations and with algebraic expressions in 
general, since she also gave incorrect answers to: [6] What is (a / b) ∙ (b / a)? (Where neither a nor b 
is 0.) (Å: “a2 / b2”.) and [50] If a = b is then b = a? (Å: “no.”).  

 [17] [18] [20] [25] [35] [36] [37] 

1st year (405) 148 285 376 193 168 149 346 

Error rate (%) 36.5 70.4 92.8 47.7 41.5 36.8 85.4 

2nd year (196) 45 166 172 87 54 44 139 

Error rate (%) 23.0 84.7 87.8 44.3 27.6 22.5 70.9 

3rd year (75) 12 64 49 25 25 18 43 

Error rate (%) 16.0 85.3 65.3 33.3 33.3 24.0 57.3 

Table 1: Binary coding of 676 student answers to selected questions from detection test 1 (coding by 
Morten Elkjær Hansen as part of his master’s thesis at Aarhus University, 2016) 

Based on interviews which confirmed that student Å most certainly had difficulties in solving 
algebraic equations, and handling algebraic expressions in general, the two maths counsellors 
designed a series of small interventions focusing on solving various equations, arithmetic as well as 
algebraic ones, etc. (Filloy & Rojano, 1989). Soon, however, the maths counsellors began to suspect 
that Å’s difficulties had indeed deeper roots. Student Å found that negative numbers as well as 
fractions were “ugly”, and on one occasion she uttered “0 that’s not a number!” Sometimes student 
Å had difficulty at distinguishing the operations of addition and multiplication. When trying to find 
the difference between two numbers, she counted on her fingers. When having to find how many 
times 8 divides 24, she answered “four” by counting “8, 12, 16, 24”, and even double checked the 
result by repeating the same count. Having to perform the division 24/6, she eventually gave up and 
replied “I don’t know when the numbers are so big.” It turned out that student Å had fundamental 
difficulties with the concept of number, including understanding of numbers, number domains and 
handling of numbers. She appeared only to be on safe ground when operating with small natural 
numbers, where calculations can be performed on her fingers. Student Å’s difficulties extended to 
her (in)ability to correctly apply basic mathematical terms. Thus, on a later occasion she used the 
term “diameter” (of a pizza) as just another unit along with centimeter and millimeter. 



Upon revealing the depth of student Å’s difficulties and acknowledging these to be the cause of her 
symptomatic difficulties with equation solving, the obvious question becomes whether the detection 
test might have provided us with some indications of this. In hindsight, even if there were several 
questions that Å left unanswered, the ones she answered erroneously do seem to corroborate her 
subsequently revealed learning difficulties: [7] Is the number – a positive or negative or is it not 
possible to decide this? (Å: “negative”). [13] Which number is larger: 13/3 or 13/4? (Å: “13/4”). 
[15a] What is x + 0? (Å: “0x”). [26] Round off 148.72 + 51.351 to an integer. (Å: “149 + 51 = 
191”). [27] Which of the following fractions are equal: 1/4, 4/16, 4/12, 2/8? (Å: “4/12 and 2/8”). 
[52] If a < b is b > a? (Å: ”no”). [53] Is (a – 1) / (b + 1) = (a / b) – 1?  (Å: ”yes”). 55. Is (a + 3) / (a 
+ 4) = 3/4?  (Å: ”yes”). 56. Is (a – 1) / (b – 1) = a / b?  (Å: ”yes”). In total, the occurrence of the 
above erroneous answers, together with the responses to the previous questions on equations, 
indicates the presence of a manifest learning difficulty syndrome with student Å. 

The revelation of mathematics specific learning difficulty “syndromes” 
We now return to our research question, i.e. in what respect and to what extent do detection tests 
allow for the detection of students with mathematics specific learning difficulties – here exemplified 
by concepts and concept formation regarding equations and equation solving? As we saw in the case 
of student Å, she most certainly was detected to possess the potential learning difficulties as 
suggested by the test. Clearly, the counsellors’ first hypothesis concerning Å’s difficulties regarding 
concepts and concept formation was insufficient. However, we should keep in mind that this was 
the first time ever that these counsellors used the instrument of an indirect detection test. Once the 
maths counsellors become accustomed to the instrument and skilled in using it, they tell us that they 
are able to make much more accurate initial hypotheses – or even preliminary “diagnoses”. Indeed, 
having experienced a case like student Å, our two maths counsellors are able to make much more 
qualified initial hypotheses concerning students’ difficulties. Seeing the answers to the questions 
above on numbers, conventions, etc., these maths counsellors will no longer suspect a student 
“merely” to have difficulties with solving first degree equations; they will see this as a likely 
symptom of more deeply rooted and fundamental difficulties.  

Indirect tests, such as the detection test outlined above, may mislead the interpreter of test outcomes 
in several ways. In the case of student Å we saw that the maths counsellors at first mistook the 
student’s apparent difficulties for her real, more fundamental difficulties. Another example, which 
we have also seen time and again, is where students are perfectly able to solve algebraic equations 
in an instrumental manner, but do not understand the relational aspects of the operations they 
perform or the very meaning of the solutions they arrive at (for references, see Jankvist & Niss, 
2015). This is to say that if the aim is to “train monkeys” to find solutions to equations, then this is 
certainly possible. Our aim with the indirect detection test is to go deeper, since “our” object of 
learning is more complex than to mechanically obtain a solution. Our aim is to pave the way for 
drawing conclusions that are much broader than what the test questions ask, taken at face value, e.g. 
we insert “spot probes” into aspects of students’ mastery of numbers and algebraic expressions and 
attempt to come up with hypotheses concerning their concept of number in general: if a student 
comes up with this and that erroneous answer, (s)he most likely possesses such and such learning 
difficulties; or if, on the contrary, the student can give correct answers on this particular set of 



questions, then it is fair to assume that (s)he has actually grasped, in a relational manner, something 
significant about the entities involved. 

As illustrated above, an indirect test such as a detection test may function both on an individual 
student level and on larger populations. For example, in the case of student Å we noticed that she 
answered incorrectly to question 15 and question 50 (cf. above). This we interpret as an indication 
of student Å not believing 0 to be a number and possibly possessing misconceptions of equality. But 
how special are these misconceptions for a 1st year student like Å? The coding among the 405 1st 
year students displayed in table 1 revealed an error rate of 18.3 for question 15 and 13.6 for question 
50. In addition, question 14, asking what 0 ∙ x is, which student Å answered correctly, has an error 
rate of 18.8 among the 405 1st year students. This is to say that if questions 14 and 15 are taken as 
markers of difficulties with the number 0, and if the population of the 405 students is representative, 
then it might be expected that more than one sixth of the students in a class at the beginning of Year 
1 will have the number 0 as a “stumbling block” in some sense. The indirect detection test may 
suggest the presence of syndromes, on an individual level as well as on the level of populations. 
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Students’ video tutorials as a means for supporting and analysing their 
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We discuss how a theory based design for students’ production of video-tutorials explaining 
problem solving activities in a first year calculus course can support the students’ conceptual 
learning. We focus on the limit concept and show how the production of tutorials can facilitate the 
students’ interactions and reflections and at the same time provide a rich source for analyzing their 
learning difficulties in relation to key concepts. The theory based design of students’ productions of 
tutorials and the following analyses can inform and support the development and implementation of 
the learning environment in order to facilitate better the students’ conceptual learning.          

Keywords: Limit concept, calculus, student produced video-tutorials, student-student interactions, 
theories on the learning of mathematical concepts, learning environment. 

Introduction and research questions 

The many papers in the literature of mathematics education devoted to calculus signify the 
difficulties with the teaching and learning of calculus with the limit concept as one of the 
fundamental challenges (Rasmussen & Borba, 2014). In this paper we present and discuss a theory 
based design and its implementation for students’ productions of tutorials aimed at supporting the 
students’ learning of the limit concept. The research was related to a teaching experiment in a first 
year calculus course at Roskilde University, where the students produced tutorials with the app 
Explain Everything or similar apps1. Building on theories explaining general learning difficulties 
with mathematical concepts such as the notion of students’ concepts images (Vinner & Dreyfus, 
1989) and Sfard’s (1991) model for formation of mathematical concepts and the importance of 
communication in the learning of mathematics (Sfard, 2008) a didactic tutorial activity was 
designed. The purpose was to get the students to express their images of key mathematical concepts 
in dialogues with their fellow students and to support their concept formation process in particularly 
with respect to their use of symbolic representations and their reification of key concepts such as the 
derivative, integral and limit concepts as mathematical objects. The activity was designed and 
implemented as an assignment; namely to produce in small groups video tutorials explaining the 
group’s solution to selected exercises and the mathematical basis hereof, see figure 1. In the 
assignment specific requirements for the workflow of the students’ production were given in order 
to support the didactic purpose. The tutorials were used as a resource by the students at the course 
and in preparing for the final.   

In the design and implementation of the experiment the basic idea was to use the digital tutorial 
genre to create a theory directed learning environment that encouraged the students to communicate 
with each other about mathematical theory, concepts and techniques. The tutorial genre mediated 
                                                 
1 The pedagogical set up was developed in collaboration with Maja Bødtcher-Hansen, University of Copenhagen.  



student-student interactions and hereby supported students’ reflections on key mathematical 
concepts. The didactical assumption was that by focusing the students’ attention on the production 
of tutorials, aimed at supporting their fellow students’ learning, it would be possible to create 
situations where small groups of collaborating students would activate and express their own 
understandings and images of the mathematical concepts in focus. In addition, the digital tutorials 
could be (and was) used by students for their own retention of the problem solving techniques and 
their mathematical foundation – particular in preparing for the final. Furthermore, re-viewing and 
discussing the tutorials could support the students’ reflections on their conceptual learning or be 
used as a basis for common reflections. 

With respect to the scope and focus of the working group Implementation of Research Findings in 
Mathematics Education (see the introduction to TWG23), the implementation aspect of this paper 
and further related work is the design and organization in the classroom of the digital tutorial in 
creating a learning environment in which research findings on students’ concept formation and the 
importance of communication are brought to use in the teaching of a first year calculus course. We 
are developing our practice of mathematics teaching through interplay with research – and in this 
process we are also engaged with research, so in the present paper, implementation of research 
results and research are intertwined.  

We audio recorded the students’ reflections during their work with the tutorials. The transcripts of 
these records, the tutorials, the students’ performance at the course and observations during the 
course form the empirical basis for addressing our three didactical research questions (RQ): 

1. In what sense and degree can a learning environment focusing on the students’ productions 
of tutorials and other digital products with subject matter content support the students’ 
formation of key concepts in calculus? 

2. Which learning difficulties related to the key concepts in calculus can be revealed and 
theoretical explained through analyses of such student activities and products?   

3. How can the findings from such analyses be used to further develop the learning 
environment and the way in which the students’ products are used in the calculus course?      

In this paper we address the three RQs focusing on the limit concept.  

The context of the experiment 
The experiment was performed at the calculus course in the natural science bachelor program at 
Roskilde University. There were 32 first year students in the course, which was taught in English 
using a typical American calculus textbook (Adams & Essex, 2013). During the previous few years, 
it had become evident that the students’ had problems explaining and applying the concepts and 
methods of calculus in their subsequent courses. One possible explanation for the increasing 
difficulties for the students in developing their conceptual learning in the calculus course could be 
changes in their prerequisites concerning key mathematical methods and concepts from high school, 
which are fundamental for calculus such as algebra, variable, function and the limit concept. CAS 
and graphing software for calculators and computers are used intensively in mathematics teaching at 
high school in Denmark and students learn instrumented techniques to solve standard problems by 
means of such tools. Similar experiences are reported in other educational systems. Barbé et al. 



(2005) have analyzed the situation in Spanish high schools, in particular the incoherence in the 
mathematical organizations of the theory of limits at high school level. Similar incoherencies have 
been found with other key elements of upper secondary level calculus in Denmark and American 
textbooks for first year calculus courses at the university level, due to the elimination of the 
topological parts of mathematical analysis (Winsløw 2015, pp. 200-203). In general, the extended 
use of it-instrumented techniques, in particular CAS-based techniques, poses challenges for the 
teaching of calculus in high school and at introductory courses at university entrance level. Gücler 
(2014, p.4) addresses the role of the teacher in students’ learning of the limit concept in such a 
teaching practice and pinpoints the importance of the teacher in challenging the students to consider 
limits both from a process and an object perspective in different mathematical contexts. In 
particular, the students need to communicate their conceptual understanding in order to really 
experience both of these perspectives and typically they will need specific support in order to grasp 
the idea of the limit of a function as a mathematical object.  

Our approach to this challenge is to experiment with the learning environment so as to make the 
students produce and publish their own mathematical products in the form of tutorials in the digital 
genre through the use of various app’s and video-recordings with tablets. The students’ products 
combined oral and written explanations and presentations of their mathematical task and its content 
matter with visual and dynamical elements.   

Implementation of the experiment: mediatized presentations and assessment 

The students’ fabrications of the mediatized tutorials were connected to their usual homework of 
sets of traditional problems and exercises. During the course, the students handed in three sets of 
homework that each consisted of between 10 to 21 standard problems and exercises from the text 
book. The students were allowed to discuss the solutions to the exercises with each other, but they 
handed in an individual presentation of solutions to the exercises. In order to participate in the final, 
a student had to have all three homework sets approved by the teacher. After the deadline for 
handing in a homework set, the exercises of the set were distributed between the students who in 
small groups produced a video tutorial of a solution to one of the exercises using the app Explain 
Everything or by other means. The video assignments were accompanied by a set of requirements 
for the product and a specific work flow which the students had to follow. The instructions given to 
the students can be seen in figure 1. 

Each student also participated in a project work in which the students worked in groups with 
different subjects from the text book that were not covered in class. Each group wrote a technical 
report of two pages, which was supplemented by various video and/or other visual and oral digital 
products.  

Finally, the assessment criteria were changed. The written test towards the end of the course was 
replaced by an oral test. The oral examination consisted of two elements: (1) a 12-15 minutes group 
presentation of the group’s project work. Every student was required to participate actively in the 
presentation of his/hers project work; (2) an individual examination of 8-10 minutes following the 
group presentation. After the presentation of the project work, the group left the examination room 
and hereafter each student was called back in for the individual examination. Each student drew by 
chance one of the three homework sets of exercises, and made a 5-6 minutes presentation of 



selected parts of the subject matter covered by the exercises in the set. The presentation by the 
student was followed by 4-5 minutes of questioning in the remaining parts of the course and/or 
homework sets.  

 
Figure 1: Assignment, product requirement and workflow for video production. ‘Tim’ in step 4 of the 
work flow refers to the teaching assistant. The students were requested to perform a quality test 
through his approval before they continued to step 5  
 
The alignment of the requirements for the students’ work during the course and the final was an 
important aspect of the design of the new learning environment. The oral communication skills 
which were need for the final were trained through the student-student interactions in the design 
phase of the video productions as well as in the actual fabrication of the videos of the homework 
exercises and the mediatized parts of the project work. The mediatized products of the project report 
were directly aligned with the first part of the final, and the video tutorials were directly aligned 
with the second part of the final. The bank of video tutorials of the total amount of exercises in the 
portfolio sets that were produced by the students during the course helped the students prepare for 
the second part of the oral examination. The students carefully designed tutorials that explained 



clearly and in depth how to solve the exercises, because they were to be used by their fellow 
students in their preparation for the final.  

Analyzing the students’ reflections on the limit concept    
The students’ tutorials were examined during the course in order to identify those which were rich 
enough to be analyzed for answering RQ 2 with respect to the limit concept. Among them, a few 
were selected for discussions with the students in the classroom. Later, the material might be used 
for analyses that focus on other key concepts. Here, we illustrate with one case how we have 
analysed the students’ work with the tutorials for answering RQ 2 focusing on the limit concept. 
Guided by the theories, we looked for indicators of students’ image concept, of students revealing a 
conceptual understanding, and of students using a process oriented conception when we analysed 
the data. The data is transcripts of the audio recordings of one group of students while they 
produced their first  tutorial of an exercise from the first homework set. The students’ video is also 
included in our analysis. 

The students’ objective was to explain the limit concept using the exercise of finding the limit: 
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To begin with, the students observed that the limit cannot be found simply by inserting x=3 in the 
expression, since the denominator is zero for x=3. They mentioned the technique of factorization in 
order to handle this challenge. This technique is used in several examples in the text book. During 
their work, the students had software for graphical and CAS analysis at their disposal. However, 
before implementing this technique they began to reflect on the meaning of the limit concept. The 
students realized that the video should be aimed at “all the students that are struggling with 
calculus”, as student 2 phrased it. Accordingly, they took on the challenge of explaining the limit 
concept in their tutorial. Their dialogue went as follows:    

S1: Wait a second and now I think I’m lost a little bit. What is this limit thing actually 
doing? 

S2: We have to watch the limit, so we have to watch the value that our function is 
approaching, when it’s, when the axis approach …[S2 draws a graph of the 
function on the computer.] 

S1:  Ah, yeah so we can see here, that’s true. Okay trace, so we can see here, so we 
take x value 3, eeh.. to here, so it’s pretty close to 0.! 

S1:  Makes a lot of sense. We can also zoom in! 

S1: I think you just say that a limit is a number that is (inaudible) by. We have a value 
that is approaching a number ... right? 

S2:  A variable that is approaching a number? 

S1:  We have a function. We have variables in a function that is getting approached by 
a number. .. It’s like we’re getting infinitely close, we’re getting infinitely close to 
a number in the function without reaching it. That’s a limit. 

Here we see that there is a close interplay between, on the one hand, the students’ understanding of 
the particular problem in hand and their ideas and images for the limit concept in general, and on the 



other hand, the challenge of producing an explanatory tutorial for their fellow students. The 
situation forces the students to activate and verbalize their images of the limit concept. It becomes 
clear for the students that their understanding is not sufficiently developed for explaining the limit 
concept clearly in their own words in the tutorial. In the process of writing the manuscript for their 
tutorial the students consulted the text book of the definition of the limit concept. The dialogue 
continued as follows:  

S1:  yeah, okay, but let’s first answer the first one. ... What’s an introduction to the 
topic. I think an introduction would just be like “A limit is an.”! 

S2:  value that 

S1:  it’s actually like… 

S2:  a value or number, maybe a number. It’s a number that… 

S1:  yeah it is a number that is getting approached, but is never reached!  

S2:  it can be reached, it can be reached. I just. You don’t have to say if it’s reached or 
defined or undefined, you just say that it’s a number that the function approaches 
as x approaches. As x gets closer and closer to the c. [Referring to the notation in 
the textbook]   

S1:  but I mean it doesn’t reach the limit, that’s the idea. 

S2:  it has… it could. It can because you can write, because that’s only the... 

S1:  it’s still the number it’s going towards but… 

S2:  you can, you can say limit of x when x approaches 2, it’s (over) the limit. 

S1:  yeah okay, but the limit is numbered, but it never reaches that number, that’s not 
the idea. The limit is just taking it to the limit. 

S2:  okay! 

The students are getting into a deep discussion of how to understand the limit concept. Student 1 is 
quite persistent in his process-based thinking of a limit, and he has difficulties with accepting that 
the limit of a function can actually be reached. Student 2, however, switches to a more object-based 
thinking in their discussion of how they should introduce the limit concept in their tutorial. In some 
of her utterances she is getting close to formulating the definition of a limit in her own words, and 
she seems to be aware of the fact that the value of the function can be forced arbitrary close to its 
limit in a certain point x=c by choosing x to be sufficiently close – but not equal – to c.      

After a while student 1 begins to switch into a more object-based thinking of limits. He says: 

S1:  a limit is a number that is being. A limit is a value, you have (on there), the y axis, 
when you’re approaching a number on the x axis…. But is it mathematically 
correct to say that? It’s like if you have a function, and you go towards the 
number.  

In their tutorial the students explain in detail doing the algebraic manipulation by hand how to get to 
the identity:  
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They explain in the tutorial how the limit of the given expression can be evaluated by substituting 3 
for x in “the redefined function” and that this yields the result 0. The students also explain that the 



given function is not continues for x equal to 3: “It has a hole in its graph for x equal to 3, while the 
redefined function is continues in this point and has the value 0”.  

However, the crucial mathematical argument is not stated or explained explicitly in their tutorial; 
namely that since the two expressions are equivalent for all real value of x ≠3, then 
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Discussion and some initial conclusions  
Focusing on the limit concept, our findings in relation to the three RQs are:  

Ad (1): The learning environment encourages the students to articulate and communicate their 
understanding of key concepts such as the limit concept in various situations and forms of 
representations. As illustrated in the analysis presented, in the process of producing the tutorial, the 
students engaged in dialogues about the limit concept using their own language. In their tutorial they 
used oral, written and visual forms of expressions in communicating their conceptual understanding 
and the techniques they used in solving their problem. The crucial didactical feature of the learning 
environment is the focus on the students’ productions of the tutorials aimed at their fellow students. 
Together with the prescribed work flow and the requirements specified in figure 1, the focus on the 
productions of the tutorials, encouraged and enabled the students to express and reflect on their own 
conceptual understanding. In general, from analyzing the students’ dialogues during their production 
of their tutorial it is evident that only when the students began to work on the video production they 
became fully aware of what their task really was about, how the technique they used could be 
explained, and why their results were correct. 

Ad (2): From the analysis it is clear that the students found it very difficult to really understand and 
use the formal definition of the concept of a limit of a function from the text. Especially student 1 
insisted on understanding the limit concept as a process or actually as two connected processes. He 
did not focus on the quality of the limit of a function, and he emphasized wrongly that the limit is a 
number which will not be reached by the function. This phenomenon can be understood by means 
of the concept of students’ concepts images (Vinner & Dreyfus, 1989). Their research explains and 
evidences that formal concept definition only become meaningful to students to the extent in which 
they are unfolded and concretized by personal experiences. The phenomenon can be further 
analyzed by means of the process – object duality of mathematical concepts (Sfard, 1991).  

In the tutorial, the students explain how to use the technique of factorization to find the limit of the 
given function. They reached a new expression for the function, which is equivalent to the given 
expression for all real values of the independent variable x except for x=3. Only the new expression 
is defined for x=3 and can therefore be evaluated in x=3, which yields 0. However, in the tutorial, 
the students did not really explain why the limit for x → 3 have to be the same for the two 
expressions since they are equal for all values of x except for x=3. Güçler (2013, 2014) found and 
analyzed similar difficulties in students’ learning of the limit concept.      

Ad (3): In general, analyses of the students’ productions of the tutorials and the tutorials themselves 
allow pinpointing learning difficulties related to key concepts in calculus such as the limit concept, 
which are theoretically explainable. The analyses can provide ideas for variation of problems to be 



dealt with in the tutorials in order to invoke and challenge the students’ different concept images of 
the key concepts in calculus. Such analyses can inform the development of the learning environment 
in order for the theories to be used in the practice of teaching for identifying and help overcoming 
students’ learning difficulties. Moreover, anchored to the students’ experiences with the tutorial, 
theories can help students develop a sound meta-learning related to the formation of mathematical 
concepts.        

Also, the tutorials can be used in whole class teaching as a point of departure for discussing the 
relations between the techniques used to solve the different types of problems addressed and the 
mathematical theory explaining them and hereby contribute to the development of the mathematical 
organization in the calculus course.    
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The goal of this article is to present and theorize our more successful and less successful attempts 
to create and sustain problem-solving forums, in which exploratory discourse takes place. The main 
argument is that many implementation-related phenomena that we have encountered when working 
with seven high-school classes for one or two school years can be characterized and explained with 
the aid of conceptual tools provided by Rogers’ Theory of Diffusion of Innovation. The most 
successful process of forming an online forum in one of the classes is presented in some detail, and 
the parallel processes in the rest of the classes are presented in the form of an aggregated 
summary. Implications for future design-based implementation research are drawn.   

Keywords: Problem solving, online forums in social networks, diffusion of innovations. 

Introduction 
This article presents an implementation aspect of a research project entitled “Heuristic and 
engagement aspects of learning through long-term collaborative mathematical problem solving”1. 
The main research goal of the project (on-going until September 2017) is to produce a model of 
learning through mathematical problem solving, which would be attentive to cognitive, socio-
affective and contextual aspects of this activity. In particular, the model is supposed to attend to 
interactions between variations in heuristic behaviors (Koichu, Berman & Moore, 2006; Koichu, 
2010) and socio-affective engagement structures (Goldin et al., 2011) activated when high-school 
students collaboratively cope with challenging mathematics problems for relatively long time.  

An implementation aspect of the project consists of designing and sustaining a special learning 
environment, in which long-term problem solving might be investigated. The intended environment 
comprised of a particular combination of problem-solving lessons in a classroom and out-of-
classroom work supported by online asynchronous discussion forums. Its design was strongly 
informed by past research on affordances of online learning environments. Past research tells us that 
students in online environments can actively participate in solving complex problems for 2-3 weeks 
almost without teacher interventions (Moss & Beatty, 2006) and that some of those students who 
tend to be silent in a classroom can actively participate in online discussions (Schwarz & Asterhan, 
2011). In addition, there is evidence that online discussions enable students to meaningfully use 
their mathematical knowledge, enhance self-regulation skills and support knowledge construction 
(Nason & Woodruff, 2003; Tarja-Ritta & Järvelä, 2005; Stahl, 2009).   

Schwarz and Asterhan (2011) attribute the benefits of online discussions to their unique traits, such 
as: fostering divergent rather than linear interactions, enabling flexible time schedules of 
                                                 
1 Selected findings of the project are reported in Lachmy & Koichu (2014), Koichu (2015ab), Keller and Koichu (in 
press). 



participation in the discussions over relatively long periods of time, encouraging explicit and 
accurate expression of the ideas in writing. Koichu (2015ab) argues that many affordances of an 
online problem-solving forum stem from its fundamental characteristics of being a choice-affluent 
environment, that is, an environment, in which the students are empowered to make informed 
choices of: a challenge to be dealt with, a way of dealing with the challenge, a mode of interaction, 
an extent of collaboration, and an agent to learn from. In brief, past research on online collaborative 
problem solving presents many evidence-based cases of successfully working online forums.  

However, little is known from the professional literature about how to put the forums into work and 
sustain them. Our experience in the aforementioned project taught us that this enterprise is truly 
challenging. The goal of this article is to make sense and theorize our more successful and less 
successful attempts to create and sustain problem-solving forums, in which exploratory rather than 
expository problem-solving discourse (this distinction is due to Stahl, 2009) takes place. The main 
argument is that many implementation-related phenomena that we have encountered when working 
with seven high-school classes (grades 10 and 11) can be characterized and explained with the aid 
of conceptual tools provided by Roger’s (2003) Theory of Diffusion of Innovation. 

Conceptual framework    
Approach: Design-Based Implementation Research (DBIR) 

Werner (2004) refers to implementation research as the systematic study of the implementation of 
innovations. Fishman, Penuel, Allen, Cheng and Sabelli (2013) point out that this type of research 
encompasses studies of fidelity, of variations in implementations as well as studies of conditions 
under which programs can be implemented effectively. They further refer to implementation 
research and to design-based research as antecedents of a new, emerging research model, which they 
name Design-Based Implementation Research (DBIR). The core principles of DBIR are as follows:  

 (1) a focus on persistent problems of practice from multiple stakeholders’ perspectives; (2) a 
commitment to iterative, collaborative design; (3) a concern with developing theory and 
knowledge related to both classroom learning and implementation through systematic inquiry; 
and (4) a concern with developing capacity for sustaining change in systems. (Fishman, Penuel, 
Allen, Cheng and Sabelli, 2013, pp. 136-137) 

In addition, DBIR calls for breaking down barriers that isolate those who design and study 
innovations and those who study the diffusion of innovations. We find the DBIR concept and 
principles well-adjusted to the needs of our project.  

Vocabulary: Selected elements of the theory of diffusion of innovations 

The notion innovation is frequently used in the literature on implementation research as a self-
explanatory one (Fishman et al., 2013). However, there exists a branch of the professional literature 
that explicitly focuses on innovations and the processes of their diffusion. In particular, Rodgers 
(2003) defines innovation as “an idea, practice, or object that is perceived as new by an individual 
or other unit of adoption. It matters little, so far as human behavior is concerned, whether or not an 
idea is ‘objectively’ new as measured by the lapse of time since its first use or discovery” (p. 11). In 
our case, the idea of stretching the boundaries of a classroom by means of an online problem-
solving forum was an innovation because it was new to the students and the teachers.    



Rodger’s (2003) theory of diffusion of innovations meticulously characterizes the innovation-
decision process, in which individuals (or other decision-making units) decide whether to accept an 
innovation or not. In particular, Rodgers distinguishes five stages of the process: knowledge, 
persuasion, decision, implementation and confirmation. The stages are briefly presented below.     

At the knowledge stage, potential innovation adopters are exposed to the innovation’s existence and 
obtain some information about how it functions. Sometimes individuals become aware of an 
innovation by accident, and sometimes they actively look for it in order to fulfill particular needs. It 
is also possible that the needs are formed as a result of one’s exposure to an innovation.  

At the persuasion stage, an individual forms a favorable or unfavorable attitude towards an 
innovation. This stage presumes affective involvement with the innovation. In particular, the 
individuals may mentally apply the new idea to their present or anticipated future situation. They 
seek to answer such questions as “what are the innovation’s advantages and disadvantages in my 
situation?”, and seek the answer mostly from their near-peers, whose opinions based on their 
personal engagement with an innovation, are the most convincing. There is a discrepancy between 
forming a favorable attitude towards an innovation and an actual decision to adopt it. Adoption of 
an innovation can be influenced by a cue-to-action, an event that crystallizes an attitude into overt 
behavioral change. 

At the decision stage, an individual adopts (i.e., makes full use) or rejects an innovation. Any 
decision is not final however. The rejection can occur even after a prior decision to adopt; in 
Rodgers’ terms, this phenomenon is called discontinuance. The theory distinguishes between active 
and passive rejection. The former type of rejection consists of considering adoption of the 
innovation and then deciding not to adopt it. The latter one consists of never “really” considering 
the use of the innovation. The decision stage frequently includes a small-scope trial. The actual 
sequencing of the three stages presented so far can alter. Namely, both knowledge–persuasion–
decision and knowledge–decision–persuasion sequences are possible. 

At the implementation stage, an individual puts an innovation into systematic use. Even though the 
decision has been made, the adopters may still feel a certain degree of uncertainty about the 
consequences of the innovation. In addition, problems of how exactly to use the innovation may 
emerge. Sometimes the adopters change or modify (in Rodgers’ terms, re-invent) the innovation at 
this stage. The implementation stage can be lengthy, but it ends when the idea that has once been 
innovative becomes institutionalized and regularized in the adopters’ normal functioning. 

Finally, at the confirmation stage, an individual constantly seeks reinforcement for the decision to 
adopt or reject an innovation that has already been made. As a result of positive or negative 
messages about the innovation, the decision can be reversed. Rodgers points out that the change 
agents (i.e., those who influenced one’s decision to adopt an innovation) have responsibility of 
providing supportive messages to the individuals who have previously adopted the innovation. 

Methodological aspects of the project 
Participants and the project’s activity 

Two experienced mathematics teachers and two of their 10th grade classes took part in the first year 
of the project (2013-2014); five more teachers and their corresponding five classes joined the 



project during its second year (2014-2015). Each participating teacher acted in the project as a 
member of the research group and took part in the meetings of the group. In addition, each teacher 
worked in contact with an additional member of the group who was responsible for the 
technological support and documentation of the activity. Mathematics in all participating classes 
was studied for five hours a week, in accordance with the Israeli high-level curriculum (see Leikin 
& Berman, 2016, for details). For the concerns of this article, it is enough to mention that geometry 
was studied two hours a week and that its study included systematic work on proving tasks. 

We planned that each participating in the project class would be engaged, at least three times during 
a school year, in the following activity. The students cope with a series of preparatory tasks during a 
90-minute lesson and are offered an especially challenging geometry problem at the end of the 
lesson. They then engage, for 5-10 days, in solving the problem from home in a closed (that is, 
available only to the students of a participating class and the members of the research group) online 
forum. Different technological platforms, including Google+ and WhatsApp, were tried in different 
classes. When the problem is solved or, alternatively, when the students give up, a 90-minute lesson 
is conducted in the classroom in order to get closure. The lesson consists of whole-class and small-
group discussions, during which the students share their experiences with the problem.  

Documentation of the project 

Forty-two meetings of the research group were audiotaped (about 100 hours) and, in addition, 
documented in the protocols of the meetings (more than 100 pages). The documents produced by 
the group and all relevant email exchange were stored. Every member of the group was required to 
keep a diary. The diaries were for writing anything their authors deemed important for the project, 
including their thoughts and feelings in relation to the project’s events. The diaries were stored in 
shared Google Drive of the group and were available for reading and commenting by the members. 
In addition, 14 lessons were videotaped, the content of the forums was stored (more than 3000 
posts), interviews with students and teachers were conducted (about 15 interviews), and the 
students’ written feedback on different aspects of the project was collected.    

The story of NK’s class, which is presented below in some detail, is produced using narrative 
inquiry methodological tradition. As Clandinin and Caine (2008) explain, “Narrative inquiry is 
marked by its emphasis on relational engagement between researcher and research participants” (p. 
542). This approach was chosen because we (hereafter, BK and NK) had been active members of 
the processes under exploration; in particular, NK was a mathematics teacher of the class. An 
aggregated summary of the stories in the rest of the classes is produced using a general inductive 
approach (Thomas, 2006), which enables researchers “to condense extensive and varied raw text 
data into a brief summary format” (p. 238).  

Findings 

A (success) story of NK’s class 

The main events at the knowledge phase of the project in NK’s class consisted of: (1) a conversation 
between NK and BK following BK’s observation of one of NK’s lessons; (2) a conversation 
between NK and her students. Because of the first conversation, NK decided to take part in the 
project mainly because the idea to stretch the boundaries of a classroom by means of an online 
forum resonated well with NK’s constant need to enrich her teaching repertoire in order to create 



valuable learning opportunities for her students. In Rodgers’ terms, NK acted as a venturesome 
innovator who is able to cope with high degree of uncertainty about an innovation, and BK acted as 
a change agent. In her conversation with the students, NK acted as a change agent, and the students 
were potential innovation-adopters to be persuaded. NK argued that developing problem-solving 
skills was a strong benefit of participating in the project, and appealed to the students’ curiosity to 
try something new and be a part of an interesting initiative. The students’ reaction to the information 
about the project was favorable, though not exactly for the reasons that NK had presented. 

The first mathematical problem of the project is presented in Figure 1. It is representative of most of 
the problems of the project. In particular, it looked similar to geometry problems the students were 
familiar with from classwork and homework. As such, the problem “invited” the students to 
approach it by means of mathematical ideas that worked well in the past. For instance, the students 
might think of including the angles, whose equality is to be proved, in a pair of triangles and attempt 
proving their congruence by finding some equal elements. However, such a general plan was 
insufficient; something else (e.g., a clever auxiliary construction) should have been invented. 

Nine-Square Problem: There is a net of nine congruent squares  

(see the drawing). Prove that the two angles denoted 

in the drawing are equal.  

 

Figure 1: The first problem of the project 

When the problem was uploaded to the Google+ forum, three students worked on it. Their three-
hour-long brainstorming session was unsuccessful. As a result, the forum was non-active during the 
next two days.  The following day NK met the students at school and asked: “Why did you stop 
solving the problem? It is not too difficult”. The students showed NK their hand-made drafts as 
evidence that they had tried. NK asked the students to upload their drafts to the forum and continue 
solving the problem together. That evening eight students entered the forum, cooperated and 
eventually solved the problem. Two solutions to the problem by the active participants of the forum 
and an additional solution by a student who was a silent observer were presented at the mathematics 
lesson following the forum. The students’ voluntarily expressed their suggestions as to how to 
further run and improve the forum by the end of the lesson, 

In Rodger’s terms, the first three students acted as venturesome innovators. Rodgers points out that 
this category of adopters is important for launching a new idea, but they have little influence on 
other individuals’ decision to adopt or reject the idea. The conversation between NK and the 
students in school was crucially important as a cue-to-action for eight students, who acted as early 
adopters. Rodgers characterized this category of individuals as respectable, that is, well-integrated 
members of a local community whose opinion about the innovation matters for the potential 
adopters. The mathematics lesson, in which these eight students shared their positive experience at 
the forum with the rest of the class, was another crucially important cue-to-action. 

The next two problems of the project were approached on the forum by about the same group of 
students. The students learned to share their half-baked ideas, and even developed some rules 
related to publishing the full solutions at the forum. In brief, they agreed that a student who obtained 



the full solution should not publish it early, in order to not “spoil the fun” for others. The forum was 
indeed exploratory rather expository in nature. Three months later, collaborative problem solving at 
the forum became a well-established practice for six students; most of their classmates joined the 
forum occasionally and constituted the early majority. It seems that each student has decided how 
and to which extend to use the forum. The implementation stage (three to eight month from the 
beginning of the project) was characterized by gradual two-directional diffusion of social and socio-
mathematical norms developed in the forum and in the lessons. In particular, there were several 
forum-like lessons initiated by the students (see Keller & Koichu, in press, for details). 

The evidence of confirmation of the students’ decision to adopt the innovation came from the 
following sequence of events. As mentioned, the Google+ forum flourished for several months, but 
it we have not yet mentioned that then it was deserted. NK inquired with the students about this fact 
and discovered that the activity moved from the Google+ to WhatsApp, a popular social network in 
Israel since about 2014. The students granted NK access to their WhatsApp forum, and we were 
happy to find there many autonomous problem-solving discussions of exploratory nature. The 
WhatsApp forum flourished in NK’s classroom until the students’ graduation in 2016. 

An aggregated summary of seven stories          

An aggregated summary of the conduct of the project in all participating classes, by Rodgers’ 
phases, is presented in Table 1.  

 NK class AP class AH class ES class RN class OG class LA class 

Knowledge + + + + + + + + + + + + + + 

Persuasion + + + + + + + + + + - + 

Decision Accept Passive R Accept Passive R Accept  Active R 

Implementation + + + + + + +   

Confirmation + +       

Table 1: The implemented stages of the project in seven classes  

The sign “+ +” in the table means that the stage is fully realized; “+” means that the stage is partially 
realized (e.g., the forum was active only as a trial or only few students were active); “-” means that 
there were no conditions for realizing the stage; “Active R” and “Passive R” stand for active and 
passive rejection, respectively. An empty cell means that the project did not arrive at that stage. 

As Table 1 tells us, only NK’s class went through all five stages, up to the point when using the 
online forums for problem solving stopped being an innovation and became a routine. 
Implementation of the project’s idea at the scope comparative to NK’ class occurred in one other 
class, and partial implementation – in three classes. In two classes the project did not reach the 
implementation stage, despite of much effort made by the teachers and the research team.  

Concluding remarks   

Recalling Tolstoy’s seminal assertion, happy families are all alike; every unhappy family is 
unhappy in its own way, we can argue that there is a unique story behind each cell of Table 1. 



Unfortunately, we cannot tell these stories here due to the space constraints. In brief, sometimes 
school conditions or classroom norms were inappropriate for realizing the project’s idea, sometimes 
a particular cue-to-action event did not happen at the right time or was not appropriately designed, 
and sometimes our decisions and actions as a research group were far from being optimal. We have 
also observed, more than once, the phenomena of discontinuance and of passive rejection for which 
we do not have convincing explanations, despite the extended data set in our possession.  

We intend to continue the aforementioned project, and one of the lessons learned so far is that the 
DBIR concept and theories like the Rodgers’ theory of diffusion of innovation should be taken 
seriously. Either detailed or aggregative analysis of implementation of the project idea is helpful for 
us as a tool for refining the roadmap of the project. In addition, we now better understand that 
creating conditions for implementation of an innovative pedagogical idea in a school reality should 
be given full attention prior to delving into a pursuit for “traditional” research questions, such as 
questions on cognition and affect in mathematical problem solving that have been the main research 
questions of the project. Based on the accumulated experience, we call for reporting and analysing 
not only those cases where an innovative idea is being fully implemented, but also those case where 
the implementation was partial or did not occur as planned. We conclude by suggesting that 
systematic attention to implementation issues, by means of DBIR, may have not only practical, but 
also fundamental theoretical significance in mathematics education.                    
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From theory through collaboration into practice: Designing a 
problem- solving curriculum for grade 6 students 
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Teachers are continuously confronted with instructional endorsements, such as the inclusion of 
problem solving in school mathematics. However, adoption of problem solving is still not a reality. 
One reason for it is the lack of practical teaching materials based on research findings to achieve 
the goals stated in the standards. In the context of this reform agenda, collaborative work between 
educational researchers and practitioners in a real setting working on issues of everyday practice is 
crucial in order to overcome the gap between theory and practice. In this paper, I focus on such 
theory based problem solving curriculum for grade 6 students that was developed using design- 
based research. At the end, I discuss factors inhibiting the implementation of the curriculum.  

Keywords: Word problems, material development, mathematics activities, problem solving.  

Introduction  
The (inter-)national educational standards (e.g., KMK, 2003; NCTM, 2000) have strongly endorsed 
the inclusion of problem solving in school mathematics. Empirical studies, however, portray a 
different picture. Students are often unable to solve problem tasks (e.g., Schoenfeld, 1985). In 
addition, quality analyses in the German school system contend to a poor problem solving culture. 
As reported in Kuzle and Gebel (2016), problem solving tasks got rarely introduced. When this was 
the case, they were primarily done by the teachers; mostly routine tasks dominated the lessons, and 
problem solving strategies were explicitly applied in one third of examples only. The biggest 
problem reported by the school’s teachers was the lack of practical teaching resources to achieve the 
goals stated in the standards (Kuzle & Gebel, 2016). In the context of this reform agenda, the 
development of materials for students and teachers is of great importance for overcoming the gap 
between theory and practice (Jahn, 2014). One urban school recognized this deficit and set as a goal 
promoting problem solving instruction centered around curriculum material, developed through 
collaborative work between educational researchers and practitioners.  

Here I report on a small part of SymPa1-project (Systematical and material based development of 
problem solving competence) focusing on collaboration between practitioners and researchers with 
the goal of developing a problem solving curriculum for grade 6 students using design-based 
research (DBR). The guiding question is: What factors inhibit implementation of research-based 
problem solving curriculum in practice? In the following sections I outline relevant theoretical and 
methodological underpinnings used to design a problem solving curriculum, before showing how 
these got implemented, and report on its evaluation (initial DBR-cycle). As a result of evaluation, I 
discuss the curricular redesign that might allow more effective implementation in practice. 

                                                 
1 SymPa stands for „Systematischer und materialgestützter Problemlösekompetenzaufbau“. Inga Gebel (researcher) and 
Christian Conradi (practitioner) initiated and participated in the project likewise. 



Theoretical foundation guiding the design process 
Plethora of research on problem solving undergoing since the 1970s identified several pivotal areas 
for a problem solving curriculum. I outline here only a small portion of this research that was crucial 
for the project based on German standards’ conception of problem solving (KMK, 2003). 

Problem solving competence   

Problem solving competence relates to cognitive (here heuristic), motivational and volitional 
knowledge, skills and actions of an individual required for independent and effective dealing with 
mathematical problems (Bruder, 2002; Kuzle & Gebel, 2016). Accordingly, students should a) learn 
approaches (heuristics) for solving mathematical problems and how to apply them appropriately in a 
given situation, b) develop reflectivity for own actions, and c) develop willingness to work hard (cf. 
Bruder, 2002; KMK, 2003). As problem solving competence encompasses so many different facets, 
problem solving curriculum should account for the following research areas: (a) teaching 
approaches and concepts on problem solving, (b) theories of self-regulated learning and self-
regulation in problem solving, and (c) theories of motivation which are outlined below.  

Teaching approaches and concepts on problem solving in combination with self-regulation 

There are at least seven practices for problem solving curriculum that researchers (e.g., Kilpatrick, 
1985; Pólya, 1945/1973; Schoenfeld, 1985) have claimed to be important for helping students grow 
in their problem solving ability: (1) osmosis (give lots of problems), (2) give “good” problems, (3) 
memorization (teach specific or general heuristic strategies (heurisms)), (4) imitation (model 
problem solving), (5) cooperation (limit teacher input by having students work in small groups), (6) 
reflection (promote metacognition by asking metacognitive questions or encouraging students to be 
reflective), and (7) highlight multiple solutions. In the recent years, Bruder (2002) developed a 
problem solving teaching concept focusing around Lompscher’s (1975) idea of  “flexibility of 
thought”. Flexibility of thought is expressed by one’ ability to  

1. reduce a problem to its essentials or to visualize it by using visual and structuring aids, such 
as informative figures, tables, solution graphs or equations (reduction).  

2. reverse trains of thought or reproduce these in reverse, such as by working backwards 
(reversibility). 

3. simultaneously mind several aspects of a given problem or to easily recognize any 
dependences and vary them in a targeted manner (e.g., by composing and decomposing 
geometric figures and objects, by working systematically) (minding of aspects). 

4. change assumptions, criteria or aspects in order to find a solution, such as by working 
forwards and backwards simultaneously or by analyzing different cases. Such ability 
prevents “getting stuck” and allows new approaches and insights (change of aspects). 

5. transfer an acquired procedure into another context or into a very different one by using 
analogies for instance (transferring). 

These typical manifestations of mental agility can be related to analyses of heuristic approaches by 
Pólya (1945/1973). Untrained problem solvers, however, are often unable to access the above 
outlined flexibility qualities consciously. Moreover, not only the knowledge of different heuristics 
(flexibility of thought) is needed when problem solving, but also self-regulatory abilities which 
evolve gradually through a 5-phase model (Zimmerman, 2002). Problem solving can be trained by 



learning heuristics corresponding to these aspects of intellectual flexibility in combination with self-
regulation, which according to Bruder (2002) and Bruder and Collet (2011) develops through the 
following five-phase concept: 

1. Intuitive familiarization: This phase builds on Pólya’s (1945/1973) model, in which a 
teacher serves as a role model when introducing a problem to students. Thus, the teacher 
moderates behaviors typical for the problem by engaging in self-questioning pertaining to 
different phases of the problem solving process (before, during, and after). For example 
questions such as, “What is the problem asking for?” “What information am I given?” “Is 
there anything I don’t understand?” “Am I headed in the right direction?” may help guide the 
students (Kuzle & Bruder, 2016). At this point the heurism in focus is not specified. 

2. Explicit strategy acquisition: During this phase the students get explicitly introduced to the 
heurism in focus on the basis of a reflection from the first phase. Here the particularities of 
the heurism get discussed and it gets a name (exemplification). Here prototypical problems 
get used for introducing a heurism in focus, so that the students can more easily recognize its 
main ideas and more easily remember their specific steps for future problem solving. 

3. Productive practice phase: During this phase the students practice solving the problems 
using the heurism in focus. Here is important that the problems do not reproduce type 
problems, bur rather expand the possibilities from the first two phases. In addition, 
differentiation should be a guiding concept during this phase, so that students can choose at 
what cognitive level they want to work and adapt the observed learning behavior. 

4. Context expansion: In this phase the students should practice the use of heurism in focus 
independent of a mathematical context. In that way, the students learn to flexibly, 
unconsciously and independently of a context use the heurism in focus.  

5. Awareness of own problem solving model: The aim of the teaching concept is that the 
problem solving model of the students gets expanded, so that they are in a position to solve 
problems better using different heurisms. Awareness of own problem solving model can be 
induced by having students reflect on and document their problem solving process.  

Lastly, students’ willingness to work hard is a major factor for the successful problem solving 
process. Without an effort from the learners, there will be no successful learning. For that reason, 
the criteria such as, understandable and clear problem, age-appropriate choice of context, and 
visible competence growth (Bruder, 2002) are crucial when designing problem solving curriculum. 

To summarize: the problem solving curriculum was developed around the operationalization of the 
terminology “problem solving competence”. This included the teaching concept of problem solving 
by Bruder (2002) in combination with Zimmerman’s (2002) self-regulation model taking into 
consideration the criteria for motivating tasks (Bruder, 2002).  

Curriculum development 

The problem solving curriculum was developed in collaboration between the two researchers 
(author and young researcher) and one practitioner (teacher from the project school). More 
concretely, the researcher team developed the curriculum based on the outlined theories and 
school’s contextual factors (see below), which were discussed up-front. Curriculum materials (e.g., 
problems, textual parts, figures, colors) were either separately developed by the researcher team and 



discussed afterwards with the teacher or the entire team met together and developed them. The final 
decision about the problem solving curriculum (e.g., content, problems) was met by the teacher. 

Enactment 
For the design of curriculum contextual factors played a great role, in which theoretical ideas had to 
be operationalized. Students of 6th grade were chosen to participate in the project lasting one school 
quarter (ca. 16 lessons, 1 lesson = 45 min). The implementation of the curriculum took place during 
two parallel phases (see Table 1). During the first DBR-cycle 13 students participated. Teacher A 
initiated the project, had previous experience in problem solving (e.g., attended professional 
development courses on problem solving, read literature on it, and implemented problem solving 
tasks occasionally in his teaching practices). The second DBR-cycle started parallel to the first 
DBR-cycle, and was led by another mathematics teacher. In total 12 students participated. Teacher 
B had practically no experience with problem solving or teaching problem solving. 

1st DBR-cycle 

every 14 days (8 meetings), Fridays, double 
period, teacher A 

2nd DBR-cycle 

weekly (17 meetings), Mondays and Tuesdays, 
single periods, teacher B 

Table 1: Parallel enactment cycles 

With respect to heurisms, focus laid on those heurisms prescribed by the school’s own curriculum, 
namely heuristic auxiliary tools (informative figure, table, solution graph), heuristic strategies 
(working systematically, working forwards, working backwards), and heuristic principles 
(composing and decomposing). Thus, all flexibility qualities were addressed. With respect to 
mathematical content, problems covered the content areas of 5th and 6th grade mathematics 
(operations with natural numbers and fractions, combinatorics, geometric and numeric patterns, 
measurement pertaining to 2- and 3-dimensional figures). Based on the project time frame, each 
heurism was covered within two lessons, but followed the above underlined problem solving 
concept. For one exemplarily operationalization with references to theoretical base see Figure 1. 

During the implementation phase data collection took place on three different levels: student level, 
teacher level and classroom level. With respect to the student level, data from student textbooks 
(intermediate reflections, final reflection) and their workbooks (student productions) was collected. 
With respect to the teacher level, data from continuous communication with the teachers (e-mail, 
telephone calls), teacher textbook and semi-structured interview at the end of the project was 
collected. Concretely, continuous communication allowed the researcher team to support the 
teachers during the implementation phase with respect to pedagogical and/or methodological 
questions (e.g., discussion of different solutions, cooperative methods), by answering questions of 
content nature (e.g., questions about particular heurism), and through flexible and stepwise redesign 
of the curriculum after each lesson. Lastly, with respect to the classroom level, observations allowed 
for analysis of student-teacher interaction, and students’ interaction with the curriculum.  



 

Curriculum on the heuristic auxiliary tool of table Theoretical foundation 

2.2	Table	
2.2.1	Coin	problem	I	

Probi wants to buy a bar of chocolate for 27 cents. He has only 10-, 5-, and 2-cent 
coins. In how many different ways can Profi buy the chocolate? 
 
 
 
 

 
What	is	a	table?			

Tables are useful heuristic auxiliary tools when trying to structure, reduce and focus 
the information in problem tasks. They are well suited for documenting different 
approaches or different possible solutions, and record all possible cases of a solution 
without losing track.  
 
Example	

 
 
 
 

 
 

2.2.2	Usage	of	a	table	
 

 

Write a letter to Probi, in which you explain him how you have solved the 
problem using the table.  
 

2.2.3	Choice	for	outfits 
Probi was invited to Probi’s garden party. He is standing in front of his wardrobe, and 
doesn’t know what he should wear.  

 

 

 

a) How many different possibilities does Profi have for his outfit? List them all.  
b) How can a table be helpful when solving the above problem? 

 

2.2.4	Table	instead	of	informative	figure		
 

 

 

Explain Probi how you solved the problem. Which approach do you prefer? Why?

Profi,	I	still	don’t	understand	how	you	approached	the	problem	in	the	

example.		

Wozu	dient	die	Tabelle	da?	

Probi,	here	I	want	to	show	you	that	problems	can	be	solved	with	

different	heuristic	auxiliary	tools.	For	example,	I	solved	here	“The	

Age	problem“	(2.1.3)	using	a	table.		

I	solved	now	the	“Sliding	task“	using	a	table.	Probi,	how	did	I	do	it?		

Hmmm…	

27 Cents per chocolate 

Mmmh	chocolate!	How	can	I	combine	my	

coins,	so	that	I	don’t	get	any	change?		

I	wanna	wear	my	favorite	jeans	in	any	case.		

I	am	missing	then	only	a	T-shirt,	a	hat,	and	a	pair	of	

shoes.	

Uiii,	I	have	a	lot	of	possibilities	for	my	outfit.	

 

In the phase of intuitive familiarization, 
students solve a representative problem for 
the heurism in focus together with the 
teacher, who serves as a moderator. Here 
the imitation of teachers’ behavior takes 
place through self-questioning.  The 
problem represents the students’ first 
encounter with the heurism in focus. 

In the phase of explicit strategy acquisition, 
the heurism in focus gets formally 
introduced through a short student-centered 
information text and an example.  

In what follows, at least three problems of 
different cognitive level are presented that 
serve as a productive practice phase. This 
allows for differentiation, where each 
student can solve as many problems as he 
or she can. In addition, problems from 
different mathematical content areas are 
covered, to allow for transfer (context 
expansion phase), which pertains to the 
fourth phase of the teaching concept.  

In addition, the heurisms are interrelated, 
so it is important that the students 
comprehend this. The last task allows 
students to make this connection by 
comparing the two heurisms and reflect on 
it. 

 

Figure 1: A sample page from the problem solving curriculum on the heuristic auxiliary tool of table 

The problems focused on contexts that are motivating and appropriate for young students. In 
addition two figures were introduced to support students’ willingness to work hard; they could 
identify with Probi (shape of a question), who asks questions and gets stuck. Profi (shape of an 
exclamation mark) offers then support to students, who illustrates a professional problem solver. 

Evaluation 
Qualitative-content analysis was used to analyze the collected qualitative data as outlined in Patton 
(2002). This method is particularly suitable for research activities, in which the knowledge is low 
and a study has more of an exploratory character. Thereby, the aim was to systematically analyze the 



qualitative data and produce a category system by focusing on factors inhibiting the implementation 
of the curriculum. The deductive analysis was performed based on the theoretical foundation, which 
was then refined in the inductive analysis by emerging issues and additional codes. The situations 
were interpreted as inhibiting when they allowed for a limited implementation of the curriculum 
only as reported explicitly by teachers and students and/or was observed by reviewing the collected 
data. As a result four categories were produced (see Table 2, for more detail see Kuzle & Gebel, 
2016). The category system was then used to interpret the results of the study with respect to the 
research question. All data got analyzed by the two researchers independently.  

Category Description Subcategory 

Language All language-based comments that influenced 
the understanding of the problem were assigned 
to the language category. 

Problem solving terminology 

Figure names 

Problem enumeration 

Level of 
performance 

Barriers influencing the level of performance 
during problem solving process (e.g., content 
barriers, subjective barriers) were assigned to 
the level of performance category. 

Motivation and differentiation 

Curricular difficulties 

Increased level of performance 

Learning 
pedagogies 

The evaluations of the curriculum in terms of 
the didactic ideas about learning how to solve 
problems are listed in the learning pedagogies 
category.  

Communication ability 

Reflective ability 

School and 
personal 
influences 

Any feedback that aimed at external factors 
influencing the implementation was assigned to 
the school and personal influences category. 

Teacher attitude 

Professionalism 

Organization 

Table 2: Four content categories inhibiting implementation of the problem solving curriculum 

Table 2 shows that also school and personal influences, which were not part of the design process, 
influence the extent to which the curriculum gets implemented. Thus, teachers also inhibit 
successful implementation of the curriculum, despite being part of the design process. I focus on 
this category by giving different subcategory examples since this factor was most surprising.  

Figure 2 shows student’s work solving one problem where the heuristic auxiliary tool of informative 
figure was to be used. Instead of representing a graphical illustration of the situation to be resolved 
from which the solution can be “read” (informative figure), it represents a sorting of information. 
Hence, the student work is a reflection of teacher’s B lack of knowledge of problem solving, despite 
this problem being discussed in the teacher manual, which she glanced only once (professionalism). 
This was seen in all students’ notes. Moreover, the analysis of students’ workbooks revealed that 
teacher B avoided introducing problem solving terminology and allowed students to solve problems 
as they wished (teacher attitude). She explained that she did not want to burden them with formal 
terminology and constraint their problem solving process.  

 



 
Figure 2: Teacher’s professionalism reflected in a sample page from one student’s workbook 

Also teacher B criticized heavily the name of the figures in the curriculum (Profi, Probi), which was 
reflected in students’ final reflection, where they urged for the change of figure names. Thus, 
teacher’s negative attitude about a design element transferred negatively onto the students. Such 
behavior was not observed with the students led by teacher A, who questioned the chosen names, 
but never criticized them during his instruction. Teacher B in comparison to teacher A was not part 
of the design team, but was assigned to implement the curriculum due to organizational school 
context. The case of teacher B shows that negative attitude and lack of professional behavior 
inhibited successful implementation of the curriculum. Hence, teacher as an inhibiting factor should 
not be neglected during the design and implementation process. 

Conclusion 
Problem solving must gain more importance in school mathematics. Although several teaching 
concepts and practices are known (e.g., Bruder, 2002; Kilpatrick, 1985; Pólya, 1945/1973; 
Schoenfeld, 1985), these get rarely implemented. Moreover, curriculum based on existing and 
empirically tested problem solving pedagogies is non-existent. To overcome this gap SymPa-project 
was grounded. Teachers participating in the project reported improvement in students’ problem 
solving competences with respect to deliberate and mindful use of different heurisms when problem 
solving. In addition, the teachers not participating in the project, reported students using these 
heurisms in regular mathematics classes. Hence, it was possible to develop curriculum that met the 
local demands with the aim of supporting a systematical development of problem solving 
competence. However, different objective and subjective factors inhibited full-implementation of 
the curriculum. With respect to the former (language, level of performance, learning pedagogies), 
changes done in the re-design phase of the DBR-cycle will shed light to which extent these were 
enough for successful implementation in the upcoming phases of enactment. With respect to the 
latter (school and personal influences), it became clear that the curriculum alone does not guarantee 
the implementation of the teaching concept. Substantial knowledge base of the content and 
pedagogical ideas seem necessary to teach in accordance with the theoretical foundation. 
Confidence and experience in teaching problem solving played a crucial role likewise. Likewise 
school organizational factors should not be ignored. Since the teachers were assigned to teach the 
problem solving lessons and received no compensation for the participating in the project, a lack of 
motivation may develop, which influences the willingness to teach, the lesson quality and with it the 
students’ acceptance of the curriculum.  

In this paper I demonstrated that DBR-paradigm allows creating novel teaching environments in 
which theory and practice were not detached from one another, but rather complemented each other. 
Here the efforts were made to design, use and do research on problem solving curriculum in a real 



setting. This promoted adoption of the innovation – problem solving curriculum – which became an 
official part of that school’s curriculum. Moreover, close collaboration during the design and 
enactment phase, and the re-design of the materials by the researchers as a result of teachers’ 
feedback allowed them to develop a sense of ownership for the designed curriculum. Future work 
should use similar methodologies to ensure implementation of research into practice, adoption of 
research into practice, which would then allow research on implementation projects. These 
components may build a fundamental step to overcome the gap between theory and practice. 
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“There is nothing so practical as a good theory”. The statement from Kurt Lewin is frequently 
cited, also in mathematics education. The statement invites for and requires close cooperation 
between different agents, whatever their specific relation to practice and theory is. It is not a 
straightforward endeavour. One reason is that the term theory as well as the term practice may very 
well be given different meanings by different agents. This variation is, in our view, to be considered 
in “implementation research” and Lewin’s statement ought to be qualified by two questions: “Who 
cares about a good theory?” and “What makes a good theory good for whom?”  

This paper explores the variation of how theory is perceived by mathematics teachers and by 
mathematics researchers involved in a developmental project on early intervention in mathematics 
education in Denmark. The paper exemplifies how agents’ different work conditions and work 
requirements seem to constitute qualitatively different needs for theoretical constructs, despite some 
common interests.  

Keywords: Early intervention programs, teaching principles, theoretical constructs. 

Background for the early mathematics intervention project 
We noticed a long tradition of integrating early mathematics intervention programs into compulsory 
education practice like, e.g. Mathematics Recovery (MR) (Wright, 2006; Wright et al, 2007) and 
Extending Mathematical Understanding Intervention Program (EMU) (Gervasoni, 2016), in 
Australia, Ireland, the UK and the USA. A similar tradition exists in Denmark for early reading 
intervention programs, as such programs are implemented at a regular basis in all schools in 
Denmark. Either as part of a municipal policy or a matter of choice, schools launched early (from 
the first grade) intervention processes in reading to support individual children, who show signs of 
reading difficulties.  

At the ministry level in Denmark concerns were raised about pupils failing at mathematics in the 
National Official Guidelines in the 2003 National Mathematics Curriculum from the Ministry of 
Education (UVM, 2003). In 2004 the need to support failing pupils in mathematics in the first 
school years was emphasised (Mortimore et al.) and the national official guidelines to the revised 
2009 national curriculum (UVM, 2009) described, for the first time, the issues in detail. Still, no 
intentions of integrating programs for early mathematics intervention into compulsory education 
practice were seen in Denmark until recently (Lindenskov, 2007).  

In 2009 the material Early Intervention in Mathematics [Danish: Tidlig Indsats i Matematik, TIM], 
written to primary school mathematics teachers was published and used in some places. Just before, 
in 2007 local politicians and school authorities in the municipality of Frederiksberg in the capital 
area, decided to give priority to mathematics teaching and learning in their 9 public schools in the 
period 2007-2013. Priority was given to a development project on early mathematics intervention 



for their 9 schools in collaboration with the researchers Lena Lindenskov and Peter Weng. It soon 
became clear that the existing intervention framework and written materials solely focused on 
numbers and arithmetic, which were insufficient to comply with the Danish Mathematics Education 
Philosophy and Curriculum. Also, approaches in the existing intervention framework and written 
materials were insufficiently inquiry and problem based to correspond with the curriculum. Finally, 
teachers’ freedom and responsibility to adapt materials to their own students were too limited in the 
existing frameworks and materials.  

With this background a research-based developmental project with four design cycles was prepared 
in order to develop a Danish program for early intervention in mathematics that would fit into the 
Danish Mathematics Education Philosophy and Curriculum. The private Danish fund Egmont 
showed interest in a Danish early mathematics intervention program (personal communication), and 
together Egmont, Frederiksberg Municipality and Aarhus University assured the budget for this 
project. The project was named Early Mathematics Intervention at Frederiksberg with the Danish 
abbreviation TMF [Danish: Tidlig Matematikindsats Frederiksberg].   

Perceptions of what is good theory – by mathematics school teachers 
Our research question is, what is a good theory for whom - teachers as well as for researchers? Our 
analyses draw on our communication with the 18 teachers involved in the design cycles of the 
project. In the following these teachers are called pilot teachers. All pilot teachers were chosen by 
their school principal as among the most qualified and motivated mathematics teachers at the 
school. Some also were ‘Mathematics Counsellors’ with a one-year diploma course. 

It is the use of theoretical constructs in the four cycles, which is analysed in the following. We 
analyse interactions between teachers and researchers.  The data come from written materials and 
recorded minutes and notes from seminars1, training sessions, coaching sessions and e-mails 

Generally, Danish teachers have a relatively high self-confidence and a strong wish to influence. It 
is shown, for instance, that Danish teachers, more than British teachers, prioritise their students’ 
personal development and see their students’ mathematical development as a means for personal 
development (Kelly, Pratt, Dorf & Hohmann, 2013). Because of the way the 18 pilot teachers were 
chosen by their principals, we anticipated that the teachers would be involved, to a high degree, in 
the project’s four design cycles. The specific choice of mathematical and other aspects for the 
framework and written materials for the early intervention was actually made in dialectic processes 
involving the researchers and the 18 pilot teachers. Further descriptions of the cycles are found in 
Lindenskov & Weng (2014).  

                                                 
1 Mathematics Recovery Programme (MR) is a source of inspiration for the developmental project, see Wright et al., 2007. This is 

why we included a teacher seminar with Ms. Noreen O'Loughlin from Mary Immaculate College, University of Limerick focusing 

both on some hypotheses and issues in MR and on specific concerns at Frederiksberg.   

 



The framework and materials developed through four design cycles 
(1) From January 2009 to September 2009, Weng and Lindenskov developed the first draft material, 
based on theory, empirical results and their knowledge about mathematics in life and in primary and 
lower secondary schools in Denmark. They initially doubted whether the teachers would find it 
relevant to study the rationales and theory behind the choice of mathematical areas, materials and 
evaluating and teaching principles. That is why only a few theoretical constructs and justifications 
were in the first draft communicated to the teachers.    

But, as the structure and each part of the draft material were critically explored and discussed during 
the teacher training sessions from 14 - 18 September 2009, this expectation of the teachers’ 
perceptions of their needs for theory was wrong. The teachers endorsed the underlying ideas, but 
actually asked for further explanation of rationales and theoretical constructs. The teachers also 
asked for an extensive introduction to the program as such. The time teachers were expected to use 
in the development processes did not include reading articles, so the researchers presented articles 
orally and provided printed extracts or copies of some articles as handouts. The main printed 
materials were newly developed diagnostic test materials and the problem solving materials to be 
used with their students, plus general introduction and justification for the choice of mathematical 
areas and instruction approach. 

At the end of the week, the teachers suggested that measurement as a mathematical area and the use 
of measurements in other mathematical areas should be expanded in the next draft.      

(2) Lindenskov and Weng developed a second draft of material based on the pilot teacher feedback 
and feedback from the research assistant. This meant that for more mathematics areas further 
justification for and explanation of rationales and theoretical constructs were included. The second 
draft was sent to each school October 2009 for experimenting. Each pilot teacher tried out specific 
parts of the material in the fall of 2009. The distribution of the parts to each school was decided 
through discussions among all pilot teachers. Each pilot teacher was requested to try out two or 
three activities with as many pupils as possible. The age of the pupils was not important. If possible, 
more material was to be attempted. The pilot teachers were given a specific task in order to evaluate 
the materials: they were asked to document in as much detail as possible - by writing in premade 
tables - how each mathematics task and each mathematics and attitude question led to pupil-teacher 
conversations which could indicate the pupil’s thinking. The experiments were concluded with a 
seminar on 3 December 2009, where each pilot teacher presented results. Anything that had 
particularly surprised the teachers was also presented and some common concerns were then 
discussed. It was put forward that the pages with descriptions of justifications and theoretical 
constructs were helpful, ‘or else we do not know why the chosen mathematical areas, concepts and 
competences are important to focus on.’ 

(3) Based on these results Weng and Lindenskov developed the third draft material and introduced it 
at a seminar on 28 January 2010. Justifications and theory were included for all mathematical areas. 
In the following months, each pilot teacher tried out parts of the material with a number of pupils. 
This time all the pupils were in the second grade. The aim was to allow the pilot teacher to 
experience the structure of the material and to practice pupil-teacher conversation. Peter Weng 



visited and coached every teacher once and the teachers were invited to contact the researchers at 
any time during the pilot study.  

At a midway seminar on 9 March 2010, the teachers described their general impression as positive 
and generally considered the material adequate. Several pilot teachers said they found it motivating 
to work with the material together with the pupils and that they had heard from the pupils’ ordinary 
mathematics teachers that the intervention seemed to have a positive impact on the pupils’ learning 
process.  

The individual schools’ prioritization of subjects was also discussed: how to decide between pupils’ 
participation in a class excursion or a TMF session? 

At the seminar a representative from the Egmont Foundation was present, as the Foundation had 
decided to fund the project.  In the developmental project, the choice of pupils was left to the 
schools and the criteria differed between schools. The Egmont representative was particularly 
interested in the discussions on ethical issues: Whether pupils with very weak home support should 
be chosen over pupils with better support from home, who would probably benefit more? It is well 
known from research that socioeconomic factors are important for pupils’ learning and 
development. Maybe particular pupils need this intervention the most, but are they really the ones 
chosen?  

Issues regarding the scope and range of the material were discussed, for instance how to prioritise 
between presentations of many mathematical aspects or assuring success in fewer mathematical 
areas. The risk that the material put severe strain on teachers, especially when they were unfamiliar 
with it, was also discussed. To illustrate this discussion, we have listed three pilot teacher transcripts 
and one researcher transcript below:  

Teacher 1: I feel pinned down by the material. I feel like, ‘Now I must do this, then I must do 
that,’ and you have to look for concrete material yourself. It is very restraining. 
While I look for extra material, I give the pupils small tasks on the computer to 
work with, OK. 

Teacher 2: The material could be constraining. But the material is important as a database of 
ideas. The material gives me ideas. It supports my own inspiration process and it 
helps me to include everything in my practice.  

Teacher 3: The material is useful, when I prepare the intervention sessions.  

Researcher Weng:  

Try to think about the material as something that provides you with opportunities 
and inspiration. We invite you to a flexible adaptation to specific pupils.   

(According to the minutes, authors’translation) 

The final seminar on 27 May 2010 discussed organisational and psychological issues in detail. The 
teachers wanted organisational and psychological aspects of individual pupils’ learning and 
instruction to be emphasised as equally as the mathematical aspects.  



Also the teachers again asked for more geometry and measurement in future versions, as well as a 
compiled list of recommended materials, but they did not mention any further need for justification 
and theory. (According to the minutes, authors’ translation) 

(4) The fourth draft was developed by 12 August 2010 and was to be used from 2010 onwards in the 
regular TMF for individual second grade pupils in all of Frederiksberg’s public schools. The 
research assistant, Tina Kjær, examined the material and ensured that the teachers’ suggestions were 
taken into account. Strongly supported by the pilot teachers’ feedback, organisational and 
psychological aspects of individual pupils’ learning and instruction were included as just as 
important as mathematical aspects.  

Example of how researchers’ theoretical understanding is communicated to 
teachers  
As an example of how the researchers communicated their theoretical understanding underpinning 
the developmental project to the pilot teachers, we have chosen the mathematics area “Basic 
Strategies for Numbers in Addition and Subtraction”. The table below shows in the left column four 
of the theoretical constructs chosen by the researchers to underpin the project. The right column 
shows how the constructs were being communicated and discussed between researchers and 
teachers. The right column consists of citations from the final written materials, which was 
published in 2013 and meant to be studied and discussed among teachers involved in intervention 
projects. 

 

Researchers’ choice of theoretical constructs 
and justifications 

Citations from the published intervention 
materials (Lindenskov & Weng, 2013)  

Relational understanding (RU) and instrumental 
understanding (IU): Although IU in its own 
context is often easier to understand and gives 
correct answers with less knowledge involved, 
RU is more adaptable to new tasks and easier to 
remember. 

(Skemp, 1976/2006).  

When the pupil experiences a productive 
development in his/her basic strategies in 
addition and subtraction, it opens the pupil’s 
possibilities of becoming capable in doing 
relevant addition and subtraction and to use it in 
many contexts. Also, potentially this experience 
will contribute to another highly relevant math 
competence: good estimating skills for big 
numbers. 

Constructivist teachers’ primary activity is 
communicating with students. In the 
constructivist view, teachers should continually 
make a conscious attempt to “see” both their 
own and the children’s actions from the 
children’s points of view. 

(Cobb & Steffe, 1983).  

Some teachers might, for the last decades, have 
misunderstood the core of constructivism. Some 
teachers might have been inclined not to 
interfere when the pupils calculated and 
developed their calculation skills and strategies. 
Some teachers might have believed that the 
pupils by themselves would develop at the pace 
that was most optimal for them individually. But 
we know, it is a risky affair.  



Pupils who engage in strategy development 
decisively perform better in the long run than 
pupils who do not.  

(Ostad, 2008). 

 

 

 

  

Pupils, who from an early age, start developing 
his/her strategies, tend to continuously improve 
existing strategies and increase the number of 
strategies. In contrast, pupils, who stick to their 
strategies, tend not to start improving them until 
later on. It is shown that pupils, who stop 
developing their strategies, will toil hard and 
will still lag behind.  

 

Strategies, strategy development and teaching 
strategies should be the core of fundamental 
mathematics instruction and learning.  

(Ostad, 2013).   

 

 

Do not just present materials for the students to 
acquire new further learning. Let the pupil use 
materials and activities in order to consolidate 
what is almost or recently learnt as a means to 
improve the pupil’s self-confidence and realistic 
self-perception of addition and subtraction skills. 
We recommend that the teacher talk with the 
pupil about his/her strategies, i.e. by regularly 
asking how long this strategy has been used, if 
the strategy leads to the right results, if the pupil 
uses other strategies, too, or thinks other 
strategies could be used. Appropriate further 
learning may well be about strategy 
development.      

 
Conclusion 
This paper has shed light on what is a good theory for whom - teachers as well as researchers, how 
to explain theory and justifications to the pilot teachers in a meaningful way and how to develop 
material in collaboration between researchers and teachers? During the four development phases the 
pilot teachers endorsed the underlying ideas of the intervention project and asked for the rationale 
behind every included aspect to be explicitly communicated. They encouraged more extensive 
introduction and to expand the included measurement aspects into two measurement aspects.      

The teachers explicitly endorsed the theoretical construct and justifications in the material, as they 
said it helped them to acknowledge many opportunities to help the pupils and to identify pupils’ 
potentials and motivation while exploring and developing their mathematical needs. The teachers 
appreciated that the material gave a firm frame and at the same time invited and inspired the 
teachers to adapt and further expand the materials to the specific learning situations with the pupils. 
The teachers recommended the material to be expanded with more mathematical concepts and 
competences, which are considered relevant in the Nordic contexts (Dalvang & Lunde, 2006; Niss 
& Højgaard, 2011) and by the teachers as potentially troublesome for the weaker pupils, and to 
expand the materials on measurements and part-whole.  



The teachers asked for further ideas and materials which could be used as they were or could be 
adapted in order to fit their own pupils’ needs and motivations. The teachers did not suggest more 
clarified theoretical constructs and justifications underpinning the program than were communicated 
to them already. 

For the educational researcher the task was to find and select theoretical constructs to underpin the 
intervention and communicate these to the teachers, as it is further described in Lindenskov et al 
(2016). It could not be communicated as in scientific journals, but as justified practical advices. 
Both theorists and practitioners care for theory, but in very different ways. 
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In this paper we draw upon examples from a recently published systematic literature review (Ryve 
et al., 2015) on productive classroom practice to contribute to the research on the nature of 
theories for action in mathematics education. By relating the results from the review to theories and 
literature on educational policy research, professional development research and implementation 
research we construct a framework for categorizing theories aiming at supporting teachers’ actions 
in mathematical classroom practices. 

Keywords: Theoretical frameworks, theories for actions, mathematical classroom practice. 

Introduction 
The development of frameworks and theories1 that aim at guiding the actions of teachers have 
rendered much recent attention in educational research (e.g., McKenney & Reeves, 2012; Ruthven, 
Laborde, Leach, & Tiberghien, 2009). Within research areas such as curriculum material (Davis & 
Krajcik, 2005), planning and implementing whole-class discussions of cognitively demanding tasks  
(Smith & Stein, 2011), professional developments programs (Borko, 2004; Desimone, 2009), and 
improvement of mathematical instructions at scale (Cobb & Jackson, 2012) cumulative work has 
been conducted to establish theories for action. Further, frameworks for supporting teachers’ actions 
and thinking such as curriculum materials, theories and models have been put forward as essential 
components of effective professional development (Cobb & Jackson, 2012) and for establishing 
productive mathematical classroom practices (Franke, Kazemi, & Battey, 2007). However, we need 
to know more about how theories should be designed to facilitate implementation; to be used and do 
real work in supporting and constructing teachers’ actions (McKenney & Reeves, 2012). In this 
paper we relate result from a recently published systematic literature review (Ryve et al., 2015) on 
productive classroom practice to literature on educational policy, professional development and 
implementation research in order to construct a framework for understanding and facilitating the 
implementation of theories and research results aiming at supporting teachers’ mathematical 
classroom practices. 

Relevant research 
The approach of the present study is based on the assumption that ‘theory matters’ for teachers, to 
enhance their ability to develop rich mathematical classroom practice (Charalambous & Hill, 2012). 
                                                 
1 There are many ways to denote theories serving the purpose of guiding actions and this is further discussed below. 



For instance, by adopting and making use of theoretical tools teachers are supposed to enhance their 
ability to establish productive routines in their classroom practice (Franke et al., 2007), develop and 
continuously adjust a learning trajectory and the means to support that trajectory (Cobb, Confrey, 
Lehrer, & Schauble, 2003), become more sensitive to notice instructional opportunities in the 
moment and be methodical without being mechanical. However, Burkhardt and Schoenfeld (2003) 
argue that most theories that have been applied to education are quite broad, lacking the specificity 
that helps teachers to guide and understand the design and analysis of learning activities. Cobb et al. 
(2003) adhere to this view, claiming “General philosophical orientations to educational matters – 
such as constructivism – are important to educational practice, but they often fail to provide detailed 
guidance in organizing instruction” (p. 10). So, there is this dilemma; theoretical constructs are 
supposed to enhance teachers’ capacity to teach but, to do such work, theories need to be of a 
certain kind. 

Perspectives on theories 

diSessa and Cobb (2004) detail the nature of different theories relevant for research in mathematics 
education. They distinguish between grand theories, orienting frameworks, frameworks for action, 
domain-specific instructional theories and ontological innovations. Skinner’s behaviourist theory 
provides an example of a grand theory. Even if grand theories have a prominent position in 
educational research, they appear to be too general to provide guidance for explaining and 
supporting the learning of mathematics. Orienting frameworks, such as constructivism (Von 
Glasersfeld, 1995) or communities of practice (Lave & Wenger, 1991), provide general support for 
specifying issues of learning, teaching and instructional design whereas frameworks for actions 
concern analytical constructs of a more or less general prescriptive character (diSessa & Cobb, 
2004). Domain-specific instructional theories are also of a prescriptive nature as they are typically 
specific to a domain or even learning trajectory of certain content and the means by which this 
trajectory can be supported. An ontological innovation is descriptive in nature. It is about 
developing analytical categories by which aspect of a phenomenon can be discerned. The 
framework of Socio-mathematical norms (Yackel & Cobb, 1996) exemplifies an ontological 
innovation.  

diSessa and Cobb’s (2004) categorization not only labels the nature of different frameworks, it also 
points to the descriptive, explanatory, predictive and prescriptive purposes of different theories. 
Firstly, theories could be used to describe the world and many theories and frameworks within 
mathematics education serve such a purpose. The contribution to research in engaging in describing 
or characterizing objects or processes as certain phenomena could be understood in terms of new or 
unconventional lenses for viewing the world. Secondly, a further purpose of theories is to explain 
relations between phenomena and as mentioned above this purpose is often stressed as absolutely 
central for theories. A prerequisite for explaining those relations is to explicitly characterize each 
phenomenon. Therefore, theories used for explanatory purposes build upon or encompasses 
descriptive theoretical contributions. Thirdly, in a similar vein predictive theories necessitate 
explanations and clear descriptions of phenomena. Predictions include foreseeing effects of certain 
actions under certain conditions. Finally, prescriptive theories are used to identify and articulate 
productive ways to make decisions and performing actions. This kind of theory integrates 
descriptive, explanatory and predictive knowledge to guide actors in constructing and establishing 



interventions. Within design research prescriptive theories are often denoted design principles but 
neither the term nor the nature of those design principles are settled (Ruthven et al., 2009).  

Theories for action 

In this paper we are particularly interested in theories for actions and what McKenney and Reeves 
(2012) denote the prescriptive role of theories. Both the characteristics of theories of actions and 
prescriptive theories and ways of denoting them are not settled in educational research as indicated 
above (cf. McKenney & Reeves, 2012). As becomes apparent in (Ruthven et al., 2009), the relation 
between the terms used to denote theories for action is not just connected to neutral ways of 
denoting the same phenomenon but instead accentuates particular features and characteristics of 
such prescriptive theories. For instance, Ruthven et al. (2009) shortly muse about the relation 
between the design tools they introduce and design principles. They suggest that the conceptual set 
up of grand theories, intermediate frameworks and design tools introduced in Ruthven et al. (2009) 
stresses theoretical underpinnings for sensitizing researchers to critical issues while design 
principles from US often prescribe certain course of actions and are typically more loosely anchored 
in theoretical perspectives. One may ask, should theories for actions prescribe and sensitize teacher? 
In general, the development and understanding of design principles is weakly developed and in 
summarizing the most urgent issues for educational design research McKenney and Reeves (2012) 
suggest “a worthy challenge facing educational design researchers is to further the development of 
predictive and prescriptive theories” (p. 212). We want to add to this research. 

Method 
The design was framed by a ten-step process for systematic literature reviews (Gough, Oliver, & 
Thomas, 2013): (1) Need, (2) Review questions, (3) Scope, (4) Search, (5) Screen, (6) Code, (7) 
Map, (8) Appraise, (9) Synthesize, and (10) Communicate. In the project we engaged in processes 
1-7 and 10. Our review questions were: (a) What characterizes research on classroom teaching 
practices, teaching approaches and teaching methods in mathematics? (b) What characterizes 
research on teachers’ instructional strategies used to establish classroom practices in mathematics? 
and (c) What does research tell about teaching for the learning of mathematical competencies?  

We searched in title, keywords and abstract in Web of Science2. Search strings3 were iteratively 
developed while reading some abstracts. In total, we had 622 hits that we screened for relevance 
according to our scope defined by our inclusion criteria4. The screening was made in two steps 
based on: (1) title, keywords, and journal name, and (2) abstracts. Uncertain cases were discussed 
and decided upon collectively among the three researchers. After the two screening steps, 242 
articles remained potentially relevant for the scope of the review. Simultaneously as the screening of 

                                                 
2 We searched Web of Science Core Collection as a way to focus on high-quality journal articles. We limited our search 
to the year span 2008-2014 and to the document types “article” and “review”.  
3 See Appendix A in Ryve et al. (2015) for the exact search strings. 
4 For an article to be included in the review, the article must be: (1) about mathematics 

teaching/learning/education, (2) related to compulsory school (grade 1-9), and (3) about the teacher’s role.  

 



abstracts, the articles that remained relevant were coded on Object of study, Method, Number of 
participants, Context, Results, and Implications for practice. When needed, we also read other parts 
of the articles apart from the abstract. 201 articles remained relevant for the review based on the 
inclusion criteria. The next step of the mapping was to structure and characterize trends and 
interests within the discourse of research in mathematics education that focus on teaching methods, 
classroom practice and teacher’s role in classroom practice. Therefore, we looked closer at the 
abstracts of the 201 articles, categorizing them in relation to object of study. See Ryve et al. (2015) 
for detailed descriptions of steps and rationales in the processes. 

Results 
 

 

 

 

 

 

 

 

 

 

Of the 201 articles, we found 168 to be structured according to an analytical relationship between an 
outcome variable and a design variable. In the remaining 33, the object of study did not follow such 
a structure. The design variables we distinguished are gathered in the left column of the matrix 
(Figure 1), while the outcome variables we found are categorized in the top row of the matrix. In 
elaborating on the mapping we intend not to go through the entire mapping. We highlight and 
provide examples on some specific findings, which we then follow up on in the discussion. In the 
discussion we construct a new framework, to be used for categorizing theories to be implemented in 
mathematics classroom practices. On this account, and due to space limitation, we are not backing 
up all claims and findings by references from the mapping. 

Elaborating on theories within the mapping 

Student knowledge 

Our review reveals a clear bias towards research that focuses students' product knowledge. 
Mathematical products relate to conventions, symbol systems, concepts and calculation techniques 
of mathematics. Looking at studies that emphasized a product view of mathematics and those 
emphasizing a process view we also notice a methodological difference. In the product view 
knowledge is expressed in the language of mathematical products and students understanding are 
profiled and ordered in accordance to the mathematics itself. Connected to such a conceptualization 
of knowledge, students’ performances are often measured by standardized tests (Desimone, Smith, 
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Figure 1. Categories and analytical relationships of the mapping 



& Phillips, 2013). In the process view, qualities and progressions are not explicitly elaborated on. 
These frameworks are descriptive in nature, specifying a set of analytical categories, which is used 
to sensitizing (Ruthven et al., 2009) the analyst on some certain characteristics of, for instance, 
students’ ability to communicate and reason in and with mathematics. 

Interactional strategies  

Studies belonging to this category explicitly refer to teachers’ moves and actions. The teacher takes 
an active role in these studies; how he/she acts in interaction with the students, is central to the 
investigation. The focus is on how teachers communicate and engage with their students, and what 
role the communication and engagement play in students’ learning of mathematics. It could be 
about, for instance, how a teacher uses gestures and questions (Shein, 2012) and follow up on 
students’ ideas in order to develop the mathematical classroom practice (Akkus, 2013).  

Teaching approaches  

Teaching approaches refer to studies taking a broad perspective on classroom teaching in 
mathematics. The teachers’ actions and interactional behavior are not the main object of 
investigation. The teacher may be important, but it is the more general and overall structures of 
teaching that are the object of study. In our review we found different examples of teaching 
approaches, such as technology-based teaching, mathematical games, problem-based teaching, and 
contrasting ways of using textbooks in mathematics teaching. 

Learning material (task design) 

Some studies focus on how a specific artifact or design principle can support or challenge students’ 
learning in mathematics. In these studies, the teacher takes a passive role. Focus is on the students' 
interaction with the learning material and the role of the teacher is basically to execute the lesson. 
Studies belonging to this category may investigate the role of visualization or simulation in the 
learning of mathematics (David & Tomaz, 2012). In this group we also include issues of task 
design; types and sequences of tasks (Hattikudur & Alibali, 2010) and instructions for solving 
mathematics tasks (Orosco, 2014). 

Background variables  

Several studies did not connect classroom practice and students’ learning to any didactical design 
variable. These were studies giving accounts of personal attributes such as teachers’ beliefs, 
attitudes and knowledge in order to explain classroom practice and students’ performance. 

Characterization 

In 33 articles of the articles, the object of study did not follow the structure of an analytical 
relationship between two didactical variables. In this group of studies, to describe a certain practice 
or teaching approach is the focus in itself. The goal is to provide descriptive accounts of analytical 
categories of a teaching/learning phenomenon, which can be used to sensitizing researchers and 
teachers to critical issues of the phenomenon in question (Ruthven et al., 2009). It may concern the 
characterization of curriculum material (Sherin & Drake, 2009), the orchestration of math-talk with 
interactive whiteboards (Beauchamp, Kennewell, Tanner, & Jones, 2010), mapping the mathematics 
in classroom discourse (Herbel-Eisenmann & Otten, 2011), or profiling students’ understanding or 
strategies of specific subject matter content (Wagner & Davis, 2010).  



Discussion 
By relating the results of our mapping to literature on educational policy, professional development 
and implementation research we construct a framework for understanding and facilitating the 
implementation of theories and research results aiming at supporting teachers’ mathematical 
classroom practices. 

In studying the papers it is apparent that teachers are ascribed different roles in different research 
studies. While quite a few studies within the category of learning material position teachers as 
administrators of tasks and computer programs other studies highlight the role of expert and 
orchestrator of classroom practices. Within the latter categories of articles, the role of teachers is 
central in asking questions, explaining content and acting formatively to support and challenge 
students’ mathematical thinking. In understanding the implementation of theories and results aimed 
at improving classroom practices and students’ mathematical learning it seems essential to consider 
how theories construct the role of teachers in classrooms. 

Ruthven et al. (2009) notice the distinction between theories that prescribe teachers’ actions and 
theories that aims at sensitizing teachers to essential aspects of classroom practices. In a similar 
vein, while some theories and studies in our review are clearly prescriptive towards teachers (e.g., 
theories belonging to Instructional strategies and Learning material) and what they should do in 
classroom practices, others aims at sensitizing and empowering teachers (theories belonging to the 
Characterization category). We are not normative about these different ways and suggest that both 
could be productive for different teachers in different context. Further, we hypothesize that these 
two strands are correlated with research methodologies in that many studies within mathematics 
education taking an educational design perspective aims at empowering teachers while studies 
taking a stricter experimental approach prescribe and praise clear prescriptive instructions. 
However, to what extent and in which ways theories prescribe or sensitize teachers seem relevant 
to consider for anybody collaborating with teachers. 

Cobb and Jackson (2012) stress that tools and frameworks within educational policies play a 
prominent role. When it comes to designing and using tools Cobb and Jackson suggest that it is 
important that the tools can be used by agents immediately in that they are easy to access, but at the 
same time harmonize with the planned reorganization of the practices. In addition, in developing 
frameworks, theories and tools it is essential to consider the amount and type of learning that are 
required for teachers to develop in order to use them in an appropriate and reliable way. Of course, 
such using requires good mathematical knowledge for teaching (Ball, Thames, & Phelps, 2008). 
However, there is also reason to believe that certain types of frameworks are easier then other to use 
and apply in a mathematical teaching practice. For instance, in our survey we notice how the 
product perspective dominates research focusing on student knowledge. That the product 
perspective has a long tradition in the field is probably the major reason for this. However, taking a 
closer look to the mapping we can also understand this dominance as if there is a higher degree of 
transparency in how to use product knowledge theories compared to process-knowledge theories. 
From this we learn that, in implementing theories to school practice, we need to consider how user-
friendly, accessible and transparent different types of theories are to teachers. In other words, we 
need taking into account to what extent and which kind of teacher learning is necessary for 
productively implementing theories or frameworks to mathematical classroom practices? 



Desimone’s (2009) put forward coherence as a critical feature of professional development 
programs. The concept of coherence refers to the relation between the PDP and teachers’ knowledge 
and beliefs. This raises questions about the extent to which theories should be coherent with 
teachers’ knowledge and beliefs. In other words, should theories strengthen teachers’ knowledge 
and beliefs or should it challenge their knowledge and beliefs? Should theories aim at strengthening 
classroom practice or should theories aim at reorganizing classroom practices (Cobb & Jackson, 
2012)? The reorganization of practice could include working with new types of mathematical 
problems, new roles for students and teachers, and the establishment of new classrooms. Hence, in 
examining and choosing theories, frameworks and models, mathematics educational researchers 
working with teachers should consider whether the aim is to strengthen or reorganize ongoing 
practices and, consequently, consider how frameworks are supportive for such endeavors. 

To conclude, as a complement to categorize theories for actions in terms of content areas we suggest 
it is productive for researchers working with teachers to consider theories in terms of: the 
positioning of teachers in classroom practices; the positioning of the teacher as a receiver of the 
theory; the amount and type of teachers’ learning required; and if theories primarily function to 
strengthen or to reorganize practices.   
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In this paper we investigate the role of the local supervisor when implementing a mathematics 
teacher training program based on Action Learning (Misfeldt et al. 2014, Plauborg et al. 2007). 
Using data from interviews of teachers, local supervisors and school managers we examine the 
arising expectations on the local supervisor and how these expectations influence the program’s 
ability to support teachers in their professional development. We do so by using Clarke’s (2009) 
Situational Analysis and Arcform notation (Allsopp 2013) to map the actors’ relation to the 
supervisor. We see that the local supervisor is caught in a tension between expectations from the 
Action Learning method and the school managers. This hinders schools in anchoring Action 
Learning as a teacher training method and thereby benefitting its full potential. 

Keywords: Teacher training, Action Learning, theory and practice, Arcform.   

Implementing teacher capacity building through collaboration 
A crucial aspect of a number of initiatives to improve mathematics education is the ability for 
teachers to collaboratively question and improve their own teaching (Stigler 1998), sometimes 
involving resource persons such as researchers or teacher educators. For such in-service training or 
capacity building to be efficient and scalable it is important that they are anchored in the school 
organization and not solely dependent on enthusiasts. Initiatives like Lesson Studies and 
development of own practice (alone or in collaboration with researchers), are examples that requires 
systemic and organizational attention (Lewis, Perry & Murata 2006). Systematic approaches often 
mean that teachers take on certain roles in relation to each other’s practice in order to maintain 
initiatives. Such structures and roles that connect in-service training to practice and build directly on 
the school organization and culture are important. Research has found that it is very difficult to 
make sustainable changes with teacher training initiatives (Shear, Gallagher & Patell, 2011; 
Henriksen et. al 2011), and Maurer (2010) has estimated that 70% of teacher training projects fail in 
changing teachers’ practices within the given time frame of the project. This is a major challenge to 
the mainstream implementation of research findings in mathematics education. According to 
research literature the difficulties with changing teacher practice through in service training are 
associated with a lack of connection between training programs and teachers’ existing practices 
(Fixsen et. al. 2005) as well as with the fact that teacher training programs often lack a focus on 
establishing active, collegial relations among teachers, which are crucial in order to build 
sustainable development (Hargreaves 2000, Sølberg, Bundsgaard & Højgaard 2013). When trying to 
address these concerns certain employees often take on certain roles towards their colleagues in the 
sense that they advocate for, manage and nurture certain projects. In this paper we explore this 
challenge by investigating a case where the distance between training activities and day-to-day 
teaching is very small and where the collegial relations are supported in a direct fashion. We do so 
by describing an Action Learning case as it has been implemented in a Danish municipality.  



Context 
In 2012 a municipality in Denmark launched a teachers training program aimed at developing 
teaching practices and enabling schools in the municipality to develop teacher competencies 
independently from external resources. The training program involved every school in the 
municipality and a total of 3500 participating teachers. The program consisted of a combination of a 
summer university in which teachers where given thematic lectures on a variety of subject-specific 
and pedagogical topics (implemented at 80% of the schools) and a method called Action Learning 
(implemented at approximately 20 % of the schools). Action Learning is a teacher-training program 
developed as an alternative to traditional course based in-service training. It draws on inspiration 
from Action Research in that it is based on an assumption that solutions to practical problems 
require practical understandings, which must be gained though iterative attempts to solve the actual 
problem (Plauborg et. al. 2007). The “action” in Action Learning refers to a pedagogical or 
didactical intervention that address real classroom issues as the individual teacher experiences 
them. While the “problem” is defined by the individual teacher the intervention is developed 
collaboratively by a group of teachers engaging in a so-called “team-conversation”. Local 
supervisors from each school were designated the responsibility to facilitate professional 
discussions among the teachers in the team conversations. The local supervisors were teachers from 
the school who had a mathematics supervisor education, and who provided didactical support on a 
daily basis. The local supervisors also had the responsibility of anchoring the collaborations among 
the teachers at the schools to enable their ongoing professional development. The characteristics of 
Action Learning therefore seem to counter many of the challenges identified in the research 
literature about teacher training programs; active collegial teams are established, the team 
conversations are facilitated by the local supervisor in order to maintain an academic focus in the 
conversations and the starting point is the teachers’ existing practices. In this context these 
initiatives however relied heavily on the local supervisors who were designated a key part in 
facilitating the team conversations and in anchoring team collaboration at the schools. In our 
research we therefore investigate the expectations arising to the local supervisors in the 
implementation of Action Learning and their possibilities meet these expectations (for further 
information about the program see the full evaluation report (Misfeldt et al. 2014).  

Method 
Our research draws on interviews of key actors in the training program from two schools, namely 
the participating teachers, local supervisors and school managers. We interviewed 6 teachers, 2 
local supervisors and 2 school leaders coming from 2 different schools. Our interviews explored the 
actors’ experiences of the training program and their understandings of the role of the local 
supervisor in the program. We also collected documents and literature that describes the Action 
Learning Method and documents from the municipality describing how Action Learning was to be 
carried out. All of these sources were considered with the goal of identifying how the role of the 
supervisor was perceived. We analyzed this data by using Clarke’s Situational Analysis (Clarke 
2009). Situational Analysis is rooted in Grounded Theory, but modified according to postmodern 
assumptions that “boundaries are open and porous; negotiations are fluid and usually ongoing” 
(Clarke 2009). There is no a priori assumption that human actors are of greater importance than 
either non-human or discursive actors (Clarke 2009), which allows us to view the Action Learning 



concept as an actor in itself. In Situational Analysis, Situational Maps provide a methodological 
approach to organize and visualize empirical data by foregrounding situations (Clarke 2009). We 
initially processed our data by using a sub type of Clarke's Situational Maps: Relational maps (den 
Outer 2013). Like other situational maps these aim at foregrounding situations rather than individual 
actors or their actions by mapping all actors (human as well as non-human and discursive) that 
occur in any situation, but go further than this by showing relations between actors. Relational maps 
use a type of network notation where actors are represented by labeled nodes and relations are 
represented by un-labeled lines drawn between the actors/nodes.       

We drew our relational maps while reading our transcribed interviews and other relevant 
documents. We began by listing the relevant actors that appeared in our data and their relation to 
each other. We produced many versions of some maps, modifying them as some actors and relations 
grew in prominence in our analysis. The messy nature in our data was easily overviewed with the 
simple structure of relational maps and thus they played an important part in opening up our data 
and thereby prompted our analyses. However, beyond a certain point they seemed to counteract 
rather than support overview. Clarke stresses that though situational maps are useful tools for 
beginning analyses, they are not necessarily an appropriate end-product of analysis (Clarke 2003, 
563). We experienced two related problems: Firstly, it was difficult to draw some types of relations 
between actors and secondly they became difficult to understand/interpret, especially when 
returning to the analyses after several weeks. To overcome this limitation of our relational maps, we 
chose to visualize the situations through Arcform notation (Allsopp 2013). Like relational maps, 
Arcform maps do not visualize our data, but rather the results of our ongoing analysis. Arcform 
maps differ from most relational maps, but resemble many network notations by supporting 
direction and labels on relations (arcs). Thus relations like “local supervisors coach teachers” are 
clearly visible as an arc labeled “coach” pointing from an actor node labeled “local supervisors” to 
another actor node labeled “teachers”. However, Arcform also differs from most other network 
notations by allowing arcs to point from or to other arcs. In this way more complex relations like 
“teachers see local supervisors as coaches” can be drawn as shown in Figure 2.  

 

 
 

Figure 1. The sentence “Teachers see local supervisors as coaches” expressed in Arcform. 

 



Results 
As our analysis progressed it became clear that the actors in our data articulated their relation to the 
local supervisor quite differently, and that they had different conceptions of the main job of the 
supervisors in the action learning project. Though these actors were all engaged in the same project 
at the same school, their ways of participating and their relation to the supervisor was rather 
different and seemed at first glance to be related to their role in the school outside the project. 
Besides being a part of a project, the actors were respectively also teachers, supervisors and school 
managers, and this fact seemed to be of importance. Our maps also revealed that this meant that the 
actors had different expectations on the supervisor and that these expectations could intersect with 
problematic consequences. In order to refine our analysis of these preliminary results we decided to 
use a notion of cultural logics developed by Nielsen (2012), which we will introduce below.  

In a study on teachers’ learning from collaboration in teams, Nielsen develops a view of teacher 
collaborations as having a dynamic stability (Nielsen 2012). It is dynamic because it involves 
numerous ongoing activities that are oriented towards one or more objectives. It is stable because it 
involves a perceived regularity in actors’ actions suggesting a stable understanding underlying these 
activities. Such logics effect peoples’ objectives and can be difficult for externals to change, 
because they reflect the every-day phenomena which are experienced as urgent by the actors 
involved. For example, although teachers most likely find the learning processes of students an 
important objective to orient their collaboration towards, so too may they find the practicalities that 
make a well-settled lesson (Nielsen 2012). In situations where there are multiple cultural logics we 
can expect actors sometimes to be caught in a tension between these logics.  

The notion of cultural logics is highly useful in our context as the Action Learning training program 
is a project in which several actors’, who occupy diverse positions, participate. Viewed this way the 
role of the supervisor is at risk of being caught in a tension between multiple cultural logics. As the 
local supervisor is a key actor in implementing and anchoring the Action Learning method, such 
tensions and their implications are of particular interest in this study. We identified three dominant 
logics. We refer to these as the workplace logic, the curriculum logic and the project logic. The 
cultural logics are characterized by situations in which certain aspects of the training program are 
foregrounded over others which translate into a set of expectations on the local supervisor. In brief 
the logics translate in to the following expectations:  

 In the workplace logic the supervisors are expected to manage the project and to avoid 
delays in the project.  

 In the curriculum logic the supervisors are expected to be willing and able to guide the 
teachers academically in their professional development.  

 In the project logic the supervisors are expected to initiate and support the teachers’ 
professional development in a coaching-manner where an equal relation between supervisor 
and teacher is crucial.  

The map below illustrates how the role of the supervisor is formed by the different cultural logics.  



 
 

Figure 2. An Arcform map showing how two actors (school managers and teachers) see local 
supervisors as three different roles (project managers, academic beacons and (equal) coaches) with 

three different cultural logics (workplace logic, curriculum logic and project logic).  

The goal in the project logic are progress and development of the school, while the curriculum logic 
foregrounds the quality of teaching. Though these logics can be complementary, our mapping 
revealed that the supervisors are faced with a tension due to a collision between the project logic 
and the workplace logic. In the following two sections we will therefore further describe the 
dynamic stabilities of the two latter cultural logics and unfold the tension emerging from here.  

The project logic 

The project logic concerns the cultural logic of the Action Learning training program as it occurs in 
documents describing the Action Learning concept and the expectations to the role of the 
supervisors emerging from it. In the Action Learning concept, the primary priority is the 
competence development of the teachers participating. In this, the supervisors are first and foremost 
expected to have the will to develop the school and the teachers and to do so as an equal coach 
rather than as a managerial authority. The supervisor is expected to initiate the Action Learning 
collaboration and to support the teachers in their development - not to lead/manage them. This is 
crucial as it is an acknowledgement that it is the teachers themselves who are experts on their own 
practices – the role of the local supervisor is therefore to facilitate conversations that creates the best 
setting for this knowledge to be shared (Plauborg et. al. 2007). The statement below from a local 
supervisor illustrates her view of the Action Learning project suggesting that she embraces the 
project logic and that she is capable of seeing the potentials in the method.  

Local supervisor: (…) there were some 3rd grade teachers who said: “We have already tried 
this method. Why do we have to go through it again?” And my argument 
was that even though we have tried the method before, it is not implemented 
at our school. We don’t use it as a method as things are now. 



The statement indicates that the supervisor views competence development as ongoing and Action 
Learning as a way to enable such ongoing developments. She therefore argues to her colleagues that 
Action Learning is not a syllabus which you only have to read once and then move on – rather, 
Action learning is a concept that involves specific ways of collaborating which are not implemented 
at the school. The statement thereby demonstrates a will to develop the school that resonates with 
the expectations embedded in the Action Learning concept. It also tells us that the supervisor has the 
skill needed to spot and to articulate that the crux is to integrate Action Learning as a way of 
collaborating.  

The workplace logic 

The workplace logic concerns the main objective of the training program from the school managers’ 
view and their expectations to the local supervisors’ role in the project. From the interviews with 
school managers the training program appears as a project among many other projects in which the 
main priority is to safely navigate the school through it and to avoid any delays. Though the school 
managers presumably also have an interest in developing the competencies of their teacher staff, 
safely getting through the project appears as the dominant cultural logic. Interviews with school 
managers show that this logic translates into an expectation that the local supervisors will be 
managers of the project due to high trust of the professionalism of the supervisors. The statement 
below from a school manager illustrates how the supervisor is referred to through the workplace 
logic.   

School manager: I highly trust my supervisor’s skills. Our supervisor is very professional and 
she is currently going through a pre-leader course. (…) and I thought that 
she therefore was better qualified to manage the project than I was. 

In what appear as an acknowledgement of a supervisor’s skills, this supervisor is given the 
responsibility to manage the project. At this particular school a group of teachers refused to 
participate in the training program due to short notice and discomfort about having to be observed 
as a part of the project. As the school managers had distributed the responsibility to manage the 
project, this became an issue for the local supervisor to handle. Consequently, the supervisor was 
obliged to “persuade”, as she puts it, another group of teachers to participate in the project.  

Local Supervisor: I didn’t lure them but… I just told them that it wasn’t optional. They just 
had to do it, you know.   

As the responsibility of managing the project was designated to the supervisor through the 
workplace logic, these project management issues become a task for the supervisor to handle. This 
implies that the supervisor is required to draw on a formal leadership mandate by reminding the 
teachers that participation in the project is mandatory. As the supervisor describes in the following 
excerpt, this incident resulted in an uncertainty among the teachers about the role of the supervisor:  

Local Supervisor: I think that this made it very unclear for the teachers what my part in this 
project was. Am I here to check if they are doing a bad job? Will I go to my 
manager and say: “That teacher does a bad job. She is really bad at teaching 
math”. Or whatever it might be.  

The supervisor’s task of managing the project is not necessarily problematic in itself. But as a group 
of teachers refuse to participate in the training program, this is an issue that becomes a task for the 
supervisor to handle. In order to handle this issue, the supervisor is obliged to find another group of 



teachers that are willing to participate. As no other teachers were willing to participate in the project 
the local supervisor was obliged to emphasize to a specific group of teachers that they were obliged 
to participate as this was necessary for the Action Learning project to carry on.  

Implementing research findings in practice – emerging problems and prospects 
Our analyses have identified three cultural logics, two of which we have unfolded above. Each of 
these cultural logics produces a certain set of expectation to the supervisor in terms of how he or she 
adequately should participate in the project. What becomes evident from our analyses is that the 
local supervisors are met by mutually exclusive expectations as a consequence of these logics; the 
project logic expects the supervisor to support the teachers as an equal peer whereas the workplace 
logic expects the supervisor to manage the project as a superior. This has at least two consequences. 
Firstly, the supervisor’s delegated management role triggers an uncertainty among the teachers of 
the intentions of the supervisor and raises the questions of whose errands he or she is running. Is the 
supervisor’s main task to support the teachers in their professional development or to monitor their 
work on behalf of the management? This uncertainty makes it difficult to draw on the supervisor as 
an equal facilitator. A key component in the Action Learning concept is the joint observations of 
each teacher’s practice, which subsequently are meant to be the starting point for a conversation 
aiming to develop the teachers’ understandings of their own practices. Such an uncertainty among 
the teachers in respect of the supervisor’s role represents a substantial barrier in creating a safe 
environment in which the teachers can learn from their own practices. Secondly, the coexisting 
logics cause a tension on the supervisor as he or she is expected to fill many roles at the same time. 
Each of the cultural logics influence the actors’ expectations to the role of the supervisor according 
to their own dynamic stability, thus tying the supervisor to different, incompatible priorities at the 
same time. As the potential for anchoring the Action Learning concept is closely connected to the 
role of the supervisor, there seem to be little chance that the supervisors are capable to do so under 
such difficult circumstances.  

Our analysis also points to more general issues related to implementation of research findings in 
practice. Though Action Learning addresses what seem to be the main challenges in gaining long-
term results from teacher training programs, the different expectations arising on the local 
supervisor complicates the implementation and the anchoring of the training program. The training 
program investigated in this paper exemplifies how many actors are at play in a school setting and 
that each participating actor may have different agendas in and around such projects. Though this 
perhaps is no surprise, our research suggests that difficulties in implementing research informed 
training programs can be the result of the differing actors’ agendas outside the project. In Action 
Learning, as in many other training approaches, some actors are of immense importance in order to 
harvest the potential results of research informed approaches. The professional development of 
teachers involves and affects many others than the participating teachers and enters the professional 
lives of actors, which may have different priorities, agendas and available resources. A main 
problem about the issues identified in our research is that the co-existing cultural logics and the 
expectations arising to the supervisor thereof largely remain tacit. Though different agendas and the 
effects of such cannot be eliminated by simply making them explicit, an increased awareness and 
joint management of expectations would most likely be a step towards overcoming such hurdles. 
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An approach that has shown to give pre-service teachers rich opportunities for learning to teach 
mathematics is through a cycle of enactment and investigation. An important part of the cycle is 
rehearsal where novices rehearse their plans for enacting particular instructional activity in front of 
their peer pre-service teachers. The peers and the course instructor take part in the rehearsal as 
students, and every participant can stop the activity for discussion on different aspects in teaching. 
We build on the approach developed for pre-service teachers, and work on the adoption and 
development of the approach for work with in-service teachers in Norway. This paper reports from a 
pilot that was implemented with a group of in-service teachers. Our research question concerns 
interactions between in-service teachers and course instructors during the rehearsals and in-service 
teachers´ opportunities for learning in rehearsals. 

Keywords: Rehearsals, in-service teachers, ambitious teaching. 

Introduction  
The aim of mathematics instruction is development of broad mathematical proficiency characterized 
by conceptual understanding, procedural fluency, adaptive reasoning, strategic competance and 
productive disposition to mathematics (Kilpatrick, Swafford, & Findell, 2001). This ambitious goal 
leads to a more demanding, and thus ambitious, conception of mathematics teaching. In this paper 
we aim to add to the existing knowledge base about how teacher education can support in-service 
mathematics teachers to learn the work of ambitious mathematics teaching.  

In the Mastering Ambitious Mathematics Teaching (MAM) project we develop a course for in-service 
mathematics teachers in Norway. In designing our intervention, we take our lead from the Learning 
in, from, and for Teaching Practice (LTP) teacher education project (see Kazemi & Hubbard, 2008; 
Kazemi, Lampert, & Franke, 2009; Lampert et al., 2010; Lampert et al., 2013; Kazemi & Wæge, 
2015). Central in the LTP-practice based approach is work with specifically designed instructional 
activities (IAs) in a cycle of enactment and investigation. A key innovative feature of the design is 
the use of public rehearsals. In a rehearsal, the pre-service teacher is responsible for teaching an IA 
to a group of peer pre-service teachers acting as students, with the course instructor offering guidance.  

This paper reports on our work on rehearsals with in-service teachers in a pilot study. We ask: What 
characterizes the interactions between in-service teachers and course instructors during the rehearsals 
in the study, and in what ways might rehearsals support in-service teacher´s learning of ambitious 
teaching? 



Rehearsals within a cycle of enactment  
Ambitious teaching entails mathematical meaning making, identity building and creating equitable 
learning experiences for children. It requires teachers to engage deeply with children’s thinking - by 
eliciting, observing, interpreting and responding to student reasoning, language and arguments. 
Attending to students’ experiences and designing instruction to enable each child to do rigorous 
academic work in school is also a central principle of the approach (Lampert et al., 2013).  

In their work on ambitious mathematics teaching, Lampert et al. (2010) build on the study of 
Leinhardt and Steele (2005) who identified some routines skilled teachers used in leading 
instructional dialogues and argued that expressing the routines explicit make them teachable for 
course instructors. Lampert et al. (2010) use the notion “routines” to denote well-developed practices 
which have shown useful in teaching, which respect the complexity in mathematics, mathematics 
teaching and learning. They argue that focus on learning to use these routines/practices can provide 
novices an opportunity to hold something constant in a process of further learning to teach. The 
teaching practices that are central in ambitious teaching include aiming toward a mathematical goal, 
eliciting and responding to students’ mathematical ideas, orienting students to each other’s ideas, 
setting and maintaining expectations for student performance, positioning students competently, 
assessing students’ understanding, and using mathematical representations (Kazemi et al., 2009; see 
also Hunter & Anthony, 2012). Teachers who are novices in teaching mathematics ambitiously need 
to learn to enact the practices in their teaching. They also need to develop the mathematical 
knowledge needed to teach ambitiously at a particular grade.  

Grossmann, Hammerness and McDonald (2009) argue for incorporation of “pedagogies of 
enactment” and use of “approximations of practice” in teacher education in order to help pre-service 
teachers develop knowledge, skills and professional identities as teachers. As a type of approximation 
to practice, Grossmann, Compton at al. (2009) suggest use of rehearsals where novices rehearse a 
particular instructional activity in front of a group of peers. Kazemi, Lampert and Franke (2009) 
develop instructional activities (IAs) that are designed to be “containers” for the practices, principles 
and mathematical knowledge that novice teachers need to learn and be able to use in interaction with 
students (see Kazemi & Wæge (2015) for descriptions of the IAs). The structure of the IAs offers the 
novices a scaffold in eliciting and responding to student thinking and understanding. The novice 
teachers learn to teach IAs – through repeated investigation, discussion, rehearsal, enactment and 
observation. Each cycle of enactment and investigation consists of six stages (Lampert et al., 2013), 
as illustrated in Figure 1:  

 

Figure 1: Cycle of enactment and investigation 



In stage four of the cycle, selected novice teachers publicly rehearse their plans for enacting an IA in 
front of their peers and with feedback from the course instructor. During the rehearsal, the course 
instructor or a peer may stop action to ask questions or suggest possible alternative courses of action. 
The course instructor may also act as a student, by asking and answering questions or by making 
errors that students are likely to make (Lampert et al., 2013). Rehearsals within repeated cycles of 
enactments and investigation can be considered as an approximation of ambitious teaching.  

Lampert et al. (2013) argue that a rehearsal is an important setting for building novices motivation 
and commitment to teach ambitiously (p. 239-240). They analyzed 90 rehearsals of IAs by pre-service 
teachers. The study revealed that rehearsals not only allow pre-service teachers to work on routine 
aspects of ambitious teaching, but also to attend to more complex aspects of it. The study also showed 
that rehearsals give the pre-service teachers an opportunity to learn the principles of ambitious 
teaching while the course instructor guide their progress.  

Design of course 
The course consisted of seven sessions (each four hours in length) during a period of four months. 
The sessions were held in a fifth grade classroom of an elementary school1.  

Session 1: The in-service teachers (ISTs) were introduced to the principles and practices central to 
ambitious teaching and the instructional activities they would work on during the course.  

Session 2-6: In these sessions ISTs were divided into three teams of 4-5, and the teams worked 
together in planning, rehearsing, enacting, and debriefing course tasks: 1) Teams of ISTs came to 
class prepared to teach an IA; 2) Teams of ISTs rehearsed the IA under supervision of a course 
instructor (CI); 3) ISTs observed one of the CIs teach the subsequent session’s focal IA to the whole 
group of fifth graders. This was part of the preparation for the following session; 4) One IST from 
each team taught a small group of fifth graders the IA that they had come to class prepared to teach. 
A CI also observed the enactments; 5) After a break, ISTs met in their teams to do a collective analysis 
of the day´s enactment with their CI; 6) Each team debriefed what they had learned; 7) The CIs 
prepared the class for the following session’s focal IA and, as part of that, shared some reflective 
comments on the whole group lesson that was taught.   

Session 7: The last session was devoted to concluding discussions and try outs. 

Method  
Participants and data 

There were 14 in-service mathematics teachers from three different elementary schools participating 
in the pilot study. The three schools are partner schools of the Norwegian Centre for Mathematics 
Education. Some of the ISTs in the study had only a few years of experience as mathematics teachers, 
while others were experienced teachers. A group of six course instructors (including both authors) 

                                                 
1 Due to practical reasons we had to make some changes to the cycles of enactment and investigation proposed by Lampert 

et al. (2013) and illustrated in Figure 1. 

 



from the Centre participated in the study. The course instructors had little experience in leading 
rehearsals. 

Rehearsals were carried out in three teams at five of the sessions. All rehearsals were videotaped, but 
two of the recordings were damaged. Our data is therefore consisting of 13 recordings. Each recording 
is about 25 minutes.  

Coding and data analysis 

A rehearsal consists of parts where an IST is teaching the activity, and parts where IST(s) and CI 
interact. We denote the interactions between IST(s) and CI during the rehearsal as CI/IST exchanges. 
To understand what characterizes the CI/IST exchanges during rehearsals, we take a CI/IST exchange 
as the unit of analysis and we analyze: 1) the substance of exchanges between CIs and ISTs, and 2) 
the structure of exchanges between teacher CIs and ISTs. In our analysis we used a priori codes 
adopted from Lampert et al. (2013). Table 1 shows a list of the substance codes and Table 2 shows a 
list of the structure codes that we built our analysis on. We used Studiocode video-analysis software 
which allowed for detailed coding of the rehearsals. For each rehearsal, we created a timeline for each 
video-recorded to capture the substance and structure of exchanges. Coding the video directly allowed 
for both verbal and visual cues to be considered, such as written representation, gesturing, and 
movements. 

Results 
Substance of  CI/IST exchanges 

In Table 1 we present an overview of frequency of the various substance codes in all CI/IST 
exchanges in the data2. The most frequent codes in our data are representation, student thinking, 
content goals and elicit and respond. These codes were also among the most frequent in the rehearsals 
by pre-service teachers analyzed by Lampert et. al (2013).  

Substance codes 
Description % of all 

exchanges 

assessing understand. 
Assessing what a student knows and understands about the 
mathematics  

16,1 

attending to IA 
Drawing attention to the structural aspects of the IA, particularly to help 
novice teachers´ understanding the entire IA 

23,1 

body/voice use Attending to how one uses body and voice while teaching 0 

closing the IA Bringing the IA to an end 3,5 

content goals Attending to the specific mathematical content goals of the lesson 31,5 

elicit and respond Eliciting, interpreting, responding to student mathematical work or talk      31,5 

launching the IA Introducing and beginning student engagement with the IA 5,6 

manage space Attending to issues of classroom space while engaging students 0,7 

manage timing Moving through the lesson in a way that manages timing and pacing 3,5 

                                                 
2 Due to the complexity of CI/IST exchanges, an exchange can be coded by several substance codes. As a consequence, 
the percentages do not sum to 100%. 



mathematics 
Working on and understanding the mathematical content, particularly 
for IST learning 

22,4 

orienting students Orienting students toward each other´s mathematical ideas 7,0 

process goals Attending to the specific mathematical process goals of the lesson 16,1 

representation 
Representing mathematical ideas in writing and making connections 
between talk and representation 

39,2 

student engagement Managing the intellectual and behavioral engagement of students 12,6 

student error Surfacing and responding to student errors 4,9 

student thinking Attending to the details of student mathematical thinking      32,9 

Table 1: Substance codes: description and frequency as percentage of all CI/IST exchanges in the data 

Many of the CI/IST exchanges involved more than one substance code, and the same combination of 
substance codes were frequently found together across different exchanges. For example, student 
thinking, elicit and respond and representation appear repeatedly in the same exchange. The 
combination of content goal and representation is also very common, in many cases together with 
mathematics. The frequency and the combination of the codes indicate that the main substance in 
CI/IST exchanges consist of  

1) attending, representation, eliciting and responding to student thinking 
2) content goals and representation of mathematical ideas in the activity 

 
The following example is representative of the first category above: 

Example 1. The IST who is teaching during the rehearsal shows the image of three groups of eight 
dots and asks the “students” how they see it. One of the other ISTs in the team suggest an answer. 

IST2:            I see eight times three. In the first group I saw 
four plus four, eight. I have eight three times. 

IST:               [Circles three groups of eight. See Figure 2.] So 
first you have one times eight, so one times eight, 
so one times eight. [Writes 1x8+1x8+1x8=3x8.] 
Some other suggestions? 

CI:             Can we stop for a moment? Hmm, this is not so easy. 
The student presents her thinking rather 
imprecisely, and now we need to illustrate it on the image and also write it 
symbolically. We lose the part about seeing eight as four plus four in the way you 
represent her thinking. Can we try to represent her idea more accurately?  

IST:                I can circle four and four… 



IST3:         But just in the first group. She said that she saw it in the first group and then just 
multiplied by three. And it is not clear whether she thinks eight times three or three 
times eight, she says both.3 

IST:               Yes, right. I tried to make “eight times three or three times eight” clearer by leading 
to one times eight, and so on. Because it is three times eight.  

CI:             Maybe you can ask the student how she would represent it? Or, if you find her 
explanation too vague, you can ask her to say more? 

The IST2 (who plays the role of the student) says that she sees eight as four plus four and she says 
“eight times three”. Later she says “eight three times” which is more in accordance with the image 
and the convention. The IST takes no notice of the first parts of the utterance, and he grabs hold of 
the last part which is more in line with his goal.  The CI´s first question is about attending to and 
representation of student thinking. The IST simplifies and changes the student´s contribution through 
the visual and symbolic representation. Further on, he asks for other suggestions and thus indicates 
that the discussion is finished. The CI´s second utterance explicitly addresses eliciting and 
responding. 

The combination of content goals and representation of mathematical ideas in the activity appear 
also often within exchanges in our data, and the combination is illustrated in the following example: 

Example 2. The IST´s goal is to use a string of problems to discuss multiplication by ten, hundred 
and thousand with the students. He starts by four times three, and asks the students for a story that 
would fit the arithmetic problem. A student (one of the ISTs) suggests four groups of three apples, 
and the IST draws the illustration as shown in Figure 3. 

CI: Are you planning to use money in the 
discussion? Your illustration reminds 
me of money. 

IST:               Yes, I have been thinking about it. Money can be useful here, when we discuss 
multiplication by ten, hundred. One can use tenths and talk about 12 tenths in the 
next step. Same with hundreds. But, another story came up. 

CI: As a teacher, you have decided what the content goal is, and you have been thinking 
about what representation would be appropriate. You can ask about a story with 
money from the start to get the representation you want in the discussion. 

These kinds of exchanges, where representation and the content goal are combined, appear frequently 
in the data. In Example 2, the main substance discussed is the type of representation that could be 
appropriate for a given content goal and how to introduce it. In some other exchanges in the data that 
are coded with these two codes, the discussion is on ways to represent mathematical ideas so that the 
representation emphasizes the the relations that are targeted in the activity.  

                                                 
3 In Norway, when the multiplication is interpreted as equivalent groups, the meaning of “eight times three” is eight 
groups of three. 



Structure of CI/IST Exchanges 

The structure codes used in our analyses are the same as those used by Lampert et. al. (2013). Table 
2 shows the description and frequency of the various codes in our data. Similarly as with substance 
codes, an exchange can be coded using several structure codes. For instance, In Example 2 above, the 
exchange starts by “CI facilitates discussion” and develops to “CI gives directive feedback”.  

Table 2: Structure codes: description and frequency as percentage of all CI/IST exchanges in the data 

Considering the structure of the rehearsals, the analysis shows that half of all CI/IST exchanges in 
our data can be characterized as discussions facilitated by CI (at least partly, in cases where several 
structure codes are used in the same exchange). In rehearsals analyzed by Lampert et. al. (2013), the 
code “CI facilitates discussion” is the least frequently appearing code, whereas “directive feedback” 
is the most frequent. This indicates that the structures of the rehearsals in the two studies are quite 
different. One reason can be that our study concerns in-service teachers while Lampert et al. (2013) 
report from their work with pre-service teachers. In-service teachers have more experience with 
teaching than pre-service teachers, and it is reasonable to expect that their skills in teaching and their 
identity as mathematics teachers are more developed. A consequence can be that both in-service 
teachers and course instructors working with them might feel more comfortable in discussions than 
with CI giving directive/evaluative feedback or scaffolding enactment.  

Discussion 
Further work with in-service teachers and further data collection will take place in the coming year, 
and the results presented here are preliminary. However, the pilot study has already yielded a number 
of valuable insights. The study shows that the interactions between ISTs and CIs during rehearsals 
are mainly in form of discussions on some central principles and practices of ambitions mathematics 
teaching - using mathematical representations, aiming toward a mathematical goal, attending to 
student thinking and eliciting and responding to students’ mathematical ideas. More specifically, we 
have found that multiple substance and structure codes are present within individual rehearsal 
exchanges, indicating that rehearsals offer in-service teachers the environment and opportunity to 
work simultaneously on a variety of aspects of practice.  

Structure-codes 
Description % of all 

exchanges 

CI facilitates 
discussion 

CI lead a discussion and reflection raised by CI or ISTs 50,4 

CI gives directive 
feedback 

CI suggests new move or think aloud about possible next move 35,7 

CI gives evaluative 
feedback 

CI make evaluative comment 7,7 

CI scaffolds 
enactment 

CI takes the role of teacher or student, scaffolding the enactment by 
either increasing or reducing the complexity 

23,1 



The study of Lampert et. al (2013) shows that rehearsals give opportunities for pre-service teachers 
to learn to enact principles, practices and knowledge entailed in ambitious teaching. The findings in 
our study indicate that rehearsals function as an approximation of ambitious teaching in work with 
in-service teachers too, even though the structure of rehearsals is different. 
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Problem solving is one of the skills that is expected to develop in children who learn mathematics. 

To do this, school mathematics curriculum worldwide has incorporated this skill for teachers to 

promote it in classrooms. Though research results show what should be made, these have been 

parceled and make difficult an effective incorporation of the skill, its promotion and students’ 

learning in schools. Therefore, the following work presents a professional development strategy 

that incorporate diverse research results related to the promotion of problem solving in math class. 

This allows to achieve a professional development complex system whose main axis is the school 

teacher. 

Keywords: Problem solving, math curriculum, professional development.  

Introduction 
In Chile, the General Law of Education states that “students develop knowledge, skills and attitudes 

that allow them to understand and use basic mathematical concepts and procedures, related to 

numbers and geometric forms, in everyday problems solving, and to value the contribution of 

mathematics to understand and act in the world”, (article 29, section f). However, in the Curricular 

Study Programs of Chilean Mathematical Education there is no concrete proposal for teachers to 

promote such skills and attitudes in the classroom. Then, this poster shows one way to develop and 

include the problem solving in the Chilean Curriculum National of Math Education. To do this, is 

necessary to know what is needed for a successful curricular proposal implementation in math. The 

NCTM (2014) suggests the following points to implement a successful curricular development 

proposal: a) Teachers need to have a professional development of high quality to maximize the 

efficacy of the materials and activities they propose in the curriculum, since even the best textbooks 

and resources can be misinterpreted or misused. b) Collaboration among teachers throughout the 

school year may result in appropriate adjustments and activities adaptations for dosing topics to 

address the strengths and weaknesses of each student. For this reason, along with thinking about the 

curricular development proposal, a professional development proposal that supports teachers to 

incorporate in a better form the new requirements that are demanded need to be thought. On the 

other hand, Marrongelle, Sztajn and Smith (2013) indicate that the characteristics that make more 

effective a professional development program are: to be performed regularly and connected to 

practice; to be focused on students learning; to be directed to the teaching of a content; to be aligned 

with objectives of the school; and to build strong links among teachers. Considering the perspective 

mentioned above, in the following parts will be described the process for the implementation and 

the incorporation the PS in the curriculum. 



Methodology 
The project aims to impact the: instructional practices of participant teachers related to the delivery 

of opportunities to develop skills in the students, focused in problem solving; teachers’ skills to 

solve problems; teachers’ skills to modify and adjust activities to promote the development of skills 

in their students; students’ skills to solve problems; students' skills to represent, report, discuss, 

argue and explain mathematically. For this purpose, a proposal for curricular development that was 

adapted to the reality of the Chilean school system in Mathematics Education was designed. The 

project includes two main stages. In the first one a proposal for curricular development based on a 

literature review was designed, based on the Chilean curricular framework. The proposal included 

classroom activities for students, instructional methodologies for teachers and an annual curriculum 

integration plan for each participating school. In the second one, there was implemented a 

pedagogical technical support model in order to teachers appropriate the activities and methodology 

to be performed later in the classroom. The curricular development proposal will be implemented in 

4 schools, which compromised their participation of teachers and students from 1st to 4th grade and 

the time necessary to do so. It had a population of 24 teachers and 600 students from 1st to 4to 

grade in total. 

Discussion and conclusions 
The project is still being conducted, but there are preliminary results on its implementation. In the 

stage 1 of the proposal design was observed that while the curricular proposals from countries such 

as Singapore or Finland have among their curricular objectives to promotion of mathematical skills 

as the problems solving, the curricular resources available for teachers in those countries do not 

guarantee by their own, the skill promotion and not the acquisition of teachers’ instructional 

practices. Again, research results corroborate the lack of professional development strategies that 

allow the skills acquisition by teachers (Bunyi, 2013). Given this lack and the need of the Chilean 

teachers in terms of mathematical knowledge, as well as in pedagogical skills to promote 

mathematical skills and attitudes towards it in classrooms, it is that the strategy of weekly and 

monthly support was crucial, both for the acquisition of pedagogical skills and mathematical 

knowledge.  
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TWG24 made its first appearance as a new Thematic Working Group at CERME10, focusing on 
representations of mathematical concepts or mathematical objects because of their constituting an 
“integral part of the doing of mathematics” (Presmeg, 2002) and thus an important part of 
teaching and learning mathematics. Indeed, representation has been a crucial topic in research, for 
instance, in PME groups, in a special issue of ESM, in a special issue of ZDM, in ICME 13 in 2016. 
In the group’s “Call for papers” the term representations referred to thinking tools for doing 
mathematics encompassing graphs, tables, diagrams, formulas, symbols, texts, concrete models, 
and, in a broader sense, even gestures, videos, sounds etc.  

Keywords: Representation, visualization, imagine, visual-spatial abilities, visual-spatial image. 

Introduction 
This Thematic Working Group explicitly welcomed papers from a variety of different theoretical 
approaches and methodological frameworks addressing the role of representations of different types 
in teaching and learning processes, in particular those involving visualization (considered here as 
defined by Arcavi (2003)). In TWG24 there were 24 participants (authors, co-authors, and some 
other participants), from 13 countries (these included Chile, Denmark, Finland, France, Germany, 
Italy, Mexico, The Netherlands, Portugal, Sweden, Switzerland, Turkey, the UK) with 16 accepted 
papers and 2 accepted posters. The most part of the 16 papers, were empirical studies (related to 
primary and secondary school). The 2 posters reporting empirical studies conducted at the primary 
and secondary school levels. The poster concerning primary school described what students learn in 
mathematics lessons when different representations of fraction are used; and the poster concerning 
secondary school described how a variety of multi-sensory activities allowed 14 year old students to 
familiarise with some pivotal mathematical concepts such as prime and irrational numbers. The 
structure of the timeslots was designed in order to stimulate interaction and collaboration among 
participants: all participants were asked to read all papers, and prepare reaction-questions to two 
papers in particular that had been assigned ahead of time by the TWG leaders. After a 10-minute 
presentation by the presenting author, the prepared questions were posed and a general discussion 
was initiated and conducted for 25 minutes: first the authors of the paper would reply to the 
reaction-questions, then there was a discussion on issues related to the general list of questions 
designed for TWG24’s call for papers. Posters were also allocated a few minutes of presentation 
time within the working group, and a short follow-up discussion took place after each of them. The 
last session was completely devoted to summing up the main issues that had emerged from the 



group discussions. One of these was that certain key words, present in the literature on 
representations and visualization in mathematics education, were not being used consistently by the 
participants. Therefore a list was put together with the suggestion for the upcoming CERME of 
making explicit the definitions used in each study. Among these (in alphabetical order): figure, 
gesture, mental imagery, metaphor, representation (including the distinction between internal and 
external), sign, symbol, visualization, visual-spatial abilities, visual-spatial image.  

Gestures and representations 
The group agreed on the following: gestures can be considered as a way to create temporary external 
visualizations of internal imagery or structures, to explain or communicate thinking; movement 
involved in the gesture can connect physical properties and theoretical properties; different kinds of 
artifacts affording (or fostering) the use of gestures can be involved (such as the movement within 
dynamic geometry software). The importance of gestures in the context of representations in 
mathematics education was evident in TWG24, because many of the papers presented included a 
focus on gestures. Okumus and Hollebrands investigated how middle school students created 3–
dimensional objects from 2–dimensional figures using an extrusion method, and they identified 
students’ strategies for forming 3–dimensional objects with a focus on their gestural signs. The 
paper by Joffredo-Le Brun, Morellato, Sensevy, and Quilio focused on the relation between gestures 
and (other kinds of) representations (and metaphors), through the analysis of an extract from a 
lesson proposed in primary school during which the students work on the notion of difference, 
introduced with the help of several systems of representation. Ferrara and Ferrari also considered the 
relation between gestures and (other kinds of) representations, presenting the diagrammatic activity 
of secondary school students exploring motion through graphing technology, which captures a pair 
of space-time graphs on a single Cartesian plane. Indeed, the use of computers and technology was 
another transversal theme present in many papers and group discussions. 

Technology and representations 
TWG24 discussed the issue of how technology can change the dynamics of teaching-learning by 
offering specific kinds of representations. The paper by Okumus and Hollebrands presented findings 
from a study conducted during a summer enrichment program, in which students used 
manipulatives and a dynamic geometry program (Cabri 3D). Miragliotta and Baccaglini-Frank 
presented analyses of excerpts from a set of activities designed and proposed within the context of a 
2D dynamic geometry software (Geogebra) for a group of 9th grade students. Schreiber and Klose 
focused on the role of artifacts and different forms and modes of representation when learning 
mathematics at primary school level, through an interactive approach, in which mathematical audio-
podcasts were produced. A perspective on teachers’competencies in the context of multimedia-
based representations was presented by Ollesch, Grünig, Dörfler and Vogel. Their study described 
findings from a project in which they used video-vignettes in order to assess the competencies of 
mathematics teachers for multimedia use in mathematics lessons. Taking a closer look into how 
technology can change the dynamics of teaching-learning by offering specific kinds of 
representations, a study by Garcia Moreno-Esteva, White, Wood, and Black showed how eye 
movement can be tracked and used as a window to cognitive processes involved with use of 
representations in mathematical activities.  



Theoretical frameworks used in the papers and posters presented 
Several different theoretical frameworks were referred to in the papers and posters presented: 
Arzarello's Semiotic Bundle theory (Bini; Robotti); Balacheff’s theoretical notion of 
epistemological validity (Hoyos); Bartolini Bussi and Mariotti’s Theory of Semiotic Mediation 
(Okumus and Hollebrands; Robotti; Schou; Schreiber and Klose); cognitive psychological 
approaches, applied in the problem solving context, such as Bayes’ (Böcherer-Linder and Andreas 
Eichler); or Vergnaud’s framework, (Serrazina and Rodrigues); Duval’s registers of representation 
and theory of apprehension (Miragliotta and Baccaglini-Frank; Robotti; Hoyos, Bini); Enactivism 
(Ferrara and Ferrari; Soto-Andrade and Diaz-Rojas); Fischbein’s Theory of Figural Concepts 
(Miragliotta and Baccaglini-Frank); Goldin’s definition of representation (Sveider); the Joint Action 
Theory in Didactics (JATD) (Joffredo-Le Brun, Morellato, Sensevy and Quilio); Lakoff and 
Núñez’s conceptual metaphors (Finesilver); Mishra & Koehler’s Technological Pedagogical and 
Content Knowledge (TPACK) (Ollesch, Grünig, Dörfler and Vogel); psychological approaches such 
as Bruner's approach (Ott; Finesilver); or Ainsworth’s approach (Böcherer-Linder and Eichler; 
Ollesch, Grünig, Dörfler and Vogel); Krutetskii's approach (Olgun and Ader); Tall and Vinner’s 
Concept Image and Concept Definition (Schou); 

According to these, the authors developed different kinds of empirical studies: intervention studies 
(short term and long term studies; with attention to the teacher’s role or focused on learners); and 
observation studies (observing learners in different educational settings; observing teachers; 
observing classroom processes). In one case, a paper attempted to make some steps forward in 
elaborating a new theoretical framework emerging at the intersection between cognitive psychology 
and mathematics education (Miragliotta and Baccaglini-Frank). In another paper, Ferrara and Ferrari 
conceive mathematical thinking as a place of events instead of objects, and they bring forth 
inventive and speculative possibilities for learners to encounter and problematize spatio-temporal 
relationships, rather than seeing them as ways of being mistaken.  

Concluding remarks 
We conclude this summary with the two questions, from the general list, that seemed to arise the 
greatest interest of the participants, and sketch out the main comments advanced by the Working 
Group. 

What aspects of the use of different types of representation, imagery and visualization are effective 
in mathematical problem solving at various levels? 

Participants of TWG24 suggested that a representation does not stand alone, and it cannot be 
separated from how it is used. Thus, it is important to take into account interaction between the 
individual and the representation (both its external as well as its internal – though difficult to access 
– component) and between representations and context in which they are used (Joffredo-Le Brun, 
Hoyos, Schou). Moreover, representations are used within a social context, partly (but not only), for 
communication of ideas; it is important to encourage learners to express themselves using their own 
representational strategies, and appreciate multiple representations of information and of their ideas 
(Finesilver; Olgun and Ader; Robotti; Okumus). Through a careful and appropriate use of 
representations it is possible to increase positive affect towards mathematics and inclusion (Soto-
Andrade and Diaz-Rojas; Robotti). However, there is a tension between the advantages of flexible 



representation (and specific useful reps) and pushing students to use representations, which do not 
come naturally to them (Finesilver).  

How can teachers help learners to make connections between visual and symbolic representations 
of the same mathematical notions (mathematical object)?  

In response to this question participants of TWG24 suggested that there are certain registers of signs 
that are considered conventional (by teachers), and others which are less conventional. Indeed, 
teachers may be less familiar with the various alternative ways of representing, and either not accept 
alternatives as legitimate (e.g. drawing), or not be conscious of how they are being used (e.g. 
gestures) (e.g.: Bini; Olgun and Ader; Ollesch, Gruenig, Doerfler and Vogel; Schou). Finally, in 
various occasions, the group discussed the issue of low achievers and use of representations both by 
them and by teachers involved in their education processes. These discussions were fueled 
especially by the papers by Finesilver and by Robotti. In her paper Finesilver drew on qualitative 
data from problem-solving interviews with very low-attaining secondary school students, focusing 
on the visuospatial organization of elements in four types of non-standard student-created and co-
created representations. She discussed these four types of representations in terms of relationships 
between representation type, scenario, calculation success, and the students’ developing 
understanding of multiplication and division concepts. On the other hand, Robotti presented a 
didactical sequence involving the use of various artifacts, introduced by the teacher, to solve tasks 
on fractions. She analyzed how the representations, fostered by the artifacts, produced by the 
students, and then picked up by the teacher, contributed to students’ development of mathematical 
meanings around the notion of fraction.  
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In this paper, we refer to the efficiency of different visualizations for mathematical problem solving. 
Particularly, we investigate how set relations that are potentially important in probability are made 
transparent by two different visualizations, i.e. the tree diagram and the unit square. In this paper, 
we use these two visualizations as representations of statistical information. First, we analyze 
theoretically the quality of visualizing set relations by tree diagrams and unit squares. Second, we 
briefly report a published study with students of mathematics education (n = 148) where the unit 
square outperformed the tree diagram when the perception of subset relations was regarded. A main 
focus of this paper is a replication of the aforementioned study with n = 58 undergraduate students. 
Finally, we discuss the significance of our results, specifically for the teaching and learning of 
conditional probabilities. 

Keywords: Representation of statistical information, set relations, tree diagram, unit square. 

Introduction 
In mathematics education, it is widely accepted that representations and visualizations could have a 
considerable impact on students’ learning. For example, Duval claims that visualizations of 
mathematical concepts are “at the core of understanding in mathematics” (Duval, 2002, p. 312). 
However, research in mathematics education and cognitive psychology gave evidence that 
visualization does not necessarily foster students’ understanding. For this reason, a crucial question 
in research in mathematics education is to identify the one of potentially different visualizations that 
is most efficient referring to students’ learning. We refer to this question concerning competing 
visualizations aiming to support students’ learning in statistics and probability, but also in fractions. 
The transparency of set relations plays a crucial role in probability (Böcherer-Linder & Eichler, 
2017), but is also important in many other domains of mathematics education, such as the teaching 
and learning of fractions.  

Theoretical framework 
In the context of Bayesian reasoning, research in cognitive psychology has shown that the 
transparency of set relations in the visualization of statistical information impacts on the performance 
in tasks concerning the Bayes’ rule: “any manipulation that increases the transparency of the nested-
sets relation should increase correct responding” (Sloman, Over, Slovak, & Stibel, 2003, p. 302). 



 
Figure 1: Nested sets of the Bayesian situation of a medical diagnosis visualized by an Euler diagram 

(cf. Binder, Krauss & Bruckmaier, 2015). 

Proponents of this point of view, called nested-sets account, attribute the difficulties of Bayesian 
reasoning to the fact that some sets of events are nested (Lesage, Navarrete, & Neys, 2013; Sloman 
et al., 2003). For the example of a medical diagnosis, Figure 1 illustrates the nested-sets situation. 
“Transparency of set relations” means that it is easy to see, how many elements are in the sets and 
how the sets relate. The cognitive model into which the nested-sets account has been incorporated is 
the dual process theory (Barbey & Sloman, 2007): Representing the statistical information in a 
standard probability format (without visualization) obscures the nested-sets structure of the problem 
and, therefore, triggers the associative system which may lead to biases. Representing the statistical 
information with natural frequencies and / or appropriate visualizations in contrast trigger the rule-
based system because nested sets relations are made transparent, enabling people to reason 
consciously and according to the logic of set inclusion (Barbey & Sloman, 2007). For the design of 
effective visualizations, proponents of the nested-sets account claim that visualizations are helpful to 
the extent that they make the nested set structure of the problem transparent (Barbey & Sloman, 2007; 
Sloman et al., 2003). There are different competing visualizations that claim to visualize efficiently 
set relations or situations that necessitates applying Bayes’ rule and it is an open question which 
visualizations are the most efficient and which properties explain these visualizations’ efficiencies. 

In this paper, we investigate how set relations are made transparent by two competing different 
visualizations, i.e. the tree diagram and the unit square. We use these two visualizations as 
representations of statistical information (Venn diagrams are not considered in this paper because we 
focus on the visualization of statistical information and Venn diagrams are pure set representations 
but not representations of statistical information). First, we analyze theoretically the quality of 
visualizing set relations by tree diagrams and unit squares. Second, we briefly refer to a published 
study (Böcherer-Linder & Eichler, 2017; n = 148 undergraduate students) where we investigate 
whether the tree diagram or the unit square is more efficient to support the perception of subset 
relations. Since we used a new approach to explain the effectiveness of visualizations of the Bayes’ 
rule, we conducted a replication study (n = 58 undergraduate students) which results are in the main 
focus of this paper. Finally, we discuss the significance of our results, specifically for the teaching 
and learning of conditional probabilities. 

 



Visualizing set relations 
“A flower girl is selling red and white roses and carnations.” We use this situation as an example to 
illustrate how the tree diagram and the unit square visualize set relations. In this situation, we have 
sets (for example the set of all roses) and subsets (for example the subset of all red roses) and subset 
relations (for example the red flowers among the roses). If we attribute some numerical values to the 
number of roses and carnations, the situation can be visualized by showing absolute numbers in the 
tree diagram and the unit square: 

Figure 2: Representing statistical information with the tree diagram and the unit square 

Both, the tree diagram and the unit square can be seen as nested-sets representations. In the tree 
diagram, the logical relations between sets and subsets are visualized by lines. The subsets are on a 
lower level than the sets in the tree and the branches connect the subsets with the sets. For example 
the subset “red roses” is on a lower level than the set “roses” and the branch connecting “red roses” 
and “roses” visualizes the relation between both sets. The tree implies a hierarchical structure which 
means that subsets are always on a lower level than sets. Therefore, only those subset relations that 
are in line with the hierarchy are salient. For example, the subset relation of “roses among the red 
flowers” where the “roses” are the subset and all the “red flowers” are the including set is not 
visualized by a branch in the tree and thus, is not transparent. 

In the unit square, subset relations are visualized by areas being embedded in other areas. For example 
the subset of “white roses” is represented by a partial area of the rectangle that represents all roses. 
In contrast to the tree diagram, the unit square implies no hierarchy. That means that subset relations 
can be grasped vertically (e.g. “white roses among the roses”) as well as horizontally (e.g. “roses 
among the red flowers”). Therefore, all subset relations that are possible in this situation are 
transparent in the unit square. 

Because of these differences in the properties of the two visualizations, we expected a difference 
between the tree diagram and the unit square when the perception of different subset relations is 
regarded. Therefore we hypothesized: 

If the subset-relation is not in line with the hierarchy of the tree diagram, the unit square is more 
efficient to make the subset-relation transparent (hypothesis 1). If the subset-relation is in line with 



the hierarchy of the tree diagram, there is no significant difference between the unit square and the 
tree diagram (hypothesis 2). 

Method 
The method in our first study and the replication study was the same. In the first study, we 
administered a questionnaire to 148 students who were enrolled in a course of mathematics education. 
In the second study, the test was administered to 58 students who were also enrolled in a course of 
mathematics education. In both studies, we asked the students (among other questions concerning 
conditional probabilities) in one task that we indicate below to calculate proportions and to indicate 
the result in form of fractions: 

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =  
#subset

#set
 

In this way, we could analyze if the right subsets and right sets have been grasped from the 
visualization. The questionnaire had two versions, one showing tree diagrams, the other showing unit 
squares to represent the statistical information. The rest of the test-items remained constant and the 
participants were randomly assigned to one of the two groups. Thus, any potential difference in the 
results could directly be attributed to the influence of the visualizations. 

To assess the influence of representation on the perception of subset relations we designed test-items 
that each addressed structurally different subset relations. In Figure 3, we show the questions that 
were accompanied by either the tree diagram or the unit square shown above. Note that the item (d) 
addresses a subset relation that is not in line with the hierarchy of the tree diagram and therefore a 
higher performance for the unit square was expected. The items a, b, c and e address subset relations 
that are in line with the hierarchy of the tree diagram and therefore no significant difference between 
the tree diagram and the unit square was expected. We rated correct answers with 1 and incorrect 
answers with 0. 

Flowers: A flower girl is selling red and white roses and carnations. Altogether, she has 120 flowers. 
Calculate the following proportions. Indicate the results in form of fractions. 

The proportion of  

a) red carnations among all carnations. 

b) white roses among all flowers. 

c) white flowers among all flowers. 

d) carnations among the red flowers. 

e) roses among all flowers. 

Figure 3: Items to assess the perception of subset relations 

Results 
Figure 4 shows on the left side the results that we reported in Böcherer-Linder and Eichler (2017). 
As we hypothesized in this study, the unit square (M = 0.66, SD = 0.44) was more efficient than the 
tree diagram (M = 0.38, SD = 0.48) for the item (d) that addressed a subset relation that is not in line 
with the hierarchy of the tree diagram. The difference for the item (d) was significant (t (146) = 3.579, 



p <.001) with an effect size of d = .58. In the replication study there is again a significant difference 
referring the item (d) that addressed a subset relation that is not in line with the hierarchy of the tree 
diagram (unit square: M = 0.63, SD = 0.43; tree: M = 0.31, SD = 0.39; t(54) = 3.101, p<0.01, d =.82). 
Thus, we replicated our result referring hypothesis 1. Further, it is interesting that the ratios of correct 
answers are very similar in the original study and the replication study. However, there are also 
unexpected differences for the items (b) and (c).  

 

Results of the first study, n = 148 

 

Results of the replication study, n = 58 

 

Figure 4: Participants performance in the first study (left side) and in the replication study 

 

In our first study, we investigated also the differences in the other four items that addressed subset 
relations within the hierarchy of the tree diagram. For these items a t-test for the accumulated score 
referring to these four items (α = .739) yielded no significant difference between the tree diagram (M 
= 3.46, SD = 1.023) and the unit square (M = 3.46, SD = 1.036), t (146) = 0.000, p = 1.000. In the 
same way none of the items yielded a significant difference between the unit square and the tree 
diagram when investigated individually. Thus, there was no reason to reject our hypothesis 2 in our 
first study. However, we could not replicate these results in the second study. When the items were 
regarded individually, a t-test yielded significant differences for item (b) (p<0.05) and (c) (p<0.01). 
Also, the accumulated score referring to all four items (α = .634) yielded a significant difference 
between the tree diagram (M = 3.01, SD = 1.11) and the unit square (M = 3.67, SD = 0.52), t (54) = 
2.762, p = 0.008). 

In the first study, the mean values of correct answers for the tree diagram were almost equal for all 
of the four items a, b, c and e addressing subset relations that were in line with the hierarchy of the 
tree diagram (88%, 85%, 86%, 86%). In contrast, in the second study for every item differences 
appeared. However, the performance for item (d) was lower for both visualizations. This might 
indicate that the subset relation (d) is more difficult to perceive than the other subset relations and 
that the visualization with the unit square is more helpful in this case. 



Discussion of the results 
For the situation of the flower girl, our results show a very clear effect in favor of the unit square. 
This was the case in the first study and, with very similar results, in our replication study. 
Nevertheless, we suggest for future research to prove this effect also for other contexts. In another 
study with 143 students of electrical engineering, we replicated the effect for subset relations that are 
not in line with the hierarchy of the tree diagram for two more different contexts. It is further desirable 
to investigate the effect of those subset relations used in the items a, b, c and e in more depth. This is 
especially the case since our results for this kind of items seems to be ambiguous. The replication 
study yielded significant differences referring to the efficiency of the tree diagram and the unit square 
in supporting students solutions in tasks where the subset relations are in line with the hierarchy of 
the tree diagram. Although this result was not expected and we further hypothesize that this result 
will not be replicated in further studies, it agrees with our overall hypothesis, i.e. the supremacy of 
the unit square to visualize situations in which the Bayes’ rule has to be applied.  

There are further aspects that that could be investigated in more detail. For example, there is the 
question of the order in the sequence in the tree diagram. It might be interesting to study the effect of 
the transposed order (roses / carnation on a lower level than red / white) and to compare it with a 
rotated unit square (roses / carnation arranged vertically and red / white arranged horizontally). This 
setting could be clarified if the hierarchy of the tree actually is the reason for the results in our study. 

Moreover for the context of Bayesian reasoning, the results of Binder et al. (2015, p.6) suggest an 
advantage of the 2×2-table compared to the tree diagram, although no statistical difference between 
2×2-tables and tree diagrams was reported. Thus, it is an open question if 2x2-tables are equally 
efficient than unit squares to make subset relations transparent or if there is an additional effect of the 
unit square due to the redundant geometrical and numerical representation.  

Finally, there are further possibilities for visualizing set relations. One of these possibilities that was 
used in mathematics teaching is the double tree (Wassner, 2004). Thus, it could be interesting if a 
specific version of the tree diagram is able to decrease the weakness of the tree diagram to identify 
appropriately set relations. 

Implications 
The main result of our research seems nearly trivial: Visualizations have to visualize the main aspects 
of a mathematical concept if they aim to support students’ understanding of this concept. 
Accordingly, a subset relation must be transparent when the aim of the visualization is to represent 
subset relations. However, it is by no means at all trivial to identify the crucial aspects of a 
mathematical concept. Actually, the tree diagram is very prominent in statistics education research 
(Veaux, Velleman, & Bock, 2012) and also psychological research (Binder, Krauss, & Bruckmaier, 
2015) for visualizing Bayesian situation that necessitates applying Bayes’ rule. However, our research 
gave evidence that – compared to the unit square - the tree diagram is not efficient to visualize the set 
relation that is crucial to understand the structure of a Bayesian situation since it requires a subset 
relation that is not in line with the hierarchy of the tree diagram. 

Our results have firstly some consequences if statistics education is regarded. Sloman et al. (2003) 
expressed that bringing out nested set structure has been identified as being important for the 
improvement in Bayesian reasoning tasks. Thus, restricted to teaching and learning probability, our 



results imply to reconsider the role of the tree diagram to support students’ learning referring to 
probability and Bayesian reasoning. This would be a considerable shift in statistics education (c.f. 
e.g. (Gigerenzer, 2014; Wassner & Martignon, 2002). A little bit more globally, it could be considered 
if proportions, and in particular proportions of proportions could be appropriately visualized by a unit 
square to emphasize the connection between proportions of proportions and conditional probabilities. 
Thus, the unit square could potentially be understood as a visual connection between fractions and 
probabilities. 

More generally, our results imply to focus the discussion of visualizations on the structure of 
visualization and on its relation to the structure of the represented mathematical concept. While the 
superiority of visualizations is a consensus in mathematics education as we outlined in the 
introduction, it is a crucial objective to find out which visualization best fits to a mathematical 
concept, especially in situations where several competing visualizations exist as it is the case for 
Bayesian reasoning situations. For example, Binder et al. (2015) show that the tree diagram supports 
Bayesian reasoning compared to pure symbolic representation, whereas our results imply that the 
required subset relation is not transparent in the tree diagram. Indeed, in recent research, the unit 
square outperformed the tree diagram in Bayesian reasoning tasks (Böcherer-Linder & Eichler, 2017; 
Böcherer-Linder, Eichler & Vogel, in press). Therefore an ongoing task of educational research 
should be to precisely identify the relation of a visualization and its structure and the mathematical 
concept and its structure. One main message of our paper is that this relation is not sufficiently 
investigated, but could considerably impact on students’ learning. 
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We are interested in exploring the role of enactive metaphoring in mathematical thinking, 
especially in the context of problem posing and solving, not only as a means to foster and enhance 
the learner’s ability to think mathematically but also as a mean to alleviate the cognitive abuse that 
the teaching of mathematics has turned out to be for most children and adolescents in the world. 
We present some illustrative examples to this end besides describing our theoretical framework. 

Keywords:  Metaphors, enaction, representation, visualisation, cognitive bullying. 

Introduction 
Our concern in this paper is the role of metaphor, more precisely enactive metaphor, in the teaching 
and learning of mathematics, particularly in mathematical thinking arising in, or triggered by, 
problem posing and solving. Fostering mathematical thinking in the classroom is a widespread aim 
in mathematics education indeed (OECD, 2014), but in our viewpoint we have a much more severe 
and dramatic issue to address: not only mathematical thinking is not fostered in our classrooms 
(Chilean and worldwide), but mathematics has turned out to be a tool of torture for millions of 
children, who cannot escape from it. This has been recently acknowledged as “cognitive bullying” 
or “cognitive abuse” in the English literature (Watson, 2008; Johnston-Wilder & Lee, 2010). a 
practice that is “at best marginally productive and at worst emotionally damaging” (Watson, 2008: 
p. 165). We thus echo Tillich’s famous statement: “the fatal pedagogical error is to throw answers 
like stones at the heads of those who have not yet asked the questions”. To tackle this complex and 
systemic problem, a multidisciplinary approach is most wanted, where a first diagnosis emerges: 
traditional (and abusive) teaching of mathematics tends to thwart cognitive brain mechanisms 
installed during millions of years of evolution, that we would need on the contrary to recognise, 
appreciate and tap into in the context of learning, to wit: metaphorising, enacting, collaborating…   

Our main hypothesis is that practice of metaphorising, especially enactive metaphorising, in the 
classroom, might be a fundamental means to contribute to alleviating this situation of cognitive 
abuse towards students without forsaking their access to mathematical thinking, but on the contrary 
fostering it. It is our hypothesis that the way a mathematical situation is metaphorised and enacted 
by the learners strongly determines the ideas and insights that may emerge in them and may help to 
bridge the gap between the “mathematically gifted” and those apparently not so gifted or 
mathematically oriented. A big challenge is then trying to figure out under which conditions 
enaction and metaphorising, more precisely enactive metaphorising, impact on mathematical 
thinking processes as hypothesised above.           



We intend here to pursue our recent research on metaphorising and enacting (Diaz-Rojas & Soto-
Andrade, 2015, 2016; Soto-Andrade, 2015). Our earlier work on metaphor in the learning of 
mathematics was presented already in CERME5 (Soto-Andrade, 2007).      
In this paper we focus on some examples and case studies that illustrate the role that metaphorising 
and enacting may play in the spectrum of mathematical thinking elicited by problem posing and 
solving. The contextual background of our case studies involves a variety of learners in Chile: 
prospective secondary math teachers, in service primary and secondary math teachers, first year 
university students majoring in social sciences and humanities, undergraduate and graduate students 
in mathematics, primary and secondary students.   

Research questions   
Which is the role of metaphorising and enacting in mathematical problem posing and solving at 

various levels? To which extent do they influence mathematical thinking elicited by the problematic 

situation, in particular moving amongst various mathematical registers of representation to change 
the problem?   Do they shape our understanding of the processes involved, notably the relation 

between problem and learner, emotional overtones included? 

How does the interplay between affect and metaphoring helps in alleviating cognitive bullying in 
the teaching of mathematics, and even lead to enjoyment of learning and doing mathematics? 

Theoretical framework and state of the art  
Metaphorising in cognitive science and mathematics education. 

Widespread agreement has been reached in cognitive science that our ordinary conceptual system, 
in terms of which we both think and act, is fundamentally metaphorical in nature (Gibbs, 2008; 
Johnson & Lakoff, 2003). In mathematics education proper it has been progressively recognized 
during the last decades (English, 1997; Lakoff & Núñez, 2000; Sfard, 2009; Soto-Andrade, 2007, 
2014, and many others) that metaphors are not just rhetorical devices, but powerful cognitive tools, 
that help us in grasping or even building new concepts, as well as in solving problems in an 
efficient and friendly way. See Soto-Andrade (2014) for a recent survey. We may visualize  
(conceptual) metaphors (Lakoff  & Núñez, 2000) as mappings from a more down-to-earth “source 
domain” into a more abstract “target domain”, carrying the inferential structure of the former into 
that of the latter.   For the learning of mathematics we emphasize the  “poietic” role of metaphor 
that brings concepts into existence, through “reification” (Sfard, 2009). In view, here lies the main 
difference between representation and metaphor: we re-present something given beforehand but we  
metaphorise to try to fathom something unknown or a concept not yet constructed. For instance, we 
construct the concept of probability when, studying a symmetric random walk on the integers (a 
frog jumping on a row of stones in a pond), we see the walker splitting into 2 equal halves instead 
of going equally likely right or left (Soto-Andrade, 2007, 2015). In what follows we will use 
metaphorical language as a meta-language to describe cognitive or didactic theories of interest to 
us, since – we claim –  a theory is essentially the unfolding of a metaphor (Soto-Andrade, 2014). 

Enaction in cognitive science and mathematics education     

Varela metaphorized enaction as the laying down of a path in walking (Varela, 1987, p. 63), as in 
Machado’s famous poem, when he introduced the enactive approach in cognitive science (Varela, 



Thompson, & Rosch, 1991).  In his own words: “The world is not something that is given to us but 
something we engage in by moving, touching, breathing, and eating. This is what I call cognition as 
enaction since enaction connotes this bringing forth by concrete handling” (loc. cit). Less radical 
enaction in mathematics education may be traced back to Bruner (1966), inspired by Dewey’s 
“learning by doing” (Dewey, 1997), who characterised enactive, iconic and symbolic modes of 
representation. For recent significant theoretical and practical developments see Proulx  (2013). In 
what follows we are especially interested in enactive metaphors, where the learner is whole bodily 
engaged, as opposed to “sitting metaphors” in the sense of Gallagher and Lindgren (2015).    

(A)didactic situations and didactic contract 

The theory of didactical situations (Brousseau & Warfield, 2014) might be described as the 
unfolding of the emergence metaphor in math education: mathematical concepts we intend to teach 
should emerge in a suitable challenging situation the learner is enmeshed in, as the only means to 
“save his life”. No real learning is possible if mathematical concepts are airborne from Olympus. 
Such a situation is called a didactic situation, because of the didactical intent of the teacher who set 
it up. It becomes an adidactic situation when the teacher definitely steps back to let the learners 
interact on their own with the setting, with no hope of fathoming beforehand her didactical design 
or the mathematical content she is aiming at. Key metaphors are likely to emerge, as sparking 
voltaic arcs, in and among the learners, when enough “didactical tension” is built up in an adidactic 
situation for them. The notion of didactical contract (Brousseau, Sarrazy, & Novotna, 2014) is also 
of interest to us, in the context of the teacher-student relation. It is in fact a keen metaphoric 
description of the mainly implicit and unspoken mutual expectations, beliefs and commitments 
regarding the actions and reactions of the partners involved in a didactic or adidactic situation.   

Affect in mathematical problem solving 

The role of affect in mathematical problem solving is often neglected in spite of its significant 
incidence in learner’s performance (Mason, Burton, & Stacey, 2003; Hannula, 2014). Here we are 
specially concerned by the role of negative emotions that trigger a learner’s emergent metaphorising 
that can transform a problem that is a tool of cognitive bullying into a friendlier one. The outcome 
of this may be, for most learners, a positive feeling of liberation from the Procrustean bed of 
arithmetic and algebra, for instance (see example 2 below). 

Methodology and experimental background   
Our research includes an experimental facet, where our methodology mainly relies on qualitative 
approaches, to wit: Case Studies (Stake, 1995), Participant Observation techniques and 
Ethnographic methods (Spradley, 1980).   
In all, 4 cohorts of learners have been involved in our teaching and learning according to our 
metaphoric and enactivist approach from 2014 to 2016.  They include prospective secondary school 
physics and mathematics teachers in a one-semester course in number theory at the University of 
Chile; students in a one semester first year mathematics course in the social sciences and humanities 
option of the Baccalaureate Programme of the same University; in service primary and secondary 
school teachers engaged in one week professional development workshop in the South of Chile, in 
service primary school teachers engaged in a 15 month professional  development programme 
(mathematics option) at the University of Chile at Santiago; graduate students working towards a 



Ph. D. in Didactics of Mathematics, at the Catholic University of Valparaiso (UCV),  most of them 
secondary school math teachers holding a Master in Didactics of Mathematics. They were chosen 
because they constituted a broad spectrum of learners we had access to while performing our usual 
teaching duties at the University of Chile, besides some invited workshops elsewhere, with whom 
our overarching approach could be tested.  Learners, working most of the time in (random or 
spontaneous) groups of 2 to 4, were observed by the teacher or facilitator and an assistant, the latter 
assuming the role of participant observer or ethnographer (Spradley, 1980; Brewer & Firmin, 2006).  
Among aspects observed were: level of participation, questions and answers, horizontal (peer) 
interaction, emergence of metaphors, especially idiosyncratic ones, spontaneously or under 
prompting, gestural language of learners and teacher, expression and explicit acknowledgement of 
affective reactions from the learners. Snapshots of their written output in problem solving activities 
were taken and videos of their enacting moments were recorded. 

Illustrative examples and case studies   
We present and discuss here two paradigmatic examples, in geometry and arithmetics, that we have 
come across during our teaching at the University of Chile, to illustrating important aspects of our 
theoretical perspective, often neglected in usual approaches. The case of randomness has been dealt 
elsewhere (Diaz-Rojas & Soto-Andrade, 2015).  Our geometrical example deals with the exterior 
angles of a polygon and their sum: a typical geometrical notion often abusively and gratuitously 
introduced, with no context or motivation.  In arithmetic, we recall the consecutive sums of positive 
integers problem, thoroughly discussed in the literature (e.g. Mason et al., 2003)       

Example 1.  The sum of the exterior angles of a polygon 

We have observed that almost every in service and prospective secondary mathematics school 
teacher in our country, after introducing exterior angles coming out of the blue after inner angles 
and explaining them in terms of the latter, calculates dutifully their sum from the sum of the inner 
angles, that  depends on the number of sides of the polygon. Doing a bit of algebra they finally wind 
up discovering that the sum of all exterior angles is 360o, independently of the number of sides!  
Surprising! This traditional way to “get into” the task  (Proulx, 2013), is not very appealing for most 
students, that experience it as “blind calculation” (a case for cognitive bullying). When trying to 
fathom out exterior angles of a polygon however a first thing to do – from our perspective – would 
be to metaphorise it, to get into the task in a more transparent way. Not just reciting its formal 
definition, of course.  Among the metaphors emerging amongst the learners we work with, the most 
frequent are “a polygon is an enclosure between crossing sticks” (most popular among primary 
school teachers) and “a polygon is a closed path, made out of straight segments”.  Enacting the first 
metaphor triggers the idea of manipulating the sticks, as to make clearly visible the exterior angles 
first and then shifting them parallel to themselves to get smaller and smaller homothetic polygons. 
In this way teachers see that the sum of all exterior angles is 360o, instead of blindly calculating.   
Enaction of the metaphor "polygons are closed paths" by the learners themselves, literally lying 
down a polygonal path in walking, enables them to immediately “see” that the sum of the polygon’s 
exterior angles corresponds to a complete revolution (Diaz-Rojas & Soto-Andrade, 2015). In this 
way they realise that exterior angles, not inner angles, are the convenient data for the walker to 
inflect or bend his path as wanted. Analogously for the sum of all acute angles of a pointed star…    
We noticed that metaphorising a polygon is an unusual challenge, almost a violation of the 



didactical contract, for both students and teachers. But once they feel they are allowed to, even     
prompted to, metaphors begin to arise, shyly at first. The enactive metaphoric approach conveys 
here a completely different experience of mathematics than the traditional one, including the role of 
gestures, movements and, more broadly embodiment, in the learning of mathematics, particularly in 
problem solving (Libedinsky & Soto-Andrade, 2015). 

Example 2.   Which numbers are consecutive sums?  Just an arithmetic problem? 

The question is: Which numbers are sums of a string of consecutive (positive) integers. An 
unexpected question to many learners, however familiar with Gauss well known trick to sum 1 + 2 
+ …+ 100 in a wink.  From our perspective it is interesting to observe how easily this question (or 
any question) emerges in the learners, once their attention is drawn to this sort of sums. Our 
hypothesis is that learners’ reaction here is heavily dependent on their previous schooling and the 
amount of cognitive abuse they have endured. As a typical example we recall an informal short 
meeting to chat about "the mathematical experience" with a class of 12th graders from a Waldorf 
school, to whom we told about consecutive sums (just what they are), period. After a few seconds, a 
girl said: Which series of numbers do you obtain that way?  We claim than in usual problem solving 
this is an often neglected aspect: enactively letting questions emerge instead of asking them…   
Another often neglected aspect in problem solving is the affective reaction a problem elicits in the 
learner. This sort of arithmetic problem quite often triggers a feeling of distaste, especially in 
adolescents. This negative emotion may have the immediate positive effect of stimulating the 
learner to metaphorise, to transform the problem into a more attractive or friendly one, i. e. a 
creative reaction!  This is very rarely observed in our prospective teachers and Ph. D. students. 
Apparently didactical contract weights heavily here: learners are not supposed to transform or 
metaphorise the problems they receive, nor are they supposed to like or dislike mathematical objects 
or procedures, just to understand them or not.   

We observed that every learner tackled the problem arithmetically first, doing some experimenting 
(some calculating small consecutive sums, others following the opposite path: checking whether 2, 
3, 4, 5, etc. might be consecutive sums). Some got a closed formula for a consecutive sum but did 
not see what numbers are so obtained. Those who checked numbers one by one arrived quickly to 
the (surprising) conjecture that powers of 2 cannot be reached.  In fact they re-traced Mason et al. 
(2003). The proof of the conjecture remained elusive until some noticed that powers of 2 do not 
have odd divisors and so devised an algebraic proof of the conjecture. The fact that conversely a 
number which is not a power of two must be a consecutive sum remained in the shadow for 45 
minutes or so.  At his point, we asked prospective teachers whether they liked the way we were 
tackling and solving the problem. Two of them said that the conjecture was interesting and that they 
understood the algebraic procedure but that they were not very happy about it. Fernanda said that 
she was not fond of this algebraic yoga, although she was able to carry it out. For Enrique this 
algebraic approach was easy but he was unhappy because he had noticed (giving private lessons to 
secondary school students) that for most students algebraic calculations are not appealing at all. So 
both were motivated to look for different, may be geometric, approaches.    

For Ph. D. students, didactical contract played in the opposite direction: after working on 
metaphorising some months before, when asked now whether they were satisfied with their 
discovery regarding powers of 2, several students thought about metaphorising the problem, looking 



at the numbers as quantities of dots arranged in clever ways.  Andrea, an insightful female student, 
drew a trapezoidal house with a slanted roof  (of slope 1) and so transformed the problem to a 
question about the area of this trapezoid. Some tried to remember the area formula, but others, like 
three clever prospective teachers, saw by rearrangement or compensation that their trapezoid could 
be turned into a rectangle with the same base. But then they realised that this worked only “half of 
the time”:  for an odd basis! In that case the area has an obvious odd divisor.  For the even case, 
some conjectured that they could get a two-step horizontal roof, each step of equal length     and so 
the idea emerged of slicing vertically the trapezoid into two “halves” of equal base and putting one 
on top of the other.  Some went into distinguishing the cases: half base odd or even. But others had 
the idea of putting one “half trapezoid” topsy-turvy on top of the other, getting in this way a 
rectangle of odd height and half base. Then, a prospective teacher had the idea of borrowing from 
scratch a copy of the original trapezium and coupling both to obtain a rectangle with either odd base 
or odd height and whose area is twice the original one! The proof of the converse conjecture was 
left open. Regarding liking or disliking, graduate students at UCV were more enthusiastic about the 
geometric approach than prospective secondary teachers. Roughly two thirds of the latter said that 
they did not feel confortable with geometry so that they preferred calculating algebraically! In fact 
even when trying to think in geometric terms, they quickly reverted to algebraic calculation. On the 
other hand  happy visualizers realised that the trapezium area may have any value in the continuous 
case but not in the discrete one, because something pops up that has no continuous analogue: Parity! 
A surprising fact for them, who knew, from their laptop screens, that the discrete models the 
continuum well. The question remained open as to whether we can see geometrically that the area 
of a rectangular trapezium cannot be the volume of a hypercube.    

From our perspective this is an emblematic example of the possible “unfolding” of an “arithmetic” 
problem that that can be solved by some algebraic yoga (that many students do not appreciate at all) 
but can also be metaphorised as a geometric problem, more appealing to others. This metaphorising 
"prompts" us to jump naturally into the continuous world and get some inspiration there. We realise 
also the hard way that there is a tricky property of discrete shapes with no analogue in the 
continuous world: parity! Discrete lengths, areas or volumes may be odd or even, although 
asymptotically however parity vanishes… Remarkably, even insightful discussions of this problem 
found in the literature (e. g. Mason et al., 2003) remain confined in the arithmetic-algebraic realm, 
not taking advantage of the avenues and possible generalisations that metaphorisation may open up.   

Discussion  
We have shown several important aspects of the role of metaphorising and enacting in mathematical 
thinking elicited by problem posing and solving.  First, we have seen that the way we metaphorise 
and enact determines the ideas and insights we may have when tackling a problem. Then, how 
metaphorisation triggered by distaste of the problem may allow the learners to move from one realm 
to another, instead of remaining confined in just one. By so doing, they may take advantage of 
different intuitions and handlings, eventually much friendlier to them, that enhance their 
mathematical thinking and also alleviate the cognitive abuse they have been exposed to. Indeed, an 
acknowledged negative affective reaction to a proposed problem may trigger creative 
metaphorisation to change it. In this way metaphorisation appears as a means to empower students 
to transform an unappealing problem given to them, something especially relevant for adolescents 



who otherwise have the feeling of being abused by being forced to follow prescribed rules to solve 
nonsensical tasks (Watson, 2008). Also visualization appears as concatenation of metaphors: In the 
case of consecutive sums: “numbers are quantities”, “summing is putting together”, “factorizing is 
rearranging to form a rectangle” etc. Furthermore, it appears that usual problem solving, as found in 
the literature, tends to neglect, the important role of metaphorisation and enaction, as a learner’s 
first reaction when tackling a problem that looks opaque to him or her. Not only because this may 
allow the learner to solve an otherwise unyielding problem but also because it may allow him or her 
not just to solve the problem but to “see” a solution, turning a hitherto blind calculation into 
pellucid insight.  Finally the enactive and metaphoric perspective reshapes our understanding of the 
relation between problem and learner in problem posing and solving, that appears as a quite more 
circular and entangled process than usually acknowledged, where each one codetermines the other. 
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Diagrams and mathematical events: Encountering spatio-temporal 
relationships with graphing technology 
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This paper presents the diagrammatic activity of some secondary school students exploring motion 
through graphing technology, which captures a pair of space-time graphs on a single Cartesian 
plane. Focus is on a written task about the connections between two imaginary movements and 
(between) the corresponding graphs. Drawing on a vision that conceives mathematical thinking as a 
place of events instead of objects, we discuss three unexpected diagrams for how they bring forth 
inventive and speculative possibilities for learners to encounter and problematize spatio-temporal 
relationships, rather than seeing them as ways of being mistaken. 

Keywords: Graphing technology, movement, diagram, event, problematic.  

Introduction 
In this paper, we deal with the issue of how students might learn about a representational system in 
which temporospatial relationships are the ground for the mathematical doing. Our interests are also 
in how visual, proprioceptive and kinaesthetic aspects of experiencing these relationships might move 
the learning of mathematics in unexpected and unconventional directions. We follow here de Freitas 
(2013) in rethinking mathematics as the place of events, instead of objects, where creativity and 
contingency prevail and the problematic—rather than the axiomatic—better capture the vitality of 
mathematical activity. The idea is that deduction “moves from the problem to the ideal accidents and 
events that condition the problem and form the cases that resolve it.” (Smith 2006, p. 145). Thus, 
mathematics is concerned with the occurrence of events more than with the existence of objects, and 
attention is on the material encounters with the mathematical.  

In this perspective, we present an activity that was carried out with grade 9 students working with 
graphing motion technology to study function. In particular, the technology requires that two remote 
controllers of the Nintendo Wii game console (Wiimotes) are moved at the same time in front of a 
sensor bar, and it displays two space-time graphs on the same Cartesian plane. In the graphs, space is 
given by the distance of each controller from the bar. Thus, the software captures the movement of 
the Wiimotes over time. Our focus is on a written task that asks the students, divided into groups, to 
draw a space-time graph related via movement to a given graph. The task is called “Rob and Bob”. 
In it, Rob and Bob are the names of two little robots that are imagined to be moving the controllers 
in front of the sensor. The graph associated to Rob’s movement is given on paper, together with the 
instructions with which Bob is supposed to be moving with respect to Rob. The students are expected 
to complete the task adding Bob’s graph on the Cartesian plane. We will discuss how three different 
graphs are presented as solutions to the task from different groups, and we will develop how we think 
that these are significant in terms of the novel mathematical meanings that the students are 
articulating. In the meanwhile, we will also draw attention to aspects of the experience with the 
technology that might support this novelty, raising issues about the role of perception on the one side, 
and about the features of the technology on the other side.   



Theoretical highlights 
The representational system we refer to in this paper is the (space-time) Cartesian plane, which our 
students encounter through activity with the technology. However, we want to trouble traditional 
ideational assumptions that conceive such system as inhabited by mathematical figures or functions 
that, in their essence, are representations (particular instantiations or attributes, concrete instances) of 
some form, inert, transcendent, abstract and disembodied. In fact, claims de Freitas (2013), “the 
process of instantiation fails to capture the creative and material act of individuation that is entailed 
when we do mathematics.” (p. 586). We instead embrace an animate vision of the mathematical 
drawing/creation or act of drawing/creation of a figure or a function as event-structured, full of 
potentiality, temporality and movement, immanent, contingent to material circumstances, and 
incidentally subject to transformation. This positions us in the broad discussion on the theorising 
about the embodied nature of mathematics thinking and learning, which attempts to look at 
knowledge in non-representational ways and to overcome body/mind Cartesianisms (see e.g. 
Nemirovsky et al., 2013; Sinclair, 2014; Ferrara, 2015; Roth, 2016). According to this view, learning 
is much more about encountering concepts than about recognizing concepts. Cutler & MacKenzie 
(2011) might argue that thus the challenge is to treat learning as an ontological rather than an 
epistemological problem, staying away, we would add, from opposing the mathematical and the 
physical. The issue of representations is crucial here. As Sinclair (2014) points out, it is not that 
“symbols, diagrams, programming languages and even gestures” (and any other system, we would 
add) “do not at times function to re-present mathematical concepts and relations”, rather “they are 
inevitably bound up with bodies and discourses and thus potentially poised to open up new 
meanings.” (p. 174, emphasis in the original). Our own reading of this makes sense as regards our 
commitment to a mobile view of mathematics and mathematical doing that tries to escape concrete 
versus abstract and matter versus thought divides (Ferrara & Ferrari, 2016). In Ferrara (2015), these 
divides are challenged through a vision of perception and creation in/of mathematics for which 
perceiving is conceiving, thinking is acting and creating is learning. The work of philosopher Gilles 
Châtelet (1987, 1993/2000) on inventive diagramming was provocative to us in considering the 
centrality of mobility or virtuality to bridging the physical and the mathematical. The virtual is the 
necessary link between the two realms. Roth (2016) also draws on Châtelet to underline how one way 
of thinking about dynamic systems is just in terms of the virtual. We can better understand this if we 
take the examples that Châtelet (1987) makes about historical contributions of new ideas by Leibniz 
and Abel. Leibniz theorised differential calculus thinking of points as if they were alive, as powers 
of explosion (“puissances d’explosion”), while Abel saw the curve not as fixed but in terms of its 
power of receiving intersections (“comme puissance à recevoir des intersections”). The virtual 
restores concepts to mobility, granting them inventive force and power. For de Freitas (2014), 
Châtelet shows us “how we might study a particular practice for how its lines of flight flourish and 
act generatively in unfolding new intensive dimensions.” (p. 290, emphasis in the original). The 
virtual is that which nourishes encounters with mathematics, linking the concrete and the abstract and 
allowing recoding the indeterminate contours of the sensible and the intelligible. This has to do with 
the potentiality or virtuality that is always entailed in perception: “We never just register visual 
information from that which is in front of our eyes: we see potentiality, relationality, mobility, 
occurrence. Students are not seeing an object; they are seeing an event” (de Freitas, 2014, p. 298).  



In this paper, we take this perspective to look at the students’ mathematical encounters with spatio-
temporal relationships, focussing on the material and virtual dimensions of these encounters.  

Method and activity 
The activity, which is the focus of this paper, is part of a classroom-based intervention (Stylianides 
& Stylianides, 2013) aimed at introducing the concept of function through the use of graphing 
technology. The wider research had the main purpose of investigating how learners might articulate 
meanings for functional relationships through modelling motion, and how their embodied activity 
with the technology might affect these meanings. A class of 30 grade 9 students and their regular 
mathematics teacher participated in the study, which lasted for a period of about three months with 
weekly sessions. During this time, the students worked on individual tasks, in groups of three people 
and in pairs of groups, taking part in class discussions. The authors were both present in the classroom 
and two cameras were used to film the mathematical activity of the students during all the sessions. 
Data for the research analyses are based on the films and students’ written productions and 
diagrammatic activity. A microethnographic methodology (e.g. Streeck & Mehus, 2005) is essentially 
chosen for studying interactions and discourse in the classroom through strands of semiotic and 
representational activity over short periods of time, drawing attention to the material circumstances 
of the mathematical events. 

The technology the students used in the case we consider here is WiiGraph, an interactive software 
application, which leverages two Wiimotes to display the space-time graphs of two users moving the 

remote controllers in front of a sensor bar. WiiGraph provides several challenges and composite 

operations, including shape tracing, maze traversal and ratio resolution. Choosing the plain 

visualisation (Line), the software captures the distances of the controllers over time and two graphs 

appear, in real time and with different colours, on a single Cartesian plane. Figure 1 shows a case of 

this type of visualisation for a 30-second default time and two students who move the controllers. 

  

Figure 1: The graphical system in Line and two students moving 

Visual and bodily (especially proprioceptive and kinaesthetic) interactions partake in the students’ 
encounters with the graphical system in relation to experiencing spatial and temporal aspects with the 
technology. We will not refer to other types of graphical activity, since this is the one of interest in 

the case of Rob and Bob.  

The task was given in a written form to the class during the second session and did not imply direct 
use of the technological devices. In the first session, the students explored Line and its graphical 
potential, became acquainted with the devices and started discussing about pairs of functions (for 
example, horizontal or slanted straight lines), with graphs originating in real time and projected on an 
interactive whiteboard. The activity of Rob and Bob was designed with the purpose of unfolding the 



slope/speed relation (early insights emerged out of class discussion in the first session), and how it 
may reveal relationships between two space-time graphs (functions). 

Rob and Bob 

The task was faced by the students divided into groups of three people, and followed by a class 
discussion led by one of the authors. It focuses on an imaginary experience with WiiGraph in which 
two little robots move (the controllers) in front of the sensor bar, but only the graph associated to one 
robot’s movement is given (Figure 2a). The text of the task is the following: 

Rob and Bob are two little robots, which can be taught to move in front of the sensor very precisely. 
Suppose that, in response to Rob’s movement, WiiGraph produces the line below (Figure 2a). 
Imagine that Bob also moved: it started together with Rob, at the same distance from the sensor, 
but moved at a double speed and in the opposite direction. 

• Which graph would WiiGraph show for Bob’s movement? 

• Did Rob and Bob meet again after the start? 

Justify your answers. 

The task has an unconventional nature with respect to the representational system offered by the 
technology, because it does not ask the students to merely reason on the model to motion, or motion 
to model, shift. Instead, information about the missing graph is given in terms of the relationships 
between the two robots’ movements (“double speed”, “opposite direction”), so that the students are 
moved to think about the relationships between the two graphs (double slope with opposite sign), 
through their perceptual and bodily experience with the tool. In addition, the simultaneity of the two 
movements, which by the way recalls the usual way of using the tool, is embedded in information 
about the starting instant/point (“it started together with Rob”, “at the same distance”).  

  
a b 

Figure 2: (a) The given graph, (b) The expected solution to the task given by one group 

The given graph is that of a piecewise function made up of four pieces, which capture alternate ways 
of moving by Rob: stepping further from the sensor for the first five seconds, stopping for the next 
fifteen seconds, returning to the starting position in other five seconds, and stopping for the last five 
seconds (Rob keeps constant speed in each time interval). We expected the students to complete the 
Cartesian plane drawing a graph like the one in Figure 2b. It is the graph of a piecewise function again 
made up of four pieces, defined on the same sequence of time intervals as the given graph. These 
pieces correspond to four ways of moving by Bob: getting close to the sensor for the first five seconds, 
stopping for the next fifteen seconds, returning to the starting position in five more seconds, and 
stopping for the last five seconds (however, Bob is supposed to cover double space with respect to 



Rob, according to the constraint of moving at a double speed. Of course, this is true when he moves, 
and trivially when he does not, since the distance covered is null).  

Instead of looking at the expected graph as the correct one and speaking of difference in terms of 
being mistaken, we dwell on different unexpected solutions emerged from the groups about their 
potential to bring forth new relational possibilities for the two robots’ movements as well as for the 
pair of graphs. In the next section, we take these solutions as the problematic actualizations of the 
mathematical events that the groups encounter in solving the task. It is this idea of novelty that speaks 
directly to inventive mathematics and makes students alive to their engaging with the task.  

Graphs and discussion 
The groups worked on the task for half of the time, then they took part in a collective discussion in 
which their graphical solutions were compared. Only one group drew the expected solution (Figure 
2b), while eight out of ten created one of the three unexpected lines shown in Figure 3 (For the sake 
of ease, we refer these lines to three graphs labelled with numbers 1, 2 and 3).   

   
a b c 

Figure 3: Unexpected solutions — (a) graph 1, (b) graph 2 and (c) graph 3  

The three graphs added for Bob’s movement have some similarity. They all show that taking into 
account information about opposite direction and capture it visually in the diagram is not an issue for 
the students. Each added graph is made up of four pieces, which embed the opposite way of moving 
with respect to Rob: first getting close, then returning to the start (first a decreasing piece, then an 
increasing piece). Not even slope is an issue: the double speed of movement is double slope in the 
three diagrams. However, the duration of Bob’s movement is problematic for the students. In fact, 
while there is correspondence between ways of moving there is no embodiment of duration: there is 
no correspondence between time intervals in which both robots either move or stand still. The lengths 
of the horizontal pieces are different from each graph to the other, and the constraint for Bob to move 
at a double speed with respect to Rob is no longer preserved. Thus, the problematics of duration 
evolved along various accidental threads for the students, driven by their perceptual and bodily 
engagement with the task. These broke with causal connections and direct determination, opening up 
to speculative and inventive investments and to a generative movement, implicating the perturbation 
of spatio-temporal relationships. For example, in the case of graphs 1 and 3 (Figures 3a and 3c), some 
encountered the event for which Bob already stands still while Rob is still moving and, later, Bob 
moves towards the starting position while Rob is still standing still. Some groups introduced the new 
event in which the second robot stops just after fifteen seconds, in the very middle of the experience 
with WiiGraph, and ideally disappears from the view of the sensor, so that the second graph might 
accidentally stop in the middle of the diagram (Figure 3a). Almost all the students engaged with the 
kinaesthetic question of Rob and Bob always covering the same space, no matter the time spent, as 



shown in the three diagrams. These threads are actualized through the groups’ written explanations, 
then during class discussion. Types of explanation are the following:  

Graph 1: “The line we represented is half of Rob’s line. The lines are steeper because speed is 
doubled and Bob moved faster than Rob and in the opposite way. The graph ends at 15 because 
Bob, moving at a double speed, stopped at half of 30.” 

Graph 2: “The two configurations are different from each other, indeed slopes also change since 
times change: Rob is slower. So, covering the same space in different time, there will be a higher 
steepness.” 

Graph 3: “Bob goes at a double speed with respect to Rob, so it finishes “the lap” before Rob. The 
rest of the way it stood still and at the end it met Rob. Speed changes between the ways of Bob and 
Rob, indeed Bob has to cover the same space backwards using half of the time.” 

The logical equivalence between double speed as double distance in the same time and as the same 
distance in half of the time is lost, and the problematic of covering a fixed space in less time drives 
students’ perception and visualisation in the diagramming of the missing graph. Graph 1 (Figure 3a) 
is the most coherent in respect to the axiomatic way of reasoning about double speed but at once the 
most incoherent in relation to kinaesthetic actions with the technology. Briefly speaking, it is nothing 
but a temporal shrinking of the given graph. Instead, graph 3 (Figure 3c) is in line with the usage of 
WiiGraph, because it embraces all the thirty seconds of the modelling process. The same occurs in 
the case of graph 2 (Figure 3b), which is particular though, since it struggles to depict the simultaneity 
of the two robots’ movements. In the discussion, different students actualize in different ways the 
problematics that sustain the mathematical events that occurred in solving the task. Below, Lorenzo, 
Luigi, Giulio and Oliver bring forth in the discourse the issues of duration and simultaneity of 
movements, of moving at a double speed and of covering the same space, issues that are entangled in 
their diagrammatic and written activity. Lorenzo speaks about graph 1 (Figure 3a), Luigi and Giulio 
refer to graph 2 (Figure 3b), while Oliver argues about graph 3 (Figure 3c).   

Lorenzo:  ’Cause, moving at a double speed, distance remained constant, even though it was 
the opposite, but maybe, if Rob performed a movement in 10 seconds, Bob 
performed it in 5 seconds because speed was double. 

Luigi:  For me, hem, the graph took up the same time because, moving simultaneously, 
maybe, at the time they were moving, it took less time for one than for the other 
one to cover the same space, to move in the same space, but then one stood still 
until the other one also did move again, so both graphs last for 30 seconds. (...) 

Giulio:  For me, it [the graph] finished at 30, ’cause it’s not that Rob [Bob] could know 
Bob’s [Rob’s] movement in advance, so it [the graph] cannot finish at 15, it [Bob] 
has to wait for it [Rob] to perform the same but opposite movement, ’cause we did 
see Bob’s graph (miming it in the air) but if they move simultaneously, it means 
that one cannot anticipate the movements, so it cannot finish at 15 seconds. (...) 

Giulio:  We depicted slope at 2,5 seconds but then we stood still until 20 seconds, ’cause 
anyway it’s true that time is halved, but Bob doesn't know what Rob will do later, 
so it has to wait for it. 



Researcher:  Did you say that time is halved? 

Giulio:  Yes, ’cause it [Bob] does things in half of the time, it’s true, however it’s not that 
he can know what it [Rob] will do later, hem, ’cause we do know it, but if they 
move simultaneously...  

Oliver:  Bob does our graph with the movements with which it’s been set up, and then, in 
the end, it’s not that it waits for Rob, it goes on just as it likes and wants, then at a 
certain point, when movements are finished, it stops and the line keeps straight for 
the rest of the time. 

Researcher:  Are you saying that time is halved? 

Oliver:  Yes, because of the double speed. (...) 

Lorenzo:  Indeed, for explaining a little the graph, I said that if there’s a distance to cover, and 
that distance is 50 kilometres and you go at a speed of 50 kilometres per hour, it 
takes you 1 hour to cover that distance. Instead, if you go at 100 kilometres per hour 
it takes you 30 [minutes].  

Giulio: Yes, for me he’s right about the first piece, but then if you stand still, so speed is 
null, zero times two is always zero and so speed has to be equal in the positions in 
which it stands still, for me. 

Discourse with the researcher unfolds the event-nature of unexpected threads traversed in solving the 
task. We see how the students inscribe themselves into the temporality of imaginary situations with 
the robots. The ways of perceiving this temporality are different for different (groups of) students: 
some imagine that one robot has to “wait for” the other to know what to do (Giulio, Luigi); for others, 
coordination is not needed (Oliver) or considered (Lorenzo). Time is duration and simultaneity of 
movements: both aspects become problematic for learners. Both are crucial in making sense with 
WiiGraph of time as the independent variable in space-time functions.   

Conclusive remarks 
In this paper we have discussed some unexpected graphical solutions to a given diagramming task 
based on modelling motion through the use of Wii graphing technology. We have focused not on how 
these solutions were incorrect with respect to the expected diagram, but on ways in which they 
brought forth new possibilities for the students to encounter spatio-temporal relationships. In so 
doing, we looked at visual, proprioceptive and kinaesthetic aspects of experiencing the technology as 
that which sustained the occurrence of new mathematical events in the classroom, bringing into being 
problematic perturbations of the given situation, like shrunk graphs as well as not coordinated 
movements and fixed paths, which break with the conventional visualization and activity of the 
representational system in use. The written, the diagrammatic, the discursive and the bodily, as the 
groups attempted to grapple with the task (to make sense of it), have to be seen as that which animated 
the task without ever exhausting it or fully determining it. The temporality of the events speaks 
directly to the material contingency of learning: the students are dynamically affected by the 
diagrammatic activity while telling stories of motion related to graphing technology.  



References 

Châtelet, G. (1987). L’enchantement du virtuel. Chimères, 2. Retrieved from http://www.revue-
chimeres.fr/drupal_chimeres/?q=node/16.  

Châtelet, G. (1993/2000). Les enjeux du mobile. Paris: Seuil (English Transl. by R. Shore & M. 
Zagha, Figuring space: Philosophy, mathematics and physics. Dordrecht, The Netherlands: 
Kluwer.  

Cutler, A. & MacKenzie, I. (2011). Bodies of learning. In L. Guillaume & J. Hughes (Eds.), Deleuze 
and the body. Edinburgh, United Kingdom: Edinburgh University Press. 

de Freitas, E. (2013). Mapping the axiomatic and the problematic in school mathematics. Studies in 
Philosophy and Education, 2(6), 581–599. 

de Freitas, E. (2014). How theories of perception deploy the line: Reconfiguring students’ bodies 
through topo-philosophy. Educational Theory, 64(3), 285–301.  

Ferrara, F. (2015). Perceiving and creating in the mathematics classroom: A case- study in the early 
years. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European 
Society for Research in Mathematics Education (pp. 1925–1932). Prague, Czech Republic: 
Charles University in Prague, Faculty of Education and ERME.  

Ferrara, F. & Ferrari, G. (2016). Agency and assemblage in pattern generalisation: A materialist 
approach to learning. Educational Studies in Mathematics. DOI 10.1007/s10649-016-9708-5. 

Nemirovsky, R., Kelton, M.L. & Rhodehamel, B. (2013). Playing mathematical instruments: 
Emerging perceptuomotor integration with an interactive mathematics exhibit. Journal for 
Research in Mathematics Education, 44(2), 372–415.  

Roth, W.M. (2016). Growing-making mathematics: A dynamic perspective on people, materials, and 
movement in classrooms. Educational Studies in Mathematics, 93(1), 87–103. 

Sinclair, N. (2014). Generations of research on new technologies in mathematics education. Teaching 
Mathematics and Its Applications, 33(3), 166–178.  

Smith, D.W. (2006). Axiomatics and problematics as two modes of formalization: Deleuze’s 
epistemology of mathematics. In S. Duffy (Ed.), Virtual mathematics: The logic of difference (pp. 
145–168). Manchester, United Kingdom: Clinamen Press. 

Stylianides, A.J. & Stylianides, G.J. (2013). Seeking research-grounded solutions to problems of 
practice: Classroom-based interventions in mathematics education. ZDM – The International 
Journal on Mathematics Education, 45(3), 333–341.  

 



Emerging and developing multiplicative structure in students’ 
visuospatial representations: Four key configuration types 

Carla Finesilver 

King’s College London, UK; carla.finesilver@kcl.ac.uk 

Visuospatial representations of quantities and their relations are widely used to support the 
understanding of basic arithmetic, including multiplicative relationships. These include drawn 
imagery and concrete manipulatives. This paper defines four particular configurations of 
nonstandard representation according to the spatial organization of their visual elements. These are: 
unit containers, unit arrays, array-container blends, and number containers, all of which have been 
observed to support developing multiplicative thinking, allowing low-attaining students to work with 
the equal-groups structures of natural number multiplication- and division-based tasks. Student-
created examples are discussed, and pedagogical and diagnostic implications considered.  

Keywords: Visuospatial representation, multiplicative thinking, arithmetic, low attainment.  

In their early encounters with quantitative relationships, children become aware of concepts such as 
conservation of number, counting, etc., through interactions with collections of objects. For example, 
addition as the joining of collections and subtraction as removing a subset of objects from a collection 
– in which the ordering of individual objects is unimportant – can be considered conceptual 
‘grounding metaphors’ (Lakoff & Núñez, 2000). Various models of children’s arithmetical problem-
solving development indicate a broadly similar progression from early concrete/enactive-based 
reasoning, to imagic/iconic, to abstract/symbolic reasoning (e.g. Bruner, 1974; Piaget, 1952). Within 
this broad outline, the actual external representations of learners’ thinking during problem-solving 
include many possible sub-varieties (e.g., sets of actual objects, pictures of objects, tally marks in 
different configurations, dot arrays, etc.), and many possible categorizations of these for analytical 
purposes. The construction of appropriate analytical frameworks is necessary for the discerning of 
inter-individual differences and intra-individual trajectories (Meira, 1995; Voutsina, 2012). This is 
particularly the case when studying atypically-developing learners (Fletcher et al., 1998).  

This aim of this paper is to share one aspect from the qualitative analytical framework for student- 
and co-created visuospatial data used in Finesilver (2014), delineating four particular types of 
visuospatial representation and demonstrating their use with selected examples. The project took an 
essentially grounded analytical approach, and so whilst this paper does not report results as such, a 
sample of research data is included with brief description of the process. 

Theoretical background 
To understand multiplication and division represents a significant qualitative change in learners' 
thinking compared to understanding addition and subtraction (Nunes & Bryant, 1996). These authors, 
amongst others, have recommended a replications model of multiplication, which is highly relevant 
both to counting-based strategies and to unitary drawn or modelled representations of multiplicative 
relationships. A central concept for considering this particular aspect of representation is spatial 
structuring: 



We define spatial structuring as the mental act of constructing an organization or form for an object 
or set of objects. The process [. . .] includes establishing units, establishing relationships between 
units [. . .] and recognizing that a subset of the objects, if repeated properly, can generate the whole 
set (the repeating subset forming a composite unit). (Battista & Clements, 1996, p.282)  

There are two main forms of spatial structuring with which unitary visuospatial representations of 
multiplicative relationships emphasise their replicatory structure: by creating some kind of boundary 
to separate groups of units from each other, or by organising them in a pattern based on regular 
spacings. These two organisational strategies roughly correspond to Lakoff and Núñez's (2000) 
grounding metaphors Arithmetic as Object Collection/Construction, and to two of the common 
unitary configuration types I introduce below, Unit containers and Unit arrays (see Figures 1Figures 
2). 

Creating container configurations – i.e. visible boundaries within which the individual units of each 
group may be in any configuration – is particularly intuitive. Research that includes container 
representations (or equivalent) has been mainly focused on young children and their intuitive concrete 
models, such as sharing items (e.g. Carruthers & Worthington, 2006; Kouba, 1989). Rectangular 
array configurations, in which the groups are structured and defined by a configuration of all units in 
regular rows and columns – are also widely used in educational contexts. Research including array 
representations generally focuses on older children, grid arrays, and involves content such as 
rectangular area measurement; however, dot arrays have been shown as a powerful tool for supporting 
work in multiplication (Barmby et al., 2009; Harries & Barmby, 2007; Izsák, 2005; Matney & 
Daugherty, 2013), and, less frequently, division (Jacob & Mulligan, 2014). No prior studies were 
found that included both container and array representations, focused on the secondary age group and 
allowed freedom of representational strategy across multiple interviews and tasks. 

Data 
The data discussed below, including all examples, derive from a larger research project using 
microgenetic methodology to elicit and study emerging and developing multiplicative structure in 
low-attaining students’ visuospatial representations within a flexible context (Finesilver, 2014).  

There were thirteen participants, aged 11-15, attending mainstream schools in London, and identified 
by their teachers, educational histories, and initial sifting assessments as particularly numerically 
weak compared to their peers. Although having complex individual etiologies and patterns of 
arithmetical issues, they had in common difficulties experienced at the particular stage of moving 
from additive to multiplicative thinking (as highlighted by Nunes and Bryant, above).  

The representations were produced during individual or paired problem-solving interviews carried 
out by the author (four per participant). Participants worked on tasks based within two multiplicative 
scenarios chosen for their ease and likelihood of visuospatial representation. These were ‘Biscuits’ 
(numbers of biscuits shared between numbers of children) and ‘Passengers’ (numbers of different-
sized vehicles required to transport numbers of passengers). There were also some calculations 
presented symbolically with no scenario. The representational media available were multilink cubes, 
coloured pens and paper. Some representations were co-created by student and researcher at 
‘cognitive snapshot’ points (Schoenfeld, Smith, & Arcavi, 1993), i.e. when a participant was unable 
to proceed further independently, and support was given in the form of a minimal ‘nudge’ prompt; 



(e.g. ringing or counting a group aloud). Due to project methodology, support cannot be easily 
quantified (especially gestural interaction) and is not attempted in this paper. Documentation was via 
audio recording, photographs, scans of students’ papers, and field notes. 

Four key types of representational configuration 
Over 200 visuospatial representations were collected (exact figures cannot be given as participants 
re-appropriated whole and parts of prior representations for subsequent tasks and expansions). The 
great majority were found to group into four types; inclusion criteria, as defined below, were allowed 
to emerge, then refined, as part of a grounded analytical process. The most common types, (unit) 
containers and arrays, will be familiar. A smaller substantial proportion combined both container and 
array elements, and a further type emerged which I call Number Containers. (There is only space to 
include a few examples here; more will be included in this paper’s accompanying presentation, or see 
Finesilver (2014) for a complete set.)  

Unit Containers (UC) 

Criteria: Groups of two or more units enclosed by visible boundaries. Includes representations where 
units are aligned in rows and/or columns, but these do not represent divisor/quotient or 
multiplier/multiplicand. 

 
    

Figures 1(a-d): Examples of Unit Containers 

Overall, this was the most common type (106 instances); eleven of the cohort chose to draw unit 
containers at some point while working on a task, although some much more frequently, and even the 
least able could sometimes use them independently. For the students with the severest arithmetical 
difficulties (e.g. dyscalculia), who could not make any start independently, visuospatial prompts were 
provided, e.g. drawing a set of circles (“plates”) for ‘Biscuits’. UCs were for the most part drawn, 
often with various scenario-based decorative elements, but some made use of mixed-mode, mixed-
media representations with cubes or other physical units placed in drawn containers (see Figure 1d). 

Unit Array (UA) 

Criteria: Groups of two or more units aligned in rows and columns, where number of units in the 
rows/columns represents divisor/quotient or multiplier/multiplicand. 

    

Figures 2(a-d): Examples of Unit Arrays 



Plain unit arrays (of dots, tally marks, etc.) were used frequently (47 instances), the majority being 
produced independently by nine of the cohort, and an almost exclusive choice for three participants. 
All were drawn, and none constructed with cubes. (This may be surprising, as it is easy and visually 
effective to produce cube arrays. However, in general it was the arithmetically weakest students who 
made greatest use of concrete media, and that group also tended to prefer container representations.)  

With a shift of perspective between vertical and horizontal structure, a learner may see that both rows 
and columns are formed of a set of equal groups, which underlies the commutative principle. This 
was independently noticed by some participants; e.g. on being asked to work out 28 biscuits shared 
between four people followed by 28 shared between seven, some re-used the same array, while others 
produced both 4×7 and 7×4, only realizing the equivalence after completion. 

Array-Container Blend (ACB) 

Criteria: Unit array representation with additional containing rings, where number of units in each 
row/column/container represents divisor/quotient or multiplier/multiplicand.  

    

Figures 3(a-d): Examples of Array-Container Blends 

While 47 instances of successful ACB use were collected, many of these were co-created and/or 
drawn during one particular task (see below); however, 27 were otherwise produced independently 
by participants. These were used mainly in ‘Passengers’ and the bare tasks, usually (although not 
always) with each row or column being counted out then ringed before proceeding to the next. Taking 
the additional time and effort to superimpose rings onto an array was thus clearly considered 
advantageous for certain participants on certain tasks. One student in particular began with a strong 
preference for plain dot arrays, but once she had seen an ACB, switched almost exclusively to that 
representation type for subsequent tasks.  

In one particular (and uncharacteristic) task on multiplicative relationships, students were directly 
encouraged to produce an ACB which had both rows and columns ringed. A certain behaviour was 
observed with this representation type alone: some students independently looked back at it during 
later tasks and interviews for reference, in some cases ‘bookmarking’ it. As the numbers involved 
were different to those in their current task, and they only took a brief look, I suggest the images were 
functioning as an instant visual reminder of the commutative property of multiplicative structures.  

Number Containers (NC) 

Criteria: Container representation with numerals (rather than unit marks) representing the number 
in each group written inside, or close by, each container. 



 

 

   
Figures 4(a-d): Examples of Number Containers 

Unlike the previous three configuration types, NCs were not found in the literature or theorized prior 
to fieldwork, and some students introduced them spontaneously. Having observed their successful 
use, I included them in some later interactive support occasions, but of the 30 instances collected 
(from 9 participants), 22 were entirely independent. This change from unitary (iconic) to non-unitary 
(partially symbolic) representation is very significant cognitive step. Note, however, that some 
participants still chose to incorporate decorative elements from the task scenario (i.e. the vehicles 
were still depicted, although individual passengers were not).  

Discussion 
Students’ use of the four types of representational configuration 

Unit container representations allowed those students with the greatest 
arithmetical difficulties to create manipulable simulacra of imaginable 
scenarios, with as much visual resemblance as they preferred, to carry out 
organized sharing and grouping distributions and record their thinking. Unit 
array representations (with or without rings) allowed those students with a 
grasp of equal-groups structures, but who were not yet confident working 
symbolically, to perceive and make use of replicatory patterns spatially 
structured along two dimensions. However, the split between participants 
choosing to include container and/or array structuring elements also indicated 
personal preferences as a separate factor to arithmetical ability. (This has 
potential for further investigation, involving testing participants’ visual pattern recognition). 

While some individuals displayed firm preferences for container- or array-based forms throughout, 
others’ representational strategy choices changed over the course of interviews, and sometimes intra-
task. For example, Figure 5 shows a student’s representation for calculating the number of 7-seater 
vehicles needed for 21 passengers, starting with a container resembling a car, then immediately 
discarding decorative elements and containers, in transition towards an array format.  

Increasing the quantities within tasks (for those students judged likely to cope with the challenge) 
sometimes resulted in strategic change, in particular the introduction of number symbols. However, 
the general persistence of container elements surrounding those symbols (i.e. Number Containers) is 
striking. As seen in Figures 4b and 4d, non-mathematically-functional decorative elements (bus 
wheels, aeroplane wings) were included inconsistently. From a purely calculation-based viewpoint, 
students using NCs might as well be using plain columns of numbers – therefore the container 
elements clearly fulfil some other, non-enumerative, yet important, function. I suggest containers 
forms are a powerful visuospatial/perceptual phenomenon relating to equal-groups number structures 
and relationships, which persists later than might be expected. It is reasonable to expect that as 

 
Figure 5: 

Transitional 
representation 



confidence is gained, the containers begin to disappear (but could be retrieved as a reassuring strategy 
at times of low confidence – for example, when tasks increase in difficulty). 

Obviously, all types of representational configuration were used to a great extent for the enumeration 
of quantities, and for the visuospatial organization of these quantities so that the correct set of objects 
(units or groups) could be enumerated. However, it is worth noting that the representations created 
were not immediately rendered useless once a task solution was found. Students completed 
visuospatial patterns when an incomplete pattern would have been sufficient to obtain an answer; 
they sometimes added further organizational (or decorative) detail after giving an answer. 
Occasionally they even created a whole new representation to record their working retrospectively, 
or to help them explain an exciting discovery they had just made about numerical relationships (e.g. 
the commutative principle). The fact that these representational activities were important to the 
students for their own sake (i.e. not just for obtaining the answer in a single task) suggests that they 
can be an important part of these students’ developing arithmetical reasoning, and their real and 
perceived agency in this development.  

Representational configurations and developing multiplicative thinking 

Representations of mathematical objects […] can be seen as concretizations of abstract 
mathematical concepts and at the same time as representations of real objects. (Wittmann, 2005, 
p.18)  

The four related types of representational configuration defined and discussed above integrate 
numerical and spatial concepts to form visuospatial mathematical objects that allow such a dual role: 
concretizing numerical relationships and representing real-life objects referred to in scenario tasks.  

Whilst all four types represent equal-groups arithmetical structures, they do not fall along a single 
line of progression (see Figure 6, below). In the same way that concrete representations (e.g. modelled 
with cubes) are not necessarily less mature than iconic ones (e.g. drawn images), different types of 
configuration have different affordances which may be relevant at certain points. Number Containers, 
being non-unitary, are a clear progression from Unit Containers in terms of calculation, by requiring 
step-counting or repeated addition rather than unitary counting. However, Unit Arrays better 
instantiate the two-dimensional, reversible, nature of multiplicative relationships, whilst the ringing 
of rows or columns in ACBs could link procedural and static conceptions of multiplication/division.  

The analysis of a set of relatively open-ended, student-generated, qualitative data based on their use 
of four key types of representational configuration highlighted a particular aspect of these students’ 
late- and slow-developing multiplicative thinking: the many small adjustments that together can 
indicate a gradual change of focus of attention from units to groups, all happening within what is 
often considered to be a single stage of ‘counting-based strategies’. Whether a task is multiplication- 
or division-based, there is a total quantity which is made up of, or can be separated into, equal groups. 
In terms of enumeration, the most basic strategies involve counting without any awareness of the 
repeating structure, while the more advanced ones make use of it. In terms of representational 
strategy, the most basic involve manipulating concrete or drawn units individually, to seeing and 
using visuospatial repeating patterns of units, to manipulating component groups as though they were 
units, to – eventually – focusing on these groups as new, composite units.  



An individual’s progress in this move from units to groups as main focus may be diagnosable via 
their representational strategic choices, along various possible trajectories (see Figure 6). (The 
bracketed items are likely or potential subsequent steps which, however, did not feature in the project 
from which this data derives.) 

 
Figure 6: Potential developmental trajectories through representation types 

Regarding this change of focus, there is a particular point of interest in ACBs: although they are still 
unitary representations (i.e. every unit is visibly present and countable), the visual and enactive 
emphasis on ringed subgroups serves to shift the student’s level of visual focus, drawing attention 
away from the units and towards the groups. Thus, it encourages the possibility of seeing containers 
(enclosing well-aligned sets) as the new ‘units’ for manipulation. Meanwhile, with NCs, the replacing 
of (iconic) units with (symbolic) numbers is not only important for its progression toward standard 
notation, but as another part of this change of focus from units to groups – the change from using one 
mark to stand for one thing, to using one mark to stand for a collection of many things.  

Even from a small sample of students it is clear that their patterns of capability, difficulty, and the 
representations which work best for them, are complex, interrelating, and individual. There is no 
single ideal path through from, for example, dealing out a pile of physical items to a set of actual 
present people, and carrying out a fully symbolic division calculation. However, from a 
teaching/learning perspective it appears important that at no stage is the leap too wide or too hasty, 
and that there are visual links when moving from more intuitive to more abstract representational 
strategies. From an analytical perspective, I suggest that tracking students’ use of these four key 
representational configuration types in their arithmetical problem-solving (both in their initial choice 
of type, and in the emerging and developing spatial organization of elements within representations) 
may be beneficial in further study of the progression from additive to multiplicative thinking.  

References 

Barmby, P., Harries, T., Higgins, S., & Suggate, J. (2009). The array representation and primary 
children’s understanding and reasoning in multiplication. Educational Studies in Mathematics, 
70(3), 217–241. 

Battista, M. T., & Clements, D. H. (1996). Students’ understanding of three-dimensional rectangular 
arrays of cubes. Journal for Research in Mathematics Education, 27(3), 258–292.  

Bruner, J. S. (1974). Beyond the information given: Studies in the psychology of knowing. London: 
Allen and Unwin. 

Carruthers, E., & Worthington, M. (2006). Children’s mathematics: Making marks, making meaning. 
London: Sage. 

Finesilver, C. (2014). Drawing division: emerging and developing multiplicative structure in low-
attaining students’ representational strategies (PhD). Institute of Education, London.  



Fletcher, K. L., Huffman, L. F., Bray, N. W., & Grupe, L. A. (1998). The use of the microgenetic 
method with children with disabilities: Discovering competence. Early Education & Development, 
9(4), 357.  

Harries, T., & Barmby, P. (2007). Representing and understanding multiplication. Research in 
Mathematics Education, 9(1), 33–45.  

Izsák, A. (2005). ‘You have to count the squares’: Applying knowledge in pieces to learning 
rectangular area. The Journal of the Learning Sciences, 14(3), 361–403. 

Jacob, L., & Mulligan, J. (2014). Using Arrays to Build towards Multiplicative Thinking in the Early 
Years. Australian Primary Mathematics Classroom, 19(1), 35–40. 

Kouba, V. L. (1989). Children’s solution strategies for equivalent set multiplication and division word 
problems. Journal for Research in Mathematics Education, 20(2), 147–158.  
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We present a mathematical and computational analysis, partially based on machine learning 
techniques, of the visual scan-paths obtained during a graph interpretation task which allows us to 
identify when the problem solver succeeds in solving the problem with a fair degree of accuracy, and 
helps to understand the visual-cognitive processes at work during the problem solving task. 
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metrics  

As a way of introduction: About the task and machine learning 
Eye-tracking is quickly becoming an established technique for investigating cognitive processes 
involved in the learning of mathematics and other subjects (Lai, et al., 2013). Unfortunately, the 
analysis of eye-tracking data is difficult and laborious, often involving frame by frame analysis 
(Garcia Moreno-Esteva, Hannula & Toivanen, 2016). We partially overcome this difficulty here, with 
the use of machine learning and other mathematical techniques. Using a desktop eye tracking system, 
children completed a mathematics problem that incorporated a bar graph. The visual scan-paths and 
the accuracy of the response are analyzed in order to understand how a child “reads a graph”.  We are 
trying to gather from our data and its analysis, a story of what happens when several children are 
confronted with such a task.  What do they look at?  Do the gaze patterns influence the success or 
accuracy when responding to the task? With this information we may be able to more reliably infer 
the cognitive processes completed by children.  

The problem-solving task 

In Brisbane, Australia, a group of 113 children (mean age 8.67 years), all in the second half of year 3 
in school, completed the graph problem solving task. As part of a larger project, children completed 
a series of eye tracking tasks (reading, mathematics) in a quiet room near their classroom. The 
mathematics tasks included odd-even judgement, magnitude comparison, and problem solving tasks: 
interpreting a bar graph and navigating a coordinate grid. The focus of this presentation is the graph 
problem solving task. This task was designed based on the Grade 3 Australian Curriculum 
Mathematics where Grade 3 children are expected to be interpreting and comparing data displays 
(ACARA, 2016). A similar graph interpretation task features in a Grade 3 Australian standardized 
achievement test. The children were shown the following: a) a bar-chart, where the height of each bar 
indicated a the number of hours worked by Sarah during a given week; b) a labeled coordinate system, 
where the x-axis had the week number labels, and the y-axis had numbers corresponding to hours; c) 
a sentence indicating Sarah’s hourly wage; d) another sentence indicating the task to completed 
related to Sarah’s wages in Week 3. Curcio (2010) describes a sequential framework for children's 



data comprehension, this framework includes; understanding, interpretation and prediction with 
data. The current graph task required each child to understand and interpret: reading the question and 
basic details of the graph (understanding), and then reading between the different elements of 
information (interpretation) in order to complete the computation and arrive at the correct solution 
for Sarah’s Week 3 earnings. A Tobii eye-tracker operating at 300 Hz recorded the locus of focus of 
their eyes throughout the activity - including the initial understanding, and steps involved in 
interpretation.  The threshold for fixations was set at 100 ms (Tobii Technology, 2014). It was hoped 
that the eye tracking information (fixations and saccades) might shed light on the different cognitive 
steps involved in the task. Initial qualitative evaluations of the eye movements demonstrated children 
who did not progress past the first understanding stage, as they did not identify the question being 
asked or relevant information on the graph. Other children were able to understand the task and 
progressed to specific interpretation of relevant information - with a variety of behaviors 
demonstrated. For example, some children had high numbers of fixations and saccades around 
relevant areas, whereas others had fewer and longer fixations on relevant areas. These initial 
qualitative observations were systematically investigated using machine learning techniques. 

The data included 113 visual scan-paths (for purposes of the forthcoming discussion, the inputs), and 
113 answers (the outputs), considered as correct (1) or incorrect (0). The visual scan-paths consisted 
of sequences of pairs, each pair including the duration of a fixation in milliseconds (ms), and the 
location of the fixation.  The visual scan-path information can be visualized as a video (or a static 
picture) in which the fixations appear as a sequence or red dots that have a size proportional to the 
duration of the fixation, and which are connected by lines to neighboring fixations.   

After inspecting the visual scan-path videos, it was evident that it would be difficult to disentangle 
patterns of visual processing that might reveal cognitive processing of different children. It was 
decided that further mathematical/computational analysis of the data might provide further insight.  
Since the nature of the input data is sequential, classifying the visual scan-paths and test results (inputs 
and outputs) with a Markov model based machine learning technique was selected as an appropriate 
analytic method. 

A word about machine learning techniques 

The proprietary algorithm (Mathematica’s Classify function) was used to do the machine learning 
analyses, using a Markov model method (Wolfram Language and System Documentation Center, 
2016).  In this analysis you select a subset of the sample (input – visual scan-path - and output – result 
- data) to analyze (classify) with the machine learning algorithm. From that analysis a classifier is 
then used on all the inputs (visual scan-paths) to predict the outputs (0 or 1, incorrect or correct).  The 
predicted outputs from the classifier are then compared to the real outputs, and the percentage of 
correctly classified outputs can be calculated (some examples are provided in subsequent sections).   

Our research question 
Our research question is simply, what can we learn or infer about cognitive processes related to the 
graph interpretation task described with mathematical/computational/machine learning based 
analysis techniques of the eye-tracking data, and maybe, could these techniques be of further help in 
analyzing the data pertaining to other well defined mathematics problem solving tasks? 



Our techniques are general, in that they can easily be applied to other eye-tracking data consisting of 
a sequence of fixations given by the coordinates and the durations of the fixations as inputs, and a set 
of two or even more categories as outputs.  We hope to make the programs available to other 
researchers wanting to undertake this kind of analyses at a later stage or our research. 

The analyses and corresponding results 
In this section we will describe three kinds of analysis for which we obtained encouraging results.  
Other possible analyses will be discussed in a later section pertaining to directions of future work. 

We partitioned the visual stimulus (the graph on the screen; Figure 1) into areas of interest (AOIs), 
where the most critical areas of interest are labeled as A1 (wage information), A2 (week number), A3 
(week 3 bar), and A4 (number region containing the number of hours corresponding to week 3), and 
other areas of interest which are less critical, or irrelevant, are labeled with letters B and C and a 
number, respectively.  In addition, we labelled the whitespace around the critical areas as ZZ.   

 

Figure 1: partition of the task sheet into areas of interest (AOI’s). 

As a result, data items look like the following: 

{{227, A1}, {563, B2}, {267, C2},  … , {287, C2}, {517, A1}, {1443, A3}} -> 1, 

Figure 2: a typical data item with pairs of elements corresponding to durations in milliseconds 
(numbers) and AOI’s (letter and number juxtaposed) of the fixations, and the result after an arrow. 

In the example above, the first fixation occurred on area of interest A1 and lasted 227 ms, the second 
one on AOI B2, with a duration of 563 ms, and so on.  At the end the arrow with a 1 after it indicates 
that the child solved the problem correctly. 

Finding a small and highly representative subset of data (developing a training set) 

In order to find small and highly representative sets of data items corresponding to correctly and 
incorrectly solved instances of the task, we tried to find the smallest subsets of data items (henceforth 
called training sets) on which we could generate classifiers that predicted outcomes with a high 
degree of accuracy.  After a building classifiers based on randomly selected subsets of data items, we 
could generate a classifier that correctly predicted up to 75% of the test results, and this was using 
only four data items in the training set (3.5% of the sample). It would have been impossible to test all 
sets of four data items out of 113 (there are 6,438,740 such combinations) so we made a number of 



classifying testing runs for randomly selected subsets of size 4, and chose some of those sets which 
yielded classifiers with a high prediction rating.  We then inspected the videos of some of these sets 
and tried to observe what might have been visually outstanding in these.  Our prediction rate is 
marginally better than human experts can do after training on very large data sets. In the world of 
machine learning, a rating of 75% with a training set of size 3.5% is an extremely good result in what 
is called supervised learning (since the training set we found is so small, this is called semi-supervised 
learning (for machine learning principles, consult Hastie, Tibshirani & Friedman, 2009).   

From this inspection, we detected parameters to investigate further with machine learning and other 
techniques, including sequencing, duration and number of fixations and other more elaborate metrics. 

Analysis type 1: the order of fixations in the sequence – does it matter or not? 

One question we had was whether the order of fixations in the sequence matters, or whether there is 
something else at work.  Some literature in psychology indicates that the order of fixations affects 
certain cognitive function such as memory (e.g. Bochynska, & Laeng, 2015; Rinaldi, Brugger, 
Bockisch, Bertolini, Girelli, 2015).  First, we tested overall order, building a classifier using the entire 
sample data.  Its predictive rate is over 99% (using this technique we get only one mismatch between 
predicted and real outputs, due to a faulty item which we were able to locate through the application 
of the classifier itself). We then permuted the order of the fixation duration and AOI pairs at random 
in the visual scan-paths, and passed the permuted input data through the classifier we obtained using 
the entire sample.  Even with the permuted data, we obtain a classification rate which is over 97%.  
From this we cautiously concluded that the order of the fixations in the sequence has little impact on 
whether the child responds to the question accurately.   

As an additional check, we investigated whether the order of fixations within critical AOIs mattered.  
If this were occurring, it might distinguish understanding and interpretation of the graphical 
information (Curcio, 2010).  In order to study this, we extracted just the pairs of elements 
corresponding to critical elements, and eliminated the rest of the data elements.  With these modified 
data items, we built a classifier, using training sets of size 13 (approximately 11% of the sample size), 
and passed the rest of the modified data items through the classifier. This resulted in a prediction rate 
of up to 66%, which is good but not nearly as good as we had hoped.  This indicates that the order in 
which students inspect critical areas might be of some importance, and it deserves further study. This 
also led us to a different form of analysis (type 3), even though much more needs to be done than we 
did here. 

Analysis type 2: number of fixations and duration of engagement on task 

The number of fixations and their duration (see figure 3) for the subjects is extremely revealing even 
though the analysis is less complex.  These fixation duration profiles could be interpreted like a simple 
fingerprint of student engagement and ability.  Our analysis of the number of fixations and their 
duration gives a clear indication that visual scan-paths can be quite revealing about what the students 
can or actually do. To state the results briefly, children who respond correctly take a short amount of 
time (under 30 000 ms) to provide and answer and have a smaller number of fixations (mean of 69) 
than children who respond incorrectly.  Most of the children who respond incorrectly take at least 35 
000 ms to respond or have more than 69 fixations.  The statistically significant duration averages for 
children who respond correctly and those who do not are 30 000 ms and 35 000 ms respectively, and 



69 fixations vs 77 fixations respectively.  Interestingly, a few children (34 out of 113) who take a 
short amount of time and have a small number of fixations, typical of children with a correct response, 
provided an incorrect response.  In most of these cases children had gathered the correct information 
from the graph but had made a calculation error.  There are 17 children for which we have not yet 
determined an adequate explanation of their performance.  Had those children read the graph 
incorrectly?  Had they understood the task? When interpreting the graph and performing the 
computation, did concepts become confused?  We found that these 17 children completed the task 
very quickly relative to the other participants, with a mean response time of approximately 25 000 
ms. This information leads us to speculate that these children may not have been fully engaged in the 
task or in some respect confused or wandering. In summary, we can pick out, in each case, the children 
according to their response from a quantitative analysis by looking just at the duration of their 
engagement and the number of fixations during their involvement in the task.  In the future, we plan 
to do an Artificial Intelligence based cluster analysis of the number and duration of fixation profiles 
only, hoping that they will separate out into four categories: those of children who respond correctly, 
those of children who do not read the graph correctly, those of children who read the graph correctly 
but miscalculate, and those of children who “do something else”.  There is interest and possibly a 
growing body of work around this topic, whether it is possible to classify gaze patterns according to 
the state of mind of the participant subject. It is definitively one of our goals in this and future research 
(e.g., Horrey, Lesch, Garabet, Simmons, Maikkala, 2017). 

 

Figure 3: number of fixations and duration profiles of successful child (blue) and unsuccessful child 
(orange) – the x-axis is the number of fixations, the y-axis is time, the duration of fixations, in ms 

Analysis type 3: duration ratios and frequency ratios 

From viewing the videos it appeared that children who get the problem right seem to spend a 
substantial amount of time looking at critical data, and seem to look at such data more frequently.  
These parameters were assessed quantitatively, making a distinction between the importance of the 
area of interest (e.g. A, B, C), and not between the areas themselves (e.g. A1, A2, A3 etc.).  Thus, we 
measured the total amount of time a subject spent looking at critical AOI’s (with labels Ax), and non 
critical areas (Bx, Cx, and ZZ), and also measured the frequency with which a subject inspected an 
AOI labeled with A, B, C, or ZZ.  The total duration of fixations on areas A, B, C, ZZ became DA, 
DB, DC, and DZZ, and the we considered the ratio DA/(DB+DC+DZZ).  We then computed the 
means of this ratio for the students who successfully solved the problem and for those who did not. 
The means were used to compute a threshold value and make predictions as to who would 



successfully solve the problem or not.  The same approach was used for frequencies (call the total 
frequency on A-critical areas FA, FB for B-critical areas, FC for C-critical areas, and FZZ).  We 
computed an analogous ratio where the quantities FA, FB, FC and FZZ were weighted by coefficients 
1, .5, .25, and 0, respectively.  The rationale for using weights in the case of frequencies is to account 
for the fact that looking at less critical AOI’s, for example, whitespace (ZZ), can easily occur as a 
result of distraction while inspecting the graph or while moving from a fixation in an important area 
to another one, and therefore, they are overrepresented and should carry a smaller weight in the 
frequency count.  We acknowledge there are alternative approaches that could be used. 

With the two thresholds used in combination one can predict the results with an accuracy of 77%.  
The thresholds were combined in such a way that if a child spent both, enough time on critical areas, 
and looked at them frequently enough, the result would be success, and otherwise, it would result in 
an incorrect response.  So it seems that both these parameters are indicative of a child’s ability to 
successfully solve the graph interpretation task.  A post-hoc statistical analysis was done on the means 
obtained for the duration ratio and the frequency ratio to show that they differ in a statistically 
significant way.  Assuming a normal distribution of the duration ratios, the means of children who 
were successful and unsuccessful were 1.13 and .76, with a standard deviation of .43 and .42 
respectively.  These means are statistically significantly different p << .001.  Similarly, having tested 
for the normal distribution of frequency ratios the means are 1.81 and 1.33, with standard deviations 
of .53 and .54, and p << .001, showing again a very significant difference. 

A note about validity and reliability 
The results discussed here would need to be validated with further experimentation.  For example, do 
the results hold if the experiments are repeated with systematic variations, changing the height of the 
bars, the number of the week, and the salary for Sarah?  Similarly, do the results remain invariant 
cross-culturally?  We have thought of replicating the experiments, with children of the same age 
and/or background knowledge, in different English speaking countries and in different cultures with 
different languages.  This work remains to be done.  The reliability of these results is given in as 
much as the calculations are straightforward and easy to check, and the data is clean data as provided 
by a commercially tested device.  It is hoped that in the future, a functional version of the paper can 
be republished in a way that the reader can verify the programs and use the programs with his/her 
own data. 

Conclusions and direction of future work 
In this report we have discussed the kind of visual processes that might be at work when a child is 
solving a graph interpretation task, a discussion derived from a machine learning analysis of eye-
tracking data collected during the problem solving sessions.  It would seem that there is strong 
evidence to support the claim that the order of the fixations during the problem solving session plays 
almost no role in the child’s ability to succeed in the problem solving task.  It would also seem that 
the amount of time and the number of times spent looking at areas where there is information which 
is critical for the solution of the problem relative to the amount of time and frequency of glances at 
other areas is definitively an important indicator of a child’s ability to successfully complete the task.   

As to how these results would affect teaching practices, one could conclude that it is important that 



the teacher directs the student attention to what the critical information might be, where it might be 
located, and how to use it when teaching how to interpret graphs of this sort.  

There are many other measures that can be studied (or have been studied, but are not reported here).  
We mention just a few, without further explanation: string edit analysis, lag analysis, cluster analysis, 
longest common sequence analysis.  The limit in how to analyze gaze tracking data is our imagination. 
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The purpose of this work is to revisit from an epistemic and semiotic point of view the use of 
technological tools for solving problems of optimization accomplished by in-service secondary 
teachers participating in an online course intended for their professional development. This 
approach allowed to analyze teacher limitations on operational resolutions, and drew hypothesis 
about difficulties for experiencing processes of reflection on their own resolution without the 
implementation of adequate collaboration tools for working between them or by themselves and at a 
distance.  

Keywords: Epistemic and semiotic framework, teaching and learning of mathematics at distance, 
resolution of optimization problems using technological tools, online teacher professional 
development in mathematics.  

Theoretical frame 
In the work that it is presented here it is reviewed new data on the resolution of in-service secondary 
teachers using mathematics technology (GEOGEBRA in this case) to solve optimization problems. 
These teachers were participating in an online course for their professional development, mainly in 
relation with the incorporation of mathematics technology into their practice, but primary they were 
learning to use technology and learning to do mathematics with technology(i). In this context, it has 
been important to know teachers’ strategies during the resolution of complex mathematical tasks 
using technology, because these allowed to identify the mathematical resources displayed by 
teachers, as well as their understanding of the content that were at stake. 

Is in relation with the teacher (or student) understanding of the mathematics content at stake that 
this paper deals with the role of representations in mathematics teaching and learning, because in 
according with Duval (1994), “there couldn’t be understanding of the content represented without 
coordination of the representation registers, regardless of the representation register used. Because 
the peculiarity of mathematics in relation to other disciplines is that the objects studied are not 
accessible independently of the use of language, figures, schemas, symbols(ii)…” (Duval, 1994, 
p.12) 

Moreover, school optimization problems in general are designed for the modelling of real situations. 
However, the mathematical representations that come into play (e.g. formulas, graphs or symbols, 
and the treatments or operations carried out with them) obey a set of rules and operative principles 
within a context of mathematical theories previously established. Thus, when a statement is made in 
mathematical terms, the validity or not of such statement comes into play, and this within a well-
defined theoretical context (Habermas 1999, quoted in Balacheff 2010, p. 5/36). Balacheff 
expresses this complexity of mathematical work as follows: “mathematical ideas are about 



mathematical ideas; they exist in a closed ‘world’ difficult to accept but difficult to escape” (Idem, 
p. 5/36).     

Finally, it is from the perspective of determining the domain of epistemological validity(iii) of the 
computing devices for human learning (Balacheff, 1994), that Balacheff & Sutherland (1994) have 
found a way to characterize a computational learning environment with reference to a given field of 
knowledge, but also the forms of analysis that make sense of the differences between distinct 
computational environments, as well as its potential contribution, specific to the enterprise of 
teaching and learning of mathematics. 

Therefore, for the sake of the work that is being presented here it is worth to be mentioned that in 
order to specifically analyze what the teachers were mathematically doing when solving the 
optimization problems with the technological tools (see more in Hoyos 2016), it was only possible 
using Balacheff and colleagues’ theoretical notion of epistemological validity (e.g. Balacheff 1994-
2004; Balacheff and Sutherland, 1994), and Duval’s work on the coordination of representation 
registers of mathematics, specifically of graphs (Duval, 1994). These authors have illustrated the 
different contributions certain software has in different virtual learning environments (Balacheff et 
al, 1994-2010), and here it is noteworthy not only that the teacher (or student) learns to recognize 
those different register of representations (Duval, 1994) that are put in play by distinct 
computational devices or digital tools, but also the need of the coordination of representation 
registers than an appropriate use of computational devices involves when the validation of a 
solution is in question.   

Collection of data and analysis 
The data that are going to be showed here were part of performances of the in-service secondary 
mathematics teachers participating in certain online courses implemented by the MAyTE (an 
acronym for Mathematics and Technology) team (Hoyos, 2009-2012). These data are presented here 
for identifying what these teachers accomplished specifically for their mathematics learning during 
the six-month of online training courses they were participating into. In the MAyTE team’s courses, 
the mathematical activities were developed around an understanding of concepts, learning 
procedures or mathematical techniques that relied mainly on asking participants in the program for 
the resolution of some specific mathematical problems, while only providing a brief list of 
instructions and explanatory text on the mathematical content. In this context, these courses 
generally did not include tutorial indications related to the mathematical resolution of the tasks 
requested.  

It is noteworthy to emphasize here that it was possible until now to analyze the means or the 
strategies that participant teachers displayed using GEOGEBRA to solve the problems or learning 
situations provided by the MAyTE team by applying the constructs of epistemological and 
didactical validity of computational environments. Briefly, in the online MAyTE program (see 
Hoyos, 2012), the activities consisted of using digital tools that were freely available on the Internet 
to solve math problems. The mathematical content was approached synthetically through a capsule 
of the content, and the digital tools for solving the mathematical problems consisted of a variety of 
mathematical software, particularly software of dynamic geometry (SDG). Next it is described one 
of the prototypical math problems to be solved by the teachers participating in the program, the 



practical context in which it was proposed and how the teachers finally managed to solve the tasks 
involved. Two of the selected optimization problems that teachers should solve are as follows: 

1) A refinery can process 12,000 barrels of oil per day and it can produce Premium [high octane] 
and Magna [unleaded] gasoline. To meet the demand, the refinery must produce at least 2200 
barrels of Premium and 1500 of Magna. The distribution center for the Premium is 30 km from 
the refinery and the Magna distribution center is from 10 km. The transportation capacity of the 
refinery is 180,000 barrels/km per day (This means that 180,000 barrels are transported 1 
kilometer per day). If the benefit is 20 pesos per barrel of Premium and 10 pesos per barrel of 
Magna, how many barrels of gasoline should be produced daily to maximize the benefit? 

2) A certain animal fodder is a mixture of two food products, namely A and B. Each kilogram 
of A has 100 units of protein, 18 of fat, and 400 of carbohydrates. The kilogram of B has 200 
units of protein, 2 of fats, and 300 of carbohydrates. The aim is to make bags with a mixture of A 
and B products, each of which should contain at least 500 units of proteins, 18 of fats, and 1500 
of carbohydrates. If the kilogram of A costs 3 pesos and the one of B costs 4 pesos, determine the 
number of kilograms for each of these products that must contain each bag of food so that the 
cost is minimal. (Week 8, Task 1. Geometry and Algebra Course. Specialization MAyTE, Hoyos 
et al., 2009-2012). 

Most teachers’ solutions to these problems were based on the identification and formulation of 
several algebraic expressions that modeled the given actual situation, and they were accorded to the 
data provided; as well as doing a graphical representation using GEOGEBRA, based on the 
algebraic expressions that firstly were elicited. Such procedures were needed to determine the 
region of feasibility and the coordinates of the points from which it was possible to obtain the 
maximum or the minimum cost, depending on the initial conditions of each problem. The solution 
that is going to be showed here (a data table and a graph in GEOGEBRA) was taken from the 
documents the teachers uploaded to the platform, and were evidence of a solution strategy 
composed of these elements: translation from the initial conditions to algebraic expressions, and 
representing the data through the software GEOGEBRA. Therefore, the teachers obtained a 
representation of the feasibility region from which the value of maximum benefit should be 
deducted (in the case of the first problem). In their graph, the feasibility region was shaded, and the 
problem in all cases was still unsolved after the graphic was made, because a point (with 
coordinates (x,y)) needs to be found by means of exploration and through calculating the values of 
the function of two variables f(x,y), and that in the region of feasibility (for attaining or not the 
benefit maximum for Problem 1 or the minimal cost for Problem 2). 

Next it is shown that the teacher solution starts by constructing a table to organize the information 
of the data included in the text of the problem, and immediately afterwards it refers to the graph 
included in his solution. 

T1 [One of Participant Teachers]: 

If the benefit is 20 pesos per barrel Premium and 10 pesos per barrel Magna. How many barrels 
of gasoline must be produced each day for maximum benefit? 



 

 Minimum 
Production 

Distance Benefit 

Premium (y)  2200 30 20 

Magna (x) 1500 10 10 

Solution: 

According to the problem data, inequalities are the following 

x + y ≤ 12,000 

10x + 30y ≤ 180,000 

x ≥ 1500 

y ≥ 2,200 

Where x is the number of barrels of Premium, y the number of barrels of Magna, the function 
that gets the maximum benefit is 

f(x)=20x+10y 

To obtain the benefit maximum, it should be drawn the graph of the following functions using 
‘geogebra’ 

x+y=12,000 

10x+30y=180,000 

x=1,500, y=2,200 

To find the value of x and y that maximizes f(x) function, we take the points that meet the initial 
conditions of the problem. Using the graph, you can see that the solution set is drawn within the 
limits of the lines and the shaded region. 

In the graph, we can see that the points A, B, C, D, E, and F are some of the points that are 
possible solutions, but points C and D are not feasible, so substituting each of these points in the 
function to maximize the number of barrels of Premium gasoline, the solution obtained is 
x=9,800. And the number of barrels of Magna is: y= 2,200. 

Giving a maximum benefit for f(x) = 218,000 bpd 

The reader should note that the image of GEOGEBRA showing the representation of the feasibility 
region is part of the teacher’s solution and it shall be inserted here. 

Also it should be noted that seeing the image, in first place it must be considered that in T1’s 
solution there is a mistake related to the notation that the teacher T1 chose, by which instead of 
denoting the function of two variables as f(x,y), the dependence of the function f was only indicated 
on a single variable, insofar as writing “f(x) = 20x + 10y” to refer to the function from which the 
maximum benefit will be established. Note that T1, after having adequately defined the region of 
points that satisfied the initial conditions, ended by not carrying out an exploration of the values in 
the region of feasibility, question that would bring T1 to obtain the requested maximum value.   



 
Moreover, what is perhaps most interesting is to note that for the computer learning environment in 
question, in this case constructed mainly for exploration and use of GEOGEBRA and for the 
conversion of mathematical representations (Duval, 1994) required to solve the problem, an 
epistemological change in the conditions of the teacher (or student) is raised (Balacheff, 1994-2010) 
linked to the use of the software in the situation or problem proposed, and to the mathematical 
complexity of the task involved. A sign of this could be that a real graph of a function in two 
variables should be represented in a three-dimensional space. The difficulty then in the problem of 
optimization posed resides in that for solving the situation in question it is also required reflection, 
specifically when following the suggestions included in the capsule of content. These suggestions 
appeared beneath to the text of the problem: (i) to draw lines parallel to the axis and intersecting 
inside the feasibility region, and (ii) to explore the variability of the values of the benefit function 
f(x, y) within the feasibility region and/or on points of the indicated parallel lines, which would 
allow to calculate the maximum value requested in Problem 1.  

Of course, there is another way to solve this problem, for example, by associating any point within 
the feasibility region to the value of the benefit function, such exploration could thus be carried out 
directly using GEOGEBRA, starting by dragging the point over the feasibility region and verifying 
the increase or decrease as the chosen point were varying. Moreover, this type of exploration would 
also help to reduce or eliminate the confusion T1 had concerning the double variability upon which 
the function f was dependent. For example, for point E with coordinates (2507.66, 6006.86) the 
value of the function f(x,y) equals 110,222 approximately.  And it can be proven that the value of 
maximum benefit is f(x,y) = 149,924.05 when the approximate values for x and y are x = 2993.81, 
and y = 9004.79. 

Briefly, to finally arrive to solve a problem posed in a classical school context of optimization 
problem solving, the teacher (or student) shall find that there is a very close relationship between the 
modeling of a real situation, the use and treatment of mathematical representations that come into 
play and the coordination of the representation registers in use. Thus, a possible trajectory for the 
resolution of such problems could consists of: (a) surpassing the initial difficulty of the formulation 
of a series of mathematical statements that model the real situation by the usage of mathematical 



representations to model the actual situation; (b) advancing to get a diagram where the possible 
solution could be found by putting into play certain digital tools (in this case GEOGEBRA inherent 
digital tools) for the mathematical treatment or the conversion of such representations (Duval, 
1994); (c) formulating a new mathematical statement, namely the possible mathematical solution to 
the posed problem. However, it is noteworthy that from a mathematical point of view the teacher (or 
student) having passed by (a), (b) and (c) has not yet concluded with the mathematical task in 
question, mainly because in the mathematics ‘world’ it is always necessary to carry out the 
validation of any mathematical statement last obtained or formulated (Balacheff, 2010, p. 19/36). 

Conclusions 
Because the difficulty to solve resides in to reflect on at least one of the three following 
possibilities: (i) on f as a function of two variables and that its graph would then be in R3 and not in 
R2, while plotting the region of feasibility is being carried out in R2; or, (ii) to reflect on the sense 
of the instructions and/or suggestions given at the end of the text of the problem, suggestions that 
concerned with the construction of parallel lines to explore the maximum value of the function f; or, 
(iii) on the possibility of carrying out an exploration using GEOGEBRA, starting by dragging a point 
over the feasibility region and verifying the increase or decrease of the function f as the chosen point 
was varying; it is worth to see that all of them are entirely relied on a necessity of feedback or 
teacher (or student) control of their activity within the software (see Balacheff & Sutherland, 1994, 
p. 15). But this control usually is relied on the coordination of the representation registers or on the 
comprehension of the mathematical content in question, which is usually not accessed directly by 
working alone within the software and at a distance. 

Briefly, in a trajectory to finally arrive to solve a problem posed in a classical school context of 
optimization problem solving, the teacher (or student) shall find that there is a very close 
relationship between real situation modeling, the use and treatment of mathematical representations 
that come into play and the coordination of the representation registers in use. Therefore, the 
principal results in the analysis that has been instrumented here are as follows: 

(1) The learning environment was in part defined using a computational device (in this case 
GEOGEBRA) as a procedural tool for the conversion, use and treatment of the different 
mathematical representations (Duval, 1994), in this case the equations and graphs that came 
into play in the given situation of optimization; 

(2) However, to transit from a procedural context where a possible solution was found to a 
theoretical one to validate it, an epistemological change is required (Balacheff, 2010, p. 
6/36). In this case, it consisted in instrumenting reflective tools, which are not automatically 
available within GEOGEBRA by itself. 

Therefore, this work has allowed to advance a hypothesis of necessity of digital collaboration 
according to specific participant’s (teacher or student) activity, a support to accomplish the 
epistemological change already mentioned. It would be included in the computational device, or 
otherwise it would be provided by tutorial intervention (e.g. Soury-Lavergne, 1997).      

These final remarks mean it is not enough to have access to mathematics technology and/or Internet 
free resources to achieve expertise or comprehension of certain mathematical content addressed. Yet 



perhaps what is most interesting is that the analysis from this epistemic and semiotic perspective 
sheds light on how to move forward by correcting the design, incorporating elements missing in the 
programs reviewed, instrumenting teaching guides (or constructing hypothetical learning 
trajectories) or working with digital materials as collaborative tools that could promote exploration 
and reflective thinking to be applied in the solution of certain mathematical tasks, as those that were 
showed now in the situations under study. In other words, in the same way that social interactions 
do not in principle have an impact on learning but rather depend on the content and forms of 
interaction chosen, the use of Internet digital tools and computational devices will have an impact 
on teachers and teaching (or students and learning) when instrumentalization of Internet resources 
had been exercised to gain knowledge, or to teachers (or students) get control of the activity within 
the software (Balacheff & Sutherland, 1994, p. 15), specially by themselves. 

Notes 
(i) Both modes are at the beginning of the incorporation of innovation at the school, according to the PURIA model. 
Following this model implies that teachers should experiment with the mentioned modes to advance toward successfully 
incorporating technology into classrooms (Zbiek and Hollebrands, 2008; Hoyos 2009-2012). 

Briefly, the PURIA model consists of five stages named the Play, Use, Recommend, Incorporate, and Assess modes: 
“When [teachers are] first introduced to a CAS… they play around with it and try out its facilities… Then they realize 
they can use it meaningfully for their own work… In time, they find themselves recommending it to their students, albeit 
essentially as a checking tool and in a piecemeal fashion at this stage. Only when they have observed students using the 
software to good effect they feel confident in incorporating it more directly in their lessons… Finally, they feel they 
should assess their students’ use of the CAS, at which point it becomes firmly established in the teaching and learning 
process” (Beaudin & Bowers 1997, p.7). 

(ii) French is the original language of this quote: “il ne peut pas y avoir de compréhension du contenu représenté sans une 
coordination des registres de représentation, quel que soit le registre de représentation utilisé. Car la particularité des 
mathématiques par rapport aux autres disciples est que les objets étudiés ne sont pas accessibles indépendamment du 
recours à un langage, à des figures, à des schémas, à des symboles…” (Duval, 1994, p.12) 

(iii) The domain of epistemological validity of a computational environment is characterized by at least four dimensions: 
(1) the set of problems that the device can propose; (2) the nature of the tools and objects that provide its formal 
structure; (3) the nature of the phenomenology that is displayed on the interface that is accessed directly by the user; and 
(4) the kind of control available for users in the computational environment with the feedback that the latter provides 
(Balacheff & Sutherland, 1994, p. 15).  
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Our study is based on a national research project called Arithmetic and Cooperation at Elementary 
school (ACE). The main objective of this research is the designing of a curriculum for first grade 
students. This communication focuses on the analysis of an extract from a lesson proposed by this 
curriculum. During this lesson, the students work on the notion of difference, which is introduced 
with the help of several systems of representation. These systems are already known by the students. 
The analysis of the extract shows that the past and future situations can be related to each other. 
We point out that the students’ continuity of experience can produce knowledge growth. This 
growth specifically occurs when the teacher’s uttering activity directs the students’ actions while 
they use the systems of representation. This uttering activity allows a reshaping / remodeling 
/modification of former knowledge through the systems of representation.  

Keywords: Elementary school mathematics, continuity of education, semiotic representation.  

This paper focuses on the continuity of epistemic experience in mathematics. We argue that systems 
of representation constitute a prominent way of achieving such continuity. We sketch the role of a 
specific system of representation (the number line) to build of the number sense at first grade. This 
research is based a larger French national research, arithmetic and cooperation at Elementary School 
(ACE). It offers a complete arithmetic program to 6-7 year-old-students (First grade). The 
conception of this curriculum relies on available scientific knowledge in different areas (Cognitive 
Neuroscience, Science of Education, Developmental Psychology and Didactics of Mathematics). A 
specific part of the conception of the curriculum is built within what we call a cooperative 
engineering (Sensevy, Forest, Quilio, Morales, 2011; Morales, Sensevy, & Forest, in press). This 
engineering consists of two spheres. The sphere 1 gathers a multi categorical team (PhD, teachers of 
study classes, researchers, teacher’s trainers, pedagogical advisors) and the sphere 2 is constituted 
by 120 experimental classes. In the first year of the experiment (2011-2012), the sphere 1 designed 
the mathematical situations of the curriculum. These situations were implemented in the « study 
classes », and redesigned on line in the course of the implementation process. The first year of the 
experiment, the sphere 1 designed eleven modules corresponding to forty-five sessions. The second 
year of this experiment, this curriculum has been implemented in 60 experimental classes (versus 60 
control classes) and in 120 experimental classes (versus 120 control classes) the third year (2013-
2014). The experimental classes' involvement in this curriculum and their feedbacks allowed 
numerous improvements of the initial design proposed by the research team situations. 

This cooperation between researchers and teachers showed a willingness to create a didactic 
continuity in student’s experience through the use of representation of the number systems that are 
present in the progression throughout the year. We assume that in the joint action between students 



and teacher, the systems of representation may authorize the continuity of the student’s experience. 
But, how precisely this can be built in joint action between teacher and students?  Here we can rely 
on Dewey's conception of continuity. “The principle of continuity of experience means that every 
experience both takes up something from those which have gone before and modifies in some way 
the quality of those which come after” (Dewey, 1998, p.27).  

The Joint Action Theory in Didactics  
Our analyses will build on the Joint Action Theory in Didactics (JATD) originated in comparative 
approach in didactics (Sensevy, 2011; Sensevy, Gruson, & Forest, 2015; Ligozat, 2009; Tiberghien 
& Malkoun, 2009; Venturini & Amade-Escot, 2013). Among the theoretical tools provided by the 
“JATD”, we use mainly the contract/milieu dialectics and the reticence/ expression dialectics. When 
facing a new problem, students are confronted to what we call to a milieu (Brousseau, 1997; 
Sensevy & Tiberghien, 2015), as the epistemic structure. This milieu can be seen as the state of 
problem, what "has to be known" (Sensevy et al, 2015). Students have to face a rather enigmatic set 
of elements that they have to relate in order to build a system of meanings, in the knowing of what 
has to be known » (Sensevy, Gruson, & Forest, 2015). For example, for someone who has to do 
something with a representational system, the milieu is a specific symbolic organization of the 
system of representations itself. The milieu offered opportunities of enquiry, in which students have 
to connect elements of knowledge. They deal with this milieu by relying on the knowledge built in 
the preceding didactic joint action, the didactic contract, what "is already known". This relationship 
between contract and milieu is a dialectal one, because the understanding of a given milieu depends 
on the nature of the contract that guides the student's efforts. 

In order to enable the student to learn, teacher enacts strategies to engage student’s action. 
Interactions between teacher and students are determined by the didactic contract (Brousseau, 
1997). In fact, the teacher knows the knowledge that students will have to learn. But he must not tell 
directly all what he knows. Thus, he has to make choices, in his teaching, about the equilibrium 
between saying/showing (expression) and remaining tacit/hiding (reticence). This is the reticence-
expression dialectics. The two dialectics (contract-milieu and reticence-expression) are entangled, in 
that expression or reticence can be oriented to "contract " ("what is already-there"), or "milieu " 
("what has to be known"). 

The research on the using of manipulatives and representations focus on the necessity of enabling 
the students to rely first on manipulative and concrete “objects”, then to study iconic (analogical) 
representations of numbers (Bass, 2015; Schmittau, 2005, Davydov, 1975) then to write down 
equations in canonical form. This process seems very close to the tradition in Chinese textbooks 
(Bartolini Bussi et al., 2011; Sun, 2011; Ding & Li, 2014) and can be thought of as “concreteness 
fading” (McNeil et al., 2012; Fyfe et al., 2014). In this communication, we will try to show how in 
the new situation in which the notion of the difference (subtraction) is introduced, the systems of 
representation of number can guarantee a kind of continuity of experience. In fact, the “translational 
principle for representations systems” in a representational game (Morales, Sensevy & Forest, 2016) 
can allow students to understand the concept of the difference between two numbers.   



Methodology  
To discuss these questions, we focus on a specific moment of teacher’s practice in a study class, 
with an experimented teacher, who belongs to the research team (sphere1). The data were collected 
in december 2013, in a first grade classroom of a French primary school. The twenty five students of 
this classroom were aged 6-7. This study follows a qualitative approach.  

In this extract, the students collectively search the difference between two additive writings with 
two terms. In this communication, we focus on the introduction of a new piece of knowledge, the 
notion of difference between two numbers. In the preceding sessions, the students orally compared 
the production of two hands ads (students showed a number on the two hands, the statement) and a 
launch of two six-sided dice. The statement wins if it was bigger (in some cases smaller) than the 
two-dice throw. Then, students compared the two additions with two terms in reference to the 
situation of the “Statements” (fingers and dice).  The result of this comparison was written in the 
form of a quality or an inequality with the mathematical signs « =, ≠, >, < ». These two additions 
were represented in two number lines to solve or prove the comparison, as we can see below (figure 
1).  

 

Figure 1: An example of comparison between 2 + 4 and 5 + 3 on the number line 

The choice of this extract is motivated by the following reason: this extract shows how the 
continuity of student’s experience could be developed through the use the systems of representation. 
This extract can be considered as a mesoscopic level of the description, the pivotal level (Sensevy et 
al., 2015), which allows relationship between what preceded and what is going to follow. So, we 
can analyze the didactic transactions hic et nunc. We can characterize and describe the motives and 
the forms that directed teacher and students ‘action. This description can show the teacher’s 
strategies to make the didactic time forward.  

Analyze 
Presentation 

This part of the curriculum “ACE” is organized around a connected series of situations. The initial 
situation of this curriculum is the situation of the “Statements game” (fingers and dice). One die 
(marked with standard dot patterns for 1-6) is about to be thrown. Beforehand, the students use their 
fingers to make a “statement” (for example, a student shows two fingers on her right hand, and three 
fingers on her left hand). The die is thrown. The students compare their statement with what is 
indicated by the die. If the sums are equal, the pupils have won. After this oral comparison, students 
compare an addition (two terms ≤ 5 with a number ≤ 6). The progressive complexification of the 
situation guides students to increasingly rich comparisons: the number of hands (students) is 
increased, so the number and the nature of dice (1 to 10 dice are played with), the rules of the game 
are changed (for example a pupil no longer wins because he has the same number as in the 



statement, but because he has a lower or higher number). These connected situations should allow 
the students to build a real mathematical experience, particularly in the handling of representation 
and symbolic writing systems, as we will show in what follows.  A number line is also introduced 
on which students represent the numbers. Indeed, the students manipulated a concrete object (the 
fingers) and they translate fingers by an iconic (analogical) representation of number (the number 
line) and wrote down equation in canonical form (2 + 4 = 6). For example, a student shows two 
fingers on his left hand and four fingers on his right hand, then she draws these numbers on a 
number line: 

 
And she writes down this addition: 2 + 4 = 6 

To understand various properties of numbers, students had to compare different representations of 
the same mathematical reality to become progressively able to recognize the differences and the 
similarities between these representations.  

Since the beginning of the year, students acquired knowledge related to compare numbers. This 
comparison is performed first orally with the production of «two or three hands ads" and a launch of 
six-sided die. Then, students compared an addition in two or three terms with a throw of dice. They 
used the mathematical signs « =, ≠ <, > » (for example, to compare 3 + 1 et 5, students write 3 + 1 < 
5). This situation become more complex when students have to compare two additions in two terms. 
Finally, students deal with the question of the subtraction on the basis of the comparison between 
two additions, in the continuity of the previous situations. The study is accompanied by the use of 
the number line.  

The students have built a semiotic knowledge to represent the comparison between two numbers. 
The number is seen as a measurement. It refers to "the quantity of fingers" in two hands. The 
number line shows the number like a length measurement. This ancient knowledge is the didactic 
contract, the habits of action with which teacher and students are going to approach the new 
knowledge, the difference between two numbers. The extract of the session that we chose 
introduces the difference between two numbers from the comparison of two additions and the terms 
“larger than and smaller than”. The difference is a gap between two numbers, two length 
measurements. Four episodes will be analyzed. Here is a synoptic view of this analyzer. 

Episodes Content 

Episode 1 Presentation of the instructions by the teacher 

Episode 2 

 

a) Comparison, looking for the difference between “1 + 3” and “1 + 1”. b) Proposal of 
two students: (tdp 15) “1 + 3” is larger than “1 + 1”.  c) Proposal of another student: 
the difference between “1 + 3” and ”1 + 1” is 3. 

Episode 3 a) The difference (tdp 53). b) Introduction of the two hands by the teacher to confirm 
the difference 3.   

Episode 4 Introduction of the number line by the teacher to search the difference between “1 + 
3” and “1 + 1” (tdp 68). 

 
Table 1: Extract division 

 



We abstract the four episodes and provide a short analysis.  

Search for the difference between two numbers (episode 1, 2 3)  

The teacher asks the students to look for the difference between “1 + 3” and “1 + 1”. He presents the 
instructions like this: 

   Teacher: Today, we are going to begin a new game. It is always a game with statements. 
But today what we are going to make, it is to compare ours statements. We look 
for which is the larger statement, the smaller statement but that I would know how 
much more and how much less (…) we are going to find, this calls in fact the 
difference.  

Actually, the students meet difficulties to find the difference between “1 + 3” and “1 + 1. They 
compare the two numbers and look for the larger number or the smaller number with the term-by-
term strategy or by computing. They do not focus on "difference". Confronted to the difficulties of 
the students, the teacher suggests to illustrate « the two additions “1 + 3” and “1 + 1” » by a 
statement with both hands. The following picture (figure two) shows such a statement comparison. 

 

 

Figure 2: Translation of “1 + 3” and “1 + 1” by two statements  

Unfortunately, this translation between the mathematical symbolic writing and the hands statements 
in a game of representation does not bring the students to produce an adequate answer. "The 
semiotic habit" of the contract, which considers fingers as instruments to compare numbers, 
impedes a new designation of numbers, the difference. 

Using the number line 

Therefore, the teacher introduces in a milieu two number lines on which students have to represent 
both additive writings. A student writes a first bridge above the first interval of the number line 
(hence representing the number "1") and a second bridge above three intervals (between the second 
and a fourth graduation, hence representing the number "3"). He writes down above these bridges 
the numbers 1 and 3. Then, he draws below the number line a bridge of four intervals and writes 
down the sum number (4). 

   Teacher: It is good the statement makes four as Neil shows us. On the second line, what are you going to 
draw?  

On the second number line, the same student draws two consecutive bridges and a bridge of two 
intervals, signifying the sum number (2)  



 

 

Figure 3: the representation of “1 + 3” and “1 + 1” on the number lines 
Teacher:  What do you see in the two number lines? Do you see if the 1+3 is largest than 1+1?  

The students provide answers different answers: “three", "four" and "two". The teacher asks one 
student to show how he knows that his statement is largest.  

Student:  because here is the two [He slides his finger from the third graduation (number "2") on the first 
number line to the third graduation (number "2") of the second number line] It’s a part of four… 

 

 

The student draws a bridge between the second and the fourth graduation on the first number line.   

 

Figure 4: Representation of the difference on the number line 

The teacher's expression encourages a translation between the symbolic writing and the number line. 
But, in the same time, she’s reticent because she doesn’t say how to draw these additions on the 
number lines. The teacher thus refers to the preceding contract. She just says: “What do you see in 
the two number lines? Do you see if the 1+3 is largest than 1+1?” This question can be seen as a 
‘‘milieu-oriented situation’. The action of the student is moved toward the effective representation 
of the difference on the two number lines. But, though this expression, the teacher is reticent 
because she remains silent when the student searches the difference. She indicates where the student 
must look but the research stays under the responsibility of the student. The number line affords to 
show concretely the gap between the two numbers, the difference between the two length bounded 
by the bridges, the sum of the two additions. The students investigate an instrument, the number 
line, on which they know already how to play (in the situation of comparison). By using this 
instrument, they achieve not yet explored potentialities of this semiotic system. In particular, the 
number line shows a number included in another.  

Results  
The students investigate different systems of representation to find the difference between two 
numbers: symbolic writing, concrete representation with the hands, number line. All these 



representations are known by the students. First, the symbolic writing is translated by statements on 
the two hands. Then these statements are translated into two number lines in what we may call a 
translation game, which is a particular representational game (Sensevy, 2011; Morales, Sensevy & 
Forest, in press). The preceding semiotic knowledge is "re-experienced" by the students. In this way, 
we can say that the systems of representation are instrumental (Dewey, 1938/1998) in that they 
allow investigating new knowledge. The semiotic habits are accommodated in a new situation, a 
new knowledge, allowing the continuity of experience. However, the re-experience of a semiotic 
system for introducing a new knowledge requires a subtle enunciative work for the teacher, given 
that the different strategic systems in teacher’s action can be a contract oriented or a milieu-oriented 
transactional activity. In this communication, we have shown how the expression-reticence game of 
this teacher enable her to introduce in the milieu a system of representation (the number line) 
already known by the students (contract) in order to understand new properties of this system (then 
considered as a milieu). This teacher's strategy enables the students to investigate the difference 
between two numbers while leaving them the responsibility of this enquiry (Dewey, 1938/1998).  

Discussion and conclusion 
However, these results ask to be worked. It is necessary to explore on a long duration this continuity 
of the experience of the students in mathematics through the systems of representation (Joffredo-Le 
Brun, 2016). In particular, it is necessary to note that such continuity can be built only through a real 
epistemic continuity of the knowledges within the curriculum. The design of such a curriculum has 
to be performed through the effective experience of the teachers, within an iterative process, as it is 
the case in the ACE research. 
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We propose a theoretical interpretation of visuo-spatial abilities, as classified in the field of 
Cognitive Psychology, in the domain of Euclidean Geometry. In this interpretation we make use of 
Fischbein’s theory of figural concepts and of Duval’s cognitive apprehensions. Our interpretation 
lays the foundations for a new theoretical framework that we propose as a tool for qualitative 
analysis of students’ processes of visualization as they carry out geometrical activities. In 
particular, we present analyses of excerpts from a set of activities designed and proposed in a 
didactical intervention aimed at strengthening visuo-spatial abilities of a group of students 
identified as the weakest from a selected 9th grade class of an Italian high school.  

Keywords: Geometric reasoning, spatial thinking, visualization, visuo-spatial abilities. 

Introduction 
Research in the domain of visualization and spatial thinking has pursued several purposes: 
understanding the different imaginative strategies used by students (Owens, 1999); studying the 
effects of teaching practices, aimed at encouraging processes of visualization (Presmeg, 2006); 
developing theoretical constructs, useful for the interpretation of students’ perception of geometric 
shapes and how this perception improves in learning geometry (Duval, 1995; Fischbein, 1993, 
Mariotti, 2005). Some ideas in this field have been developed from the psychological studies on 
mental imagery. Since the advent of Cognitive Psychology and contemporary Neuroscience, 
researchers have been elaborating models to describe processes related to visualizing and using 
mental imagery, and they have listed sets of visuo-spatial abilities involved (e.g., Cornoldi & 
Vecchi, 2004). However, a shared definition of these abilities does not exist yet. Nor have the fields 
of Mathematics Education and Cognitive Psychology been able to elaborate common grounds to 
study visualization processes, in which they are both interested. 

In this paper we propose a theoretical interpretation of visuo-spatial abilities, as classified in the 
field of Cognitive Psychology, in the domain of reasoning in Euclidean Geometry, that was 
developed as part of a study that has been recently carried out (Miragliotta, 2016; Miragliotta, 
Baccaglini-Frank & Tomasi, submitted). The study had two main objectives: on the one hand, we 
attempted to give a theoretical analysis of some visuo-spatial abilities in the context of learning 
Euclidean Geometry; on the other hand, we used such theoretical interpretation to study the effects 
of a set of activities proposed (for the most part) using a Dynamic Geometry Environment (DGE) in 
terms of strengthening the students’ visuo-spatial abilities (as it is widely accepted that DGEs yield 
great potential in fostering processes such as visualization, as well as in mediating, in general, the 
learning of geometry: e.g., Mariotti, 2005; Baccaglini-Frank, 2010; Leung, Baccaglini-Frank & 
Mariotti, 2013). In this paper we will concentrate on the description of theoretical analysis of the 



visuo-spatial abilities considered and on its power as a tool for qualitative analysis of students’ 
behavior as they carry out geometrical activities. As an example of how the framework can be used, 
we will analyze an excerpt taken from a question (not involving the use of any DGE) of the post-
intervention interview of a student from the group of students identified as the weakest of the Italian 
high school class of involved in the study. Since for what we present in this paper the role of the 
DGE is marginal, and space quite constrained, we will not discuss visualization in a DGE.  

Theoretical background 
According to Clements and Battista (1992), spatial reasoning “consists of the set of cognitive 
processes by which mental representation for spatial objects, relationships, and transformations are 
constructed and manipulated” (ibid., p.420). Referring to Kosslyn (1983), these authors observe that 
geometrical reasoning requires spatial reasoning, which includes four classes of image processing: 
generating an image; inspecting an image to answer questions about it; transforming and operating 
on an image; maintaining an image in the service of some other mental operation. In particular we 
are interested in processes involving two-dimensional geometric objects.  

From the perspective of Cognitive Psychology, generating and processing mental images take place 
within a complex process of acquisition and use of cognitive abilities, including those denoted 
visuo-spatial abilities. A list of these appears in Cornoldi and Vecchi (2004, p. 16). We elaborated 
our theoretical interpretation starting from the following set of abilities: visual organization, the 
ability to organize incomplete, not perfectly visible or fragmented patterns; planned visual scanning, 
the ability to scan a visual configuration rapidly and efficiently to reach a particular goal; spatial 
orientation, the ability to perceive and recall a particular spatial orientation or be able to orient 
oneself generally in space; visual reconstructive ability, the ability to reconstruct a pattern (by 
drawing or using elements provided) on the basis of a given model; imagery generation ability, the 
ability to generate vivid visuo-spatial mental images quickly; imagery manipulation ability, the 
ability to manipulate a visuospatial mental image in order to transform or evaluate it; spatial 
sequential short-term memory, the ability to remember a sequence of different locations; visuo-
spatial simultaneous short-term memory, the ability to remember different locations presented 
simultaneously; visual memory, the ability to remember visual information; long-term spatial 
memory, the ability to maintain spatial information over long periods of time. 

To interpret how these general cognitive abilities might come into play during reasoning in the 
specific context of Euclidean Geometry, we referred to theoretical constructs elaborated in 
mathematics education to this purpose. 

Fischbein’s theory of figural concepts  

The Theory of figural concepts (Fischbein, 1993) describes geometrical figures as follows:  

A geometrical figure may, then, be described as having intrinsically conceptual properties. 
Nevertheless, a geometrical figure is not a mere concept. It is an image, a visual image. It 
possesses a property which usual concepts do not possess, namely, it includes the mental 
representation of space property. […] all the geometrical figures represent mental constructs 
which possess, simultaneously, conceptual and figural properties. (ibid., pp. 141-142). 



According to Fischbein figural concepts “reflect spatial properties (shape, position, magnitude), and 
at the same time, possess conceptual qualities - like ideality, abstractness, generality, perfection” 
(ibid., p. 143); a geometrical figure is made up of two fundamental components: the figural 
component and the conceptual component. From the developmental point of view, initially the 
visual aspect is dominant, and gradually the role of formal constraints becomes more important, 
until the construction of figural concept is reached (Mariotti, 2005).  

Duval’s types of cognitive apprehension 

Today the importance of visualization in mathematics is widely recognized. Since several studies 
have addressed visualization in different ways, we clarify that our interpretation is in line with the 
definition given by Arcavi (2003).  

Visualization is the ability, the process and the product of creation, interpretation, use of and 
reflection upon pictures, images, diagrams, in our minds, on paper or with technological tools, 
with the purpose of depicting and communicating information, thinking about and developing 
previously unknown ideas and advancing understandings. (ibid., p. 217, emphasis added) 

Peculiarities of visualization in geometry have been highlighted by Duval (1995) in describing 
different approaches to dealing with geometric figures: cognitive apprehension stresses that “there 
are several ways of looking at a drawing or a visual stimulus array” (ibid., p. 143). Duval speaks of 
four cognitive apprehensions. Perceptual apprehension responds to the laws of figural organization 
and identification of form, and helps to “recognize something (shape, representation of a thing,…) 
in a plane or in depth” (ibid., p. 145) at first glance. In a perceived figure we can also recognize sub-
figures that do not depend on its construction. Sequential apprehension “is required whenever one 
must construct a figure or describe its construction” (ibid., p. 146). Here the sub-figures emerge in a 
specific order, depending on the geometrical construction, on technical constraints of the instrument 
used and on mathematical properties. Furthermore, Duval (1995, p. 146) claims that “mathematical 
properties represented in a drawing cannot be determined through perceptual apprehension”, indeed, 
“a drawing without denomination or hypothesis is an ambiguous representation”. So, indications 
given through speech help us to identify properties of a perceived geometrical figure, thanks to the 
discursive apprehension. Here we are in the domain of deductive reasoning. The apprehension that 
has a heuristic function in problem solving is the operative apprehension. This apprehension 
depends on different ways of modifying a figure that happen only within the figural register and that 
are independent from mathematical knowledge.  

Each type of apprehension seems to be related to different cognitive processes that could be 
accomplished through the coordination of different visuo-spatial abilities as we hypothesise below. 

Grounding for a new visuo-spatial abilities framework   
While maintaining the classification proposed by Cognitive Psychology, we selected a subset of 
visuo-spatial abilities and provided an interpretation in the specific context of geometrical 
reasoning. We used the Theory of Figural Concepts to interpret the terms “model” and “image” as 
follows: image is the figural component of a geometric figure; model is a synonym of figural 
concept in which image and concept realize their dialectic. Since our interpretation aims at being a 



stronger lens for analyzing students’ processes than the visuo-spatial abilities as described in the 
Cognitive Psychology literature, there is not always a one-to-one correspondence with such abilities. 

 Visual organization is the ability to recognize figural concepts from incomplete or not 
perfectly visible representations. 

Visual organization seems to be an ability that intervenes in tasks that require the recognition of 
figures within another figure, or in the recognition of a simple figure within a more complex figure. 
This ability echoes Duval’s perceptual apprehension. 

 Visual scanning is the ability to recognize the properties of a figure starting from its 
representation. 

This representation can be static or dynamic. It depends on the task and on the context in which it is 
proposed. For example, in the case of a dynamic figure in a DGE, visual scanning is involved in the 
recognition of properties that are invariant under dragging (see Leung et al., 2013). This ability 
echoes Duval’s perceptual apprehension, but we also recognize in this ability some aspects of his 
sequential and discursive apprehension. For example, when observing a quadrilateral obtained 
through steps of a specific construction starting from two perpendicular lines, we can notice that 
quadrilateral seems to have a right angle. However, to recognize the property “having a right angle” 
only observing the figure on the screen, one needs to look at its written geometrical construction and 
deduce that the point one vertex is at the intersection of two perpendicular lines. 

 Visual reconstructive ability is the ability to reconstruct, in a given representation, the figural 
component of a figural concept, starting from written or verbal instructions, or staring from 
partial representations.  

For instance, the reconstruction could be realized following a sequence of construction steps given 
explicitly, using appropriate tools (ruler and compass, primitives in DGE, …), otherwise it could be 
realized planning these construction steps. It involves the ability to correctly visualize the 
relationships between the elementary figural units involved (such as points on lines, perpendicular 
lines) following the steps of a geometric construction or creating a new construction. This ability 
echoes Duval’s sequential apprehension and his discursive apprehension. The visual reconstructive 
ability seems to intervene, for example, when carrying out the construction steps of a known 
geometric figure; when completing the steps of an incomplete construction; when following the 
steps of a given geometric construction. 

 Imagery generation ability is the ability to instantly mentally reproduce the figural 
component of a figural concept recovering it from memory or generating it anew. 

This ability seems to intervene when one is asked to visualize a geometric concept, for example, 
while imagining a a sequence of construction steps. Coupled with long-term spatial memory, this 
ability seems to be involved in the retrieval of the prototypes (that is, in Kosslyn’s terms, a “stored 
model of a shape”) of geometric shapes and of their properties. Coupled with spatial sequential 
short-term memory, it seems to intervene in the identification of particular geometric loci. 

 Imagery manipulation ability is the ability to use the properties of a figural concept or to 
manipulate figural aspects of a figural concept, taking into account the theoretical 
relationships between elementary figural units of which it is composed.  



This ability is involved in tasks that require mental manipulation of a figure in order to transform it 
into a new one. This ability echoes Duval’s operative apprehension, but also differs from it. The 
mental manipulations on figure are tightly connected to the figure’s conceptual component. Indeed, 
to manipulate a figure maintaining given properties, strong conceptual control over it is required, as 
highlighted also by Arcavi (2003), who emphasizes, as well, the high cognitive demand involved: 

Seeing the unseen may refer to the development and use of an intervening conceptual structure 
which enables us to see through the same visual display. (ibid, p. 234)  

When visualization acts upon conceptually rich images (or in Fischbein’s words when there are 
intervening conceptual structures), the cognitive demand is certainly high. (ibid, p.235). 

 Spatial sequential short-term memory: this ability seems to be present in various processes 
of geometric reasoning; here we consider it, in particular, as the ability to remember 
different configurations assumed by the figural component of a figural concept during an 
observed or imagined manipulation. 

 Long-term spatial memory in our interpretation this refers, in particular, to the ability to 
maintain in long-term memory the figural components of a figural concept. 

The last two abilities are involved in solving geometric tasks and are always used in combination 
with other visuo-spatial abilities. For example, combined with the imagery generation ability, 
spatial sequential short-term memory seems to be involved in tasks that require recognizing a 
particular geometrical locus. Combined with the imagery manipulation ability, spatial sequential 
short-term memory seems to be involved in tasks that require remembering the configurations 
assumed by a figure during an imagined manipulation. 

When a solver faces a geometrical problem, s/he interacts with visual or mental images in different 
ways; a process that seems to occur frequently is imagining the consequence of a (mental) 
manipulation of the figure. Such process can be carried out through the use of the various abilities 
listed above that expert solvers combine in an immediate and automatic way. So consider this as an 
ability in its own right, that we will call geometric prediction, intending the identification of certain 
properties or configurations of a new figure, arising from a process of manipulation. This process 
appears to be coherent with respect to the notion of anticipatory image (Piaget & Inhelder, 1966), 
which suggests an ability to make predictions, orienting both perception and imagination, in the 
presence of a specific goal. 

Visuo-spatial abilities framework as a tool of analysis 
In this section we use the framework to analyze  an excerpt taken from a question of the post-
intervention interview of a student; he was part of a group of students in the 9th grade (students aged 
14-15) class of an Italian scientific high school (Applied Science option), identified through a pre-
test as having low performance on geometry tasks heavily involving visualization processes; the 
teaching intervention lasted five lessons and had been carried out using open problems, mostly 
proposed in the DGE GeoGebra. The post-intervention interview involved tasks both in the context 
of a DGE and with only pen and paper (if requested by the student). In the excerpt the student is 
solving a task proposed outside the DGE setting. The analysis has the aim of showing the power of 



the framework in identifying the proposed visuo-spatial abilities and showing how they can come 
into play, shedding light onto visualization processes. 

Activity: the student is given the following task and allowed to use paper and pencil: 

Imagine a quadrilateral. Focus on the midpoint of each side. Trace the segments that join the 
midpoints of consecutive sides. What can you tell me about the figure that is formed? 

Below is an excerpt describing what the student says [and does]. 

 Student: It is a quadrilateral, which… which looks like a rhombus, so to speak. [Initially he 
closes his eyes. Then he places four finger tips (two thumbs and two indexes) on 
the desk to form what looks like a square, and then, moving along two parallel 
lines in opposite directions, a non-square rectangle. He drags his fingers back and 
forth between these two positions.] If quadrilateral is a square it forms a rhombus 
with congruent diagonals, but if is a random figure…I mean, it depends on the 
figure. It changes depending on how the points are placed. 

Interviewer: Draw it. What are you drawing? 

Student: Four scattered points. [He draws (freehand) a 
quadrilateral with different sides, as shown in 
Figure 1]  

Interviewer: Can you say more about the figure that is 
formed? 

Student: It is a quadrilateral. Mmm…it is a parallelogram! 

In addition to what the student says, the excerpt is interesting also 
for what he does, which gives further insight into visuo-spatial abilities he may be using. After the 
first answer, he keeps his eyes closed and moves his fingers on the desk. This seems to suggest that 
a purely mental process is taking place, and the gesture on the desk seems to be a windows onto this 
process. In order to answer the question, first of all, we would say the student is using the imagery 
generation ability for imagining the first configuration. To this end he needs to recall a prototype of 
the quadrilateral that is as general as possible (this involves the imagery generation ability and long-
term spatial memory); then he needs to visualize the required elementary figural units (imagery 
generation ability) and go through the steps of the construction (imagery reconstructive ability). 
Now, the student’s use of his fingers on the desk is an extremely insightful window onto processes 
he could be enacting. Our interpretation is that he is using the imagery manipulation ability, helping 
himself with an external image (the quadrilateral with vertexes at his four finger tips) that he can act 
upon. What is visible of this manipulation are the positions (and their continuous change) of the 
vertexes. As he moves his fingers (forming what look like various rectangles) he is using geometric 
prediction, possibly aided by visual scanning, to visualize the quadrilateral with vertexes at the 
midpoints of the sides of the manipulated quadrilateral. This interpretation is supported by the fact 
that the student moves his fingers on his desk seamlessly, he never lifts them up from the surface, 
and then he selects a position which is coherent with respect to the configuration that he wants to 
(mentally) observe, and starts to move fingers again. The student seems to be able to manipulate the 
figure in a manner that goes beyond the kind of transformation described by operative 

 

Figure 1 The student’s drawing 



apprehension. Indeed, the manipulation recalls much more dragging of the vertices, as can be 
accomplished in a DGE. This cognitive effect could have been promoted by the kind of problems 
proposed within the DGE during the activity sessions. The student seems to be looking for extra 
external support for his imagery manipulation and geometric prediction abilities. 

Moreover, this excerpt is very interesting because of what the student then decides to draw on the 
sheet of paper when invited to so do. Although he has only mentioned the case in which the 
quadrilateral is a square and realized with his fingers various cases of it being a rectangle, he draws 
a much more general convex quadrilateral. This behavior supports our previous hypothesis that the 
student seems to need external support for his imagery manipulation and geometric prediction 
abilities. On paper it is as if he gains confidence, possibly because the cognitive load from the 
conceptual control he would need to exercise over the general figure is lowered this way. Once he 
sees the general quadrilateral and sketches the midpoint quadrilateral he recognizes (visual scanning 
and conceptual control) a parallelogram.  

Conclusion 
The fields of Mathematics Education and Cognitive Psychology share various research interests; 
one of these is the identification and classification of strategies and processes involved in 
visualization. According to Cognitive Psychology, generating and processing mental images take 
place within a complex process of acquisition and use of abilities, including those denoted visuo-
spatial abilities. Attempting to interpret visuo-spatial abilities in the context of geometrical 
reasoning could be beneficial to both fields. In our attempt to give a theoretical interpretation of 
some visuo-spatial abilities in the context of learning Euclidean Geometry, we used theoretical 
constructs from the field of Mathematics Education, which led to the introduction of an ability 
different from the basic visuo-spatial ones, geometric prediction, and they also led to highlighting 
the fundamental contribution, in solving geometric tasks, of geometric conceptual control over 
figures.  

This interpretation, which can be seen as groundwork for a new theoretical framework, has allowed 
us to: (1) design an educational intervention aimed at strengthening visuo-spatial abilities of a group 
of students identified as the weakest in a selected class; (2) gain insight, through qualitative 
analysis, into students’ geometrical reasoning. We believe that this kind of research can provide new 
insight into students’ difficulties in learning Geometry, and be used to design educational material 
for strengthening students’ visuo-spatial abilities. 
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In this research study, we investigated how middle school students created 3–dimensional objects 
from 2–dimensional figures using an extrusion method. In a summer enrichment program, students 
used manipulatives and a dynamic geometry program (Cabri 3D). We identified students’ strategies 
for forming 3–dimensional objects with a focus on their gestural signs. The results demonstrated that 
they most often employed dynamic–pointwise and dynamic–objectwise gestures to demonstrate the 
lateral faces or edges of 3–dimensional objects. Also, students linked their gestural signs and the 
Segment tool of Cabri 3D to indicate their reasoning.  

Keywords: Gestural signs, 3–dimensional objects, extrusion, middle school students. 

Introduction 
Gestural signs are important to understand how students make sense of mathematical problems 
(Arzarello, 2006; Bartolini Bussi & Baccaglini–Frank, 2015; Radford, 2009). Signs (e.g., verbal or 
oral texts) are characterized as “something which stands to somebody for something in some respect 
or capacity” (Pierce 1932; 2.228). Also, students produce signs using an artifact such as 
manipulatives. Bartolini Bussi and Mariotti (2008) refer to signs that are produced using an artifact 
or any action related to the use of it as artifact signs. Students reason about tasks with the use of an 
artifact and exploit mathematical signs (e.g., mathematical definitions, proofs). Research studies 
address that students link artifact and mathematical signs employing gestures (Bartolini Bussi & 
Baccaglini–Frank, 2015; Maschietto & Bartolini Bussi, 2009). Gestures that are interwoven with 
other sets of signs facilitate mathematical communication between students (Arzarello, Paola, 
Robutti, & Sabena, 2009; Bartolini Bussi & Baccaglini–Frank, 2015; Radford & Sabena, 2015). In 
the current study, with a focus on students’ gestural signs, our research question is: “In what ways do 
middle school students relate the features of 2–dimensional figures and 3–dimensional solids that are 
created using an extrusion method?” 

Theoretical framework: Semiotic mediation 
Semiotic mediation “sees knowledge–construction as a consequence of instrumented activity where 
signs emerge and evolve within social interaction” (Mariotti, 2009, p.428). In a cultural learning 
environment, students use an artifact or a set of artifacts during a semiotic activity, so a piece of 
mathematical knowledge is mediated. The teacher is aware of the affordances (and constraints) of the 
artifact and assists students in using the artifact as a tool of semiotic mediation. In other words, 
students produce artifact and mathematical signs (or hybrid signs), so personal signs transformed into 
the mathematics culture’s signs (Bartolini Bussi & Mariotti, 2008).  

A student may exploit personal signs that may be unclear for others. Having the role of cultural 
mediator, such signs become meaningful for others under the teacher’s supervision. For example, 



Bartolini Bussi and Baccaglini–Frank (2015) addressed that a preschooler used a non–existing Italian 
word “quadratizzato” referring to the movement of a programmable robot that made turns in a circular 
motion. The researchers translated it into English with another non–existing word as “squarized O.” 
They identified children’s and a student teacher’s turning gesture and spiral arrows with reference to 
the word “quadratizzato.” The personal sign linked artifact and mathematical signs, and became a 
meaningful sign in the mathematics culture. The researchers characterized it as a pivot sign. 

Pivot signs “may refer both to the activity with the artifact; in particular they may refer to specific 
instrumented actions, but also to natural language, and to the mathematical domain” (Bartolini Bussi 
& Mariotti, 2008, p. 757). They link artifact and mathematical signs or an artifact/mathematical sign 
may become a pivot sign (Bartolini Bussi & Baccaglini–Frank, 2015; Bartolini Bussi & Mariotti, 
2008). Suppose a student is given a rectangular card and asked to draw the container he should order 
to hold the stack of the identical rectangular cards until it reaches a certain height. The student may 
produce a mathematical sign and draw a rectangular prism denoting its edge lengths. On the other 
hand, he may illustrate the stack of objects and draw a deck of rectangular cards (pivot signs). The 
deck of cards links the rectangular cards (artifact signs) and the rectangular prism (mathematical 
sign).  

Research studies demonstrated that students’ gestural signs were intertwined with other sets of signs 
such as verbal signs (Radford & Sabena, 2015; Sabena, 2008). For example, Sabena (2008) 
characterized high school students’ production of signs while they were engaged in tasks about 
derivative of functions. Sabena found that students emphasized the dynamic character of derivatives 
employing gestural signs with other sets of signs. Also, previous research indicated that students’ 
gestural signs linked artifact and mathematical signs (Bartolini Bussi & Baccaglini–Frank, 2015; 
Maschietto & Bartolini Bussi, 2009). Bartolini Bussi, Boni, Ferri, and Garuti (1999) characterized 
the geneses of students’ gestures as pointwise or global (objectwise) with a focus on artifacts (gears) 
students used. Maschietto and Soury-Lavergne (2013) addressed that artifacts created for the same 
mathematical topic resulted in exploiting different signs. Primary school students were given to a 
hands-on tool (gear train of five wheels) and its digital counterpart for learning the place values of 
numbers. Students employed different gestural signs with the use of each artifact because they had 
different semiotic potentials. For example, students employed gestures to start the turning mechanism 
of the wheels using the hands-on tool and denoted these gestures in their written texts. The decimal 
values were explored in the counterpart digital artifact by mouse clicks. So, using a set of artifacts 
gives students an opportunity for mathematical learning. 

Methods 
The research design was a case study in which the data were collected from a bounded system – a 
summer enrichment program that took place in a state in the southeastern United States (Stake, 1995). 
The unit of analysis was semiotic activities. The participants of this research study were selected from 
a group of rising seventh and eighth grade students (three boys, five girls) attending a summer 
enrichment program that aimed at promoting students’ thinking in different STEM (Science, 
Technology, Engineering and Mathematics) areas. A five–day instructional unit was planned. Eight 
middle school students (three rising seventh grade students, five rising eighth grade students) 
participated in the research study. Their ages ranged from twelve to fourteen.  



On the first day of the program, students were given a spatial ability test and an open–ended survey 
that indicated their experience with geometry, computers, games, etc. The participants were 
characterized by these instruments and students with different spatial abilities were paired up. On the 
second and third days of the program, students created 3–dimensional objects from 2–dimensional 
figures using an extrusion method (e.g., stacking identical circular cards on top of each other and 
forming a cylinder). Students were given worksheets and they answered the questions in pairs. In the 
semiotic activities, they were asked to identify containers (3–dimensional objects) that would hold 
the stack of identical objects or objects decreasing in size (e.g., coins with a different radius). They 
used manipulatives and a dynamic geometry program, Cabri 3D. Students were provided pre–image 
and image figures in pre–constructed Cabri 3D sketches and manipulatives. They were asked to drag 
objects in Cabri 3D sketches and make an observation. Afterwards, they identified the resultant 3–
dimensional objects for holding the stack of 2–dimensional figures. Students formed right and oblique 
prisms, cylinders, pyramids and cones.  

Prior to the summer enrichment program, a pilot study was conducted. Students were allowed to use 
the Trajectory tool of Cabri 3D that allowed tracing points and objects. However, at times, they traced 
the objects and Cabri 3D showed the answer. Based on the feedback from the pilot study the 
Trajectory tool was disabled from the menu bar. However, the teacher activated the Trajectory tool 
on his computer that was hooked up the projector during he generated a whole-class discussion. 

Data included videorecordings of four dyads during each class session including whole class 
discussions, and students’ written and oral responses to the tasks. Also, a program that recorded the 
computer screen when students used Cabri 3D was used. The researchers watched the videos of 
students while they worked on the semiotic activities in groups. Their computer screen recordings 
were watched synchronously. Some screenshots and students’ gestures were inserted into the 
verbatim transcripts. 

We focused on students’ written/oral responses to semiotic activities and their use of artifacts 
(manipulatives and Cabri 3D). Students’ artifact, pivot and mathematical signs were identified. In the 
current research study, we analyzed students’ strategies for forming 3–dimensional objects from 2–
dimensional figures with a focus on their gestures. Students’ gestural signs were categorized as static 
and dynamic taking into account how they were employed. If students’ static or dynamic gesture 
signified an object, it was identified as objectwise. If the gesture stood for a point or a set of points, 
then we categorized it as pointwise gesture. Four gestural signs were identified: objectwise –dynamic, 
objectwise –static, pointwise –dynamic, and pointwise –static. 

Results 
We identified students’ strategies for forming 3–dimensional objects from 2–dimensional figures 
with a focus on their gestural signs. Students’ gestures that linked artifact and mathematical signs 
were characterized as pivot signs. Also, students produced other sets of signs that were characterized 
as pivot signs (e.g., graphical signs, verbal signs). However, we give students’ strategies in which 
gestural signs were characterized. 

Some students suggested 3–dimensional objects (containers) that allowed no extra space and focused 
on the exact fit. Students employed objectwise–dynamic gestures to demonstrate lateral surfaces of 



solids. For example, Charlotte emphasized that the container for identical triangular cards would be 
a triangular prism. She employed an objectwise–dynamic gesture as shown in Figure 1 and said:  

Charlotte:  …because the prism is gonna come around the edges of the triangles. 

  
Figure 1: Charlotte makes an objectwise–dynamic gesture to denote the triangular prism 

Some students focused on geometric objects in the artifact and suggested solids based on how the 
geometric shapes were stacked on top of each other. They interpreted artifact signs and employed 
static or dynamic gestures to indicate the resultant 3–dimensional objects and focused on the parts of 
the given artifact. For example, Vince had difficulty identifying the container (rectangular pyramid) 
for rectangular cards decreasing in size. He kept the height almost in the middle and positioned the 
rectangle. Afterwards, he employed an objectwise–static gesture to demonstrate the container as 
shown in Figure 3. He said: 

Vince: For this one, I was trying to figure out so if it is – it is coming– it is going like that 
(makes an objectwise–static gesture as shown in Figure 2). As it decreases it’s going 
like this, it’s going like that. Do you see? It’s going inward like that.  

 
Figure 2: Vince makes an objectwise–static gesture to demonstrate the rectangles decreasing in size 

Students connected the geometric shape on the bottom and top in the given artifact producing a 
gestural sign. They most often made a pointwise–dynamic gesture and connected the pre–image and 
image points. For example, Sloane identified the resultant object for holding the stack of identical 
circles employing a pointwise–dynamic gesture. She posited: 

Sloane: Because there is a circle on the top and the bottom and that makes a cylinder. 
Because there is like a straight line right here kinda (Figure 3). 

  



Figure 3: Sloane makes a pointwise–dynamic gesture to denote a cylinder 

 On the other hand, some students made hybrid or objectwise–dynamic gestures to demonstrate 
the 3–dimensional objects. Virginia denoted the top and bottom of the cylinder with a static–
objectwise gesture. Then, she made an objectwise–dynamic gesture and demonstrated the lateral faces 
of the cylinder as shown in Figure 4. She said: 

Virginia: Because basically the same reason as the triangular one (triangular prism). If you 
place a figure on the top and the bottom, and you connect them, you would create 
a cylinder (Figure 4), which is basically just a 3–dimensional flat version. 

  
Figure 4: Virginia’s objectwise–dynamic gesture for denoting the lateral faces of a cylinder 

Students’ gestural signs resulted in using the Segment tool of Cabri 3D. On the one hand, some 
students connected pre–image and image points using the Segment tool to demonstrate their thinking 
(e.g., Figure 5). On the other hand, with the prompt of the teacher, some students used the Segment 
tool and connected pre–image and image points to demonstrate the 3–dimensional objects. 

 
Figure 5. Vince connects pre–image and image points 

During the whole-class discussion, the teacher exploited the semiotic potentials of Cabri 3D. For 
example, he activated the Trajectory tool and described the 3–dimensional as a collection of two-
dimensional objects (Figure 6). He made a stacking action employing an objectwise-dynamic gesture 
to demonstrate the extrusion (Figures 6). He said: “continuously, I am adding more and more 
[triangular cards], right?” and emphasized the continuous motion of stacking the figures on top of 
each other. 

           

Figure 6. The teacher activates the Trajectory tool of Cabri 3D and makes a stacking action 



Some students used a metaphor and referred to a real–life object or entity to describe the shape of the 
3–dimensional objects for holding the stack of 2–dimensional figures. For example, Vince made a 
connection between the given artifact and a daily life object with which he was familiar. He used a 
metaphor and made a pointwise–dynamic gesture to denote a CD container. He posited: 

Vince: Like a CD. Do you have like a… It’s kind of a thing when you… It’s like a plastic 
you put on CD’s and you put a nob to stack all the CD’s. It’s like that.”  

We identified objectwise–static gestures during students demonstrated the top and bottom of 
geometric objects or a cone/rectangular pyramid. On the other hand, students most often employed 
objectwise/pointwise–dynamic gestures. Their gestures signified the lateral faces or edges of 3–
dimensional objects. 

The aforementioned strategies were not disjointed from each other. We identified that students 
(during group work or whole–class discussion) used multiple strategies to support their claims. For 
example, Sloane and Stan had difficulty naming 3–dimensional objects. The researcher having the 
role of cultural mediator handed the artifact to them and elicited their thinking about the resultant 3–
dimensional object for holding the stack of identical triangular cards. Sloane said:  

Sloane:  Just imagine there are a bunch of triangles in the middle. And then it’d be like (she 
makes a gesture as shown in Figure 7). It’d have like a longer length on the outside 
probably be slanted but I don’t know… I don’t know. It’s kind of like a roof to a 
house. And, I think it would be like a 3D trapezoid. That’s kind of how I see it. 

       
Figure 7. Sloane makes a pointwise–dynamic gesture to denote a triangular prism 

Sloane thought of the 3–dimensional object as a collection of 2–dimensional figures. Then, she 
produced a pivot sign making a pointwise–dynamic gesture and connected the vertices of the top and 
bottom triangles. After her gesture, she used a ”roof to a house” metaphor to describe the 3–
dimensional object (triangular prism). She had difficulty naming the object and called the resultant 
object a 3–dimensional trapezoid producing an invented signifier. In her reasoning, Sloane used three 
strategies: focusing on the collection of figures, connecting pre–image and image figures, and using 
a metaphor. A pointwise–dynamic gesture was employed during she connected pre–image and image 
figures. 

Discussion and implications 
In the current study, we identified students’ strategies for forming 3–dimensional objects from 2 –
dimensional figures producing gestural signs. Students employed gestures frequently to demonstrate 
extrusion of objects. Similar to what Bartolini Bussi et al. (1999) found, students made 
objectwise/pointwise and dynamic/static gestures. Students’ gestures linked artifact and mathematical 



signs, and were characterized as pivot signs. Similarly, Bartolini Bussi and Baccaglini–Frank (2015) 
identified gestural signs that linked artifact and mathematical signs. Students’ gestural signs were 
intertwined with other sets of signs such as metaphors. For example, students produced gestural signs 
and a used a metaphor when they had difficulty naming an object. Researchers found that gestures 
facilitated communication between students and teachers (Bartolini Bussi & Baccaglini–Frank, 2015; 
Arzarello et al., 2009; Radford, 2009; Radford & Sabena, 2015; Sabena, 2008). Gestures facilitate 
communication, in particular when students produce an invented signifier (Bartolini Bussi & 
Baccaglini–Frank, 2015). 

Students’ strategies for forming 3–dimensional objects were associated with each other. When 
students reasoned about the extrusion activities, they used multiple strategies and defended their 
conjectures about the resultant 3–dimensional objects. Students used the Segment tool of Cabri 3D 
and connected pre-image and image points to demonstrate 3–dimensional objects. On the other hand, 
some students used the Segment tool with the prompt of the teacher. Students should be given an 
opportunity to interact with an artifact in a longer period, so they become more comfortable using it 
and exploit mathematical knowledge. 

In Cabri 3D, when a transformation is made, one can see initial objects/points (pre-image) and 
transformed points/objects (image). We enabled students to see pre-image and image figures in pre-
constructed sketches and hands–on tools. New research may demonstrate how students’ approaches 
may differ if they are not provided pre-image figures to identify 3–dimensional objects using an 
extrusion method. 

We were unable to built hands-on tools in which rectangles/circles decrease in size to demonstrate a 
rectangular pyramid and cone. Students most often used Cabri 3D and changed the height of objects 
during semiotic activities. They interpreted artifact signs and produced mathematical signs. However, 
students most often exploited gestural signs during they used hands-on tools. As Maschietto and 
Soury-Lavergne (2013) emphasize, counterpart artifacts lead to a co-emerging of signs and using a 
variety of artifacts that have different semiotic potentials gives students an opportunity for 
mathematical learning.  

References 

Arzarello, F. (2006). Semiosis as a multimodal process. Relime (special issue), 267–299. 

Arzarello, F., Paola, D., Robutti, O., & Sabena, C. (2009). Gestures as semiotic resources in the 
mathematics classroom. Educational Studies in Mathematics, 70(2), 97–109.  

Bartolini Bussi, M. G., & Baccaglini–Frank, A. (2015). Geometry in early years: sowing seeds for a 
mathematical definition of squares and rectangles. ZDM, 47(3), 391–405. 

Bartolini Bussi, M. G., Boni, M., Ferri, F., & Garuti, R. (1999). Early approach to theoretical thinking: 
Gears in primary school. Educational Studies in Mathematics, 39(1–3), 67– 87.  

Bartolini Bussi, M. G., & Mariotti, M. A. (2008). Semiotic mediation in the mathematics classroom: 
Artifacts and signs after a Vygotskian perspective. In L. D. English, & D. Kirshner (Eds.). 
Handbook of international research in mathematics education, second edition (pp. 746–783). 
New York and London, Routledge.  



Mariotti, M. A. (2009). Artifacts and signs after a Vygotskian perspective: the role of the teacher. 
ZDM Mathematics Education, 41(4), 427–440.  

Maschietto, M., & Bartolini Bussi, M. G. (2009). Working with artefacts: gestures, drawings and 
speech in the construction of the mathematical meaning of the visual pyramid. Educational 
Studies in Mathematics, 70(2), 143–157.  

Maschietto, M., & Soury-Lavergne, S. (2013). Designing a duo of material and digital artifacts: the 
pascaline and Cabri Elem e-books in primary school mathematics. ZDM, 45(7), 959-971. 

Peirce, C. S. (1932). Collected Papers of Charles Sanders Peirce, vols. 1–6, 1931–1935, Charles 
Hartshorne and Paul Weiss, eds., vols. 7–8, 1958, Arthur W. Burks, ed., Harvard University 
Press, Cambridge, MA. Volume 2, Elements of Logic, 1932.  

Radford, L. (2009). Why do gestures matter? Sensuous cognition and the palpability of mathematical 
meanings. Educational Studies in Mathematics, 70(2), 111–126.  

Radford, L., & Sabena, C. (2015). The question of method in a Vygotskian semiotic approach. In A. 
Bikner–Ahsbahs, C. Knipping, & N. C. Presmeg (Eds.). Approaches to Qualitative Research 
in Mathematics Education (pp. 157–182). Springer Netherlands. 

Sabena, C. (2008). On the semiotics of gestures. In L. Radford, G. Schubring, & F. Seeger (Eds.). 
Semiotics in mathematics education: Epistemology, history, classroom, and culture (pp. 19–
38). Rotterdam: Sense.  

Stake, R. E. (1995). The art of case study research. Thousand Oaks, CA: Sage. 



Preservice mathematics teachers’ types of mathematical thinking: Use 
of representations, visual-spatial abilities, and problem solving 

performances 
Beyza Olgun1 and Engin Ader2 

1Boğaziçi University, Faculty of Education, İstanbul, Turkey; beyza.olgun@boun.edu.tr 
2 Boğaziçi University, Faculty of Education, İstanbul, Turkey; ader@boun.edu.tr 

The main purpose of this study was to examine preservice mathematics teachers’ types of 
mathematical thinking and to investigate whether there are any differences between different types 
of thinkers based on their problem solving performances, use of representations and visual-spatial 
abilities. The sample of the study consisted of 113 preservice mathematics teachers in a private and 
four public universities. The results showed that although problem solving performances were 
similar for each type of mathematical thinking, preservice teachers who adopted harmonic and 
geometric types of mathematical thinking preferred to use schematic representations more than 
analytic thinkers in their problem solving processes. The findings provided an insight about 
preservice teachers’ preferences for a visual approach and the implications of these preferences for 
teacher education programs were discussed. 

Keywords: Types of mathematical thinking, use of representations, visual-spatial abilities, word 
problems. 

Introduction 
Problem solving has an important role in mathematics and lies in the focus of almost every math 
curriculum (Van De Walle, Karp, & Bay-Williams, 2010). According to the American National 
Council of Teachers of Mathematics “one of the most significant aims of mathematics teaching and 
learning is to develop students’ problem solving ability” (Deliyianni, Monoyiou, Elia, Georgiou, & 
Zannettou, 2009, p. 96). Understanding of problem solving process includes identifying, exploring, 
implementing, and using visual images, which is related with visualization (Deliyianni et al., 2009). 
With the rise of constructivism, the importance of the role of visualization in the learning process 
was emphasized more. The role of visualization in mathematical problem solving is investigated 
through three main constructs. These are mathematical thinking in terms of predisposition of 
visualization in problem solving, the use of visual-spatial representations and visual-spatial abilities. 

Studies on visualization in mathematics often linked it with mathematical thinking. In a problem 
solving context, three types of mathematical thinking were suggested according to disposition of 
visualization (Krutetskii, 1976): the analytic type, the harmonic type, and the geometric type. 
Students who embrace the analytic thinking style do not feel the need to benefit from visual 
supports and also they do not have enough strength for the use of visual components. For geometric 
thinkers it is the contrary. They make use of visual-pictorial components and verbal-logical 
components have poor influence on their reasoning. The reasoning of harmonic thinker students 
includes both verbal-logical components and visual-pictorial components and their preferences can 
change according to the problems that they face.  



Teachers’ mathematical beliefs and learning experiences affect their mathematical thinking and 
visual approaches (Presmeg & Balderas-Cañas, 2001). Their thinking styles and use of visuality 
have an impact on their teaching (Presmeg, 1986b). Therefore preservice teachers’ approaches 
towards different types of mathematical thinking and visual-spatial representations could be an 
important component of teacher education programs. This necessitates a careful study of the 
interrelations among teachers’ visualization, mathematical thinking and problem solving 
performance before focusing on how these can be supported through teacher education programs.  

The main purpose of the study was to investigate preservice teachers’ preferences of problem 
solving strategies and how their mathematical thinking (analytic, harmonic or geometric types) 
might affect the visualization process in mathematical word problem solving. Considering the 
purpose, this study aimed to explore whether there is a significant difference in preservice teachers’ 
mathematical word problem solving performance, use of visual-spatial representations (pictorial or 
schematic), and levels of visual-spatial abilities based on their types of mathematical thinking.  

Method 
Participants were selected by convenient sampling. The study was conducted with senior preservice 
teachers from one private and four state universities in İstanbul and Ankara, Turkey. 113 students 
were involved in the study and they were enrolled in Primary Mathematics Education (n = 91) and 
Secondary School Mathematics Education (n = 32) programs.  

The data were collected with the implementation of two instruments; the Mathematical Processing 
Instrument (MPI) and the Spatial Ability Tests (SAT) during the second semester of the 2015-2016 
academic year. The MPI, which was developed by Presmeg (1985) and adapted to Turkish by 
Taşova (2011), was used to measure participants’ types of mathematical thinking, use of visual-
spatial representations, and mathematical word problem solving performances. In order to measure 
preservice teachers’ levels of visual-spatial abilities, SAT developed by Ekstrom and colleagues 
(1976) and adapted to Turkish by Delialioğlu (1996) were used.  

The MPI was developed for the first time by Krutetskii (1976) to measure students’ preferences of 
the use of visual methods. Then Suwarsano (1982) designed the instrument with the same name for 
elementary school students. According to Presmeg (1995), the instrument that was designed by 
Suwarsono (1982) was not convenient for teachers. Thus she arranged the instrument in three 
sections according to fieldwork in which both students and teachers participated. With the new 
arrangement, the instrument took its final form that consists of three sections. In this study, since 
participants were pre-service teachers, Section B and Section C of the MPI that were designed as 
appropriate for teachers was used. 

The MPI has two parts: a test that consists of 18 mathematical word problems and a questionnaire 
that includes a list of possible solutions for each problem. According to participants’ responses on 
the test section of MPI, four different scores were generated. These were mathematical word 
problem solving performance, pictorial representation score, schematic representation score and 
visual-spatial representation score. The first score was the total number of problems solved 
correctly. The others were the total number of times that students reported using the specified type 
of representation. We used van Garderen and Montague (2003)’s coding for the classification of the 
representations. As shown in Figure 1, if preservice teachers “reported or drew an image of objects 



or persons referred to in the problem” (van Garderen & Montague, 2003, p. 248), the representation 
was scored as primarily pictorial and if they “drew a diagram, showed the spatial relations between 
objects in a problem, or reported a spatial image of the relations expressed in the problem” (van 
Garderen & Montague, 2003, p. 248), the representation was scored as primarily schematic. Visual-
spatial representation score was the summation of pictorial and schematic representations score.  

C-2: If the elapsed time since noon (12:00) is accounted for 1 in 3 of the remaining time to 
midnight, what time is it now? 

 
 

             a pictorial representation        a schematic representation 
  

Figure 1: Examples for preservice teachers’ pictorial and schematic representations  

According to participants’ responses on the questionnaire of the MPI, visualizing mathematical 
scores were generated. In this score, without taking into consideration whether the students solved 
the problem correctly, if the participant chose only a visual problem solving strategy for a problem, 
2 points were given. For the responses that did not include a visual problem solving strategy 0 
points were given. For the responses including both visual and nonvisual strategies, 1 point was 
given. Therefore the possible minimum and maximum scores for preservice mathematical teachers’ 
visualizing mathematical scores were 0 and 36 respectively. In order to group preservice teachers 
based on their mathematical thinking, participants’ visualizing mathematical scores were used. 

The SAT involves spatial orientation and spatial visualization tests. A person’s SAT score was the 
summation of his or her spatial orientation test score and spatial visualization test score. A person’s 
spatial orientation test score was obtained from the Card Rotation Test and the Cube Comparison 
Test. A person’s spatial visualization test score was obtained from the Paper Folding Test and the 
Surface Development Test. 

Results 
In Table 1, descriptive statistics results of participants’ scores for mathematical word problem 
solving performance, use of representations, and the SAT are presented.  

Participants’ Scores Range Mean Std. Deviation 
Mathematical Word Problem Solving Performance 7 - 18 14.89 2.28 
Schematic Representations Score 2 - 19 8.07 3.23 
Pictorial Representations Score 0 - 3 .95 .90 
Visual-Spatial Representations Score 2 - 20 9.02 3.29 
Visualizing Mathematical Score 5 - 28 13.97 4.73 
The SAT Scores 81 - 260 172.80 48.22 

Table 1: Descriptive statistics results for the variables 

In particular, the participants used totally 1047 visual-spatial representations, of which 925 were 
schematic and 122 were pictorial. Although all participants used schematic representations in their 
problem solving processes, pictorial representations were rarely used by preservice teachers. The 



results also showed that especially for five specific problems, participants did not prefer a visual 
method for the solutions. 

Preservice teachers’ types of mathematical thinking 

In the literature, there were different methods suggested for the classification of analytic, harmonic 
and geometric thinking. For example Richardson (1977) determined the groups according to 
percentages as the first 15% segment of the distribution was analytic type, the last 15% segment of 
the distribution was geometric type, and others were harmonic type. Galindo-Morales (1994) 
determined the groups according to prearranged visualizing mathematical scores. Such as who had 
22 points and above was a geometric thinker. In Taşova (2011)’s study, the range of visualizing 
mathematical scores was divided into three equal intervals. However, data from this study 
necessitated considerations upon the classification method. Results showed that for 5 specific 
problems preservice teachers did not tend to use any representations and also they did not select a 
visual solution in the questionnaire section. A participant with a visualizing mathematical score of 
18, which is half of the maximum score, preferred a visual method in at least 9 of the remaining 13 
problems. Under these circumstances, such a participant who preferred visual methods over 
nonvisual methods in approximately 70% of the remaining problems needed to be classified as a 
geometric thinker.  

Due to the considerations mentioned in the previous paragraph, a new approach was adopted for the 
classification of types of mathematical thinking. The mean visualizing mathematical score was used 
while deciding on the center of the interval for the harmonic type and the intervals for all three types 
were found by taking the standard deviation of the scores into consideration. The minimum and 
maximum scores of the type of harmonic thinking were assigned by the half of the standard 
deviation of the preservice teachers’ visualizing mathematical score around its mean. According to 
this classification, the number of people grouped for each type of mathematical thinking was 34 
(30%) for the analytic type, 48 (43%) for the harmonic type and 31 (27%) for the geometric type.  

Investigation of group differences 

A Kruskal-Wallis H test was run to determine whether there were any differences in mathematical 
word problem solving performance between three groups of preservice teachers having different 
types of mathematical thinking. The results revealed that the distributions of mathematical word 
problem solving performance scores for each group with different types of mathematical thinking 
were similar. The medians of mathematical word problem solving scores were not significantly 
different among the analytic type (mean rank = 15.5), the harmonic type (mean rank = 15), and the 
geometric type (mean rank = 15), χ2(2) = 14.468, p = .24.  

In order to determine whether there were any differences in the use of schematic, pictorial, and 
visual-spatial representations between three groups for types of mathematical thinking a Kruskal-
Wallis H test was run. The results revealed that mean ranks of schematic representation scores and 
visual-spatial representation scores were significantly different between the groups. As a result of 
post hoc analysis, it was discovered there were statistically significant differences in preservice 
teachers’ schematic representation scores and visual-spatial representation scores between the 
analytic type (mean rank = 6) and the harmonic type (mean rank = 8) (p = .01) and the analytic type 
and the geometric type (mean rank = 9) (p = .01). On the other hand, there were no significant 



differences in schematic representation scores and visual-spatial representation scores between the 
geometric type and the harmonic type (p > .05). The results revealed that mean ranks of pictorial 
representation scores between the analytic type (mean rank = .5), the harmonic type (mean rank = 
1), and the geometric type (mean rank = 1) were not significantly different, (χ2(2) = 2.281, p = .32).  

One-way ANOVA test was run to investigate any differences between the SAT scores of groups of 
participants with different types of mathematical thinking. Shapiro-Wilk test was used to determine 
the normality of the distribution and the results showed participants’ SAT scores were normally 
distributed (p > .05). Levene's Test of Homogeneity of Variance was used to investigate the 
homogeneity of the variances. A homogeneity of variances was discovered (p > .05). However, the 
SAT scores from the three groups, the analytic type (M = 161.83, SD = 50.1), geometric type (M = 
179.02, SD = 43.62) and harmonic type (M = 174.57, SD = 45.57) did not differ significantly (F (2, 
97) = 1.233, p = .30). 

Discussion 
In this section, a discussion of the group differences among types of mathematical thinking 
according to mathematical word problem solving performance, the use of visual-spatial 
representations, and levels of visual-spatial abilities is presented. 

The structure of mathematical thinking adopted by preservice teachers  

The findings showed that 30% of the preservice teachers were analytic type, 43% of preservice 
teachers were harmonic type, and 27% of preservice teachers were geometric type. The slightly high 
proportion of the trend for the harmonic type was consistent with the literature. Hacıömeroğlu and 
Hacıömeroğlu (2013) found that most of preservice teachers adopted the harmonic type of 
mathematical thinking. Taşova’s findings (2011) supported that the harmonic type of thinking was 
the most commonly adopted by preservice teachers whereas the least percent of the preservice 
teachers were geometric thinkers. In the current study, these differences were not clearly seen and 
the classification method could be the reason for it. Hacıömeroğlu and Hacıömeroğlu (2013) found 
that senior preservice teachers used visual methods more than juniors. Therefore they related this 
difference with seniors’ experiences through teaching mathematics and practicum courses. Since 
participants of the current study were also seniors and the data collection was done close to end of 
the second term, their final year experiences may have had an impact on their preferences.   

Mathematical word problem solving performance according to types of mathematical 
thinking 

Results showed that there was no significant difference among groups with analytic, harmonic, and 
geometric types of mathematical thinking in terms of problem solving performance. While the 
findings were supported by some studies (Kolloffel, 2012; Suwarsono, 1982) there were some 
conflicts in the literature. While Lean and Clements (1981) suggested that the preference had a 
significant effect on performance and students who preferred nonvisual strategies outperformed 
visualizers, Moses (1977) claimed that visual solution methods guide college students to more 
effective solutions. These controversial findings in the literature might be caused by sample 
selection. The studies applied the same instrument with some adjustments to different groups such 
as elementary school students, college students, and teachers. The participants’ individual 



differences like how they were taught, grade level, courses they were enrolled also could be factors 
influencing this relationship. In terms of performance, Presmeg (1986a, 1986b) suggested that there 
were internal and external factors, which could make a group superior compared to others. She 
discussed that textbooks and teachers’ teaching styles emphasized nonvisual methods. Therefore 
this situation could favor for analytic thinkers. It could be also that school exams might constrain 
students’ use of visual methods, which could take more time for solutions (Presmeg, 1986a). 
However with the educational developments the role of visualization and its importance in problem 
solving was recognized (Deliyianni et al., 2009). Visual approaches were included in both teacher 
education programs and curriculums. Therefore preservice teachers could be experienced with both 
visual and nonvisual approaches during their methods courses and school practices. These 
experiences through university life may reduce the influence of these internal or external factors on 
performance.   

Use of visual-spatial representations according to types of mathematical thinking 

The results showed significant differences in the use of schematic representations and visual-spatial 
representations among groups with different types of mathematical thinking while no difference was 
found in the use of pictorial representations. Preservice teachers did not tend to use pictorial 
representations as much as elementary or high school level students did as the previous studies 
suggested (van Garderen & Montegue, 2003). The frequency and the variance of preservice 
teachers’ pictorial representations scores were very low. The rare use of pictorial representations by 
participants may be one reason for not observing significant differences between the groups. 

In the current study harmonic thinkers and geometric thinkers had similar preferences for use of 
representations in problem solving whereas analytic thinkers were separated from the others by 
using fewer representations. These findings were different from Sevimli and Delice’s study (2011). 
They found that analytic thinkers and harmonic thinkers had similar preferences for use of 
representations and their use of representations were significantly less frequent than geometric 
thinkers. There might be two reasons for the differences in these findings. One of them was the 
mathematical context of the studies. Sevimli and Delice (2011) carried out their study on a specific 
topic: definite integrals. They discussed that in calculus courses students were mainly taught 
nonvisual methods and algebraic expressions. The context of definite integral and how it is taught 
can lead the students to using algebraic solutions. On the other hand word problems that were used 
in this study might have promote preservice teachers to use representations in solutions. 

The second reason could be that the participants did not express all problem solving procedures in 
their mind on the paper in the current study. For the context of working on definite integrals, 
although representations were not preferred by preservice teachers during the problem solving 
processes, when they used it might be a difficult procedure to operate representations in mind. The 
context requires specific graphical representations that include complex processes (Sevimli & 
Delice, 2011) and they could push the preservice teachers for operation on paper. However the 
representations that were used in solutions of word problems could be formed in mind. They did not 
have a complex structure as much as graphical representations that used in integral context. Further 
studies could be conducted for different mathematical contexts. Researchers might prefer interviews 
in data collection processes to detect representations that people construct in their mind. 



Levels of visual-spatial abilities according to types of mathematical thinking 

The findings of the current study did not show statistically significant differences in preservice 
teachers’ visual-spatial abilities in terms of types of mathematical thinking. Taşova (2011) 
suggested that geometric thinkers were more successful in visual-spatial ability tests than analytic or 
harmonic thinkers. However he did not run a statistical analysis to compare the groups for types of 
mathematical thinking in terms of their levels of visual-spatial abilities. There are various other 
studies that documented no significant relationship between people’s visual-spatial abilities and 
their preferences for visual or nonvisual methods (Hagarty & Kozhevnikov, 1999; Moses, 1977; 
Lean & Clements, 1981; Suwarsono, 1982). Krutetskii (1976) suggested that there were many other 
factors, which effects people’s preferences like learning experiences. Therefore further studies could 
investigate such factors beyond focusing only on peoples’ visual-spatial abilities. 
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Multimedia-based representations play a major role in mathematics and mathematics education. 
Consequently, they are important with regard to teaching purposes, as they are supposed to be useful 
to represent mathematical structures and processes in different ways. Within the presented project 
we developed an instrument by using video-vignettes in order to assess the competencies of 
mathematics teachers for multimedia use in mathematics lessons. For coping with complexity we 
reduced the instrument’s focus on two facets: cognitive load and mutual supplement of multimedia 
representations. As the work is still in progress, we here focus on the project’s theoretical background 
as well as on the development of the assessment instrument based on video-vignettes. 

Keywords: Multimedia-based mathematical representations, technological pedagogical content 
knowledge, assessing teachers’ competencies, video-vignettes, secondary school mathematics. 

Introduction 
Since mathematical objects are conceptual and invisible, the meaning of representations plays a major 
role in mathematics and mathematics education. The necessity of representations for the fundamental 
understanding of mathematical concepts has already been postulated by Duval (2006). Therefore, it 
is of importance that students work with multiple representations of the mathematical content early 
on. Doing so they can benefit from complementary expressions and viewpoints of the subject matter 
and are able to improve and deepen their understanding (Ainsworth, 1999). However, as a teacher it 
is insufficient to simply present multiple representations to the students. It is necessary that the 
students build and understand the connections between different representations and gain a coherent 
mental model (Seufert, 2003). Schnotz and Bannert (1999) illustrate the interaction between 
descriptional and depictional representations in their integrated model of information processing. 
According to their work, these two different kinds of representations complement each other in a 
synergetic way to form a mental model of the represented content. With the construction of a mental 
model through multiple representations, students also gain in cognitive flexibility (Spiro, Coulson, 
Feltovich, & Anderson, 1988). According to Mayer (1997) students can also achieve better results 
when learning with multiple representations, however, there is practical as well as empirical evidence 
that this is not always the case in classroom instruction. A teacher’s knowledge about multiple 
mathematical representations and their kind of use in the classroom can obviously not be neglected.  

In this paper we first establish the theoretical background for the use of multiple, dynamically linked 
representations in mathematics education and the related professional competencies required of 
teachers in this context. After that we describe the development of a test instrument to assess these 
competencies from a particular theoretical point of view. 



Theoretical background 
Especially multimedia can offer possibilities to develop and implement learning environments 
containing multiple mathematical representations. When working with multimedia-based 
representations, mathematics teachers should, among many other things, know the benefits and 
pitfalls of (dynamically) linking multiple representations while also being aware of the cognitive load 
generated by them. Therefore a variety of technological knowledge, skills and competencies must be 
combined with pedagogical knowledge and content knowledge of the subject matter. 

Linking multiple mathematical representations 

Computer-applets based on multimedia representations are not only suitable to illustrate both 
descriptional and depictorial representations (Schnotz & Bannert, 1999) at the same time, but they 
are also useful to establish a dynamic link between them. That way it is possible to present even more 
information about the mathematical content than the representations could provide without being 
linked to each other (Kaput, 1989). The dynamic linking and the mutual supplement of the different 
representations provide different approaches to the mathematical content, especially because of the 
automatic translation of effects when changing one representation. Providing different approaches 
could cause synergetic effects on the construction of coherent knowledge structures (Seufert, 2003). 
Moreover, the automatic translation between unrelated representations could decrease the cognitive 
load of the learner and leaves more capacities for the process of understanding (Ainsworth, 1999). 
Especially in the subject of mathematics, multimedia-based representations are appropriate to 
demonstrate the character of mathematical processes (Vogel, Girwidz, & Engel, 2007). 

However, there are also disadvantages that come along with multimedia-based representations. As 
much as they can encourage a deeper understanding, they could also lead to misconceptions 
(Hadjidemetriou & Williams, 2002), if they are misleading with regard to their external arrangement. 
Likewise too many multiple dynamical representations could cause a heavy extraneous cognitive 
load, so that the students do not have any capacity for the intended germane load (Chandler & Sweller, 
1991). If the extraneous cognitive load gets too heavy, students often tend to split their attention (split-
attention-effect) and focus on one form of representation only (Brünken & Leutner, 2001). Hence 
reducing the extraneous cognitive load is of high importance when using multiple dynamic 
representations in mathematics teaching. 

In his work, Mayer (2009) gives different principles that should be considered in constructing 
multiple dynamic representations: The coherence principle, for example, states that people learn 
better when irrelevant material is excluded. Particularly regarding the mutual supplement of multiple 
representations these principles are a good guideline for constructing effective multimedia-based 
mathematical learning environments. 

Technological pedagogical content knowledge 

Apparently, the profitable use of multimedia-based representations in mathematics lessons is not only 
a question of mathematics education, but concerns didactics of mathematics and psychology as an 
interdisciplinary field of multimedia learning. Certainly, teachers first have to decide from a 
mathematical point of view whether the mathematical content is adequate for the use of multimedia 
and which aspects of the content should be presented within this use of multimedia. In the second 
step it is important to implement the mathematical content into a computer-applet with regard to 



available pedagogical and psychological insights of multimedia learning. The technological 
pedagogical content knowledge, that is needed for the profitable use of multimedia-based 
representations, is an “emerge of knowledge that goes beyond all three ‘core’ components (content 
knowledge, pedagogical knowledge and technological knowledge)” (Koehler & Mishra, 2009, p. 66) 
and requires extensive knowledge about all the aspects of multimedia learning. The TPACK-
framework (Koehler & Mishra, 2009) extends the taxonomy of Shulman (1986) by adding technology 
knowledge which results in three new intersections: technological content knowledge, technological 
pedagogical knowledge and technological pedagogical content knowledge (TPACK). 

Accordingly, the complexity of competencies needed to use multimedia-based representations in an 
effective way in mathematics lessons is high. Beyond their mathematical content knowledge teachers 
need an extensive knowledge about the media and technology they want to use as well as its chances 
and difficulties for multimedia learning. Consequently, teachers are confronted with new challenges 
(Koehler & Mishra, 2009) and need to develop the competencies to identify the chances and 
difficulties that go hand in hand with the use of multimedia-based representations (Spanhel, 1999). 
However, according to Koehler and Mishra (2009) many of the teachers do not feel prepared for the 
use of modern technologies to present these kinds of representations. 

TPACK in context of multimedia learning in mathematics education 

The internet provides many existing computer-applets which mathematics teachers could use in their 
lessons (for example see www.geogebra.org/materials). The question is if a chosen applet supports 
or prohibits the understanding of mathematical concepts and processes and how to determine its 
benefit. As far as we know there are no criteria given for evaluating an applet with regard to both 
mathematical and psychological aspects of multimedia learning. While several studies investigated 
the effect of multimedia-based representations on learning outcome in general, there is still little 
known on how to evaluate applets with interdisciplinary criteria of multimedia learning. Also it is 
little known about the competencies mathematics teachers need for an effective use of multimedia-
based representations in their classrooms. 

Hence it is the research goal of this study to develop a test instrument to assess competencies 
regarding the technological pedagogical content knowledge (TPACK, cf. Koehler & Mishra, 2009) 
and the interdisciplinary aspects of multimedia learning in mathematics education. 

Assessing mathematics teachers’ competencies in using multimedia-based 
mathematical representations by video-vignettes 
As functional and geometrical thinking build an essential base for the understanding of mathematics 
and elementary functions as well as geometry also play a major role in the german curriculum of 
secondary schools (Kultusministerkonferenz, 2012) we decided to focus on these two mathematical 
contents when starting to develop the intended test instrument. These contents deeply involve the 
understanding of their dynamic aspects (for instance while studying covariance of functions, 
transformations of geometric figures or whole families of functions or geometric objects), so 
multimedia-based representations could be an appropriate tool in teaching functional and geometrical 
thinking. Functional thinking includes mainly three aspects of functions: aspect of assignment, aspect 
of covariance and view as a whole (cf. Vollrath, 1989). Especially for handling the aspect of 
covariance dynamic representations are an appropriate tool, because changes in one variable and their 



effects can be directly visualized in other representations. Also for acquiring geometrical thinking, 
multimedia-based representations can be helpful: Geometrical thinking is based on the understanding 
of geometrical terms and conceptions (Ulfig & Neubrand, 2013). Young children already develop an 
understanding for geometrical terms, but mostly ignore the similarities (Heinze, 2002). For example 
they are not able to understand that a square is a special representative of rectangles. With dynamic 
representations it is possible to illustrate not just one example of a geometrical object, but to construct 
a whole class of objects by using the dynamic transformation (Kittel, 2009). 

On base of our theoretical considerations it is necessary to investigate also psychological aspects 
beyond the mathematical ones. According to an intensive literature review, we determined eight 
facets of psychological aspects of multimedia learning as basis for the test instrument: relation to the 
content (e.g. Spanhel, 1999), efficacy of the use of multimedia (.e.g. Mandl, Gruber, & Renkl, 2002), 
limitations of the representations (e.g. Mandl et al., 2002), misconceptions (e.g. Mayer, 2009), 
cognitive load (e.g. Chandler & Sweller, 1991), individual promotion of the learners (Wauters, 
Desmet, & van den Noortgate, 2010), mutual supplement of multiple representations (e.g. Mayer, 
2009) und simplifying (mathematical) content (e.g. Kittel, 2009). Within the development of the test 
instrument we conducted a multistage expert-rating in order to validate, but also to empirically 
support a selection of two of these eight facets for purposes of reducing complexity in this first 
approach. This process will be described more detailed later on. 

Video-vignettes and their construction 

Since video-vignettes are assumed to be an effective way of measuring teachers’ competencies 
(Blomberg, Stürmer, & Seidel, 2011), we developed, for the time being, a pool of 36 video-vignettes, 
that show various situations during mathematics lessons using multimedia-based representations. 
Video-vignettes are short sequences of a classroom situation that show critical problems: to evaluate 
these situations the observing person needs special competencies (Rehm & Bölsterli, 2014). Figure 1 
shows an example of a script for a video-vignette related to the psychological facet mutual supplement 
of multiple representations. 

The vignettes are constructed with a closed-ended question type. Multiple statements have to be rated 
on a scale from one to six according to its appropriateness for the presented situation. An example of 
statements is shown in Figure 2. 

After the development of 36 vignettes, they have been validated in a multistage expert-rating. 

Validation of the constructed video-vignettes 

First the constructed vignettes were evaluated by nine experts in a semi-standardized qualitative 
interview. The aim of these interviews was to assure the relevance and the clarity of the presented 
situations in the vignettes. Afterwards the vignettes were rated by 104 experts in a quantitative 
interview. The aim here was to reassure the evaluation of the qualitative interviews as well as to 
analyze the distribution of the answers on the scale from one to six of each statement. Moreover, the 
experts could give comments on each of the vignettes. The answers and the comments of the experts 
from the quantitative rating were analyzed regarding four criteria: focus regarding the mathematical 
content of secondary school, distribution of the answers to the statements, relevance for school and 
clarity of the vignette and comments of the experts. 



 
Figure 1: Example of a script for a video-vignette according to the psychological facet mutual 

supplement of multiple representations 

Based on the multi-stage expert rating and psychometric properties of the instrument we chose the 
most appropriate vignettes and determined the two psychological facets of multimedia learning 
cognitive load and mutual supplement of multimedia representations as the focus for the final test 
instrument. Cognitive load refers to the trichotomy from Chandler and Sweller (1991): intrinsic 
cognitive load, extraneous cognitive load and germane cognitive load (cf. section theoretical 
background). So the aim is to explore if prospective teachers can estimate the cognitive load. The 
mutual supplement of multimedia representations refers to the interaction between two or more forms 
of representations of the same issue (cf. section theoretical background; Ainsworth, 1999; Kaput, 
1989). Using these interactions between different forms of representations could involve many 
chances, but also risks. For example, it is important to link the different representations to gain an 
understanding of coherence (Seufert, 2003). However, as mentioned above different forms of 
representations could also cause the split-attention-effect (Brünken & Leutner, 2001). 

 



 
Figure 2: Example of statements for the vignette from Figure 1 

Assessment 

After the reduction of the vignettes as well as the reduction of the psychological facets, we revised 
and adapted five vignettes for each of the psychological facets as well as six to seven items for each 
vignette. The formulation of the items was parallelized between the vignettes in order to assure that 
the important aspects of each of the psychological facets are tested. 

These ten vignettes were again validated in a pilot study and as the results were promising, they were 
used in the final assessment. In this assessment we also included covariates to prove the discriminant 
validity of the test instrument: pedagogical knowledge and content knowledge. Preliminary results 
with 261 prospective teachers in Baden-Württemberg already show evidence for the discriminant 
validity of the test instrument: As expected from the TPACK-framework (Koehler & Mishra, 2009) 
the test score of the developed vignettes shows a weak correlation with the two constructs 
pedagogical knowledge (r = .17, p = .01) and content knowledge (r = .29, p < .001). Furthermore we 
could prove expected correlations with the educational progress of the prospective teachers (r = .14, 
p = .03) as well as the number of attended courses addressing the use of computers in mathematics 
lessons (r = .17, p = .03). 

Discussion and outlook 
The research goal was to develop a test instrument in order to assess the competencies mathematics 
secondary teachers need for an effective use of multimedia-based representations in mathematics 
lessons. Therefore, we considered both mathematical and psychological aspects of multimedia 
learning and developed a test instrument for the mathematical contents of functions and geometry as 
well as for the psychological facets cognitive load and mutual supplement of multiple representations. 
With the conducted multistage expert-rating and the preliminary results of the assessment we could 
confirm the validity of the test instrument. 

At the moment, we conduct an assessment with the final test instrument in order to research the 
development of the previously described competencies during the practical phase of the studies of 
prospective teachers. Moreover, the test instrument will be complemented with further mathematical 
content: algebra and stochastics. At the current stage of the project, new vignettes are developed for 
these two subjects which will supplement the current test instrument. The new test instrument will 



then be able to test a wide range of mathematical content knowledge combined with knowledge about 
the psychological aspects of multimedia learning. 
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Representations are essential for mathematical understanding. In particular, graphic representations 
are taught as tools for solving word problems. However, not only do children often have difficulties 
in using them, but there is also a complete absence of research into whether or not children’s own 
graphic productions actually represent the key mathematical elements of word problems. My project, 
therefore, focuses on this gap by developing a theoretical model and an analysis tool to categorise 
and map the drawings. This is based on primary school children’s drawings, which have been 
identified as graphic representations of word problems. 

Keywords: Graphic representations, visualisation, word problems, analysis tool, elementary school 
students. 

Introduction 
For doing mathematics, the use of external representations is essential. Without them it is virtually 
impossible to discuss or gain insight into mathematical problems (Dörfler, 2008; Hoffmann, 2005). 
In external representations mathematical patterns may be apparent and can be analysed. They are also 
important in the mathematical learning process. Bruner (1966) explains the power of external 
representations for learning “as its capacity, in the hands of a learner, to connect matters that, on the 
surface, seem quite separate” (p. 48). Accordingly, representation is quoted as a process standard in 
several standards and curricula (e.g. NCTM, 2000).  

Within a range of external representations, graphic representations allow certain aspects of space to 
be mapped onto specific elements of content (Stern, Aprea & Ebner, 2003). They can be defined as a 
“data structure in which information is indexed by two-dimensional location” (Larkin & Simon, 1987, 
p. 68). Every element of a graphic representation contains information not only to do with its own 
location, but also nearby elements. Graphic representations, therefore, constitute a key tool for 
problem solving (Polya, 1967).  

Nevertheless, it is often reported that children have difficulties in using graphic representations as a 
tool for problem solving (Fagnant & Vlassis, 2013; van Essen & Hamaker, 1990). In some studies, it 
is shown that the use of graphic representations can be trained (e.g. Fagnant & Vlassis, 2013; 
Diezmann, 2002). However, there is a lack of research into the actual extent to which children’s 
individual drawings represent key mathematical aspects of a given word problem. This study (Ott, 
2016) aims to make a contribution to this gap. 

Research interest 
This research focuses on self-generated children’s drawings for word problems. It addresses the main 
question as to what extent these drawings represent the mathematical structure of the word problem. 
More specifically, two research questions are defined: 

1) Which features are key in drawings for word problems?  
2) How do they manifest themselves in children’s drawings for word problems?  



Finally, the study aims to design an analysis tool for children’s word problem drawings, based on 
theory and split into various categories. 

Methods 
Data collection 

A paper and pencil test was given to two first grade and two second grade classes in two German 
primary schools. 42 first graders and 35 second graders participated in the test. The average age of 
the first graders was 6 years and 4 months, whilst the average age of the second graders was 7 years. 
By pure chance, there were 35 girls and 42 boys. 

The test was conducted at the end of the school year’s first half. At that time, the first and second 
graders could solve addition and subtraction tasks in the number ranges up to 20 and 100 respectively. 
The first graders had experience in drawings for equations and finding equations to match drawings. 
Students of one second grade class (N=19) had additional experience in drawing sketches for word 
problems.  

  
 

Dana’s representation Ole’s representation Rike’s representation 

 

 
 

Gabi’s representation Nadine’s representation Simon’s representation 

Figure 1: Children’s drawings for the tower-item (Ott, 2016) 

The test consisted of six word problems based on schoolbook tasks. The level of difficulty differed, 
in accordance with how much the verbal texts implicitly suggested objects and hence ways of drawing 
(Ott, 2015, 2016). Testing took place on two successive days, three test items a day. The instructor 
read the items out aloud to the students, who were then requested to draw their thoughts on a plain 
sheet of paper, so as to be understood afterwards by the instructor. Figure 1 shows six examples of 
children’s drawings for the following word problem: Once upon a time there was a king who wanted 
to have a tower of 11 meters in height. The tower was built over the course of several years. Every 
year, the workers built 2 meters. How long did it take for the tower to be built? 



Analysis 

The children’s 438 individual depictions from the test have been used both to develop a theory of 
drawings for word problems and also an analysis tool, based on various categories. To this end, the 
drawings have been analysed via a combination of qualitative content analysis (Mayring, 2010) and 
theoretical coding (Strauss & Corbin, 1996). Developing a theory and the design of an analysis tool 
took place simultaneously in an iterative process according to representation theories. 

Results 
The analysis of the children’s drawings revealed as key either for a draft of a theory or an analysis 
tool the following three features: The mathematical structure, the mathematical matching and the 
degree of abstraction. In analysing the drawings, it is important to differentiate between these 
features, details of which are presented below.  

Mathematical structure 

Theory 

A mathematical structure may be defined by set theory: An amorphous set is structured by defining 
relations and operations between its elements (Rinkens, 1973). This definition is used to identify both 
the mathematical structure of word problems and also of graphic representations. 

Word problems are verbal descriptions of situations with a focus on mathematical relations 
(Veschaffel, Greer & de Corte, 2000). They can be characterised as “descriptional” (Schnotz, 2014, 
p. 47) representations. Information is presented sequentially with the quantities and nouns being 
related to each other by verbs and prepositions. Thus, structural information is integrated into the text 
and the word problem is thus given a mathematical structure. Accordingly, the verbs and prepositions 
serve as relational symbols (Schnotz, 2014, p. 47), without which the quantities and nouns would be 
unrelated – this applies equally to the elements of an amorphous set. Because of the verbal 
construction with verbs and prepositions as relational symbols, a relationship between the quantities 
will be defined. Consequently, a structure is given to the quantities and nouns. In the word problem 
presented here, the quantities and nouns “tower”, “11 meters”, “year(s)” and “2 meters” are related 
by the verbs and prepositions “of”, “built” and the adverbial phrase “every year”.  

For a sound graphic representation, it is necessary to identify key objects in the text, e.g. quantities, 
objects or people mentioned, that are relevant and necessary for the mathematical structure. To 
achieve this, structurally relevant objects signs (Peirce, 1965) need to be invented, which can be 
regarded not only as physically analogous to the objects but also symbolic. Graphic representations 
can be characterised as “depictional” (Schnotz, 2014, p. 47). Compared with word problems, graphic 
representations do not include relational symbols. Indeed, a structure is given to the signs for 
structurally relevant objects by mapping them to certain aspects of space. To this end, the signs for 
structurally relevant objects have to be set out on the sheet in such a way that the arrangement 
represents the word problem’s verbally described relationships. Such graphic representations have 
the character of diagrams (Dörfler, 2006). For instance, in Simon’s graphic representation (Figure 1) 
the signs for structurally relevant objects “1J”, “1 Halbes”, “2”, “1” and the rectangles are arranged 
in vertical columns side by side.  

Analysis tool 



Six categories of how the mathematical structure appears in children’s drawings for word problems 
are identified: A representation is  

 non-graphic if it consists only of calculations or texts;  
 off the text if it possesses graphic elements, but there is no link to the text with regard to the 

content; 
 illustrative if it possesses graphic elements with a link to the text but no structurally relevant 

objects are represented;  
 object-related if it possesses graphic elements with a link to the text and structurally relevant 

objects are represented although relations between them are not identifiable in the 
arrangement; 

 implicitly diagrammatic if it possesses graphic elements with a link to the text, structurally 
relevant objects are represented and relations between them are identifiable in the 
arrangement; the relations are not explicitly emphasised; 

 explicitly diagrammatic if it possesses graphic elements with a link to the text, structurally 
relevant objects are represented and relations between them are identifiable in the 
arrangement; the relations are explicitly emphasised. 

 

Figure 2: Analysis tool for the mathematical structure 

In contrast to text analysis, such as the qualitative content analysis (Mayring 2010), it is impossible 
to analyse units step by step in a drawing. The analysis tool introduced here, therefore, arranges the 
categories in a decision tree guided by key questions, which lead to category definitions. The 
categorisation of a child’s drawing takes place step by step in a strictly dichotomous procedure. Only 
if a question has to be answered with ‘no’, will the drawing be classified into the associated category. 
As long as questions can be answered with ‘yes’, the categorisation process is not yet finished. This 
way, each of the children’s drawings can be clearly categorised. In Figure 2 we can see the decision 
tree. 

We will now categorise the children’s drawings shown in Figure 1. Dana’s solution is an example of 
a non-graphic representation. It consists of text and a calculation but no graphic elements. Ole’s 



drawing is an example of a representation that is off the text. A stick figure with a speech bubble is 
drawn, which contains the answer. The drawing contains no link to the problem’s content. In contrast, 
Rike’s graphic representation with a castle and hearts contains a link to the text, because a tower as 
part of a castle is drawn. Gabi’s representation of a tower also comprises graphic elements with a link 
to the text. The tower is subdivided into 11 rectangles, which could represent the 11 meters that are 
structurally relevant objects. Relations are not identifiable in this representation and hence it is an 
example of an object-related representation. Nadine and Simon’s representations are both graphic 
with links to the text and structurally relevant objects, e.g. the tower. Nadine’s representation is a 
sequence of pictures. In each picture, one can see the height of the tower in a given year. Thus, the 
relations between the meters and the years are identifiable and the representation is, therefore, 
diagrammatic. The relation is not explicitly emphasised and the representation is, therefore, an 
example of an implicitly diagrammatic representation. In Simon’s drawing, the height of every tower 
section is shown in one tower only. Next to every section of the tower, one can find the years 
necessary for the work to be completed. Thus, the relation between meters and years is not only 
apparent but also emphasised and it is, therefore, an example of an explicitly diagrammatic 
representation.  

Mathematical matching 

Theory 

In a representational system (Palmer, 1978) the correspondences between the represented and the 
representing “world” (p. 262) are important. In regard to the mathematical structure, this idea is used 
to define how a word problem is matched with a graphic representation. If there is a match, they are 
“informationally equivalent” (Palmer, 1978, p. 270).  

We call a relation of text and drawing a mathematical matching if the word problem and the graphic 
representation are informationally equivalent on both object and relational levels. Accordingly, if 
there is a match between the quantities and nouns on the text side and the signs for the structurally 
relevant objects on the graphic side (object level), and if there is a match between the verbs and 
prepositions on the text side and the arrangement of the signs for the structurally relevant objects on 
the graphic side (relational level), then there exists a complete matching between the word problem 
and the graphic representation.  

Analysis tool 

The matching between word problems and graphic representations is analysed with regard to the 
mathematical structure. Only object-related, implicitly or explicitly diagrammatic representations are, 
therefore, analysed (see above). Representations of the other categories do not contain elements of a 
mathematical structure and accordingly there is no matching between them and the word problem.  

For analysing the match between the quantities and signs for structurally relevant objects, it is useful 
to distinguish between the measured value and the measuring unit. Numbers can also be considered 
as discrete quantities (Müller & Wittmann, 1984). For analysing the match between verbs and 
prepositions and the arrangement of signs for structurally relevant objects, we have to consider the 
operations of the word problems. 



The variation of match between graphic representations and word problems with regard to the 
measured value, the measuring unit and the operations can be scaled (Mayring, 2010). The match 
can be complete, partial or non-existent. If it is non-existent, the quantities or operations graphically 
represented are other than those given in the word problem, e.g. an addition instead of a 
multiplication. It is also possible, that the quantities and operations are not apparent in the graphic 
representation. They are without compliance. In the analysis tool the possibilities are arranged in a 
3x4 matrix, where each matching can be marked with a cross. Arithmetically, 64 combinations are 
possible (see Figure 3a). 

In Simon’s representation (see Figure 1), measured values (11 and 2) are apparent as well as 
measuring units (meters and years) and the operations (addition of meters and years, meters per year). 
In Nadine’s drawing each measured value and operation are also apparent. With regard to the 
measuring units, only meters are identifiable. In Gabi’s representation the operations are without 
compliance. With regard to the measured values, only the 11 is apparent. So far as measuring units 
are concerned, only the meters are identifiable in the squares.  

 
 

a b 

Figure 3: Analysis tool for the a) mathematical matching, b) degree of abstraction 

Degree of abstraction 

Theory 

Children’s drawings for word problems are realistic to a greater or lesser extent. For analysing this, 
the idea of abstraction is used, which can be defined as a focusing of attention on certain aspects 
(Peschek, 1988). This idea is used to define the degree of abstraction.  

We characterise the degree of abstraction in a graphic representation as being the degree of focusing 
on representation of the word problem’s mathematical aspects (Ott, 2015). The foundations for the 
mathematical structure of a graphic representation are the structurally relevant objects (see above), 
that are important in defining the degree of abstraction, for which two indicators are identified:  

1) Focus on the structurally relevant objects in the graphic representation - no objects other than 
the structurally relevant objects are drawn.  

2) Focus on the mathematically relevant qualities of the structurally relevant objects - the signs 
for structurally relevant objects are not decorated and represent only the mathematically 
relevant qualities. 



Analysis tool 

Given that the degree of abstraction becomes apparent when focusing on the structurally relevant 
objects and their mathematically relevant qualities, only object-related, implicitly or explicitly 
diagrammatic representations are analysed (see above). Representations of the other categories do 
not contain structurally relevant objects and they are in themselves, therefore, not abstract. 

Both of the indicators for the degree of abstraction can be pronounced ‘low’ or ‘high’. 
Consequentially, it is possible to distinguish four categories for the degree of abstraction: High-high 
or low-low if each indicator is identified as high or low respectively, and high-low or low-high if one 
indicator is identified as low and the other as high. In the analysis tool the possibilities are arranged 
in a 2x2 matrix (Figure 3b). Both indicators have to be regarded separately in analysing a child’s 
drawing, which is then classified in the category that fits both results.  

In Simon’s representation (Figure 1) the focus on both structurally relevant objects and their 
mathematically relevant qualities are high, contrary to Nadine’s representation. Here, signs for other 
objects are drawn such as people and the tower decorated with battlements as a structurally relevant 
object. In Gabi’s representation, the focus on the structurally relevant objects is high, because only 
the floors of the tower are drawn, which are decorated with colour and squares.  

Conclusion 
This study has focused on the main question of the extent to which children’s drawings for word 
problems represent the actual mathematical structure. For this purpose, the mathematical structure, 
the mathematical matching and the degree of abstraction have been identified as substantial features 
of such graphic representations. Children’s drawings for word problems vary greatly in the way they 
are depicted. In the analysis tool, the extent of the substantial features’ occurrence in children’s 
drawings has been modelled, so that each drawing can be clearly categorised. The analysis tool has 
been tested with an inter-rater reliability of K=0.81. It could, therefore, be applied in further research. 
In the second part of the research presented here it has been used in an intervention study looking at 
graphic representations of word problems (Ott, 2016). 
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The design analysis of an inclusive educational sequence concerning the teaching and learning of 
fractions (Robotti, et al., 2015) is the focus of this work. Referring to the principles of Universal 
Design for Learning, developed by the Centre for Applied Special Technology to reduce barriers in 
learning, we analyse the design of the educational sequence focussing on fractions and devoted to 
classes where students with certifications of mathematical learning disabilities (MLD) were present. 
From the point of view of mathematics education, we refer to the theory of semiotic mediation 
(Bartolini-Bussi, Mariotti, 1998) in order to clarify the cognitive role of artefacts taken into account 
in class activities. In particular, the use of artefacts to solve tasks produces representations that 
contribute to develop of mathematical meanings aimed in the teaching activity. 

Keywords: Mathematical learning disabilities, Universal Design for Learning, fraction, number line, 
artefact. 

Introduction and conceptual framework 
The focus of this paper is the analysis of an inclusive educational sequence concerning the teaching 
and learning of fractions already described in detail in CERME9 (Robotti, et al., 2015). In the paper 
presented in CERME9 we discussed how, in the context of Semiotic Mediation (Bartolini, Mariotti, 
2008), the choice of particular artifacts and the design of tasks related to their use, allowed students 
to grasp different meanings of fraction. Now, I would like to discuss why that educational sequence 
was "inclusive" for learners with certifications of mathematical learning disabilities (MLD) or 
difficulties in math or with low achievement in math. To this aim, I will refer to the theoretical 
framework of Universal Design for Learning (UDL) and I will analyse how the design of the activities 
follows the guidelines and principles of UDL in order to reduce barriers in learning. Therefore, the 
rationale for referring both theoretical frameworks is to consider learning difficulties in a context of 
math education: if the Semiotic Mediation framework allowed us to design a structured educational 
sequence for teaching and learning different of meanings of fraction (for this, see CERME9 
proceedings), the UDL framework, allowed us to design and analyse those tasks in order to be 
inclusive for MLD students, students with difficulties or with low achievements. Even if there isn't 
consensus on definition and identification of MLD students (Karagiannakis, et al.,  2014) and the 
inclusivity (Ianes, 2006) is not a construct used consistently across different fields (education, 
society...) or in different countries, in this research work, we considered as "inclusive educational 
activities" the educational activities, developed in the context of the class, which face to the special 
needs of MLD students including dyscalculic students, students with difficulties in math and students 
with low achievement in math. In other words, according to the UDL framework, we consider 
“inclusive educational activities” those that meet the needs of all students of the class. UDL is based 
on a set of principles and guidelines that have been elaborated to increase access to curriculum for all 
the students, including those with disabilities. These principles and guidelines have a general valence 
and they are devoted to various application contexts. In this paper we refer to the context of math 



education. At the core of UDL is the belief that there are three networks in our brain that support 
learning: (i) The Knowledge/Recognition Networks, which are involved in identifying and 
interpreting sound, light, taste, smell, and touch. They are essential to learning because students are 
expected to comprehend a text, interpret formulas, identify cause/effect relationships, etc. UDL states 
that it is possible to support the knowledge/recognition networks providing Multiple Means of 
Representation (1° principle) to give learners various ways of acquiring information and knowledge. 
This principle has three supporting guidelines: provide options for Perception; provide options for 
Language, Mathematical expression, and symbols; provide options for Comprehension; (ii) The 
Strategic Networks, which are involved in planning, executing, and monitoring actions and skills. In 
learning, they occur, for example, to solve a problem, use an artefact, take notes and listen to a lecture. 
UDL states that it is possible to support the Strategic networks providing Multiple Means of Action 
and Expression (2° principle) to give learners alternatives for demonstrating what they know. This 
principle has three supporting guidelines: provide options for Physical action; provide options for 
Expressive skills and fluency; provide options for Executive function; (iii) The Affective Networks, 
which are responsible for establishing priorities and interests. UDL states that it is possible to support 
the Affective networks providing Multiple Means of Engagements (3° principle) to stimulate interest 
and motivation for learning. This principle has three supporting guidelines: provide options for 
Physical action Recruiting interest; provide options for Physical action Sustaining effort and 
persistence; provide options for Physical action Self-regulation. According to UDL frameworks, 
representations seem to be “the ways [to] perceive and comprehend information”, produced by visual 
or auditory means, or contained in a printed text. Therefore, UDL considers representations as signs 
of different nature (visual, auditory, kinaesthetic…) produced by different means (or artefacts). In the 
Theory of Semiotic Mediation, Bartolini and Martiotti state that: “[…] any representation comes to 
life because of a human construction that makes it possible, in other words any representation is 
supported by an artefact” (Bartolini, Mariotti, 2008, p. 747). Even if the difficulty in articulating an 
accurate definition for the term “representation” is recognized in math education, we want to stress 
that, in his theoretical framework Duval states the importance of connections both within and amongst 
different representational registers as absolutely fundamental to deep understanding of mathematics 
(Duval, 1999). According to this, Arcavi (2003) stresses the essential role of visual representations in 
the learning of mathematics and he defines “visualization, as both the product and the process of 
creation, interpretation and reflection upon pictures and images, …” (Arcavi, 2003, p. 215). 
Visualization, visual representations and more general representations were taken into account in our 
analysis presented in CERME 9 discussion. As described in that analysis, the teaching of the notion 
of fraction is a quite delicate issue, which requires insightful ways of structuring didactical activities. 
In that occasion, we stressed how the importance of spatial processes, performed on the base of spatial 
skills, can be important in mathematical performances where explicit or implicit visualization is 
required, as in the case of learning of fractions. Therefore, the visual non-verbal, the kinaesthetic-
tactile and the auditory channels were considered as preferential for designing inclusive educational 
activities concerning fractions. Finally, Goldin (1992) outlined a unified model for the psychology of 
mathematics learning, which incorporated cognitive and affective attributes of visualization as 
essential components in systems of representation in mathematical problem solving processes. From 
the above considerations, we can observe that, even in the domain of math education, the aspects 
related to multiple means of representations and their relations, multiple means of action and 



expression and multiple means of engagement are taken into account. For this reason, we use the 
three principles of UDL to analyse the design of an educational sequence about fractions whose 
purpose was to be inclusive (in the UDL sense), that is to say, to meet the needs of all learners of the 
classes, even MLD students. Moreover, we will adopt the framework of Semiotic Mediation to 
analyse the role of the artefacts in the educational sequence in order to reach the aimed educational 
goals. More in detail, we will show how the design of the different tasks, requiring actions on 
artefacts, can be interpreted through the three principles of the UDL to analyse the efficacy both of 
construction of meanings for the notion of fraction and of inclusion for MLD students. 

An example of inclusive educational sequence  
I will briefly recall the main activities characterising the educational sequence concerning fractions, 
described in details in TWG13 of CERME 9 (Robotti & al., 2015), which was carried out in 22 classes 
(nine 5th grade classes, six 4th grade classes, and seven 3rd grade classes) involving around 400 
students, of which 20 were certified MLD students (Robotti & al., 2016): (1) Partitioning of the A4 
sheet of paper (named “placemat”). (2) Partitioning of a strip of squared paper: given a certain unit 
of measure (number of squares) on the strip, position a fraction on that strip (1/2 or 1/3 or 1/4, ….); 
given different units of measure on different strips, on each strip a same fraction is represented (1/2); 
chosen an appropriate unit of measure on the strip, different fractions are represented on that strip 
(e.g., 1/3 and 1/5). (3) Placing fractions on the number line. (4) Placing coloured tags, labelled with 
fractions, on a “string on the wall”.  

The learning difficulties concerning fractions seem to be due, among other things, to the lack of 
connection between different meanings of fraction (Charalambous, Pitta-Pantazi, 2005) and to the 
fact that only some of them are fostered (e.g. the meaning of "part/whole"), (Pantziara, Philippou, 
2011). Moreover, some visual representations are favoured (such that of the pizza) even if they could 
hinder the learning of the different meanings of fraction (Fandiño Pinilla, 2007). The main learning 
difficulties identified in Italian national assessment (INVALSI tests) are related to: managing the 
meaning of the “equal” sign (for instance, What does it means obtaining “equal parts” of the whole?); 
switching from a fraction to the unit that has generated it; managing equivalent fractions; ordering 
fractions on a straight-line even without transform them to decimal numbers. In the following, I will 
discuss how principles and guidelines of UDL can be effectively used to analyse the design of the 
tasks, which allow overcoming these difficulties. The analysis of actions required by tasks on the 
artefacts, will show how the educational aims and the aims of inclusion were achieved. 

The artefact  “placemat” 

The “placemat” is a A4 sheet of paper that, at the beginning of the sequence will be in white colour 
but that, in the following, will be coloured. The mathematical meanings to be mediated by the 
“placemat” are: 1) construction of fractional units starting from a given unit of measure (the A4 sheet 
of paper) by folding and cutting out the A4 sheet of paper; 2) equivalence between fractional units, 
by folding or cutting the fractional units in order to show the equivalence between the surfaces. This 
allows to overcome the difficulty related to the interpretation of “equal parts of the whole” as 
“congruent fractional units” instead of “equivalent fractional units” (see above); 3) sum of fractional 
units in order to obtain the given unit of measure (in this case, the A4 sheet of paper). This can be 
realized covering the A4 sheet with different fractional units. This allows to come back to the unit of 



measure starting from the fractional units. According to Guideline 1 of first Principle of UDL, 
learning is difficult if information is imperceptible to the learner, or when information is presented in 
formats that require extra effort for him/her (for example, decoding the text “one half” or decoding 
arithmetical expressions “1/2” for a dyslexic student). To reduce barriers to learning, it is important 
to ensure that key information are equally perceptible to all learners. For this reason we provided the 
same information through different modalities (e.g., through the possibility of touching and 
manipulating the pieces of A4 sheet, through vision of their drawing on the notebook, through hearing 
or reading an arithmetical expression). In other words, through different forms of representation 
(Guideline 2, Principle 1). Moreover, the colour, which characterises fractional units later on, plays 
the role of support to long-term memory for students with learning disabilities or simply students with 
math impairment. Once the information are made accessible, our educational sequence aims to help 
students transform them into useable knowledge. As pointed out by the Guideline 3 of the first 
Principle of UDL, this depends upon “information processing skills” like: selecting useful 
information, integrating new information with prior knowledge, strategic categorization and active 
memorization. Individuals differ greatly in their skills in information processing, but effective design 
of task and presentation of information in accessible ways can provide the scaffolds necessary to 
ensure that all learners are able to process information. Therefore, we designed educational activities 
in which students have to act on the artefact, in order to produce representations (for instance, by 
cutting or folding different pieces of paper referring to the same fractional unit in order to show the 
equivalence of their surfaces or choosing appropriate fractional units to cover the A4 sheet in order 
to show that the sum of appropriate fractional units gives the unit of measure 1), and they have to put 
the obtained representations into relation. Indeed, the actions, performed by students on the artefacts, 
produce situated signs (representations) through which students, with the help of teacher’s mediation, 
construct the mathematical meanings aimed for (in that case, equivalent fractions or 2/8+3/4=1). In 
order to help students remember the mathematical meanings described, the teacher asks students to: 
reproduce on the note-book the operations performed with the artefact; write down the content of the 
class discussions; write texts in which the processes developed in the activity are explicitly linked to 
knowledge. This allows recalling and using knowledge in the future and it provides options for 
expression and communication. As a matter of fact, it is well known that there is no medium of 
expression that is equally suited for all learners and for all kinds of communication. This means that, 
according to the second Principle of UDL, students with learning disabilities may excel, for example, 
in interpretation of drawing data (e.g., the drawing of “placemat” covered by different coloured 
fractional units), but they may falter when asked to read data provided in a table or in arithmetical 
expression (e.g. 1= 2/8+3/4). 

The artefact  “strip of squared paper” 

The strip of squared paper is a strip with squares of 1 cm, 10 cm high and approximately 1 m long. 
In the strip there are some integer numbers (0, 1, 2, 3, …) and fractions are constructed. The 
mathematical meanings mediated by the “strip of squared paper” are: 1) Fraction as operator on a 
given unit of measure: once a unit of measure is considered, the teacher asks students to place on the 
strip a given fractional unit and then a given fraction (equal o more than 1); Comparison, by means 
of a perceptive strategy, of fractional units that should be positioned on different strips of paper; 3) 
Relationship between a fractional unit and a chosen unit of measure: considering different units of 
measure on different strips, the teacher asks to place the same fractional unit (for instance, ½) on all 



the strips; 4) Ordering fractional units: considering on a strip an appropriate unit of measure (given 
by the l.m.d. of the denominators), the teacher asks to place different fractional units. This allows 
students to compare them in a concrete way; 5) Equivalence between fractions: considering on a strip 
a given unit of measure, the teacher asks to place different fractions. Among them there are some 
equivalent fractions. We note that some mathematical meanings concerning fraction, such as 
equivalent fractions or comparison of fractions, are already presented in previous activities with the 
artefact “placemat”. Once again, the first principle of the UDL is used in this educational sequence 
providing different means of representation (that is, different artefacts through which representations 
can be performed). In this activity, the students produce different representations: linguistic signs 
associated to the name of the fraction expressed in verbal language (“One half”), in verbal visual 
language (the writing “One half”) and arithmetical language (“1/2”). The teacher institutionalizes the 
relationship between the different signs in terms of rational numbers. Thus, the construction of 
meaning related to the notion of rational number, is based on both the interplay between different 
types of semiotic representations, according to the first principle of UDL, and by different actions on 
artefacts producing those representations, according to the second principle of UDL. Moreover, we 
note that the colour, perceptive option already provided in the A4 sheet of paper, is used with the 
same aim also in the activities with strip of squared paper. Thus, the fractional units constructed on 
the strip are coloured with the same colour of the respective fractional units constructed by A4 sheet 
of paper. Therefore, the colour assumes the role of a support for memory and also of an artefact, 
which allows students to link the meaning of fractional unit constructed with the “placemat” (fraction 
as a part of a whole) with the meaning of fractional unit constructed by the strip of paper (fraction as 
operator). Moreover, we have taken into account different strips where different units of measure 
have been considered and where have been represented a given fractional units. The strips are put one 
beside the other (proving option for physical actions, as called for by the second principle of UDL) 
and the relationship between unit of measure and fractional units becomes perceptively evident, 
reifying Guideline 1 (provide options for perception) of the first principle of the UDL. In order to link 
the meaning of fraction as part of a whole and as an operator to the meaning of rational number on a 
number line, we need to switch from the artefact “strip of squared paper” to the artefact “number 
line”. For this reason, the teacher asks the students to represent, on the same strip different fractional 
units: 1/8, 1/6, ¼, 1/3 and ½. Thus,, in order to represent all fractional units on the same strip, students 
need to find a suitable graphic strategy that maintains the colour without superposing different colours 
on the strip. They adopt coloured notches. Positioning on single strip different fractions makes the 
ordering of fractions exactly like that of the other perceptively evident numbers. Here the semiotic 
potential of the artefact “strip of squared paper” associated to the tasks proposed by the teacher 
becomes evident, playing a key role in fostering identification of fractions as rational number on the 
number line. I will show this in the following session. 

The artefact “number line”  

The number line is drawn by students on their note-book. It is a number line of positive numbers 
starting from the point 0 and it is presented as the natural "crushing" of the paper strip. Therefore, on 
the number line, students place fractions without transforming them into decimal numbers. The 
mathematical meanings supported by the “number line” and the tasks proposed are similar to those 
proposed in activities with the artefact "paper strip". This allows all students to find continuity both 
between the artifacts proposed and the construction of the aimed for mathematical meanings.  



The artefact  “string” on the wall 

The artefact "string on the wall" consists of a string in nylon whose ends are fixed to two adjacent 
walls of the class (such as a wire for drying clothes). On it, students hang some tags labelled with 
fractions (in this case, tags are coloured accordingly with the colour used in previous activities) or 
natural numbers (in this case tags are white). The string simulates the number line starting from zero, 
which is placed at the left end and the position of the unit is made to vary dynamically sliding the 
corresponding labelled tag attached with a clothes’ peg. In this case, however, the positions of the 
other tags do not vary dynamically at the same time or automatically as a consequence of the new 
placement of the unit: their motion requires a specific action in order for the numbers on the line to 
maintain the desired mathematical relationships. Tags are made so that they can be hung in "clusters" 
to ensure that tags corresponding to equivalent fractions have the same position on the string. The 
mathematical meanings supported by the “string” are: 1) Ordering of fractional units or fractions: 
once the unit of measure has been defined, by positioning the tag labelled with "1", the tags labelled 
with fractions need to be hung in the correct position; 2) Equivalent fractions: since their tags 
correspond to the same position on the string, they are hanging as "clusters" and they represent classes 
of equivalence. Students named them "caterpillars" whose first tag (corresponding to the irreducible 
fraction) was called "head of the class"; 3) Density of the numerical set Q: "enlarging" the unit of 
measure, that is to say increasing the distance between the tag corresponding to 0 and that 
corresponding to 1, it is possible to hang on the strip more and more fractions. This operation, repeated 
many times, allows constructing a mental image connected to the idea of infinity. We note that, when 
tags on the strip become numerous, one needs to "enlarge" their position to make room for other tags. 
This action on the string is a situated sign used by the teacher to introduce the idea of density in the 
set Q. Therefore, the representations of fraction on the string (tags labelled with fractions), their 
position on the string and the action performed on the tags are in line with the first principle of the 
UDL according to which different forms of representation are needed in order to capture information 
and transform them into knowledge. The colour of tags, the position of tags on the string, the dynamic 
position of tag labelled with “1” on the string, recall actions and representations performed in 
previously activities. Once again, this allows linking different representations and actions to the same 
mathematical meaning, by supporting long-term memory. According to the principles of the UDL, 
this contributes to making mathematical meanings accessible to the students. 

Discussion and concluding remarks 
The first principle of UDL (Providing Multiple Means of Representation) and the related guidelines 
provide useful references in order to choose artefacts and define tasks which allow overcoming 
obstacles and difficulties in understanding some of the different meanings of fractions (part of a 
whole, measure and operator). In order to provide different means of representation, we considered 
different artefacts: the “placemat”, the strip of squared paper, the drawing number line and the 
“string” on the wall for “hanging out” fractions. Each of them allows students to produce different 
semiotic representations: pieces of paper as fractional units, coloured sections of the strip as fractions 
or fractional units, points on the number line, coloured tags labelled with fraction hanging on the 
string. We note that these representations are of different nature: physical, visual or symbolic. Thus, 
following the Semiotic Mediation Theory, each artefact allows students to produce situated signs (for 
example, the sign “enlarge” the tags’ position on the string), which will be interpreted as mathematical 



signs by the teacher’s mediation (in the case above, the sign is used by the teacher to introduce the 
idea of density in the set Q) . The aim is to single out mathematical aspects relevant to the activity 
and make them accessible to all students through representations; this should allow them to use those 
mathematical aspects in future. To reach this aim, the design of educational activity (presentation of 
information, choice of the artefact on which students can act, task design in large sense…) is essential 
to ensure that all learners have access to knowledge. We note that in our educational sequence about 
fractions, learners construct mathematical meanings (for instance, the meaning of equivalent 
fractions) acting on different artefacts (A4 sheet, strip of paper, number line and “strip on the wall”) 
and different representations carried out by those artefacts (fractional units of paper, coloured part of 
the strip, point on the line and coloured tags composing a "caterpillar"). According to the first 
principle of the UDL, we state that this is not yet sufficient to ensure the construction of the 
mathematical meaning, that is to say of usable knowledge (for example, the meaning of equivalent 
fractions). It is necessary that these different representations be put in relation with each other (for 
example, two equivalent fractions correspond to the same point on the number line or on the “strip” 
on the wall because they have the same surface extension as a sheet of A4 paper). Moreover, it is 
necessary that they be always available to learners during the whole teaching sequence. Thus, 
according to the second principle of the UDL (Providing Multiple Means of Action and Expression), 
the action performed by students on different artefacts allows to put into relation different 
representations associated to the same notion (such as, equivalent fraction) or associated to different 
meaning of fraction (such as “a part of the whole”, in the case of placemat, or “fraction as operator”, 
in the case of strip of paper). The third principle of the UDL (Providing multiple means for 
engagement) supports the engagement of students in the arithmetic activity concerning fractions. It 
suggests options to challenge all students, appropriately. Designing activity where a “real” situation 
requiring a solution was the starting point. As a matter of fact, acquiring new information must be 
received by the student as a necessity to deal with the challenge posed by the activity. Thus, since the 
narrative aspect is very important in primary school teaching, the work with the “placemat” started 
with a letter, sent by a pizzaiolo (pizza chef), where he asks students to realize coloured placemats 
for his restaurant. The need to make placemats according to the pizzaiolo’s requests was, for primary 
school children, a stimulus to take in information and to process them in order to get new knowledge 
useful for the activity's aim. To create conditions for the students’ self regulation and self assessment 
in the activity we asked students to work in pairs or in small groups and to compare, by the class 
discussion, the results of work with the other groups.  
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The use of manipulatives in upper secondary education is not common, although they hold learning 
potential in contributing to students’ conceptualizing and establishing of relations. In this case study 
it is investigated how the concept of recursive sequences as a description of growth can be seen in 
the written reflections from students having engaged in activities with manipulatives like matches and 
LEGO® and with only minor teacher interference. The analysis of students’ answers is carried out 
by a combination of Radford’s Theory of Objectification and Peirce’s Theory of Signs. By 
interpreting the type of signs, the kind of arguing and the nature of the words used by students in 
various activities involving manipulatives, it is possible to acquire knowledge of the significance of 
the manipulatives in students’ conceptualizing. 

Keywords: Upper secondary mathematics education, manipulatives, semiotics, conceptualizing, 
objectification. 

Introduction 
For centuries manipulatives have been used in mathematics education as a pedagogical means for 
learning at all levels. A visit to the Institute of Mathematics at the University of Göttingen, Germany 
reveals an entire floor display of manipulatives used in university teaching (Stewart, Mühlhausen, & 
Miyazaki, 1993). Today the use of manipulatives is still common in primary and lower secondary 
school as a way of making the teaching concrete and meaningful. On higher levels where deduction 
and generalisation are important issues, manipulatives are rarely seen and research on their use is 
scarce (Bartolini & Martignone, 2014). Previous studies show that manipulatives can help students 
perform algebraic reflections and actions in pattern-generalizing tasks in primary and lower 
secondary school by joint student-teacher interaction (Radford, 2008). Here it will be investigated 
how the use of manipulatives can be seen in student reflections on the concept of growth in this upper 
secondary education. 

Theoretical framework 
Generalisation depends on symbolization (Otte, 2006) and many teachers use symbolic 
representations extensively without connecting them to other representations thereby preventing their 
students the chance to explore or reflect on these relations (Steinbring, 2005). The use of 
manipulatives is an alternative way of bringing in abstraction and generalisation in teaching, 
enhancing the development of mathematical knowledge (Mitchelmore, 2002). In his Theory of 
Objectification, Radford (2013, p. 26) states: “Learning […] is the noticing of something that is 
revealed in the emerging intention projected onto the signs […] in the course of practical concrete 
activity […] and is hence transformed into knowledge.” 

A semiotic analysis of the representations and the communication about these representations, i.e. the 
signs the students produce, is used to investigate the mathematical knowledge developed. Each 



observation of student work is treated as a semiotic bundle, a system of signs produced by a student 
or a group of students while they solve a problem or discuss a mathematical question. (Arzarello, 
Paola, Robutti, & Sabena, 2009). 

Presmeg et al. (2016) demonstrate the usefulness of Peirce’s semiotics in analyzing students’ work 
with representations. Peirce defines: 

A sign, or representamen, is something, which stands to somebody or something in some respect 
or capacity. It addresses somebody, that is, creates in the mind of that person an equivalent sign, 
or perhaps a more developed sign. That sign which it creates I call the interpretant of the first sign. 
The sign stands for something, its object. [Peirce 1965, 2.228, italics in original]  

A sign to Peirce thus consists of a triad (representamen – object – sign). Each of these can be 
interpreted in terms of his categories (of which there are three: “possibility, existence and law”). Here 
I use in particular two trichotomies: icon, index and symbol referring to how the sign stands for its 
object, and the token-type distinction (omitting quali-sign).  

An icon is a sign that shares a likeness with the object it represents either as an image, a diagram or 
a metaphor. An image has a resemblance or a simple quality in common with the object – a drawing 
of a real thing; a diagram is a sign representing relations, e.g.,   x

2 + y2 = r2  represents the points of a 
circle. A metaphor represents a parallelism where the character of one sign is expressed in a law-like 
manner in the other, like when a symptom, fever, of illness is seen as an increased temperature at a 
thermometer. An index is related to the object it represents by either a causal connection or by ‘a 
purposeful act of connecting the signs’ like using ‘f’ as the name of a certain mathematical function. 
Finally a symbol is connected to its object by habit or law, e.g. designating π to refer to the ratio 
between the circumference and the diameter of a circle.  

The token-type distinction applies to the sign alone. A token refers to the sign itself; consider the letter 
‘e’, this letter appears many times – as a token – on this page. It is also possible to refer to ‘e’ as a 
general – as a type, stating that ‘e’ appears a particular number of times on this page.  

A thorough explanation of Peirce’s trichotomies of signs is offered in (Short, 2007) whereas 
mathematical examples can be found in (Otte, 2006) and  (Sáenz-Ludlow & Kadunz, 2015).  

The teaching design rests on the Theory of Didactical Situations, TDS (Brousseau, 2006). The 
epistemological foundation of TDS is that new knowledge is obtained in two steps: first as personal 
knowledge connaissance in working with a given problem and second as formal, scientific knowledge 
savoir, which can be share with and understood by others.  

TDS distinguishes between didactical situations where the teacher participates, and a-didactical 
situations where students engage in activities on their own. Devolution, where the teacher introduces 
and hands over the problem, validation and institutionalisation, where the ideas and results are tested 
and then related to the scientific knowledge of the solution, are all didactical situations. The main 
focus of this case study is, however, the a-didactical situation where students interact with the milieu, 
which contains the tools that the students have at their disposal (symbolic or material as well as the 
other students in the group). An important issue in designing the milieu is to ensure that it provides 
feedback on how the students progress in order to solve the problem. 



Within this framework the study will try to answer the question: How does the use of manipulatives 
in teaching reflect in students’ answers about growth, exemplified by recursive sequences?  

Method 
The case study considers one lesson (100 min.) of a ten-week teaching sequence about differential 
equations in an upper secondary mathematics class with 25 students. The aim of the lesson was to 
enhance the students’ understanding of the concept “growth” using recursive sequences. After a short 
devolution where the purpose of the lesson, describing the growth of certain patterns, and the milieu 
containing worksheets and manipulatives like matches and LEGO® were introduced, the students 
worked in groups of 4 for 60 min. During this period teacher intervention was very sparse. Figure 1 
shows an example of an activity/worksheet. As preparation for the validation and institutionalisation 
the students were asked to share results, ideas and reflections with their fellow group members in a 
logbook prompted by questions given by the teacher. Part of the logbook writing was done in class 
and the rest at home using a Google Docs document shared by the group members. The empirical 
data consists of the logbooks and field notes from classroom observations.  

The logbook entries were analysed through a qualitative content analysis (Hsieh & Shannon, 2005) 
for words indicating the concept of growth, like ‘grow’ and ‘rise’ (coded with underscore in the 
statements). In addition, words referring to the manipulatives (coded in bold) were noted. 

To describe the patterns and how they evolved, the students introduced a ‘sequence of signs’. They 
explained each sign and how they came on to it, and they used the sign as a starting point for the next 
sign they introduced. In order to examine the knowledge obtained by the students during the teaching 
sequence, data was analysed with respect to (1) the type of sign, applying Peirce’s categories, (2) how 
the use of manipulatives show, according to the nature of the marked words, and (3) mathematical 
reasoning, according to Radford’s definition of generalizing patterns (Radford, 2008). 

The sequence of figures shown is made of matches. The first is 
made of 3 matches, the second of 5 matches etc. The sequence can 
be continued with figure no. 5, 6, 7, 8 …  

Build and describe the next figures and tell how many matches you need to build them. 

Figure no. 2 has been made by adding matches to figure no. 1 in a specific way. Figure no. 2 has been made from no. 3 
etc. Explain how you move from one figure to the next in the sequence. Describe the pattern for adding new matches. 

Explain how this pattern affects the number of matches, you need, to go from one figure to the next in the sequence. That 
is how can the number of matches in one figure be found from the number of matches in the previous figure? 

If you want to know how many matches you need to build figure no. 37 it is rather time consuming to build and count 
the number. Use the pattern you have described above to predict how many matches you need for figure no. 37. 

Figure 1: An example of an activity 

Results 
In this section, we will look at two logbook entries and one episode observed in class that show how 
the use of manipulatives contributes to obtaining knowledge of growth. 



Figure 2 shows the first logbook entry on the question: Choose the pattern from one of the activities 
and explain how the pattern developed. Use drawings/pictures/symbols describing the growth. 

For a start we observed how the number of matches grew. We found that there was a rise on two 
matches in every step. You can almost say that in each step a new triangle is mirrored on to the 
right side of the figure. 

 

Figure no. 

 

No. of  matches 

Rise in number 

We decided to make a formula to calculate the numbers of matches in figure no. 37. As the number 
rises with 2 for each figure, 2 is a constant and has to be multiplied by the figure no. But then the 
number is one too little. Therefore we add another constant in the formula namely +1. 

The formula can then be written: The number of matches in the figure = the number of matches 
the figure grows with * figure number + 1. 

We also considered other ways of describing the growth after having discussed our results in class. 
Here we noticed the constant rise with 2. This was the constant change between the earlier and the 
next figure. Therefore we could write down the relations: 

 

Figure 2: A logbook entry with marked words 

The semiotic bundle in figure 2 shows how the students, based on the pattern they have built of 
matches, introduce three signs: a table inclusive a drawing of the pattern, a ‘formula’ written in words 
and a list of the first four terms of the recursive sequence describing the pattern. On figure 3 one can 
see how any one sign evolves from a previous sign. The photo on the left shows the pattern build of 
matches. 

 
Figure 3: Signs introduced by the first group 

The students begin by describing what they notice in the pattern they have built from matches, and 
they draw the pattern as the first line in a table. There is no explanation on the rest of the table but 

   

T (1) = 3

T (2) = T (1)+ 2

T (3) = T (2)+ 2

T (4) = T (3)+ 2



my interpretation is that this is ‘a conditioned reflex’ as the students have made many tables like this 
with an independent variable (figure no.) and a dependent variable (no. of matches) when working 
with growth as a continuous function. The table is iconic: the previous text indicates that the students 
partly take it diagrammatic as it describes the relation between two subsequent figures. It also works 
in part as an image as the drawn pattern looks like the pattern made of matches.  

In the table, the students also state the difference between two subsequent figures and this number is 
used for producing the next sign, a ‘formula’, from which they can calculate the number of matches 
in figure no. 37. The students notice that the increase is constant 2, which leads them to the first term 
of the expression. Using Radford’s definition of pattern generalization (Radford, 2008) we see that 
they use naïve inductions for producing their formula. Instead of arguing for the y-intercept, they 
guess and test the value. The formula itself is a partial translation of the previous arguments to a semi-
mathematical language. This sign is partly diagrammatic stating a relation between the figure number 
and the number of matches and containing the symbols ‘+’ and ‘*’. It is interesting that the students 
do not finish the translation to a conventional formula (e.g. ) introducing indices f and 
x. Most groups did at this stage. Instead they keep the original iconical terms ‘figure no.’ and ‘no. of 
matches’ closely related to the manipulatives. 

Finally, after a validation and institutionalisation where the idea of explaining growth as a recursive 
sequence was discussed, the students decide to include this view as, not mentioning the important 
issue, though, that every new term is built on the previous term. They introduce an index T to stand 
for the number of matches but do not find a general expression using the symbol n for the figure 
number like  seen in other logbook entries. 

We see that the signs used for representing the object Growth include various kinds of icons as well 
as indices and symbols. In many of the icons there is a close link to the use of manipulatives i.e. the 
way the students obtain their ‘data’ and how they explain relations in the pattern. The manipulatives 
are not clearly visible in their reasoning, though. As a result of the analysis we may conclude that the 
understanding of growth for this group of students now includes some very concrete conceptions 
based on activities with manipulatives (matches), and these are pointing towards a more abstract 
understanding that has not yet been reached. The relations produced indicate that they take the pattern 
as a token. They have not yet reached the stage of considering the pattern as a type in order to produce 
general relations. 

In some of the worksheets the use of manipulatives were not explicitly mentioned but replaced by 
drawings of squares, dots etc. Some groups, though, were using the manipulatives mentally, which 
in figure 4 is shown as a mixture of the terms ‘squares’/’LEGO® blocks’ in their explanations.  

[…] In other words, the figure consists of a typical tower of LEGO® blocks where each level is 2 
broader than the previous so that one unit is sticking out on each side. Therefore the number of 
extra squares in the figure rises for every figure because the bottom is 2 squares bigger every 
time. You start with . That is the first LEGO® block. […] 

Figure 4: Logbook entry showing the use of mentally evoked manipulatives 

 

   f (x) = 2 × x +1

   T(n) = T(n-1) + 2

   T (1) = 1



The group has not built this pattern physically, but in the context of other activities with manipulatives 
they use a mental picture made of LEGO®. Figure 5 shows the squares from the worksheet and the 
mentally evoked manipulatives. Like in the entry in figure 2, the text indicates that the iconic sign is 
partly diagrammatic as it describes the relation between two subsequent figures and at the same time 
works as an image as the drawn pattern looks like the pattern made of LEGO® blocks, which the 
students have evoked in their mind.  

 
Figure 5: Alternating between to signs 

As in figure 3, this group bring in various words describing growth; several terms refer to the 
manipulatives thereby showing the importance of the artefacts in the learning process.  

The last example does not directly refer to the manipulatives from the activities but shows how a 
student seizes the idea of applying a concrete artefact in explaining a mathematical concept. The 
episode happened during the validation of the results from the activities described above. During the 
discussion it became obvious that many students had great difficulties with this new and different 
way of looking at the concept of growth. Their prior knowledge, connected to continuous functions, 
seemed very persistent. During the discussion one of the students reacted: 

“No, no. We talk about the growth, the change – not the actual number. Look… [she jumps up from 
her chair, looks around and grabs a pile of books from the neighbouring table] …If we start with, say 
1 book, [she puts one book on the table] and then in the first step we put 2 books on top of it, and 
then in the next step 2 more books and 2 more books and so on. [For every step she places 2 books 
on top of the stack on the table, see figure 6]. It doesn’t matter if there are 1 or 3 or 5 books in the 
pile. The important thing is that it grows with two books every time. The difference is two.“ 
 

 
Figure 6: The pile of books holds many interpretations of a sign on Growth. 

The student makes use of concrete artefacts in order to explain to her peers how to understand growth. 
She applies what is easily accessible in a classroom: books! As a representation of growth, the sign 
contain qualities of all three kinds of icons: the growing stable of books is an image, the relation of 
adding two more books in each step is a diagram, and by insisting on seeing the difference in each 
step (two more books every time) instead of the height of the stable, it becomes a metaphor. The 
student clearly states that this is just one way of visualizing how something grows. From the many 
different words used to indicate growth she demonstrates a wide understanding. It is an example of 
how manipulatives can be used as visualising a challenging concept rather than a starting point for 
general, symbolic expressions, which we saw in the logbook entries.  



Discussion and conclusion 
The case study demonstrates how the use of manipulatives shows in students’ answers and reflections 
when describing a mathematical activity, e.g. building of patterns. By using concrete artefacts they 
are able to describe how patterns develop and translate this description to an expression of how the 
number of parts in each figure of the pattern grows. In the logbook entry (figure 2) the students use 
an intermediate stage mixing words and symbols, not reaching the final stage expressing the formula 
in formal mathematical language. Other groups, not considered here, argue for an algebraic 
expression. 

Students use various words referring to different aspects of growth. Some are everyday language e.g. 
sticking out, broader, bigger, grow, rise and extra; whereas others are mathematical terms like add, 
multiply, change, growth etc. Often the everyday language is linked with the manipulatives, and the 
words might not have been evoked in a purely abstract context without the artefacts present. The 
semiotic analysis reveals that the signs introduced by students are predominantly iconic, many of 
these images. (Otte, 2006) argues “[…] iconic representations and perceptions are essential to 
introduce anything new into mathematical discourse”, and he notices, “Mathematics teachers very 
often dislike iconic representations and perceptions, believing them to be confusing and not 
controllable with respect to their impact” (Otte, 1983). This case study shows how students benefit 
from the use of artefacts by bringing in numerous iconic representations.  

While figure 3 shows that very simple patterns can be visualized as drawings without actual physical 
materials, classroom observations, not treated here, reveal that patterns in 3D demand the use of actual 
building blocks. In both cases students use the names of the manipulative i.e. “matches” or “LEGO®”. 
Even when the physical artefact is not needed, students can apply a mental image of the artefact in 
their mathematical reasoning. 

In former research results about the use of manipulatives in lower secondary education, Radford 
(2008) emphasizes the importance of joined-labour between students and teacher. In this study, the 
students were expected to be much more self-reliant as they were soon to end their upper secondary 
education, hence the use of a-didactical situations. The results, though, show that even students in the 
last year of upper secondary school need guidance in order to make their procedures and ideas 
converging with the mathematics curriculum as stated in the Theory of Objectification (Radford, 
2008).  

There are reasons to be somewhat cautious of the results. Using Peirce’s categories of the relationship 
between object and sign is complicated as Presmeg, Radford, Roth, and Kadunz (2016) state: “the 
distinctions are subtle because they depend on the interpretation of the learner”. They continue: “the 
distinctions may be useful to researchers or teachers for the purpose of identifying the subtlety of a 
learner’s mathematical conceptions if differences in interpretation are taken into account.” Thus, there 
are reasons to be careful in the interpretation. Earlier work of, among others, Radford (2000) shows 
comparable results indicating that the result of this case study is veridical. The semiotic analysis is 
based on students’ statements, and it cannot always be taken for granted that students are conscious 
about the precise meaning of the words they use. The fact, though, that the analysis of most logbook 
entries share the features exemplified here indicates that the approach used in this study is rather 
robust with respect to the lack of carefulness in student language.  



The results points towards several areas worth further investigation. In his study Radford (2008) 
shows how students can be led to algebraic generalisation, introducing mathematical symbols for 
unknown quantities. This can be taken further by studying how students make sense in already 
evolved algebraic expression, and whether manipulatives can be supportive. In upper secondary 
education students are presented with a large number of such algebraic expressions, which they are 
expected to manipulate and use but often fail to understand. Another interesting aspect is the 
significance of prior knowledge. In figure 2 we saw how the students were led to look at the relation 
between a figure number in the pattern and the total amount of matches in that figure resulting in a 
functional expression. This behaviour was even more apparent in other entries, not shown here, and 
could very well originate from their knowledge of continuous functions. Although prior knowledge 
often helps students in new contexts, it can also prevent them from going in the desired direction.  
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This paper focuses on the role of artifacts and different forms and modes of representation when 
learning mathematics at primary school level. This will be exemplified alongside the use of an 
interactive approach, in which mathematical audio-podcasts are produced. Audio-podcasts are a 
communication tool that generally focuses on oral means of representation. During the production 
process of mathematical audio-podcasts however, the students use different forms and modes of 
representation as well as produce and use different artifacts. With regard to this, field experiences 
will be shared.   

Keywords: Mathematical audio-podcasts, artifacts, forms and modes of representation.  

Artifacts and different representations 
The role of artifacts for mathematical learning is of great importance. Artifacts generally encompass 
objects that are produced by human beings and are materially present and durable. A learning artifact 
in particular, refers to an object developed by students, which displays their knowledge (Kafai, 2006). 
Besides artifacts that are material in nature, there are virtual ones that comprise of tools of the 
information and communication technologies. Different artifacts support different forms of 
representation and have a great influence on cognitive development (Bartolini Bussi & Mariotti, 
2008).  

The education standards for teaching mathematics also emphasise the transfer of various modes of 
representations, since they enable students to communicate their mathematical ideas and 
understanding as well as support the modeling and interpretation of mathematical phenomena 
(NCTM, 2000). Kress (2010) defines ‘mode’ as  

a socially shaped and culturally given resource for making meaning. Image, writing, layout, music, gesture, 
speech, moving image, soundtrack and 3D objects are examples of modes used in representation and 
communication. [...] Modes offer different potentials for making meaning. These differing potentials have 
a fundamental effect on the choice(s) of mode in specific instances of communication. (p. 79) 

Therefore, being able to use different modes of representation during a mathematics lesson is a central 
aspect and supporting competence across all school levels. The mathematical register in the classroom 
also comprises of the multiple semiotic modes: 

Language, mathematical expressions, and visual diagrams, as well as the gestures and actions of 
participants in the classroom, together construct meaning. (Schleppegrell, 2007, p. 142) 

With regards to the role of written representation for mathematical learning, working with the 
products of students’ writings has been common practice for some time now (Morgan, 1998).  In the 
project ‘Math-Chat’ (Schreiber, 2013b), the use of written representations is the main means in the 



problem solving process and focus of the analysis. In primary school, written-based communication 
is often used in the case of reflections and documentations of the students’ learning processes, for 
example, in journals referred to as ‘journal writing’ (Borasi & Rose, 1989); and also after having 
solved math problems. Thus, writing is often considered “an activity that is in itself conductive to 
learning” (Morgan, 1998, p. 2). In this sense, it is assumed that writing might help students organise 
their thoughts by externalising them in a written form. This strategy of ‘writing to learn’ has to be 
distinguished from ‘writing to communicate’. The tool ‘writing to learn’ enables students to become 
more active learners by questioning and reflecting on information, whereas ‘writing to communicate’ 
aims to demonstrate their learning in different forms of written assignments (Meiers, 2007).  

It is oral communication that generally provides the participation in mathematical discussions and 
conversations, aiding with the understanding of mathematical signs (Meiers, 2010). Apart from 
speaking and explaining, mathematical learning also requires the acquisition of skills, such as 
listening, questioning, defining and proving (Ontario Ministry of Education, 2006). Pertaining to 
mathematical interaction and communication processes, research on mathematical didactics has 
attributed an increasing importance to the use of gestures (e.g. Goldin-Meadow, 2003; Huth, 2014). 
Kendon (2004) defines ‘gesture’ as “a name for visible action when it is used as utterance or as a part 
of an utterance“ (p. 7). Gestures that are used in accompaniment with speech represent the same 
components of the expressions uttered. As such, gestures and spoken language can be seen as 
inseparable and interdependent modes of the same language system (Huth & Schreiber, 2017).  

To further explain the interwoven use of oral and written communication in a medial and conceptual 
manner, the linguistic model of orality and writtenness by Koch and Oesterreicher (1985) and well 
explained by Fetzer as the “two dimensions of orality and writtenness” (2007, p. 79; translated by the 
authors: „Zwei Dimensionen von Mündlichkeit und Schriftlichkeit“) is used. Koch and Oesterreicher 
(1985) have developed a model of communication that distinguishes between medial phonic and 
medial graphic communication and between communicative immediacy and communicative distance. 
The medial phonic and the medial graphic realisation of communication are dichotomous, whereas 
the conceptual realisation can be placed on a scale between the communicative immediacy and the 
communicative distance (Figure 4; Schreiber, 2013a).   

Considering the example of a personal talk, it is not only medially phonic, as there is an emotional 
closeness to the dialogue partner and thus, also conceptually oral. Although writing in a diary is 
medially graphic, it is conceptually oral, informal and characterised by its ‘closeness’ to the reader. 
An administrative directive, in contrast, is medially graphic and also conceptually an example for 
communicative distance. In this case, the language is strictly formal. 

This paper will refer to ‘forms’ of representation when pertaining to Koch and Oesterreicher’s 
linguistic model of orality and writtenness and ‘modes’ of representation when used according to 
Kress and Schleppegrell’s definitions as mentioned above.  



Audio-podcasts for mathematics 
Audio-Podcasts, which we use as learning artifacts in school, primarily 
focus on the aspect of orality, as the process of creating an audio-
podcast produces an oral product. Schreiber (2013a) developed 
‘PriMaPodcasts’ to serve as tool, in which oral and written forms of 
representation are alternated and interwoven permanently. 
‘PriMaPodcast’ is the coined term for a mathematical audio-podcast 
produced by primary school students. The students undergo a process 
in which they develop specific mathematical content in stages up to a 
point where a version of the explanation is ready to be published on 
the internet (Figure 1). The different forms of representation, the 
medial and conceptual realisations as well as the use of artifacts will 
be presented by illustrating each production step below. For more 
information on the aims, the production steps, the audio files and the 

scripts, please visit our blog (www.uni-giessen.de/primapodcast-bili/). Before giving insights into the 
production process, three aims of the mathematical audio-podcasts will be described: 

Learning: The exclusive use of oral representations can support learning. This can be brought forth 
when learners have to deal with one specific topic in depth and are required to refrain from using any 
written or graphical representations, thus, solely relying on oral means of communication. 

Diagnosis: A teacher gains insight into a learner’s mathematical concept and understanding by 
listening to the learner’s recorded utterances. The spontaneous and planned recordings can be 
analysed during and after the production process. 

Research: As mathematics is a written and graphically based science, focusing on oral 
representations is an interesting area for research. Therefore, using the recordings, the aim is to 
investigate to what extent learners use mathematical language to express their workings. 

The focus of this paper will be on the last aim. This will be illustrated in the following. The production 
process will be depicted through excerpts from an empirical example. These consist of recordings 
and documentations that were produced at a bilingual school in Offenbach am Main, Germany. The 
selected study sample is from a dissertation project (Klose, 2015) and it consists of fourth graders 
that were taught mathematics bilingually (German/English) since first grade. Within the scope of the 
research project, the students’ task was to produce a podcast in English. The empirical examples were 
transcribed and analysed by means of the interaction analysis (Krummheuer & Naujok, 1999). 
Excerpts of the transcribed utterances and scripts will be presented and commented thereafter. All 
citations of the transcripts are marked in angle brackets <like this>. 

Production steps 

In step 1 (‘Unexpected Recording’), a small group of students is unexpectedly confronted with the 
mathematical question ‘What is symmetry?’. The students record their responses with a voice 
recorder. Hence, in this step, the focus is on oral communication and representation. The medial 
realisation of the recording is phonic and conceptually oral as seen in the following. 

In this example, the students answer the questions as follows:  

Figure 1: Process of production of 
PriMaPodcasts 



ur speaker: statement: 
01 Student 1: what is symmetry (4s) o k a y . I think eh symmetry uhm there are symmetry 

lines/ . . uhm . and < miss brand had talk about it 
02 Student 2:                                                 < and 
03 Student 2: I think uhm in symmetry/ we have symmetry lines and uhm there are . uhm  . 

. uhm . there are . . 
04 Student 1: (whispers) symmetrical% (4s) I think there are (the thumb, index and middle 

finger of the right hand, which is open and facing upwards, are being spread 
apart and then joined to meet in the middle) forms % . uhm # 

05 Student 2: # y yes 
06 Student 1:  < (speaks softly) that are symmetrical and% 
07 Student 2:  < there are forms that what you can do in three d and in two d (...)          

In this excerpt, both students express their mathematical ways of thinking by speaking out aloud. The 
students associate the term ‘symmetry’ with ‘symmetry lines’ as seen in <ur01> and <ur03>. Student 
1 remembers in <ur01> that her mathematics teacher had mentioned symmetry in class before. 
Furthermore, they relate ‘symmetry’ to “forms” <ur04> and “forms that what you can do in three d 
and in two d” <ur07>. As early as seen in this excerpt as well as later on, gestures are already going 
into action. This step not only prompts the students to think about the topic, but also supports them 
to clarify and organise their thoughts and reflect on specific content (Pimm, 1987). 

In step 2 (‘Script I’), the students research their topic 
and create a script. They are free to decide the format, 
structure and amount of detail they wish to include. In 
order to gather information, they are given different 
resources, such as the internet, textbooks and 
worksheets. They also have the possibility to use 
concrete material. Thus, different artifacts can serve as 
basis for oral communication and written-graphical 
representation.  

The students of the empirical example were inspired 
by the work material and referred to various 

approaches of line symmetry. In particular, student 2 used the geoboard and drawings (Figure 2) to 
support her with the activities related to line symmetry. In their script, they explain ‘symmetry’ 
through the approach of folding (Figure 3). 

 
Figure 3: Script I, folding as an approach to explain line symmetry 

The students continue by mentioning ‘drawing’ and ‘reflecting’. The writing activity itself may be 
considered a tool for ‘writing to learn’. Dealing with different artifacts and resources, this writing 
underlies the principle of connecting what has been read, viewed, heard and experienced with what 

Figure 2: Script I, Student 2’s drawing as an approach to 
explain line symmetry 



the students have understood so far (Meiers, 2007). The medial realisation of the script is graphic and 
its linguistic conception is - depending on the kind of script - a rather informal written type. 

In step 3 (‘Podcast - First Version’), oral representation is essential, as the students are required to 
read the assigned parts of the script aloud for the recording of the first podcast version. Up to this 
stage, the team works independently: The students make their own decisions concerning the 
mathematical matter and their performances without any intervention from the instructor. The medial 
realisation of the recording is phonic and its linguistic conception is a more formal spoken type. 

fv speaker: statement: 
01 Student 2: what is symmetry there are axis symmetry reflection symmetry and partition 

symmetry there are symmetrical shapes 
02 Student 1: symmetrical shapes are shapes that you can fold in the middle and then both 

sides are the same 
03 Student 2: you can draw symmetrical shapes with faces . vertices and edges 
04 Student 1: edges are the lines and vertices are the places where they come together faces 

are the places in between the edges and in German we call them flächen 
06 Student 2:  you can make symmetrical shapes in two d and three d 
07 Student 1:  examples for symmetrical shapes are a square a circle a triangle a hexagon a 

pentagon and a trapezoid 
08 Student 2:  s some some shapes have got more than one m mirror line 

In step 4 (‘Editorial Meeting’), the small group of students receives feedback from their peers and the 
instructor. They use this to reflect on their work in terms of content, style and language use. At this 
point, the instructor poses specific script-related questions and asks for more precise explanations. 
Again, different artifacts, such as the script, the audio files and objects and especially the students’ 
written products, support the discussion and serve as basis for better clarifications in oral 
communication.   

In the presented empirical example, the different types of symmetry were correctly named and 
distinguished. For this purpose, various kinds of materials were used. By means of their drawing 
(Figure 2) the phrase ‘line of symmetry’ was introduced. Several locations to draw the line of 
symmetry were discussed. Thereby, the instructor’s focus shifted from 3D towards the symmetry of 
2D shapes. Together with the other group, they reviewed and checked how many lines of symmetry 
a circle, quadrilaterals and different types of triangles could have. 

In step 5 (‘Script II’), the students start to improve their first script in small groups. The students have 
the opportunity to use the same material and artifacts again. They may discuss and share their 
knowledge before writing down a second script. Thus, oral communication serves as basis for written 
representation. The writing activity of creating a second script may be linked to the strategy of 
‘writing to communicate’ (Meiers, 2007). Since the second script serves as basis for the final podcast 
version, the learners decide on the content they wish to present to the audience. The script is medially 
graphic and conceptually rather an elaborated written type since the students clearly want to present 
their knowledge accurately and in a structured manner. 

In the empirical example, the students took up most of the suggestions given during the editorial 
meeting as they tried to differentiate more distinctively between the different types of symmetry. 



This, however, appeared to be challenging, as they focused on 3D shapes again and listed some of 
their properties instead of looking at 2D shapes.   

In step 6 (‘PriMaPodcast’), they record a final podcast version based on the second script. This will 
be published on the internet. Again, written representation serves as basis for the oral form of 
representation. Hence, the recording is medially phonic and conceptually more of an elaborated type. 

pr speaker: statement: 
01  Student 2: what is symmetry. there are line symmetry reflection symmetry and rotation 

symmetry . there are symmetrical shapes 
02  Student 1: symmetrical shapes are shapes that you can fold in the middle and then both  

sides are the same . that’s line symmetry 
03  Student 2: rotation symmetry is when you have a symmetrical shape and you rotate it a 

little bit and then the shape the shape looks the same as it was before 
04 Student 1: reflection symmetry is almost the same like line symmetry but you have to 

put a mirror in the middle of the shape\ 
05 Student 1: you can draw symmetrical shapes with faces vertices and edges 
06 Student 2:  examples for symmetrical shapes are a square a circle a triangle and in three 

d a sphere a pieramid and a cube 
07  Student 1:  you can make symmetrical shapes in two d and three d 
08  Student 2: almost all shapes have got more than one line of symmetry 

As described in the production process, the students’ products can be classified into Koch and 
Oesterreicher’s model as follows (Figure 4):  

 
Figure 4: Model of writtenness and orality; (Fetzer, 2007, p. 79/ Schreiber, 2013a) 

Conclusion 
The use of artifacts and various representations in the mathematics classroom is of high relevance. 
The interactive approach of producing PriMaPodcasts follows this assumption by comprising various 
modes and forms of representation. The aim is to produce a learning artifact; a final product of oral 
nature. Publishing the final version on an online blog serves as an exceptional motivation for the 
students. In the process, they undergo various stages, in which they can expand their knowledge 
through discussions and learn different approaches to present them. Mathematical concepts and 
language competences can be strengthened as shown by the empirical example.  



Field experience 

So far, mathematical audio-podcasts have been used in different areas of teacher education. Firstly, 
we produced audio-podcasts for mathematics with students at primary school level. Besides German 
podcasts, some students also produced mathematical audio-podcasts in various other mother tongues 
(e.g. Russian and Turkish) as well as different languages of instruction (e.g. English and Spanish) in 
bilingual schools.  

Secondly, students who are studying to become primary or secondary school teachers, created 
mathematical audio-podcasts. Moreover, they supervised the production of the mathematical podcasts 
of school students. It is important for the university students to have gone through the steps 
themselves prior, so as to understand the production procedure clearly. Hence, they gain a better 
understanding of how demanding it can be for younger learners to explain a concept without any 
preparation and solely using orality. The deepening of mathematical content and its reflection are 
another focus of the audio-podcasts. The university students become aware of the increase in 
knowledge and are able to internalise and reflect on already learnt content. Content knowledge ranges 
from secondary school mathematics to areas covered during university lectures. 

Thirdly, the idea of mathematical audio-podcasts serves as research method. As part of a PhD project, 
the use of mathematical language in bilingual learning settings will be investigated further. The 
overall interest lies in the question of how bilingually taught learners use the language of mathematics 
in both their target languages (English and German) when asked to present mathematical content 
(Klose, 2015). 
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In this communication, we discuss the role of representations in the development of conceptual 
knowledge of 2nd grade students involved in additive quantitative reasoning through the analysis of 
the resolutions of two tasks that present transformation problems. Starting to discuss what is meant 
by additive quantitative reasoning and mathematical representation, we present after some empirical 
results in the context of a teaching experiment developed in a public school. The results show the 
difficulties with the inverse reasoning present in both situations proposed to students. Most students 
preferably use the symbolic representation, using also the written language as a way to express the 
meaning attributed to its resolution. The iconic representation was used only by a pair of students. 
Representations have assumed a dual role, that of being the means of understanding the students' 
thinking, and also supporting the development of their mathematical thinking. 

Keywords: Mathematical representations, transformation problems, additive quantitative reasoning, 
inversion. 

Introduction 
This paper is part of the Project “Adaptive thinking and flexible computation: Critical issues” being 
developed by the Schools of Education of Lisboa, Setúbal and Portalegre. Its main goal is to discuss 
the role of representations in the development of 2nd grade students’ conceptual knowledge that is 
present in different levels of understanding of numerical operations/relations when they solved two 
tasks. These were conceived with the aim to develop quantitative additive reasoning, as a means of 
understanding this same reasoning. The tasks present transformation problems included in the classes 
of search of initial state (Vergnaud, 2009). They are the last ones of a sequence of six tasks that was 
applied in the context of a teaching experiment developed in a public school in Lisbon. The empirical 
data analysis focused on representations aims to discuss the inferences we make in the reasoning of 
the students but also their role in the development of students' reasoning. 

Mathematical representations and quantitative reasoning 
Quantitative reasoning, within the additive structure, focuses mainly on relations between quantities 
(Thompson, 1993), being that the problems of transformation aimed at finding the initial state have 
increased cognitive complexity for 2nd grade students by requiring an inverse reasoning (Vergnaud, 
2009). The representations are interconnected with the reasoning given the relevance of their role in 
the understanding of students’ reasoning (NCTM, 2000). But, the representations also assume an 
important role in students’ learning, constituting cognitive means with which they develop their 
mathematical thinking (NCTM, 2000; Ponte & Serrazina, 2000). In a broad sense, a representation is 
a setting that can represent something somehow (Goldin, 2008). The term “representation” refers both 
to the process of representing and the result of this process. In mathematics education, representations 
are privileged tools for students express their mathematical ideas, still working as helpers in the 
construction of new knowledge (NCTM, 2000). However, a mathematical representation cannot be 



understood or interpreted in isolation, since only makes sense when part of a more comprehensive 
and structured system in which different representations are related (Goldin & Shteingold, 2001).  
According to Stylianou (2010), the way as representations are used in classroom has impact in 
students learning and this largely depends on the role of the teacher, using “student-generated work 
as a launching point for discussions” (p. 339). This idea is reinforced by Ponte and Serrazina (2000) 
when they say that how mathematical ideas are represented influences profoundly the way they are 
understood and used. For example, according to Vergnaud (2009), the inverse transformation can be 
represented by two symbolic representations -- the algebraic one and the arrow diagram -- 
considering, however, that while the algebraic representation is not suitable for children in elementary 
school, using the diagram representation the teacher can help students connect, immediately, the 
different components of the relationship, namely the direct and inverse transformations, giving 
meaning to the temporal motion go forward and backward. 

 

 

 

Figure 1: Arrow diagram (Vergnaud, 2009, p. 87) 

Figure 1 presents a representative diagram of subtracting 7 to the final state in the situation "John has 
just won 7 marbles in playing with Meredith; now he has 11 marbles; how many marbles did he have 
before playing?" (Vergnaud, 2009, pp. 86-87). However, while recognizing the importance of this 
representation, the author states that children need several examples of the inverse transformation in 
order to be able to effectively understand it. "Several kinds of awareness are needed: you lose what 
you have just won; or you win what you have just lost; you go backwards as many steps as you have 
gone forwards and reciprocally" (p. 87). 

For Ponte and Serrazina (2000), the main forms of representation used in the primary education are: 
(i) the oral and written language; (ii) symbolic representations, like numbers or the signs of the four 
operations and the equal sign; (iii) iconic representations, like figures or graphics; and (iv) active 
representations, like manipulative materials or other objects. It is through the analysis of the 
representations used by students that the teacher can become aware of their thinking and help them 
in the construction of own representations in mathematical language. 

NCTM (2000) also emphasizes the role of idiosyncratic representations constructed by students when 
they are solving problems and investigating mathematical ideas, in that it can help them in 
understanding and solving problems and provide "meaningful ways to record a solution method and 
to describe the method to others" (p. 68). Observing these representations, teachers and researchers 
can understand the ways of interpreting and reasoning of students. 

Methodology 
This study follows a qualitative approach within an interpretive paradigm. Its methodology of design 
research is part of a perspective of learning design, in order to produce local theories of teaching and 
learning sequences that are resources and references available to inform the practices of teachers and 
researchers (Gravemeijer, 2015). 

The data were collected in a second grade classroom (7-8 years old), with 26 students, of a public 
primary school in Lisboa. The Project team defined a sequence of tasks with the aim to develop the 
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calculation flexibility in addition and subtraction problems. The process of tasks elaboration included 
previous testing of some (namely the ones focused in this paper), through clinical interviews 
(Hunting, 1997) with students of the same grade. It is a technique that is directed by the researcher 

and seeks a description of the ways of thinking of respondents. The task sequence was previously 
discussed and analyzed with the classroom teacher having been made minor adjustments. Classroom 
teacher explored the task sequence with her students (a task every week). During their schooling the 
empty number line had been used regularly both by the teacher and students.  

The data collection was made through participant observation of the authors of this paper, which drew 
up field notes and supported by video recording, subsequently transcribed. The written records of the 
students were also collected. All these data were analyzed and triangulated. By ethical reasons, the 
students’ names were changed to ensure confidentiality. 

In this communication we analyze two tasks (Figure 2), proposed to the students in the same class 
(given the similarity between them) and presented on the same sheet of paper, with space for the 
respective resolution. 

Game of marbles I 

Ana and Luís played a game of marbles together. At the beginning both had the same number 
of marbles. 

Ana won 3 marbles from Luís and had 7 at the end of the game. 

How many did Luís have at the end of the game, knowing that he did not win marbles? 

Game of marbles II 

Ana and Luís made a game of marbles.  

Ana won 6 marbles from Luís and had 10 marbles at the end of the game. 

Luís won nothing and had 3 marbles at the end of the game.  

Compare the number of marbles of Ana and Luis before the game and at the end of the game. 

Figure 2: Performed tasks 

These were the last ones of the sequence solved by students. With the previous exploration of the 
other tasks, students had already worked the relationship between wins and losses over a marbles 
game, realizing that what a player wins, the other loses. All the tasks were first solved in pairs. In this 
class, after all pairs had solved the two tasks, the teacher promoted a collective discussion with whole 
class, from six pairs resolutions (three on each task) who presented their work on the blackboard. 

Exploring the tasks 
In this section we present and discuss some examples of tasks’ resolutions. Their choice was made 
taking into account the diversity of representations presented by the different pairs and being 
representative of what happened in class. 
Game of marbles I 

The resolution of Alexandre and Rosa shows the inversion of reasoning as a critical aspect. Thus, 
they took first 10 marbles for both players from the sum of 3 ("Ana won 3 marbles") with 7, not 
mobilizing an inverse reasoning to determine the initial number of marbles.  



 

__________________ 

7   10   10 – 3 = 7 

                                                                                                Luís 

 
Ana    _________________ 

        10                               13 

                 10 + 3 = 13 

Figure 3: Alexandre's diagram for Game of marbles I 

Alexandre's diagram (Figure 3) represents the wins and losses of marbles as they are thought by the 
pair of students. But, when asked by the teacher they erased all they did and made it again on their 
worksheets (this diagram was seen in the video records). The new representation (Figure 4) reveals 
the necessary inversion to find the initial number of marbles. They got it for Ana, but they seem to 
forget that both players had at the beginning the same number, as in Luis’ allusive representation, 
they retired 3 marbles from 7. 

 
Figure 4: New Alexandre's diagram for Game of marbles I 

Vítor and Joana can reverse the reasoning to the case of Ana but they show a lack of understanding 
of the situation alluding to Luís (Figure 5). 

 

 

Figure 5: Vítor's diagram for Game of marbles I 

This diagram helped the children's thinking in the sense that it respects the temporal order of the 
game: the initial marbles on the left and the final ones on the right side. However, they did not look 
again for the initial situation, that is, if Ana won, Luís has to have less at the end of the game. 

Rui and António used symbolic representations presenting a number line with two curve lines that 
represent the inversion of addition and subtraction (Figure 6). Like the anterior pair, they reversed 
their reasoning to Ana but they assumed the same situation to the player Luís, stating that he won 7 
marbles at the end of the game. Here the term "won" means the absolute number of marbles at the 
end of the game and not a quantitative difference. The distinction between the quantitative difference 
and the result of an arithmetical operation is a critical aspect that emerges from this resolution. 

At the end Luis had 4 
marbles 

+3 

-3 



 
Figure 6: Rui's diagram for Game of marbles I 

The word "because" explains the inversion used to determine the number of initial marbles, justifying 
it with the inverse relationship between addition and subtraction. The order in which they placed the 
operations shows the inverse reasoning process: first, they determined the initial number of marbles 
(the initial state), and after they confirmed the resultant final state with the inverse relationship. 
Tiago and João used a table disposition (Figure 7), with columns for each of the two players and the 
lines for the different moments of the game, the top line to the beginning of the game and the bottom 
to the end. 

 
 

 
 

 
Figure 7: Tiago's diagram for Game of marbles I 

It was the only pair in the class, which established the difference between the final numbers of 
marbles, although not required, focusing on the difference as an additive comparison of quantities. It 
seems that the representation used allowed them to manage two data at the same time, the quantity of 
marbles and the transformation after game. 

Game of marbles II 

Alexandre and Rosa read the problem. Immediately, Alexandre said: "Luís started with 9 and Ana 
started with 4." Once Alexandre had understood the previous problem when the teacher questioned 
their resolution, as mentioned before, here he already coped well with the unknown initial state, 
solving mentally the problem, through an inverse reasoning. 

On the diagram's lines (Figure 8), the numbers are placed in ascending order, getting the initial 
number of marbles on the right for Luís and on the left for Ana. Their answer is focused on the 
absolute amount of marbles of Ana at the end of the game and not on the comparison. 

 At the end, Luis won 7 

because 

Luís ended up with one both 

difference 

the same 



 

 

 

 

 

Figure 8: Alexandre's diagram for Game of marbles II 

Vítor and Joana used the line representation (Figure 9), adopting the temporal criterion as they did in 
the previous task, putting the initial marbles on the left and the final ones on the right side and at this 
time they got the right solution. 

 
Figure 9: Vítor's diagram for Game of marbles II 

Rui used an iconic representation of Ana's marbles: first, the six marbles won from Luís; then the 
initial 4 marbles (probably counting them until the total 10); and finally the three final marbles of 
Luís. He was not able to reverse his thinking in order to determine the initial marbles of Luís. 

 

 

 

 

 

 

Figure 10: Rui's diagram for Game of marbles II 

Tiago surrounded the numbers to assign their meaning, recording the player and the time of the game 
to which they relate (Figure 11) and respecting also the temporal order of the game. 

R: Ana won the game with 10 
marbles. 

Conclusion: we discover that 
Luís loses and Ana wins. 

Ana won 



 
Figure 11: Tiago's diagram for Game of marbles II 

Tiago focused the additive comparison of the resultant final states, recording that "the difference is 7 
at the end". 

Final remarks 
The inverse transformation is a critical aspect in solving the tasks (Vergnaud, 2009). Thus, the first 
representations used by Alexandre in Game of marbles I show a reasoning associated with 
prototypical situations of addition asking for final states and not initial ones. Students seem to cope 
more easily with this kind of transformation in the second task after having understood the inversion 
involved in Game of marbles I. For this understanding the teacher’s questions seem to have been 
fundamental. 

An example is the case of Alexandre and, although he did not fully solve the first problem, managed 
to overcome the obstacle of inversion in the second task solving it mentally very fast. Despite the 
inherent difficulty of the inverse transformation, the productions of the students in the class reveal a 
widespread understanding of an aspect of inverse thinking: what a player wins, the other loses. 

Students seem to have essentially privileged two forms of representation (Ponte & Serrazina, 2000): 
the written language and symbolic representations. Just a pair of students used the iconic 
representation in support of symbolic representation (Rui and António). Among the symbolic 
representations used, there was a predominance of horizontal dispositions of the calculations, 
although the use of the empty number line also had had a significant expression, helping to think 
about the transformations involved in problems. We should stress that empty number line had been 
used by these students and her teacher since the first grade. Thus, the curved lines, which represented 
the transformation, supported the thought around the wins and losses, as well the temporal motion. 
The table disposition also seems to have helped the students (Tiago and João) to structure and relate 
the various elements of the problem: the two players and the two time points of the game.  

Analyzing student productions, we can infer different levels of quantitative additive reasoning. While 
most learners focused on the absolute amounts of marbles, Tiago focused on quantitative difference 
as a quantitative result of comparing two quantities additively to find the relative change (Thompson, 
1993). So, for the majority of students, the notion of difference as an additive comparison of quantities 
is a problematic aspect. 

Luis got 3 marbles 
and Ana got 10, 
the difference is 7 
at the end. 



The representations used by the students had a dual role. On the one hand, they were windows to 
interpret their reasoning. On the other hand, they were scaffolds that helped to think mathematically 
demanding situations, taking into account their ages. It should be stressed that the teacher’s role, 
making questions, not giving answers, while students were doing their work was also essential. As 
stated by Vergnaud (2009), the development of a conceptual field involves not only situations and 
schemes but also symbolic tools of representation. 
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Introduction and theoretical framework: Before the box 
This poster is about the experience of an “on field” project started in 2014 with a group of 28 14-
y.o. students attending to the first year (9th grade) of Liceo Scientifico and a 10cm cube cardboard 
box containing a collection of items that led to a two weeks journey through the focal points in the 
act of doing mathematics, which are the new entries of the high school approach to the subject, such 
as proofs, their necessity in mathematics and the related use of a proper symbolic language. 

It has been conceived as a starter for the study of high school mathematics, but it also proved an 
effective strategy to boost students’ learning motivation and long-term knowledge retention about 
the subject as a whole. 

As Raymond Duval points out, “the goal of teaching mathematics, at primary and secondary level, 
is neither to train future mathematicians nor to give students tools, which can only possibly be 
useful to them many years later, but rather to contribute to the general development of their 
capacities of reasoning, analysis and visualization” (Duval, 2006, p. 105). Taking this perspective, I 
wanted to investigate the effectiveness of a multi-sensory approach, which is quite frequent for 
lower grades but isn’t a common practice for secondary mathematics teaching and learning, through 
the means of Arzarello’s semiotic bundle theory, widening the semiotic system horizon “to contain 
gestures, instruments, institutional and personal practices and, in general, extra-linguistic means of 
expression” (Arzarello, 2006). 

The project had a double goal: from a research point of view, I aimed at focusing on the “cognitive 
functioning underlying the various mathematical processes” (Duval, 2006, p. 104) and exploring the 
efficacy of “a rich semiotic bundle with a variety of semiotic sets” (Arzarello, 2006) to foster 
students’ understanding of some pivotal mathematical concepts. From a didactic point of view I 
wanted to verify that this approach, which took its strength from “a gradually growing and 
multimodal cognitive environment” (Arzarello, 2006) could help students in building up long 
lasting memories connected to the practice of mathematics through the act of giving “personal 
meanings to mathematical objects” (D’Amore, 2003, p. 19). 

Methodology: Inside and Outside the box 
The study explores how students answered to questions and problems prompted by the 12 items in 
the box, during the first two weeks of the school year (approximately 10 hours of teaching). Data 
has been collected by the teacher through classroom observation and assessment of the assigned 
homework. 



 

The content of the box, described in detail in a multimedia presentation, varied from tactile objects 
like the piece of string which triggered the ice-breaker kinaesthetic activity The Magic Knot (Can 
you tie a knot in a string without letting go of the two ends?) to a paper cut with an extract from a 
1742 letter from Christian Goldbach to Leonhard Euler which lead to the unveiling of The 
Goldbach mystery (What is the Goldbach conjecture? And why is it a conjecture and not a 
theorem?). 

A good example to illustrate how the notion of semiotic bundle can be used to 
decode the activities of students solving a mathematical problem is The mystery of 
the four triangles (Can you build exactly 4 equilateral triangles using six 
toothpicks of equal length?). Searching for the answer to this problem students 
came up with the wrong construction seen in fig.1.               Figure 1 

Discussing this solution, they brought into play an articulate semiotic bundle made up of:  

 gesture: manipulating the toothpicks to build the solution 
 speech: discussing why the construction in the figure is wrong 
 written signs: drawing other possible solutions 
 arithmetic representation: figuring out that the slanted toothpicks in Figure 1 weren’t long 

enough to play as diagonals of the square 
 geometric representation: figuring out that the triangles in Figure 1 couldn’t be equilateral 

Expanding the semiotic bundle from gesture to arithmetic representation, they became gradually 
aware that the construction couldn’t be solved in two dimensional space and it eventually helped 
them to elaborate the correct solution. 

Conclusions: Beyond the box 
The described case shows how the use of a full range of different types of representation (verbal, 
gesture and iconic exemplification) has been a key point in the procedure of developing the 
meaning of the mathematical objects involved. In the following school years (14-15 and 15-16), this 
class group attested in two synergic ways how successful this opening experience has been: on one 
hand, they proved to remember vividly the content delivered through the box and on the other they 
become more metacognitively aware of the importance of creating a range of different 
representations in order to have access to a mathematical concept or problem. 
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Introduction 
During the past years the mathematics education community as well as the educational research of 
teaching and learning have seen representations as a useful tool for communicating information and 
understanding (e.g. Lesh, Cramer, Doerr, Post, & Zawojewski, 2003; NCTM, 2000). NCTM (2000) 
advocates students to “create and use representations to organize, record, and communicate 
mathematical ideas; select, apply, and translate among mathematical representations to solve 
problems…” (NCTM 2000, p. 64). In the present study, ‘representations’ refers to Goldins (2002) 
definition that a representation can represent something else, for example, symbolic expressions, 
drawings, written words or diagrams. Different representations can be used to shed light onto 
different aspects of a complex mathematical concept or relationship (e.g. Cai, 2005; Cathcart, 
Pothier, Vance, & Bezuk, 2006). For example, when learning about parts of a whole, teachers and 
students can use a manipulative representation, as sectors of a circle or as pieces of a rectangle.  

Purpose 

The aim of the present study is twofold. Firstly, investigate how teachers and students use 
representations of fractions focusing on finding a fraction regarding either part- whole or part of set 
aspect. This would for instance entail examination of which type of representation, how they are 
used and in which order they are used. Secondly to examine what students learn in mathematics 
lessons, regarding representations of fractions.  

Hypothesis 

The hypothesis is that a more frequent use of different representations, by either teachers and or 
students, will enhance the students’ knowledge of fraction as part of a set or part of a whole. This is 
in line with what have been suggested by Cai (2005); Cathcart, Pothier, Vance, and Bezuk, (2006) 
concerning different representations. 

Method 
The collection of data consists of two parts, (a) video recordings of lessons and (b) pre- and post-
tests (“RB2 or RB3 Diamant” which is part of the Swedish National Agency for Education's test 
materials).Video recordings enable data to be analyzed repeatedly and seen by other researchers in 
order to contribute to the study. Data will be analyzed with respect to variation theory (see for 
instance Marton, 2015). The pre- and post-test are a measurement to document effects of using 
representations of fractions during the mathematics lessons. To examine group differences between 
pre- and posttest repeated measure ANOVA is used.  



Participants 

Ten primary school teachers and approximate 250 students in Sweden, New Zealand, and 
Singapore, respectively, will be part of the present study. 
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In this paper, the idea of hypothetical teacher task (HTT), designed and analysed using the 
anthropological theory of the didactic (ATD), was presented to study pre-service elementary 
teachers’ (PsETs) mathematical and didactical knowledge of comparing decimals. This study is 
part of the author’s PhD project about PsETs’ knowledge of rational numbers. The subjects for this 
study were 32 fourth year PsETs from University of Riau, Indonesia. The study illustrates how HTT 
can be useful as an alternative method to investigate PsETs’ knowledge through praxeological 
reference models.    

Keywords: Anthropological theory of the didactic, praxeologies, hypothetical teacher tasks, 
mathematical and didactical knowledge.  

Introduction 
The results from the Programme for International Student Assessment (PISA) in 2015 ranked the 
performance of Indonesian pupils 62 out of 70 countries (OECD, 2015). Most pupils were only able 
to solve problems directly related to the routine procedures (mostly at level 1 and 2 in the PISA 
framework). These results reflect how they learned mathematics at schools, and this situation raises 
a question about the knowledge of teachers as the main support for the success of pupils’ learning: 
namely, how teachers’ pedagogical content knowledge (Kuntur et al., 2013) and mathematical 
knowledge for teaching (Hill, Rowan, & Ball, 2005) significantly affect pupils’ achievement.   

Many studies have been conducted on teachers’ knowledge concerning specific mathematical topics 
(Ma, 1999), including international comparative studies of teachers’ knowledge (Tatto et al., 2008). 
Ma (1999) studied teachers’ performance about rational numbers, especially on calculations and 
representations of division of fractions. She evaluated teachers’ knowledge through posing two 
tasks: to compute and to represent meaning for the resulting mathematical sentences. Meanwhile, 
the Teacher Education and Development Study in Mathematics (TEDS-M) studied teachers’ 
knowledge through questionnaires (Tatto et al., 2008). TEDS-M used three question formats: 
multiple-choice, complex multiple-choice, and open constructed-response. TEDS-M argued that 
only the third format allows teachers to demonstrate the depth of their thinking on mathematical 
knowledge and mathematical teaching knowledge. However, both studies share the focus on 
individual teachers’ knowledge through written tests. This method is commonly used by other 
studies and sometimes followed by an individual interview of selected teachers.  

Teachers’ knowledge can also be studied through different approaches or methods. One possible 
approach is to design open constructed tasks based on pupils’ difficulties and misconceptions. The 
tasks can be proposed to teachers both individually and collectively. The focus of this study is on 
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designing a model for teachers’ shared mathematical and didactical knowledge of rational numbers 
based on the anthropological theory of the didactic (ATD), specifically on the notion of praxeology 
(Chevallard, 2006). I focus on rational numbers because they constitute one of the most difficult 
topics for elementary and secondary teachers (Depaepe et al., 2015). Teaching this topic requires 
relevant knowledge of teachers to properly deal with pupils’ difficulties. I use the notion of 
praxeology to model teachers’ knowledge. Durand-Guerrier, Winsløw, and Yoshida (2010), and 
Winsløw and Durand-Guerrier (2007) have developed a tool based on this notion to investigate 
teachers’ specific mathematical and didactical knowledge that is known as hypothetical teacher task 
(HTT). In my larger study, the focus is on designing HTT about rational numbers that can 
investigate not only pre-service elementary teachers’ (PsETs) individual knowledge but also the 
collective one. This paper presents a case study of comparing decimals as a part of my PhD project 
about PsETs’ knowledge of rational numbers. The research questions that drive this paper are: how 
can HTT on comparing decimals function to study PsETs’ mathematical and didactical knowledge? 
What praxeologies, specifically mathematical and didactical techniques, are shared by Indonesian 
PsETs related to comparing decimals?   

Teachers’ knowledge and the anthropological theory of the didactic (ATD)  
Many studies about teachers’ knowledge refer to content knowledge and pedagogy content 
knowledge introduced by Shulman (1986). These notions also have influenced several later studies 
on mathematics teacher education (Hill, et al., 2005; Ma, 1999; Winsløw & Durand-Guerrier, 
2007). Winsløw and Durand-Guerrier (2007) identified three components of teachers’ knowledge: 
content knowledge (mathematical techniques, theories etc.), pedagogical knowledge (concerning 
education, learning and teaching in general), and didactical knowledge (regarding the conditions 
and mechanisms of mathematics teaching and learning, often quite specific to the content taught).  

To study teachers’ knowledge, ATD provides an epistemological tool to describe and analyse 
mathematical and didactical knowledge as human activities among others (Chevallard, 2006). In 
fact, ATD holds, as a central assumption, that any knowledge, including teachers’ knowledge, can 
be investigated in term of a praxeology. I use this notion as a framework to study teachers’ 
mathematical and didactical knowledge of comparing decimals.   

A praxeology consists of two main interrelated components: praxis (practical block) and logos 
(theoretical block). Both the practical and theoretical block of a praxeology are divided into two 
elements. The practical block is made of a type of tasks (T) and corresponding techniques (τ) which 
apply to accomplish tasks of type T. An example of a type of mathematical tasks (T) is to compare 
two given decimal numbers. To solve this task, a technique (τ) is needed; for instance, one can 
change both decimals into fractions with a common denominator, and then compare numerators. 
The theoretical block is made of technologies (θ) and theories (Θ). A technology (θ) is a discourse 
used to explain and justify the techniques (τ), while a theory (Θ) explains and justifies the 
technology (θ). An example of technologies is an explanation of available methods to decide which 
of two different given decimals is greater, when the methods work or are more efficient, etc. The 
order structure of rational numbers is a mathematical theory (Θ) which can be used to justify and 
explain the technology (θ).    
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A praxeology is not only used to describe mathematical knowledge but also didactical knowledge 
(i.e. knowledge about teaching that depends on what is taught). The praxeology used to describe 
didactical knowledge is known as a didactical praxeology. Like a mathematical praxeology, 
didactical praxeology includes a type of didactical tasks, didactical techniques, didactical 
technologies and theories (Rodríguez, Bosch & Gascón, 2008). The didactical praxeology is thus 
closely related to the mathematical praxeology because didactical praxeology is about tasks related 
to the teaching of the mathematical praxeology. An example of a type of didactical tasks is to teach 
pupils how to compare two decimals. A didactical technique is to present directly a mathematical 
technique for comparing two decimals and then ask pupils to apply this technique for other similar 
mathematical tasks. A technological discourse to justify this didactical technique is an assumption 
that pupils might learn better if they get the correct method from the teacher. This may even derive 
from a more general didactic theory, favouring direct instruction in general.  

Methodology: Design of hypothetical teacher task (HTT)  
The notion of HTT was introduced by Durand-Guerrier et al. (2010) and Winsløw and Durrand-
Guerrier (2007) to investigate pre-service lower secondary teachers’ knowledge. HTT consists of 
mathematical and didactical tasks for teachers. The mathematical task is one that is problematic to 
pupils in the hypothetical situation, often related to some common misconceptions. Teachers have 
to analyse this task and provide some mathematical techniques. They work individually for this task 
and then share their ideas for the discussion on the didactical task. The didactical task asks, with 
variations depending on the situation described, what could be done to further pupils’ overcoming 
of particular difficulties with the mathematical task. So the didactical task strongly relates to the 
mathematical task.  

The HTT about comparing decimals was designed based on known misconceptions related to place 
value (Irwin, 2001). As an example, pupils may argue that 0.15 is greater than 0.2 because 0.15 is 
longer than 0.2 or 15 is greater than 2. Beginning with a situation where pupils hold such views, the 
HTT reads as follows: 

Fifth grade pupils are asked to compare the size of 0.5 and 0.45. Some pupils answer that 0.45 is 
greater than 0.5, while others say that 0.5 is greater than 0.45. 

a. Analyse the pupils’ answers. Explain your ideas to handle the situation in this class? (to 
be solved individually in 3 minutes) 

b. How do you use this situation to further the pupils’ learning? (to be discussed and solved 
in pairs within 5 minutes)  

Figure 1: HTT about comparing two decimals 

The HTT was originally written by the author in English, and then it was translated into Indonesian. 
Two Indonesian researchers checked the translations for consistency. The HTT was also piloted 
with a pair of recently graduated students from the Elementary School Teacher Education (ESTE) 
study program at University of Riau, Indonesia. I asked for the students’ comments and used them 
to revise the HTT. The data consist of PsETs’ written answers for the first question and video 
recording of the discussion for the second question. I transcribed the video recording for all groups 
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using the NVivo computer program. Then, the written answers and video transcripts were analysed 
based on the mathematical and didactical praxeologies, to identify the techniques produced. The 
subjects for the implementation of HTT were 32 (16 pairs) fourth year PsETs from the ESTE study 
program, and the data were collected in March 2016. All participants wrote their answers on the 
worksheets for the individual question a, and then they used their answers to support a common 
discussion for the question b. A more comprehensive analysis of these data was based on the 
techniques identified among individual pairs. 

Praxeological reference models 

In the first phase of analysis, I focus on the practical blocks (i.e. types of tasks and techniques). The 
mathematical task (Tm) contained in the HTT (Figure 1) can be stated as follows:  
Tm : given two different decimal numbers, 0 < a < 1, and 0 < b < 1, decide if a > b or a < b.  

There are many possible mathematical techniques to solve a mathematical task of type Tm which 
could be developed by the PsETs individually, or during their discussion. I describe some of them 
in the following table: 
Code of 
techniques 

General description of techniques 

τ1 Change a and b into integers, multiplying by an appropriate power of ten. 
τ2 Use lexicographical orders to compare the decimals. 
τ3 Add 0 digits where required to get the same number of digits in both decimals. 
τ4 Change decimals into fractions with a common denominator and compare the 

numerators. 
τ5 Subtract b from a or divide a by b. When the result is less than 0 (for subtraction) or 

less than 1 (for division), a < b, otherwise a > b. 

Table 1: Mathematical techniques for a mathematical task of type Tm 

In addition, there are several possible mathematical techniques based on diagrammatical 
representations and number lines. For instance, one can represent both decimals by a rectangle or a 
circle diagram and then compare areas or sizes (τ6), or locate both decimals on a number line and 
compare the positions (τ7). Furthermore, to each correct mathematical technique, one might 
associate with one or more incorrect mathematical techniques. For example, when someone 
multiplies both decimals with different powers of ten, one does a similar but an incorrect 
mathematical technique of τ1. This mathematical technique is denoted as τ1-, where the minus 
means “incorrect variation of τ1”. Hence, there will be at least a similar number of incorrect 
mathematical techniques to the correct ones.     

The question b and also part of question a contain a didactical task (Td) as follows: 
Td : given that pupils’ answers as stated to a task of type Tm, determine what to do as a teacher to 

facilitate pupils’ learning. 
Most didactical techniques to solve Td relate to the mathematical techniques proposed to solve the 
task of type Tm. When PsETs recommend teaching pupils by simply explaining a mathematical 
technique, for instance τ1, this technique is coded as τ1*, so similar numbers of didactical techniques 
can be derived from the previous mathematical techniques. In addition, some didactical techniques 
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can be variants of those didactical techniques. For instance, PsETs provide pupils with similar 
problems, such as comparing 0.5 and 0.25, they choose these decimals because pupils might simply 
recognise both decimals as a half and a quarter, and may then realise their original mistake. Many 
other possible didactical techniques might appear during the discussion, but space does not allow 
me to describe them in detail here. One common didactical technique is to build the mathematical 
task into a real word problem. PsETs may even say that the mathematical task presented in the HTT 
is too abstract to pupils, so they need to present it within a more familiar situation. Such a 
justification furnishes a technological discourse for the didactical technique, could conceivably even 
invoke a didactic theory.   

Results 
The analysis of answers to the task of type Tm was mainly based on the PsETs’ written solutions, 
but I also looked at the video transcripts when I found some difficulties in categorising the 
mathematical techniques from the written solutions. In general, almost all mathematical techniques 
described in the reference models appeared in PsETs’ written answers, but some techniques were 
more common than others. The mathematical techniques presented by PsETs are summarised in the 
following table: 

Mathematical Techniques τ1 τ1- τ2 τ3 τ4 τ4- τ5 τ6 τ6- τ7 τ7- N/A Total 

Number of Answers 2 1 2 10 6 5 1 1 1 3 2 1 35 

Table 2: A summary of PsETs’ mathematical techniques for the task of type Tm  

The most common mathematical techniques were adding 0s to equalise the number digits after the 
decimal point (τ3) and changing decimals into fractions (τ4) (Table 2). But when changing decimals 
into fractions, five PsETs could not change 0.45 into a fraction. One PsET said during the 
discussion: “We can change decimals into fractions, but I do not know how to change 0.45 into a 
fraction”. Among six PsETs who gave a correct mathematical technique of τ4, only two PsETs 
changed the fractions to have a common denominator and then compared numerators, whereas the 
others presented both decimals into simple fractions and compared intuitively. Five PsETs also 
provided the mathematical technique of representing decimals on a number line, but two of them 
placed the numbers in incorrect positions on the number line. One of these PsETs stated on her 
worksheet that she agreed 0.5 was greater than 0.45, but still represented the decimal numbers 
incorrectly on the number line (Figure 1). Another finding was that a PsET answered that 0.5 is 
greater than 0.45, but she could not represent 0.45 correctly as a shaded portion of a circle. Overall, 
only 71% of the mathematical techniques presented by the PsETs are correct.  

 

 
Figure 1: A PsET’s incorrect number line representation of decimals 
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The total number of didactical techniques proposed by PsETs is greater that the number of those 
mathematical techniques because some pairs presented more than one didactical technique during 
their discussion. The most common didactical technique was a direct instruction of pupils based on 
how PsETs themselves solved the pupils’ task of type Tm. For instance, eight pairs said that they 
would instruct pupils to add 0 after 0.5 and compare the result to 0.45 (τ3*), and seven pairs 
discussed direct instruction of the mathematic technique τ4, while three of these pairs could not 
change 0.45 into a fraction. The didactical technique related to number line representations was also 
discussed by eight pairs of PsETs, but two of them placed 0.45 incorrectly in relation to 0.5. For 
example, the following discussion shows how two PsETs shared their incorrect mathematical 
techniques τ4- and τ7- in order to produce possible didactical techniques.  

PsET A: Let’s use a number line. Here is 0, and here is 0.1; 0.2. (She explained her 
drawing presented in Figure 1.) 

PsET B: And so on. 

PsET A: So, 0.5 is greater than 0.45. 

PsET B: How can we know that 0.5 is greater than 0.45? I thought, using your number line, 
that one is greater than the other.  

PsET A: How do you think? 

PsET B: I am confused. I change them into fractions. From fractions, they can be 
represented in rectangle diagrams, so we can see them. For instance, we know that 
0.5 is equal to a half.  

PsET A: Hmm. 

PsET B: If this is 0.45, what fraction is it? Later, it is drawn. From the drawing, pupils can 
compare, to see which one is greater.  

From the discussion, PsET B might realise that her partner placed the two decimals incorrectly on 
the number line, but she did not have any idea on how to fix it. Instead, she proposed to change 
decimals into fractions and then suggested to represent the fractions into rectangle diagrams. 
However, it turned out that they could not change 0.45 into a fraction or represent it by a correct 
rectangle diagram. They appeared to lack a general technique to convert decimals into fractions. 

In addition, five pairs suggested explaining to pupils how to change decimals into percentages, but 
three of them were in fact unable to do so correctly. For example, one PsET presented to his partner 
the mathematical technique of changing decimals into fractions. He changed 0.5 into 5/100 or 
500%, but no-one realised the mistake. Furthermore, some PsETs also considered presenting the 
mathematical task into a contextual or real life problem, providing other decimal comparison 
problems, or giving some technological elements, such as writing 0s after the decimal point is rarely 
written but may be useful. In general, twelve pairs suggested reasonable didactical techniques, most 
of the techniques being classified as direct instruction of mathematical techniques. Two pairs 
suggested both reasonable and unreasonable didactical techniques, and the other two totally could 
not recommend any didactical technique.  
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Discussion and further remarks 
An important point for this study is to explore the idea of HTT as an alternative method to 
investigate PsETs’ mathematical and didactical knowledge of comparing decimals. This method 
asks PsETs to demonstrate their collective development of mathematical and didactical knowledge 
as they solve the task because the design of tasks involves open constructed-responses and 
conversations among pairs of informants. This situation challenges PsETs to produce more than a 
single technique for each task. They shared their mathematical knowledge to provide didactical 
techniques for further pupil learning through a collaborative effort (Question b). This method is 
quite different from a diagnostic test in which PsETs’ knowledge is measured through a single 
correct answer, such as multiple-choice or complex multiple-choice questions in the TEDS-M study 
(Tatto et al., 2008). It is also different in that teachers’ didactical logos is developed in discussion 
with a peer.  

The most common mathematical technique shared by PsETs was to put 0s after numbers behind the 
comma to equalise the number of digits for both decimals (τ3). This mathematical technique can be 
simply applied by PsETs because it reduces the comparison to the more familiar task of comparing 
two integers. The technique is valid for comparing two decimal numbers in 0,1, but it does not 
work as immediately in other cases; so it is a more limited technique than, for instance, τ4.  

When PsETs discuss how they might handle the didactical task, they tend to just explain, based on 
their mathematical techniques, how to solve the mathematical task. In fact, when they have an 
inappropriate mathematical technique for the mathematical task, they then struggle to provide an 
appropriate didactical technique during the discussion. With subtle didactical techniques in mind, 
they could conceivably realise their mathematical mistake; unfortunately, this was not observed in 
any case.   

Finally, I conclude this study with two remarks. First, the mathematical task designed in the HTT 
did not involve a contextual or real life situation. Such a situation could both facilitate and add to 
the difficulty of the HTT, and variations of this type would be interesting to investigate. The second 
one is related to the PsETs’ collective discussion on didactical techniques. I expected that they 
could resolve their difficulties in constructing didactical techniques during their discussion in pairs, 
but some could not do that because none of them had an adequate mathematical technique for the 
first part. Therefore, the such problematic HTT may become a useful subject for a classroom 
discussion in the teacher education program in order to overcome both the PsETs’ own 
mathematical misconception and construct didactical techniques for their future tasks as teachers. 
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The article explores how future mathematics teachers (n = 26) at the end of their master studies 
notice moments in a lesson deemed important by experts and looks into their knowledge-based 
reasoning. A reflective task was given to the students and their written observation about the 
videoed mathematics lesson was compared against the expert analysis of the lesson. While all 
students commented on at least one important moment (the median was 3.5, expert rate 6), a third 
of their comments about these moments was of a subjective evaluation nature. They were mostly 
unable to provide a theoretical justification for their opinions. On the other hand, most students 
were able to suggest an alternative action to what they observed in the important moments of the 
lesson.  

Keywords: Preservice mathematics teachers, teacher noticing, knowledge-based reasoning. 

One of teachers’ specific skills is the ability to notice aspects of a mathematics lesson which 
“matter”. There is a body of literature on (student) teachers’ noticing skills showing the pattern of 
their attention to various aspects of lessons and investigating how it can be developed. In our 
previous work, we showed that while two-year master studies do not influence the pattern of 
attention much, even a short video-course does (Simpson, Vondrová, & Žalská, in press). After this 
course, student teachers (here students) described events rather than evaluated, noticed more of 
pupils’ actions rather than the teacher’s and paid more attention to the mathematical aspect of 
teaching rather than pedagogy. In a different study, we found that students paid limited attention to 
what experts considered to be crucial in the observed lesson (Vondrová & Žalská, 2015).  

Theoretical framework 
Professional vision means seeing phenomena in a situation from the area of expertise which are 
different from those arising from lay viewings of the same situation (Goodwin, 1994). According to 
Sherin (2007), professional vision consists of selective attention (what the teacher pays attention to, 
or marking (Mason, 2002)) and knowledge-based reasoning (how he/she reasons about it). 
Professional vision in education overlaps the idea of teacher noticing: “teachers’ professional vision 
involves the ability to notice and interpret significant features of classroom interactions” (Sherin & 
van Es, 2009, p. 22).  

Some studies focus on the selective attention only, others take into account knowledge-based 
reasoning. There is a difference in noticing if the event is only described or reasoned about. For 
example, Sherin and van Es (2009) introduce Stance and distinguish Describe, Evaluate (from a 
subjective point of view) and Interpret (from a theoretical point of view). Stockero (2008) 
introduces five levels of reflection: Describing, Explaining, Theorizing (references to research or 
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course readings to support the analysis, or substantial evidence from transcripts and/or pupil written 
work), Confronting (alternate explanations for events and/or considering others’ points of view), 
Restructuring (theorising and confronting to consider alternative instructional decisions).  

It is the reflection on observation which is considered to be crucial to developing professional 
vision. Much of the research is focused on “video club” interventions where participants are guided 
to reflect on videoed lessons (e.g., Friesen, Dreher, & Kuntze, 2015; Liston & Gill, 2011; Simpson, 
Vondrová, & Žalská, in press; Star, Lynch, & Perova, 2011; Stockero, 2008). It has been shown that 
even a short video-course has an impact on noticing skills such as more specific comments, more 
attention to mathematical thinking and less on pedagogy, more attention to pupils and less to the 
teacher.  

Studies on noticing mostly do not distinguish between less and more important events in a lesson to 
be noticed. Star, Lynch and Perova (2011, p. 120) even write:  

[…] some classroom events are certainly more important than others, and it is critical that 
preservice teachers be able to attend to and interpret these important events. However, we 
believe that teachers do not have the ability to notice important events […] until after they have 
developed the ability to notice (even trivial) classroom features.  

The authors do say that the ultimate goal is for teachers to be able to notice important classroom 
events and they admit that it is not clear yet “whether it is better to focus first on improving 
teachers’ awareness of the full range of (trivial and important) events (as was done here [in their 
course]) or to focus explicitly on only important events from the outset” (p. 132). 

If researchers do look for important moments, they mostly find them in the mathematics of the 
lesson. For example, Star, Lynch and Perova (2011) identified ‘important questions’ in all 
observation categories, with the fewest from classroom environment and most from pedagogical 
choices made by the teacher, mathematical content addressed in the lesson and teacher-initiated 
communication. They say that “it is always more important to observe mathematical content 
carefully than to observe classroom environment carefully” (p. 132). In our research (Vondrová & 
Žalská, 2015), important moments are those which have been shown to play the key role in pupils’ 
learning of mathematics. Hiebert and Grouws (2007) take it for well documented that pupils learn 
best when they have the most opportunity to learn. This concept is defined as “circumstances that 
allow students to engage in and spend time on academic tasks such as working on problems, 
exploring situations and gathering data, listening to explanations, reading texts, or conjecturing and 
justifying” (Kilpatrick, Swafford, & Findell, eds., 2001, p. 333). The opportunities to learn are 
influenced, among others, by “the kinds of tasks [teachers] pose, the kinds of questions they ask and 
responses they accept, the nature of the discussion they lead” (Hiebert & Grouws, 2003, p. 379). 
Finally, two key features of teaching that promotes conceptual development are part of important 
moments for us (ibid, p. 383, 387): teachers and pupils attend explicitly to concepts; pupils struggle 
with important mathematics.  

The above was the starting point of our expert analysis of lessons. This methodology is not 
unknown in research on noticing. In (Blomberg, Stürmer, & Seidel, 2011), experts prepared items 
for rating video clips and an expert norm value system.  In (Star, Lynch, & Perova, 2011), important 
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features of the lesson were selected by two raters and then used as a measure for assessing the 
participants’ ability to notice. To validate measures to be used for assessing the ability to notice, the 
authors identified features of the lesson to be noticed and compared them against the video analysis 
made by six experienced teachers. Mitchell and Marin (2015) calculated the percent alignment 
between participants’ scores and the master rater scores. Stockero, Rupnow and Pascoe (2017) 
made an expert analysis to determine pivotal teaching moments. We used the same process in our 
previous research to determine so called expert mathematics specific phenomena, i.e., the events in 
the lesson which experts deemed important for the successful learning of mathematics (Vondrová & 
Žalská, 2015). We found out, among others, that future mathematics teachers paid limited attention 
to the expert phenomena both at the beginning and at the end of their two-year master studies.  

The study has two research questions: How do future mathematics teachers notice moments, 
deemed important by experts, at the end of their master studies? What is their knowledge-based 
reasoning? 

Methodology 
We asked students to observe a video of a whole Czech Grade 8 mathematics lesson from TIMSS 
Video Study 1999. The piloting stage showed that the video included teaching practices 
understandable for students which they could relate to. The video is self-contained (the lesson has a 
clear introduction and ending, so that the knowledge of the previous lessons is not necessary) and it 
is quite rich in generic and subject-specific content (Blomberg, Stürmer, & Seidel, 2011) which is 
reasonably observable. The lesson leads to the discovery and formulation of Thales’ theorem: “For 
any triangle ABC, it holds: a) If ABC is a right-angled triangle with hypotenuse AB, vertex C lies on 
circle k with diameter AB. b) If vertex C lies on circle k with diameter AB, ABC is a right-angled 
triangle with hypotenuse AB. Circle k is called Thales’ circle with diameter AB.” 

The participants are future mathematics teachers of pupils aged 12 – 19 studying a two-year master 
studies at our university. In their final semester in January 2016, the whole group (n = 32) was 
asked to watch a video of the lesson and write observations. They were to write what they 
“considered important and noteworthy”. They were told that there “were no correct or wrong 
answers” and that they should “feel free to write their honest views”. We received 26 written 
observations. The majority of students were in their mid-twenties and had teaching experience only 
from two fortnights of field placement at the primary and secondary schools.  

The analysis of data was twofold. First, we used an expert analysis of the lesson in order to capture 
attention to important moments. Two authors of the paper, both mathematics educators, and four 
educators of future teachers of other subjects independently watched the lesson, repeatedly met and 
finally agreed on six important moments (here expert phenomena, Tab. 1). Naturally, what is 
considered important is rather subjective. We based our identification of such moments on the 
considerations from research on effective teaching presented above. By including experts from 
other fields, we ensured that the phenomena were really observable and not only apparent to an 
expert in mathematics education. In order to be coded as an expert phenomenon, the unit had to 
have a connection to mathematics; e.g., “The game was motivating for pupils.” is not coded as M1 
(Tab. 1). 
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Second, to capture the participants’ knowledge-based reasoning, we modified Stockero’s (2008) 
levels of reflection: Description – a description of what can be seen in the lesson; Explanation – a 
naïve explanation of what was seen in the lesson using one’s experience as a pupil or as a teacher; 
Theorising – interpreting what was seen using a theory; Evaluation – evaluation from a subjective 
point of view; Alteration – suggestion of an alternative approach to what was seen; Prediction – 
elaborating possible consequences of the event seen. We did not distinguish the depth of alterations 
or the quality of the theory used and we did not follow if the students’ reasoning was in line with 
that of experts (this is something which can be done in further research). 

Expert phenomenon Comments about the: 
M1: Work with geometric concepts 
within a game activity. 

Ways concepts are made more precise and mathematical 
terminology is developed in the game.  

M2: Discovering Thales’ theorem, 
direction a). 

Implementation of the activity (experimenting with a 
triangle ruler and two pins to find points making Thales’ 
circle) and the way it can influence pupils’ understanding. 

M3: Inter-subject links. History of the theorem and connection with geography. 
M4: Thales’ theorem, direction b). Implementation of the task to verify the properties of 

triangles whose vertex C lies on circle k with diameter AB 
and the way the teacher connects directions a) and b).  

M5: Formulation of Thales’ theorem. Implementation of the task to formulate the theorem.  
M6: Problems “to think about”. Implementation of two, seemingly more difficult tasks.  

Table 1: Results of the expert analysis of the lesson to be observed 

During the analysis, we first searched written observations for instances in which a student 
commented on M1 to M6. All parts commenting on the same phenomenon became one unit of 
analysis coded as M1, M2, etc. Thus, each written observation was assigned at most one code M1, 
M2, etc. We got 90 units from 26 students. Each was assigned one or more of the attributes 
capturing knowledge-based reasoning. An example is the unit: “The teacher accelerated the phase 
of the exact formulation of Thales’ theorem very much and did not give pupils enough time to 
independently reach a conclusion. The teacher tried too hard so that Thales’ theorem is formulated 
in a textbook way which, in my opinion, was for the worse.“ It was coded as Description, 
Evaluation, Explanation. Or the unit: “Pupils tried to formulate the theorem about the discovered 
property. I would first ask them to describe the property in their own words and only afterward to 
formulate the theorem mathematically. The pupils would not get tangled into it. The teacher puts 
down the theorem in an informative way, she emphasises that it is a right angled triangle. This can 
prevent some mistakes.” It was coded as Description, Evaluation, Alteration, Prediction. All the 
units were coded by two authors independently and any discrepancy was discussed until a 100% 
agreement was reached.   

Findings 
Fig. 1 shows box and whisker plots and a bar chart of the number of expert phenomena M1 to M6 
per student/written observation. The box and whisker plot on the left concerns all 90 units of 
analysis. Bearing in mind that we focus on knowledge-based reasoning, we discounted the units 
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coded as Description only (the middle box and whisker plot, the number of units 82) and as 
Evaluation only, i.e., units coded at least Explanation (the box and whisker plot on the right, the 
number of units 59). The high median (3,5, the maximum being 6) of the number of comments on 
expert phenomena per student is not a surprise as the phenomena were rather visible in the lesson 
even to educators in other fields than mathematics. However, a third of the units (31) were of a 
subjective or descriptive nature only; students evaluated what they saw without any theoretical 
support: e.g., “I like that the teacher forces pupils to explain concepts (the game).” “The experiment 
leading to Thales’ theorem was nice.” 

   

 
Figure 1: The number of noticed expert phenomena M1 – M6 per student/observation  

The median for the number of elaborated comments on expert phenomena per student (Explanation 
and further) drops to nearly 2 (and there are even 2 students who have none). Tab. 2 shows the 
distribution of the 59 elaborated comments in terms of the phenomena noticed.  

  Units (n = 90) Students (n = 26) Explanation Theorising Alteration Prediction 
M2 15 57.7 % 10 2 11 0 
M5 15 57.7 % 10 1 7 2 
M4 12 46.2 % 7 1 10 0 
M1 9 34.6 % 6 4 4 1 
M6 6 23.1 %  6 0 0 0 
M3 2 7.7 % 1 1 0 0 
Total 59  40 9 32 3 

Table 2: Distribution of elaborated comments among expert phenomena and the nature of elaboration 

The most commented on were M2 and M5. Both concern the core of the lesson – pupils 
experimenting to discover Thales’ circle and formulating Thales’ theorem. Fewer students (12) 
explicitly elaborated on the fact that the teacher also led pupils to see the inverse implication (M4). 
It is worth noticing that only about 58 % of students at the end of their master studies somehow 
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elaborated on the core activity of the lesson. Only 6 students (about 23 %) elaborated on the 
“problems to think about” the teacher used at the end. Note that the experts deemed M6 important 
because the first problem the teacher posed can be answered intuitively without knowing Thales’ 
theorem and thus there is really nothing for pupils to “think about”. On the other hand, the second 
problem is too difficult for the pupils as they have just learned about the theorem and moreover, 
they got no time to think about it. 

Finally, we will look into the nature of comments. There were very few predictions in written 
observations. It appears that it does not come as natural to the students to comment on what might 
be the consequences of what they see in the lesson. There were 9 theorising units made by 6 
students and 32 alterations made by 22 students. Tab. 3 depicts the types of theorising comments 
and suggestions for alternatives with examples (some units include two types and thus the total in 
Tab.  3 does not match the total in Tab. 2). Few units included the theory explicitly. Students mostly 
proposed alternatives concerning subject matter, for the implementation of the task to discover the 
theorem. They were suggestions of rather small changes. Students also wanted to modify the 
teaching methods used. Many proposed a constructivist way of teaching with a bigger involvement 
of pupils which is in view with the approach taken in their mathematics education courses. 

T
he

or
is

in
g 

Diagnosis of 
knowledge  

3 
“The diagnosis value of the game activity was small as there was no 
explanation of problems which caused problems.” 

Concept 
development 

5 
“The pupil was to describe the concept in her own words which can in 
interaction with others consolidate understanding of the concept.” 

Inter-subject 
relationships 

1 
“By showing the picture of Thales and asking pupils to see where he 
came from, she made an inter-subject link in a nice way.” 

A
lte

ra
tio

ns
 

Subject matter 15 
“The teacher could have asked what the radius of the circle is. It 
would also be appropriate to mention a right-angled triangle and that 
the recorded points are its vertexes.”  

Teaching 
methods  

14 
“I would have gone for the description in their own words first, only 
then would I ask for the mathematical formulation of the theorem.”  

Constructivist 
teaching 
methods 

7 
“The teacher should have given pupils more space when 
experimenting. They should have formulated themselves that the 
result was a circle, where its centre lies and what its radius is.”  

Teaching aids 4 
“I would work with the drawing longer. They could have seen that the 
two endpoints of the segment should be omitted.”  

Management  3 “I would rather call more pupils to come to the blackboard.” 
Pupils’ 
mistakes 

2 
“I would concentrate more on pupils’ mistakes, such as, what will 
happen when the point does not lie on the circle and the like.” 

Table 3: Types of theorising comments and proposed alterations 

Discussion and conclusions 
In our previous study (Vondrová & Žalská, 2015), we found out for a different group of future 
mathematics teachers at the end of their master study (n = 53) that they did not notice the moments 
experts in mathematics education deemed important for the success of the lesson (the median for 



4043

 

 

the number of expert phenomena per student was 2, the expert rate was 7). In the present study, the 
success rate of the students was higher (median is 3.5, the expert rate is 6). Even though we cannot 
directly compare the two results as the students saw different lessons (and the choice of the lesson 
matters, Simpson, Vondrová, & Žalská, in press), we can tentatively suggest one possible cause for 
it. The expert analysis was done in cooperation with teacher educators from other fields and thus, 
chances are that the phenomena selected by experts are more visible than in our previous study in 
which the phenomena were selected by experts in mathematics education only and were rather 
subtle for student teachers to notice. It raises the question of explicitness of phenomena to be seen 
in the video (seen by experts in mathematics education, by experts in other fields, by pre-service 
teachers) which impacts the nature of observations and consequently their perceived quality.  

All 26 students commented on at least one expert phenomenon. However, only 15 students were 
able to elaborate on them in a professional way. Thus, 11 students, just before entering teaching 
profession, did not show knowledge-based reasoning in their observations. A third of the 90 units 
were of a descriptive or evaluative nature. It might have several reasons. First, (and it is the 
limitation of any study on noticing investigating written observations), we only reason from the 
written work, we cannot really say that students do not have sufficient knowledge. For example, 
taking into account the fact that during their mathematics education courses the instructor 
emphasises the use of theory on examples from teaching, it is somewhat disappointing that only 6 
students could use theoretical notions for the analysis of events in the lesson. Students did not 
theorise spontaneously. But if we asked them to justify their subjective evaluations, they might be 
able to use theory to do so. Second, it may give more credit to what Star, Lynch and Perova (2011) 
say that student teachers have to first be able to attend to the trivial features of the classroom in 
order to notice important moments.  

On the other hand, 22 students suggested at least one alternative for events deemed important by 
experts. Kersting et al. (2010) claim that suggestions for instructional improvement might be a sign 
of expertise of practising teachers. They found that “students of teachers who included suggestions 
for instructional improvement that they connected to mathematical content showed greater learning 
gains than did students of teachers who included either general pedagogical suggestions or no 
suggestions at all” (p. 178). Our students suggested alternatives mainly for the core activity of the 
lesson seen as important by experts. However, they failed to comment on and suggest alternatives 
for the time of the lesson in which the teacher used two “problems to think” in an insufficient way. 
Also in (Vondrová & Žalská, 2015), we found an insufficient attention on the choice of tasks and its 
cognitive demands. This is something which should be stressed in their university studies as the 
choice of tasks is one of the key features of a successful mathematics lesson (Hiebert et al., 2003).  

The limitation of our study is that a) we presumed that a noticed phenomenon is a recorded 
phenomenon which does not have to be the case and b) the phenomena seen as important by the six 
experts do not have to be seen as important by experienced teachers. This will be pursued further. 
Our study provided more insight into the knowledge-based reasoning of future mathematics 
teachers at the end of their master study. Unlike in most studies on noticing, it focused on features 
of the lessons which are considered by research as important. It shows that students need more 
explicit support in order to be able to connect theory and practice, namely to interpret what they see 
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in the lesson in terms of theory, and to notice and interpret the choice of tasks made by the teacher 
and the nature of their implementation in the lesson. It remains to be seen how the attention to 
expert phenomena will be influenced by teaching experience.  
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